

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

LFSM – a system to optimize the random write

performance of FLASH memory

A Thesis Presented

by

Goutham Meruva

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2010

ii

Stony Brook University

The Graduate School

Goutham Meruva

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Professor Tzi-cker Chiueh – Thesis Advisor

Department of Computer Science

Associate Professor Erez Zadok – Chairperson of Defense

Department of Computer Science

Assistant Professor Jie Gao

Department of Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin

Dean of the Graduate School

iii

Abstract of the Thesis

LFSM – a system to optimize the random write

performance of FLASH memory

by

Goutham Meruva

Master of Science

in

Computer Science

Stony Brook University

2010

In recent years, the storage medium behind enterprise servers and personal computers has

started migrating from the traditional magnetic disks to solid state disks (FLASH

memory). There are many compelling reasons behind this shift like superior access

speeds, high robustness, and lower power consumption due to lack of any mechanical

moving parts. However, there are two very important drawbacks of FLASH which are

causing severe concerns. First, the cost-per-GB is still very high and second, FLASH’s

random write performance is many folds slower than its sequential write performance.

Log Structured Flash Storage Manager (LFSM) is a storage system for FLASH which

effectively alleviates this problem to a great extent. The basic idea is to treat every write

as sequential write and it sequentially to FLASH and maintain the mapping information.

To solve the three common problems with this kind of design – random write to the

iv

mapping information, lookup of the mapping, and generation of free space for new

incoming writes – LFSM incorporates three authentic techniques called Batching Updates

and Synchronous Commit (BUSC), Temperature-based Garbage Collection and Interval-

based Caching.

In this report we explain the fundamental architecture of FLASH memory, techniques to

leverage the best performance out of it, a system to convert all writes to sequential writes

with respect to FLASH, BUSC principle, Temperature-based Garbage Collection,

Interval-based Cache and finally the results of experiments conducted to evaluate

FLASH’s performance.

To

My Family and Teachers

vi

Table of Contents
1 Introduction.. 1

2 Overview ... 3

2.1 General description ... 3

2.2 LFSM Architecture ... 3

2.2.1 Main thread .. 6

2.2.2 Background thread ... 6

3 Design of LFSM .. 7

3.1 Disk Write Logging ... 7

3.2 BMT ... 7

3.3 BMT Update Log .. 10

4 Interval-based Cache for in-memory BMT ... 12

4.1 Data structure .. 12

4.2 BMT cache LRU list: .. 16

5 BMT Commit ... 18

5.1 BUSC Principle ... 18

5.2 BMT Commit Manager ... 18

5.3 Crash Recovery ... 20

5.4 Signature Sector .. 21

6 Synchronization ... 22

6.1 Active List .. 22

7 Garbage Collection... 23

7.1 Utilization ... 24

7.2 Temperature .. 25

7.3 Procedure .. 26

8 Distribution of BMT log and BMT Update log EUs (Floating) ... 28

8.1 Super map ... 28

8.2 Dedicated map .. 29

8.3 BMT Update log ... 29

8.4 BMT log ... 29

vii

8.5 BMT Lookup .. 30

8.6 BMT Commit .. 30

8.7 Crash Recovery ... 30

9 Performance Evaluation ... 31

9.1 Methodology ... 31

9.2 Programs ... 31

9.3 Environment.. 31

9.4 Results .. 32

10 Conclusion and Future Work .. 34

Bibliography ... 35

Acknowledgements

First of all, I wish to sincerely thank Prof. Tzi-cker Chiueh for his guidance and support all

through the project. I would also like to thank all the present and past colleagues at Rether

Networks Inc (RNI). In particular, Mr. Pi-Yuan Cheng for his insightful advice and help

throughout my thesis work and Sheng-I Doong, President of Rether Networks, for her kind

support.

1

Chapter 1

1 Introduction

The recent commoditization of USB-based flash disks, mainly used in digital cameras, mobile

music/video players and cell phones, has many pundits and technologists predict that flash

memory-based disks will become the mass storage of choice on mainstream laptop computers in

two to three years. In fact, some of the ultra mobile PCs, such as AsusTeks Eee PC, already use

flash disks as the only mass storage device. Given the much better performance characteristics

and enormous economies of scale behind the flash disk technology, it appears inevitable that flash

disks will replace magnetic disks as the main persistent storage technology, at least in some

classes of computers.

Compared with magnetic disks, flash disks consume less power, take less space, and are more

reliable because they don’t include any mechanical parts. Moreover, flash disks offer much better

latency and throughput in general because they work just like a RAM chip and don’t incur any

head positioning overhead. However, existing flash disk technology has two major drawbacks

that render it largely a niche technology at this point. First, flash disk technology is still quite

expensive, approximately $10-15/GB, which is at least 20 times as expensive as magnetic disks.

Indeed, at this price point, it is not uncommon that a flash disk costs as much as the computer it is

installed on. Second, flash disks performance is better than magnetic disk when the input

workload consists of sequential reads, random reads, or sequential writes. Under a random write

workload, flash disks performance is comparable to that of magnetic disk at best, and in some

cases actually worse. We believe the cost issue will diminish over time as the PC industry shifts

its storage technology investment from magnetic to flash disks. However, flash disks random

write performance problem is rooted in the way flash memory cells are modified, and thus cannot

be easily addressed. This document describes the design and implementation of a log-structured

flash storage manager (LFSM) that effectively solves this problem.

A flash memory chip is typically organized into a set of erasure units (EUs) (typically 256

Kbytes), each of which is the basic unit of erasure and in turn consists of a set of 512-byte

sectors, which correspond to the basic units of read and write. After an EU is erased, writes to any

of its sectors can proceed without triggering an erasure if their target addresses are disjoint. That

2

is, after a sector is written and before it can be written the second time, it must be erased first.

Because of this peculiar property of flash memory, random writes to a storage area mapped to an

EU may trigger repeated copying of the storage area to a free EU and erasing of the original EU

holding the storage area, and thus result in significant performance overhead.

Moreover, flash disks typically come with a flash translation layer (FTL), which is implemented

in firmware, maps logical disk sectors, which are exposed to the software, to physical disk

sectors, and performs various optimizations such as wear leveling, which equalizes the physical

write frequency of EUs. This logical-to-physical map will require 64 million entries if it keeps

track of individual 512-byte sectors on a 32-GB flash disk. To reduce this maps memory

requirement, commodity flash disks increase the mapping granularity, sometimes to the level of

an EU. As a result of this coarser mapping granularity, two temporally separate writes to the same

mapping unit, say an EU, will trigger a copy and erasure operation if the target address of the

second write is not larger than that of the first write, because a commodity flash disk cannot

always tell whether a disk sector in an EU has already been written previously. That is, if the N-th

sector of a mapping unit is written, any attempt to write to any sector whose sector number is less

than or equal to N will require an erasure, even if the target sector itself has not been written at

all. Consequently, coarser mapping granularity further aggravates flash disks random write

performance problem.

To address the random write performance problem, LFSM converts all random writes into

sequential writes to a set of unified logs by introducing an additional level of indirection above

the FTL. Because all commercial flash disks have good sequential write performance, LFSM

effectively solves the random write performance problem for these disks in a uniform way

without requiring any modifications to their hardware implementations. With this log-structured

storage organization, LFSM needs to overcome two major challenges. First, LFSM still face

random writes because it needs to maintain a separate map for the level of indirection or

translation it introduces and writes to this map are random. LFSM minimizes the performance

overhead of these random writes by using a technique called BUSC, batching updates with

sequential commit. Second, to minimize the amount of copying whenever LFSM reclaims an EU,

it needs to allocate EUs to logical blocks in such a way that logical blocks assigned to the same

EU have a similar life time and each EU contains the stabilized utilization ratio, which means it is

less possible the utilization ratio will be changed in the future.

3

Chapter 2

2 Overview

2.1 General description

LFSM is a storage manager that sits between a file system and a flash disks native driver, and can

be considered as an auxiliary driver specifically designed to optimize the random write

performance for existing flash disks in a disk-independent way. A property shared by all

commodity flash disks on the market is good sustained throughput for sequential writes, between

30-60 MB/sec. The basic idea behind LFSM is to convert random writes into sequential writes so

as to eliminate random writes from the workload that a flash disk physically faces by

construction. To perform such conversion, LFSM implements the linear disk address space

exposed to the file system using multiple logs, and turns every incoming logical write into a

physical write to the end of one of these logs which mapped to different active EUs. Because

writes to each log are sequential in an EU based nature, their performance is the same as

sequential write performance.

2.2 LFSM Architecture

File System / Database

LFSM

Garbage

Collection

Logical block

read/write

Physical block

read/write

BMT commit
BMT

update

log

BMT

query

Flash drive

On-disk

BMT

Manager

Logging

BMT

Hot Log

Cold Log

Warm Log

BMT

Commit

Manager

BMT

Cache

Physical block

read/write

BMT region Data region

BMT

update log

Figure 1.1 LFSM architecture

4

As Fig 1.1 demonstrates, LFSM sits below the file system and above the flash drive. Accordingly,

there are two address spaces in this design. The file system and/or user applications see a linear

sequence of logical blocks exposed by LFSM. The native flash disk driver exposes a linear

sequence of physical blocks to LFSM.

LFSM consists of two threads. The main thread is responsible for synchronous flash disk logging

whereas the other background thread is responsible for asynchronous BMT commit and garbage

collection.

The main function of logging block is to transfer the random write to the sequential write. While

receiving the random logical write request, the logging block converts it to the sequential write

address in one of the three different temperature logs, hot, cold and warm logs. The three

different temperature logs store different life time data. Colleting the data with the similar life

time together will ease the garbage collection performance penalty.

Log-structured file system (LSF) was one of the earliest works on organizing the entire file

system as a log in order to mitigate the disk I/O bottleneck problem. LFSM borrows ideas from

LFS, particularly in the area of garbage collection. LFS maintains a single log of segments, and

uses a product of segment age and segment utilization ratio as the metric to determine the order in

which segments are reclaimed. In contrast, LFSM advocates multiple logs, each of which is

mapped to an EU with a distinct estimated life time range. Then, LFSM maintains a fixed-sized

LRU, Hlist (also referred as hot_list), to move the least recently used log EU to the least valid

page heap (LVP_heap). LVP_heap sorts the non-recently used EUs by the utilization ratio, and

the root of LVP_heap has the minimum utilization ratio. LFSM chooses to reclaim the EU with

the additional stabilization information instead of reclaiming EUs only according to their

utilization ratio (e.g. smaller first), as in the case of LFS.

As LFSM transfers the logical block address (LBA) to physical block address (PBA), in block

mapping table (BMT) it stores the look up table for LBA to PBA. The BMT data is stored on

disk, and the on-disk BMT manager gets the BMT record by additional disk I/O. To mitigate the

performance penalty of disk I/O, the BMT cache use interval-based data structure to cache the

most recently used BMT record in the memory. The BMT update log is a circular log to record

the pending BMT entries, the BMT entries which are not committed to the disk yet. LFSM uses

BMT update log to retrieve the pending BMT entries from system crash.

5

BMT commit manager brings the pending BMT records to the on-disk BMT. To ensure BMT

commit is sequential process, LFSM brings in an EU worth of BMT entries, commit pending

updates to it, and write the new BMT entries to back to the EU brought in. Thus, the BMT

commit also invalidates the corresponding pending records in BMT update log. The order in

which BMT EUs are brought in is determined based on the following two considerations: (a)

effective number of BMT updates committed and thus queue space freed, and (b) the extent to

which the global frontier is moved and thus the extent to which the BMT update log is freed.

Sometimes one has to focus exclusively on (b) to free up enough space in the BMT update log to

continue. The BMT popularity commit aims to handle (a) while the BMT critical commit focus

on (b) condition.

To reclaim unused space on the logs, LFSM performs garbage collection in the background,

whose associated performance impact could be quite substantial. The performance cost of

reclaiming an EU mainly comes from copying out the live physical blocks in it and is thus

proportional to the number of such blocks at the time of reclamation. To minimize the

performance overhead associated with garbage collection, the LFSM garbage collection

implements the intuition that picks for garbage collection the least utilized EU whose temperature

is cold.

Following we give an example of a write request. While receiving the read/write request

associated to logical block address (LBA), LFSM performs the block map table (BMT) query to

identify the temperature of the data. To accelerate the BMT look-up procedure, LFSM uses an in-

memory BMT cache. According to the temperature, LFSM logs the content to the physical block

address (PBA), and update the PBA to the BMT. To prevent BMT corruption due to the crash,

LFSM logs the pending BMT record to the BMT update log. Finally LFSM returns the write

success hardware interrupt.

The physical layout of LFSM on disk is a little different from what is depicted in the Fig. 1. That

is, although conceptually we maintain the impression of linear BMT and BMT Update log but

actually the erasure units of both the logs are distributed on the disk. We do this for purposes of

“wear-leveling” and “erasure” which will be explained in detail later. Hence without loss of

generality, for all our following discussions, we consider BMT and BMT Update logs as

contiguous.

6

2.2.1 Main thread

The main thread comprises of the reads or writes from the file system. Let’s see in detail how to

handle each of them in detail.

For WRITE, four actions are supposed to be performed: BMT lookup to get the current physical

block number of the request, log the write buffer to the data log sequentially, log the BMT update

to the BMT update log sequentially and modify the in-memory data structure for the BMT

update.

For READ, two actions are supposed to be performed: BMT lookup to get the current physical

block number of the request and read from the disk from the desired location.

2.2.2 Background thread

The background thread is responsible for asynchronous BMT commit and garbage collection. The

garbage collection is handled by gc_collect_valid_blocks function while the BMT commit is

handled by BMT_commit_manager function.

7

Chapter 3

3 Design of LFSM

3.1 Disk Write Logging

The logging part of LFSM converts the random logical LBA to sequential PBA belonging to one

of the active logs depending on the temperature of the LBA.

The temperature logging idea eases the garbage collection overhead. LFSM categorizes write data

into AGE_GROUP_NUM+1 different temperature levels, e.g. AGE_GROUP_NUM is equal to

2, which are hot, warm and cold data. The cold data is expected to have the longest life time,

warm data has medium, and hot data has the shortest life time respectively. If the LBA of the data

has never been written before, the data will be treated as the cold data as default. If the LBA of

the data has been written before, the temperature of the data is increasing, meaning the

temperature is hot if it was warm, and is warm if it was cold, and remain hot if it was hot. The

temperature level of the data only drops one level when it is copied during the garbage collection

as a live data. The hot log should be invalidated in a short period of time and becoming a good

target for garbage collection. LFSM keeps AGE_GROUP_NUM+1 active EUs,

HListGC.active_eus [], to store the incoming data with different temperature.

All EUs are categorized into three different groups in LFSM, which are free, recently used, and

the one with fixed utilization ratio. LFSM links all free EUs in a linked list, HListGC.free_list.

Active EUs are picked from the free list. While one active EU is full, it is moved to the

HListGC.hot_list, which stores the recently used EUs, and might have different utilization ratio in

the future. If the hot_list is full, the least recently used EU in the hot_list will be moved to the

HListGC.LVP_Heap in which the EUs are considered having the fixed utilization ratio.

3.2 BMT

The main function of the BMT module is the LBA to PBA mapping. The BMT module can be

8

divided into three sub systems, the on-disk BMT, BMT cache and BMT update log as shown in

Fig 3.1.

BMT Cache

page[0]

page[1]

…

page[63]

 EU[0]

Popularity = 257

{0,2052,1} {5,2048,3} page[64]

page[65]

…

page[127]

 EU[2]

Popularity = 2

{64k,1279,1} {64k+1,1251,1}

{0
,1

0
2

4
,1

}

On-Disk BMT update log

{0
,1

0
2

5
,1

}

{0
,1

0
2

6
,1

}

…
..
.

{0
,1

2
7

8
,1

}

{6
4

k
,1

2
7

9
,1

}

Tail

255 identical entries

{0
,1

0
2

7
,1

}

{0
,1

0
2

8
,1

}

{0
,1

0
2

9
,1

}

{0
,1

0
3

0
,1

}

{0
,1

0
3

1
,1

}

{0
,1

0
3

2
,1

}
EU[0]

{5
,2

0
4

8
,3

}

{6
4

k
+

1
,2

0
5

1
,1

}

{0
,2

0
5

2
,1

}

EU[1]

Head

On-disk BMT

LBA[1024].PBA

LBA[1025].PBA

LBA[1026].PBA

…...

LBA[2047].PBA

LBA[1027].PBA

LBA[1028].PBAP
A

G
E

[1
]

LBA[0].PBA

LBA[1].PBA

LBA[2].PBA

…...

LBA[1024].PBA

LBA[3].PBA

LBA[4].PBAP
A

G
E

[0
]

LBA[63k].PBA

LBA[63k+1].PBA

LBA[63k+2].PBA

…...

LBA[64k-1].PBA

LBA[63k+3].PBA

LBA[63k+4].PBAP
A

G
E

[6
3

]

...

BMT EU[0] EU[1]

…...

Figure 3.1 BMT models. Assuming EU size is 128KB, page size is 4KB, sector size is

512B, and on-disk BMT entries is 4B indexed by LBA.

LFSM manages the on-disk BMT as an array indexed by LBA and stored on disk. The Fig 3.1

gives an example that one BMT EU can store up to 64K BMT records. On-disk BMT look-up can

be simply served by a disk read I/O with LBA offset.

The BMT lookup process is defined in the bmt_lookup function, which query the BMT in the

BMT cache by PPQ_BMT_cache_lookup, and if cache happened, read_small_disk_io_temp is

called to obtain the BMT entry from the on-disk BMT and PPQ_BMT_cache_insert_nonpending

is called to insert the BMT entry into the cache.

The BMT cache mitigates the disk I/O time for the BMT look-up procedure. BMT cache is

arranged in a per-BMT-page structure as shown in Fig 2. The data in the BMT cache can be

categorized as pending BMT entries and non-pending BMT entries. The pending BMT entries

9

represent the BMT entries which haven’t been committed to the on-disk BMT, while the non-

pending BMT entries are identical to the one in on-disk BMT. While logging block writes the

new pending BMT record to the BMT update log, it also updates the BMT cache for the same

entry. During the BMT lookup process, if cache miss happened, the on-disk BMT manager

performs the BMT query through the disk I/O with the minimum write unit size, sector. All of the

BMT records in the sector will be added to the BMT cache. While BMT cache is full, LFSM

ejects non-pending BMT entries in the least recently used BMT EU. Although the interval-based

BMT cache saves memory space by aggregating the adjacent BMT entries, it also introduces

additional complexity of merge and split the BMT entries. While inserting a BMT entry to the

BMT cache, we have to merge the BMT entry with the adjacent entries if they have contiguous

PBAs. While ejecting or updating the BMT entry, we might have to split one BMT entry apart for

the different intervals. The BMT cache is defined in bmt_ppq.c and will be described in the latter

section.

Although LFSM has converted the random LBA write to the consecutive PBA write, the BMT

commit manager has to write to the LBA BMT entries randomly. LFSM solves this problem by

using BUSC scheme to synchronously log the BMT update and asynchronously commits multiple

updates to the BMT in a batched fashion. Because of BMT update log, even if the system

crashes, the BMT updates that have not been flushed to the on-disk BMT can be correctly

reconstructed at recovery time. The BMT commit manager asynchronously commits the BMT

pending records through aggregated and sequential writes to reduce the performance overhead of

the random writes to the BMT.

Using BUSC to update the BMT means each logical block write operation triggers three write

operations, the first being writing a new version of the logical block to a block data log, the

second being logging the associated BMT update log, and the third being actually updating the

corresponding on-disk BMT entry. The first two writes are done synchronously and the third

write is done in an asynchronously and batched fashion. Later section will present the detail of

the BMT commit manager.

BMT update log manager ensures that uncommitted BMT updates can be correctly recovered

when machines crash, and thus makes it possible to commit pending BMT updates in an efficient

manner without compromising the BMTs integrity.

10

3.3 BMT Update Log

The BMT update log is a circular sequence of EUs, with two pointers tail and head. The logging

block writes the pending BMT records to the BMT update log and head pointer is moved to the

next free write sector. While the BMT commit manager will invalidate the pending BMT records

in the BMT update log. If all of the BMT records in the tail EU are invalidated, the tail pointer is

moved to the head of the next adjacent EU. The size of the BMT update log defines the maximum

number of pending records in the LFSM system. While the BMT update log is full, which means

the head and tail pointer are overlapped, the incoming write will be pending until the BMT

commit manager invalidate the tail EU. The BMT update log entry is designed as A_BMT_E

structure. The advantage of using interval-based BMT update log entry is because if LFSM

receives the write I/O with more than one sector, the additional BMT update log entry can be

replaced by simply increasing the run_length field by one.

When a machine crashes, LFSM scan through the BMT update log and reconstruct the pending

BMT entries according to the sequence number in the BMT update log entries. To facilitate the

identification of not-yet-committed BMT updates, LFSM includes the following information in

the BMT update log entry associated with each logical block write operation: (1) the LBA, PBA,

and the run length, (2) the writes corresponding sequence number, (3) the commit point: the

sequence number of the youngest logical block write operation all BMT updates before which

have already been committed to disk. With these information, LFSM reconstructs pending BMT

updates by first identifying the latest or youngest BMT log entry (whose sequence number is N1),

then obtaining its associated commit point (whose sequence number is N2), and finally reading in

all the BMT update log entries between N1 and N2 to insert them into their corresponding per-

BMT-page queues.

Logging BMT updates entails a space overhead problem: Because the minimum unit for reading

and writing a flash disk is a 512-byte sector, each BMT update log entry costs a 512-byte sector

even though in actuality it requires 22 bytes, which shown in the Fig2. This means the space

overhead associated with BMT logging is about 12.5% (512 bytes for every 4-KB page), which is

too high to be acceptable. LFSM sitting above to the firmware level cannot utilize the out-of-band

area of each block. To minimize the performance overhead, LFSM preserve 10M disk space

11

dedicating for the BMT update log on 64GB disk. The BMT update log disk space stores up to

20K BMT update log entries.

With the above design, LFSM successfully services each logical block write operation with a

single synchronous sequential write to the BMT update log and a sequential write to the active

EU, and thus greatly improves the random write performance of modern flash disks. However,

BMT update log introduces additional disk write penalty. One way to solve the additional write

problem is simply separating the BMT update log to different disks to perform two parallel write

operations.

12

Chapter 4

4 Interval-based Cache for in-memory BMT

The BMT cache is used to improve the performance of BMT look up. The BMT cache utilizes the

data structure of the per page queue and mixed the cache entries, which are called non-pending

entries, with the BMT per page queue entries, which are called pending entries, to form a sorted

linked list.

In order to save the memory space, the consecutive BMT entries in per page queue with the

consecutive LBN and PBN can be merged together as an aggregated BMT entry (A_BMT_E).

For example, BMT{LBN:100 PBN:200}, and BMT{LBN:101 PBN:201} can be merged as

A_BMT_E{LBN:100 PBN:200 runlength:2}. As normal inserting algorithm to the sorted linked

list, It takes O(n) for a BMT look up in a per page queue and O(n) to insert an entry to the per

page queue.

We need to hold a threshold of max. number of the non-pending entries can be co-existing in the

BMT cache, which is PPQ_CACHE_T_HIGH. The background thread is responsible for

detecting if the total non-pending entry count, BMT.total_non_pending_items, is larger than the

threshold, and removing proper number of entries from the BMT cache when necessary. The

corresponding control algorithm for the total pending entry count should be handled by the BMT

commit module.

The reminder of this section will describe the A_BMT_E data structure, and go through the main

algorithms and private and public functions.

4.1 Data structure

struct A_BMT_E{

 sector_t lbno;

 sector_t pbno;

 int run_length;

};

13

Insert one BMT entry to the BMT cache:

The purpose of PPQ_BMT_update function is to insert one single A_BMT_E entry to the

ppq.bmt_cache. To insert an A_BMT_E entry to BMT cache by traversing from the head of the

BMT cache list, we also need to consider about the new entry could be merged to or split by the

existing entries, or it’s just an independent entry. We need to adjust the non-pending count and

pending count for the BMT cache as well.

The possible inserting cases for the new coming BMT entry can be categorized as following.

1.1 new.lbno < existing.lbno

1.1.1 new.lbno+new.run_len <= existing.lbno

 New coming entry is added in front of the existing entry.

Existing (Pending/Non-pending)New (Pending/Non-pending)

LBN = Physical size

Figure 4.1

 1.1.2 new.lbno_new.run_len == existing.lbno+existing.run_len

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

 Figure 4.2

a. If the New is a pending entry, it can overwrite the existing entry.

b. If both of the New and the Existing are non-pending entry, the New can just

overwrite the Existing.

c. If the New is pending and the Existing is non-pending, the New entry should

not overwrite the existing entry. The result will be following.

Existing (Pending/Non-pending)New (Pending/Non-pending)

LBN = 0
LBN = Physical size

14

Figure 4.3

 1.1.3 new.lbno_new.run_len < existing.lbno+existing.run_len

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

 Figure 4.4

 We should split the New are two part and decide if lower half of the New can

over write Existing by the pending type of them.

 1.1.4 new.lbno_new.run_len > existing.lbno+existing.run_len

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.5

1.2 new.lbno >= existing.lbno && new.lbno <= existing.lbno+existing.run_len-1

1.2.1 new.lbno == existing.lbno && new.run_len == existing.run_len

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.6

1.2.2 new.lbno+new.run_len <= existing.lbno+existing.run_len

 1.2.2.1 new.lbno == existing.lbno //head aligned

15

Existing (Pending/Non-pending)

New (Pending/Non-

pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.7

1.2.2.2 newnew.lbno+new.run_len == existing.lbno+existing.runlen //tail

aligned

Existing (Pending/Non-pending)

New (Pending/Non-

pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.8

1.2.2.3 else //in the middle

Existing (Pending/Non-pending)

New (Pending/Non-

pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.9

1.2.3 new.lbno+new.run_len > existing.lbno+existing.run_len

 Two possible cases listed following.

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.10

16

Existing (Pending/Non-pending)

New (Pending/Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.11

1.3 new.lbno > existing.lbno+existing.run_len-1

Existing (Pending/Non-pending)

New (Pending/

Non-pending)

LBN = 0
LBN = Physical size

A B

 Figure 4.12

To handle the cases that (new.lbno+new.run_len) > (existing.lbno+existing.run_len), we need to

consider the merge/split cases for the BMT entries followed by the existing as well.

4.2 BMT cache LRU list:

While BMT cache is full, which means the total number of the non-pending entries in cache

reaches the PPQ_CACHE_T_HIGH threshold; we have to remove some non-pending entries

from the BMT cache.

To remove the BMT cache entries in the LRU order, we create a LRU list of BMT per page

queue cache so we can eliminate the entries according to the LRU list. Only the per page queue

with non-pending BMT cache entries will be added into the LRU list. The following example

shows a BMT with LRU order as page 1, page 2 and then page n.

We cannot only eliminate the smallest amount of entries to keep the total number of non-pending

entries in the BMT cache less than the PPQ_CACHE_T_HIGH, because that will cause the cache

full in the nearly future and impact the performance. So, we set up another threshold called

PPQ_CACHE_T_LOW. While we hit the cache full condition we remove at least

17

PPQ_CACHE_T_HIGH- PPQ_CACHE_T_LOW entries to keep the total pending entries less

than PPQ_CACHE_T_LOW.

The PPQ_CACHE_T_HIGH and PPQ_CACHE_T_LOW are default set as 10K and 8K. Further

research is needed to determine the thresholds to perform the better performance.

Per page queue [0]

.

LRU

Per page queue [1]

Per page queue [2]

Per page queue [n]

.

.

BMT

Figure 4.13 BMT Cache LRU list used for eviction

18

Chapter 5

5 BMT Commit

5.1 BUSC Principle

BUSC stands for Batching Updates and Sequential Commit. FLASH Translation Layer (FTL),

which is the firmware for FLASH, is responsible to handle the basic operations like read, write,

erasure, wear-leveling, defect management, etc among others. FTL keeps some buffers for

incoming writes called “log EUs” which hold temporarily the incoming writes. When a log block

is full, the contents inside are copied to their respective erasure units called “data EUs”. If we

write sequentially, all the blocks inside a log EU belong to a single EU. In this case, FTL need not

do any further copy – it just needs to swap the corresponding data EU with the log EU. So, when

we write randomly to FLASH, FTL has no choice but to copy all the blocks from the log EU to

their respective data EUs which is the primary reason behind the poor random write performance

of FLASH. Keeping this in mind, BUSC principle is designed.

We keep in-memory the updates which are supposed to be written to the on-disk BMT. We keep

track of these updates in a way that we know which BMT updates would go to which BMT EU.

When we are supposed to write these updates to disk, we read the whole BMT EU from disk,

update it with the new content in memory and write the whole EU back sequentially. This is

called Batching Updates and Sequential Commit.

5.2 BMT Commit Manager

BMT Commit Manager (BCM) takes care of writing the in-memory pending BMT updates to

the on-disk BMT. This process is also called BMT commit or simply commit. It is performed

always in the back ground thread in the function BMT_commit_manager (). It is recommended

to have a clear understanding of BUSC principle before proceeding further in this section.

Commit and BMT update logging are highly inter-dependent; at any given instance of time, the

pending updates which are not yet committed should exist securely in the BMT update log

19

portion. Even if the system crashes without actually committing all the pending updates to the

disk, we use this backup information from the BMT update log to recovery the BMT. For detail

explanation of crash recovery, please read the crash recovery section. Since BCM implementation

is interleaved with that of BMT update logging, let’s see briefly how BMT update logging is

done. BMT update log is treated as a circular log where the writing is done from its head erasure

unit. Once the head reaches the end of the update log, it wraps around. So, intuitively after

committing the pending BMT entries in the tail of the BMT update log, LFSM moves the tail

pointer ahead to prevent over-writing.

After every commit, the sectors in the update log holding the committed updates are freed i.e. can

be re-used. The central idea is to keep as much space as available in the update log minimizing

the number of commits and also making sure that the tail erasure unit (EU) of the BMT update

log is not over-written. Accordingly, there are two kinds of commit deployed by the BCM:

Popularity-based and Critical.

Every BMT EU has to have information regarding the entire update log EUs where the BMT

EU’s pending updates are written to. This data structure is called a dependency list and is

implemented as an array of lists named ppq_2_update_log []. This list is populated in

per_page_queue_update () and is released after the specific EU is committed. Similarly, every

BMT update log EU has to have information regarding all the BMT EUs of whose updates it is

holding. These dependency lists is the array update_log_2_ppq []. This list is populated in

BMT_update_log () and is released in remove_from_ul2ppq_dependency ().

Popularity is defined as the number of BMT update log sectors occupied by updates belonging to

one BMT EU. The BMT EU which has the maximum number of pending updates is called the

most popular BMT EU. A simple array is used to maintain this popularity information,

bmt_eu_2_ul_popularity [].The BCM starts operating after at least 25% of the BMT update log

is full. At this point popularity-based commit happens i.e. updates of the most popular BMT EU

will be committed so as to free maximum number of sectors from the update log. We bring in the

desired EU to memory from the on-disk BMT using read_bmt_page (), modify its content from

the BMT cache using PPQ_BMT_commit_build_page_buffer () and write it back using

write_bmt_page ().

Though popularity-based commit frees as many sectors as possible, it won’t guarantee the

advancement of the tail of the BMT update log, which means the re-usability of the tail EU of the

BMT update log is still not safe. Critical commit happens when there’s no BMT update log EU

20

available. In this algorithm, the BCM commits all the pending BMT entries in the tail EU of the

BMT update log, which would free the tail EU of BMT update log. Thus, the critical commit

remove the dependency of the tail eu’s update_log_2_ppq dependency list as explained before.

Intuitively, this would move the tail of BMT update log by at least one EU so that the head of the

update log can advance further without any loss of data.

After every commit, we perform a check if the tail of the BMT update log can be moved further.

This would help in the cases where the popularity based commit might be good enough to move

the tail by itself instead depending on the critical commit.

5.3 Crash Recovery

The purpose of crash recovery is to reconstruct the system status after the crash, lost of the in

memory data. The most significant information of LFSM system stored in the memory is the

BMT entries in the BMT cache. Thus, the crash recovery module is responsible to reconstruct the

BMT from the BMT update log after the system crash.

LFSM detecting the crash by examining the signature sector during system initialization in

function generate_freemap_frontier. If the signature sector is LFSM_LOAD means LFSM was

loaded before and didn’t unload successfully. Thus, the BMT_crash_recovery is called to perform

the crash recovery.

BMT_crash_recovery is the main function for the LFSM crash recovery. It read out all of the data

in the BMT update log, whose address is BMT_update_log_start. The pending BMT entries are

obtained by parsing the data of BMT update log. Finally, PPQ_BMT_cache_insert_one_pending

is called to insert the pending BMT entries to the BMT cache.

LFSM completes the reconstructing procedure by calling update_ondisk_BMT to commit all of

the BMT entries in the BMT cache to the on-disk BMT.

 Generally, crash recovery reconstructs the pending BMT entries from the BMT update log and

commits them to the on-disk BMT. Because the BMT update log is a circular buffer which

guarantee for no data overwritten and all of the pending BMT entries are recorded in the BMT

update log, the LFSM system status can be successfully reconstructed from the crash.

21

5.4 Signature Sector

When the driver is unloaded and re-loaded LFSM is supposed to get back its valid data. For this

to happen, it should identify its previous head & tail positions of all active EUs. Also, LFSM

should be able to decide whether the flash disk connected is a fresh disk or a previously used disk

before checking for head & tail positions. To answer these questions, a signature sector is

implemented.

The “signature” is a predefined ASCII value which spots the disk connected is a fresh one or an

already used one and it also helps to identify if the crash recovery needs to start or not. If the

LFSM is loaded, the signature field is assigned as “LFSM_LOAD”, and it will be assigned to

“LFSM_UNLOAD” after the LFSM is successfully unloaded, or the LFSM is a fresh one and

never been initialized before.

The “signature_successful_unload” is also a predefined ASCII value which decides whether the

recovery algorithm has to start or not. If the driver is properly unloaded, no need to do a recovery.

Else, recovery should start. The “physical_capacity” field is just an extra check to the above

mentioned two signatures. It is redundant but enforces accuracy. “head” and “tail” fields store the

value of head and tail of the logs at the time of unloading the driver so that while re-loading the

driver the signature sector is read and the old head and tail could be restored.

22

Chapter 6

6 Synchronization

As described in main thread section, in order to convert random write to the sequential write

LFSM invokes three I/Os to handle a single I/O request. That causes the race condition for

conflict I/O requests, which means there’re two I/O writing the same LBA and the late coming

I/O might be ready to be submitted to the Flash while the previous I/O is in the BMT query stage.

To solve this problem, LFSM uses active list to make sure the conflict I/O requests are processed

according to their incoming order.

6.1 Active List

All of the processing I/O requests are stored in the active list, lfsm_dev_struct.datalog_active_list.

Each I/O request in the active list is described by bio_container data structure. The insertion of

the active list is handled by function get_bio_container(). Before processing a new incoming I/O

request, get_bio_container checks if the I/O request conflicts with any items in the active list by

traversing the datalog_active_list. If it’s not a conflict I/O, a new bio_container is initialized and

added to the active list and start to process. If it’s a conflict I/O, the bio_container will be

appended to the wait_list of every bio that it conflicts with, and the thread handling the conflict

I/O will be added in the io_queue and status will be changed to pending.

After one I/O in the active list is finished, the status of entries in its wait_list is updated for the

further process, handled in move_from_active_to_free() function. The thread of a conflict I/O

will be woken up if all of the confliction is removed, whose number of confliction pages is equal

to 0. The number of confliction pages is stored in the bio_container.conflict_pages.

23

Chapter 7

7 Garbage Collection

If we see the processing of a WRITE request by LFSM, we would understand that we always log

the WRITES sequentially. It is noteworthy to observe that this sequential nature is with respect to

one erasure unit i.e. inside one EU, keep the WRITES sequential. Though many of the blocks get

overwritten with time, we cannot immediately over-write them since it would break the sequential

write property of LFSM. Instead, we keep logging sequentially using the free blocks and mark the

old over-written blocks as invalid. Thus, with time the number of invalid blocks increases and

proportionally the number of free blocks decreases. Hence, to clean up the invalid blocks and

make them re-usable (free), we do garbage collection (GC). The goal of GC is to maintain the

balance between the invalid and free blocks. GC in LFSM is always done in the back ground

thread in the function gc_collect_valid_blks ().

Our garbage collection is EU-based. In other words, we collect valid blocks of one EU

completely and move this EU to free pool and then proceed to do the same for another EU. We

have a threshold (number of free EUs to the total number of EUs) to trigger the GC. Currently, it

is 20% and is represented by GC_THRESHOLD_FACTOR. When this threshold is hit, GC starts

in the background. Due to various reasons like scheduling, heavy IO in main thread, etc. there

might be a case where the background GC might not be able to cope up to pump up the free pool

and hence main thread mightn’t find any free EU to process it’s WRITE. In this scenario, the

main thread yields to the background thread (to do the GC) and waits till it finds at least one free

EU in the free pool. This we call critical garbage collection.

A good GC algorithm should have these features:

1. Minimize the number of valid pages copied. (Utilization)

2. The frequency of garbage collecting an EU should be proportional to the frequency of

invalidation of blocks inside this EU. (Temperature)

LFSM satisfies the above mentioned criteria in a novel way as explained below.

24

7.1 Utilization

Utilization represents how many valid pages are there in a EU. So, when we want to garbage

collect an EU, we pick the EU which has the least utilization so that we have to copy the

minimum number of valid pages. After copying all the valid pages in the EU to new location, we

move the old EU to the free pool. The data structure which is most efficient for this purpose is

Min-Heap, which we call LVP_Heap, where the root has the EU with the least number of valid

pages. In log N time, we can insert and delete a EU from this heap. One important thing here is

that we do not want to GC a EU whose pages are still being over-written (invalidated) currently.

Because, this would result in copying those pages which would immediately get invalidated.

Hence, we implemented something called a HList. Once a EU which is in heap gets invalidated (a

page gets over-written), this EU is moved from heap to HList. It is kept in HList until HList’s

length limit is reached. This limit is represented by HLIST_CAPACITY and is an experimentally

found out to be100. This would give substantial time for the EU in HList to get invalidated as

much as possible and by the time it gets moved to heap, it would be relatively inactive with

respect to getting invalidated. In other words, we want to keep waiting a EU in HList to move to

Heap until its utilization gets stabilized. Now, it can be safely garbage collected. Note that, if a

EU in HList gets invalidated, it is moved to the head of the HList and when HList limit is

reached, the EU from the tail of the HList is removed and inserted to Heap.

25

Free List Active EU

LVP

Heap
HList

Initialization

Active EU is

full

Heapify

Active EU

is full

Invalidation

Invalidation

Garbage

Collection

Garbage

Collection

Destroy

Destroy

Destroy

Life Cycle of an EU based on it’s Utilization

Hlist full

Figure 7.1

7.2 Temperature

Temperature denotes the frequency of invalidation of the blocks. We assign the blocks which get

frequently over-written as HOT, the ones which are relatively stable as WARM, and the ones

which are almost never over-written as COLD. For example, DLL files could be termed COLD,

while TEMP files are treated as HOT. The idea is to group the blocks having the same

temperature in the same EU. The assumption is that blocks having the same temperature

generally die (invalidated) together. Hence, it makes sense not to garbage collect those EUs

which have cold blocks as frequently as those EUs having warm blocks. Similarly, the EUs

having warm blocks are garbage collected lesser number of times when compared to those having

hot blocks. This will avoid the number of EUs that are actually garbage collected and also

garbage collect those EUs which would give us more free blocks. Hence this improves the

efficiency of the process. When a block is written for the first time, by default it goes to a cold

EU. Once it gets over-written, it is moved to warm EU. If it’s again over-written, it is moved to

hot EU and stays there for any further invalidation. Similarly, if a hot block survives (remains

26

valid in the EU) a GC once, it is moved to warm EU. If it survives the 2
nd

 GC, it is moved to cold

EU and it stays there after any further GCs.

COLD WARM HOT

Invalidation Invalidation

Invalidation

GCGC

GC

Life cycle of a block based on temperature

Figure 7.2

We keep the information regarding HList and LVP_Heap in struct HListGC and the information

regarding the utilization & temperature of every EU in its respective struct EUProperty.

Since garbage collection and main thread WRITES run concurrently, there might be a possibility

of conflicts i.e. both targeting the same LBN. For example, a GC WRITE finds out that the LBN

its moving is already in the Active List. This means that particular EU having this LBN is being

invalidated and hence would be moved to HList and shouldn’t be garbage collected. Hence, we

should abort the garbage collection of this EU.

7.3 Procedure

As explained earlier, the main goal of GC is to pump up the pool of free EUs. We would try and

garbage collect enough EUs so that effectively we would generate at least one EU worth of free

space. So we try to pick EUs from the heap one after another until we find out that garbage

collecting these EUs would give us one EU worth free space. If we find that EUs in heap aren’t

enough to satisfy our constraint, we pick from hlist. Now we start the process of GC on this list of

EUs we picked considering one EU at a time.

The information regarding the LBN of all the blocks in the EU is kept in a sector called metadata

sector. This sector resides in the last block (8 sectors) of the EU. So, we will read this sector now

and get the information of which LBNs are present and also how many of those are still valid

using the EU bitmap. After getting this information, we would try to allocate bio containers to

serve the WRITES of these valid pages. If we find any conflict with main thread WRITE, we

27

would stop of the GC of that EU and proceed to the next. Next, we will read the entire EU. After

having the content of the EU in memory, we would move the EU to Free List from Heap/Hlist

depending on the present location of the EU. Next step would be to assign new PBN to these

blocks where they would end up eventually. Copy the content read before to the containers

allocated and executed the WRITE one page after another. After this is done, release the

containers and free the data structures promptly. Repeat this process for all the EUs in the pickup

list.

28

Chapter 8

8 Distribution of BMT log and BMT Update log EUs (Floating)

As mentioned in the overview section of the design of LFSM, BMT log and BMT Update log are

not contiguous. Their EUs are distributed across the disk. The actual layout is as shown in the

below figure. The basic idea is to get all (almost) the EUs of the disk to the free pool so that some

algorithms of “wear-leveling” and “erasure” could be incorporated in to the LFSM design.

BMT Update log

BMT

Super Map

Data Dedicated Map

Distributed Mapping of LFSM

1. Super map is fixed at start and holds address of Dedicated map.

2. Dedicated map floats. It holds the address of BMT Update log head and BMT

base addresses array.

3. BMT Update log floats connected as a linked list.

4. BMT log floats.

5. Data log floats.

Figure 8.1

8.1 Super map

Super map is the only static section of LFSM. The first 2 EUs of the disk are reserved for this and

these 2 EUs do not participate in wear-leveling. But, we will try to minimize the amount of

writing to these 2 EUs so that they don’t get worn out soon. The information stored in the Super

map is the address of the dedicated map EU and LFSM signature to identify fresh/re-used/crashed

disk. Whenever the dedicated map EU changes, the new address of the dedicated map EU is

logged in the Super map. This logging is sequential in these 2 EUs and when the 2 EUs are full,

we wrap around. To the most updated super map entry, we use the latest sequence number

approach.

29

8.2 Dedicated map

Dedicated map is a single EU which holds the address of the head EU of the BMT Update log

and the array of base addresses of the BMT log EUs. We know that the head EU of the BMT

update log will possibly change only after a BMT commit. Also, the base addresses of the BMT

EUs will also change during that time only. So, after every commit, we have to log these two

details to the dedicated map EU. Of course, we have to write sequentially inside this EU and once

it’s full, we move it to the free pool and allocate another dedicated EU from the free pool. In this

scenario where the dedicated EU changes, the same event is logged to the Super map.

8.3 BMT Update log

As explained before, the address of the head EU of the BMT Update log is stored in the dedicated

map and whenever the head changes, that event is logged to the dedicated map. BMT Update log

size is statically decided and only those many maximum number of EUs can be allocated for the

update log from the free pool. The EUs are connected with each other in the form of a linked list

i.e. every update log EU holds in its last sector the address of the next update log EU. These EUs

are linked for two reasons – 1) to read them sequentially one after another during crash recovery

2) to change the update log head after BMT commit, following the links.

8.4 BMT log

During initialization we allocate all the BMT EUs and hold their base addresses in an array called

BMT_map[]. This information is logged in the dedicated map along with the update log head.

Whenever a new EU replaces an existing BMT EU during commit, the change is reflected in the

BMT_map[] and also it is logged to the dedicated map immediately. After a driver is re-loaded,

we read the Super map to get the dedicated EU. We read the dedicated EU to get the BMT_map[]

and thus we populate our BMT EUs.

30

8.5 BMT Lookup

The virtually linear BMT lookup is supported just by adding the base address offset from the

BMT_map[] array to get the exact address of the BMT EU which we would like to fetch the BMT

record from.

8.6 BMT Commit

Again, we have to maintain the linear BMT impression. When we read a BMT EU from disk, we

move the EU to the free pool, allocate another EU from the free pool, write to the new EU and

change the base address of that EU in the BMT_map[] array.

8.7 Crash Recovery

The crash recovery algorithm is almost similar to what was previously explained in section 2.9.

Only difference is that to read the Update log, we have to do some extra steps – read super map,

then read dedicated map to get the update log head and now start reading the BMT update log

EUs one after another following the link. Remember that the address of the next update log EU is

stored in the last sector of the current update log EU.

31

Chapter 9

9 Performance Evaluation

9.1 Methodology

In this section, we are going to use a synthetic work load to measure the average write and read

end-to-end latencies to compare the performance of an LFSM-enabled flash disks and vanilla

flash disks. Then we show the effectiveness of Interval-based Caching technique of LFSM

running the block level traces of one day workloads from TPCC and CIFS servers. Finally, we

will analyze the performance of the garbage collection algorithm by checking the effective time

spent on copying the valid blocks per erasure unit.

9.2 Programs

Most of the tests we performed to check the read/write latencies of the flash disk are from the

simulating programs written to emulate the sequential and random nature of access. This is done

on purpose. Because, most of the real world IO load would never be completely sequential or

completely random – it will be a mixture. Since, we know already that the performance of

FLASH is excellent under sequential workload; the main challenge of LFSM is to answer the

random write performance issue. Thus, we wanted to simulate 100% random work load to the

flash disk and to achieve that our synthetic load generators are the best choice.

However, measuring the performance of our interval-based caching algorithm is a different issue

since caching techniques should be measured not on 100% sequential or 100% random

workloads. Rather, the effectiveness of any new caching technique should be measured on real

world scenarios and hence we opted to use TPCC and CIFS servers’ workloads.

9.3 Environment

We used a Dell Dimension 9200 system with 4GB RAM and Intel Core 2 Duo E6400 2.13GHz

CPU having 2048KB L2 Cache. The disk is SAMSUNG 16GB 3.3V ATA5 UDMA66 SLC flash

disk. Operating system is Fedora 10 distribution and kernel version 2.6.25.14.

32

9.4 Results

The below table shows the end-to-end latencies of read and write requests of size 4KB to the

vanilla flash disk. The readings are taken after sending 1 Million requests.

 Sequential Random

Read 364 376

Write 906 38868

Table 9.1 Latencies in Microseconds of a 4KB request of vanilla flash disk.

The below table shows the end-to-end latencies of read and write requests of size 4KB to an

LFSM-enabled flash disk. The readings are taken after sending 1 Million requests.

 Sequential Random

Read 384 398

Write 1866 2933

Table 9.2 Latencies in Microseconds of a 4KB request of LFSM.

If we observe the last row of the above table, it’s interesting to see that the LFSM’s sequential

write performance is a little less when compared to the vanilla flash disk. But, if we notice the

random write latency, LFSM beats the vanilla disk’s performance by a magnitude. To understand

these numbers in detail, we need to have a look at a more detailed version of the above table

where the total latency is expanded in terms of the delaying components.

33

 Critical

Commit

BMT Lookup Data Logging BMT Update

logging

Total latency

Sequential 0 14 906 948 1866

Random 11 29 1465 1435 2933

Table 9.3 Latencies in Microseconds of a 4KB request of LFSM expanding on delaying

components.

As it is clear in the above table, that the overhead in the LFSM design is the BMT Update

logging, which has to be done to ensure data protection against system crashes. But, if we

consider the overall improvement of performance by LFSM to the flash disk’s vanilla

performance, because of the magnitude gain in the random write performance, LFSM alleviates

the performance bottle necks of FLASH memory.

Now, let’s see what is the time consumed in the background thread by our temperature

based garbage collection technique. The below table explains those details.

 Read EU

metadata

BMT

Lookup

Data

logging

BMT

Update

loggin

Total

latency per

EU

Sequential 11 161 1105 2708 4003

Random 57 417 929 2103 3511

Table 9.4 Latencies in Microseconds of temperature-based garbage collection per erasure

unit (EU).

We see that the garbage collection overhead of LFSM is very low because of the sophisticated

temperature-based garbage collection algorithm. LFSM is incurring 4003 microseconds to do the

garbage collection of 1 erasure unit which would have 128 4KB pages in general on a sequential

workload. That is, 31.2 microseconds per 4KB page which is very minimal. On a random

workload, the garbage collection results are still better with a 3511/128 = 27.42 microseconds per

4KB page.

34

Chapter 10

10 Conclusion and Future Work

On conclusion, we have presented a storage system called Log Structured Storage Manager

(LFSM) which alleviates the random write performance bottleneck of flash disks to a great

extent. We measured the performance numbers of LFSM over that of vanilla flash disk and found

out that LFSM defeats the vanilla flash disk’s overall performance by reducing the random write

latency by 10 times though we incur a slight overhead in case of sequential write latency. We

have designed, implemented and evaluated several new techniques in the LFSM – Interval-based

Cache, Temperature-based garbage collection and BUSC principle – and came to a definitive

opinion that they all work extremely wonderful for FLASH memory.

When we see table 9.3, we would observe that the major overhead which LFSM incurs is that of

the BMT Update logging. To re-state, we have to do the BMT Update logging to keep LFSM

design safe from any system crashes in which case, the in-memory updates to the BMT would be

lost. In the current implementation, if we consider a single write request, BMT Update logging is

started after the Data logging is done in order. That is, we have to wait till we get the interrupt

from the disk for the data logging and then we have to do the BMT Update logging. This

limitation is only because we do not have the luxury to do both the loggings concurrently from

the operating system level. Therefore, if we can somehow do both data logging and BMT Update

logging concurrently to the flash disk, this small overhead of BMT Update logging would also be

completely nullified.

We implemented LFSM at block layer of Linux kernel at which we didn’t had the luxury of

exercising different planes of FLASH memory. However, FTL (Flash Translation Layer,

firmware of FLASH) can definitely do it. That is, FTL can send writes to different planes inside

the FLASH memory concurrently. Thus we believe that if LFSM can be ported to FTL, data

logging and BMT update logging can be directed to different planes so that they both get

executed concurrently. In this way, we overcome the overhead of BMT Update logging

completely and the small extra time which we are incurring in case of sequential writing would

not be present. Thus, for future work, we are expecting to move LFSM from block layer to FTL

to get the best performance out of the FLASH memory.

35

Bibliography

[1] Maohua Lu and Tzi-cker Chiueh, “An Update-Aware Disk I/O System for High-Performance

Database Indexes,” Technical Report, Stony Brook University, 2008.

[2] E. Harari, R. D. Norman, and S. Mehrota, Flash EEPROM System, Number 5,602,987.

United States Patent, 1997 February.

[3] Intel Corporation., Understanding the Flash Translation Layer (FTL) Specification,

http://www.infinibandta.org/.

[4] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber, “A Design for High-

Performance Flash Disks,” SIGOPS Oper. Syst. Rev., vol. 41, no. 2, pp. 88–93, 2007.

[5] Chanik Park, Jaeyu Seo, Dongyoung Seo, Shinhan Kim, and Bumsoo Kim, “Cost-Efficient

Memory Architecture Design of NAND Flash Memory Embedded Systems,” in ICCD ’03:

Proceedings of the 21st International Conference on Computer Design, Washington, DC, USA,

2003, p. 474, IEEE Computer Society.

[6] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina

Panigrahy, “Design tradeoffs for SSD performance,” in ATC’08: USENIX 2008 Annual

Technical Conference on Annual Technical Conference, Berkeley, CA, USA, 2008, pp. 57–70,

USENIX Association.

[7] Mendel Rosenblum and John K. Ousterhout, “The Design and Implementation of a Log-

Structured File System,” ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 26–52, 1992.

[8] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and Ha-Joo

Song, “A Log Buffer-Based Flash Translation Layer Using Fully-Associative Sector

Translation,” Trans. on Embedded Computing Sys., vol. 6, no. 3, pp. 18, 2007.

[9] S.H.; Sang Lyul Min; Yookun Cho Jesung Kim; Jong Min Kim; Noh, “A Space-Efficient

Flash Translation Layer for CompactFlash Systems,” IEEE Transactions on Consumer

Electronics, vol. 48, no. 2, pp. 366–375, May 2002.

[10] Amir Ban, Flash File System, Number 5,404,485. United States Patent, 1993.

