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 Variation in the human genome is present in many forms, including single-

nucleotide polymorphisms (SNPs) and copy number polymorphisms (CNPs).  CNPs have 

many categories such as small insertion-deletion polymorphisms, variable number of 

repetitive sequences, and genomic structural alterations.  A major question that 

researchers in the field of statistical genetics need to answer is the number of CNP 

categories in a given dataset.  In this study, I compare five information criteria (BIC, 

AIC, NEC, CLC, and ICL-BIC) to find if there is a “best” measure among them in 
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finding the correct number of components (correct number of CNP categories). I consider 

six design factors: equal/unequal within-component variances, high/low separations, 

sample size, mixture proportion, multiple random starting values, and transformation 

using two known number of components (3 and 6).  The result indicates that under 

“ideal” conditions (that is, small number of components, large separation between 

components, constant within component variance, and no subsequent transformation of 

mixture data), each criterion performs well.  When the data is a monotonic transformation 

of data from a mixture, the BIC criterion, which is the most commonly used criterion in 

CNP research, has a low component number accuracy rate. I then considered the 

application of the Box-Cox transformation whether or not it was needed. The application 

of the Box-Cox transformation did not reduce the component number accuracy rate of the 

CLC, ICL-BIC, and BIC when it was not needed. The component number accuracy rates 

for the BIC criterion with Box-Cox transformation applied were improved when the 

mixture data was transformed. The Box-Cox transformation should be used routinely 

with CLC, ICL-BIC, or BIC criterion to estimate the number of components in a CNP 

mixture analysis. 
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Chapter 1 Introduction 
 
1.1 Copy number polymorphism and methods of detection 
 

Variation in the human genome is present in many forms, including single-

nucleotide polymorphisms (SNPs), small insertion-deletion polymorphisms, variable 

number of repetitive sequences, and genomic structural alterations (Iafrate et al., 2004; 

Sebat et al., 2004).  Copy number polymorphisms (CNPs) can be simple deletions or 

replications leading to copy number changes at several locations in the human genome 

(Iafrate et al., 2004).  Recent studies have suggested that CNPs may be an underlying 

factor in genetic diseases (Iafrate et al., 2004; Sebat et al., 2004).  For instance, Fanciulli 

et al., (2007) studied CNP in the Fcgr3 gene and linked CNP variation to 

glomerulonephritis. Glomerulonephritis is a type of kidney disease in which the kidney 

cannot filter toxins from the blood (Patel, 2009).  Fanciulli et al. found that in humans 

with systemic lupus a low count in the Fcgr3 gene was associated with 

glomerulonephritis.  

 There are different methods of measuring CNPs.  One of the widely used methods 

is array Comparative Genomic Hybridization (aCGH) (Pinkel et al., 1998).  In aCGH 

data, each measurement is the log of the ratio of two measurements.  Different issues 

arrive when analyzing CNP data.  First, researchers have to deal with quality control 

issues.  In the preprocessing steps, one has to normalize the data.  The purpose of 

normalizing the intensity data is to adjust the signal intensities so that measurements from 

different arrays are on the same scale.  There are different normalization techniques such 

as global normalization or loess normalization that can be used (Wineinger et al., 2008). 

Then, one has to apply smoothing techniques to the data.  Smoothing techniques are used 
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to remove variability within an array.  Then, a calling algorithm is used to assign copy 

number state to each locus.  A state can be either normal, gain or loss of copy number 

(Wineinger et al., 2008).   There are two types of calling algorithm: change points 

methods and Hidden Markov Models. 

There are two well known change-point methods: the Circular Binary 

Segmentation (CBS) developed by (Olshen et al., 2004) and the CGH segmentation 

(CGHseg) developed by (Picard et al., 2005).  The CGHseg algorithm assigned a copy 

number state to the intensity data based on a selection criterion.  It is assumed that the 

number of components (copy number segment) is known in advance.  Picard et al. (2005) 

compared the Bayesian information criterion  (Schwarz,1978) with CGHseg in a 

simulation study.  In this study, the Bayesian Information Criterion had a tendency to 

overestimate the number of segments.  CGHseg is a selection model that considers 

homogeneous signal variability.  Lai et al. (2005) did a comparative simulation study of 

11 different models used in the analysis of array CGH data including CGHseg.  They 

found that CGHseg and CBS performed better than other model.  But, CGHseg is 

sensitive to outliers (Ben-Yaacov and Eldar, 2008). 

1.2 Objective 

Finding the correct CNP category number is a fundamental task.  In modern 

genetic research, many researchers rely on the Bayesian Information Criterion (BIC) as 

the method to estimate how many different copy number categories exist in a data set 

(Kim et al., 2008).  My simulation study is designed to be an extension of a simulation 

study in McLachlan and Peel (2000) that compared different selection criteria to see 

which one is the best. Picard et al. (2005) found that the method they called CGHseg 
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worked best for intensity data with equal within-component variances.  They compared 

two models of intensities.  One model has equal within component variance, and the 

other model had unequal within component variances.  They found that in the model with 

equal within-component variance there was an overestimation of the number of segments 

(components).  

This research is of particular interest because it considers more experimental 

factors.  Picard et al. (2005) studied only two models (equal and unequal within-

component variances).  In Lai et al. (2005), the comparative study was based on uniform 

distances between the components.  Also, the number of components was set at K=5.  My 

goal is to find the best selection method when dealing with data like that observed in 

CNPs studies under different experimental condition.  

My first objective is to estimate the probability that the BIC criterion finds the 

correct number of CNP categories. My second objective is to estimate the probability that 

available criteria find the correct number of components and perform a comparative study 

of the selected criteria.  Akaike (1974) studied the Akaike Information Criterion (AIC).  

Celeux and Soromenho (1996) considered the Normalized Entropy Criterion (NEC).  

Biernacki and Govaert (1997) considered the Classification Likelihood Criterion (CLC).  

McLachlan and Peel (2000) estimated the Integrated Classification Likelihood (ICL) 

(Biernacki, et al., 1998) using the BIC version of ICL (ICL-BIC).  

1.3 Research Questions 

The following are my research questions. 

1. Is there a measure that is always has the highest probability of correctly 

specifying the number of categories? 
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a. If yes, which one? 

b. If no, then 

i.  What are the settings for which a criterion has high probability 

of correct specification of the number of categories? 

ii. What are the settings for which a criterion has low probability 

of correct specification of the number of categories? 

2. How important is separation, where separation is the number of standard 

deviations between adjacent component means? 

a. What is the minimum sample size required for high separation? 

b. What is the minimum sample size required for low separation? 

c. How large should the separation be to have at least 50% correct 

probability of correct specification of the number of categories?  

3. What is the effect of heterogeneity of component variance on the probability 

of correct specification of the number of categories? 

4. Does adding more random starting value improve the probability of correct 

specification of the number of categories? 

5. What is the effect of departure from normality on the probability of correct 

specification of the number of categories? 

a.  Does Box-Cox transformation improve the probability of correct 

specification of the number of categories?  

b. What is the effect of using Box-Cox when data do not require it? 

6. What should researchers do when dealing with CNP data? 
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Chapter 2 Simulation study methodology 
 
2.1 Settings of design factors 
 

In order to assess the statistical properties of the measures to identify the number 

of components in a sample, I used a factorial design with seven factors (A through G): 

A. Number of components.  The number of components is set to 3 (the number of 

genotypes a Single Nucleotide Polymorphism study) or 6.  My three-

component model is based on a gene with two alleles (1 and 2), with mean 

intensity 1 for allele 1 and the mean intensity 2 for allele 2.  My model is that 

the three possible genotypes (11, 12 and 22) have average intensities 2, 3 and 

4 respectively.  For the six-component model, I assume that I have a gene with 

3 alleles (1, 2, and 3) with average intensities 1, 2 and 3 respectively. The 

possible genotypes (11, 12, 13, 22, 23, 33) then have average intensities 2, 3, 

4, 4, 5, and 6 respectively.   Based on the average intensities, there are five 

detectable components since the average intensity of the 22 genotype is the 

same as the 13 genotype.   I studied the presence of a copy number gain (six-

component model) which is the case where 12 and 33 have different average 

intensities.  As a result, I set the mean intensities of the 2/2 and the 1/3 

genotype to different values. Specifically, I set the means at 2, 3, 4, 5, 6 and 7 

respectively so that all genotypes are differentiated.  

B. Constant Variance (yes(+), no(-)).  In the constant variance setting, I generate 

my components with different means µi and equal within component 

variances, σ2.   In the non-constant variance setting, I generate my component 

values with a variance that is proportional to the mean µi of each component; 
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that is 2
i k iσ µ= .  For example, this relationship of variance to mean occurs in 

the chi-squared distribution. 

C. High Separation at Middle Component (yes(+), no(-)).   In the high separation 

setting, the components adjacent to the middle component have 4-standard 

deviation separation; that is 4
2/)( 1

1 =
+
−

+

+

ii

ii

σσ
µµ

.  In the low separation setting, 

the components adjacent to the middle component have 2-standard deviation 

separation.  

D. Sample size. The four sample size settings are: n = 250, 500, 1000, and 2000. 

E. Mixture Proportion. There are three mixture probability vectors.  I use equal 

probability for each component for the first setting.  I use a skewed pattern 

with more subjects in the first group than in the other groups for the second 

setting.  In the three-component model, the proportion in each component is 

(0.4615, 0.3077, 0.2308).  In the six-component model, I use the vector of 

proportions (0.3139, 0.2093, 0.1569, 0.1256, 0.1046, 0.0897).  For the third  

setting, I use Hardy-Weinberg Equilibrium (HWE), and I set the proportion of 

each allele in the dataset as follows: 

a. In the three-component model, the 1-allele occurs with a 50% 

probability and the 2-allele occurs with a 50% probability.  The 

HWE proportion vector (0.25, 0.50, 0.25) is used for intensities 

2, 3 and 4 respectively. 

b. In the six-component case, I assume that allele 1 is the most 

frequent allele with 50% frequency.  Allele 2 has a 25% 

frequency, and allele 3 also has a 25% frequency.  Then, the 
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HWE proportion vector (0.25, 0.25, 0.25, 0.0625, 0.125, 

0.0625) is used with intensities 2, 3, 4, 5, 6, and 7 respectively.   

F. Multiple Random Starting Values (yes (+), no (-)). I use the MCLUST 

package in my study (Fraley and Raftery, 2002; Fraley and Raftery, 

September 2006, revised December 2009).  The multiple random starting 

values (RSVs) factor has two settings.  At the no setting, the default setting of 

the R package MCLUST is used. At the yes setting, the number of RSVs is 

based on the number of components of the simulated data set.  When the 

simulated data set is from a three-component model, the number of RSVs is 

set to 10.  When the data set is simulated from a six-component model, the 

number of RSVs is set to 50.  

G. Transformation (yes (-), no (+)). The transformation factor has two settings.  

The (+) setting is that the observed intensity is a mixture of normally 

distributed components.  The (-) setting is that the observed intensity is the 

square of a mixture of normal components.  In other word, when using the yes 

level for transformation, X  is a mixture of normal components. 

2.2 Setting the number of random starting values (RSVs) 

Adding RSVs is computationally expensive (about 2.5 hours using 50 RSVs for 

100 replicates each with 2000 observation using a 2.53 GHz dual core personal 

computer).  For 50 RSVs applied to data on 2000 observations using the three-component 

model, I estimate that the computing time to complete one out of 24 settings would be 

about 22 hours.  In order to control computational cost, I conducted a pilot study using 

100 replicates each with 250 observations from a three-component mixture and 100 
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replicates each with 250 observations from a six-component mixture to test how much 

the observed maximum likelihood is increased as the number of RSVs increased.   

 Let ML(R) be the maximum observed log likelihood value with R random starting 

values for a given replicate. For the three-component model, 

 ,0000054.0)10()20( ≤− MLML ,0000335.0)20()100( ≤− MLML  and 

.  Since using more than 10 RSVs did not appreciably 

increase the maximum log likelihood value in the three component model, I use 10 RSVs 

for the three-component analysis.   

0000388.0)10()100( ≤− MLML

 For the six-component model, ,000057.0)50()60( −≤− MLML  

 and ,000075.0)60()100( ≤− MLML 000018.0)50()100( ≤− MLML .  This suggests that 

using more than 50 RSVs in the six-component analysis would not appreciably increase 

the maximum log likelihood value.  Therefore, I use 50 RSVs.  

2.3 Model selection criteria 
I compare five model selection criteria to determine g, the number of components 

in the selected model. 

1. The BIC criterion, as proposed by Schwarz (1978), is defined to be 

BIC = 2ln[L(g)]-kln(n).   In the formula, L(g) is the maximized value of the 

likelihood function for the model with g components, k is the number of 

parameters in the model to be estimated, and n is the sample size.  The model 

g with largest BIC is the BIC selection. 

2. The AIC criterion, as proposed by Akaike (1974), is a measure of goodness of 

fit of an estimated statistical model, and is defined to be 

AIC = 2ln[ L( g)] - 2k .  The AIC criterion differs from the BIC criterion when 
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n is large. In this model, L(g) is the maximized value of the likelihood 

function with g components and k is the number parameters in the model. The 

model g with largest AIC is the AIC selection. 

3. The Normalized Entropy Criterion (NEC) has been proposed by Celeux and 

Soromenho (1996) to find the number of clusters in a mixture model.  The 

criterion is defined to be E( g )NEC( g )
ln[ L( g )] ln[ L(1)]

=
−

, where 

sup2 g g≤ ≤ . Here,  is a user specified maximum number of components 

(here 9), 

supg

L( g ) is the maximum value of the likelihood function of a g-

component mixture, (1)L  is the maximized likelihood function using a one-

component normal mixture, and E( g ) is the corresponding entropy of the g-

component mixture model defined by  where 
g n

ij ij
i 1 j 1

ˆ ˆE( g ) - τ ln τ ,
= =

= ∑∑ îjτ are the 

posterior probabilities of component membership for subject j belonging to 

group i.  We choose if *g *NEC( g ) 1,< otherwise, g = 1 (Biernacki et al., 

1999).  

4. The Classification Likelihood Criterion (CLC) was proposed by Biernacki and 

Govaert (1997).  They used the relationship linking the likelihood for the 

mixture data with the complete data likelihood.  The model is defined to be 

 The model with largest CLC is the CLC selection CLC  2 ln[ L( g )] - 2E( g )=

5. The Integrated Classification (Completed) Likelihood (ICL) was proposed by 

Biernacki et al. (1998). It is defined to be 

ICL 2ln[ L( g )] 2E( g ) k ln( n ) ( g 1 )ln( n ),= − − − − where k  is defined to be 
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the number of parameters in the model and is the number of clusters.  The 

model with largest ICL is the ICL selection. They also introduced a new way 

to approximate the ICL criterion by using the BIC criterion with the entropy 

of the model.  McLachlan and Peel (2000) call this method the ICL-BIC and 

defined it to be 

g

ICL BIC 2ln[ L( g )] - k ln( n ) - 2E( g ) BIC - 2E( g ).− = =   

The model g with largest ICL-BIC is the ICL-BIC selection. This criterion 

should differ very little from the ICL version.   

2.4 Simulation study material 

I use the R2.8.0 (2008) statistical package to generate 1000 samples at each of the 

576 settings of the seven (7) factors.  Then, I use the MCLUST package to perform the 

mixture calculations. For each sample, I fit 1, 2, …, 9 components.  Then, I calculate 

each criterion.  For each criterion, I find the correct component selection rate over the 

1,000 replicates.  I use Minitab® 15 to compute an ANOVA table to find the significant 

factors and interactions.  In the ANOVA table, sample size is defined as a categorical 

variable with four levels.  I define an F test as significant if the p-value is less than 0.01. 

Additionally, I compute the correlation coefficient of the correct component selection rate 

with sample size.  

2.5. Effect of Box-Cox transformation on classification accuracy rate 

Since researchers often use a Box-Cox transformation in Copy Number Variation 

analysis (Kim et al., 2008), I perform a simulation study to document the effects of Box-

Cox transformation on the component number accuracy rate. I use a factorial design with 

6 factors selected from the 7 above (A through E and G).  Multiple RSVs were used.  The 

settings are the same for factors A (number of components), B (constant variance), and G 
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(transformation).  I use the three highest sample sizes for D (sample size); that is, 

.  I use the equal and skewed mixture proportions for E (mixture 

proportion), but not the Hardy-Weinberg proportions.  I use three settings for the 

separation of components: two, three, and four standard deviation separation between 

middle component means.  

2000,1000,500=n

The Box-Cox transformation (Box and Cox, 1964) is implemented on the data using 

the R functions “box.cox.powers” and “box.cox”.   The first function finds the power ( ) 

that will transform the original data set into a normally distributed sample.  Then, I use  

in the second function to transform the original data regardless of whether or not the data 

came from a transformed normal mixture.   When data are normally distributed, there is a 

chance of having negative numbers.  To deal with that situation, I find the minimum 

number of the data set and if that number is negative, I add that number so that all sample 

values are non-negative.  I perform a simulation study with 1000 replicates at each setting 

of the six factors that I use.  Using the MCLUST software, I perform a mixture analysis 

after transforming the data using the Box-Cox procedure of R.  For each sample, I fit 1, 

2,…,9 components.  Then I calculate the value for each criterion.   Using Minitab, I find 

the significant factors and interaction terms using a 0.01 significance level.    

λ̂

λ̂
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Chapter 3 Three‐component results 

The scenarios for the three-component model are based on mixtures resulting 

from a di-allelic gene with alleles 1 and 2 and the assumption that allele 1 has average 

intensity of 1 and allele two has average intensity of 2.  The three possible genotypes for 

the gene (11, 12, 22) would then have average intensities 2, 3, and 4 respectively.   

3.1 ANOVA tables of result 

I report the sum of squares of the main effects and selected two-way and three-

way interactions using the component number accuracy rate as the dependent variable in 

the ANOVA tables (Table3.1.1).  The error sum of squares is the sum of the unreported 

interaction terms.  An F-statistic greater than 6.8 corresponds to a p-value ≤ 0.01. 

  The variation of the BIC component number accuracy rate is principally 

explained by three factors in four terms: C (separation) explaining 31.6% of variation, B 

(constant variance) explaining 16.9%, the GC × interaction of transformation and 

separation explaining 21.0%, and the GB×  interaction explaining 15.4% (Table 3.1.1). 

These four terms explained 87% of the variation. Multiple RSVs (F) and the interactions 

,  and  are also significant based on their F-test values.   CB× GF × GCB ××

The factors explaining the variation in the AIC component number accuracy rate 

are transformation (G), multiple RSVs (F), constant variance (B), and separation (C) and 

are somewhat different from the factors explaining BIC variation (Table 3.1.1). The 

transformation factor G main effect accounts for 30.8% of AIC variation, and its 

interaction with constant variance B accounts for 15.9%. The main effect of multiple 

random starting points (F) accounts for 14.7%, and its interaction with constant variance 
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accounts for another 10.2%. Finally, the main effect of separation (C) accounts for 6.5% 

of variation. These five sources explain roughly 67% of the TSS.   

 Sparation (C) and multiple RSVs (F) are the most important factors explaining the 

variation in the NEC component number classification accuracy rate (Table 3.1.1). 

Additionally, there is a significant F test for constant variance (B), transformation(G), the 

two-way interactions , CB× EB × , FB× , GB× , C F× , C G× , and , and the 

three-way interactions 

GF ×

ECB ×× FCB, ×× , GFB ×× , and C GF ×× . 

 For CLC, separation (C) is the most important factor, with its main effect 

explaining about 90% of its variation (Table 3.1.1).  Additionally, based on F test values, 

constant variance (B), sample size (D), multiple RSVs (F), and transformation (G) are 

significant as well as the two-way interactions CB× , GB× , EC × , C , and F× C G× .  

The three- way interactions ECB ×× , FCB ×× , GCB ×× , and C  are also 

significant. 

GF ××

C

 Under the BIC approximation of ICL, the variation of the component number 

accuracy rates is mostly explained by separation (C), with that main effect explaining 

over 90% of the variation (Table 3.1.1).  Using the F test, the main effects of B, D, F, and 

G, the two-way interactions B× , GB× , C E× , FC × , and GC × and the three-way 

interactions , ECB ×× FB C ×× , and GCB ××  are significant. 

 
 
 
 



   
   

   
   

 1
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Table 3.1.1: ANOVA tables for BIC, AIC, NEC, CLC, and ICL-BIC   
 

  BIC  AIC  NEC   CLC   ICL-BIC   
Source           DF % TSS F %TSS F %TSS F %TSS F %TSS F

B: Constant Variance  1 16.9% 269.4 1.4% 23.9 0.5% 12.3 0.3% 16.0 0.3% 17.4 
C: Separation 1 31.6% 502.9 6.5% 108.8 68.5% 1554.7 89.7% 4708.6 90.2% 4859.8 

D: Sample Size 3 0.03% 0.2 0.7% 3.6 0.2% 1.4 0.2% 3.2 0.4% 7.7 
E: Mixture Proportion 2 0.2% 1.4 0.4%        3.0 0.0% 0.5 0.0% 0.4 0.1% 3.6

F: Multiple RSVs 1           0.7% 10.4 14.7% 246.6 5.8% 132.7 0.1% 3.6 0.0% 0.2
G: Transformation            1 0.6% 10.2 30.8% 518.2 1.6% 36.2 0.4% 18.6 0.3% 15.9

CB×  1           0.4% 6.0 0.0% 0.2 0.4% 8.9 1.1% 59.8 1.0% 55.6
EB ×  2           0.0% 0.2 0.1% 1.1 0.6% 7.2 0.1% 1.4 0.0% 0.1

 FB×  1           0.0% 0.3 10.2% 171.9 0.2% 4.1 0.0% 1.2 0.0% 0.3
GB×  1           15.4% 244.7 15.9% 267.1 1.3% 29.4 0.3% 16.9 0.3% 16.7
EC ×  2           0.2% 1.8 0.1% 0.6 0.0% 0.1 0.3% 8.1 1.0% 25.9
FC ×  1           0.0% 0.5 1.9% 32.5 6.4% 144.6 0.6% 33.1 0.3% 13.8
GC ×  1           21.0% 334.6 1.6% 27.2 1.9% 42.4 1.3% 68.0 1.0% 53.8
GF ×  1           0.3% 4.6 0.3% 5.6 0.9% 21.1 0.0% 2.1 0.0% 0.2

ECB ××  2           0.1% 1.0 0.04% 0.4 0.9% 9.9 0.2% 5.7 0.4% 11.2
FCB ××  1           0.0% 0.01 2.2% 37.2 0.1% 2.3 0.5% 23.7 0.3% 14.8
GCB ××  1           2.2% 34.3 3.1% 52.5 1.5% 35.0 1.2% 61.6 1.0% 54.4
GFB ××  1           0.0% 0.2 0.2% 3.8 0.7% 15.2 0.0% 1.5 0.0% 0.2
GFC ××  1           0.0% 0.02 0.0% 0.5 1.1% 25.7 0.5% 27.9 0.3% 14.6

Remainder         166 10.4%  9.9% 7.3% 3.2%  3.1%
 

 



3.2 Interaction of significant factors 

In this section, I report the means of component number accuracy rates using 

sources that explain more than 5 % of variation.  For criteria where only one source is 

significant, I use the factors important for the BIC criterion (i.e., B, C, and G). In tables 

3.2.1-3.2.6, I report the mean component number accuracy rates ( SD± ) averaged over 

the factors that are not reported. 

 Table 3.2.1 contains the mean component number classification accuracy rates for 

the BIC criterion for its three most important factors--constant variance (B), separation 

(C), and transformation (G).  The separation factor (C) explained the greatest fraction of 

variation as shown by the higher classification accuracy averages for 4-standard deviation 

separation between adjacent component means. There was a significant interaction 

between separation (C) and transformation (factor G) as shown in the table of averages. 

The constant variance factor (B) was also highly significant as shown by the higher 

average classification rate for unequal within-component variances. This factor also had a 

significant interaction with the transformation factor (G). The average BIC accuracy 

classification rate was well over 90% for all 4-standard deviation separation between 

adjacent component means settings except for the constant variance with transformation 

setting where the average was 11.4%. The BIC mean classification rate was also 

relatively high for the 2-standard deviation separation between adjacent component 

means with transformation and unequal within-component variances (accuracy rate 

68.8%).   
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Table 3.2.1: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the BIC criterion using 1000 replicates. 
 

 Average accuracy rate ± SD, average over 24 settings 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

Yes  11.4±20.6 99.7±2.6 20.0±21.1 9.1±9.1 

 
 
 

B: 
Constant 
Variance 

No  94.3±6.7 94.3±6.5 68.8±20.0 17.7±15.9 

Table 3.2.2 contains the mean component number classification accuracy rates for 

the AIC criterion for the constant variance factor (B), multiple RSV factor (F), and the 

transformation factor (G), the most significant variables for AIC. The average AIC 

classification accuracy rate was much lower than the average BIC component number 

classification accuracy rate, with all average rates below 70%. The most important factor 

is the transformation factor: the accuracy rate was higher when there was no 

transformation. Using multiple RSVs was associated with a lowered component number 

classification accuracy rate. There were significant interactions between the 

transformation and constant variance factors ( GB× ) and between the RSV factor and the 

constant variance ( FB× ).  

Table 3.2.2: Table of average component number accuracy rates for constant variance, 
multiple RSVs, and transformation setting for the AIC using 1000 replicates 
 

Average accuracy rate ± SD, average over 24 settings 

 F: Multiple RSVs 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

Yes  0.6±2.0 65.0±23.5 4.2±8.5 69.9±25.5 

 
 
 

B: Constant 
Variance 

No 1.1±1.4 4.6±3. 3 41.8±27.7 59.7±22.7 
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 Table 3.2.3 displays the mean component number accuracy rate for the NEC 

criterion for separation (C) and multiple RSVs (F). The NEC criterion has lower 

component number accuracy rates than the BIC criterion. The separation factor was the 

most significant factor with component number accuracy rates under 1% on average for a 

2 standard deviation separation between component means. Use of multiple RSVs 

reduced the component number accuracy rate for a 4-standard deviation separation 

between component means.  

 
Table 3.2.3: Table of average component number accuracy rates for separation and 
multiple RSVs setting for the NEC criterion using 1000 replicates 
 

 F: Multiple RSVs 
 Yes No 

4σ 49.3±33.1 90.9±16.9 
 

C: Separation 
2σ 0.9±3.9 0.0±0.1 

        Average accuracy rate ± SD, average over 48 settings 

In table 3.2.4, I report the average component number accuracy rate for the CLC 

criterion for constant variance (B), separation (C), and transformation (G) to facilitate 

comparison of its rates with the BIC rates.  As seen in the 4-standard deviation separation 

between component means, the CLC criterion performs slightly better than the BIC 

criterion. From the ANOVA table for the CLC component number accuracy rate, only the 

separation main effect explains more than 5% of the variation. For 2-standard deviation 

separation between adjacent component means, the average classification rate is under 

10%. Regardless of B setting (constant variance) or transformation setting, the average 

accuracy classification rate is above 66% for 4-standard deviation separation between 

adjacent component means.  Comparing 4-standard deviation separation between 

adjacent component means to 2-standard deviation separation between adjacent 

component means, the average classification accuracy rate is 2.5% for a 2-standard 
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deviation separation between component means and 90.0% for a 4-standard deviation 

separation between component means. The unequal within-component variances average 

component number accuracy rate when there is no transformation and a 4-standard 

deviation separation between component means is much higher for CLC comparing to the 

BIC average. 

 
Table 3.2.4: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the CLC criterion using 1000 replicates 
 

Average accuracy rate ± SD, average over 24 settings 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes 67.0±23. 1 98.2±2.7 9.8±21.3 0.0±0.0 

 
 
 

B: Constant 
Variance 

No 97.1±3.6 97.9±3.1 0.2±0.8 0.0±0.0 

 
 In table 3.2.5, I report the average component number classification accuracy rate 

for the BIC approximation to the ICL criterion (ICL-BIC) for constant variance (B), 

separation (C), and transformation (G) using the same format as table 3.2.1  for direct 

comparison with BIC.  As seen in the CLC criterion, the ICL-BIC criterion performs 

slightly better than the BIC criterion when data are from unequal within-component 

variances, no transformation and a 4-standard deviation separation between component 

means. 

The separation factor (C) is highly significant as shown in the table with average 

component number accuracy rate for a 2-standard deviation separation between 

component means below 10%.  For a 4-standard deviation separation between component 

means, the average accuracy classification rate is above 67%. The component number 
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accuracy rates for both the CLC and the ICL-BIC criteria are comparable to the BIC 

accuracy rates, especially for settings with 4-standard deviation separation between 

adjacent component means, equal within-component variance, and transformation.  

 
Table 3.2.5: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the ICL-BIC criterion using 1000 replicates 
 

Average accuracy rate ± SD, average over 24 settings 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes 67.1±21.7 95.4±9.1 8.2±19.0 0.0±0.0 

 
 
 

B: Constant 
Variance 

No 95.8±6.2 95.6±7.6 0.1±0.3 0.0±0.0 

 

3.3 Correlation coefficient of component number accuracy rate of the five criteria 

with sample size for three equiprobable components 

 One expectation of a classification criterion is that the component number 

accuracy rate increase as the sample size increases. Consequently, I report the correlation 

coefficient of the accuracy rate of the six criteria with sample size for the equiprobable 

component mixture components. The tables also contain in parentheses the component 

number accuracy percentage for a sample size of 2000. Similar results hold for the other 

two component probability distributions. The complete results can be seen in appendix A.  

An entry of “N” means that the component number accuracy rate was 0 for all sample 

sizes.   

Table 3.3.1 contains the results for equal within-component variance, equal 

component proportions, and 4-standard deviation separation between component means. 

Each correlation coefficient is positive for data that did not require transformation and 
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estimation based on the MCLUST default starting value, with AIC having the highest 

correlation coefficient (see line 3). The pattern of correlations was very similar for data 

not requiring transformation processed with multiple RSVs (line 1). Using multiple RSVs 

was associated with a slight decrease in the component number accuracy rate for samples 

of size 2000. For data requiring transformation, using only the default starting value (line 

4) led to negative correlations of component number accuracy rate and sample size for 

the AIC and BIC criteria. For data requiring transformation analyzed with multiple RSVs 

(line 2), only the CLC and ICLBIC had a positive correlation between component 

number accuracy rate and sample size. The accuracy rate of the ICL-BIC for 2000 

observations was somewhat higher than the CLC rate (87.8% compared to 82.8%).  

 
Table 3.3.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (equal within-component variance, equal mixture proportion, 
and 4-standard deviation separation between component means) 
 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

  BIC AIC NEC CLC ICLBIC 
1. Multiple RSVs, 
no Transformation 0.68(99.7) 0.98(90.2) 0.91(99.9) 0.79(99.7) 0.72(99.8) 
2. Multiple RSVs, 

Transformation -0.61(0.0) N (0.0) -0.83(4.2) 0.96(82.8) 0.94(87.8) 
3. Default SV, no 

transformation 0.59(100.0) 0.99(90.6) 0.59(100.0) 0.59(100.0) 0.64(100.0) 
4. Default SV, 
transformation -0.65(0.0) -0.59(0.0) 0.75(100.0) 0.93(97.5) 0.92(99.8) 

 One interesting aspect of the data is the component number accuracy rate for a 

sample requiring transformation with estimates computed from multiple RSVs. Figure 

3.3.1 displays the component number accuracy rates. The CLC and ICLBIC criteria have 

higher component number accuracy rates than the other four criteria in this situation.  
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Figure 3.3.1: 3-D representation of probability of component number accuracy rates by 
sample size (250, 500, 1000, and 2000) for samples requiring transformation using 
multiple RSVs, equal within-component variance and 4-standard deviation separation 
between adjacent component means 
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 Table 3.3.2 presents the results for equiprobable components with equal within-

component variance and a 2-standard deviation separation between component means. 

BIC and AIC had high correlations for data not requiring transformation (line 1), with the 

AIC having a much higher component number accuracy rate for a sample of 2000 

(70.7%) compared to BIC (20.1%). There was not an effective criterion for data requiring 

transformation, as shown in Figure 3.3.2. Only the NEC criterion had a positive 

correlation, but its component number accuracy rate was only 0.3% with 2000 

observations.    

Table 3.3.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (equal within-component variance, equal mixture proportion, 
and 2-standard deviation separation between component means) 
 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

  BIC AIC NEC CLC ICLBIC 
1. Multiple RSVs, no 

Transformation 0.99(20.1) 0.97(70.7) 0.92(0.4) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  -0.89(0.0) -0.60(0.0) 0.92(0.3) -0.59(0.0) 
 

N (0.0) 
3. Default SV, no 

transformation 0.98(20.7) 0.99(77.7) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
4. Default SV, 
transformation -0.80(2.6) -0.72(0.0) -0.59(0.0) -0.59(0.0) 

 
N (0.0) 
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Table 3.3.3 presents the correlation coefficients of the component number 

accuracy rate of each criterion with sample size for equiprobable component distributions 

with the variance of each component proportional to the mean µi of the component.  The 

average separation of the two extreme components with the middle component is 4 

standard deviations. The BIC, CLC, and ICL-BIC had high component number accuracy 

rate for samples of size 2000 and strong correlation of accuracy and sample size. The use 

of multiple RSVs greatly diminished the accuracy rates of the AIC and NEC criteria. For 

data requiring transformation, BIC, CLC, and ICL-BIC had high component number 

accuracy rates for samples of size 2000 and strong correlations. The other criteria had 

low component number accuracy rates when multiple RSVs were used, as shown in 

Figure 3.3.2.  

 
Table 3.3.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (unequal within-component variance, equal mixture proportion, 
and 4-standard deviation separation between component means) 
 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

  BIC AIC NEC CLC ICLBIC 
1. Multiple RSVs, no 

Transformation 0.93(97.4) 1.00(6.2) -0.97(34.4) 0.87(99.9) 0.91(99.9) 
2. Multiple RSVs, 

Transformation  0.76(93.8) 0.97(6.2) -0.99(13.1) 0.76(99.4) 0.72(99.6) 
3. Default SV, no 

transformation 0.95(99.6) 0.93(94.5) 0.59(100.0) 0.63(100.0) 0.67(100.0) 
4. Default SV, 
transformation 0.69(100.0) 

-
0.76(60.7) 0.59(100.0) 0.68(100.0) 0.67(100.0) 
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Figure 3.3.2: 3-D representation of probability of component number accuracy rates by 
sample size (250, 500, 1000, and 2000) for samples requiring transformation using 
multiple RSVs, unequal within-component variance and 4-standard deviation separation 
between adjacent component means 
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In Table 3.3.4, I report the correlation coefficients of the component number 

accuracy rate of each criterion with sample size are reported for equiprobable component 

distributions with the variance of each component proportional to the mean µi of 

componenti.  The separation is 2 standard deviations between adjacent components. The 

NEC, CLC, and ICL-BIC had component number accuracy rate 0 for sample size 2000. 

The BIC was the only criteria with minimal component number accuracy rate, as shown 

in Figures 3.3.3 and 3.3.4.   

 
Table 3.3.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (unequal within-component variance, equal mixture proportion, 
and 2-standard deviation separation between component means) 
 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

  BIC AIC NEC CLC ICLBIC 
1. Multiple RSVs, no 

Transformation 0.90(26.5) 0.97(10.1) N (0.0) -0.59(0.0) N (0.0) 
2. Multiple RSVs, 

Transformation  -0.45(48.1) -0.59(0.0) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
3. Default SV, no 

transformation 1.00(35.4) 0.99(46.3) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
4. Default SV, 
transformation 0.03(71.6) -0.87(0.0) N (0.0) -0.59(0.0) 

 
N (0.0) 
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Figure 3.3.3: 3-D representation of probability of component number accuracy rates by 
sample size (250, 500, 1000, and 2000) using multiple RSVs, unequal within-component 
variance, no transformation, and 2-standard deviation separation between adjacent 
component means 
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Figure 3.3.4: 3-D representation of probability of component number accuracy rates by 
sample size (250, 500, 1000, and 2000) using multiple RSVs, unequal within-component 
variance, transformation, and 2-standard deviation separation between adjacent 
component means 
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 In summary, when there was 4-standard deviation separation between adjacent 

component means and the intensity data did not require transformation and had equal 

within-component variances, each of the six criteria tested had high component number 

accuracy rates. When data were transformed, CLC and ICL-BIC had the highest 

component number accuracy rates. When intensity data were from a mixture distribution 

with unequal within-component variances, BIC, CLC, and ICL-BIC were the best 

measures whether or not the data were transformed.  
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 When there was 2-standard deviation separation between adjacent components 

means, none of the criterion had component number accuracy rates greater than 50% for 

intensity data from a mixture distribution with equal within-component variances. When 

data were transformed, and the within-component variances were unequal, the BIC 

criterion had the largest average component number accuracy rate (69%).   
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Chapter 4 Six-component results 
 

The scenario for the six-component model is derived from the model for a gene 

with three alleles (1, 2, and 3) with average intensities 1, 2 and 3 respectively. The six 

possible genotypes (11, 12, 13, 22, 23, and 33) would then have average intensities 2, 3, 

4, 4, 5, and 6 respectively.   Assuming that the 1/3 and the 2/2 genotype have different 

mean intensities, I set the means at 2, 3, 4, 5, 6 and 7 respectively.  In the next three 

sections, I report the ANOVA tables for each criterion, the average component number 

accuracy rates for selected factors explaining 5% or more of the total variation, the 

average component number accuracy rates for sources used in Chapter Three and the 

correlation coefficient of component number accuracy rate with sample size.   

4.1 ANOVA tables of result 

Table 4.1.1 contains the sum of squares of all main effects and selected two-way 

and three-way interactions using the component number accuracy rate as the dependent 

variable.  The two-way and three-way interactions have to either represent at 5% of the 

total variation, or are essential for a hierarchical model.  The remainder source is the sum 

of the unreported interaction terms and is used as the error sum of squares. An F-statistic 

greater than 6.8 corresponds to a p-value ≤ 0.01. 

 For BIC, among the main effects, those for separation (C), distribution of 

components (E), and multiple RSVs (F) explain at least 5% of the variation (Table 4.1.1). 

Together, they explain 37%. Each of the interactions EC × , GC × , FE × , and 

 explains 5% or more of the variation. Together, these 7 sources explain 65% of 

the variation.  The F test is also highly significant for G,

GCB ××

CB× , GB× , , and 

. 

FC ×

FEC ××
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 Under AIC, mixture pattern (E) and transformation (G) are the main effects with 

more than 5% contribution to the total variation (Table 4.1.1).  Additionally, the 

interactions FB× , , GB× EC × , GC × , FE × , FCB ×× , GCB ×× , and FEC ××  

contribute more than 5% each to the total variation.  Together, these ten sources explain 

roughly 68% of total variation.  The F test is also significant for B, C, F, , and 

. 

CB×

GEB ××

 For the NEC criterion, the main effects of separation (C), mixture pattern (E) and 

transformation (G) each explain at least 5% to the total variation (Table 4.1.1). Each of 

the interactions , , EC × GC × FE × , GE× , FEC ×× , and GEC ××  also explains at 

least 5 % of the variation.  Together, these eight sources explain roughly 67% of the 

variation.  The F test is also highly significant for B, CB× , EB × , FB× , , 

, , and 

GB×

ECB ×× FCB ×× GCB ×× . 

For the CLC criterion, each of the main effects of separation (C), multiple RSVs 

(F), and transformation (G) explained more than 5% of total variation (Table 4.1.1). Each 

of the interactions  and FC × GC ×  also explained more than 5% of total variation. 

These five sources explained approximately 64% of total variation.  The F test is also 

significant for B, E, , CB× FB× , GB× , EC × , FE × , GE× , , FCB ×× GCB ×× , 

 and . FEC ×× GEC ××

 For the BIC version of ICL (ICL-BIC), the main effects of separation (C), 

multiple RSVs (F) and transformation (G) individually explained more than 5% of 

variation (Table 4.1.1).  The interactions FC ×  and GC ×  also explained more than 5% 

of variation.  These four sources explain about 58% of variation.  The F test was also 
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significant for B, E, , CB× FB× , GB× , EC × , FE × , GE× , , FCB ×× GCB ××

FEC ×× GEC ××

, 

 and . 



    BIC   AIC   NEC   CLC   ICL-BIC   
Source          DF %TSS F %TSS F %TSS F %TSS F %TSS F

B: Constant Variance            1 0.4% 3.9 1.1% 9.0 3.2% 34.4 2.0% 19.6 0.7% 4.9
C: Separation 1         24.4% 229.6 3.6% 28.2 11.5% 122.2 18.5% 183.4 19.7% 140.2

D: Sample Size            3 0.9% 2.9 0.2% 0.5 0.2% 0.7 0.1% 0.4 0.8% 2.0
E: Mixture Proportion           2 5.6% 26.6 7.4% 29.0 8.0% 42.8 2.3% 11.4 3.1% 10.9

F: Multiple RSVs 1          7.1% 67.3 0.8% 6.3 0.3% 3.7 5.6% 55.4 5.5% 39.4
G: Transformation          1 1.5% 14.0 8.2% 64.7 9.1% 97.3 16.1% 159.3 13.5% 96.0

CB×  1          1.7% 16.5 2.0% 15.7 3.2% 34.4 1.4% 13.9 0.6% 4.2 
EB ×  2           0.6% 3.0 0.5% 1.9 1.3% 7.0 0.1% 0.3 0.1% 0.4
FB ×  1           0.2% 2.0 6.6% 52.1 1.0% 10.7 1.0% 10.0 0.2% 1.5
GB×  1          3.0% 27.9 8.1% 63.7 2.0% 21.7 0.8% 7.8 1.4% 10.3
EC ×  2          7.5% 35.5 6.1% 23.9 8.0% 42.8 2.7% 13.4 3.1% 11.2
FC ×  1          4.2% 39.5 0.0% 0.4 0.3% 3.7 4.6% 45.3 5.3% 37.5
GC ×  1         9.3% 87.3 6.1% 47.8 9.1% 97.1 17.9% 177.2 13.9% 98.9
FE ×  2           5.1% 24.1 7.3% 28.8 5.4% 28.8 2.4% 11.9 2.0% 7.0
GE×  2           0.7% 3.3 0.4% 1.5 5.9% 31.3 2.4% 11.9 2.0% 7.1

ECB ××  2           0.6% 3.0 0.1% 0.5 1.3% 7.0 0.2% 1.0 0.2% 0.6
FCB ××  1           0.0% 0.1 6.9% 54.1 1.0% 10.7 0.6% 6.1 0.2% 1.1
GCB ××  1          6.0% 56.2 5.5% 43.0 2.0% 21.8 1.2% 12.3 1.6% 11.3
GEB ××  2           0.4% 2.0 1.2% 4.9 0.6% 3.4 0.1% 0.7 0.1% 0.3
FEC ××  2           3.6% 16.9 6.9% 27.1 5.4% 28.8 2.0% 9.7 1.8% 6.4
GEC ××  2           0.2% 1.1 0.9% 3.4 5.9% 31.3 2.0% 10.1 1.9% 6.7

Remainder           159 16.9% 20.2%  14.9%  16.0%  22.4%
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Table 4.1.1: ANOVA tables for BIC and AIC  
 

 



4.2 Interaction of significant factors 

 In general, the component number accuracy rates are much lower for the six 

component model than the three component model. Table 4.2.1 contains the average 

component number accuracy rates by separation (C), transformation (G), and constant 

variance (B) factors for the BIC criterion. For example, when separation is 4-standard 

deviations and no transformation of intensities was made, the accuracy rates were 66.9% 

for equal within component variance (compared to 99.7% for three components) and 

50.8% (compared to 94.3% with three components). Otherwise, the patterns were similar. 

That is, the component number accuracy rates were uniformly small when the component 

separation was 2-standard deviations. Additionally, the component number accuracy rate 

for data with equal within-component variance requiring transformation was the lowest 

among the 4-standard deviation difference settings.  

 Table 4.2.2 shows that the average component number accuracy rates are below 

20% for 2-standard deviation separation between adjacent components means for each 

distribution of component probabilities.  Additionally, with HWE and skewed component 

mixture proportions, the average component number accuracy rates are above 50% when 

multiple RSVs are used with 4-standard deviation separation between adjacent 

component means.  With equal component mixture proportion, the average component 

number accuracy rates are essentially the same under the multiple RSVs factor. 
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Table 4.2.1: Table of average component number accuracy rates for separation, 
transformation, and constant variance setting for the BIC criterion using 1000 replicates 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes  5.2±6.7 66.9±47.1 18.9±13.9 0.3±0.9 

 
 
 

B: Constant 
Variance 

No  50.1±40.5 50.8±40.2 8.6±17.8 0.5±0.8 
Average accuracy rate ± SD, average over 24 settings 

Table 4.2.2: Table of average component number accuracy rates for separation, mixture 
proportion, and multiple RSVs setting for the BIC criterion using 1000 replicates 

 C: Separation 
4σ  2σ  

F: Multiple RSVs F: Multiple RSVs 
 
 

Yes No Yes No 
Equal 65.6±37.1 73.6±38.0 5.5±9.7 4.5±10.6 
HWE 55.5±41.7 1.8±3.2 6.4±11.1 5.3±12.0 

 
 
 

E: Mixture 
Proportion 

Skew 60.5±40.8 2.5±3.9 16.2±21.9 4.6±9.9 
Average accuracy rate ± SD, average over 16 settings 

The component number accuracy rates for the AIC criterion are typically lower 

than the rates for the BIC. As shown in Table 4.2.3, the average component accuracy 

rates are below 50%. The use of multiple RSVs typically reduces the component number 

accuracy rate, except for no transformation with equal within-component variance. As 

shown in table 4.3.4, the average component number accuracy rates are slightly higher 

for multiple RSVs with skewed and HWE component mixture proportions. 

Table 4.2.3: Table of average component number accuracy rates for constant variance, 
transformation, and multiple RSVs setting for the AIC criterion using 1000 replicates 
 

Average accuracy rate ± SD, average over 24 settings 

 F: Multiple RSVs 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes  4.0±7.3 45.5±35.9 7.5±9.2 24.7±32.4 

 
 
 

B: Constant 
Variance 

No 4.4±4.3 7.7±6.9 25.3±27.6 22.3±25.7 
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Table 4.2.4: Table of average component number accuracy rates for separation, mixture 
proportion, and multiple RSVs setting for the AIC criterion using 1000 replicates 
 

Average accuracy rate ± SD, average over 16 settings 

 C: Separation 
4σ 2σ 

F: Multiple RSVs F: Multiple RSVs 
 
 

Yes No Yes No 
Equal 20.3±34.8 62.3±37.0 10.6±6.0 17.0±10.7 
HWE 21.4±36.0 6.5±5.4 11.0±6.2 13.5±10.8 

 
 
 

E: Mixture 
Proportion 

Skew 20.8±35.8 4.0±8.6 8.4±6.7 16.6±11.1 

 
 With multiple RSVs, the average component number accuracy rates using the 

NEC criterion were below 30% (Table 4.2.5).  The NEC criterion for six components 

typically had lower average component number accuracy rate when compared to the three 

component model.  Using the default setting of the MCLUST package, the average 

component number accuracy rate was 84% when the separation was at 4-standard 

deviation between adjacent component means with equi-probable components and the 

transformation factor at the no setting.  For every other setting, the average component 

number accuracy rate was below 10% 

Table 4.2.5: Table of average component number accuracy rates for multiple RSVs, 
separation, transformation, and mixture proportion setting for the NEC criterion using 
1000 replicates 
 

a.-F: Multiple RSVs (yes) 

Average accuracy rate ± SD, average over 8 settings 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Equal  0.0±0.0 29.5±31.6 0.0±0.0 0.1±0.4 
HWE 0.6±1.6 10.2±12.9 0.0±0.0 0.3±0.5 

 
 
 
 

E: Mixture 
Proportion 

Skew 0.4±1.1 28.4±30.4 0.0±0.0 0.1±0.4 
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b.-F: Multiple RSVs (No) 

Average accuracy rate ± SD, average over 8 settings 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Equal 7.9±13.0 83.9±18.3 0.0±0.0 0.0±0.0 
HWE 0.1±0.2 5.3±12.4 0.0±0.0 0.0±0.0 

 
 

 
 

E: Mixture 
Proportion 

skew 0.1±0.3 0.9±2.2 0.0±0.0 0.0±0.0 

 
 For the CLC criterion, component number accuracy rates for the six component 

model with 2-standard deviation separation were less than 5%. With 4-standard deviation 

separation and data not requiring transformation, using multiple RSV’s had an average 

component number accuracy rate of 75.9% (Table 4.2.6). The average component 

number accuracy rate for the yes level of  the transformation setting was less than 

5%.Table 4.2.7 contains the average component number accuracy rates for separation 

(C), constant variance (B), and transformation (G) and corresponds to table 3.2.5.  The 

largest average component number accuracy rate was 65% for equal within-component 

variance with no transformation and a 4-standard deviation separation between adjacent 

component means. 

 
Table 4.2.6: Table of average component number accuracy rates for separation, multiple 
RSVs, and transformation setting for the CLC criterion using 1000 replicates  
 

Average accuracy rate ± SD, C = 24 cases 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes 3.5±4.6 75.9±25.8 2.7±5.4 0.0±0.1 

 
 
 

F: Multiple 
RSVs 

No 0.0±0.1 25.8±38.1 0.0±0.0 0.0±0.0 
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Table 4.2.7: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the CLC criterion using 1000 replicates 
 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes 3.5±4.7 64.5±46.8 2.7±5.6 0.0±0.0 

 
 
 

B: Constant 
Variance 

No  0.0±0.0 37.2±29.7 0.0±0.0 0.0±0.1 
Average accuracy rate ± SD, C = 24 cases 

 
 The component number accuracy rates for ICL-BIC criterion were very similar to 

those of the CLC criterion, as shown in Table 4.2.8.  The largest average component 

number accuracy rate was 76% using multiple RSVs on data not transformed with 4-

standard deviation separation between adjacent component means.  The other settings are 

all below 50%.  

Table 4.2.9 contains the average component number accuracy rates for separation 

(C), constant variance (B), and transformation (G) and corresponds to table 3.2.6.  With 

one exception, the average component number accuracy rates were below 40%.  The 

largest average component number accuracy rate is 64.5% for data with equal within-

component variance without transformation and 4-standard deviation separation between 

adjacent component means. 

Table 4.2.8: Table of average component number accuracy rates for separation, multiple 
RSVs, and transformation setting for the ICL-BIC criterion using 1000 replicates 
 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes 9.7±25.3 76.2±29.3 0.7±1.6 0.0±0.0 

 
 
 

F: Multiple 
RSVs 

No 0.0±0.1 27.1±40.0 0.0±0.0 0.0±0.0 
Average accuracy rate ± SD, C = 24 cases 
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Table 4.2.9: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the ICL-BIC criterion using 1000 replicates 
 

 C: Separation 
4σ 2σ 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture 

No Yes: X is a 
normal mixture 

No 

Yes 2.1±2.8 64.5±46.8 0.7±1.6 0.0±0.0 

 
 
 

B: Constant 
Variance 

No  7.6±25.8 38.8±34.5 0.0±0.0 0.0±0.0 
Average accuracy rate ± SD, C = 24 cases 

 
4.3 Correlation coefficient of component number accuracy rate for the six criteria 

with sample size for six equiprobable components 

 As in chapter three, I report the correlation coefficients of the component number 

accuracy rate with sample size for the six criteria and report the component number 

accuracy rate for sample size 2000 in parenthesis after the correlation coefficient when 

the six components are equiprobable.  The corresponding results for HWE and skewed 

mixture proportions are reported in appendix B.  

 Table 4.3.1 contains the results for intensity data with 4-standard deviation 

separation between adjacent component means and equal within-component variance.  

For intensity data not requiring transformation, the component number accuracy rate 

increased as sample size increased (lines 1 and 3).  For intensity data requiring 

transformation, the component number accuracy rate decreased with an increase in 

sample size in all criteria except for the NEC criterion.   
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Table 4.3.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (equal within-component variance, equal mixture proportion, 
and 4-standard deviation separation between component means) 
 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.63 (99.9) 0.96 (85.2) 0.62 (63.0) 0.71 (99.9) 0.65 (100.0) 
2. Multiple RSVs, 

Transformation  -0.88 (0.8) -0.69 (0.0) N (0.0) -0.97 (2.3) -0.99 (0.9) 
3. Default SV, no 

transformation 0.69 (100.0) 0.95 (94.0) 0.73 (100.0) 0.81 (99.7) 0.65 (100.0) 
4. Default SV, 
transformation -0.94 (1.3) -0.80 (0.2) -0.92 (0.0) -0.76 (0.0) -0.74 (0.0) 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

 Table 4.3.2 contains the correlation coefficients of component number accuracy 

rate with sample size for intensity data with 2-standard deviation separation between 

adjacent component means and equal within-component variance. The performance of 

each criterion was poor for these settings. For intensity data not requiring transformation 

(lines 1 and 3), although the component number accuracy rate increased as sample size 

increased for the BIC and the AIC criteria, the accuracy rate was below 30% for 

.  For the other criteria, the component number accuracy rates were 0 for each 

sample size studied.  For intensity data requiring transformation (lines 2 and 4), the 

component number accuracy rates decreased with increased sample size for BIC, AIC, 

CLC and ICL-BIC (line 2), decreased with an increase in sample size for AIC (lines 4), 

increased with sample size for BIC line (4) and 0 for all other cases. 

2000=n
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Table 4.3.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (equal within-component variance, equal mixture proportion, 
and 2-standard deviation separation between component means) 
 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.84 (0.1) 0.97 (22.4) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.12 (5.8) -0.76 (0.0) 

 
N (0.0) -0.59 (0.0) -0.59(0.0) 

3. Default SV, no 
transformation 0.92 (0.1) 0.98 (25.9) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation 0.32 (15.7) -0.95 (1.8) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

 Table 4.3.3 contains the correlation coefficients for intensity data from a 

population with 4-standard deviation separation between adjacent component means and 

unequal within-component variance.  The BIC criterion performed well in this case for 

both transformed and un-transformed data. Specifically, the component number accuracy 

rate increased as sample size increased, and the component number accuracy rate was 

almost 94% for .  For the AIC criterion, the use of multiple RSVs was 

associated with a decrease in component number accuracy rate as sample size increased.  

When intensity data did not require transformation (lines 1 and 3), the component number 

accuracy rate increased as sample size increased for the CLC criterion.  The use of 

multiple RSVs was associated with an increase in the component number accuracy rate as 

sample size increase for the ICL-BIC criterion (lines 1 and 3).  The NEC criterion had 

component number accuracy rates 0 for almost all cases. 

2000=n
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Table 4.3.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (unequal within-component variance, equal mixture proportion, 
and 4-standard deviation separation between component means) 
 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.84 (93.8) -0.46 (0.2) 

 
N (0.0) 0.72 (61.6) 

0.42 
(61.3) 

2. Multiple RSVs, 
Transformation  0.84 (93.9) -0.45 (0.3) 

 
N (0.0) 

 
N (0.0) 0.05 (0.0) 

3. Default SV, no 
transformation 0.74 (100.0) 0.78 (92.8) -0.61 (62.7) 0.47 (62.7) 

-0.59 
(62.7) 

4. Default SV, 
transformation 0.70 (100.0) 0.87 (92.9) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

Table 4.3.4 contains the correlation coefficients for intensity data with 2-standard 

deviation separation between adjacent component means and unequal within-component 

variance. None of the criteria performed well, with maximum component number 

accuracy rate for  equal to 42.8%. The component number accuracy rates were 

zero for each sample size studied for CLC, and ICL-BIC.   For un-transformed data (lines 

1 and 3), the component number accuracy rate using the AIC criterion increased as 

sample size increased.   

2000=n

Table 4.3.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (unequal within-component variance, equal mixture proportion, 
and 2-standard deviation separation between component means) 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -0.84 (0.4) 0.38 (13.2) 0.92 (0.1) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.72 (3.1) -0.10 (9.4) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

3. Default SV, no 
transformation -0.59 (0.0) 0.97 (28.8) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation 0.98 (0.2) 1.00 (42.8) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000 

In summary, when there was 4-standard deviation separation between adjacent 

component means and the intensity data were not transformed and had equal within-
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component variances, each of the six criteria tested had high component number accuracy 

rates for equiprobable components . In the skewed and HWE cases, the use of multiple 

RSVs increased the component number accuracy rate for BIC, AIC, CLC, and ICL-BIC 

when intensity data are from a mixture distribution with equal within-component 

variances (see Appendix B).  When data were transformed, none of the six criteria had 

component number accuracy rates above 43%. When intensity data were from a mixture 

distribution with unequal within-component variances, BIC was the best criterion 

whether or not the data were transformed.   In the skewed and HWE cases, multiple 

RSVs were required once again for the BIC to have high component number accuracy 

rate at sample size 1000 or more.  The component number accuracy rates were 90.4 for 

skewed proportions and 85.6 for HWE proportions with 4-standard deviation separation 

between adjacent component means.  

When there was 2-standard deviation separation between adjacent components 

means, none of the criterion had component number accuracy rates greater than 50% for 

intensity data from a mixture distribution with equal within-component variances 

regardless of the transformation setting of data.  
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Chapter 5 Box-Cox transformation results 
 
 It is common in analyzing CNP intensity data to apply the Box-Cox 

transformation to the data (Kim et al., 2008). Since the BIC criterion had low component 

number classification accuracy rate when applied to data requiring transformation, I 

studied the extent to which the use of the Box-Cox transformation to normality would 

change the component number accuracy rate. In this work, I use the Box-Cox 

transformation (as programmed in R) to make the sample as close to a sample from a 

single component normal distribution as possible. I want to address the research 

questions: How much does this Box-Cox transformation change the component number 

accuracy rate of the criteria when it is not needed?  Does this Box-Cox transformation 

improve the component number accuracy rate when it is needed? 

For data not requiring transformation, the estimated power transform ( ) is 

expected to be 1.  The expected value of  equals ½ for data requiring transformation 

since the transformed data is a normal mixture squared.  One thousand samples have been 

simulated at each design setting.  The average value of  is (

λ̂

λ̂

λ̂
1000

ˆ
ˆ

1000

1
∑
== i

iλ
λ ) for each setting 

should be close to 1 for a normal mixture and close to ½ for a normal mixture squared.  

For each mixture model, I report the mean of the average  with its standard deviation in 

table 5.1. 

λ̂

Table 5.1: Mean of Average power ( λ̂ ) ±SD used in the Box Cox transformation for 
each n-component model (c = 36, the number of cases in each group of data) 

 Normal Mixture Normal Mixture Squared 
Three-component model 0.39±0.36 0.19±0.19 
Six-component model 0.67±0.23 0.67±0.22 
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As in chapters 3 and 4, I report the analysis of variance table for the six classification 

criteria after application of a Box-Cox transformation in tables 5.2.1, 5.2.2, 5.5.1 and 

5.5.2.  Also, I report tables of averages corresponding to the factors explaining at least 

5% of the total sums of squares of each criterion. Finally, I report the correlation 

coefficient of the component number accuracy rates with sample size for each criterion. 

5.1 Results of Box-Cox transformation for the three-component analysis 

 Table 5.1.1., as usual, is the ANOVA table for the component number accuracy 

rate for the BIC, AIC, NEC, CLC, and ICL-BIC criteria. An F-value > 7.5 corresponds to 

a p-value ≤ 0.01. 

For the BIC criterion, constant variance (B), separation (C), and mixture 

proportion (E) are most significant main effects (Table 5.1.1).  A model that that includes 

these main effects, the three two-factor interactions ( B ×C , B × E , and C × E ) and the 

three-factor interaction ( B ×C × E ) explains roughly 96% of variation of component 

number accuracy rate. The F-test was significant for the interactions DB × , 

,DC × ED × , , DCB ×× EDB ×× , EDC ×× , and EDCB ××× . The main effect of 

the transformation factor G accounts for 0.01of the variation and is not involved in any 

significant interactions, thus documenting the effectiveness of the Box-Cox 

transformation.  

Using the AIC criterion, the main effects of constant variance (B), separation (C), 

and mixture proportion (E) explained each more than 5% of the variation (Table 5.1.1).  

Also, the interactions , CB× EB × , EDC ×× , and EDCB ×××  explained 5% or more 

of that total variation of AIC component number accuracy rate. Together, these seven 

sources accounted for approximately 91% of TSS.  The F test was significant for the 

41 
 

 



42 
 

 

D

Under the BIC approximation of ICL, separation (C) explained 67.8% of the total 

ICL-BIC variation (Table 5.1.1). The interaction

interactions B× DC × EC,  , × , DCB ×× , ECB ×× , and EDB ×× .  Again, the 

main effect of the transformation factor G explains a very low percentage of the variation 

(i.e., 0.1%), and none its interactions are significant.   

For the NEC criterion, separation (C), and mixture proportion (E) each explained 

55.1% and 10.1 % respectively of the variation (Table 5.1.1).  The interactions C E×  and 

 explained an additional 29.5% of the variation. The F-test was significant for 

constant variance (B) and the interactions

ECB ××

CB× , DB× , EB × , ED × , , DCB ××

EDB ×× EDC ××

CB

, and  . 

For the CLC criterion, separation (C) explained 68.4% of the variation (Table 

5.1.1).  Additionally, the interactions × , C E× , and ECB ××  explained together 

21% of variation. The F-test was significant for constant variance (B), mixture proportion 

(E) and the interactions DB× , EB × , C D× , DCB ×× , EDB ×× , , 

and . 

The transformation factor G and its interactions were not significant for any 

criteria documenting the effectiveness of this Box-Cox transformation. It is also notable 

that sample size is included in some of the significant interactions.  

EDC ××

EDCB ×××

CB× , EC × , and  explained 

an additional 21.4% of the variation.  The F-test was significant for constant variance (B), 

sample size (D), mixture proportion (E), and the interactions

ECB ××

DB× , EB × , C , 

, 

D×

DCB ×× EDB ×× ED

 

, C ×× EDCB, and ××× . 
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 BIC AIC  NEC  CLC  ICL-BIC
Source            DF %TSS F %TSS F %TSS F %TSS F %TSS F

B: Constant Variance           1 17.5% 17585.9 28.9% 3912.9 0.0% 10.9 3.5% 12667.0 3.5% 63044.3
C: Separation 2 34.8% 17513.3 15.5% 1047.6 55.1% 33750.0 68.4% 122989.0 67.8% 615469.0

D: Sample Size 2 0.0% 4.2 1.2% 81.2 0.0% 0.6 0.0% 0.0 0.0% 17.3 
E: Mixture Proportion 1 14.9% 14967.6 17.5%      2377.4 10.1% 12308.0 3.7% 13230.2 3.8% 68408.4

G: Transformation 1       0.0% 5.9 0.1% 14.0 0.0% 0.0 0.0% 0.5 0.0% 0.6 
CB×  2           8.2% 4109.6 6.3% 429.8 0.0% 10.9 6.8% 12240.8 6.9% 62581.8
DB×  2        0.1% 46.0 1.9% 127.5 0.1% 64.2 0.0% 7.2 0.0% 71.9 
EB ×  1         5.3% 5378.8 12.5% 1693.9 4.7% 5745.4 3.4% 12185.3 3.5% 63088.5
DC ×  4         2.0% 508.5 1.2% 40.8 0.0% 0.6 0.0% 5.2 0.0% 25.0 
EC ×  2         9.9% 4973.5 1.1% 76.3 20.1% 12308.0 7.4% 13209.9 7.6% 68546.5
ED ×  2        0.0% 15.1 0.1% 3.3 0.1% 60.8 0.0% 3.3 0.0% 1.3 

DCB ××  4           0.4% 108.7 1.4% 48.1 0.2% 64.2 0.0% 20.2 0.0% 86.7
ECB ××  2          5.2% 2622.9 1.3% 87.5 9.4% 5745.4 6.8% 12126.9 6.9% 62956.1
EDB ××  2         1.3% 638.0 0.3% 22.0 0.0% 0.5 0.0% 15.8 0.0% 57.6 
EDC ××  4           0.1% 11.4 5.2% 175.9 0.2% 60.8 0.0% 3.9 0.0% 1.0

EDCB ×××  4           0.4% 88.5 5.3% 179.3 0.0% 0.5 0.0% 17.3 0.0% 60.2
Remainder           35 0.0% 0.3%  0.0% 0.0% 0.0%

Table 5.1.1: ANOVA tables for BIC, AIC, NEC, CLC, and ICL-BIC 

 

 



5.2 Interaction of significant factors 

Table 5.2.1 presents the classification accuracy rates for the BIC after using the 

Box-Cox transformation analogous to Table 3.2.1.  Only multiple RSVs are used. As 

expected, the performance of the BIC criterion is not affected by transformation.  That is, 

on average, the component number accuracy rate is the same for transformation (yes and 

no).  BIC has good component number accuracy rate for unequal within-component 

variances at 3-standard deviation and 4-standard deviation separation between adjacent 

means. BIC has relatively low component number accuracy rates for equal within-

component variance even with 4 standard deviation separation.   

Table 5.2.2 documents the component number accuracy rates for sources 

explaining 5% or more of BIC variation (i.e., B (constant variance), C (separation), and E 

(component mixing proportions).  The component number accuracy rates are greater than 

60% when there is at least a 3-standard deviation separation between adjacent component 

means and the components are equiprobable.  The accuracy rates are highest when the 

component variances are non-constant.  At 2-standard deviation separation between 

adjacent means, the average component number accuracy rates are below 20%.  For any 

line of table 5.2.2., the accuracy rate is higher for equal component proportions than 

skewed proportions. The component number accuracy rate is very low for skewed mixing 

proportions even when the separation between components is large.  
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Table 5.2.1: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the BIC criterion (1000 replicates after Box-Cox 
transformation) 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture  

No 

2σ 13.9±12.8 14.1±12.0 15.6±5.7 15.5±4.8 
3σ 45.1±48.0 44.5±47.1 87.3±8.1 86.3±8.5 

 
 
 

C: 
Separation 

4σ 32.3±37.7 31.4±37.1 84.0±14.1 83.1±14.0 

Table 5.2.2: Table of average component number accuracy rates for separation, constant 
variance, and mixture proportion setting for the BIC criterion (1000 replicates after Box-
Cox transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

E: Mixture Proportion E: Mixture Proportion 
 
 

Equal Skewed Equal Skewed 
2σ 9.2±6.4 18.7±14.5 10.7±6. 7 15.1±3.2 
3σ 87.9±7.2 1.7±2.4 93.0±5.0 80.3±4.1 

 
 
 

C: 
Separation 

4σ 63. 7±19.1 0.0±0. 1 94.3±3.9 72.8±10.1 

 
 Table 5.2.3 contains the AIC component number accuracy rates for settings of the 

constant variance (B) and transformation (G) factors averaged over all other factors and is 

analogous to the multiple RSVs section of table 3.2.2.  Since I only use multiple RSVs in 

this chapter, this table is only half of the size of Table 3.2.2. The component number 

accuracy rates are lower than those of the BIC. Box-Cox transformation has made the 

transformation factor G not significant for the AIC as shown by the very similar accuracy 

rates.  On average, equal within component variance is associated with a higher 

component number accuracy rate. Without Box-Cox transformation, the AIC component 

number accuracy rate was %5.23%0.65 ± , compared to the  reported in 

Table 5.2.3.  

%0.21%1.20 ±
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 Table 5.2.4 contains the means component number accuracy percentages of 

factors explaining 5% or more of the AIC criterion variation.  The component number 

accuracy rate is higher for equiprobable components than for a skewed distribution. The 

component number accuracy rate is higher for equal within-component variance. The 

component number accuracy rates decrease as the separation of components increases. 

That is, the AIC is not a good criterion. As seen in table 5.2.4, all average component 

number accuracy rates are below 50%. 

Table 5.2.3: Table of average component number accuracy rates for constant variance 
and transformation setting for the AIC criterion (1000 Replicates after Box-Cox 
Transformation) 
 

 B: Constant Variance 
 Yes No 

Yes 19.6±19.9 3.6±3.3 
 

G: Transformation 
No 20.1±21.0 2.5±2.5 

Average accuracy rate ± SD, average over 18 settings 

Table 5.2.4: Table of average component number accuracy rates for separation, constant 
variance, and mixture proportion setting for the AIC criterion (1000 Replicates after Box-
Cox Transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

E: Mixture Proportion E: Mixture Proportion 
 
 

Equal Skewed Equal Skewed 
2σ 45.4±11.5 23.7±9. 6 8.0±1.7 5.0±1.0 
3σ 35.3±14.7 0.2±0.2 2.1±1.6 0.5±0.4 

 
 
 

C: 
Separation 

4σ 18.8±14.0 0.0±0.0 2.2±1.7 0.4±0.3 

 
 Table 5.2.5 contains the average component number accuracy rates for the NEC 

criterion and corresponds to table 3.3.3.  The table contains the average component 

number accuracy rates using multiple RSVs for separation 2, 3, and 4 standard 

deviations.  At 2- and 3-standard deviation separations between adjacent means, the NEC 
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criterion did not have any correct component number classification.  At 4-standard 

deviation separation, the average component number accuracy rate is 45%. 

 Table 5.2.6 contains the average component number accuracy rates for the 

sources explaining 5% or more of the NEC criterion total variation.  The best component 

number accuracy is 91.6% at 4-standard deviation separation between adjacent means, 

equal within-component variance and equiprobable mixture proportion.  With unequal 

within-component variances, equiprobable mixture proportion and a 4-standard deviation 

separation between adjacent component means, the means component number accuracy 

percentage is about 53%.  The average component number accuracy rate is below 50% 

for every other combination of the three sources. 

Table 5.2.5: Table of average component number accuracy rates for the separation setting 
for the NEC criterion (1000 Replicates after Box-Cox Transformation) 
 

Average accuracy rate ± SD, average over 24 settings 

C: Separation 
2σ 3σ 4σ 

0.0±0.0 0.0±0.0 45.0±33.9 

Table 5.2.6: Table of average component number accuracy rates for separation, constant 
variance, and mixture proportion setting for the NEC criterion (1000 Replicates after 
Box-Cox Transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

E: Mixture Proportion E: Mixture Proportion 
 
 

Equal Skewed Equal Skewed 
2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

 
 
 

C: 
Separation 

4σ 91.6±5.6 0.1±0.1 52.8±1.2 35.6±6.5 

 Table 5.2.7 contains the average component number accuracy rate for the CLC 

criterion and corresponds to table 3.2.4.  As expected, the average component number 

accuracy rate is no longer affected by transformation.  The average component number 
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accuracy rate is below 1% for 2-standard deviation and 3-standard deviation separation. It 

is at least 50% for cases where there is a 4-standard deviation separation between 

adjacent component means.  The accuracy rate is highest (98%) for unequal within-

component variances and 4-standard deviation separation between adjacent component 

means. 

 Table 5.2.8 contains the average component number accuracy rates for sources 

explaining 5% or more of the total variation of the CLC criterion.  The CLC has an 

extremely low accuracy rate (3.2%) for skewed component probability distribution even 

with equal component variance and 4-standard deviation separation.  

Table 5.2.7: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the CLC criterion (1000 replicates after Box-Cox 
transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.1±0.1 0.1±0.1 0.6±0.9 0.6±0.8 

 
 
 

C: 
Separation 

4σ 51.5±51.9 50.4±52.8 97.9±2.6 98.4±1.6 

Table 5.2.8: Table of average component number accuracy rates for separation, constant 
variance, and mixture proportion setting for the CLC criterion (1000 Replicates after 
Box-Cox Transformation) 

 B: Constant Variance 
Yes No 

E: Mixture Proportion E: Mixture Proportion 
 
 

Equal Skewed Equal Skewed 
2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.1±0.2 0.0±0.0 0.6±0.8 0.6±0.9 

 
 
 

C: 
Separation 

4σ 98.7±1.2 3.2±3.1 99. 2±0.9 97.2±2.5 
Average accuracy rate ± SD, average over 6 settings 
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 Table 5.2.9 contains the average component number accuracy rates for the ICL-

BIC criterion using the same factors as used in table 3.2.5.  Table 5.2.10 contains the 

averages of the component number accuracy rates for the sources explaining 5% or more 

of the variation of the ICL-BIC criterion.  The pattern of results for the ICL-BIC criterion 

is similar to the pattern for the CLC criterion. That is, after Box-Cox transformation, the 

component number accuracy rate is not affected by transformation status. The average 

component number accuracy rate is below 1% for 2-standard deviation separation and 3-

standard deviation separation.  At 4-standard deviation separation between adjacent 

means, the average component number accuracy rate is at least 50%.  The ICL-BIC 

criterion has a very low component number accuracy rate (2.1% in table 5.2.10) for a 

skewed mixing proportion distribution even when the separation is 4-standard deviations 

and the component variance is constant.  

 
Table 5.2.9: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the ICL-BIC criterion (1000 replicates after Box-
Cox transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.0±0.0 0.0±0.0 0.1±0.17 0.13±0.23 

 
 
 

C: 
Separation 

4σ 50.8±53.0 50.5±53.5 98.2±2.6 98.1±2.4 
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Table 5.2.10: Table of average component number accuracy rates for separation, constant 
variance, and mixture proportion setting for the ICL-BIC criterion (1000 Replicates after 
Box-Cox Transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

E: Mixture Proportion E: Mixture Proportion 
 
 

Equal Skewed Equal Skewed 
2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.0±0.0 0.0±0.0 0.1±0.2 0.2±0.2 

 
 
 

C: 
Separation 

4σ 99.2±0.7 2.1±2.0 99.1±1.0 97.1±0. 7 

 
5.3 Correlation coefficient of component number accuracy rate of the six criteria 

with sample size for three equiprobable components 

In this section, I report the correlation coefficient of component number accuracy 

rates with sample size for equiprobable components for the six criteria after using Box-

Cox transformation.  I also report in parentheses the component number accuracy rate for 

sample size 2000.  The corresponding tables for the skewed distribution are given in 

appendix C. 

 Table 5.3.1 contains the correlation coefficients for intensity data with 4-standard 

deviation separation between component means and equal within-component variances.  

Regardless of the transformation status of the data, the component number accuracy rates 

increased as sample size increased for NEC, CLC and ICL-BIC (lines 1 and 2). For 

, component number accuracy rates were above 95% for these criteria. For the 

BIC and AIC criteria, the component number accuracy rates decreased as sample size 

increased. The BIC component number accuracy rate was below 50% for .  

2000=n

2000=n
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Table 5.3.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, equal mixture proportion, and 4-standard 
deviation separation between component means)  

 
 
  

 
  
 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -1.00 (38.9) -0.97 (3.6) 0.96 (97.3) 0.79 (99.6) 0.81 (99.7) 
2. Multiple RSVs, 

Transformation  -1.00 (42.6) -0.96 (4.3) 0.98 (97.9) 0.76 (99.4) 0.63 (99.5) 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 
 

Table 5.3.2 contains the correlation coefficient of the component number 

accuracy rate with sample size using intensity data with 3-standard deviation separation 

between adjacent component means and equal within-component variances.  With three-

standard deviation separation between adjacent component means, the component 

number accuracy rates decreased as sample size increased except for NEC and ICL-BIC 

where the component number accuracy rates were all 0. The BIC component number 

accuracy rate was above 77.3% for 2000=n , even though the correlation coefficients 

were strongly negative 

Table 5.3.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, equal mixture proportion, and 3-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -0.98 (77.3) -0.99 (17.9) 

 
N (0.0) -0.76 (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -1.00 (80.4) -0.99 (18.8) 

 
N (0.0) -0.76 (0.0) 

 
N (0.0) 

 
 Table 5.3.3 contains the correlation coefficients for intensity data with 2-standard 

deviation separation between adjacent component means and equal within-component 

variance.  Regardless of transformation status, component number accuracy rates 

increased with an increase in sample size for the BIC and the AIC criteria. For 2000=n , 
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the BIC component number accuracy rate was below 17.7%, and the AIC accuracy rate 

was below 58.7%.  The component number accuracy rates were all 0 for the entropy 

based criteria.  

Table 5.3.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, equal mixture proportion, and 2-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 1.00 (17.7) 0.97 (58.7) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  0.98 (17.0) 0.96 (56.5) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
 Table 5.3.4 contains the correlation coefficients for intensity data with 4-standard 

deviation separation between adjacent component means and unequal within-component 

variances.  The BIC, CLC, and ICL-BIC had the best measures of performance, with 

component number accuracy rates above 95% for 2000=n . Regardless of 

transformation status, the component number accuracy rates increased as sample size 

increased when using the BIC, AIC, CLC and ICL-BIC.  When using the NEC criterion, 

the component number accuracy rate increased as sample size increased for only for 

intensity data not requiring transformation.  

Table 5.3.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, equal mixture proportion, and 4-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.92 (97.6) 0.99 (2.7) 0.05 (53.5) 0.76 (99.8) 0.76 (99.8) 
2. Multiple RSVs, 

Transformation  0.88 (98.0) 0.99 (5.0) -0.59 (52.2) 0.79  (99.8) 0.76  (99.8) 

 
 Table 5.3.5 contains the correlation coefficients for intensity data unequal within-

component variances and 3-standard deviation separation between adjacent component 
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means.  The BIC criterion was the only one with good performance statistics for this 

case, with component number accuracy rate above 96.8% for 2000=n . Regardless of 

transformation status, the component number accuracy rate increased as sample size 

increased when using the BIC and the AIC criteria.  When the CLC and ICL-BIC criteria 

were used, the component number accuracy rates decreased as sample size increased.  

When using the NEC criterion, the component number accuracy rates were 0 for all 

sample sizes studied. 

Table 5.3.5: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, equal mixture proportion, and 3-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 0.87 (96.8) 0.96 (2.9) 
 

N (0.0) -0.79 (0.0) -0.76 (0.0) 
2. Multiple RSVs, 

Transformation  0.82 (97.2) 0.98 (4.7) 
 

N (0.0) -0.76 (0.0) -0.76 (0.0) 

 
 Table 5.3.6 contains the correlation coefficients for intensity data with unequal 

within-component variances and a 2-standard deviation separation between adjacent 

component means. Component number accuracy rates were low for all criteria with for 

. The BIC criterion had the highest component number accuracy rate (23.3%) 

for . Regardless of transformation status, the component number accuracy rate 

increased as sample size increased when using the BIC and the AIC criteria.  The 

component number accuracy rates were 0 for all sample sizes for all other criteria. 

2000=n

2000=n
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Table 5.3.6: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, equal mixture proportion, and 2-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.99 (23.3) 0.86 (7.4) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  0.98 (25.7) 0.91 (11.1) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
 In summary, when there was 4-standard deviation separation between adjacent 

component means and the intensity data had equal within-component variances, NEC, 

CLC, and ICL-BIC had the highest component number accuracy rates for  

regardless of transformation status. When intensity data were from a mixture distribution 

with unequal within-component variances, BIC, CLC, and ICL-BIC were the best 

measures whether or not the data were transformed.  

2000=n

When there was 3-standard deviation separation between adjacent components 

means, regardless of transformation status, BIC is the only criterion that had strong 

performance measures for intensity data from a mixture distribution with either equal or 

unequal within-component variances. 

 When there was 2-standard deviation separation between adjacent components 

means, regardless of transformation, none of the criterion had component number 

accuracy rates greater than 50% for intensity data from a mixture distribution with equal 

and unequal within-component variances. The BIC had low component number accuracy 

rate and positive correlation coefficient.  
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5.4 Result of Box-Cox transformation for six-components 

 Table 5.4.1., as usual, is the ANOVA table for the component number accuracy 

rate for the BIC, AIC, NEC, CLC, and ICL-BIC criteria. An F-value > 7.5 corresponds to 

a p-value ≤ 0.01. 

For the BIC criterion, the main effects of constant variance (B) and separation (C) 

were the two largest sources of variation, explaining 12.2% and 44.3% of variation 

respectively (Table 5.4.1).  Each of the interactions B ×C , B × D , C × D, and C × E  

explained more than 5% of the variation. Together, these six sources explained roughly 

83.8% of variation.  The F-test was also significant for sample size (D), mixture 

proportion (E) and the interaction B × E , B ×C × E , and B ×C × D .  The main effect of 

transformation (G) explained 0.04% of total variation.  

Using the AIC criterion, the constant variance factor (B) and separation factor (C) 

explained 18.4% and 35.5% respectively of the variation (Table 5.4.1). The interactions 

, C × D B ×C × D , B ×C × E , and C × D × E  each explained more than 5% of the 

variation.   Together, these six sources explained approximately 78% of variation.  The F-

test was also significant for sample size (D), mixture proportion (E) and the interaction 

B ×C , B × D , B×E , C × E , and B ×C × D × E . The transformation (G) main effect and 

all of its interactions were non-significant.  

For the NEC criterion, constant variance (B), separation (C), and mixture 

proportion (E) explained 6.8%, 13.7% and 6.8% respectively of the variation (Table 

5.4.1).  The interactions , CB× EB × , EC ×  and ECB ××  explained each 5% or more 

of the variation. These seven sources explained roughly 75% of variation.  The F-test was 
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 Using the CLC criterion, separation (C) and mixture proportion (E) and the 

interaction C  explained 43%, 18.1%, and 37.8% respectively of the variation (Table 

5.4.1). The F-test was significant for constant variance (B), separation (C), sample size 

(D), and mixture proportion (E).  It was also significant for 

significant sample size (D), and the interaction

 Under the BIC approximation of ICL, separation (C) and mixture proportion (E) 

explained 41.9% and 18.2% respectively of the variation (Table 5.4.1).  The interaction 

 explained more than 5% of the variation.  These three sources accounted for 

approximately 99% of variation.  The F-test was significant for constant variance (B), 

separation (C), sample size (D), and mixture proportion (E).  It was also significant for 

, 

B× , C D× , ED × , , DCB ××

EDB ×× ED×× EDCB, C  and ××× . The transformation (G) effect was removed. 

E×

CB× , DB× , EB × D, C × , 

ED × DCB ×× ECB ××, , , EDB ×× , C ED×× , and EDCB ××× . The 

transformation (G) effect was removed. 

EC ×

CB×

EDCB ×××

 

DB× , EB × C ×, , D ED × , DCB ×× , ECB ×× , C ED×× , and 

. The transformation (G) effect was removed. 
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 BIC  AIC  NEC  CLC  ICL-BIC
Source            DF %TSS F %TSS F %TSS F %TSS F %TSS F

B: Constant Variance 1 12.2% 173.7 18.4% 300.9 6.8% 688.2 0.1% 375.5 0.0% 34.5 
C: Separation 2 44.3% 315.1 35.5% 289.3 13.7%    688.2 43.0% 56501.8 41.9% 43150.5

D: Sample Size 2 1.3% 9.1 4.8% 39.0 2.0% 102.1 0.1% 108.2 0.2% 220.7 
E: Mixture Proportion        1 4.6% 66.1 3.1% 50.4 6.8% 688.2 18.1% 47592.7 18.2% 37398.0

G: Transformation 1         0.0% 0.5 0.0% 0.4 0.0% 3.1 0.0% 5.7 0.0% 2.2 
CB×  2           8.5% 60.6 3.7% 30.0 13.7% 688.2 0.1% 151.2 0.0% 27.5
DB×  2          5.6% 39.7 2.1% 17.3 2.0% 102.1 0.0% 8.5 0.0% 21.4
EB ×  1           0.8% 12.1 1.0% 17.0 6.8% 688.2 0.0% 74.3 0.1% 238.9
DC ×  4          7.6% 26.9 6.2% 25.5 4.1% 102.1 0.1% 76.8 0.3% 144.9 
EC ×  2     5.6% 40.2 0.7% 5.6 13.7% 688.2 37.8% 49615.0 38.6% 39758.2
ED ×  2        0.3% 1.9 0.3% 2.1 2.0% 102.1 0.1% 78.4 0.1% 115.2

DCB ××  4          4.3% 15.3 5.7% 23.3 4.1% 102.1 0.0% 4.1 0.0% 7.5 
ECB ××  2        1.3% 9.6 6.6% 53.6 13.7% 688.2 0.0% 21.6 0.1% 101.8
EDB ××  2         0.4% 3.2 0.3% 2.8 2.0% 102.1 0.0% 40.2 0.0% 0.1
EDC ××  4         0.5% 1.6 5.1% 20.6 4.1% 102.1 0.5% 307.8 0.4% 214.9

EDCB ×××  4         0.1% 0.5 4.4% 17.9 4.1% 102.1 0.0% 25.6 0.0% 19.8
Remainder 35 2.5%   2.1%   0.3%   0.0%   0.0%   

Table 5.4.1: ANOVA tables for BIC, AIC, NEC, CLC, and ICL-BIC 

 

 



5.5 Interaction of significant factors 
 
 Table 5.5.1 contains the average component number accuracy rates for separation 

(C), constant variance (B) and transformation (G) for the BIC criterion and corresponds 

to table 3.2.1.  As expected, the Box-Cox transformation removed the effect of 

transformation.  As seen in table 5.5.1, the average component number accuracy rates 

were higher for unequal within-component variance.  Each average component number 

accuracy rate was below 50% except for data with unequal within-component variances 

and a 4-standard deviation separation between adjacent component means. 

 Table 5.5.2 contains the BIC component number accuracy counts (not rates) for 

constant variance (B), separation (C), sample size (D), and component probability 

distribution (E).  These numbers are the counts (out of 1000 replicates) for the component 

number accuracy.  The first number is the count when transformation in not needed. And 

the second number is the count when transformation is needed.  As shown in the table, 

the component number accuracy counts for transformation status (yes or no) were almost 

identical showing that the transformation status factor was not significant.  The highest 

accuracy rate (94%) was for unequal within-component variance, equal component 

mixture distribution, and 4-standard deviation separation between adjacent component 

means. 
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Table 5.5.1: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the BIC criterion (1000 replicates after Box-Cox 
transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Equal Component Variance 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

2σ 3.2±7.1 3.8±8.0 7.8±10.5 1.2±0.7 
3σ 26.2±23.3 25.0±22.0 43.5±27.3 44.5±25.7 

 
 
 

C: 
Separation 

4σ 31.1±30.0 30.2±24.9 67.6±21.4 81.4±9.6 

Table 5.5.2: Table of component number accuracy count for separation, constant 
variance, mixture distribution, and sample size setting for the BIC criterion (1000 
replicates after Box-Cox transformation) 
 

 B: Constant Variance 
 Yes No 

D: Sample Size D: Sample Size   
500=n  1000=n 2000=n 500=n  1000=n  2000=n  

2σ 0, 0 1, 0 5, 1 5, 11 8, 6 7, 3 
3σ 305, 324 588, 612 399, 426 179, 174 431, 411 809, 828 

Eq
ua

l 

4σ 692, 693 422, 473 155, 159 771, 766 870, 878 944, 946 
2σ 2, 1 19, 16 201, 176 21, 65 11, 107 20, 274? 
3σ 15, 22 88,78 106, 107 188, 164 382, 341 682, 692 

E:
 M

ix
tu

re
 D

is
tri

bu
tio

n 
sk

ew
 

C
: S

ep
ar

at
io

n 

4σ 392, 363 151, 173 2, 4 660, 455 830, 495 808, 513 
 
 Table 5.5.3 contains the average component number accuracy rates for the AIC 

criterion for each setting of factor B (equal within-component variance or not) and factor 

G, transformation status. It corresponds to half of table 3.2.2.  As expected, the Box-Cox 

transformation removed the transformation effect.  However, the average component 

number accuracy rates were lower than those reported in table 4.2.3.  All the component 

number accuracy rates were below 20%. 

 Table 5.5.4 contains the component number accuracy counts (out of 1000 

replicates) for constant variance (B), separation (C), sample size (D), and mixture 
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distribution (E) factors.  The accuracy counts for transformation status (yes and no) were 

almost identical, confirming that the transformation status factor was not significant after 

application of the Box-Cox transformation.  None of the accuracy counts were above 300 

(i.e., 30%). 

Table 5.5.3: Table of average component number accuracy rates for constant variance 
and transformation setting for the AIC criterion (1000 replicates after Box-Cox 
transformation) 
 

 B: Constant Variance 
 Yes No 

Yes: X is a 
normal mixture 

11.8±10.3 4.0±4.1 
 

G: Transformation 

No 11.1±10.2 4.2±5.0 
Average accuracy rate ± SD, average over 18 settings 

Table 5.5.4: Table of component number accuracy count for separation, constant 
variance, mixture distribution, and sample size setting for the AIC criterion (1000 
replicates after Box-Cox transformation) 
 

 B: Constant Variance 
 Yes No 

D: Sample Size D: Sample Size 

 

 
500=n  1000=n 2000=n

 
500=n  1000=n  2000=n

 
2σ 106, 119 171, 172 286, 270 128, 131 118, 108 124, 122 
3σ 263, 286 115, 149 22, 32 37, 27 18, 18 9, 12 

Eq
ua

l 

4σ 169, 198 55, 66 5, 7 1, 0 1, 0  2, 1 
2σ 216, 236 272, 248 150, 186 111, 43 85, 40 82, 22 
3σ 127, 127 30, 26 0, 1 31, 35 11, 15 1, 6 E:

 M
ix

tu
re

 D
is

tri
bu

tio
n 

Sk
ew

 C
: S

ep
ar

at
io

n 

4σ 9, 8 1, 0 0, 0 2, 56 0, 45 1, 43 
 
 
 Table 5.5.5 contains the average component number accuracy rates for the main 

effects explaining 5% or more of the total NEC variation.  The average component 

number accuracy rates were below 15%.  Table 5.5.6 contains the average component 

number accuracy rates for separation and corresponds to table 5.2.5.  The average 

component number accuracy rates were all below 5%. 
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Table 5.6.5: Table of average component number accuracy rates for separation, constant 
variance, and mixture proportion setting for the NEC criterion (1000 replicates after Box-
Cox transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

E: Mixture Proportion E: Mixture Proportion 
 
 

Equal Skewed Equal Skewed 
2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

 
 
 

C: 
Separation 

4σ 12.8±7.7 0.0±0.0 0.0±0.0 0.0±0.0 

 
Table 5.5.6: Table of average component number accuracy rates for the separation for the 
NEC criterion (1000 replicates after Box-Cox transformation) 
 

C: Separation 
2σ 3σ 4σ 

0.0±0.0 0.0±0.0 3.2±6.7 
Average accuracy rate ± SD, average over 24 settings 

 
 Table 5.5.7 contains the average component number accuracy rates for sources 

(separation (C) and mixture distribution (E)) explaining 5% or more of the total CLC 

criterion variation.  With the exception of one setting, all average component number 

accuracy rates were below 5%.  At 4-standard deviation separation between component 

means and equal component mixture distribution, the average component number 

accuracy rate was 92.3%. 

 Table 5.5.8 contains the average component number accuracy rate for the CLC 

criterion using separation (C), constant variance (B) and transformation (G) and 

corresponds to table 3.2.4.  As expected, the Box-Cox transformation removed the effect 

of transformation.  The component number accuracy rates for transformed and non-

transformed data were essentially the same.  At 4-standard deviation separation between 

adjacent component means, the average component number accuracy rates are above 
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45%.  At the other separation settings, the average component number accuracy rates are 

below 6%. 

Table 5.5.7: Table of average component number accuracy rates for separation and 
mixture proportion setting for the CLC criterion (1000 replicates after Box-Cox 
transformation) 

 E: Mixture Proportion 
 Equal Skewed 

2σ 0.0±0.0 0.0±0.0 
3σ 2.2±2.8 3.4±4.6 

 
C: Separation 

4σ 92.3±6.8 4.6±3.0 
  Average accuracy rate ± SD, average over 12 settings 

 
Table 5.5.8: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the CLC criterion (1000 replicates after Box-Cox 
transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.1±0.2 0.0±0.0 5.5±3.5 5.8±4.0 

 
 
 

C: 
Separation 

4σ 47.4±49.6 47.5±49.4 48.8±47.5 50.3±46.9 

 
 Table 5.5.9 contains the average component number accuracy rates for separation 

(C) and mixture distribution (E), both of which explaining 5% or more of the total ICL-

BIC criterion variation.  With the exception of one setting, all average component 

number accuracy rates were below 5%.  At 4-standard deviation separation between 

component means and equal component mixture distribution, the average component 

number accuracy rate was 90.8%. 

 Table 5.5.10 contains the average component number accuracy rate for the ICL-

BIC criterion using separation (C), constant variance (B) and transformation (G) and 
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corresponds to table 3.2.5.  As expected, the Box-Cox transformation removed the effect 

of transformation.  The component number accuracy rates for transformed and non-

transformed data are essentially the same.  At 4-standard deviation separation between 

adjacent component means, the average component number accuracy rates are above 

45%.  At the other separation settings, the average component number accuracy rates are 

below 5%. 

Table 5.5.9: Table of average component number accuracy rates for separation and 
mixture proportion setting for the ICL-BIC criterion (1000 replicates after Box-Cox 
transformation) 

 E: Mixture Proportion 
 Equal Skewed 

2σ 0.0±0.0 0.0±0.0 
3σ 0.3±0.4 2.1±3.2 

 
C: Separation 

4σ 90.8±9.1 2.9±3.0 
Average accuracy rate ± SD, average over 12 settings 

Table 5.5.10: Table of average component number accuracy rates for separation, constant 
variance, and transformation setting for the ICL-BIC criterion (1000 replicates after Box-
Cox transformation) 
 

Average accuracy rate ± SD, average over 6 settings 

 B: Constant Variance 
Yes No 

G: Transformation G: Transformation 
 
 

Yes: X is a 
normal mixture

No Yes: X is a 
normal mixture 

No 

2σ 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 
3σ 0.0±0.0 0.0±0.0 2.5±2.8 2.4±3.4 

 
 
 

C: 
Separation 

4σ 46.9±51.3 46.6±51.1 46.1±46.0 47.8±46.0 

 
5.6 Correlation coefficient of component number accuracy rate of the six criteria 

with sample size for six equiprobable components 

 In this section, I report the correlation coefficients of the component number 

accuracy rates with sample size for intensity data from mixtures with six equiprobable 

components with Box-Cox transformation automatically applied. As before, I also report 
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the component number accuracy rate for sample size 2000 for all six criteria. Results for 

mixtures with skewed component distributions are given in Appendix D.   

 Table 5.6.1 contains the correlation coefficient for the component number 

accuracy rate with sample size for intensity data with equal within-component variances 

and 4-standard deviation separation between adjacent component means.  The CLC and 

ICL-BIC criteria performed well with component number accuracy rates for  

equal to at least 98.4% and 99.4% respectively. Regardless of transformation status, the 

component number accuracy rate increased as sample size increased when using CLC 

and ICL-BIC.  On the other hand, the component number accuracy rate decreased as 

sample size increased when using BIC, AIC and NEC. 

2000=n

Table 5.6.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, equal mixture proportion, and 4-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -0.98 (15.5) -0.92 (0.5) -0.97 (3.8) 0.92 (99.5) 0.89 (99.9) 
2. Multiple RSVs, 

Transformation  -1.00 (15.9) -0.92 (0.7) -0.97 (5.1) 0.89 (98.4) 0.87 (99.4) 

 
 Table 5.6.2 contains the correlation coefficients for intensity data with equal 

within-component variances and 3-standard deviation separation between adjacent 

component means.  Only the BIC criteria had positive correlation and appreciable 

component number accuracy rate for 2000=n  (specifically, at least 39.9%). When using 

AIC and CLC, the component number accuracy rate decreased as sample size increased.  

The component number accuracy rates were 0 for all sample sizes when using NEC and 

ICL-BIC. 
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Table 5.6.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, equal mixture proportion, and 3-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.14 (39.9) -0.95 (2.2) 

 
N (0.0) -0.76 (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  0.17 (42.6) -0.97 (3.2) 

 
N (0.0) -0.76 (0.00 

 
N (0.0) 

 
 

Table 5.6.3 contains the correlation coefficients for intensity data with equal 

within-component variances and 2-standard deviation separation between adjacent 

component means. None of the criteria had component number accuracy rate above 30% 

for . The AIC had better performance than the other criteria. Only the BIC and 

the AIC had positive correlation coefficients. The component number accuracy rates were 

0 for all other criteria. 

2000=n

Table 5.6.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, equal mixture proportion, and 2-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.99 (0.5) 1.00 (28.6) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  0.94 (0.1) 1.00 (27.0) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
 Table 5.6.4 contains the correlation coefficients for intensity data with unequal 

within-component variances and a 4-standard deviation separation between adjacent 

component means. The BIC, CLC, and ICL-BIC criteria had positive correlation 

coefficient and component number accuracy rates above 94.6% for . The 

component number accuracy rate increased as sample size increased when using BIC, 

2000=n
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AIC, CLC, and ICL-BIC.  The component number accuracy rates were 0 for the NEC 

criteria. 

Table 5.6.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, equal mixture proportion, and 4-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.96 (94.4) 0.94 (0.2) 

 
N (0.0) 0.87 (98.8) 0.89 (98.3) 

2. Multiple RSVs, 
Transformation  0.95 (94.6) 0.94 (0.1) 

 
N (0.0) 0.89 (98.4) 0.91 (97.6) 

 
 

Table 5.6.5 contains the correlation coefficients for intensity data with unequal 

within-component variances and a 3-standard deviation separation between adjacent 

component means. The BIC criterion was the only one with positive correlation 

coefficients and component number accuracy rate above 80.9% for . The 

component number accuracy rate decreased in sample size increased when using AIC, 

CLC, and ICL-BIC.  The component number accuracy rates were 0 for NEC.  

2000=n

Table 5.6.5: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, equal mixture proportion, and 3-standard 
deviation separation between component means) 

  
 
 
 
 
 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 1.00 (80.9) -0.92 (0.9) 

 
N (0.0) -0.99 (1.4) -0.94 (0.2) 

2. Multiple RSVs, 
Transformation  1.00 (82.8) -0.95 (1.2) 

 
N (0.0) -1.00 (1.4) -0.98 (0.3) 

Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 
 

Table 5.6.6 contains the correlation coefficients for intensity data with unequal 

within-component variances and a 2-standard deviation separation between adjacent 

component means.  None of the criteria worked well. The component number accuracy 

rate decreased as sample size increased for the AIC, CLC, and ICL-BIC criteria.  The 
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BIC component number accuracy rate was below 0.7% for 2000=n . The component 

number accuracy rates were 0 for NEC, CLC, and ICL-BIC criteria.  

Table 5.6.6: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, equal mixture proportion, and 2-standard 
deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.50 (0.7) -0.22 (12.4) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.94 (0.3) -0.21 (12.2) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
In summary, when there was 4-standard deviation separation between adjacent 

component means and the intensity data had equal within-component variances, CLC and 

ICL-BIC had the highest component number accuracy rates regardless of transformation 

status. When intensity data were from a mixture distribution with unequal within-

component variances, BIC, CLC, and ICL-BIC were the best measures regardless of 

transformation status.   

When there was 3-standard deviation separation between adjacent components 

means, regardless of transformation status, none of the six criteria had component 

number accuracy rates greater than 50% for intensity data from a mixture distribution 

with equal within-component variance.  With unequal within-component variances, the 

BIC criterion had component number accuracy rates greater than 80.9% for  

regardless of transformation status. 

2000=n

When there was 2-standard deviation separation between adjacent components 

means, regardless of transformation status, none of the six criteria had component 

number accuracy rates greater than 50% for intensity data from a mixture distribution 

with either equal or unequal within-component variances.  
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Chapter 6 Discussions and conclusions 
 
6.1. Procedure for assessing a criterion.  
 
 Since standard research practice is to base model selection on a maximized 

likelihood function using a large number of RSVs, I will assess the six criteria based on 

their results with multiple RSVs. It is notable, however, that increasing the number of 

RSVs sometimes reduced the component number accuracy rate. My goal was to identify 

those criteria whose component number accuracy rate increases with increasing sample 

size and that has a high component number accuracy rate for a large sample when the 

global maximum of each competing model is used. Consequently, I focus on the tables of 

correlation coefficients of component number accuracy rates with sample size and 

component number accuracy rates at large samples as assessed with multiple RSVs.  

 Each criterion worked well when separation was large, within-component 

variances were equal, the components were equi-probable and the sample size was large. 

There were settings in which the NEC, and AIC performed extremely poorly. These were 

low separation, unequal within-component variances, skewed and HWE mixture 

distributions, and data that were the square of a normal mixture.  Consequently, I have 

excluded these criteria from further discussion.  

 
6.2 Data from a three-component mixture 
 

My results documented that a Box-Cox transformation should always be applied. 

Tables 3.3.1-3.3.4 present the critical information for data from a three-component model 

without Box-Cox transformation. When Box-Cox is not used and transformation status is 

on (that is X is a mixture of normal components) then CLC and ICL-BIC were the only 
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effective criteria for equal within-component variance.  When transformation status was 

off (that is X is a mixture of normal components) each criterion was effective for equal 

within-component variance (table 3.3.1 and table 3.3.2).  When Box-Cox is not used 

and X  is a mixture of normal components, then BIC, CLC and ICLBIC were effective 

criteria for unequal within-component variance.  

Tables 5.4.1-5.4.6 present the critical information for data with Box-Cox 

transformation applied.  When Box-Cox transformation was used, regardless of the data 

used, CLC, and ICL-BIC were effective criteria for equal within-component variance 

(table 5.4.1). For unequal within-component variance, BIC, CLC, and ICL-BIC were 

effective criteria (table 5.4.4).    

 
6.3 Data from a six-component mixture 

 As in the three-component model, the results show that one should automatically 

use the Box-Cox transformation. Tables 4.3.1-4.3.4 present the results from a six-

component model without Box-Cox transformation.  When Box-Cox transformation is 

not used and  X  is a mixture of normal components, none of the six criteria used had 

component number accuracy rates greater than 34.7% for equal within-component 

variance.  When X is a normal mixture, each criterion had high component number 

accuracy rates for equal within-component variance (Table 4.3.1).   When Box-Cox 

transformation is not used, regardless of transformation status, BIC was the only criterion 

with high component number accuracy rates for unequal within-component variances 

(Table 4.3.2).   

 Tables 5.7.1-5.7.6 present results from a six-component model with Box-Cox 

transformation. When Box-Cox transformation is used, regardless of data used, BIC, 
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CLC, and ICL-BIC were the criteria with high component number accuracy rates for 

unequal within-component variances (Table 5.7.4). Two criteria, CLC and ICL-BIC, had 

high component number accuracy rates for equal within component variance (Table 

5.7.1). 

6.4 Is there a criterion which always has high component number accuracy rates? 

Based on the overall component number accuracy rates for the each model with or 

without Box-Cox transformation, there was no criterion that always had high component 

number accuracy rate in all cases tested.  For large separation (4-standard deviation 

separation between adjacent component means), BIC, CLC, and ICL-BIC had high 

component number accuracy rates. For intermediation separation (3-standard deviation 

separation between adjacent component means), the BIC criterion was the only effective 

criterion for the three-component model. For small separation (2-standard deviation 

separation between adjacent component means), no criterion had high component number 

accuracy rate for . BIC performed best of these, albeit with very low accuracy 

rate.  

2000=n

For the BIC criterion, the settings required to have high component number 

accuracy rates were 4-standard deviation separation between adjacent component means 

and no transformation.  The settings for which it had low component number accuracy 

rates were 2-standard deviation separation between adjacent component means, equal 

within-component variance, and transformation.  Also, when using a Box-Cox 

transformation, the BIC criterion had high component number accuracy rates for unequal 

within-component variances. 
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 For the CLC and the ICL-BIC criteria, the settings that yielded high component 

number accuracy rates were 4-standard deviation separation between adjacent component 

means with and without Box-Cox transformation, equal within-component variances and 

equi-probable distribution.  For example, component number accuracy rate was at least 

91% for samples of size 500. The settings for low component number accuracy rates 

were 2-standard deviation separation between adjacent component means. For instance, 

the component number accuracy rate was less than 9% for 2000=n even though the 

correlation was positive.  

 Unequal within-component variances did not affect BIC, CLC and ICL-BIC when 

there was 4-standard deviation separation between adjacent component means.   

6.5 What should one do?  

1. Always use Box-Cox. When X  is a mixture of normal components, Box-Cox 

effectively addressed the problem in that component number accuracy rates were 

similar to those with transformation status off. When X is a mixture of normal 

components, the component number accuracy rates after transformation were 

similar to those without the unnecessary Box- Cox transformation.  In table 5.1, 

one should note that the average power transform  for the normal mixture 

squared is about half the average power transform  for the normal mixture in 

the three-component model.  The average power transform  for the normal 

mixture squared is almost to the average power transform  for the normal 

mixture in the six-component model.  This is probably an indication as to why the 

three-component model after Box-Cox transformation has better result. 

λ̂

λ̂

λ̂

λ̂
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2. Use BIC, ICL-BIC, or CLC as criteria to select the number of components. Next 

one should fit the mixture model and examine the estimated component 

probabilities, component means, and component variances. Separation of 

component means of 4 or more standard deviations are indicative of situations 

with high component number accuracy rates. In this event, each of the three 

measures works well. For 3 standard deviation settings, the BIC worked better 

than the other two criteria. Assessing the number of components based on results 

with an estimated 2-standard deviation separation between components is a task 

with high component number error rate. All criteria had low component number 

accuracy rate, even with sample sizes of 2000. In such a case, while the BIC 

criterion is better than the other two, its probability of correct component number 

classification was below 35% for equal within-component variances. Looking at 

cases with component number accuracy rates greater than 50%, BIC was the best 

about 19% of the time after Box-Cox transformation compared to 22% of the time 

before Box-Cox transformation. CLC  and ICL-BIC were the best about  10%  

and 11% of the time respectively before Box-Cox transformation compared to 

about 10% and 14.6% respectively after Box-Cox transformation. 

3. Always use multiple RSVs.  There were cases where multiple RSVs reduced the 

component number accuracy rates for all criteria.  However, there were numerous 

cases where using multiple RSVs actually increased the chance of having high 

component number accuracy rates by finding the global maximum.  Such cases 

includes skewed and HWE mixture distributions.  Knowing the mixture 

distributions a priori is unlikely.  Therefore, one should use multiple RSVs. 
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6.6 Future research 

There are other approaches that one can use in addressing this problem.  One is to 

use a commingling type analysis to transform the data (Barrett,et al., 1996).  To date, one 

can use the SAGE program to do the analysis on a three-component model.  Software 

needs to be implemented to tackle other numbers of components.  With a commingling 

type analysis, one can answer the question does using a commingling type approach to 

transform the data increase the component number accuracy rate?   
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Appendix A. coefficient for the component number accuracy rates with sample size 
for HWE and skewed mixture proportions (three-component model) 
 
Table A.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, HWE mixture proportion, and 4-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.47 (99.6) 0.92 (88.4) 0.89 (99.0) 0.84 (98.7) 0.82 (99.2) 
2. Multiple RSVs, 

Transformation  -0.66 (0.0) -0.59 (0.0) -0.85 (1.1) 0.99 (69.7) 0.99 (62.4) 
3. Default SV, no 

transformation 0.38 (100.0) 0.96 (96.0) 0.85 (100.0) 0.84 (100.0) 0.83 (99.9) 
4. Default SV, 
transformation -0.78 (0.0) -0.59 (0.0) 0.98 (76.7) 0.97 (76.7) 0.98 (65.9) 

 
 
Table A.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 4-standard 
deviation separation between component means) 

  Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICLBIC 
1. Multiple RSVs, 
no Transformation 0.65 (99.8) 1.00 (90.7) 0.84 (99.6) 0.82 (99.7) 0.73 (99.9) 
2. Multiple RSVs, 

Transformation  -0.60 (0.0) N (0.0) -0.83 (2.0) 0.92 (42.2) 0.88 (53.5) 
3. Default SV, no 

transformation 0.90 (100.0) 0.86 (94.5) 0.59 (100.0) 0.68 (100.0) 0.63 (100.0) 
4. Default SV, 
transformation -0.71 (0.0) -0.59 (0.0) 0.48 (99.7) 0.63 (100.0) 0.65 (100.0) 

 
Table A.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, HWE mixture proportion, and 2-standard 
deviation separation between component means)  

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.98 (27.6) 0.98 (80.8) 0.92 (0.2) N (0.0) N (0.0) 
2. Multiple RSVs, 

Transformation  -0.66 (0.0) -0.59 (0.0) -0.87 (0.4) 0.99 (72.3) 0.98 (65.2) 
3. Default SV, no 

transformation 0.97 (29.0) 0.97 (0.1) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
4. Default SV, 
transformation 0.72 (34.4) -0.92 (0.1) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 
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Table A.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 2-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.99 (25.0) 0.99 (74.6) 0.92 (0.5) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.78 (0.0) -0.59 (0.0) 0.84 -0.79 (0.0) -0.79 (0.0) 

3. Default SV, no 
transformation 0.97 (24.2) 0.98 (73.3) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation -0.80 (0.0) -0.60 (0.0) -0.59 (0.0) -0.59 (0.0) -0.59 (0.0) 

Table A.5: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, HWE mixture proportion, and 4-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.82 (97.6) 0.99 (3.8) -0.59 (52.0) 0.74 (99.5) 0.76 (99.7) 
2. Multiple RSVs, 

Transformation  0.78 (96.0) 0.93 (3.0) 0.99 (71.7) 0.83 (98.6) 0.75 (98.7) 
3. Default SV, no 

transformation 0.29 (99.3) 0.96 (90.5) 
0.65 

(100.0) 
0.79 

(100.0) 0.83 (99.9) 
4. Default SV, 
transformation 0.59 (100.0) 0.73 (79.3) 0.64 (99.9) 0.75 (99.9) 0.80 (99.9) 

 
Table A.6: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 4-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.85 (98.2) 1.00 (4.7) -0.97 (16.4) 0.72 (99.9) 0.71 (99.9) 
2. Multiple RSVs, 

Transformation  0.09 (86.0) 0.84 (2.1) -0.97 (9.0) 0.73 (99.0) 0.74 (99.3) 
3. Default SV, no 

transformation 0.59 (100.0) 0.87 (86.4) 
0.59 

(100.0) 
0.64 

(100.0) 
0.63 

(100.0) 
4. Default SV, 
transformation 0.39 (99.4) -0.96 (23.4) 0.59 (99.7) 

0.68 
(100.0) 

0.70 
(100.0) 
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Table A.7: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, HWE mixture proportion, and 2-
standard deviation separation between component means) 
 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

 BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.99 (46.6) 0.89 (9.0) 

 
N (0.0) 

 
N (0.0) 0.05 (0.0) 

2. Multiple RSVs, 
Transformation  -0.45 (53.3) -0.79 (0.0) 

 
N (0.0) -0.59 (0.0) 

 
N (0.0) 

3. Default SV, no 
transformation 0.99 (71.8) 0.91 (79.1) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation 0.67 (91.9) -0.96 (0.8) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
Table A.8: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 2-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.53 (18.2) 0.99 (11.9) 

 
N (0.0) -0.59 (0.0) N (0.0) 

2. Multiple RSVs, 
Transformation  -0.85 (24.9) -0.92 (0.0) 

 
N (0.0) -0.59 (0.0) -0.63 (0.0) 

3. Default SV, no 
transformation 0.93 (26.6) 0.86 (44.6) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation 0.35 (69.3) -0.88 (0.0) 

 
N (0.0) -0.59 (0.0) -0.59 (0.0) 
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Appendix B. Correlation coefficient for the component number accuracy rates with 
sample size for HWE and skewed mixture proportions (six-component model) 
 
Table B.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, HWE mixture proportion, and 4-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.65 (99.7) 0.93 (88.3) -0.98 (7.5) 

0.73 
(99.4) 0.61 (99.6) 

2. Multiple RSVs, 
Transformation  -0.87 (0.0) -0.74 (0.0) 0.91 (4.6) -0.94 (3.4) -0.40 (2.3) 

3. Default SV, no 
transformation -0.86 (0.0) -0.83 (0.0) -0.84 (0.2) -0.73 (0.0) -0.92 (0.1) 
4. Default SV, 
transformation -0.74 (0.0) -0.68 (0.0) -0.59 (0.0) 

 
N (0.0) 

 
N (0.0) 

 
Table B.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 4-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

   BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.71 (99.8) 0.99 (88.0) 0.92 (60.3) 0.82 (99.9) 0.63 (99.9) 
2. Multiple RSVs, 

Transformation  -0.72 (0.0) -0.71 (0.0) 0.92 (3.2) -0.96 (1.8) -0.94 (1.3) 
3. Default SV, no 

transformation -0.59 (0.0) -0.59 (0.0) -0.59 (0.0) 
 

N (0.0) 
 

N (0.0) 
4. Default SV, 
transformation -0.62 (0.0) -0.65 (0.0) -0.59 (0.0) 

 
N (0.0) 

 
N (0.0) 

 
Table B.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, HWE mixture proportion, and 2-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.92 (0.1) 0.99 (16.7) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.29 (8.8) -0.83 (0.2) 

 
N (0.0) -0.59 (0.0) -0.59 (0.0) 

3. Default SV, no 
transformation 0.92 (0.6) 0.99 (40.4) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation -0.25 (7.1) -0.96 (1.9) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 
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Table B.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 2-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.92 (0.2) 0.99 (17.7) 

 
N (0.0) -0.59 (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.86 (0.4) -0.67 (0.0) 

 
N (0.0) -0.98 (8.8) -0.15 (4.0) 

3. Default SV, no 
transformation 0.94 (4.4) 0.99 (41.8) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation -0.87 (0.1) -0.79 (0.0) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

Table B.5: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, HWE mixture proportion, and 4-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.89 (93.9) -0.27 (1.7) N (0.0) 0.88 (69.3) 0.94 (64.6) 
2. Multiple RSVs, 

Transformation  0.90 (92.0) -0.64 (1.3) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
3. Default SV, no 

transformation 1.00 (1.0) -0.87 (8.9) -0.59 (0.0) -0.98 (0.0) -0.37 (0.0) 
4. Default SV, 
transformation 1.00 (0.7) -0.59 (6.1) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
Table B.6: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 4-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation 0.85 (94.7) -0.47 (0.9) 

 
N (0.0) 0.81 (76.9) 0.88 (96.6) 

2. Multiple RSVs, 
Transformation  0.83 (91.5) -0.79 (0.3) 

 
N (0.0) 

 
N (0.0) 0.05 (0.0) 

3. Default SV, no 
transformation -0.41 (1.8) -0.84 (0.0) -0.46 (0.0) -0.74 (0.0) -0.84 (0.0) 
4. Default SV, 
transformation -0.48 (1.1) -0.73 (0.0) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 
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Table B.7: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, HWE mixture proportion, and 2-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -0.77 (0.1) 0.97 (16.1) 0.28 (0.1) -0.59 (0.0) 

 
N (0.0) 

2. Multiple RSVs, 
Transformation  -0.96 (0.3) 0.61 (10.6) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

3. Default SV, no 
transformation 

 
N (0.0) -0.94 (2.8) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

4. Default SV, 
transformation 

 
N (0.0) 0.83 (15.7) 

 
N (0.0) 

 
N (0.0) 

 
N (0.0) 

 
Table B.8: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 2-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -0.93 (0.3) 0.69 (17.5) 0.92 (0.1) -0.78 (0.0) -0.59 (0.0) 
2. Multiple RSVs, 

Transformation  0.85 (61.3) -0.87 (0.8) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
3. Default SV, no 

transformation N (0.0) 0.95 (30.6) 
 

N (0.0) -0.59 (0.0) 
 

N (0.0) 
4. Default SV, 
transformation 0.97 (2.7) 0.07 (19.6) 

 
N (0.0) N (0.0) 

 
N (0.0) 
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Appendix C. coefficient for the component number accuracy rates with sample size 
for skewed mixture proportion (three-component Box-Cox model) 
 
Table C.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 4-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, 
no Transformation -0.76 (0.0) 

 
N (0.0) -0.76 (0.0) -0.76 (0.3) -0.76 (0.4) 

2. Multiple RSVs, 
Transformation  -0.76 (0.0) 

 
N (0.0) -0.76 (0.0) -0.98 (0.9) -0.98 (0.2) 

 
Table C.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 3-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation -0.80 (0.0) -0.76 (0.0) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  -0.79 (0.0) -0.76 (0.0) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 

 
Table C.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 2-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 1.00 (35.9) -1.00 (10.5) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  1.00 (37.6) -0.97 (13.3) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 

 
Table C.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 4-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation -0.98 (59.8) -0.93 (0.3) -0.97 (28.3) 0.86 (99.0) 0.85 (99.3) 
2. Multiple RSVs, 

Transformation  -1.00 (60.4) -0.98 (0.0) -0.99 (28.4) 0.92 (99.6) 0.87 (99.9) 
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Table C.5: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 3-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation -0.90 (74.0) -0.94 (0.1) 
 

N (0.0) -0.85 (0.0) -0.85 (0.0) 
2. Multiple RSVs, 

Transformation  -0.46 (77.7) -0.34 (0.5) 
 

N (0.0) -0.76 (0.0) -0.76 (0.0) 

 
 
Table C.6: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 2-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 1.00 (19.0) -0.91 (3.6) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  0.97 (19.1) -0.97 (5.1) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
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Appendix D. Correlation coefficient for the component number accuracy rates with 
sample size for skewed mixture proportion (six-component Box-Cox model) 
 
Table D.1: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 4-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation -0.95 (0.2) -0.82 (0.0) 
 

N (0.0) -0.98 (0.1) -0.95 (0.0) 
2. Multiple RSVs, 

Transformation  -0.98 (0.4) -0.76 (0.0) 
 

N (0.0) -0.92 (0.1) -0.84 (0.0) 

 
Table D.2: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 3-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 0.86 (10.6) -0.88 (0.0) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  0.93 (10.7) -0.87 (0.1) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 

 
Table D.3: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (constant variance, skewed mixture proportion, and 2-standard 
deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 0.97 (20.1) -0.6915.0) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  0.97 (17.6) -0.87 (18.6) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 

 
Table D.4: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 4-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 0.67 (80.8) -0.33 (0.1) 
 

N (0.0) -0.71 (6.1) -0.19 (5.7) 
2. Multiple RSVs, 

Transformation  0.92 (51.3) -0.88 (4.3) 
 

N (0.0) -0.87 (3.3) -0.57 (3.0) 
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Table D.5: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 3-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 1.00 (68.2) -0.93 (0.1) 
 

N (0.0) 1.00 (12.2) 1.00 (8.9) 
2. Multiple RSVs, 

Transformation  1.00 (69.2) -0.92 (0.6) 
 

N (0.0) 0.99 (11.4) 1.00 (7.6) 

 
Table D.6: Correlations of accuracy rate of measure with sample size for selected 
experimental conditions (non-constant variance, skewed mixture proportion, and 2-
standard deviation separation between component means) 

 Note: Value in parenthesis is the component number accuracy rate for sample size 2000. 

  BIC AIC NEC CLC ICL-BIC 
1. Multiple RSVs, no 

Transformation 0.10 (2.0) -0.81 (8.2) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
2. Multiple RSVs, 

Transformation  0.99 (27.4) -0.98 (2.2) 
 

N (0.0) 
 

N (0.0) 
 

N (0.0) 
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