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Abstract of the Dissertation 

A Comparison of Hidden Markov Model Based Programs 

for Detection of Copy Number Variation in Array 

Comparative Genomic Hybridization Data 

 

by 
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in 
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 2010 

 

Array comparative genomic hybridization (aCGH) can detect copy number variation 

(CNV) across the genome.  Five current Hidden Markov Model (HMM) software systems for 

estimating copy number variation with aCGH data were compared.  These comparisons were in 

terms of their effectiveness for identifying CNVs in simulated data based on the ratio of signal 

intensities.  There was significant variability in the error rates.  The system that adjusted for 

outliers in the model, the Robust Hidden Markov Model (HMM-R), appeared to have the best 

performance.   The emission density function of the HMM is a mixture of two normal densities, 

in which one component represents usable aCGH data and the other represents outliers. HMM-R 

correctly classified 99.8% of normal states, 84.5% of CNV gains, and 90.2% of CNV losses.  
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That is, error rates with regard to gains and losses were appreciable even with the best software.   

The HMM-R method demonstrated higher sensitivity and lower false discovery rates than the 

commonly used procedure.  While the accuracy rates of HMM software has improved, there is 

substantial room for further improvement.
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Chapter 1 

Background and Introduction 
 

1.1 Copy Number Variation 

 Studying human genetic variation allows us to understand the complex 

mechanisms by which DNA sequences impact disease.  Variations among the genomes of 

different individuals arise by mutation, which is a structural alteration of the DNA 

(Freeman et al., 2006).  Large segments of DNA, ranging in size from thousands to 

millions of DNA bases, can vary in copy-number.  Feuk et al. (2006) defines Copy 

Number Variations (CNVs) as duplications or deletions of a segment of DNA sequence 

compared to a reference genome.   

 Geneticists have long been aware of large-scale deletions and duplications (e.g. 

Ford et al. 1959, Summitt 1964).  One of the first observations was that children with 

Down‟s syndrome have an additional copy of chromosome 21 (Jacobs et al., 1959).  Prior 

to 2004, these major rearrangements were considered to be rare events.   However, recent 

discoveries have revealed that genomic imbalances that do not result in genetic disorders 

actually occur much more frequently.  Redon et al. (2006) constructed a CNV map of the 

genome, which encompassed 270 DNA samples, and identified over 1,400 copy number 

variable regions, about 12% of the human genome.  Most CNVs are benign variants that 

seem not to cause disease directly.  However, there are several instances where CNVs 

that affect critical developmental genes do cause disease.  Gonzalez et al. (2005) recently 
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showed that the number of copies of the CCL3L1 gene influences susceptibility to HIV / 

AIDS.  Sebat et al. (2007) reported that CNVs appear to create a greater risk for autism.  

 CNVs have also been associated with cancer development and progression 

(Shlien and Malkin, 2010).  Oncogenes cause the cells to divide at a rapid rate, resulting 

in tumors.  Copy number gains appear to lead to overexpression of oncogenes. Tumor 

suppressor genes tend to hold the cells back, inhibiting mitosis when there are cell 

defects.  Copy number losses lead to underexpression of tumor suppressor regions. The 

HER-2 (human epithelial receptor 2) oncogene resides on chromosome 17q, and is 

involved in cell growth and development.  Amplification of the HER-2 gene can be 

detected in 20-30% of invasive breast cancers (Ordas et al., 2007).  This amplification is 

associated with aggressive tumors with a poor prognosis.  The discovery of the HER-2 

gene amplification has led to HER-2 targeted treatments and therapeutic applications. 

This CNV defines a subgroup
 
of high-risk breast cancer patients who benefit from 

individually
 
tailored chemotherapy drugs such as Adriamycin (Tanner et al., 2006). 

1.2 Method for detecting Copy Number Variation 

 Array comparative genomic hybridization (aCGH) is an array-based high-

resolution method to detect copy number variation.  The technology seeks to detect and 

map chromosomal aberrations, on a genomic scale, in a single experiment (Picard et al., 

2005).  For whole-genome aCGH, genomic DNA isolated from a test and a reference 

sample are fluorescently labeled with two different colored dyes (Figure 1).    
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Figure 1 To perform array-CGH, DNA samples from the reference and control are 

labeled with different colors of fluorescent dye (green for sample DNA, red for reference 

DNA), then mixed together.  Each mix is matched (hybridized) to a separate slide with 

DNA clones. A laser scanner reads both fluorescent signals, and a log ratio of intensities 

is produced for each probe on the array. The graph below shows the plot of log ratios as a 

function of location on the corresponding probe. 

Source:  Shah et al. 2006 

The DNA is allowed to hybridize to a microarray of whole-genome clones attached to a 

polymer-coated glass slide.  After the slides have been incubated and washed, a laser 

scanner reads them to determine the relative strength of the two fluorescent colors at each 

of the DNA spots on the array.    Image analysis then results in test and reference 

intensities for all array elements.  The intensity of an array element is linearly 

proportional to the abundance of the corresponding DNA sequence in the sample.  The 
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2log  ratio of the test and reference intensities reflect the relative copy number in the test 

sample compared to that in the reference sample.  

 

1.3 Pre-processing 

 For aCGH, the 
2log  ratios undergo three pre-processing steps before arriving at 

the actual copy number (Van Wieringen et al., 2008).  The three steps of pre-processing 

include normalization, segmentation, and calling.  With all microarray-based techniques, 

the fluorescence intensity ratios first have to be normalized to correct for non-biological 

sources of error such as intensity fluctuations, background noise and fabrication artifacts 

(Brown et al., 2001).  The next step, segmentation, is the process by which the boundaries 

for copy number alterations are determined. Chromosomes are routinely divided into 

segments of constant copy number.  In general, the formulation of a model-based method 

presumes a sequence of piece-wise constant segments as a function of various parameters 

such as the number of breakpoints, their locations and the mean/variance of the 

distributions for each segment (Lai et al., 2005).  Estimating the true sequence of 

underlying copy number ratios that generated the observed sequence of fluorescence 

ratios is the final stage of the process, or the calling step.   

 Array-based CGH data consists of log2 transformed fluorescence intensity ratios, 

which are linearly proportional to the copy numbers.   In the absence of normalization or 

measurement errors, the normal clones would correspond to a log2 ratio of zero, because 

the normal and tumor DNA fragments both have two copies (Guha et al., 2008).  

Genomic regions of copy number gains should have ratios greater than or equal to 3/2 
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(i.e, 
2log (3/ 2) 1.58 ); and regions of copy number loss should have ratios equal to 1/2 

(i.e, 
2log (1/ 2) 1  ).  Logarithms of the ratios are commonly used because the ratios are 

dependent on absolute magnitude and are often highly skewed. Logged intensities often 

provide a better sense of the true variation (Engler et al., 2006).   

 Figure 2 displays the normalized log2 ratios of a breast cancer specimen analyzed 

by Snijders et al. (2001).  The data highlight the necessity of applying statistical 

techniques to arrayCGH data. After normalization there is considerable shrinkage of the 

log2 ratios towards zero.  The plot illustrates the deviation of these log2 ratios from the 

theoretical values.  

Figure 2 Normalized copy number ratios of a comparison of DNA from tumor cell strain 

S0034 with normal DNA. The clones are ordered by position in the genome. The vertical 

bars indicate borders between chromosomes. 

Source: Snijders et al. 2001 

 Most calling algorithms in the literature are unable to elicit a segment‟s actual 

copy number.  They do, however, detect deviations from the normal copy number and 
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classify each segment as either „normal‟, „loss‟, „gain‟, or „amplification‟:  „normal‟ if 

there are two copies of the chromosomal segment present, „loss‟ if at least one copy is 

lost, „gain‟ if at least one additional copy is present, and amplification if there are a high 

level of copies present (Van Wieringen et al., 2008).   

1.4 Goals of this project 

 Fridlyand et al. (2004) were the first to consider Hidden Markov Models (HMM) 

for calling aberrant CNVs. A number of HMMs have since been developed for the 

purpose of copy number analysis (Marioni et al. 2006, Shah et al. 2006, Stjernqvist et al. 

2007).  In recent years, two survey papers by Willenbrock and Fridlyand (2005) and Lai 

et al. (2005) have been published comparing various methods for finding copy number 

segments.  Lai et al. (2005) reported that the most effective method for finding copy 

number segments is Circular Binary Segmentation (CBS) (Olshen et al., 2004).  Lai et al. 

(2005) found that the HMM results were sub-optimal with high false discovery rates 

(~40-60%), and lower sensitivity (~50-80%).   Willenbrock and Fridlyand (2005) 

reported parallel findings.  However, HMMs have been widely implemented, offering 

benefits such as fast computational speeds, which is the primary reason they are the most 

widely implemented methods today. 

 In the last five years, Bayesian methods have been incorporated in HMM analysis 

(e.g., Engler et al., 2006, Shah et al., 2006, Rueda and Diaz-Uriarte, 2007, Guha et al., 

2008).    Markov Chain Monte Carlo (MCMC) strategies are used to infer model 

parameters (Scott, 2002), and the optimal state sequence is determined from the estimated 

Bayesian posterior distribution.  Copy number gains and losses are identified from these 

distributions.    
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 Shah et al. (2006) demonstrated higher accuracies for their Bayesian HMM that 

were comparable to CBS (Olshen et al., 2004).   The purpose of this study is to compare 

the performance of five current HMM programs: BioHMM (Marioni et al., 2006), HMM-

R (Shah et al., 2006), Bayesian HMM (Guha et al., 2008), CGHclassify (Engler et al., 

2006), and RJaCGH (Rueda and Diaz-Uriarte, 2007) using simulated data.  
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Chapter 2 

Hidden Markov Models 
 

2.1 Overview of HMM 

 It is useful to visualize a HMM generating a sequence. The model moves through 

a series of states and produces output either when it has reached a particular state or when 

it is moving from state to state (Eddy, 2004).  The state path is a Markov chain, meaning 

that the next state depends only on the current state.  The HMM approach seems 

promising since its model incorporates DNA copy number transitions.  

2.2 A HMM for copy number assignments 

 Clearly defined parameters must be specified to call copy numbers from a 

sequence of continuous 
2log  ratios.  Using a HMM, the sequence of clones is traversed 

in one direction only, according to chromosomal position, moving between the hidden 

copy number states in the model (Andersson et al., 2008).  For the case when the random 

variable has a finite state space, we can specify a HMM by the following (Rabiner, 

1989): 

(1)  A set of n distinct states
1 2, , ns s s .  These states model the CNV.  There are discrete 

time steps, t= 0, t= 1, ….  such that at timestep t the system is in exactly one of the 

available states, called
tq , where 

1 2{ , , }t nq s s s .  The “timesteps” model the 

progression through the genome. 

(2)  A distribution of initial states { }i  , where  
i = P(

0q  = si) is the probability of 

starting in copy number state i. 
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(3)  A set of allowed transitions between states.  There is a probability that the transition 

from state i to state j is taken. These are the transition probabilities.  This probability is 

usually represented as { }ijA a where 

1( | )t j t i ijP q s q s a     ( , )i j n  

 (4)  In a HMM the states are not observable. When a state is visited, an observation x is 

recorded.  For continuous observations, the emission probability density function (pdf) in 

state j, { ( )},  is defined as, ( ) ( | )j j t jB b x b x P x q s   .  The emission pdfs characterize 

the likelihood of a certain observation, if the model is in state j.  Here it characterizes the 

likelihood of observing a specific intensity ratio.  The emission pdf of each state is often 

assumed to be normally distributed, i.e.
2( ) ~ ( , )j j jb x N    .  

 Thus, a HMM with a finite number of states can be characterized in terms of three 

sets of parameters: (i) the initial state probabilities, π; (ii) the transition probability 

matrix, A; (iii) the collection of emission pdfs defined within each state, B.  Then 

( , , )A B   is taken as the parameter set of a HMM. 

 For most problems, there are so many possible state sequences that one could not 

practically enumerate them.  There are several possible ways of finding the optimal state 

sequence associated with the given observation sequence.  The Viterbi algorithm (1967) 

is a dynamic programming algorithm, guaranteed to find the most probable state path 

given a sequence and a HMM.  The Viterbi algorithm is used to find the state sequence 

with the highest probability.  The posterior probability of a set of model parameters (λ) 

given the observations (x) is defined to be (Gilks et al., 1996): 
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( | ) ( )
( | )

( )

L x p
p x

p x

 
  ‟ 

where ( | )p x is the posterior probability density, ( | )L x   is the likelihood function, 

( )p  is the prior probability density, and ( )p x is the marginal probability density.  The 

Viterbi algorithm is used to find a maximum posterior probability state sequence; that is, 

a sequence 
1( ,..., ) maximizing ( | , )TQ q q P Q x  .   

2.3 Bayesian Hidden Markov Models 

2.3.1 Parameter Estimation 

 The most important and difficult problem in HMMs is to find the model 

parameters ( , , )A B  from the data.  Here we want to adjust the model parameters to 

fit the observations best.  There is no known way to solve analytically for the parameter 

set that maximizes the probability of the observation sequence in a closed form (Rabiner 

and Juang, 1993).  The standard approach is to use the Baum-Welch method (Baum et al., 

1970) to choose ( , , )A B   such that its likelihood is locally maximized.  

2.3.2 Markov chain Monte Carlo Methods 

 Bayesian Markov chain Monte Carlo (MCMC) sampling strategies can be used to 

simulate HMM parameters from their posterior distribution given observed data (Scott, 

2002).  MCMC methods attempt to simulate direct draws from some complex 

distribution of interest.  One starts with some initial parameter value. Then each new 

parameter value is generated from a probability density that depends on the previous 

value.  The resulting sequence of parameter values forms a Markov chain.  The 
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Metropolis-Hastings algorithm (Hastings, 1970) and the Gibbs sampler (Gelfand and 

Smith, 1990) are the two major methods in MCMC.    

2.3.3 Stochastic Forward-Backward algorithm 

 The major component of current Bayesian MCMC approaches to HMMs is the 

simulation of the states from the marginal posterior probability distribution of the state 

sequences, ( | , )P S Y  (Chib, 1996).  Earlier methods applied the Gibbs sampler, where 

the individual hidden states are individually sampled in separate Gibbs steps.  Sampling a 

single state at a time introduces many more elements into the Gibbs Markov chain, a less 

efficient procedure.  The preferred alternative to a Gibbs sampling procedure is to use a 

stochastic version of the forward-backward algorithm (Scott, 2002).   The forward-

backward algorithm is an efficient method to sample from the posterior distribution of a 

HMM.  The approach samples the whole state sequence, as a single component block, 

from its posterior distribution directly.   

 The Stochastic Forward-Backward algorithm (Scott, 2002) consists of the 

following steps:  

(1) Given the observed log2 ratios 
1{ }T

t tY y   the forward step calculates the likelihood 

of the log2 ratios, ( | )P Y   

(2) The backward step samples the final state, 
NS from 

1( | ,.... )N NP S i y y  

(3) The remaining states 
1 1,...,NS S

are sampled recursively from 

1 1( | ,..., , ,.... )t t N NP S i S S y y  
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 I have developed a simple example to explain estimating the hidden state 

sequence with the Forward-Backward algorithm of the Bayesian HMM (Guha et al., 

2008).  The parameter set of the HMM is given in Figure 3.  For this system, the state is 

the chromosomal copy number- loss state, normal state, gain state, or amplification state.  

The probabilities 
1( | )t j t i ijP q s q s a     ( , 4)i j  of the next state based on the current 

state are summarized in the transition matrix A.  For example, the probability of a gain 

state followed by a loss state is .19, and the probability that a loss state is followed by a 

gain state is .56.  The transition matrix is row stochastic, meaning that each element is a 

probability and the elements of each row sum to 1.   

 Although we can not observe the copy number state, we can observe the log2 

ratios.  Conditional on the copy number states, the log2 ratios are assumed to be 

distributed as ( , ),  where 1,...4.
k ks sN k     The parameters for the emission pdfs 

associated with each state are

1 2 3 4{ ~ ( .396,.408), ~ (.052,.367), ~ (.326,.393), ~ (1.546,.762)}s N s N s N s N .  We can 

calculate the likelihood of the first log2 ratio -.3132, given the HMM is in the loss state s1,  

2

2

2

2

( )

2

[ .3132 ( .396)]

2(.408 )

1
( ; , )

2

1
( .3132; .396,.408) .96

2 (.408)

y

f y e

f e



 




 

   



   

           

The likelihood of the log2 ratio -.3132, given the HMM is in the loss state is .96.  This 

value corresponds to the first element of the Emission matrix B. 
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Figure 3 An example I have developed of a continuous HMM with four states.  The copy 

number state sk takes values from the set {1,2,3,4}.  The value sk =1 represents a copy 

number loss; sk =2 represents the normal state; sk =3 represents a single copy gain; sk =4 

represents an amplification.  The initial parameters I computed from the Bayesian HMM 

for this example are given here. 

 

 Given the model λ = (A, B, π) and the sequence of observations

{ .3132, .0855,.0346,.3261}Y    , the algorithm first calculates the ( | )P Y  .  The 

likelihood of an observation sequence { .3132, .0855,.0346,.3261}Y    with respect to a 

HMM with parameters λ expands as  

all Q

all Q

( | ) ({ .3132, .0855,.0346,.3261}| )

             ({ .3132, .0855,.0346,.3261}, | )

             ({ .3132, .0855,.0346,.3261}| , ) ( | )

P Y P

P Q

P Q P Q

 



 

  

  

  





 

The probability that { .3132, .0855,.0346,.3261}Y     was generated by a given model λ 

is the sum of the joint likelihood of the observation sequence Y and path Q, over all 

possible state paths Q allowed by the model.  The probability that Y and Q occur 

simultaneously, decomposes into the product of two quantities.  The first quantity 

({ .3132, .0855,.0346,.3261}| , ),P Q    is the likelihood of the observation sequence 
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given the state sequence.  It is the product of the emission densities computed along the 

considered path; 

1 2 3 4

1 2 3 4 1 2 3 4

4

1 2 3 4

1

( | , ) ({ , , , }|{ , , , }, )

( | , ) ( ) ( ) ( ) ( )t t q q q q

t

P Y Q P y y y y q q q q

P y q b y b y b y b y

 






    
 

The second quantity ( | ),P Q   is the probability of a state sequence 

1 2 3 4{ , , , }Q q q q q coming from a HMM with parameters λ.  This probability 

corresponds to the product of the transition probabilities from one state to the following. 

1 1 2 2 3 3 4, , ,( | ) q q q q q q qP Q a a a      

The joint likelihood of the sequence { .3132, .0855,.0346,.3261}Y     and the path 

{ , , , }Q loss loss gain gain can be computed from 

, ,

( , | ) ({ .3132, .0855,.0346,.3261},{ , , , }| )

({ .3132, .0855,.0346,.3261}|{ , , , }, ) ({ , , , } | )

( .3132) ( .0855)loss loss loss loss loss loss gain

P Y Q P loss loss gain gain

P loss loss gain gain P loss loss gain gain

b a b a

 

 



  

  

       ,(.0346) (.3261)

(.16)(.96)(.21)(.73)(.56)(.77)(.13)(1.01) .0013

gain gain gain gainb a b  

 
 

The interpretation of the computation in the above equation is the following.  Initially (at 

time t=1) we are in the loss state with probability
loss , and generate the log2 ratio -.3132 

(in this state) with the likelihood ( .3132)lossb  .  At the next time-step (t=2) we make a 

transition to another loss state with probability ,loss lossa , and generate the log2 ratio -.0855 

with the likelihood ( .0855)lossb  .  This process continues sequentially until we make the 
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last transition (at time t=4) from the gain state to another gain state with probability 

,gain gaina  and generate the log2 ratio .3261 with the likelihood (.3261)gainb .  Similarly, we 

can compute the probability of each of the possible state sequences of length four, 

assuming the fixed observation sequence Y.  The calculation of ( | )P Y   according to its 

direct definition requires 256 state sequences.  This calculation is computationally 

infeasible for large data sets.   

The forward algorithm (Baum et al., 1970) is an efficient procedure for the 

calculation of ( | )P Y  .  The forward variable ( )t i is defined as 

1 2( ) ( , ,..., , | ).t t ti P y y y q i    It is the probability of the observations 
1 2, ,..., ty y y  and 

being in state i at time t.   The Forward algorithm computes ( )t i with the following 

procedure (Rabiner and Juang, 1993): 

1.  Initialization  

1 1( ) ( ),    1i ii b y i n   
 

 

2.  Induction 

1 1

1

( ) ( ) ( ),    
n

t t ij j t

i

j i a b y  



 
   
 


1 1

1

t T

j n

  

   

3.  Termination 

1

( | ) ( )
n

T

i

P Y i 



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 The Stochastic Forward-Backward algorithm of Bayesian HMM (Guha et al., 

2008) begins with the implementation of the Forward algorithm.  Figure 4 illustrates a 

trellis diagram for the calculation of the Forward algorithm.  A trellis diagram can be 

used to visualize likelihood calculations of HMMs.    Each column in the trellis shows the 

possible copy number states at a certain time t for four time points.  Each state in one 

column is connected to each state in the adjacent columns by the transition probabilities 

given by the elements 
,i ja  of the transition matrix A.  At the bottom is the observation 

sequence { .3132, .0855,.0346,.3261}Y    .   

 In the Forward step (Figure 4), at each time-step t, ( 1,.., 4t  ) there are four 

possible CNV states.  The algorithm begins with initialization.  At the first timestep the 

prior probability of being in state 
is  is multiplied by likelihood of the first log2 ratio, 

given the HMM is in the state
is . The boxes in the first column of Figure 4 give the results 

of the initialization step.  The initial calculations are shown below. 

1

1

1

1

( ) ( .3132) (.16)(.96) .1536

( ) ( .3132) (.28)(.66) .1848

( ) ( .3132) (.27)(.27) .0729

( ) ( .3132) (.2

loss loss

normal normal

gain gain

amplification amplification

loss b

normal b

gain b

amplification b

 

 

 

 

    

    

    

    9)(.03) .0087

 

Figure 4 also illustrates the induction step for computing the values in the 

remaining cells of the trellis.  At each state (for example the gain state at 2t  ), there are 

4 possible transitions (lines) that reach this state.  Elements from the transition and 

emission matrices A and B are shown on the transition lines of the trellis of Figure 4.  The 

probability of observations 
1 2,y y  and being in the gain state at time 2t  , given our 
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HMM is defined as
2( ).gain  The figure shows how the gain state can be reached at time 

2t   from the 4 possible states at time 1t  .  The sum of the probabilities of these 4 

transitions is the probability of reaching the gain state at 2t  , 
2( ).gain

  

2 1 2 2

2 2

2

( ) ( , , | )

( ) ( .3132, .0855, | )

( ) ({ .3132, .0855},{ , }| )

              ({ .3132, .0855},{ , }| )

              ({ .3132, .0855},{ , }| )

 

gain P y y q gain

gain P q gain

gain P loss gain

P normal gain

P gain gain

 

 

 





 

   

  

  

  

2

2

2

             ({ .3132, .0855},{ , }| )

( ) (.1536)(.56)(.59) (.1848)(.11)(.59) (.0729)(.13)(.59) (.0087)(.38)(.59)

( ) .0507 .0120 .0056 .0020

( ) .0703

P amp gain

gain

gain

gain









  

   

   



 

This calculation is done at each state for all time-steps, and the results are shown 

in the boxes of Figure 4. The probabilities of obtaining the loss, normal, gain, and 

amplification states at 4t  are respectively .0021, .0347, .0222, and .0082.  Finally, the 

last step of the algorithm gives the desired calculation of ( | )P Y  as the sum of the 

forward variables 
4( ).i   

4

4

4

4

( | ) ({ .3132, .0855,.0346,.3261}| )

( | ) ( ) .0021

              ( ) .0347

              ( ) .0222

              ( ) .0082

( | ) .0672

P Y P

P Y loss

normal

gain

amplification

P Y

 

 









  

 

 

 

 


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Figure 4 Forward-Backward sampling- Forward Step. An example I have developed of a 

continuous HMM with four states. The Forward variables, the sums of the probabilities 

over all possible paths to any given state are given in the boxes.  For example, the 

probability of reaching the gain state at 2t  is 

(.1536)(.56)(.59)+(.1848)(.11)(.59)+(.0729)(.13)(.59)+(.0087)(.38)(.59) = .0703. 

1
Loss

2
Normal

3
Gain

4
Amp.

Locations

t1 t2 t3 t4

α1(L)

α1(N)

α1(G)

α1(A)

α2(L)

α2(N)

α2(G)

α2(A)

α3(L)

α3(N)

α3(G)

α3(A)

α4(L)

α4(N)

α4(G)

α4(A)

.1536                       .0355                        .0128                           .0021

.1848                       .1036                        .0778                           .0347

.0729                       . .0703                       . .0333                          .0222

.0087                           .0074                         .0056                          .0082

(.21)(.73)                      (.21)(.56)                       (.21)(.20)

(.29)(1.01)                      (.29)(1.09)                  (.29)(.82)

(.13)(.59)                      (.13)(.77)                        (.13)(1.01)

(.20)(.05)                              (.20)(.07)                              (.20)(.15)

 

                    Y
1
=-.3132             Y

2
 =-.0855             Y

3
 =.0346          Y

4
 =.3261

 
 

 

 In the backward step, the final hidden state is sampled based on the forward 

variables of the last time-step, 
4( )i . The algorithm samples the posterior probability 

distribution of being in the i
th

 state at the last time-step, given the observation sequence 

and the model.   
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The posterior distribution is shown in Table 1.  The first MCMC chain indicates the 

normal state (2) as the final hidden state of the sequence based on MAP (maximum a 

posterior) classification. 

Table 1 Forward-Backward sampling- Backward Step  

The posterior probability distribution of being in state i at  

location 4t  given the observation sequence. 

  

1 .0021|.0672=.03 

2 .0347|.0672=.52 

3 .0222|.0672=.33 

4 .0082|.0672=.12 

 

After sampling
4 4 1 2 3 4 from ( | , , , )S P S i y y y y , State 3 is then sampled 

recursively from 
3 4 1 2 3 4( | , , , , )P S i S normal y y y y  .  This is the posterior distribution of 

being in state i at location t3, given the last hidden state is normal and the data;                       

4 1 2 3 4
4 1 2 3 4

1 2 3 4

4
4

4
4

( , , , , )
( | , , , )

( , , , )

( , .3132, .0855,.0346,.3261)
( | .3132, .0855,.0346,.3261)

( .3132, .0855,.0346,.3261)

( )
( | .3132, .0855,.0346,.3261)

.0672

P S i y y y y
P S i y y y y

P y y y y

P S i
P S i

P

i
P S i




 

  
   

 

   

4 1 2 3 4( | , , , )P S i y y y y
4S i
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The normal state is again selected, now as the third hidden state from the posterior 

distribution.  This process is repeated for state 2 and state 1, completing the hidden state 

sequence for the first MCMC iteration.  The first row of Table 2 gives the remaining 

results for the first two states of the first MCMC iteration.  The following rows give the 

results for four additional iterations.  The best sequence of copy number assignments for 

each iteration is given by 4

1{ } .t tQ q 
 
The relative frequency of each event in the sample 

is shown in Table 3.  These frequencies represent the MCMC posterior probability of 

each state.  The hidden state labels are {loss, normal, normal, gain} for {State 1, State 2, 

State 3, State 4} respectively.  This process extended to n genetic positions in the 

algorithm. 

 

 

 

3 4 1 2 3 4 3 4 1 2 3 4

3 1 2 3 4 4 3 1 2 3

3 1

( | , , , , ) ( , , , , , )

                                          = ( , , , ) ( , | , , , )

                                          = ( ,

P S i S normal y y y y P S i S normal y y y y

P S i y y y P y S normal S i y y y

P S i y

    

  

 2 3 4 4 4 3

3 4 ,

, , ) ( | ) ( | )

                                          = ( ) ( )

                                    

normal i normal

y y P y S normal P S normal S i

i b y a

  

 

 

3 4

3 4

3 4

3 4

( | , ) .0128 .06 .0173

( | , ) .0778 .29 .5347
  .82  

( | , ) .0333 .54 .4249

.0056 .17 .0231( | , )

P S loss S normal Y

P S normal S normal Y

P S gain S normal Y

P S amplification S normal Y

       
              
       
     

       






 

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Table 2 Forward-Backward sampling- Posterior Samples 

The state labels for each clone from five MCMC iterations 

q
1
 q

2
 q

3
 q

4
 

q
1

(1)  

= 2 q
2

(1)

 = 2
 

 q
3

(1)

 = 2
 

 q
4

(1)

 = 2
 

 

q
1

(2)

 = 1
 

 q
2

(2)

 = 2
 

 q
3

(2)

 = 3
 

 q
4

(2)

 = 3
 

 

q
1

(3)

 = 1
 

 q
2

(3)

 = 2
 

 q
3

(3)

 = 3
 

 q
4

(3)

 = 3
 

 

q
1

(4)

 = 1
 

 q
2

(4)

 = 2
 

 q
3

(4)

 = 2
 

 q
4

(4)

 = 2
 

 

q
1

(5)

 = 2
 

 q
2

(5)

 = 1
 

 q
3

(5)

 = 2
 

 q
4

(5)

 = 3
 

 

 

 

Table 3 Forward-Backward sampling- Posterior Inference 

The hidden state estimates at each location are shown in bold. The relative frequency of 

each event in the sample is used to approximate the posterior probability of each hidden 

state. 

q
1
 P(q1=si) q

2
 P(q2=si) q

3
 P(q3=si) q

4
 P(q4=si) 

1 3|5 1 1|5 1 0 1 0 

2 2|5 2 4|5 2 3|5 2 2|5 

3 0 3 0 3 2|5 3 3|5 

4 0 4 0 4 0 4 0 
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Chapter 3 

Assessment of the Programs 
 

3.1 Methods Considered 

 Numerous algorithms exist for array CGH data analysis.  Rueda and Diaz-Uriarte 

(2007) developed Reversible Jump Array Comparative Genomic Hybridization 

(RJaCGH).   Guha et al. (2008) created Bayesian Hidden Markov Modeling of array 

CGH data (Bayesian HMM). Engler et al. (2006) generated a pseudolikelihood approach 

for simultaneous analysis of array comparative genomic hybridizations (CGHclassify).  

Marioni et al. (2006) developed a heterogeneous hidden Markov model for segmenting 

array CGH data (BioHMM).  Shah et al. (2006) integrated copy number polymorphisms 

into array CGH analysis using a robust HMM (HMM-R).  All five packages are publicly 

available and output estimated aberrations in copy number.   

3.1.1 The RJaCGH Package 

The first program (Rueda and Diaz-Uriarte, 2007) considers the space between 

clones, and provides probabilities of a copy number change instead of p-values or 

segment means. The software allows for either chromosome specific or genome-wide 

analysis.  RJaCGH applies a non-homogeneous HMM.  The transition probability matrix 

is not constant in time but varies with the distance between genes, thus the adjective non-

homogeneous.  Space between genes is an important consideration in the model, taking 

into account the variable nature in which probes are separated on the array. The hidden 

states are derived from executions of a reverse jump Markov Chain Monte Carlo 

(RJMCMC).  The RJMCMC algorithm proposed by Green (1995) provides a powerful 
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tool to the Bayesian model determination problem.  Since the method allows for jumps 

between states of differing dimensions, many models may be visited (Brooks et al., 

2003).  Results are finally summarized by Bayesian Model Averaging, incorporating 

model uncertainty (Rueda and Diaz-Uriarte, 2007).   

3.1.2 The BioHMM Package 

In brief, BioHMM (Marioni et al., 2006) incorporates a HMM where the optimal 

segmentation of clones is found by likelihood maximization using a derived number of 

Gaussian Distributions with state-specific means and fixed variance.  Akaike Information 

Criterion (AIC) is the criterion for model selection, used here to select the (k) states.  

Partitioning around medoids (PAM) is a widely used partitioning method that divides the 

data into a prespecified number of mutually exclusive groups.  PAM segments the 

observations in k states, and allows for the approximation of each state‟s mean. The 

Viterbi algorithm (Viterbi, 1967) is used to find the most probable sequence of hidden 

states given a sequence of intensity ratios. 

3.1.3 The CGHclassify Package 

The third program (Engler et al., 2006) uses a 3-state Gaussian mixture HMM that 

exploits features that are shared in common among chromosomes. The method introduces 

spatial dependence by using moving windows of three intensities.  The authors use a 

pseudolikelihood function as the basis for estimation.  The most probable copy number 

assignments are inferred from the posterior probabilities of the states.  
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3.1.4 The Bayesian HMM Package 

 The fourth program (Guha et al., 2008) applies a Bayesian HMM that uses a 

hybrid MCMC algorithm to obtain samples of the parameters. Guha et al. (2008) assume 

a model of K=4 states, where s1 corresponds to a copy number loss, s2 corresponds to the 

normal state, s3 to single copy gain, and s4 to amplification.  Conditional on the copy 

number states, the normalized log2 ratios are assumed to have Gaussian distributions with 

state-specific means and variance.  The Bayesian approach assumes priors for all 

unknown parameters. Priors for the parameters of the emission distribution were chosen 

based on theoretical values.  Gibbs sampling is used for sampling the parameters of the 

emission matrix.  A Metropolis-Hastings algorithm is used to sample the parameters of 

the transition matrix.  A stochastic version of the forward-backward algorithm determines 

the hidden states (Chib, 1996).   

3.1.5 The HMM-R Package 

 Shah et al. (2006) modified Bayesian HMM to take into account outliers.  The 

authors considered the data as belonging to one of the states from the set 

{ , , , }.Loss Normal Gain Amplification  These states are called “inlier” states.  The log2 

ratio expected from an outlier can be the result of measurement noise or the mislabeling 

of clones. A robust HMM (HMM-R) was proposed by Shah et al. (2006).  The emission 

pdf is a mixture of two normal densities, one component represents inlier clones and the 

other represents outliers.  The emission pdf is modified as follows: 

0 0( | , )  if 1
( | , )  ,

( | , )  if 0

i i

i i i

i s s i

N x O
p x O S s

N x O

 

 


  


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where 
ix  is the log2 ratio for clone i, 

iS s  is the state label at i, and 1iO   means 

location i is an outlier. 

3.2 Simulation Settings 

For this analysis, I used the simulated data set from Willenbrock and Fridlyand 

(2005) created for an earlier comparative study of segmentation approaches (called WF 

Data from now on).   Andersson et al. (2008), Wang and Wang (2007), Nguyen et al. 

(2006),  Rueda and Diaz-Uriarte (2007), Shah et al. (2006), Van de Wiel et al. (2007), 

and others, demonstrate the capabilities of their techniques by applying them to the WF 

Data.  The WF Data present a suitably varied set necessary for accurate assessment of 

these distinct algorithms.  This is data simulated to emulate the complexity of real tumor 

profiles and designed to become a standard for systematic comparisons of computational 

segmentation approaches (Fridlyand et al., 2004). The advantages of using synthetic data 

are two-fold.  First, the ground truth locations of the aberrations are known.  Second, we 

can control the difficulty of the problem.  The WF Data is considerably harder (but more 

realistic) than other synthetic datasets used in earlier papers (Shah et al., 2006).  I 

downloaded the data from http://www.cbs.dtu.dk/~hanni/aCGH, and the specific file used 

was http://www.cbs.dtu.dk/~hanni/aCGH.simulated.data.RDATA.     

I ran the five software packages on all replicates of the WF Data.  The WF Data 

consists of 500 replicates, each with 2,000 clones from 20 chromosomes; that is, 100 

clones per chromosome.  The WF Data consists of expected log2-ratios of each clone; 

that is, the CNV and the simulated log2 of tumor intensity over reference intensity, 

measured on a microarray.  The start and end position measured in base pairs of each 

clone are given.  The length of each clone is 1,000 base pairs.  They are sequentially 
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ordered along the first 100kb of each chromosome.  The chromosomal segments with 

DNA copy number c = 0, 1, 2, 3, 4 and 5 are generated with probability 0.006, 0.053 

0.872, 0.047, 0.015 and 0.007.  Table 4 shows the first 15 simulated 
2log  ratios for the 

first synthetic sample.   

Table 4.  First 15 clones on chromosome 1 from Sample 1 
sample1 Chrom log2ratios copynumber gain.loss kb index 

1 1 -0.0159371 2 0 1 1 

2 1 -0.2857084 2 0 2 2 

3 1 -0.2563104 2 0 3 3 

4 1 -0.1095165 2 0 4 4 

5 1 0.07679709 2 0 5 5 

6 1 0.10197522 2 0 6 6 

7 1 0.18096776 2 0 7 7 

8 1 -0.3464299 2 0 8 8 

9 1 -0.2376993 2 0 9 9 

10 1 0.06812582 2 0 10 10 

11 1 0.02651082 2 0 11 11 

12 1 -0.0411707 2 0 12 12 

13 1 -0.2079212 2 0 13 13 

14 1 0.23193684 2 0 14 14 

15 1 -0.2152985 2 0 15 15 

  

 The output of each method includes the estimated copy number states.  Following 

Willenbrock and Fridlyand (2005), I reduced events to one of three categories: deletion, 

normal, and gain.  The HMM-R and Bayesian HMM output differentiates four states: 

single-gains, amplifications, as well as normal and loss. Therefore, in the post-processing 

of HMM output, I combined single gain and amplification as a gain.   CGHclassify and 

BioHMM do not allow for states of multiple-gains.  In the RJaCGH usage argument, I set 

the maximum number of hidden states to three. 

3.3 Software Methods 

 With regard to software implementation, two platforms were required to execute 

the algorithms.  Bayesian HMM (Guha et al., 2008) and HMM-R (Shah et al., 2006) were 
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implemented in Matlab®. Bayesian HMM required an additional purchase of the 

Bioinformatics Toolbox 3.3 (2009a, The MathWorks, Inc., USA).    The Toolbox also 

allows you to perform chromosomal segmentation with the CBS algorithm (Olshen et al., 

2004), and follows this with the capability for analysis with Bayesian HMM. 

CGHclassify (Engler et al., 2006) and RJaCGH (Rueda and Diaz-Uriarte, 2007) were 

both executed on a freely available R system.  The HMMs were run with their default 

parameters.  Table 5 (Shah et al., 2006) provides the default parameter settings for the 

software packages.   

 

Table 5a Summary of parameter settings for Bayesian HMM 

Parameter Description Value 

δ Dirichlet prior on the i
th

 row of transition matrix A 1, 1, 1, 1 

α1:4 Shape of gamma prior on ζ
 -2

 1, 1, 1, 1 

β1:4 Scale of gamma prior on ζ
 -2

 1, 1, 1, 1 

m1:4 Normal prior mean on means μ -1, 0, .58, 1 

η
2

1:4 Normal prior variance on means μ 1, 1, 1, 4 

Note: The programming language used was Matlab® version 7.8 (R2009a). 

Source:  Shah et al. 2006 

 

 

 

 

 

 



28 

 

Table 5b Summary of parameter settings for HMM-R 

Parameter Description Value 

δ Dirichlet prior on the i
th

 row of transition 

matrix A 

1, 1, 1, 1 

α1:4 Shape of gamma prior on ζ
 -2

 10, 100, 5, 5 

β1:4 Scale of gamma prior on ζ
 -2

 1, 1, 1, 1 

m1:4 Normal prior mean on means μ -1, 0, .58, 1 

η
2

1:4 Normal prior variance on means μ .5, .001, 1, 1 

Note: The programming language used was Matlab® version 7.8 (R2009a). 

 

Table 5c Summary of parameter settings for RJaCGH 

Parameter Description Value 

m1:3 Normal prior mean on means Median (y) 

η
2

1:3 Normal prior variance on means Range (y) 

α1:3 Shape of gamma prior on ζ
 -2

 2 

β1:3 Scale of gamma prior on ζ
 -2

 Range
2
 (y)/50 

Beta The model for the transition matrix is based 

on Beta 

Gamma(1, 1) 

Note: The programming language used was R version 2.6.2. 

 

Table 5d Summary of parameter settings for CGHclassify 

Parameter Description Value 

mu_L Mean of copy number loss state -.5 

m0 Mean of copy number no-change state 0 

mu_G Mean of Copy number gain state .5 

s2 Variance of log2 ratios in each state .1 

p1 Probability of gain across entire data set .1 

pn1 Probability of loss across entire data set .1 

p10 Transition probability from gain to no-

change 

.1 

pn11 Transition probability from loss to gain .1 

p0n1 Transition probability from no-change to 

loss 

.1 

Note: The programming language used was R version 2.6.2. 
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 For CGHclassify, an error of “non-finite value” may be caused by an inadequate 

parameterization of the defaults.  Engler et al. (2006) suggest increasing the starting s2 

parameter to 0.2 and rerunning the analysis to remedy this. In the event this fails, no 

further recommendations have been specified.  When this occurred, I increased the s2 

parameter as recommended and report the number of failed analyses. 

The BioHMM approach does not prespecify the underlying copy number events 

on a given chromosome, but rather focuses on the identification of segments of common 

2log  ratio mean.  Thus the states in the Fridlyand et al. (2004) approach are not 

underlying copy number events such as gain and loss, but are segments of common mean. 

A change in state corresponds to a breakpoint.  Following segmentation, genetic features 

such as focal aberrations and amplifications (low- and high-level alteration within a 

segment involving a small number of clones) are identified (Engler et al., 2006).  The 

software‟s output needs to be further analyzed in order to “call” the gains and losses.  

Willenbrock and Fridlyand (2005) developed the MergeLevels algorithm to determine 

which segments of common mean represent real genetic alterations.  MergeLevels 

reduces the number of segments by merging ones that are likely to correspond to the 

same copy number.   Following segment combination, the segment level with predicted 

2log  ratio closest to 0, which is also the level with the largest number of observations, is 

assigned to the “normal” class.  The remaining levels are assigned to either “gain” or 

“loss” depending on whether their mean 
2log  ratio was larger or smaller, respectively, 

than the “normal” class.   
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 I analyzed the performance of the BioHMM method with the program Analysis of 

Data from aCGH experiments (Diaz-Uriarte and Rueda, 2007).  ADaCGH is both an R 

package and a web-based application for the analysis of aCGH data.  The program 

implements eight methods for detection of CNVs, including BioHMM by Marioni et al. 

(2006).  Computational efficiency and decreased user wait time are benefits to working 

within the ADaCGH platform (Diaz-Uriarte and Rueda, 2007).  I ran aCGH and post-

processed the MergeLevels output using the ADaCGH web-based tool available from the 

website http://adacgh2.bioinfo.cnio.es. 

3.4 Performance Measures 

 I define classification accuracy as the percentage of clones for which the 

classification agreed with the known categories.  A clone whose fitted state differs from 

the simulated ground truth label, is defined to be an error.  Classification accuracy, false 

discovery rate, specificity, and sensitivity were used as performance metrics.  Following 

Rueda and Diaz-Uriarte (2007), I used the confusion matrix defined in Table 6 to 

estimate rates.  I also calculated Cohen‟s Kappa coefficient (Cohen, 1960) from the 

confusion matrices to measure agreement beyond chance between the fitted results and 

the ground truth data.  Kappa values range between -1 (all clones incorrectly fitted) and 1 

(all clones correctly fitted).  A Kappa value equal to zero indicates a performance no 

better than random.   

 

 

 

http://adacgh.bioinfo.cnio.es/
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Table 6 A confusion matrix (Provost and Kohavi, 1998) contains information about 

actual and predicted classifications derived by a classification system.  The confusion 

matrix used to calculate rates (Rueda and Diaz-Uriarte, 2007). 

 
 
 
 

True 
State 

Fitted State 

 gain  (g) normal  (n)  loss  (l)  Total  

Gain  (G)  Gg  Gn  Gl  G.  

Normal (N)  Ng  Nn  Nl  N.  

Loss  (L)  Lg  Ln  Ll  L.  

 

 

 

Correct Classification rate   
. . .

Gg Nn Ll
CCR

G N L

 


  
 

False Discovery Rate    
Ng Nl

FDR
Gg Ng Lg Gl Nl Ll




    
 

Specificity      
Nn

specificity
Ng Nn Nl


 

 

Sensitivity      
Gg Ll

sensitivity
Gg Gn Gl Lg Ln Ll




    
 

Kappa      
( ) ( )

1 ( )

P A P E

P E






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Additionally, I report the classification error rates as follows: 

   

   

2
ˆ ˆ P Gain incorrectly fitted as Normal     P  Normal state observed | Gain true state

ˆ ˆ   P Gain incorrectly fitted as Loss          P  Loss state observed | Gain true state

ˆ P Normal incorrectl







 

 



1

13

21    

   

 

ˆy fitted as Gain     P  Gain state observed | Normal true state

ˆ ˆ P Normal incorrectly fitted as Loss     P  Loss state observed | Normal true state

ˆ ˆ P Loss incorrectly fitted as Gain         P  







 

 

23

31  

   

Gain state observed | Loss true state

ˆ ˆ P Loss incorrectly fitted as Normal    P  Normal state observed | Loss true state  32

 

Table 7 allows us to visualize the misclassification costs of calling a clone incorrectly 

(Kim, Gordon, Sebat, Ye, and Finch, 2008).  Table 7 presents the estimated conditional 

probability of a fitted state, given the true state.  

 

Table 7 Estimated conditional probability of a fitted state, given true state* 

                                              Fitted State 

True State gain normal loss 

Gain 1-ε12- ε13 ε12 ε13 

Normal ε21 1-ε21- ε23 ε23 

Loss ε31 ε32 1-ε31- ε32 

* ijth cell is defined as a function of error model parameters εij (where i, j are one of Gain, 

Normal, or Loss). As defined in Methods, these parameters are:   

ε12 = P̂ (Gain incorrectly fitted as Normal)  

ε13 = P̂ (Gain incorrectly fitted as Loss)  

ε21 = P̂ (Normal incorrectly fitted as Gain)  

ε23 = P̂ (Normal incorrectly fitted as Loss)  

ε31 = P̂ (Loss incorrectly fitted as Gain)  

ε32 = P̂ (Loss incorrectly fitted as Normal)  
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Chapter 4 

Results 
 

4.1 Detection of candidate copy number variants from simulated data 

 The graphs of figure 5 are comparable to the plots of Shah et al. (2006).  Figure 5 

displays chromosome 4 of sample 28 with the true classifications (Panel A), the fitted 

states of RJaCGH (Panel B), CGHClassify (Panel C), Bayesian HMM (Panel D), 

BioHMM (Panel E) and HMM-R (Panel F).  The first 18,000 base pairs (bp) on 

chromosome 4 is a segment of loss.  This segment is followed by a 20,000 bp region of 

gain.  The remaining length of the chromosome retains a normal copy number.  All five 

of the programs accurately identify all of the loss CNVs.  Each program also correctly 

calls all normal log2-ratios without any false discoveries.  However, each program 

incorrectly calls normal states in the middle of the gain segment.  BioHMM has the 

lowest accuracy call rate for gain, with zero labeled correctly.  HMM-R has the highest 

accuracy, correctly labeling 75% of the gain CNVs.  The remaining packages have 

accuracy call rates under 25% for this region on chromosome 4.   
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Figure 5 Panel A depicts chromosome 4 of sample 28.  The chromosomal position in 

base pairs (bp) is plotted on the horizontal axis.  Clones associated with normal log2-

ratios are plotted in blue, losses in red, and gains in green.  The vertical lines in the 

remaining graphs represent states fitted by the software.   

 

 

 

Figure 5 In Panel B, RJaCGH commits seventeen errors. Black vertical lines represent 

the errors produced by the software.  The black lines correspond to 17 uncalled gains.   
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Figure 5 In Panel C, CGHclassify commits seventeen errors.  The black lines of Panel C 

are indicative of 16 gains that are mislabeled as normal by CghClassify. 

 

 

 

Figure 5 In Panel D, BayesianHMM commits seventeen errors.  The black lines of Panel 

D are indicative of 19 gains that are mislabeled as normal by BayesianHMM.   
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Figure 5 In Panel E, BioHMM commits 20 errors.  BioHMM misses the entire gain 

segment in Panel E.   

 

 

 

Figure 5 In Panel F, HMM-R commits 5 errors.  HMM-R correctly labels fifteen of the 

twenty gains in Panel F.  
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The total number of CNVs detected by each of the five software packages is given 

in Table 8.  I also include the number of CNVs that were correctly identified (True 

CNVs).  The true positive rates fell between .65 and .87.  The true positive rate for 

CGHclassify was calculated on 93% of the data sets.  I was unable to produce results for 

thirty-three samples.   

 Bayesian HMM more effectively detected gains compared to detecting losses. 

CGHclassify, HMM-R, BioHMM and RJaCGH detected deletions and duplications with 

similar percentages.   

Table 8 Number of candidate aberrations from the simulated data.  True CNVs represent 

correctly fitted variants.  The simulated data set contained 128,299 gains and losses. 

Proram #CNVs #Gains %Gains #Losses %Losses # True 

CNVs 

True 

Positive 

Rate 
*
 

BHMM 151,409 89,483 59.1 61,926 40.9 100,544 .78 

CGH 

classify 

85,410 42,921 50.3 42,489 49.7 83,665 .65 

RJaCGH 93,054 46,534 50.0 46,520 50.0 91,312 .71 

BioHMM 88,447 45,803 51.8 42,644 48.2 85,957 .67 

HMM-R 113,502 58,665 51.7 54,837 48.3 111,520 .87 

WF Data 128,299 68,333 53.3 59,896 46.7 128,299 1.00 

*
 The true positive rate for CghClassify was calculated on 93% of the data sets.  I was    

unable to process thirty-three samples.  The unprocessed datasets comprised 8, 861 

CNVs, including 55% gains, and 45% losses. 

  

 

4.2 Performance statistics for predicting gains and losses 

The processing results of each algorithm are given in Tables 9-13.    I determined 

the entries of the confusion matrix as outlined in Table 6 of Methods.  The entries in the 

confusion matrix have the following meaning in the context of this study:  Gg is the 
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number of correct predictions that an instance is a gain.  Gn is the number of incorrect 

predictions that an instance is normal when in fact it is a gain.  Gl is the number of 

incorrect predictions an instance is a loss when it is a gain. 

 

Table 9.   RJaCGH Confusion Matrix 

True  
State  

Fitted  

   g  n  l  Total  

G  45,570  22,809  11  68,390  

N  958  870,080  767  871,805  

L  6  14,057  45,742  59,805  

 
Total  46,534  906,946  46,520  1,000,000  

 

 

Table 10.  CGHclassify Confusion Matrix 

True  
State  

Fitted  

   g  n  l  Total  

G  41,931  21,343 11  63,285  

N  984  813,074  744  814,802  

L  6  14,173  41,734  55,913  

 
Total  42,921  848,590  42,489  934,000     
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Table 11.   Bayesian HMM Confusion Matrix 

True  
State  

Fitted  

   g  n  l  Total  

G  50,907  17,321 93 68,321 

N  38,433 821,280 12,196 871,909  

L  143 9,990 49,637 59,770 

 
Total  89,483 848,591 61,926 1,000,000  

 

Table 12.   BioHMM Confusion Matrix 

True  
State  

Fitted  

   g  n  l  Total  

G  44,484  23,771 4 68,259 

N  1,319 869,534 1,167 872,020 

L  0 18,248 41,473 59,721 

 
Total  45,803 911,553 42,644 1,000,000  

 

Table 13.   HMM-R Confusion Matrix 

True  
State  

Fitted  

   g  n  l  Total  

G  57,668  10,574 17 68,259 

N  842 870,210 968 872,020 

L  155 5,714 53,852 59,721 

 
Total  58,665 886,498 54,837 1,000,000  
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Table 14 summarizes the four performance statistics for predicting gains and 

losses in the synthetic data set.  HMM-R achieved a correct classification accuracy of 

98.2%, higher than any of the other methods.  Here RJaCGH, CGHclassify and BioHMM 

have essentially equal classification accuracy rate of 96%.    Bayesian HMM had the 

worst correct classification rate at 92.2%.  HMM-R had a false discovery rate of 1.6%.  

RJaCGH and CGHclassify also had a false discovery rate almost as good.  HMM-R had 

the largest sensitivity at over 87%.  RJaCGH, CGHclassify, and HMM-R achieved a 

specificity of 99.8%.   The Cohen‟s Kappa coefficients range from .688 to .917.  The 

Kappa values indicate that model results were not due to chance.   

 

 

Table 14 The performance statistics for the compared methods on the synthetic data, and 

Cohen‟s Kappa coefficient. 

Method BHMM RJaCGH CGHclassify 
*
 

BioHMM HMM-

R 

Correct Classification 

Rate 

.922 .961 .960 .955 .982 

False Discovery Rate .334 .019 .020 .028 .016 

Specificity .942 .998 .998 .997 .998 

Sensitiviy .785 .712 .702 .672 .871 

Cohen’s Kappa 

coefficient 

.688 .810 .802 .777 .917 

*
 The rates for CGHclassify were calculated on 93% of the data sets.   
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4.3 Classification error rates 

I determined the classification error rates as outlined in Table 7 of Methods. 

RJaCGH, CGHclassify, and HMM-R called truly normal clones with 99.8% accuracy.  

The error rate in classifying a gain as normal was the lowest for HMM-R at around 16%. 

RJaCGH, CGHclassify, and BioHMM were almost identical with this error rate around 

33%.   These values are displayed in Table 15 below.  Error for true loss was also the 

lowest with HMM-R, and the highest with BioHMM.  The error rates ranged from 9.6% 

to 30.6%.  Incorrectly calling a gain a loss, or a loss a gain, is the most uncommon error 

for this data set.   
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Table 15 Estimated conditional probability of a fitted state, given true state.  Where   

ij
ˆ(  observed |   true)j iP state state   

BHMM 

RJaCGH 

CGHclassify 

BioHMM 

HMM-R 

 

 

.745 .253 .001

.044 .942 .014

.002 .167 .830



 
 

  
 
 

.666 .334 .000

.001 .998 .001

.000 .235 .765



 
 

  
 
 

.663 .337 .000

.001 .998 .001

.000 .253 .746



 
 

  
 
 

.652 .348 .000

.002 .997 .001

.000 .306 .694



 
 

  
 
 

.845 .155 .000

.001 .998 .001

.002 .096 .902



 
 

  
 
 
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Chapter 5 

Conclusions and Future Studies 

5.1 Conclusions 

The HMM framework has been criticized for its poor treatment of outliers.  The 

concern for over-segmentation, and segments spanning single clones, has been addressed 

by Shah et al. (2006).  They extended the Bayesian HMM to create a more robust method 

for handling “outlying clones”.  In this study the HMM-R program achieved the highest 

correct classification rate, specificity, and the lowest false discovery rate.  Other methods 

also had lower levels of the true positive rate.  Misclassification of the most common 

category to any other category has been proven to be the most costly error in tests of 

association in terms of statistical power (Kang et. al, 2004).  HMM-R produced the best 

results for misclassifying truly normal clones.  Finally, HMM-R had the highest Kappa 

value, much higher than RJaCGH or CGHclassify.  For this simulated data set HMM-R 

outperformed the other methods. 

RJaCGH (kappa = .81), and CGHclassify (kappa=.80) ranked second and third in 

this analysis.  RJaCGH had the second highest Kappa value, indicating this software had 

higher chance-corrected agreement with the ground truth data than CGHclassify.  The 

RJaCGH package (Rueda and Diaz-Uriarte, 2007) for fitting the non-homogeneous 

HMM to aCGH data through Bayesian methods and Reversible Jump Markov chain 

Monte Carlo was very straightforward to execute.  Rueda and Diaz-Uriarte (2007) 

believe that an appropriate method for array CGH analysis should consider space 

between clones, should provide probabilities of a copy number change instead of p-

values, and should allow for chromosome and genome-wide analysis.   
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HMM-R, RJaCGH, and CGHclassify had false discovery rates under 2%.  These 

rates are lower than the rates exhibited in previous studies of CBS and the first HMM for 

copy number detection (Fridlyand, 2004).  For CGHclassify, this false discovery rate, 

however, was calculated on just 93% of the data sets.  I was unable to process 7% of the 

data. The user is not guaranteed output from the default parameter settings.  I found the 

usage guidelines inadequately described a methodology that would ensure obtaining copy 

number calls. 

I have shown that Bayesian HMM and BioHMM were only able to achieve a false 

discovery rate of .33 with a sensitivity of .67, while the objective studies of CBS (Lai et 

al., 2005; Willenbrock and Fridlyand, 2005) indicate a false discovery rate of .06, and 

sensitivity of .88.  Additionally, Bayesian HMM and BioHMM misclassified the most 

common category more frequently than the other three packages.  Since each 

chromosome must be analyzed individually, Bayesian HMM is also computationally 

burdensome for whole genome analysis.  The Bayesian HMM method required that each 

chromosome of each sample was individually analyzed, unlike the other four programs 

which offer simultaneous analysis of the genome. BioHMM (kappa = .78), and Bayesian 

HMM (kappa=.69) ranked fourth and fifth in this analysis. 

This study demonstrated that the accuracy rates of HMM software has improved 

since Fridlyand et al. (2004).  I have also shown appreciable error rates in copy number 

prediction for five current HMMs.  Three software packages had error rates for true gains 

over 33%.  The error rate in classifying a gain as normal was around 16% for HMM-R, 

the best performing software.  There is significant room to improve the HMM programs‟ 

error rates. 
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5.2 Future Studies 

 The goal of DNA sequencing is to determine the exact order of the four 

nucleotides in a segment of DNA.  One approach used to sequence the whole genome is 

called shotgun sequencing (Venter et al., 1998).  The sequence of a DNA segment is 

produced from a large number of short nucleotide sequences, called reads. The shotgun 

reads (fragments) are read by automated sequencing machines. Specialized computer 

programs assemble the reads together into the original genome.  The recent introduction 

of sequencing methods capable of producing millions of reads is rapidly changing the 

landscape of genetics.  High-throughput, also known as next-generation sequencing 

(NGS) technology, can produce megabases of sequence for a fraction of the price and 

time of previous technologies (Mardis, 2008).  Presently, the leading NGS platforms are 

454/Roche (Margulies et al., 2005), ABI SOLID (Shendure et al., 2005) and 

Illumina/Solexa (Bennett, 2004). 

The resolution of array CGH microarrays determines CNV detection 

effectiveness.  Currently available array platforms consisting of more than 1 million 

probes have a lower limit of detection of 10-25kb (Yoon et al., 2009).  CNVs detected 

from array CGH are larger sized resulting from inadequate resolution. Array-based 

approaches are also generally too noisy to discern subtle copy number differences (such 

as 15 copies versus 12 copies).  As a consequence, connections between higher-order 

CNVs and diseases are not detected in genome-wide association studies (Chiang and 

McCarroll, 2009).  Methods to detect CNVs using aCGH approaches now face 

considerable competition from NGS technology.   
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 Sequencing using next-generation technology has several advantages that make it 

a potentially powerful alternative to aCGH for identifying genomic variations such as 

deletions and duplications (Daines et al., 2009).  The current cost of CNV discovery by 

sequencing is comparable to or lower than that of aCGH and is continuing to decline.  

Sequencing data can also be reprocessed for varied purposes as opposed to data from 

microarrays that is typically utilized by only a single study (Xie and Tammi, 2009).  

Additionally, the majority of human CNVs are relatively small, containing less than 10 

kb of sequence (Eichler, 2006).  NGS based algorithms have demonstrated the feasibility 

to identify CNVs of variable lengths, including small ones that microarray based 

programs miss (Yoon et al., 2009).  Currently, CNVs are now more precisely and 

efficiently discovered from NGS data (Chiang and McCarroll, 2009). 

Sequence coverage is defined as the average number of times any given genomic 

base is represented in the sequence reads (Deonier et al., 2005).  Variation in sequencing 

coverage in genome assemblies has been used as an indicator for potential CNV between 

an assembled genome and sequencing data from another genome (Xie and Tammi, 2009).  

One attempts to find regions with unusually high or low coverage in the alignments of 

reads to a reference genome.  These regions may represent CNVs.  Deletions and 

duplications are discovered from the depth of coverage (read depth) of mapped reads 

from NGS platforms.   

In the last few years, read depth sequencing strategies for cost-effective genome-

wide characterization of CNVs have been developed (e.g., Chiang and McCarroll, 2009; 

Daines et al., 2009; Sudbery et al., 2009; Yoon et al., 2009; Xie and Tammi, 2009).  An 

unexamined weakness is the programs vulnerability to sequencing errors.  There has been 
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no investigation on the effect of sequencing errors on read depth CNV detection.  Small 

error rates in sequencing have proven to be significant for rare variants (Bravo and 

Irizarry, 2009).  A goal for future studies is to determine the effect of sequencing errors 

on CNV prediction accuracy. 
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