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Reactive approaches for ensuring security, like signabased scanning and behavior mon-
itoring, have been around for quite some time. However treseHailed to provide assurances
about overall system integrity, and can easily be defeayesophisticated techniques like code
obfuscation and encryption. Another class of attacks oleduthose that occur in multiple steps
(often referred to asulti-stepattacks). Information flow based approaches provide a bassis
mediating and tracking dependencies between systemesntitind can thus prove to be helpful in
overcoming these shortcomings. However, success in aygpigformation flow based techniques
to modern COTS operating systems has been limited, sincact application of information
flow policy can break existing applications and OS servi€é&se common case of poor usability
is when an application is denied write access to a high iityefile in the middle of the write-
operation as a result of reading from a low integrity file.

Our framework attempts to address this issue of loss in ligabyy maintaining integrity
constraints for each subject (process) and object (filekets, IPC channels etc.) in the system,
and permitting or denying access requests by ensuring thatvariant is violated. To achieve
this, our approach maintains a per-process list of objeeisgbaccessed. For each new read-
open request made by an application, our policy enforcesggates integrity constraints from the
objects in the application’s list to the new object that tpplecation wishes to open. The success
or failure of the request then depends on the new objectigyatw honor these constraints. This
strategy restricts service denials to early failures, Withe applications handle far more gracefully
than read or write denials. To provide completeness to thaiso, our framework enforces
policies for all different types of objects (files, linksppis, sockets, devices, IPC channels). The
implementation of our framework utilizes Linux Security Mde (LSM) hooks. A considerable
portion of our work also deals with understanding and doauing the flow of the Linux kernel
code involved in the LSM framework and mapping the abstraerations of our framework to
the appropriate LSM hooks.
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Chapter 1

Introduction

Security threats and malware attacks have increased dcathabver the past few years. With
Internet becoming powerful, its user-base has increasessivedy and so has the threat from
malware, which gets downloaded to the victim’s machineegitictively or passively. Malware
defenses that use reactive approaches, such as signate®@-4canning and behavior monitoring,
can be defeated by code encryption and obfuscation. Sajattesi attackers can easily evade
detection by such approaches by simply changing the steuetud behavior of their malware.

Sandboxing based security solutions restrict the numbegsafurces that an application can
access and modify. Many proactive defenses based on sidgas, are used commonly against
untrusted software, to limit the set of system resourcesdaia be modified by potentially ma-
licious processes and restrict communication with othetesy processes. However, many such
techniques do not mediate read-accesses and hence therengsoncement for data that is read
from low integrity sources, such as malware outputs. In theeace of read-access mediation,
multi-stepattacks can still be perpetrated, as simply as malware wsiaditor to write to a high
integrity file, which it otherwise is not authorized to writg directly. An example of a real world
attack is that of Windows Vista Security Model which doesmmte security enforcement policies
for read-downgreads that occur from low-integrity sources) and only erds policies that me-
diate and thus prevemtrite-ups(writes that occur on high-integrity objects, whose iniiggmust
be preserved). The attacker simply overwrites the Vista-gianu file, an action that does not
involve escalated privilege level. The affected start-mig@ms now points to entry-points in the
malware rather than the usual applications. However, theneer is oblivious of this and trusts
the start-menu entries. Thus when he clicks on a menu itensgompted by the Vista UAC,
which requests higher privilege level for running the inted program, the user almost certainly
allows the escalation of privileges. The malware then etescwith escalated privileges thereby
compromising system security. Thus due to the absence dfaazess policy enforcement in the
Windows Vista Security Model, it becomes vulnerable to @&ptial multi-step attack.

It may be worth noticing that while read accesses refer th matd-upsandread-downsfrom
an integrity standpointiead-upsare never an issue. Likead-ups write-downstoo are never
problematic in the integrity model. Hence any referencentingegrity-preserving security solu-
tion’s inability to mediate read accesses, essentiallynmés inability to mediate read-downs.



The same holds true with regards write accesses.

Information-flow based integrity preservation techniquesich regulate write-access as well
as read-access, and mediate flow of information (occurnngligpossible channels of communi-
cation) between the dependent entities in a system, candoetosounter multi-step attacks. An
early, and significant work on information-flow based tegueis is the Biba integrity model [4]
which serves as a guiding principle for similar works. Hoeweiba model is very strict and
simply denies allvrite-upsandread-downsthus it tends to break the functionality of many appli-
cations and suffers from poor usabilityow Watermarknodel [5, 11] builds over the Biba model
by adding a “subject downgrade” policy. This means that gestilgets downgraded to a lower in-
tegrity level when it reads from a low integrity object, antbsequently runs at a reduced integrity
level for the remainder of its lifespan. Tl®wngradepolicy, addresses some of the usability
issues. However it does not address sk#-revocationproblem where an application is denied
write access to a high integrity file in the middle of the widigeration, consequent to getting
downgraded upon reading from a low integrity source. An gXaris that of a peer-to-peer down-
loader that downloads data from high integrity sourcessts; gets downgraded in the middle of
this operation if the user tries to download from a low iniggsocket, and then can’t complete
its prior task, which involves writing to high integrity fde Another example is when a user edits
a high integrity file in a text editor application, and in thedadie of operation, the user opens a
low integrity file for reading. Now this operation causes tést editor to get downgraded and it
thus loses it's write ability on the high integrity file. Thear may either lose important unsaved
modifications to the high integrity file or in the worst casenity leave the file in an inconsistent
state.

PPI [14] uses the concept tlusted applicationsvhich means applications which are desig-
nated as trusted, do not get downgraded to lower integntyldeeven when they consume low
integrity inputs. This concept can be applied in solving dbeve mentioned problem of ensur-
ing usability, by simply making the peer-to-peer downlaaaied the text editor, trusted. However
trust alone cannot be the solution to this problem, becanigaited trust can become an undesired
feature of a security model.

Our work derives motivation from this problem of loss in udisb of applications, which
arises due to enforcement of information-flow based pdisigch aslenyanddowngrade while
keepingtrustto a minimum. In this thesis, we develop an integrity preation framework for PPI.
The high level goals of our framework are enlisted below aedléscussed in detail in Section 1.2.

e Promotion of Early Failures by Propagating Integrity Corahts. Our focus is on promoting
early failures as opposed to delayed failures, while prasgisystem integrity. Without loss of
generality we can claim that early failures cause much leszikdage in usability, than delayed
failures. One example of this is that applications hand&dpen errors far more gracefully
than read/write errors. Another example is that of socka&éstying connection to a socket is
better than denying send/receive on an established coongat a later stage.

e Completeness of Approacur framework enforces integrity policies on all types bjawts
in the system. These include regular files, directoriesketse pipes, links and various IPC
communication channels.

e Limiting Trust Our framework uses PPI's concept of trust and exemptsenlugpplications



from information flow policies. However the framework prdes the flexibility, to either limit
a subject’s trust to a certain threshold or make the subjdctisted altogether. This helps our
framework in limiting trust to only a few applications, egsh server is trusted for all input on
port 22.

e Flexible and Scalable Label€Each subject and object (named as well as un-named), in our
system, has an associated integrity label. Our framewogements a label as an abstract
datatype, with its domain being a lattice. Labels may alsodssl to encode both confidential-
ity and integrity at the same time. In the simplest case, widcstill use a linear lattice, with
the top element corresponding to highest integrity and $bwenfidentiality; and the bottom
element corresponding to lowest integrity and highest denfiality. The current framework
is designed to support all the suggested alternativesaba implementation.

e Fitting the framework in a contemporary Operating Systéhe greatest challenge we faced
was mapping our framework operations in a contemporaryabiper system. Linux operating
System provides the LSM_{nux Security Moduleframework for writing loadable security
modules. We faced multiple engineering issues while mapihie abstract operations of our
framework with the corresponding kernel hooks of the LSMrfesvork, many of which stem
from LSM’s limitation. However the robustness of our desggmmits the seemless integration
of our framework with any operating system that offers a sgctramework similar to LSM.

Our results indicate that our framework preserves inteauiid maintains usability at the same
time. The overall system overhead is marginal and the pedoce penalty does not change
drastically with the increase in the number of active preessn the system.

The rest of the thesis is organized as follows. In Chapter 2alkeabout the details of the
design of the PPI-Framework. We describe the details ofroplementation and details pertaining
to mapping with the LSM framework in Chapter 3. We presentabieial experimental results
obtained from the various benchmarks in Chapter 4. Chagiembdes references to some related
works, and we conclude in Chapter 6.

Our framework is based on the PPI [14] approach for presgrsystem integrity. Section 1.1
gives an overview of the approach developed by PPI [14] fagrity preservation, presents the
concept of trust, introduced by PPl and mentions how our éwaank implements this concept. In
Section 1.2, we discuss the contributions of our framework.

1.1 Overview of the PPI Approach

Figure 1.1 illustrates the integrity and trust levels usedur framework, as advocated by PPI
(Practical Proactive Integrity Preservation). To simptlfie illustration, we use just two integrity
levels: highandlow. A subset of high-integrity objects are identified@ggrity-critical. Integrity
critical objects are those, whose integrity must be preskrnder all circumstances. In other
words, they are those objects that must never get downgrddesyrity critical objects provide
the basis for defining system integrity:

System Integrity: System integrity is preserved as long as all integrityicait objects have
high integrity labels][14]

The initial set of initial integrity-critical objects is ¢éarnally specified by a system administra-
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Figure 1.1: Classification of Applications in PPI

tor or the user of the system, both of who are assisted by aitmhanalysis techniques specified
by PPI. Files corresponding to applications that come filenQS vendor or are downloaded from
trusted repositories have high integrities. Such apptinatare termed asenign Such applica-
tions retain their trust labels as long as they do not consiateefrom low integrity channels (files,
sockets etc.). Otherwise they get downgraded to loweriitydgvel. As an example, a bit torrent
client application may get downgraded upon reading data fidow-integrity socket.

However it may be necessary to have a certain amount of trusedain applications (e.g.,
certain webservers), which sanitize lower integrity dagéfoke consuming it. Trusting certain
applications, may be absolutely necessary for their cofugctioning, e.g. an ssh server must be
trusted for all inputs received on port 22. Such applicatiare termed asusted

Our framework implements this concept of trust by makingdpglicationsinvulnerableto
low-integrity inputs. Such applications do not get dowmigm as long as they caanitizetheir
inputs. The extent to which such applications can be truistetbfined by theiinvulnerability
level which simply means that the application is invulnerablkitsl invulnerability level. Any
input it consumes below this level will lead to its downgragli Details on how our framework
implements this feature is described in Section 2.1.6.

PPI develops a new approach for proactive integrity praiedty overcoming the issues that
information flow based systems suffer from, some of whichendiscussed earlier. PPI assigns
labelsto all the entities (objects and subjects) in a system anougees these integrity labels from
access policiesAn integrity label on an object simply indicates whethsrabntent is trustworthy
and does not dictate whether trustworthiness must be pezke®n the other hand, a policy, is an
indicator of whether an access (read or write) should bevalibor denied.

PPI offers the following policies when a high-integrity gt attempts to read a low-integrity
object:

e Deny: deny the access
e Downgrade: downgrade the label of the subject to low-integrity andwalthe operation
e Trust: trust the subject to protect itself without downgrading fubject.

PPI also offers the following options when a low-integritybgect attempts to write a high-
integrity file:



e Deny: deny the access
e Downgrade: downgrade the label of the object to low-integrity andwalkhe operation

PPI also develops an analysis for automating the generafiamegrity labels and policies
that aim towards preserving the usability of applicatianmist cases. Details of this analysis and
the related approaches have been described in the PPI [3di. pa

1.2 Contributions of the Framework

This section summarizes the contributions of our work. Ehasmarily enumerate the unique
features of our framework and some significant researchvtleatlid while implementing this
framework.

Promotion of Early Failures by Propagating Integrity Constraints Our framework promotes
early failures as opposed to delayed failures, as alreadytiomed in Chapter 1. In order to
achieve this, our framework maintains certain integrityaimants (as per the integrity policies).
The policy checks and invariant maintenance is completetyodpled from the integrity labels
associated each object and subject in the system. Thedevédibes are assigned/read, validated
and modified (if necessary) at runtime as per the integriticp@and the access is permitted only
if the pre-defined integrity invariants are satisfied. As aaneple, when a subjed; requests
access to an obje€?; in read-mode, the framework propagates the constrairs) &l objects
that.S; is already accessing in write-mode, 1©,. The access is granted only@f; can satisfy
the constraints. Likewise, when a subjégtrequests access to an objégt in write-mode, the
framework propagates the constraints, from all subjeds d@nealready accessing); in read-
mode, toS;. The access is granted onlySf can satisfy the constraints. It is easy to observe that
the constraints are propagated, in the direction oppasiteat of information flow. Our technique
clearly ensures that communication establishment withnaat@nnels is permitted only if it does
not lead to a an access denial on an existing channel of comatiom. Thus our framework
also addresses the problemsedf-revocationbecause service denials (if any) are limited to early
open-request failures.

Flexible and Scalable Labels Each subject and object (named as well as un-named), has an
associated label. Our framework implements a label as dragbdatatype, with its domain being
a lattice. PPI[14], envisioned label as a linear latticenvitievels, with level 7 and level O corre-
sponding respectively to the highest and lowest possildgiity levels. But with our framework,
the labels can be easily changed, say, to permit 1024 let'@gegrity. Another obvious gener-
alization is to support partial orders on labels rather flaahtotal orders. This may be useful for
handling information from different sources that we do mast fully, but at the same time, we
want to distinguish between these sources in order to etizatrene of these sources does not have
the ability to compromise information from other sourcesieossible way would be to break
up each integrity level into many incomparable familiese @orresponding to each such source,
by adding another component to the label that specifies thieso Labels may also be used to
encode both confidentiality and integrity at the same timehé simplest case, we could still use
a linear lattice, with the top element corresponding to egjlintegrity and lowest confidentiality;
and the bottom element corresponding to lowest integritytdghest confidentiality. However, it
would be more convenient to represent confidentiality amegnity components separately, i.e.,



let each label be a paif;,l.), wherel; specifies integrity and. specifies confidentiality. It is
noteworthy that in such a label, the ordering on integritgt aanfidentiality go in opposite direc-
tions. In particular, a labdl > I, means that the integrity component/g§ label is greater than
or equal to that ofy, while its confidentiality component is less than or equatht ofi;. Our

framework has been designed to supports all the suggesézdadives, for label implementation.

Completeness of Approach Our framework mediates all accesses by a procsg€cj on var-
iousobjectssuch as regular files, directories, sockets, pipes, lindsvarious IPC communication
channels. By enforcing policies on all types of objects ia fiystem, our framework ensures
completeness.

Limiting Trust  Unrestricted trust can often turn out to be an undesiredifeadf a sound se-
curity model. Our framework gives the provision to resttleg invulnerability that a subject can
exercise, when reading from low-integrity inputs, by defgnan invulnerability level for each sub-
ject. In the most common case, the invulnerability of a stigeuld simply be turned off, which
means it is no longer a trusted subject.

Mapping the Framework Abstract Operations to the LSM Hooks Our framework achieves
its objectives by defining a set of abstract operations tretlscussed in detail in Section 2.2.2.
Fitting the framework in a contemporary OS presents meatgblallenges and engineering issues.
We implemented our framework for the Linux operating systgmmapping our abstract opera-
tions to the hooks in the Linux Security Module (LSM) FramekvoThis required careful study
of the hooks and understanding the control flow between fifereint hooks. The success of our
framework validates our study and understanding of the L®Wkh. Our flow graphs (referred
in Appendix-A) serve as a good starting point for someone wishes to understand the LSM
framework.



Chapter 2

Framework Design Details

This chapter discusses the design details and the desigiahscthat we made while developing
an enforcement framework for PPI.

2.1 Approach Overview

Figure 2.1 provides a high-level illustration of infornmati flows in our framework. Policy en-
forcement is effected using LSM hooks in the kernel, and #taits of this enforcement will be
described in the subsequent sections.

2.1.1 Labels

An information label is associated with each entity on theraping system that can serve as a
source, sink or conduit of information. A label is an abdtrdatatype, with its domain being
a lattice. Initially, in PPI, we envisioned a linear lattingth 8 levels, with level 7 and level
0 corresponding respectively to the highest and lowestilplesmtegrity levels. But this can
be easily changed, say, to permit 1024 levels of integritpotAer obvious generalization is to
support partial orders on labels rather than just total stdd his may be useful for handling
information from different sources that we do not trustyfubbut at the same time, we want to
distinguish between these sources in order to ensure tleabfoiimese sources does not have the
ability to compromise information from other sources. Ownsgible way would be to break up
each integrity level into many incomparable families, oneesponding to each such source, by
adding another component to the label that specifies thesotlihe current framework is intended
to support all these alternatives.

2.1.2 Objects, Subjects and Handles
The entities involved in information flow are the following:

Objects: They consist of all storage and inter-process communicadiostractions on an OS:
files, pipes, sockets, message queues, semaphores, etee dijects are divided into two
categories: file-like and pipe-like. There is a fundamedifierence between these classes.
For a file-like object, the label of data read from it will b&@thame as that of data written into
it. In contrast, for a pipe-like object, the label of dataddeom the object representing one



end of the pipe is the same as the label of data written to tfezblepresenting the other end
of the pipe (called a peer object). Best example of a pipediject is a socket.

Subjects and SubjectGroups: Subjects correspond to threads. Since the OS-level meschani
used in our framework cannot mediate information flows thkétplace via shared memory,
subjects that share memory are grouped into SubjectGrdinesidea is that all subjects within
a SubjectGroup will have the same security labels at any.time

Handles: They provide a level of indirection between subjects anéatisj and serve to provide a
convenient means to link together objects and subjecththat an information flow relation-
ship. There is a one-to-one mapping between handles angkcssibgind many-to-one mapping
between handles and objects.

Handles also provide a mechanism for a subject to distihgoigween different objects with
which it communicates. In particular, our framework pr@sdmechanisms for a subject to
customize information flow policies on a per-object basissbiting label attributes on the
handle used (by the subject) to access that object. As anmeaim subject may want to
exercise invulnerability on a specific input and not on aanth

Handles are conceptually similar to a file descriptors, batd are some differences as well,
e.g., a handle is unidirectional: a handle provides eitlread or a write capability. (Obtaining

both requires two handles.) The label of a read-handle isngby the label of the object that

it reads from, while the label of a write-handle is given bg thbel of the subject holding the

handle.

2.1.3 Information Flow Policies

A current label ¢ur r ent _| bl ) field is associated with each object and subject, and itigesv
the basis for policy enforcement. In particular, no flow v permitted from a source to a
destination unless the source’s current label is greagar ¢in equal to that of the destination. To
ensure this, our framework may dynamically downgrade tbellaf the destination. To prevent
undesirable downgrading, a minimum label (callddn_| bl ) is associated with every subject
and object. In the context of an earlier example on text eslifGhapter 1), the self revocation
problem can be solved by ensuring that then_| bl of the text editor remains greater than or
equal to them n_I bl of the high-integrity file that it was writing to before it r@dow-integrity
data. In other words this ensures that the editor never daseg to an integrity level lower than
the lowest integrity level of the high-integrity file.

Handles do not have an independent value for their curréet End minimum label; instead,
these are derived from the corresponding values of objectsabjects associated with a handle.

Note that if the label incorporates both integrity and caaniiblity components, then the
m n_| bl of a destination will specify the lowest possible integrtyd highest possible confi-
dentiality of data that flows into that destination.

Finer-granularity control over downgrading is provided$abjects using a discretionary min-
imum label @i scr_m n_| bl ). Note that a subject may get downgraded when it performs a
read-open of an object with a lower label, or if one of its euatly open (for reading) objects gets
downgraded. In either case, a subj@ehay want to control its downgrades, i.e., it may be willing



Flow Diagram of the Framework
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Figure 2.1: lllustration of Information Flow in our Frameko
C 12, C 13, C 14 and C 15 indicate integrity constraints diseasin the Section A.1.4

to be downgraded to a levBl when reading from an obje€};, and another level when reading
from another objecO,. S can achieve this by settirdj scr _m n_| bl to/; on the read handle
associated witl);, and tol, for the read handle associated wiih.

2.1.4 Forward information flows

Figure 2.1 illustrates the flow of information between olgeand subjects via handles. In this
figure, solid lines represent actual flow of information. fighare two subjects; andSs. Flow of
information between these two subjects occurs via a sodiettiO; (which is pipe-like), and a
file objectOs.

Flow of information via file objects is simpler than that opptlike objects. In particular,
an object receives the label of the subject writing to it. sTHdw is handled by propagating the
current label of subjec$; to its write handleVH,, and then fromiVH, to the objectOs. If Sy



subsequently reads from the objégt, the label ofO, will flow into S;. This implies that for file-
like objects, their read handles simply inherit the labethaf corresponding objects. The boxes
labeledRLG (“read-label guard”) andiV LG (“write-label guard”) capture the fact that an actual
flow between an object and a subject does not take place batihéxt read or write operation,
except in cases where the file object is memory-mapped. (noeason preventing the flow is if
the subject is invulnerable, as described in Section 2.1.6.

Since a socket is a pipe-like object representing two disflilows, we split it into two peer
objectsO, the socket held by, andO/, the socket held by,. S; uses a read-handlBH;
and a write-handléVH; to read from and write into the socket, whitg usesRH; and WH]
respectively for the same purpose. Obje@isandO] are peers in the sense that the data written
into one of these objects is read via the other. Data writ{efi;hinto the socket using the handle
WH, is shown as flowing into the obje€t;. This way, whenS, reads the socket using the handle
RH], the label returned t&: will be that of the data written using/H;. This explains why
Sy’s write-handle is associated with its peer’s socket objgctwhile its read-handle is associated
with its own socket object. Similarhy§s’s write-handle is associated with its peer’s socket object
while its read-handle is associated with its own socketaib)/ith these associations, we can once
again say that handles inherit the labels of their assati@@cts, with read-label and write-label
guards playing the same role as before.

2.1.5 Promoting early security failures via reverse constint flows

Figure 2.1 also shows flows taking place via dashed arrowkdrmrdverse direction of normal
information flow. The purpose of these flows is to promoteyeeather than delayed security
failures. An open failure, a special case of early failurdjol occurs when a subject opens an
object (like a file), is much better handled by most applarai than delayed failure, which can
happen on any read or write operation. This is because mpbtatons are written to anticipate
security violations on open operations, but not on readsridesv This is also a key feature in our
framework design.

Early failures are promoted by interpreting local secupblicies on entities (i.e., policies
associated with individual objects and subjects) as caim$r on them, and propagating these
constraints across communicating entities via the dastred/s. In particular, we consider con-
straints on minimum security labels (calledn_| bl ) that an object or subject needs to maintain,
and propagate these constraints “upstream” to entitigsptioaluce the information flowing into
these subjects or objects. The idea is that a downstreaty eatinot satisfy a constraint that can-
not be ensured by an upstream entity that produces the iafmmflowing into the downstream
entity. We associate a label calledir r ent i n_| bl on each entity to denote the minimum
label derived for that entity using this constraint progamgaprocess.

Whereas the forward flow of labels is normally delayed untileaplicit read or write opera-
tion, constraint propagation, by default, is instantarsedBince the whole purpose of constraint
propagation is to avoid security failures on read/writerapens, it would make no sense to de-
lay propagation. However, subjects could indicate that Hre capable of handling read or write
errors on specific channels, and for those channels, corigtrapagation is delayed. This is cap-
tured by the boxes labelddC'G (“read constraint guard”) and’C'G (“write constraint guard”).

With the above constraint propagation in place, our frantewall not need to return security

10



errors on read or write operations, but instead, such ewiksnostly be confined to open oper-
ations. (In contrast, downgrades may happen on any reackifdct, this requires our approach
to be conservative: if a read or write security violation @sgible some time in the future after an
open, then that open should be denied.

Our framework usesurrent _m n_| bl to identify possible future violations. When a
subjectS attempts to open an objeCt for reading, this open is denied if the object’s
current _m n_I bl is less than theurrent _m n_| bl of the subjectS and the object’s
current _m n_I bl cannot be increased to the level of the subjects rent _m n_I bl.
Note that this happens evercifir r ent _| bl (O) > current _| bl (5), i.e., the open operation
would not immediately violate the information-flow policyAn application can be selective in
terms of which inputs it is willing to deal with delayed faiés (i.e., cope with read errors), and
this can be done by settirgan_handl e_er r or s on specific handles. (At the time of open, a
read handle inherits the subject’s valuecain_handl e_read_errors.)

Write errors are worse than read errors: for instance, igdise of output files, denying a write
requires that file to be closed midway, potentially leaving file contents in an inconsistent state.
So, our framework attempts to prevent write security viola. In particular, it is safe to assume
that the output of a subjed will never go below itscurrent _mi n_I bl. Our framework
checks at the time of a write-open on objéttf
current _m n_| bl (S) >current _m n_| bl (O). If not, the open will be denied if subject’s
current _m n_I bl can not be increased to the objeatsr rent _mi n_| bl . As in the case
of reads, an application can choose to accept delayeddaitur writes by setting
can_handl e_write_errors on specific handles. However, care must be exercised here, as
attacks can be perpetrated on benign programs by comprbmnigets: in particular, if the input
has a low label, a subject may get downgraded, causing adglopen output file to be truncated.
To safeguard against this, a subject is permitted to sette Waindle’'scan_handl e_errors
only if the subjectscan_handl e_wri t e_errorsis set. Similarly, it may set a read handle’s
can_handl e_errorsonlyifitsowncan_handl e_read_errorsis set.

2.1.6 Data validation and sanitization

Strict enforcement of information flow policies can breaknsoapplications. To mitigate this
problem, PPI, like other information flow based technique&ws subjects to be designated as
trusted and these subjects are exempted from policies. Ratherpilwarding a mechanism that
allows trusted subjects to indiscriminately violate afloimation flow policies, our framework
provides two primitives that are narrower in scope. In patér, our framework provides mecha-
nisms to model the fact that certain subjects perform adequaidation or sanitization of inputs
or outputs on certain channels.

An untrusted subject is not permitted to read data with al Itz is lower than its own. A
trusted subject, on the other hand, can be permitted to &adadth lower labels without decreas-
ing its own label. Our mechanism for supporting this is des@yto accommodate applications
that perform such validation/sanitization selectivelyoantain inputs. This is achieved by associ-
ating aninvulnerability levelon the handles. A read operation will be permitted using alleaas
long as the label of the data read is greater than or equattio¢hinerability level of that handle.

Note that input invulnerability models the ability of a tted subject to perform adequate
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input validation (or sanitization of confidential data). @gpress the fact that adequate valida-
tion/sanitization is performed on some inputs and not ath&ubjects can associate different in-
vulnerability labels on different handles. Newly createadd (write) handles inherit the input
(output) invulnerability level associated with the sulbbjec

Although our focus in PPl is on integrity, invulnerabilgi€an be used to handle trusted sub-
jects that handle confidential data. A subject performirmmuirsanitization (declassification) can
set the confidentiality component of its invulnerability® higher than its own, which means that
it is able to read data that is more confidential than whatiisjited by the subject’s confidential-
ity label. However, for most programs, it is preferable tosdcoh sanitizations at the output stage:
one can state with a lot more confidence that a certain owspgueé of confidential information,
than to say that confidential data is “scrubbed” right at tigut. Indeed, many programs store
confidential data in their memory, and some operations, (@umping of core) will result in files
containing this confidential data. The label on this file witt reflect this confidential content if
we rely on input invulnerabilities. On the other hand, it @spible that some subjects are able to
selectively read public components of files that containralwoation of confidential and public
datawithout ever needing to read confidential data into their @38 space Such subjects may
be modeled using input invulnerability.

Analogous to input invulnerability, we can define a notionoattput invulnerabilitiesthat
enable a (trusted) subject to output data that has a highelrttzan its own. Once again, this should
be done selectively on those output handles for which thgestiperforms adequate validation
and/or sanitization. This kind of output validation is argus to arendorsementSpecifically,
the data output using a handle is given the maximum of thddadfeoutput invulnerability of
that handle, and the current label of the handle. Note thmtikes much more sense for trusted
subjects to be permitted to output data at a lower confidawtiavel than their own, e.g., a server
handling sensitive data that ensures that an output retuonan untrusted user is free of sensitive
content. The case for using output invulnerabilities taéase output integrity is much weaker.
However our framework is capable of incorporating a confiiégéity model, as a part of future
work, so the notion of output invulnerabilities has beeairetd, without being used in the present
context of integrity.

Finally, we address the question of trust, and how it is $geki In our framework, trust is
specified using the subject'sivul I bl : it can exercise its input or output invulnerabilities when
current 1 bl > invul 1bl. (For untrusted subjects,nvul _| bl defaults to the value of
current | bl .) In addition, two additional labels are associated withjscis:i nput _i nvul
andout put _i nvul , which specify the default invulnerability labels on newhgated input and
output handles respectively.

2.1.7 Discretionary policies

Our framework permits subjects to impose stringer congain their labels than the one implied
by existing policies on the subject and the objects/subjétt it communicates with. Specif-
ically, a subject can set itdi scr _ni n_| bl to be higher than iteri n_| bl . The constraint
propagation mechanism described earlier will ensure traatabel of the subject remains above
di scr _mi n_l bl . Similarly, we introducedi scr _i nvul ,di scr _i nput _i nvul and

di scr _out put Ji nvul .
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Note that discretionary labels cannot be used to violatedaany policies. For instance,
di scr _m n_l bl can't be setto a value less thahn_l bl ; di scr i nput _i nvul can't be set
to a value less thannput _i nvul ; di scr _out put _i nvul can't be set to a value more than
out put _i nvul .

Newly created input handles inherit the value of the sulgeltscr _i nput _i nvul , while
newly created write-handles inherit the value of the sulgeti scr _out put _i nvul . Thus,
the main purpose of a subjects scr _i nput _i nvul anddi scr _out put _i nvul is to pro-
vide a mechanism for the subject to control the initial vabfedi scr _i nput _i nvul and
di scr _out put _i nvul for newly opened handles. Aninvulnerable substnotiose its invul-
nerability till all its read handles exercising invulneiléip are closed. For achieving this, we deny
all attempts to open new read handles,by a subject, that oteptelly reduce theur r ent _| bl
of the subject to the extent that it loses its invulnerapilit

In addition, a subject can express its ability to handle ggcuiolations on read (or write)
operations using a flagan_handl eread_errors (can_handl ewite_errors). These
flags are inherited by newly created handles. In additiagdHlags can be modified on individual
handles by the subject, provided they are consistent whfestis ability to handle read or write
errors.

2.1.8 Enforcement

It is important to note that permit/deny decisions are lgrgethogonal to constraint propagation.
In particular, basic policy enforcement (i.e., permitdeiecisions) are made purely on the basis
of local information: specificallycur rent | bl andcurrent _m n_I bl on the entities in-
volved in an interaction. When a flow is about to occur from aree A to destinationB, our
framework will check if

min 1b1(B) < current min 1b1(B) < current_1bl(A)

If so, B's current | bl will be set to that of4, and the operation permitted. Otherwise, the
operation will be rejected. Note that one éfor B must always be a handle. Basic enforcement
will support trusted subjects using input and output ineudiilities as described earlier.

It is the responsibility of the constraint propagation mhashich is decoupled from basic
policy enforcement, to maintain correct valuescafr rent _m n_| bl . Note that constraint
propagation is more complex, and involves a large humbebjeiots and subjects simultaneously,
and hence could be error-prone. Decoupling basic policgreament from the more complex
constraint propagation means that we can have a higherdéaskurance on its correctness.

To accommodate decoupling, overall policy enforcementaips as follows. The more com-
plex policy checking, which includes constraint propagatis invoked first. If this phase permits
the operation, basic policy enforcement is invoked. Theatpm is denied if the first phase rejects
the operation; otherwise, the operation is permitted.

2.2 Object Types and Operations

This section discusses the various objects for which oundr@ork enforces integrity policies.
Since the current implementation of our framework is forltirux operating system, the descrip-
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Files File + + + + + + + + + + + +

Directory + + + + + + + + + + +
Links Hard link + + + + + + +

Symlink + + + + + +
Volumes File sys + + + +
Pipes Pipe + + + + +

Named pipe + + + + + + + + + + + +
Sockets Unix Socket + + + + + + + + + + + + + + + + +

Inet Socket + + + + + + + + + + + + +
IPCs Shmem + + + + +

Other IPCs + + + + + + +

Table 2.1: Object types in Linux and the list of abstract apjens available on them.

tion of the different objects and that of the operations as¢hobjects is Linux specific in many
ways. However the basic design is adaptive and can easilyappad to any operating system.

2.2.1 Object types

While subjects and handles are largely homogeneous, themnany different types of objects
that need to be considered. In order that operations on tigsets be handled in a uniform way,
we map the actual object operations into several abstragatpns as shown in Table 2.1. For
the purposes of policy enforcement, some of these opesasimmeither ignored or are treated as
a combination of other operations; such operations are sliwtalics. The mapping of concrete
operations to the abstract operations may not always beabvor all object types, so we clarify
this below:

e Files: We view creation operation as a combination of create and yperations. The latter
requires permission checks corresponding to the diredomhich the object is being created.
An unlink operation (an rmdir if it is a directory) is treated a delete on the target object,
while a rename is treated as a combination of delete andecreat

Directoriesare similar to files, and are handled the same as plain fileost oases, but there
are some differences as well. For instance, they are ndewrir mmap’d, although they can
be read. A lookup on a directory is treated the same as a retad dfrectory.

e Hard links: These are different from files because they do not have lassisciated with
them. Although our design could, in principle, associabela with links, it would be difficult
to implement: we rely on extended attributes for storingelapbut there is usually no support
for associating extended attributes with links. As a requdirmission decisions have to be
made on the basis of labels associated with its parent (teetdiy in which the link resides)
and its target (the file pointed by the link). In particulanklcreation as well as removal are
treated as a bind (to the parent directory) and a write toatget file.

e Symbolic links:Since symbolic links are stored as plain files (which contaémname of the
target file), labels could be associated with them. Creatrmhdeletion of a symbolic link are
both treated as a bind on its parent, whereas a lookup i®trest a read of the link file (but
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not the target). Symlinks need to be protected and it is plesghat the symlink can have the
security label different from that of the actual target. sTeiems from the fact that a symlink
is a representation of its target indifferent context A possible attack scenario could be as
follows:

Process A has write access/tet ¢/ passwd. Now a malicious user creates a low integrity
link to / et ¢/ passwd in / t np. Let’s call this link as/ t np/ | ow i nk. Now Process A
may blindly write to each file ih t np/ becausé t np is a very commonly accessed file, and
in this way it may destroy the contents/aét ¢/ passwor d. From PPl implementation point
of view we have the following options:

1. We may choose not to enforce any policy for the symlink aasidally just simply check
the access permission of the subject on the actual targettojhis sounds intuitively fine but
has a pitfall. If this strategy is followed it would mean tlbcess A would essentially write
onto/ et ¢/ passwd, when it never had the intent to do so. It simply wanted toewoitto a
file from/ t np directory. So this option does not work.

2. We treat the dereference of a symlink as a read operatidrinamediately downgrade
Process A when it dereferencesnp/ | ow i nk.

This would mean that when the permission-check hook is iesloen/ et ¢/ passwd for
the downgraded Process A, the access would be denied anttabk would be subverted.
However this would cause a DOS attack situation for Procese@ause it could loose its
ability to write to high integrity files in the future. So therategy is also not good.

3. It's best to do airtual downgradeof process A when it resolves a low level link
(/ tmp/ I ow i nk). This way the attack is also subverted and Process A is nengi@aded.

e File systemsThe only operations on file system are mount and unmount. thatea mount
operation removes the existing interpretation of the maanit, and associates it with a new
device. As such, mount is treated as a combination of a rerfaivine original directory),
a write to the device being mounted (unless it is a read-ondymt), followed by a bind.
Unmount is similar.

In the case of mount/unmount operations, additional steps@eded for two reasons. First,
the file system being mounted may not be trustworthy, andeéhdreclabels provided by the file
system may need to be overridden. Second, some file systeynsatiae capable of providing
labels. To address these problems, we set the device lathermsximum labethat is possible
for any file within the file system represented by the devicethk first case, if the file sys-
tem associates a labelwith a file within it, then we takeggl b_file | bl (max_Ibl, 1)

as its label. The glb operation makes sense for integritis tihe minimum of the integrity
level of the file system and the specific label on a file. It alskes sense for confidentiality,
since the glb will correspond to the maximum of the confids@itiies of the entire file sys-
tem and the specific file. (Hergl b_fil e_| bl is the natural extension a@fl b_| bl to
PPl _file_l bl, where the greatest lower bound operation is applied to eaniponent.)
In the second case, we usex_| bl as the default label of all files in the volume. We may
need a mount-time option by which thex_| bl is set to a value lower than that 0% label.

e Pipes: As mentioned earlier, pipes and sockets differ from fileshiat they represent two

15



distinct object such that data written to one of them can bd feom the other and vice-versa.
As a result, create and open operations need to be intedpdifferently, and appropriate
handles associated with the objects.

Unnamed pipesan be created, but there is no way to delete them. They caermmened but
can be closed. They cannot be bound to names, and hence dgppottsoperations such as
lookup, unlink, rename, chmod, etc. In contrastaaned pipdas a name in the directory tree,
and hence supports all these operations. In particulaatioreof a named pipe implies a bind
operation, similar to plain files. Other name-related op@na are also handled the same was
as regular files (with the exception of how handles are agsatiwith objects).

e Sockets:These are very similar to pipes. In particulamix domain socketare very sim-
ilar to named pipes, except for the following differences) ind operation can be sepa-
rated from creation, (b) handle to object associations Heetad by additional operations
(accept/connect), and (c) additional system calls to vedte/ are available (send/recv). (For
datagram oriented sockets, sendto/recvfrom may also lae)use

Internet-domain socketiffer primarily in terms of the addresses used for bindiagg sec-
ondarily because LSM provides better hooks for mediatiragpicand connect system calls in
the context of Internet-domain.

e IPCs: System V IPCs include those for manipulating message queesmphores, and shared
memory.

Shared memorypeeds to be treated differently because we cannot mediat@dtions based
on shared memory. Processes sharing memory can be handietheg have a common
mmapped file. Thus, a shared memory creation can be viewedcamhbination of a file
open (in read-only or read-write mode, based on how the dlmasmory segment is created),
followed immediately by ammap.

SemaphoreandMessage queuese both handled in the same way, fairly similar to files.

2.2.2 Abstract operations

e bi nd( PPl _object *ns, const char *nm PPl _obj ect o0):We abstractall op-
erations that associate an objeatvith a namenmwithin the namespaces. A bind operation
may be used while

— creating a new file, directory, or renaming ontn this casens will be a directory and
references either a plain file or a directory.

— creating a named pipddentical to the previous case.

— binding a socket.In this casens will refer to one of the predefined namespaces (e.g.,
TCP_socket) or a directory; anchmwill be some string representation of its address.

— mounting a file systenin this casens will be a directory,nmis empty, and will refer to
a device.

In all cases, the bind will be permitted only if the label oé thubject performing the bind is
greater than or equal to that of the namespace where the mewisattached. In some cases,
permissibility may depend on the valuerofn e.g., certain subjects may not be permitted to
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bind to certain ports.

| ookup( PPl _object *dir, const char* nane): A lookup operation is treated
as a read of @ent ry structure. This means that the result of a lookup will hawee|#bel
gl b(s->current | bl, dir->current | bl). Ifthe result of alookup is passed onto
another lookup, as would happen with path lookups, thisl lsbgropagated. Note, however,
thatwe do not change the label of the subject as a result of looklisd when the lookup
results are used in an open operation, then the label of thegéned will be taken as the glb
of the file’s label and the dentry’s label. As a result, a scibjpay be downgraded when it
opens a file using a path name that has a low label, or if thet$idf ihas a low label.

Note that the decision not to downgrade subjects on lookeftscts an engineering trade-off.
It could be argued that lookup operations, even when theyodde®d into open operations,
can affect subject behaviors in some cases to the pointtthaécurity will be compromised.
(For example, consider a program that looks for file A, anatffound, reads file B.) But it ap-

pears that such a conservative view will lead to significaatbility problems, while providing

limited security benefits.

In the current implementation, lookups leading to opers htave not been implemented. The
reason is that this may create usability issues for progrémswrite to low integrity directo-
ries (like /tmp) very frequently and later read back fronrmthé.ookups will cause downgrad-
ing of the subject when it tries to read back, what it had emitearlier.

st at () : A stat (or statfs, in the case of file systems) is treatedlaimo lookup, except that
since the results of stat do not feed into an open, stats doawse any information flow. The
rationale is the same as with lookup.

unl i nk( PPl _obj ect *ns, const char *nm PPl _object 0): Itistreated as
a combination of &i nd (with the same arguments) and a delete operation on thetabjec

renanme( PPl _object *old _ns, PPlI_object *new ns,
const char* new nm PPl _object *0):

A rename operation is treated as a combination of an unlirdeatipn onol d_ns, and a
create operation onew_ns.

creat e( PPl _object *ns, const char *=nm: For all objects that have a name at
the time of their creation, a create implies a bind as well, la@nce bind-related enforcement
as described above needs to be performed.

A newly created object inherits itsur r ent _| bl from thecur rent _| bl of the handle
used in creation. (To determine the handtas r ent _| bl , rely on the invariant (13) on page
38 defining a write-handle’sur r ent _| bl , and the fact that a newly created write-handle
inherits itsi nvul _| bl from the subject'sdi scr _out put _i nvul .) Theni n_I bl field

of the object is inherited from the subjects scr _obj _m n_I| bl field. Ther ead_| og
andwr i t e_| og fields of the newly created object are set to false.

Note that an object getsPI _obj ect | bl, and not aPPI _fil e_I| bl. If the object
being created is a file object, thePRl _fi | e_| bl will need to be created for this file. The
obj _| bl field of this object can obviously be initialized from tR®l _obj ect _| bl . The
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subj _I bl field will be initialized as follows:

— is_super,read log,wite | og,can_handl e read errors
andcan_handl e_write_errors will be initialized as false.

— current _| bl andi nvul _| bl are settotheurrent | bl field of the object.

— m n_| bl anddi scr_obj _m n_I bl are both settoi n_I bl ().

— i nput _i nvul _I bl andout put _i nvul _I bl can be settoi n_I bl () or
current I bl value. (In reality, they don’t matter as their values will igmored: as
per invariants (10) and (11) on page 38, invulnerabilityelakare honored only when the
subject’s current label is strictly greater than its invarbility label, which is not the case
here.)

— di scr _Xfield will be set to the same value as thdield for the remaining fields.

del et e( PPl _obj ect *ns, PPl _object =*0):Adelete operation is treated as a write
ono. This abstract operation is usually never invoked direatld is used in the implementa-
tion of unlink abstract operation to ensure that the sulgatling unlink can establish a write
handle on the object. In other words this operation simplc&h if a subject can write to an
object.

open( PPl _obj ect *0);

— ifthe object being opened is instantiated from a file (or o#reity that has an associated ex-
tended attribute that encapsulaté®Rh _fi | e | bl ) then the object’s labels are populated
from theobj _| bl field of thePPI _fil e | abel. Otherwise, the object must already
exist (or has been just created), in which case its labetemdy populated.

— A write open will first attempt to increaseur r ent _m n_|I bl of calling subject to the
extent needed to satisfy the invariant (15) on page 38. $ffdils, the open will be denied
unless the write handletsan_handl e_err or s is true.

— a read open will attempt to increaseir r ent _m n_| bl of object being opened to the
extent needed by invariant (14) on page 38. If this fails,dpen will be denied unless the
read handle'san_handl e_error sistrue.

— a handle is associated with this object, and the labels @$sdowith the handle are popu-
lated as given by the invariants in Section A.1.4. The newdtwais added to the appropriate
handle list maintained with the subject, and the object.

— Aread/write open is treated as two opens, one for readirgghanfor writing. Some objects,
e.g., sockets and message queues, are implicitly read/\satne (e.g., pipe) are implicitly
unidirectional, while other objects specify, at the timeopen, whether a read/write/both is
desired.

cl ose( PPl _obj ect *0): Noenforcement actions are required here, but the handksd n
to be cleaned up. In particular, a closed handle should beoges, and removed from the
corresponding subject and object. However, LSM does natigeechooks on close operations
except in the case where the associated object has onlyla kiwgdle across all subjects. As
a result, PPI has to deal with the possibility that some dfidsdles are stale. Before denying
any operation, PPI needs to ensure that handles are notGtakrwise, operations that could
be permitted without violating information flow policies ke rejected.
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e | i st en: No PPIchecks are required on listen.

e connect onconnection-orientedsockets: In this case, the object involved is a sockgt;.,
and it must have two associated handigsand H,, belonging to the subject (which is a client).
At the point of connection, the following need to be done:

— Create new objeaD,..,: inside the server subjest

— Create two new handled] andH;, on S. H, will be initialized with the value ofd/,, the
read handle associated with the sodkgt,.,, on which theaccept call was made.

— Make the following associations between handles and abject

x H, with Ogpck

* Hyy With Ogecept

« H] With Ogecept

x H, with Ogpc;

While making these associations, all the invariants onfalhe handles, objects and sub-
jects mentioned above should be satisfied, or be satisfigbiaaking allowable changes
tocurrent | bl andcurrent _m n_| bl of the entities involved. (The list of entities
involved will be a superset of the handles, objects, andesttbjmentions above.) If not, the
connect request should be denied. Naturally, none of theggsamentioned above should
be committed before this check is made.

Note that, although some of these steps are not evident urd-iy1, they are fully consistent
with that picture.

e accept: No checks can be performed when accept is called, sincdidmg wentity is un-
known at this point. If the client is on the same OS, then, arilged undeiconnect
operation above, we can enforce accept-related policydrctmnect hook. When the client
is remote, in order to enforce any policy, we need an appatgiiSM hook that allows ex-
amination of client credentials, and to fail the accept dalhe credentials are insufficient.
Unfortunately, such hooks are not yet available, so PPlaa@mnforce any policies on which
clients can connect to it. In particular, this means thatréraote client has low integrity, then
the server will be downgraded, and mechanisms suah as| bl setting on the server cannot
prevent such downgradirg.

e connect ondatagram sockets: LetH, and H,, be the handles associated with the socket
objectOq,.;. on the client subjeat’. Let O, b€ the server-side socket that corresponds to
the server address specifiedcionnect . Perform the following associations:

- Hr Wlth Oserver
— H,, With O

This raises the question: why bother enforcing any polioiesiccept if we can only do this locally, and cannot
prevent remote connections from unauthorized clients?r&ason is that for remote connections, we have alternative
mechanisms for keeping unauthorized clients out, such eaveafi. Although firewall mechanisms such as iptables can
enforce policies on connections by local clients, thes&jga are based on uids rather than labels. As a result,ainles
we enforce policies on accept, malicious local applicaioan mount trivial DoS attacks by connecting to servers and
degrading them.
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As before, all invariants need to be checked, and if they ailp@ satisfied, connection should
be denied.

Since datagram connect has no real server-side effectssoaiations are made on the server
side. Any effect of communication will be reflected when thever reads the data sent by the
client.

read( PPl _handl e xh):If current | bl of the read handle, as given by invariant (12)
on page 38, is greater than or equal to thescr _ni n_| bl of the subject, then the read
will be permitted. The subjectsur r ent _I bl is set to that of the handle. If this represents a
change to the subjecttsur r ent _| bl , then the new label value needs to be propagated using
the rules described earlier.

r eadf r om There is no way to find the source of the message until theldetalready been
read. So, no checks can be done here. Instead, we will reblypan a sender-side check.
(The situation is similar to that of accept on connectioieratied sockets, and the resolution is
also similar.)

write(PPl _handle =h): If current | bl of the write handle, as given by invariant
(13) on page 38, is greater than or equal torth@_| bl of the object, then the write will be
permitted. The objectsur r ent _| bl is set to that of the handle. If this represents a change
to the object'scur r ent _| bl , then the new label value needs to be propagated using & rul
described earlier.

sendt o: This operation should be treated as a combination of a datagonnect and a write,
and the corresponding checks/propagations performed.

mmap( PPl _handl e *h): Seti s_f| ow_mnedi at ed field of the handle td al se.
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Chapter 3

Framework Implementation

This chapter gives a glimpse of some of the aspects of thesimgahtation of the PPI Framework,
the challenges faced and the solutions provided.

3.1 PPI Framework Development

The PPI Framework has been implemented for the Linux operatistembuntu 8.04 LT The
default kernel versionversion 2.6.2%has been patched using the standard patch [15] to reverse
the conversion of the Linux Security Module (LSM) Framewtwrlstatic interface. Hence the PPI
Framework has been developed as a loadable kernel LSM module

The LSM framework provides hooks to mediate system callssgatém operations pertaining
to inodes, files, tasks, semaphores, shared memory, speketsnessage queues. The abstract
operations discussed in Section 2.2.2 have been mappeés® llooks after carefully examining
the sequence of invocation of these hooks and also takingcimsideration whether the hook
provides the necessary information/parameters whickeisiacessary for the correct functioning
of the corresponding PPI abstract operation. Details afrtapping of these operations to the LSM
hooks have been discussed in Section A.2, along with thesponding kernel flow diagrams.

3.2 Framework Hooks

This section broadly classifies the hooks of the PPI framkvwased on their purpose. A short
description of each hook has also been provided. LSM preuvidany more hooks than the ones
discussed here. However only the pertinent hooks have bs&sh in our implementation, the

criteria for selection being the hook’s appearance in tiggisece of invocation of related hooks,
the hook’s parameters and the hook’s return type.

Much of the work performed in each of the selected hooks fialtsthe following categories:

e Updating the data structures in response to various opagtn subjects and objects; and
maintaining the invariants listed in the appendix aftethesuech operation.

e Storing information that is available in one LSM hook so tiaian be used in a subsequent
hook where it is needed; and more generally, reconstruatfiogmation needed by our frame-
work that is not directly available in the LSM hooks.
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e Enforcing integrity policies on objects and subjects andtingaaccess decisions. It is impor-
tant to note that a hook withwaid return type cannot be used for making access decisions.

Section A.2 discusses the hooks and the mapped abstracttiopsrin greater detail. The
classification of hooks used in our framework is the follagvin

e Security hooks for program execution operations

— ppi _bprm check_security : This hook is for checking if the subject can read the
binary and execute it without violating the integrity iniaants.

— ppi _bprm appl y_creds: This hook updates the integrity label of the running task by
considering the binary’si | e_| abel and itsobj ect _| abel .

e Security hooks for filesystem operations

— ppi _security_sb _mount : This hook checks if the runtime binding of a device can
occur with a mount point.

— ppi _security_sb_unnount : This hook simply checks if the subject can unmount a
device.

e Security hooks for inode operations

— ppi _inode_al I oc_security : This hook is used to allocate an in-memory object
security structure to every object represented by an inadeaasign a label to it.

— ppi _inode_free_security : This object de-allocates the object security structure
and cleans up the memory allocated for its label and hanifld® (handles were not already
closed).

— ppi _inode_init_security: This hook makes the object security structure, associ-
ated with the inode, persistent, by writing it on the peesistmedia (disk), typically in the
inode’s extended attribute space.

— ppi _i node_cr eat e: This hook is specifically for regular files and helps the fesark
perform regular-file specific permission checks (suchis_bi nd).

— ppi _i node_| i nk : This hook is specifically for hard-links and helps the fravoek
perform hard-link specific permission checks (suclpps_bi nd).

— ppi _i node_unl i nk : This hook helps the framework perform permission checkhsu
asppi _unl i nk) on the inode, to remove hard links to it.

— ppi _i node_synl i nk: This hook is specifically for symbolic-links and helps tharfe-
work perform symbolic-link creation checks (suchpge _bi nd).

— ppi _i node_nkdi r : This hook is for directories and helps the framework penfdirec-
tory creation checks (such ppi _bi nd).

— ppi _i node_rndi r : The framework uses this to check if a directory can be uelihk
from its parent namespace.

— ppi _i node_nknod : This hook deals with permission checks for creation of epdites
like pipes and named sockets.

— ppi _i node_r enane : This hook primarily implement the abstract operation
ppi _renane.
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ppi _i node_fol | ow_|ink: This hook is used for maintaining link traversal informa-
tion which is used for implementingrtual downgrades

ppi _i node_per m ssi on: This hook performs the handle creation operation by check-
ing the mode in which the inode is being accessed. The absipacationppi _open is
performed in this hook.

ppi _i node_set attr : This hook checks permission before setting file attributes

ppi _i node_get attr : This hook checks permission before getting file attributes

ppi _i node_del et e : This hook can be used to release any persistent label atsci
with the inode. Currently this hook is not being used becdlselean-up is performed in
ppi _inode_free security.

ppi _i node_set xat tr : This hook checks permission before setting the extended at
tributes.

ppi _i node_get xat tr : This hook checks permission before getting the extended at
tributes.

ppi _i node_renovexattr : This hook checks permission before removing the ex-
tended attributes from persistent media.

Security hooks for dentry operations

ppi _d_i nstanti at e: This hook is invoked whenever a dentry structure is insised
for an inode, in the ccache.

Security hooks for file operations

ppi _file_perm ssion: This hook is invoked for every read and write attempted on
a file object. Our framework calls thepi _read andppi _writ e abstract operations
depending on the mode the file is being accessed.

ppi _file_free_security: Ourframework uses this hook for cleaning up the han-
dles associated with the file object.

ppi _file_ioctl : This hook checks permission for an ioctl operation on file.

ppi _file_mrap: This hook checks permissions for a mmap operation. Reatisites

to the mmap’ed region are unmediated, this hook helps tieenaork in setting the desired
flag for the read and write handles to the mmap’ed region.

ppi _file_fcntl : This hook checks permission before allowing the file openaspec-
ified by thec md parameter from being performed on the file.

Security hooks for task operations

ppi _task_creat e: This hook is used by the framework to differentiate betwkmk

and clone events.

ppi _task_alloc_security: Thishook is used to assign subject security structure to
the task in a system.

ppi _task _free_security: Thissubject performs the clean-up of the subject security
structure.

ppi _task _setrlimt : To perform permission checks on the subject which tries to
modify resource limits.
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ppi _task_kill : To perform task permission check on one task which is tryingend
a signal to another task.

Security hooks for Unix domain networking

ppi _socket _uni x_stream connect : Checks permissions before establishing a
Unix domain stream connection.

ppi _socket _uni x_may_send : Checks permissions before connecting or sending
datagrams from one socket to another.

Security hooks for socket operations

ppi _socket creat e: Checks permissions prior to creating a new socket.

ppi _socket _bi nd: Checks permission before socket protocol layer bind djoeras
performed and the socket is bound to the specified address.

ppi _socket connect : Checks permission before socket protocol layer connest-op
ation attempts to connect socket to a remote address

ppi _socket | i sten: Checks permission before socket protocol layer listemaijme.

ppi _socket accept : Checks permission before accepting a new connection. Hawe
from the framework perspective, we don'’t really do anythimghis hook. Details on this
are covered in Section 3.3

ppi _socket post_accept : This hook allows our framework to copy security infor-
mation into the newly created socket’s inode. However thizkitoo is left un-implemented.
ppi _socket sendnsg : Checks permission before transmitting a message to anothe
socket.

ppi _socket recvnsg : Checks permission before receiving a message from another
socket.

Security hooks for System V IPC Message Queues

ppi _msg_queue_associ at e : Checks permission when a message queue is requested
through thersgget system call.

ppi _msg_queue_nsgct | : Checks permission when a message control operation spec-
ified by cnd is to be performed on the given message queue

ppi _msg_queue_mnsgsnd : Checks permission before a message is enqueued on the
message queue.

ppi _msg_queue_nsgrcv : Checks permission before a message is dequeued on the
message queue.

Security hooks for System V Shared Memory Segments

ppi _shm associ at e : Checks permission when a shared memory region is requested
through theshnget system call.

ppi _shm shntt!| : Checks permission when a shared memory control operapieci-s

fied bycnd is to be performed on the shared memory region.

ppi _shm shmat : Checks permissions prior to allowing teamat system call to attach

the shared memory segment to the data segment of the caltinggs.
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e Security hooks for System V Semaphores
All operations performed in the following hooks are exadtlg same as those performed for
the corresponding hooks for System V Shared Memory Segments

— ppi _sem associ ate
— ppi _sem senct |
— ppi _sem senop

3.3 Challenges and Solutions

The greatest challenge, we faced, while developing thimdraork, was mapping our abstract
operations to the LSM framework. This required deep undedihg of the flow of kernel code
related to all the hooks of the LSM framework and especi&lt bf the hooks mentioned in Sec-
tion 3.2. There were some shortcomings in the LSM framewdriclvproved to be particularly
difficult to deal with. Some of these are enlisted below.

e LSM does not provide a hook to track the decrement of a filecgira’s reference count. A
fil e structure in the file descriptor table of a process indic#tes the file is opened by
that process. If the file is shared (casef off k), its reference count is simply incremented.
ppi _file_free_security isinvoked only when all references ta | e structure drop
to zero. Our framework maintains handles per file descripiéhen a process forks a child
process, our framework replicates the PPl handles for thedoprocess because the forked
process too has a file descriptor corresponding to eachdslidgen its file descriptor ta-
ble. Now, if either the parent process or its child (but nahpeall cl ose on a shared file,
our framework is unable to close PPI handles for that proc@$éef i | e structure for the
shared file remains non zero and therefope _fil e_free_securi tyis notinvoked till
all processes caltl ose on the shared file. This leads to accumulation of stale haridle
the system. Stale handles typically affect usability: ¢he rent _ni n_I bl of a subject
could continue to remain high, even when it closes a writaleafwhose creation may have
been responsible for the high value of the subjectis r ent _ni n_I bl ), which may even-
tually result in a permission-denial while creating a neadrdandle on an object with lower
current_mn_Ibl.

For solving this problem we employ a strategy to validatehea@ndle before it is used, so
that stale handles could be closed as soon as they are detéaie this we maintain infor-
mation such as an inode’s inode-number, generation-cawhéia object’s access mode in the
PPI _handl e data structure. This information is verified during the dation phase.

e Our framework maintains read and write handles for eachetdbkt is created in the system.
These handles are created at the time of socket creation.
LSM provides theppi _socket cr eat e hook to mediate the socket creation event. At
the time of a connectioaccept (for connection-oriented stream sockets), the Linux Kerne
creates a new socket to handle the accepted connectiorh whilifferent from the listening
socket. However the creation of this new socket goes unneebizecause the kernel does not
invoke ppi _socket _cr eat e hook at the server end. Consequently, the framework is un-
able to create PPI handles on the new socket. Is is not pessiloreate these handles in the
ppi _socket accept hook because the new socket structerter(uct sock)is notcom-
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pletely populated for use. Also the client identity at tiegiofppi _socket _accept isun-
known. Even though the new socket structure is populatpgin socket _post _accept,

PPI handle creation and permission checking cannot berpeefbin this hook because the
return type of this hook isoi d, and it therefore cannot return success or failure. Thus han
dle creation and permission checks (constraint propagatieecks) need to be deferred to
ppi _socket sendnsgandppi _socket recvnsg. The drawback of this approach is
that a constraint propagation failure in any of these hoalesahot lead to connection termina-
tion. The situation results in delayed failures and migfecifusability of applications.

3.4 User Interfacing via Securityfs

User interfacing with the PPI kernel module is necessarypfowiding the initial labels to the
subjects/objects, modifying labels at runtime and forisgthandle-specific discretionary values
by PPl aware applications.The PPl interface managemenhis dsingSecurityfs. Securityfs is a
special-purpose virtual filesystem, meant to be used byisgawdules, some of which otherwise
create their own filesystems. It should be mounted sys/ ker nel / securi ty. Securityfs
thus looks, from user space, like part of sysfs, but it is rdisentity. The support for securityfs is
enabled by default in all new Ubuntu distributions, staytirom Ubuntu 7.10. For interfacing PPI
using securityfs, no extra kernel patch is required. Sgdarwas chosen for interfacing because
of the following considerations:

e procfswas never meant for interface control but rather for procelssed statistics and control.

e Securityfs provides a flexible framework for defining modsjecific methods for handling
securityfs files. Typical examples are read and write metliodinput files and configuration
files respectively.

e It provides homogenity with other LSMs like Apparmor and Ty. SELinux however has
its has own filesystem callegklinuxfs

e Using securityfs instead of ioctl calls, saves the oveilogdf ioctl() method.

PPI utilizes the Securityfs feature of being able to defiree dpecific methods, which make
the file behave as desired. The user of the PPI interface taer giass the name of the object
(file/socket/pipe) or its descriptor (resulting from @pensystem call) for setting or reading PPI
labels. The Securityfs files that the PPl module registersrea be deleted from user space,
therefore no explicit security needs to be ensured for thikese

26



Chapter 4

Evaluation

This section describes the evaluation of the PPI framewgxaluation work for our implemen-
tation is divided into two parts. The first part deals with tdwerectness of the framework, where
we develop scenarios to test the working of our algorithms \alidate the correctness of our
technique. The second part deals with measuring the peafarenoverhead in a system running
with our LSM module. All evaluations have been done on a VMewartual machine with 2.6
GHz single core processor, 512 megabytes of RAM and 10 GBeefliard disk space.

4.1 Evaluation of Correctness

To test the correctness of our system we developed more haseé>cases and wrote programs
to validate the behavior of our framework for each scendrie label propagation and constraint
propagation occurred just as we expected, with our framle@enying and permitting accesses in
line with our expectations. Some of the use-cases have ldisted below.

e An attempt to read a low integrity file by a subject gets denikthe subject is writing to a
high integrity file.
In our experiment, the subject hadirrent _| bl =7 andcurrent _mn_I bl =0. It
then opens a filecur rent | bl =7 andcurrent _ni n_| bl = 6) in write-only mode.
This results in increasing the subjeat'sr rent _m n_I bl to 6. The subject then attempts
to open afile¢urrent | bl =5andcurrent _mi n_I bl =4)in read-only mode which
results in increasing the filesurrent _m n_I bl from 4 to 6. The read access is denied
because the integrity invariant gets violated for the filaubiich the read was attempted.

e An attempt to create a directory/file/named-pipe in a dowcD; is denied byppi _bi nd if
thecurrent _| bl of the subject is less than tloir r ent _| bl of D;.

e Ahigh-integrity subject attempting to open a file via a laweigrity symbolic link getsirtually
downgradedto thecur rent _| bl of the symbolic link. In our experiment the subject was

made to traverse 3 symbolic links in the lookup operationgerothe target file. As expected,
the subject was downgraded to the least ofdber ent _I bl values of the 3 symbolic links.

e We developed scenarios where subjects forked child presemsd each of those child pro-
cesses invokedl ose on some of the files that they shared (as a result of tivek operation)
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with their parent process. This resulted in multiple staadies in the system. We then ini-
tiated newopen operations by the forked processes. The constraint préipagahase, then
validated all handles before using them. We observed thatad¢ handles were either closed
successfully or re-used for another object.

4.2 Evaluation of Performance

This section discusses the performance evaluation thatidveodour framework. We used the
standard test-suite for the core-utils 6.10 in conductingexperiments. Our framework passed
all tests of the test-suite. A significant overhead of 30% int®duced by our framework. The
overhead was in the CPU time taken to execute the tests. Fdbtmmpares the CPU time taken
for running the core-utils test-suite, with and without #el-framework module.

Time in Seconds
Without PPI Framework With PPl Framework

chgrp 1.144 1.58
chmod 1.896 2.348
chown 0.688 0.868
cp 7.564 10.281
cut 1.496 1.872
Is 2.692 3.492
mkdir 2.112 3.02

rmdir 0.492 0.652
wce 0.404 0.592
dd 0.788 1.064
head 0.732 1.048
install 0.672 0.912
join 0.5 0.692
In 0.852 1.292
pr 3.06 4.044
readlink 1.068 1.532
sort 1.112 1.4

tail 1.024 1.316
touch 0.952 1.184
tr 1.268 1.688
uniq 1.612 2.088
rm 6 9.257
mv 5.068 6.456

Table 4.1: Timing Results with Coreutils-6.10
Each timing result for each core utility in Table 4.1 is anrage value of 3 test runs. The

average overhead in CPU time-taken is around 30%. Our ingi&ation can be further optimized
and we expect to reduce the overhead after the optimizaliavs been done.
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Figure 4.1: PPI-Framework Performance Comparison forerdtl

Figure 4.1 gives a graphical comparison of our test resliitsan be observed that the time
taken, with our framework module, for core utilities suchcas mv, r m nkdi r andr ndi r, is
particularly higher than the time taken for these utilitr@ghout our framework module. The rea-
son for this is because our framework performs extra chemksgmespace binding i _bi nd
abstract operation) for each of these utilities. In additio these bind related checks, the con-
straint propagation checks are performed as usual. As aopdine future work, discussed in
Chapter 6, we intend to reduce the overhead in constraipagation, which will automatically
reduce the overall CPU time.
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Chapter 5

Related Work

This chapter discusses in brief, some of the works that #ateckto our research. This chapter also
mentions about those works that have served as guidelindsefaevelopment of our framework.

An early, and significant work on information-flow based t@gies is the Biba integrity
model [4] which serves as a guiding principle for similar Wsr However Biba model is very
strict and simply denies alirite-upsandread-downsthus it tends to break the functionality of
many applications and suffers from poor usability.

Low Watermarkmodel [5, 11] builds over the Biba model by addingabject downgrade
policy. This means that a subject gets downgraded to a lawegiity level when it reads from
a low integrity object, and subsequently runs at a reducesgjiity level for the remainder of its
lifespan.

Another work, IX [9] aims at developing an experimental raldvel security model for the
Linux operating system. This technique uses dynamic ldbelsubjects and objects, and tracks
information flow for providing confidentiality and integyitHowever it does not provide a choice
of policy enforcement, like our framework does, and alsosdu& decouple policies from labels,
which is one of the key features of the PPI framework.

Back to the Futuresystem [7] enforces only theo read down(reads that occur from low-
integrity sources) policy. The advantage of such a modahisit can thwart an attempt by malware
to inject itself into inputs consumed by benign applicasiosms demonstrated by their experimental
results. However, this scheme too is not complete, becaumsatitempt to use the output of an
untrusted application, requires user intervention. Usgponses to such prompts have statistically
been proven to be unreliable, from a security standpointielgher these prompts leave too much
to the user’s judgment and can overwhelm the user. Also fipsoach suffers from the problem
of delayed detection wherein malware actions aren't thedhet the point where they overwrite
critical files, but at the point where a benign applicatioesuhem. In contrast to this approach,
our framework does not involve user interaction for makimdjqy decisions and detects writes
performed by the malware, much earlier.

Unlike theBack to the Futurenodel, Windows Vista Security Model does not have security
enforcement policies foread-downsand only enforces policies that mediate and thus prevent
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write-ups(writes that occur on high-integrity objects, whose iniiggmust be preserved). This
design decision has been made for avoiding usability isstiégs model is quite vulnerable to
attacks, as is suggested by a real world attack: the attaokety overwrites the Vista start-menu
file, an action that does not involve escalated privilegelleVhe affected start-menu items now
points to entry-points in the malware rather than the uspplieations. However, the naive user
is oblivious of this and trusts the start-menu entries. Tiwhen he clicks on a menu item and
is prompted by the Vista UAC, which requests higher privdldgvel for running the intended
program, the user almost certainly allows the escalatigrrigilieges. The malware then executes
with escalated privileges thereby compromising systerrigc

Safe Execution Environmerid, 12,13, 17] employ isolation technigues to confine uriedis
applications. The same technique is used by virtual masHB€l6]. The main drawback with
isolation techniques is that maintaining multiple isofthteork environments is not feasible from a
user’s perspective. An input file required by one of the wsterd applications in a specific isolated
work environment needs to be explicitly copied into thatiemvment by the user.

Severakandboxingechniques [1, 6, 10] have been developed. However deveopaf sand-
boxing policies can turn out to be quite challenging becaigbe ease of multi-step attacks, as
described in the Chapter 1.

SELinux [8] uses domain and type enforcement for confiningieations. The primary focus
is on servers and it aims at developing policies that enfleast privilege principles on the related
application. However the applications, for which SELinuwengrates policies, are trusted and
therefore the policies developed for these trusted agits cannot be enforced for untrusted
applications.
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Chapter 6

Conclusions and Future Work

In this thesis we presented a framework for enforcing infation flow policies. Our approach of
propagating integrity constraints for maintaining infggimvariants promotes early failures and
hence improves usability of applications. The framewor&adgles the policy enforcement from
the labels assigned to objects and subjects in the systenfratnework enforces integrity policies
on all types of objects (files, sockets, pipes, IPC chanwullsctories, devices), thus making our
solution complete in terms of object coverage. We providehlagisms for limiting the trust of
a process by controlling its invulnerability level. Ourrimawork provides flexibility to integrity-
aware applications to set discretionary attributes on gpi@ation-specific handles, maintained
by our framework.

Our framework implementation, for the Linux operating systuses the LSM hooks and
shows that our framework is practical. The overheads iecuby our framework can be reduced,
in future, by further optimization of our techniques. Oucdmentation of the LSM infrastructure
and our flow diagrams serve as a good reference for someorgdmg a LSM module such as
ours.

We intend to extend our implementation for enforcing pekicon internet sockets and IPC
channels such as message queues, shared memory and s&sapboce the completeness of
object coverage is ensured by the implementation, we interabnduct further experiments to
evaluate the correctness and performance of our framewieukther evaluation results, would
help us analyse the potential modules of our framework thatdcbe optimized for an overall
reduction in the overhead incurred by the current impletent.

We also intend to extend our framework for enforcing infotiora flow policies, not just for
integrity but also for confidentiality. Since integrity andnfidentiality are largely orthogonal, we
could easily modify our label design to model a label as alinattice, with the top element cor-
responding to highest integrity and lowest confidentiaktyd the bottom element corresponding
to lowest integrity and highest confidentiality.
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Appendix A

Data Structures and LSM Mappings

This appendix shows the low level details of the key datactires used by PPI-Framework.

A.1 Key Data Structures

A.1.1 Labels

The most basic data structure id.abel it is an abstract data type that provides the operations
listed below.

struct PPl _|bl {
unsi gned char | evel

b
Operations.
PPl _I bl max_I bl ();
PPl _Ibl mn_Ibl();
PPl _I bl lub_Ibl(PPI_Ibl, PPl _Ibl);
PPl _I'bl glb_Ibl(PPI_Ibl, PPl _Ibl);
bool geq_I bl (PPl _Ibl, PPl _Ibl);
bool gt _Ibl (PPl _Ibl, PPl _Ibl);
bool eq_I bl (PPl _Ibl, PPl _Ibl);
const char =*serialize_ |bl (PPl _Ibl); [+ Serialize a | abel =/

PPl I bl new_ | bl (const char*); /* De-serialize a |abel =*/

Object Labels

struct PPl _object _Ibl {
bool read_log, wite log; // Enable/disable object |ogging.

PPl I bl current_Ibl; /1 Object’s current integrity |abel.
PPl _Ibl mn_Ibl; [l current _|Ibl >= mn_|bl.
PPl _Ibl current_mn_Ibl; // current_Ibl >= current_mn_Ibl.
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PPl I bl new mn_Ibl; /'l Used internally in the inplenentation.

1
Operations.

const char =*serialize_|bl(PPl_object Ibl); /+* Serialize a |abel =/
PPl _obj ect I bl new_ object | bl (const char*); /* De-serialize a |abel =*/

Invariants.
e current Ibl > new mn_|Ibl >= current_mn_|bl >= nmn_|bl
Notes.

e When a new object is created, it inherits ther r ent _| bl of its associated handle. Its
m n_| bl andcurrent _nin_I bl are set from theli scr _obj ni n_I bl of the sub-
ject. ltsread_| og andwri t e_| og fields are also set from the corresponding fields of the
subject. Object'surrent _nmi n_| bl takes into account the policies imposed by readers of
this object.

e Thevalue ofturrent _ni n_I bl is updated incrementally by the implementation whenever
there is a change to any of the quantities in the right-hadd sf the invariant above. This
recomputation relies on a two-phase protocol. During a ffuthis protocol,new_ni n_|I bl
is used to remember an intermediate valuewifr ent _m n_I bl .

Subject Labels

struct PPl _subject |bl {
bool is_super; /1 Enable arbitrary | abel changes.
bool read_log, wite log; // reads/wite subject |ogging.
bool can_handle read errors, can_handle wite_ errors;

PPl I bl current_Ibl; /1 Subject’s current |abel.
PPl _Ibl mn_lbl; /1 current _Ibl >= mn_|bl.
PPl Ibl discr_mn_Ibl; /1 current Ibl >= discr_mn_Ibl.

PPl I bl discr_obj_mn_Ibl;

PPl I bl invul _Ibl, discr_invul _lbl;
PPl I bl input_invul, output_invul;
PPl I bl discr_input_invul, discr_output_invul;

PPl Ibl virtual _current _|bl; /1 Used while symink traversal
PPl Ibl current_mn_Ibl; /1 current Ibl >= current_mn_Ibl.
PPl I bl new mn_Ibl; /1 Used internally in the inplenmentation.
1
Operations.

const char =*serialize_ |bl (PPl _subject |bl);
PPl _subj ect | bl new object I|bl(const charx); // deserialize

The purpose of most fields in the above data structure we iexplaarlier. One exception
isdi scr_obj _m n_I bl, which has been introduced to provides a means for a sulojeig-t
cide them n_I bl for newly created objects. By default, its value will ben_1I bl (). Also
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current _m n_| bl takes into account the policies imposed by readers of thigsu

Invariants.

e current _Ibl >= new mn_|Ibl >= current_nmin_| Dbl
>= discr_mn_Ilbl >= nmin_Ibl

e discr_X I bl >= X | bl,whereXis one ofi nvul ori nput i nvul
e discr_output _invul _|bl <= output_invul _Ibl

e is_super =current_I bl == max_I bl ()

Notes.

e The only fields that a subject can change are the discretidigdds (i.e., fields containing the
worddi scr )

¢ In addition, a subject can request its current label to to be downgraded using a PPt&ll
downgrade_mne(lntegritylLabel 1).

e A super subject (i.e., a subject with the_super attribute set) can change any attribute of
other subjects; but this is not meant to be done, as the changg violate invariants and hence
cause unpredictable problems. Hence such changes arettef@td only as an absolute last
resort.

File Labels

Files stored on the disk may be used as an object (when thegadeor written) or as subjects
(when they are executed). Thus, they have both labels.

struct PPl _file Ibl {
PPl _object _I bl obj_Ibl;
PPl _subj ect | bl subj Ibl;
b

Operations.

const char =*serialize_ |Ibl (PPl _file_ Ibl); /* Serialize */
PPI file Ibl new file Ibl(const char*); / * De-serialize */

Invariants. The following are additional invariants that apply over awbve the invariants on
PPl _obj ect | bl andPPI _subj ect _| bl.

e X.current_mn_|bl == X new nmin_|bl == X nmn_| bl whereX stands for either
obj I'bl orsubj Ibl.

e subj Ibl.discr_ X Ibl == subj _Ibl.X |bl,whereXisone ofi nvul ,
m n_| bl ,i nput _i nvul orout put _i nvul
Notes.

e Given asubject and afileF’ such thatS. current _I bl >F. obj _I bl .current_Ibl,
S can modify all the label fields of" subject to the above invariants, with the exception of:
F.subj Ibl.is_super,F.subj _|bl.invul _I|bl,F.subj_IDbl.input_invul,
andF. subj _| bl . out put _i nvul . These four fields can be changed onlgifi s_super
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is true.

A super subject can change any componentiePba_fil e | bl . The implementation must
check the invariants after any such change, and ensurelltbattzem will hold.

Note thatdi scr _obj _mi n_I bl field of subject labels will be stored on disk, as it provides
the only way to control the defautti n_| bl of objects created by a subject.

In our implementation, file labels will be stored using exted attributes supported by the
underlying file system. In particular, serialize/desé&&lbperations will be used to covert file
labels into strings (or vice-versa), and these stringshelstored as extended attributes.

Note that the serialize operation on files can choose to oahdisfiwhose values can be obtained
from other fields and the invariants above.

Handle Labels

struct PPl _handl e_I bl {

}s

PPl _I'bl invul _Ibl;
PPl I bl discr_mn_Ibl; // Applicable only for read handl es

A.1.2 Object
struct PPl _object {

b

const PPl _object xvolume; // Object’s File-system Labe
PPl _obj ect I bl 1 abel
Li st *read_handl es;
Li st rwrite_handl es;
struct inode *inode; //pointer to correspondi ng i node

A.1.3 Subject and SubjectGroup
struct PPl _subject_group {

}s

int reference_count; /1 Same as the nunber of subjects in group
PPl _subj ect | bl | abel

PPl _handl e *+*fd2rhandle; // Maps fd nunbers to PPl _handl e pointers,
PPl _handl e *+fd2whandl e; // They are allocated at subject creation.
Li st *read_handl es; /1 Al handles stored in these lists,

Li st *write_handl es; /1 incl. those stored in fd2handl e arrays

struct PPl _subject {

}s

bool is_sane_group; // Internal use: store info across LSM hooks
bool is_naned _pipe; // Internal use: store info across LSM hooks
PPl _subj ect _group *group;

struct task struct =*task; // Pointer to correspondi ng Linux task.

Notes. It is important to note that the fd information associatedhva handle is not reliable.
First, due to structure of hooks, fd information is unava#aat the time of handle creation. Sec-
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ond, when dup or dup2 are used, we do not have any hooks tottrank Third, fds may get
closed, but we don't always get notified. As a result, theofeihg can happen:

e We do not have an fd for a handle.

e There is an fd for which we do not have a corresponding haedle, due taup.

e We have an fd for a handle, but this is incorrect as a resuli@subject executingdup2 (or

a combinatiordup andcl ose).

e We have a handle but the corresponding fd has already besedclo

A.1.4 Handles

struct PPl _handl e {
bool can_handl e_errors;
bool is_flow nediated;
bool handl e_type; /1

PPl _handl e_| bl | abel
PPl _obj ect =*obj;
PPl _subj ect =*subj;

int inode_num /1
struct file xfile_ptr; [/
int fd; /1
1
Operations.

read = 0, wite = 1.

These fields are used to associ ate and
val idate handles with file structures
mai nt ai ned by the kernel

bool read handl e(const PPl _handl e*);
bool write_handl e(const PPl _handl e*);
PPl I bl invul _I bl (const PPlI_handl e*);
current | bl (const PPl _handl ex);
current _mn_I bl (const PPl _handl ex);

Invariants. Below, Hstands for any handI&Hfor any read handle andH for any write handle.
1. nenber (RH, RH. obj->read_handl es)

© N o g~ w DN

RH. can_handl e_errors =

nmenber (WH, WH. obj - >wri t e_handl es)

nenber (RH, RH. subj - >gr oup- >r ead_handl es)

menber (WH, WH. subj - >gr oup->write_handl es)
invul _I bl (H == H label.invul _Ib

i nvul _I bl (RH) >= RH. subj->input_invul _Ib

i nvul _| bl (WH) <= WH. subj ->output _invul |b

RH. subj - >can_handl e_read errors & RH.is_fl ow nedi ated

©

. WH. can_handl e_errors =

WH. subj ->can_handle_ wite errors & WH.is_fl ow nediated
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10.

11.

12.

13.
14.

15.

16.
17.

invul _I bl (RH) < RH. subj->current_Ibl =
RH. subj - >current _I bl > RH. subj ->i nvul _I bl

i nvul _I bl (WH) > WH. subj ->current_I| bl =
WH. subj - >current _| bl > WH. subj - >i nvul _I bl

current | bl (RH) == (RH obj->current |Ibl < invul _|bl(RH ?
RH. obj ->current _I bl : RH subj->current_Ibl)

current | bl (WH) == max(WH. subj ->current | bl, invul _|bl(WH))

current _mn_I bl (RH) == m n(discr_invul _| bl (RH),
max( RH. subj ->current_mn_Ibl, discr_mn_|Ibl(RH)))

current_mn_I bl (WH) == (WH obj->current_mn_|lbl > invul | bl (W) ?
WH. obj ->current_mn_Ibl : WH subj->current_mn_Ibl)

' RH. can_handl e_errors=RH. obj->current _min_I bl >= current_nin_| bl (RH

'VWH. can_handl e_errors = WH. subj - >current _mi n_| bl
>= current _min_I| bl (WH)

Notes.

Invariants 1 through 4 capture the requirement that criogs information pertaining to
handles, objects and subjects be consistent.

We do not have an explicit invariamti scr_m n_| bl (RH) >=RH. subj - >mi n_| bl .
This is because the invariant (14) on page 38 will alreadyrenthat the label of a read handle
will remain high enough to support the subjeatisn_1 bl .

Invariants 5 through 11 capture constraints between variowinerability-related labels of
handles and their associated subjects. In essence, theytisiathe extent of invulnerability
cannot be greater than that of the subject.

Note thatcur r ent _I bl flows from a read handle to a subject on the next read operation
i s_flow nedi at edis set; otherwise, it flows immediately.

Similarly, current _| bl flows from a write handle to an object on the next operation, if
i s_flow nedi at edis set; otherwise, it flows immediately.

The flow ofcur rent _m n_I bl is captured by the invariants 14 through 17. Whenever any
of the quantities involved in these invariants charme, r ent _ni n_| bl needs to be recom-
puted so as to ensure that those invariants hold. For peaftzereasons, these recomputations
should be done incrementally. In particular, the commomrsaghere the old and new value
are the same should be recognized and handled efficiently.

Unlike cur r ent _I bl , which is propagated across read-handles only when relelplace,
increases taurrent _m n_| bl are propagated immediately. Moreover, there is a possibil-
ity that the propagation may fail. So, we need to define a fanct
can_inc_current_mn_I bl (X, |) thatreturns true ifcurrent _m n_I| bl of en-

tity X can be increased to. (If | isless tharcurrent i n_I bl ( X) then it returns true.)

There are many operations that require changesutar ent i n_| bl , such as opening a
file for writing, explicit increases tdi scr _i nvul _I bl , etc. Before such operations can
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succeedcan_inc_current _m n_| bl () needs to be checked. This requires a two-phase
protocol, where the first phase is a calldan_i nc_current _mi n_I bl (). Note that a
call of this function on a subject may result in a recursivé chthe same function on its
read handles, which in turn may calan_i nc_current _m n_I bl () on objects or other
subjects and so on. When this first phase succeeds, then dlagespeffecting the original
operation (write open, increasedoscr _m n_I bl , etc.) need to be performed in the second
phase. The second phase will also update the cached vatue oent _mi n_| bl associated
with the entities involved in the first phase.

Obviously, care needs to be taken in implementing this twasplprotocol to avoid race condi-
tions, loops, or deadlocks. Performance is always a coraide in the sense that most opens
should not require additional locks.

Handles are created by open operations and destroyed &y apesations. (Note that we are
using “open” and “close” abstractly here — many concrete @Sations will map to these ab-
stract operations. Indeed, some OS-operations may mapltipl@wpen or close operations,
e.g., a socket connection, which, in our model, requiresilles to be created.)

A new write-open operation may require increasowgr r ent _mi n_| bl of subjects and

objects involved, but if this increase is not possible, tti@open will be denied. Similarly,

when a read-open operation is performed, the input objest breicapable of supporting the
integrity level required by the subject, or else the operatvill be denied.

When handles are destroyedir r ent _m n_| bl values associated with entities involved
may change. Note that the creation/destruction of a handlenet only affect the subject
performing the open or close, but other subjects and objbeishave an information flow
relationship with it. Thus, a single open (or close) may negiaur r ent _mni n_I bl recom-
putation for many (potentially all) of the entities on the @%nce it is important that these
values need be recomputed incrementally — again, the mesirtant requirement is to handle
the common cases efficiently.

Note that when an object or subject is destroyed, the aseddi@ndles are also destroyed.

Hooks for some security events may be missing, and we neeevlap methods to enforce
our policies in spite of these misses. For instance, theme isSM hook for close operation.

To deal with this, we need to maintain additional informatio handles that allows us to check
if a certain handle is still valid at runtime, or if it has bednsed.

— Before denying any read access (or read open) due to violaficurrent _m n_I bl
requirement, we need to verify thatir r ent _mmi n_I| bl on the subject is correct (and is
not too high because of failure to recognize that a certaiteviiandle has been closed).

— Before denying any write access (or write open) due to vimtadf cur rent _m n_| bl
requirement, we need to verify thaur rent _m n_I bl on the object is correct (and is
not too high because of failure to recognize that a certaid-feandle has been closed).
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A.2 Mapping PPI Abstract Operations to LSM hooks
A.2.1 Mapping Subject Operations to LSM Hooks

PPI policy enforcement is implemented using LSM hooks. Maictine work performed falls into
two categories:

e Updating the data structures described in the Section Ardsiponse to various operations on
subjects and objects; and maintaining the invariantsdiateove after each such operation,

e Storing information that is available in one LSM hook so tiaian be used in a subsequent
hook where it is needed; and more generally, reconstruatiiogmation needed by PPI that is
not directly available in the LSM hooks.

Below, we address the last task first, and then proceed toilde$P| actions taken in response to
various operations on objects and subjects.

Process creation:f or k and cl one operations

Figure A.1 depicts the sequence of invocatiori of k andc| one related hooks. A new

PPl _Subj ect is created when a new process is created. To identify if iféglaor clone event,
PPI will use a flagcl one_f | ags which is available in the hookecurity task create.
The list of relevant hooks and the operations performediwitinese hooks are described below.
We use the convention that for an LSM hook namsedur i t y_X the corresponding call back
function in PPl is callegppi _X.

security_ task_create: This hook is invoked when a new process is created. PPl gl u
this hook to distinguish a fork from a clone event, and rememitb

if clone_flags is set to 18874385 then se

current ->sub_sec->i s_sane_subject_group to 0
/+ clone_flags = 18874385 is an identification of "Fork" event =/
el se set current->sub_sec->i s_sanme_subject_group = 1

security task_all oc: This hook is invoked to allocate security structure to a peacess
being created. In the case of a clone operation, all thagdeebis to create a néPl _subj ect ,
and set its subject group to point to that of the parent. I§iaifork operation, then a differ-
ent set of actions are required. Specifically, a i _subj ect _group is created; a new
PPl _subj ect is created for the child process, and its subject group feaikitialized to point to
this new subject group. In addition, the child process gstewn copies of handles of the parent.
All these copy operations, naturally, will need to preseal¢he invariants noted in Section A.1.4
— for instance, the newly created subject group’s list ofiraad write handles must be exactly
the set of child’s copies of read and write handles possdsgéte parent.

Process Execution

Figure A.2 depicts the main LSM hooks relatecetoecve.

Onlyppi _bprm check_securityandppi _bprm appl y_cr eds are sufficient to ensure
complete mediation because they are the last 2 hooks to bkedvin the context of process
execution. A non zero error code returned fremi _bpr m check_security undoes the
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sys_fork sys_clone

N/

do_fork

l

copy_process

e

security_task_create(clone_flags)

L _followed by
A
security_task_alloc(task_struct *p (the pid is still not populated))

Figure: Task Fork and Clone

Figure A.1: LSM hooks related toor k andcl one

operations performed, from the begining of task executjmitillithat point. Hence all checks can
be delayed untilppi _bprm check_security.

ppi _bprm check_securi ty: This hook is invoked when a new prograneisecve’d. The
following steps need to be taken at this point:

e An execve operation terminates all threads except the one that has thadcall. PPI thus
deletes alPPI _subj ect structures corresponding to those threads. (There doesawnt to
be a need to create a n&®Rl _subj ect _gr oup.)

e For all handles of the subject, 9et_f | ow _nedi at ed. (According toexecve documen-
tation, shared memory segments are closed and mmaps anesetyed.)

e Update the subject lab& based on the labél of the file beingexecve’'d

— S.current_|Ibl = mn(S. current_Ibl,
F.subj | bl.current_Ibl,
F. obj _Ibl.current_Ibl)

— S X =mn(S. X F.subj_Ilbl.X),forXin{is_super}

— S. X = max(S. X, F.subj_Ilbl.X),forXin{read_l og,wite_l og,mn_|bl,
di scr_mn_lbl}

— S. X = F.subj _I bl . X for all other fields.

Notes.

e Other fields of the subject label, or the labels of the objsatgects communicating with
this subject, may need to be changed in order to maintainréhequsly stated data structure
invariants.

e execve fails if the above operations cannot be done, e.gnjifi_I bl cannot be increased
to the required value. To deal with this possibility, we makeopy of the subject and subject
group before making updates, and then rolling back to thopées when failure occurs.

e We may need a mechanism for executing a child process at arhigiel of integrity than
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sys_execve

i

do_execve

e

open_exec
do path lookup of executable and check EXEC permissi - R followed by
S

security_inode_permission(MAY_EXEC) open file for read security_bprm_alloc(struct bprm)
" . followed by followed by
S a \J
__dentry_open(flags=O_RDONLY) security_bprm_set(struct bprm)
l :followed by
v
security_dentry_open(struct file*) search_binary_handler

i

security_bprm_check(struct bprm)

:followed by
A\
security_inode_permission(inode of /shin/loader)

Via function pointer call to compute_cre
\J
void=security_bprm_apply_creds

Figure: Task Exec

Figure A.2: LSM hooks related texec

the subject. This is similar to setuid processes. As in tlee ad setuid processes, lots of
checks need to be made regarding who controls inputs (oresahsignals to) higher integrity
children. This may be done as part of future work.

e We do not bother with close-on-exec fds. The kernel callstheurity fil e freehook
for each descriptor closed in this fashion, when the ref&r@ount ofst ruct fil e drops
to 0. However there is no hook for mediatihgut calls, in other words, PPI can not detect
file close events which do not make the reference count 0. &cpresitly PPI is unable to close
a subject’s PPI handles on an object that it may have closedackle this, PPI treats every
handle as “tentative,” and before each use, verifies thadtahdle is still valid. Invalid handles
are promptly deleted, and removed from the attributes raimiet! with subjects and objects.

ppi _bprm appl y_creds: This is the last hook invoked in the sequence of hooks indd&e
task execution. It does not return any error code. HowewePthl related subject attributes are
updated in this hook.

Process Exit

The LSM hookppi _t ask_fr ee is invoked when the process exits. The following actions are
taken:
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e Free thePPl _subj ect data structure for the exiting process.

e Decrement the ref count field for tHePl _subj ect _gr oup. If it becomes zero, the sub-
ject group is freed. This will in turn mean that all the hamsdkssociated with the sub-
ject group will be freed. (On process exit all the open filecdigsors will be closed by
file free_security hook, so the list of handles will likely be empty in most of the
cases.)

A.2.2 Mapping Object Operations to LSM hooks

We first address the problem of correlating objects to thandfes, and then proceed to describe
the details of LSM hook mappings and the necessary checlenforcement.

Mapping objects to handles and vice-versa

LSM hooks related to input/output operations typicallyypde a pointer to a file structure (specif-
ically, struct fil e *)maintained by the kernel, whereas our enforcement acteEmsre us
to identify corresponding handles, which are purely looaPPl. To perform this association ef-
ficiently, PPl maintains two arraytsd2r handl e andf d2whandl e that are indexed by a file
descriptor and yields a pointer to the corresponding handigortunately, this is not enough —
as noted before, for a variety of reasons, fd information ipegtale or inaccurate; and handles
can be stale. To cope with these problems, we rely on theAfsiphelper functions:

e update_handl e_fd( PPl _handl e *xh, PPl _subject =*s,
int fd, bool handle_type):
This function is called when we detect that the fd associatithll a handle has changed to a
new value.

1 [* For brevity, we only show the case where hantjpe is “read™*/
2 h->fd = fd;
3 s->group->fd2rhandl e[fd] = h;

e val i date_handl e(PPI _handl e *h, PPl _subject =*s): This function is called
to check if a handle is current, and if so, to get the correcdsociated the handle. If the
fd stored within the handle is correct, then this functiowasy fast; otherwise, it requires a
search through the file descriptor table of a process, whista bit more time. If this search
does not find the handle, then the handle must already havedbesed, and so we clean up

the handle.
Algorithm

struct file xf = fget(h->fd);
if ((f !'= NULL) && inode_equal (h, f) && node_conpatible(h, f))
return h->fd,
/* The fd-table is maintained by the kernel for all procesdes
for each file struct f in the fd-table of s do
if (inode_equal (h, f) && node_conpatible(h, f)) then
updat e_handl e_fd(h, s, getfd(f), handle_type(h))
return getfd(f)

® N o 0 A W N P
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9 done
10 /* Subject must have closed the corresponding fd. Free thdlbaupdate current' min’Ibl, etc. */
1 free_handl e(h, s)

e get _handl e(PPI _subject *s, struct file xf, bool handl e_type):

fd = ppi_getfd(f); /*lookup the fdtable to find the corresponding index */
h = s->group->fd2rhandl e[ fd];
if (h !'= NULL) then
if (inode_equal (h, f) && node_conpatible(h, f))
then return h;
el se validate_handl e(h, s);
/* The handle’s fd is not current. Use sequential search tbtfie right handle. */
for each handle h in s->group->read_handl es do
if (inode_equal (h, f)) then /uUpdate fdinformation */
update_handl e_fd(h, s, fd)
return h;

© o N o g A~ W N B

=
[

done
/* Should never reach here; print error message */

PP
w N

If a valid, fresh handle is found at any point during the abssarch, then we stop the search
at that point. By not continuing the search, there is a pdigithat we leave stale handles in the
PPI _subj ect data structure, but this is acceptable since such handlebemiletected before
they are used.

The only advantage of maintaining the2handl e array is that in the typical case, we will
be able to identify the handle after just a single array I@okin the event that a full search is
needed, then the identified handle is inserted intd thzhandl e arrays at the location given by
their current fd. This ensures that subsequent lookupsi®htndle will take constant time until
the fd is involved in anothedup-like operation.

File Operations

File creation. LSM hooks relevant to creation of file objects is shown in Feg@.3. PPl imple-
mentation makes use of the following hooks in this regard:

ppi _i node_creat e: This hook is invoked for regular files and is used for perfimgnthe
ppi _bi nd abstract operation on the inode of the parent of the inodegberieated.

ppi _i node_al | oc: This hook is invoked to allocate in-memory security stauetto a new
inode being created. PPI will use it to assign integrity labenode. This hook primarily in-
vokes theppi _cr eat e abstract operation, which then does the object’s seculifdgation and
initialisation of its label.

ppi _i node_i ni t: This hook is invoked to store security information with thede on disk.
PPI will use it to store in-memory label onto disk to make itgi&ent.

File deletion. LSM hooks relevant for file deletion are shown in Figure A.fqeSfically, the
following hooks are used:
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ppi _i node_unl i nk: This hook is invoked when an inode is being deleted from.didla
temporary PPI write handle can be created successfullyaghnunlink hook will succeed. The
ppi _unl i nk abstract operation is called from this hook.

ppi _i node_free: This hook is invoked in following two cases:
e deletion of an in-memory inode from cache when there are ne meferences to that inode.
e deletion of an inode resident on persistent store

In all cases, there are no more references to the inode, aR@lscan deallocate data structures
allocated to store information related to the object. Tloigkinvokes thgpi _cl ean_obj ect
abstract operation.

File open. LSM hooks related to file opens are shown in Figure A.3.

ppi _i node_per ni ssi on: This hook is invoked to check the permissions on the inoderbe
performing any operations on it. The type of operation islalsée through a parameter called
mask.

Current label will be propagated from a read handle to itgesitonly when the first bytes of
data are actually read from the file. When object is openedad-write mode, read handle will
be created first, and then the write-handle. This hook insdkeppi _open abstract operation.

File close. Figure A.4 illustrates the hooks relevant to this operatibmparticular, we use the
hook ppi _file_free. Atthis point, the handle is freed, ardir rent _m n_I bl of the
associated objects and subjects is adjusted. (This adjustran decreaseur r ent _mi n_I bl

or leave it the same, but not increase it.) The handle is alsgep from the list of handles
maintained by the object and the subject.

Unfortunately, this hook is invoked only when the last filackgptor (across all processes) for a
fileis closed. This means that for files opened by multiplepsses, all but the last close operation
will be invisible to PPI. To cope with this, we use the helpendtionval i dat e_handl e
(described earlier) before every use of a handle.

File read and write. The relevant hooks are shown in Figure A.5.

ppi _file_perm ssion: This hook is invoked to check permissions on a file befores it i
read/written. Note that only basic enforcement rules nedaetchecked here: constraint prop-
agation is done at the time of open operation. This hook iesplpi read andppi _wite
abstract operations. Recall that all handles are validagéare they are used.

File mmap. The relevant hook is discussed below.

ppi _fil e_mrap: The file needs to be opened before it can be mmaped. Ther#ferbandles
must already have been created before this hook is reached.hdok has two important input
parameters: a file structure and flags. Flags describe wbaesses are permitted to the data being
mmaped. PPI will use this hook to update the file descriptéorination associated with the
handle. Finally, the handleiss_f | ow_nedi at ed is set to false. Flags will be used to identify
if the read handle or write handle or both are involved.
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Directory operations

The way PPI handles directories is better explained by wtaleding the operations that are per-
formed on a directory.

e Directory Creation : This operation is no different thanatieg a regular file. The usual
ppi _bi nd will be called on the parent directory from th@i _i node_nkdi r hook.

e Directory Renaming : Since a rename operation is on an inaldanot distinguish between
regular files and directories. The enforcemenn _i node_r enarne applies to directories
as well.

e Directory Removal : This operation is just like the unlinkepgtion on regular files and hence
we simply involeppi _unl i nk abstract operation froppi _i node_r ndi r hook.

e File Creation in a Directory : This operation is covered unttee file creation operations
discussed earlier.

e Directory Traversal : This operation mainly deals with riegdthe contents of a directory
or the pathname resolution of the directory. In either cdmedvent can be mediated in
ppi _i node_per m ssi on. However we currently do not invoke thgpi _| ookup ab-
stract operation from this hook for reasons discussed itid®e2.2.2

Hard Links

As discussed in Section 2.2.1, there is no provision in threeati LSM framework to associate
labels with hard links. Hence the only check that is made éndiwrrent implementation is that
of link creation, which is in-line with most object creati@perations. We simply invoke the
ppi _bi nd abstract operation ippi _i node_|I i nk hook.

Symbolic Links

Symbolics links have been implemented in our framework, meiely as per the discussion
in Section 2.2.1 and Section 2.2.2. We simply invoke pip _bi nd abstract operation in
ppi _i node_sym i nk hook, which pertains to symlink creation. Also, we update ¥alue
of subject'svi rtual _current | abel inppi _i node_foll ow |ink. This operation is
the key to downgrading a subject if it tries to open an objezMow integrity link.

File systems

As discussed in Section 2.2.1, a mount operation is treatedcambination of a removal of the
mount point directory, a write to the device, and a bind tortf@int point directory. Important
file system operations are as follow:

e File system mount : The hook involved for this operatiorps _sb_nount. The 2 ab-
stract operations that map to this hook amei _bi nd and ppi _del ete. In particular
ppi _del et e operation needs to be called once for the mount point and fondke device

that represents the file system.
e File system unmount : The hook involved for this operatiopps _sb_unount. The ab-
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stract operations mapped to this hook are exactly the saith@se for the mount operation.

Named Pipes

Pipes provide one of the most basic inter-process commtimricenechanisms. Pipes are of two

types, named and unnamed. Unnamed pipe is a in-memory ldateestructure that is referenced

using file descriptors, but there is no way to externally ndmese data structures. Named pipes,
in contrast, are associated with a name in the file systemhance can be referenced externally.
In addition, permissions can be associated with these fiteesdahat can control who can connect
to a pipe. As a result, named pipes are opened and readhirittuch the same was as files,

whereas unnamed pipes do not have explicit open operations.

Named pipe creation. Figure A.6 depicts the hooks involved in the creation of ndipipes. In
particular, we use some of the same hooks as for creatiamfapef regular files.

ppi _i node_nknod: This hook is invoked to create named objects only. To distish between
the named and unnamed pipes, a flay named_pi pe is maintained in the subject security
structure.

ppi _i node_al | oc, ppi _i node_init: These two hooks are handled in the same way as
files.

Named pipe open, close, deletion. All the operations on named pipe are the same as regular
files from the point of view of policy enforcement in our frawmrk.

Unnamed Pipes

Figure A.7 depicts the hooks involved in the creation of unmed pipes.

Object creation. The hooks for this operation are enlisted below.
ppi _i node_al | oc: This hook simply invokes thppi _cr eat e abstract operation.

ppi _d_i nst anti at e: As mentioned earlier, unnamed pipes are implicitly opemedreation.
To achieve this effect, PPI will create two handles (one lier tead-pipe and another for write-
pipe) in this hook. Note that PPI can distinguish betweenathand unnamed pipe creations by
examining the field s_naned_pi pe.

Internet Stream Sockets

The various operations on Internet Stream Sockets havedisaussed below.

Socket Creation. LSM hooks relevant to creation of socket objects is showriguie A.8. PPI
implementation makes use of the following hooks at the tifremoket creation (the only exception
is the creation of the new 'accept’ socket, which is not cegatiat the server side)

ppi _i node_al | oc : As discussed earlier this hook is invoked for creation ofrende that is
referred to by the socket. The abstract operatipn _cr eat e is called in this hook.

ppi _sk_al l oc_security: This hook is responsible for creation of the read and write-h
dles on the socket. A socket always has read and write soakstxiated with it and therefore
both these must be created at the time of socket creatiortra&bsperatiorppi _open maps to
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this hook and needs to be invoked twice to create read and hattdles.

Socket Close. This operation simply closes the read and write handleblkstiad on the socket.
The work is done byppi _cl ose abstract operationippi _fil e _free_security. Invoca-
tion ofppi _file_free_security indicates that the reference count of thel e structure
associated to the file is zero and there are no users of thestsdthe write handle(s) on the clos-
ing sock may belong to other subject(s) which means thaisptint those all the write handle(s)
too will be closed.

Socket Listen. No PPI checks are required on socket listen.

Socket Connect. Section 2.2.2 gives the descriptiongyfi _connect abstract operation. The
implementation of socket connect operation matches tisgirii¢ion exactly. However no changes
made at the time oppi _connect abstract operations are committed, otherwise it could be
extremely easy for a low integrity process to downgrade & hitggrity server by simply calling
aconnect system call, even if the connection is denied by the servéreatime ofaccept .

The hook for this operation is enlisted below and the flow efréslevant kernel hooks is shown in
Figure A.9

ppi _socket connect : Abstract operatiorppi _connect will be called from this hook.
Since this call is made by the client, the client socket imfation is available. The information
about the server’s socket (at this point the server’s soalets to the server’s listening socket
because the new socket is created at the tingysccepj can always be obtained by a lookup
in the server process'’s file descriptor table, if the serseunning on the same local machine.

Socket Accept. No enforcement is done for this operation because the ¢héorimation is not
available inppi _socket _accept. The flow of the relevant kernel hooks, for this operation, is
shown in Figure A.10.

Socket Send/Receive. TCP is a connection oriented protocol. Therefore once theection is
established, before any communication starts on the TCRembion, we must associate the write
handles with the peer objects. Since we do not have any hdbkewior return capability after the
connection is established, we enforce integrity policieppi _socket sendnsg hook. On

first write, it will be checked if the association can be fodnélote that there is no enforcement
done forppi _socket _recvnsgbecause there is no way to know the source of the message till
the data has been read. So we rely completely on sender fdkschrhe hook for this operation

is indicated below.

ppi _socket sendnsg : The abstract operatioppi _sendt o maps to this hook. The ab-
stract operation is a combinationppi _connect andppi _wite.

Internet Datagram Sockets

UDP is a connectionless protocol. Therefore the assoniatith be established only when client
tries to send to server and vice-versa. The associatiorpvapagatecurrent _m n_I bl and
current _I bl. Once the propagation is done the association with the pekeswill be broken.
Note that we cannot enforce ppi _socket _recvnsg hook since in case of UDP we do not
have the receiver information until we actually receive tlzea. PPI operations for Datagram
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Sockets are done in the following hook:

ppi _socket sendnsg : The abstract operatioppi _sendt o maps to this hook. The ab-
stract operation is a combination@pi _connect andppi _write.

UNIX domain sockets

UNIX domain sockets are much like Internet sockets excegit tommunications are between
processes on the same local machine and the data transtendb&wvolve kernel networking
protocol stack. The data transfers does not use the filersy&ather this mechanism uses kernel
memory buffers for the actual transfers. In Unix domain st&kthe socket address structure
consists of a fieldun_pat h which can be either null-terminated file system pathnamenor a
abstract name. The discussion for UNIX domain sockets islgivinto 2 parts:

e UNIX domain stream sockets

e UNIX domain datagram sockets

UNIX domain stream sockets

In case of TCP with socket having file system pathname twoeteckre created by client and
server processes usisgcket system call. The resulting objects having file system pattema
For such a socket that has a file system pathname, our fratkeneates a special handle called
the create-write handle

A note on create-write handles. In case of UNIX domain sockets, the socket can be created
on the file system with file system pathname. Even though douptto unix access control, no
one can read from or write into the socket, this socket filelmmmoved, overwritten. Therefore

it is important to protect the integrity of the socket file. fbodo this we introduce a new type of
PPI handle other than read and write handles. This handieoiwik as create-write handle. This
type of handle will be created by the subject that createslbject. Note that such handle will be
created only for on disk-objects. (For in-memory objedte kocket, unnamed pipe, their object
creation always results into immediate read/write handéatton.) The create event indicates
that creating subject intends to use it or make it availabteue to other subjects. When a new
object is createdypi _i node_init _securi ty hook (this hook is invoked immediately after
ppi _i node_al | oc_security), creates a create-write handle for the object. If the inode
creation fails therppi _i node_free_security will clean up the create-write handle from
the system. It is important to note that the handle valigepoocedure will not be applied for
create-write handles.

This handle will be of write type since it is a representatafithe subject that created it.
Creating such handle will ensure that the integrity charigessubject are also propagated to its
newly created objects. This propagation also ensures teabjact itself does not lose control
of its newly created object. Create-write handles will bemoged from the system in one of the
following two ways:

1. The object corresponding to the handle is deleted.
2. The subject which created the handle gets terminated.
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Domain Socket Creation. LSM hooks relevant to creation of socket objects is shownign F
ure A.8. PPl implementation makes use of the following haatikthie time of socket creation (the
only exception is the creation of the new "accept’ socketictvlis not captured at the server side)

ppi _i node_al | oc : This hook helps in for socket object creation. The abstogaration
ppi _creat e is called in this hook.

ppi _sk_al l oc_security: This hook is responsible for creation of the read and write-h
dles on the socket. Abstract operatippi _open maps to this hook and needs to be invoked
twice to create read and write handles.

Domain Socket Close. This operation simply closes the read and write handleblksitad on
the socket. The work is done Ippi _cl ose operation inppi _fil e _free_security.

Domain Socket Connect. The implementation for this operation is exactly like theplemen-
tation forconnect operation for Internet stream sockets. Even though irtieghiecks are made
in this hook, no associations are committed. The reasoraisftin permanent associations, the
peer object is unavailable (has not been allocated). Thegigect is created only at the time of
accept . The hook for this operation is enlisted below and the flonhef televant kernel hooks
is shown in Figure A.9

ppi _uni x_stream connect : Abstract operatiomppi _connect will be called from this
hook.

Domain Socket Accept. No enforcement is done for this operation because the dhémima-
tion is not available irppi _socket _accept. The flow of the relevant kernel hooks, for this
operation, is shown in Figure A.10.

Domain Socket Send/Receive. No enforcement is done f@pi _socket _r ecvnsg because
there is no way to know the source of the message till the dathéen read. So we rely completely
on sender side checks. The hook for this operation is inglichelow.

ppi _socket sendnsg : The abstract operatioppi _sendt o maps to this hook. The ab-
stract operation is a combinationppi _connect andppi _wite.

UNIX domain datagram sockets

The only enforcement done for UNIX domain datagram sockets,r framework, is at the time of
sending data from one peer to another. The description gatipe and details of implementation
are same as that for the Internet datagram sockets. The tsaokfar enforcing policies at the
time of data transmission is indicated below.

ppi _uni x_may_send: The abstract operatignpi _sendt o maps to this hook.

System V Inter-process Communications (IPCs) : Shared Menty

PPI framework operations for shared memory have been disduselow.ker n_i pc_per mis
the kernel data structure that represents the System V I€Ctslin the system and is the common
data structure for all IPCs.
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Shared Memory Object Creation. Whenever a new shared memory IPC is created, kernel cre-
ates a new data structuker n_i pc_per m It contains a security field in which an object security
information can be stored. In case of a shared memory, tteesdiatcture isshni d_ker nel .

This contains the pointer toer n_i pc_per mand a pointer testruct file (shmfile).

PPI object will also contain a pointer &gthm f i | e for future shared memory handle validation.
The hooks are described below.

ppi _shm al | oc_securi ty: This hook is invoked whenever a new shared memory segment
is created. PPI will associate security information wita f#hared memory object in this hook.

ppi _shm shmmat : Handle creation occurs in this hook. The idea is same asdiodle creation
for files in ppi _i node_perm ssi on. This hook specifies the intent. If intent is read-only
then read handle will be created. Otherwise, both read aite handles will be created. The flag
i s_flow nediat edis set to false.

Shared Memory Handle Destruction. There is no hook for tracking shared memory detach
event. The system calys_shmndt simply unmaps the shared memory. Therefore shared mem-
ory handles will be validated before they are used to malethat stale PPl handle do not remain

in the system.

Shared Memory Handle Validation. Handle validation for shared memory may have to be
done differently. Every process has its own virtual memoapping. Everywm ar ea_st r uct

of the process has a file pointem f i | e. Whenever process attaches to the shared memory it
creates newm ar ea_st ruct whose file pointewm f i | e points toshm fi | e in the global
shared memory object. If the process is truly attached thisriike pointer should match otherwise

it is an invalid handle.

ppi _shm free_security: This hook is invoked when the reference count on shared mem-
ory falls to zero. The clean-up of all handles and the shareahony object occurs in this hook.

51



sys_open(fd,filename,flags,mode)

l

do_sys_open(allocates new fd)

l

file* = do_filp_open

l

open_namei

@sﬂng file O_CREAT

path_lookup_open
Fmempt to allocate struct file path_lookup_create

get_empty_filp lopen existing file
ttempt to allocate struct file

open_namei_create

security_inode_permission(MAY_EXEC) for each dir in pafiilowed by \
1

. may_open Vfs_create

mask = MAY_READ/ MAY_WRITE/check if you can write to parent dir

followed by (the path here-on is for create only

A

security_inode_create(inode(of dir),dentry(of new file),mask)

\

ext3_create

followed by \

ext3_new_inode

6

followed by
A
security_inode_init(inode(of new inode),dir(inode of parent),name(of xattr),value,len)
followed by
A\

ext3_add_non_dir

o

Figure A.3: LSM hooks related to opening of regular file
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sys_close

l

rm(library call) unlink(library call) filp_close
do_unlinkat fput

lsecurityinodepermission(MAYEXEC) on each dir in path

do_path_lookup security_file_free(struct file)
followed by followed by
v 1
vfs_unlink dput
may_delete(simply does inode_permission(MAY_WRITE) check on parent) d_kill
» - followed by
A
security_inode_unlink(inode(of directory), dentry(of the file)) dentry_iput
- followed by
N
iput()

&f inode ref_count=0

iput_final()

l

generic_drop_inode

link count =0 link count != 0

generic_delete_inode

release persistent labelling (may omit)  generic_forget_inode

free inode->i_security: void=security_inode_delete(inode) free inode->i_securit

followed by
Y
void=security_inode_free(inode)

Figure A.4: LSM hooks related to deletion of regular files
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sys_read Sys_write

l l

vfs_read(file, buf, count, &pos) vfs_write(file, buf, count, &pos)

————— —

Figure: File Read and Write

Figure A.5: LSM hooks related to reads and writes of regules fi
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sys_mknod

l

sys_mknodat

l

vfs_mknod

‘

dir->i_op->mknod

l

ext3_mknod

/

ext3_new_inode

S

new_inode

/

alloc_inode

‘followed by
v

ext3_init_security
T _followed by /
S

ext3_add_nondir

l

d_instantiate(dentry, inode)

e

Figure: Named pipe create

Figure A.6: LSM hooks related to creation of named pipes
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sys_pipe(*fd)

l

do_pipe

ll

create_write_pipe
get_empty_filp B
followed by | followed by &
4 T oA
get_pipe_inode get_unused_fd and install_fd
new_inode
alloc_inode

\ , ‘followed by
| 4

set inode mode = S_FIFO

:followed by
v
d_instantiate

followed by
v
create_read_pipe

Figure: Un-named pipe create and open

Figure A.7: LSM hooks related to creation of unnamed pipes
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sys_socket

/

sock_create

N followed by
ZN
sock_alloc

followed by
A
pf->create

intenret socket }nix domain

unix_create

inet_create

sock_ops=&unix_stream_ops or &unix_dgram_ops

«followed by
A
unix_createl

)

sk_alloc

Jfollowed by

> followed by

N
sock_map_fd(sock)

S

sock_alloc_fd

/

get_empty._filp

* followed by,
4
sock_attach_fd(sock, newfile)

—

d_instantiate(dentry, inode)

followed by
ZN
Populate file data structure

Figure: socket create

Figure A.8: LSM hooks related to socket creation
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connect

l

sys_connect

sock->ops->connect()

}/ia function pointer

inet_stream_connect

l

sk->sk_prot_connect()

stream oriented unix domain

tcp_v4_connect unix_stream_connect
ip_route_connect unix_createl
/ " followed by l
Ta
security_sk_classify_flow(struct sock,struct flowi) tcp_connect sk_alloc

sk_prot_alloc

‘followed by

v

unix_find_other

|

vfs_permission(MAY_WRITE)

* _ followed by

Figure: Socket Connect

Figure A.9: LSM hooks related to socket connect
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sys_accept

/AN

newsock = sock_alloc()

‘followed by
v
newfd = sock_alloc_fd(&newfile)

" followed by
1
sock_attach_fd(newsock, newfile)

‘followed by

" followed by
N
sock->ops->accept()

- followed by,

Figure: socket accept

Figure A.10: LSM hooks related to socket accept
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