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Abstract of the Thesis 

 

Novel nonparametric approaches to stock assessment and regime shift prediction 

by 

Charles Thomas Perretti 

Master of Science 

in 

Marine and Atmospheric Science 

Stony Brook University 

2010 

Ecosystem dynamics are often complex, nonlinear, and characterized by critical 

thresholds or regime changes.  Despite these difficulties, resource managers must 

accurately forecast species abundance and anticipate impending regime shifts in order to 

implement sustainable management plans.  

In the first part of this thesis I explicitly describe a nonparametric method for 

multivariate forecasting which I call the MS-Map and evaluate its performance relative to 

a suite of parametric models. I found that, in the presence of noise, it is often possible to 

obtain more accurate forecasts from the MS-Map than from the model that was used to 

generate the data.  The inclusion of additional species yielded a large improvement for 

the nonparametric MS-Map, a smaller improvement for the control model, and only a 

slight improvement for the alternative multi-species parametric model.  When applied to 

rockfish larval abundance data from the CalCOFI survey, the performance of the MS-

Map improved when additional species were included.  These results suggest that flexible 

nonparametric modeling approaches should be considered for ecosystem management. 
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In the second part of this thesis, using the three-group fishery model previously 

studied by Biggs et al. (2009), I tested a suite of statistical regime shift indicators under 

the ecologically realistic conditions of high, correlated noise with short time series and a 

rapidly changing driving variable. I found that all indicators perform poorly under 

realistic conditions with the exception of the variance indicator.  In contrast to 

expectations from previous work, the noise spectrum did not have a strong effect on 

indicator performance.  The amount of data used to calculate the indicator had a large 

impact on performance. Also contrary to prior work, I found that the value of the spectral 

ratio was not a reliable indicator of an impending shift.  Future research should focus on 

techniques that incorporate multiple data sources simultaneously, thus reducing the time 

needed to detect an impending shift.    
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I. Nonparametric multi-species forecasting evaluation  

 

Introduction 

An ecosystem-based approach to management requires forecasting the dynamics 

of all relevant species and the ability to anticipate the indirect effects of management 

decisions (Grumbine 1994, Slocombe 1998, Pikitch et al. 2004). Ecosystem dynamics 

are, however, often complex, nonlinear, and exhibit critical thresholds or regime changes, 

while our understanding of them is usually derived from short, noisy time series of just a 

few variables.  Nevertheless, resource managers are charged with forecasting system 

dynamics in order to develop sustainable harvest regimes or conservation plans.      

Many ecological modeling frameworks are available for forecasting, ranging from 

simple single-species models, to highly complex ecosystem models (Schaefer 1957, 

Christensen and Walters 2004, Fulton et al. 2005).  Despite this range of tools, species 

collapses are not rare (Jackson et al. 2001, Myers and Worm 2003).  Although collapses 

are sometimes attributed to dysfunctional governance (Safina and Klinger 2008), a 

critical factor leading to collapses is that the models used to make management decisions 

provided poor assessments or forecasts.  One approach has been to move from single-

species models to multi-species or ecosystem models in the hopes of increasing model 

realism.  However, increasing model complexity will not necessarily lead to more 

accurate forecasts as network topology and the functional relationships between species 

are often highly uncertain (Ludwig et al. 1988).  Moreover, apparently small changes in 

model structure may produce very large, qualitative changes in model predictions (Wood 
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and Thomas 1999).  Nonparametric methods to forecasting (e.g. Härdle et al. 1997) are 

robust to this structural uncertainty and may provide a way forward. 

Past studies have used nonparametric forecasting to identify chaos and, more 

generally, nonlinearities in ecological time series (Sugihara and May 1990, Sugihara et al. 

1990), and although nonparametric techniques have gained wide popularity in other fields 

(Schreiber 1999), they have been largely ignored in natural resource management.  One 

reason for this is that, as traditionally applied, nonparametric methods require long, 

highly precise time series, which are rare in ecology.  Recent work has attempted to 

overcome this constraint by concatenating the time series of several ecologically similar 

species to form one long time series (Hsieh et al. 2008).  Although early evaluations of 

this method have been promising, the process of combining time series from different 

species is potentially distorting, particularly if non-similar species are mistakenly 

included.  

An alternate approach would be to use all of the data for all of the species in a 

given system by extending univariate embedding methods to multivariate time series.  

The idea of multivariate embedding has been used to improve forecasts in physics (Cao et 

al. 1998) and has been used for ecological time series, though without explanation (Dixon 

et al. 1999).  To my knowledge, techniques for multivariate embedding have not as yet 

been described in an ecological context.  Here, I explicitly describe a method for 

multivariate embedding which I will call the MS-Map and evaluate its performance 

relative to parametric models fit to real and simulated data. 

 

Multivariate time delay embedding  
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 Taken's theorem of state-space reconstruction (Takens 1981) allows for the 

reconstruction of a multivariate dynamical system through time delay embedding.  As 

traditionally applied, a univariate time series is transformed into a set of time-delayed 

vectors:  Xt = [xt, xt-τ, xt-2τ,…, xt-(E-1)τ], where x is a scalar time series, t is the time index, 

τ is the time lag, and E is the embedding dimension.  Each vector Xt for t=[1+(E-1)τ,…,N 

], where N is the length of the time series, is then embedded in an E dimensional phase-

space, constructing an attractor that preserves the topological properties of the original 

system.  Using this procedure, I generate an attractor for each species, then combine that 

information through a multivariate smoothing kernel I refer to as the MS-Map. 

 Predictions using the MS-Map are made by first dividing the time-delayed points 

for a given species into a training set and a test set.  The length of the training set was 

varied from 45 points to 75 points, and the length of the test set was fixed at 60 points 

(see Table 1).  The p-step prediction for each test point is the distance-weighted average 

of the positions of all training points p-steps forward in time. The weight of each train 

point is recalculated for each predictand and is given by:   

           
      

     

  

where θk describes the degree of local weighting for species k, dijk is the Euclidean 

distance between train point i and predictand j on the attractor reconstruction of species k, 

and      is the average distance between predictand j and all other training points on the 

attractor reconstruction of species k. The weight for each training point is based on the 

relative distance of points from the predictand, thus it is a non-stationary smoothing 

kernel.   



4 

 

 The MS-Map allows each species in the system to affect the weight parameter.  A 

value of θ=0 gives the mean of the training set as the prediction, while θ>0 gives near-by 

points in phase space more weight, and is thus more nonlinear.  If θ=0 for a particular 

species then that species does not contribute to the forecast.  The p-step predictions for 

each predictand are given by:     
 

     

         , where wij is the weight of training 

point i for predictand j, and xi+p is the p-step ahead value of training point i.  A similar 

method was developed by Cao et al. (1998), and applied to several physical systems; 

however equal weights were given to all variables and the smoothing kernel was 

stationary.   

 To limit the computational requirements of the parameter search for this 

expository analysis, I restricted the attractor reconstructions to a time lag of unity and an 

embedding dimension of three.  To avoid overfitting, the last fifteen points of the training 

set were excluded and used to determine the values of θ that resulted in the lowest 

forecast error.  Those parameters were then used to forecast the out-of-sample test points.  

The time series of each species was scaled to [0,1] in order to standardize distances 

between points in phase space across species.    

      

Parametric Models and Simulation Methods 

 I compared the forecast skill of the MS-Map model to three parametric models 

using simulated data from the three-species model by Hastings and Powell (1991) with 

harvesting, given by: 
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  The bottom species in the food chain (species x) is harvested at a constant rate 

(parameter F), which is analogous to a forage fish fishery.  The model was numerically 

solved using a 4
th

-order runge-kutta method.  One thousand parameter sets were drawn 

uniformly from the ranges given in Table 1.  I focused on parameter sets that produced 

dynamics ranging from limit cycles to chaos and excluded any parameter sets that 

resulted in steady-state solutions, resulting in 317 unique parameter sets.  I ran the model 

for an initial period of 50,000 time steps to avoid including transient dynamics.  To model 

observation error, I multiplied the time series by log-normal noise for the range of 

standard deviations listed in Table 1, the highest intensity corresponded to a coefficient of 

variation of each species similar to that found in field studies (Reed and Hobbs, 2004).       

 I compared the forecast accuracy of the MS-Map algorithm to a single-species 

Schaefer model (Schaefer 1957), a three-species Lotka-Volterra model (LV), and the 

Hastings and Powell model (HP) that was used to generate the data. The functional form 

of the LV model is almost identical to the HP model, the only difference being that the 

Type II functional response of the HP model is replaced with a Type I functional response 

in the LV model.  This level of similarity was chosen to assess the change in forecast 

accuracy due to a small difference in model structure.  All parameters, including the 

initial conditions, were fit to the observed time series using maximum likelihood.  Fitting 

nonlinear models to noisy data is notoriously difficult (Polansky et al. 2009), therefore I 
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initiated the fitting procedure at the correct initial conditions, and for the HP and LV 

models, the correct model parameters where ever possible in order to increase the 

probability that the global maximum of the likelihood function would be found. To 

compare performance across models I log-transformed the forecast root mean squared 

errors (RMSE) for each set of simulations and performed paired t-tests for all model 

pairs.   

I evaluated the change in forecast accuracy of 3-step predictions (similar results 

were obtained using 1-step and 5-step predictions) when fitting the models with data 

from one, two and three species and for a range of training set lengths, noise intensities 

and harvest rates.  I refer to training set lengths of 45, 60, and 75 points as short, medium 

and long time series, respectively.  Low, medium, and high noise intensities refer to a 

standard deviation of the normal distribution of 0.05, 0.1, and 0.15.  Harvest rates of 

0.025, 0.05, and 0.075 correspond to low, medium, and high harvest rates, respectively. 

   

CalCOFI Methods 

 The CalCOFI icthyoplankton survey is an ongoing 50+ year-long fishery-

independent time series of larval abundance for the diverse group of fish that reside off 

the coast of southern California.  I measured the change in forecast accuracy due to 

including additional species in the MS-Map model using larval abundance data from 

three rockfish species: shortbelly rockfish (Sebastes jordani), aurora rockfish, (Sebastes 

aurora), and bocaccio (Sebastes bocaccio).  These species were selected from the „expert 

opinion‟ database found in Hsieh et al. (2005) because they were observed in all sampled 

years and are viviparous, therefore they are a good proxy of adult abundance.  Also, I 
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wanted to test the ability of the MS-Map to use species that were not predator and prey, 

thus extending its applicability.  The time series for each species ranged from 1951-2007.  

The cruise abundance for each species is the average abundance in the 66 station area that 

has been in continual use since 1951.  Annual averages for each species were calculated 

as the mean cruise abundance during the species‟ spawning months, as specified in Moser 

et al. 2001 (also see Hsieh et al. 2005).  To standardize the phase-space distances across 

species I scaled each time series to [0,1].  The CalCOFI surveys were triennial from 1966 

to 1984, therefore I interpolated the missing years using 1-d cubic Hermite splines 

(similar results were obtained using linear interpolation).  The time series were initially 

divided into a 47 year training set and a 10 year test set.  The last 15 years of the training 

set were used to find the optimal model parameters.  One-step-ahead forecast accuracy 

was then evaluated using the out-of-sample test set.  

 

Simulation Results 

Overall results 

 In the simulations without noise the HP model generated perfect forecasts, even 

when fit with only one species time series.  This was expected because the parameter 

search for the HP model was initiated at the correct values.  The second best performing 

model was the MS-Map with an average error of 12%, 11%, and 9% when fit using one, 

two or three species, respectively.  The distant third best was a tie between the Schafer 

model and the LV model fit to three species, both with an average error of 40%.   

   Surprisingly, for all simulations with noise, the MS-Map was more accurate than 

the HP model by, on average, 20% when fit using one species, 48% when using two 
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species, and by 38% when all three species were used; all differences were significant at 

the p<0.0001 level (Table 2).  The mean percent error in forecasts for the one, two and 

three species MS-Map was 29%, 17%, and 15%, respectively, compared to the mean 

percent error for the HP model which was 36%, 33%, and 25%, respectively (Table 2).  

The difference was most dramatic under the high noise simulations where the MS-Map 

outperformed the HP model by 25%, 49%, and 44%, when fit with one, two or three 

species, respectively.  Under the low noise simulations the difference in forecast accuracy 

was 8%, 40% and 16%, when fit with one, two or three species, respectively.  All of the 

differences in forecast accuracy were statistically significant at the p<0.0001 level. 

 Overall, despite the similarity between the LV model and the HP model, the LV 

model failed to outperform even the single-species Schaefer model when using data from 

just one or two species. The forecast error for both models was always above 40% (Table 

3). Only when the LV model was fit with three species did it outperform the Schaefer 

model, and then only by 6%.  In comparing the Schaefer and the LV model, the better 

performing model was dependent on the amount of noise.  Under the low noise 

simulations, the Schaefer model outperformed the LV model fit to one or two species 

(p<0.001) and was indistinguishable from the performance of the LV model fit to three 

species.  In contrast, under the high noise simulations, the LV model outperformed the 

Schaefer model by approximately 10% for all species fits (p<0.001).     

Effect of increasing the number of species used to fit the model 

 The MS-Map forecast accuracy improved significantly when additional species 

were used to fit the model.  Across all simulations, there was a 40% improvement when 

the second species was added and an additional 10% improvement when the third species 
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was added (p<0.0001).  The HP model also improved with each additional species, with 

an 8% improvement when a second species was added, and an additional 24% 

improvement when a third species was added (p<0.0001).  The LV model did not show 

an improvement when going from a one to two species fit, however there was a 6% 

improvement when moving from one to three species (p<0.0001).   

Effect of changing the time series length and fishing intensity 

 Over all simulations, the average forecast accuracy either increased slightly or did 

not change for all models when moving from the short time series (45 points) to the long 

time series (75 points); the increases were never more than 10% (Table 2).  Interestingly, 

increasing the harvest rate resulted in a small improvement in forecast accuracy for the 

MS-Map model but the effect on the parametric models was mixed and not statistically 

significant.   

 

CalCOFI Results 

 Overall, the three-species MS-Map exhibited a reduction in forecast error of 31% 

when compared to the one-species MS-Map (Figure 4).  The improvement from moving 

to two species was slight, with only a 4% average improvement.  The forecasts for the 

three-species model were more nonlinear than for the one-species model, with an average 

optimal weight parameter that was 60% larger.   

 Forecasts for each species differed when adding additional species (Figure 5).  

Forecasts for shortbelly rockfish were not improved by the addition of the other two 

species.  In contrast, forecasts for aurora rockfish showed a large increase in accuracy 

when bocaccio was included to fit the model, however there was no increase in accuracy 
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when shortbelly rockfish was included.  The aurora rockfish forecasts were improved 

when using three species, with nonlinear weighting being given to both the shortbelly 

rockfish and bocaccio time series.  The bocaccio forecasts were improved by adding the 

shortbelly rockfish time series; however they were substantially worse when the aurora 

time series were added, possibly because the training set is too short to accurately 

estimate theta or because it only covers a small portion of the attractor.  However, when 

all three time series were included there was an improvement similar to that of adding 

only shortbelly rockfish.   

 

Discussion 

 These results show that, in the presence of noise, it is often possible to obtain 

more accurate forecasts from a nonparametric model than from the model that was used 

to generate the data.  Moreover, the results show that a small change in the model 

structure can cause large declines in forecast accuracy.  The LV model, which only differs 

from the HP model in the form of the functional response, had an average forecast error 

of over 40%, which was no better than the single-species Schaefer model.  This indicates 

that a model which deviates even slightly from the correct structure may provide very 

poor forecasts, agreeing with past work (e.g. Wood and Thomas 1999, Skalski and 

Gilliam 2001).  Given the high degree of uncertainty in the structure and dynamics of real 

ecosystems, I suggest that nonparametric methods and greater reliance on short-term 

forecasts may help improve resource management.    

Considering the recent push towards ecosystem-based management, an important 

question is whether the forecast accuracy of models will improve by including the time 
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series of additional species.  These results show that the inclusion of additional species 

yielded a large improvement for the nonparametric MS-Map, a smaller improvement for 

the HP model, and only a slight improvement for the LV model.  For the MS-Map, 

additional species acted primarily as a noise reduction mechanism as the model was 

better able to determine which points in the state-space reconstruction of the target 

species should be weighted more heavily at each point in time.  Since the observation 

errors were assumed to be independent, points which were spuriously close to the 

predictand due to noise contamination in the one-species map were less likely to be 

weighted heavily in the three species.  This explains why the improvement was small 

when moving from the one species MS-Map to the three species MS-Map in the 

simulations without noise (<2% improvement), as opposed to the high noise simulations 

(greater than 40% improvement).  For the HP model, additional species allowed for better 

parameter estimation as demonstrated by an average deviation in parameter fit of 19% in 

the high noise runs using one species, compared to 10% using three species.  In contrast, 

there was only a small increase in the accuracy of the LV model with additional species 

as the model was rarely able to capture the dynamics of the system.  Therefore, a flexible 

nonparametric framework may be the most appropriate way of integrating diverse data 

sources in an ecosystem management context, and may yield large improvements over 

highly complex ecosystem models.           

 When applied to time series of rockfish larval abundance, the mean error of the 

MS-Map when using three species was approximately 30% lower than when using one or 

two species.  Importantly, although the effects of adding a second species were mixed, the 

inclusion of all three species always resulted in forecasts that were at least as accurate as 
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the single species MS-Map; i.e. unlike in the two-species case, there was no spurious 

fitting in the three species MS-Map.  This suggests that the inclusion of more species may 

act as a buffer against the spurious weighting of non-relevant species.  Interestingly, the 

improvement in forecast accuracy when adding species, and the magnitude of the weight 

parameter (θ), may be a useful way of identifying important ecological interactions and 

assessing interaction strengths. 

 Several future improvements can be made to the MS-Map.  First, a spatially 

explicit version could provide large gains in forecast accuracy.  For each species, both the 

location and abundance could be embedded in an n-dimensional space.  Then, the MS-

Map could be used analogously to forecast both location and abundance.  Second, the 

MS-Map could easily be extended to include the magnitude and location of relevant 

physical variables such as seasonal temperature anomalies or the indices of the Pacific 

decadal oscillation. 

 In some situations, where either longer-term forecasts are needed or parts of a 

system are well approximated by parametric functions, it may be most appropriate to use 

semiparametric methods (e.g. Nelson et al. 2004) rather than nonparametric or fully 

parametric methods.  Future research is needed to evaluate which management situations 

would most benefit from a nonparametric, vs. semiparametric, vs. fully parametric 

forecasting approach.     

 Lastly, if nonparametric methods are to gain widespread acceptance for resource 

management, new control rules based on attractor reconstruction must be proposed and 

evaluated.  Nonparametric forecasting could be used to maximize the resilience of 
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ecosystems by eliminating harvest rules that would significantly alter the attractor shape 

or by avoiding high risk areas of the phase-space. 
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II. Phase shift indicators under ecologically realistic conditions 

  

Introduction 

Ecological phase shifts are characterized by sudden, long-lasting changes in 

ecosystem state.  Examples of phase shifts include rapid transitions of kelp forests to 

barren substrate, of coral reefs to fleshy macroalgae, and of patchy shrubs to desert 

(Hughes 1994, Steneck et al. 2002, Konar and Estes 2003, Kefi et al. 2007).  Recent 

analyses of fish populations and ocean circulation models indicate that bi-stability is 

likely to be the rule rather than the exception (Collie et al. 2004, Lenton et al. 2008).  

Moreover, many critical transitions are characterized by a phenomenon known as 

hysteresis, where in order to return the system to its original state the driving variable 

must be reverted well beyond the level which caused the shift. This irreversibility makes 

phase shifts potentially catastrophic for ecosystem users. 

Forecasting phase shifts in nature is an exceptional challenge due to the lack of 

high resolution data and the inherent complexity of real ecosystems (deYoung et al. 

2008).   However, recent research has produced a suite of statistical indicators that show 

promise for the prediction of impending shifts (Scheffer et al. 2009).   Many of the 

proposed indicators are based on the dynamical systems concept of „critical slowing 

down‟ (Wissel 1984, Strogatz 1994) which describes the increase in the time it takes for a 

system to return to equilibrium after a small perturbation. This slowing down can be 

observed statistically in a time series as a rise in variance (Carpenter and Brock 2006), an 

increase in the AR1 coefficient (Dakos et al. 2008), or as a shift in skewness or kurtosis 

(Guttal and Jayaprakash 2008).  The color of the power spectrum has also been proposed 
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as a leading indicator (Kleinen et al. 2002).  As a system approaches a threshold the 

power at low frequencies is expected to increase faster than at high frequencies, therefore 

the ratio of the spectral density of low to high frequencies has been proposed as an 

indicator; the point at which this ratio exceeds one signaling an impending shift (Biggs et 

al. 2009).  These indicators are ineffective for systems without a smooth potential, e.g. 

systems which exhibit global bifurcations (Graham and Tel 1984, Hastings and Wysham 

2010).  Nevertheless, the indicators are likely to be ecologically relevant given the 

numerous examples of real ecosystems that are well-approximated by models with 

smooth potentials (Scheffer 1998, Carpenter et al. 1999, Held and Kleinen 2004, van Nes 

and Scheffer 2005, Carpenter et al. 2008).   

Previous evaluations of phase shift indicators have generally used long, high 

resolution time series of systems perturbed by weak, uncorrelated noise (Carpenter and 

Brock 2006, Guttal and Jayaprakash 2008, Biggs et al. 2009). Most natural populations, 

on the other hand, exhibit large temporal and spatial variability, are sampled at low 

frequencies (e.g. Sale et al. 1984, Gaines et al. 1985, Certain et al. 2007) and are subject 

to driving variables (e.g. harvesting) that change rapidly (Pope and Macer 1996).  

Moreover, the power spectral density of environmental time series, particularly marine 

time series, is strongly autocorrelated and well described by spectral exponents greater 

than zero (Steele 1985, Pelletier and Turcotte 1997, Cyr and Cyr 2003, Vasseur and 

Yodzis 2004).  However, the efficacy of most phase shift indicators under ecologically 

realistic perturbations, noise levels, and noise spectra, is largely untested (but see 

Rudnick and Davis 2003).    

Using the three-group fishery model previously studied by Biggs et al. (2009), I 
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tested a suite of indicators under ecologically realistic conditions.  The system was 

simulated using historically reasonable rates of change in harvesting (Pope and Macer 

1996) and typical levels of variability.  I evaluated the performance of these indicators 

when using data sampled at a high frequency versus a realistic frequency and tested their 

sensitivity to autocorrelation in the process error.  This represents an important step in 

determining the likely efficacy of these indicators for real ecosystems. 

 

Methods 

I evaluated a set of indicators for the multi-species fishery model derived by 

Carpenter and Brock (2004), and described in detail by Biggs et al. (2009).  The system 

consists of three groups: adult piscivores (A), juvenile piscivores (J), and planktivores 

(F). The planktivores consume only juvenile piscivores while the adult piscivores 

consume both planktivores and juvenile piscivores.  Planktivores and juvenile piscivores 

experience foraging arena dynamics in which they exchange between a refuge and a 

vulnerable state (Walters and Martell 2004).  The system is represented as a coupled 

continuous-discrete model, where reproduction of piscivores occurs during the discrete 

interval while predation and fishing occur continuously.  The dynamics of the continuous 

interval (known as the “monitoring interval”) are given by: 
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Parameters are (q) catchability, (E) effort, (DF) exchange rate between the refuge and 

foraging arena, (FR) refuge reservoir, (cFA) consumption rate of F by A, (cJA) consumption 

rate of J by A, (cJF) consumption rate of J by F, (v) rate that J become vulnerable to F, and 

(h) the rate that J enter their refuge. The additive noise ( ) will take on the range of 

colors described below. 

The discrete dynamics (known as the “maturation interval”) are given by: 

At+1 = s(At + Jt) 

Ft+1 = Ft 

Jt+1 = fAt+1 

Parameters are (t) time interval, (s) survival of adult and juvenile piscivores between 

maturation intervals, and (f) fecundity of adult piscivores. 

This model exhibits two distinct steady states, one dominated by piscivores, the 

other by planktivores.  In the piscivore-dominant state, planktivore abundance is 

maintained at low levels by a large population of adult piscivores.  In the planktivore–

dominant state, piscivore abundance is suppressed through predation on the juvenile 

group.  The transition between states is driven by fishing which targets only the adult 

piscivores. 

I modified the original model by adding autocorrelated process noise to the 

planktivore dynamics.  Noise in ecological time series is typically characterized by a 

power spectral density which scales with frequency (f) as 1/f
β
 (Inchausti and Halley 

2002).  Special cases include white (β = 0), pink (β = 0.5), red (β = 1) and brown (β = 2) 

noise.  Estimates of β from environmental time series range from 0.25 to 1.6 (Steele 

1985, Vasseur and Yodzis 2004), therefore, I tested the indicators with β ranging from 0 
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to 1.6 (Table 4). 

In keeping with prior work (Biggs et al. 2009), I applied the process noise to the 

planktivore dynamics, using  a symmetrically truncated normal distribution to prevent the 

ecological impossibility of negative population abundances at high noise levels while 

avoiding positive bias.  The noise was generated using an autoregressive model of order 

one for which the variance was standardized across autocorrelation treatments.  The 

indicators were evaluated over a range of noise intensities (see Tables 1 & 2), the 

maximum of which corresponds to a coefficient of variation for planktivores similar to 

that found in field studies (Reed and Hobbs, 2004).   

The simulations were initiated near the equilibrium biomass values for qE=1.5, 

and run for 160 years after a burn-in period of 250 years.  I induced the phase shift by 

steadily increasing qE each year after the burn-in.  I chose an annual increase of 0.013 

based on historical reconstructions of fishing mortality rates (Pope and Macer 1996).  The 

“point of no return” is defined as the first year that a reduction of the harvest rate to 0.1 

will not avert a phase shift.  Beyond this point, the phase shift is effectively irreversible 

as no realistic reduction in harvest will allow the system to return to the piscivore-

dominated state.  In the deterministic model, this point is reached in year 58 of the 

simulation (qE=2.23).  The “attractor switch point” occurs at year 23 of the simulation 

(qE=1.78), after which the relative abundances of piscivores and planktivores begin to 

flip as the system becomes dominated by planktivores (Figure 6).   

 I evaluated the probability that each indicator would provide sufficient warning to 

avert an impending phase shift. The indicators evaluated were (i) rise in variance, (ii) rise 

in the value of the return parameter of the AR1 model, (iii) shift in skewness and kurtosis, 
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and (iv) rise in the spectral density ratio.  In following prior work (Biggs et al. 2009) I 

defined the spectral density ratio as the ratio of the spectral density at a frequency of 0.05 

(low) to the spectral denity at a frequency of 0.5 (high).  I expected to see a rise in 

variance and an increase in the return time as the system approached a critical threshold 

due to the progressive decline in system stability and weakening of attraction of the 

piscivore-dominant equilibrium.  An increase in skewness and kurtosis was expected as 

the distribution of system states shifts in the direction of increasing planktivore 

abundance.  The spectral density ratio was also expected to increase while the system 

approaches the critical threshold since low frequency directional movement begins to 

dominate the high frequency noise-induced fluctuations, although this was expected to be 

sensitive to the degree of noise autocorrelation.   

 The indicators were evaluated using both high and low amounts of data.  The 

„high data‟ simulations used 50 within-year data points each year (abundances during the 

“monitoring interval”); the „low data‟ simulations used only one point per year 

(abundance at the maturation interval).  In the high data simulations the indicators were 

calculated each year, while in the low data simulations the indicators were calculated 

using a moving window of fifteen years of annual data.  Therefore in the low data 

simulations there were no indicator values before year fifteen.      

I performed 1000 simulations for each noise, color, and data treatment.  As an 

objective framework for evaluating each indicator, I tested them against a „null model‟ in 

which no phase shift will occur (i.e. a model in steady state with qE = 1.5).  Although 

past studies have reported that a spectral ratio above one is an indication of an impending 

shift, I found this was not true, as described below.  Therefore, for all indicators I defined 
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a positive indication of a phase shift as an instance where the 10 year moving window of 

an indicator exhibited a slope significantly greater (p < 0.1) than expected under the null 

model; i.e. a positive indication of a phase shift occurred when the indicator was rising 

significantly faster than would be expected in a null model.  Therefore, the first 

evaluation of an impending shift will occur at year 10 of the high data simulations and 

year 25 of the low data simulations (15 years to calculate the indicator, plus 10 years to 

calculate the slope in the low data simulations).   

I also calculated the probability that a given indicator would produce a „detection‟ 

significantly more frequently (p < 0.1) than the null model in the interval [0,T].  To do 

this, I (1) determined the distribution of the number of times the null model indicated a 

phase shift in [0,T]. Although ideally this would occur roughly 10% of the time, non-

independence of successive indicator evaluations results in false detections 22% of the 

time, on average, up to the “point of no return” in the high noise simulations, (2) if an 

impending phase shift was concluded in any year in a simulation I set all subsequent 

years in that simulation to positive indications, (3) I calculated the probability that a 

given indicator would produce a „detection‟ significantly more frequently than the null 

model in the interval [0,T] (p=0.1). 

 

Results 

In contrast to expectations based on prior work (Rudnick and Davis 2003) I found 

that the strength of the noise autocorrelation did not have a clear effect on the results of 

the indicator performance evaluations.  Overall, the difference across autocorrelation 

treatments in the probability of concluding a phase shift was occurring up to the attractor 
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switch point and the “point of no return” was always less than 0.1.  Therefore I will 

restrict further attention to results for β =1.6 for the remainder of the paper.  Results for 

other noise colors were qualitatively the same. 

Under the high-data, low-noise treatment the skewness indicator performed well, 

with a probability of detection greater than 0.82 at the attractor switch point and 0.84 at 

the “point of no return”.  Alternatively, the kurtosis indicator performed poorly, with a 

detection rate of 0.11 at the attractor switch point and the “point of no return”, i.e. there 

were no subsequent indications of an impending phase shift after the attractor switch 

point (Figure 8a,c).   

The skewness indicator deteriorated rapidly when subjected to increased noise, 

with a probability of detection at the “point of no return” of 0.25 and 0.28 in the medium 

and high noise treatments, respectively (Figure 8a).  Interestingly, the kurtosis indicator 

improved, but was still weak in the medium and high noise treatments with a probability 

of detection of 0.29 prior to the “point of no return” in the medium and high noise 

simulations (Figure 8c). 

Under the low-data, low-noise treatment the skewness and kurtosis indicators 

again performed poorly with a detection rate of less than 0.02 before the “point of no 

return”.  They were somewhat better at medium and high noise with a total detection rate 

prior to the “point of no return” of 0.17 and 0.15, respectively (Figure 8b,d).  

Under the high-data, low-noise treatment the AR-1 indicator performed well, with 

a detection probability of 0.99 prior to the “point of no return”.  However, its 

performance was significantly weaker at medium and high noise, with a detection 

probability of 0.42 and 0.44 respectively (Figure 8e). 
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Under the low-data treatment, the AR1 indicator had a total detection rate prior to 

the “point of no return” of 0, 0.39, and 0.31 for the low, medium and high noise 

simulations, respectively (Figure 8f). 

In agreement with prior analyses of this model (Biggs et al. 2009), the spectral 

density ratio performed well under all of the high-data treatments yielding detection 

probabilities of 0.8 or better (Figure 8g).  However, under the low-data treatment the 

spectral ratio performs well only in the low noise scenario (detection probability ~0.99), 

under medium and high noise the detection probability drops to 0.31 and 0.29, 

respectively (Figure 8h). 

Importantly, I found that a spectral ratio that exceeds one is not a reliable signal of 

an impending shift, as demonstrated in the equilibrium simulations (qE=1.69) shown in 

Figure 9 where the system does not exhibit a regime shift. Contrary to previous assertions 

(Biggs et al., 2009), it is possible for this model system to exhibit a spectral ratio above 

one for any sampling treatment or noise color, despite a zero probability of an impending 

shift.  The value of the spectral ratio is determined by the value of parameter qE, not the 

future trajectory of the system. 

Under both the high and low data treatments, a rise in variance was the best 

performing indicator overall with near certain detection prior to the “point of no return” 

across all noise treatments.  Therefore, variance was the most reliable indicator of an 

impending phase shift and is the most robust to noise (Figure 8i,j). 

 

Discussion 
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  In our simulations, the performance of most indicators other than variance 

suffered greatly at realistic noise levels and often failed to provide sufficient warning to 

avert a phase shift. Increased noise had a significantly negative impact on the 

performance of the spectral ratio and AR1 indicators.  In some cases additional noise 

improved the detection rate of the skewness and kurtosis indicators, possibly because the 

tails of the state distributions were not significantly affected in the low noise simulations 

and the skewness and kurtosis indicators are sensitive to such changes.  

The sampling rate had a significant effect on indicator performance with an 

average decrease in detection probability of 0.4 at the “point of no return” when moving 

from high to low data treatments.  This was particularly true for the spectral ratio, where 

the detection probability at low noise and high data was 72% lower than at low noise and 

low data (Figure 8g,h). Encouragingly, I found that the variance indicator was robust to 

noise with a detection probability prior to the “point of no return” exceeding 0.9 in all 

treatments.  

Overall, the strength of the noise autocorrelation does not significantly affect the 

performance of the indicators.  This is particularly surprising for the spectral ratio which 

was expected to depend heavily on noise color.  This appears to be because, even in the 

highest autocorrelation treatment, the color of the planktivore time series at low 

abundance is determined almost completely by the dynamics of the system, i.e. the color 

of the noise does not significantly affect the color of the planktivore time series as any 

increase in planktivore abundance is quickly offset by an increase in predation by adult 

piscivores.  Therefore, at low planktivore abundance, the spectrum of the time series is 

determined by the proximity to the critical threshold, which is itself controlled by the 
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harvest rate on piscivores, not the noise spectrum.  This effect is muted after the phase 

shift because piscivores no longer assert a strong effect on planktivore dynamics, 

therefore planktivores are more heavily affected by the noise color.  Thus, although the 

degree of noise autocorrelation does not have a significant effect on indicator 

performance in our system, it may be important in other systems where the spectral 

density of the species time series is determined by the noise autocorrelation, e.g. 

populations that are strongly influenced by environmental variation rather than predation.   

  A persistent problem in phase shift detection is the inability of indicators to 

provide an a priori critical value for management action.  It was previously suggested 

that the spectral ratio could overcome this problem by signaling a shift when the ratio 

exceeded one.  However, the value of the ratio alone is not a reliable indicator of an 

impending shift as it can take on values above one at equilibrium.  Therefore, I was left 

with only the ability to look at trends in indicators over time.  One solution would be to 

use the change in the indicator relative to its range of values over a putative equilibrium 

period as an indication of an impending shift.  However, this comparison could only 

indicate the probability that the system has changed from the equilibrium period, not the 

probability of an impending shift.  Therefore, a necessary next step in phase shift 

prediction is the development of indicators that provide a definite signal of an upcoming 

shift.  

I suggest that future work focus on the use of multivariate time series and state-

space reconstruction techniques like those outlined in Hsieh et al. (2008) to uncover the 

global dynamics of the system using data from a subset of the active variables.  None of 

the indicators tested here explicitly attempt to incorporate data from multiple species 
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simultaneously which is likely to improve detection rates by providing additional 

information about the stability of the system.  One approach would be to use a measure of 

the change in the effective dimension of the system as an indication of an impending 

shift.  In the system studied here, as the critical threshold is approached, the importance 

of piscivores for the regulation of planktivores decreases and the system shifts from two 

to three dimensions down to one.  Such a method may be able to detect non-local 

bifurcations which cannot be detected using the indicators tested here (see Hastings and 

Wysham 2010).  In addition, spatial state-space reconstruction techniques can be used for 

systems that lack sufficiently long time series.  For example, comparisons of the number 

of active dimensions for similar systems along a gradient of habitat degradation (e.g. 

Sandin et al. 2008) may be able to provide an instantaneous measure of phase shift 

proximity.     

 In summary, I found that, overall, the sampling rate and the noise intensity had 

large negative impacts on indicator performance.  The variance indicator was the most 

robust to noise and changes in sampling rate and performed well across all treatments. As 

real systems are not accompanied by a null model, future work should focus on the 

identification of critical values which resource managers can use as definite signals of an 

upcoming shift.   Also, considering recent advances in remote sensing and ecological 

informatics, future work should focus on developing state-space reconstruction 

techniques that can utilize multiple data sources simultaneously, thus reducing the time 

needed to detect an impending shift. 
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Table 1  Parameter ranges for the Hastings and Powell (1991) model  

Parameter Values 

a1 [3.5 to 6.5] 

a2 [0.7 to 0.13] 

b1 [2.1 to 3.9] 

b2 [1.4 to 2.6] 

d1 [0.28 to 0.52] 

d2 [0.007 to 0.013] 

F [0.025 to 0.075] 

σ [0.05 to 0.15] 

θ [0 to 500] 



34 

 

Table 2  Mean RMSE for all models, fit with one, two, and three species, denoted as (1), 

(2) and (3). LV is the Lotka-Volterra model, HP is the Hastings-Powell model. 

Forecasting 

method 

 

Overall 

No 

noise 

Low 

noise 

High 

noise 

Short 

series 

Long 

series 

Low 

harvest 

High 

harvest 

MS-Map (1) 0.21 0.09 0.17 0.24 0.22 0.20 0.21 0.20 

MS-Map (2) 0.12 0.08 0.10 0.16 0.15 0.11 0.14 0.11 

MS-Map (3) 0.11 0.07 0.08 0.15 0.13 0.10 0.12 0.10 

Schaefer (1) 0.32 0.29 0.30 0.35 0.32 0.32 0.32 0.32 

LV (1) 0.32 0.36 0.34 0.32 0.33 0.32 0.32 0.34 

LV (2) 0.32 0.35 0.34 0.32 0.32 0.32 0.31 0.34 

LV (3) 0.30 0.29 0.29 0.32 0.30 0.31 0.30 0.32 

HP (1) 0.26 0.00 0.18 0.32 0.26 0.25 0.25 0.26 

HP (2) 0.24 0.00 0.16 0.30 0.24 0.24 0.23 0.23 

HP (3) 0.18 0.00 0.10 0.26 0.17 0.18 0.18 0.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

Table 3  Mean percent error for all models, fit with one, two and three species, denoted 

as (1), (2) and (3). LV is the Lotka-Volterra model, HP is the Hastings-Powell model. 

Forecasting 

method 

 

Overall 

No 

noise 

Low 

noise 

High 

noise 

Short 

series 

Long 

series 

Low 

harvest 

High 

harvest 

MS-Map (1) 29.2% 12.2% 23.6% 33.3% 30.6% 27.8% 29.2% 27.8% 

MS-Map (2) 16.7% 10.7% 13.9% 22.2% 20.8% 15.3% 19.4% 15.3% 

MS-Map (3) 15.3% 9.1% 11.1% 20.8% 18.1% 13.9% 16.7% 13.9% 

Schaefer (1) 44.4% 39.8% 41.7% 48.6% 44.4% 44.4% 44.4% 44.4% 

LV (1) 44.4% 49.3% 47.2% 44.4% 45.8% 44.4% 44.4% 47.2% 

LV (2) 44.4% 49.0% 47.2% 44.4% 44.4% 44.4% 43.1% 47.2% 

LV (3) 41.7% 39.9% 40.3% 44.4% 41.7% 43.1% 41.7% 44.4% 

HP (1) 36.1% 0.0% 25.0% 44.4% 36.1% 34.7% 34.7% 36.1% 

HP (2) 33.3% 0.0% 22.2% 41.7% 33.3% 33.3% 31.9% 31.9% 

HP (3) 25.0% 0.0% 13.9% 36.1% 23.6% 25.0% 25.0% 23.6% 
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Table 4  Probability of detecting a shift for the high data simulations for the period up to 

one year before the point of no return. 

Indicator Low  

Noise  

(σ = 0.1) 

Medium 

Noise  

(σ = 2.2) 

High 

Noise  

(σ = 4.3) 

Skew 0.84 0.28 0.26 

Kurtosis 0.11 0.29 0.29 

AR-1 1.00 0.47 0.44 

Spectral Ratio 1.00 0.98 0.80 

Variance 1.00 1.00 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Table 5  Probability of detecting a shift for the low data simulations for the period up to 

one year before the point of no return. 

Indicator Low  

Noise  

(σ = 0.1) 

Medium 

Noise  

(σ = 2.2) 

High 

Noise  

(σ = 4.3) 

Skew 0.01 0.17 0.23 

Kurtosis 0.01 0.15 0.22 

AR-1 0.00 0.39 0.31 

Spectral Ratio 0.99 0.31 0.29 

Variance 1.00 0.97 0.94 
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Figure 1  A typical time series for the short (45 year) simulations. High noise time series 

is in blue, deterministic time series is in black. 
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Figure 2  Mean RMSE for all simulations with noise for the HP system.  Over all 

simulations with noise the MS-Map outperformed all other models.  For simulations 

without noise (not shown) the HP model generated perfect forecasts. 
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Figure 3  Change in the weight parameter (θ) of the MS-Map vs. noise level.  A large θ 

generates forecasts that give points close to the predictand more weight, i.e. forecasts that 

are more nonlinear.  The three-species MS-Map was able to maintain the nonlinearity of 

the forecasts through the high noise simulations. 
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Figure 4  Mean RMSE for all combinations of the CalCOFI rockfish larval abundance 

data.  The one-species, two-species and three-species MS-Maps RMSEs are denoted as 

(1), (2) and (3). 
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Figure 5  RMSE of the MS-Map forecasts for each combination of the three rockfish 

species.  The x-axis gives the species being forecasted.  Each group of bars describes the 

forecast accuracy when using just the species being forecasted (blue bars), using the 

species being forecasted and one other species (red, orange, and green bars), and using all 

three species (black bars).  Shortbelly forecasts did not improve when adding species. 

Aurora forecasts did not improve when including Shortbelly, but did improve when 

adding Bocaccio and all three species.  Boccacio forecasts were not improved by adding 

Aurora, but did improve when adding shortbelly and when including all three species. 
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Figure 6  Time series median percentiles (black lines) and 10
th

 and 90
th

 percentiles (gray 

lines) for each group during the high noise simulations with β=1.6 (red noise).  The 

vertical dashed line is the attractor switch point (year 23); the vertical solid line is the 

“point of no return” (year 58). 
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Figure 7  Indicator values vs. time calculated using annual data (with β=1.6) under low 

noise (left panels) and high noise (right panels) shown up to year 80.  Median (black 

line), and 90
th

 and 10
th

 percentiles (red lines) of all runs shown.  Indicators are calculated 

using a moving window of 15 years.  The vertical line is the “point of no return”.  Skew 

and kurtosis indicators (a-d) show no indication of an impending shift until after the 

“point of no return”.  AR1 indicator (e,f) provides a gradual indication at low noise but 

fails at high noise.  Spectral ratio (g,h) performs well at low noise but also fails at high 

noise.  Variance indicator (i,j) performs well at low noise and high noise.  
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Figure 8  Probability of concluding a phase shift is occurring for all runs using high data 

(50 within year points, left panels) vs. low data (1 annual point, right panels) shown up to 

year 80. Low noise (dotted line), medium noise (dashed line) and high noise (solid line).  

Vertical line is the “point of no return” (year 58). High data indicators use a moving 

window of 10 years to calculate the slope of the indicator; low data indicators use a 15 

year moving window to calculate the indicator and a 10 year moving window to calculate 

the slope.  Skew and kurtosis (a-d) fail to detect the phase shift >70% of the time, except 

in the skew low noise runs.  AR1 indicator performs well in the high data, low noise 

simulations but performs poorly elsewhere. Spectral ratio performs poorly in the low 

data, medium and high noise runs.  Variance performs well across all treatments. 
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Figure 9  Median spectral ratio vs. harvest rate of adult piscivores for equilibrium 

simulations, i.e. no possibility of a regime shift.  Results are for low noise simulations 

across all noise colors. The spectral ratio exceeds one for a range of harvest parameters 

when the system is at equilibrium, therefore a spectral ratio exceeding one is not a 

reliable indicator of an impending shift.   

 

 


