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Abstract of the Thesis

A Framework for Enforcing Information Flow Policies

by

Bhuvan Mital

Master of Science

in

Computer Science

Stony Brook University

2010

Reactive approaches for ensuring security, like signaturebased scanning and behavior mon-
itoring, have been around for quite some time. However they have failed to provide assurances
about overall system integrity, and can easily be defeated by sophisticated techniques like code
obfuscation and encryption. Another class of attacks includes those that occur in multiple steps
(often referred to asmulti-stepattacks). Information flow based approaches provide a basisfor
mediating and tracking dependencies between system entities, and can thus prove to be helpful in
overcoming these shortcomings. However, success in applying information flow based techniques
to modern COTS operating systems has been limited, since a strict application of information
flow policy can break existing applications and OS services.One common case of poor usability
is when an application is denied write access to a high integrity file in the middle of the write-
operation as a result of reading from a low integrity file.

Our framework attempts to address this issue of loss in usability by maintaining integrity
constraints for each subject (process) and object (files, sockets, IPC channels etc.) in the system,
and permitting or denying access requests by ensuring that no invariant is violated. To achieve
this, our approach maintains a per-process list of objects being accessed. For each new read-
open request made by an application, our policy enforcer propagates integrity constraints from the
objects in the application’s list to the new object that the application wishes to open. The success
or failure of the request then depends on the new object’s ability to honor these constraints. This
strategy restricts service denials to early failures, which the applications handle far more gracefully
than read or write denials. To provide completeness to the solution, our framework enforces
policies for all different types of objects (files, links, pipes, sockets, devices, IPC channels). The
implementation of our framework utilizes Linux Security Module (LSM) hooks. A considerable
portion of our work also deals with understanding and documenting the flow of the Linux kernel
code involved in the LSM framework and mapping the abstract operations of our framework to
the appropriate LSM hooks.
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Chapter 1

Introduction

Security threats and malware attacks have increased dramatically over the past few years. With
Internet becoming powerful, its user-base has increased massively and so has the threat from
malware, which gets downloaded to the victim’s machine either actively or passively. Malware
defenses that use reactive approaches, such as signature-based scanning and behavior monitoring,
can be defeated by code encryption and obfuscation. Sophisticated attackers can easily evade
detection by such approaches by simply changing the structure and behavior of their malware.

Sandboxing based security solutions restrict the number ofresources that an application can
access and modify. Many proactive defenses based on similarideas, are used commonly against
untrusted software, to limit the set of system resources that can be modified by potentially ma-
licious processes and restrict communication with other system processes. However, many such
techniques do not mediate read-accesses and hence there is no enforcement for data that is read
from low integrity sources, such as malware outputs. In the absence of read-access mediation,
multi-stepattacks can still be perpetrated, as simply as malware usingvi-editor to write to a high
integrity file, which it otherwise is not authorized to writeto, directly. An example of a real world
attack is that of Windows Vista Security Model which does nothave security enforcement policies
for read-downs(reads that occur from low-integrity sources) and only enforces policies that me-
diate and thus preventwrite-ups(writes that occur on high-integrity objects, whose integrity must
be preserved). The attacker simply overwrites the Vista start-menu file, an action that does not
involve escalated privilege level. The affected start-menu items now points to entry-points in the
malware rather than the usual applications. However, the naive user is oblivious of this and trusts
the start-menu entries. Thus when he clicks on a menu item andis prompted by the Vista UAC,
which requests higher privilege level for running the intended program, the user almost certainly
allows the escalation of privileges. The malware then executes with escalated privileges thereby
compromising system security. Thus due to the absence of read access policy enforcement in the
Windows Vista Security Model, it becomes vulnerable to a potential multi-step attack.

It may be worth noticing that while read accesses refer to both read-upsandread-downs, from
an integrity standpoint,read-upsare never an issue. Likeread-ups, write-downstoo are never
problematic in the integrity model. Hence any reference to an integrity-preserving security solu-
tion’s inability to mediate read accesses, essentially means it’s inability to mediate read-downs.
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The same holds true with regards write accesses.

Information-flow based integrity preservation techniques, which regulate write-access as well
as read-access, and mediate flow of information (occurring on all possible channels of communi-
cation) between the dependent entities in a system, can be used to counter multi-step attacks. An
early, and significant work on information-flow based techniques is the Biba integrity model [4]
which serves as a guiding principle for similar works. However Biba model is very strict and
simply denies allwrite-upsandread-downs, thus it tends to break the functionality of many appli-
cations and suffers from poor usability.Low Watermarkmodel [5, 11] builds over the Biba model
by adding a “subject downgrade” policy. This means that a subject gets downgraded to a lower in-
tegrity level when it reads from a low integrity object, and subsequently runs at a reduced integrity
level for the remainder of its lifespan. Thedowngradepolicy, addresses some of the usability
issues. However it does not address theself-revocationproblem where an application is denied
write access to a high integrity file in the middle of the write-operation, consequent to getting
downgraded upon reading from a low integrity source. An example is that of a peer-to-peer down-
loader that downloads data from high integrity sources/sockets, gets downgraded in the middle of
this operation if the user tries to download from a low integrity socket, and then can’t complete
its prior task, which involves writing to high integrity files. Another example is when a user edits
a high integrity file in a text editor application, and in the middle of operation, the user opens a
low integrity file for reading. Now this operation causes thetest editor to get downgraded and it
thus loses it’s write ability on the high integrity file. The user may either lose important unsaved
modifications to the high integrity file or in the worst case itmay leave the file in an inconsistent
state.

PPI [14] uses the concept oftrusted applicationswhich means applications which are desig-
nated as trusted, do not get downgraded to lower integrity levels even when they consume low
integrity inputs. This concept can be applied in solving theabove mentioned problem of ensur-
ing usability, by simply making the peer-to-peer downloader and the text editor, trusted. However
trust alone cannot be the solution to this problem, because unlimited trust can become an undesired
feature of a security model.

Our work derives motivation from this problem of loss in usability of applications, which
arises due to enforcement of information-flow based policies such asdenyanddowngrade, while
keepingtrust to a minimum. In this thesis, we develop an integrity preservation framework for PPI.
The high level goals of our framework are enlisted below and are discussed in detail in Section 1.2.

• Promotion of Early Failures by Propagating Integrity Constraints. Our focus is on promoting
early failures as opposed to delayed failures, while preserving system integrity. Without loss of
generality we can claim that early failures cause much less breakage in usability, than delayed
failures. One example of this is that applications handle file-open errors far more gracefully
than read/write errors. Another example is that of sockets:denying connection to a socket is
better than denying send/receive on an established connection, at a later stage.

• Completeness of Approach. Our framework enforces integrity policies on all types of objects
in the system. These include regular files, directories, sockets, pipes, links and various IPC
communication channels.

• Limiting Trust. Our framework uses PPI’s concept of trust and exempts trusted applications
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from information flow policies. However the framework provides the flexibility, to either limit
a subject’s trust to a certain threshold or make the subject untrusted altogether. This helps our
framework in limiting trust to only a few applications, e.g.ssh server is trusted for all input on
port 22.

• Flexible and Scalable Labels. Each subject and object (named as well as un-named), in our
system, has an associated integrity label. Our framework implements a label as an abstract
datatype, with its domain being a lattice. Labels may also beused to encode both confidential-
ity and integrity at the same time. In the simplest case, we could still use a linear lattice, with
the top element corresponding to highest integrity and lowest confidentiality; and the bottom
element corresponding to lowest integrity and highest confidentiality. The current framework
is designed to support all the suggested alternatives, for label implementation.

• Fitting the framework in a contemporary Operating System. The greatest challenge we faced
was mapping our framework operations in a contemporary operating system. Linux operating
System provides the LSM (Linux Security Module) framework for writing loadable security
modules. We faced multiple engineering issues while mapping the abstract operations of our
framework with the corresponding kernel hooks of the LSM framework, many of which stem
from LSM’s limitation. However the robustness of our designpermits the seemless integration
of our framework with any operating system that offers a security framework similar to LSM.

Our results indicate that our framework preserves integrity and maintains usability at the same
time. The overall system overhead is marginal and the performance penalty does not change
drastically with the increase in the number of active processes in the system.

The rest of the thesis is organized as follows. In Chapter 2 wetalk about the details of the
design of the PPI-Framework. We describe the details of our implementation and details pertaining
to mapping with the LSM framework in Chapter 3. We present theactual experimental results
obtained from the various benchmarks in Chapter 4. Chapter 5provides references to some related
works, and we conclude in Chapter 6.

Our framework is based on the PPI [14] approach for preserving system integrity. Section 1.1
gives an overview of the approach developed by PPI [14] for integrity preservation, presents the
concept of trust, introduced by PPI and mentions how our framework implements this concept. In
Section 1.2, we discuss the contributions of our framework.

1.1 Overview of the PPI Approach

Figure 1.1 illustrates the integrity and trust levels used in our framework, as advocated by PPI
(Practical Proactive Integrity Preservation). To simplify the illustration, we use just two integrity
levels:highandlow. A subset of high-integrity objects are identified asintegrity-critical. Integrity
critical objects are those, whose integrity must be preserved under all circumstances. In other
words, they are those objects that must never get downgraded. Integrity critical objects provide
the basis for defining system integrity:

System Integrity: System integrity is preserved as long as all integrity-critical objects have
high integrity labels.[14]

The initial set of initial integrity-critical objects is externally specified by a system administra-
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Figure 1.1: Classification of Applications in PPI

tor or the user of the system, both of who are assisted by automated analysis techniques specified
by PPI. Files corresponding to applications that come from the OS vendor or are downloaded from
trusted repositories have high integrities. Such applications are termed asbenign. Such applica-
tions retain their trust labels as long as they do not consumedata from low integrity channels (files,
sockets etc.). Otherwise they get downgraded to lower integrity level. As an example, a bit torrent
client application may get downgraded upon reading data from a low-integrity socket.

However it may be necessary to have a certain amount of trust on certain applications (e.g.,
certain webservers), which sanitize lower integrity data before consuming it. Trusting certain
applications, may be absolutely necessary for their correct functioning, e.g. an ssh server must be
trusted for all inputs received on port 22. Such applications are termed astrusted.

Our framework implements this concept of trust by making theapplicationsinvulnerableto
low-integrity inputs. Such applications do not get downgraded as long as they cansanitizetheir
inputs. The extent to which such applications can be trustedis defined by theirinvulnerability
level which simply means that the application is invulnerable till its invulnerability level. Any
input it consumes below this level will lead to its downgrading. Details on how our framework
implements this feature is described in Section 2.1.6.

PPI develops a new approach for proactive integrity protection by overcoming the issues that
information flow based systems suffer from, some of which were discussed earlier. PPI assigns
labelsto all the entities (objects and subjects) in a system and decouples these integrity labels from
access policies. An integrity label on an object simply indicates whether its content is trustworthy
and does not dictate whether trustworthiness must be preserved. On the other hand, a policy, is an
indicator of whether an access (read or write) should be allowed or denied.

PPI offers the following policies when a high-integrity subject attempts to read a low-integrity
object:

• Deny: deny the access

• Downgrade: downgrade the label of the subject to low-integrity and allow the operation

• Trust : trust the subject to protect itself without downgrading the subject.

PPI also offers the following options when a low-integrity subject attempts to write a high-
integrity file:
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• Deny: deny the access

• Downgrade: downgrade the label of the object to low-integrity and allow the operation

PPI also develops an analysis for automating the generationof integrity labels and policies
that aim towards preserving the usability of applications in most cases. Details of this analysis and
the related approaches have been described in the PPI [14] paper.

1.2 Contributions of the Framework

This section summarizes the contributions of our work. These primarily enumerate the unique
features of our framework and some significant research thatwe did while implementing this
framework.

Promotion of Early Failures by Propagating Integrity Constraints Our framework promotes
early failures as opposed to delayed failures, as already mentioned in Chapter 1. In order to
achieve this, our framework maintains certain integrity invariants (as per the integrity policies).
The policy checks and invariant maintenance is completely decoupled from the integrity labels
associated each object and subject in the system. These label values are assigned/read, validated
and modified (if necessary) at runtime as per the integrity policy and the access is permitted only
if the pre-defined integrity invariants are satisfied. As an example, when a subjectS1 requests
access to an objectO1 in read-mode, the framework propagates the constraints, from all objects
that S1 is alreadyaccessing in write-mode, toO1. The access is granted only ifO1 can satisfy
the constraints. Likewise, when a subjectS1 requests access to an objectO1 in write-mode, the
framework propagates the constraints, from all subjects that arealready accessingO1 in read-
mode, toS1. The access is granted only ifS1 can satisfy the constraints. It is easy to observe that
the constraints are propagated, in the direction opposite to that of information flow. Our technique
clearly ensures that communication establishment with a new channels is permitted only if it does
not lead to a an access denial on an existing channel of communication. Thus our framework
also addresses the problem ofself-revocation, because service denials (if any) are limited to early
open-request failures.

Flexible and Scalable Labels Each subject and object (named as well as un-named), has an
associated label. Our framework implements a label as an abstract datatype, with its domain being
a lattice. PPI [14], envisioned label as a linear lattice with 8 levels, with level 7 and level 0 corre-
sponding respectively to the highest and lowest possible integrity levels. But with our framework,
the labels can be easily changed, say, to permit 1024 levels of integrity. Another obvious gener-
alization is to support partial orders on labels rather thanjust total orders. This may be useful for
handling information from different sources that we do not trust fully, but at the same time, we
want to distinguish between these sources in order to ensurethat one of these sources does not have
the ability to compromise information from other sources. One possible way would be to break
up each integrity level into many incomparable families, one corresponding to each such source,
by adding another component to the label that specifies the source. Labels may also be used to
encode both confidentiality and integrity at the same time. In the simplest case, we could still use
a linear lattice, with the top element corresponding to highest integrity and lowest confidentiality;
and the bottom element corresponding to lowest integrity and highest confidentiality. However, it
would be more convenient to represent confidentiality and integrity components separately, i.e.,
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let each label be a pair〈li, lc〉, whereli specifies integrity andlc specifies confidentiality. It is
noteworthy that in such a label, the ordering on integrity and confidentiality go in opposite direc-
tions. In particular, a labell1 ≥ l2 means that the integrity component ofl1’s label is greater than
or equal to that ofl2, while its confidentiality component is less than or equal tothat of l2. Our
framework has been designed to supports all the suggested alternatives, for label implementation.

Completeness of Approach Our framework mediates all accesses by a process (subject) on var-
iousobjectssuch as regular files, directories, sockets, pipes, links and various IPC communication
channels. By enforcing policies on all types of objects in the system, our framework ensures
completeness.

Limiting Trust Unrestricted trust can often turn out to be an undesired feature of a sound se-
curity model. Our framework gives the provision to restrictthe invulnerability that a subject can
exercise, when reading from low-integrity inputs, by defining an invulnerability level for each sub-
ject. In the most common case, the invulnerability of a subject could simply be turned off, which
means it is no longer a trusted subject.

Mapping the Framework Abstract Operations to the LSM Hooks Our framework achieves
its objectives by defining a set of abstract operations that are discussed in detail in Section 2.2.2.
Fitting the framework in a contemporary OS presents multiple challenges and engineering issues.
We implemented our framework for the Linux operating systemby mapping our abstract opera-
tions to the hooks in the Linux Security Module (LSM) Framework. This required careful study
of the hooks and understanding the control flow between the different hooks. The success of our
framework validates our study and understanding of the LSM hooks. Our flow graphs (referred
in Appendix-A) serve as a good starting point for someone whowishes to understand the LSM
framework.
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Chapter 2

Framework Design Details

This chapter discusses the design details and the design decisions that we made while developing
an enforcement framework for PPI.

2.1 Approach Overview

Figure 2.1 provides a high-level illustration of information flows in our framework. Policy en-
forcement is effected using LSM hooks in the kernel, and the details of this enforcement will be
described in the subsequent sections.

2.1.1 Labels

An information label is associated with each entity on the operating system that can serve as a
source, sink or conduit of information. A label is an abstract datatype, with its domain being
a lattice. Initially, in PPI, we envisioned a linear latticewith 8 levels, with level 7 and level
0 corresponding respectively to the highest and lowest possible integrity levels. But this can
be easily changed, say, to permit 1024 levels of integrity. Another obvious generalization is to
support partial orders on labels rather than just total orders. This may be useful for handling
information from different sources that we do not trust fully, but at the same time, we want to
distinguish between these sources in order to ensure that one of these sources does not have the
ability to compromise information from other sources. One possible way would be to break up
each integrity level into many incomparable families, one corresponding to each such source, by
adding another component to the label that specifies the source. The current framework is intended
to support all these alternatives.

2.1.2 Objects, Subjects and Handles

The entities involved in information flow are the following:

Objects: They consist of all storage and inter-process communication abstractions on an OS:
files, pipes, sockets, message queues, semaphores, etc. These objects are divided into two
categories: file-like and pipe-like. There is a fundamentaldifference between these classes.
For a file-like object, the label of data read from it will be the same as that of data written into
it. In contrast, for a pipe-like object, the label of data read from the object representing one
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end of the pipe is the same as the label of data written to the object representing the other end
of the pipe (called a peer object). Best example of a pipe-like object is a socket.

Subjects and SubjectGroups: Subjects correspond to threads. Since the OS-level mechanisms
used in our framework cannot mediate information flows that take place via shared memory,
subjects that share memory are grouped into SubjectGroups.The idea is that all subjects within
a SubjectGroup will have the same security labels at any time.

Handles: They provide a level of indirection between subjects and objects, and serve to provide a
convenient means to link together objects and subjects thathave an information flow relation-
ship. There is a one-to-one mapping between handles and subjects, and many-to-one mapping
between handles and objects.

Handles also provide a mechanism for a subject to distinguish between different objects with
which it communicates. In particular, our framework provides mechanisms for a subject to
customize information flow policies on a per-object basis bysetting label attributes on the
handle used (by the subject) to access that object. As an example, a subject may want to
exercise invulnerability on a specific input and not on another.

Handles are conceptually similar to a file descriptors, but there are some differences as well,
e.g., a handle is unidirectional: a handle provides either aread or a write capability. (Obtaining
both requires two handles.) The label of a read-handle is given by the label of the object that
it reads from, while the label of a write-handle is given by the label of the subject holding the
handle.

2.1.3 Information Flow Policies

A current label (current_lbl) field is associated with each object and subject, and it provides
the basis for policy enforcement. In particular, no flow willbe permitted from a source to a
destination unless the source’s current label is greater than or equal to that of the destination. To
ensure this, our framework may dynamically downgrade the label of the destination. To prevent
undesirable downgrading, a minimum label (calledmin_lbl) is associated with every subject
and object. In the context of an earlier example on text editors (Chapter 1), the self revocation
problem can be solved by ensuring that themin_lbl of the text editor remains greater than or
equal to themin_lbl of the high-integrity file that it was writing to before it read low-integrity
data. In other words this ensures that the editor never downgrades to an integrity level lower than
the lowest integrity level of the high-integrity file.

Handles do not have an independent value for their current label and minimum label; instead,
these are derived from the corresponding values of objects and subjects associated with a handle.

Note that if the label incorporates both integrity and confidentiality components, then the
min_lbl of a destination will specify the lowest possible integrityand highest possible confi-
dentiality of data that flows into that destination.

Finer-granularity control over downgrading is provided for subjects using a discretionary min-
imum label (discr_min_lbl). Note that a subject may get downgraded when it performs a
read-open of an object with a lower label, or if one of its currently open (for reading) objects gets
downgraded. In either case, a subjectS may want to control its downgrades, i.e., it may be willing
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Figure 2.1: Illustration of Information Flow in our Framework
C 12, C 13, C 14 and C 15 indicate integrity constraints discussed in the Section A.1.4

to be downgraded to a levell1 when reading from an objectO1, and another levell2 when reading
from another objectO2. S can achieve this by settingdiscr_min_lbl to l1 on the read handle
associated withO1, and tol2 for the read handle associated withO2.

2.1.4 Forward information flows

Figure 2.1 illustrates the flow of information between objects and subjects via handles. In this
figure, solid lines represent actual flow of information. There are two subjectsS1 andS2. Flow of
information between these two subjects occurs via a socket objectO1 (which is pipe-like), and a
file objectO2.

Flow of information via file objects is simpler than that of pipe-like objects. In particular,
an object receives the label of the subject writing to it. This flow is handled by propagating the
current label of subjectS2 to its write handleWH2, and then fromWH2 to the objectO2. If S1

9



subsequently reads from the objectO2, the label ofO2 will flow into S1. This implies that for file-
like objects, their read handles simply inherit the label ofthe corresponding objects. The boxes
labeledRLG (“read-label guard”) andWLG (“write-label guard”) capture the fact that an actual
flow between an object and a subject does not take place until the next read or write operation,
except in cases where the file object is memory-mapped. (Another reason preventing the flow is if
the subject is invulnerable, as described in Section 2.1.6.)

Since a socket is a pipe-like object representing two distinct flows, we split it into two peer
objectsO1, the socket held byS1, andO′

1
, the socket held byS2. S1 uses a read-handleRH1

and a write-handleWH1 to read from and write into the socket, whileS2 usesRH ′

1
andWH ′

1

respectively for the same purpose. ObjectsO1 andO′

1
are peers in the sense that the data written

into one of these objects is read via the other. Data written by S1 into the socket using the handle
WH1 is shown as flowing into the objectO′

1
. This way, whenS2 reads the socket using the handle

RH ′

1
, the label returned toS2 will be that of the data written usingWH1. This explains why

S1’s write-handle is associated with its peer’s socket objectO′

1
, while its read-handle is associated

with its own socket object. Similarly,S2’s write-handle is associated with its peer’s socket object,
while its read-handle is associated with its own socket object. With these associations, we can once
again say that handles inherit the labels of their associated objects, with read-label and write-label
guards playing the same role as before.

2.1.5 Promoting early security failures via reverse constraint flows

Figure 2.1 also shows flows taking place via dashed arrows in the reverse direction of normal
information flow. The purpose of these flows is to promote early rather than delayed security
failures. An open failure, a special case of early failure, which occurs when a subject opens an
object (like a file), is much better handled by most applications than delayed failure, which can
happen on any read or write operation. This is because most applications are written to anticipate
security violations on open operations, but not on reads or writes. This is also a key feature in our
framework design.

Early failures are promoted by interpreting local securitypolicies on entities (i.e., policies
associated with individual objects and subjects) as constraints on them, and propagating these
constraints across communicating entities via the dashed arrows. In particular, we consider con-
straints on minimum security labels (calledmin lbl) that an object or subject needs to maintain,
and propagate these constraints “upstream” to entities that produce the information flowing into
these subjects or objects. The idea is that a downstream entity cannot satisfy a constraint that can-
not be ensured by an upstream entity that produces the information flowing into the downstream
entity. We associate a label calledcurrent min lbl on each entity to denote the minimum
label derived for that entity using this constraint propagation process.

Whereas the forward flow of labels is normally delayed until an explicit read or write opera-
tion, constraint propagation, by default, is instantaneous. Since the whole purpose of constraint
propagation is to avoid security failures on read/write operations, it would make no sense to de-
lay propagation. However, subjects could indicate that they are capable of handling read or write
errors on specific channels, and for those channels, constraint propagation is delayed. This is cap-
tured by the boxes labeledRCG (“read constraint guard”) andWCG (“write constraint guard”).

With the above constraint propagation in place, our framework will not need to return security
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errors on read or write operations, but instead, such errorswill mostly be confined to open oper-
ations. (In contrast, downgrades may happen on any read.) Ineffect, this requires our approach
to be conservative: if a read or write security violation is possible some time in the future after an
open, then that open should be denied.

Our framework usescurrent_min_lbl to identify possible future violations. When a
subjectS attempts to open an objectO for reading, this open is denied if the object’s
current_min_lbl is less than thecurrent_min_lbl of the subjectS and the object’s
current_min_lbl cannot be increased to the level of the subject’scurrent_min_lbl.
Note that this happens even ifcurrent_lbl(O) ≥ current_lbl(S), i.e., the open operation
would not immediately violate the information-flow policy.An application can be selective in
terms of which inputs it is willing to deal with delayed failures (i.e., cope with read errors), and
this can be done by settingcan_handle_errors on specific handles. (At the time of open, a
read handle inherits the subject’s value ofcan_handle_read_errors.)

Write errors are worse than read errors: for instance, in thecase of output files, denying a write
requires that file to be closed midway, potentially leaving the file contents in an inconsistent state.
So, our framework attempts to prevent write security violations. In particular, it is safe to assume
that the output of a subjectS will never go below itscurrent_min_lbl. Our framework
checks at the time of a write-open on objectO if
current_min_lbl(S) ≥current_min_lbl(O). If not, the open will be denied if subject’s
current_min_lbl can not be increased to the object’scurrent_min_lbl. As in the case
of reads, an application can choose to accept delayed failures on writes by setting
can_handle_write_errors on specific handles. However, care must be exercised here, as
attacks can be perpetrated on benign programs by compromised inputs: in particular, if the input
has a low label, a subject may get downgraded, causing an already open output file to be truncated.
To safeguard against this, a subject is permitted to set a write handle’scan_handle_errors
only if the subject’scan_handle_write_errors is set. Similarly, it may set a read handle’s
can_handle_errors only if its owncan_handle_read_errors is set.

2.1.6 Data validation and sanitization

Strict enforcement of information flow policies can break some applications. To mitigate this
problem, PPI, like other information flow based techniques,allows subjects to be designated as
trusted, and these subjects are exempted from policies. Rather thanproviding a mechanism that
allows trusted subjects to indiscriminately violate all information flow policies, our framework
provides two primitives that are narrower in scope. In particular, our framework provides mecha-
nisms to model the fact that certain subjects perform adequate validation or sanitization of inputs
or outputs on certain channels.

An untrusted subject is not permitted to read data with a label that is lower than its own. A
trusted subject, on the other hand, can be permitted to read data with lower labels without decreas-
ing its own label. Our mechanism for supporting this is designed to accommodate applications
that perform such validation/sanitization selectively oncertain inputs. This is achieved by associ-
ating aninvulnerability levelon the handles. A read operation will be permitted using a handle as
long as the label of the data read is greater than or equal to the invulnerability level of that handle.

Note that input invulnerability models the ability of a trusted subject to perform adequate
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input validation (or sanitization of confidential data). Toexpress the fact that adequate valida-
tion/sanitization is performed on some inputs and not others, subjects can associate different in-
vulnerability labels on different handles. Newly created read (write) handles inherit the input
(output) invulnerability level associated with the subject.

Although our focus in PPI is on integrity, invulnerabilities can be used to handle trusted sub-
jects that handle confidential data. A subject performing input sanitization (declassification) can
set the confidentiality component of its invulnerability tobe higher than its own, which means that
it is able to read data that is more confidential than what is permitted by the subject’s confidential-
ity label. However, for most programs, it is preferable to dosuch sanitizations at the output stage:
one can state with a lot more confidence that a certain output is free of confidential information,
than to say that confidential data is “scrubbed” right at the input. Indeed, many programs store
confidential data in their memory, and some operations (e.g., dumping of core) will result in files
containing this confidential data. The label on this file willnot reflect this confidential content if
we rely on input invulnerabilities. On the other hand, it is possible that some subjects are able to
selectively read public components of files that contain a combination of confidential and public
datawithout ever needing to read confidential data into their address space. Such subjects may
be modeled using input invulnerability.

Analogous to input invulnerability, we can define a notion ofoutput invulnerabilitiesthat
enable a (trusted) subject to output data that has a higher label than its own. Once again, this should
be done selectively on those output handles for which the subject performs adequate validation
and/or sanitization. This kind of output validation is analogous to anendorsement. Specifically,
the data output using a handle is given the maximum of the labels of output invulnerability of
that handle, and the current label of the handle. Note that itmakes much more sense for trusted
subjects to be permitted to output data at a lower confidentiality level than their own, e.g., a server
handling sensitive data that ensures that an output returned to an untrusted user is free of sensitive
content. The case for using output invulnerabilities to increase output integrity is much weaker.
However our framework is capable of incorporating a confidentiality model, as a part of future
work, so the notion of output invulnerabilities has been retained, without being used in the present
context of integrity.

Finally, we address the question of trust, and how it is specified. In our framework, trust is
specified using the subject’sinvul lbl: it can exercise its input or output invulnerabilities when
current lbl > invul lbl. (For untrusted subjects,invul lbl defaults to the value of
current lbl.) In addition, two additional labels are associated with subjects:input invul
andoutput invul, which specify the default invulnerability labels on newlycreated input and
output handles respectively.

2.1.7 Discretionary policies

Our framework permits subjects to impose stringer constraints on their labels than the one implied
by existing policies on the subject and the objects/subjects that it communicates with. Specif-
ically, a subject can set itsdiscr min lbl to be higher than itsmin lbl. The constraint
propagation mechanism described earlier will ensure that the label of the subject remains above
discr min lbl. Similarly, we introducediscr invul, discr input invul and
discr output invul.
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Note that discretionary labels cannot be used to violate mandatory policies. For instance,
discr min lbl can’t be set to a value less thanmin lbl; discr input invul can’t be set
to a value less thaninput invul; discr output invul can’t be set to a value more than
output invul.

Newly created input handles inherit the value of the subject’s discr input invul, while
newly created write-handles inherit the value of the subject’s discr output invul. Thus,
the main purpose of a subject’sdiscr input invul anddiscr output invul is to pro-
vide a mechanism for the subject to control the initial valueof discr input invul and
discr output invul for newly opened handles. An invulnerable subjectcannotlose its invul-
nerability till all its read handles exercising invulnerability are closed. For achieving this, we deny
all attempts to open new read handles,by a subject, that may potentially reduce thecurrent lbl
of the subject to the extent that it loses its invulnerability.

In addition, a subject can express its ability to handle security violations on read (or write)
operations using a flagcan handle read errors (can handle write errors). These
flags are inherited by newly created handles. In addition, these flags can be modified on individual
handles by the subject, provided they are consistent with subject’s ability to handle read or write
errors.

2.1.8 Enforcement

It is important to note that permit/deny decisions are largely orthogonal to constraint propagation.
In particular, basic policy enforcement (i.e., permit/deny decisions) are made purely on the basis
of local information: specifically,current_lbl andcurrent_min_lbl on the entities in-
volved in an interaction. When a flow is about to occur from a sourceA to destinationB, our
framework will check if

min lbl(B) ≤ current min lbl(B) ≤ current lbl(A)

If so, B’s current_lbl will be set to that ofA, and the operation permitted. Otherwise, the
operation will be rejected. Note that one ofA or B must always be a handle. Basic enforcement
will support trusted subjects using input and output invulnerabilities as described earlier.

It is the responsibility of the constraint propagation phase, which is decoupled from basic
policy enforcement, to maintain correct values ofcurrent_min_lbl. Note that constraint
propagation is more complex, and involves a large number of objects and subjects simultaneously,
and hence could be error-prone. Decoupling basic policy enforcement from the more complex
constraint propagation means that we can have a higher levelof assurance on its correctness.

To accommodate decoupling, overall policy enforcement operates as follows. The more com-
plex policy checking, which includes constraint propagation, is invoked first. If this phase permits
the operation, basic policy enforcement is invoked. The operation is denied if the first phase rejects
the operation; otherwise, the operation is permitted.

2.2 Object Types and Operations

This section discusses the various objects for which our framework enforces integrity policies.
Since the current implementation of our framework is for theLinux operating system, the descrip-
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Files File + + + + + + + + + + + +
Directory + + + + + + + + + + +

Links Hard link + + + + + + +
Symlink + + + + + +

Volumes File sys + + + +
Pipes Pipe + + + + +

Named pipe + + + + + + + + + + + +
Sockets Unix Socket + + + + + + + + + + + + + + + + +

Inet Socket + + + + + + + + + + + + +
IPCs Shmem + + + + +

Other IPCs + + + + + + +

Table 2.1: Object types in Linux and the list of abstract operations available on them.

tion of the different objects and that of the operations on those objects is Linux specific in many
ways. However the basic design is adaptive and can easily be mapped to any operating system.

2.2.1 Object types

While subjects and handles are largely homogeneous, there are many different types of objects
that need to be considered. In order that operations on theseobjects be handled in a uniform way,
we map the actual object operations into several abstract operations as shown in Table 2.1. For
the purposes of policy enforcement, some of these operations are either ignored or are treated as
a combination of other operations; such operations are shown in italics. The mapping of concrete
operations to the abstract operations may not always be obvious for all object types, so we clarify
this below:

• Files: We view creation operation as a combination of create and bind operations. The latter
requires permission checks corresponding to the directoryin which the object is being created.
An unlink operation (an rmdir if it is a directory) is treatedas a delete on the target object,
while a rename is treated as a combination of delete and create.

Directoriesare similar to files, and are handled the same as plain files in most cases, but there
are some differences as well. For instance, they are not written or mmap’d, although they can
be read. A lookup on a directory is treated the same as a read ofthe directory.

• Hard links: These are different from files because they do not have labelsassociated with
them. Although our design could, in principle, associate labels with links, it would be difficult
to implement: we rely on extended attributes for storing labels, but there is usually no support
for associating extended attributes with links. As a result, permission decisions have to be
made on the basis of labels associated with its parent (the directory in which the link resides)
and its target (the file pointed by the link). In particular, link creation as well as removal are
treated as a bind (to the parent directory) and a write to the target file.

• Symbolic links:Since symbolic links are stored as plain files (which containthe name of the
target file), labels could be associated with them. Creationand deletion of a symbolic link are
both treated as a bind on its parent, whereas a lookup is treated as a read of the link file (but
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not the target). Symlinks need to be protected and it is possible that the symlink can have the
security label different from that of the actual target. This stems from the fact that a symlink
is a representation of its target in adifferent context. A possible attack scenario could be as
follows:
Process A has write access to/etc/passwd. Now a malicious user creates a low integrity
link to /etc/passwd in /tmp. Let’s call this link as/tmp/lowlink. Now Process A
may blindly write to each file in/tmp/ because/tmp is a very commonly accessed file, and
in this way it may destroy the contents of/etc/password. From PPI implementation point
of view we have the following options:

1. We may choose not to enforce any policy for the symlink and basically just simply check
the access permission of the subject on the actual target object. This sounds intuitively fine but
has a pitfall. If this strategy is followed it would mean thatProcess A would essentially write
onto/etc/passwd, when it never had the intent to do so. It simply wanted to write onto a
file from /tmp directory. So this option does not work.

2. We treat the dereference of a symlink as a read operation and immediately downgrade
Process A when it dereferences/tmp/lowlink.
This would mean that when the permission-check hook is invoked on/etc/passwd for
the downgraded Process A, the access would be denied and the attack would be subverted.
However this would cause a DOS attack situation for Process Abecause it could loose its
ability to write to high integrity files in the future. So thisstrategy is also not good.

3. It’s best to do avirtual downgradeof process A when it resolves a low level link
(/tmp/lowlink). This way the attack is also subverted and Process A is not downgraded.

• File systems:The only operations on file system are mount and unmount. Notethat a mount
operation removes the existing interpretation of the mountpoint, and associates it with a new
device. As such, mount is treated as a combination of a remove(of the original directory),
a write to the device being mounted (unless it is a read-only mount), followed by a bind.
Unmount is similar.

In the case of mount/unmount operations, additional steps are needed for two reasons. First,
the file system being mounted may not be trustworthy, and hence the labels provided by the file
system may need to be overridden. Second, some file systems may not be capable of providing
labels. To address these problems, we set the device label asthemaximum labelthat is possible
for any file within the file system represented by the device. In the first case, if the file sys-
tem associates a labell with a file within it, then we takeglb_file_lbl(max_lbl,l)
as its label. The glb operation makes sense for integrity: itis the minimum of the integrity
level of the file system and the specific label on a file. It also makes sense for confidentiality,
since the glb will correspond to the maximum of the confidentialities of the entire file sys-
tem and the specific file. (Here,glb_file_lbl is the natural extension ofglb_lbl to
PPI_file_lbl, where the greatest lower bound operation is applied to eachcomponent.)
In the second case, we usemax_lbl as the default label of all files in the volume. We may
need a mount-time option by which themax lbl is set to a value lower than that ofo’s label.

• Pipes: As mentioned earlier, pipes and sockets differ from files in that they represent two
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distinct object such that data written to one of them can be read from the other and vice-versa.
As a result, create and open operations need to be interpreted differently, and appropriate
handles associated with the objects.

Unnamed pipescan be created, but there is no way to delete them. They cannotbe opened but
can be closed. They cannot be bound to names, and hence do not support operations such as
lookup, unlink, rename, chmod, etc. In contrast, anamed pipehas a name in the directory tree,
and hence supports all these operations. In particular, creation of a named pipe implies a bind
operation, similar to plain files. Other name-related operations are also handled the same was
as regular files (with the exception of how handles are associated with objects).

• Sockets:These are very similar to pipes. In particular,Unix domain socketsare very sim-
ilar to named pipes, except for the following differences: (a) bind operation can be sepa-
rated from creation, (b) handle to object associations are affected by additional operations
(accept/connect), and (c) additional system calls to read/write are available (send/recv). (For
datagram oriented sockets, sendto/recvfrom may also be used.)

Internet-domain socketsdiffer primarily in terms of the addresses used for binding,and sec-
ondarily because LSM provides better hooks for mediating accept and connect system calls in
the context of Internet-domain.

• IPCs: System V IPCs include those for manipulating message queues, semaphores, and shared
memory.

Shared memoryneeds to be treated differently because we cannot mediate interactions based
on shared memory. Processes sharing memory can be handled asif they have a common
mmapped file. Thus, a shared memory creation can be viewed as acombination of a file
open (in read-only or read-write mode, based on how the shared memory segment is created),
followed immediately by anmmap.

SemaphoresandMessage queuesare both handled in the same way, fairly similar to files.

2.2.2 Abstract operations

• bind(PPI_object *ns, const char *nm, PPI_object o): We abstract all op-
erations that associate an objecto with a namenm within the namespacens. A bind operation
may be used while

– creating a new file, directory, or renaming one.In this casens will be a directory ando
references either a plain file or a directory.

– creating a named pipe.Identical to the previous case.
– binding a socket. In this case,ns will refer to one of the predefined namespaces (e.g.,
TCP_socket) or a directory; andnm will be some string representation of its address.

– mounting a file system.In this case,ns will be a directory,nm is empty, ando will refer to
a device.

In all cases, the bind will be permitted only if the label of the subject performing the bind is
greater than or equal to that of the namespace where the new name is attached. In some cases,
permissibility may depend on the value ofnm, e.g., certain subjects may not be permitted to
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bind to certain ports.

• lookup(PPI_object *dir, const char* name): A lookup operation is treated
as a read of adentry structure. This means that the result of a lookup will have the label
glb(s->current_lbl, dir->current_lbl). If the result of a lookup is passed onto
another lookup, as would happen with path lookups, this label is propagated. Note, however,
thatwe do not change the label of the subject as a result of lookups. If and when the lookup
results are used in an open operation, then the label of the file opened will be taken as the glb
of the file’s label and the dentry’s label. As a result, a subject may be downgraded when it
opens a file using a path name that has a low label, or if the file itself has a low label.

Note that the decision not to downgrade subjects on lookups reflects an engineering trade-off.
It could be argued that lookup operations, even when they do not feed into open operations,
can affect subject behaviors in some cases to the point that its security will be compromised.
(For example, consider a program that looks for file A, and if not found, reads file B.) But it ap-
pears that such a conservative view will lead to significant usability problems, while providing
limited security benefits.

In the current implementation, lookups leading to opens, too have not been implemented. The
reason is that this may create usability issues for programs, that write to low integrity directo-
ries (like /tmp) very frequently and later read back from them. Lookups will cause downgrad-
ing of the subject when it tries to read back, what it had written earlier.

• stat(): A stat (or statfs, in the case of file systems) is treated similar to lookup, except that
since the results of stat do not feed into an open, stats do notcause any information flow. The
rationale is the same as with lookup.

• unlink(PPI_object *ns, const char *nm, PPI_object o): It is treated as
a combination of abind (with the same arguments) and a delete operation on the object o.

• rename(PPI_object *old_ns, PPI_object *new_ns,
const char* new_nm, PPI_object *o):

A rename operation is treated as a combination of an unlink operation onold_ns, and a
create operation onnew_ns.

• create(PPI_object *ns, const char *nm): For all objects that have a name at
the time of their creation, a create implies a bind as well, and hence bind-related enforcement
as described above needs to be performed.

A newly created object inherits itscurrent_lbl from thecurrent_lbl of the handle
used in creation. (To determine the handle’scurrent_lbl, rely on the invariant (13) on page
38 defining a write-handle’scurrent_lbl, and the fact that a newly created write-handle
inherits itsinvul_lbl from the subject’sdiscr_output_invul.) Themin_lbl field
of the object is inherited from the subject’sdiscr_obj_min_lbl field. Theread_log
andwrite_log fields of the newly created object are set to false.

Note that an object gets aPPI_object_lbl, and not aPPI_file_lbl. If the object
being created is a file object, then aPPI_file_lblwill need to be created for this file. The
obj_lbl field of this object can obviously be initialized from thePPI_object_lbl. The
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subj_lbl field will be initialized as follows:

– is_super, read_log, write_log, can_handle_read_errors
andcan_handle_write_errorswill be initialized as false.

– current_lbl andinvul_lbl are set to thecurrent_lbl field of the object.
– min_lbl anddiscr_obj_min_lbl are both set tomin_lbl().
– input_invul_lbl andoutput_invul_lbl can be set tomin_lbl() or
current_lbl value. (In reality, they don’t matter as their values will beignored: as
per invariants (10) and (11) on page 38, invulnerability labels are honored only when the
subject’s current label is strictly greater than its invulnerability label, which is not the case
here.)

– discr_X field will be set to the same value as theX field for the remaining fields.

• delete(PPI_object *ns, PPI_object *o): A delete operation is treated as a write
ono. This abstract operation is usually never invoked directlyand is used in the implementa-
tion of unlink abstract operation to ensure that the subjectcalling unlink can establish a write
handle on the object. In other words this operation simply checks if a subject can write to an
object.

• open(PPI_object *o);

– if the object being opened is instantiated from a file (or other entity that has an associated ex-
tended attribute that encapsulates aPPI_file lbl) then the object’s labels are populated
from theobj_lbl field of thePPI_file_label. Otherwise, the object must already
exist (or has been just created), in which case its label is already populated.

– A write open will first attempt to increasecurrent_min_lbl of calling subject to the
extent needed to satisfy the invariant (15) on page 38. If this fails, the open will be denied
unless the write handle’scan_handle_errors is true.

– a read open will attempt to increasecurrent_min_lbl of object being opened to the
extent needed by invariant (14) on page 38. If this fails, theopen will be denied unless the
read handle’scan_handle_errors is true.

– a handle is associated with this object, and the labels associated with the handle are popu-
lated as given by the invariants in Section A.1.4. The new handle is added to the appropriate
handle list maintained with the subject, and the object.

– A read/write open is treated as two opens, one for reading, another for writing. Some objects,
e.g., sockets and message queues, are implicitly read/write, some (e.g., pipe) are implicitly
unidirectional, while other objects specify, at the time ofopen, whether a read/write/both is
desired.

• close(PPI_object *o): No enforcement actions are required here, but the handles need
to be cleaned up. In particular, a closed handle should be destroyed, and removed from the
corresponding subject and object. However, LSM does not provide hooks on close operations
except in the case where the associated object has only a single handle across all subjects. As
a result, PPI has to deal with the possibility that some of itshandles are stale. Before denying
any operation, PPI needs to ensure that handles are not stale. Otherwise, operations that could
be permitted without violating information flow policies may be rejected.
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• listen: No PPI checks are required on listen.

• connect onconnection-orientedsockets: In this case, the object involved is a socketOsock,
and it must have two associated handlesHr andHw belonging to the subject (which is a client).
At the point of connection, the following need to be done:

– Create new objectOaccept inside the server subjectS.
– Create two new handlesH ′

r andH ′

w on S. H ′

r will be initialized with the value ofH ′

rl, the
read handle associated with the socketOlisten on which theaccept call was made.

– Make the following associations between handles and objects:

∗ Hr with Osock

∗ Hw with Oaccept

∗ H ′

r with Oaccept

∗ H ′

w with Osock

While making these associations, all the invariants on all of the handles, objects and sub-
jects mentioned above should be satisfied, or be satisfiable by making allowable changes
to current_lbl andcurrent_min_lbl of the entities involved. (The list of entities
involved will be a superset of the handles, objects, and subjects mentions above.) If not, the
connect request should be denied. Naturally, none of the changes mentioned above should
be committed before this check is made.

Note that, although some of these steps are not evident in Figure 2.1, they are fully consistent
with that picture.

• accept: No checks can be performed when accept is called, since the client identity is un-
known at this point. If the client is on the same OS, then, as described underconnect
operation above, we can enforce accept-related policy in the connect hook. When the client
is remote, in order to enforce any policy, we need an appropriate LSM hook that allows ex-
amination of client credentials, and to fail the accept callif the credentials are insufficient.
Unfortunately, such hooks are not yet available, so PPI cannot enforce any policies on which
clients can connect to it. In particular, this means that if aremote client has low integrity, then
the server will be downgraded, and mechanisms such asmin_lbl setting on the server cannot
prevent such downgrading.1

• connect on datagram sockets: LetHr andHw be the handles associated with the socket
objectOsock on the client subjectC. Let Oserver be the server-side socket that corresponds to
the server address specified inconnect. Perform the following associations:

– Hr with Oserver

– Hw with Osock

1This raises the question: why bother enforcing any policieson accept if we can only do this locally, and cannot
prevent remote connections from unauthorized clients? Thereason is that for remote connections, we have alternative
mechanisms for keeping unauthorized clients out, such as a firewall. Although firewall mechanisms such as iptables can
enforce policies on connections by local clients, these policies are based on uids rather than labels. As a result, unless
we enforce policies on accept, malicious local applications can mount trivial DoS attacks by connecting to servers and
degrading them.
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As before, all invariants need to be checked, and if they cannot be satisfied, connection should
be denied.

Since datagram connect has no real server-side effects, no associations are made on the server
side. Any effect of communication will be reflected when the server reads the data sent by the
client.

• read(PPI_handle *h): If current_lbl of the read handle, as given by invariant (12)
on page 38, is greater than or equal to thediscr_min_lbl of the subject, then the read
will be permitted. The subjectscurrent_lbl is set to that of the handle. If this represents a
change to the subject’scurrent_lbl, then the new label value needs to be propagated using
the rules described earlier.

• readfrom: There is no way to find the source of the message until the datahas already been
read. So, no checks can be done here. Instead, we will rely purely on a sender-side check.
(The situation is similar to that of accept on connection-oriented sockets, and the resolution is
also similar.)

• write(PPI_handle *h): If current_lbl of the write handle, as given by invariant
(13) on page 38, is greater than or equal to themin_lbl of the object, then the write will be
permitted. The objectscurrent_lbl is set to that of the handle. If this represents a change
to the object’scurrent_lbl, then the new label value needs to be propagated using the rules
described earlier.

• sendto: This operation should be treated as a combination of a datagram connect and a write,
and the corresponding checks/propagations performed.

• mmap(PPI_handle *h): Setis_flow_mediated field of the handle tofalse.
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Chapter 3

Framework Implementation

This chapter gives a glimpse of some of the aspects of the implementation of the PPI Framework,
the challenges faced and the solutions provided.

3.1 PPI Framework Development

The PPI Framework has been implemented for the Linux operating system (Ubuntu 8.04 LTS). The
default kernel version (version 2.6.24) has been patched using the standard patch [15] to reverse
the conversion of the Linux Security Module (LSM) Frameworkto static interface. Hence the PPI
Framework has been developed as a loadable kernel LSM module.

The LSM framework provides hooks to mediate system calls andsystem operations pertaining
to inodes, files, tasks, semaphores, shared memory, sockets, and message queues. The abstract
operations discussed in Section 2.2.2 have been mapped to these hooks after carefully examining
the sequence of invocation of these hooks and also taking into consideration whether the hook
provides the necessary information/parameters which is/are necessary for the correct functioning
of the corresponding PPI abstract operation. Details of themapping of these operations to the LSM
hooks have been discussed in Section A.2, along with the corresponding kernel flow diagrams.

3.2 Framework Hooks

This section broadly classifies the hooks of the PPI framework based on their purpose. A short
description of each hook has also been provided. LSM provides many more hooks than the ones
discussed here. However only the pertinent hooks have been used in our implementation, the
criteria for selection being the hook’s appearance in the sequence of invocation of related hooks,
the hook’s parameters and the hook’s return type.

Much of the work performed in each of the selected hooks fallsinto the following categories:

• Updating the data structures in response to various operations on subjects and objects; and
maintaining the invariants listed in the appendix after each such operation.

• Storing information that is available in one LSM hook so thatit can be used in a subsequent
hook where it is needed; and more generally, reconstructinginformation needed by our frame-
work that is not directly available in the LSM hooks.
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• Enforcing integrity policies on objects and subjects and making access decisions. It is impor-
tant to note that a hook with avoid return type cannot be used for making access decisions.

Section A.2 discusses the hooks and the mapped abstract operations in greater detail. The
classification of hooks used in our framework is the following:

• Security hooks for program execution operations

– ppi_bprm_check_security : This hook is for checking if the subject can read the
binary and execute it without violating the integrity invariants.

– ppi_bprm_apply_creds : This hook updates the integrity label of the running task by
considering the binary’sfile_label and itsobject_label.

• Security hooks for filesystem operations

– ppi_security_sb_mount : This hook checks if the runtime binding of a device can
occur with a mount point.

– ppi_security_sb_unmount : This hook simply checks if the subject can unmount a
device.

• Security hooks for inode operations

– ppi_inode_alloc_security : This hook is used to allocate an in-memory object
security structure to every object represented by an inode and assign a label to it.

– ppi_inode_free_security : This object de-allocates the object security structure
and cleans up the memory allocated for its label and handles (if the handles were not already
closed).

– ppi_inode_init_security : This hook makes the object security structure, associ-
ated with the inode, persistent, by writing it on the persistent media (disk), typically in the
inode’s extended attribute space.

– ppi_inode_create : This hook is specifically for regular files and helps the framework
perform regular-file specific permission checks (such asppi_bind).

– ppi_inode_link : This hook is specifically for hard-links and helps the framework
perform hard-link specific permission checks (such asppi_bind).

– ppi_inode_unlink : This hook helps the framework perform permission check (such
asppi_unlink) on the inode, to remove hard links to it.

– ppi_inode_symlink : This hook is specifically for symbolic-links and helps the frame-
work perform symbolic-link creation checks (such asppi_bind).

– ppi_inode_mkdir : This hook is for directories and helps the framework perform direc-
tory creation checks (such asppi_bind).

– ppi_inode_rmdir : The framework uses this to check if a directory can be unlinked
from its parent namespace.

– ppi_inode_mknod : This hook deals with permission checks for creation of special files
like pipes and named sockets.

– ppi_inode_rename : This hook primarily implement the abstract operation
ppi_rename.
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– ppi_inode_follow_link : This hook is used for maintaining link traversal informa-
tion which is used for implementingvirtual downgrades.

– ppi_inode_permission : This hook performs the handle creation operation by check-
ing the mode in which the inode is being accessed. The abstract operationppi_open is
performed in this hook.

– ppi_inode_setattr : This hook checks permission before setting file attributes.
– ppi_inode_getattr : This hook checks permission before getting file attributes.
– ppi_inode_delete : This hook can be used to release any persistent label associated

with the inode. Currently this hook is not being used becausethe clean-up is performed in
ppi_inode_free_security.

– ppi_inode_setxattr : This hook checks permission before setting the extended at-
tributes.

– ppi_inode_getxattr : This hook checks permission before getting the extended at-
tributes.

– ppi_inode_removexattr : This hook checks permission before removing the ex-
tended attributes from persistent media.

• Security hooks for dentry operations

– ppi_d_instantiate : This hook is invoked whenever a dentry structure is instantiated
for an inode, in the dcache.

• Security hooks for file operations

– ppi_file_permission : This hook is invoked for every read and write attempted on
a file object. Our framework calls theppi_read andppi_write abstract operations
depending on the mode the file is being accessed.

– ppi_file_free_security : Our framework uses this hook for cleaning up the han-
dles associated with the file object.

– ppi_file_ioctl : This hook checks permission for an ioctl operation on file.
– ppi_file_mmap : This hook checks permissions for a mmap operation. Reads and rites

to the mmap’ed region are unmediated, this hook helps the framework in setting the desired
flag for the read and write handles to the mmap’ed region.

– ppi_file_fcntl : This hook checks permission before allowing the file operation spec-
ified by thecmd parameter from being performed on the file.

• Security hooks for task operations

– ppi_task_create : This hook is used by the framework to differentiate betweenfork
and clone events.

– ppi_task_alloc_security : This hook is used to assign subject security structure to
the task in a system.

– ppi_task_free_security : This subject performs the clean-up of the subject security
structure.

– ppi_task_setrlimit : To perform permission checks on the subject which tries to
modify resource limits.
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– ppi_task_kill : To perform task permission check on one task which is tryingto send
a signal to another task.

• Security hooks for Unix domain networking

– ppi_socket_unix_stream_connect : Checks permissions before establishing a
Unix domain stream connection.

– ppi_socket_unix_may_send : Checks permissions before connecting or sending
datagrams from one socket to another.

• Security hooks for socket operations

– ppi_socket_create : Checks permissions prior to creating a new socket.
– ppi_socket_bind : Checks permission before socket protocol layer bind operation is

performed and the socket is bound to the specified address.
– ppi_socket_connect : Checks permission before socket protocol layer connect oper-

ation attempts to connect socket to a remote address
– ppi_socket_listen : Checks permission before socket protocol layer listen operation.
– ppi_socket_accept : Checks permission before accepting a new connection. However

from the framework perspective, we don’t really do anythingin this hook. Details on this
are covered in Section 3.3

– ppi_socket_post_accept : This hook allows our framework to copy security infor-
mation into the newly created socket’s inode. However this hook too is left un-implemented.

– ppi_socket_sendmsg : Checks permission before transmitting a message to another
socket.

– ppi_socket_recvmsg : Checks permission before receiving a message from another
socket.

• Security hooks for System V IPC Message Queues

– ppi_msg_queue_associate : Checks permission when a message queue is requested
through themsgget system call.

– ppi_msg_queue_msgctl : Checks permission when a message control operation spec-
ified bycmd is to be performed on the given message queue

– ppi_msg_queue_msgsnd : Checks permission before a message is enqueued on the
message queue.

– ppi_msg_queue_msgrcv : Checks permission before a message is dequeued on the
message queue.

• Security hooks for System V Shared Memory Segments

– ppi_shm_associate : Checks permission when a shared memory region is requested
through theshmget system call.

– ppi_shm_shmctl : Checks permission when a shared memory control operation speci-
fied bycmd is to be performed on the shared memory region.

– ppi_shm_shmat : Checks permissions prior to allowing theshmat system call to attach
the shared memory segment to the data segment of the calling process.
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• Security hooks for System V Semaphores
All operations performed in the following hooks are exactlythe same as those performed for
the corresponding hooks for System V Shared Memory Segments.

– ppi_sem_associate

– ppi_sem_semctl

– ppi_sem_semop

3.3 Challenges and Solutions

The greatest challenge, we faced, while developing this framework, was mapping our abstract
operations to the LSM framework. This required deep understanding of the flow of kernel code
related to all the hooks of the LSM framework and especially that of the hooks mentioned in Sec-
tion 3.2. There were some shortcomings in the LSM framework which proved to be particularly
difficult to deal with. Some of these are enlisted below.

• LSM does not provide a hook to track the decrement of a file structure’s reference count. A
file structure in the file descriptor table of a process indicatesthat the file is opened by
that process. If the file is shared (case offork), its reference count is simply incremented.
ppi_file_free_security is invoked only when all references tofile structure drop
to zero. Our framework maintains handles per file descriptor. When a process forks a child
process, our framework replicates the PPI handles for the forked process because the forked
process too has a file descriptor corresponding to each shared file in its file descriptor ta-
ble. Now, if either the parent process or its child (but not both) call close on a shared file,
our framework is unable to close PPI handles for that process. Thefile structure for the
shared file remains non zero and thereforeppi_file_free_security is not invoked till
all processes callclose on the shared file. This leads to accumulation of stale handles in
the system. Stale handles typically affect usability: thecurrent_min_lbl of a subject
could continue to remain high, even when it closes a write handle (whose creation may have
been responsible for the high value of the subject’scurrent_min_lbl), which may even-
tually result in a permission-denial while creating a new read handle on an object with lower
current_min_lbl.

For solving this problem we employ a strategy to validate each handle before it is used, so
that stale handles could be closed as soon as they are detected. For this we maintain infor-
mation such as an inode’s inode-number, generation-count and an object’s access mode in the
PPI_handle data structure. This information is verified during the validation phase.

• Our framework maintains read and write handles for each socket that is created in the system.
These handles are created at the time of socket creation.
LSM provides theppi_socket_create hook to mediate the socket creation event. At
the time of a connectionaccept (for connection-oriented stream sockets), the Linux kernel
creates a new socket to handle the accepted connection, which is different from the listening
socket. However the creation of this new socket goes unmediated because the kernel does not
invokeppi_socket_create hook at the server end. Consequently, the framework is un-
able to create PPI handles on the new socket. Is is not possible to create these handles in the
ppi_socket_accepthook because the new socket structure (struct sock) is not com-
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pletely populated for use. Also the client identity at the time ofppi_socket_accept is un-
known. Even though the new socket structure is populated inppi_socket_post_accept,
PPI handle creation and permission checking cannot be performed in this hook because the
return type of this hook isvoid, and it therefore cannot return success or failure. Thus han-
dle creation and permission checks (constraint propagation checks) need to be deferred to
ppi_socket_sendmsg andppi_socket_recvmsg. The drawback of this approach is
that a constraint propagation failure in any of these hooks does not lead to connection termina-
tion. The situation results in delayed failures and might affect usability of applications.

3.4 User Interfacing via Securityfs

User interfacing with the PPI kernel module is necessary forproviding the initial labels to the
subjects/objects, modifying labels at runtime and for setting handle-specific discretionary values
by PPI aware applications.The PPI interface management is done usingSecurityfs. Securityfs is a
special-purpose virtual filesystem, meant to be used by security modules, some of which otherwise
create their own filesystems. It should be mounted on/sys/kernel/security. Securityfs
thus looks, from user space, like part of sysfs, but it is a distinct entity. The support for securityfs is
enabled by default in all new Ubuntu distributions, starting from Ubuntu 7.10. For interfacing PPI
using securityfs, no extra kernel patch is required. Securityfs was chosen for interfacing because
of the following considerations:

• procfswas never meant for interface control but rather for processrelated statistics and control.

• Securityfs provides a flexible framework for defining module-specific methods for handling
securityfs files. Typical examples are read and write methods for input files and configuration
files respectively.

• It provides homogenity with other LSMs like Apparmor and Tomoyo. SELinux however has
its has own filesystem calledselinuxfs.

• Using securityfs instead of ioctl calls, saves the overloading of ioctl() method.

PPI utilizes the Securityfs feature of being able to define file specific methods, which make
the file behave as desired. The user of the PPI interface can either pass the name of the object
(file/socket/pipe) or its descriptor (resulting from anopensystem call) for setting or reading PPI
labels. The Securityfs files that the PPI module registers can not be deleted from user space,
therefore no explicit security needs to be ensured for thesefiles.
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Chapter 4

Evaluation

This section describes the evaluation of the PPI framework.Evaluation work for our implemen-
tation is divided into two parts. The first part deals with thecorrectness of the framework, where
we develop scenarios to test the working of our algorithms and validate the correctness of our
technique. The second part deals with measuring the performance overhead in a system running
with our LSM module. All evaluations have been done on a VMware virtual machine with 2.6
GHz single core processor, 512 megabytes of RAM and 10 GB of free hard disk space.

4.1 Evaluation of Correctness

To test the correctness of our system we developed more than 50 use-cases and wrote programs
to validate the behavior of our framework for each scenario.The label propagation and constraint
propagation occurred just as we expected, with our framework denying and permitting accesses in
line with our expectations. Some of the use-cases have been enlisted below.

• An attempt to read a low integrity file by a subject gets denied, if the subject is writing to a
high integrity file.
In our experiment, the subject hadcurrent_lbl = 7 andcurrent_min_lbl = 0. It
then opens a file (current_lbl = 7 andcurrent_min_lbl = 6) in write-only mode.
This results in increasing the subject’scurrent_min_lbl to 6. The subject then attempts
to open a file (current_lbl = 5 andcurrent_min_lbl = 4) in read-only mode which
results in increasing the file’scurrent_min_lbl from 4 to 6. The read access is denied
because the integrity invariant gets violated for the file onwhich the read was attempted.

• An attempt to create a directory/file/named-pipe in a directory D1 is denied byppi_bind if
thecurrent_lbl of the subject is less than thecurrent_lbl of D1.

• A high-integrity subject attempting to open a file via a low-integrity symbolic link getsvirtually
downgradedto thecurrent_lbl of the symbolic link. In our experiment the subject was
made to traverse 3 symbolic links in the lookup operation to open the target file. As expected,
the subject was downgraded to the least of thecurrent_lbl values of the 3 symbolic links.

• We developed scenarios where subjects forked child processes and each of those child pro-
cesses invokedclose on some of the files that they shared (as a result of thefork operation)
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with their parent process. This resulted in multiple stale handles in the system. We then ini-
tiated newopen operations by the forked processes. The constraint propagation phase, then
validated all handles before using them. We observed that all stale handles were either closed
successfully or re-used for another object.

4.2 Evaluation of Performance

This section discusses the performance evaluation that we did for our framework. We used the
standard test-suite for the core-utils 6.10 in conducting our experiments. Our framework passed
all tests of the test-suite. A significant overhead of 30% wasintroduced by our framework. The
overhead was in the CPU time taken to execute the tests. Table4.1 compares the CPU time taken
for running the core-utils test-suite, with and without thePPI-framework module.

Without PPI Framework With PPI Framework

chgrp 1.144 1.58

chmod 1.896 2.348

chown 0.688 0.868

cp 7.564 10.281

cut 1.496 1.872

ls 2.692 3.492

mkdir 2.112 3.02

rmdir 0.492 0.652

wc 0.404 0.592

dd 0.788 1.064

head 0.732 1.048

install 0.672 0.912

join 0.5 0.692

ln 0.852 1.292

pr 3.06 4.044

readlink 1.068 1.532

sort 1.112 1.4

tail 1.024 1.316

touch 0.952 1.184

tr 1.268 1.688

uniq 1.612 2.088

rm 6 9.257

mv 5.068 6.456

Time in Seconds

Table 4.1: Timing Results with Coreutils-6.10

Each timing result for each core utility in Table 4.1 is an average value of 3 test runs. The
average overhead in CPU time-taken is around 30%. Our implementation can be further optimized
and we expect to reduce the overhead after the optimizationshave been done.
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Figure 4.1: PPI-Framework Performance Comparison for Table 4.1

Figure 4.1 gives a graphical comparison of our test results.It can be observed that the time
taken, with our framework module, for core utilities such ascp, mv, rm, mkdir andrmdir, is
particularly higher than the time taken for these utilitieswithout our framework module. The rea-
son for this is because our framework performs extra checks for namespace binding (ppi_bind
abstract operation) for each of these utilities. In addition to these bind related checks, the con-
straint propagation checks are performed as usual. As a partof the future work, discussed in
Chapter 6, we intend to reduce the overhead in constraint propagation, which will automatically
reduce the overall CPU time.
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Chapter 5

Related Work

This chapter discusses in brief, some of the works that are related to our research. This chapter also
mentions about those works that have served as guidelines for the development of our framework.

An early, and significant work on information-flow based techniques is the Biba integrity
model [4] which serves as a guiding principle for similar works. However Biba model is very
strict and simply denies allwrite-upsandread-downs, thus it tends to break the functionality of
many applications and suffers from poor usability.

Low Watermarkmodel [5, 11] builds over the Biba model by adding asubject downgrade
policy. This means that a subject gets downgraded to a lower integrity level when it reads from
a low integrity object, and subsequently runs at a reduced integrity level for the remainder of its
lifespan.

Another work, IX [9] aims at developing an experimental multi-level security model for the
Linux operating system. This technique uses dynamic labelsfor subjects and objects, and tracks
information flow for providing confidentiality and integrity. However it does not provide a choice
of policy enforcement, like our framework does, and also does not decouple policies from labels,
which is one of the key features of the PPI framework.

Back to the Futuresystem [7] enforces only theno read down(reads that occur from low-
integrity sources) policy. The advantage of such a model is that it can thwart an attempt by malware
to inject itself into inputs consumed by benign applications, as demonstrated by their experimental
results. However, this scheme too is not complete, because,an attempt to use the output of an
untrusted application, requires user intervention. User responses to such prompts have statistically
been proven to be unreliable, from a security standpoint. Moreover these prompts leave too much
to the user’s judgment and can overwhelm the user. Also this approach suffers from the problem
of delayed detection wherein malware actions aren’t thwarted at the point where they overwrite
critical files, but at the point where a benign application uses them. In contrast to this approach,
our framework does not involve user interaction for making policy decisions and detects writes
performed by the malware, much earlier.

Unlike theBack to the Futuremodel, Windows Vista Security Model does not have security
enforcement policies forread-downsand only enforces policies that mediate and thus prevent
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write-ups(writes that occur on high-integrity objects, whose integrity must be preserved). This
design decision has been made for avoiding usability issues. This model is quite vulnerable to
attacks, as is suggested by a real world attack: the attackersimply overwrites the Vista start-menu
file, an action that does not involve escalated privilege level. The affected start-menu items now
points to entry-points in the malware rather than the usual applications. However, the naive user
is oblivious of this and trusts the start-menu entries. Thuswhen he clicks on a menu item and
is prompted by the Vista UAC, which requests higher privilege level for running the intended
program, the user almost certainly allows the escalation ofprivileges. The malware then executes
with escalated privileges thereby compromising system security.

Safe Execution Environments[2, 12, 13, 17] employ isolation techniques to confine untrusted
applications. The same technique is used by virtual machines [3, 16]. The main drawback with
isolation techniques is that maintaining multiple isolated work environments is not feasible from a
user’s perspective. An input file required by one of the untrusted applications in a specific isolated
work environment needs to be explicitly copied into that environment by the user.

Severalsandboxingtechniques [1, 6, 10] have been developed. However development of sand-
boxing policies can turn out to be quite challenging becauseof the ease of multi-step attacks, as
described in the Chapter 1.

SELinux [8] uses domain and type enforcement for confining applications. The primary focus
is on servers and it aims at developing policies that enforceleast privilege principles on the related
application. However the applications, for which SELinux generates policies, are trusted and
therefore the policies developed for these trusted applications cannot be enforced for untrusted
applications.
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Chapter 6

Conclusions and Future Work

In this thesis we presented a framework for enforcing information flow policies. Our approach of
propagating integrity constraints for maintaining integrity invariants promotes early failures and
hence improves usability of applications. The framework decouples the policy enforcement from
the labels assigned to objects and subjects in the system. Our framework enforces integrity policies
on all types of objects (files, sockets, pipes, IPC channels,directories, devices), thus making our
solution complete in terms of object coverage. We provide mechanisms for limiting the trust of
a process by controlling its invulnerability level. Our framework provides flexibility to integrity-
aware applications to set discretionary attributes on the application-specific handles, maintained
by our framework.

Our framework implementation, for the Linux operating system uses the LSM hooks and
shows that our framework is practical. The overheads incurred by our framework can be reduced,
in future, by further optimization of our techniques. Our documentation of the LSM infrastructure
and our flow diagrams serve as a good reference for someone developing a LSM module such as
ours.

We intend to extend our implementation for enforcing policies on internet sockets and IPC
channels such as message queues, shared memory and semaphores. Once the completeness of
object coverage is ensured by the implementation, we intendto conduct further experiments to
evaluate the correctness and performance of our framework.Further evaluation results, would
help us analyse the potential modules of our framework that could be optimized for an overall
reduction in the overhead incurred by the current implementation.

We also intend to extend our framework for enforcing information flow policies, not just for
integrity but also for confidentiality. Since integrity andconfidentiality are largely orthogonal, we
could easily modify our label design to model a label as a linear lattice, with the top element cor-
responding to highest integrity and lowest confidentiality; and the bottom element corresponding
to lowest integrity and highest confidentiality.
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Appendix A

Data Structures and LSM Mappings

This appendix shows the low level details of the key data structures used by PPI-Framework.

A.1 Key Data Structures

A.1.1 Labels

The most basic data structure is aLabel: it is an abstract data type that provides the operations
listed below.

struct PPI_lbl {
unsigned char level;

};

Operations.

PPI_lbl max_lbl();
PPI_lbl min_lbl();

PPI_lbl lub_lbl(PPI_lbl, PPI_lbl);
PPI_lbl glb_lbl(PPI_lbl, PPI_lbl);

bool geq_lbl(PPI_lbl, PPI_lbl);
bool gt_lbl(PPI_lbl, PPI_lbl);
bool eq_lbl(PPI_lbl, PPI_lbl);

const char *serialize_lbl(PPI_lbl); /* Serialize a label */
PPI_lbl new_lbl(const char*); /* De-serialize a label */

Object Labels

struct PPI_object_lbl {
bool read_log, write_log; // Enable/disable object logging.
PPI_lbl current_lbl; // Object’s current integrity label.
PPI_lbl min_lbl; // current_lbl >= min_lbl.
PPI_lbl current_min_lbl; // current_lbl >= current_min_lbl.
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PPI_lbl new_min_lbl; // Used internally in the implementation.
};

Operations.

const char *serialize_lbl(PPI_object_lbl); /* Serialize a label */
PPI_object_lbl new_object_lbl(const char*); /* De-serialize a label */

Invariants.

• current_lbl >= new_min_lbl >= current_min_lbl >= min_lbl

Notes.

• When a new object is created, it inherits thecurrent_lbl of its associated handle. Its
min_lbl andcurrent_min_lbl are set from thediscr_obj_min_lbl of the sub-
ject. Itsread_log andwrite_log fields are also set from the corresponding fields of the
subject. Object’scurrent_min_lbl takes into account the policies imposed by readers of
this object.

• The value ofcurrent_min_lbl is updated incrementally by the implementation whenever
there is a change to any of the quantities in the right-hand side of the invariant above. This
recomputation relies on a two-phase protocol. During a run of this protocol,new_min_lbl
is used to remember an intermediate value ofcurrent_min_lbl.

Subject Labels

struct PPI_subject_lbl {
bool is_super; // Enable arbitrary label changes.
bool read_log, write_log; // reads/write subject logging.
bool can_handle_read_errors, can_handle_write_errors;

PPI_lbl current_lbl; // Subject’s current label.
PPI_lbl min_lbl; // current_lbl >= min_lbl.
PPI_lbl discr_min_lbl; // current_lbl >= discr_min_lbl.
PPI_lbl discr_obj_min_lbl;

PPI_lbl invul_lbl, discr_invul_lbl;
PPI_lbl input_invul, output_invul;
PPI_lbl discr_input_invul, discr_output_invul;
PPI_lbl virtual_current_lbl; // Used while symlink traversal
PPI_lbl current_min_lbl; // current_lbl >= current_min_lbl.
PPI_lbl new_min_lbl; // Used internally in the implementation.

};

Operations.

const char *serialize_lbl(PPI_subject_lbl);
PPI_subject_lbl new_object_lbl(const char*); // deserialize

The purpose of most fields in the above data structure we explained earlier. One exception
is discr_obj_min_lbl, which has been introduced to provides a means for a subject to de-
cide themin_lbl for newly created objects. By default, its value will bemin_lbl(). Also

34



current_min_lbl takes into account the policies imposed by readers of this subject.

Invariants.

• current_lbl >= new_min_lbl >= current_min_lbl
>= discr_min_lbl >= min_lbl

• discr_X_lbl >= X_lbl, whereX is one ofinvul or input_invul

• discr_output_invul_lbl <= output_invul_lbl

• is_super⇒ current_lbl == max_lbl()

Notes.

• The only fields that a subject can change are the discretionary fields (i.e., fields containing the
worddiscr_.)

• In addition, a subjectS can request its current label to to be downgraded using a PPI API call
downgrade_me(IntegrityLabel l).

• A super subject (i.e., a subject with theis_super attribute set) can change any attribute of
other subjects; but this is not meant to be done, as the changes may violate invariants and hence
cause unpredictable problems. Hence such changes are to be attempted only as an absolute last
resort.

File Labels

Files stored on the disk may be used as an object (when they areread or written) or as subjects
(when they are executed). Thus, they have both labels.

struct PPI_file_lbl {
PPI_object_lbl obj_lbl;
PPI_subject_lbl subj_lbl;

};

Operations.

const char *serialize_lbl(PPI_file_lbl); /* Serialize */
PPI_file_lbl new_file_lbl(const char*); / * De-serialize */

Invariants. The following are additional invariants that apply over andabove the invariants on
PPI_object_lbl andPPI_subject_lbl.

• X.current_min_lbl == X.new_min_lbl == X.min_lbl whereX stands for either
obj_lbl or subj_lbl.

• subj_lbl.discr_X_lbl == subj_lbl.X_lbl, whereX is one ofinvul,
min_lbl, input_invul or output_invul

Notes.

• Given a subjectS and a fileF such thatS.current_lbl≥ F.obj_lbl.current_lbl,
S can modify all the label fields ofF subject to the above invariants, with the exception of:
F.subj_lbl.is_super, F.subj_lbl.invul_lbl, F.subj_lbl.input_invul,
andF.subj_lbl.output_invul. These four fields can be changed only ifS.is_super

35



is true.

• A super subject can change any component of aPPI_file_lbl. The implementation must
check the invariants after any such change, and ensure that all of them will hold.

• Note thatdiscr_obj_min_lbl field of subject labels will be stored on disk, as it provides
the only way to control the defaultmin_lbl of objects created by a subject.

• In our implementation, file labels will be stored using extended attributes supported by the
underlying file system. In particular, serialize/deserialize operations will be used to covert file
labels into strings (or vice-versa), and these strings willbe stored as extended attributes.

• Note that the serialize operation on files can choose to omit fields whose values can be obtained
from other fields and the invariants above.

Handle Labels

struct PPI_handle_lbl {
PPI_lbl invul_lbl;
PPI_lbl discr_min_lbl; // Applicable only for read handles

};

A.1.2 Object

struct PPI_object {
const PPI_object *volume; // Object’s File-system Label
PPI_object_lbl label;
List *read_handles;
List *write_handles;
struct inode *inode; //pointer to corresponding inode

};

A.1.3 Subject and SubjectGroup

struct PPI_subject_group {
int reference_count; // Same as the number of subjects in group.
PPI_subject_lbl label;
PPI_handle **fd2rhandle; // Maps fd numbers to PPI_handle pointers,
PPI_handle **fd2whandle; // They are allocated at subject creation.
List *read_handles; // All handles stored in these lists,
List *write_handles; // incl. those stored in fd2handle arrays

};

struct PPI_subject {
bool is_same_group; // Internal use: store info across LSM hooks
bool is_named_pipe; // Internal use: store info across LSM hooks
PPI_subject_group *group;
struct task_struct *task; // Pointer to corresponding Linux task.

};

Notes. It is important to note that the fd information associated with a handle is not reliable.
First, due to structure of hooks, fd information is unavailable at the time of handle creation. Sec-
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ond, when dup or dup2 are used, we do not have any hooks to trackthem. Third, fds may get
closed, but we don’t always get notified. As a result, the following can happen:

• We do not have an fd for a handle.

• There is an fd for which we do not have a corresponding handle,e.g., due todup.

• We have an fd for a handle, but this is incorrect as a result of the subject executing adup2 (or
a combinationdup andclose).

• We have a handle but the corresponding fd has already been closed.

A.1.4 Handles

struct PPI_handle {
bool can_handle_errors;
bool is_flow_mediated;
bool handle_type; // read = 0, write = 1.

PPI_handle_lbl label;
PPI_object *obj;
PPI_subject *subj;

int inode_num; // These fields are used to associate and
struct file *file_ptr; // validate handles with file structures
int fd; // maintained by the kernel.

};

Operations.

bool read_handle(const PPI_handle*);
bool write_handle(const PPI_handle*);
PPI_lbl invul_lbl(const PPI_handle*);
current_lbl(const PPI_handle*);
current_min_lbl(const PPI_handle*);

Invariants. Below,H stands for any handle,RH for any read handle andWH for any write handle.

1. member(RH, RH.obj->read_handles)

2. member(WH, WH.obj->write_handles)

3. member(RH, RH.subj->group->read_handles)

4. member(WH, WH.subj->group->write_handles)

5. invul_lbl(H) == H.label.invul_lbl

6. invul_lbl(RH) >= RH.subj->input_invul_lbl

7. invul_lbl(WH) <= WH.subj->output_invul_lbl

8. RH.can_handle_errors⇒
RH.subj->can_handle_read_errors && RH.is_flow_mediated

9. WH.can_handle_errors⇒
WH.subj->can_handle_write_errors && WH.is_flow_mediated
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10. invul_lbl(RH) < RH.subj->current_lbl⇒
RH.subj->current_lbl > RH.subj->invul_lbl

11. invul_lbl(WH) > WH.subj->current_lbl⇒
WH.subj->current_lbl > WH.subj->invul_lbl

12. current_lbl(RH) == (RH.obj->current_lbl < invul_lbl(RH) ?
RH.obj->current_lbl : RH.subj->current_lbl)

13. current_lbl(WH) == max(WH.subj->current_lbl, invul_lbl(WH))

14. current_min_lbl(RH) == min(discr_invul_lbl(RH),
max(RH.subj->current_min_lbl, discr_min_lbl(RH)))

15. current_min_lbl(WH) == (WH.obj->current_min_lbl > invul_lbl(WH) ?
WH.obj->current_min_lbl : WH.subj->current_min_lbl)

16. !RH.can_handle_errors⇒ RH.obj->current_min_lbl >= current_min_lbl(RH)

17. !WH.can_handle_errors⇒ WH.subj->current_min_lbl
>= current_min_lbl(WH)

Notes.

• Invariants 1 through 4 capture the requirement that cross-linking information pertaining to
handles, objects and subjects be consistent.

• We do not have an explicit invariantdiscr_min_lbl(RH) >=RH.subj->min_lbl.
This is because the invariant (14) on page 38 will already ensure that the label of a read handle
will remain high enough to support the subject’smin_lbl.

• Invariants 5 through 11 capture constraints between various invulnerability-related labels of
handles and their associated subjects. In essence, they state that the extent of invulnerability
cannot be greater than that of the subject.

• Note thatcurrent_lbl flows from a read handle to a subject on the next read operation, if
is_flow_mediated is set; otherwise, it flows immediately.

• Similarly, current_lbl flows from a write handle to an object on the next operation, if
is_flow_mediated is set; otherwise, it flows immediately.

• The flow ofcurrent_min_lbl is captured by the invariants 14 through 17. Whenever any
of the quantities involved in these invariants change,current_min_lblneeds to be recom-
puted so as to ensure that those invariants hold. For performance reasons, these recomputations
should be done incrementally. In particular, the common cases where the old and new value
are the same should be recognized and handled efficiently.

• Unlike current_lbl, which is propagated across read-handles only when reads take place,
increases tocurrent_min_lbl are propagated immediately. Moreover, there is a possibil-
ity that the propagation may fail. So, we need to define a function
can_inc_current_min_lbl(X, l) that returns true iffcurrent_min_lbl of en-
tity X can be increased tol. (If l is less thancurrent_min_lbl(X) then it returns true.)

• There are many operations that require changes tocurrent_min_lbl, such as opening a
file for writing, explicit increases todiscr_invul_lbl, etc. Before such operations can
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succeed,can_inc_current_min_lbl()needs to be checked. This requires a two-phase
protocol, where the first phase is a call tocan_inc_current_min_lbl(). Note that a
call of this function on a subject may result in a recursive call of the same function on its
read handles, which in turn may callcan_inc_current_min_lbl() on objects or other
subjects and so on. When this first phase succeeds, then the updates effecting the original
operation (write open, increase todiscr_min_lbl, etc.) need to be performed in the second
phase. The second phase will also update the cached value ofcurrent_min_lblassociated
with the entities involved in the first phase.

Obviously, care needs to be taken in implementing this two phase protocol to avoid race condi-
tions, loops, or deadlocks. Performance is always a consideration in the sense that most opens
should not require additional locks.

• Handles are created by open operations and destroyed by close operations. (Note that we are
using “open” and “close” abstractly here – many concrete OS operations will map to these ab-
stract operations. Indeed, some OS-operations may map to multiple open or close operations,
e.g., a socket connection, which, in our model, requires 4 handles to be created.)

A new write-open operation may require increasingcurrent_min_lbl of subjects and
objects involved, but if this increase is not possible, thenthe open will be denied. Similarly,
when a read-open operation is performed, the input object must be capable of supporting the
integrity level required by the subject, or else the operation will be denied.

• When handles are destroyed,current_min_lbl values associated with entities involved
may change. Note that the creation/destruction of a handle will not only affect the subject
performing the open or close, but other subjects and objectsthat have an information flow
relationship with it. Thus, a single open (or close) may require current_min_lbl recom-
putation for many (potentially all) of the entities on the OS. Hence it is important that these
values need be recomputed incrementally — again, the most important requirement is to handle
the common cases efficiently.

• Note that when an object or subject is destroyed, the associated handles are also destroyed.

• Hooks for some security events may be missing, and we need to develop methods to enforce
our policies in spite of these misses. For instance, there isno LSM hook for close operation.
To deal with this, we need to maintain additional information in handles that allows us to check
if a certain handle is still valid at runtime, or if it has beenclosed.

– Before denying any read access (or read open) due to violation of current_min_lbl
requirement, we need to verify thatcurrent_min_lbl on the subject is correct (and is
not too high because of failure to recognize that a certain write-handle has been closed).

– Before denying any write access (or write open) due to violation of current_min_lbl
requirement, we need to verify thatcurrent_min_lbl on the object is correct (and is
not too high because of failure to recognize that a certain read-handle has been closed).
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A.2 Mapping PPI Abstract Operations to LSM hooks

A.2.1 Mapping Subject Operations to LSM Hooks

PPI policy enforcement is implemented using LSM hooks. Muchof the work performed falls into
two categories:

• Updating the data structures described in the Section A.1 inresponse to various operations on
subjects and objects; and maintaining the invariants listed above after each such operation,

• Storing information that is available in one LSM hook so thatit can be used in a subsequent
hook where it is needed; and more generally, reconstructinginformation needed by PPI that is
not directly available in the LSM hooks.

Below, we address the last task first, and then proceed to describe PPI actions taken in response to
various operations on objects and subjects.

Process creation:fork and clone operations

Figure A.1 depicts the sequence of invocation offork andclone related hooks. A new
PPI_Subject is created when a new process is created. To identify if it is afork or clone event,
PPI will use a flagclone_flagswhich is available in the hooksecurity_task_create.
The list of relevant hooks and the operations performed within these hooks are described below.
We use the convention that for an LSM hook namedsecurity_X, the corresponding call back
function in PPI is calledppi_X.

security_task_create: This hook is invoked when a new process is created. PPI will use
this hook to distinguish a fork from a clone event, and remember it.

Details
if clone_flags is set to 18874385 then set

current->sub_sec->is_same_subject_group to 0
/* clone_flags = 18874385 is an identification of "Fork" event */

else set current->sub_sec->is_same_subject_group = 1

security_task_alloc: This hook is invoked to allocate security structure to a newprocess
being created. In the case of a clone operation, all that is needed is to create a newPPI_subject,
and set its subject group to point to that of the parent. If it is a fork operation, then a differ-
ent set of actions are required. Specifically, a newPPI_subject_group is created; a new
PPI_subject is created for the child process, and its subject group field is initialized to point to
this new subject group. In addition, the child process gets its own copies of handles of the parent.
All these copy operations, naturally, will need to preserveall the invariants noted in Section A.1.4
— for instance, the newly created subject group’s list of read and write handles must be exactly
the set of child’s copies of read and write handles possessedby the parent.

Process Execution

Figure A.2 depicts the main LSM hooks related toexecve.
Onlyppi_bprm_check_securityandppi_bprm_apply_credsare sufficient to ensure
complete mediation because they are the last 2 hooks to be invoked in the context of process
execution. A non zero error code returned fromppi_bprm_check_security undoes the
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Figure:  Task Fork and Clone

sys_fork

do_fork

copy_process

sys_clone

security_task_create(clone_flags)

security_task_alloc(task_struct *p (the pid is still not populated))

followed by

Figure A.1: LSM hooks related tofork andclone

operations performed, from the begining of task execution up-till that point. Hence all checks can
be delayed untillppi_bprm_check_security.

ppi_bprm_check_security: This hook is invoked when a new program isexecve’d. The
following steps need to be taken at this point:

• An execve operation terminates all threads except the one that has made this call. PPI thus
deletes allPPI_subject structures corresponding to those threads. (There does notseem to
be a need to create a newPPI_subject_group.)

• For all handles of the subject, setis_flow_mediated. (According toexecve documen-
tation, shared memory segments are closed and mmaps are not preserved.)

• Update the subject labelS based on the labelF of the file beingexecve’d

– S.current_lbl = min(S.current_lbl,
F.subj_lbl.current_lbl,
F. obj_lbl.current_lbl)

– S.X = min(S.X, F.subj_lbl.X), for X in {is_super}

– S.X = max(S.X, F.subj_lbl.X), for X in {read_log, write_log, min_lbl,
discr_min_lbl}

– S.X = F.subj_lbl.X, for all other fields.

Notes.

• Other fields of the subject label, or the labels of the objects/subjects communicating with
this subject, may need to be changed in order to maintain the previously stated data structure
invariants.

• execve fails if the above operations cannot be done, e.g., ifmin_lbl cannot be increased
to the required value. To deal with this possibility, we makea copy of the subject and subject
group before making updates, and then rolling back to those copies when failure occurs.

• We may need a mechanism for executing a child process at a higher level of integrity than
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Figure:  Task Exec

sys_execve

do_execve

open_exec

security_bprm_alloc(struct bprm)security_inode_permission(MAY_EXEC)

do path lookup of executable and check EXEC permission

__dentry_open(flags=O_RDONLY)

open file for read

followed by

followed by

security_dentry_open(struct file*)

security_bprm_set(struct bprm)

followed by

search_binary_handler

followed by

security_bprm_check(struct bprm)

security_inode_permission(inode of /sbin/loader)

followed by

void=security_bprm_apply_creds

via function pointer call to compute_creds

Figure A.2: LSM hooks related toexec

the subject. This is similar to setuid processes. As in the case of setuid processes, lots of
checks need to be made regarding who controls inputs (or can send signals to) higher integrity
children. This may be done as part of future work.

• We do not bother with close-on-exec fds. The kernel calls thesecurity_file_freehook
for each descriptor closed in this fashion, when the reference count ofstruct file drops
to 0. However there is no hook for mediatingfput calls, in other words, PPI can not detect
file close events which do not make the reference count 0. Consequently PPI is unable to close
a subject’s PPI handles on an object that it may have closed. To tackle this, PPI treats every
handle as “tentative,” and before each use, verifies that thehandle is still valid. Invalid handles
are promptly deleted, and removed from the attributes maintained with subjects and objects.

ppi_bprm_apply_creds: This is the last hook invoked in the sequence of hooks invoked for
task execution. It does not return any error code. However the PPI related subject attributes are
updated in this hook.

Process Exit

The LSM hookppi_task_free is invoked when the process exits. The following actions are
taken:
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• Free thePPI_subject data structure for the exiting process.

• Decrement the ref count field for thePPI_subject_group. If it becomes zero, the sub-
ject group is freed. This will in turn mean that all the handles associated with the sub-
ject group will be freed. (On process exit all the open file descriptors will be closed by
file_free_security hook, so the list of handles will likely be empty in most of the
cases.)

A.2.2 Mapping Object Operations to LSM hooks

We first address the problem of correlating objects to their handles, and then proceed to describe
the details of LSM hook mappings and the necessary checks forenforcement.

Mapping objects to handles and vice-versa

LSM hooks related to input/output operations typically provide a pointer to a file structure (specif-
ically, struct file *) maintained by the kernel, whereas our enforcement actionsrequire us
to identify corresponding handles, which are purely local to PPI. To perform this association ef-
ficiently, PPI maintains two arraysfd2rhandle andfd2whandle that are indexed by a file
descriptor and yields a pointer to the corresponding handle. Unfortunately, this is not enough —
as noted before, for a variety of reasons, fd information maybe stale or inaccurate; and handles
can be stale. To cope with these problems, we rely on the following helper functions:

• update_handle_fd(PPI_handle *h, PPI_subject *s,
int fd, bool handle_type):

This function is called when we detect that the fd associatedwith a handle has changed to a
new value.

Algorithm
1 /* For brevity, we only show the case where handletype is ‘‘read’’*/

2 h->fd = fd;
3 s->group->fd2rhandle[fd] = h;

• validate_handle(PPI_handle *h, PPI_subject *s): This function is called
to check if a handle is current, and if so, to get the correct fdassociated the handle. If the
fd stored within the handle is correct, then this function isvery fast; otherwise, it requires a
search through the file descriptor table of a process, which takes a bit more time. If this search
does not find the handle, then the handle must already have been closed, and so we clean up
the handle.

Algorithm
1 struct file *f = fget(h->fd);
2 if ((f != NULL) && inode_equal(h, f) && mode_compatible(h, f))
3 return h->fd;
4 /* The fd-table is maintained by the kernel for all processes*/

5 for each file struct f in the fd-table of s do
6 if (inode_equal(h, f) && mode_compatible(h, f)) then
7 update_handle_fd(h, s, getfd(f), handle_type(h))
8 return getfd(f)
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9 done
10 /* Subject must have closed the corresponding fd. Free the handle, update current˙min˙lbl, etc. */

11 free_handle(h, s)

• get_handle(PPI_subject *s, struct file *f, bool handle_type):

Algorithm
1 fd = ppi_getfd(f); /* lookup the fdtable to find the corresponding index */

2 h = s->group->fd2rhandle[fd];
3 if (h != NULL) then
4 if (inode_equal(h, f) && mode_compatible(h, f))
5 then return h;
6 else validate_handle(h, s);
7 /* The handle’s fd is not current. Use sequential search to find the right handle. */

8 for each handle h in s->group->read_handles do
9 if (inode_equal(h, f)) then /* Update fd information */

10 update_handle_fd(h, s, fd)
11 return h;
12 done
13 /* Should never reach here; print error message */

If a valid, fresh handle is found at any point during the abovesearch, then we stop the search
at that point. By not continuing the search, there is a possibility that we leave stale handles in the
PPI subject data structure, but this is acceptable since such handles will be detected before
they are used.

The only advantage of maintaining thefd2handle array is that in the typical case, we will
be able to identify the handle after just a single array lookup. In the event that a full search is
needed, then the identified handle is inserted into thefd2handle arrays at the location given by
their current fd. This ensures that subsequent lookups of this handle will take constant time until
the fd is involved in anotherdup-like operation.

File Operations

File creation. LSM hooks relevant to creation of file objects is shown in Figure A.3. PPI imple-
mentation makes use of the following hooks in this regard:

ppi_inode_create: This hook is invoked for regular files and is used for performing the
ppi_bind abstract operation on the inode of the parent of the inode being created.

ppi_inode_alloc: This hook is invoked to allocate in-memory security structure to a new
inode being created. PPI will use it to assign integrity label to inode. This hook primarily in-
vokes theppi_create abstract operation, which then does the object’s security allocation and
initialisation of its label.

ppi_inode_init: This hook is invoked to store security information with theinode on disk.
PPI will use it to store in-memory label onto disk to make it persistent.

File deletion. LSM hooks relevant for file deletion are shown in Figure A.4. Specifically, the
following hooks are used:
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ppi_inode_unlink: This hook is invoked when an inode is being deleted from disk. If a
temporary PPI write handle can be created successfully thenonly unlink hook will succeed. The
ppi_unlink abstract operation is called from this hook.

ppi_inode_free: This hook is invoked in following two cases:

• deletion of an in-memory inode from cache when there are no more references to that inode.

• deletion of an inode resident on persistent store

In all cases, there are no more references to the inode, and soPPI can deallocate data structures
allocated to store information related to the object. This hook invokes theppi_clean_object
abstract operation.

File open. LSM hooks related to file opens are shown in Figure A.3.

ppi_inode_permission: This hook is invoked to check the permissions on the inode before
performing any operations on it. The type of operation is available through a parameter called
mask.

Current label will be propagated from a read handle to its subject only when the first bytes of
data are actually read from the file. When object is opened in read-write mode, read handle will
be created first, and then the write-handle. This hook invokes theppi_open abstract operation.

File close. Figure A.4 illustrates the hooks relevant to this operation. In particular, we use the
hook ppi_file_free. At this point, the handle is freed, andcurrent_min_lbl of the
associated objects and subjects is adjusted. (This adjustment can decreasecurrent_min_lbl
or leave it the same, but not increase it.) The handle is also purged from the list of handles
maintained by the object and the subject.

Unfortunately, this hook is invoked only when the last file descriptor (across all processes) for a
file is closed. This means that for files opened by multiple processes, all but the last close operation
will be invisible to PPI. To cope with this, we use the helper function validate_handle
(described earlier) before every use of a handle.

File read and write. The relevant hooks are shown in Figure A.5.

ppi_file_permission: This hook is invoked to check permissions on a file before it is
read/written. Note that only basic enforcement rules need to be checked here: constraint prop-
agation is done at the time of open operation. This hook invokesppi_read andppi_write
abstract operations. Recall that all handles are validatedbefore they are used.

File mmap. The relevant hook is discussed below.

ppi_file_mmap: The file needs to be opened before it can be mmaped. Therefore, the handles
must already have been created before this hook is reached. This hook has two important input
parameters: a file structure and flags. Flags describe what accesses are permitted to the data being
mmaped. PPI will use this hook to update the file descriptor information associated with the
handle. Finally, the handle’sis_flow_mediated is set to false. Flags will be used to identify
if the read handle or write handle or both are involved.
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Directory operations

The way PPI handles directories is better explained by understanding the operations that are per-
formed on a directory.

• Directory Creation : This operation is no different than creating a regular file. The usual
ppi_bindwill be called on the parent directory from theppi_inode_mkdir hook.

• Directory Renaming : Since a rename operation is on an inode we do not distinguish between
regular files and directories. The enforcement inppi_inode_renameapplies to directories
as well.

• Directory Removal : This operation is just like the unlink operation on regular files and hence
we simply involeppi_unlink abstract operation fromppi_inode_rmdir hook.

• File Creation in a Directory : This operation is covered under the file creation operations
discussed earlier.

• Directory Traversal : This operation mainly deals with reading the contents of a directory
or the pathname resolution of the directory. In either case the event can be mediated in
ppi_inode_permission. However we currently do not invoke theppi_lookup ab-
stract operation from this hook for reasons discussed in Section 2.2.2

Hard Links

As discussed in Section 2.2.1, there is no provision in the current LSM framework to associate
labels with hard links. Hence the only check that is made in the current implementation is that
of link creation, which is in-line with most object creationoperations. We simply invoke the
ppi_bind abstract operation inppi_inode_link hook.

Symbolic Links

Symbolics links have been implemented in our framework, completely as per the discussion
in Section 2.2.1 and Section 2.2.2. We simply invoke theppi_bind abstract operation in
ppi_inode_symlink hook, which pertains to symlink creation. Also, we update the value
of subject’svirtual_current_label in ppi_inode_follow_link. This operation is
the key to downgrading a subject if it tries to open an object via a low integrity link.

File systems

As discussed in Section 2.2.1, a mount operation is treated as a combination of a removal of the
mount point directory, a write to the device, and a bind to themount point directory. Important
file system operations are as follow:

• File system mount : The hook involved for this operation isppi_sb_mount. The 2 ab-
stract operations that map to this hook areppi_bind and ppi_delete. In particular
ppi_delete operation needs to be called once for the mount point and oncefor the device
that represents the file system.

• File system unmount : The hook involved for this operation isppi_sb_umount. The ab-
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stract operations mapped to this hook are exactly the same asthose for the mount operation.

Named Pipes

Pipes provide one of the most basic inter-process communication mechanisms. Pipes are of two
types, named and unnamed. Unnamed pipe is a in-memory kerneldata structure that is referenced
using file descriptors, but there is no way to externally namethese data structures. Named pipes,
in contrast, are associated with a name in the file system, andhence can be referenced externally.
In addition, permissions can be associated with these file names that can control who can connect
to a pipe. As a result, named pipes are opened and read/written in much the same was as files,
whereas unnamed pipes do not have explicit open operations.

Named pipe creation. Figure A.6 depicts the hooks involved in the creation of named pipes. In
particular, we use some of the same hooks as for creation/opening of regular files.

ppi_inode_mknod: This hook is invoked to create named objects only. To distinguish between
the named and unnamed pipes, a flagis_named_pipe is maintained in the subject security
structure.

ppi_inode_alloc, ppi_inode_init: These two hooks are handled in the same way as
files.

Named pipe open, close, deletion.All the operations on named pipe are the same as regular
files from the point of view of policy enforcement in our framework.

Unnamed Pipes

Figure A.7 depicts the hooks involved in the creation of unnamed pipes.

Object creation. The hooks for this operation are enlisted below.
ppi_inode_alloc: This hook simply invokes theppi_create abstract operation.

ppi_d_instantiate: As mentioned earlier, unnamed pipes are implicitly openedon creation.
To achieve this effect, PPI will create two handles (one for the read-pipe and another for write-
pipe) in this hook. Note that PPI can distinguish between named and unnamed pipe creations by
examining the fieldis_named_pipe.

Internet Stream Sockets

The various operations on Internet Stream Sockets have beendiscussed below.

Socket Creation. LSM hooks relevant to creation of socket objects is shown in Figure A.8. PPI
implementation makes use of the following hooks at the time of socket creation (the only exception
is the creation of the new ’accept’ socket, which is not captured at the server side)

ppi_inode_alloc : As discussed earlier this hook is invoked for creation of aninode that is
referred to by the socket. The abstract operationppi_create is called in this hook.

ppi_sk_alloc_security : This hook is responsible for creation of the read and write han-
dles on the socket. A socket always has read and write socketsassociated with it and therefore
both these must be created at the time of socket creation. Abstract operationppi_openmaps to
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this hook and needs to be invoked twice to create read and write handles.

Socket Close. This operation simply closes the read and write handles established on the socket.
The work is done byppi_close abstract operation inppi_file_free_security. Invoca-
tion of ppi_file_free_security indicates that the reference count of thefile structure
associated to the file is zero and there are no users of that socket. The write handle(s) on the clos-
ing sock may belong to other subject(s) which means that at this point those all the write handle(s)
too will be closed.

Socket Listen. No PPI checks are required on socket listen.

Socket Connect. Section 2.2.2 gives the description ofppi_connect abstract operation. The
implementation of socket connect operation matches that description exactly. However no changes
made at the time ofppi_connect abstract operations are committed, otherwise it could be
extremely easy for a low integrity process to downgrade a high integrity server by simply calling
a connect system call, even if the connection is denied by the server atthe time ofaccept.
The hook for this operation is enlisted below and the flow of the relevant kernel hooks is shown in
Figure A.9

ppi_socket_connect : Abstract operationppi_connect will be called from this hook.
Since this call is made by the client, the client socket information is available. The information
about the server’s socket (at this point the server’s socketrefers to the server’s listening socket
because the new socket is created at the time ofsysaccept) can always be obtained by a lookup
in the server process’s file descriptor table, if the server is running on the same local machine.

Socket Accept. No enforcement is done for this operation because the clientinformation is not
available inppi_socket_accept. The flow of the relevant kernel hooks, for this operation, is
shown in Figure A.10.

Socket Send/Receive. TCP is a connection oriented protocol. Therefore once the connection is
established, before any communication starts on the TCP connection, we must associate the write
handles with the peer objects. Since we do not have any hook with error return capability after the
connection is established, we enforce integrity policies in ppi_socket_sendmsg hook. On
first write, it will be checked if the association can be formed. Note that there is no enforcement
done forppi_socket_recvmsgbecause there is no way to know the source of the message till
the data has been read. So we rely completely on sender side checks. The hook for this operation
is indicated below.

ppi_socket_sendmsg : The abstract operationppi_sendto maps to this hook. The ab-
stract operation is a combination ofppi_connect andppi_write.

Internet Datagram Sockets

UDP is a connectionless protocol. Therefore the association will be established only when client
tries to send to server and vice-versa. The association willpropagatecurrent_min_lbl and
current_lbl. Once the propagation is done the association with the peer socket will be broken.
Note that we cannot enforce inppi_socket_recvmsg hook since in case of UDP we do not
have the receiver information until we actually receive thedata. PPI operations for Datagram
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Sockets are done in the following hook:

ppi_socket_sendmsg : The abstract operationppi_sendto maps to this hook. The ab-
stract operation is a combination ofppi_connect andppi_write.

UNIX domain sockets

UNIX domain sockets are much like Internet sockets except that communications are between
processes on the same local machine and the data transfer does not involve kernel networking
protocol stack. The data transfers does not use the file system. Rather this mechanism uses kernel
memory buffers for the actual transfers. In Unix domain sockets, the socket address structure
consists of a fieldsun_path which can be either null-terminated file system pathname or an
abstract name. The discussion for UNIX domain sockets is divided into 2 parts:

• UNIX domain stream sockets

• UNIX domain datagram sockets

UNIX domain stream sockets

In case of TCP with socket having file system pathname two sockets are created by client and
server processes usingsocket system call. The resulting objects having file system pathname.
For such a socket that has a file system pathname, our framework creates a special handle called
thecreate-write handle.

A note on create-write handles. In case of UNIX domain sockets, the socket can be created
on the file system with file system pathname. Even though according to unix access control, no
one can read from or write into the socket, this socket file canbe moved, overwritten. Therefore
it is important to protect the integrity of the socket file. Toto do this we introduce a new type of
PPI handle other than read and write handles. This handle is known as create-write handle. This
type of handle will be created by the subject that creates theobject. Note that such handle will be
created only for on disk-objects. (For in-memory objects like socket, unnamed pipe, their object
creation always results into immediate read/write handle creation.) The create event indicates
that creating subject intends to use it or make it available for use to other subjects. When a new
object is created,ppi_inode_init_security hook (this hook is invoked immediately after
ppi_inode_alloc_security), creates a create-write handle for the object. If the inode
creation fails thenppi_inode_free_security will clean up the create-write handle from
the system. It is important to note that the handle validation procedure will not be applied for
create-write handles.

This handle will be of write type since it is a representationof the subject that created it.
Creating such handle will ensure that the integrity changesto a subject are also propagated to its
newly created objects. This propagation also ensures that asubject itself does not lose control
of its newly created object. Create-write handles will be removed from the system in one of the
following two ways:
1. The object corresponding to the handle is deleted.
2. The subject which created the handle gets terminated.
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Domain Socket Creation. LSM hooks relevant to creation of socket objects is shown in Fig-
ure A.8. PPI implementation makes use of the following hooksat the time of socket creation (the
only exception is the creation of the new ’accept’ socket, which is not captured at the server side)

ppi_inode_alloc : This hook helps in for socket object creation. The abstractoperation
ppi_create is called in this hook.

ppi_sk_alloc_security : This hook is responsible for creation of the read and write han-
dles on the socket. Abstract operationppi_open maps to this hook and needs to be invoked
twice to create read and write handles.

Domain Socket Close. This operation simply closes the read and write handles established on
the socket. The work is done byppi_close operation inppi_file_free_security.

Domain Socket Connect. The implementation for this operation is exactly like the implemen-
tation forconnect operation for Internet stream sockets. Even though integrity checks are made
in this hook, no associations are committed. The reason is that for permanent associations, the
peer object is unavailable (has not been allocated). The peer object is created only at the time of
accept. The hook for this operation is enlisted below and the flow of the relevant kernel hooks
is shown in Figure A.9

ppi_unix_stream_connect : Abstract operationppi_connect will be called from this
hook.

Domain Socket Accept. No enforcement is done for this operation because the clientinforma-
tion is not available inppi_socket_accept. The flow of the relevant kernel hooks, for this
operation, is shown in Figure A.10.

Domain Socket Send/Receive. No enforcement is done forppi_socket_recvmsg because
there is no way to know the source of the message till the data has been read. So we rely completely
on sender side checks. The hook for this operation is indicated below.

ppi_socket_sendmsg : The abstract operationppi_sendto maps to this hook. The ab-
stract operation is a combination ofppi_connect andppi_write.

UNIX domain datagram sockets

The only enforcement done for UNIX domain datagram sockets,in our framework, is at the time of
sending data from one peer to another. The description of operation and details of implementation
are same as that for the Internet datagram sockets. The hook used for enforcing policies at the
time of data transmission is indicated below.

ppi_unix_may_send : The abstract operationppi_sendtomaps to this hook.

System V Inter-process Communications (IPCs) : Shared Memory

PPI framework operations for shared memory have been discussed below.kern_ipc_perm is
the kernel data structure that represents the System V IPC objects in the system and is the common
data structure for all IPCs.
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Shared Memory Object Creation. Whenever a new shared memory IPC is created, kernel cre-
ates a new data structurekern_ipc_perm. It contains a security field in which an object security
information can be stored. In case of a shared memory, the data structure isshmid_kernel.
This contains the pointer tokern_ipc_perm and a pointer tostruct file (shm_file).
PPI object will also contain a pointer toshm_file for future shared memory handle validation.
The hooks are described below.

ppi_shm_alloc_security : This hook is invoked whenever a new shared memory segment
is created. PPI will associate security information with the shared memory object in this hook.

ppi_shm_shmat : Handle creation occurs in this hook. The idea is same as for handle creation
for files in ppi_inode_permission. This hook specifies the intent. If intent is read-only
then read handle will be created. Otherwise, both read and write handles will be created. The flag
is_flow_mediated is set to false.

Shared Memory Handle Destruction. There is no hook for tracking shared memory detach
event. The system callsys_shmdt simply unmaps the shared memory. Therefore shared mem-
ory handles will be validated before they are used to make sure that stale PPI handle do not remain
in the system.

Shared Memory Handle Validation. Handle validation for shared memory may have to be
done differently. Every process has its own virtual memory mapping. Everyvm_area_struct
of the process has a file pointervm_file. Whenever process attaches to the shared memory it
creates newvm_area_structwhose file pointervm_file points toshm_file in the global
shared memory object. If the process is truly attached then this file pointer should match otherwise
it is an invalid handle.

ppi_shm_free_security : This hook is invoked when the reference count on shared mem-
ory falls to zero. The clean-up of all handles and the shared memory object occurs in this hook.
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sys_open(fd,filename,flags,mode)

do_sys_open(allocates new fd)

file* = do_filp_open

open_namei

path_lookup_open

open existing file

may_open

open existing file

path_lookup_create

O_CREAT

get_empty_filp

attempt to allocate struct file

security_file_alloc(struct file)

attempt to allocate struct file

followed bysecurity_inode_permission(MAY_EXEC) for each dir in path

security_inode_permission(inode(inode to check),mask)

mask = MAY_READ/ MAY_WRITE

security_inode_create(inode(of dir),dentry(of new file),mask)

followed by (the path here-on is for create only

open_namei_create

vfs_create

check if you can write to parent dir

security_inode_create(dir, dentry, mask)

if regular file

ext3_create

ext3_add_non_dir

ext3_new_inode

followed by

security_d_instantiate

security_inode_alloc(inode)security_inode_init(new inode, dir, xattr)

security_inode_init(inode(of new inode),dir(inode of parent),name(of xattr),value,len)

followed by

followed by

Figure A.3: LSM hooks related to opening of regular file
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rm(library call)

do_unlinkat

do_path_lookup

security_inode_permission(MAY_EXEC) on each dir in path

unlink(library call)

vfs_unlink

followed by

may_delete(simply does inode_permission(MAY_WRITE) check on parent)

security_inode_unlink(inode(of directory), dentry(of the file))

followed by

iput()

followed by

iput_final()

if inode ref_count=0

generic_drop_inode

generic_delete_inode

link count = 0

generic_forget_inode

link count != 0

void=security_inode_delete(inode)

release persistent labelling (may omit)

void=security_inode_free(inode)

free inode->i_security free inode->i_security

followed by

sys_close

filp_close

fput

security_file_free(struct file)

dput

followed by

d_kill

dentry_iput

Figure A.4: LSM hooks related to deletion of regular files
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Figure:  File Read and Write

sys_read

vfs_read(file, buf, count, &pos)

security_file_permission(file, MAY_READ)

sys_write

vfs_write(file, buf, count, &pos)

security_file_permission(file, MAY_WRITE)

Figure A.5: LSM hooks related to reads and writes of regular files
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Figure:  Named pipe create

sys_mknod

sys_mknodat

vfs_mknod

security_inode_permission(dir)

security_inode_mknod

followed by

dir->i_op->mknod

ext3_mknod

ext3_new_inode

ext3_add_nondir

new_inode

ext3_init_security

alloc_inode

security_inode_alloc(inode)

followed by

security_inode_init(inode(of new pipe),inode(of parent dir),name(of xattr),value,len)

followed by

d_instantiate(dentry, inode)

security_d_instantiate(dentry, inode)

Figure A.6: LSM hooks related to creation of named pipes
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Figure:  Un-named pipe create and open

sys_pipe(*fd)

do_pipe

create_write_pipe

1

create_read_pipe

2

get_unused_fd and install_fd

3get_empty_filp

get_pipe_inode

set inode mode = S_FIFO

d_instantiate

security_file_alloc(struct file)

followed by followed by

new_inode

alloc_inode

security_inode_alloc(inode)

followed by

followed by

security_d_instantiate(dentry, inode)

followed by

Figure A.7: LSM hooks related to creation of unnamed pipes
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Figure:  socket create

sys_socket

sock_create

sock_map_fd(sock)

security_sock_create(family, type, protocol, kern)

sock_alloc

pf->create

security_socket_post_create(sock, family, type, protocol, kern)

followed by

security_inode_alloc(inode)

followed by

inet_create

intenret socket         

unix_create

unix domain

sk_alloc

sock_ops=&unix_stream_ops or &unix_dgram_ops

unix_create1

security_sk_alloc(sk, family, priority)

followed by

followed by

followed by

sock_alloc_fd

sock_attach_fd(sock, newfile)

get_empty_filp

security_file_alloc(file)

followed by

d_instantiate(dentry, inode)

Populate file data structure

security_d_instantiate(dentry, inode)

followed by

Figure A.8: LSM hooks related to socket creation
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Figure:  Socket Connect

connect

sys_connect

security_socket_connect(socket,remote address,addrlen)

sock->ops->connect()

inet_stream_connect

via function pointer

sk->sk_prot_connect()

tcp_v4_connect

stream oriented

unix_stream_connect

unix domain

ip_route_connect

tcp_connect

unix_create1

unix_find_other

security_unix_stream_connect(struct socket, other_sock, newsock)

security_sk_classify_flow(struct sock,struct flowi)

followed by

sk_alloc

sk_prot_alloc

security_sk_alloc(sk,family,priority)

followed by

vfs_permission(MAY_WRITE)

security_inode_permission(other_inode,mask)

followed by

Figure A.9: LSM hooks related to socket connect
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Figure:  socket accept

sys_accept

newsock = sock_alloc()

newfd = sock_alloc_fd(&newfile)

sock_attach_fd(newsock, newfile)

security_socket_accept(sock, newsock)

sock->ops->accept()

security_socket_post_accept(sock, newsock)

security_inode_alloc(inode)

followed by

followed by

followed by

followed by

followed by

Figure A.10: LSM hooks related to socket accept
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