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Abstract of the Dissertation

AdS/CFT beyond the N = 4 SYM paradigm

by

Elli Pomoni

Doctor of Philosophy

in

Physics

Stony Brook University

2010

In this thesis we present studies in the AdS/CFT correspondence
that intend to push the present knowledge beyond the N = 4 super
Yang-Mills (SYM) paradigm.

The first part is concerned with the study of non-supersymmetric
deformations of N = 4 SYM (which still are in the N = 4 uni-
versality class). For non-supersymmetric CFT’s at Large N we
explore the correspondence between string theory tachyons in the
bulk and instabilities on the boundary effective action. The oper-
ators dual to AdS tachyons have anomalous dimensions that are
purely complex numbers. We give a prescription for calculating the
mass of the tachyon from the field theory side. Moreover, we apply
this general dictionary to the case of intersecting D7 flavor branes
in AdS5 × S5 and obtain the mass of the open string tachyon that
is dual to the instability in the mesonic sector of the theory.

In the second part we present work aiming at finding string theory
duals for gauge theories beyond the N = 4 universality class, i.e.
theories that have genuinely less supersymmetry and unquenched
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flavor. Arguably the next simplest example after N = 4 SYM is
N = 2 SU(Nc) SYM coupled to Nf = 2Nc fundamental hyper-
multiplets. The theory admits a Veneziano expansion of large Nc

and large Nf , with Nf/Nc and λ = g2Nc kept fixed. The topo-
logical structure of large N diagrams invites a general conjecture:
the flavor-singlet sector of a gauge theory in the Veneziano limit
is dual to a closed string theory. We present the one-loop Hamil-
tonian for the scalar sector of N = 2 superconformal QCD and
study this integrability of the theory. Furthermore, we explore the
chiral spectrum of the protected operators of the theory using the
one-loop anomalous dimensions and, additionally, by studying the
index of the theory. We finally search for possible AdS dual trying
to match the chiral spectrum. We conclude that the string dual
is a sub-critical background containing both an AdS5 and an S1

factor.
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Chapter 1

Introduction

1.1 Motivation - Overview

The AdS/CFT correspondence [1–3] (see [4] for a review) has been one of
the most important advancements in string theory in the last decade. It is
an example of gauge theory/gravity duality and provides tools to explore the
strongly coupled gauge theories using weekly coupled gravity (string theory)
and, maybe, to even learn about the non-pertubative regime of string theory
using weekly coupled gauge theory. The basic paradigm is the duality between
N = 4 super-Yang Mills (SYM) and type IIB string theory on AdS5×S5. Un-
fortunately, N = 4 SYM is far from realistic. It has maximal supersymmetry
and all its fields are in the adjoint representation of the color group. Even
though there are many “phenomenological” models inspired by the AdS/CFT
(which give for example a qualitative geometric understanding of confinement
and chiral symmetry breaking), only for a sparse set of four-dimensional gauge
theories do we have quantitative evidence of an “exact” duality.

Most of the other (besides N = 4) conjectured “exact” dualities are close
cousins of this basic paradigm. Some examples are obtained by deforming the
N = 4 paradigm by turning on relevant deformations (to flow to a new CFT
preserving fewer supersymmetries). Another approach is to break supersym-
metry by changing the topology of the string theory background replacing the
AdS5×S5 by some AdS5×X5

1. These relatively well-understood dualities are
constructed by considering stacks of D3 branes in critical (i.e ten dimensional)
string theory in R3,1 ×M6. Given the choice of the manifold X5 (the isome-
tries of X5 correspond2 to the R-symmetry of the gauge theory) N = 4, 2, 1, or

1see for example the review by Klebanov [5]
2More accurately, the isometries of X5 should include the R-symmetry of the gauge

1



even zero supersymmetry is preserved. Moreover, a closely related set of well-
understood dual geometries is constructed by adding a small number Nf ≪ Nc

of probe, flavor branes in the AdS5 ×X5 backgrounds, neglecting their back-
reaction. These are gravity duals to gauge theories with fundamental quarks
in the quenched approximation. The way the flavor branes are placed in the
AdS5 ×X5 backgrounds, preserving some of the isometries of the original ge-
ometry, can lead to further breaking of supersymmetry. In the cases where
some supersymmetry is preserved, the gravity backgrounds are better under-
stood. When supersymmetry is completely broken, tachyons might appear on
the string theory side with their holographic image being the instabilities of
the effective potential on the field theory side.

For example in non-supersymmetric orbifolds of N = 4 SYM, conformal
invariance is broken by the logarithmic running of double-trace operators – a
leading effect at large N . A tachyonic instability in AdS5 has been proposed
as the bulk dual of double-trace running. In the first part of this thesis we
make this correspondence more precise. In chapter 2, using standard field
theory methods, we show that the double-trace beta function is quadratic in
the coupling to all orders in planar perturbation theory. Tuning the double-
trace coupling to its (complex) fixed point, we find conformal dimensions of
the form 2±i b(λ), as formally expected for operators dual to bulk scalars that
violate the stability bound. We also show that conformal invariance is broken
in perturbation theory if and only if dynamical symmetry breaking occurs.
Our analysis is applicable to a general large N field theory with vanishing
single-trace beta functions. This work was originally presented in [6].

In chapter 3 we consider an instance of the AdS/CFT duality where the
bulk theory contains an open string tachyon, and study the instability from the
viewpoint of the boundary field theory. We focus on the specific example of the
AdS5×S5 background with two probe D7 branes intersecting at general angles
worked out in [7]. For generic angles supersymmetry is completely broken and
there is an open string tachyon between the branes. The field theory action
for this system is obtained by coupling to N = 4 SYM two N = 2 hyper
multiplets in the fundamental representation of the SU(N) gauge group, but
with different choices of embedding of the two N = 2 subalgebras into N = 4.
On the field theory side we find a one-loop Coleman-Weinberg instability in the
effective potential for the fundamental scalars. We identify a mesonic operator
as the dual of the open string tachyon. By AdS/CFT, we predict the tachyon
mass for small ’t Hooft coupling (large bulk curvature) and confirm that it

theory. There are examples where the Sasaki-Einstein spaces have U(1)3 isometries that
correspond to the U(1)R × U(1)2F global symmetry with the U(1)2F being a non-beryonic
flavor symmetry group of certain quiver gauge theories.

2



violates the AdS stability bound.

For the set of dual pairs constructed using critical string theory, the six
transverse dimensions correspond to extra scalar fields in the field theory.
While it is possible to break supersymmetry, the resulting gauge theory still
“remembers” the maximal supersymmetry of the “mother” N = 4 theory.
A basic open question is whether we can find exact dual pairs outside the
“universality class” of N = 4 SYM. One of the research directions explored
in this dissertation is to find string theory duals of gauge theories that have
“genuinely” less supersymmetry. A related direction is to look for duals of
gauge theories that include a large number of quark fields in the fundamen-
tal representation of the gauge group. In chapter 4 we present some progress
made in both directions [8]. We study what is arguably the simplest (most
symmetric) gauge theory outside a N = 4 universality class, namely N = 2 su-
perconformal QCD (SCQCD), the N = 2 super Yang Mills theory with gauge
group SU(Nc) and Nf = 2Nc fundamental hyper multiplets. N = 2 SQCD for
Nf = 2Nc has a vanishing beta function and, thus, should have an AdS dual
description. The theory admits a Veneziano expansion of large Nc and large
Nf , with Nf/Nc and λ = g2

YMNc kept fixed. The topological structure of large
N diagrams motivates a general conjecture: the flavor-singlet sector of a gauge
theory in the Veneziano limit is dual to a closed string theory. Single closed
string states correspond to “generalized single-trace” operators, where adjoint
letters and flavor-contracted fundamental/antifundamental pairs are stringed
together in a closed chain. We look for the string dual of N = 2 SCQCD
from two fronts. From the bottom-up, we perform a systematic analysis of the
protected spectrum using superconformal representation theory and the the
one-loop dilation operator that we derive in chapter 5. From the top-down,
we consider the decoupling limit of known brane constructions. In both ap-
proaches, more insight is gained by viewing the theory as the degenerate limit
of the N = 2 Z2 orbifold of N = 4 SYM, as one of the two gauge couplings
is tuned to zero. A consistent picture emerges. We conclude that the string
dual is a sub-critical background with seven “geometric” dimensions, contain-
ing both an AdS5 and an S1 factor. The supergravity approximation is never
entirely valid, even for large λ, since the field theory has an exponential de-
generacy of exactly protected states with higher spin, which must be dual to
a sector of light string states.

Integrability techniques have been proven an extremely powerful tool in
studying N = 4 SYM in the large Nc limit. The complete determination of
the exact operator spectrum of the planar theory seems within reach. The same
integrability structures arise both on the field theory and on the dual string
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theory side, allowing a very precise check of the AdS/CFT correspondence.
In fact, although historically it happened otherwise, the AdS/CFT correspon-
dence for N = 4 SYM could have been discovered “from the bottom-up”, that
is from the perturbative analysis of the field theory dilation operator. Already
the one-loop spin chain gives a strong hint of the duality, clearly suggesting
a string worldsheet propagating in the AdS5 × S5 target space [10–12]. In
chapter 5, we consider the one-loop spin chain for N = 2 SCQCD, in order
to collect “bottom-up” clues about the string dual, finding nice qualitative
agreement with the “top-down” string theory approach. We, finally, study the
magnon excitations of the spin chain and their bound states and investigate
whether this spin chain is integrable [9].

1.2 AdS/CFT: History - Status Report

String theory was originally discovered as the dual resonance model of the
strong interactions prior to the development of gauge theories and QCD. In
the mid 70’s the interest in string theory was revived after the spin 2 massless
particle discovered in its spectrum was recognized as the graviton. This sug-
gested that string theory is a theory of quantum gravity. Naturally containing
general relativity and gauge theories, string theory emerged as a strong candi-
date for the unified theory of all particle interactions. In the last decade, with
the discovery of the AdS/CFT correspondence, string theory has partly gone
back to its original roots.

String theory contains closed strings, whose low energy effective theory is
Einstein’s gravity, and open strings that end on (non-pertubative objects) Dp
Branes, whose low energy theory is electromagnetism (gauge theory). Sim-
ply by observing the fact that under interchanging the worldsheet time and
space coordinates the open string one loop diagram becomes a closed tree level
propagating string one expects that there should be some kind of open/closed
string duality (gauge theory/gravity duality).

AdS/CFT is an example of such a duality. There are, by now, several
examples of theories that have two equivalent descriptions, one in terms of
open strings (gauge theory), the other in terms of closed strings (gravity).
Open/closed duality provides both a powerful insight into the dynamics of
strongly coupled physical systems, and a key to the fundamental nature of
string theory. Through the AdS/CFT correspondence the gravitational de-
scriptions give insights into strongly coupled gauge theories, while gauge theo-
ries provide in principle a reformulation of gravity as an emergent phenomenon.

A beautiful argument that there must be a relation between string theory
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and gauge theories originates back in the work of ’t Hooft [13]. The perturba-
tive expansion of U(N) gauge theories in the large N limit can be reorganized
in terms of the genus expansion of the surface spanned by the Feynman dia-
grams, like the perturbative expansion of string theory. The parameter 1/N
counts the genus of the Feynman diagram, while the ’t Hooft coupling

λ = g2
YMN (1.1)

enumerates the quantum loops.

Holography is an other old idea in the direction of gauge/gravity duality
(again originally suggested by ’t Hooft [14] and further by Susskind [15]). The
Holographic principle states that the degrees of freedom of a gravitational
theory that lives in some space M are equal to the degrees of freedom of a non-
gravitational theory that lives on the boundary ∂M . This can be understood
using the fact that the entropy of a black hole given by the Bekenstein Hawking
formula [16]

S =
A

4G
(1.2)

The argument goes as follows: if some setup had more degrees of freedom than
a black hole and it was not a black hole, we could throw more matter to it
and turn it into a black hole. But this new configuration would have bigger
entropy that the initial one. And thus more than (1.2) which is wrong.

1.2.1 The N = 4 paradigm

The canonical example of AdS/CFT is between Type IIB string theory on
AdS5×S5 and N = 4 SYM theory in four dimensional Minkowski space. It was
conjectured by Maldacena in [1] after studying the low energy limit (decoupling
limit) of ten dimensional sting theory on the background of N D3 branes.
Closed strings are excitations of the empty space (the bulk) while open strings
end on the D-branes and describe their excitations. After taking the low
energy limit (α′ → 0) the two theories decouple. N = 4 SYM is the low energy
limit of the theory that lives on the D3 branes3. The AdS5 × S5 geometry
arises if we study the supergravity solution around D3 branes and take the
near horizon limit. The AdS scale of the solution is R4 = 4πgsα

′2N . The

3The action for the theory of open strings that live on the worldvolume of a brane is
the Dirac-Born-Infeld action (DBI). It is multiplied by the tension TDp ∼ 1/gsℓ

p+1
s of the

brane and, in low energy, it is reduced to the SYM action which has 1/g2
Y M as a prefactor.

This leads to the identification gsℓ
p−3
s ∼ g2

Y M which for the special case of D3 gives a
dimensionless coupling constant.
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conjecture states that a ten dimensional theory of gravity, type IIB superstring
in AdS5 × S5 (with N units of five-form flux on S5), and a four dimensional
gauge theory, N = 4 SYM, are dual to each other. The fact that all the ten
dimensional dynamical degrees of freedom can somehow be encoded in a four
dimensional theory living at the boundary of AdS5 suggests that the gravity
bulk dynamics result from a holographic image generated by the dynamics of
the boundary theory. The string theory is characterized by two parameters:
the string coupling constant gs and the effective string tension R2/α′ = R2/ℓ2s.
The gauge theory on the other hand is parametrized by the rank N of the
gauge color group and the coupling constant gYM . The two theories are dual
to each other with the following identifications between their parameters,

4πgs = g2
YM

R4

ℓ4s
= λ (1.3)

The identification of the parameters is achieved by inspecting the supergravity
solution around N coincident D3 Branes. The conjecture is to hold for all
values of N and of 4πgs = g2

YM .

A very essential indication for the validity of the AdS/CFT correspondence
was the observation that the global symmetries of the two theories match. The
SU(4)R ∼ SO(6)R R-symmetry of N = 4 SYM is identified with the isometries
of the 5-sphere and the conformal symmetry SO(2, 4) with the isometries of
AdS5. Furthermore, the combination of N = 4 supersymmetry, Poincaré and
conformal invariance produces an even larger superconformal symmetry given
by the supergroup PSU(2, 2|4). What is more, the β-function of N = 4 SYM
theory is identically zero due to non renormalization theorems. The theory
is exactly scale invariant at the quantum level, and the superconformal group
SU(2, 2|4) is a fully quantum mechanical symmetry.

N = 4 SYM also has electromagnetic (S-duality) symmetry, realized on
the complex coupling constant τ = 4πi

g2Y M

+ θ
2π

by Möbius transformations in

SL(2,Z). On the AdS side, this symmetry is a global discrete symmetry of
type IIB string theory with τ = i

gs
+ χ

2π
(gs and χ are the expectation values of

the NSNS and the RR scalars – the dilaton and the axion). It is unbroken by
the D3 brane solution, in the sense that it maps non-trivially only the dilaton
and axion expectation values. It must be noted, however, that S-duality is
a useful symmetry only for finite N since S-duality transformations do not
commute with the large N limit with λ fixed.

Witten and Gubser, Klebanov, and Polyakov [2, 3] used holography to
make the AdS/CFT “dictionary” precise. The holographic map between the
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two theories was discovered by studying the possible boundary conditions for
the string fields living in the AdS space. Gauge invariant operators, which are
the observable quantities on the boundary, are dual to string fields in the AdS
bulk with the same quantum numbers. The string theory fields φ(z,y) that
live in AdS5 × S5 have to first be decomposed in a series on S5,

φ(z,y) =

∞∑

∆=0

φI(z)YI(y) (1.4)

where YI is a basis of spherical harmonics on S5. Just as fields on a circle
receive a mass contribution from the momentum mode on the circle, so do
fields compactified on S5 receive a contribution to the mass. Once we have
the full spectrum of the bulk fields that live in AdS space only, we have to
consider solving their field equations. Solving for example the Klein-Gordon
equation for a scalar in AdS, we discover that there are two solutions as it is a
second order differential equation: a non-normalizable and a normalizable one
that correspond to Dirichlet and Neumann boundary conditions respectively.
Near the boundary 4,

φ(x, z) → φ0(x) z4−∆ + (∂φ)0 (x) z∆ . (1.5)

φ0 is a prescribed “source” function (φ0 = J) and (∂φ)0 describes a physical
fluctuation that ends up (after a short calculation using (1.8)) being related
to the vacuum expectation value of the dual operator

(∂φ)0 =
1

2∆ − 4
〈O〉 . (1.6)

A scalar field with mass m will have the asymptotic behavior (1.5) for m2R2 =
∆(∆ − 4). Similarly, for the various types of fields we get that the massess
and the conformal dimensions are connected through the following map:

scalars m2R2 = ∆(∆ − 4)

spin 1/2, 3/2 |m|R = ∆ − 2

p− form m2R2 = (∆ − p)(∆ + p− 4) .

spin 2 m2R2 = ∆(∆ − 4)

In order to prove the AdS/CFT correspondence the two Hilbert spaces
of the two theories have to be identified using (1.7) for all values of N and

4Here we are using Poincaré coordinates: x are the coordinates in R4 and z is the radial
direction of AdS5.
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λ. That is to say, the partition function of the string theory with boundary
conditionds φ0 should be equal to the gauge theory partition function that
contains all the correlators of single trace operators O with sources φ0 = J ,

Zstring[φ0] ≡ ZN=4[J ] = 〈e
R

∂M
J O〉 . (1.7)

This expression is understood to hold order by order in a perturbative ex-
pansion. On the AdS side, we assume that we have an action Sstring[φ] that
summarizes the dynamics of type IIB string theory5 on AdS5. In the super-
gravity approximation (α′ → 0), S[φ] is the very well understood type IIB
supergravity action on AdS5. If we first take the large N limit, gs → 0 (or
equivalently6 GN → 0), we do not have to compute any string theory (quantum
gravity) corrections. Then, we can further take the strong coupling λ → ∞
limit which in the gravity side is α′ → 0 and we can just use type IIB su-
pergravity. Doing so, the path integral of the string theory side is reduced
to

e−S[φ0] ≡ 〈e
R

∂M
φ0 O〉 (1.8)

and we can easily compute correlation functions for operators in the strongly
coupled gauge theory, just by taking functional derivatives with respect to
the sources J = φ0. To go beyond the supergravity approximation (i.e. to
calculate 1/

√
λ corrections for the field theory correlators), S[φ] should also

include α′ corrections due to massive string effects.

Having the basic dictionary set up, the simplest check of the correspon-
dence we can perform is to match the chiral spectrum of the gauge theory
with the KK spectrum of supergravity. This is basically a superconformal
representation theory multiplets matching (group theory plus field content)
argument. Studying superconformal representation theory, we discover that
there are short multiplets, some of which are protected (i.e. their anomalous
dimension is always zero in all orders perturbation theory). For N = 4 SYM
there is one half-BPS multiplet that is protected. The conformal dimensions
and quantum numbers of its members are directly matched to the one and only
gravity multiplet of type IIB supergravity. This multiplet starts with φℓ1, φ

ℓ
2,

or φℓ3 scalars and contains, among their other descendants, the stress energy
tensor of N = 4 and the supercurrents. These are dual to scalars with all
the indices in the 5-sphere, the graviton and the gravitino respectively. This
check was originally performed in [3, 17] but can also be easily achieved with a
novel tool, “the index” [18], which is nothing but the partition function (up to

5This action is of course not known. We do not even know how to write the full spectrum
of string theory in AdS5 × S5 – apart from the special case of the plane wave limit.

6Newton’s constant GN ∼ R8/N2 goes to zero as N goes to infinity.

8



signs for the fermions) for only the protected operators. We describe in detail
this very powerful tool and employ it to check the chiral spectrum of N = 2
SCQCD in chapter 4.

The next step is to consider the large N limit but calculate corrections
in λ. The first reasults in this direction were obtained using the BMN limit
(Berenstein - Maldacena - Nastase [10]). Classical rotating strings in the 5-
sphere or the AdS5 are mapped to operators with high R-charges or many
derivatives, for all λ but with J → ∞. The geometry seen by these fast
rotating strings is the so-called plane wave geometry and string theory in
this background is exactly solvable. In other words, we know the excitations
spectrum which is comprised by massive bosons/fermions.

Although the aforementioned results offered essential checks of the AdS/CFT
correspondence, they are yet limited in large J type of operators. The real
breakthrough came only after the observation, by Minahan and Zarembo [11],
that the calculation of an operator’s anomalous dimension can be mapped to
a spin chain type of problem that is integrable. Using integrability techniques,
the complete determination of the planar theory’s exact operator spectrum,
for all λ, seems only a matter of time. The dilatation operator at higher loops
(all loops) was calculated and found to correspond to a long range Hamiltonian
that is integrable to all orders in λ [19, 20]. Shortly after that, the all loop
Scattering matrix was obtained (up to a phase) using the symmetry algebra
[21]. Finally, the Thermodynamic Bethe Ansatz (TBA) was used to account
for the finite size corrections (wrapping) for small operators [22–24].

Even though in this dissertation we will only consider the planar theory,
we also report for completeness the status of checking the AdS/CFT for fi-
nite N . The relevant perturbative calculations are rather difficult and, hence,
there has not been much progress in this direction. However, 1/N corrections
have been calculated for some quantities like the c and a anomalies for N = 4
SYM and orbifolds of it, finding that the field theory and gravity results match
[25–27]. The most significant check of the AdS/CFT for finite N was achieved
by Aharony and Witten [28]. In their work, they show that upon compactifi-
cation on a circle, N = 4 SYM acquires a ZN global symmetry (the center of
the gauge group is ZN) that happens to be a “topological symmetry”. Finally,
an alternative check of the AdS/CFT for finite N is provided by the giant
gravitons. Giant gravitons are D3 branes wrapping an S3 ⊂ S5 with large
angular momentum on the S5. There are dynamically stable solutions of type
IIB supergravity that preserve half of the supersymmetries. Their dual oper-
ators on the boundary are not made gauge invariant by taking the trace, but
the determinant in the color space. For these operators non-planar diagrams
dominate over planar diagrams and, thus, the 1/N check.
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Finally, although in this thesis we will only be concerned with dual pairs for
which the boundary theory is four dimensional (with the exception of chapter
4 where the arguments are more general), we wish to mention that there are
many other examples of AdS/CFT correspondence for dimensions different
than four. First of all, using M2 and M5 branes was already suggested in [1].
M-theory in AdS4×S7 and AdS7×S4 should be dual to supersymmetric three
dimensional conformal field theory and (2, 0) superconformal field theory in
six dimensions respectively. Recently, a lot of progress was made after the
discovery of the Lagrangian for M2 branes [29]. ABJM showed that string
theory on AdS4 × CP

3 is dual to N = 6 superconformal Chern-Simons [30].
There has also considerable progress for theories in two dimensions. AdS3 ×
S3 ×M4 is dual to the two dimensional symmetric orbifold theory (the field
theory that lives on D1/D5 intersections). For AdS8 or higher dimensions
there are no more dual pairs as there is no simple AdS supergroup.

1.2.2 Beyond N = 4 SYM

As discussed in the previous section most of the other conjectured “exact”
dualities, such as N = 4 orbifolds and orientifolds, the conifold, AdS5 × X5

where X5 is any Sasaki Einstein manifold Y p,q or La,b,c, are all close cousins of
the N = 4 SYM standard paradigm. They are obtained by considering stacks
of D3 branes in critical string theory in R3,1 ×M6 with

ds2
M6

= dr2 + r2dX2
5 . (1.9)

A choice of M6 with less isometries than R6 will lead to a field theory with
fewer supersymmetries preserved. If, for example, M6 is Ricci flat (i.e. a
Calabi-Yau 3-fold) N = 1 supersymmetry is preserved. More dual pairs are
obtained by deforming the N = 4 SYM with gamma deformations or with
marginal and relevant deformations. Further examples are constructed by
adding flavor branes in the probe approximation in the AdS5×X5 backgrounds,
neglecting their backreaction. The open strings that stretch between the color
D3 branes and the Nf ≪ Nc flavor branes lead to fundamental quarks. Again,
the relative position of the flavor branes to theD3s can lead to further breaking
of supersymmetry.

There is also the famed Sakai-Sugimoto model that is arguably the best
(the closest) string-theoretical holographic realization of the “real” QCD in
the infrared [32, 33]. It provides a beautiful geometric realization of chiral
symmetry breaking and has been used to study the spectrum of mesons and
baryons. 7

7In this direction of getting a nice string model of holographic QCD there is a new
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In all the aforementioned examples, when supersymmetry is completely
broken our work [6] is applicable. Specifically, in chapters 2 and 3, we study
the tachyons that appear on the string theory side from the instabilities of the
effective potential on the field theory side.

An orthogonal direction is instead of using critical string theory in which
the resulting gauge theory always “remembers” the maximal supersymmetry
due to extra fields, to work with non-critical string theory . This was originally
suggested by Polyakov [35, 36]. He argues that pure Yang-Mills theory in four
dimensions should be described by a sub-critical string theory in AdS5 space.
The physical meaning of the fifth dimension is that of the renormalization
scale represented by the Liouville field. Building on this idea, theories with
genuinely lower supersymmetry should be dual to non-critical string theories,
according to the pattern: N = 4, d = 10 (critical case); N = 2: d = 8; N = 1:
d = 6; N = 0: d = 5. In chapter 4 we present our work on N = 2 SCQCD
that is arguably the next simplest case beyond the N = 4 SYM universality
class.

example constructed with intersecting D4 branes , that was recently suggested by Van
Raamsdonk and Whyte [34]. This exaple have very similar features to our intersecting D7
branes model presented in chapter 5.
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Chapter 2

Large N Field Theory and AdS
Tachyons

2.1 Introduction

Conformal invariant quantum field theories in four dimensions are interest-
ing both theoretically and for potential phenomenological applications. While
perturbatively finite supersymmetric QFTs have been known for a long time
[37] and a vast zoo of non-perturbative supersymmetric examples was discov-
ered during the duality revolution of the 1990s, only few non-supersymmetric,
interacting CFTs in d = 4 are presently known.1

The AdS/CFT correspondence [1–3] seems to offer an easy route to several
more examples. A well-known construction [39, 40] starts by placing a stack
of N D3 branes at an orbifold singularity R6/Γ. In the decoupling limit one
obtains the duality between an orbifold of N = 4 SYM by Γ ⊂ SU(4)R
and Type IIB on AdS5 × S5/Γ. Supersymmetry is completely broken if Γ 6⊂
SU(3), but since the AdS factor of the geometry is unaffected by the orbifold
procedure, conformal invariance appears to be preserved, at least for large
N . However, in the absence of supersymmetry one may worry about possible
instabilities [41].

On the string theory side of the duality, one must draw a distinction [42]
according to whether the orbifold action has fixed points or acts freely on S5. If
Γ has fixed points, there are always closed string tachyons in the twisted sector.
If Γ acts freely, the twisted strings are stretched by a distance of the order of
the S5 radius R; the would-be tachyons are then massive for large enough R
(strong ’t Hooft coupling λ), but it is difficult to say anything definite about
small R.

1Large N Bank-Zaks [38] fixed points come to mind.
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On the field theory side, a perturbative analysis at small λ reveals that
conformal invariance is always broken, regardless of whether the orbifold is
freely acting or not [43, 44]. The inheritance arguments of [41, 45] guarantee
that the orbifold theory is conformal in its single-trace sector: at large N ,
all couplings of marginal single-trace operators have vanishing beta functions.
However, even at leading order in N , there are non-zero beta functions for
double-trace couplings of the form

δS = f

∫
d4xOŌ , (2.1)

where O is a twisted single-trace operator of classical dimension two [42–
44, 46, 47]. Conformal invariance could still be restored, if all double-trace
couplings fk had conformal fixed points. It turns out that this is never the
case in the one-loop approximation [43, 44]. So for sufficiently small λ, all
non-supersymmetric orbifolds of N = 4 break conformal invariance.

It is natural to associate this breaking of conformal invariance with the
presence of tachyons in the dual AdS theory [43]. By an AdS tachyon, we
mean a scalar field that violates the Breitenlohner-Freedman bound [48]:

For a tachyon , m2 < m2
BF = − 4

R2
. (2.2)

One is then led to speculate [43] that even for freely acting orbifolds, some
of the twisted states must become tachyonic for λ smaller than some critical
value λC . The conjectural behavior of m2(λ) for a “tachyon” in a freely acting
orbifold theory is shown in Figure 2.1. A related viewpoint [42] links the
tachyonic instability in the bulk theory with a perturbative Coleman-Weinberg
instability in the boundary theory. From this latter viewpoint however, it
seems at first that whether Γ is freely acting or not makes a difference even at
weak coupling [42]: if Γ has fixed points, the quantum-generated double-trace
potential destabilizes the theory along a classical flat direction; if Γ is freely
acting, the symmetric vacuum appears to be stable, because twisted operators
have zero vevs along classical flat directions.

In chapter 2 of this dissertation we make the correspondence between
double-trace running and bulk tachyons more precise. Taken at face value,
an AdS5 tachyon would appear to be dual to a boundary operator with com-
plex conformal dimension of the form

∆ = 2 ± i b , b =
√

|m2R2 + 4| . (2.3)

We are going to find a formal sense in which this is correct, and a prescription
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m2R2

m2
BF R

2

∼ λ

λC

Figure 2.1: Proposal for the qualitative behavior of a “tachyon” mass in a
freely acting orbifold, as a function of the ’t Hooft coupling λ. The field is
an actual tachyon (violating the BF stability bound) for λ < λC . See section
2.4.1 for more comments.

to compute the tachyon mass m2(λ) from the boundary theory. In principle
this prescription could be implemented order by order in λ and allow to test
the conjectural picture of Figure 2.1. We also show that the perturbative
CW instability is present if and only if conformal invariance is broken, inde-
pendently of the tree-level potential, and thus independently of whether the
orbifold is freely acting or not.

Our analysis applies to the rather general class of large N theories “con-
formal in their single-trace sector”. We consider non-supersymmetric, classi-
cally conformal field theories with lagrangian of the standard single-trace form
L = N Tr [. . . ]. Denoting collectively by λ the single-trace couplings that are
kept fixed in the large N limit,2 we assume that βλ ≡ µ ∂

∂µ
λ = 0 at large

N . Generically however, perturbative renormalizability forces the addition
of double-trace couplings of the form (2.1), where O ∼ Trφ2 is a single trace
operator of classical dimension two. Thus it is essential to compute the double-
trace beta functions βf to determine whether or not conformal invariance is
maintained in the quantum theory. Our main technical results are expressions
for βf , for the conformal dimension ∆O and for the effective potential V(ϕ),
valid to all orders in planar perturbation theory.

Besides orbifolds of N = 4 SYM, other examples of large N theories con-
formal in their single-trace sector are certain non-supersymmetric continuous
deformations of N = 4 SYM [49–51]. One can also contemplate theories with

2In the example of an orbifold of N = 4 SYM, λ = g2
Y MN is the usual ’t Hooft coupling.
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adjoint and fundamental matter, where the instability arises in the mesonic
sector and is dual to an open string tachyon. A detailed analysis of such an
“open string” example will appear in the next chapter 3 of this thesis and it
was originally presented in [7]. Somewhat surprisingly, conformal invariance
turns out to be broken in all concrete cases of non-supersymmetric “single-
trace conformal” theories that have been studied so far. There is no a priori
reason of why this should be the case in general. A more systematic search
for conformal examples is certainly warranted.

We should also mention from the outset that independently of the per-
turbative instabilities which are the focus of this paper, non-supersymmetric
orbifold theories may exhibit a non-perturbative instability akin to the decay
of the Kaluza-Klein vacuum [52] (see also [53]). For a class of freely acting
Z2k+1 orbifolds, at large coupling λ the decay-rate per unit volume scales as
[52]

Γdecay ∼ k9e−N
2/k8

Λ4 , (2.4)

where Λ is a UV cut-off. This instability is logically distinct and parametri-
cally different from the tree-level tachyonic instability. It is conceivable that a
given orbifold theory may be stable in a window of couplings λC < λ < λKK
intermediate between a critical value λC where the “tachyon” is lifted (Figure
2.1) and another critical value λKK where the the non-perturbative instability
sets in.

Multitrace deformations in the context of the AdS/CFT correspondence
have been investigated in several papers, beginning with [54–58].

This chapter is organized as follows. In section 2.2 we study the renormal-
ization of a general field theory conformal in the single-trace sector and derive
expressions for βf and ∆O valid to all orders in planar perturbation theory. In
section 2.3 we study the behavior of the running coupling f(µ) and the issue
of stability of the quantum effective potential V(ϕ). In section 2.4 we make
our proposal for the computation of the tachyon mass m2(λ) from the dual
field theory. We illustrate the prescription in a couple of examples and make
some remarks on flat directions in freely acting orbifold theories. We conclude
this chapter with section 2.5 discussing a few open problems.

2.2 Renormalization of double-trace couplings

We are interested in large N , non-supersymmetric field theories in four dimen-
sions. We start with a conformally invariant classical action of the standard
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single-trace form. Schematically,

SST [N, λ] =

∫
d4xN Tr [(Dφ)2 + ψDψ + (DA)2 + λφ4 + . . . ] , (2.5)

where φ, ψ, A are N × N matrix-valued scalar, spinor and gauge fields. We
have written out the sample interaction termNλTr φ4 to establish our notation
for the couplings: we denote collectively by λ the couplings in SST that are
kept fixed in the large N limit.

(a) (b) (c)

λN

λN

1
N

1
N

N Trφ4 (Trφ2)2

Figure 2.2: One-loop contributions to the effective action from a diagram
with two quartic vertices. Each vertex contributes a factor of λN and each
propagator a factor of 1/N , as indicated in (a). There are two ways to contract
color indices: a single-trace structure (b), or a double-trace structure (c).

Generically, the action (2.5) is not renormalizable as it stands, because
extra double-trace interactions are induced by quantum corrections. It is an
elementary but under-appreciated fact that double-trace renormalization is a
leading effect at largeN . For example, consider the contribution to the effective
action from one-loop diagrams with two quartic scalar vertices (Figure 2.2).
Schematically,

∫
d4xN λTrφ4(x)

∫
d4y N λTrφ4(y) (2.6)

∼ λ2 log Λ
∫
d4z [N Trφ4 + ( Trφ2)2 ] .

The single-trace term N Trφ4 renormalizes a coupling already present in the
action (2.5). The double-trace term (Trφ2)2 forces the addition of an extra
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piece to the bare action,

S = SST + SDT , SDT =

∫
d4x f0 (Trφ2)2 , f0 ∼ λ2 log Λ . (2.7)

It is crucial to realize that SST and SDT are of the same order in the large N
limit, namely O(N2). For SST , one factor of N is explicit and the other arises
from the trace; for SDT , each trace contributes one factor of N .

In the following, we specialize to theories for which the single-trace cou-
plings do not run in the large N limit, βλ = µ ∂

∂µ
λ = O(1/N). In particular

the single-trace contribution in (2.6) is canceled when we add all the relevant
Feynman diagrams. This is what happens in orbifolds of N = 4 SYM. Twisted
single-trace couplings cannot be generated in the effective action, since they
are charged under the quantum symmetry, while untwisted single-trace cou-
plings are not renormalized, since they behave as in the parent theory by large
N inheritance. However, neither argument applies to double-trace couplings
of the form f OgO†

g , where Og = Tr(gφ2) is a twisted single-trace operator
of classical dimension two.3 Such double-trace couplings will be generated in
perturbation theory.

In this rest of this section, we analyze the general structure of double-trace
renormalization.

2.2.1 Double-trace renormalization to all orders

The beta function for the double-trace coupling (2.1) was computed at one
loop in [43],

βf ≡ µ
∂

∂µ
f = v(1)f 2 + 2γ(1)λf + a(1)λ2 . (2.8)

This result applies to any theory conformal in its single-trace sector. Here
v(1) is the normalization of the single-trace operator O ∼ Trφ2, defined as

〈O(x)Ō(y)〉 =
v(1)

2π2(x− y)4
. (2.9)

The quantity γ(1)λ is the one-loop contribution to the anomalous dimension
of O from the single-trace interactions. The double-trace interaction also con-
tributes to the renormalization of O, so that the full result for its one-loop

3Here Tr = TrSU(|Γ|N) and g ∈ Γ.

17



(a) (b) (c)

λ

λ

λ1/2λ1/2

f

λ

f

f

f

Figure 2.3: Sample diagrams contributing to βf at one loop: (a) v(1)f 2 ; (b)
2γ(1)λf ; (c) a(1)λ2.

anomalous dimension is

γO = γ(1)λ+ v(1)f . (2.10)

Some representative Feynman diagrams contributing to βf are shown in Figure
2.3. Our goal is to generalize these results to all orders in planar perturbation
theory.

The λ = 0 case

Let us first practice with the simple situation where the single-trace part of
the action is free.4 The total lagrangian is

L = LfreeST + LDT , LDT = f OŌ . (2.11)

The discussion of the large N theory is facilitated by a Hubbard-Stratonovich
transformation. We introduce the auxiliary complex scalar field σ and write
the equivalent form for the double-trace interaction,5

LDT = −fσσ̄ + fσŌ + fσ̄O . (2.12)

The obvious Feynman rules are displayed in Figure 2.4. The renormalization
program is carried out as usual, by adding to the tree-level lagrangian (2.12)
local counterterms, which we parametrize as

δLDT = −(Z2 − 1)fσσ̄ + (Z3 − 1)(fσŌ + fσ̄O) . (2.13)

4The calculation of βf for this case already appears in [56].
5For ease of notation we suppress possible flavor indices for O and σ.

18



σ σ̄ σ

φ

φ

1
f

−f

Figure 2.4: Feynman rules for (2.12).

The one-particle irreducible structures that may contain divergences are Γσσ̄,
Γσφφ and Γφφφφ. The quartic vertex Γφφφφ is in fact subleading in the large N
limit, as illustrated in Figure 2.5 in a one-loop example. The leading contri-
butions to the scalar four-point function contain cuttable σ propagators. This
is an example of a general fact that we will use repeatedly: 1PI diagrams with
internal σ propagators are subleading for large N . Indeed, adding internal σ
lines increases the number of φ propagators, which are suppressed by 1/N .

The upshot is that while for finite N (2.12) is not renormalizable as written
(we need to add an explicit OŌ counterterm), for large N it is.

From the Feynman rules, we immediately find

Γσσ̄(x, y) = fZ2 δ(x− y) + Z2
3 f

2 〈O(x)Ō(y) 〉f=0 , (2.14)

Γσφφ(x; y, z) = −f Z3 〈O(x)φ(y)φ(z) 〉1PIf=0 . (2.15)

Since we are assuming for now that the single-trace action is free, the f = 0
correlators appearing above are given by their tree-level expressions. The
three-point function 〈Oφφ〉1PIf=0 is simply a constant,

Γσφφ = −fZ3 · const . (2.16)

Clearly no renormalization of the σφφ vertex is needed and we can set Z3 = 1.
On the other hand, the two-point function

〈O(x)Ō(0)〉f=0 ≡
v

2π2x4
(2.17)

requires renormalization, since its short-distance behavior is too singular to

admit a Fourier transform. We adopt the elegant scheme of differential renor-
malization [59, 60]. The singularity is regulated by smearing the scalar prop-
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(a) (b)

Figure 2.5: Diagram (a) is leading at largeN , of order O(1), but it is reducible.
Diagram (b) is irreducible but it is subleading at large N , of order O(1/N2).

agator,

〈O(x)Ō(0)〉f=0 =
v

2π2

1

(x2 + ǫ2)2
, (2.18)

where ǫ is a short distance cutoff. Introducing a dimensionful constant µ, one
may separate out the divergence as follows,

v

2π2

1

(x2 + ǫ2)2

ǫ→0−→ − v

8π2
2

ln x2µ2

x2
− v lnµǫ δ(x) . (2.19)

The first term is the renormalized two-point function: it is finite (Fourier
transformable) if one interprets the Laplacian as acting to the left under the
integral sign. The constant µ plays the role of the renormalization scale. Back
in (2.14), we take the Z-factors to be

Z2 = 1 + vf log µǫ , Z3 = 1 , (2.20)

and find the renormalized correlator

Γσσ̄(x, y) = fδ(x− y) − vf 2

8π2
2

ln µ2(x− y)2

(x− y)2
. (2.21)

We are now in the position to calculate βf and the anomalous dimension γO of
the single-trace operator.6 The renormalized two-point function satisfies the

6Note that γO coincides with γσ, since connected correlation functions of σ are equal
(for separated points) to connected correlation functions of O.
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Callan-Symanzik equation

[
µ
∂

∂µ
+ βf

∂

∂f
− 2γO

]
Γσσ̄ = 0 . (2.22)

Recalling the identity

µ
∂

∂µ

[
− 1

8π2
2

ln µ2x2

x2

]
= δ(x) , (2.23)

we see that the CS equation implies

2fβf − 2γOf
2 = 0 (2.24)

βf − 2γOf + vf 2 = 0 , (2.25)

the first condition arising for x 6= y and the second from the delta function
term. Incidentally, the CS equation for Γσφφ, namely

[
µ
∂

∂µ
+ βf

∂

∂f
− γO − 2γφ

]
Γσφφ = 0 , γφ = 0 , (2.26)

immediately gives βf = fγO, equivalent to (2.24). Solving the linear system,
we find

βf = vf 2 , γO = vf . (2.27)

These are exact results (all orders in f) in the large N theory. The essen-
tial point, borne out by the auxiliary field trick, is that the for λ = 0 the
only primitively divergent diagram is the one-loop renormalization of the σ
propagator.

The general case

As we take λ 6= 0, we face the complication that the version of the theory with
the auxiliary field, equation (2.12), is not renormalizable as it stands, since
an explicit quartic term OŌ is regenerated by the interactions. We are led to
consider the two-parameter theory

L(2)(g, h) ≡ LST − gσσ̄ + gσŌ + gσ̄O + hOŌ . (2.28)

Comparing with the original form of the lagrangian without auxiliary field,

L(1)(f) ≡ LST + fOŌ , (2.29)
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we have the equivalence

L(1)(g + h) ∼ L(2)(g, h) . (2.30)

(We leave implicit the dependence of L(1) and L(2) on the single-trace couplings
λ and on N .) Clearly,

βf (g + h) = βg(g, h) + βh(g, h) , (2.31)

where βf is the beta function for the coupling f in theory (2.29), and βg
and βh are the beta functions for the couplings g and h in theory (2.28). It
may appear that not much is gained by considering the more complicated
lagrangian L(2)(g, h), but in fact the auxiliary field trick still provides a useful
reorganization of largeN diagrammatics. Our strategy is to work in the theory
defined by L(2)(g, h), but in the limit that the renormalized quartic coupling
h→ 0.

We need not discuss explicitly the renormalization of the single-trace part
of the action. For large N , the 1PI diagrams that renormalize the couplings
in LST (λ) are independent of g, because leading diagrams at large N do not
contain internal σ lines. Since we are also taking h→ 0, this implies that the
renormalization of LST (λ) proceeds independently of L(2)

DT . We recall that by
assumption, LST (λ) is such that βλ = 0 for large N .

To discuss the renormalization of L(2)
DT (g, h→ 0), we parametrize the coun-

terterms as

δL(2)
DT = −(Z2 − 1)gσσ̄ + (Z3 − 1)(gσŌ + gσ̄O) + (Z4 − 1)hOŌ . (2.32)

As we have emphasized, even for h → 0 a quartic counterterm (Z4 − 1)hOŌ
is needed in order to cancel the divergence of Γφφφφ. We can use again the
fact that for large N , Γφφφφ is independent of g (recall Figure 2.5). Hence for
h → 0 the quartic counterterm can only depend on the single-trace coupling
λ,

lim
h→0

(Z4 − 1)h = f(λ, ǫ, µ) . (2.33)

It follows that the corresponding beta function is only a function of λ,

βh(g, h = 0) = a(λ) . (2.34)

In orbifolds of N = 4 SYM, λ is the usual ’t Hooft coupling, and a(λ) has a

22



perturbative expansion of the form

a(λ) =

∞∑

L=1

a(L)λL+1 , (2.35)

where L is the number of loops.

The analysis of the two remaining primitively divergent structures, Γσσ̄ and
Γσφφ, proceeds similarly as in the λ = 0 case, with a few extra elements. We
have (for h = 0),

Γσσ̄(x, y) = gZ2 δ(x− y) + Z2
3 g

2 〈O(x)Ō(y) 〉g=h=0 , (2.36)

Γσφφ(x; y, z) = −g Z3 〈O(x)φ(y)φ(z) 〉1PIg=h=0 . (2.37)

From the last equation, we see that the factor Z3 has the role of renormalizing
the composite operator O in the theory with g = h = 0,

Oren
g=h=0 ≡ Z3(λ, µ, ǫ)O . (2.38)

The dependence of Oren
g=h=0 on the renormalization scale µ is given by

µ
∂

∂µ
Oren
g=h=0 = −γ(λ)Oren

g=h=0 , (2.39)

where γ(λ) is, by definition, the anomalous dimension of the single-trace op-
erator in the theory where we set to zero the double-trace couplings. The
two-point function of Oren

g=h=0 takes then the standard form

〈Oren(x)Oren(0)〉g=h=0 =
v(λ)

2π2

µ−2γ(λ)

x4+2γ(λ)
, x 6= 0 . (2.40)

We have indicated that the normalization v will in general depend on λ. In
orbifolds of N = 4, v(λ) and γ(λ) have perturbative expansions of the form

v(λ) =
∞∑

L=1

v(L)λL−1 , γ(λ) =
∞∑

L=1

γ(L)λL . (2.41)

The expression (2.40) is not well-defined at short distance and needs further
renormalization, which we perform again in the differential renormalization
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scheme. We first expand

µ−2γ

x4+2γ
=

∞∑

n=0

(−γ)n
n!

logn µ2x2

x4
, (2.42)

and then renormalize each term of the series using the substitutions [61]

logn µ2x2

x4
= −n!

4
2

n+1∑

k=1

1

k!

logk µ2x2

x2
. (2.43)

These are exact identities for x 6= 0 and provide the required modification of
the behavior at x = 0, if one stipulates that free integration by parts is allowed
under the integral sign.

Back in (2.36), we have7

Γσσ̄(x, 0) = gZ2 δ(x) + g2 〈Oren(x)Oren(0) 〉g=h=0 (2.44)

= g δ(x) − g2 v

8π2

∞∑

n=0

(−γ)n 2

n+1∑

k=1

1

k!

logk(µ2x2)

x2
. (2.45)

The CS equation,

[
µ
∂

∂µ
+ βg

∂

∂g
− 2γO

]
Γσσ̄ = 0 , (2.46)

gives as before two conditions, one for x 6= 0 and one from the delta function
term. For x 6= 0, we may simply use the naive expression (2.40) for the
correlator, and we find

2gβg − 2γOg
2 − 2γg2 = 0 . (2.47)

It is easy to check that the same condition follows from the CS for Γσφφ. On the
other hand, terms proportional to δ(x) in (2.46) arise either from the explicit
gδ(x) in Γσσ̄, or when the µ derivative hits the k = 1 terms of the series,

0 = βg − 2γOg + g2v

∞∑

n=0

(−γ)n = βg − 2γOg +
g2v

1 + γ
. (2.48)

7The value of Z2 is defined implicitly by this equation. As in the λ = 0 case, we could
introduce a short-distance cutoff ǫ and then choose Z2(ǫ, µ) such that the final result (2.45)
for the fully renormalized correlator is obtained.
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The solution of the linear system (2.47, 2.48) is

γO = γ +
vg

1 + γ
, βg =

vg2

1 + γ
+ 2gγ . (2.49)

We can finally evaluate βf in the original theory (2.29). From

βf(f) = βg(g = f, h = 0) + βh(f, h = 0) , (2.50)

we find

βf =
v(λ)

1 + γ(λ)
f 2 + 2 γ(λ) f + a(λ) . (2.51)

This is the sought generalization of the one-loop result (2.8) originally found
in [43]. The expression for the full conformal dimension of the single-trace
operator is

∆O = 2 + γO(f, λ) = 2 + γ(λ) +
v(λ)

1 + γ(λ)
f . (2.52)

The boxed equations are valid to all orders in large N perturbation theory.

2.3 Double-trace running and dynamical sym-

metry breaking

The beta function of the double-trace coupling remains quadratic in f , to
all orders in planar perturbation theory. This simplification allows to draw
some general conclusions about the behavior of the running coupling and the
stability of the Coleman-Weinberg potential. While the essential physics is
already visible in the one-loop approximation, it seems worthwhile to pursue
a general analysis.

2.3.1 Running coupling

We need to distinguish two cases, according to whether the quadratic equation

βf =
v(λ)

1 + γ(λ)
f 2 + 2 γ(λ) f + a(λ) = 0 (2.53)
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(a) D > 0 (b) D < 0

f+

f−

µ

µIR

µUV

f(µ)

f(µ)

Figure 2.6: The two qualitative behaviors of the running coupling f(µ) for
D > 0 and D < 0.

has real or complex zeros. We define the discriminant D(λ),

D(λ) ≡ γ(λ)2 − a(λ)v(λ)

1 + γ(λ)
, (2.54)

and the square root of |D|,

b(λ) ≡
√

|D(λ)| . (2.55)

From (2.35, 2.41), b(λ) has a perturbative expansion of the form

b(λ) = b(1)λ+ b(2)λ2 + . . . . (2.56)

• Positive discriminant

If D > 0, (2.53) has real solutions

f± = −γ
ṽ
± b

ṽ
, ṽ ≡ v

1 + γ
. (2.57)

In this case we can maintain conformal invariance in the quantum theory by
tuning f to one of the two fixed points. Since v > 0 (the two-point function
of O is positive by unitarity), we see that f− is UV stable and f+ IR stable.
The differential equation for the running coupling,

µ
∂

∂µ
f(µ) = βf(f(µ)) , (2.58)
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is easily solved to give

f(µ) =

(
µ
µ0

)2b

f− + f+

(
µ
µ0

)2b

+ 1
. (2.59)

The function f(µ) is plotted on the left in Figure 2.6. The running coupling
interpolates smoothly between the IR and the UV fixed points.

• Negative discriminant

If D < 0 there are no fixed points for real f and conformal invariance is
broken in the quantum theory. The solution of (2.58) is

f(µ) = −γ
ṽ

+
b

ṽ
tan

[
b

ṽ
ln(µ/µ0)

]
, ṽ ≡ v

1 + γ
. (2.60)

There are Landau poles both in the UV and in the IR, at energies

µIR = µ0 exp

(
−πṽ

2b

)
∼= µ0 exp

(
− πv(1)

2b(1)λ

)
(2.61)

µUV = µ0 exp

(
πṽ

2b

)
∼= µ0 exp

(
πv(1)

2b(1)λ

)
. (2.62)

The behavior of f(µ) is plotted on the right in Figure 2.6.

2.3.2 Effective potential

The running of the double-trace coupling f and the generation of a quantum
effective potential for the scalar fields are closely related. We wish to make
this relation precise.

Let us consider a spacetime independent vev for the scalars,

〈φi ba 〉 = ϕ T i ba . (2.63)

We have picked some direction in field space specified by the tensor T i ba , where
i is a flavor index and a, b = 1, . . . N are color indices. We need not assume
that it is a classical flat direction. With no loss of generality we take ϕ ≥ 0.

We now go through the textbook renormalization group analysis of the
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quantum effective potential V(ϕ). The RG equation reads

[
µ
∂

∂µ
+ βf

∂

∂f
− γφ ϕ

∂

∂ϕ

]
V(ϕ, µ, f, λ) = 0 , (2.64)

where γφ(λ) is the anomalous dimension of the scalar field φ. Note that for
large N , γφ(λ) is independent of f . Writing (A.97) as

V(ϕ, µ, f, λ) ≡ ϕ4 U(ϕ/µ, f, λ) ,

[
ϕ
∂

∂ϕ
− βf

1 + γφ

∂

∂f
+

4γφ
1 + γφ

]
U = 0 ,(2.65)

one finds that the most general solution takes the form

V(ϕ, µ, f, λ) = ϕ4

(
ϕ

µ

)− 4γφ
1+γφ

U0(f̂(ϕ), λ) , (2.66)

where f̂(µ) satisfies

µ
∂

∂µ
f̂(µ) =

βf (f̂)

1 + γφ
. (2.67)

In general, the arbitrary function U0(f̂ , λ) is found order by order by comparing
with explicit perturbative results. In our case, because of large N , the double-
trace coupling contributes to the effective potential only at tree-level. This is
again a consequence of the fact that 1PI diagrams with internal σ lines are
suppressed. Moreover, by assumption the single-trace quartic term NλTrφ4 is
not renormalized at large N , so that the explicit λ dependence of U0(f̂ , λ) is
also exhausted by the tree-level contribution. There is of course an implicit λ
dependence in f̂ , as clear from (2.67, 2.51). The full tree-level contribution to
the effective potential is

Vtree(ϕ) = NλTrφ4 + f OŌ = N2(CSTλ+ CDTf)ϕ4 , (2.68)

where CST and CDT are some non-negative proportionality constants of order
one.8 If the vev is taken along a classical flat direction of the single-trace
lagrangian, then CST = 0, but we need not assume this is the case. Thus

U0(f̂ , λ) = N2(CSTλ+ CDT f̂) . (2.69)

8We are suppressing flavor indices: NλTrφ4 in (A.96) is a shortcut for the scalar poten-
tial of the single-trace lagrangian LST , which we require to be bounded from below. Then
CST ≥ 0. On the other hand, positivity of CDT is clear from (A.96), since OŌ is a positive
quantity.
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The final result for the large N effective potential is

V(ϕ) = N2 µ
4γφ

1+γφ

[
CST λ+ CDT f̂(ϕ)

]
ϕ

4
1+γφ . (2.70)

Ordinarily, at a fixed order in perturbation theory the RG improved effective
potential can be trusted in the range of ϕ such that the running coupling f̂(ϕ)
is small. In our case, V(ϕ) receives no higher corrections in f̂ , so it appears that
(2.70), being the full non-perturbative answer, may have a broader validity.

Let us make contact with the explicit one-loop expression of the effective
potential. To this order,

ṽ(λ) ∼= v(1) , γ(λ) ∼= γ(1)λ , a(λ) ∼= a(1)λ2 , γφ ∼= γ
(1)
φ λ , (2.71)

and the expansion of (2.70) gives

V1−loop(ϕ) = N2ϕ4 log

(
ϕ

µ

)
× (2.72)

[
v(1)f 2CDT + 2fλ(γ(1) − 2γ

(1)
φ )CDT + λ2(a(1)CDT − 4γ

(1)
φ CST )

]
.

Each term has an obvious diagrammatic interpretation.

2.3.3 Stability versus conformal invariance

Armed with the general form (2.70) of the large N effective potential, we can
investigate the stability of the symmetric vacuum at ϕ = 0. Since the single-
trace coupling λ does not run, we can treat it as an external parameter. For
given λ, the functions a(λ), ṽ(λ), γ(λ) and γφ(λ) are just constant parameters
that enter the expression for V(ϕ).

The qualitative behavior of V(ϕ) is dictated by the discriminant D(λ).
Comparing (2.67) with (2.58), we see that f̂(ϕ) behaves just as f(ϕ), up to
some trivial rescaling of coefficients by 1/(1 + γφ). We consider again the two
cases:

• Positive discriminant
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For D > 0, the running coupling is given by

f̂(ϕ) =

(
ϕ
µ

)2b̂

f− + f+

(
ϕ
µ

)2b̂

+ 1

, b̂ ≡ b

1 + γφ
. (2.73)

The constant solutions f̂(ϕ) = f± are obtained as degenerate cases for µ → 0
and µ→ ∞. In the generic case, the effective potential is bounded by the two
functions (we set µ ≡ 1)

N2 (CSTλ+ CDTf+)ϕ
4

1+γφ ≤ V(ϕ) ≤ N2 (CSTλ+ CDTf−)ϕ
4

1+γφ , (2.74)

where the lower bound is attained for ϕ→ 0 and the upper bound for ϕ→ ∞.
Recall from (2.57) that f− < f+, with f− always negative. If

CSTλ+ CDTf+ > 0 , (2.75)

then ϕ = 0 is at least a local minimum, otherwise it is a global maximum
and the potential is unbounded from below. Condition (2.75) is simply the
requirement that the tree-level potential (A.96) be bounded from below when
f is set to its IR fixed point f+. If (2.75) holds, it is also permissible to simply
pick the constant solution f̂(ϕ) = f+. Then V is monotonically increasing and
ϕ = 0 is the global minimum. In the generic case (2.73), we need the stronger
condition

CSTλ+ CDTf− > 0 (2.76)

to ensure that the potential is bounded from below. Then ϕ = 0 is the global
minimum.

In view of the comments below (2.70), we believe that this analysis has
general validity. It is certainly valid for λ ≪ 1, since then f± ∼ λ + O(λ2),
and the effective coupling f̂(ϕ) ≪ 1 for every value of ϕ.

In summary, barring pathological cases where the potential is unbounded
from below, for D > 0 the vacuum ϕ = 0 is stable and dynamical symmetry
breaking does not occur.

• Negative discriminant

If D < 0, the effective potential reads, in units µ ≡ 1,

V(ϕ) = N2
[
CSTλ+ CDT f̂(ϕ)

]
ϕ

4
1+γφ , f̂(ϕ) = −γ

ṽ
+
b

ṽ
tan

(
b

ṽ
logϕ

)
.(2.77)
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The theory only makes sense as an effective field theory for energy scales
intermediate between the two Landau poles, µIR = e−

π
2b ≪ ϕ ≪ µUV = e+

π
2b .

The potential ranges between minus infinity at µIR and plus infinity at µUV .
A little algebra shows that V(ϕ) is either a monotonically increasing function,
or it admits a local maximum and a local minimum. Local extrema exist if

λ
CST
CDT

− γ

ṽ
<

1

1 + γφ
− b2(1 + γφ)

4ṽ2
, (2.78)

with the potential always negative at the local minimum,

V(ϕmin) < 0 . (2.79)

From (2.71, 2.55), we see that (2.78) is always obeyed for sufficiently small
λ. The value of the running coupling at the minimum can be expanded for
λ≪ 1,

f̂(ϕmin) = −αλ+

(
− a(1)

4
+ γ

(1)
φ α− v(1)

4
α2

)
λ2 +O(λ3) , α ≡ CST

CDT
.(2.80)

For small λ, f̂(ϕmin) is also small, the local minimum can be trusted, and
dynamical symmetry breaking occurs. If the vev is taken along a flat direction
for the single-trace potential, namely if CST = 0, then the double-trace cou-
pling at the new vacuum is of order O(λ2), which is perhaps the more familiar
behavior – as in the original analysis of massless scalar electrodynamics [62].
From (2.78, 2.79, 2.80), we find that for small λ symmetry breaking occurs
even if the tree level single-trace potential does not vanish (CST 6= 0).

We take the liberty to belabor this conclusion, giving an alternative deriva-
tion. One can first expand the effective potential to lowest non-trivial order,

V(ϕ) ∼= N2[CSTλ+ CDT f̂(µ)] + V1−loop(ϕ) , (2.81)

with V1−loop given by (2.72). In looking for the minimum, V ′(ϕmin) = 0,
V ′′(ϕmin) > 0, it is convenient to set the renormalization scale µ ≡ ϕmin. Then
we just solve for f̂(ϕmin) and easily reproduce (2.80). This is a consistent
procedure provided we can find a renormalization trajectory where f̂(ϕmin)
takes the value (2.80). A glance at Figure 2.6 shows that yes, we can set f̂
to any prescribed value. Finally, since (2.80) happens to be small for λ small,
the whole analysis can be trusted in perturbation theory.

The inequality (2.78) can be satisfied also if λ is of order one, in which
case f̂(ϕ) is of order one. In view of our remarks about the non-perturbative
validity of V(ϕ), it seems plausible that the local minimum can also be trusted
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in this case.

2.4 AdS/CFT

We have used standard field theory arguments to characterize the two possible
behaviors for a large N theory conformal in its single-trace sector. Either all
double-trace beta functions admit real zeros, and then the symmetric vacuum
is stable and conformal invariance is preserved; or at least one beta function
has no real solutions, and then conformal invariance is broken and dynamical
symmetry breaking occurs.

We now give a reinterpretation of these results in light of the AdS/CFT
correspondence. Even for negative discriminant, we insist in solving for the
zeros of the double-trace beta function,

f± = −γ
ṽ
±

√
D

ṽ
. (2.82)

Setting f = f±, the full conformal dimension (2.52) of the single-trace operator
O reads

∆O = 2 + γ + ṽf± = 2 + γ − γ ±
√
D = 2 ±

√
D . (2.83)

So at the fixed point, the anomalous dimension of O is either real if D > 0
or purely imaginary if D < 0. This is just as expected from the AdS/CFT
formula

∆O =
d

2
±
√
d2

4
+m2R2 = 2 ±

√
4 +m2R2 , (2.84)

where m is the mass of the AdS5 scalar field dual to O, if we identify

m2(λ)R2 = m2
BFR

2 +D(λ) = −4 +D(λ) . (2.85)

For D > 0, we are in the standard situation of real coupling constant, real
anomalous dimension and dual scalar mass above the stability bound, m2 >
m2
BF . We propose to take (2.85) at face value even when D < 0. If m2 <

m2
BF , the AdS bulk vacuum is unstable. Similarly, if D < 0, the field theory

conformal-invariant vacuum is unstable. Equation (2.85) gives the precise
relation between the two instabilities. The proper treatment of both the bulk
and the boundary theory would be to expand around the stable minimum. But
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in stating that the AdS scalar has a certain mass m2 < m2
BF , we are implicitly

quantizing the bulk theory in an AdS invariant way. The dual statement is to
formally quantize the boundary theory in a conformal invariant way, around
the symmetric minimum ϕ = 0, by tuning the coupling to the complex fixed
point f = f+ (or f−). At either fixed point, the operator dimension is complex,

∆O = 2 ± i b . (2.86)

The discriminant D(λ) = γ(λ)2−a(λ)ṽ(λ) is a purely field-theoretic quan-
tity. In principle (2.85) is a prescription to compute the tachyon mass from
the field theory, at least order by order in perturbation theory. It would be
interesting to see if integrability techniques [63] are applicable to this problem,
though the fact that O is a “short” operator may represent a challenge. For
now we may compare field theory results at weak coupling with the strong
coupling behavior predicted by the gravity side. Let us look at a couple of
examples.

2.4.1 Two examples

Expanding (2.85) to one-loop order,

m2(λ)R2 = −4 +D(λ) = −4 +
[
(γ(1))2 − a(1)v(1)

]
λ2 +O(λ3) . (2.87)

The coefficients v(1), γ(1), and a(1) were computed in [43, 44] for several orb-
ifolds of N = 4 SYM. Obtaining the corresponding m2 is an exercise in arith-
metic.

As a first illustration, take the Z2 orbifold theory that arises on a stack of
N electric and N magnetic D3 branes of Type 0B string theory. There are
twisted scalars in the 20′ and 1 representations of SU(4)R. From the results
in [43, 46], one finds

m2
20′R2 ∼= −4 − λ2

8π4
+O(λ3) , m2

1
R2 ∼= −4 − 23λ2

64π4
+O(λ3) . (2.88)

Since this orbifold has fixed points on the S5 (it fixes the whole sphere), we
expect these masses to remain negative below the stability bound for all λ,
with the asymptotic behavior

m2(λ)R2 ∼ −R
2

α′ = −λ1/2 , λ→ ∞ . (2.89)

Let us also consider a simple class of non-supersymmetric freely acting orbifold,
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Zk orbifold with SU(3) global symmetry [43]. The Zk action is

zi → ω n
k zi , ωk ≡ e

2πi
k , n = 1, . . . k , (2.90)

where zi, i = 1, 2, 3 are the three complex coordinates of R6 = C3. The orbifold
is freely acting for k odd, and breaks supersymmetry for k > 3. Let us focus
on the Z5 case. There are twisted operators O8,n O1,n, with n = 1, 2, in the
octet and singlet of the SU(3) flavor group. It turns out that in the one-loop
approximation the n = 1 operators have positive discriminant, while the n = 2
operators have negative discriminant. From the results of [43], one calculates

m2
8,2R

2 ∼= −4 −
√

5 − 1

640π4
λ2 +O(λ3) , (2.91)

m2
1,2R

2 ∼= −4 − 7
√

5 − 1

1600π4
λ2 +O(λ3) .

The conjectural behavior of m2(λ) for freely acting orbifolds is plotted in
Figure 2.1 in the introduction. The one-loop calculation (2.91) gives the second
derivative at λ = 0. For large λ, these states correspond to highly stretched
strings on the S5. The asymptotic behavior should thus be

m2(λ)R2 ∼ R4

α′2 ∼ λ , λ→ ∞ . (2.92)

Figure 2.1 plots the simplest interpolation between the small and large λ limits.
It would be very interesting to compute the O(λ3) corrections to (2.91): this
picture suggests that they should be positive.

2.4.2 Classical flat directions and instability

The Z2k+1 freely-acting orbifolds serve as an illustration of another point –
classical flat directions are immaterial in our context. The classical moduli
space of the theory is (C3/Z2k+1)

N/SN . In the brane picture this corresponds
to the positions of the N D3 branes on the orbifold space C

3/Z2k+1. The flat
directions are parametrized by vevs for the bifundamental scalars (there are
no adjoints). Along the flat directions, all twisted operators have zero vev.

As emphasized in [42], this is the case in general for freely acting orbifolds:
they have no adjoint scalars and hence no classical branch along which the
twisted operators could develop a vev. However, this does not imply that the
symmetric vacuum is stable. On the contrary, we have seen in section 2.3.3
that dynamical symmetry breaking occurs at small coupling whenever D < 0,
irrespective of the classical potential. Since one can always find a double-trace
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coupling with D < 0, whether the orbifold is freely acting or not [44], we
conclude that freely acting orbifolds also have a CW instability which drives
into condensation a twisted operator, 〈O〉 6= 0. The instability occurs away
from the flat directions.

This reconciles the proposal of [43], which relates bulk tachyons with the
breaking of conformal invariance, with the general viewpoint of [42], which
relates them to the Coleman-Weinberg instability. A detailed analysis of the
CW instability in some examples of freely acting orbifolds has been pursued
by [64].

2.5 Discussion

The logarithmic running of double-trace couplings fOŌ, where O ∼ Trφ2,
is a general feature of large N field theories that contain scalar fields. In
this chapter we have studied the renormalization of double-trace couplings
in theories that have vanishing single-trace beta functions at large N . We
have derived general expressions for the double-trace beta function βf , the
conformal dimension ∆O and the effective potential V(ϕ). The main point
is that βf is a quadratic function of f (and ∆O a linear function of f), to
all-orders in planar perturbation theory, with coefficients that depend on the
single-trace couplings λ.

Double-trace running plays an important role in non-supersymmetric ex-
amples of the AdS/CFT correspondence. We have related the discriminant
D(λ) of βf to the mass m2(λ) of the bulk scalar dual to the single-trace op-
erator O. If D(λ) < 0, the bulk scalar is a tachyon; on the field theory side,
conformal invariance is broken and dynamical symmetry breaking occurs.

The authors of [44] considered orbifolds of N = 4 SYM, realized as the
low energy limit of the theory on N D3 branes at the tip of the cone R6/Γ.
They found a one-to-one correspondence between double-trace couplings with
negative discriminant and twisted tachyons in the tree-level spectrum of the
type IIB background before the decoupling limit, namely R3,1 × R6/Γ. (Note
that these flat-space tachyons are conceptually distinct from the tachyons in
the curved AdS5 ×S5/Γ background that have been the focus of this paper.)9

It turns out that for all non-supersymmetric examples in this class, at least
one double-trace coupling has negative discriminant, and conformal invariance
is broken.

9The correspondence between twisted sector tachyons and field theory instabilities was
first observed in [65] in the context of non-commutative field theory.
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It will be interesting to investigate more general constructions to see if
conformal examples exist, both as a question of principle and in view of phe-
nomenological applications.10 One possibility, suggested by the correspon-
dence found in [44], is to add discrete torsion in a way that removes the
tree-level tachyons [68]. Another is to add appropriate orientifold planes. A
promising candidate for a conformal orientifold theory is the U(N) gauge the-
ory with six scalars in the adjoint and four Dirac fermions in the antisymmetric
representation of the gauge group [69].

Another important question, which is being investigated by [64], is to ana-
lyze the IR fate of non-supersymmetric orbifolds of N = 4 SYM, by expanding
their lagrangian around the local minimum of the effective potential. This is
a well-posed field theory problem because the minimum can be trusted for
small coupling. It would also be very interesting to extend the calculations
of [43, 44] to two loops. At one-loop, there is no obvious distinction between
freely acting and non-freely acting examples. This distinction may arise at two
loops, with the freely acting cases beginning to show the behavior of Figure
2.1.

Finally, it would be nice to find a more detailed AdS interpretation for the
individual terms appearing in the double-trace beta function. For λ = 0, when
only the term vf 2 is present, βf can be reproduced by a simple bulk calcu-
lation [56], using the interpretation [56, 57] of the double-trace deformation
as a mixed boundary condition for the bulk scalar. There should be a bulk
interpretation for the other terms of βf as well, in particular for the coefficient
a(λ) which drives the instability.

10See e.g. [66, 67] for an approach to conformal phenomenology.

36



Chapter 3

Intersecting Flavor Branes

3.1 Introduction

Open string tachyon condensation has been studied from many viewpoints, see
[70] for a review. Here we consider a holographic (AdS/CFT) setup where the
bulk theory contains an open string tachyon, and ask what is the counterpart
of tachyon condensation in the boundary field theory. We will identify a sector
of the boundary theory as a “holographic open string field theory” capturing
the tachyon dynamics. Since the bulk is weakly coupled when the boundary
is strongly coupled, and viceversa, we are bound to learn something new from
their comparison.

We introduce the open string tachyon by adding to the AdS5 × S5 back-
ground two probe D7 branes intersecting at general angles. Probe branes
are the familiar way to include a small number of fundamental flavors in the
AdS/CFT correspondence [71]. If the closed string background is supersym-
metric, it is possible, and often desirable, to consider configurations of probe
branes that preserve some supersymmetry, as e.g. in [71–86]. Instead, we are
after supersymmetry breaking and the ensuing tachyonic instability. Another
way to motivate our work is then as a natural susy-breaking generalization of
the standard supersymmetric setup of [71]. This generalization is technically
challenging, and the technical aspects have some interest of their own. In-
tersecting brane systems have many other applications in string theory, from
string phenomenology to string cosmology, and the technical lessons learnt in
our problem may be useful in those contexts as well.

The system that we study is as an open string analogue of the AdS/CFT
pairs involving closed string tachyons considered in [6, 42–44] and described in
chapter 2 of this dissertation. For general angles the bulk theory is unstable
via condensation of an open string tachyon, or at least this is the picture for
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large λ where we can calculate the string spectrum. In this chapter we focus on
the the field theory analysis at small λ, with the goal of detecting the expected
instability.

The first challenge is to write down the Lagrangian of the dual field theory.
As is well-known, adding Nf parallel D7 branes to AdS5 × S5 corresponds
to adding to N = 4 SYM action Nf extra N = 2 hyper multiplet in the
fundamental representation of the SU(N) gauge group. The resulting action
preserves an N = 2 subalgebra of the original N = 4 supersymmetry algebra –
which particular N = 2 being a matter of convention so long as it is the same
for all the hyper multiplets. Introducing relative angles between the D7 branes
corresponds to choosing different embeddings for the N = 2 subalgebras of
each different hyper multiplet. In general supersymmetry will be completely
broken, while for special angles N = 1 susy is preserved. When N = 1 is
preserved we can use N = 1 superspace to write the Lagrangian. When su-
persymmetry is completely broken the determination of the Lagrangian turns
out to be a difficult technical problem that we are unable to solve completely.
We cannot fix the quartic terms ∼ Q4 where Q are the hyper multiplet scalars.
The difficulty is related to the lack of an off-shell superspace formulation of
N = 4 SYM. Nevertheless, by making what we believe is a mild technical
assumption, we can fix the sign of the classical quartic potential. This is suf-
ficient to argue that the theory is indeed unstable from the renormalization
of “double-trace” terms f

∫
d4x O2, where now O ∼ Q̄aQa with a = 1, . . .N

a color index. We are now using “double-trace” in quotes since of course the
fields Q are not matrices but vectors, but the logic is much the same. The
renormalization of f has the same twofold interpretation as above. We iden-
tify the mesonic operator O as the dual of the open string tachyon between
the two D7 branes. The Coleman-Weinberg potential for Q plays the role a
holographic effective action for the tachyon.

3.2 AdS/CFT with Flavor Branes Intersect-

ing at General Angles

We begin with a review the Karch-Katz setup [71], where parallel probe D7
branes are used to engineer an N = 2 supersymmetric field theory with flavor.
We then break supersymmetry by introducing a relative angle between the
D7 branes. We derive the dual Lagrangian, up to an ambiguity in the quartic
potential for the fundamental scalars. We end the section with a review of the
basic bulk-to-boundary dictionary.
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Figure 3.1: The brane configuration with Flavor Branes Intersecting.

3.2.1 Parallel flavor branes

We start with the familiar D3/D7 supersymmetric brane configuration with
N “color” D3s and Nf “flavor” D7s, arranged as shown in Figure 3.1. For
now θ1 = θ2 = 0, that is, all D7 branes are parallel to one another. Taking
the decoupling limit on the D3s wordvolume, the D3 branes are replaced by
their near-horizon geometry. If Nf ≪ N , we can treat the D7 branes as
probes in the AdS5 × S5 background, neglecting their backreaction [71]. This
background preserves N = 2 supersymmetry in four dimensions.

The dual field theory is N = 4 SU(N) SYM coupled to Nf N = 2 hyper
multiplets in the fundamental representation of the SU(N) color group, arising
from the D3-D7 open strings. We are interested in the case of massless hyper
multiplets, corresponding to the brane setup where the D7s coincide with the
D3s (at the origin of the 89 plane). After decoupling, the probe D7s fill the
whole AdS5 and wrap an S3 ⊂ S5.

Let us briefly recall the field content of the boundary theory. A more
detailed treatment and the full Lagrangian can be found in Appendix A.1.
The N = 4 vector multiplet consists of the gauge field Aµ, four Weyl spinors
λAα , A = 1, . . . , 4 and six real scalars Xm, m = 4, . . . , 9 corresponding to the
six transverse directions to the D3 branes. It is convenient to represent the
scalars as a self-dual antisymmetric tensor XAB of the R-symmetry group
SU(4)R ∼= Spin(6),

(XAB)† = X̄AB ≡ 1

2
ǫABCDX

CD . (3.1)
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The explicit change of variables is

XAB =
1√
2




0 X8 + iX9 X6 + iX7 X4 + iX5

−X8 − iX9 0 X4 − iX5 −X6 + iX7

−X6 − iX7 −X4 + iX5 0 X8 − iX9

−X4 − iX5 X6 − iX7 −X8 + iX9 0



. (3.2)

Each N = 2 flavor hyper multiplet consists of two Weyl spinors and two
complex scalars,

ψiα

qi (q̃i)
†

(
ψ̃i α

)†
(3.3)

Here i = 1, . . . , Nf is the flavor index. The scalars form an SU(2)R doublet,

QI ≡
(

q

q̃†

)
, I = 1, 2 . (3.4)

The flavor hyper multiplets are minimally coupled to the N = 2 vector mul-
tiplet that sits inside the N = 4 vector multiplet. This coupling breaks the
R-symmetry SU(4)R to SU(2)L× SU(2)R×U(1)R, where SU(2)R ×U(1)R is
the R-symmetry of the resulting N = 2 theory. There is a certain arbitrariness
in the choice of embedding SU(2)L × SU(2)R × U(1)R ⊂ SU(4)R ∼= Spin(6).
This corresponds to the choice of orientation of the whole stack of D7 branes
in the 456789 directions (we need to pick an R4 ⊂ R6). For example if we
choose the configuration of Figure 3.1, we identify SU(2)L×SU(2)R ∼= SO(4)
with rotations in the 4567 directions and U(1)R ∼= SO(2) with a rotation on
the 89 plane. A short calculation using our parametrization of the scalars
(5.10) shows that this corresponds to the following natural embedding of
SU(2)L × SU(2)R × U(1)R ⊂ SU(4)R:

1

2

3

4




SUR(2) × U(1)R

SUL(2) × U(1)∗R



. (3.5)

Of course, any other choice would be equivalent, so long as it is performed
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simultaneously for all D7 branes. With the choice (B.23), the N = 4 vector
multiplet splits into the N = 2 vector multiplet

Aµ

λ1
α λ2

α

X8+iX9√
2

, (3.6)

and the N = 2 hyper multiplet

λ3
α

X4+iX5√
2

X6+iX7√
2

λ4
α

. (3.7)

The two Weyl spinors in the vector multiplet form an SU(2)R doublet

ΛI ≡
(
λ1

λ2

)
, I = 1, 2 , (3.8)

while the two spinors in the hyper multiplet form an SU(2)L doublet,

Λ̂Î ≡
(
λ3

λ4

)
, Î = 1, 2 . (3.9)

We use I ,J · · · = 1, 2 for SU(2)R indices and Î , Ĵ · · · = 1, 2 for SU(2)L
indices. To make the SU(2)L×SU(2)R quantum numbers of the scalars more
transparent we also introduce the 2 × 2 complex matrix XIÎ , defined as the
off-diagonal block of XAB,

X ÎI =

(
X6 + iX7 X4 + iX5

X4 − iX5 −X6 + iX7

)
. (3.10)

Note that X ÎI obeys the reality condition

(
X ÎI

)∗
= −XÎI = −ǫÎĴ ǫIJX Ĵ J . (3.11)

We summarize in the following table the transformation properties of the fields:
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SU(N) SU(Nf ) SU(2)L SU(2)R U(1)R

Aµ Adj 1 1 1 0

X12 Adj 1 1 1 +2

X IÎ Adj 1 2 2 0

ΛI Adj 1 1 2 +1

Λ̂Î Adj 1 2 1 –1

QI
2 2 1 2 0

ψ 2 2 1 1 –1

ψ̃ 2 2 1 1 +1

Table 3.1: Quantum numbers of the fields for N = 4 SU(N) SYM coupled
to Nf hyper multiplets.

3.2.2 Rotating the flavor branes

We now describe a non-supersymmetric open string deformation of this back-
ground. For simplicity we consider the case Nf = 2. While keeping the two
D7 branes coincident with the D3s in the 0123 directions, we rotate them
with respect to each other in the transverse six directions, see Figure 1. There
are two independent angles, so without loss of generality we may perform a
rotation of angle θ1 = θ49 in the 49 plane and a rotation of angle θ2 = θ85
in the 58 plane. For generic angles supersymmetry is completely broken; for
θ1 = θ2 it is broken to N = 1. As we rotate the branes, some D7-D7′ open
string modes become tachyonic. The main goal of this paper is to study this
tachyonic instability from the viewpoint of the dual field theory.

On the field theory side, rotating the second braneD7′ amounts to choosing
a different embedding of SU(2)R ⊂ SU(4) for the second hyper multiplet, while
keeping the standard embedding (B.23) for the first. In the Lagrangian, we
must perform an SU(4) rotation of the N = 4 fields that couple to the second
hyper multiplet, leaving the ones that couple to the first unchanged. The
rotation is of the form

X ′
m = R(6) n

m (θ1, θ2)Xn , λ′A = R(4) B
A (θ1, θ2)λB . (3.12)

The explicit form of the rotation matrices R(6) and R(4) is given in Appendix
A.2.

Naively, the Q4 terms are not affected by the rotation, but this is incorrect.
This is seen clearly in N = 1 superspace. The N = 4 multiplet is built out
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of three chiral multiplets Φa, a = 1, 2, 3 and one vector multiplet V . The Q4

terms arise from integrating out the auxiliary fields F a (a = 1, 2, 3) of the
chiral multiplets and D of the vector multiplet, which transform under the
SU(4)R rotation. For example, a rotation that preserves N = 1 supersymme-
try (θ1 = θ2) corresponds to a matrix R(4) ⊂ SU(3), which acts on F a leaving
D invariant. The correct Lagrangian is obtained by performing the rotation
on the Xm, λA and F a fields that couple to the primed hyper multiplet, and
only then can the auxiliary fields be integrated out. The Q4 terms get modified
accordingly.

Under a more general SU(4)R rotation, the F a and D auxiliary fields are
expected to mix in a non-trivial fashion. There exists a formalism developed in
[87, 88] that provides the generic R-symmetry transformations action in N = 1
superspace. Unfortunately, for N = 4 supersymmetry we cannot rely on this
formalism because the transformations do not close off-shell. This technically
involved point is explained in detail in Appendix A.3. There we also provide
an N = 2 supersymmetry toy example where the formalism works perfectly
since the N = 2 R-symmetry algebra closes off-shell.

To proceed, we parametrize our ignorance of the Q4 terms. The exact form
of the full Lagrangian, including the parametrized Q4 potential, is spelled out
in Appendix A.2. Schematically, we write the Q4 potential as

VQ4 = Q4
1 +Q4

2 + (Q1Q2)
2
F f (θ1, θ2) + (Q1Q2)

2
D d (θ1, θ2) , (3.13)

for some unknown functions f(θ1, θ2) and d(θ1, θ2). Here Q1 and Q2 are short-
hands for the scalars in the first and second hyper multiplets and the subscripts
F and D refer to different ways to contract the indices, see (A.49) for the exact
expressions. The letters F and D are chosen as reminders of the (naive) origin
of the two structures from integrating out the “rotated” F and D N = 1 auxil-
iary fields, but this form of the potential follows from rather general symmetry
considerations, as we explain in Appendix A.2. When θ1 = θ2, N = 1 super-
symmetry is preserved and N = 1 superspace allows to fix the two functions,

f(θ, θ) = cos θ , d(θ, θ) = 1 . (3.14)

For general angles, we can constrain f and d somewhat, using bosonic symme-
tries (see Appendix A.2), but unfortunately we are unable to fix them uniquely.
The most important assumption we will make in the following is positivity of
the classical potential, VQ4 ≥ 0, implying f(θ1, θ2) ≤ 1 and d(θ1, θ2) ≤ 1 for
all θ1, θ2. Positivity would follow from the mere existence of any reasonable
off-shell superspace formulation, as the scalar potential would always be pro-
portional to the square of the auxiliary fields, even when supersymmetry is
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broken by the relative R-charge rotation between the two hyper multiplets.1

Note also that the classical potential VQ4 is a homogeneous function of the Qs,
so it is everywhere positive if and only if it is bounded from below, which is
another plausible requirement.

3.2.3 Bulk-boundary dictionary

The basic bulk-to-boundary dictionary for the parallel brane case has been
worked out in [89, 90]. A brief review is in order.

In the closed string sector, Type IIB closed string fields map to single-
trace operators of N = 4 SYM, as usual. In the open string sector, open
string fields on the D7 worldvolume map to gauge-singlet mesonic operators,
of the schematic form Q̄XnQ, where Q stands for a generic fundamental field
and X for a generic adjoint field.

The massless bosonic fields on the D7 worldvolume are a scalar Φ and a
gauge field (Aµ̂, Aα̂), where µ̂ are AdS5 indices and α̂ are S3 indices. Kaluza
Klein reduction on the S3 generates the following tower of states, labeled in
terms of (j1 , j2)s representations of SU(2)L × SU(2)R × U(1)R:

Φ → Φℓ =

(
ℓ

2
,
ℓ

2

)

2

, Aµ̂ → Aℓµ̂ =

(
ℓ

2
,
ℓ

2

)

0

,

Aα̂ → Aℓ± =

(
ℓ± 1

2
,
ℓ∓ 1

2

)

0

. (3.15)

(The longitudinal component of Aα̂ is not included because it can be gauged
away). These states (and their fermionic partners, which we omit) can be
organized into short multiplets of the N = 2 superconformal algebra,

(
Aℓ+1

− , Aℓµ̂,Φ
ℓ, Aℓ−1

+

)
, ℓ = 0, 1, 2, . . . (3.16)

of conformal dimensions

(ℓ+ 2, ℓ+ 3, ℓ+ 3, ℓ+ 4) . (3.17)

For ℓ = 0 the A+ state is absent. Note that all states in a given multiplet
have the same SU(2)L spin, indeed the N = 2 supercharges are neutral under
SU(2)L.

The lowest member of each multiplet, namely Aℓ+1
− , is dual to the chiral

1To illustrate how this would work we consider in section A.3.2 N = 2 SYM theory
coupled to two fundamental N = 1 chiral multiplets, with different choices of the two
N = 1 subalgebras.
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Figure 3.2: Diagrams contributing to the one-loop renormalization of the
mesonic operators.

primary operator

Q̄{IXI1 Î1
. . .XIℓ Îℓ

QJ} , (3.18)

where QI is the SU(2)R doublet of complex fundamental scalars. In (3.18)
the SU(2)L and SU(2)R indices are separately symmetrized. In particular for
ℓ = 0, we have the triplet of mesonic operators

O3 ≡ Q̄{IQJ } = Q̄IQ
J − 1

2
Q̄KQ

KδJI . (3.19)

The singlet operator

O1 ≡ Q̄IQ
I , (3.20)

is not a chiral primary and maps to a massive open string state.
In Appendix A.4 we compute the one-loop dilatation operator acting on

the basis of states O ≡ Q̄IQJ , evaluating the diagrams schematically drawn
in Figure 3.2. We find

Γ(1) =
λ

4π2
K , K ≡ δIJ δ

K
L . (3.21)

The eigenstates are the triplet and the singlet, with eigenvalues

γ3 = 0 , γ1 =
λ

2π2
. (3.22)

As expected, the chiral triplet operator has protected dimension. At one-loop,
this result does not change as we turn on non-zero angles θ1 and θ2.

45



So far we have considered the case of a single D7 brane, or a single fla-
vor. For multiple D7 branes (multiple flavors) the Chan-Paton labels of the
open strings are interpreted as the bifundamental flavor indices of the mesonic
operators, Oij , i, j = 1, . . . Nf . In our setup, with Nf = 2, the lowest mode
of the open string with off-diagonal Chan-Paton labels, which is the massless
gauge field for parallel branes, becomes tachyonic as we turn on a relative an-
gle between the D7s. In the dual field theory we expect to find an instability
associated with the operator O12

3
, the lowest dimensional operator dual to the

off-diagonal open string mode.

3.3 “Double-trace” Renormalization and the

Open String Tachyon

Our setup is an open string version of the phenomena studied in [6, 42–44]
and chapter 2 of this dissertation. We now generalize this story to AdS/CFT
dual pairs containing an open string sector. In the presence of flavor branes
in the AdS bulk, the dual field theory contains extra fundamental matter. An
open string tachyon corresponds to an instability in the mesonic sector of the
boundary theory. In this chapter we illustrate this phenomenon in the example
of the intersecting D7 brane system. The classical Lagrangian of the boundary
theory takes the schematic form

L = Ladj + Lfund = −Tr
[
F 2 + (DX)2 + . . .

]
− (DQ)2 − λ

N
OijŌij + . . .(3.23)

where Oij = Qi aQ̄j a are the gauge-invariant mesonic operators made from the
fundamental scalars and for simplicity we have ignored the SU(2)R structure,
which will be restored shortly.2 The whole Lfund is 1/N suppressed with
respect to Ladj , in harmony with the fact that the classical D-brane effective
action arises from worldsheets with disk topology, and is thus suppressed by a
power of gs ∼ 1/N with respect to the classical closed string effective action,
arising from worldsheets with sphere topology. Nevertheless, as always in the
tachyon condensation problem, it makes perfect sense to focus on classical open
string field theory. The classical open string dynamics is dual to the quantum
planar dynamics of the mesonic sector of the field theory. The ’t Hooft coupling
λ does not run at leading order in N , indeed the hyper multiplet contribute to
βλ at order O(1/N). For generic angles, the term in the Q4 potential that mix
the two flavors run, so perturbative renormalizability forces the introduction

2To avoid cluttering in some expressions below we always write the flavor indices as
upper indices in Oij .
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of a new coupling constant f ,

δLfund = − f

N
O12Ō12 . (3.24)

Note on the other hand that no extra terms diagonal in flavor (namely O11Ō11

and O22Ō22 are induced at one-loop. For the first flavor this is immediate to
see: the diagrams contributing to the term O11Ō11 of the effective potential are
independent of θ1, θ2 (they do not involved any coupling mixing the two flavors)
and thus their sum must vanish, as it does in the N = 2 supersymmetric theory
with θ1 = θ2 = 0. For the second flavor this follows by symmetry, since the
two flavors are of course interchangeable.3

This extra “double-trace” term (3.24) arise at the same order in N order
as the classical Lfund, indeed inspection of the Feynman diagrams shows that
the one-loop bare coupling f0 behaves as

f0 ∼ λ2 log Λ . (3.25)

The analysis of chapter 2 can be applied in its entirety to this “open string”
case. The “double-trace” beta function βf takes again the form (2.51), and its
discriminant D(λ) computes now (through (2.85) the mass of the open string
tachyon dual to mesonic operator O12. Let us turn to explicit calculations.

3.3.1 The one-loop “double-trace” beta function

To proceed, we need to be more precise about the structure of the“double-
trace” terms induced at one-loop, restoring their SU(2)R structure. For general
angles θ1 and θ2, there are three independent structures,

δLfund = − 1

N

[
f3±

(
O12

3+O21
3− + O12

3−O21
3+

)
+ f30O12

30O21
30 + f1O12

1
O21

1

]
. (3.26)

We have imposed neutrality under the Cartan of SU(2)R, since this is an exact
symmetry for generic angles, corresponding geometrically to rotations in the
67 plane (more precisely a 67 rotation is a linear combination of the Cartan
of SU(2)L and SU(2)R, but the hyper multiplets are neutral under SU(2)L).
When one of the angles is zero, say θ2 = 0, rotations in the 567 directions a
symmetry (again a diagonal combination of SU(2)L and SU(2)R), implying

3In more detail, the diagrams contributing to O22Ō22 do not involve the first flavor,
which could then be set to zero as the calculation of this terms of the effective potential is
concerned. The Lagrangian with the first flavor set to zero is N = 2 supersymmetric, only
with an unconventional choice of SU(2)R embedding into SU(4)R – it can be turned into
the standard Lagrangian by an R-symmetry rotation of the N = 4 fields.
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f3± = f30 ≡ f3. We focus on the triplet mesons, which are dual to the open
string tachyon. For a single non-zero angle there is one beta function βf3 to
compute, since the three components of the triplet are related by symmetry.
For generic angles there are in principle two distinct beta functions βf

3±
and

βf
30

; we will illustrate our method computing the first, which is a slightly
simpler calculation. At one-loop, the “double-trace” beta function takes the
form

βf = v(1)f 2 + 2γ(1)λf + a(1)λ2 . (3.27)

We have seen that γ(1) = 0 at one loop for the triplet mesons. The normaliza-
tion coefficient v(1) is easily evaluated by free Wick contractions,

〈O12
30 (x)O21

30 (y)〉 = 〈O12
3+ (x)O21

3− (y)〉 = 〈O12
3− (x)O21

3+ (y)〉 =
1

16π4|x− y|4 ,(3.28)

implying

v
(1)
3+ = v

(1)
3− = v

(1)
30 =

1

8π2
. (3.29)

It remains to evaluate the coefficient a(1). We are going to extract a(1) from the
one-loop Coleman-Weinberg potential along the “Higgs branch” of the gauge
theory, 〈XAB〉 = 0, QI 6= 0. We put “Higgs branch” in quotes because for
general angles it is in fact lifted already at the classical level. Let us first
recall the analysis for the N = 2 supersymmetric theory corresponding to two
parallel flavor branes are parallel (θ1 = θ2 = 0).

As always in a supersymmetric theory, flat directions are parametrized by
holomorphic gauge-invariant composite operators. In our case the relevant
operators are the mesons

Oij = qi · q̃j , i, j = 1, 2 (3.30)

The dot stands for color contraction q ·q∗ ≡ qa q∗a and i, j are the flavor indices.
The holomorphic, gauge invariant mesons that parameterize the Higgs flat
directions are subject to F-flatness conditions

qaiq̃bi = 0 ⇔ trO = detO = 0 , (3.31)

thus there are 4 − 2 = 2 complex parameters for the moduli space of the
supersymmetric theory (θ1 = θ2 = 0). We may parameterize the flat directions
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by

Q1 = U

(
q

0

)
, Q2 = U

(
0

−q

)
, U ∈ SU(2) and q ∈ R . (3.32)

Color indices are kept implicit. In color space we may take qa=1 = q and
qa6=1 = 0. For generic θ1, θ2 supersymmetry is explicitly broken in the classical
Lagrangian and the Higgs branch is completely lifted.

To select βf
3+ (which is of course equal to βf

3−
), we calculate the effective

potential around a classical background such that 〈O12
1
〉 = 〈O12

30〉 = 〈O12
3−〉 = 0,

but 〈O12
3+〉 6= 0, namely

Q1 =

(
q

0

)
, Q2 =

(
0

−q

)
, q ∈ C (3.33)

This choice corresponds to the flat direction for the N = 1 susy case θ1 = θ2.
The F-terms of the classical potential vanish for general angles, but for θ1 6= θ2
the D-terms do not, VDQ4 = g2|q|4(1 − d (θ1, θ2)).

In Appendix A.5 we evaluate the one-loop contribution to the effective
potential along this background (at large N). With the help of the Callan-
Symanzik equation we find

a
(1)
3± =

1

16π2

[(
1 − d(θ1, θ2)

)
+

1

2

(
1 − d(θ1, θ2)

)2

(3.34)

+4 sin2

(
θ1 + θ2

2

)
sin2

(
θ1 − θ2

2

)]
.

From our (mild) assumption that the classical potential be positive we have
d(θ1, θ2) ≤ 1, has the crucial implication

a
(1)

3± ≥ 0 . (3.35)

In the supersymmetric case (θ1 = θ2), a
(1)
3± = 0, as it must. For θ2 = 0, the

SU(2) symmetry is restored, so

a
(1)
3± = a

(1)

30 =
1

16π2

[(
1 − d(θ, 0)

)
+

1

2

(
1 − d(θ, 0)

)2

+ 4 sin4

(
θ

2

)]
≥ 0 .(3.36)

The one-loop triplet beta function (let us focus on the single-angle case)

βf3 = v
(1)
3
f 2
3

+ a
(1)
3
λ2 (3.37)
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does not admit real fixed points for f3, so conformal invariance is inevitably
broken in the quantum theory.4 The running coupling

f̄(µ) =
a(1)

√
v

(1)
3

λ2 tan



a
(1)λ2

√
v

(1)
3

ln(µ/µ0)



 (3.38)

is a monotonically increasing function interpolating between IR and UV Lan-
dau poles, at energies

µIR = µ0 exp


−

π

√
v

(1)
3

λ

√
a

(1)
3


 , µUV = µ0 exp


π
√
v

(1)
3

λ

√
a

(1)
3


 . (3.39)

For small coupling λ → 0, the Landau poles are pushed respectively to zero
and infinity.

3.3.2 The tachyon mass

As reviewed above, the mass of the field dual to O12
3± is directly related to the

discriminant of β3±,

m2
3±R2 = m2

BFR
2 +D3±(λ; θ1, θ2) = − 4 − λ2

16π4
D(1)

3
(θ1, θ2) + O(λ3) ,(3.40)

where

D(1)
3

=
(
1 − d(θ1, θ2)

)
+

1

2

(
1 − d(θ1, θ2)

)2

(3.41)

+4 sin2

(
θ1 + θ2

2

)
sin2

(
θ1 − θ2

2

)
.

For θ1 6= θ2 the discriminant is negative, implying that the bulk field violates
the BF stability bound. Whenever supersymmetry is broken, the bulk field
dual to O12

3± is a true tachyon. For θ2 = 0 the ± and 0 components of the

4Conformal invariance is already broken in the adjoint (“closed string”) sector by the
hyper multiplet contribution to βλ, but this is subleading effect (of order O(1/N)) with
respect to the classical Lagrangian. In the fundamental (“open string”) sector the breaking
of conformal invariance is at leading order in N (quantum effects arise as the same order as
the classical Lagrangian). Of course the whole fundamental sector is O(1/N) with respect
to the adjoint sector, but we can meaningfully separate the effect we are interested in. This
is the field theory counterpart of focussing on the classical open string dynamics of the
D-branes, while ignoring the backreaction of the branes on the bulk background.
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triplet are related by the SU(2) symmetry and are all tachyonic. We expect
the field dual to O12

30 to be tachyonic for general angles.
For small angles, the O(λ2) tachyon mass depends on a single unknown

parameter α (which enters the parametrization of the classical Q4 potential,
see Appendix A.2),

R2m2
3
(λ) = −4 − α

λ2

16π4
(θ1 − θ2)

2 + O(λ3) , θ1 , θ2 ≪ 1 . (3.42)

This expression applies to all three components of the triplet. For the ±
components it is just the expansion of (3.40) for small angles. For the 0
component it follows by imposing the symmetry constraints m2

30(θ, θ) = 0 and
m2

30(θ, 0) = m2
3±(θ, 0). By AdS/CFT, we get an interesting prediction for the

mass of the open string tachyon for large AdS curvature (small λ).
Conversely, for large λ (small AdS curvature) we can compute the mass

of the open string tachyon using the dual string picture. The open string
spectrum of branes intersecting at small angles in flat space is well-known.
The lowest tachyon mode has mass (see e.g. [91] for a review),

m2 = −|θ1 − θ2|
π2α′ , θ1 , θ2 ≪ 1 . (3.43)

This becomes a good approximation to the mass in the exact AdS sigma model
in the limit α′/R2 ∼ λ−1/2 → 0. Thus

lim
λ→∞

R2m2
3
(λ) = −|θ1 − θ2|

π2

R2

α′ = −|θ1 − θ2|
π2

λ1/2 , θ1 , θ2 ≪ 1 . (3.44)

This can be regarded as a prediction for the large λ behavior of the discriminant
D3(λ), which is a purely field-theoretic quantity. Note that apart from the
λ dependence, which could have been anticipated on general grounds, the
weak coupling result (3.42) and the strong coupling result (3.44) differ in their
angular dependence.

3.4 Discussion

The main technical question that we leave answered is the precise form of the
classical Q4 potential for generic angles. As we have emphasized, a superspace
formulation of N = 4 SYM with manifest SU(4)R symmetry would offer a
solution. It would be interesting to see whether the new off-shell formalism
for N = 1 SYM in ten dimensions introduced in [92, 93] could be applied to
our problem. In principle, another way to obtain the Q4 potential is by taking

51



the decoupling limit of the intersecting brane effective action. This would first
require the calculation of a four-point function of twist fields, two twist fields
corresponding to D3-D7 open strings and two twist fields corresponding to
D3-D7′ open strings. This problem has been solved for branes intersecting at
right angles (see e.g. [94–97]). The generalization to arbitrary angles is an
interesting and difficult problem in boundary conformal field theory. Taking
the decoupling limit may also be challenging in the presence of tachyons – it is
not clear to us whether the result would be unambiguous or it would require
some renormalization prescription.

Even without a complete knowledge of the classical Q4 potential, by making
a plausible positivity assumption we argued that the field theory is unstable at
the quantum level. By AdS/CFT, we obtained a non-trivial prediction for the
tachyon squared mass m2

3
(λ) at small λ. Its behavior at large λ is known from

flat-space string theory. There must exist an interpolating functionm2
3
(λ) valid

for all λ. It would be extremely interesting to apply integrability techniques
to find the whole function. There is a large literature on open spin chains
arising in the calculation of anomalous dimensions of mesonic operators, see
in particular [98–101] for our system in the N = 2 supersymmetric case θ1 =
θ2 = 0. It remains to be seen whether the susy-breaking rotation preserves
integrability.

Another direction for future work is to study the actual tachyon condensa-
tion process on the field theory side. In the bulk, after tachyon condensation
the intersecting D7 branes recombine (see e.g. [91]). For small λ, the tachyon
vacuum corresponds on the field theory side to the local minimum of the one-
loop effective potential. It would be interesting to expand the Lagrangian
around the minimum and relate this field theory calculation to the bulk phe-
nomenon of brane recombination.
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Chapter 4

The Veneziano Limit of N = 2

Superconformal QCD

4.1 Motivation

How general is the gauge/string correspondence? ’t Hooft’s topological argu-
ment [13] suggests that any large N gauge theory should be dual to a closed
string theory. However, the four-dimensional gauge theories for which an in-
dependent definition of the dual string theory is presently available are rather
special. Even among conformal field theories, which are the best understood,
an explicit dual string description is known only for a sparse subset of mod-
els. In some sense all examples are close relatives of the original paradigm of
N = 4 super Yang-Mills [1–3] and are found by considering stacks of branes
at local singularities in critical string theory, or variations of this setup, e.g.
[39, 40, 49, 105–108].1 Conformal field theories in this class can have lower
or no supersymmetry, but are far from being “generic”. Some of their special
features are:

(i) The a and c conformal anomaly coefficients are equal at large N [111].

(ii) The fields are in the adjoint or in bifundamental representations of the
gauge group. (Except possibly for a small number of fundamental flavors
– “small” in the large N limit – as in [89]).

(iii) The dual geometry is ten dimensional.

1We should perhaps emphasize from the outset that our focus is on string duals of
gauge theories. There are strongly coupled field theories that admit gravity duals with no
perturbative string limit, see e.g. [109, 110].
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(iv) The conformal field theory has an exactly marginal coupling λ, which
corresponds to a geometric modulus on the dual string side. For large λ
the string sigma model is weakly coupled and the supergravity approxi-
mation is valid.2

The situation certainly does not improve if one breaks conformal invariance
– the field theories for which we can directly describe the string dual remain
a very special set, which does not include some of the most relevant cases,
such as pure Yang-Mills theory. Many more field theories, including pure
Yang-Mills, can be described indirectly, as low-energy limits of deformations
of N = 4 SYM (as e.g. in [112] for N = 1 SYM) or of other UV fixed points,
not necessarily four-dimensional (as in [113] for N = 0 YM or [114, 115] for
N = 1 SYM). These constructions count as physical “existence proofs” of
the string duals, but if one wishes to focus just on the low-energy dynamics,
one invariably encounters strong coupling on the dual string side. In the
limit where the unwanted UV degrees of freedom decouple, the dual appears
to be described (in the most favorable duality frame) by a closed-string sigma
model with strongly curved target. This may well be only a technical problem,
which would be overcome by an analytic or even a numerical solution of the
worldsheet CFT. The more fundamental problem is that we lack a precise
recipe to write, let alone solve, the limiting sigma model that describes only
the low-energy degrees of freedom.

To break this impasse and enlarge the list of dual pairs outside the N = 4
SYM universality class, we can try to attack the “next simplest case”. A
natural candidate for this role is N = 2 SYM with gauge group SU(Nc) and
Nf = 2Nc flavor hypermultiplets in the fundamental representation of SU(Nc).
The number of flavors is tuned to obtain a vanishing beta function. We refer
to this model as N = 2 superconformal QCD (SCQCD). The theory violates
properties (i) and (ii) but it still has a large amount of symmetry (half the
maximal superconformal symmetry) and it shares with N = 4 SYM the crucial
simplifying feature of a tunable, exactly marginal gauge coupling gYM . (The
theory also exhibits S-duality [116–118], though this will not be important for
our considerations, since we will work in the large N limit, which does not
commute with S-duality.)

The large N expansion of N = 2 SCQCD is the one defined by Veneziano
[119]: the number of colors Nc and the number of fundamental flavors Nf are
both sent to infinity, keeping fixed their ratio (Nf/Nc ≡ 2 in our case) and the
combination λ ≡ g2

YMNc. Which, if any, is the dual string theory? And what

2In some cases, as in N = 4 SYM, the opposite limit of small λ corresponds to a weakly
coupled Lagrangian description on the field theory side. In other cases, like the Klebanov-
Witten theory [106], the Lagrangian description is never weakly coupled.
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happens to it for large λ?

4.2 The Veneziano Limit and Dual Strings

4.2.1 A general conjecture

To understand in which sense we should expect a dual string description of
a gauge theory in the Veneziano limit, we start by reviewing general elemen-
tary facts about large N counting, Feynman-diagrams topology, and operator
mixing. At this stage we have in mind a generic field theory that contains
both adjoint fields, which we collectively denote by φab, with a, b = 1, . . . , Nc,
and fundamental fields, denoted by qai, with i = 1, . . . , Nf . We can consider
the theory both in the ’t Hooft limit of large Nc with Nf fixed, and in the
Veneziano limit of large Nc ∼ Nf .

Nc → ∞, Nf fixed

Let us first recall the familiar analysis in the ’t Hooft limit [13], where the
number of colors Nc is sent to infinity, with λ = g2

YMNc and the number of
flavors Nf kept fixed. In this limit it is useful to represent propagators for
adjoint fields with double lines, and propagators for fundamental fields with
single lines – the lines keep track of the flow of the a type (color) indices.
Vacuum Feynman diagrams admit a topological classification as Riemann sur-
faces with boundaries: each flavor loop is interpreted as a boundary. The N
dependence is N2−2h−b

c N b
f , for h the genus and b the number of boundaries.

The natural dual interpretation is then in terms of a string theory with
coupling gs ∼ 1/Nc, containing both a closed and an open sector – the latter
arising from the presence of Nf explicit “flavor” branes where open strings can
end. Indeed this is the familiar way to introduce a small number of flavors
in the AdS/CFT correspondence [71]: by adding explicit flavor branes to the
bulk geometry (the simplest examples is adding D7 branes to the AdS5 × S5

background). Since Nf ≪ Nc, the backreaction of the flavor branes can be
neglected (probe approximation).

According to the standard AdS/CFT dictionary, single-trace “glueball”
composite operators, of the schematic form Trφℓ (where Tr is a color trace)
are dual to closed string states, while “mesonic” composite operators, of the
schematic form q̄iφℓqj , are dual to open string states. At large Nc, these
two classes of operators play a special role since they can be regarded as
“elementary” building blocks: all other gauge-invariant composite operators
of finite dimension can be built by taking products of the elementary (single-
trace and mesonic) operators, and their correlation functions factorize into the
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a d

b c

a b

i j

Figure 4.1: Double line propagators. The adjoint propagator 〈φab φcd〉 on the
left, represented by two color lines, and the fundamental propagator 〈qai q̄jb〉
on the right, represented by a color and a flavor line.

correlation functions of the elementary constituents.3 This factorization is dual
to the fact for gs → 0 the string Hilbert space becomes the free multiparticle
Fock space of open and closed strings.

Flavor-singlet mesons, of the form
∑Nf

i=1 q̄
iφℓqi, mix with glueballs in per-

turbation theory, but the mixing is suppressed by a factor of Nf/Nc ≪ 1,
so the distinction between the two classes of operators is meaningful in the
’t Hooft limit. On the dual side, this translates into the statement that the
mixing of open and closed strings in subleading since each boundary comes
with a suppression factor of gsNf ∼ Nf/Nc.

Nc ∼ Nf → ∞
We can now repeat the analysis in the Veneziano limit of large Nc and large
Nf with λ = g2

YMNc and Nf/Nc fixed. In this limit it is appropriate to use a
double-line notation with two distinct types of lines [119]: color lines (joining
a indices) and flavor lines (joining i indices). A φ propagator decomposes as
two color lines with opposite orientations, while a q propagator is made of a
color and a flavor line (Figure 4.1). Since Nf ∼ Nc ≡ N , color and flavor
lines are on the same footing in the counting of factors of N . It is natural to
regard all vacuum Feynman diagrams as closed Riemann surfaces, whose N
dependence is N2−2h, for h the genus. At least at this topological level, by
the same logic of [13], we should expect a gauge theory in the Veneziano limit
to be described by the perturbative expansion of a closed string theory, with
coupling gs ∼ 1/N . More precisely, there should be a dual purely closed string
description of the flavor-singlet sector of the gauge theory.

This point can be sharpened looking at operator mixing. It is consistent to
truncate the theory to flavor-singlets, since they close under operator product
expansion. The new feature that arises in the Veneziano limit is the order-one
mixing of “glueballs” and flavor-singlet “mesons”. For large Nc ∼ Nf , the

3Note that in this discussion we are not considering baryonic operators, since they have
infinite dimension in the strict large Nc limit. Baryons are interpreted as solitons of the
large Nc theory; as familiar, in AdS/CFT they correspond to non-perturbative (D-brane)
states on the string theory side [105].
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basic “elementary” operators are what we may call generalized single-trace
operators, of the form

Tr
(
φk1Mℓ1φk2 . . . φknMℓn

)
, Ma

b ≡
Nf∑

i=1

qai q̄
i
b . (4.1)

Here we have introduced a flavor-contracted combination of a fundamental
and an antifundamental field, Ma

b, which for the purpose of the large N
expansion plays the role of just another adjoint field. The usual large N
factorization theorems apply: correlators of generalized multi-traces factorize
into correlators of generalized single-traces. In the conjectural duality with a
closed string theory, generalized single-trace operators are dual to single-string
states.

We can imagine to start with a dual closed string description of the field
theory with Nf = 0, and first introduce a small number of flavors Nf ≪ Nc

by adding flavor branes in the probe approximation. As we increase Nf to
be ∼ Nc, the probe approximation breaks down: boundaries are not sup-
pressed and for fixed genus we must sum over worldsheets with arbitrarily
many boundaries. The result of this resummation – we are saying – is a new
closed string background dual to the flavor-singlet sector of the field theory.
The large mixing of closed strings and flavor singlet open strings gives rise to
new effective closed-string degrees of freedom, propagating in a backreacted ge-
ometry. This is the string theory interpretation of the generalized single-trace
operators (4.1).

In stating the conjectured duality we have been careful to restrict ourselves
to the flavor-singlet sector of the field theory. One may entertain the idea that
“generalized mesonic operators” of the schematic form q̄i φk1 Mℓ1 φk2 qj (with
open flavor indices i and j) would map to elementary open string states in
the bulk. However this cannot be correct, because generalized mesons and
generalized single-trace operators are not independent – already in free field
theory they are constrained by algebraic relations – so adding an independent
open string sector in the dual theory would amount to overcounting.

4.2.2 Relation to previous work

The idea that sub-critical string theories play a role in the gauge/gravity cor-
respondence is of course not new. Polyakov’s conjecture that pure Yang-Mills
theory should be dual to a 5d string theory, with the Liouville field playing
the role of the fifth dimension, predates the AdS/CFT correspondence (see
e.g. [35, 36, 120]). In fact one of the surprises of AdS/CFT was that some su-
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persymmetric gauge theories are dual to simple backgrounds of critical string
theory. General studies of AdS solutions of non-critical spacetime effective ac-
tions include [121, 122]. Non-critical holography has been mostly considered,
starting with [123, 124], in the N = 1 supersymmetric case, notably for N = 1
super QCD in the Seiberg conformal window, which is argued to be dual to
6d non-critical backgrounds of the form AdS5 × S1 with string-size curvature.
There is an interesting literature on the RNS worldsheet description of these
6d non-critical backgrounds and their gauge-theory interpretation, see e.g.
[125–128]. Non-critical RNS superstrings were formulated in [129, 130] and
shown in [131–133, 133–135] to describe subsectors of critical string theory –
the degrees of freedom localized near NS5 branes or (in the mirror description)
Calabi-Yau singularities. Non-critical superstrings have been also considered
in the Green-Schwarz and pure-spinor formalisms, see e.g. [136–140].

Our analysis in sections 6 and 7 for N = 2 SCQCD will be in the same spirit
as the analysis of [125, 128] for N = 1 super QCD. We will use the double-
scaling limit defined in [134, 135] and further studied in e.g. [141–143]. One
of our points is that the N = 2 supersymmetric case should be the simplest
for non-critical gauge/string duality. On the string side, more symmetry does
not hurt, but the real advantage is on the field theory side. Little is known
about the SCFTs in the Seiberg conformal window, since generically they are
strongly coupled, isolated fixed points. By contrast N = 2 SCQCD has an
exactly marginal coupling λ, which takes arbitrary non-negative values. There
is a weakly coupled Lagrangian description for λ→ 0, and we can bring to bear
all the perturbative technology that has been so successful for N = 4 SYM,
for example in uncovering integrable structures.4 At the same time we may
hope, again in analogy with N = 4 SYM, that the string dual will simplify in
the strong coupling limit λ→ ∞.

There are also interesting approaches to holography for gauge theories with
a large number of fundamental flavors in critical string theory/supergravity,
see e.g. [144–152]. The critical setup inevitably implies that the boundary
gauge theory will have UV completions with extra degrees of freedom (e.g.
higher supersymmetry and/or higher dimensions).

4N = 1 SQCD at the Seiberg self-dual point Nf = 2Nc admits an exactly marginal
coupling (the coefficient of a quartic superpotential), which however is bounded from below
– the theory is never weakly coupled.
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4.3 Protected Spectrum of the Interpolating

Theory

In the present and in the following section we will study the protected spectrum
of N = 2 SCQCD at large N , in the flavor singlet sector, and its relation with
the protected spectrum of the interpolating SCFT. We have argued that in the
large N Veneziano limit, flavor singlets that diagonalize the dilation operator
take the “generalized single-trace” form (4.1). We will look for the general-
ized single-trace operators belonging to short multiplets of the superconformal
algebra. These are the operators expected to map to the Kaluza-Klein tower
of massless single closed string states, so they are the first place to look in a
“bottom-up” search for the string dual.

The determination of the complete list of short multiplets of N = 2 SC-
QCD in this “generalized single-trace” sector turns out to be more subtle than
expected. A class of short multiplets is relatively easy to isolate, namely the
multiplets based on the following superconformal primaries:

TrM3 = (Qa
i Q̄

i
a)3 , Trφℓ+2 , Tr[Tφℓ] , ℓ ≥ 0 . (4.2)

Here T ≡ φφ̄ − M1. We hasten to add that this will turn out to be only a
small fraction of the complete set of protected operators. The set (5.44) is the
complete list of one-loop protected primaries in the scalar sector, as we show
in the next chapter 5 by a systematic evaluation of the one-loop anomalous
dimension of all operators that are made out of scalars and obey shortening
conditions. The operators Trφℓ correspond to the vacuum of the spin-chain
studied in [9], while the TrTφℓ correspond to the p → 0 limit of a gapless
magnon T (p) of momentum p.

The operators TrM3 and Trφℓ+2 obey the familiar BPS condition ∆ =
2R+ |r|, where R is the SU(2)R spin and r the U(1)r charge, and they are gen-
erators of the chiral ring (with respect to an N = 1 subalgebra), see appendix
B.5 By contrast Tr[Tφℓ] obey a “semi-shortening” condition and it may be
missed in a naive analysis; in these operators there is a large mixing of “glue-
balls” and “mesons” and the idea of considering “generalized single-traces” is

5 Incidentally, the analysis of the chiral ring extends immediately to flavor non-singlets.
The only chiral ring generator which is not a flavor singlet is the SU(2)R triplet bilinear

Oi
3 j ≡ (Q̄i

aQ
a
j)3 = Q̄i

a {IQ
a
J} j , (4.3)

in the adjoint of SU(Nf). The conserved currents for the SU(Nf ) ⊂ U(Nf) flavor symmetry
belong to the short multiplet with bottom component Oi

3 j . Similarly the current for the
U(1) ⊂ U(Nf) baryon number belongs to the TrM3 multiplet.
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essential. The TrT multiplet plays a distinguished role since it contains the
stress-energy tensor and R-symmetry currents.

Protection of the operators (5.44) can be understood from the viewpoint
of the interpolating SCFT connecting N = 2 SCQCD with the Z2 orbifold
of N = 4 SYM, as follows. The complete spectrum of short multiplets at
the orbifold point g = ǧ is well-known. We will argue, using superconformal
representation theory [154], that the protected multiplets found at the orbifold
point cannot recombine into long multiplets as we vary ǧ, so in particular
taking ǧ → 0 they must evolve into protected multiplets of the theory

{N = 2 SCQCD ⊕ decoupled SU(Nč) vector multiplet} . (4.4)

The list (5.44) is precisely recovered by restricting to U(Nf ) singlets. Remark-
ably however, the superconformal index of N = 2 SCQCD, evaluated in the
next section, will show the existence of many more protected states. The ex-
tra protected states arise from the splitting long multiplets of the interpolating
theory into short multiplets as ǧ → 0.

We will make extensive use of the the list given by Dolan and Osborn[154]
of all possible shortening conditions of the N = 2 superconformal algebra. We
summarize their results and establish notations in appendix B.1.

4.3.1 Protected Spectrum at the Orbifold Point

At the orbifold point (g = ǧ) the state space of the field theory is the direct
sum of an untwisted and a twisted sector, respectively even and odd under the
“quantum” Z2 symmetry (5.23).

Untwisted sector

Operators in the untwisted sector of the orbifold descend from operators of
N = 4 SYM by projection onto the Z2 invariant subspace. Their correlators
coincide at large Nc with N = 4 correlators [41, 45]. In particular the complete
list of untwisted protected states is obtained by projection of the protected
states of N = 4. We will be interested in single-trace operators; as is well-
known, the only protected single-trace operators of N = 4 belong to the
1
2

BPS multiplets B
1
2
, 1
2

[0,p,0], built on the chiral primaries TrX{i1 . . .X ip}, with

p ≥ 2, in the [0, p, 0] representation of SU(4)R (symmetric traceless of SO(6))
The decomposition of each 1

2
BPS multiplet N = 4 into N = 2 multiplets
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reads [154]

B
1
2
, 1
2

[0,p,0] ≃ (p+ 1)B̂ 1
2
p ⊕ Ep(0,0) ⊕ Ē−p(0,0)

⊕(p− 1)Ĉ 1
2
p−1(0,0) ⊕ p(D 1

2
(p−1)(0,0) ⊕ D̄ 1

2
(p−1)(0,0)

⊕
p−2⊕

k=1

(k + 1)(B 1
2
k,p−k(0,0) ⊕ B̄ 1

2
k,k−p(0,0))

⊕
p−3⊕

k=0

(k + 1)(C 1
2
k,p−k−2(0,0) ⊕ C̄ 1

2
k,k−p+2(0,0))

⊕
p−4⊕

k=0

p−k−4⊕

l=0

(k + 1)Ap
1
2
k,p−k−4−2l(0,0)

, (4.5)

which can be understood by considering all possible ways to substitute X i →
Z, Z̄,XIÎ , i.e. 6 → (0, 0)1 ⊕ (0, 0)−1 ⊕ (1

2
, 1

2
)0 in the branching SU(4)R →

SU(2)L × SU(2)R × U(1)r. The Z2 orbifold projection is then accomplished
by the substitution (5.16); states with an even (odd) number of X s are kept
(projected out), or equivalently, states with integer (half-odd) SU(2)R spin are
kept (projected out). Table 4.1 lists all the superconformal primaries of the
orbifold theory obtained by this procedure.

Let us explain the notation. The explicit expressions in terms of fields are
schematic. The symbol

∑
indicates summation over all “symmetric traceless”

permutations of the component fields allowed by the index structure. The
symbol T stands for the appropriate combination of two scalar fields, neutral

under the R symmetry. In the case of the multiplet Ĉ0(0,0), Tr T = Tr [T + φ̌ ¯̌φ],
the bottom component of the stress tensor multiplet of the orbifold theory.
The SU(2)R × U(1)r quantum numbers are manifest as labels of the N = 2
multiplets, while the SU(2)L quantum numbers can be seen from the mul-
tiplicity of each multiplet on the right hand side of (4.5) – the SU(2)L spin
always equals the SU(2)R spin of the multiplet, because SU(2)R and SU(2)L
indices always come in pairs (IÎ) and are separately symmetrized.

Twisted sector

In the twisted sector, we claim that the complete list of single-trace supercon-
formal primary operators obeying shortening conditions is

Tr[τZℓ] = Tr[φℓ − φ̌ℓ] for ℓ ≥ 2 (4.6)

and Tr[τXIÎXJ Ĵ ǫ
IJ ] = −Tr[QÎ{IQ̄

Î
J }] = −TrM3 .
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Multiplet Orbifold operator (R, ℓ ≥ 0, n ≥ 2)

B̂R+1 Tr[(Q++̂Q̄++̂)R+1]

Ē−(ℓ+2)(0,0) Tr[φℓ+2 + φ̌ℓ+2]

ĈR(0,0) Tr[
∑ T (Q++̂Q̄++̂)R]

D̄R+1(0,0) Tr[
∑

(Q++̂Q̄++̂)R+1(φ+ φ̌)]

B̄R+1,−(ℓ+2)(0,0) Tr[
∑

i(Q
++̂Q̄++̂)R+1φiφ̌ℓ+2−i]

C̄R,−(ℓ+1)(0,0) Tr[
∑

i T (Q++̂Q̄++̂)Rφiφ̌ℓ+1−i]

A∆=2R+ℓ+2n
R,−ℓ(0,0) Tr[

∑
i T n(Q++̂Q̄++̂)Rφiφ̌ℓ−i]

Table 4.1: Superconformal primary operators in the untwisted sector of the
orbifold theory. They descend from the 1

2
BPS primaries of N = 4 SYM. The

symbol
∑

indicates summation over all “symmetric traceless” permutations
of the component fields allowed by the index structure.

Multiplet Orbifold operator (ℓ ≥ 0)

B̂1 Tr[(Q++̂Q̄+−̂ −Q+−̂Q̄++̂)] = TrM3

Ē−ℓ−2(0,0) Tr[φℓ+2 − φ̌ℓ+2]

Table 4.2: Superconformal primary operators in the twisted sector of the
orbifold theory.
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That these operators are protected can be seen by the fact that they are the
generators of the N = 1 chiral ring in the twisted sector, as we show in
appendix B.2. A priori there could be extra twisted states that do not belong
to the chiral ring, as is the case for the untwisted sector. In the next section we
will evaluate the superconformal index of the orbifold theory and find that it
matches perfectly with the contribution of our claimed list of short multiplets.

The primary Tr[φℓ− φ̌ℓ] corresponds for each ℓ ≥ 2 to a second copy of the
chiral multiplet Ē−ℓ(0,0) – the first copy being the one in the untwisted sector

built on Tr[φℓ + φ̌ℓ]. The operator Tr[QÎ{IQ̄
Î
J }] is an SU(2)R triplet with

vanishing U(1)r charge and ∆ = 2, and must be identified with the primary
of a B̂1 multiplet. This protected multiplet has been overlooked in previous
discussions of the orbifold field theory. It is protected only in the theory where
the relative U(1) has been correctly subtracted (see section 3.2), as seen both
in the chiral ring analysis of appendix B and in an explicit one-loop calculation.

4.3.2 From the orbifold point to N = 2 SCQCD

As we move away from the orbifold point by changing ǧ, the short multiplets
that we have just enumerated may a priori recombine into long multiplets and
acquire a non-zero anomalous dimension. The possible recombinations of short
multiplets of the N = 2 superconformal algebra were classified in [154]. For
short multiplets with a Lorentz-scalar bottom component, the relevant rule is

A2R+ℓ+2
R,−ℓ(0,0) ≃ C̄R,−ℓ(0,0) ⊕ B̄R+1,−(ℓ+1)(0,0) . (4.7)

In the special case ℓ = 0, the short multiplets on the right hand side further
decompose into even shorter multiplets as

A2R+2
R,0(0,0) ≃ ĈR(0,0) ⊕DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2(0,0) (4.8)

. It follows that the short multiplets of the orbifold theory that that could in
principle recombine are

Tr[
∑

i

T (Q++̂Q̄++̂)Rφiφ̌ℓ−i] ⊕ Tr[
∑

i

(Q++̂Q̄++̂)R+1φiφ̌ℓ−i] −→ A2R+ℓ+2
R,−ℓ(0,0)(4.9)

Tr[
∑

T (Q++̂Q̄++̂)R] ⊕ Tr[
∑

i

(Q++̂Q̄++̂)R+1φ̄i ¯̌φ1−i] ⊕

Tr[
∑

i

(Q++̂Q̄++̂)R+1φiφ̌1−i] ⊕ Tr[
∑

(Q++̂Q̄++̂)R+2] −→ A2R+2
R,0(0,0) . (4.10)
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However we see that the proposed recombinations entail short multiplets with
different SU(2)L quantum numbers, which is impossible since the supercharges
are neutral under SU(2)L. Thus SU(2)L selection rules forbid the recombina-
tion, and the protected multiplets of the orbifold theory remain short for all
values of g and ǧ. This conclusion was reached using superconformal repre-
sentation theory, and it is a rigorous result valid at the full quantum level.6

In the limit ǧ → 0, we must be able to match the protected states of the
interpolating SCFT with protected states of {N = 2 SCQCD ⊕ decoupled
vector multiplet}. In [9] we follow this evolution in detail using the one-loop
spin chain Hamiltonian. The basic features of this evolution can be understood
just from group theory. The protected states naturally splits into two sets:
SU(2)L singlets and SU(2)L non-singlets. It is clear that all the (generalized)
single-trace operators of N = 2 SCQCD must arise from the SU(2)L singlets.

The SU(2)L singlets are:

(i) One B̂1 multiplet, corresponding to the primary Tr[QÎ{IQ̄
Î
J }] = TrM3.

Since this is the only operator with these quantum numbers, it cannot
mix with anything and its form is independent of ǧ.

(ii) Two Ē−ℓ(0,0) multiplets for each ℓ ≥ 2, corresponding to the primaries

Tr [φℓ ± φ̌ℓ]. For each ℓ, there is a two-dimensional space of protected
operators, and we may choose whichever basis is more convenient. For
g = ǧ, the natural basis vectors are the untwisted and twisted combi-
nations (respectively even and odd under φ ↔ φ̌), while for ǧ = 0 the
natural basis vectors are Trφℓ (which is an operator of N = 2 SCQCD)
and Tr φ̌ℓ (which belongs to the decoupled sector).

(iii) One Ĉ0(0,0) multiplet (the stress-tensor multiplet), corresponding to the

primary TrT = Tr [T + φ̌ ¯̌φ]. We have checked that this combination is
an eigenstate with zero eigenvalue for all ǧ. For ǧ = 0, we may trivially

subtract out the decoupled piece Tr φ̌ ¯̌φ and recover TrT , the stress-tensor
multiplet of N = 2 SCQCD.

(iv) One C̄0,−ℓ(0,0) multiplet for each ℓ ≥ 1. In the limit ǧ → 0, we expect this
multiplet to evolve to the TrTφℓ multiplet of N = 2 SCQCD. We have
checked this in detail in [9].

All in all, we see that this list reproduces the list (5.44) of one-loop protected
scalar operators of N = 2 SCQCD, plus the extra states Trφ̌ℓ that decouple
for ǧ = 0.

6We will rephrase the same result in the next section by computing a refined supercon-
formal index that also keeps track of the SU(2)L quantum number.

64



The basic protected primary of N = 2 SCQCD which is charged under
SU(2)L is the SU(2)L triplet contained in the mesonic operator Oi

3R j =
(Q̄i

aQ
a
j )3R

(see footnote 5). Indeed writing the U(Nf = 2Nc) flavor indices

i as i = (ǎ, Î), with ǎ = 1, . . . Nf/2 = Nc “half” flavor indices and I = ±̂
SU(2)L indices, we can decompose

Oi
3R j → Oǎ

3R3L b̌
, Oǎ

3R1L b̌
. (4.11)

In particular we may consider the highest weight combination for both SU(2)L
and SU(2)R,

(Q̄++̂Q++̂)ǎ
b̌
. (4.12)

States with higher SU(2)L spin can be built by taking products of O3R3L
with

SU(2)L and SU(2)R indices separately symmetrized – and this is the only way
to obtain protected states of N = 2 SCQCD charged under SU(2)L which
have finite conformal dimension in the Veneziano limit. It is then a priori
clear that a protected primary of the interpolating theory with SU(2)L spin L
must evolve as ǧ → 0 into a product of L copies of (Q̄++̂Q++̂) and of as many

additional decoupled scalars φ̌ and ¯̌φ as needed to make up for the correct
U(1)r charge and conformal dimension. Examples of this evolution are given
in [9].

4.3.3 Summary

In summary all the short multiplets of the interpolating theory remain short
as ǧ → 0, and have a natural interpretation in this limit. The SU(2)L-singlet
protected states evolve into the list (5.44) of protected states of SCQCD, plus
some extra states made purely from the decoupled vector multiplet. The
interpolating theory has also many single-trace protected states with non-
trivial SU(2)L spin, which are flavor non-singlets from the point of view of
N = 2 SCQCD: we have seen that in the limit ǧ → 0, a state with SU(2)L spin
L can be interpreted as a “multiparticle state”, obtained by linking together L
short “open” spin-chains with of SCQCD and decoupled fields φ̌. This is also
suggestive of a dual string theory interpretation: as ǧ → 0, single closed
string states carrying SU(2)L quantum numbers disintegrate into multiple
open strings.

Thus by embedding N = 2 SCQCD into the interpolating SCFT we have
confirmed that the operators (5.44) are protected at the full quantum level,
since they arise as the limit of operators whose protection can be shown at the
orbifold point and is preserved by the exactly marginal deformation. However
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this argument does not guarantee that (5.44) is the complete set of protected
generalized single-trace primaries of N = 2 SCQCD. Indeed we will exhibit
many more such states in the next section: they arise from long multiplets of
the interpolating theory splitting into short multiplets at ǧ = 0.

4.4 Extra Protected Operators of N = 2 SC-

QCD from the Index

The superconformal index [18] (see also [155]) computes “cohomological” in-
formation about the protected spectrum of a superconformal field theory. It
counts (with signs) the multiplets obeying shortening conditions, up to equiv-
alence relations that set to zero all sequences of short multiplets that may in
principle recombine into long multiplets. The index is invariant under exactly
marginal deformations and can thus be evaluated in the free field limit (if the
theory admits a Lagrangian description). It should be kept in mind that the
index does not completely fix the protected spectrum. A first issue is a certain
ambiguity in the quantum numbers of the protected multiplets detected by the
index. Short multiplets can be organized into “equivalence classes”, such that
each short multiplet in a class gives the same contribution to the index. For
N = 2 4d superconformal theories these equivalence classes contain a finite
number of short multiplets. This finite ambiguity could in principle be resolved
by an explicit one-loop calculation, but in practice this is difficult since the
diagonalization of the one-loop dilation operator becomes rapidly complicated
as the conformal dimension increases. A second issue is that some sequences
of short multiplets that are kinematically allowed to recombine into long mul-
tiplets may in fact remain protected for dynamical reasons. This dynamical
protection is known to occur at large Nc in N = 4 SYM for certain multi-trace
operators, but not for single-trace operators.

Despite these caveats, the index is a very valuable tool. In this section,
after reviewing the definition of the index [18], we explain exactly what kind
of information can be extracted from it, by characterizing the “equivalence
classes” of short multiplets that give the same contribution to the index. We
then proceed to concrete calculations, evaluating the index for the interpolat-
ing SCFT and for N = 2 SCQCD. The free field contents of the two theories,
and thus their indices, are different: recall that the interpolating SCFT has
an extra vector multiplet in the adjoint of SU(Nč). The index for the in-
terpolating theory confirms the protected spectrum of single-trace operators
discussed in the previous section. By contrast, the index for N = 2 SCQCD
reveals the existence of many more generalized single-trace operators obeying
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shortening conditions: their degeneracy grows exponentially with the confor-
mal dimension. Interestingly, we find protected operators with arbitrarily high
spin, though none of them is a higher-spin conserved current. We account for
the origin of these extra protected states by identifying long multiplets of the
interpolating theory that at ǧ = 0 split into short multiplets: some of the re-
sulting short multiplets belong purely to N = 2 SCQCD (i.e. do not contain
fields in the decoupled vector multiplet) and comprise the extra states.

4.4.1 Review of the Superconformal Index

The superconformal index [18] is just the Witten index with respect to one
of the Poincaré supercharges, call it Q, of the superconformal algebra. Let
S = Q† be the conformal supercharge conjugate to Q, and δ ≡ 2{S,Q}. Every
state in a unitary representation of the superconformal algebra has δ ≥ 0. The
index is defined as

I = Tr (−1)F e−αδ+M , (4.13)

where the trace is over the Hilbert space of the theory on S3, in the usual
radial quantization, and M is any operator that commutes with Q and . The
index receives contributions only from states with δ = 0, which are in one-to-
one correspondence with the cohomology classes of Q. It is thus independent
of α.

There are in fact two inequivalent possibilities for the choice of Q, leading
to a “left” index IL and a “right” index IR. The choice Q = Q1

− leads to the
“left” index IL. In this case

δL = ∆ − 2j − 2R− r . (4.14)

Introducing chemical potentials for all the operators that commute with Q
and , one defines

IL(t, y, v) ≡ Tr (−1)F t2(∆+j) y2j̄vr−R . (4.15)

The choice Q = Q̄2+ gives instead the “right” index IR. In this case

δR ≡ ∆ − 2j̄ − 2R + r (4.16)

IR(t, y, v) = Tr (−1)F t2(∆+j̄) y2jv−r−R. (4.17)

The relation between the left and right index is simply j ↔ j̄ and r ↔ −r. For
an N = 2 theory, which is necessarily non-chiral, the left and right indices are
in fact equal as functions of the chemical potentials, IL(t, y, v) = IR(t, y, v),
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but it will be useful to have introduced the definitions of both.

4.4.2 Equivalence Classes of Short Multiplets

We have mentioned that there is a certain finite ambiguity in extracting from
the index which are the actual multiplets that remain short. Schematically,
the issue is the following. Suppose that two short multiplets, S1 and S2, can
recombine to form a long multiplet L1,

S1 ⊕ S2 = L1 , (4.18)

and similarly that S2 can recombine with a third short multiplet S3 to give
another long multiplet L2,

S2 ⊕ S3 = L2 . (4.19)

By construction, the index evaluates to zero on long multiplets, so

I(S1) = −I(S2) = I(S3) . (4.20)

We say that the two multiplets S1 and S3 belong to the same equivalence
class, since their indices are the same. Note that S2 can be distinguished from
S1 ∼ S3 by the overall sign of its index.

The recombination rules for N = 2 superconformal algebra are [154]

A2R+r+2j+2
R,r(j,j̄)

≃ CR,r(j,j̄) ⊕ CR+ 1
2
,r+ 1

2
(j− 1

2
,j̄) (4.21)

A2R−r+2j̄+2
R,r(j,j̄)

≃ C̄R,r(j,j̄) ⊕ C̄R+ 1
2
,r− 1

2
(j,j̄− 1

2
) (4.22)

A2R+j+j̄+2
R,j−j̄(j,j̄) ≃ ĈR(j,j̄) ⊕ ĈR+ 1

2
(j− 1

2
,j̄) ⊕ ĈR+ 1

2
(j,j̄− 1

2
) ⊕ ĈR+1(j− 1

2
,j̄− 1

2
) .(4.23)

Notations are reviewed in appendix B.1. The C, C̄ and Ĉ multiplets obey
certain “semi-shortening” conditions, see Table B.1, while A multiplets are
generic long multiplets. A long multiplet whose conformal dimension is ex-
actly at the unitarity threshold can be decomposed into shorter multiplets
according to (4.21,4.22,4.23). We can formally regard any multiplet obeying
some shortening condition (with the exception of the E and Ē types) as a mul-
tiplet of type C, C̄ or Ĉ by allowing the spins j and j̄, whose natural range
is over the non-negative half-integers, to take the value −1/2 as well. The
translation is as follows:

CR,r(− 1
2
,j̄) ≃ BR+ 1

2
,r+ 1

2
(0,j̄). (4.24)

68



ĈR(− 1
2
,j̄) ≃ DR+ 1

2
(0,j̄), ĈR(j,− 1

2
) ≃ D̄R+ 1

2
(j,0) . (4.25)

ĈR(− 1
2
,− 1

2
) ≃ DR+ 1

2
(0,− 1

2
) ≃ D̄R+ 1

2
(− 1

2
,0) ≃ B̂R+1. (4.26)

Note how these rules flip statistics: a multiplet with bosonic primary (j + j̄
integer) is turned into a multiplet with fermionic primary (j+ j̄ half-odd), and
viceversa. With these conventions, the rules (4.21, 4.22, 4.23) are the most
general recombination rules. The E and Ē multiplets never recombine.

Let us start by characterizing the equivalent classes for C-type multiplets.
The right index vanishes identically on C multiplets. From (4.21), we have

IL[CR,r(j,j̄)] + IL[CR+ 1
2
,r+ 1

2
(j− 1

2
,j̄)] = 0 . (4.27)

Clearly R̃ ≡ R + j, r̃ ≡ r + j and j̄ and the overall sign are the invariant
quantum numbers that label an equivalence class. We denote by [R̃, r̃, j̄]L+ the

equivalence class of C multiplets with IL = IL[CR̃,r̃(0,j̄)], and by [R̃, r̃, j̄]L− the
class with IL = −IL[CR̃,r̃(0,j̄)],

[R̃, r̃, j̄]L+ = {CR̃−m,r̃−m (m,j̄) |m = 0, 1, 2 . . . , m ≤ R̃} (4.28)

[R̃, r̃, j̄]L− = {CR̃−m,r̃−m (m,j̄) |m = −1

2
,
1

2
,
3

2
. . . , m ≤ R̃} . (4.29)

Explicitly, the left index of the class [R̃, r̃, j̄]L± is:

IL

[R̃,r̃,j̄]L±
= (4.30)

±(−1)2j̄+1t6+4R̃+2r̃v−2+r̃−R̃ (1 − t2v)(t− v
y
)(t− vy)

(1 − t3y)(1 − t3

y
)

(y2j̄ + . . .+ y−2j̄)

We have illustrated the equivalence classes [1, 1, 0]L± in Figure 4.2 by listing

multiplets on the j axis. The allowed values of R̃ and j̄ are −1
2
, 0, 1

2
, 1, . . . ,

C3
2,

3
2(−1

2,0) C1,1(0,0)
C1

2,
1
2(1

2,0) C0,0(1,0)

−IL[1,1,0] +IL[1,1,0] −IL[1,1,0] +IL[1,1,0]

Figure 4.2: The equivalence classes [1, 1, 0]L±. The multiplets belonging to
[1, 1, 0]L± have index ±IL

[1,1,0]. The sum of the indices of adjacent multiplets is
zero, as required by the recombination rule.

with the proviso that j = −1
2

or j̄ = −1
2

must be interpreted according to
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(4.24). For the lowest value of R̃, R̃ = −1
2
, the class [−1

2
, r̃, j̄]L+ is empty while

the class [−1
2
, r̃, j̄]L− = B 1

2
,r̃+1(0,j̄) consists of a single multiplet, which can then

be determined without any ambiguity. For R̃ = 0, [0, r̃, j̄]L+ = C0,r̃(0,j̄) and
[0, r̃, j̄]L− = B1,r̃+1(0,j̄) both contain a single multiplet and again there is no

ambiguity. Finally for R̃ = 1
2
, [1

2
, r̃, j̄]+ = C 1

2
,r̃(0,j̄) contains a single multiplet,

but [1
2
, r̃, j̄]− already has two and from the index alone cannot decide which of

the two actually remains protected. Clearly the ambiguity grows linearly with
R̃.

The analysis for the C̄ multiplets is entirely analogous, and follows from
the previous discussion by the substitutions j ↔ j̄, r ↔ −r. One needs to
consider IR, since now it is IL that evaluates to zero. The equivalence classes
are defined to be the set of all the C̄ multiplets with same IR up to sign, and

are denoted as [ ¯̃R, ¯̃r, j]R±, where ¯̃R ≡ R + j̄, ¯̃r ≡ −r + j̄.
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j

j̄

(a)

j

j̄

(b)

Figure 4.3: Example of two configurations of the Ĉ. In subfigure (a) Ĉ0( 1
2
, 1
2
)

and Ĉ2(− 1
2
,− 1

2
) ≡ B̂3(0,0) and in subfigure (b) Ĉ1(− 1

2
, 1
2
) ≡ D 3

2
(0, 1

2
) and Ĉ1( 1

2
,− 1

2
) ≡

D̄ 3
2
(0, 1

2
)

71



multiplets with R + j + j̄ = 1 contributing the same to both IL and IR.
The multiplets are denoted by crosses on the (j, j̄) grid. The indices are the
same for (a) and (b) because the projections on the j and j̄ (i.e. the sets of j
and j̄ values) are the same.

The analysis for the Ĉ multiplets is slightly more involved. Unlike C and C̄
multiplets, Ĉ multiplets contribute to both IL and IR. Moreover the quantum
number r is fixed by the additional shortening condition r = j̄−j. The left and
right equivalence classes of ĈR(j,j̄) are [R+j, j̄, j̄]L± and [R+j̄, j, j]R± respectively.

The left index determines R̃ = R+ j and the right index ¯̃R = R + j̄, so all in
all no two different Ĉ multiplets give the same contribution to both IL and IR.
Nevertheless different direct sums of Ĉ multiplets can have the same IL and
IR. It is convenient to introduce the quantum number R̂ ≡ R + j + j̄, which
is an invariant for both the left and the right equivalence classes, and to label
the equivalence classes for Ĉ multiplets as [R̂, j̄]L± and [R̂, j]R±. This new way
to label the classes does not entail any loss of information, and makes it more
convenient to analyze both the indices simultaneously. Explicitly, the left and
right indices for these equivalence classes are:

IL

[R̂,j̄]L±
= ±(−1)2j̄ t

6−2j̄+4R̂v−1+2j̄−R̂(1 − t2v)

(1 − t3y)(1 − t3/y)

(t(y2j̄+1 + . . .+ y−(2j̄+1)) − v(y2j̄ + . . .+ y−2j̄)) (4.31)

IR

[R̂,j]R±
= ±(−1)2j t

6−2j+4R̂v−1+2j−R̂(1 − t2v)

(1 − t3y)(1 − t3/y)

(t(y2j+1 + . . .+ y−(2j+1)) − v(y2j + . . .+ y−2j)) . (4.32)

Now the point is that given a collection of Ĉ multiplets with the same value
of R̂, the left index determines the set of j̄ values while the right index deter-
mines the set of j values, but in general there is not enough information to fix
uniquely all quantum numbers. Figure 4.3 illustrates the ambiguity in a sim-
ple example: two different configurations, each consisting of two Ĉ multiplets,
give the same contribution to both IL and IR.
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Multiplet Equivalence class

C [R̃, r̃, j̄]L± ≡ [R + j, r + j, j̄]L±
C̄ [ ¯̃R, ¯̃r, j]R± ≡ [R + j̄,−r + j̄, j]R±
Ĉ [R̂, j̄]L± ≡ [R + j + j̄, j̄]L±

[R̂, j]R± ≡ [R + j + j̄, j]R±

Table 4.3: Summary of notation for equivalence classes of short multiplets.

Letters ∆ j j̄ R r IR

φ 1 0 0 0 -1 t2v

λ1
+ 3/2 1/2 0 1/2 -1/2 −t3y
λ1
− 3/2 -1/2 0 1/2 -1/2 −t3y−1

λ̄2+ 3/2 0 1/2 1/2 1/2 −t4v−1

F̄++ 2 0 1 0 0 t6

∂++ 1 1/2 1/2 0 0 t3y

∂−+ 1 -1/2 1/2 0 0 t3y−1

∂−+λ
1
+ + ∂++λ

1
− = 0 5/2 0 1/2 1/2 1/2 t6

Table 4.4: Letters with δR = 0 from the N = 2 vector multiplet

4.4.3 The Index of the Interpolating Theory

We now review the calculation of the index for the orbifold theory [18, 156].7

The index is invariant under exactly marginal deformation and is thus the
same for the whole family of interpolating SCFTs. The procedure is well-
established. One enumerates the “letters” of the theory with δ = 0 and then
counts all possible gauge-invariants words. This is done efficiently by a matrix
model, which for large N can be evaluated by saddle point. Tables 4.4 and 4.5
list the δR = 0 letters from the N = 2 vector and hyper multiplets.8 Equations
of motion are accounted for by introducing words with “wrong” statistics.

7While we agree with the general procedure followed in [156], we disagree with the final
result, equ.(3.5) of [156]. The discrepancy can be traced to an incorrect subtraction of the
U(1) factors in [156], they are apparently taken to be N = 1 rather than N = 2 vector
multiplets (equ.(2.12) of [156]). For the same reason we disagree with the expression ((3.7)
of [156]) for the contribution to the index of the 6d (2, 0) massless tensor multiplet, which
we evaluate in appendix B.3.

8For definiteness we evaluate IR, but recall that IL(t, y, v) = IR(t, y, v). The concrete
letters with δL = 0 are different but the left and right single-letter indices coincide.

73



Letters ∆ j j̄ R r IR

q 1 0 0 1/2 0 t2v−1/2

ψ̄+ 3/2 0 1/2 0 -1/2 −t4v1/2

q̃ 1 0 0 1/2 0 t2v−1/2

¯̃
ψ+ 3/2 0 1/2 0 -1/2 −t4v1/2

Table 4.5: Letters with δR = 0 from the hyper multiplet

One finds the single-letter indices for the vector multiplet and the “half” hyper
multiplet

fV (t, y, v) =
t2v − t3 (y + y−1) − t4v−1 + 2t6

(1 − t3y) (1 − t3y−1)
(4.33)

fH(t, y, v) =
t2

v1/2

(1 − t2v)

(1 − t3y) (1 − t3y−1)
. (4.34)

The single-letter index then reads

iorb(t, y, v;U, Ǔ) = fV (t, y, v)(TrU TrU † − 1) + fV (t, y, v)(TrǓ TrǓ † − 1)

+

(
w +

1

w

)
fH(t, y, v)(TrU TrǓ † + TrU † TrǓ) . (4.35)

Here U and Ǔ are is an Nc × Nc unitary matrices out of which we construct
the relevant characters of SU(Nc) and SU(Nč). We have also introduced
a potential w that keeps track of SU(2)L quantum numbers: w + 1

w
is the

character of the fundamental representation of SU(2)L. The index is obtained
by enumerating all gauge-invariant operators in terms of the matrix integral

Iorb =

∫
[dU ][dǓ ] exp

(
∑

n

1

n
iorb(t

n, yn, vn;UnǓn)

)
, (4.36)

which for large Nc can be carried out explicitly,

Iorb ∼=
∞∏

n=1

e−
2
n
fV (tn,yn,vn)

(1 − fV (tn, yn, vn))2 − (w2n + w−2n + 2)f 2
H(tn, yn, vn)

≡ Im.t.orb .(4.37)

This expression contains the contribution from all the gauge-invariant opera-
tors of the theory, which at large Nc are multi-traces, hence the superscript in
Im.t.orb . To extract the contribution from single-traces we evaluate the plethystic
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logarithm (see e.g. [157])

Is.t.orb =

∞∑

n=1

µ(n)

n
log[Im.torb (t

n, yn, vn)] (4.38)

= −
∞∑

n=1

ϕ(n)

n
log[(1 − fV (tn, yn, vn))2 − (w2n + w−2n + 2)f 2

H(tn, yn, vn)]

−2fV (t, y, v)

= 2

[
t2v

1 − t2v
− t3y

1 − t3y
− t3y−1

1 − t3y−1

]
+

t4w2

v

1 − t4w2

v

+
t4

vw2

1 − t4

vw2

−2fV (t, y, v) .

Here µ(n) is the Moebius function (µ(1) ≡ 1, µ(n) ≡ 0 if n has repeated prime
factors, and µ(n) = (−1)k if n is the product of k distinct primes), and ϕ(r)
is the Euler Phi function, defined as the number of positive integers less than
or equal to r that are coprime with respect to r. We have used the properties

∑

d|n
d µ
(n
d

)
= ϕ(n) ,

∑

r

ϕ(r)

r
log(1 − xr) =

−x
1 − x

. (4.39)

The index is of course independent of g and ǧ. At the orbifold point g = ǧ
it makes sense organize the spectrum into a twisted and an untwisted sector.
Protected operators in the untwisted sectors are known from inheritance from
N = 4 SYM. To evaluate the contribution to the index from the untwisted
sector we start with the single-trace index for SU(Nc) N = 4 SYM and project
onto the Z2 invariant subspace. The single-trace index for N = 4 is found by
regarding N = 4 as an N = 2 theory with one adjoint vector and one adjoint
hyper. A short calculation gives [18]9

IN=4 =
t2v

1 − t2v
+

t2w√
v

1 − t2w√
v

+

t2

w
√
v

1 − t2

w
√
v

− t3y

1 − t3y
− t3y−1

1 − t3y−1

−fV (t, y, v)− (w +
1

w
)fH(t, y, v) . (4.40)

9Our notations for the chemical potentials are slightly different from [18].
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The Z2 acts as w → −w leaving invariant the under potentials, so the index
of the untwisted sector of the Z2 orbifold theory is

Iuntwist =
1

2
(IN=4(t, y, v, w) + IN=4(t, y, v,−w)) (4.41)

=
t2v

1 − t2v
− t3y

1 − t3y
− t3y−1

1 − t3y−1
+

t4w2

v

1 − t4w2

v

+
t4

vw2

1 − t4

vw2

− fV (t, y, v) .

Subtracting the contribution of the untwisted sector from the total index
(4.39), we finally find

Itwist =
t2v

1 − t2v
− t3y

1 − t3y
− t3y−1

1 − t3y−1
− fV (t, y, v) . (4.42)

In appendix B.3 we confirm that this precisely matches with the contribu-
tion from the twisted multiplets {M3,Tr(φ2+ℓ − φ̌2+ℓ) , ℓ ≥ 0}, which are the
generators of the N = 1 chiral ring in the twisted sector.

4.4.4 The Index of N = 2 SCQCD and the Extra States

The single-letter index for N = 2 SCQCD is

iQCD(t, y, v;U, V ) = fV (t, y, v)(TrU TrU † − 1) (4.43)

+fH(t, y, v)(TrU TrV † + TrU † TrV ) ,

where U an Nc × Nc matrix and V an Nf × Nf matrix, with Nf = 2Nc. We
are interested in gauge and flavor-singlets, so we integrate over both U and V ,

IQCD =

∫
[dU ][dV ] exp

(
∑

n

1

n
iQCD(tn, yn, vn;UnV n)

)
. (4.44)

For large Nc and Nf with Nf/Nc fixed we can again use saddle point,

IQCD ∼=
∞∏

n=1

e−
1
n
fV (tn,yn,vn)

(1 − fV (tn, yn, vn)) − f 2
H(tn, yn, vn)

≡ Im.t.QCD . (4.45)

The index that enumerates (generalized) single-trace operators is then

Is.t.QCD = −
∞∑

n=1

ϕ(n)

n
log[(1 − fV (tn, yn, vn)) − f 2

H(tn, yn, vn)] − fV (t, y, v) .(4.46)
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Unlike the orbifold theory, there is no nice factorization of the single-letter
index and we cannot extract the plethystic log explicitly. This is already an
indication of a more complicated structure than expected. The naive expecta-
tion is that all protected generalized single-trace multiplets of N = 2 SCQCD
are exhausted by the list {M3 ,Trφ2+ℓ ,TrTφℓ , ℓ ≥ 0}, obtained by project-
ing the protected single-trace spectrum of the interpolating theory onto U(Nf )
singlets. We evaluate the corresponding index in appendix B.3,

Inaive =
1

(1 − t3y)(1 − t3

y
)
× (4.47)

[
−t6(1 − t

v
(y +

1

y
)) − t10

v
+
t4v2(1 − t

vy
)(1 − ty

v
)

1 − t2v
+
t4

v
(1 − t2v)

]
,

which is different from the correct index (4.46). Expanding in powers of t, the
first discrepancy appears at O(t13).

To get some insight, let us rewrite the single-trace index of the orbifold
theory as

Is.t.(h, k) = −
∞∑

n=1

[ϕ(n)

n
log[(1 − fV (tn, yn, vn))(1 − hfV (tn, yn, vn))

−(k(w2n + 1 + w−2n) + 1)f 2
H(tn, yn, vn)

]

−fV (t, y, v) . (4.48)

We have introduced a variable h that keeps track of the number of SU(Nč)
vector multiplets, and a variable k associated with the triplet combination of
two neighboring SU(2)L indices. The index (4.46) for N = 2 SCQCD is recov-
ered in the limit (h, k) → (0, 0). Indeed setting (h, k) = (0, 0): this amounts
to omitting the “second” vector multiplet and to project onto U(Nf ) singlets,
which is equivalent to first projecting onto SU(Nč) singlets (automatically
done in the interpolating theory) and then contracting all neighboring SU(2)L
indices into the singlet combination. The grading of gauge-invariant words by
powers of h (number of letters in the SU(Nč) vector multiplet) makes sense
only for ǧ = 0. Similarly, for ǧ 6= 0 only the overall SU(2)L spin of a state
is a meaningful quantum number, not the specific way neighboring SU(2)L
indices are contracted. (For example it is clearly possible to construct SU(2)L
singlets which are not U(Nf ) singlets.) At ǧ 6= 0 words with different h or k
grading will generically mix.

The origin of the extra protected states is then clear. As ǧ → 0, a long
multiplets of the interpolating theory, which obviously does not contribute to
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Iorb, may hit the unitarity bound and decompose into a sum of short multiplets,
some of which are U(Nf ) singlets and thus belong to N = 2 SCQCD, but some
of which have instead non-trivial h or k grading. Schematically

lim
ǧ→0

L = ⊕S(h,k)=(0,0) ⊕ S(h,k)6=(0,0) . (4.49)

The operators {S(h,k)=(0,0)} are the extra states. They are protected in N = 2
SCQCD because they have no partners to recombine with.

Remarkably the extra protected states are vastly more numerous than the
naive list. The asymptotic growth of states in the naive list is clearly linear in
the conformal dimension – the number of states with ∆ < N grows as ∼ 2N ,
in other terms the density of states ρ(∆) is constant. This modest growth is
consistent with the fact that the naive single-trace index does not “deconfine”,
i.e. it does not diverge as a function of t = e−1/T for any finite temperature
T . The same behavior holds for the orbifold theory or for N = 4 SYM. By
contrast, the single-trace index of N = 2 SCQCD exhibits Hagedorn behavior.
Setting for simplicity all other potentials to 1, we encounter a divergence at
t = tH such that

1 − fV (tH , 1, 1) − f 2
H(tH , 1, 1) = 0 −→ tH ∼= 0.897769 . (4.50)

This implies an exponential growth in the density of states contributing to the
index,

ρ(E ′) ∼ eβHE
′

, E ′ ≡ ∆ + j , βH = − ln tH ∼= 0.107842 . (4.51)

It is interesting to compare this behavior with the density of generic generalized
single-trace operators of N = 2 SCQCD. The density of generic states, unlike
the density of protected states, is of course a function of the coupling. For
g = 0, it is obtained by calculating the phase transition temperature of the
complete generalized single-trace partition function (with no (−1)F ). We find
∼ eβ

′
H(∆+j) with β ′

H = 1.34254. Not surprisingly, βH < β ′
H . The density

of protected states, while exponential, grows at a much slower rate than the
density of the generic states, or at least this is the behavior for small g.

4.4.5 Sieve Algorithm

We would like to list the quantum numbers of the extra protected states, up
to the finite equivalence class ambiguity intrinsic to the index. There is no
closed-form expression for Is.t.QCD but we can identity the equivalence classes
contributing to it in a systematic expansion in powers of t, by implementing
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a “sieve” algorithm similar in spirit to the one of [158].
The first discrepancy between Is.t.QCD is the O(t13) term

IQCD − Inaive = −t
13

v
(y +

1

y
) + . . . (4.52)

On the other hand, expanding (4.31) in powers of t, the lowest term is

− t6+4R̃+2r̃vr̃−R̃(y2j̄ + . . .+ y−2j̄) . (4.53)

Matching with (4.52) we determine the equivalence class of the first new pro-
tected multiplet to be [R̃, r̃, j̄]L+ = [3

2
, 1

2
, 1

2
]L+. Since r̃ = j̄, this is actually a

Ĉ multiplet so we rewrite its equivalence class as [R̂, j̄]L = [2, 1
2
]L+. Subtract-

ing the whole index of the class from the discrepancy we proceed to the next
mismatch in the t expansion, and so on. In this way, we can systematically
construct the equivalence classes of all the extra protected multiplets of the
SCQCD. The results from IL for first few multiplets are:

• C multiplets: [2, 2, 0]L+, [2, 3, 0]L+, [2, 4, 0]L+, [3, 2, 0]L−, [3, 2, 1]L−, . . .

• Ĉ multiplets: [2, 1
2
]L+, [4, 1]L+, [4, 3

2
]L+, . . .

From the analysis of IR we can write down the right equivalence classes of the
protected multiplets. Since IR = IL, the list of right equivalence classes is ob-
tained immediately from the list of left equivalence classes by the substitutions
C → C̄ and L → R.

Protected C̄ multiplets are just conjugates of protected C multiplets. The Ĉ
multiplets, however, appear in both left and right classes, and as we discussed
this gives more information. For example the Ĉ multiplet in [2, 1

2
]L+ also belongs

to [2, 1
2
]R+ and furthermore it is the only multiplet with R̂ = R + j + j̄ = 2.

The left equivalence class determines j̄ = 1
2
, the right equivalence class j = 1

2

and both also imply R = R̂ − j − j̄ = 1. This determines the lowest-lying
extra protected Ĉ multiplet to be Ĉ1( 1

2
, 1
2
). For R̂ = 4, there are two multiplets

with j̄ = 1, 3
2

and with same values of j. Two possible (j, j̄) Lorentz spins
are (1, 1), (3

2
, 3

2
) or (1, 3

2
), (3

2
, 1) but we also know that it is a bosonic multiplet

from the subcript +. This picks out the pair (1, 1), (3
2
, 3

2
) with R = 4−1−1 = 2

and R = 4 − 3
2
− 3

2
= 1 respectively. This determines the next protected Ĉ

multiplets to be Ĉ1( 3
2
, 3
2
) and Ĉ2(1,1). To summarize, the first three protected Ĉ

multiplets are:

• Ĉ multiplets: Ĉ1( 1
2
, 1
2
), Ĉ1( 3

2
, 3
2
), Ĉ2(1,1), . . .
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A striking feature of the extra protected multiplets is that they contain states
with higher spin, in fact we believe that the sieve will produce arbitrarily
high spin. To the best of our knowledge this is the first time that higher-
spin protected multiplets are found in an interacting 4d superconformal field
theory. Note that none of the protected states we find are higher spin conserved
currents, which correspond to the multiplets Ĉ0(j,j̄). This is not surprising:
higher spin conserved currents are the hallmark of a free theory, but N = 2
SCQCD is most definitely an interacting quantum field theory. As in N = 4
SYM [159], higher spin conserved currents exist at strictly zero coupling, but
they are anomalous and recombine into long multiplets at non-zero coupling.

4.5 Dual Interpretation of the Protected Spec-

trum

As we have repeatedly emphasized, N = 2 SCQCD can be obtained as the
ǧYM → 0 limit of a family of N = 2 superconformal field theories, which
reduces for gYM = ǧYM to the N = 2 Z2 orbifold of N = 4 SYM. This latter
theory has a familiar dual description has IIB string theory on AdS5 × S5/Z2

[39], so it would seem that to find the dual of N = 2 SCQCD we simply
need to follow the fate of the bulk string theory under the exactly marginal
deformation. Recall that at the orbifold point the NSNS B-field has half-unit
period through the blown-down S2 of the orbifold singularity,

∫
S2 BNS = 1/2

[160]. Taking ǧYM 6= gYM is dual to changing the period of B-field, according
to the dictionary [40, 161]

1

g2
YM

+
1

ǧ2
YM

=
1

2πgs
(4.54)

ǧ2
YM

g2
YM

=
β

1 − β
, β ≡

∫

S2

BNS . (4.55)

The catch is that the limit ǧYM → 0 translates on the dual side to the singular
limit of vanishing BNS and vanishing string coupling gs, and the IIB back-
ground AdS5 × S5/Z2 becomes ill-defined. We will study in the next section
how to handle this subtle limit. In this section we will try to learn about
the string dual of N = 2 SCQCD from the “bottom-up”, collecting the clues
offered by the spectrum of protected operators. We start by reviewing the
well-known bulk-boundary dictionary for the protected states of the orbifold
theory.
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4.5.1 KK interpretation of the orbifold protected specrum

The untwisted spectrum of the orbifold field theory (summarized in Table
4.1), has a transparent dual interpretation as the Kaluza-Klein spectrum of
IIB supergravity on AdS5 × S5/Z2. It is appropriate to write the metric of
S5/Z2 as [89]

ds2
S5/Z2

= dα2 + sin2 α dϕ2 + cos2 α ds2
S3/Z2

, 0 ≤ ϕ ≤ 2π , 0 ≤ α ≤ π

2
. (4.56)

Momentum on S1 corresponds to the U(1)r charge r. The SO(4) ∼= SU(2)L⊗
SU(2)R isometry of the 3-sphere is broken to SO(3)L ⊗ SU(2)R by the Z2

orbifold, which projects out harmonics with jL half-odd. Needless to say,
SU(2)R and SO(3)L are interpreted as the field theory symmetry groups of
the same name, so in particular the right spin jR is identified with the quantum
number R. Finally the harmonics on the α interval are parametrized by an
integer n, dual to the power of neutral scalar T (with ∆ = 2) in the schematic
expressions of the operators in Table 4.1. It is not difficult to carry an explicit
KK expansion and confirm that ∆ = |r| + 2R + 2n. A nice shortcut is to
consider the KK expansion of the ten dimensional dilaton-axion [89], since
only scalar harmonics on S5/Z2 are required. Scalar harmonics on S3/Z2

have (jL, jR) = (2R, 2R) with 2R a non-negative integer. One finds ∆ =
|r| + 2R + 2n + 4 [89], as expected from the fact that the KK modes of the
dilaton-axion are dual to the descendants obtained by acting with Q4Q̄4 on
the superconformal primaries of Table 4.1.

The twisted states of the orbifold field theory (shown in Table 5.5), must
map on the dual side to twisted closed string states localized at the fixed
locus of the orbifold, which is AdS5 × S1, corresponding to α = π/2 in the
parametrization (4.56). The massless twisted states of IIB on the A1 sin-
gularity comprise one massless six-dimensional tensor multiplet, so the KK
reduction of the tensor multiplet on AdS5 × S1 must reproduce the protected
twisted states of the orbifold field theory. It does, as we review in appendix
B.4 following the analysis of [162], to which we add a detailed treatment of the
zero modes. We find that the zero modes of the tensor multiplet correspond
to the multiplet build on the “exceptional state” TrM3.

4.5.2 Interpretation for N = 2 SCQCD?

The protected spectrum of N = 2 SCQCD (restricting as usual to flavor
singlets, and in the large N Veneziano limit) consists of two sectors: the
“naive” list of protected primaries (5.44) easily found by a one-loop calculation
in the scalar sector [9]; and the many more extra “exotic” states found in the
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analysis of the superconformal index.
The “naive” spectrum arises from a truncation of the protected spectrum

of the interpolating theory (as ǧ → 0) to U(Nf ) singlets. We have discussed in
section 2 the reason to focus on the flavor-singlet sector: flavor-singlet opera-
tors, which necessarily are of “generalized single-trace type” in the Veneziano
limit, are expected to map to single closed string states. The restriction to
U(Nf ) singlets has an interesting geometric interpretation: flavor singlets are
in particular SU(2)L singlets, and thus they are dual to supergravity states
with no angular momentum on S3/Z2 in the parametrization (4.56). So in
performing this restriction we are “losing” three spatial dimensions. As ex-
plained around (4.12), the protected primaries of the interpolating theory that
are not flavor-singlets can be decomposed in the limit ǧ → 0 as products of
“mesonic” operators (Q̄++̂Q++̂)ǎ

b̌
and decoupled scalars of the “second” vector

multiplet. The dual interpretation in the bulk is that as ǧ → 0 KK modes on
S3/Z2 become multi-particle states of open strings. The flavor singlet sector of
N = 2 SCQCD does not “see” the S3/Z2 portion of the geometry. We regard
the “loss” of S3/Z2 as a first hint that the string dual to the singlet sector of
N = 2 SCQCD should be a sub-critical string background. The S1 factor on
the other hand is preserved.

We may also ignore the relation of N = 2 SCQCD with the orbifold theory,
and consider the protected states (5.44) at face value: they are immediately
suggestive of Kaluza-Klein reduction on a circle. The dual geometry must
contain an AdS5 factor to implement the conformal symmetry, and an S1 factor
to generate the two KK towers dual to {TrT φℓ} and {Trφℓ+2}. Moreover the
radii of the AdS5 and S1 factor must be equal. Indeed Kaluza-Klein reduction
on S1 gives a mass spectrum m2 ∼ ℓ2/R2

S1 (for ℓ large), and correspondingly a
conformal dimension ∆ ∼= mRAdS

∼= ℓRAdS

RS1
. Inspection of (5.44) gives RAdS =

RS1 . The isometry of S1 is interpreted as the U(1)r R-symmetry. On the other
hand, there is no hint in the protected spectrum (5.44) of a “geometrically”
realized SU(2)R. The relation with the interpolating theory makes it clear
that indeed the geometric factor S3/Z2, with isometry SU(2)R ⊗ SO(3)L, is
lost in the limit ǧ → 0.

We can further split the “naive” spectrum (5.44) into the primaries {TrM3,
Trφℓ} and the primaries {TrTφℓ}. The first set, of course, is isomorphic to
the twisted states of the orbifold, and can be precisely matched with the KK
reduction on AdS5 ×S1 of one tensor multiplet of (2, 0) chiral supergravity. A
first guess is that the primaries {TrTφℓ} correspond to the KK reduction of
the 6d (2, 0) gravity multiplet on AdS5 × S1, but this is incorrect. The zero
modes of the 6d gravity multiplet correctly match the stress-energy tensor
multiplet (whose bottom component is the primary TrT ), but there are not
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enough states in the higher KK modes to match the states in the TrTφℓ for
ℓ > 0. This could have been anticipated by tracing the origin of the states
{TrTφℓ} in the orbifold theory: the dual supergravity states have no angular
momentum on S3/Z2 in the parametrization (4.56), but they are extended in
the remaining seven dimensions. So a better guess is that the states {TrTφℓ}
should have an interpretation in seven-dimensional supergravity.

In summary, with some hindsight, the “naive” spectrum appears to indi-
cate a sub-critical string background, with seven “geometric” dimensions, and
containing both an AdS5 and an S1 factor, with RAdS = RS1.

The extra exotic protected states teach another important lesson. They
arise in the limit ǧ → 0 from long multiplets on the interpolating theory that
hit the unitarity bound and split into short multiplets. In the dual string
theory, this means that a fraction of the massive closed string states become
massless in the limit ǧ → 0. It is a substantial enough fraction to give rise
to a Hagedorn degeneracy, as we saw in section 4.4.4. This has the crucial
implication that the dual description of N = 2 SCQCD is never in terms of
supergravity, since even in the limit λ ≡ g2

YMNc → ∞ there is an infinite
tower of “light” closed string states, with a mass of the order of the AdS scale.
However it seems plausible to conjecture that there is also a second sector of
“heavy” string states that decouple for λ→ ∞.

The picture that we have in mind is the following. There are really two ’t
Hooft couplings in the interpolating theory, λ ≡ g2

YMNc and λ̌ ≡ ǧ2
YMNc, and

correspondingly two effective string tensions Ts ∼ 1/l2s and Ťs ∼ 1/ľ 2
s . The

idea of two effective string tensions is intuitive from the spin chain viewpoint,
since the bifundamental fields separate different regions of the chain, occupied
by adjoint fields of the two different groups SU(Nc) and SU(Nč) and thus
governed by the two different gauge couplings. At the orbifold point, of course,
λ = λ̌. In the limit in which the unique ’t Hooft coupling of the orbifold
theory is sent to infinity the string length goes to zero in AdS units according
to the usual AdS/CFT dictionary RAdS5/ls ∼ λ1/4, leading to the decoupling
of all massive string states. To approach N = 2 SCQCD we are interested in
what happens as λ is kept large, but λ̌ is sent to zero. At present we do not
know how to modify the AdS/CFT dictionary in this limit. The most naive
extrapolation would suggest a hierarchy between two different scales: there
should be one sector of closed string states governed by ls ∼ λ−1/4RAdS and
thus very massive, and another governed by ľs ∼ RAdS and thus light. The
latter would correspond to the exotic protected states revealed by the index.
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4.6 Brane Constructions and

Non-Critical Strings

The interpolating SCFT has a dual description as IIB on AdS5 × S5/Z2, but
this description breaks down in the ǧ → 0 limit that we wish to study. We
must describe the theory in a different duality frame. We will argue that the
correct description is in terms of a non-critical superstring background. In
this section we reconsider the IIB brane setup leading to the interpolating
SCFT, and review how it can be T-dualized to a IIA Hanany-Witten setup
(see e.g. [163] for a review). The T-dual frame allows for a more transparent
understanding of the limit ǧ → 0, as a double-scaling limit in which two brane
NS5 collide while the string coupling is sent to zero. In this limit the near-
horizon dynamics is described a non-critical string background, which (before
the backreaction of the D-branes) admits an exact worldsheet description as
R

5,1 times SL(2)2/U(1), the supersymmetric cigar CFT. We are led to identify
the near-horizon backreacted background, where D-branes are replaced by flux,
with the dual of N = 2 SCQCD.

4.6.1 Brane Constructions

The interpolating SCFT arises at the low-energy limit on Nc D3 branes sitting
at the orbifold singularity R2 × R4/Z2. The blow-up modes of the orbifold
are set to zero, since they correspond to massive deformations of the 4d field
theory. The NSNS period β is related to gYM and ǧYM by the dictionary (4.54).
As β → 0 the D-strings obtained by wrapping D3 branes on the blow-down
cycle of the orbifold become tensionless and string perturbation theory breaks
down. It is useful to T-dualize to a IIA Hanany-Witten description, where
the deformation β can be pictured more easily. To perform the T-duality we
should first replace the A1 singularity R4/Z2 with its S1 compactification, a
two-center Taub-NUT space of radius R̃. The local singularity is recovered for
R̃ → ∞.

Recall, more generally, that the S1 compactification of the resolved Ak−1

singularity is a k-center Taub-NUT, a hyperkäler manifold which can be con-
cretely described as an S1 fibration of R3. Let τ̃ be the coordinate of the S1

fiber and y the coordinates of the R3 base. The S1 fiber degenerates to zero
size at k points on the base, y = y(a), a = 1, . . . k, and goes to a finite radius R̃
at the infinity of R3. (Topologically the S1 is non-trivially fibered over the S2

boundary of R3, with monopole charge k.) Rotations of the y coordinates are
interpreted as the SU(2) symmetry that rotates the complex structures. From
the viewpoint of the worldvolume theory of D3 branes probing the singularity,
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this is the SU(2)R R-symmetry. The geometry has also an extra U(1)L sym-
metry acting as angular rotation in the S1 fiber.10 (Finally the U(1)r of the
4d gauge theory corresponds to an isometry outside the Taub-NUT, namely
rotations in the R2 factor of R2 × R4/Z2.)

The metric of a k-center Taub-NUT space has 3(k − 1) non-trivial hy-
perkähler moduli (after setting say y(1) ≡ 0 by an overall translation), which
correspond to the blow-up modes of the (k−1) cycles – one SU(2)R triplet for
each cycle. In the string sigma model one needs to further specify the periods
of BNSNS and BRR on each cycle,which gives two extra real moduli for each
cycle, singlets under SU(2)R. Altogether the 5 = 3+1+1 moduli for each cy-
cle are the scalar components of a tensor multiplet living in the six transverse
directions to the Taub-NUT (or ALE) space. T-duality along the τ̃ direction
yields a string background with non-zero NSNS H flux and non-trivial dilaton,
which is interpreted as the background produced by k NS5 branes [131, 164].
The NS5 branes sit at ya in the R3 directions, and are localized on the dual
circle.11 The NSNS periods map to the relative angles of the NS5 branes on
the dual circle.

Let us apply these rules to our case. We start on the IIB side with the
configuration

IIB x0 x1 x2 x3 x4 x5 τ̃ y1 y2 y3

TN2 × × × ×
D3 × × × ×

The two-center Taub-NUT TN2 has radius R̃, vanishing blow-up modes (y(1) =
y(2) = 0) and

∫
S2 BNSNS = β. T-duality gives the IIA configuration

IIA x0 x1 x2 x3 x4 x5 τ y1 y2 y3

2 NS5 × × × × × ×
D4 × × × × ×

The two NS5 branes, at the origin of R
3 are localized on the dual circle of

radius R = α′/R̃ and at an angle 2πβ from each other. The string couplings
are related as

gAs =
R

ls
gBs =

ls

R̃
gBs . (4.57)

10The A1 singularity (k = 2, ya = 0, R̃ = ∞) has a symmetry enhancement U(1)L →
SO(3)L, whose field theory manifestation is the SO(3)L global symmetry of the Z2 orbifold
of N = 4 SYM, discussed in section 5.2.2. The symmetry is broken to U(1)L for finite R̃;
the full SO(3)L is recovered in the infrared.

11Naive application of the T-duality rules gives NS5 branes smeared on the dual circle.
The localized solution arises after taking into account worldsheet instanton corrections [165].
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τ = y4

y3
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Figure 4.4: Hanany-Witten setup for the interpolating SCFT (on the left)
and for N = 2 SCQCD (on the right).

T-duality maps the Nc D3 branes on the IIB side (which can also be thought as
two stacks of fractional branes [166]) to two stacks of Nc D4 branes on the IIA
side, each stack ending on the two NS5 branes and extended along either arc
segment of the τ circle (see Figure 4.4). This is the familiar Hanany-Witten
setup for the Z2 orbifold field theory. The four-dimensional field theory living
on the non-compact directions 0123 decouples from the higher dimensional
and stringy degrees of freedom in the limit

gAs → 0 ls → 0 , R→ 0 , (4.58)

with
βR

2πgAs ls
≡ 1

g2
YM

and
(1 − β)R

2πgAs ls
≡ 1

ǧ2
YM

fixed .

At this stage we are still keeping both gauge couplings gYM and ǧYM finite. If
L is the 4d length scale above which the field theory is a good description, we
have the hierarchy of scales

L≫ ls ≫ R ∼= gAs ls . (4.59)

Again, rotations in the yi directions correspond to the SU(2)R R-symmetry
of the N = 2 4d field theory, while rotations in the 45 plane correspond to
the 4d U(1)r symmetry. Finally the U(1)L symmetry, which was related to
momentum conservation along the S1 fiber in the IIB setup, is T-dualized to
winding symmetry in the Hanany-Witten IIA setup. It gets enhanced in the
infrared to the SO(3)L symmetry of the 4d field theory.
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4.6.2 From Hanany-Witten to a
Non-Critical Background

The limit ǧYM → 0 (with gYM fixed) can now be understood more geometri-
cally: it corresponds to β → 0, the limit of coincident NS5 branes. In this limit
we can ignore the periodicity of the τ direction and think of two NS5 branes
located in R4 at a distance τ0 ≡ 2πβR from each other, with τ0 → 0. There is
a stack of Nc D4 branes suspended between the two NS5s and two stacks of Nc

semi-infinite D4s, ending on either NS5 brane. As is well-known, k ≥ 2 coinci-
dent NS5 branes generate a string frame background with a strongly coupled
near horizon region – the string coupling blows up down the infinite throat
towards the location of the branes. The throat region is the CHS background
[167]

R
5,1 × SU(2)k × Rρ , with dilaton Φ = − ρ√

2k
, (4.60)

where ρ is the radial direction (the NS5 branes are located at ρ = −∞). The
supersymmetric SU(2)k WZW model describes the angular S3; it arises by
combining the bosonic SU(2)k−2 and three free fermions ψi, i = 1, 2, 3, which
make up an SU(2)2. This description breaks down for large negative ρ where
the string coupling eΦ is large. In Type IIA (our case), we must uplift to
M-theory to obtain the correct description of the near horizon region strictly
coincident NS5 branes. However, what we are really interested in is bringing
the branes together in a controlled fashion, simultaneously turning off the
string coupling gAs . We can break the limit (4.58) into two steps:

(i) We first take the double scaling limit [134, 135]

τo → 0 , gAs → 0 ,
τ0
lsgAs

≡ 1

geff
∼ 1

g2
YM

fixed , ls fixed. (4.61)

(ii) We then send ls → 0.

Let us first consider the purely closed background without the D4 branes. The
double-scaling limit (i) has been studied in detail in [134, 135], precisely with
the motivation of avoiding strong coupling. In this limit the region near the
location of the NS5 branes decouples from the rest of the geometry and is
described by a perfectly regular background of non-critical superstring theory
[134, 135]. To describe the background as a worldsheet CFT it is useful to
perform a further T-duality, in an angular direction around the branes. If
τ ≡ y4 is the direction along which the branes are separated, we pick say the
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y3y4 plane and perform a T-duality around χ = arctan y3/y4. The result is the
exact IIB background

R
5,1 × SL(2)2/U(1)/Z2 . (4.62)

The Z2 orbifold implements the GSO projection. The Kazama-Susuki coset
SL(2)2/U(1) is the supersymmetric Euclidean 2d black hole, or supersymmet-
ric cigar, at level k = 2. The corresponding sigma-model background is

ds2 = dρ2 + tanh2(
Qρ

2
)dθ2 + dXµdXµ θ ∼ θ +

4π

Q
(4.63)

Φ = − ln cosh(
Qρ

2
), Bab = 0 . (4.64)

In appendix E we review several properties of this background. An equivalent
(mirror) description of SL(2)/U(1) is as the N = 2 superLiouville theory [168].
The two descriptions are manifestly equal in the asymptotic region ρ → ∞,
where they reduce to (S1× linear dilaton). At large ρ, the leading perturbation
away from the linear dilaton takes a different form in the semiclassical cigar
and Liouville descriptions, but in the complete quantum description both the
cigar and Liouville perturbations are present. The cigar description is more
appropriate for k → ∞, since in this limit the cigar perturbation dominates at
large ρ over the Liouville perturbation, while the Liouville description is more
appropriate for k → 0, where the opposite is true. For k = 2 both descriptions
are precisely on the same footing – the cigar and Liouville perturbations are
present with equal strength and are in fact rotated into each another by the
SU(2)R symmetry [143]. For k = 2 the asymptotic radius of the cigar is

√
2α′,

which is the free fermion radius, implying that for large ρ the angular coor-
dinate θ and its superpartner ψθ can then be replaced by three free fermions
ψi, or equivalently by SU(2)2. The cigar background is thus a smoothed out
version of the CHS background (4.60) – the negative ρ region of CHS has been
cut-off and the string coupling is now bounded from above by its value geff at
the tip of the cigar.12

12As an aside, it is worth recalling the generalization of this discussion to k NS5 branes,
equally spaced on a contractible circle in the y3y4 plane. T-duality around the angular
coordinate χ produces the background [134]

R
5,1 × (SL(2)k/U(1) × SU(2)k/U(1))/Zk . (4.65)

The central charges are of the Kazama-Susuki cosets are

c(SL(2)k/U(1)) = 3 +
6

k
, c(SU(2)k/U(1)) = 3 − 6

k
. (4.66)
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To summarize, we started from a IIA configuration of two separated NS5
branes in flat space, and took the double-scaling limit (4.61). In this limit the
near-horizon region decouples from the asymptotic flat space region, and is
described by the exact non-critical IIB background (4.62). (The switch from
IIA and IIB is due to the angular T-duality along χ.) The reduction of degrees
of freedom from critical to non-critical strings happens because we are focusing
on a subsector of the full theory, namely the degrees of freedom near the
singularity produced by the colliding NS5 branes. The transverse direction ρ
can be thought of as a worldsheet RG scale, with the asymptotically flat region
at large ρ playing the role of the UV and the cigar geometry playing the role
of the IR – in focusing to the near horizon region we lose the asymptotic flat
space degrees of freedom. In particular, what remains of the transverse S3 is
just the “stringy” SU(2)2 associated with the free fermions ψi, i = 1, 2, 3.

We can easily follow the fate of the D-branes through the double scaling
limit and Tχ-duality: the D4 branes suspended between the two NS5s become
D3 branes localized at the tip of the cigar, while the semi-infinite D4 branes
become D5 branes extended on the cigar. This at least is the intuitive geo-
metric picture. Since the cigar background has string-size curvature near the
tip, a more appropriate description of the D-branes is in terms of the exact
boundary states. Boundary states for the Kazama-Susuki coset SL(2)/U(1)
(equivalently, for the superLiouville CFT) have been studied in several papers
[169–173], following the construction of boundary states in bosonic Liouville
theory, and used in N = 1 non-critical holography in [125, 126, 128]. There
are indeed natural candidates for the two types of cigar D-branes that we
need. The branes localized near the tip of the cigar are the analog of Liouville
ZZ [174] branes, while the branes extended along the cigar are the analog of
the Liouville FZZT [175, 176] branes. The non-critical string setup can be
summarized by the following diagram:

IIB x0 x1 x2 x3 x4 x5 ρ θ

D3 × × × ×
D5 × × × × × ×

We could have taken this as our starting point. The theory on the worldvolume
of theNc D3 branes (the “color” branes) reduces for energies much smaller than
the string scale to N = 2 SU(Nc) SYM, coupled to Nf = 2Nc hypermultiplets
arising from the open strings stretched between the D3s and the “flavor” D5s.
This is true by construction, since we obtained this non-critical setup as a

The CFT (4.65) In the semiclassical limit k → ∞ we have a weakly curved “geometric” 10d
background, while in the opposite limit k = 2 the curvature is string scale, the SU(2)/U(1)
piece disappears and we have the “non-critical” string background (4.62).
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limit of a well-known brane realization of the same field theory, and it could
also be checked directly, by examining the open string spectrum and preserved
supersymmetries.

To decouple the field theory we need to take ls → 0 (step (ii) in our previous
discussion of the field theory limit). This amounts on the gravity side to the
near-horizon limit of the geometry produced by the D-branes. By the usual
arguments [1], we are led to conjecture that the resulting non-critical string
background is dual to N = 2 SCQCD.

4.7 Towards the String Dual of N = 2 SCQCD

The explicit construction of the background after the backreaction of the D-
branes is left for future work. In this section we outline a line of attack, based
on a 7d “effective action” which we identify as maximal supergravity with
SO(4) gauging. In fact several features of the background can be determined
from symmetry considerations alone, and just assuming that a solution ex-
ists we will find a nice qualitative agreement with the bottom-up field theory
analysis, notably in the protected spectrum of operators.

4.7.1 Symmetries

Let us start by recapitulating the symmetries. The obvious bosonic symmetries
of the closed string background (4.62) (the background before introducing D-
branes, henceforth the “cigar background”) are the Poincaré group in R5,1 and
the U(1) isometry of the θ circle. In fact since as ρ → ∞ the θ circle is at
the free fermion radius, there is an asymptotic “stringy” enhancement of the
U(1) symmetry to SU(2)ψi

× SU(2)ψ̃i

∼= SO(4). At finite ρ the cigar and
super-Liouville interactions break this symmetry to the diagonal SU(2). This
has a clear geometric interpretation in the HW picture (before the angular Tχ-
duality) of the two colliding NS5 branes: the SO(4) symmetry is the isometry
of the transverse four directions to two coincident NS5 branes; separating the
branes along one direction (τ = y4 in the picture on the right of Figure 4)
breaks the symmetry to SO(3) ∼= SU(2) (rotations of yi, i = 1, 2, 3). This
surviving diagonal SU(2) is interpreted as the SU(2)R R-symmetry of the
N = 2 4d gauge theory. Adding the color D3 branes and the flavor D5 branes
breaks the 6d Poincaré symmetry to 4d Poincaré symmetry in the directions
xm, m = 0, 1, 2, 3, times the rotational symmetry in the 45 plane. The latter
is interpreted as the U(1)r R-symmetry of the gauge theory. Note that the
branes preserve the same (diagonal) SU(2) as the cigar and super-Liouliville
interactions. This is again transparent in the picture of colliding NS5 branes,
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since both the “compact” D4 branes and the “non-compact” D4 branes, which
become respectively the color D3s and the flavor D5s after Tχ-duality, are
oriented along the same τ = y4 direction in which the two NS5s are separated.
Finally we should mention the fermionic symmetries. As we review in appendix
E, the background (4.62) has 16 real supercharges, corresponding to the (2, 0)
Poincaré superalgebra in R

5,1. Adding the D-branes breaks the supersymmetry
in half, so that 8 Poincaré supercharges survive (that D3s and D5s break the
same half is again obvious in the T-dual frame where they are both (parallel)
D4 branes). Taking the near-horizon geometry is expected to give the usual
supersymmetry enhancement, restoring a total of 16 supercharges that form
the N = 4 AdS5 superalgebra (isomorphic to the N = 2 4d superconformal
algebra).

4.7.2 The cigar background and 7dmaximal SO(4)-gauged
supergravity

The cigar background (4.62) is analyzed in some detail in appendix E, which
the reader is invited to read at this point. Let us summarize some of the
relevant points. The physical spectrum of the cigar background consists of:
(i) normalizable states localized at the tip of the cigar ρ ∼ 0, living in R5,1:
they fill a tensor multiplet of (2, 0) 6d supersymmetry; (ii) delta-function nor-
malizable states, corresponding to plane waves in the radial ρ direction; (iii)
non-normalizable vertex operators, supported in the large ρ region.

We are only interested in the cigar background as an intermediate step
towards the background dual to N = 2 SCQCD, obtained in the near-horizon
limit of the D3/D5 brane configuration. A possible strategy is to use the cigar
background, which admits an exact CFT description, to derive a spacetime
“effective action”. The spacetime action is expected to be background inde-
pendent and should admit as classical solutions both the cigar background and
the background dual to N = 2 SCQCD. (In this respect, the cigar background
is analogous to the 10d flat background of IIB string theory, which is described
at low energies by 10d IIB supergravity; another solution of IIB supergravity
is the AdS5×S5 background dual to N = 4 SYM.) For the purpose of deriving
an “effective action” the relevant part of the spectrum is (ii), the continuum
of plane-wave states. Performing a KK reduction on the θ circle, the plane-
wave states are naturally organized in a tower of increasing 7d mass (which
gets contribution both from the θ momentum and from string oscillators).
There is is no real separation of scales between the lowest mass level and the
higher ones, because the linear dilaton has string-size gradient. Nevertheless
the states belonging to lowest level are special: although they obey “massive”
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7d wave-equations, this is an artifact of the linear dilaton; the counting of
degrees of freedom is that of massless 7d states because of gauge invariances.

Remarkably, we find that for large ρ the lowest-mass level of the continuum
spectrum is described by seven dimensional maximally supersymmetric super-
gravity (32 supercharges), but with a non-standard gauging: only an SO(4) of
the full SO(5) R-symmetry is gauged. This supergravity has been constructed
only quite recently [177, 178]. The maximal supersymmetry (which, as we
shall see momentarily, is spontaneously broken to half-maximal, consistently
with our previous counting) can be understood as follows. After fermioniz-
ing the angular coordinate θ, we have a total of ten left-moving fermions, ψµ,
µ = 0 . . . 5 along R5,1, ψρ and ψi, i = 1, 2, 3 (the last three corresponding to
∂θ, ψθ), and similarly ten right-moving fermions. So the construction of the
lowest-level physical states of our sub-critical theory is entirely isomorphic to
the construction of the massless states of the standard critical IIB string the-
ory, except of course that the momenta are now seven dimensional. The SO(4)
that is being gauged is the asymptotic SU(2)ψi

× SU(2)ψ̃i

∼= SO(4) that we
have mentioned. It turns out that unlike the standard SO(5)-gauged 7d sugra,
which admits the maximally supersymmetric AdS7 vacuum, the SO(4)-gauged
theory breaks half of the supersymmetry spontaneously. The scalar potential
of the SO(4)-gauged theory does not admit a stationary solution but only
a domain wall solution [177, 178], which is nothing but the linear dilaton
background, with 16 unbroken supercharges – the 6d (2, 0) super-Poincaré
invariance discussed earlier.

Incidentally, we believe that this is a general phenomenon: non-critical su-
perstrings in various dimensions must admit (non-standard) gauged supergrav-
ities as their spacetime “effective actions”, in the sense that we have discussed.
It may be worth to explore this connection systematically.

4.7.3 An Ansatz

We expect the SO(4)-gauged 7d sugra that describes the “massless” fields to
be a useful tool, though not a perfect one because we know that the higher
levels are not truly decoupled. The next step is to look for a solution of
this supergravity with all the expected symmetries. In the seven dimensional
theory the SU(2)R symmetry is not realized geometrically – its last remnant
was the (string-size) θ circle, over which we have KK reduced to get down
to 7d. On the other hand, the U(1)r symmetry is geometric, and conformal
symmetry is expected to arise in the near-horizon geometry, which must then
contain both an S1 and an AdS5 factor. The most general ansatz for the 7d

92



metric with the expected isometries is

ds2 = f(y)ds2
AdS5

+ g(y)dϕ2 + C(y)dy2 . (4.67)

Here ϕ is the angular coordinate of the S1 associated to U(1)r isometry, while
the y has range in a finite interval, say y ∈ [0, 1]. Restoring the θ coordinate,
the non-critical background would have the form

ds2 = f(y)ds2
AdS5

+ g(y)dϕ2 + h(y)dθ2 + C(y)dy2 . (4.68)

Comparing with the brane setup, which is again

IIB x0 x1 x2 x3 x4 x5 ρ θ

D3 × × × ×
D5 × × × × × ×

we identify ϕ is angular coordinate in the 45 plane, while y could be taken to
be a relative angle between the radial distance in the 45 plane and the radial
distance ρ along the cigar, y = 2

π
arctan(ρ/

√
x2

4 + x2
5). The D5 branes sit at

y = 1.
The program is then to look for a solution (4.67) of the SO(4)-gauged

7d supergravity, possibly allowing for singular behavior at the original loca-
tion y = 1 of the flavor branes. For fixed Nc and Nf (= 2Nc), we expect a
one-parameter family of solutions, because the ’t Hooft coupling λ is exactly
marginal – the AdS scale should be a modulus, as in the familiar AdS5 × S5

case. The color (D3) branes are magnetically charged under the RR one-form

C
(2,2)
µ̂ (see Table 18) and the flavor branes (which are actually D4 branes from

the viewpoint in the 7d theory) are magnetically charged under the RR zero-
form C(2,2). The corresponding fluxes will be turned on in the solution. As
usual the color branes will be completely replaced by flux. Our analysis of
the large N Veneziano limit suggests that new effective closed string degrees
of freedom, dual to “generalized single-trace” operators, arise from the resum-
mation of open string perturbation theory. This favors the scenario in which
also the flavor branes are completely replaced by flux. This fundamental issue
would be illuminated by an explicit solution.

The program of finding a supergravity background for N = 2 SCQCD was
also discussed in critical IIB supergravity [179] and in 11d supergravity [110],
but no explicit solutions are yet known. It would be interesting to understand
the relation of these approaches with our sub-critical setup. In particular a
somewhat singular limit of solutions found in [110] should correspond to N = 2
SCQCD, and it would be nice to understand this in detail.
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4.7.4 Spectrum

Already at this stage we can recognize that the top-down (string theory) and
bottom-up (field theory) analyses are in qualitative agreement. Both suggest
that the string dual of N = 2 SCQCD is a sub-critical background with an
AdS5 and an S1 factor. In the field theory protected spectrum we found a sharp
difference between the U(1)r and SU(2)R factors of the R-symmetry group:
there are towers of states with increasing U(1)r, but no analogous towers for
SU(2)R. The brane construction confirms the natural interpretation of this
fact: while the U(1)r is realized geometrically as the isometry of a “large”
S1
ϕ, with its towers of KK modes, the SU(2)R is associated to the string-

sized S1
θ of the cigar (and in fact the very enhancement from the θ isometry

U(1) ⊂ SU(2)R to the full SU(2)R is a stringy phenomenon). The “naive”
part of the protected spectrum nicely matches:

(i) The multiplets built on the primaries {TrM3 ,Trφ2+ℓ} correspond to
the KK modes on S1

ϕ of the 6d tensor multiplet (see appendix D): these
are the truly normalizable states of the cigar background, localized at
the tip of the cigar (y = 0 in the parametrization (4.67)).

(ii) The multiplets built on {TrTφℓ} correspond to the KK modes on S1
ϕ

of the bulk 7d SO(4)-gauged supergravity: this is the lowest level of
the plane-wave spectrum of the cigar background. While we have not
performed a detailed KK reduction, for which the precise geometry is re-
quired, it is clear that the bulk graviton maps to the stress tensor, which
is part of the TrT multiplet, and that the ℓ-th KK mode of the graviton
maps to the unique spin 2 state in the TrTφℓ multiplet. Supersymmetry
should do the rest.

The “extra” protected states of the field theory must correspond to light string
states in the bulk, with mass of order of the AdS scale, but we do not know
how to establish a more precise dictionary at this point. We have suggested
in section 6 that the string theory dual to N = 2 SCQCD may contain two
sectors of string states, in correspondence with the two effective string scales ls
and ľs of the interpolating theory: a light sector, controlled by ľs ∼ RAdS for all
λ, and a heavy sector, controlled by ls ≪ RAdS for λ≫ 1. The string length of
the cigar background should be identified with ls, so the massive string states
of the cigar background would correspond to the heavy sector and decouple
for large λ. The light sector is more mysterious. A tantalizing speculation is
that the light states correspond to cohomology classes with non-normalizable
N = 2 Liouville dressing, i.e. supported at large ρ (operators of type (iii)
in the list of section E.4). It is clearly possible to tune the ρ-momentum
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to achieve “massless” six-dimensional states, at the expense of making them
non-normalizable in the ρ direction. Perhaps the extra protected states of
N = 2 SCQCD are somewhat analogous to the discrete states of the c = 1
matrix model, which are indeed dual to vertex operators with non-normalizable
Liouville dressing.13

If indeed ls ≪ RAdS for large λ, the 7d supergravity, while not capturing
the whole theory even in this limit (as we know from the existence of the extra
protected states), may still offer a useful description of a subsector.

4.8 Discussion

We may now look back to section 1, at the list of special features shared by all
4d CFTs for which an explicit string dual is presently known. We have studied
in some detail perhaps the most symmetric theory that violates property (i)
(since a 6= c at large N) and property (ii) (since it has a large number of fields
in the fundamental representation), while still satisfying the nice simplifying
feature (iv) of an exactly marginal coupling λ. We have argued that the
dual string theory is not ten dimensional, thus violating (iii), and proposed a
sub-critical string dual in eight dimensions (including the string-size θ). The
theory emerges as a limit of a family of superconformal field theories that have
a = c and admit ten dimensional string duals. In this singular limit some fields
decouple on the field theory side, leading to a 6= c, while on the string side two
dimensions are lost (counting θ as a dimension). It is tempting to link the two
phenomena. The natural speculation is that the 4d gauge theories in the “N =
4 universality class” (which among other things are characterized by a = c)
have 10d string dual, while theories with “genuinely” fewer supersymmetries
have sub-critical duals. A plausible pattern for (susy, dimension) is (N , d) =
(4, 10), (2,8), (1,6), (0,5). We have given evidence for the N = 2 ↔ d = 8
connection, while [124, 125, 128] focused on N = 1 ↔ d = 6.

Our example is in harmony with the no-go theorem that a = c for all field
theories with an AdS5 gravity dual, since we argued that even for large λ the
supergravity approximation to the dual of N = 2 SCQCD cannot be entirely
valid. The imbalance between a and c must arise from higher-curvature terms
in the AdS5 gravity theory [180]. We believe that the stringy origin of these
higher curvature terms is the Wess-Zumino action of the flavor branes, as in
the example studied in [26, 181]: the flavor Wess-Zumino terms were shown

13Alternatively, our idea of two effective string scales may be wrong, and the unique scale
ls may be of the order of RAdS for all λ. In this case all anomalous dimensions would remain
small for large λ. The extra protected states would be special only in that their anomalous
dimension is exactly zero for all λ. This is certainly a logical possibility.
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to generate R2 corrections to the 5d Einstein-Hillbert action, contributing at
order O(Nf/Nc) to a − c. In the example of [26, 181] Nf ≪ Nc, while in
our case Nf ∼ Nc and a − c = O(1), but the mechanism must be the same.
It is important to keep in mind that the higher-curvature terms from the
WZ action are topological in nature and are on a different footing from the
higher-curvature corrections due to the closed string sigma-model loops, which
are instead suppressed by powers of ls/RAdS. So there is no contradiction in
principle between our suggestion that for large λ the non-critical background
has a string length ls ≪ RAdS, and the fact that a − c = O(1), since a − c
arises from the higher-curvature terms coming from the WZ action, since they
are not suppressed.

It is worth pointing out a simple relation between our N = 2 story and
the N = 1 story of [124, 125, 128], if we specialize their setup to N = 1
super QCD with Nf = 2Nc, the Seiberg self-dual theory. This theory can be
viewed as the ǧ → 0 limit of a family of N = 1 SCFTs with product gauge-
group SU(Nc) × SU(Nč); when the couplings are equal the family reduces
to the Klebanov-Witten theory [106], which is dual to AdS5 × T 1,1. This is
entirely analogous to the relation between N = 2 SCQCD and the Z2 orbifold
of N = 4 SYM, and of course this is not a coincidence: the two-parameter
family of N = 1 theories is obtained from the two-parameter family of N = 2
theories flowing in the IR by a relevant deformation. For g = ǧ, this is the well-
known RG flow from the Z2 orbifold to the KW theory triggered by Tr(φ2−φ̌2)
[106]. Unlike the N = 2 family, for N = 1 the couplings are bounded from
below and the family of N = 1 SCFTs is never weakly coupled. The exactly
marginal coupling of the self-dual N = 1 super QCD is the coefficient of a
quartic superpotential – it cannot be taken arbitrarily small but it can be
taken arbitrarily large. Our analysis of appendix E should easily generalize
to this case, to find the gauged supergravity describing the lightest modes of
the continuum spectrum. Only an isolated supergravity solution exists [124]
(for arbitrary Nf ∼ Nc), but in the special case Nf = 2Nc a one-parameter
family of solutions is expected. This is also confirmed by the vanishing of the
dilaton tadpole when Nf = 2Nc [128]. It would be nice to understand this
point better.

Clearly there are many open questions. The bottom-up analysis would
be greatly enhanced if we could determine the large λ behavior of generic
non-protected operators. This may eventually be possible if N = 2 SCQCD
exhibits an all-loop integrable structure. In chapter 5 we find a preliminary
hint of one-loop integrability. In the top-down approach, work is in progress
to verify whether the ansatz (4.67) is indeed a solution of the SO(4)-gauged
supergravity. It will be interesting to understand its physical implications,
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especially the role of the warping factors and their possible singularity at
y = 1.
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Chapter 5

The One-Loop Spin Chain of
N = 2 Superconformal QCD

5.1 Introduction

In this chapter we take the next step of the bottom-up (field theory) analysis,
by evaluating the one-loop dilation operator in the scalar sector of N = 2
SCQCD.

Perturbative calculations of anomalous dimensions have given important
clues into the nature of N = 4 SYM. They gave the first hint for integrability
of the planar theory: the one-loop dilation operator in the scalar sector is the
Hamiltonian of the integrable SO(6) spin-chain – a result later generalized
to the full theory and to higher loops, using the formalism of the asymptotic
Bethe ansatz. Remarkably, the asymptotic S-matrix of magnon excitations
in the field theory spin chain can be exactly matched with the analogous S-
matrix for the dual string sigma model. Thus perturbative calculations open
a window into the structure of the dual string theory.

It is natural to attempt the same strategy for N = 2 SCQCD. The theory
admits a large N expansion à la Veneziano: the number of colors Nc and the
number of fundamental flavors Nf are both sent to infinity keeping fixed their
ratio (Nf/Nc ≡ 2) in our case and the combination λ = g2

YMNc. We focus on
the flavor-singlet sector of the theory, which is a consistent truncation since
flavor singlets close under operator product expansion. The usual large N fac-
torization theorems apply: correlators of generalized multi-traces factorize into
correlators of generalized single-traces. In particular, acting with the dilation
operator on a generalized single-trace operator yields (at leading order in N)
another generalized single-trace operator, so we may consistently diagonalize
the dilation operator in the space of generalized single-traces. The dilation
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operator acting on generalized single-traces can then be interpreted, in the
usual fashion, as the Hamiltonian of a closed spin chain. At one-loop, the spin
chain is local (nearest neighbor interactions): the well-known relation between
planarity and locality of the spin chain continues to hold in the Veneziano
limit.

More insight is gained by viewing N = 2 SCQCD as part of an “interpo-
lating” N = 2 superconformal field theory (SCFT) that has a product gauge
group SU(Nc) × SU(Nč), with Nč ≡ Nc, and correspondingly two exactly
marginal couplings g and ǧ. For ǧ → 0 one recovers N = 2 SCQCD plus a
decoupled free vector multiplet, while for ǧ = g one finds the familiar Z2 orb-
ifold of N = 4 SYM. We have evaluated the one-loop dilation operator for the
whole interpolating theory, in the sector of operators made out of scalar fields.
The magnon excitations of the spin chain and their bound states undergo an
interesting evolution as a function of κ = ǧ/g. For κ = 0 (that is, for N = 2
SCQCD itself), the basic asymptotic excitations of the spin chain are linear
combinations of the the adjoint impurity φ̄ and of “dimer” impurities Ma

b (we
refer to them as dimers since they occupy two sites of the chain). From the
point of view of the interpolating theory with κ > 0, these dimeric asymptotic
states of N = 2 SCQCD are s are bound states of two elementary magnons;
the bound-state wavefunction localizes in the limit κ→ 0, giving an impurity
that occupies two sites.

Armed with the one-loop Hamiltonian in the scalar sector, we can easily
determine the complete spectrum of one-loop protected composite operators
made of scalar fields. It is instructive to follow the evolution of the protected
eigenstates as a function of κ, from the orbifold point to N = 2 SCQCD.
Some of these results were quoted with no derivation in the previous chapter
4, where they served as input to the analysis of the full protected spectrum,
carried out with the help of the superconformal index.

An important question is whether the one-loop spin chain of N = 2 SCQCD
is integrable. The spin chain for the Z2 orbifold of N = 4 SYM (which
by definition has ǧ = g) is known to be integrable. We find that as we
move away from the orbifold point integrability is broken, indeed for general
κ = ǧ/g the Yang-Baxter equation for the two-magnon S-matrix does not hold.
Remarkably however the Yang-Baxter equation is satisfied again in the N = 2
SCQCD limit κ → 0. Ordinarily a check of the Yang-Baxter equation is very
strong evidence in favor of integrability. In our case we should trivializes –
what is really relevant is the S-matrix of their dimeric bound states. But since
for infinitesimal κ the Yang-Baxter equation for the S-matrix the elementary
magnons fails only infinitesimally, we can hope that the Yang-Baxter equation
for the S-matrix of their dimeric bound states will also fail infinitesimally, and
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that the multi-particle S-matrix really factorizes κ → 0. While this intuition
is reason for optimism, it is no substitute for a careful analysis, which we leave
for future work.

5.2 Lagrangian and Symmetries

In this section we briefly review the structure and symmetries of N = 2 SC-
QCD, and its relation to the Z2 orbifold of N = 4 SYM. Much insight is gained
by viewing N = 2 SCQCD, which has one exactly marginal parameter (the
SU(Nc) gauge coupling gYM), as the limit of a two-parameter family of N = 2
superconformal field theories. This is the family of N = 2 theories with prod-
uct gauge group1 SU(Nc) × SU(Nč) and two bifundamental hypermultiplets;
its exactly marginal parameters are the two gauge-couplings gYM and ǧYM . For
ǧYM → 0 one recovers N = 2 SCQCD plus a decoupled free vector multiplet
in the adjoint of SU(Nč). At ǧYM = 0, the second gauge group is interpreted
as a subgroup of the global flavor symmetry, SU(Nč) ⊂ U(Nf = 2Nc). For
ǧYM = gYM , we have instead the familiar Z2 orbifold of N = 4 SYM. Thus
by tuning ǧYM we interpolate continuously between N = 2 SCQCD and the
N = 4 universality class.

The a and c anomalies are constant, and equal to each other, along this
exactly marginal line: at the end point ǧYM = 0, the SU(Nč) vector multiplets
decouples, accounting for the “missing” a− c in N = 2 SCQCD.

5.2.1 N = 2 SCQCD

Our main interest is N = 2 SYM theory with gauge group SU(Nc) and Nf =
2Nc fundamental hypermultiplets. We refer to this theory as N = 2 SCQCD.
Its global symmetry group is U(Nf )×SU(2)R×U(1)r, where SU(2)R×U(1)r
is the R-symmetry subgroup of the superconformal group. We use indices
I,J = ± for SU(2)R, i, j = 1, . . . Nf for the flavor group U(Nf ) and a, b =
1, . . . Nc for the color group SU(Nc).

Table 5.1 summarizes the field content and quantum numbers of the model:
The Poincar é supercharges QI

α, Q̄I α̇ and the conformal supercharges SI α, S̄I
α̇

are SU(2)R doublets with charges ±1/2 under U(1)r. The N = 2 vector
multiplet consists of a gauge field Aµ, two Weyl spinors λIα, I = ±, which
form a doublet under SU(2)R, and one complex scalar φ, all in the adjoint
representation of SU(Nc). Each N = 2 hypermultiplet consists of an SU(2)R

1The ranks of the two groups coincide, Nc ≡ Nč, but it will be useful to always distin-
guish graphically with a “check” all quantities pertaining to the second group SU(Nč).
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SU(Nc) U(Nf ) SU(2)R U(1)r

QI
α 1 1 2 +1/2

I α 1 1 2 −1/2

Aµ Adj 1 1 0

φ Adj 1 1 −1

λIα Adj 1 2 −1/2

QI 2 2 2 0

ψα 2 2 1 +1/2

ψ̃α 2 2 1 +1/2

M1 Adj + 1 1 1 0

M3 Adj + 1 1 3 0

Table 5.1: Symmetries of N = 2 SCQCD. We show the quantum numbers
of the supercharges QI , SI , of the elementary components fields and of the
mesonic operators M. Complex conjugate objects (such as Q̄Iα̇ and φ̄) are
not written explicitly.

doublet QI of complex scalars and of two Weyl spinors ψα and ψ̃α, SU(2)R
singlets. It is convenient to define the flavor contracted mesonic operators

M Ia
J b ≡

1√
2
Q a

J i Q̄
I i
b , (5.1)

which may be decomposed into into the SU(2)R singlet and triplet combina-
tions

M1 ≡ M I
I and M I

3J ≡ M I
J − 1

2
M K

K δIJ . (5.2)

The operators M decompose into adjoint plus singlet representations of the
color group SU(Nc); the singlet piece is however subleading in the large Nc

limit.
The lagrangian of this theory is

L = LV + LH (5.3)

where, LV stands for the lagrangian of N = 2 vector multiplet and LH , for
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the lagrangian of N = 2 hypermultiplet. Written explicitely,

LV = −Tr
[1
4
F µνFµν + i λ̄Iσ̄

µDµλ
I + (Dµφ)(Dµφ)†

+i
√

2 (gYM ǫIJλ
IλJφ† − gYM ǫIJ λ̄I λ̄Jφ) +

g2
YM

2

[
φ , φ†]2] (5.4)

in the above we follow conventions where Dµ = ∂µ + i gYM Aµ and ǫIJ ǫJK =
δKI .

LH = −
[
(DµQ̄I)(DµQI) + i ψ̄σ̄µDµψ + i ψ̃σ̄µDµ

¯̃
ψ

+i
√

2 (gYM ǫIJ ψ̄λ̄IQJ−, gYM ǫIJ Q̄
IλJψ (5.5)

+gYM ψ̃λIQI − gYM Q̄I λ̄I
¯̃ψ

+gYM ψ̃φψ − gYM ψ̄φ̄ ¯̃ψ) (5.6)

+g2
YMQ̄I(φ

†φ+ φφ†)QI + g2
YMV

]
(5.7)

where the quartic potential for the squarks is,

V = (Q̄I i
a Q

a
I j)(Q̄

J j
b Q b

J i) −
1

2
(Q̄I i

a Q
a
J j)(Q̄

J j
b Q b

I i)

+
1

Nc
(
1

2
(Q̄I i

a Q
a
I i)(Q̄

J j
b Q b

J j) − (Q̄I i
a Q

a
J i)(Q̄

J j
b Q b

I j)) (5.8)

Using the flavor contracted mesonic operator (5.1), V can be written in an
instructive and compact form.

V = Tr[MJ
IMI

J ] − 1

2
Tr[MI

IMJ
J ]

− 1

Nc

Tr[MJ
I ]Tr[MI

J ] +
1

2

1

Nc

Tr[MI
I ]Tr[MJ

J ]

= Tr[M3M3] −
1

Nc
Tr[M3]Tr[M3]

5.2.2 Z2 orbifold of N = 4 and interpolating family of
SCFTs

N = 2 SCQCD can be viewed as a limit of a family of superconformal theories;
in the opposite limit the family reduces to a Z2 orbifold of N = 4 SYM. In
this subsection we first describe the orbifold theory and then its connection to
N = 2 SCQCD.
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As familiar, the field content of N = 4 SYM comprises the gauge field
Am, four Weyl fermions λAα and six real scalars XAB, where A,B = 1, . . . 4 are
indices of the SU(4)R R-symmetry group. Under SU(4)R, the fermions are in
the 4 representation, while the scalars are in 6 (antisymmetric self-dual) and
obey the reality condition2

X†
AB =

1

2
ǫABCDXCD . (5.9)

We may parametrize XAB in terms of six real scalars Xk, k = 4, . . . 9,

XAB =
1√
2




0 X4 + iX5 X7 + iX6 X8 + iX9

−X4 − iX5 0 X8 − iX9 −X7 + iX6

−X7 − iX6 −X8 + iX9 0 X4 − iX5

−X8 − iX9 X7 − iX6 −X4 + iX5 0




(5.10)

Next, we pick an SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R,

1 +

2 −
3 +̂

4 −̂




SU(2)R × U(1)r

SU(2)L × U(1)∗r



. (5.11)

We use indices I,J = ± for SU(2)R (corresponding to A,B = 1, 2) and indices
Î, Ĵ = ±̂ for SU(2)L (corresponding to A,B = 3, 4). To make more manifest
their transformation properties, the scalars are rewritten as the SU(2)L ×
SU(2)R singlet Z (with charge −1 under U(1)r) and as the bifundamental
XIÎ (neutral under U(1)r),

Z ≡ X4 + iX5√
2

, XIÎ ≡ 1√
2

(
X7 + iX6 X8 + iX9

X8 − iX9 −X7 + iX6

)
. (5.12)

Note the reality condition X †
IÎ = −ǫIJ ǫÎĴXJ Ĵ . Geometrically, SU(2)L ×

SU(2)R ∼= SO(4) is the group of 6789 rotations and U(1)R ∼= SO(2) the group
of 45 rotations. Diagonal SU(2) transformations X → UXU−1 (UR = U,UL =
U∗) preserve the trace, Tr[X ] = 2iX6, and thus correspond to 789 rotations.

We are now ready to discuss the orbifold projection. In R-symmetry space,

2The † indicates hermitian conjugation of the matrix in color space. We choose hermitian
generators for the color group.

103



the orbifold group is chosen to be Z2 ⊂ SU(2)L with elements ±I2×2. This is
the well-known quiver theory [153] obtained by placing Nc D3 branes at the
A1 singularity R2×R4/Z2, with (X6, X7, X8, X9) → ±(X6, X7, X8, X9) and X4

and X5 invariant. Supersymmetry is broken to N = 2, since the supercharges
with SU(2)L indices are projected out. The SU(4)R symmetry is broken to
SU(2)L×SU(2)R×U(1)r, or more precisely to SO(3)L×SU(2)R×U(1)r since
only objects with integer SU(2)L spin survive. The SU(2)R × U(1)r factors
are the R-symmetry of the unbroken N = 2 superconformal group, while
SO(3)L is an extra global symmetry under which the unbroken supercharges
are neutral.

In color space, we start with gauge group SU(2Nc), and declare the non-
trivial element of the orbifold to be

τ ≡
(

INc×Nc 0

0 −INc×Nc

)
. (5.13)

All in all the Z2 action on the N = 4 fields is

Am → τAmτ , ZIJ → τZIJ τ , λI → τλIτ , (5.14)

XIÎ → −τXIÎτ , λÎ → −τλÎτ . (5.15)

The components that survive the projection are

Am =

(
Aaµb 0

0 Ǎǎ
µb̌

)
Z =

(
φa b 0

0 φ̌ǎ
b̌

)
(5.16)

λI =

(
λaIb 0

0 λ̌ǎI b̌

)
λÎ =

(
0 ψaÎǎ
ψ̃b̌Îb 0

)
(5.17)

XIÎ =

(
0 Q a

IÎǎ
−ǫIJ ǫÎĴ Q̄b̌Ĵ J

b 0

)
. (5.18)

The gauge group is broken to SU(Nc)×SU(Nč)×U(1), where the U(1) factor
is the relative3 U(1) generated by τ (equ.(5.13)): it must be removed by hand,
since its beta function is non-vanishing. The process of removing the relative
U(1) modifies the scalar potential by double-trace terms, which arise from the
fact that the auxiliary fields (in N = 1 superspace) are now missing the U(1)
component. Equivalently we can evaluate the beta function for the double-
trace couplings, and tune them to their fixed point [44].

3Had we started with U(2Nc) group, we would also have an extra diagonal U(1), which
would completely decouple since no fields are charged under it.
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SU(Nc)1 SU(Nc)2 SU(2)R SU(2)L U(1)R

QI
α 1 1 2 1 +1/2

I α 1 1 2 1 –1/2

Am Adj 1 1 1 0

Ǎm 1 Adj 1 1 0

φ Adj 1 1 1 –1

φ̌ 1 Adj 1 1 –1

λI Adj 1 2 1 –1/2

λ̌I 1 Adj 2 1 –1/2

QIÎ 2 2 2 2 0

ψÎ 2 2 1 2 +1/2

ψ̃Î 2 2 1 2 +1/2

Table 5.2: Symmetries of the Z2 orbifold of N = 4 SYM and of the interpo-
lating family of N = 2 SCFTs.

Supersymmetry organizes the component fields into the N = 2 vector
multiplets of each factor of the gauge group, (φ, λI , Am) and (φ̌, λ̌I , Ǎm), and
into two bifundamental hypermultiplets, (QI,+̂, ψ+̂, ψ̃+̂) and (QI,−̂, ψ−̂, ψ̃−̂).
Table 2 summarizes the field content and quantum numbers of the orbifold
theory.

The two gauge-couplings gYM and ǧYM can be independently varied while
preserving N = 2 superconformal invariance, thus defining a two-parameter
family of N = 2 SCFTs. Some care is needed in adjusting the Yukawa and
scalar potential terms so that N = 2 supersymmetry is preserved. We find

LY uk(gYM , ǧYM) = i
√

2Tr
[
− gYMǫ

IJ λ̄I λ̄Jφ− ǧYMǫ
IJ ¯̌λI

¯̌λJ φ̌

+gYMǫ
ÎĴ ψ̃ÎφψĴ + ǧYMǫ

ÎĴψĴ φ̌ψ̃Î

+gYMǫ
ÎĴ ψ̃Ĵλ

IQIÎ + ǧYMǫ
ÎĴQIÎλ̌

Iψ̃Ĵ

−gYMǫIJ Q̄Ĵ IλJψĴ − ǧYMǫIJψĴ λ̌
IQ̄Ĵ J ]

+h.c. (5.19)
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V(gYM , ǧYM) =

g2
YMTr

[1
2
[φ̄, φ]2 + M I

I (φφ̄+ φ̄φ) + M J
I M I

J − 1

2
M I

I M J
J
]

+ǧ2
YMTr

[1
2
[ ¯̌φ, φ̌]2 + M̌I

I(φ̌
¯̌φ+ ¯̌φφ̌) + M̌I

JM̌J
I −

1

2
M̌I

IM̌J
J
]

+gYM ǧYMTr
[
− 2QIÎφ̌Q̄

ÎIφ̄+ h.c.
]
− 1

Nc
Vd.t. , (5.20)

where the mesonic operators M are defined as4

M Ia
J b ≡

1√
2
Qa

J Ĵ ǎQ̄
Ĵ Iǎ

b , M̌Iǎ
J b̌ ≡

1√
2
Q̄Ĵ Iǎ

aQ
a
J Ĵ b̌ , (5.21)

and the double-trace terms in the potential are

Vd.t. = g2
YM

(
Tr[M J

I ]Tr[M I
J ] − 1

2
Tr[M I

I ]Tr[M J
J ]
)

(5.22)

+ǧ2
YM

(
Tr[M̌I

J ]Tr[M̌J
I ] −

1

2
Tr[M̌I

I ]Tr[M̌J
J ]
)

=
(
g2
YM + ǧ2

YM

)(
Tr[M J

I ]Tr[M I
J ] − 1

2
Tr[M I

I ]Tr[M J
J ]
)
.

The SU(2)L symmetry is present for all values of the couplings (and so is
the SU(2)R×U(1)r R-symmetry, of course). At the orbifold point gYM = ǧYM
there is an extra Z2 symmetry (the quantum symmetry of the orbifold) acting
as

φ↔ φ̌ , λI ↔ λ̌I , Am ↔ Ǎm , ψÎ ↔ ψ̃Î , QIÎ ↔ −ǫIJ ǫÎĴ Q̄J Ĵ .
(5.23)

Setting ǧYM = 0, the second vector multiplet (φ̌, λ̌I , Ǎm) becomes free and
completely decouples from the rest of theory, which happens to coincide with
N = 2 SCQCD (indeed the field content is the same and N = 2 susy does
the rest). The SU(Nč) symmetry can now be interpreted as a global flavor
symmetry. In fact there is a symmetry enhancement SU(Nč) × SU(2)L →
U(Nf = 2Nc): one sees in (5.19, 5.20) that for ǧYM = 0 the SU(Nč) index ǎ

and the SU(2)L index Î can be combined into a single flavor index i ≡ (ǎ, Î) =
1, . . . 2Nc.

In the rest of the paper, unless otherwise stated, we will work in the large
Nc ≡ Nč limit, keeping fixed the ‘t Hooft couplings

λ ≡ g2
YMNc ≡ 8π2g2 , λ̌ ≡ ǧ2

YMNč ≡ 8π2ǧ2 . (5.24)

4Note that Tr[M J
I ] = Tr[M̌J

I ].
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We will refer to the theory with arbitrary g and ǧ as the “interpolating SCFT”,
thinking of keeping g fixed as we vary ǧ from ǧ = g (orbifold theory) to ǧ = 0
(N = 2 SCQCD ⊕ extra N2

č − 1 free vector multiplets).

5.3 One-loop dilation operator in the scalar

sector

At large Nc ∼ Nf the natural gauge-invariant operators of N = 2 SCQCD
are of the generalized single-trace form (4.1). Motivated by the success of
the analogous calculation in N = 4 SYM [11], we have evaluated the one-
loop dilation operator on generalized single-trace operators made out of scalar
fields. An example of such an operator is

Tr[φ̄φφQIQ̄
J φ̄] = φ̄abφ

b
cφ

c
dQ

d
I iQ̄

J i
eφ̄

e
a , a, b, c, d, e = 1, . . .Nc , i = 1, . . . Nf .

(5.25)
Since the color or flavor indices of consecutive elementary fields are contracted,
we can assign each field to a definite “lattice site”5 and think of a generalized
single-trace operator as a state in a periodic spin-chain. In the scalar sector, the
state space Vl at each lattice site is six-dimensional, spanned by {φ, φ̄, QI , Q̄J }.
However the index structure of the fields imposes restrictions on the total space
⊗L
l=1Vl: not all states in the tensor product are allowed. Indeed a Q at site l

must always be followed by a Q̄ at site l + 1, and viceversa a Q̄ must always
be preceded by a Q. Equivalently, as in appendix C.2, we may use instead the
color-adjoint objects φ, φ̄, M1 and M3 (recall the definitions (A.17), where
the M’s are viewed as “dimers” occupying two sites of the chain.

As usual, we may interpret the perturbative dilation operator as the hamil-
tonian of the spin chain. It is convenient to factor out the overall coupling
from the definition of the hamiltonian H ,

Γ(1) ≡ g2H , g2 ≡ λ

8π2
, λ ≡ g2

YMNc , (5.26)

where Γ(1) is the one-loop anomalous dimension matrix. By an immediate
extension of the usual arguments, the Veneziano double-line notation (Figure
1) makes it clear that for large Nc×Nf (with λ fixed) the perturbative dilation
operator acts locally on the spin-chain. The one-loop hamiltonian is of nearest-
neighbor type, H =

∑L
l=1Hkk+1 (with k ≡ k+L), where Hk,k+1 : Vk⊗Vk+1 →

Vk ⊗ Vk+1. The two loop correction is next-to-nearest-neighbor and so on.
The matrix elements of the dilation operator are evaluated by computing

5Up to cyclic re-ordering of course, under which the trace is invariant.

107



Figure 5.1: Various types of Feynman diagrams that contribute, at one loop,
to anomalous dimension. The first diagram is the self energy contribution.
The second diagram represents the gluon exchange contribution whereas the
third one stands for the quartic interaction between the fields. The first and
the second diagrams are proportional to the identity in the R symmetry space
while the third one carries a nontrivial R symmetry index structure.

the correlator of the two composite operators. Working in the large Nc limit,
we focus on the planar Feynman diagram. These diagrams can be classified as
self energy diagrams, gluon interaction diagrams and quartic vertex diagrams
as shown in figure 5.1. The results of the one-loop anomalous dimension are
presented in section 5.3.1. In appendix C.1, we present an alternate derivation
of the one loop dilation operator without explicit one loop computation. In
stead, that method uses the knowledge of energies and R charges of some of the
composite operators. It serves as a check for the explicit one loop computation
of the dilation operator.

In section 5.3.2 we study the magnon excitations in the spin chain “vac-
uum” for the SCQCD theory. We repeat the exercise for the interpolating
family of SCFTs in section 5.3.3 and 5.3.4.

5.3.1 Hamiltonian for SCQCD

We now simply quote our result for Hkk+1 in N = 2 SYM with gauge group
SU(Nc) and Nf fundamental hypermultiplets 6,

6The spin-chain with this nearest-neighbor hamiltonian reproduces the one-loop anoma-
lous dimension of all operators with L > 2, where L is the number of sites. The L = 2 case is
special: the double-trace terms in the scalar potential, which give subleading contributions
(at large N) for L > 2, become important for L = 2 and must be added separately. This
special case plays a role in the protection of TrM3, see section 5.4.
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Hk,k+1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

φpφq QIQ̄
J Q̄KQL Q̄Iφp

φp′φq′ 2δp

p′δ
q

q′ + gpqgp′q′ − 2δp

q′ δ
q

p′

q

Nf

Nc
gp′q′δJ

I
0 0

Q̄I′
QJ ′

q

Nf

Nc
gpqδI

′

J ′ (2δI
′

I
δJ
J ′ − δJ

I
δI

′

J ′)
Nf

Nc
0 0

+ 1
2
(1 + ξ)δI

′

I
δJ
J ′

QK′Q̄L′
0 0 2δK

L
δL

′

K′ 0

− 1
2
(1 + ξ)δK

K′δ
L′

L

QI′φp′ 0 0 0 1
4
(7 − ξ)δI

I′δ
p

p′

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Here the indices p, q = ± label the U(1)r charges of φ and φ̄, in other terms

we have defined φ− ≡ φ, φ+ ≡ φ̄, and gpq =

(
0 1

1 0

)
. The result is valid for

arbitrary large Nf ∼ Nc. (For Nf 6= 2Nc the one-loop beta function is non-
vanishing, but, as seen from the Callan-Symanzik equation, this does not affect
the calculation of the one-loop dilation operator.) Here, ξ is the standard gauge
parameter that appears in the gluon propagator as 1

k2 (gµν−(1−ξ)kµkν

k2 ). Notice
that although the form of nearest neighbor hamiltonian depends on gauge
choice ξ, the anomalous dimension of gauge invariant flavor singlet operators
doesn’t. We will set ξ = −1 as this choice correctly produces the anomalous
dimension of flavor non-singlets as well.

We introduce the symbols I,P and K for identity, permutation and trace
operators respectively. Their position in the matrix specifies the space in which
they act. For example, the operator P that appears in the matrix element
of 〈φp′φq′|φpφq〉 is δp

q′δ
q
p′ , the operator K that appears in the matrix element

〈φpφq|QIQ̄
J 〉 stands for the operator gpgqδ

J
I and so on. With this notation,

and setting ξ = −1, we may re-write Hkk+1 more concisely,

Hk,k+1 =




φφ QQ̄ Q̄Q Q̄φ

φφ 2I + K − 2P

√
Nf

N
K 0 0

Q̄Q
√

Nf

N
K (2I − K)

Nf

Nc
0 0

QQ̄ 0 0 2K 0
Qφ 0 0 0 2I




(5.27)

We introduce σ matrices to write this Hamiltonian manifestly as spin-spin
interaction of the nearest neighbour spins.
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Hk,k+1 =

0

B

B

B

B

@

φφ QQ̄ Q̄Q Q̄φ

− 1
2
(σ2

x + σ2
y + 3(σ2

z − 1))

q

Nf

N
1
2
(1 + σ2

x + σ2
y − σ2

z) 0 0
q

Nf

N
1
2
(1 + σ2

x + σ2
y − σ2

z) − Nf

2Nc
(−3 + σ2

x + σ2
y − σ2

z ) 0 0

0 0 1 + σ2
x + σ2

y − σ2
z 0

0 0 0 2

1

C

C

C

C

A

(5.28)

We have used the shorthand σ2 for σl ⊗ σl+1.
Artificially restricting the hamiltonian to the space of φ (and φ̄) gives

2Iφφ + Kφφ − 2Pφφ, which is hamiltonian of the XXZ spin chain, confirming
the result found in [? ] for pure N = 2 SYM. The φ sector is not closed in
our case due to the leading order glueball-meson mixing. The mixing element
that is responsible for φφ → QQ is proportional to K in φ space. Both of
these elements vanish when the neighbouring φ fields have the same ± index.
This implies that the operator Tr[φk] is protected, and we can think of it as the
ferromagnetic ground state of the spin chain (all spins are pointing down). The
impurities that can be excited on this ground state are φ̄, M1 and M3, where
the last two are “dimeric” impurities which occupy two sites. All of these
impurities are double excitations, a single excitation (a single “Q” excitation)
is impossible as it is not allowed by the color index structure. It is this fact
that makes it hard to study the scattering of two impurities. As we will see, the
fundamental excitations on the spin chain vacuum of the interpolating theory
are single excitations and their two body scattering can be easily studied.

Nonetheless, the “one body” problem i.e. the dispersion relation of these
doubly excited impurities is studied in the next subsection.

5.3.2 Magnon excitations in the SCQCD spin chain

In the map from the composite operators to spin chain, the cyclicity of the
trace gives periodic boundary conditions on the spin-chain, along with the
constraint that the total momentum of all the impurities in the spin be zero.
As usual, it is convenient to first consider the chain to be infinite, and impose
later the zero-momentum constraint on multi-impurity states. The action of
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the Hamiltonian on single-impurities in position space is

H [φ̄(x)] = 6φ̄(x) − φ̄(x+ 1) − φ̄(x− 1) (5.29)

+

√
2Nf

Nc
M1(x) +

√
2Nf

Nc
M1(x− 1) (5.30)

H [M1(x)] = 4M1(x) +

√
2Nf

Nc
φ̄(x) +

√
2Nf

Nc
φ̄(x+ 1)

H [M3(x)] = 8M3(x) , (5.31)

where the coordinate x denotes the position (site) of the impurity on the chain;
for the dimeric impurities M1 and M3 we use the coordinate of the first site.
To diagonalize the hamiltonian on the φ̄/ M1 sector, we go to momentum
space,

φ̄(p) ≡
∑

x

φ̄(x)eipx , M1(p) ≡
∑

x

M1(x)e
ipx (5.32)

H

(
φ̄(p)

M1

)
=


 6 − eip − e−ip (1 + e−ip)

√
2Nf

Nc

(1 + eip)
√

2Nf

Nc
4



(
φ̄(p)

M1

)
.(5.33)

Eigenvalues and the form of eigenstates is not very illuminating for generic
values of the ratio Nf/Nc. For the case of Nf = 2Nc, however, they simplify.
In that case, the eigenstates are

T (p) ≡ −1

2
(1 + e−ip)φ̄(p) + M1(p)

=
∑

x

eipx[−1

2
(φ̄(x) + φ̄(x+ 1)) + M1(x)] (5.34)

T̃ (p) ≡ φ̄(p) +
1

2
(1 + eip)M1(p)

=
∑

x

eipx[φ̄(x) +
1

2
(M1(x) + M1(x− 1))] , (5.35)

with eigenvalues

HT (p) = 4 sin2(
p

2
)T (p) (5.36)

HT̃ (p) = 8 T̃ (p) . (5.37)

For N = 2 SCQCD, Nf = 2Nc and the magnon excitation T (p) becomes
gapless. From now on we will only consider the superconformal case and set
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Nf ≡ 2Nc.

5.3.3 Hamiltonian for the interpolating SCFTs

We have generalized the calculation of the one-loop dilation operator to the
full interpolating family of N = 2 SCFTs [8],

H =

0

B

@

φpφq Q
IÎ
Q̄ĴJ

φp′φq′ (2δp

p′ δ
q

q′ + gpqgp′q′ − 2δp

q′ δ
q

p′) δJ
I
δĴ
Î
gp′q′

Q̄Î′I′
Q

J ′Ĵ ′ δI
′

J ′δ
Î′

Ĵ ′
gpq (2δI

′

I
δJ
J ′ − δJ

I
δI

′

J ′ )δ
Ĵ

Î
δÎ

′

Ĵ ′
+ 2κ2δJ

I
δI

′

J ′δ
Î′

Î
δĴ
Ĵ ′

1

C

A

⊕

0

B

@

φ̌p φ̌q Q̄ĴJQ
IÎ

φ̌p′ φ̌q′ κ2(2δp

p′δ
q

q′ + gpqgp′q′ − 2δp

q′ δ
q

p′ ) κ2δJ
I
δĴ
Î
gp′q′

Q
J ′Ĵ ′Q̄Î

′I′
κ2δI

′

J ′δ
Î′

Ĵ ′
gpq κ2(2δI

′

I
δJ
J ′ − δJ

I
δI

′

J ′ )δ
Ĵ

Î
δÎ

′

Ĵ ′
+ 2δJ

I
δI

′

J ′δ
Î′

Î
δĴ
Ĵ ′

1

C

A

⊕

0

@

φpQ
IÎ

Q
IÎ
φ̌p

φp′Q̄Î′I′
2δI

′

I
δÎ

′

Î
δp

p′ −2κδI
′

I
δÎ

′

Î
δp

p′

Q̄Î
′I′
φ̌p′ −2κδI

′

I
δÎ

′

Î
δp

p′ 2κ2δI
′

I
δÎ

′

Î
δp

p′

1

A

⊕

0

B

@

φ̌pQ̄ĴJ Q̄ĴJ φp

φ̌p′Q
J ′Ĵ ′ 2κ2δJ

J ′δ
Ĵ

Ĵ ′
δp

p′ −2κδJ
J ′δ

Ĵ

Ĵ ′
δp

p′

Q
J ′Ĵ ′φp′ −2κδJ

J ′δ
Ĵ

Ĵ ′
δp

p′ 2δJ
J ′δ

Ĵ

Ĵ ′
δp

p′

1

C

A
(5.38)

In concise form, 7

Hk,k+1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

φφ QQ̄ φ̌φ̌ Q̄Q φQ Qφ̌ φ̌Q̄ Q̄φ

φφ (2 + K − 2P) K 0 0 0 0 0 0

QQ̄ K (2 − K)K̂ + 2κ2
K 0 0 0 0 0 0

φ̌φ̌ 0 0 κ2(2 + K − 2P) κ2
K 0 0 0 0

Q̄Q 0 0 κ2
K κ2(2 − K)K̂ + 2K 0 0 0 0

φQ 0 0 0 0 2 −2κ 0 0
Qφ̌ 0 0 0 0 −2κ 2κ2 0 0
φ̌Q̄ 0 0 0 0 0 0 2κ2 −2κ
Q̄φ 0 0 0 0 0 0 −2κ 2

1

C

C

C

C

C

C

C

C

C

C

C

C

A

7The meaning of the different operators can be read off by comparing with the explicit
form above. Note in particular that to avoid cluttering we have dropped the identity symbol
I (terms proportional to unity are proportional to the identity in the respective spaces). Also
in the subspaces QQ̄, Q̄Q we use the notation K for the trace operator acting on SU(2)R

indices and K̂ that acts on the SU(2)L indices.

112



where κ ≡ g
ǧ

and g2 ≡ g2Y MN

8π2 , ǧ2 ≡ ǧ2Y MN

8π2 .
The hamiltonian could be written in more compact fashion directly in terms

of the Z2 projected fields of the orbifold (eq.(5.16)) Z and X . We rewrite their
definitions here for reader’s convenience.

Z =

(
φ 0

0 φ̌

)
, XIÎ =

(
0 QIÎ

−ǫIJ ǫÎĴ Q̄Ĵ J 0

)
(5.39)

The hamiltonian for a generic value of κ can now be manifestly written as
interpolating between the hamiltonian of Z2 orbifold of N = 4 SYM and that
of SCQCD.

g2H =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ZZ XX ZX XZ
(g+ + γg−)2(2 + K − 2P) (g+ + γg−)2KK̂ 0 0

(g+ + γg−)2KK̂ (g+ + γg−)2(2K̂ − KK̂) 0 0

+2(g+ − γg−)2K

0 0 2(g+ + γg−)2 −2(g+2 − g−2)

0 0 −2(g+2 − g−2) 2(g+ − γg−)2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(5.40)

Here we have defined, g ≡ g+ + g−, ǧ = g+− g−. The matrix γ =

(
1 0

0 −1

)

is called the twist.
In the limit, ǧ → 0, we see that this hamiltonian reduces to that of SCQCD

spin chain as it should. In appendix C.1, we have also derived this hamiltonian
using the similar arguments as for the SCQCD case. In the next subsection,
we study the dispersion relation of the fundamental excitations. As we will
see they are single excitations, in contrast with the SCQCD case where they
are double excitations.

5.3.4 Magnon excitations of the interpolating SCFT spin
chain

As before, we think of a composite operator as a spin chain where the sites are
occupied by the fields. But one needs to be careful in construction of such a
spin chain as the index structure already imposes constraints on the sequence
in which various impurities can appear in the spin chain. These constraints
are the following

1. φ can only be followed by Q
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2. Q can be followed either by Q̄ or φ̌.

3. φ̌ can only be followed by Q̄.

4. Q̄ can be followed either by Q or φ.

With these constraints if we start with the sea of φ as a vacuum (the other
choice would be to start with the sea of φ̌), inserting one Q impurity will
amount to changing the φs following the impurity into φ̌s. This is the only
way one could consistently insert impurities. Let us study the dynamics of a
single impurity Q. The position space state where Q is localised to a position
x in the spin chain is denoted by Q(x).

Using the Hamiltonian above, we write the evolution

g2HQIÎ(x) = 2(g2 + ǧ2)QIÎ(x) − 2gǧ[QIÎ(x− 1) +QIÎ(x+ 1)] (5.41)

Fourier transforming as, Q(p) =
∑

x e
ipxQ(x) we get,

g2HQIÎ(p) = 2(g2 + ǧ2 − 2gǧ cos p)QIÎ(p)

= [2(g − ǧ)2 + 4gǧ(1 − cos p)]QIÎ(p)

= [2(g − ǧ)2 + 8gǧ sin2(
p

2
)]QIÎ(p) (5.42)

Hence the dispersion relation for QIÎ(p) is,

g2E(p) = ∆ + 8gǧ sin2(
p

2
) (5.43)

As we can see, we get a sin2(p
2
) dispersion relation for Q with a gap ∆ =

2(g − ǧ)2, the gap is zero only when g = ǧ as expected. The similar analysis
holds for Q̄ impurity and we end up with the same dispersion relation.
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5.4 The protected spectrum in detail

In the previous chapter 4, we analyzed the protected spectrum of N = 2 SC-
QCD with the help of superconformal index [18]. In this section we determine
all the generalized single trace operators in the scalar sector of SCQCD having
vanishing one-loop anomalous dimension. We find the complete list of such
operators to be:

Trφk+2, Tr[Tφk], TrM3. (5.44)

Here, T ≡ φφ̄ − M1 and k ≥ 0. We are first led to (5.44) by an educated
guess. In section B.1 we list all operators in the scalar sector that obey any
of the the shortening or semi-shortening conditions of the N = 2 supercon-
formal algebra, which have been completely classified by Dolan and Osborn
[154]. Using the spin-chain hamiltonian, we compute the one-loop anomalous
dimension of these candidate protected states, and find that only (5.44) have
zero anomalous dimension. We see that the result agrees with the first class
of protected operators, i.e. the operators in the scalar sector, obtained in [8].
The spin chain hamiltonian of section 5.3.1 is insufficient to reproduce the
second class of protected operators as they contain fields with higher spins. In
section 5.4.2, we list the protected operators of the orbifold theory that could
be obtained by variety of methods and follow the evolution of these operators
along the exactly marginal line κ→ 0 towards SCQCD.

Even though we concern ourselves with one loop analysis in this section,
(5.44) can be seen to be protected at full quantum level using superconformal
index [8].

5.4.1 Protected states in N = 2 SCQCD

A generic long multiplet A∆
R,r(j,j̄) of the N = 2 superconformal algebra is gener-

ated by the action of the 8 Poincaré supercharges Q and Q̄ on a superconformal
primary, which by definition is annihilated by all conformal supercharges . If
some combination of the Q’s also annihilates the primary, the correspond-
ing multiplet is shorter and the conformal dimensions of all its members are
protected against quantum corrections. A comprehensive list of the possible
shortening conditions for the N = 2 superconformal algebra was given in [154]
. Their findings are summarized in Table B.1. 8 We refer to [154] for more
details.

8We follow the conventions of [154], except that we have introduced the labels D, F , F̂
and G to denote some shortening conditions that were left nameless in [154].
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Scalar Multiplets SCQCD operators Protected

B̄R,−ℓ(0,0) Tr[φℓMR
3 ]

Ē−ℓ(0,0) Tr[φℓ] �

B̂R Tr[MR
3 ] � for R = 1

C̄R,−ℓ(0,0) Tr[TMR
3 φ

ℓ]

C̄0,−ℓ(0,0) Tr[Tφℓ] �

ĈR(0,0) Tr[TMR
3 ]

Ĉ0(0,0) Tr[T ] �

D̄R(0,0) Tr[MR
3 φ]

Table 5.3: N = 2 SCQCD protected operators at one loop

In Table 5.3 we list all the generalized single-trace operators of N = 2
SCQCD made out of scalar fields, which obey any of the possible shortening
conditions. Using the spin chain Hamiltonian of section 5.3.1, we find that the
only operators with zero anomalous dimension are the one listed in (5.44)9.
The operators Trφℓ correspond to the vacuum of the spin-chain, while the
operators TrT φℓ correspond to the zero-momentum limit of the gapless ex-
citation T (p), eq. (5.36) . There is one more protected operator, which is
“exceptional” in not belonging to an infinite sequence: TrM3. Its anomalous
dimension is zero for gauge group SU(Nc) but not for gauge group U(Nc): the
double-trace terms in the Lagrangian that arise from the removal of the U(1)
are crucial for the protection of this operator.

5.4.2 Protected spectrum of the interpolating family of
N = 2 SCFTs

As we have reviewed in section 2.2, N = 2 SCQCD can be obtained as the
ǧYM → 0 limit of a family of N = 2 superconformal field theories, which
reduces for gYM = ǧYM to the N = 2 Z2 orbifold of N = 4 SYM. In this section
we find the protected spectrum of single-trace operators of the interpolating
family. We start at the orbifold point, where the protected states are easy to
determine, and follow their fate along the exactly marginal line towards N = 2
SCQCD.

9Together of course with their conjugates. Note that since in our conventions φ has
r = −1, the multiplet Ē−ℓ(0,0), ℓ > 0, is represented by Trφℓ. The conjugate multiplet Eℓ(0,0)

is represented by Trφ̄ℓ and is of course also protected.
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At the orbifold point, operators fall into two classes: untwisted and twisted.
In the untwisted sector, the protected states are well-known, since they are
inherited from N = 4 SYM. The protected operators in the twisted sector are
chiral with respect to N = 1 subalgebra and could be obtained by analyzing
the chiral ring [162]. 10 Both the classes of operators can be rigorously checked
to be protected by computing the superconformal index.11 Using the index
one can also argue that the protected multiplets found at the orbifold point
cannot recombine into long multiplets as we vary ǧ [8], so in particular taking
ǧ → 0 they must evolve into the protected multiplets of the theory

{N = 2 SCQCD ⊕ decoupled SU(Nĉ) vector multiplet} . (5.45)

In section 5.4.3 we follow this evolution in detail. We find that the SU(2)L-
singlet protected states of the interpolating theory evolve into the list (5.44)
of protected states of SCQCD, plus some extra states made purely from the
decoupled vector multiplet. On the other hand, the interpolating theory has
also many single-trace protected states with non-trivial SU(2)L spin, which are
of course absent from the list (5.44): we see that in the limit ǧ → 0, a state
with SU(2)L spin L can be interpreted as a “multiparticle state”, obtained by
linking together L short “open” spin-chains with of SCQCD and decoupled
fields φ̌. By this route we confirm that (5.44) is the correct and complete
list of protected single-traces in the scalar sector for N = 2 SCQCD. The
results are also suggestive of a dual string theory interpretation: as ǧ → 0,
single closed string states carrying SU(2)L quantum numbers disintegrate into
multiple open strings. The above argument, however, doesn’t imply that all
the protected operators of SCQCD are obtained as degenrations of protected
operators of the interpolating theory. Indeed, they aren’t. In [8], we discuss
an alternative mechanism that brings about more protected SCQCD operators
from the decomposition of long multiplets of the interpolating theory as ǧ → 0.

In summary, the degeneracy of protected states is independent of the ex-
actly marginal deformation that changes ǧYM and is thus the same for the
orbifold theory and for the theory (5.45). At ǧYM = 0 there is a symmetry
enhancement, SU(2)L × SU(Nč) → U(Nf = 2Nc), and we can consistently
truncate the spectrum of generalized single trace operators to singlets of the
flavor group U(Nf ) – which in particular do not contain any of the decoupled
states φ̌. This is the flavor singlet spectrum of N = 2 SCQCD that we have
analyzed in the previous section.

10We confirm the spectrum in [8] up to one operator that was missed in the analysis of
[162].

11The calculation for the orbifold was carried out already in [156], which we confirm up
to a minor emendation in [8].

117



Multiplet Orbifold operator (R, ℓ ≥ 0, n ≥ 2)

B̂R+1 Tr[(Q++̂Q̄++̂)R+1]

Ē−(ℓ+2)(0,0) Tr[φℓ+2 + φ̌ℓ+2]

ĈR(0,0) Tr[
∑ T (Q++̂Q̄++̂)R]

D̄R+1(0,0) Tr[
∑

(Q++̂Q̄++̂)R+1(φ+φ̌)]

B̄R+1,−(ℓ+2)(0,0) Tr[
∑

i(Q
++̂Q̄++̂)R+1φiφ̌ℓ+2−i]

C̄R,−(ℓ+1)(0,0) Tr[
∑

i T (Q++̂Q̄++̂)Rφiφ̌ℓ+1−i]

A∆=2R+ℓ+2n
R,−ℓ(0,0) Tr[

∑
i T n(Q++̂Q̄++̂)Rφiφ̌ℓ−i]

Table 5.4: Superconformal primary operators in the untwisted sector of the
orbifold theory that descent from the 1

2
BPS primary of N = 4. The symbol∑

indicates summation over all “symmetric traceless” permutations of the
component fields allowed by the index structure.

Multiplet Orbifold operator (ℓ ≥ 0)

B̂1 Tr[(Q++̂Q̄+−̂ −Q+−̂Q̄++̂)] = TrM3

Ē−(ℓ+2)(0,0) Tr[φℓ+2 − φ̌ℓ+2]

Table 5.5: Superconformal primary operators in the twisted section of the
orbifold theory.
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5.4.3 Away from the orbifold point: matching with N =
2 SCQCD

In the limit ǧ → 0, we must be able to match the protected states of the
interpolating family with protected states of {N = 2 SCQCD ⊕ decoupled
vector multiplet}. For the purpose of this discussion, the protected states
naturally splits into two sets: SU(2)L singlets and SU(2)L non-singlets. It is
clear that all the (generalized) single-trace operators of N = 2 SCQCD must
arise from the SU(2)L singlets.

SU(2)L singlets

They are:

(i) One B̂1 multiplet, corresponding to the primary Tr[QÎ{IQ̄
Î
J }] = TrM3.

Since this is the only operator with these quantum numbers, it cannot
mix with anything and its form is independent of ǧ.

(ii) Two Ē−ℓ(0,0) multiplets for each ℓ ≥ 2, corresponding to the primaries

Tr [φℓ ± φ̌ℓ]. For each ℓ, there is a two-dimensional space of protected
operators, and we may choose whichever basis is more convenient. For
g = ǧ, the natural basis vectors are the untwisted and twisted combi-
nations (respectively even and odd under φ ↔ φ̌), while for ǧ = 0 the
natural basis vectors are Trφℓ (which is an operator of N = 2 SCQCD)
and Tr φ̌ℓ (which belongs to the decoupled sector).

(iii) One Ĉ0(0,0) multiplet (the stress-tensor multiplet), corresponding to the

primary TrT = Tr [T + φ̌ ¯̌φ]. We have checked that this combination is
an eigenstate with zero eigenvalue for all ǧ. For ǧ = 0, we may trivially

subtract out the decoupled piece Tr φ̌ ¯̌φ and recover TrT , the stress-tensor
multiplet of N = 2 SCQCD.

(iv) One C̄0,−ℓ(0,0) multiplet for each ℓ ≥ 1. In the limit ǧ → 0, we expect
this multiplet to evolve to the TrTφℓ multiplet of N = 2 SCQCD. Let
us check this in detail.

The primary of C̄0,−ℓ(0,0) has R = 0, r = −ℓ and ∆ = ℓ+2. The space of
operators which classically have these quantum numbers is spanned by

|a〉 = Tr[φ̌ℓ+1 ¯̌φ], |bi〉 ≡ 1
2
Tr[φiQIÎ φ̌

ℓ−iQ̄ÎI ] for 0 ≤ i ≤ ℓ

and |cℓ〉 ≡ Tr[φℓ+1φ̄] (5.46)
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Diagonalizing the Hamiltonian in Fourier space, we find the protected
operator to be

|C̄0,−ℓ(0,0)〉κ = κℓ|a〉 −
ℓ∑

i=0

κℓ−i|bi〉 + |cℓ〉 (5.47)

where κ ≡ ǧ/g. In the limit κ→ 0,

|C̄0,−ℓ(0,0)〉κ→0 = Tr[(φφ̄− 1

2
QIÎQ̄

IÎ)φℓ] = Tr[Tφℓ] , (5.48)

as claimed.

All in all, we see that this list reproduces the list (5.44) of one-loop protected
scalar operators of N = 2 SCQCD, plus the extra states Trφ̌ℓ which decouple
for ǧ = 0. This concludes the argument that that the operators (5.44) are
protected at the full quantum level, and that they are the complete set of
protected generalized single-trace primaries of N = 2 SCQCD.

SU(2)L non-singlets

The basic protected primary of N = 2 SCQCD which is charged under SU(2)L
is the SU(2)L triplet contained in the mesonic operator Oi

3R j = (Q̄i
aQ

a
j )3R

.

Indeed writing the U(Nf = 2Nc) flavor indices i as i = (ǎ, Î), with ǎ =
1, . . . Nf/2 = Nc “half” flavor indices and I = ±̂ SU(2)L indices, we can
decompose

Oi
3R j → Oǎ

3R3L b̌
, Oǎ

3R1L b̌
. (5.49)

In particular we may consider the highest weight combination for both SU(2)L
and SU(2)R,

(Q̄++̂Q++̂)ǎ
b̌
. (5.50)

States with higher SU(2)L spin can be built by taking products of O3R3L
with

SU(2)L and SU(2)R indices separately symmetrized – and this is the only way
to obtain protected states of N = 2 SCQCD charged under SU(2)L which
have finite conformal dimension in the Veneziano limit. It is then a priori
clear that a protected primary of the interpolating theory with SU(2)L spin L
must evolve as ǧ → 0 into a product of L copies of (Q̄++̂Q++̂) and of as many

additional decoupled scalars φ̌ and ¯̌φ as needed to make up for the correct
U(1)r charge and conformal dimension. It is amusing to follow in more detail
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this evolution for the various multiplets:

(i) B̂R multiplet.

This is a trivial case, since for each R there is only one operator with
the correct quantum numbers, namely

|B̂R〉κ ≡ Tr[(Q++̂Q̄++̂)R] , (5.51)

for all g and ǧ. We have checked that it is indeed an eigenstate of zero
eigenvalue for all couplings.

(ii) D̄R(0,0) multiplet.

The primary of D̄R(0,0) has SU(2)R spin equal R, U(1)r charge r = −1
and ∆ = 2R + 1. The space of operators which classically have these
quantum numbers is two-dimensional, spanned by Tr[(Q++̂Q̄++̂)Rφ] and
Tr[(Q̄++̂Q++̂)Rφ̌]. The spin-chain Hamiltonian in this subspace reads

g2HD̄ =

(
4g2 −4gǧ

−4gǧ 4ǧ2

)
(5.52)

The protected operator (eigenvector with zero eigenvalue) is

|D̄R(0,0)〉κ ≡ Tr[κ(Q++̂Q̄++̂)Rφ+ (Q̄++̂Q++̂)Rφ̌] . (5.53)

For κ = 0, the protected operator is interpreted as a “multi-particle
state” of R open chains of SCQCD and one decoupled scalar φ̌. For
example for R = 2, the operator will be broken into the following gauge-
invariant pieces,

(Q̄++̂Q++̂)ǎ
b̌
, (Q̄++̂Q++̂)b̌č and φ̌čǎ . (5.54)

In the limit ǧ → 0, the “closed chain” of the interpolating theory ef-
fectively breaks into “open chains” of {N = 2 SCQCD ⊕ decoupled
multiplet}, with the rupture points at the contractions of the “half-
flavor” indices ǎ, b̌, č.

(iii) B̄R,r(0,0) multiplet.

Finding the protected multiplet for arbitrary coupling amounts to diag-
onalizing the spin-chain Hamiltonian of the interpolating theory in the
space of operators with quantum numbers R, r and ∆ = 2R − r. The
dimension of this space increases rapidly with R and r. Let us focus on
two simple cases.
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case 1: R = 1, r ≡ −ℓ < 0

In this case, the space is ℓ+ 1 dimensional, spanned by

|ψi〉 ≡ Tr[φiQ++̂φ̌ℓ−iQ̄++̂] , i = 0, . . . ℓ . (5.55)

The protected operator is found to be

|B̄1,−ℓ(0,0)〉κ ≡
ℓ∑

i=0

κi|ψi〉 (5.56)

In our schematic notation of
∑

, introduced earlier, the same operator
would read

|B̄1,−ℓ(0,0)〉κ = Tr[
∑

i

κi(Q++̂Q̄++̂)φiφ̌ℓ−i] . (5.57)

Note that at κ = 0, the U(1)r charge of the operator is all carried by the
decoupled scalars φ̌ – there are no φ. This is again consistent with the
picture of the closed chain disintegrating into open pieces.

case 2: r = −2, R = 2

The relevant vector space is spanned by the operators

|0〉 = Tr[φφQ++̂Q̄++̂Q++̂Q̄++̂] |0̌〉 = Tr[Q++̂φ̌φ̌Q̄++̂Q++̂Q̄++̂]

|1〉 = Tr[φQ++̂φ̌Q̄++̂Q++̂Q̄++̂] |1̌〉 = Tr[Q++̂φ̌Q̄++̂φQ++̂Q̄++̂]

|2〉 = Tr[φQ++̂Q̄++̂φQ++̂Q̄++̂] |2̌〉 = Tr[Q++̂φ̌Q̄++̂Q++̂φ̌Q̄++̂]

(5.58)
The Hamiltonian in this subspace is (the basis vectors are read in the
sequence |0〉, |0̌〉, |1〉, . . . )

g2HB̄2,−2(0,0)
=




4g2 0 −2gǧ −2gǧ 0 0

0 4ǧ2 −2gǧ −2gǧ 0 0

−2gǧ −2gǧ 4g2 + 4ǧ2 0 −2gǧ −2gǧ

−2gǧ −2gǧ 0 4g2 + 4ǧ2 −2gǧ −2gǧ

0 0 −2gǧ −2gǧ 4g2 0

0 0 −2gǧ −2gǧ 0 4ǧ2




(5.59)
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There is an eigenvector with zero eigenvalue for all κ, namely

|B̄2,−2(0,0)〉κ ≡ κ2|0〉 + |0̌〉 + κ|1〉 + κ|1̌〉 + κ2|2〉 + |2̌〉
= Tr[

∑

i

κi(Q++̂Q̄++̂)2φiφ̌2−i]

As expected, for κ = 0 the operator contains φ̌ and no φ.

Extrapolating from these cases, we make an educated guess for the form
for general protected operator,

|B̄R,−ℓ(0,0)〉κ = Tr[
∑

i

κi(Q++̂Q̄++̂)Rφiφ̌ℓ−i] . (5.60)

In the limit κ→ 0, this operator breaks into R mesons (Q̄Q)ǎ
b̌
of N = 2

SCQCD and ℓ decoupled scalars φ̌ǎ
b̌
.

(iv) ĈR(0,0) and C̄R,−ℓ(0,0) multiplets.

We have not studied these cases in detail since they are technically quite
involved. It is clear however that for ǧ → 0 the protected primaries must
evolve into states of the schematic form

Tr
[
OR

3R3L
φ̌ℓ+n ¯̌φn

]
, (5.61)

with ℓ = 0, n = 1 for ĈR(0,0) and n = 1 for C̄R,−ℓ(0,0).

Finally, let us consider the the long multiplets (A-type multiplets) that
appear on the right hand side of the decomposition (4.21). Their schematic
expression at the orbifold point is given in the last row of Table 5. At the
orbifold point, the planar inheritance theorem [41, 45] guarantees that the
multiplets, even if long, have protected dimension at large Nc, since they de-
scend from 1/2 BPS chiral primary operators of N = 4 SYM. In fact AdS/CFT
predicts that they remain protected (at large Nc) even away from the orbifold
point, since they correspond to supergravity states which are unaffected by a
change in the value BNS. It would be interesting to check this explicitly using
our one-loop hamiltonian: for all ǧ there must be an eigenvector with zero
eigenvalue with the quantum numbers of each of the long multiplets on on the
right hand side of (4.21). As g̃ → 0, these operators must evolve into states of
the form (5.61), with the appropriate quantum numbers.
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5.5 Two-body scattering

In this section we study the scattering of two magnons in the spin chain for
the interpolating SCFT. We take the chain to be infinite. Because of the
index structure of the impurities, one of the asymptotic magnons must be a
Q and the other a Q̄, and their ordering is fixed – we can have a Q impurity
always to the left of a Q̄ impurity, or viceversa. The scattering is thus pure
reflection. For the case of Q to the left of Q̄, and suppressing momentarily the
SU(2)L × SU(2)R quantum numbers, the asymptotic form of the eigenstates
of the Hamiltonian is

∑

x1≪x2

(
eip1x1+ip2x2 + S(p2, p1)e

ip2x1+ip1x2
)
| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉 .

(5.62)
This is the definition of the two-body S-matrix. In fact, thanks to the nearest-
neighbor nature of the spin chain, if the impurities are not adjacent we are
already in the “asymptotic” region, so x1 ≪ x2 should be interpreted as x1 <
x2 − 1. Similarly, for the case where Q to the right of Q̄ the asymptotic form
of the two-magnon state is

∑

x1≪x2

(
eip1x1+ip2x2 + Š(p2, p1)e

ip2x1+ip1x2
)
| . . . φ̌Q̄(x1)φ . . . φQ(x2)φ̌ . . .〉 ,

(5.63)
which defines Š. The two-body S-matrices S and Š are related by exchanging
g ↔ ǧ,

S(p1, p2; g, ǧ) = Š(p1, p2; ǧ, g) . (5.64)

The total energy of a two-magnon state is just the sum of the energy of the
individual magnons,

E(p1, p2; κ) =
(
2(1 − κ)2 + 8κ(sin2 p1

2
)
)

+
(
2(1 − κ)2 + 8κ(sin2 p2

2
)
)
.(5.65)

Besides the continuum of states with real momenta p1 and p2, there can be
bound and “anti-bound” states for special complex values of the momenta. A
bound state occurs when

S(p1, p2) = ∞ , with p1 =
P

2
− iq , p2 =

P

2
+ iq , q > 0 . (5.66)
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Since S(p2, p1) = 1/S(p1, p2) → 0, the asymptotic wave-function is

eiP
x1+x2

2
−q(x2−x1) , , (5.67)

which is indeed normalizable (since x2 > x1 in our conventions). A bound
state has smaller energy than any state in the two-particle continuum with
the same total momentum P . An anti-bound state occurs when

S(p1, p2) = ∞ , with p1 =
P

2
− iq + π , p2 =

P

2
+ iq − π , q > 0 .(5.68)

The asymptotic wave-function is now

(−1)x2−x1eiP
x1+x2

2
−q(x2−x1) . (5.69)

The energy of an anti-bound state is strictly bigger than the two-particle con-
tinuum. It is easy to see that (5.66) and (5.68) are the only allowed possibilities
for complex p1 and p2 such that the total momentum and the total energy are
real.

The analysis of two-body scattering proceeds independently in four differ-
ent sectors, corresponding the choice of the triplet or singlet combinations for
SU(2)L and SU(2)R. In each sector, we will compute the S-matrix and look
for the (anti)bound states associated to its poles.

5.5.1 3L ⊗ 3R Sector

In the 3L ⊗ 3R sector, we write the general two-impurity state with Q to the
left of Q̄ as as

|Ψ3⊗3〉 =
∑

x1<x2

Ψ3⊗3(x1, x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉3⊗3 . (5.70)

There is no mixing with states containing φ̄ and ¯̌φ since they have different
SU(2)L × SU(2)R × U(1)r quantum numbers. Acting with the Hamiltonian,
one finds:

• For x2 > x1 + 1,

g2H · Ψ3⊗3(x1, x2) = 4(g2 + ǧ2)Ψ3⊗3(x1, x2) (5.71)

−2gǧΨ3⊗3(x1 + 1, x2) − 2gǧΨ3⊗3(x1 − 1, x2)

−2gǧΨ3⊗3(x1, x2 + 1) − 2gǧΨ3⊗3(x1, x2 − 1)
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• For x2 = x1 + 1,

g2H · Ψ3⊗3(x1, x2) = 4g2Ψ3⊗3(x1, x2) (5.72)

−2gǧΨ3⊗3(x1 − 1, x2) − 2gǧΨ3⊗3(x1, x2 + 1) .

The plane wave states ei(p1x1+p2x2) and ei(p1x2+p2x1) are separately eigenstates
for the “bulk” action of the Hamiltonian (5.71), with eigenvalue (5.65). The
action of the Hamiltonian on the state with adjacent impurities, equ.(5.72),
provides the boundary condition that fixes the exact eigenstate of asymptotic
momenta p1, p2,

Ψ3⊗3(x1, x2) = ei(p1x1+p2x2) + S3⊗3(p1, p2)e
i(p1x2+p2x1) , (5.73)

where

S3⊗3(p1, p2) = −1 + eip1+ip2 − 2κeip1

1 + eip1+ip2 − 2κeip2
, κ ≡ ǧ

g
. (5.74)

In this sector, the S-matrix coincides with the familiar S-matrix of the XXZ
chain, with the identification ∆XXZ = κ. The pole of the S-matrix,

eip2 =
1 + ei(p1+p2)

2κ
, (5.75)

is associated to a bound state. Writing p1 = P/2− iq, p2 = P/2 + iq, we have

e−q =
cos(P

2
)

κ
. (5.76)

The wave-function is normalizable provided q > 0, which implies 2 arccosκ <
|P | < π. Substituting p1 and p2 into the expression for the total energy (5.65),
we find that the dispersion relation of the bound state is simply

[
QQ̄
]bound
3L 3R

: E = 4 sin2(
P

2
) , 2 arccosκ < |P | < π . (5.77)

This dispersion relation is plotted as the dashed orange curve in the left column
of Figure 2.2. When the total momentum P is smaller than 2 arccosκ the
bound state dissolves into the two-particle continuum. The bound state exists
for the full range of P at the orbifold point κ = 1, but the allowed range of P
shrinks as κ is decreased, and the bound state disappears in the SCQCD limit
κ→ 0.
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The S-matrix in the 3L⊗ 3R sector with Q to the right of Q̄ is obtained by
switching g ↔ ǧ,

Š3⊗3(p1, p2; κ) = S3⊗3(p1, p2; 1/κ) −
1 + eip1+ip2 − 2

κ
eip1

1 + eip1+ip2 − 2
κ
eip2

. (5.78)

Now the pole of the S-matrix is associated to a bound state with

e−q = κ cos(
P

2
) . (5.79)

The bound state exists for all P in the whole range of κ ∈ (0, 1]. Its dispersion
relation is

[
Q̄Q
]bound
3L 3R

: E = 4κ2 sin2(
P

2
) , (5.80)

plotted as the dashed orange curve in the right column of Figure 2.2. The
existence of this bound state is consistent with our analysis of the protected
spectrum.

5.5.2 1L ⊗ 3R Sector

The general two-body state with Q to the left of Q̄ is

|Ψ1⊗3〉 =
∑

x1<x2

Ψ1⊗3(x1, x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉1⊗3 (5.81)

The action of the Hamiltonian for x2 = x1 + 1 is now

g2H·Ψ1⊗3(x, x+1) = 8g2Ψ1⊗3(x, x+1)−2gǧΨ1⊗3(x−1, x+1)−2gǧΨ1⊗3(x, x+2) .
(5.82)

Writing
Ψ1⊗3(x1, x2) = ei(p1x1+p2x2) + S1⊗3(p2, p1)e

i(p1x2+p2x1) , (5.83)

we find

S1⊗3(p1, p2; κ) = −1 + eip1+ip2 − 2(κ− 1
κ
)eip1

1 + eip1+ip2 − 2(κ− 1
κ
)eip2

, (5.84)

which is again the S-matrix of the XXZ chain, now with ∆ = κ − 1
κ
. The

S-matrix blows up for

eip2 =
1 + ei(p1+p2)

2(κ− 1
κ
)

. (5.85)
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This pole is associated to an anti-bound state. Parametrizing p1 = P/2−iq+π,
p2 = P/2 − iq − π, the location of the pole is given by

e−q =
cos(P

2
)

κ− 1
κ

. (5.86)

Normalizability of the wave-function requires q > 0, which occurs for a re-
stricted range of P for κ∗ < κ < 1, and for the full range of P for κ < k∗,

2 arccos(
1

κ
− κ) < |P | < π for

√
5 − 1

2
< κ < 1 (5.87)

0 < |P | < π for 0 < κ <

√
5 − 1

2
.

Substituting in E(p1, p2; κ) we find the dispersion relation for the anti-bound
state,

[
QQ̄
]antibound
1L 3R

: E =
4(2 − κ2)

1 − κ2
− 4κ2

1 − κ2
sin2 P

2
, (5.88)

which is plotted as the red curve in the left column of Figure 2.2. The anti-
bound state is absent at the orbifold point κ = 1. For κ → 0, q → +∞,
so that the wave-function (5.69) localizes to two neighboring sites and in fact
coincides with the dimeric excitation M3 = (QQ̄)3 of N = 2 SCQCD; in the
limit we smoothly recover the M3 dispersion relation E(P ) = 8.

For Q̄Q scattering, we have

Š1⊗3(p1, p2; κ) = S1⊗3(p1, p2; 1/κ) = −1 + eip1+ip2 − 2( 1
κ
− κ)eip1

1 + eip1+ip2 − 2( 1
κ
− κ)eip2

. (5.89)

Now the pole corresponds to a bound state, indeed it occurs for p1 = P/2− iq,
p2 = P/2 + iq with q and P related as in (5.86). Clearly the allowed range of
P is as in (5.87). We find the dispersion relation

[
QQ̄
]bound
1L 3R

: E =
4κ2

(1 − κ2)
(1 − 2κ2 + sin2 P

2
) , (5.90)

which is plotted as the red curve in the right column of Figure 2.2.
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5.5.3 3L ⊗ 1R Sector

The scattering problem in the 3L⊗ 1R sector is solved by the same technique.
We find

S3⊗1(p1, p2) = Š3⊗1(p1, p2) − 1 , (5.91)

which coincides with the scattering matrix of free fermions, or with the ∆XXZ →
∞ limit of the S-matrix for the XXZ chain. Clearly there are no (anti-)bound
states.

5.5.4 1L ⊗ 1R Sector

The analysis for the 1L ⊗ 1R sector is slightly more involved because a two-
impurity state is not closed under the action of Hamiltonian: when Q and Q̄
are next to each other they can transform into φφ̄. The general state for QQ̄
scattering in the singlet sector is

|Ψ1⊗1〉 =
∑

x1<x2

Ψ1⊗1(x1, x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉1⊗1

+
∑

x

Ψφ̄(x)| . . . φφ̄(x)φ . . .〉

The first term is an eigenstate for “bulk” action of the Hamiltonian (x2 >
x1 + 1) with the usual eigenvalue E(p1, p2; κ) of equ.(5.65). The action of the
Hamiltonian for x2 = x1 + 1 is

g2H · Ψ1⊗1(x, x+ 1) = 4(g2 + ǧ2)Ψ1⊗1(x, x+ 1)

−2gǧΨ1⊗1(x− 1, x+ 1) − 2gǧΨ1⊗1(x, x+ 2)

+2g2Ψφ̄(x) + 2g2Ψφ̄(x+ 1) .

Furthermore,

g2H · Ψφ̄(x) = 6g2Ψφ̄(x) − g2Ψφ̄(x+ 1) − g2Ψφ̄(x− 1)

+2g2Ψ1⊗1(x, x+ 1) + 2g2Ψ1⊗1(x− 1, x) .

We take the ansatz

Ψ1⊗1(x1, x2) = ei(p1x1+p2x2) + S1⊗1(p2, p1)e
i(p1x2+p2x1)

Ψφ̄(x) = Sφ̄(p2, p1)e
i(p1+p2)x

Note that S1⊗1(p1, p2) still has the interpretation of the scattering matrix of
the magnons Q and Q̄, which are the asymptotic excitations, while φ̄ is an
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“unstable” excitations created during the collision of Q and Q̄. We find

S1⊗1(p1, p2) = −
(

1 + eip1+ip2 − 2(κ− 1
κ
)eip1

1 + eip1+ip2 − 2(κ− 1
κ
)eip2

)(
1 + eip1+ip2 − 2κeip1

1 + eip1+ip2 − 2κeip2

)−1

Sφ̄(p1, p2) =
4iei(p1+p2)(sin p1 − sin p2)

(1 + eip1+ip2 − 2κeip1)(1 + eip1+ip2 − 2(κ− 1
κ
)eip2)

.

S1⊗1 is the product of two factors, and it admits two poles. The first factor
coincides with S1⊗3, so its pole is associated to an anti-bound state entirely
analogous to the anti-bound state in the 1L ⊗ 3R sector. The pole is located
at p1 = P/2 − iq + π, p2 = P/2 + iq − π, with

e−q =
cos(P/2)

1
κ
− κ

. (5.92)

The dispersion relation is again

[
QQ̄
]antibound
1L 1R

: E =
4(2 − κ2)

1 − κ2
− 4κ2

1 − κ2
sin2 P

2
, (5.93)

and the range of P for which the wave-function is normalizable is as in (5.87)
– see the red curve in the left column of Figure 2.2. It is interesting to analyze
the explicit form of the wave-function in the κ → 0 limit. The QQ̄ piece has
the form

Ψ1⊗1(x1, x2) = (−1)x2−x1eiP (
x1+x2

2
)e−q(x2−x1) , q → ∞ (5.94)

so only the x2 = x1 + 1 term survives in the limit, and we recover the dimeric
impurity M1 of SCQCD. A short calculation gives

Ψφ̄(x)

Ψ(x, x+ 1)
|κ→0 =

2

(1 + eiP )
. (5.95)

Comparison with (??) shows that that in the κ→ 0 limit the antibound state
in the QQ̄ singlet sector becomes precisely the dimeric excitation T̃ of SCQCD.

The pole in the second factor of S1⊗1 o corresponds instead to a bound
state, with

eq =
cos(P/2)

κ
. (5.96)
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The dispersion relation and range of existence are

[
QQ̄
]bound
1L 1R

: E = 4 sin2 q

2
, 0 < |P | < 2 arccosκ , (5.97)

which are shown as the green curve on the left column of Figure 2.2. This
bound state is absent at the orbifold point and comes into full existence (for
any P ) in the SCQCD limit κ → 0. The natural guess is that in this limit it
reduces to the gapless T (p) magnon of SCQCD, and it does:

Ψφ̄(x)

Ψ(x, x+ 1)
|κ→0 = −1 + e−iP

2
, (5.98)

in agreement with (5.34).

5.5.5 Summary

We have seen that the two-body scattering problem in the spin-chain of the
interpolating SCFT admits a rich spectrum of bound and anti-bound states.
The results are summarized in Table 5.6 and Figure 5.7. The QQ̄ scattering
channel (that is, the channel with Q to the left of Q̄, and the φ vacuum on
the outside) is the one relevant to make contact with N = 2 SCQCD, which is
obtained in the κ → 0 limit. Remarkably, the magnon excitations of SCQCD
are recovered as the smooth limits of the QQ̄ (anti)bound states: as κ → 0
the wavefunctions of the (anti)bound states localize to two neighboring sites
and reproduce the “dimeric” magnons T (p), T̃ (p) and M3(p) of SCQCD.

5.5.6 Let/right factorization of the two-body S-matrix

As is well-known, the magnon excitations of the N = 4 SYM spin-chain trans-
form in the fundamental representation of SU(2|2) × SU(2|2), and their two-
body S-matrix factorizes into the product of the S-matrices for the “left” and
“right” SU(2|2). The Z2 orbifold preserves this factorization. Remarkably,
this left/right factorization persists even away from the orbifold point, for the
full interpolation SCFT – or at least this is what happens at one-loop in the
scalar sector. Our results for the S-matrix in the QQ̄ channel in the four dif-
ferent SU(2)L × SU(2)R sectors are summarized in Table 5.8, where we have
defined

S(p1, p2, κ) ≡ −1 − 2κeip1 + ei(p1+p2)

1 − 2κeip2 + ei(p1+p2)
(5.99)
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Pole of S-matrix Range of existence Dispersion relation

M33 e−q = 1
κ

cos(P
2
) 2 arccosκ < |P | < π 4 sin2(P

2
)

T eq = 1
κ

cos(P
2
) 0 < |P | < 2 arccosκ 4 sin2(P

2
)

T̃ e−q =
cos(P

2
)

(κ− 1
κ
)

See equ.(5.87) 4κ2

(1−κ2)
( 2
κ2 − 1 − sin2 P

2
)

M3 e−q =
cos(P

2
)

(κ− 1
κ
)

See equ.(5.87) 4κ2

(1−κ2)
( 2
κ2 − 1 − sin2 P

2
)

M̌33 e−q = κ cos(P
2
) 0 < |P | < π 4κ2 sin2(P

2
)

Ť eq = κ cos(P
2
) No solution

ˇ̃T e−q =
cos(P

2
)

(κ− 1
κ
)

2 arccos( 1
κ
− κ) < |P | < π 4κ2

(1−κ2)
(1 − 2κ2 + sin2 P

2
)

M̌3 e−q =
cos(P

2
)

(κ− 1
κ
)

2 arccos( 1
κ
− κ) < |P | < π 4κ2

(1−κ2)
(1 − 2κ2 + sin2 P

2
)

Table 5.6: Dispersion relations and range of existence of the various
(anti)bound states in two-body scattering. The first three entries correspond
to the QQ̄ channel and the last three entries to the Q̄Q channel. The color-
coding of the third entry is a reminder that these are anti-bound states with
energy above the two-particle continuum.

i.e. the standard S-matrix of the XXZ chain, with ∆XXZ = κ.

S(p1, p2, 1) = SSU(2)(p1, p2) (5.100)

S(p1, p2, 0) = −1 (Free fermion) (5.101)

S(p1, p2,±∞) = −ei(p1−p2) (Free Boson?) (5.102)

We see that we can write

S(p1, p2; κ) =
SL(p1, p2; κ)SR(p1, p2; κ)

S3⊗3(p1, p2; κ
(5.103)

where SL and SR are defined in Table 5.9.
In the analysis of the Yang-Baxter equation, it will be useful to write the

S-matrices in both the SU(2)L and SU(2)R sectors using the identity (I) and
trace (K) tensorial structures,

SL(p1, p2; κ) = AL(p1, p2; κ) I +BL(p1, p2; κ) K (5.104)

SR(p1, p2; κ) = AR(p1, p2; κ) I +BR(p1, p2; κ) K . (5.105)
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QQ̄ scattering channel Q̄Q scattering channel

κ = 0.999

κ = 0.65

κ = −1+
√

5
2

κ = 0.35

κ = 0.001

Table 5.7: Plots of the dispersion relations of the (anti)bound states for dif-
ferent values of κ. The shaded region represents the two-particle continuum.
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L⊗ R S(p1, p2, κ)

1 ⊗ 1 −S(p1, p2, κ− 1
κ
)S−1(p1, p2, κ)

1 ⊗ 3 S(p1, p2, κ− 1
κ
)

3 ⊗ 1 −1

3 ⊗ 3 S(p1, p2, κ)

Table 5.8: The S-matrix in the QQ̄ scattering channel.

SU(2)L SL(p1, p2; κ) SU(2)R SR(p1, p2; κ)

1 S(p1, p2; κ− 1
κ
) 1 −1

3 S(p1, p2; κ) 3 S(p1, p2; κ)

Table 5.9: Definitions of the SU(2)L and SU(2)R S-matrices.

Writing the indices explicitly,

(SR)MN
IJ = AR δMI δNJ +BR gIJ g

MN , (5.106)

Recalling that eigenvalue of K on the triplet is zero while it is two on the
singlet, we see that

A = S3 (5.107)

B =
1

2
(S1 − S3) , (5.108)

where the values of S1 and S3 in both the SU(2)L and SU(2)R sectors can be
read off from Table 5.9.

In complete analogy, in the Q̄Q channel we have the factorization

Š(p1, p2; κ) =
ŠL(p1, p2; κ)ŠR(p1, p2; κ)

Š3⊗3(p1, p2; κ
, (5.109)

and we can write

ŠL = ǍL I + B̌L K (5.110)

ŠR = ǍR I + B̌R K . (5.111)

As always, each “checked” quantity is obtained from the corresponding unchecked
one by sending κ→ 1/κ.
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=

p1 p2 p3 p1 p2 p3

I J K I J K

M N

I ′ J ′ K′ I ′ J ′ K′

L L

PN

Figure 5.2: Yang Baxter equation for Orbifold theory

5.6 Yang-Baxter Equation

Integrability of the spin chain is the statement of existence of infinitely many
conserved charges or equivalently it amounts to factorization of many body
scattering matrix into two body scattering matrices. The exact check of this
statement could be quite hard for a generic spin chain.

The factorization of many body scattering matrix in particular implies that
the three body scattering matrix should factor. For integrable systems the
three body scattering process, diagrammatically, can be denoted as product of
two body scatterings in two ways as in figure 5.2. Integrability implies that the
two body scatterings should “commute” and hence both the processes should
be equivalent. This is the statement of “coordinate” Yang Baxter equation.
This should necessarily hold if the system is integrable but of course it is not
a sufficient condition.

We check this condition as it is the simplest step towards the exploring
the integrability of the system. Failure to satisfy this condition would nec-
essarily mean that the system is not integrable. For the system that we are
studying, the Yang Baxter equation factorizes into two equations on account
of factorization of the full scalar two body scattering matrix into SU(2)L and
SU(2)R sectors. So the problem of checking the Yang Baxter equation for
SU(2)L ⊗ SU(2)R spin chain reduces to checking it for SU(2)L and SU(2)R
sectors separately. It will be satisfied for the full spin chain if and only if it is
satisfied for both the SU(2) sectors.

Let us start with a generic SU(2) spin chain which can be either SU(2)L
or SU(2)R spin chains in that it has two types of excitations Q and Q̄ and
transmission coefficient is zero.

The figure 5.2 represents the three body Yang Baxter equation to be veri-
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fied. Written explicitly in indices, this equation is:

SMN
IJ (p1, p2)Š

LK′

NK (p1, p3)S
I′J ′

ML (p2, p3) = ŠJ ′K′

LP (p1, p2)S
I′L
IN (p1, p3)Š

NP
JK (p2, p3)

(5.112)
We simplify the equation by decomposing the two body scattering matrices
into identity and trace piece as described in the previous section. While writ-
ing the following equation, we suppress the momentum arguments with the
convention that the first symbol in each term is a function of (p1, p2), the sec-
ond is function of (p1, p3) and the third (p2, p3). We do not change the order
of symbols while simplifying the expression.

SMN
IJ (p1, p2)Š

LK′

NK (p1, p3)S
I′J ′

ML (p2, p3)

= AǍAδK
′

K δ
I′

I δ
J ′

J + B̌BgJKδ
K′

I g
I′J ′

+BB̌AgIJ δ
I′

K g
J ′K′

+ (AǍB +BǍA+ 2BǍB +BB̌B)δK
′

K gIJ g
I′J ′

+ AB̌AgJKg
J ′K′

δI
′

I

The right hand side can be simplified in the same way,

ŠJ ′K′

LP (p1, p2)S
I′L
IN (p1, p3)Š

NP
JK (p2, p3)

= ǍAǍδI
′

I δ
J ′

J δK
′

K + ǍBB̌gI
′J ′

gJKδ
K′

I + B̌BǍgJ
′K′

gIJ δ
I′

K

+ ǍBǍgIJ g
I′J ′

δK
′

K + (ǍAB̌ + B̌AǍ+ 2B̌AB̌ + B̌BB̌)gJ
′K′

δI
′

I gJK

Collecting the terms with various index structures, the Yang Baxter equation
reduces to the following five equations.

AǍA = ǍAǍ (5.113)

AB̌B = ǍBB̌ (5.114)

BB̌A = B̌BǍ (5.115)

(AǍB +BǍA+ 2BǍB +BB̌B) = ǍBǍ (5.116)

AB̌A = (ǍAB̌ + B̌AǍ+ 2B̌AB̌ + B̌BB̌)(5.117)

The full Yang Baxter equation can be reduced to the check of above set of
equations for both SU(2)L and SU(2)R sectors. In SU(2)L sector,

AL(p1, p2, κ) = ǍL(p1, p2,
1

κ
) = S(p1, p2, κ) (5.118)

BL(p1, p2, κ) = B̌L(p1, p2,
1

κ
) =

1

2
(S(p1, p2, κ−

1

κ
) − S(p1, p2, κ))(5.119)
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while in SU(2)R sector,

AR(p1, p2, κ) = ǍR(p1, p2,
1

κ
) = S−1(p1, p2, κ) (5.120)

BR(p1, p2, κ) = B̌R(p1, p2,
1

κ
) = −1

2
(1 + S−1(p1, p2, κ)) . (5.121)

In the case of Z2 orbifold at g = ǧ hence S = Š and the nontrivial check
of Yang Baxter equation reduces to (5.116). It can be verified that (5.116)
is indeed satisfied at g = ǧ. Away from the orbifold point, the Yang Baxter
equation fails to be satisfied proving that the spin chain doesn’t remain inte-
grable under this marginal deformation. At κ = 0 i.e. for N = 2 SCQCD,
Yang Baxter equation is again satisfied giving us a hint towards the integra-
bility of SCQCD. There is a subtlety here. Strictly at κ = 0, the two body
scattering matrices in both SU(2)L and SU(2)R sectors become trivial and the
information about the bound states is lost. This can be seen from

In N = 2 SCQCD the nontrivial information that the spin chain contains
is about the dynamics of “bound states”. If we loose the information about
the bound state themselves at κ = 0 it would not amount to an indication
of the integrability of the SCQCD spin chain. Nonetheless, at infinitesimally
small κ, one could derive the S matrix of the bound states from the S matrix
of the fundamental excitations assuming integrability. We can check that the
failure to satisfy the Yang Baxter equation (i.e. the difference between the
left and right hand side of the set of equations) goes continuously to zero as
κ → 0. At infinitesimal κ the failure to satisfy the Yang Baxter equation is
infinitesimal. This could imply that the Yang Baxter equation for the bound
states as well is almost satisfied at small κ. In the limiting process of sending
κ to zero one could preserve the information about the bound state and show
that the Yang Baxter equation is satisfied.

If we assume that the failure to satisfy the Yang Baxter equation is in-
finitesimal for the bound state scattering matrix if it is infinitesimal for the
scattering matrix of the fundamental excitations then this would imply that
the Yang-Baxter equation is satisfied in the SCQCD. A concrete check would
amount to computing the scattering matrix of the bound states from the fun-
damental scattering matrix assuming the integrability of the spin chain and
then explicitly showing that at κ = 0, the bound state Yang Baxter equation
is satisfied.

In the case with g = ǧ, S = Š. Hence, in that case the check of the Yang
Baxter just reduces to (5.116). These equations are only satisfied at κ = 1
and κ = 0. This means that for κ 6= 0, 1 the spin chain is not integrable.
We know that the spin chain of the Z2 orbifold theory is integrable. This
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is consistent with the fact that Yang-Baxter equation is satisfied at κ = 1.
For κ = 0, however, we can see that this primitive check doesn’t rule out the
integrability.
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Chapter 6

Conclusions

In chapter 2 we considered a generic large N , non-supersymmetric field theory
that is “conformal in its single-trace sector”. In such a theory, quantum effects
induce double-trace couplings f

∫
d4xOŌ. If βf has no real zeros, conformal

invariance is broken. The symmetric vacuum 〈φ〉 = 0 is stable if and only if
βf has a fixed point. Conversely, if βf has no real zeros, dynamical symme-
try breaking occurs. The field theory instability associated with double-trace
renormalization is the boundary counterpart of the instability associated with
a closed string tachyon in the AdS bulk. We showed that at large N the
double-trace beta function is quadratic in the coupling f , to all orders in per-
turbation theory, and ∆O is linear. If the discriminant of βf = 0 is negative,
there are no physical (real) values of f for which the theory is conformal. But
if we insist on formally preserving conformal invariance by tuning f to one of
its two complex fixed points, then the operator dimension also becomes com-
plex, ∆O = 2 ± i b(λ). Using the usual AdS/CFT dictionary we found that
the AdS5 scalar dual to O has mass m2(λ)R2 = −4 − b(λ)2 < m2

BF , i.e. it
is a true tachyon, and the bulk theory is unstable. Following research should
address the questions outlined below:

• Using this general framework we can study specific cases of non super-
symmetric field theories that are “conformal in their single-trace sec-
tor”. In our original paper [6], we presented two examples of non-
supersymmetric orbifolds while in our subsequent work [7] we studied
an open string example with intersecting D7 flavor branes. Further ex-
amples, including gamma deformations of N = 4 SYM, orientifolds of
N = 4 SYM1 and non-supersymmetric defect conformal field theory,
should be studied.

1Pedro Liendo is currently working on this case.
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• In [6] we showed that the double-trace beta function is quadratic in the
coupling to all orders in planar perturbation theory. Using integrability
techniques to calculate the coefficients v(λ), γ(λ) and a(λ) of the beta
function to all orders in λ and consequently the mass of the tachyon,
would provide a novel non-perturbative understanding of tachyons in
string theory.

• Finally, our formal work might have applications to real world systems.

For a second order phase transition the characteristic energy scale m
(inverse correlation length) near the ctitical point goes to zero as m ∼
|α−α∗|ν , where α is a parameter that can vary continuously and α = α∗

is the location of the critical point. For an other wide class of phase
transitions the correlation length vanishes exponentially on one side of
the phase transition, while being strictly zero on the other side

m ∼ ΛUV Θ (α− α∗) e
− c√

α−α∗ . (6.1)

This behavior has been observed before in the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition in two dimensions. For non-supersymmetric
field theories that are “conformal in their single-trace sector” the charac-
teristic energy scale m near the ctitical point always go to zero as in (6.1).
This is a consequence of the fact that the beta function is quadratic in
the coupling. As the discriminant D(λ) decreases, the two fixed points
approach each other until they merge at f± = f∗ for D(λ) = 0. For
D(λ) < 0 the solutions to β = 0 are complex, and the theory no longer
has a conformal phase. To see that the fixed point merger generically
gives rise to BKT scaling, we simply use our results from section 2 and
compute the ratio

µIR
µUV

= e−
π

b(λ) , (6.2)

which is identical to (6.1) after the identification D(λ) = α− α∗.

One example of such an application was presented in Rey’s talk at Strings
2007. He discussed the problem of graphene using a non-supersymmetric
defect conformal field theory. More examples with this behavior are
considered in [189, 190].

In chapter 3 we used the dictionary developed in chapter 2 to study the
specific example of the AdS5 × S5 background with two probe D7 branes in-
tersecting at general angles. In this case, supersymmetry is completely broken
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and an open string tachyon emerges between the branes. On the field the-
ory side we compute the one-loop Coleman-Weinberg effective potential for
the fundamental scalars and discover an instability. We identify the triplet
mesonic operator as the dual of the open string tachyon, calculate the tachyon
mass for small λ and find that it violates the AdS stability bound.

• The main unresolved puzzle from chapter 3 is to completely fix the func-
tions f(θ1, θ2) and d(θ1, θ2) in the quadratic potential.

• Combining the knowledge we gained from chapters 3 and 5 we could
study the integrability of the D3/D7 brane configuration with intersect-
ing D7 branes. The supersymmetric open spin chain with fundamental
matter has been studied [98] and found to be integrable. It would be
very interesting to check integrability for the non-supersymmetric case.
Demanding integrability would provide extra conditions for f(θ1, θ2) and
d(θ1, θ2) that might correctly fix them.

• An other followup of [7] would be to expand the Lagrangian around the
local minimum of the effective potential and recover the shape of the
recombined intersecting D7 branes after tachyon condensation with a
field theory calculation [91].

In chapter 4 we presented work on the direction of finding string theory
duals for gauge theories with genuinely less supersymmetry and unquenched
flavor. We searched for the gravity dual for N = 2 SU(Nc) SYM coupled
to Nf = 2Nc fundamental hypermultiplets using the Veneziano expansion of
large Nc and large Nf with the ratio Nf/Nc = 2 and λ = g2Nc kept fixed.
In order to advance this research program, additional steps are needed. Some
of these are described below. Integrability techniques have been proven an
extremely powerful tool in studying planar N = 4 SYM. The same integrability
structures arise both on the field theory and on its dual string theory side,
allowing a very precise check of the AdS/CFT correspondence. In chapter
5 we began the “ bottom-up” study of the field theory dilation operator, by
calculating it at one-loop for the scalar sector. Following this line of research
there are many open questions we should assess:

• An important open question is whether the one-loop spin chain for N = 2
SCQCD is integrable. The spin chain for the Z2 orbifold of N = 4 SYM
(which by definition has ǧ = g) is known to be integrable [63]. In chapter
5 we find that as we move away from the orbifold point integrability is
broken. Indeed for general κ = ǧ/g the Yang-Baxter equation for the
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two-magnon S-matrix does not hold. Remarkably however the Yang-
Baxter equation is satisfied again in the N = 2 SCQCD limit κ → 0.
Ordinarily a check of the Yang-Baxter equation is very strong evidence in
favor of integrability. In our case we should be more cautious. Strictly at
κ = 0 the Yang-Baxter equation for the elementary magnons trivializes –
what is really relevant is the S-matrix of their dimeric bound states. But
since for infinitesimal κ the Yang-Baxter equation for the S-matrix of
the elementary magnons fails only infinitesimally, we can hope that the
the S-matrix of their dimeric bound states will also fail infinitesimally,
and that the theory really becomes integrable for κ → 0. While this
intuitive argument is a reason for optimism, it is no substitute for a
careful calculation of the bound-state S-matrix, which should be carried
out.

• The next step is to compute the complete one-loop Hamiltonian of N = 2
SCQCD (and for the deformed orbifold theory) for all possible sectors,
including fermions and derivatives. In [9] we computed the one-loop
Hamiltonian for the scalar sector that turns out to be the hardest. The
other sectors look simpler and shall provide a complete understanding of
the problem [12, 191, 192]. What is more, we should proceed to higher
loops [193], especially using algebraic techniques as in [194] and check
the integrability of N = 2 SCQCD to all orders in perturbation theory.

• On the dual side, the most important question is to find the precise
supergravity solution. Studying the massless spectrum of the non-critical
theory, it seems that there is a low energy supergravity description, that
is an SO(4) (non-maximally) gauged supergravity in seven dimensions
(after reduction on the cigar circle) since it has the same spectrum. The
conjecture is that this should be the appropriate supergravity dual for
the strong coupling of N = 2 SCQCD. This supergravity was recently
written by Martin Weidner in his PhD thesis “Gauged Supergravities in
Various Spacetime Dimensions” [178]. This type of observation might
be more general, and one may be able to find non-maximally gauged
supergravities for several noncritical string theories in various dimensions
[188]. In [178] a very comprehensive review of several non-maximally
gauged supergravities is presented.

• Ultimately an accurate description of the string dual will require the full
non-critical sigma-model in RR background. It would be very interesting
to start with the sigma-model for type IIB AdS5 × S5/Z2, which can
be quantized either in the generalized light-cone gauge or in the pure-
spinor formalism, and understand the transition to a non-critical sigma-
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model in the limit κ → 0. This may well be the simplest instance of
such a transition. We should learn the rules of the game in this highly
symmetric example.

• The deformed orbifold theory is not integrable (as we show in [9]), yet
it would be highly nontrivial to compute the scattering matrix from
the sting theory side and match it (qualitatively; the two calculations
are done in different regimes) with the field theory calculation following
the N = 4 matching [195, 196]. To achieve that, one would first have
to have the worldsheet theory of the type IIB AdS5 × S5/Z2 deformed
orbifold with the non-zero B-field in either Green-Schwarz or pure spinor
formalism.

• The Wilson loop calculation, following the methods developed by Vasily
Pestun [197], will immediately reveal whether the AdS scale is small or
can be large. In [198] this calculation was performed. We should use it
to make a statement about the size of AdS.

• The c and a conformal anomaly coefficients are equal at large N for all
the known field theories with AdS duals. For N = 2 SCQCD it is well
known from the field theory side that c 6= a. We should compute the c
and a anomalies from the gravity side and match the field theory result.
As discussed in chapter 4, the imbalance between c and amust arise from
higher-curvature terms in the AdS5 gravity theory. The stringy origin
of these higher curvature terms is the Wess-Zumino action of the flavor
branes.

• A more ambitious, but very interesting step would be to study deviations
from conformality |Nf − 2Nc| = ǫ. There are some ten dimensional
examples that might help, like [112, 114] and N = 1∗ mass deformations
of N = 4 [199].

• We should try to carry on a similar analysis for N = 1 SU(Nc) SYM
coupled to Nf fundamental chiral multiplets in the conformal window.

As we move to more realistic theories, complete integrability is expected
to be lost, but many ideas and techniques developed in the context of N = 4
SYM will continue to be useful. One long-term research direction, would be
to understand more systematically the criteria for a theory to be integrable,
and to investigate how we can use part of the integrability machinery for non-
integrable theories. For example, given an exact AdS/CFT duality, one may
consider the S-matrix of magnon excitations of the field theory spin chain
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[196], and compare it with the analogous S-matrix of the dual sigma model
on the AdS side. In the presence of integrability, the n-body S-matrix is com-
pletely determined in terms of the 2-body S-matrix, greatly facilitating the
quantitative analysis. However, the AdS/CFT correspondence is logically in-
dependent of integrability, and in principle one should always be able to match
the field theory and string theory S-matrices. While a precise extrapolation
from weak to strong coupling will be difficult for non-integrable theories, qual-
itative checks should always be possible.
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Appendix A: Intersecting D7

Flavor Branes

A.1 The Supersymmetric Field Theory

In this appendix we spell out our conventions and write the N = 2 supersym-
metric action for the usualD3/D7 system [71]. We first present the Lagrangian
in N = 1 superspace and then in components. Unless otherwise stated, we
follow the superspace notations of [88].

As familiar, the N = 4 vector multiplet decomposes into an N = 1 vector
multiplet,

V = θ̄σµθA µ + iθ2θ̄λ̄− iθ̄2θλ+ θ2θ̄2D (Wess-Zumino gauge) (A.1)

and three chiral multiplets

Φa = φa + θχa − θ2F a , a = 1, 2, 3 , (A.2)

all in the adjoint representation of the SU(N) gauge group. For zero theta
angle, the superspace Lagrangian reads

LN=4 = Tr

[∫
d4θ e−gV Φ̄a e

gV Φa +

∫
d2θW 2 +

(
i g

3!

∫
d2θ ǫabc Φa

[
Φb, Φc

]
+ h.c.

)]
,

(A.3)

where Wα ≡ iD̄2DαV is the usual field strength chiral superfield. In this
N = 1 language, only an SU(3)R×U(1)r subgroup of the SU(4)R R-symmetry
is visible. The SU(3)R rotates the three chiral superfields leaving V invariant,
while the U(1)r is the usual N = 1 R-symmetry, with the chiral superfields
having charge 2/3. 1

1Note that we are making a graphical distinction between this U(1)r symmetry and the
U(1)R symmetry defined in (B.23). See the footnote in Appendix A.2.
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In components2,

LN=4 = Tr

[
− 1

4
F µνFµν − iλ̄Aσ̄

µDµλ
A − 1

2
DµX̄ABDµX

AB (A.4)

+ i
√

2 g XAB λ̄Aλ̄B − i
√

2 g X̄ABλ
AλB − g2

4
[XAB, XCD] [X̄CD, X̄AB]

]
,(A.5)

where A,B = 1, . . . , 4. The scalars XAB are related to the three complex
scalars φa as

XAB =




0 φ3 φ2 φ1

−φ3 0 φ∗
1 −φ∗

2

−φ2 −φ∗
1 0 φ∗

3

−φ1 φ∗
2 −φ∗

3 0




(A.6)

and obey the self-duality constraint (3.1).
We can also think the N = 4 vector multiplet as an N = 2 vector multiplet

(comprising V and Φ3) and an N = 2 hyper multiplet (comprising Φ1 and Φ2).
We wish to couple the N = 2 vector multiplet (V,Φ3) to Nf “flavor” hyper
multiplets in the fundamental representation of the gauge group. Each N = 2
flavor hyper multiplet decomposes into two N = 1 chiral multiplets

Q = q + θψ − θ2f and Q̃ = q̃ + θψ̃ − θ2f̃ ,

where Q is in the fundamental representation of SU(N) and Q̃ in the an-
tifundamental representation. In N = 1 superspace, the flavor part of the
Lagrangian reads3

Lhyper =

∫
d4θ Q̄i e

gV Qi +

∫
d4θ Q̃i e

−gV ¯̃Qi +

(
g

∫
d2θ Q̃i Φ

3 Qi + h.c.

)
,(A.7)

where i = 1, . . . , Nf is a flavor index. In components,

Lhyper = −DµQ̄I iDµQ
I i − iψ̄iσ̄

µDµψ
i − iψ̃iσ

µDµ
¯̃ψ i (A.8)

2In going from superspace to components, we redefine the coupling, gsuperspace =√
2gcomponents, to recover the usual normalization.

3Strictly speaking, this is the Lagrangian for gauge group U(N). For SU(N) there is a
O(1/N) correction to the Q4 potential, which we neglect since we are interested in the large
N limit.
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−
√

2 i g ψ̃iX
12ψi +

√
2 i g ψ̄iX̄12

¯̃
ψ i (A.9)

+ig
√

2Q̄I iΛ̄
I ¯̃
ψ i − ig

√
2ψ̃iΛIQ

I i + ig
√

2Q̄I iǫ
IJΛJψ

i − ig
√

2ψ̄iΛ̄
IǫIJQ

J i

(A.10)

− 1

2
g2Q̄I iX̄ABX

ABQI i − g2Q̄J iXIK̂X JK̂QI i . (A.11)

− g2

2
(Q̄I i ·QJ j)(Q̄J j ·QI i) − g2ǫIKǫ

LJ (Q̄L i ·QK j)(Q̄J j ·QI i) . (A.12)

Following [98], we have introduced the SU(2)R doublets

QI ≡
(

q

q̃∗

)
, ΛI ≡

(
λ1

λ2

)
=

(
λ

−χ3

)
, I = 1, 2 . (A.13)

The other two Weyl spinors can be assembled into an SU(2)L doublet,

Λ̂Î ≡
(
λ3

λ4

)
=

(
−χ2

−χ1

)
, (A.14)

which does not couple to the flavor hyper multiplets. Note that to avoid
cluttering we keep color indices implicit. Color contractions are almost always
obvious. When ambiguity may arise, we indicate the contraction with a dot.
For example in the term

(Q̄I i ·QJ j)(Q̄J j ·QI i) (A.15)

the first pair is color contracted, and so is the second pair.
The Q4 term in the Lagrangian can be written more compactly by in-

troducing flavor-contracted composite operators, in the adjoint of the gauge
group,

M Ia
J b ≡

1√
2
Q a

J i Q̄
I i
b , (A.16)

which may be decomposed into the SU(2)R singlet and triplet combinations

M1 ≡ M I
I and M I

3J ≡ M I
J − 1

2
M K

K δIJ . (A.17)
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In terms of the component fields q and q̃,

M1 =
1√
2

(q q̄ + ¯̃q q̃) (A.18)

M3+ = q q̃

M30 =
1√
2

(q q̄ − ¯̃q q̃)

M3− = q̃∗ q∗ ,

where the superscripts refer to the eigenvalues under the Cartan generator of
SU(2)R. The F and F̄ auxiliary fields couple to M3±, while the D auxiliary
field couples to M30. Thus the Q4 scalar potential is the square of the triplet
composite,

LQ4 = −g2 TrM3 M3 ≡ −g2 Tr [2M3+M3− + M30M30] . (A.19)

Finally, let us write the Q4 potential using the gauge-invariant mesonic oper-
ators. The explicit expressions of the mesons in components are

Oij
1

=
1√
2

(
qi a q̄j a + ¯̃qi a q̃j a

)
(A.20)

Oij
3+ = qi a q̃j a

Oij
30 =

1√
2

(
qi a q̄j a − ¯̃qia q̃j a

)

Oij
3− = q̃∗ i a q∗j a .

Withe these definitions,

LQ4 = −g
2

2
Tr
(
3Oij

1
Oij

1
−Oij

3
Oij

3

)
. (A.21)

A.2 The Field Theory for General Angles

In this appendix we derive the Lagrangian dual to the system with two flavor
branes at general angles, up to an ambiguity in the Q4 terms of the scalar
potential, for which we give a general parametrization. As explained in the
text, we need to rotate the N = 4 fields (including in principle the auxiliary
fields) in the terms of the Lagrangian where they are coupled to the second
hyper multiplet.
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A.2.1 R-symmetry rotations of the N = 4 fields

Rotation of the Xm scalars in the 49 plane (with angle θ1) and in the 85 plane
(with angle θ2) is performed by the matrix

R(6)(θ1, θ2) =




cos θ1 0 0 0 0 − sin θ1

0 cos θ2 0 0 sin θ2 0

0 0 1 0 0 0

0 0 0 1 0 0

0 − sin θ2 0 0 cos θ2 0

sin θ1 0 0 0 0 cos θ1




(A.22)

A short calculation using the the Clebsh-Gordon coefficients (5.10) gives the
corresponding SU(4)R transformation for the fermions λA,

R(4)(θ1, θ2) =




cos
(
θ1−θ2

2

)
0 i sin

(
θ1−θ2

2

)
0

0 cos
(
θ1+θ2

2

)
0 i sin

(
θ1+θ2

2

)

i sin
(
θ1−θ2

2

)
0 cos

(
θ1−θ2

2

)
0

0 i sin
(
θ1+θ2

2

)
0 cos

(
θ1+θ2

2

)



.(A.23)

For completeness, we also list the SU(4)R transformations corresponding to
various U(1) subgroups. The subgroup U(1)R (see (B.23)) corresponds to an
89 rotation:




eiθ89/2

eiθ89/2

e−iθ89/2

e−iθ89/2



. (A.24)
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Rotations in the 45 and 67 planes are given respectively by




eiθ45/2

e−iθ45/2

e−iθ45/2

eiθ45/2




(A.25)




eiθ67/2

e−iθ67/2

eiθ67/2

e−iθ67/2



.

Finally the U(1)r symmetry of N = 1 superspace is

r =




e−ir

e+ir/3

e+ir/3

e+ir/3



. (A.26)

Ideally, at this point we would provide the corresponding SU(4)R transforma-
tion of the F and D auxiliary fields. An unsuccessful attempt to find such
transformation rules using the formalism of [87, 88] is described in Appendix
A.3.

Clearly, the N = 4 part does not depend on the angles, since SU(4)R is an
exact symmetry,

Ltotal(θ) = LN=4 + Lhyper(θ) . (A.27)

We write

Lhyper(θ) = Lkin + L(1)
Y ukawa + L(1)

Q̄X2Q

+L(2)
Y ukawa(θ) + L(2)

Q̄X2Q
(θ) + LQ4(θ) , (A.28)

where the superscripts (1) and (2) refer to the first and second flavor, respec-

tively. We have indicated which terms are θ dependent. The terms L(2)
Y ukawa(θ)

and L(2)

Q̄X2Q
(θ) are fixed unambiguously by the transformations (A.22, A.23).

By contrast to determine LQ4(θ) we would need an off-shell superspace formu-
lation for the N = 4 multiplet, which is not available at present.
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The terms that we can fix are:

Lkin = −Dµq̄iDµq
i −Dµq̃iDµ

¯̃qi − iψ̄iσ̄
µDµψ

i − iψ̃iσ
µDµ

¯̃
ψ i (A.29)

L(1)
Y ukawa = −

√
2ig ψ̃1 λ1 q

1 −
√

2ig q̃1 λ1 ψ
1 −

√
2ig ψ̄1 λ̄

2 q1 −
√

2ig ψ̃1 λ2 q̃
∗ 1

−i g ψ̃1 (X8 + iX9)ψ
1 + h.c. (A.30)

L(1)

Q̄X2Q
= −i g2 q∗1

(
[X4 , X6 ] + i [X4 , X7 ] + i [X5 , X6 ] − [X5 , X7 ]

)
q̃∗ 1

−i g2 q̃1

(
[X4 , X6 ] − i [X4 , X7 ] − i [X5 , X6 ] − [X5 , X7 ]

)
q1

+ i g2 q∗1

(
[X4 , X5 ] + [X6 , X7 ]

)
q1

− i g2 q̃1

(
[X4 , X5 ] + [X6 , X7 ]

)
q̃∗ 1

− g2 q∗1

(
X2

8 +X2
9

)
q1 − g2 q̃1

(
X2

8 +X2
9

)
q̃∗ 1 (A.31)

L(2)
Y ukawa(θ) = −

√
2ig cos

(
θ1 − θ2

2

)
ψ̃2 λ1 q

2 +
√

2g sin

(
θ1 − θ2

2

)
ψ̃2 λ3 q

2

−
√

2ig q̃2 cos

(
θ1 − θ2

2

)
λ1 ψ

2 +
√

2g q̃2 sin

(
θ1 − θ2

2

)
λ3 ψ

2

−
√

2ig cos

(
θ1 + θ2

2

)
ψ̄2 λ̄

2 q2 −
√

2g sin

(
θ1 + θ2

2

)
ψ̄2 λ̄

4 q2

−
√

2ig cos

(
θ1 + θ2

2

)
ψ̃2 λ2 q̃

∗ 2 +
√

2g sin

(
θ1 + θ2

2

)
ψ̃2 λ4 q̃

∗ 2

− i g ψ̃2 (cos θ2X8 + sin θ2X5 + i cos θ1X9 − i sin θ1X4)ψ
2 + h.c.

(A.32)
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L(2)

Q̄X2Q
(θ) =

− i g2 q∗2

(
cos θ1 ([X4 , X6 ] + i [X4 , X7 ]) + cos θ2 (i [X5 , X6 ] − [X5 , X7 ])

)
q̃∗ 2

− i g2 q̃2

(
cos θ1 ([X4 , X6 ] − i [X4 , X7 ]) + cos θ2 (−i [X5 , X6 ] − [X5 , X7 ])

)
q2

− i g2 q∗2

(
− sin θ1 ([X9 , X6 ] + i [X9 , X7 ]) + sin θ2 (i [X8 , X6 ] − [X8 , X7 ])

)
q̃∗ 2

− i g2 q̃2

(
− sin θ1 ([X9 , X6 ] − i [X9 , X7 ]) + sin θ2 (−i [X8 , X6 ] − [X8 , X7 ])

)
q2

+ i g2 q∗2

(
cos θ1 cos θ2 [X4 , X5 ] + [X6 , X7 ] − sin θ1 sin θ2 [X8 , X9 ]

)
q2

+ i g2 q∗2

(
cos θ1 sin θ2 [X4 , X8 ] − sin θ1 cos θ2 [X5 , X9 ]

)
q2

− i g2 q̃2

(
cos θ1 cos θ2 [X4 , X5 ] + [X6 , X7 ] − sin θ1 sin θ2 [X8 , X9 ]

)
q̃∗ 2

− i g2 q̃2

(
cos θ1 sin θ2 [X4 , X8 ] − sin θ1 cos θ2 [X5 , X9 ]

)
q̃∗ 2

− g2 q∗2

( ∣∣∣ cos θ2X8 + sin θ2X5

∣∣∣
2

+
∣∣∣ cos θ1X9 − sin θ1X4

∣∣∣
2
)
q2

− g2 q̃2

( ∣∣∣ cos θ2X8 + sin θ2X5

∣∣∣
2

+
∣∣∣ (cos θ1X9 − sin θ1X4)

∣∣∣
2
)
q̃∗ 2 .

A.2.2 Parametrizing the Q4 potential

Writing

− LQ4(θ1, θ2) = VQ4
1
+ VQ4

2
+ VQ2

1Q
2
2
(θ1, θ2) , (A.33)

it is clear that the terms VQ4
1

and VQ4
2

(involving respectively only the scalars
of the first and second hyper multiplet) are unaffected by the rotation. Indeed
if we set to zero one of the two hyper multiplets we must recover the standard
supersymmetric Lagrangian (possibly after a change of variables: if we set to
zero the first hyper multiplet in (A.28) we must rotate back the X and λ fields
to restore Q̄X2Q and Yukawa terms to the standard form).

Recall (Appendix A.1) that the potential for a single flavor Q1 is

VQ4
1

= Tr
[
2M11

3+M11
3− + M11

30M11
30

]
, (A.34)

where M11
3

∼ (Qi=1Q̄
i=1)3 is the color–adjoint composite in the triplet of

SU(2)R containing only scalars in the first flavor i = 1 (compare with (A.17)),
and similarly of course for VQ4

2
, with M11

3
→ M22

3
∼ (Qi=2Q̄

i=2)3. The mixed
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terms can be parametrized by two unknown functions of the angles,

VQ2
1Q

2
2

= 2 g2 Tr
[
f (θ1, θ2)

(
M11

3+M22
3− + M11

3−M22
3+

)
+ d (θ1, θ2) M11

30M22
30

]
.

(A.35)

We have imposed neutrality of the potential under a Cartan generator U(1) ⊂
SU(2)R. This U(1) is preserved for general θ1, θ2 and corresponds geometri-
cally to rotations in the 67 plane. When one of the two angles is zero, say
θ2 = 0, an SU(2) symmetry is preserved, corresponding geometrically to rota-
tions in the 567 directions, which is a certain diagonal combination of SU(2)L
and SU(2)R. The hyper multiplets are neutral under SU(2)L, so under a 567
rotation they just undergo just an SU(2)R. It follows that for θ2 = 0 the Q4

must be SU(2)R invariant and the functions f and d are related as

f (θ, 0) = d (θ, 0) . (A.36)

The only assumption we have made in writing (A.35) is that the rotation does
not introduce any terms containing the SU(2)R singlet composites M11

1
and

M22
1

. This is generally the case if the rotated Lagrangian can be obtained from
some off-shell superspace formulation of N = 4 SYM with manifest SU(4)R
symmetry. Indeed we know that for zero angles the N = 4 auxiliary fields
only couple to M3, and rotating the auxiliary fields can never generate M1.

When θ1 = θ2 = θ N = 1 supersymmetry is preserved, and the SU(4)
R-symmetry transformation corresponds to a matrix R(4) ⊂ SU(3), which
acts on F a leaving D invariant. This is a manifest symmetry of the N = 1
superspace formulation. As reviewed in Appendix A.3, in this special case one
can unambiguously find

f (θ, θ) = cos θ (A.37)

d (θ, θ) = 1 .

Further constraints follow from discrete symmetries. The 89 reflection
X8, X9 → −X8,−X9 corresponds

θ1 , θ2 → −θ1 ,−θ2 . (A.38)

Invariance of the Q4 potential under this parity symmetry implies

f (θ1, θ2) = f (−θ1,−θ2) (A.39)

d (θ1, θ2) = d (−θ1,−θ2) . (A.40)
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Similarly, invariance under the discrete symmetry X4 ↔ X5 and X8 ↔ X9, or

θ1 ↔ θ2 , (A.41)

implies

f (θ1, θ2) = f (θ2, θ1) and d (θ1, θ2) = d (θ2, θ1) . (A.42)

Unfortunately this set of relations is not sufficient to fix the functions f and
d uniquely.

A crucial assumption we shall make is positivity of the classical Q4 po-
tential. It would follow from the existence of a superspace formulation with
manifest SU(4)R symmetry: the scalar potential would be proportional to the
square of some auxiliary fields, and it would thus be positive even the susy-
breaking SU(4)R rotation in the terms that couple the auxiliary fields to the
second hyper multiplet. Assuming positivity, we have

VQ4 ≥ 0 ⇒ f (θ1, θ2) ≤ 1 and d (θ1, θ2) ≤ 1 ∀ θ1, θ2 . (A.43)

For small angles, taking into account the discrete symmetries, we can ex-
pand

f (θ1, θ2) = 1 − α(θ2
1 + θ2

2) − βθ1θ2 +O(θ3) (A.44)

d (θ1, θ2) = 1 − α̃
(
θ2
1 + θ2

2

)
− β̃θ1θ2 +O(θ3) (A.45)

for some coefficients α, β, α̃, β̃. Imposing (A.37) gives 2α+β = 1
2

and 2α̃+ β̃ =
0, while (A.36) gives α = α̃. This leaves us with with a single unknown
coefficient,

f (θ1, θ2) = 1 − α(θ1 − θ2)
2 − 1

2
θ1θ2 +O(θ3) (A.46)

d (θ1, θ2) = 1 − α (θ1 − θ2)
2 +O(θ3) . (A.47)

Positivity of the Q4 potential implies that α > 0.
Finally we record the explicit expressions of the Q4 terms, both in terms
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of component fields,4

LQ4(θ1, θ2) = −2 g2
(
q̃1 · q̃∗ 1

) (
q∗1 · q1

)
− 2 g2

(
q̃2 · q̃∗ 2

) (
q∗2 · q2

)
(A.49)

−2 g2f (θ1, θ2)
[ (
q̃1 · q̃∗ 2

) (
q∗2 · q1

)
+
(
q̃2 · q̃∗ 1

) (
q∗1 · q2

) ]

−g
2

2

(
q1 q∗1 − q̃∗ 1 q̃1

)2 − g2

2

(
q2 q∗2 − q̃∗ 2 q̃2

)2

−g2d (θ1, θ2)
(
q1 q∗1 − q̃∗ 1 q̃1

)
·
(
q2 q∗2 − q̃∗ 2 q̃2

)
,

and in terms of the gauge invariant mesonic operators,

LQ4(θ1, θ2) = −g
2

2
Tr
[
3O11

1
O11

1
−O11

3
O11

3

]
− g2

2
Tr
[
3O22

1
O22

1
−O22

3
O22

3

]

− g2 (d (θ1, θ2) + 2 f (θ1, θ2)) Tr
[
O12

1
O21

1

]

− g2 (d (θ1, θ2) − 2 f (θ1, θ2)) Tr
[
O12

30 O21
30

]

+g2d (θ1, θ2)Tr
[
O12

3+ O21
3− + O12

3− O21
3+

]
. (A.50)

A.3 R-symmetry in N = 1 Superspace

In this appendix we describe an attempt to derive the Q4 potential for gen-
eral angles, using a formalism developed in [87, 88] to describe the general
global transformations of N = 4 SYM in N = 1 superspace language. The
attempt fails, for reasons that could have been anticipated: while the formal-
ism prescribes how auxiliary fields must transform under general R-symmetry
transformations so that the action is invariant, the transformations do not
close off-shell. Nevertheless we believe that the exercise contains some rele-
vant lessons in the search of a more complete superspace formulation of N = 4
SYM and we reproduce it here for the benefit of the technically inclined reader.
We also present an application of the formalism to the analogous problem for
N = 2 SYM coupled to N = 1 chiral matter: how to break supersymmetry
by inequivalent embeddings of two N = 1 subalgebras into N = 2. In this
case the formalism works, because the algebra of global transformations closes
off-shell. The simplified problem is interesting in its own right and provides a

4We use dots as shorthand notation for color contractions. Using a, b for the color
indices, and suppressing all other indices, we set

(q q∗) · (q q∗) ≡ (qa q∗b) ·
(
qb q∗a

)
, (q q∗)2 ≡ (qa q∗b) ·

(
qb q∗a

)
. (A.48)

171



model for how things should work in the yet-to-be-found improved superspace
formulation of N = 4.

In N = 1 superspace, N = 2 SYM has a manifest U(1)r×U(1)u subgroup
of the SU(2)R × U(1)R R-symmetry, and N = 4 SYM a manifest SU(3)R ×
U(1)r subgroup of the SU(4)R R-symmetry. Nevertheless, the remaining R-
symmetry transformations, while realized non-linearly, are legitimate off-shell
symmetries of the superspace action. They close off-shell for N = 2 but not
for N = 4. The explicit transformations rules were originally given in [87].
We follow the presentation of [88]. Here we review the superspace formalism
of [87, 88], translate it into components and apply it to our problem.

A.3.1 Global symmetries in N = 1 superspace

N = 1 supersymmetric theories are invariant under translations, supersym-
metry transformations and (under certain conditions) R-symmetry transfor-
mations. The parameters of these transformations can be assembled into a
single x-independent real superfield ζ , subject to the gauge-invariance

δζ = i(ξ̄ − ξ) , (A.51)

where ξ is an x-independent chiral superfield. The physical components of ζ
(in Wess-Zumino gauge) are

ζαα̇ =
1

2

[
D̄α̇, Dα

]
ζ | , ǫα = iD̄2Dαζ | , r =

1

2
DαD̄2Dα ζ | . (A.52)

The vector ζαα̇ parametrizes the translations, the spinor ǫα the supersymmetry
transformations and the scalar r the U(1)r symmetry.

Let us next consider the N = 2 SYM theory. In N = 1 superspace, the
field content consists of a vector superfield V and a chiral superfield Φ. It
was shown [88] that the N = 2 SYM action is invariant under the global
transformations

δΦ = −W α∇αη − i ∇̄2 (∇αζ)∇αΦ (A.53)

e−V δeV = i
(
η̄Φ − η Φ̃

)
+
(
W α∇α + W̄ α̇∇̄α̇

)
ζ .

Moreover, the algebra of these transformations closes off-shell. The parameters
η and ζ are x-independent, color neutral superfields. The symbol ∇α denotes
the gauge-covariant derivative, ∇α ≡ e−VDαe

V , and Φ̃ ≡ e−V Φ̄eV . Note that
∇αη = Dαη and ∇αζ = Dαζ . Another obvious global symmetry of the action
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is a phase rotation of Φ,

δΦ = iuΦ , δV = 0 . (A.54)

The parameter ζ is the real superfield of N = 1 transformations, as above. Its
vectorial component ζαα̇ parametrizes translations, its spinorial component ǫ1α
parametrizes the manifest N = 1 supersymmetry, and its auxiliary component
r parametrizes the manifest U(1)r symmetry

Φ(y, θ) → e−2irΦ(y, eirθ) , V (x, θ, θ̄) → V (x, eirθ, e−irθ̄) . (A.55)

The parameter η is a chiral superfield that mixes V and Φ. Its components
are

z = η| , ǫ2α = Dαη| , µ = D2η| . (A.56)

The complex scalar z corresponds to the central charge, the spinor ǫ2α parametrizes
the second (non-manifest in N = 1 superspace) supersymmetry transforma-
tion, and finally the complex scalar µ parametrizes the non-manifest internal
symmetries U(2)/(U(1)r × U(1)u). The complete internal symmetry group of
the classical action is U(2), parametrized by u, r and µ. (Note that together
the parameters ζ and η form an N = 2 vector multiplet, mimicking the field
content of the theory.)

From (A.53, A.54), we find the following global symmetry transformation
rules on the component fields and auxiliary fields:

δφ = −2 i r φ+ i u φ (A.57)

δχ = −µλ− i r χ+ i u χ (A.58)

δλ = µ̄χ− i r λ

δF = 2 i µD + i u F (A.59)

δD = i
(
µ̄F − µF̄

)
.

The two U(1)s in these transformations are the r-symmetry of N = 1 super-
space U(1)r and the global phase rotation U(1)u: these are natural symmetries
from an N = 1 superspace point of view. The N = 2 SYM theory has a
SU(2)R×U(1)R R-symmetry where the U(1)R and the diagonal T3 ⊂ SU(2)R
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are related to r and u as R = r− u
2
, µ3 = u, so that we can equivalently write

δφ = −2 i R φ (A.60)

δχ = −µλ− i R χ+ i
µ3

2
χ (A.61)

δλ = µ̄χ− i R λ− i
µ3

2
λ

δF = 2 i µD− i µ3 F (A.62)

δD = i
(
µ̄F − µF̄

)
.

Note that the auxiliary fields transform as a triplet under SU(2)R.
We finally come to N = 4 SYM. The N = 4 action is invariant under the

global transformations [88]

δΦa = −
(
W α∇αη

a + ǫabc∇̄2η̄bΦ̃c

)
(A.63)

−i
[
∇̄2 (∇αζ)∇αΦ

a +
2

3
∇̄2
(
∇2ζ

)
Φa

]

e−V δeV = i
(
η̄aΦ

a − ηaΦ̃a

)
+
(
W α∇α + W̄ α̇∇̄α̇

)
ζ . (A.64)

Unlike the N = 2 case, the algebra does not close off-shell. The parameters
ζ and ηa, a = 1, 2, 3 have the same interpretation as before. The real super-
field ζ contains the parameters of the manifest symmetries, while the chiral
superfields ηa contain the parameters of the non-manifest symmetries. In par-
ticular their auxiliary auxiliary components of µa are the parameters of the
SU(4)/(SU(3) × U(1)r) R-symmetries. From (A.63), after some algebra we
find the following SU(4)/SU(3) transformation rules on the component fields,

δφa = −ǫabcµ̄bφ̄c − i
2

3
r φa (A.65)

δχa = −µaλ+
1

3
i r χa (A.66)

δλ = µ̄aχ
a − i r λ

δF a = 2 i µaD + i
4

3
r F a (A.67)

δD = i
(
µ̄aF

a − µaF̄a
)
.
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A.3.2 Application to N = 2

Let us consider N = 2 SYM coupled to Nf N = 1 chiral multiplets Qi,
i = 1, . . . Nf . The only term in the N = 1 superspace Lagrangian that couples
the different flavors is the Kähler term for the chiral multiplets,

∫
d4θ Q̄i e

gV Qi . (A.68)

(There is no superpotential term that preserves gauge invariance and the
U(Nf ) global flavor symmetry.) In component language, and before integrat-
ing out the auxiliary fields, the relevant terms in the Lagrangian are

L = · · ·+D
(
q∗i q

i +
[
φ , φ̄

])
+D2 + F̄F + . . . (A.69)

We then perform an off diagonal SU(2)R transformation (A.62) with µ = i θ/2
to the N = 2 SYM component fields that couple to the second chiral multiplet.

L = · · ·+D
(
q∗1q

1 + q∗2q
2 cos θ +

[
φ , φ̄

])
+ Re(F )q∗2q

2 sin θ +D2 + F̄F + . . .(A.70)

Integrating out the auxiliary fields, we find the scalar potential

Vq4 = |q1|4 + |q2|4 + 2 cos θ |q∗1q2|2 , (A.71)

which is positive definite for any θ since it is proportional to D2 + F̄F .

A.3.3 Application to N = 4

From (A.22), we see that for infinitesimal θ1, θ2,

δφ1 = i

(
θ1 + θ2

2

)
φ3 − i

(
θ1 − θ2

2

)
φ̄3 (A.72)

δφ3 = i

(
θ1 + θ2

2

)
φ1 + i

(
θ1 − θ2

2

)
φ̄1

δφ2 = 0 .

The holomorphic part of the variation is an infinitesimal SU(3) rotation δφa =
i(θ1 + θ2)(T̂6 φ)a generated by the Lie algebra element

T̂6 =
1

2
λ̂6 =

1

2




0 0 1

0 0 0

1 0 0


 . (A.73)
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Comparison with (A.65) shows that the antiholomorphic part of the variation
is an SU(4)/SU(3) transformation with parameters

r = µ1 = µ3 = 0 , µ2 = ± i
θ2 − θ1

2
. (A.74)

Recalling that F a transform in the 3 of SU(3), and using (A.67) for the trans-
formation rules under SU(4)/SU(3), we find the corresponding variations of
the auxiliary fields,

δF 1 = i

(
θ1 + θ2

2

)
F 3 (A.75)

δF 3 = i

(
θ1 + θ2

2

)
F 1

δD = − (θ1 − θ2) Re (F2) (A.76)

δRe (F2) = (θ1 − θ2)D .

Their naive exponentiation gives

(
D

Re (F2)

)

rot

=

(
cos (θ1 − θ2) − sin (θ1 − θ2)

sin (θ1 − θ2) cos (θ1 − θ2)

)(
D

Re (F2)

)
(A.77)

(
F1

F3

)

rot

=

(
cos
(
θ1+θ2

2

)
i sin

(
θ1+θ2

2

)

i sin
(
θ1+θ2

2

)
cos
(
θ1+θ2

2

)
)(

F1

F3

)
. (A.78)

Given these explicit transformations for the auxiliary fields we can proceed
to derive the form of the Q4 potential after rotation. The prescription is to
transform the auxiliary fields that couple to the second hyper multiplet, leaving
untouched the auxiliary fields that couple to the first hyper multiplet. This
method predicts

f (θ1, θ2) = cos

(
θ1 + θ2

2

)
(A.79)

d (θ1, θ2) = cos (θ1 − θ2)

for the parameter functions introduced in (A.35). This result is clearly in-
correct. It does not satisfy condition (A.36). Moreover f(θ, 0) has the wrong
periodicity – the potential should come back to itself after a 2π rotation. Since
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the transformation rules do not close off-shell, it was not permissible to simply
exponentiate the infinitesimal variations. It appears that this is a fundamen-
tal flaw of this formalism and that what is required is a different superspace
formulation where the SU(4)R closes off-shell.

A.4 Anomalous Dimensions

In this appendix we describe the computation of the one-loop anomalous di-
mensions of the mesonic operators OI J . Following [11], we view a single-trace
composite operator as a closed spin chain whose sites correspond to the elemen-
tary fields. In the large N limit and at the one-loop level only nearest neighbor
interactions are present. The nearest neighbor interaction is conveniently ex-
pressed in terms of three elementary operators acting on the vector space of
two successive sites. These three operators represent the three independent
ways to map two SU(2)R symmetry indices of an “incoming” operator OI J
to the indices of an “outgoing” operator ŌL

K. They are the trace operator K,
the permutation operator P and the identity operator I:

K
JL
IK ≡ δJI δ

L
K , P

JL
IK ≡ δIKδ

JL , I
JL
IK ≡ δLI δ

J
K . (A.80)

The anomalous dimension of the mesonic operators receives contributions
from the Feynman diagrams shown schematically in Figure 3.2. Since the
gauge boson exchange is R-symmetry blind, the Feynman diagram shown in
figure 3.2(a) is proportional to the identity operator,

ZA − 1 = (1 − ξ)
g2N

8π2
I ln Λ . (A.81)

Here ξ is the gauge fixing parameter in the propagator of the gauge boson,

which is
gµν−ξ kµkν

k2

k2 in our conventions. The SU(2)R structure of the quartic
interaction (figure 3.2(b)) is more interesting. The scalar vertex has index
structure

1

2
δLI δ

J
K − δJI δ

L
K =

1

2
I − K , (A.82)

with trace part arising from F-terms and the identity from the D-terms. The
contribution of the quartic interaction to the renormalization of the mesonic
operators is then

ZQ4 − 1 =
g2N

8π2
(I − 2 K) ln Λ . (A.83)
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(a) (b) (c)

(d) (e)

Figure A.1: One-loop Feynman diagrams contributing to γQ.

Finally, we need to consider the squark self-energy corrections (figure 3.2(c),
shown in more detail in figure A.1). The contribution of the squark self-energy
to the meson renormalization is

ZQ − 1 = − (2 − ξ)
λ

8π2
I ln Λ . (A.84)

We also record for future use the anomalous dimension of the squark,

γQ =
λ

8π2
δJI (2 − ξ) . (A.85)

Adding the diagrams, we find

Z = 1 +
λ

4π2
K ln Λ (A.86)

and we read off the matrix of anomalous dimensions,

Γ(1) ≡ dZ

d ln Λ
Z−1 =

λ

4π2
K . (A.87)

This answer is due entirely to the F-terms, since all other contributions (D-
terms, gluon exchange and self-energy diagram) add up to zero. This is an
example of a general property of theories with extended supersymmetry [102–
104].

The trace operator is a 4 × 4 matrix that acts on the four dimensional
2× 2̄ vector space QIQ̄J . Its eigenstates are the singlet and the triplet states
of SU(2)R, with eigenvalues 2 and 0 respectively. In this basis the anomalous
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dimension matrix Γ(1) is diagonal, with eigenvalues:

γ1 =
λ

2π2
and γ3 = 0 (A.88)

This result is expected because O3 is an N = 2 chiral primary that obeys the
shortening condition ∆ = 2R, while O1 belongs to a long multiplet and is not
protected.

A.5 Coleman-Weinberg Potential

The calculation of the one-loop effective potential is straightforward but some-
what lengthy. Here we provide some intermediate steps for the sake of the
reader who would like to reproduce our result. Following the original paper
by Coleman and Weinberg [62], the bosonic and fermionic contributions to the
one-loop effective potential are

Vbose =
1

64π2
TrM4

b ln
(
M2

b

)
(A.89)

Vfermi = − 1

64π2
Tr
(
MfM†

f

)2

ln
(
MfM†

f

)
, (A.90)

where the mass matrices read off by expanding the Lagrangian (A.28) around
the classical background. We choose the background (3.33)

Q1 =

(
q

0

)
, Q2 =

(
0

−q

)
, q ∈ C . (A.91)

Setting to zero the extra “double-trace” couplings, f ≡ 0, we find the following

partial contributions (we write V ≡ v N g4 |q|4
16π2 ln |q|2):

vQ =

(
5 + d2(θ1, θ2)

2

)
, (A.92)

vfermi (θ) =

(
− 8 + 2 sin2

(
θ1 + θ2

2

)
+ 2 sin2

(
θ1 − θ2

2

))
,

vA = 3 ,

vX =

(
2 − 2 sin2

(
θ1 − θ2

2

)
− 2 sin2

(
θ1 + θ2

2

)
+ 4 sin2

(
θ1 − θ2

2

)
sin2

(
θ1 + θ2

2

))
.
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The contribution of the gauge fields is calculated in the Landau gauge5.
Adding these partial contributions,

V1−loop (θ1, θ2; f = 0) ≡ λ2

N
v1−loop |q|4 ln |q| (A.93)

with

v1−loop =
1

8π2

[
4 sin2

(
θ1 + θ2

2

)
sin2

(
θ1 − θ2

2

)
+
d2(θ1, θ2) − 1

2

]
. (A.94)

For θ1 = θ2 = θ, using d(θ, θ) = 1 we find

V1−loop (θ, θ; f = 0) = 0 , (A.95)

as expected since this configuration preserves N = 1 susy.
Along this classical background, the tree-level potential Vtree ≡ −(LQ4 +

δLfund) (see (A.49) and (3.26)) evaluates to

Vtree(q) =
λ

N
|q|4
(
1 − d(θ1, θ2)

)
+
f3+

N
|q|4 ≡ λ

N
Cλ +

f3+

N
Cf . (A.96)

The classical background was chosen precisely to ensure that the only double-
trace coupling contributing at tree level is f3+. The Callan-Symanzik equation
for the effective potential reads

[
µ
∂

∂µ
+ βf

∂

∂f
+ βλ

∂

∂λ
− γ(1)

q q
∂

∂q

]
V(q, µ, f, λ) = 0 . (A.97)

We can drop the βλ term since it is subleading for large N . Writing V(f, λ) =
Vtree + V1−loop(f = 0) + O(f) + O(λ3), the CZ equation allows to extract the

5This is convenient for the following reason. The formula (A.89) arises from the re-
summation of polygonal one-loop diagrams with the background fields at the external legs
which have zero momenta. When gauge fields are inside the loop there are more diagrams
than just the gauge polygons (the polygons are made purely out of gauge fields). But in
the Landau gauge the only diagrams that are non-zero are gauge polygons. Then their
contribution is simply (A.89) multiplied by 3. The extra factor of 3 stems from the trace of
the numerator of the Landau gauge propagator.

180



f -independent one-loop coefficient of βf , βf (f = 0) = a(λ) = a(1)λ2 +O(λ3),

a(1) = 4 γ(1)
q (Cλ/Cf ) + v1−loop (A.98)

=
1

16π2

[(
1 − d(θ1, θ2)

)
+

1

2

(
1 − d(θ1, θ2)

)2

+ 4 sin2

(
θ1 + θ2

2

)
sin2

(
θ1 − θ2

2

)]
.

To study the stability of the CW potential, we must first perform the standard
RG improvement [62]. A detailed discussion for the problem at hand can be
found in section 3 of [6]. One finds that the “perturbative vacuum” q = 0 is
stable if and only if βf admits real zeros. In our case βf has imaginary zeros
and symmetry breaking does occur. This is one of the manifestations of the
tachyonic instability on the field theory side.
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Appendix B: Holography in the
Veneziano Limit

B.1 Shortening Conditions of the N =2 Su-

perconformal Algebra

A generic long multiplet A∆
R,r(j,j̄) of the N = 2 superconformal algebra is gener-

ated by the action of the 8 Poincaré supercharges Q and Q̄ on a superconformal
primary, which by definition is annihilated by all conformal supercharges . If
some combination of the Q’s also annihilates the primary, the correspond-
ing multiplet is shorter and the conformal dimensions of all its members are
protected against quantum corrections. A comprehensive list of the possible
shortening conditions for the N = 2 superconformal algebra was given in [154]
. Their findings are summarized in Table B.1. We take a moment to explain
the notation.1 The state |R, r〉h.w.(j,j̄) is the highest weight state with SU(2)R
spin R > 0, U(1)r charge r, which can have either sign, and Lorentz quantum
numbers (j, j̄). The multiplet built on this state is denoted as XR,r(j,j̄), where
the letter X characterizes the shortening condition. The left column of Table
B.1 labels the condition. A superscript on the label corresponds to the index
I = 1, 2 of the supercharge that kills the primary: or example B1 refers to Q1

α.
Similarly a “bar” on the label refers to the conjugate condition: for example
B̄2 corresponds to Q̄2 α̇ annihilating the state; this would result in the short
anti-chiral multiplet B̄R,r(j,0), obeying ∆ = 2R − r. Note that conjugation
reverses the signs of r, j and j̄ in the expression of the conformal dimension.
We refer to [154] for more details.

1We follow the conventions of [154], except that we have introduced the labels D, F , F̂
and G to denote some shortening conditions that were left nameless in [154].
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Shortening Conditions Multiplet

B1 Q1
α|R, r〉h.w. = 0 j = 0 ∆ = 2R + r BR,r(0,j̄)

B̄2 Q̄2α̇|R, r〉h.w. = 0 j̄ = 0 ∆ = 2R − r B̄R,r(j,0)

E B1 ∩ B2 R = 0 ∆ = r Er(0,j̄)

Ē B̄1 ∩ B̄2 R = 0 ∆ = −r Ēr(j,0)

B̂ B1 ∩ B̄2 r = 0, j, j̄ = 0 ∆ = 2R B̂R

C1 ǫαβQ1
β
|R, r〉h.w.

α = 0 ∆ = 2 + 2j + 2R + r CR,r(j,j̄)

(Q1)2|R, r〉h.w. = 0 for j = 0 ∆ = 2 + 2R+ r CR,r(0,j̄)

C̄2 ǫα̇β̇Q̄2β̇
|R, r〉h.w.

α̇ = 0 ∆ = 2 + 2j̄ + 2R − r C̄R,r(j,j̄)

(Q̄2)2|R, r〉h.w. = 0 for j̄ = 0 ∆ = 2 + 2R− r C̄R,r(j,0)

F C1 ∩ C2 R = 0 ∆ = 2 + 2j + r C0,r(j,j̄)

F̄ C̄1 ∩ C̄2 R = 0 ∆ = 2 + 2j̄ − r C̄0,r(j,j̄)

Ĉ C1 ∩ C̄2 r = j̄ − j ∆ = 2 + 2R+ j + j̄ ĈR(j,j̄)

F̂ C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j̄ − j ∆ = 2 + j + j̄ Ĉ0(j,j̄)

D B1 ∩ C̄2 r = j̄ + 1 ∆ = 1 + 2R+ j̄ DR(0,j̄)

D̄ B̄2 ∩ C1 −r = j + 1 ∆ = 1 + 2R+ j D̄R(j,0)

G E ∩ C̄2 r = j̄ + 1, R = 0 ∆ = r = 1 + j̄ D0(0,j̄)

Ḡ Ē ∩ C1 −r = j + 1, R = 0 ∆ = −r = 1 + j D̄0(j,0)

Table B.1: Shortening conditions and short multiplets for the N = 2 super-
conformal algebra [154].

B.2 N = 1 Chiral Ring

An important subset of the protected operators of a supersymmetry theory are
the operators in the chiral ring. Chiral operators, by definition, are annihilated
by the supercharge of one chirality, Q̄α̇, and thus obey a B-type shortening
condition. (If the theory has extended supersymmetry we focus on an N =
1 subalgebra.) The product of two chiral operators is again chiral. Chiral
operators are normally considered modulo Q̄α̇-exact operators. The chiral
cohomology classes can be specified by a set of generators and relations, which
are easy to determine at weak (infinitesimal but non-zero) coupling. At higher
orders the relations may get corrected, but the basic counting of chiral states
is not expected to change [18, 182].

Let us first consider the case of pure N = 2 SYM with gauge group SU(Nc).
Under an N = 1 subalgebra the field content is decomposed as a chiral super-
field Φ and a vector superfield Wα, both in the adjoint representation of the
gauge group.. A generic chiral operator of the theory in the adjoint represen-
tation of the gauge group obeys

[Wα,O} =
[
Q̄α̇, Dαα̇O

}
. (B.1)

Substituting O = Φ and O = Wβ we see that, modulo Q̄ exact terms, Wα
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(anti-)commutes with Φ and Wβ respectively. Using these relations we can
narrow down the single-trace chiral operators to

TrΦk+2, TrΦk+1Wα, Tr ΦkǫαβWαWβ , for k ≥ 0 . (B.2)

We have listed one representative from each cohomology class. For finite Nc

the operators are further related by trace relations. In the large Nc limit of
N = 2 supersymmetric Yang Mills, (B.2) is the complete and unconstrained
list of single-trace chiral operators. Taking products we generate the whole
chiral ring. In N = 2 language the chiral operators are assembled in a single
supermultiplet for each k, the multiplet with primary Trφk+2.

To obtain N = 2 SCQCD we add Nf fundamental hypermultiplets, equiv-
alent to Nf fundamental chiral multiplets Q and Nf antifundamental chiral
multiplets Q̃, with the N = 2 invariant superpotential Q̃ΦQ. There are no
chiral operators containing both Wα and Q because WαQ is Q̄ exact. Gen-
erally, in a theory with superpotential, further relations are imposed by the
equations of motion

∂AW (Ai) = D̄α̇D̄
α̇A ⇒ ∂AW (Ai)c.r. = 0 , (B.3)

where {Ai} is the set of chiral superfields. The subscript c.r. denotes that
the relation is valid in the chiral ring. In our case this implies that operators
containing both Φ and Q are constrained by the equations of motion

ΦQ = 0, Q̃Φ = 0 and Qa
iQ̃

i
b −

1

Nc
δabQ

c
iQ̃

i
c = 0 . (B.4)

These relations set to zero all generalized single-trace operators2 containing Q,
except for Tr QQ̃. When expressed in SU(2)R covariant fashion, this operator
corresponds to the N = 2 superconformal primary TrM3. Note that for gauge
group U(Nc) instead of SU(Nc) the third relation gets modified to Qa

iQ̃
i
b = 0

implying that even Tr QQ̃ is absent from the chiral ring. (For U(Nc) we would
have to also add the operator Tr Φ to the list (B.2)). All in all, consideration
of the chiral ring for N = 2 SCQCD has led to identify the following protected
N = 2 superconformal primaries:

TrM3 , Trφℓ+2 , ℓ ≥ 0 . (B.5)

Note that the multiplets {TrTφℓ}, as well as the extra exotic protected states
discussed in section 4.4.4, are not part of the chiral ring.

It is straightforward to repeat this exercise for the Z2 orbifold of N = 4

2In the flavor non-singlet sector they also allow for Qa
iQ̃

j
a .
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SYM. In N = 1 language the field content of the orbifold theory consists of vec-
tor multiplets (Φ,Wα) and (Φ̌, W̌α), in the adjoint representation of SU(Nc)
and SU(Nč) respectively. They are coupled to bifundamental chiral multi-

plets (QÎ , Q̃
Ĵ ) through the superpotential Q̃ÎΦQÎ + QÎΦ̌Q̃Î . Here Î, Ĵ are

SU(2)L indices. At large Nc, the chiral ring of the orbifold is generated by the
operators (B.2), by a second copy of (B.2) with Φ,Wα → Φ̌, W̌α correspond-
ing to the two vector multiplets, and by single-trace operators involving the
fields from hypermultiplets. The latter obey following constraints due to the
superpotential:

Q̃ÎΦ = −Φ̌Q̃Î , ΦQÎ = −QÎΦ̌ (B.6)

Qa
Î ǎQ̃

Îǎ
b −

1

Nc

δabQ
c
Î ǎ Q̃Îǎ

c = 0, Q̃Îǎ
aQ

a
Î b̌ −

1

Nč

δǎ
b̌
Q̃Î č

aQ
a
Î č = 0

Using the first two equivalence relations we could always choose a class rep-
resentative that doesn’t contain any Φ̌. Then the relations in the second line
allow for highest SU(2)L spin chiral operators of schematic form Tr (QQ̃)ℓ+1

3L
Φk.

This operator is in the untwisted sector as it is invariant under quantum Z2

symmetry of the orbifold upto Q̄α̇ exact terms. As before, the chiral ring of
the SU(Nc) theory (as opposed to U(Nc)), also contains the “exceptional”
operator Tr (QQ̃)1L

, which belongs to the twisted sector. Assembling these
N = 1 chiral multiplets into full N = 2 multiplets, we find the following list
of N = 2 superconformal primaries:

Tr (φk+2 + φ̌k+2) , Tr (Mℓ+1
3R3L

φk) , (B.7)

Tr (φk+2 − φ̌k+2) , TrM3R1L
, for k ≥ 0, ℓ ≥ 0 . (B.8)

The primaries in the first line belong to the untwisted sector and the primaries
in the second line belong to the twisted sector. We know from inheritance from
N = 4 SYM that in the untwisted sector there are additional protected op-
erators (see section 4.3.1). On the other hand, in the twisted sector this is
plausibly the complete list, as confirmed by the calculation of the supercon-
formal index in appendix B.3.

As we move away from the orbifold point by taking ǧ 6= g, the calculation of
the chiral ring is almost unchanged, we only need to perform the substitutions
Φ̌, W̌α → κΦ̌, κW̌α, with κ ≡ ǧ/g that take into account the deformation
of the superpotential. The quantum numbers of the chiral operators remain
unchanged.
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B.3 The Index of Some Short multiplets

In this appendix we calculate the index of various short multiplets. A first
goal is to determine the index of the set { B̂1, Eℓ(0,0), ℓ ≥ 2 } (the multiplets
found by the analysis of the chiral ring in the twisted sector of the orbifold),
and show that it agrees with (4.42). A second goal is to calculate Inaive, the
index of the “naive” protected spectrum (5.44) of N = 2 SCQCD.

B.3.1 Eℓ(0,0) multiplet

The chiral multiplet Eℓ(0,0) [154] is defined to be the multiplet that descends
from the operator with R = 0, that is annihilated by both Q1 and Q2. The
shortening condition is ∆ = ℓ. We have arranged the operator content of the
multiplet in the array below. We represent the action of the supercharge Q to
the left and Q̄ to the right. As Eℓ(0,0) is annihilated by Qs, it only extends to
the right.

∆

ℓ 0(0,0)

ℓ+ 1
2

1
2(0, 1

2)

ℓ+ 1 0(0,1), 1(0,0)

ℓ+ 3
2

1
2(0, 1

2)

ℓ+ 2 0(0,0)

r ℓ ℓ− 1
2

ℓ− 1 ℓ− 3
2

ℓ− 2

(B.9)

This multiplet contributes only to the left index IL. The operators with δL = 0
are underlined and their contribution to the index is listed in table B.2.

∆ R(j,j̄) IL(t, y, v)

ℓ 0(0,0) t2ℓvℓ

ℓ+ 1
2

1
2(0, 12)

−t2ℓ+1vℓ−1
(
y + 1

y

)

ℓ+ 1 1(0,0) t2ℓ+2vℓ−2

Table B.2: Operators with δL = 0 in Eℓ(0,0)

For ℓ > 1, we sum the contribution of the operators from the above table
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and divide it by the contribution (1 − t3y) (1 − t3y−1) from the derivatives,

∞∑

ℓ=2

IL

Eℓ(0,0)
=

1

(1 − t3y) (1 − t3y−1)

∞∑

ℓ=2

t2ℓvℓ(1 − t1v−1(y + y−1) + t2v−2)

=
t4v2(1 − t

vy
)(1 − ty

v
)

(1 − t2v) (1 − t3y) (1 − t3y−1)

The conjugate multiplet Ē−ℓ(0,0) contributes exactly the same but to IR.

B.3.2 B̂1 multiplet

Next we consider the nonchiral multiplet B̂1 [154], with the shortenning con-
dition that the highest weight state is anihilated by Q2, Q̄1. This shortening
condition requires r = 0, j = j̄ = 0 and ∆ = 2 for the highest weight state.

∆

2 1(0,0)

5
2

1
2( 1

2
,0)

1
2(0, 1

2)

3 0(0,0) 0( 1
2
, 1
2)

0(0,0)

7
2

4 −0(0,0)

r 1 1
2

0 −1
2

−1

(B.10)

The operator −0(0,0) at ∆ = 4 stands for an equation of motion – the negative
sign in front of it means that its contribution to the index (partition function
in general) has to be subtracted. We have underlined the operators with δL = 0
and their contribution to IL is listed in table B.3.

∆ R(j,j̄) IL(t, y, v)

2 1(0,0)
t4

v
5
2

1
2( 1

2
,0) −t6

Table B.3: Operators with δL = 0 in B1

Summing the individual contributions and dividing with the contribution
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from the derivatives, we get the index for this multiplet as,

IL

B1
=

t4 (1 − t2v)

v (1 − t3y) (1 − t3y−1)
. (B.11)
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B.3.3 Ĉ0(0,0) multiplet

The stress tensor, supercurrents and R-symmetry currents of the N = 2 theory
are part of this multiplet. Its shortening condition Ĉ is explained in table B.1.
The operator content of this multiplet is displayed in the array below.

∆

2 0(0,0)

5
2

1
2( 1

2
,0)

1
2(0, 1

2)

3 0(1,0) 1( 1
2
, 1
2
), 0( 1

2
, 1
2)

0(0,1)

7
2

1
2(1, 1

2)
1
2( 1

2
,1)

4 0(1,1)

−0(0,0), −1(0,0)

9
2

−1
2 ( 1

2
,0)

−1
2 (0, 1

2
)

10 −0( 1
2
, 1
2
)

r 1 1
2

0 −1
2

−1

(B.12)

The operators with negative signs stand for equations of motion as before.
We have underlined the operators with δL = 0 and their contribution is listed
in the table below. Summing the contributions, we get the left index of this
multiplet to be

IL

Ĉ(0,0)
= −t6(1 − vt2)(1 − t

v
(y +

1

y
)) . (B.13)

Being a nonchiral multipet, it contributes the same to the right index as well.
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∆ R(j,j̄) IL(t, y, v)

5
2

1
2 ( 1

2
,0)

−t6

3 0(1,0) t8v

3 1( 1
2
, 1
2
)

t7

v
(y + 1

y
)

7
2

1
2 (1, 1

2
)

−t9(y + 1
y
)

Table B.4: Operators with δL = 0 in Ĉ0(0,0)

B.3.4 Cℓ(0,0) multiplet, ℓ ≥ 1

This multiplet obeys the shortening condition F = C1 ∩ C2. The operator
content of Cℓ(0,0) is displayed below.

∆

ℓ + 2 0(0,0)

ℓ + 5
2

1
2

“

1
2

,0
”

1
2

“

0, 1
2

”

ℓ + 3 0(1,0) 1“

1
2

, 1
2

”, 0“

1
2

, 1
2

” 0(0,1) , 1(0,0)

ℓ + 7
2

1
2

“

1, 1
2

”
1
2

“

1
2

,1
” , 1

2
“

1
2

,0
”, 3

2
“

1
2

,0
”

1
2

“

0, 1
2

”

ℓ + 4 0(1,1), 1(1,0) 0“

1
2

, 1
2

” , 1“

1
2

, 1
2

” 0(0,0)

ℓ + 9
2

1
2

“

1, 1
2

”
1
2

“

1
2

,0
”

ℓ + 5 0(1,0)

r ℓ + 1 ℓ + 1
2

ℓ ℓ − 1
2

ℓ − 1 ℓ − 3
2

ℓ − 2

The operators with δL = 0 are underlined as usual. Table B.5 lists their
contribution to IL. Summing the contribution to the left index from Cℓ(0,0)
with ℓ ≥ 1 we get,

∞∑

ℓ=1

IL

Cℓ(0,0)
= −t8v(1 − vt2)(1 − t

v
(y +

1

y
)) − t10

v
. (B.14)

B.3.5 The Itwist of the orbifold and Inaive of SCQCD

The protected operators in the twisted sector of the orbifold are listed in Table
5.5. The conjugates, which contribute to IL, are of the type:

B̂1, Eℓ(0,0) for ℓ ≥ 2 . (B.15)
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∆ R(j,j̄) IL(t, y, v)

ℓ+ 5
2

1
2 ( 1

2
,0)

−t6+2ℓvℓ

ℓ+ 3 0(1,0) t8+2ℓvℓ+1

ℓ+ 3 1( 1
2
, 1
2
) t7+2ℓvℓ−1(y + 1

y
)

ℓ+ 7
2

1
2 (1, 1

2
)

−t9+2ℓvℓ(y + 1
y
)

ℓ+ 7
2

3
2 ( 1

2
,0)

−t8+2ℓvℓ−2

ℓ+ 4 1(1,0) t10+2ℓvℓ−1

Table B.5: Operators with δL = 0 in Cℓ(0,0)

So we get,

Itwist = IB̂1
+

∞∑

ℓ=2

IEℓ(0,0)
(B.16)

=
t4 (1 − t2v)

v (1 − t3y) (1 − t3y−1)
+

t4v2(1 − t
vy

)(1 − ty
v
)

(1 − t2v) (1 − t3y) (1 − t3y−1)
(B.17)

=
t2v

1 − t2v
− t3y

1 − t3y
− t3y−1

1 − t3y−1
− fV (t, y, v) . (B.18)

This precisely matches with (4.42), confirming the protected operators in the
twisted sector of the orbifold. Let us now compute the Inaive of SCQCD that
follows from the preliminary list 5.44 of protected operators. Their conjugates,
which contribute to IL, are of the type:

B̂1, Eℓ+2(0,0), Ĉ0,0, Cℓ+1(0,0) for ℓ ≥ 0 . (B.19)

The Inaive then is

Inaive = IB̂1
+

∞∑

ℓ=2

IEℓ(0,0)
+ IĈ0,0

+

∞∑

ℓ=1

ICℓ(0,0)
(B.20)

=
−t6(1 − t

v
(y + 1

y
)) − t10

v
+

t4v2(1− t
vy

)(1− ty
v

)

1−t2v + t4

v
(1 − t2v)

(1 − t3y)(1 − t3

y
)

.(B.21)
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B.4 KK Reduction of the 6d Tensor Multiplet

on AdS5 × S1

In this appendix we discuss the Kaluza-Klein reduction of the 6d tensor multi-
plet on AdS5 ×S1, and its matching with the twisted spectrum of the orbifold
theory.

The tensor multiplet of maximal chiral supersymmetry in six dimensions
(we will refer to it as (2,0) susy) has the following field content

B−
µν , λJ

α , Φ[JK] . (B.22)

The indices J,K are the USp(4) indices which is the R-symmetry group of
the chiral supergravity. The spinors λJ

α are in the 4 (complex) representation
of USp(4) and the scalars Φ[JK] in the 5 (real) representation. The λJ

α are
Weyl, symplectic Majorana spinors. The symplectic Majorana condition is a
psuedo-reality condition, λ̄I = ΩIKλ

K, where Ω is the symplectic form.
Consider now the background AdS5 × S1. The natural embedding of the

SU(2)R×U(1)r R-symmetry of the N = 4 AdS5 superalgebra (or equivalently
of the N = 2 4d superconformal algebra) into USp(4) is




SU(2)R × U(1)r

SU(2)R × U(1)∗r




(B.23)

The five scalars decompose as

Φ[JK] −→ Φi + Φ + Φ̄ (B.24)

5 −→ 30 + 1−1 + 1+1 ,

where the subscripts denote U(1)r charges. The spinors decompose as two
(conjugate) SU(2)R doublets, with opposite U(1)r charges r = ±1

2
.

We are interested in the Kaluza-Klein reduction of the tensor multiplet on
the S1. We borrow the results of [162] (see also [183]), where all the KK modes
with non-zero momentum were matched with the multiplets {Ē2+ℓ(0,0) ℓ ≥ 0},
corresponding to the twisted primaries {Trφ2+ℓ−Trφ̌ℓ+2 } of the orbifold the-
ory. We will add the zero modes to the analysis of [162].

Let us indeed start with the zero modes on S1. The bosonic zero modes
comprise the following AdS5 fields [162]: a complex scalar Φ, with m2 = −3 (in
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AdS units)3; a triplet of scalars Φi, with m2 = −4; a massless two form Bm̂n̂,
or equivalently a massless gauge field Am̂. The massless two-form Bm̂n̂ arises
from the 6d anti-selfdual two-form B−

µν when both indices are taken to be along
AdS5, while the gauge field Am̂ arises from B−

µν when one index is taken to be
along AdS5 and the other along S1. Because of the anti-selfduality of B−

µν , the
two possibilities are not independent: Bm̂n̂ and Am̂ are dual to each other as
5d fields, and we must pick one or the other. This ambiguity translates into
two alternative ways to fit the zero modes into supermultiplets of the N = 2
4d superconformal algebra. Let us look at them in turn:

• Choosing Bm̂n̂.

The massless two-form Bm̂n̂ is dual to a boundary two-form operator F ′
mn

of dimension ∆ = 2. We claim that the full supermultiplet of boundary
operators is {φ′ , λ

′I
α , F

′
mnD

′
i}, which is the the familiar off-shell N = 2

vector multiplet (or N = 2 “supersingleton” multiplet). Here φ′ is a
complex scalar with r = ±1 and ∆ = 1, dual to the bulk scalar Φ
of m2 = −3. The mass of Φ is in the range that allows both the ∆+

and the ∆− quantization schemes [48, 184], and supersymmetry forces
the choice of ∆− = 2 −

√
m2 + 4 = 1. Since φ′ saturates the unitarity

bound, it must be a free scalar field. We recognize F ′
mn as the Maxwell

field strength and D′
i, i = 1, 2, 3, which form SU(2)R triplet with ∆ = 2

and are dual to the bulk fields Φi, as the auxiliary fields. Finally λ
′I
α are

the free fermionic fields with ∆ = 3
2
. The AdS/CFT relation for spin 1

2

fields is usually quoted as ∆ = 2+ |m|, but this is evidently a case where
we must pick instead ∆− = 2 − |m|, with m = 1

2
. We are not aware of

an explicit discussion of the ∆± quantization ambiguity for spinors, but
it must be there because of supersymmetry. (Incidentally, similar issues
arise in the familiar IIB on AdS5×S5 background if one looks at the zero
modes, which can be organized in the N = 4 supersingleton multiplet.
Again both the scalars in the 6 of SU(4) and the spinors in the 4 must
be quantized in the ∆− scheme.)

• Choosing Aµ̂.

The boundary dual to Am̂ is a conserved current Jm (∆ = 3). In this case
we claim that supersymmetry forces the usual ∆+ quantization scheme
for Φ and λJ

α. It is easy to check that the zero modes can be precisely
organized into the B̂1 multiplet (summarized in (B.10)).

3The complex scalar Φ corresponds to the k = −1 real scalar in Family 2 and the k = 1
real scalar in Family 3 of [162]. We have just relabeled them as n = 0 modes.
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Field Theory Gravity

Operator U(1)r ∆ Mass Field

Tr[φ̄n+1] − Tr[ ¯̌φn+1] n+ 1 n + 1 (n + 1)(n− 3) Φ̄

Tr[F φ̄n] − Tr[F̌ ¯̌φn] n n + 2 n2 Bm̂n̂

Tr[λλφ̄n−1] − Tr[λ̌λ̌ ¯̌φn−1] n n + 2 n2 − 4 Φi

Tr[F 2φ̄n−1] − Tr[F̌ 2 ¯̌φn−1] n− 1 n + 3 (n− 1)(n+ 3) Φ

Table B.6: Matching of the positive KK modes (n ≥ 1) [162]. The negative
KK modes (n ≤ −1) correspond to the conjugate operators.

The two possibilities have a nice physical interpretation. The first alternative
corresponds to keeping the U(1) degree of freedom in the twisted sector (this is
the “relative” U(1) in the product gauge recall the discussion after equ.(5.16))
– in other terms we should identify φ′ = Tr(φ − φ̂). The second possibility
corresponds instead to removing the relative U(1). Then clearly the multiplet
built on Tr(φ− φ̂) is lost, but as we have emphasized in section 4.3.1 and ap-
pendix B, an additional protected multiplet appears, the B̂1 multiplet built on
the primary TrM3. The AdS/CFT dictionary handles this subtle ambiguity
in a very elegant way. For our purposes, the second alternative is the relevant
one, since we must remove the relative U(1) in order to have a truly conformal
field theory.

The matching of the higher Kaluza-Klein modes was discussed in [162], we
summarize the results in Table B.6.

B.5 The Cigar Background and 7d Gauged

Sugra

This appendix collects some facts about the non-critical string theory obtained
in the double-scaling limit of two colliding NS branes [134, 135], namely IIB
on R5,1 × SL(2)2/U(1). We start by reviewing well-known results, see e.g.
[132, 133, 133–135, 141–143], and then make a new claim about a space-time
“effective action” description. We are going to argue that the “lighest” delta-
function normalizable modes in the continuum are described by a 7dmaximally
supersymmetric supergravity with non-standard gauging, recently constructed
in [177, 178].
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B.5.1 Preliminaries and Worldsheet Symmetries

A class of “non-critical” supersymmetric string backgrounds can defined in
the RNS formalism by taking the tensor product of Rd−1,1 with the Kazama
Suzuki supercoset SL2(R)k/U(1). The Rd−1,1 part is described as usual by d
free bosons Xµ and d free fermions ψµ. The coset SL2(R)k/U(1) has a sigma-
model description with target space the “cigar” background (setting α′ = 2)

ds2 = dρ2 + tanh2(
Qρ

2
)dθ2 ρ ≥ 0 θ ∼ θ +

4π

Q
(B.25)

with vanishing B field and dilaton varying as

Φ = − ln cosh(
Qρ

2
) . (B.26)

The level k of the coset is related to the parameter Q as k = 2/Q2. The central
charge is

ccig = 3 +
6

k
= 3 + 3Q2 . (B.27)

Adding the usual superconformal ghost system {b , c , β , γ} of central charge
-15 and requiring cancellation of the total conformal anomaly, one finds Q =√

1
2
(8 − d). In the asymptotic region ρ → ∞ the cigar becomes a cylinder of

radius 2
Q

, with the dilaton varying linearly with ρ, and the theory is thus a
free CFT. We will soon restrict to the d = 6 case, implying ccig = 6, Q = 1
and k = 2.

For generic level k the Kazama-Susuki coset SL(2)k/U(1) has (2, 2) super-
symmetry. In the asymptotic linear-dilaton region the holomorphic currents
of N = 2 susy take the form

Tcig = −1

2
(∂ρ)2 − 1

2
(∂θ)2 − 1

2
(ψρ∂ψρ + ψθ∂ψθ) −

1

2
Q∂2ρ (B.28)

Jcig = −iψρψθ + iQ∂θ ≡ i∂H + iQ∂θ ≡ i∂φ (B.29)

G±
cig =

i

2
(ψρ ± iψθ)∂(ρ∓ iθ) +

i

2
Q∂(ψρ ± iψθ) , (B.30)

with analogous expressions for the anti-holomorphic currents. For k = 2, which
is the case of interest for us, worldsheet supersymmetry is enhanced to (4, 4).
This is the generic enhancement of worldsheet susy from N = 2 to N = 4 that
takes place when c = 6. Indeed for this value of the central charge the currents
J icig = {e±

R

Jcig , Jcig}, i = ±, 3, generate a left-moving SU(2) current algebra,
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the R subalgebra of the left-moving N = 4 worldsheet superconformal algebra.
The two extra odd currents Ĝ±

cig are generated in the OPE of G±
cig with J icig.

Similarly for the right-movers. In the full cigar background the wordsheet
superconformal currents have more complicated expressions but the theory
still has exact (2, 2) susy, enhanced to (4, 4) for k = 2.

In the free linear dilaton theory, i∂θ and i∂H defined in (B.29) are sepa-
rately holomorphic, but only their linear combination Jcig is holomorphic in the
full cigar background. This reflects the non-conservation of winding around
the cigar (strings can unwrap at the tip). Momentum P θ around the cigar is
still conserved, and there is a corresponding Noether current with both holo-
morphic and anti-holomorphic components, which asymptotically takes the
form 1

Q
(i∂θ , i∂̄θ). For k = 2, the field θ is asymptotically at the free fermion

radius. Thus in the linear dilaton theory the left-moving susy U(1) generated
by (i∂θ , ψθ) is enhanced to a left-moving SU(2)2 current algebra, which can be
represented by three free fermions ψi, with ψ3 ≡ ψθ and ψ± ≡ e±iθ. To avoid
confusions with other SU(2) symmetries will refer to this algebra as SU(2)ψi

.
Similarly in the right-moving sector we have the analogous SU(2)ψ̃i

. In the
full cigar background the SU(2)ψi

and SU(2)ψ̃i
current algebras are not sym-

metries, and only a global diagonal SU(2) survives, whose Cartan generator is
the momentum P θ. This is interpreted as the SU(2)R spacetime R-symmetry.

B.5.2 Cigar Vertex Operators

To characterize the primary vertex operators of the cigar it is sufficient to
give their asymptotic form in the linear-dilaton region. While the exact ex-
pressions are more complicated, their quantum numbers (including conformal
dimensions) remain the same and can thus be evaluated in the asymptotic
region. Splitting the vertex operators in left-moving and right-moving parts,
we have the asymptotic left-moving expressions

V NS
j,m = eiQmθeQjρ

V R
j,m = e±

i
2
φeiQmθeQjρ (B.31)

and the asymptotic anti-holomorphic expressions

Ṽ NS
j,m̃ = e−iQm̃θ̄eQjρ̄

Ṽ R
j,m̃ = e±

i
2
φ̃e−iQm̃θ̄eQjρ̄ . (B.32)

Left-moving and right-moving terms can be glued together provided they have
the same value of the quantum number j. We will sometimes re-express j in
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terms of p, the momentum in the radial direction, as

j = −Q
2

+ ip . (B.33)

The quantum numbers m and m̃ are related to the integer winding w and the
integer momentum n in the angular direction of the cylinder as

m =
1

2
(n + wk) m̃ = −1

2
(n− wk) . (B.34)

Recall however that winding is not a conserved quantum number in the cigar
background. Conformal dimensions of the primary operators (B.31,B.32) are

∆NS
j,m =

m2 − j(j + 1)

k

∆̄NS
j,m̃ =

m̃2 − j(j + 1)

k

∆R±
j,m =

1

8
+

(m± 1
2
)2 − j(j + 1)

k

∆̄R±
j,m̃ =

1

8
+

(m̃∓ 1
2
)2 − j(j + 1)

k

.

B.5.3 Spacetime Supersymmetry

From now on we restrict to the case of interest, d = 6. The RNS vertex
operators for R

5,1 are familiar. To describe the Ramond sector, we bosonize
the fermions in the usual fashion,

±ψ0 + ψ1 = e±φ0

ψ2 ± iψ3 = e±iφ1

ψ4 ± iψ5 = e±iφ2

Spinors of R
5,1 are then written

Vα = e
1
2
(ǫ0φ0+iǫ1φ1+iǫ2φ2) (B.35)
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with ǫa = ±1. With these notations at hand, the BRST invariant vertex
operators for the spacetime supercharges for the IIB theory read

Sα = e−ϕ/2e+
i
2
φV +

α S̄α = e−ϕ/2e−
i
2
φV +

α

S̃α = e−ϕ̃/2e+
i
2
φ̃Ṽ +

α
¯̃Sα = e−ϕ̃/2e−

i
2
φ̃Ṽ +

α

where ϕ is the usual chiral boson arising in the bosonization of the βγ sys-
tem. We use a bar to denote conjugation, and a tilde to distinguish the
right-movers. By V +

α we mean the positive chirality spinor, i.e. we impose
ǫ0ǫ1ǫ2 = 1. Choosing the same chirality in the left and right-moving sectors
is the statement of the type IIB GSO projection. The supercharges obey the
supersymmetry algebra

{Sα , S̄β} = 2γµαβPµ {S̃α , ¯̃Sβ} = 2γµαβPµ , (B.36)

where Pµ is the momentum in R5,1. Thus the theory has (2, 0) supersymmetry
in the six Minkowski directions. Note that

[P θ, Sα (S̃α)] =
1

2
Sα (S̃α) , [P θ, S̃α ( ¯̃Sα)] = −1

2
Sα ( ¯̃Sα) , (B.37)

confirming the interpretation of P θ as a spacetime R-symmetry.
Physical vertex operators are constrained to be local with the spacetime

supercharges. Locality implies the GSO condition

m+ FL ∈ 2Z + 1 (NS)

m+ FL ∈ 2Z (R)

where FL is the left-moving worldsheet fermion number. The analogous condi-
tion holds for the right-movers. In the asymptotic region we may fermionize the
field θ into ψ±. Then the quantum number m, instead of denoting left-moving
momentum in the θ direction, gets re-interpreted as ψ± fermion number. De-
noting by F ′

L = FL + m the new total left-moving fermion number, the GSO
projection becomes simply

F ′
L ∈ 2Z + 1 (NS)

F ′
L ∈ 2Z (R)

and analogously for the right-movers.
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B.5.4 Spectrum: generalities

The physical spectrum of the theory comprises:

(i) A discrete set of truly normalizable states, localized at the tip of the
cigar.
(j < −Q/2)

(ii) A continuum of delta-function normalizable states, corresponding to in-
coming and outgoing waves in the ρ direction.
(j = −Q/2 + iR, i.e. p ∈ R)

(iii) Non-normalizable vertex operators, supported in the asymptotic large ρ
region.
(j > −Q/2)

States of type (i) live in R5,1 at ρ ∼ 0 and they fill in a massless tensor multiplet
of the 6d (2, 0) supersymmetry. More precisely they are:

NSNS: four scalars, in the 3 + 1 of SU(2)R;

RR: one scalar and one anti-selfdual antisymmetric tensor, both SU(2)R sin-
glets;

RNS: one left-handed Weyl spinor, which can be thought of an SU(2)R doublet
of left-handed Majorana-Weyl spinors;

NSR: same as RNS.

See [185] for a detailed analysis.
In the rest of this appendix we will focus on the states of type (ii). These

are the states relevant for the determination of a spacetime “effective action”
for the non-critical string. Recall that our philosophy is to use the R

5,1×
cigar background as an intermediate step towards the AdS background dual
to N = 2 SCQCD. Both backgrounds should arise as solutions of the same
non-critical string field theory. We would like to use the cigar background,
for which we have a solvable worldsheet CFT, to derive an “effective action”
description. The “effective action” is expected to be background independent
and should admit both the cigar background and the AdS background as
different classical solutions. We will restrict to the lowest level in a “Kaluza-
Klein expansion” on the cigar circle (to be defined more precisely below). The
states will then propagate in seven dimensions, R5,1 times the radial direction
ρ. Because of the linear dilaton, they obey massive field equations in 7d, but
they are in another sense “massless” – they are closely related to the massless
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states of the critical IIB 10d theory and possess the gauge invariances expected
for massless 7d fields. We should emphasize from the outset that the linear
dilaton varies with a string-scale gradient, so there is no real separation of
scales between the “massless” level that we are keeping and the higher levels.
This is why we are using “effective action” in quotation marks. Nevertheless
the distinction between the lowest level obeying massless gauge-invariances and
the higher genuinely massive levels is a meaningful one, and we still expect
such an “effective action” to contain useful information. Remarkably, we will
see that it is a 7d gauged supergravity with non-standard gauging.

Finally we should mention the operators of type (iii). They have an in-
teresting holographic interpretation as “off-shell” observables of little string
theory, which “lives” on the R5,1 boundary at ρ = ∞. However we are not
interested in the cigar background per se and we are after a different incar-
nation of holography, so it is not immediately clear what the significance of
these operators is for our story. In analogy with c = 1 non-critical string, our
non-critical superstring background is expected to possess a rich spectrum of
“discrete states”, with Liouville dressing of type (iii). A closely related phe-
nomenon is the existence of a chiral ring, which has been demonstrated in
[186] (see also [187]). This infinite tower of discrete states may be related to
the exotic extra protected states of N = 2 SCQCD.

B.5.5 Delta-function normalizable states: the lowest mass
level

We are now going to exhibit in detail the physical states of type (ii) at the
lowest mass level. We first organize the states according their symmetries in
the asymptotic linear dilaton region, and later discuss the symmetry breaking
induced by the cigar interaction. The asymptotic cylinder is at free-fermion
radius, and we wish to work covariantly in the enhanced SU(2)ψi

× SU(2)ψ̃i

symmetry.
After fermionizing θ into ψ±, we have in total ten worldsheet fermions: ψµ,

µ = 0, . . . 5 associated with R
5,1, ψρ associated to the radial direction and ψi,

i = 3,± associated to the stringy circle. It is then clear from outset that the
lowest mass level of our theory will be formally similar to the massless spectrum
of 10d critical IIB string theory, but of course the states will propagate only
in the seven dimensions xµ̂ = (xµ, ρ).
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NS sector

In the left-moving NS sector the lowest states are the three 7d scalars

V NS
i = ψie

−ϕejρeik·X , (B.38)

in a triplet of SU(2)ψi
, and the 7d vector

V NS
µ̂ = ψµ̂e

−ϕejρeik·X , (B.39)

where µ̂ = µ , ρ. The mass-shell condition L0 = 1 gives, for both the scalar
and the vector,

1

2
k2 − 1

2
j(j + 1) = 0 , (B.40)

which using j = −1/2 + ip we may write as

− k2 − p2 = k2
0 − k2 − p2 =

1

4
. (B.41)

Because of the linear dilaton, the wave equations appear to be “massive” with
m2 = 1

4
. Introducing a polarization vector eµ̂ = (eµ eρ), the superconformal

invariance condition G 1
2
eµ̂V NS

µ̂ = 0 gives a modified transversality equation for

the vector4

k · e−
√
−1(j + 1)eρ = 0 . (B.42)

A short calculation shows that the polarization

e = k and eρ = −
√
−1 j (B.43)

corresponds to a null state. Thus despite the mass term in the wave equation,
V NS
µ̂ the 7-2 = 5 physical degrees of freedom of a massless 7d vector.

The theory is super-Poincaré invariant in R5,1, and we may label the states
in terms of 6d quantum numbers. In assigning 6d Lorentz quantum numbers,
we may focus for convenience on the states with radial momentum p = 1

2
,

which obey a massless 6d wave-equation (see B.41). We can then label them
according to the 6d little group SO(4) = SU(2)×SU(2). It must kept in mind
that this is just a notational device, since the states are really part of a 7d
continuum with arbitrary real p. We use the notation |j1 , j2〉2I+1 for a state
with spins (j1, j2) under the 6d little group, and in the 2I + 1-dimensional
representation of SU(2)ψi

. All in all, in this 6d notation we may summarize

4Apologies for the
√
−1, but here the symbol i would look confusing next to the mo-

mentum j.
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the lowest NS states as

|1
2
,
1

2
〉1 ⊕ |0, 0〉1 ⊕ |0, 0〉3 . (B.44)

R sector

The construction of vertex operators in the Ramond sector proceeds just as
in to the familiar critical (10d) case, except of course that momenta are only
seven-dimensional,

V R = e−ϕ/2e
i
2
(ǫ0φ0+ǫ1φ1+ǫ2φ2ǫθθ+ǫHH)ejρeip·X , ǫ0ǫ1ǫ2ǫθǫH = 1 , (B.45)

which we may write as

Ψα(pµ)e
± i

2
(θ+H) ejρ , Ψα̇(pµ)e

± i
2
(θ−H) ejρ . (B.46)

Here Ψα and Ψα̇ are 6d pseudo-real (Majorana-Weyl) spinors, respectively left-
handed and right-handed. Choosing the 7d momentum as p = 1

2
the spinors

obey a massless 6d wave equation, but as above we should keep in mind that
they are really part of 7d continuum. For each chirality we have an SU(2)
doublet of 6d Majorana-Weyl spinors (equivalently, one complex Weyl spinor)
so in “massless 6d notation” we write the spectrum as

|1
2
, 0〉2 ⊕ |0, 1

2
〉2 . (B.47)

In 7d the wave-equation looks “massive”, but the counting of degrees of free-
dom is again the one for massless states.

Gluing

Table B.7–B.10 show the result of gluing the left- and right-moving sectors.
In the first column of each table we list the (m, m̃) quantum numbers, recall
(B.34). In the second and third columns the Lorentz quantum numbers are
specified in the the 6d “massless” notation, that is we label states by their
spins (j1, j2) of the little group SO(4) = SU(2)1 × SU(2)2. The superscripts
2I+1 and 2Ĩ+1 in the second column denote the dimensions of the represen-
tations under SU(2)ψi

and SU(2)ψ̃i
, respectively (the superscript is omitted

for singlets). Finally the superscript 2R + 1 in the third column denotes the
dimension of the SU(2)R representation, with SU(2)R defined as the diagonal
combination of SU(2)ψi

and SU(2)ψ̃i
which is preserved by the cigar interac-

tion.
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({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) | 1
2
, 1
2
〉 ⊗ | 1

2
, 1

2
〉 |1, 1〉 ⊕ |1, 0〉 ⊕ |0, 1〉 ⊕ |0, 0〉 Gµν , Bµν , φ

| 1
2
, 1
2
〉 ⊗ |0, 0〉 | 1

2
, 1
2
〉 Vµ

|0, 0〉 ⊗ | 1
2
, 1

2
〉 | 1

2
, 1
2
〉 Ṽµ

|0, 0〉 ⊗ |0, 0〉 |0, 0〉 ρ

({±1, 0}, {0}) |0, 0〉3 ⊗ | 1
2
, 1
2
〉 | 1

2
, 1
2
〉3 Ṽ 3

µ

|0, 0〉3 ⊗ |0, 0〉 |0, 0〉3 ρ3

({0}, {±1, 0}) | 1
2
, 1
2
〉 ⊗ |0, 0〉3 | 1

2
, 1
2
〉3 V 3

µ

|0, 0〉 ⊗ |0, 0〉3 |0, 0〉3 ρ̃3

({±1, 0}, {±1, 0}) |0, 0〉3 ⊗ |0, 0〉3 |0, 0〉5 ⊕ |0, 0〉3 ⊕ |0, 0〉 T 5, T 3, T

Table B.7: Field Content in NSNS sector.

({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) | 1
2
, 0〉2 ⊗ | 1

2
, 0〉2 |1, 0〉3 ⊕ |1, 0〉 ⊕ |0, 0〉3 ⊕ |0, 0〉 A3+

µν , A
+
µν , A

3, A

({±1}, {0}) |0, 1
2
〉2 ⊗ | 1

2
, 0〉2 | 1

2
, 1
2
〉3 ⊕ | 1

2
, 1
2
〉 A3

µ, Aµ

({0}, {±1}) | 1
2
, 0〉2 ⊗ |0, 1

2
〉2 | 1

2
, 1
2
〉3 ⊕ | 1

2
, 1
2
〉 Ã3

µ, Ãµ

({±1}, {±1}) |0, 1
2
〉2 ⊗ |0, 1

2
〉2 |0, 1〉3 ⊕ |0, 1〉 ⊕ |0, 0〉3 ⊕ |0, 0〉 A3−

µν , A
−
µν , A

′3, A′

Table B.8: Field Content in RR sector

({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) | 1
2
, 1

2
〉 ⊗ | 1

2
, 0〉2 |1, 1

2
〉2 ⊕ |0, 1

2
〉2 Ψ2

µα̇,Ψ
2
α̇

|0, 0〉 ⊗ | 1
2
, 0〉2 | 1

2
, 0〉2 Ψ2

α

({±1, 0}, {0}) |0, 0〉3 ⊗ | 1
2
, 0〉2 | 1

2
, 0〉4 ⊕ | 1

2
, 0〉2 Ψ4

α,Ψ
2
α

({0}, {±1}) | 1
2
, 1

2
〉 ⊗ |0, 1

2
〉2 | 1

2
, 1〉2 ⊕ | 1

2
, 0〉2 Ψ2

µα,Ψ
2
α

|0, 0〉 ⊗ |0, 1
2
〉2 |0, 1

2
〉2 Ψ2

α̇

({±1, 0}, {±1}) |0, 0〉3 ⊗ |0, 1
2
〉2 |0, 1

2
〉4 ⊕ |0, 1

2
〉2 Ψ4

α̇,Ψ
2
α̇

Table B.9: Field Content in NSR sector

({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) | 1
2
, 0〉2 ⊗ | 1

2
, 1

2
〉 |1, 1

2
〉2 ⊕ |0, 1

2
〉2 Ψ2

µα̇,Ψ
2
α̇

| 1
2
, 0〉2 ⊗ |0, 0〉 | 1

2
, 0〉2 Ψ2

α

({±1}, {0}) |0, 1
2
〉2 ⊗ | 1

2
, 1

2
〉 | 1

2
, 1〉2 ⊕ | 1

2
, 0〉2 Ψ2

µα,Ψ
2
α

({0}, {±1, 0}) |0, 1
2
〉2 ⊗ |0, 0〉 |0, 1

2
〉2 Ψ2

α̇

| 1
2
, 0〉2 ⊗ |0, 0〉3 | 1

2
, 0〉4 ⊕ | 1

2
, 0〉2 Ψ4

α,Ψ
2
α

({±1}, {±1, 0}) |0, 1
2
〉2 ⊗ |0, 0〉3 |0, 1

2
〉4 ⊕ |0, 1

2
〉2 Ψ4

α̇,Ψ
2
α̇

Table B.10: Field Content in RNS sector
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It is interesting to organize the spectrum according to massless supermulti-
plets of 6d supersymmetry (again, we may pretend that the states are massless
in 6d by focussing on the value p = 1

2
of the momentum along ρ). Massless

supermultiplets are constructed by taking the direct product of a primary
|j1, j2〉2R+1 with a set R of raising operators. For (2, 0) susy in six dimensions,

R = (1, 0) + 2(
1

2
, 0)2 + (0, 0)3 + 2(0, 0) (B.48)

For example the graviton multiplet is obtained acting with R on the primary
|0, 1〉, while the tensor multiplet is obtained starting with the primary |0, 0〉.
The complete field content of (the lowest level of) the cigar theory is obtained
by action of R on the set of primaries,

|0, 1〉 + 2|0, 1
2
〉2 + |0, 0〉3 + 2|0, 0〉 (B.49)

Comparison with (B.48) suggests us that there are two other hidden super-
charges at work, of opposite chirality, namely (0, 2), which relate the primaries
of all the (2, 0) supermultiplets. In other words, we might conclude that we
have obtained the maximally supersymmetric non-chiral (2, 2) supergravity in
six dimensions. This is correct as the counting of states with 7d momentum
p = 1

2
goes, but the right-handed supersymmetries are broken by interactions.

Nevertheless this is a useful hint: we should regard the effective theory for the
lowest level as a spontaneously broken version of a maximally supersymmetric
theory. And since the 7d momentum can be arbitrary, the candidate theory
before symmetry breaking is maximally supersymmetry seven-dimensional su-
pergravity.

B.5.6 Maximal 7d Supergravity with SO(4) Gauging

To pursue this hint, in Table B.11 we have organized the lowest level of the
linear-dilaton theory (before turning on the cigar interaction) according to 7d
quantum numbers. The little group in 7d is SO(5) ∼= USp(4) and we label
USp(4) representations by their dimension. In the linear dilaton theory the full
SU(2)ψi

⊗SU(2)ψ̃i

∼= SO(4) is unbroken and we label states with superscripts

(2I + 1, 2Ĩ + 1) indicating the representation dimensions of the two SU(2)s.
Remarkably, the resulting spectrum is precisely the field content of maximal
7d supergravity with SO(4) gauging, a theory that has been fully constructed

only quite recently [177, 178]. The massless vector V
(3,1)+(1,3)
µ̂ are the SO(4)

gauge fields. On the other hand the vectors C4
µ̂ are eaten by the two forms

C4
µ̂ν̂ , which become massive through a vectorial Higgs mechanism [177, 178].
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Sector |USp(4)〉2I+1 ⊗ |USp(4)〉2Ĩ+1 |USp(4)〉(2I+1,2Ĩ+1) 7d Fields

NSNS |5〉 ⊗ |5〉 |14〉 ⊕ |10〉 ⊕ |1〉 Gµ̂ν̂ , Bµ̂ν̂ , φ

|5〉 ⊗ |1〉3 |5〉(3,1)⊕(1,3) V
(3,1)⊕(1,3)
µ̂

|1〉3 ⊗ |5〉
|1〉3 ⊗ |1〉3 |1〉(3,3) T (3,3)

RR |4〉2 ⊗ |4〉2 |10〉(2,2) ⊕ |5〉(2,2) ⊕ |1〉(2,2) C
(2,2)
µ̂ν̂ , C

(2,2)
µ̂ , C(2,2)

RNS |4〉2 ⊗ |5〉 |16〉(2,1)⊕(1,2) ⊕ |4〉(2,1)⊕(1,2) Ψ
(2,1)⊕(1,2)
µ̂

, Ψ(2,1)⊕(1,2)

NSR |5〉 ⊗ |4〉2
|4〉2 ⊗ |1〉3 |4〉(2,3)⊕(3,2) Ψ(2,3)⊕(3,2)

|1〉3 ⊗ |4〉2

Table B.11: Seven-dimensional labeling of the spectrum of the linear-dilaton
theory

Recall that the standard gauging of maximal 7d sugra is of the full SO(5)
R-symmetry – this is the famous supergravity that arises by consistent trun-
cation of 11d supergravity compactified on S4 and that admits a maximally
supersymmetric AdS7 vacuum. By contrast, the scalar potential of the SO(4)
theory does not allow for a stationary solution, but only for a domain wall
solution [177, 178], that is, our linear-dilaton background. A closely related
interpretation of the SO(4) gauged supergravity was given in [188] (before its
explicit construction!) as the effective 7d supergravity arising from a “warped
compactification” of IIB supergravity on the near-horizon NS5 brane back-
ground R5,1× linear dilaton ×S3.

The cigar background is obtained by further turning on a “tachyon” pertur-
bation, a profile for the NSNS scalar fields T (3,3) that decays for large ρ and acts
as a wall for ρ ∼ 0. Note that the scalars are in the symmetric traceless tensor
of SO(4), and choosing a vev for them breaks SO(4) → SO(3) ∼= SU(2)R, the
diagonal combination of SU(2)ψi

× SU(2)ψ̃i
, as expected. In the IIA set-up

of colliding NS5 branes, this breaking corresponds to choosing an angular di-
rection in the transverse S3 to the coincident NS5 brane – the direction along
which the branes are separated (we called it τ in Figure 4.4). Under the pre-
served diagonal SU(2)R, the nine NSNS scalars T (3,3) decompose as 5 + 3 + 1.
The 1 and the 3 are associated to moduli, corresponding respectively (in the
T-dual picture) to the radial and angular separations of the two NS5 branes;
together with an extra SU(2)R-singlet scalar from the RR sector they comprise
the five scalars of the 6d tensor multiplet localized at the tip of the cigar.

In the application of the SO(4)-gauged 7d supergravity to our problem
of finding the dual N = 2 SCQCD, we are not interested in turning on a
background for the NSNS scalars, but rather for the RR fields corresponding
to Nc D3 branes and Nf D5 branes. D3 branes are magnetically charged

unde the RR one-form C
(2,2)
µ and D5 branes are magnetically charged under
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the RR zero-form C(2,2). As the superscripts indicate both of the RR one-
form and zero-form transform as vectors of SO(4). It is possible to choose
a common direction in SO(4) space for both forms, so that again we break
SO(4) → SO(3) ∼= SU(2)R. This is again consistent with the IIA Hanany-
Witten picture. Separating the NS5 branes in breaks SO(4) to SO(3), and it
is clear that both the compact and the non-compact D4-branes are extended
in the same direction along which the NS5 branes are separated, so that their
fluxes are oriented coherently in SO(4) space. The surviving SO(3) ∼= SU(2)R
is interpreted as the SU(2)R R-symmetry of the N = 2 gauge theory.
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Appendix C: Spin chain

C.1 Computation one-loop dilation operator

In this appendix, we describe a shortcut to determine the one loop spin chain
hamiltonian from the knowledge of the scaling dimensions and R charges of
some of the local operators. As this method uses some of the eigenvalues from
the spectrum of dilation operator, it doesn’t substitute the explicit one loop
computation of the dilation operator but serves as a quick check.

As usual, the composite operators are thought of as spin chains and the one-
loop dilation operator as the nearest neighbor type hamiltonian acting on the
spin chain. If the kth site in the spin chain has the vector space Vk associated
with it, then H =

∑L
k=1Hk,k+1 (with k ≡ k +L) acts as Hk,k+1 : Vk ⊗ Vk+1 →

Vk ⊗ Vk+1. The interactions contributing to Hk,k+1 at one loop are listed
schematically in figure 5.1. The first and second interactions (self energy and
gluon interaction) in figure 5.1 are proportional to identity in Vk ⊗ Vk+1 while
the non-trivial element is contributed only by the third interaction (quartic
interaction). As a general strategy in this section, we first determine the
contribution of the quartic vertex to the hamiltonian and then use anomalous
dimensions of some operators to fix the coefficient of the remaining identity
piece.

C.1.1 SCQCD

A brief pause to introduce some notation. Let the indices p, q = ± label the
U(1)r charges of φ and φ̄, in other terms we define φ− ≡ φ, φ+ ≡ φ̄, and

gpq =

(
0 1

1 0

)
. If |eiej〉 denotes an element of Vk ⊗ Vk+1 (i.e. ei ∈ Vk) then

let 〈ei′ej′|H|eiej〉L4 denote the contribution of the quartic interaction L4 to the
said matrix element.

The nonzero elements of the hamiltonian due to quartic vertices are listed
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below:

〈φp′φq′|H|φpφq〉φ4 = δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′ (C.1)

〈φp′φq′|H|QIQ̄
J 〉Q2φ2 =

√
Nf

Nc
gp′q′δ

J
I (C.2)

〈Q̄I′

QJ ′|H|QIQ̄
J 〉Q4 =

Nf

Nc

(2δI
′

I δ
J
J ′ − δJI δ

I′

J ′) (C.3)

〈QJ ′Q̄I′|H|Q̄JQI〉Q4 = 2δJI δ
I′

J ′ − δI
′

I δ
J
J ′ (C.4)

The factors of
Nf

Nc
are explained in figure C.1. Figures C.1(a),C.1(b),C.1(c),C.1(d)

correspond to equations (C.1,C.2,C.3,C.4) respectively. This fixes the hamil-
tonian up to identity terms.

Hk,k+1 =

0

B

B

B

B

B

B

B

@

φpφq QIQ̄
J Q̄KQL QIφ

p

φp′φq′ αδp

p′ δ
q

q′ + gpqgp′q′ − 2δp

q′δ
q

p′

q

Nf

Nc
gp′q′δJ

I
0 0

Q̄I′
QJ ′

q

Nf

Nc
gpqδI

′

J ′ βδI
′

I
δJ
J ′ − δJ

I
δI

′

J ′

Nf

Nc
0 0

QK′Q̄L′
0 0 γδK

K′δ
L′

L
+ 2δK

L
δL

′

K′ 0

Q̄I′
φp′ 0 0 0 ηδI

′

I
δp

p′

1

C

C

C

C

C

C

C

A

(a) (b) (c) (d)

Figure C.1: The color/flavor structure of the quartic vertex. The solid black
line represents the flow of the color index while the dotted blue line show the
flow of the flavor index. (a) shows the φ4 interaction vertex, whose contribution
is proportional to Nc as compared to the tree level. In (b) the Q2φ2 interaction
vertex has a factor of Nf/Nc compared to (a) because of the presence of one
flavor loop. TheQ4 vertex in (c) has an additional factor of (Nf/Nc)

2 compared
to (a) due to the presence of two flavor loops. The figure (d), however, does
not carry any additional Nf/Nc factors.

Next task is to determine the coefficients α, β, γ and η. From the fact that
operator Trφk is chiral and hence protected, we determine α = 2. Another
protected multiplet is the multiplet of stress energy tensor and R symmetry
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currents (and supercurrents). Its superconformal primary, called TrT , has
R, r = 0 and ∆ = 2. Hence, it is a linear combination of Tr[QIQ̄I ] and Tr[φφ̄].
Reduction of the hamiltonian over these operators is

H =





Tr[φφ̄] Tr[QIQ̄I ]

Tr[φφ̄] 4 4
√

Nf

N

Tr[QIQ̄I ] 4
√

Nf

N
2(β + γ) − 4(

Nf

Nc
− 2)



 (C.5)

We require a zero eigenvalue of this matrix at the superconformal point Nf =
2Nc, yielding β + γ = 4. Another fact that TrTφ is also a protected oper-
ator imposes a relation β + 2η = 8. Also, one loop anomalous dimension of
flavor nonsinglet operator Q̄iφ . . . φQi is calculated to be 4. The contribution
comes only due to the “boundary” i.e. due to 〈Q̄φ|φQ〉 matrix element, as the
“bulk” contribution from pairs of adjacent φs is zero. This determines η = 2.
Summarizing we get,

α = 2, β = 4, γ = 0, η = 2. (C.6)

C.1.2 Interpolating SCFT

We repeat the same exercise as before. The quartic vertices contribute the
following to the hamiltonian.

〈φp′φq′|φpφq〉φ4 = δp

p′δ
q

q′ + gpqgp′q′ − 2δp

q′δ
q

p′ (C.7)

〈φ̌p′φ̌q′|φ̌pφ̌q〉φ̌4 = κ2(δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′) (C.8)

〈Q̄L̂LQKK̂|QIÎQ̄
Ĵ J 〉Q4 = 2 δĴÎ δ

J
K δ

L̂
K̂δ

L
I − δJI δ

Ĵ
Î δ

L
Kδ

L̂
K̂

+ κ2(2 δĴK̂ δ
J
I δ

L̂
Î δ

L
K − δLI δ

L̂
Î δ

J
K δ

Ĵ
K̂ ) (C.9)

〈QIÎQ̄
Ĵ J |Q̄L̂LQKK̂〉Q4 = 2 δĴÎ δ

J
K δ

L̂
K̂δ

L
I − δJI δ

Ĵ
Î δ

L
Kδ

L̂
K̂

+ κ2(2 δĴK̂ δ
J
I δ

L̂
Î δ

L
K − δLI δ

L̂
Î δ

J
K δ

Ĵ
K̂ ) (C.10)

〈φp′φq′|QIÎQ̄
Ĵ J 〉Q2φ2 = gp′q′δ

J
I δ

Ĵ
Î (C.11)

〈φ̌p′φ̌q′|Q̄Ĵ JQIÎ〉Q2φ̌2 = κ2gp′q′δ
J
I δ

Ĵ
Î (C.12)

〈Q̄Ĵ J φ̌q|φpQIÎ〉φQφ̌Q̄ = −2κδp
qδ

J
I δ

Ĵ
Î (C.13)

〈φpQ̄Ĵ J |QIÎφ̌q〉φQφ̌Q̄ = −2κδp
qδ

J
I δ

Ĵ
Î (C.14)

The first four elements could have an additional identity pieces. They
are easily determined by imposing the symmetry under g ↔ ǧ, Q ↔ Q̄ and
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φ ↔ φ̌ and by requiring the hamiltonian to reduce to that of SCQCD in the
limit κ → 0. The one loop hamiltonian (5.38) is precisely reproduced by this
method.

C.2 Composite Impurities

To implement the aforementioned constraint that QI can only occur as a
combination QIQ̄

J , we regard the combined object QIQ̄
J ≡ M J

I as a basic
impurity object in the spin chain. For future convenience, we define the singlet
combination M = 1√

2
M J

I δIJ and the triplet Mi = 1√
2
M J

I (σi)IJ , where σi

are three Pauli matrices . These can be rewritten in an SO(4) notation as
Mm = 1√

2
M J

I (σm)IJ , where m takes the values 0, . . . , 4 with σ0 ≡ I2×2. With
these basic objects at hand, we would like to write down the way they interact
in the spin chain.

C.2.1 Neighbouring Mm and φ̄

We now write down the nearest neighbour Hamiltonian in this picture, with
Mm and φ̄ as the basic impurity objects. Let us concentrate on the matrix
element that acts on neighbouring φ and M. Consider the following sequence
in the spin chain, . . . φpQIQ̄Jφq . . ..

φp QI Q̄J φq

1
2
(3 + ξ

2
)IφQ (5 − ξ

2
)IQQ − 2KQQ

1
2
(3 + ξ

2
)IφQ

↓ ↓ ↓
φp′ Q̄I′

QJ ′ φq′

(C.15)
In this new picture, where we see M as the basic impurity, we need to include
the middle term ( ξ

2
− 1)IQQ + 2KQQ of the Hamiltonian i.e. “self energy” of

M, in both the nearest neighbour Hamiltonian that acts on consecutive φ and
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Ms. So we write,

g−2〈. . . φp′M̄I′

J ′ . . . | . . . φpM J
I . . .〉

= [
1

2
(3 +

ξ

2
) +

1

2
(5 − ξ

2
)]δp

p′δ
I′

I δ
J
J ′

−δp

p′δ
J
I δ

I′

J ′

= (4δI
′

I δ
J
J ′ − δJI δ

I′

J ′)δ
p
p′

g−2〈. . . φp′M̄m′

. . . | . . . φpMm . . .〉
=

1

2
(σm

′

)J
′

I′ (σ
m)IJ 〈. . . φp′M̄I′

J ′ . . . | . . . φpM J
I . . .〉

= δp
p′δ

mm′

(4 − 2δm0)

= 4Iφ ⊗ IM − 2Iφ ⊗P0

Here, we have introduced a new operator P0. This operator is a projection
operator which projects the four dimensional space spanned by Mn onto M0.

C.2.2 Neighbouring Mm and Mn

It is easy to repeat the exercise to get the nearest neighbour matrix ele-
ment acting between two Ms. For this purpose we consider the sequence
. . . QIQ̄JQKQ̄L . . ..

QI Q̄J QK Q̄L

(5 − ξ
2 )IQQ − 2KQQ ( ξ

2 − 1)IQQ + 2KQQ (5 − ξ
2 )IQQ − 2KQQ

↓ ↓ ↓
Q̄I′

QJ ′ Q̄K′

QL′

(C.16)

The downward arrow shows the action of Hamiltonian in various neighbouring
sites. This simply says that

g−2〈. . .M̄I′

J ′M̄K′

L′ . . . | . . .M J
I M L

K . . .〉 = (C.17)

1

2
(5 − ξ

2
)δI

′

I δ
J
J ′δ

K′

K δ
L
L′ − δJI δ

I′

J ′δK
′

K δ
L
L′

(
ξ

2
− 1)δI

′

I δ
J
J ′δ

K′

K δ
L
L′ + 2δI

′

I δ
J
K δ

K′

J ′δLL′

1

2
(5 − ξ

2
)δI

′

I δ
J
J ′δ

K′

K δ
L
L′ − δI

′

I δ
J
J ′δ

L
Kδ

K′

L′
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g−2〈. . .M̄m′M̄n′

. . . | . . .MmMn . . .〉 = δmm
′

δnn
′

(13 − 4δm0 − 4δn0)

+δmnδm
′n′ − δmn

′

δnm
′

+ iǫmnn
′m′

Following Minahan and Zarembo, we introduce the SO(4) spin operators,

(Σij)mn ≡ δimδ
j
n − δinδ

j
m (C.18)

Now we can rewrite this piece of Hamiltonian when the spin-spin interactions
are manifest.

g−2〈. . .M̄m′M̄n′

. . . | . . .MmMn . . .〉 = 13IM ⊗ IM − 4(P0 ⊗ IM + IM ⊗ P0)

+
1

2
Σij ⊗ Σij − i

4
ǫijklΣ

ij ⊗ Σkl
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C.3 Spin Chain

C.3.1 The Undynamic Spin Chain

In this appendix, we construct the Hamiltonian for a spin chain which has M
and φ̄ to be the elementary excitations.

We run into difficulty if we continue writing the nearest neighbour Hamil-
tonian in this picture where M is the basic impurity and not Q and Q̄. This
is because while writing the Hamiltonian in this fashion we implicitly assume
that the number of sites is preserved by the Hamiltonian, which is clearly not
true. There is an element of the Hamiltonian which is responsible for the “de-
cay” of the impurity M into φ and φ̄ and vice versa i.e. for the transition
M0 ↔ φφ̄ + φ̄φ. Clearly, this transition does not preserve the number of
sites in the spin chain. To remedy this situation we follow Beisert’s treatment
called the undynamic spin chain. Let us introduce an integer subscript l which
counts the number of φs following an impurity.

φ̄l ≡ φ̄φl Mm
l ≡ Mmφl (C.19)

with these redefinitions of the impurities, each site in this chain hosts a vector
space V ⊗Z, where V is spanned by φ̄ and Mns, for example, φ̄l can be written
as φ̄⊗ |l〉. We introduce the raising and lowering operators acting on Z, with
a†|l〉 = |l + 1〉 and a|l〉 = |l − 1〉. The hardcore constraint is implemented by
defining |0〉 to be the vacuum, hence annihilated by a. Let li be the number of
φs following the i th impurity. ai and a†i are the raising and lowering operators
which act on i th impurity.

H [φ̄liφ̄li+1
] = 6φ̄liφ̄li+1

− φ̄li+1φ̄li+1−1 − φ̄li−1φ̄li+1+1

+2φ̄liM0
li+1−1 + 2φ̄li−1M0

li+1
− δl106φ̄l1φ̄l2

δli,0 can be rewritten as (1 − a†iai),

H [φ̄liφ̄li+1
] = (6a†iai − a†iai+1 − a†i+1ai)φ̄liφ̄li+1

+2(ai + ai+1)φ̄liM0
li+1

)

Doing the same exercise for all the matrix elements,
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

φ̄li
φ̄li+1

φ̄li
Mm

li+1
Mm

li
φ̄li+1

Mm
li

Mn
li+1

6a
†
i
ai − a

†
i
ai+1 − a

†
i+1ai 2(a

†
i

+ a
†
i+1)P0

i+1 0 0

2(ai + ai+1)P0
i+1 4 + 3a

†
i
ai − 2P0

i+1 0 0

0 0 4 + 3a
†
i
ai − a

†
i
ai+1 2(a

†
i

+ a
†
i+1)P0

i+1

−a
†
i+1ai − 2P0

i

a
†
i
ai(8 − 2(P0

i + P0
i+1)) − (1 − a

†
i
ai)

0 0 2(ai + ai+1)P0
i+1 (13 − 4(P0

i + P0
i+1)

+ 1
2
Σi · Σi+1 − i

4
Σi × Σi+1)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(C.20)

Here, P0
i is a projection operator acting on i th Mn impurity, and Σ × Σ

stands for ǫijklΣ
ijΣkl. In the matrix elements of Hamiltonian Hi,i+1 we have

included the half of the self energy of the i th and i+1 th nearest neighbours,
and nontrivial movements of i+ 1 th impurity. The block diagonal structure
is due to this feature of construction. Please note that we can not include the
movement of i th impurity in Hi,i+1 as it would change the subscript of i− 1
th impurity as well. Our treatment is consistent because of the cyclicity of the
spin chain, which makes the above Hamiltonian act on all the impurities.

Consider a two impurity sector in a periodic spin chain of length l. This
sector will be spanned by the operators φ̄l1φ̄l2, φ̄l1Mm

l2−1 and Mm
l1−1Mn

l2−1,
with the constraint l1 + l2 = l− 2. Let us write down the Hamiltonian in this
basis,

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

φ̄l1
φ̄l2

φ̄l1
Mm

l2
Mm

l1
φ̄l2

Mm
l1

Mn
l2

2(3(a
†
1a1 + a

†
2a2) 2(a

†
1 + a

†
2)P0

2 2(a
†
1 + a

†
2)P0

1 0

−a
†
1a2 − a

†
2a1)

2(a1 + a2)P0
2 3(a

†
1a1 + a

†
2a2) 0 2(a

†
1 + a

†
2)P0

1

−a
†
2a1 − a

†
1a2 + 8 − 4P0

2

2(a1 + a2)P0
1 0 3(a

†
1a1 + a

†
2a2) 2(a

†
1 + a

†
2)P0

2

−a
†
2a1 − a

†
1a2 + 8 − 4P0

1

26 − 5(a
†
1a1 + a

†
1a1)

0 2(a1 + a2)P0
1 2(a1 + a2)P0

2 −(8 − 2(a
†
1a1 + a

†
2a2))(P0

1 + P0
2 )

(2 − a
†
1a1 − a

†
2a2)

×( 1
2
Σ1 · Σ2 − i

4
Σ1 × Σ2)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(C.21)

C.4 Superspace for N = 2 orbifold theory

In this appendix, we explain the superspace construction of the most general
N = 2 superconformal Lagrangian with the field content displayed in Table
5.2. This corresponds to the theory of the “deformed” orbifold of N = 4 SYM.
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The component Lagrangian of this theory is presented in Section 5.2.1.
The component fields of the Table 5.2, can be organized into two N = 2

vector multiplets and a hypermultiplet. The N = 2 vector multiplet in N = 1
superspace language is made out of a vector multiplet and a chiral multiplet.

In this theory of two SU(Nc) gauge groups, the color indices of the N = 2
vector superfields under both the gauge groups are V a

b,Φ
a
b, V̌

ǎ
b̌

and Φ̌ǎ
b̌
.

Their component expansion is as follows,

V = θ̄σµθAµ + iθ2θ̄λ̄− iθ̄2θλ + θ2θ̄2D (C.22)

Φ = φ+ θχ− θ2F (C.23)

V̌ = θ̄σµθǍµ + iθ2θ̄¯̌λ− iθ̄2θλ̌ + θ2θ̄2Ď (C.24)

Φ̌ = φ̌+ θχ̌− θ2F̌ (C.25)

The N = 2 hypermultiplets, however, carry the bi-fundamental index
structure with respect to the two gauge groups as Qa

Îǎ and Q̃Îǎ
a. They are

decomposed in the components as,

QÎ = qÎ + θψÎ − θ2fÎ (C.26)

Q̃Î = q̃Î + θψ̃Î − θ2f̃ Î (C.27)

The unique N = 2 superconformal Lagrangian with above multiplets is,

L = LV + LH (C.28)

LV =

∫
d4θe−gY MV Φ̄egY MV + (

∫
d2θW αWα + h.c.)

+

∫
d4θe−ǧY M V̌ ¯̌ΦeǧY M V̌ + (

∫
d2θW̌ αW̌α + h.c.) (C.29)

LH =

∫
d4θQ̄egY MVQ+

∫
d4θQe−ǧY M V̌ Q̄

+

∫
d4θ ¯̃Qe−gY MV Q̃+

∫
d4θQ̃eǧY M V̌ ¯̃Q

+(

∫
d2θQ̃ΦQ+ h.c.) + (

∫
d2θQΦ̌Q̃+ h.c.) (C.30)

One could add the term m
∫
d2θQ̃Q to the Lagrangian which would preserve

the N = 2 supersymmetry but this would break the conformal invariance.
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