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Abstract of the Thesis

Light-weight Bounds Checking
by
Ashish Misra
Master of Science
in
Computer Science
Stony Brook University

2010

Memory-related errors such as buffer overflows and dangloigters remain one of the prin-
ciple reasons for the failure of C programs. Such failuresxdbalways manifest as program
crashes but also as incorrect outputs. Well-tested pragdorrun error free in most cases, but
studies have shown that even such programs can crash wtssmize with unexpected data. Out
of bounds array and pointer accesses are an important salwflanemory-related errors. Despite
many years of research in bounds-checking, current sokitwe mostly deployed as debugging
and testing aids. This is because the current techniqués{ords protection are either too perfor-
mance intensive to be used in production software or arelenalprocess all valid C programs.

Hence, in this thesis, we present a backwards compatibitenl@ght bounds checking tech-
nique that aims to provide practical protection to C proggdhat can be deployed in production
software. Our technique involves flanking memory objecthwuard zones. We generate in-
strumentation to check that memory references do not aticess guard zones. We are able to
avoid some of the compatibility problems associated wigvjmus bounds-checking techniques
by avoiding pointer arithmetic checks, and instead relyangchecks on the values of derefer-
enced pointers. To obtain good performance, we partiti@sehruntime checks into two parts.
The first part is always performed, and is very fast becausees$ not introduce additional mem-
ory dereferences. The more expensive second part is tedgmly if the first check succeeds,
which is relatively rare. We present an efficient implemgataof our technique. Our results
show that the technique has a relatively low overhead in Cihsive benchmarks. Furthermore,
by instrumenting real world applications, we prove the pcat utility of our approach.
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Chapter 1

| ntroduction

Memory errors are notoriously difficult to debug. Every magmer dreads the day when an
unexplained bug suddenly creeps into a large project. facboutput, program crashes, non
reproducibility of bugs are some of the symptoms of suchrerfdodd Austin states in 1994 [2]
reports "nearly all of the seemingly mature programs could be coaxed dumping core” Fast
forward to 2006, its the case thderrors in the use of pointers and array subscript still dorate
the results of our tests[7]. Recently Microsoft reported finding and fixing 1800 MSfioé bugs
using a fuzzing botnet. Thus memory corruption is as a bigplpro today as it ever was.

Programs written in low level programming languages likerd &++ are considered par-
ticularly vulnerable to such errors. C, affectionately Wmoas "Portable Assembly language”,
provides a programmer complete control over a program’sesddspace. Features like raw mem-
ory pointers, pointer arithmetic, unchecked bounds etaltrés very efficient code. However
such power is more than what most programmers can controheamdory errors such as dan-
gling pointers, buffer-overflows and segmentation fauiess @mmon even in commercial soft-
ware. Consequently, a dominant goal in security and progriagn languages research has been
the development of techniques to ensure memory safety ob@rams.

Unlike type-safe languages like Java and Ocaml, ensuringanesafety of a C program is
a difficult problem due to pointer manipulations that areslyeallowed without any checks. A
plethora of techniques have been developed to mitigaterti#gm. These differ widely in terms
of range of errors detected, accomplishments, performanddackwards compatibility

An obvious solution is to use a "safe” language instead of.§., dava. However given the
popularity of C, languages like CCured and Cyclone have Ipeeposed that aim to introduce
minimal changes to C while guaranteeing memory safety. Nasiess, a change in language
leaves open the question of retrofitting existing softwdieus any solution involving a change in
language and consequently manual effort is less than désira

Instrumenting programs for ensuring safety at runtime isenily the favoured approach.
Further more such instrumentation techniques have toadilliy focussed on tackling widespread
spatial errors (e.g. bounds overflow, uninitialized vaeal) as opposed to temporal errors (dan-
gling pointers, double frees etc.). Ensuring complete mgraafety entails maintaining bounds
information regarding all objects at runtime. As has beendkperience so far, such an instru-



mentation is expensive in terms of runtime performance.tb®ahd, a backwards compatible
bounds checking technique, reports performance overhie@d% on average for Specint-2000
benchmarks. For a debugging tool, the performance figurfésesu

Debugging and testing cannot prevent all memory errorsorgEmsually happen when pro-
grams are fed unexpected data. Fuzz testing tools are bagai anethodology and usually are
successful in detecting hidden memory errors. Unfortupaesting cannot guarantee memory
safety. Hence for detection and prevention of memory errorgime instrumentation is a must.
This instrumentation has a performance penalty. And thaittperfectly safe runs of the program.
A performance impact of 67% on an average is simply not aebégmt

Of course, there have been techniques that have betterparioe. Enforcing bounds allo-
cation [1, 14] holds appeal in terms of performance. Butdhteshniques have limitations while
dealing with out-of-bounds pointers that render them iabégp of dealing with set of all C pro-
grams. Thus the combined issues of low performance overaieddull compatibility are con-
straints that none of the existing techniques convinciragldress. Hence the objective in our
research work has been to develop a technique that hasiparioe adequate for incorporation in
production software while being capable of dealing withvalid programs.

In this thesis we propose a new technique for bounds chec¢hitgguards both ends of un-
safe variables with guard zones and introduces runtimeum&ntation to ensure a safe mem-
ory access. Any access to the guard zone is flagged as an eddhe program stopped. Our
technique does not guarantee complete memory safety. Howayindicated by pervasiness of
buffer-overflow errors earlier, we believe it still repratea potent solution that can be practically
deployed.

The rest of the thesis is organized as follows: Chapter Zldetee contemporary approaches
to bounds checking in C programs. Chapter 3 discusses tighd#our technique. Chapter 4 de-
scribes our prototype implementation and discusses sothe dffficulties we faced and problems
that needed to be solved. Chapter 5 presents our experimesitgts with various benchmarks.
Chapter 6 discusses related work in this field and contrastsechnique with existing ones. Fi-
nally Chapter 7 lists out further ways to improve the perfante of our system and concludes the
thesis



Chapter 2

Background

This chapter reviews some of the current approaches to Isotimecking for C programs. The
research pertaining to these approaches has been detaediddpter 6

21 Static Analysis
211 Methodology

One way of approaching bounds checking is to have a comipile-only analysis phase. Such
tools usually trade scalability for precision.

2.1.2 Advantages

1. No runtime instrumentation is introduced. Thus no penfamce overheads are generated

2.1.3 Disadvantages
1. Both false positives and false negatives are generated.
2. May require programmer annotation for effective operati

2.2 Object-based Approach
2.2.1 Methodology

The object based approach utilises the principle of intdndéerent object. In this approach,

bounds information for all the validly allocated memoryigets in a program are tracked using
an independent data-structure. The validity of pointerstmverified by ensuring that they point
to an object contained in the data-structure. Bounds chgdkiperformed at runtime for every

pointer arithmetic operation. It ensures that after penfog pointer arithmetic using a valid

pointer, the resultant pointer also points to the same \@ligct, the intended referent object.
Note that if the resulting pointer goes out of bounds, it stiinnot be flagged as an error. An
error can be flagged only if an out-of-bounds pointer is dgefced. More-over an out-of-bounds
pointer can return in-bounds again by later pointer-argticnoperations. Hence when a pointer
arithmetic operation results in an out-of-bounds poiraerew data-structure called out-of-bounds
object (OOB object) is created, that stores the base anddisoninthe intended referent object.



Subsequent pointer arithmetic operations on an out-ofvtt®yointer use the information stored
in out-of-bounds object to determine the intended refeobject of pointer arithmetic operations.

2.2.2 Advantages

1. The representation of pointers and the memory layoutepthgram remains the same. Thus
the instrumented program can interact with uninstrumeotet. (Note that this is not always
true. There are techniques which change the memory layoptagframs and thus hinder
interoperability)

2. Since the metadata of validly allocated objects is storealcentral data-structure, by instru-
menting dynamic memory allocation routines, metadata lfaysmamically allocated objects
can be maintained even if the object was allocated by an wanmented library. Furthermore,
pointers to objects in uninstrumented libraries can be racctated even if the object is not
registered in the central data-structure.

2.2.3 Disadvantages

1. The metadata for objects is stored in a central datatateigvhich is usually a splay tree. This
is often a performance bottleneck resulting in overheadxar more.

2. Out-of-bounds pointers require the special data-stractDOB (Out Of Bounds) objects. The
very nature of OOB objects, restricts the use of out-of-lasypointers to only pointer copy and
pointer arithmetic operations. Any other use (e.g. usimgpbinter as input to hash function
or an index to an array) is not permitted. This limits the caiiiglity of the technique to only
a subset of C programs.

2.3 Pointer-based Approach
2.3.1 Methodology

In the Pointer-based approach, the bounds metadata isaim&idton a per pointer basis. This isin
contrast to the object-based approach where bounds meiadaaintained centrally and pointers
to an object, share the meta-data. Thus while two pointergpomt to the same memory object,
different bounds information can be maintained for themis€an prevent intra-object overflows.
For eg: overflows in arrays that are member fields of a giverciire. A typical implementation
of this approach is the fat pointer approach. With fat-paigitthe representation of the pointers is
modified to include the bounds information. During a poirdereference operation, the pointer
is checked againsts its bounds information to ensure thdityabf the dereference.

2.3.2 Advantages

1. Bounds checking only at pointer dereference impliestgresource code compatibility with
respect to out-of-bounds pointers.

2. Intra-object overflows can be prevented.

2.3.3 Disadvantages

1. Interfacing with uninstrumented libraries requiresdiions wrappers.

2. Fat pointers change the memory layout of the programmemncel source code must be modi-



fied.

2.4 Redzones
24.1 Methodology

Many bounds checking tools focus on dynamically allocatedphobjects only. The standard
versions of heap routines (e.g. malloc, free, calloc etce) raplaced by routines that produced
heap objects with padding at their ends. These paddingsllackiith distinctive values and are
called redzones. When the heap block is deallocated, trmomed are checked to verify their
integrity. If they have been written to, then a warning isiess.

A variant of this approach is used by some commercial TokésValgrind and Purify. These
tools maintain additional addressability metadata abweetyebyte of memory in addition to the
redzones thus expanding the portfolio of the errors theydstact . The memory accesses are
checked wrt to this metadata rather than the redzones. Tzemes are marked as inaccessible
in this meta-data and thus buffer overflow and underflows sregmted. In this case the redzones
serve only as a buffer and are not filled with any predeterchinge pattern

2.4.2 Advantages
1. Easiest way to ensure bounds integrity of heap objectwowitinstrumenting the program.
2. Redzones coupled with addressability metadata work agkxemplified by Purify.

2.4.3 Disadvantages
1. Works only for heap objects.
2. Only write overflows are detected. Read accesses to themed are not detected.

3. Errors are reported only when heap blocks are freed anevhete the overflow occurs. It
must also be noted that not all heap blocks are freed.

4. Errors detected are limited by the size of the redzone.eiGtleap blocks can be accessed
without any redzone ever being violated.



Chapter 3
Design

In this chapter, we review the overall design of our apprqatto referred to as LBCWhile the
technique is conceptually simple, various subtle feataféise C language and its standard library
make its implementation rather challenging.

3.1 First Look

The key observation in the design of our technique is thabbittee key components of the perfor-
mance overhead in memory-safety techniques, especialiyaiie faster ones, is the additional
memory accesses needed to fetch the metadata regardindsbiofmrmation. Hence our design
places primary emphasis in minimizing additional memofgnences.

Conventional bounds-checkers protect against out-ofitd®lwaccesses by storing additional
meta-data about the pointer in the terms of the object thHatdurrently pointing to. By instru-
menting either pointer arithmetic or pointer derefererit®epossible to ensure at runtime that
pointers always refer to their intended objects.

Object 1 Object 2

Redzones

Figure 3.1: Guarding objects using redzones



if (!fast.redzonecheckptr) )
if (! slow_redzonecheck(ptr))

value = xptr; flag_error ();

value =ptr;
| Original code || Instrumented Code |

Figure 3.2: Light-weight bounds checking

In LBC, instead of maintaining object bounds, consecuthjeads are distinguished from one
another, by creating guardzon@eence forth referred to as red-zondsfore and after objects.
The location of these red-zones is maintained in a sepaedtestructure/called the red-zone
map) All the red-zones are filled with a pre-specified byte patt@ailed the red-zone value)
These red-zones represent memory that must not be accessechdmory safe program. Thus
we partition the memory into parts that can be legally aastssd the ones that must never be
accessed. Figure 3.1 illustrates this.

Since red-zones do not overlap with any original memoryabjed-zones are never accessed
by non-pointer Ivalues. Hence to ensure memory safety, rdatmme, only pointer dereferences
need to be checked to ensure that they do not refer to anyoresl-z

Our instrumentation comprises of two distinct checks. Thst Giheck is called the fast red-
zone check. Depending on the outcome of the fast red-zorek ctiee slow red-zone check is
conditionally invoked.

When a pointer is dereferenced, the dereferenced datackexhéo see if it matches the red-
zone value. This test comprises the fast red-zone testddfés not, then the program continues
with the memory access. Given that the red-zone value isteeleandomly apriori, the probability
that the dereferenced data has the same value as the redatoaas low. Thus the probability
that the fast red-zone check declares the dereferencesdaifghi

However, if the fast red-zone check fails, it does not impbtthe memory access is unsafe. It
only implies that the current memory location has the regezealue. In such a case, the red-zone
map is consulted to validate the pointer dereference. Bhikea slow red-zone check.Note that
the system cannot catch pointers that jump across red-zdthesever by selecting the size of
red-zone judiciously, we can ensure that the probabilityuzh a case is minimized.

Since the primary objective of our system is to be fast endadie practically deployable and
reasonably effective, case mentioned above is trade-affitk consciously make.

3.2 High Level Architecture

Our technique has both a compile time component and runtormgonent. We implement LBC
using source to source transformation.

The compile-time transformation changes the program inviags:

e Object Transformation:Unsafe memory objects are transformed to incorporate oeds at



struct Str{
int size;
struct Str{ }.char array [I;
int size; '
}.char array [1; struct rz_Str {
' char rz_front[rz_sizel];
struct Str string.var; }.struct Strorig.var;
struct rz_Str rz_string_var;
| Original Incomplete Type ||  Transformed Incomplete Type ||

Figure 3.3: Transformation of Incomplete Types

the start and end of the original object.

e Runtime InstrumentationAll pointer dereferences are then instrumented to enfdreeun-
time checks.

The generated code is then linked with our static library atiner binary libraries — either
instrumented or uninstrumented.

A point to note is that one of the design goals of the LBC sysitetthe ability to be easily
incorporated into the build process of a program. This isesgldl by doing the transformation on
a per translation unit basis.

3.3 Low Level Design

The detailed design involves the following components
e Design of the transformed memory object.

e Size of red-zone

¢ Initialization of red-zone

e Design of the instrumentation.

3.3.1 Design of transformed memory object

In our transformation, not all objects are transformed. &bwer, of the objects that are trans-
formed, there are differences in how objects are transfdrbased on the data-type of the object.
An object of any complete type can have red-zones both befuteafter the object. However, for
incomplete data types, only the front red-zone is enforced.

Incomplete types

C99 allows a structure to have a unsized array at the end. BHsigally entails that the pro-
gram can validly access any memory after the declared ateicHence given such a structure
definition, its not possible to have a rear red-zone for dbjdefined as such. Refer Figure 3.3



struct rz_int_array_-type {
char rz_front[rz_size];
int orig_var [];

}

extern rz_int_array_type rz.array;
| Original Array Declaration || Transformed Array Declaration |

extern int array][];

Figure 3.4: Transformation of Global Arrays

Array Declarations

A common C programming idiom is to declare an extern arraphénhteader file without its size
information. In such a case, transforming the memory olijecbomes difficult since the size of
the red-zone is based on the data-type of the object. Figdrgia&s an illustration of the same.

Such a case to leads to a transformation in which the reazard-is absent since it is not
permitted to embed an unsized array within a structure. @uacarray can only be the last field
of a structure. However it must be noted that such a deateratted not be initialized since it is
evident that the actual array object will be defined anddhiéed elsewhere

3.3.2 Sizeof red-zone

The size of red-zones is important for the safety of the systeprimarily depends on the location
of the memory object.

Heap Object

The size of red-zone for the heap objects is influenced bydifenfing factors
1. Must be a multiple of heap chunk alignment (usually 8 bBytes

The semantics of heap allocation functions dictate thatntieenory objects are aligned on
eight byte boundaries. Hence the red-zone itself must bel@piewof eight bytes to honour
this agreement.

2. Type of pointer being assigned to.

C permits pointers to be cast to pointers to be arbitrarysyfédius its not possible to predict
which type of pointer will be used to access the requested anewbject. Hence the safest
best is the type of the object that is assigned the pointerrretl by the heap function.

3. Size of memory object requested.

Size of red-zone can be set to be proportional to the size ofoneobject requested. For eg:
For a hundred byte memory object, ten bytes can be allocatetid front and rear red-zones

4. Performance constraints. However, because of perfaenaverhead of red-zone initialization
and uninitialization routines, the size of red-zone canb®tery large. A safe upper limit is
the size of largest data-type of the application.



Global Variables

The size of red-zone for global objects is a tricky affairnc the analyses and instrumentation
proceeds on a per translation unit basis, size of data typgsnot always be able for analysis.
This problem can be dealt with by categorizing global olgjéato the following three groups.

1. Primitive type global variables
For primitive types, the size of the object is fixed and thusdize of red-zone can be propor-
tional to the size of the object.

2. Array variables of primitive type
For arrays, the red-zone size can be fixed proportional teifeeof primitive data type.

3. Global variables of aggregate type (structures, uniongj arrays of aggregate types
In case of structures, the type definition seen in one traoslanit may not be the type defi-
nition seen for the same variable in another translation uni

Thus the size of the red-zone cannot depend on the size ofthetype. Hence one straight
forward solution is to fix the size of the red-zone. Hencehaldffsets now become predictable.

However, it must be pointed out then, that structure assigmsnwould need to be carefully
instrumented to ensure that a memory access does not vietit#one integrity.

Stack variables

For stack variables, as opposed to global objects, the yimgl factor is that data type definition
must be complete. Thus for stack objects, the size of reé-zam depend on the type of the
memory object.

3.3.3 Initialization of red-zone

There are differences in the creation and initializationeaf-zones based on the location of the
original memory object.

Stack variables

For stack variables, the red-zones and the red-zone mamitiedized on function entry. On
function exit, the red-zones are nulled out and the red-roage updated.

Furthermore, not all stack variables need to be transformAezsimple optimization, first pro-
posed by Jones and Kelly [5] is to transform only those véembn which the address-of operation
has been performed.

Global Variables

Global variables are initialized before the start of the nmainction. Since the lifetime of the
global variables matches the lifetime of the program, itsdieet pay to uninitialize the red-zones
and update the red-zone map at the end of the program.

As mentioned earlier, in our technique each translatiohinie program being instrumented,
is separately analyzed. Thus the visibility of the instratadon process is limited to the current

10



struct rz_global_struct;

struct global_struct; extern struct rz_global_struct
extern struct global_struct rz_global_var;
global_var; extern struct rz_global_struct

xrz_global_var_ptr;
| Original Global Variable Declaration || Transformed Global Variable Declaration ||

Figure 3.5: Transformation of Global Variables with deethtypes

translation unit.

Its thus not possible to have the same optimization as ingke of stack variables by limiting
the transformation to select global objects. Hence all glolriables are transformed to contain
red-zones.

Extern Variables

A subtle point in the transformation of global variablesdiwes extern variables. C99 allows a
structure to be only declared and not defined.

An extern variable can be declared to have such an declafgdyme provided its used only
with the address-of operator. Note that without data tyigejat possible to position the front and
rear red-zones.

In such a case, our design incorporates additional metawidh every global variable. We
maintain a pointer that is used instead of &(extern-vagablhe code is then instrumented to use
this pointer instead the extern variable.

The pointer is initialized at the time of initialization dfeé global object.

Heap Variables

Heap variables are conceptually the easiest to protectadt) the concept of red-zones is most
popular among the techniques for heap protection. For egmllp&€CMalloc etc.

During memory allocation, the size of front and rear redezois added to the size of memory
object requested. The front and rear red-zones are thed ¥illéh the red-zone value and the
red-zone map is initialized too. The pointer returned bamkéver points to the beginning of the
valid memory region enclosed by the front and the rear rewzo

During memory deallocation, the red-zone map is update@fteat the deallocation of the
front and rear red-zones. The entire memory object is thalabated.

Difficulties

However there are again subtle issues when dealing with &léagation. Memory allocation
functions like malloc, calloc do not provide for requestthg memory object to be aligned on user-
specified boundaries. Hence such functions can be institieeheimply by increasing requested
size to include the size of red-zones.

However for functions like memalign, valloc etc that allovalegnment to be specified, there
are arise some issues that need to be dealt with.

11



Aligned Memory Objects

The semantics of functions like memalign, valloc, pvalldgtate that the pointer returned
back to the user must be aligned on the specified boundargrdo@tion of a front red-zone in
such a case would necessitate the object being aligned orextdoundary. For large alignment
requirements, (for eg: on page boundary) this would leaddb @f wastage of memory.

Hence our current design does not instrument such alignedtsiwith a front red-zone.

Free OperationThe heap object free operation involves a subtle point. Agatimned earlier,
a heap allocated object may/may not incorporate the fraizome. When a pointer is given to
the free function, thus the presence of the front red-zoneksown.

In such case, the metadata maintained by the red-zone meglfeid on to provide the answer.

3.3.4 Design of instrumentation

Emperically it has been observed that number of pointerfelenece operations in a program is
more than the number of pointer arithmetic operations. B$aces our technique at a disadvan-
tage wrt those bounds checking techniques that instruneéntgp arithmetic.

Hence it is of vital importance for the instrumentation todseefficient as possible. While
implementing such an instrumentation, the following peinéed to be observed:
1. The fast red-zone check must not generate extra memory

2. The slow red-zone check validates the correctness of comyarference. Since the red-zone
map is consulted in this case, additional memory refereapegenerated. Hence it must be
ensured that the probability of slow red-zone check beiugkied is low.

3. Transformation of stack-based memory objects involeglszone initialization and uninitial-
ization at function entry and exit respectively. This is gndicant source of performance
overhead and it must be carefully implemented.

3.4 Disadvantagesof our design

1. Ourtechnigue cannot catch all errors. Pointer derefereperations that lead to a valid pointer
accessing memory beyond the red-zone cannot be caught.

2. Instrumenting write operations will lead to additionag¢mory accesses.

12



Chapter 4

| mplementation

We implemented our prototype LBOP system for 32-bit X86 nraeh This chapter discusses
in detail our prototype implementation, the difficulties faeed and a few points that any similar
system would probably need to address.

4.1 Implementation Framework
The LBOP system interacts with the target program at bothpdertime and runtime. Our proto-
type is made up of the following components

1. A source to source transformation module implementetguSiL [C Intermediate Language]
program analysis tool.

2. Static Libraries
3. Instrumented glibc (for heap object instrumentation)

The system comprises of roughly 2500 line of CIL (Ocaml Codg&thatic libraries and glibc
malloc instrumentation accounts for 1000 lines of C code.

4.2 Sourceto Source Transformation

Our source transformation module has been implemented aslalewusing CIL program analysis
infrastructure. CIL provides a high-level tree represemtaof a C program along with a set of
tools that permit analysis and source to source transfammat

CIL implements the Visitor design pattern and provides #@intg engine that scans depth-first
the tree structure and provides options to the module at eaa.

The module comprises of two passes over the the translatibminder transformation.

4.2.1 Object transformation pass

In the first pass all global variables and unsafe local véatahre transformed to incorporate the
redzones. Since the redzones need to flank the original nyealpect, data-type of the trans-

formed memory object is a structure with two char arraysZoeés) and and an object of original
data-type as the member fields. The references to thesdleariare then updated to reflect the

13



I/l rz_size is the size of the
I/l redzone and a constant value.
struct rz_unsignedtype {

char rz_front[rz_size];

unsigned orig_var;

char rz_rear[rz_size];

s

struct rz_unsignedtype rz_array.size;

unsigned array_size;

void
func (void) {

. _ void
func_size = .
. ) func (void)
array.size; [
} func_.size =

rz_array_size.origvar;

}
| Original Code | Instrumented Code. |

Figure 4.1: Transformation of variables and updated refare

new memory object. An example of the transformation is @iggdl in the Figure 4.1

Note that transformation of variables themselves is ndicseimt. Instrumentation is added to
initialize and uninitialize redzones.

L ocal Variables

For local variables, our current implementation perforhis instrumentation at the entry and exit
of functions. There is however room for improvement that tél discussed in Chapter 7.

Global Variables

The initialization of global variables is achieved by codeconstructor functions created for that
purpose. A constructor function is a function with the GC@stouctor function attribute and is
guaranteed to be executed before the main function is called

4.2.2 Runtimelnstrumentation Pass

In the second pass, all pointer dereferences are instrechevith the runtime checks to ensure
memory safety. Figure 4.2 demonstrates the runtime ingngation. However note that the
function call redzonecheck(ptr) is only symbolic of the redzone checks. The ddéash and slow
redzone checks are different.

14



redzonecheck(intptr);

size = redzonecheck(&ptr—field[«int_ptr]);
ptr—fieldl[xint_ptr]; size =
. ptr—fieldl[xint_ptr];

| Original Code | Instrumented Code. |

Figure 4.2: Intrumentation of pointer dereferences

4.3 StaticLibrary

The most important component of the library is the impleraton of the redzone map (The data
structure that maintains the location of the redzones fetttire virtual address space).

4.3.1 Redzone map

In our current implementation, the redzone map has beereimgiited as a bitmap. Every bit
represents a byte of the address-space. Thus theoreticatigximum of 12.5% of additional
memory can be consumed by the bitmap.

The redzone map has been organized as a two-level datasstrweith the first level as an
array of pointers, each pointing to an array representiegatidress bits. This two level structure
abstains from allocating the entire memory in one go. Adapt single array bitmap for the
red-zone bitmap will have the following performance disatages:

1. Allocating the entire red-zone bitmap as single arrayragyam startup would dramatically
slow down process startup.

2. Itwould impose large memory overheads uneccessarily

The library contains the subroutines for the maintainarfdberedzone map. These routines
are invoked by the redzone initialization and uninitialiaa functions. It also contains a slow-
redzone check function that accepts the address to be chetké address is then looked up in
the redzone bitmap.

4.4 Shared library

In our system, the heap-related functions in glibc have lestrumented to introduced redzones
around heap objects with related initialization actiatiel'his enables accurate bounds checking
of all heap related objects.

45 Optimizations
451 Fast Redzone Check

An efficient of fast redzone check is crucial for the perfonte of the system. A naive imple-
mentation would be to create an inlined function that wouddept the pointer to be verified,

15



int
fastredzonecheck(void xptr)
{
/I redzonevalue is sdefine
/1 th_e byt(_e pattern fast.redzonecheck(value, ptr)\
/7" with which the ({value == redzonevalue;}) \
/1 redzone is filled. o ’
return (x((char x)ptr)
== redzonevalue);
}
| Naive implementation | Current Implementation |
Figure 4.3: Implementation of fast redzone checks
if (!fast_-redzonecheck(ptr))X
asm (' pushl _\ %eax\ n"
"pushl _\ %cx\n"
/[l This is only an illustration. "pushl _\ %&dx\ n"
/1 Actual fast and slow redzone "cal | _sl ow_redzone_check\n"
I/l checks differ. "popl _\ %edx\ n"
if (!fast.redzonecheck(ptr)) "popl _\ %ecx\ n"
slow_redzonecheck (ptr); "popl _\ Yeax\ n"
);
}
| Naive implementation | Current Implementation |

Figure 4.4: Inline assembly call to slow red-zone check

dereference it and then compare against the redzone value.

Unfortunately, as we found out, this implementation praeescostly in terms of performance.
With such an approach, we experienced overheads of abd@%0with bzip2 function. The fast-
redzone check must necessarily be implemented as a matmctepts the value that represents
pointer being dereferenced by the program.

At the assembly level, such a value will most probably regidhe processor’s register. The
check above would then compare the redzone value againsglster enabling a fast check.

Using an inline function, would require casting the poirtevoid pointer type, recasting it
back to a character pointer and then dereferencing it angh@ony against the redzone value.

As we discovered, this casting of pointers leads the comfmlgenerate code that compares
the redzone value directly against the memory leading tage lowerhead.

Figure 4.3 illustrates the naive approach vs the currentémentation. Note that the code
does not represent the actual red-zone fast check.
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4.5.2 Function call using inline assembly

Implementing the fast redzone check as above still is ndicgerit to reduce performance over-
heads. Hence in our implementation the calls to slow redzbieek are embedded in an inline
assembly The salient feature of the inline assembly codeifrigure 4.4 is that the list of registers
clobbered is empty inspite of a function call being made.

It must be noted that ABI on Unix system specifies that thestegs eax, ecx, edx are caller
saved registers and the called function is free to use thepemgs requirements. If the call to
slow redzone check had been implemented as a normal furazlbrhe caller-saved registers are
considered dead by the compiler and are reloaded from merSorge about number of redzone
checks inserted were of the order of71ibis lead to a big hit on performance

Hence the inline assembly code saves and restores the salled registers from the stack
before and after calling the slow redzone check function.rédeer, inline assembly is never
parsed by the compiler. Thus the function call is hidden fthencompiler and thus extra memory
references can be avoided.

Incidentally, Baggy-Bounds-Check [1] too implements aikimconcept to reduce perfor-
mance overheads.

453 Array Bounds Check

A very simple optimization is to use a bounds check in prefeeeto a redzone check wherever
possible. This is motivated by the optimization capaleditof the compiler which can optimize
bounds check in a much better way as compared to the redzeo& ahich involves memory
dereference.

Thus where-ever the dereference is guaranteed to be aniadexing operation, an array
bounds check is performed as compared to a redzone check.

45.4 Redzone map maintenance

For redzones guarding the global variables, the redzonemaags to be initialized only once.
However for unsafe stack variables that have been transfiyritihe functions maintaining the
redzone map must be as optimized as possible.

Hence our implementation imposes the following restritgion the redzones.
1. Size of the redzone must be a multiple of 8 bytes.
2. The redzones must be aligned on 8-byte boundary.

This leads to measurable improvement in performance.
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Chapter 5

Evaluation

In this chapter, we present the performance evaluation pjpoetotype implementation. Sec-
tion 5.1 evaluates the performance of runtime instrumamtathen slow red-zone checks alone
are performed.

5.1 Motivation for fast redzone checks

As mentioned earlier, one of the primary components of perémce overheads in runtime in-
strumentation is the additional memory accesses necegségych the bounds meta-data. Our
primary focus has been to reduce these additional memogsses.

The key to performance improvement has the fast red-zonekshbat use the already deref-
erenced data to decide whether the slow red-zone checkdsimyoked or not.

To check the effectiveness of this approach we comparedwtert performance to the per-
formance of runtime instrumentation with only slow red-zarhecks to validate the memory ac-
cesses.

The experiments involved compressing and decompressir@bIR media file by instru-
mented bzip2, bunzip2 and gzip programs.

The results are as in Figure 5.1. As can be seen slow-cheohks ehuse slowdowns of upto
8Xin case of bzip2 and 3X in case of gzip. However, coupleth ¥ést red-zone check, the perfor-
mance overheads drop to 25%, 32% and 34% for gzip, bunzip®zpd programs respectively.

5.2 Performance Evaluation

In this section, we evaluate the performance of our prowtggplementation using CPU Intensive
SPEC benchmarks, its effectiveness in preventing overfeovesmeasuring the performance of
real world software.

We evaluated our prototype’s performance using CPU200@&Hmearks on a system with
2.00GHZ Intel Core 2 Duo processor and 3GB RAM running Ub@iD.
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Figure 5.1: Performance evaluation of combined red-zoeelchwith slow red-zone checks only.

5.2.1 Specint 2006 Benchmark

We chose to use the Specint 2006 benchmarks because thelyrbptesent the current software
performances as compared to Specint 2000 benchmarks.

Specint 2006 Overhead

250

200

130

BLEC
100

50 ——
0 == . . .
bzip

mef

sjeng hmmer perl

Figure 5.2: Performance evaluation using Specint-2006Hrearks.

The above Figure 5.2 above shows our runtime overheads. fDigeapn mcf shows lowest
overheads at 12% while the highest overhead is for the peithmeark at 232%. The Bzip2
benchmark is reported at 35% runtime overhead.
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5.2.2 Comparison with previous work

Since the Bzip2 and Perlbmk benchmarks are common to botbli@@000 and Specint 2006
benchmarks, they can be taken to be a reference point foraxigop with previous work in this

field. Another program from Specint 2000 benchmark, gziploaeasily independently verified
for overheads generated.

Our prototype can be compared to previous works: Baggy Be@iekck [1] and WIT. Baggy
Bounds has previously reported some of the best perfornfaques yet. WIT reports even lower
performance figures but it instruments only memory writes.

But an important point to note is that WIT clearly states ivglgo be prevention of memory
exploits. By not instrumenting memory reads, they cannetgmt the most eggregious of memory
errors. Our focus, on the contrary, has been to efficientigadl@s many memory errors as possible.

The performance overheads can be compared as follows:

250

200

150 ———

B WIT

100 ™ Baggy
m1LBC

% Overhead

30

Gzip Bzip Perl Bmk

Figure 5.3: Comparison of overheads wrt Baggy Bounds Chgakind WIT

Bzip2

Baggy bounds check reports a performance overhead of 60%.qWites an lower performance
overhead for Bzip2 at 25%, but then WIT approach only prexgntnerabilities. It needs to be

pointed out that Baggy bounds check paper relies on stagilysia based optimizations while our
prototype currently employs none.
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{
. init_redzone(rza);
SW'tCh(Vér) { init_redzone(rzb);
case 1: o '
. ] init_redzone(rzc);
Int a; init_.redzone(rzd);
int b; B '
case 2: swg;:sré(\igr) {
int c; '
int d;
case 2:
}
}
| Original code | Instrumented Code ||

Figure 5.4: Perl benchmark code snippet.

Gzip

For gzip too, our technique’s 25% overhead compares fabburaith Baggy bounds check’s
50%. WIT reports 5% overhead.

Perlbmk

However, for Perlbmk, Baggy Bounds Check’s performancelead (100%) is much lesser than
our own (232%).The above performance figures necessitatedpger evaluation of the Perl bench-
mark. Our analysis indicates that even in case of Perlbnekotierhead of redzone checks is still
35% while the cost of maintaining the redzone map accounthéorest.

The Perlbmk has multiple functions which display the stuitetas in the above Figure 5.4.
The salient features are:

1. Extensive use of stack array objects and thus a large nushbesafe stack variables
2. Switch-case structure with variables being declaretiwihe case statements.

However in the instrumented code, all the variables areadedlin the outermost block. Thus
there is unnecessary definition and initializiation of dasariables that would probably not even
be allocated in the original code. This removal of block leragiable declarations is an "feature”
of CIL.

Other implementations would not suffer the same limitatitmwever in all probability, there
would still remain substantial overheads. These would degated as far as possible, with the
help of static analysis techniques discussed in Chapter 7

5.3 Real world Applications

To verify the useability of our approach, we instrumentegheaeal-world applications.
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Program KSLOC
Openssl-0.9.8k| 397
Nullhttpd 2
libpng-1.2.5 36

Table 5.1: Real-world applications instrumented and thige

1. OpenSSL toolkit.

2. Libpng. Libpng reported overheads of 30%

3. Nullhttpd. We could trace two array bounds violationst thhere also reported by Baggy
Bounds Check [1]
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Chapter 6

Related Work

There has been intense research in Bounds checking oveaghfep years to the point where cur-
rent state of the art techniques are nearing deploymenbtiuption server but just not completely
there yet.

This chapter reviews some of the previous research in tees and how it contrasts with our
work.

6.1 Goalsof our approach

At this point, it would be useful to review the goals that oppeoach aims to fulfill:

1. Performance overheads adequate for production systems.
2. Full compatibility with all C programs and full compatiby with uninstrumented libraries.

6.2 Impetusfor bounds checking

Patil and Fisher [10] provide good motivation for the needuwftime instrumentation. Miller
et al [7] provide an evaluation of random testing of MacO$®pleations and provide empirical
evidence of the pervasiveness of bounds checking errors.

6.3 SafelLanguages

Cyclone [4] is a C-like language that was focussed on minmmgizlifferences with C syntax and
semantics while providing memory safety. However the nesguent of detailed pointer annotation
makes porting C programs to Cyclone programs a non-trifiaite CCured [9] differentiates be-
tween safe and (potentially) unsafe pointers and intraslugetime checks for unsafe operations.
However the pointer representation is changed for unsafegre and this can create compatibility
problems with some external libraries.

Thus the compatibility issues limit the applicability ofcbulanguages and hence their usefull-
ness.
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6.4 Pointer based Approach

Pointer based approach tracks the bounds metadata for eatérpe.g using fat pointers. Kendal [6]
and Steffen [12] proposed the use of fat pointers with ex&ladi maintaining the bounds of the
current object associated with the pointer. Such an approac detect intra-object overwrites (an
overwrite from one field of a structure into another) but afemthe memory layout in a way that
induces incompatibility with external libraries. Moreowlere are significant runtime overheads
associated with this approach. Wei Xu et al [13] proposetiriegies that addressed the prob-
lem of both spatial and temporal errors by maintaining dijjelated metadata and instrumenting
pointer dereferences. However the technique suffered fedatively high overheads and com-
patiblity issues (library wrappers were needed to intevétt uninstrumented libraries). More
recently Soft bounds [8] too utilizes a pointer based apgroa

6.5 Object based Approach

The problems of fat-pointer approach are resolved by thereaf object approach proposed by
Jones and Kelly [5]. Their key observation is that pointessogt of bounds on the account of
incorrect pointer arithmetic. Thus their implementatiostruments both pointer arithmetic and
pointer dereferences. Their system maintains backwanagpabbility by preserving the pointer
representation and at the same time maintaining objectdoimna separate data-structure. Their
system unfortunately enforces a strict enforcing of ANSIt&hdards that breaks 60% of tested
programs and also incurrs overheads of upto 12X at runtinig. Flowever, to their credit, their
object-referent object has proved to be the lynchpin of sévtechniques proposed later.

CRED [11] improves the referrent object approach by usirg@®OB [Out-of-Bounds] ob-
jects to store meta-data that pointers that overflow or dlwean object bounds. However this
technique introduces limitations on the use of pointersig-copy operations after going out-of-
bounds. Thus it is not completely compatible with all valigp@grams. For eg: A program that
use out-of-bounds pointer (say) as an index would breakusecaf the technique.

Baggy Bounds Checking [1] extends CRED by introducing th&onoof maintaining alloca-
tion bounds as opposed to object bounds. This insight en#iéen to achieve good performance
figures. However, their compatibility with programs is weitkan CRED [11] for it cannot deal
with out-of-bounds pointer beyond a very limited addresgyea This is not an insignificant limi-
tation.

PAriCheck [14], developed concurrently to Baggy boundscfigcking, also utilizes the prin-
ciple of referent object checking of pointer arithmetic amfiorcement of allocation bounds. Their
key insight is in employing a more efficient alternative taper arithmetic checking as compared
to splay-tree based object bounds approach. Instead they atobject-specific 'label’ compar-
ison to achieve better performance. In terms of compdiibithey score above Baggy bounds
checking, but still suffer from the limitations of CRED [11]

Thus referent object based approaches have so far notedsadwnpatibility issues.
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6.6 Traditional Redzone Techniques

Redzones have traditionally been used for protecting memiojects on the heap (Mpatrol, Pu-
rify). This technique has also been used for debugging bafferflows within the Freebsd kernel.

The methodology of these techniques is usually as follows:
Add padding to heap blocks at the ends.

Fill the redzones with distinctive values.

When the heap block is freed, check the integrity of theoeds.

A wDdE

If they have been written to, issue a warning.

Of the above points, the only thing common between our teglenand previous approaches
is the presence of redzones. The significant differenceasaf@lows:

1. All objects (stack, heap, global) are protected with ce@zs.
2. Runtime checks are performed at memory access and nat juse.

3. Memory reads into the redzones are detected and flaggebes as opposed to just memory
writes in case of previous tools

In commercial tools like Valgrind and Purify that utilizedzones, memory accesses are vali-
dated against a additional addressability meta-data aveuy byte of memory. The redzones are
marked as inaccessible in this meta-data and thus buffefl@wveand underflows are prevented.
Thus the redzones serve only as a buffer and are not filledamiyhpredetermined byte pattern
as opposed to our technique where the redzones serve asypdefanse and redzone map acts
as the secondary check. Moreover, the above tools are taywemht to be used in production
environments and serve strictly as debugging aids.
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Chapter 7

Conclusion and Futurework

Our current implementation emphasized the developmerifioieat runtime instrumentation. We
do perform some simple optimization in case of stack-baseidbles by instrumenting only those
variables that can accessed in an unsafe manner. The engibyihstatic analysis techniques
would enable identification of safe memory operations and tkduce runtime instrumentation

Furthermore, inspite of the techniques currently employeahdling unsafe stack variables is
still an expensive proposition. Efforts need to be dire¢tsdards mitigating this problem. In this
section, therefore we present some potential directionweuedd explore in the future.

7.1 Static Analysis

Bounds checking has traditionally relied heavily on stathalysis to optimize performance [3].
Runtime checks can be avoided if the validity of a pointerrafien can be statically ensured.
Furthermore, hoisting a runtime check out of a loop can prnoymrtant for a performance-critical
loop.

As has been mentioned earlier, a compiler can analyze balneds more easily as compared
to redzone checks. Currently, we naively replace redzoeekshwith bounds check whenever
bounds information is available.

However this optimization can be extended only to unaligssdter variables whose bounds
can be completely tracked. For eg: an instrumentation dookk pointer related bounds informa-
tion when the pointer is assigned the evaluation of an egmeghat involves an aliased pointer.
Thus source transformation would need to employ either ad®eheck or a redzone check de-
pending on the validity of the pointer’'s bounds informatidrhis decision can be made either at
compile time or at runtime.

7.1.1 Runtimeselection of instrumentation

One approach would be to associate additional bounds na¢gavdth every unaliased pointer
along with a metadata-validity flag. This flag would be setrialid when bounds information

is no longer reliably available. The runtime instrumemtatcould then choose to perform either
bounds check or redzone check based on the meta-data &vaitabntime.
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7.1.2 Compile-time selection of instrumentation

Another approach is to maintain the bounds metadata fortbiolse pointers for whom it can be
assured that bounds information will always be availablds €an be implemented by conducting
a second pass over the generated runtime instrumentatemstoe that bounds information for a
pointer can be tracked. If its the case that bounds infoonédtr a given pointer can be lost over
even a single code path, then redzone checks are employdahfqointer's dereferences.

The advantage of this approach is that either a bounds chBRale@zone check is employed
by the runtime instrumentation. But the decision is madeoatpile time and thus instrumented
checks are simplified.

7.2 Instrumentation Optimization
7.21 Unsafe Stack Variables

As was demonstrated by the perlbenchmark, the instrumemtaf stack variables has a sig-
nificant effect on the performance of our system. Part of tftublpm can be attributed to our
implementation’s use of CIL program analysis infrastroetu

CIL simplifies the code in a function definition by moving \abile declarations of every block
to the outermost block. While this simplifies the analysie generated code consumes addi-
tional stack space. Furthermore our current implememtadtimdles all redzone initialization and
uninitialization activity at the function entry and exit. hit leads to unnecessary performance
overheads.

One solution could be to initialize all the redzones at th&t fiointer dereference operation.
A more sophisticated approach would be initialize redzarfesnly those objects which can be
referenced by the pointer.

7.2.2 Stack frame layout in redzone map

An interesting observation can be made about the redzonmepitayout for a stack frame for
functions without dynamic size stack arrays. It can be gasiserved that the bitmap layout would
remain the same for every invocation of a given function.sTdtiservation could potentially do
away with need for expensive redzone map maintenance gpesat every function invocation.

7.3 Conclusion

In this thesis, we have thus presented a new lightweightwaicls compatible approach for buffer
overflow protection in C programs. As opposed to some of teeipus techniques, our approach
offers a protection mechanism for any C program. It also desimates the ability to seamlessy
integrate with uninstrumented libraries and modules tmabkng its introduction to any system.

Our implementation demonstrates reasonably low perfocemawerheads. Our section on future
work details a host of approaches to further reduce the eeekhFurthermore, our emphasis on
separate compilation and automatic instrumentation esadoh easy integration into a software’s
build process. These attributes thus make it a potent addyekeployable approach to preventing
runtime buffer overflows.
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