
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 
 

 
LFSM – a system to optimize the random write 

performance of FLASH memory 

 

 
A Thesis Presented 

 
by 

 

Goutham Meruva 

 

to 
 

The Graduate School 

 
in Partial Fulfillment of the 

 

Requirements 
 

for the Degree of 

 
Master of Science 

 

in 
 

Computer Science 

 
Stony Brook University 

 

May 2010 

 

 
 



 
 

ii 
 

Stony Brook University 

 
The Graduate School 

 

 

 

Goutham Meruva 

 
We, the thesis committee for the above candidate for the 

 

Master of Science degree, hereby recommend 

 

acceptance of this thesis. 

 
 

 

Professor Tzi-cker Chiueh – Thesis Advisor 

Department of Computer Science 

 

 

Associate Professor Erez Zadok – Chairperson of Defense 

Department of Computer Science 

 

 

Assistant Professor Jie Gao 

Department of Computer Science 

 
This thesis is accepted by the Graduate School 

 
 

 
Lawrence Martin 

Dean of the Graduate School 

 

 

 



 
 

iii 
 

Abstract of the Thesis 
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2010 

 
In recent years, the storage medium behind enterprise servers and personal computers has 

started migrating from the traditional magnetic disks to solid state disks (FLASH 

memory). There are many compelling reasons behind this shift like superior access 

speeds, high robustness, and lower power consumption due to lack of any mechanical 

moving parts. However, there are two very important drawbacks of FLASH which are 

causing severe concerns. First, the cost-per-GB is still very high and second, FLASH’s 

random write performance is many folds slower than its sequential write performance.  

Log Structured Flash Storage Manager (LFSM) is a storage system for FLASH which 

effectively alleviates this problem to a great extent. The basic idea is to treat every write 

as sequential write and it sequentially to FLASH and maintain the mapping information. 

To solve the three common problems with this kind of design – random write to the 
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mapping information, lookup of the mapping, and generation of free space for new 

incoming writes – LFSM incorporates three authentic techniques called Batching Updates 

and Synchronous Commit (BUSC), Temperature-based Garbage Collection and Interval-

based Caching. 

 

In this report we explain the fundamental architecture of FLASH memory, techniques to 

leverage the best performance out of it, a system to convert all writes to sequential writes 

with respect to FLASH, BUSC principle, Temperature-based Garbage Collection, 

Interval-based Cache and finally the results of experiments conducted to evaluate 

FLASH’s performance.   
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Chapter 1 

 

1   Introduction 

 
The recent commoditization of USB-based flash disks, mainly used in digital cameras, mobile 

music/video players and cell phones, has many pundits and technologists predict that flash 

memory-based disks will become the mass storage of choice on mainstream laptop computers in 

two to three years. In fact, some of the ultra mobile PCs, such as AsusTeks Eee PC, already use 

flash disks as the only mass storage device. Given the much better performance characteristics 

and enormous economies of scale behind the flash disk technology, it appears inevitable that flash 

disks will replace magnetic disks as the main persistent storage technology, at least in some 

classes of computers. 

 

Compared with magnetic disks, flash disks consume less power, take less space, and are more 

reliable because they don’t include any mechanical parts. Moreover, flash disks offer much better 

latency and throughput in general because they work just like a RAM chip and don’t incur any 

head positioning overhead. However, existing flash disk technology has two major drawbacks 

that render it largely a niche technology at this point. First, flash disk technology is still quite 

expensive, approximately $10-15/GB, which is at least 20 times as expensive as magnetic disks. 

Indeed, at this price point, it is not uncommon that a flash disk costs as much as the computer it is 

installed on. Second, flash disks performance is better than magnetic disk when the input 

workload consists of sequential reads, random reads, or sequential writes. Under a random write 

workload, flash disks performance is comparable to that of magnetic disk at best, and in some 

cases actually worse. We believe the cost issue will diminish over time as the PC industry shifts 

its storage technology investment from magnetic to flash disks. However, flash disks random 

write performance problem is rooted in the way flash memory cells are modified, and thus cannot 

be easily addressed. This document describes the design and implementation of a log-structured 

flash storage manager (LFSM) that effectively solves this problem. 

 

A flash memory chip is typically organized into a set of erasure units (EUs) (typically 256 

Kbytes), each of which is the basic unit of erasure and in turn consists of a set of 512-byte 

sectors, which correspond to the basic units of read and write. After an EU is erased, writes to any 

of its sectors can proceed without triggering an erasure if their target addresses are disjoint. That 
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is, after a sector is written and before it can be written the second time, it must be erased first. 

Because of this peculiar property of flash memory, random writes to a storage area mapped to an 

EU may trigger repeated copying of the storage area to a free EU and erasing of the original EU 

holding the storage area, and thus result in significant performance overhead. 

 

Moreover, flash disks typically come with a flash translation layer (FTL), which is implemented 

in firmware, maps logical disk sectors, which are exposed to the software, to physical disk 

sectors, and performs various optimizations such as wear leveling, which equalizes the physical 

write frequency of EUs. This logical-to-physical map will require 64 million entries if it keeps 

track of individual 512-byte sectors on a 32-GB flash disk. To reduce this maps memory 

requirement, commodity flash disks increase the mapping granularity, sometimes to the level of 

an EU. As a result of this coarser mapping granularity, two temporally separate writes to the same 

mapping unit, say an EU, will trigger a copy and erasure operation if the target address of the 

second write is not larger than that of the first write, because a commodity flash disk cannot 

always tell whether a disk sector in an EU has already been written previously. That is, if the N-th 

sector of a mapping unit is written, any attempt to write to any sector whose sector number is less 

than or equal to N will require an erasure, even if the target sector itself has not been written at 

all. Consequently, coarser mapping granularity further aggravates flash disks random write 

performance problem. 

 

To address the random write performance problem, LFSM converts all random writes into 

sequential writes to a set of unified logs by introducing an additional level of indirection above 

the FTL. Because all commercial flash disks have good sequential write performance, LFSM 

effectively solves the random write performance problem for these disks in a uniform way 

without requiring any modifications to their hardware implementations. With this log-structured 

storage organization, LFSM needs to overcome two major challenges. First, LFSM still face 

random writes because it needs to maintain a separate map for the level of indirection or 

translation it introduces and writes to this map are random. LFSM minimizes the performance 

overhead of these random writes by using a technique called BUSC, batching updates with 

sequential commit. Second, to minimize the amount of copying whenever LFSM reclaims an EU, 

it needs to allocate EUs to logical blocks in such a way that logical blocks assigned to the same 

EU have a similar life time and each EU contains the stabilized utilization ratio, which means it is 

less possible the utilization ratio will be changed in the future. 
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Chapter 2 

 

2   Overview 

2.1 General description 

 

LFSM is a storage manager that sits between a file system and a flash disks native driver, and can 

be considered as an auxiliary driver specifically designed to optimize the random write 

performance for existing flash disks in a disk-independent way. A property shared by all 

commodity flash disks on the market is good sustained throughput for sequential writes, between 

30-60 MB/sec. The basic idea behind LFSM is to convert random writes into sequential writes so 

as to eliminate random writes from the workload that a flash disk physically faces by 

construction. To perform such conversion, LFSM implements the linear disk address space 

exposed to the file system using multiple logs, and turns every incoming logical write into a 

physical write to the end of one of these logs which mapped to different active EUs. Because 

writes to each log are sequential in an EU based nature, their performance is the same as 

sequential write performance. 

 

2.2 LFSM Architecture 
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Figure 1.1 LFSM architecture 
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As Fig 1.1 demonstrates, LFSM sits below the file system and above the flash drive. Accordingly, 

there are two address spaces in this design. The file system and/or user applications see a linear 

sequence of logical blocks exposed by LFSM. The native flash disk driver exposes a linear 

sequence of physical blocks to LFSM. 

LFSM consists of two threads. The main thread is responsible for synchronous flash disk logging 

whereas the other background thread is responsible for asynchronous BMT commit and garbage 

collection.  

The main function of logging block is to transfer the random write to the sequential write.  While 

receiving the random logical write request, the logging block converts it to the sequential write 

address in one of the three different temperature logs, hot, cold and warm logs. The three 

different temperature logs store different life time data. Colleting the data with the similar life 

time together will ease the garbage collection performance penalty. 

Log-structured file system (LSF) was one of the earliest works on organizing the entire file 

system as a log in order to mitigate the disk I/O bottleneck problem. LFSM borrows ideas from 

LFS, particularly in the area of garbage collection. LFS maintains a single log of segments, and 

uses a product of segment age and segment utilization ratio as the metric to determine the order in 

which segments are reclaimed. In contrast, LFSM advocates multiple logs, each of which is 

mapped to an EU with a distinct estimated life time range. Then, LFSM maintains a fixed-sized 

LRU, Hlist (also referred as hot_list), to move the least recently used log EU to the least valid 

page heap (LVP_heap). LVP_heap sorts the non-recently used EUs by the utilization ratio, and 

the root of LVP_heap has the minimum utilization ratio. LFSM chooses to reclaim the EU with 

the additional stabilization information instead of reclaiming EUs only according to their 

utilization ratio (e.g. smaller first), as in the case of LFS. 

As LFSM transfers the logical block address (LBA) to physical block address (PBA), in block 

mapping table (BMT) it stores the look up table for LBA to PBA.  The BMT data is stored on 

disk, and the on-disk BMT manager gets the BMT record by additional disk I/O. To mitigate the 

performance penalty of disk I/O, the BMT cache use interval-based data structure to cache the 

most recently used BMT record in the memory.  The BMT update log is a circular log to record 

the pending BMT entries, the BMT entries which are not committed to the disk yet. LFSM uses 

BMT update log to retrieve the pending BMT entries from system crash. 
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BMT commit manager brings the pending BMT records to the on-disk BMT. To ensure BMT 

commit is sequential process, LFSM brings in an EU worth of BMT entries, commit pending 

updates to it, and write the new BMT entries to back to the EU brought in. Thus, the BMT 

commit also invalidates the corresponding pending records in BMT update log. The order in 

which BMT EUs are brought in is determined based on the following two considerations: (a) 

effective number of BMT updates committed and thus queue space freed, and (b) the extent to 

which the global frontier is moved and thus the extent to which the BMT update log is freed. 

Sometimes one has to focus exclusively on (b) to free up enough space in the BMT update log to 

continue.  The BMT popularity commit aims to handle (a) while the BMT critical commit focus 

on (b) condition. 

To reclaim unused space on the logs, LFSM performs garbage collection in the background, 

whose associated performance impact could be quite substantial. The performance cost of 

reclaiming an EU mainly comes from copying out the live physical blocks in it and is thus 

proportional to the number of such blocks at the time of reclamation. To minimize the 

performance overhead associated with garbage collection, the LFSM garbage collection 

implements the intuition that picks for garbage collection the least utilized EU whose temperature 

is cold. 

Following we give an example of a write request. While receiving the read/write request 

associated to logical block address (LBA), LFSM performs the block map table (BMT) query to 

identify the temperature of the data. To accelerate the BMT look-up procedure, LFSM uses an in-

memory BMT cache. According to the temperature, LFSM logs the content to the physical block 

address (PBA), and update the PBA to the BMT. To prevent BMT corruption due to the crash, 

LFSM logs the pending BMT record to the BMT update log. Finally LFSM returns the write 

success hardware interrupt. 

 

The physical layout of LFSM on disk is a little different from what is depicted in the Fig. 1. That 

is, although conceptually we maintain the impression of linear BMT and BMT Update log but 

actually the erasure units of both the logs are distributed on the disk. We do this for purposes of 

“wear-leveling” and “erasure” which will be explained in detail later. Hence without loss of 

generality, for all our following discussions, we consider BMT and BMT Update logs as 

contiguous. 
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2.2.1 Main thread 

 

The main thread comprises of the reads or writes from the file system. Let’s see in detail how to 

handle each of them in detail. 

For WRITE, four actions are supposed to be performed: BMT lookup to get the current physical 

block number of the request, log the write buffer to the data log sequentially, log the BMT update 

to the BMT update log sequentially and modify the in-memory data structure for the BMT 

update. 

For READ, two actions are supposed to be performed: BMT lookup to get the current physical 

block number of the request and read from the disk from the desired location.   

 

2.2.2 Background thread 

 

The background thread is responsible for asynchronous BMT commit and garbage collection. The 

garbage collection is handled by gc_collect_valid_blocks function while the BMT commit is 

handled by BMT_commit_manager function. 
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Chapter 3 

 

3 Design of LFSM 

 

 

3.1 Disk Write Logging 

              

The logging part of LFSM converts the random logical LBA to sequential PBA belonging to one 

of the active logs depending on the temperature of the LBA. 

 

The temperature logging idea eases the garbage collection overhead. LFSM categorizes write data 

into AGE_GROUP_NUM+1 different temperature levels, e.g. AGE_GROUP_NUM is equal to 

2, which are hot, warm and cold data. The cold data is expected to have the longest life time, 

warm data has medium, and hot data has the shortest life time respectively. If the LBA of the data 

has never been written before, the data will be treated as the cold data as default. If the LBA of 

the data has been written before, the temperature of the data is increasing, meaning the 

temperature is hot if it was warm, and is warm if it was cold, and remain hot if it was hot. The 

temperature level of the data only drops one level when it is copied during the garbage collection 

as a live data.  The hot log should be invalidated in a short period of time and becoming a good 

target for garbage collection.  LFSM keeps AGE_GROUP_NUM+1 active EUs, 

HListGC.active_eus [], to store the incoming data with different temperature. 

 

All EUs are categorized into three different groups in LFSM, which are free, recently used, and 

the one with fixed utilization ratio. LFSM links all free EUs in a linked list, HListGC.free_list.  

Active EUs are picked from the free list. While one active EU is full, it is moved to the 

HListGC.hot_list, which stores the recently used EUs, and might have different utilization ratio in 

the future. If the hot_list is full, the least recently used EU in the hot_list will be moved to the 

HListGC.LVP_Heap in which the EUs are considered having the fixed utilization ratio. 

3.2 BMT                
 

The main function of the BMT module is the LBA to PBA mapping. The BMT module can be 
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divided into three sub systems, the on-disk BMT, BMT cache and BMT update log as shown in 

Fig 3.1.  
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Figure 3.1 BMT models. Assuming EU size is 128KB, page size is 4KB, sector size is 

512B, and on-disk BMT entries is 4B indexed by LBA. 

 

LFSM manages the on-disk BMT as an array indexed by LBA and stored on disk. The Fig 3.1 

gives an example that one BMT EU can store up to 64K BMT records. On-disk BMT look-up can 

be simply served by a disk read I/O with LBA offset. 

 

The BMT lookup process is defined in the bmt_lookup function, which query the BMT in the 

BMT cache by PPQ_BMT_cache_lookup, and if cache happened, read_small_disk_io_temp is 

called to obtain the BMT entry from the on-disk BMT and PPQ_BMT_cache_insert_nonpending 

is called to insert the BMT entry into the cache. 

 

The BMT cache mitigates the disk I/O time for the BMT look-up procedure. BMT cache is 

arranged in a per-BMT-page structure as shown in Fig 2. The data in the BMT cache can be 

categorized as pending BMT entries and non-pending BMT entries. The pending BMT entries 
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represent the BMT entries which haven’t been committed to the on-disk BMT, while the non-

pending BMT entries are identical to the one in on-disk BMT. While logging block writes the 

new pending BMT record to the BMT update log, it also updates the BMT cache for the same 

entry.  During the BMT lookup process, if cache miss happened, the on-disk BMT manager 

performs the BMT query through the disk I/O with the minimum write unit size, sector. All of the 

BMT records in the sector will be added to the BMT cache. While BMT cache is full, LFSM 

ejects non-pending BMT entries in the least recently used BMT EU.  Although the interval-based 

BMT cache saves memory space by aggregating the adjacent BMT entries, it also introduces 

additional complexity of merge and split the BMT entries. While inserting a BMT entry to the 

BMT cache, we have to merge the BMT entry with the adjacent entries if they have contiguous 

PBAs. While ejecting or updating the BMT entry, we might have to split one BMT entry apart for 

the different intervals. The BMT cache is defined in bmt_ppq.c and will be described in the latter 

section. 

 

Although LFSM has converted the random LBA write to the consecutive PBA write, the BMT 

commit manager has to write to the LBA BMT entries randomly. LFSM solves this problem by 

using BUSC scheme to synchronously log the BMT update and asynchronously commits multiple 

updates to the BMT in a batched fashion. Because of BMT update log, even if the system 

crashes, the BMT updates that have not been flushed to the on-disk BMT can be correctly 

reconstructed at recovery time. The BMT commit manager asynchronously commits the BMT 

pending records through aggregated and sequential writes to reduce the performance overhead of 

the random writes to the BMT.  

 

Using BUSC to update the BMT means each logical block write operation triggers three write 

operations, the first being writing a new version of the logical block to a block data log, the 

second being logging the associated BMT update log, and the third being actually updating the 

corresponding on-disk BMT entry. The first two writes are done synchronously and the third 

write is done in an asynchronously and batched fashion. Later section will present the detail of 

the BMT commit manager.  

 

BMT update log manager ensures that uncommitted BMT updates can be correctly recovered 

when machines crash, and thus makes it possible to commit pending BMT updates in an efficient 

manner without compromising the BMTs integrity.  
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3.3 BMT Update Log               

 

 

The BMT update log is a circular sequence of EUs, with two pointers tail and head. The logging 

block writes the pending BMT records to the BMT update log and head pointer is moved to the 

next free write sector. While the BMT commit manager will invalidate the pending BMT records 

in the BMT update log. If all of the BMT records in the tail EU are invalidated, the tail pointer is 

moved to the head of the next adjacent EU. The size of the BMT update log defines the maximum 

number of pending records in the LFSM system. While the BMT update log is full, which means 

the head and tail pointer are overlapped, the incoming write will be pending until the BMT 

commit manager invalidate the tail EU. The BMT update log entry is designed as A_BMT_E 

structure. The advantage of using interval-based BMT update log entry is because if LFSM 

receives the write I/O with more than one sector, the additional BMT update log entry can be 

replaced by simply increasing the run_length field by one. 

 

When a machine crashes, LFSM scan through the BMT update log and reconstruct the pending 

BMT entries according to the sequence number in the BMT update log entries. To facilitate the 

identification of not-yet-committed BMT updates, LFSM includes the following information in 

the BMT update log entry associated with each logical block write operation: (1) the LBA, PBA, 

and the run length, (2) the writes corresponding sequence number, (3) the commit point: the 

sequence number of the youngest logical block write operation all BMT updates before which 

have already been committed to disk. With these information, LFSM reconstructs pending BMT 

updates by first identifying the latest or youngest BMT log entry (whose sequence number is N1), 

then obtaining its associated commit point (whose sequence number is N2), and finally reading in 

all the BMT update log entries between N1 and N2 to insert them into their corresponding per-

BMT-page queues. 

 

Logging BMT updates entails a space overhead problem: Because the minimum unit for reading 

and writing a flash disk is a 512-byte sector, each BMT update log entry costs a 512-byte sector 

even though in actuality it requires 22 bytes, which shown in the Fig2. This means the space 

overhead associated with BMT logging is about 12.5% (512 bytes for every 4-KB page), which is 

too high to be acceptable. LFSM sitting above to the firmware level cannot utilize the out-of-band 

area of each block. To minimize the performance overhead, LFSM preserve 10M disk space 
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dedicating for the BMT update log on 64GB disk. The BMT update log disk space stores up to 

20K BMT update log entries.  

 

With the above design, LFSM successfully services each logical block write operation with a 

single synchronous sequential write to the BMT update log and a sequential write to the active 

EU, and thus greatly improves the random write performance of modern flash disks. However, 

BMT update log introduces additional disk write penalty. One way to solve the additional write 

problem is simply separating the BMT update log to different disks to perform two parallel write 

operations. 
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Chapter 4 

 

4 Interval-based Cache for in-memory BMT 

 

The BMT cache is used to improve the performance of BMT look up. The BMT cache utilizes the 

data structure of the per page queue and mixed the cache entries, which are called non-pending 

entries, with the BMT per page queue entries, which are called pending entries, to form a sorted 

linked list.  

In order to save the memory space, the consecutive BMT entries in per page queue with the 

consecutive LBN and PBN can be merged together as an aggregated BMT entry (A_BMT_E). 

For example, BMT{LBN:100 PBN:200}, and BMT{LBN:101 PBN:201} can be merged as 

A_BMT_E{LBN:100 PBN:200 runlength:2}. As normal inserting algorithm to the sorted linked 

list, It takes O(n) for a BMT look up in a per page queue and O(n) to insert an entry to the per 

page queue. 

We need to hold a threshold of max.  number of the non-pending entries can be co-existing in the 

BMT cache, which is PPQ_CACHE_T_HIGH. The background thread is responsible for 

detecting if the total non-pending entry count, BMT.total_non_pending_items, is larger than the 

threshold, and removing proper number of entries from the BMT cache when necessary. The 

corresponding control algorithm for the total pending entry count should be handled by the BMT 

commit module. 

The reminder of this section will describe the A_BMT_E data structure, and go through the main 

algorithms and private and public functions. 

4.1 Data structure 

 

struct A_BMT_E{ 

 sector_t lbno;  

 sector_t pbno;   

 int run_length;  

}; 
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Insert one BMT entry to the BMT cache: 

The purpose of PPQ_BMT_update function is to insert one single A_BMT_E entry to the 

ppq.bmt_cache. To insert an A_BMT_E entry to BMT cache by traversing from the head of the 

BMT cache list, we also need to consider about the new entry could be merged to or split by the 

existing entries, or it’s just an independent entry. We need to adjust the non-pending count and 

pending count for the BMT cache as well. 

The possible inserting cases for the new coming BMT entry can be categorized as following. 

1.1 new.lbno < existing.lbno 

1.1.1 new.lbno+new.run_len <= existing.lbno 

 New coming entry is added in front of the existing entry. 

Existing (Pending/Non-pending)New (Pending/Non-pending)

LBN = Physical size

Figure 4.1 

 1.1.2 new.lbno_new.run_len == existing.lbno+existing.run_len 

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

  Figure 4.2 

a. If the New is a pending entry, it can overwrite the existing entry. 

b. If both of the New and the Existing are non-pending entry, the New can just 

overwrite the Existing. 

c. If the New is pending and the Existing is non-pending, the New entry should 

not overwrite the existing entry. The result will be following. 

 

Existing (Pending/Non-pending)New (Pending/Non-pending)

LBN = 0
LBN = Physical size
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Figure 4.3 

 1.1.3 new.lbno_new.run_len < existing.lbno+existing.run_len 

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

  Figure 4.4 

  We should split the New are two part and decide if lower half of the New can 

over write Existing by the pending type of them. 

 

 1.1.4      new.lbno_new.run_len > existing.lbno+existing.run_len 

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.5 

1.2 new.lbno >= existing.lbno && new.lbno <= existing.lbno+existing.run_len-1 

1.2.1      new.lbno == existing.lbno && new.run_len == existing.run_len 

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.6 

1.2.2      new.lbno+new.run_len <= existing.lbno+existing.run_len  

 1.2.2.1  new.lbno == existing.lbno //head aligned 
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Existing (Pending/Non-pending)

New (Pending/Non-

pending)

LBN = 0
LBN = Physical size

A B

  Figure 4.7 

 

1.2.2.2      newnew.lbno+new.run_len == existing.lbno+existing.runlen //tail 

aligned 

Existing (Pending/Non-pending)

New (Pending/Non-

pending)

LBN = 0
LBN = Physical size

A B

  Figure 4.8 

1.2.2.3     else //in the middle 

Existing (Pending/Non-pending)

New (Pending/Non-

pending)

LBN = 0
LBN = Physical size

A B

  Figure 4.9 

1.2.3     new.lbno+new.run_len > existing.lbno+existing.run_len  

 Two possible cases listed following. 

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

  Figure 4.10 
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Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

  Figure 4.11 

1.3  new.lbno > existing.lbno+existing.run_len-1 

Existing (Pending/Non-pending)

New (Pending/

Non-pending)

LBN = 0
LBN = Physical size

A B

  Figure 4.12 

 

To handle the cases that (new.lbno+new.run_len) > (existing.lbno+existing.run_len), we need to 

consider the merge/split cases for the BMT entries followed by the existing as well. 

 

4.2 BMT cache LRU list: 

 

While BMT cache is full, which means the total number of the non-pending entries in cache 

reaches the PPQ_CACHE_T_HIGH threshold; we have to remove some non-pending entries 

from the BMT cache. 

To remove the BMT cache entries in the LRU order, we create a LRU list of BMT per page 

queue cache so we can eliminate the entries according to the LRU list. Only the per page queue 

with non-pending BMT cache entries will be added into the LRU list. The following example 

shows a BMT with LRU order as page 1, page 2 and then page n.  

We cannot only eliminate the smallest amount of entries to keep the total number of non-pending 

entries in the BMT cache less than the PPQ_CACHE_T_HIGH, because that will cause the cache 

full in the nearly future and impact the performance. So, we set up another threshold called 

PPQ_CACHE_T_LOW. While we hit the cache full condition we remove at least 
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PPQ_CACHE_T_HIGH- PPQ_CACHE_T_LOW entries to keep the total pending entries less 

than PPQ_CACHE_T_LOW.  

The PPQ_CACHE_T_HIGH and PPQ_CACHE_T_LOW are default set as 10K and 8K. Further 

research is needed to determine the thresholds to perform the better performance. 

 

Per page queue [0]

.

LRU

Per page queue [1]

Per page queue [2]

Per page queue [n]

.

.

BMT

 

Figure 4.13 BMT Cache LRU list used for eviction    
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Chapter 5 

 

5 BMT Commit 

 

5.1 BUSC Principle 

 

BUSC stands for Batching Updates and Sequential Commit. FLASH Translation Layer (FTL), 

which is the firmware for FLASH, is responsible to handle the basic operations like read, write, 

erasure, wear-leveling, defect management, etc among others. FTL keeps some buffers for 

incoming writes called “log EUs” which hold temporarily the incoming writes. When a log block 

is full, the contents inside are copied to their respective erasure units called “data EUs”. If we 

write sequentially, all the blocks inside a log EU belong to a single EU. In this case, FTL need not 

do any further copy – it just needs to swap the corresponding data EU with the log EU. So, when 

we write randomly to FLASH, FTL has no choice but to copy all the blocks from the log EU to 

their respective data EUs which is the primary reason behind the poor random write performance 

of FLASH. Keeping this in mind, BUSC principle is designed.  

We keep in-memory the updates which are supposed to be written to the on-disk BMT. We keep 

track of these updates in a way that we know which BMT updates would go to which BMT EU. 

When we are supposed to write these updates to disk, we read the whole BMT EU from disk, 

update it with the new content in memory and write the whole EU back sequentially. This is 

called Batching Updates and Sequential Commit. 

 

5.2 BMT Commit Manager  

 

BMT Commit Manager (BCM) takes care of writing the in-memory pending BMT updates to 

the on-disk BMT. This process is also called BMT commit or simply commit. It is performed 

always in the back ground thread in the function BMT_commit_manager (). It is recommended 

to have a clear understanding of BUSC principle before proceeding further in this section.  

Commit and BMT update logging are highly inter-dependent; at any given instance of time, the 

pending updates which are not yet committed should exist securely in the BMT update log 
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portion. Even if the system crashes without actually committing all the pending updates to the 

disk, we use this backup information from the BMT update log to recovery the BMT. For detail 

explanation of crash recovery, please read the crash recovery section. Since BCM implementation 

is interleaved with that of BMT update logging, let’s see briefly how BMT update logging is 

done. BMT update log is treated as a circular log where the writing is done from its head erasure 

unit. Once the head reaches the end of the update log, it wraps around. So, intuitively after 

committing the pending BMT entries in the tail of the BMT update log, LFSM moves the tail 

pointer ahead to prevent over-writing. 

After every commit, the sectors in the update log holding the committed updates are freed i.e. can 

be re-used. The central idea is to keep as much space as available in the update log minimizing 

the number of commits and also making sure that the tail erasure unit (EU) of the BMT update 

log is not over-written. Accordingly, there are two kinds of commit deployed by the BCM: 

Popularity-based and Critical.  

Every BMT EU has to have information regarding the entire update log EUs where the BMT 

EU’s pending updates are written to. This data structure is called a dependency list and is 

implemented as an array of lists named ppq_2_update_log []. This list is populated in 

per_page_queue_update () and is released after the specific EU is committed. Similarly, every 

BMT update log EU has to have information regarding all the BMT EUs of whose updates it is 

holding. These dependency lists is the array update_log_2_ppq []. This list is populated in 

BMT_update_log () and is released in remove_from_ul2ppq_dependency ().  

Popularity is defined as the number of BMT update log sectors occupied by updates belonging to 

one BMT EU. The BMT EU which has the maximum number of pending updates is called the 

most popular BMT EU. A simple array is used to maintain this popularity information, 

bmt_eu_2_ul_popularity [].The BCM starts operating after at least 25% of the BMT update log 

is full. At this point popularity-based commit happens i.e. updates of the most popular BMT EU 

will be committed so as to free maximum number of sectors from the update log. We bring in the 

desired EU to memory from the on-disk BMT using read_bmt_page (), modify its content from 

the BMT cache using PPQ_BMT_commit_build_page_buffer () and write it back using 

write_bmt_page (). 

Though popularity-based commit frees as many sectors as possible, it won’t guarantee the 

advancement of the tail of the BMT update log, which means the re-usability of the tail EU of the 

BMT update log is still not safe. Critical commit happens when there’s no BMT update log EU 
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available. In this algorithm, the BCM commits all the pending BMT entries in the tail EU of the 

BMT update log, which would free the tail EU of BMT update log. Thus, the critical commit 

remove the dependency of the tail eu’s update_log_2_ppq dependency list as explained before. 

Intuitively, this would move the tail of BMT update log by at least one EU so that the head of the 

update log can advance further without any loss of data. 

After every commit, we perform a check if the tail of the BMT update log can be moved further. 

This would help in the cases where the popularity based commit might be good enough to move 

the tail by itself instead depending on the critical commit. 

 

5.3 Crash Recovery  

 

The purpose of crash recovery is to reconstruct the system status after the crash, lost of the in 

memory data. The most significant information of LFSM system stored in the memory is the 

BMT entries in the BMT cache. Thus, the crash recovery module is responsible to reconstruct the 

BMT from the BMT update log after the system crash. 

LFSM detecting the crash by examining the signature sector during system initialization in 

function generate_freemap_frontier. If the signature sector is LFSM_LOAD means LFSM was 

loaded before and didn’t unload successfully. Thus, the BMT_crash_recovery is called to perform 

the crash recovery. 

BMT_crash_recovery is the main function for the LFSM crash recovery. It read out all of the data 

in the BMT update log, whose address is BMT_update_log_start. The pending BMT entries are 

obtained by parsing the data of BMT update log.  Finally, PPQ_BMT_cache_insert_one_pending 

is called to insert the pending BMT entries to the BMT cache. 

LFSM completes the reconstructing procedure by calling update_ondisk_BMT to commit all of 

the BMT entries in the BMT cache to the on-disk BMT.  

 Generally, crash recovery reconstructs the pending BMT entries from the BMT update log and 

commits them to the on-disk BMT. Because the BMT update log is a circular buffer which 

guarantee for no data overwritten and all of the pending BMT entries are recorded in the BMT 

update log, the LFSM system status can be successfully reconstructed from the crash. 
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5.4 Signature Sector  

 

When the driver is unloaded and re-loaded LFSM is supposed to get back its valid data. For this 

to happen, it should identify its previous head & tail positions of all active EUs. Also, LFSM 

should be able to decide whether the flash disk connected is a fresh disk or a previously used disk 

before checking for head & tail positions. To answer these questions, a signature sector is 

implemented.  

The “signature” is a predefined ASCII value which spots the disk connected is a fresh one or an 

already used one and it also helps to identify if the crash recovery needs to start or not. If the 

LFSM is loaded, the signature field is assigned as “LFSM_LOAD”, and it will be assigned to 

“LFSM_UNLOAD” after the LFSM is successfully unloaded, or the LFSM is a fresh one and 

never been initialized before. 

The “signature_successful_unload” is also a predefined ASCII value which decides whether the 

recovery algorithm has to start or not. If the driver is properly unloaded, no need to do a recovery. 

Else, recovery should start. The “physical_capacity” field is just an extra check to the above 

mentioned two signatures. It is redundant but enforces accuracy. “head” and “tail” fields store the 

value of head and tail of the logs at the time of unloading the driver so that while re-loading the 

driver the signature sector is read and the old head and tail could be restored. 
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Chapter 6 

 

6 Synchronization 

 

As described in main thread section, in order to convert random write to the sequential write 

LFSM invokes three I/Os to handle a single I/O request. That causes the race condition for 

conflict I/O requests, which means there’re two I/O writing the same LBA and the late coming 

I/O might be ready to be submitted to the Flash while the previous I/O is in the BMT query stage.  

To solve this problem, LFSM uses active list to make sure the conflict I/O requests are processed 

according to their incoming order. 

 

6.1 Active List  

 

All of the processing I/O requests are stored in the active list, lfsm_dev_struct.datalog_active_list. 

Each I/O request in the active list is described by bio_container data structure. The insertion of 

the active list is handled by function get_bio_container(). Before processing a new incoming I/O 

request, get_bio_container checks if the I/O request conflicts with any items in the active list by 

traversing the datalog_active_list. If it’s not a conflict I/O, a new bio_container is initialized and 

added to the active list and start to process. If it’s a conflict I/O, the bio_container will be 

appended to the wait_list of every bio that it conflicts with, and the thread handling the conflict 

I/O will be added in the io_queue and status will be changed to pending. 

After one I/O in the active list is finished, the status of entries in its wait_list is updated for the 

further process, handled in move_from_active_to_free() function. The thread of a conflict I/O 

will be woken up if all of the confliction is removed, whose number of confliction pages is equal 

to 0. The number of confliction pages is stored in the bio_container.conflict_pages. 
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Chapter 7 

 

7 Garbage Collection 

 

If we see the processing of a WRITE request by LFSM, we would understand that we always log 

the WRITES sequentially. It is noteworthy to observe that this sequential nature is with respect to 

one erasure unit i.e. inside one EU, keep the WRITES sequential. Though many of the blocks get 

overwritten with time, we cannot immediately over-write them since it would break the sequential 

write property of LFSM. Instead, we keep logging sequentially using the free blocks and mark the 

old over-written blocks as invalid. Thus, with time the number of invalid blocks increases and 

proportionally the number of free blocks decreases. Hence, to clean up the invalid blocks and 

make them re-usable (free), we do garbage collection (GC). The goal of GC is to maintain the 

balance between the invalid and free blocks. GC in LFSM is always done in the back ground 

thread in the function gc_collect_valid_blks ().  

Our garbage collection is EU-based. In other words, we collect valid blocks of one EU 

completely and move this EU to free pool and then proceed to do the same for another EU. We 

have a threshold (number of free EUs to the total number of EUs) to trigger the GC. Currently, it 

is 20% and is represented by GC_THRESHOLD_FACTOR. When this threshold is hit, GC starts 

in the background. Due to various reasons like scheduling, heavy IO in main thread, etc. there 

might be a case where the background GC might not be able to cope up to pump up the free pool 

and hence main thread mightn’t find any free EU to process it’s WRITE. In this scenario, the 

main thread yields to the background thread (to do the GC) and waits till it finds at least one free 

EU in the free pool. This we call critical garbage collection. 

A good GC algorithm should have these features: 

1. Minimize the number of valid pages copied. (Utilization) 

2. The frequency of garbage collecting an EU should be proportional to the frequency of 

invalidation of blocks inside this EU. (Temperature) 

LFSM satisfies the above mentioned criteria in a novel way as explained below. 
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7.1 Utilization 

 

Utilization represents how many valid pages are there in a EU. So, when we want to garbage 

collect an EU, we pick the EU which has the least utilization so that we have to copy the 

minimum number of valid pages. After copying all the valid pages in the EU to new location, we 

move the old EU to the free pool. The data structure which is most efficient for this purpose is 

Min-Heap, which we call LVP_Heap, where the root has the EU with the least number of valid 

pages. In log N time, we can insert and delete a EU from this heap. One important thing here is 

that we do not want to GC a EU whose pages are still being over-written (invalidated) currently. 

Because, this would result in copying those pages which would immediately get invalidated. 

Hence, we implemented something called a HList. Once a EU which is in heap gets invalidated (a 

page gets over-written), this EU is moved from heap to HList. It is kept in HList until HList’s 

length limit is reached. This limit is represented by HLIST_CAPACITY and is an experimentally 

found out to be100. This would give substantial time for the EU in HList to get invalidated as 

much as possible and by the time it gets moved to heap, it would be relatively inactive with 

respect to getting invalidated. In other words, we want to keep waiting a EU in HList to move to 

Heap until its utilization gets stabilized. Now, it can be safely garbage collected. Note that, if a 

EU in HList gets invalidated, it is moved to the head of the HList and when HList limit is 

reached, the EU from the tail of the HList is removed and inserted to Heap. 
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Free List Active EU

LVP

Heap
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Initialization

Active EU is 
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Active EU 

is full

Invalidation

Invalidation

Garbage 

Collection

Garbage 

Collection

Destroy

Destroy

Destroy

Life Cycle of an EU based on it’s Utilization

Hlist full

 

Figure 7.1 

 

7.2 Temperature 

 

Temperature denotes the frequency of invalidation of the blocks. We assign the blocks which get 

frequently over-written as HOT, the ones which are relatively stable as WARM, and the ones 

which are almost never over-written as COLD. For example, DLL files could be termed COLD, 

while TEMP files are treated as HOT. The idea is to group the blocks having the same 

temperature in the same EU. The assumption is that blocks having the same temperature 

generally die (invalidated) together. Hence, it makes sense not to garbage collect those EUs 

which have cold blocks as frequently as those EUs having warm blocks. Similarly, the EUs 

having warm blocks are garbage collected lesser number of times when compared to those having 

hot blocks. This will avoid the number of EUs that are actually garbage collected and also 

garbage collect those EUs which would give us more free blocks. Hence this improves the 

efficiency of the process. When a block is written for the first time, by default it goes to a cold 

EU. Once it gets over-written, it is moved to warm EU. If it’s again over-written, it is moved to 

hot EU and stays there for any further invalidation. Similarly, if a hot block survives (remains 
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valid in the EU) a GC once, it is moved to warm EU. If it survives the 2
nd

 GC, it is moved to cold 

EU and it stays there after any further GCs. 

COLD WARM HOT

Invalidation Invalidation

Invalidation

GCGC

GC

Life cycle of a block based on temperature

 

Figure 7.2 

We keep the information regarding HList and LVP_Heap in struct HListGC and the information 

regarding the utilization & temperature of every EU in its respective struct EUProperty. 

Since garbage collection and main thread WRITES run concurrently, there might be a possibility 

of conflicts i.e. both targeting the same LBN. For example, a GC WRITE finds out that the LBN 

its moving is already in the Active List. This means that particular EU having this LBN is being 

invalidated and hence would be moved to HList and shouldn’t be garbage collected. Hence, we 

should abort the garbage collection of this EU. 

 

7.3 Procedure 

 

As explained earlier, the main goal of GC is to pump up the pool of free EUs. We would try and 

garbage collect enough EUs so that effectively we would generate at least one EU worth of free 

space. So we try to pick EUs from the heap one after another until we find out that garbage 

collecting these EUs would give us one EU worth free space. If we find that EUs in heap aren’t 

enough to satisfy our constraint, we pick from hlist. Now we start the process of GC on this list of 

EUs we picked considering one EU at a time. 

The information regarding the LBN of all the blocks in the EU is kept in a sector called metadata 

sector. This sector resides in the last block (8 sectors) of the EU. So, we will read this sector now 

and get the information of which LBNs are present and also how many of those are still valid 

using the EU bitmap. After getting this information, we would try to allocate bio containers to 

serve the WRITES of these valid pages. If we find any conflict with main thread WRITE, we 
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would stop of the GC of that EU and proceed to the next. Next, we will read the entire EU. After 

having the content of the EU in memory, we would move the EU to Free List from Heap/Hlist 

depending on the present location of the EU. Next step would be to assign new PBN to these 

blocks where they would end up eventually. Copy the content read before to the containers 

allocated and executed the WRITE one page after another. After this is done, release the 

containers and free the data structures promptly. Repeat this process for all the EUs in the pickup 

list.



 
 

28 
 

Chapter 8 

 

8 Distribution of BMT log and BMT Update log EUs (Floating) 

 

As mentioned in the overview section of the design of LFSM, BMT log and BMT Update log are 

not contiguous. Their EUs are distributed across the disk. The actual layout is as shown in the 

below figure. The basic idea is to get all (almost) the EUs of the disk to the free pool so that some 

algorithms of “wear-leveling” and “erasure” could be incorporated in to the LFSM design. 

 

BMT Update log

BMT

Super Map

Data Dedicated Map

Distributed Mapping of LFSM

1. Super map is fixed at start and holds address of Dedicated map.

2. Dedicated map floats. It holds the address of BMT Update log head and BMT 

base addresses array.

3. BMT Update log floats connected as a linked list.

4. BMT log floats.

5. Data log floats.

 

Figure 8.1 

 

8.1 Super map 

 

Super map is the only static section of LFSM. The first 2 EUs of the disk are reserved for this and 

these 2 EUs do not participate in wear-leveling. But, we will try to minimize the amount of 

writing to these 2 EUs so that they don’t get worn out soon. The information stored in the Super 

map is the address of the dedicated map EU and LFSM signature to identify fresh/re-used/crashed 

disk. Whenever the dedicated map EU changes, the new address of the dedicated map EU is 

logged in the Super map. This logging is sequential in these 2 EUs and when the 2 EUs are full, 

we wrap around. To the most updated super map entry, we use the latest sequence number 

approach. 
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8.2 Dedicated map 

 

Dedicated map is a single EU which holds the address of the head EU of the BMT Update log 

and the array of base addresses of the BMT log EUs. We know that the head EU of the BMT 

update log will possibly change only after a BMT commit. Also, the base addresses of the BMT 

EUs will also change during that time only. So, after every commit, we have to log these two 

details to the dedicated map EU. Of course, we have to write sequentially inside this EU and once 

it’s full, we move it to the free pool and allocate another dedicated EU from the free pool. In this 

scenario where the dedicated EU changes, the same event is logged to the Super map. 

 

8.3 BMT Update log 

 

As explained before, the address of the head EU of the BMT Update log is stored in the dedicated 

map and whenever the head changes, that event is logged to the dedicated map. BMT Update log 

size is statically decided and only those many maximum number of EUs can be allocated for the 

update log from the free pool. The EUs are connected with each other in the form of a linked list 

i.e. every update log EU holds in its last sector the address of the next update log EU. These EUs 

are linked for two reasons – 1) to read them sequentially one after another during crash recovery 

2) to change the update log head after BMT commit, following the links. 

 

8.4 BMT log 

 

During initialization we allocate all the BMT EUs and hold their base addresses in an array called 

BMT_map[]. This information is logged in the dedicated map along with the update log head. 

Whenever a new EU replaces an existing BMT EU during commit, the change is reflected in the 

BMT_map[] and also it is logged to the dedicated map immediately. After a driver is re-loaded, 

we read the Super map to get the dedicated EU. We read the dedicated EU to get the BMT_map[] 

and thus we populate our BMT EUs. 
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8.5 BMT Lookup 

 

The virtually linear BMT lookup is supported just by adding the base address offset from the 

BMT_map[] array to get the exact address of the BMT EU which we would like to fetch the BMT 

record from. 

 

8.6 BMT Commit 

 

Again, we have to maintain the linear BMT impression. When we read a BMT EU from disk, we 

move the EU to the free pool, allocate another EU from the free pool, write to the new EU and 

change the base address of that EU in the BMT_map[] array. 

 

8.7 Crash Recovery 

 

The crash recovery algorithm is almost similar to what was previously explained in section 2.9. 

Only difference is that to read the Update log, we have to do some extra steps – read super map, 

then read dedicated map to get the update log head and now start reading the BMT update log 

EUs one after another following the link. Remember that the address of the next update log EU is 

stored in the last sector of the current update log EU. 
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Chapter 9 

 

9 Performance Evaluation 

9.1 Methodology 

 

In this section, we are going to use a synthetic work load to measure the average write and read 

end-to-end latencies to compare the performance of an LFSM-enabled flash disks and vanilla 

flash disks. Then we show the effectiveness of Interval-based Caching technique of LFSM 

running the block level traces of one day workloads from TPCC and CIFS servers. Finally, we 

will analyze the performance of the garbage collection algorithm by checking the effective time 

spent on copying the valid blocks per erasure unit.  

 

9.2 Programs 

 

Most of the tests we performed to check the read/write latencies of the flash disk are from the 

simulating programs written to emulate the sequential and random nature of access. This is done 

on purpose. Because, most of the real world IO load would never be completely sequential or 

completely random – it will be a mixture. Since, we know already that the performance of 

FLASH is excellent under sequential workload; the main challenge of LFSM is to answer the 

random write performance issue. Thus, we wanted to simulate 100% random work load to the 

flash disk and to achieve that our synthetic load generators are the best choice.  

However, measuring the performance of our interval-based caching algorithm is a different issue 

since caching techniques should be measured not on 100% sequential or 100% random 

workloads. Rather, the effectiveness of any new caching technique should be measured on real 

world scenarios and hence we opted to use TPCC and CIFS servers’ workloads. 

9.3 Environment 

 

We used a Dell Dimension 9200 system with 4GB RAM and Intel Core 2 Duo E6400 2.13GHz 

CPU having 2048KB L2 Cache. The disk is SAMSUNG 16GB 3.3V ATA5 UDMA66 SLC flash 

disk. Operating system is Fedora 10 distribution and kernel version 2.6.25.14. 
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9.4 Results 

 

The below table shows the end-to-end latencies of read and write requests of size 4KB to the 

vanilla flash disk. The readings are taken after sending 1 Million requests. 

 

 Sequential Random 

Read 364 376 

Write 906 38868 

 

Table 9.1 Latencies in Microseconds of a 4KB request of vanilla flash disk. 

 

The below table shows the end-to-end latencies of read and write requests of size 4KB to an 

LFSM-enabled flash disk. The readings are taken after sending 1 Million requests. 

 

 Sequential Random 

Read 384 398 

Write 1866 2933 

 

Table 9.2 Latencies in Microseconds of a 4KB request of LFSM. 

 

If we observe the last row of the above table, it’s interesting to see that the LFSM’s sequential 

write performance is a little less when compared to the vanilla flash disk. But, if we notice the 

random write latency, LFSM beats the vanilla disk’s performance by a magnitude. To understand 

these numbers in detail, we need to have a look at a more detailed version of the above table 

where the total latency is expanded in terms of the delaying components. 
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 Critical 

Commit 

BMT Lookup Data Logging BMT Update 

logging 

Total latency 

Sequential 0 14 906 948 1866 

Random 11 29 1465 1435 2933 

 

Table 9.3 Latencies in Microseconds of a 4KB request of LFSM expanding on delaying 

components. 

 

As it is clear in the above table, that the overhead in the LFSM design is the BMT Update 

logging, which has to be done to ensure data protection against system crashes. But, if we 

consider the overall improvement of performance by LFSM to the flash disk’s vanilla 

performance, because of the magnitude gain in the random write performance, LFSM alleviates 

the performance bottle necks of FLASH memory. 

Now, let’s see what is the time consumed in the background thread by our temperature 

based garbage collection technique. The below table explains those details. 

 

 

 Read EU 

metadata 

BMT 

Lookup 

Data 

logging 

BMT 

Update 

loggin 

Total 

latency per 

EU 

Sequential 11 161 1105 2708 4003 

Random 57 417 929 2103 3511 

 

Table 9.4 Latencies in Microseconds of temperature-based garbage collection per erasure 

unit (EU). 

We see that the garbage collection overhead of LFSM is very low because of the sophisticated 

temperature-based garbage collection algorithm. LFSM is incurring 4003 microseconds to do the 

garbage collection of 1 erasure unit which would have 128 4KB pages in general on a sequential 

workload. That is, 31.2 microseconds per 4KB page which is very minimal. On a random 

workload, the garbage collection results are still better with a 3511/128 = 27.42 microseconds per 

4KB page. 
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Chapter 10 

 

10 Conclusion and Future Work 

 

On conclusion, we have presented a storage system called Log Structured Storage Manager 

(LFSM) which alleviates the random write performance bottleneck of flash disks to a great 

extent. We measured the performance numbers of LFSM over that of vanilla flash disk and found 

out that LFSM defeats the vanilla flash disk’s overall performance by reducing the random write 

latency by 10 times though we incur a slight overhead in case of sequential write latency. We 

have designed, implemented and evaluated several new techniques in the LFSM – Interval-based 

Cache, Temperature-based garbage collection and BUSC principle – and came to a definitive 

opinion that they all work extremely wonderful for FLASH memory. 

When we see table 9.3, we would observe that the major overhead which LFSM incurs is that of 

the BMT Update logging. To re-state, we have to do the BMT Update logging to keep LFSM 

design safe from any system crashes in which case, the in-memory updates to the BMT would be 

lost. In the current implementation, if we consider a single write request, BMT Update logging is 

started after the Data logging is done in order. That is, we have to wait till we get the interrupt 

from the disk for the data logging and then we have to do the BMT Update logging. This 

limitation is only because we do not have the luxury to do both the loggings concurrently from 

the operating system level. Therefore, if we can somehow do both data logging and BMT Update 

logging concurrently to the flash disk, this small overhead of BMT Update logging would also be 

completely nullified. 

We implemented LFSM at block layer of Linux kernel at which we didn’t had the luxury of 

exercising different planes of FLASH memory. However, FTL (Flash Translation Layer, 

firmware of FLASH) can definitely do it. That is, FTL can send writes to different planes inside 

the FLASH memory concurrently. Thus we believe that if LFSM can be ported to FTL, data 

logging and BMT update logging can be directed to different planes so that they both get 

executed concurrently. In this way, we overcome the overhead of BMT Update logging 

completely and the small extra time which we are incurring in case of sequential writing would 

not be present. Thus, for future work, we are expecting to move LFSM from block layer to FTL 

to get the best performance out of the FLASH memory. 
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