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Abstract of the Dissertation

Geometric Abstractions
for

Information Processing in Sensor Networks

by

Rik Sarkar

Doctor of Philosophy

in

Computer Science

Stony Brook University
2010

Computerized devices are becoming smaller and more ubiquitous. Equally im-
portantly, they are becoming more interconnected. A Sensor Network is a model for
such interconnected systems. Each sensor device obtains and stores information that
is potentially useful to others. The challenge is to efficiently search and deliver the
important information to the relevant parties. Given the large number of devices and
corresponding quantities of data, this is not easy. Fortunately for us, communication
is efficient and fast when addressing nearby devices. This permits us to utilize their
relative locations to construct efficient methods.

The proximity and location information can be leveraged through the use of ge-
ometry. The complexity of a network and data hide simpler geometric structures that
are not obvious at first sight. The objective in this dissertation is to identify such
concealed structures that can be useful and can be computed in the network. An
abstract structure or abstraction helps us to understand and represent the network
and data in more convenient ways. This approach is useful in managing the data in
the network, as well as in managing the network itself. Its utility is demonstrated
through accompanying algorithms in each part of the dissertation.
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Preface

Our world is a veritable distributed system. People acting individually give rise to
communities. Communities interact to form civilizations. Life works distributedly at
all levels, forming adaptive, resilient, intelligent systems. Most remarkably, neurons
in the body sense and communicate to perform the most sophisticated computations
known. It is perhaps worth investigating distributed sensing and computation just
to get some hint of how such magics happen. The goal of this dissertation is much
more humble. We will look at artificial sensor networks as a model for distributed
computation, and see how much we can do with it. In fact we restrict ourselves to
identifying some properties of the distributed information that help in fast distributed
response to specific questions.

Geometry is one of the ways of looking at distributed information. The concepts
of neighborhood, locality and metric are fundamental in geometry. The same are also
fundamental in sensor networks for distributed information processing. Geometry
has many different manifestations. We choose to refer to it in the most general sense
– spanning all the possibilities. In the course of the dissertation, we will use at
our convenience the particular forms that suit our needs. They may be algebraic
or differential topology, non-euclidean geometry, differential geometry or simply a
metric space. At this level of generality, many intuitive ideas are geometric even if
they do not appear so at first sight. Natural solutions to sensor network problems
are frequently forced to adhere to continuity and locality in communication. These
observations suggested geometric abstractions as a topic for this dissertation.

Sensor networks has been an active research topic in recent years; many technolo-
gies and algorithms have been developed. Many researchers have worked in this field,
and their work, books and papers have formed the foundation of the dissertation. It
is difficult to cite and discuss all the relevant works in the space and time available.
Any attempt at an exhaustive review is futile anyway, because the hundreds of papers
to be published in the next few months are will render the list obsolete. I have made
the effort to review the relevant questions in sensor network research and indicate
previous works that have inspired the results presented. I hope this will help the
reader to follow the discussions. My sincere apologies for any omissions.

The following chapters rely on some incredibly elegant concepts. I was fortunate
to have a chance to study and spend time on these. This made the process of research
much more enjoyable. In times of difficulty, I found hope in the immense possibilities
of their rich structure.

I am grateful to my advisor Jie Gao for introducing me to such beautiful concepts.
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Chapter 1

Introduction

A sensor network is a distinct type of computing platform. It consists of many tiny
computers interconnected into a somewhat arbitrary network. Each device has its
individual source of data and computing capabilities, the overall quantity of data is
therefore large, and spread over many components. A sensor device does not have
direct access to most of the information, therefore on its own is capable of only mini-
mal tasks. This sets the network apart as a system where intelligent communication
is the key. Unlike regular networks, communication has to be closely interleaved with
computation.

Sensor networks are data oriented [61,130,140]. The purpose of a sensor network
is to obtain and manage data, and respond to queries. These queries may sometimes
require knowledge of global properties. For a simple example, consider a network
where devices measure temperature. A very natural question is to ask for the average
temperature. Average is a global property and requires information from all the
sensors, therefore the computation requires communication all over the network. The
challenge is to keep communication and energy requirements low when performing a
computation.

These considerations have made sensor networks into a broad field of research
with requirements for new devices, and new methods for managing devices, data and
communication. Effectively, it is a new model that requires adaptation at every level
of computing from hardware to applications. Accordingly, specialized devices [72,73],
operating systems [7, 36], databases [107], protocols [42, 94, 153, 162] and many other
technologies [74] have been developed for sensor networks. The novelty and generality
of the model have generated interest in all areas of computer science and electrical
engineering.

Networked information processing have further connections to a range of general
subjects. Later chapters of this dissertation utilize ideas from mathematics and social
networks. Some recent and significant developments in mathematics and algorithms
are seen to have applications in sensor networks. These relations are not incidental
or in the manner of analogy, but in a very precise sense with rigorous correctness.
In the other direction, the quest for efficient distributed algorithms for sensor net-
works brings to surface some of the most fundamental questions and concepts in
mathematics, theoretical computer science and networks.
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The first section of this chapter discusses more about sensor networks and some
of the important topics in network and data management. The next section explains
the close relation of sensor network issues to geometry and why a geometric view-
point is adopted in this dissertation. The last section explains the ideas behind the
organization of different parts of the dissertation.

1.1 Overview of sensor networks

Advances in miniaturized electronics and communication have made it possible to
create smart networked sensors. These devices are capable of monitoring physical
parameters of the environment such as temperature, humidity, or presence of vehi-
cles. Modern sensors are equipped with a micro-controller and therefore capable of
performing computation on acquired data. Computing ability allows more intelli-
gent sensing. For example, if a sensor determines that the environment is changing
rapidly or some other event of interest is taking place, it can decide to take samples
with greater frequency and possibly issue an alarm; at times of inactivity, sensing
frequency can be lowered to save energy and storage.

The networked communication capabilities open up a range of possibilities in
smart sensing. Communication allows a sensor to send out notifications of significant
events. A user can query a sensor at will for data without the necessity for physical
access. Most significantly, communication capabilities allow sensors to communicate
with each-other to collaboratively determine higher level implicit events [41]. For
example, an individual sensor may only be able to detect the presence of a vehicle
nearby, but by communicating with other nearby sensors that sense the vehicle at
different times, they can determine the velocity of the vehicle.

Such collaborative sensing is not simple to design and implement. A sensor
network has little networking capabilities. There are no routers, Internet style IP-
addresses or DNS services. In addition, the lower network layers are unreliable due
to wireless interference, noise and often unreliable equipments. Even a basic scheme
where each sensor performs minimal processing and forwards the data to a server,
poses non-trivial challenges.

Let us establish a model for sensor networks so that the important questions and
topics in collaborative operation can be discussed without fear of ambiguity. A simple
model is desirable over a complex one. As will be discussed later, this model is in
fact sufficiently general to cover a wide range of scenarios.

1.1.1 Sensor network model

Sensors and networks are often designed for specific tasks. There are however certain
features that can be considered general for these networks. The following is a list
of these properties followed by a more detailed discussion of each. These will be
assumed in the following chapters. Certain topics may require additional constraints,
and those will be introduced later as needed.
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1. The network consists of a large number of small devices, often called sensor
nodes. The number may be in hundreds, thousands, or more.

2. Each device is equipped with one or more “sensors” that sense certain physical
quantities.

3. Each device has a limited source of energy, equivalent to a small battery. In
some cases it may be possible to harvest energy locally at a low rate from solar
power or other sources.

4. Each device has a small computation power - a low power CPU and a limited
memory.

5. A device is equipped with a wireless radio that it can use to communicate within
a small range.

6. A sensor is placed at a location in space. The location may or may not be
known, but it affects its sensor reading and its role in the network. The overall
set of locations spanned by the sensors is large compared to the transmission
range of the wireless radio on a node.

7. Individual devices and communication links are unreliable. Algorithms and pro-
tocols should not depend critically on unfailing long term operation of individual
sensors.

8. Identity of Individual devices are not significant. Device addressing is data
centric.

The characterizations above are admittedly not very precise. This is because
character of a sensor network varies by its aim, construction, domain of deployment,
and other parameters. Depending on these, a particular network may have different
properties from another. This variation allows viewing networks from many different
perspectives. The rest of this subsection elaborates these characteristics. Readers
familiar with sensor networks may wish to skip ahead to subsection 1.1.2.

Large number of devices. This sets sensor networks apart from ad-hoc networks
of fewer nodes. For small networks the scaling issues such as routing table size, or cost
of accessing all the data do not play a major role, therefore it is the large networks
that are worth investigating from a networking point of view. This is also a different
scenario from other large networks such as the computing clusters or the Internet,
which consist of powerful equipments and substantial resources. Sensor networks
therefore face the scaling problems of large networks within the restrictions of ad-hoc
networks. In the following, we denote the number of nodes by n.
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Each device is equipped with sensors. Sensors may be simple equipments to
measure temperature, humidity or other physical quantities. In some cases there may
be more sophisticated sensors such as accelerometers or gyroscopes. In certain cases,
interesting sensing may not require specialized equipment. For example, the wireless
communication system itself may be used to detect presence of other wireless enabled
devices nearby. In certain cases local parameters of the network itself, for example,
routing load, energy or local density of nodes may serve as the “sensed” quantity. This
suggests using the sensor network perspective of information processing to handle
networking questions (see chapter 9).

Small energy sources. Connecting to regular power lines may not always be prac-
tical. Therefore, we consider a model where sensors are supplied by a small energy
source. This may be a battery or local harvesting of energy. In either case, our focus
will be to keep energy consumptions low to allow each sensor to operate for long
durations without running out of energy.

Computing resources. The requirements for small size and low power consump-
tion force the devices to be constructed with restricted resources. The large number
also makes it financially impractical to use sophisticated devices. To be more precise,
we assume that the memory is small compared to the size of the network. Data of
size Ω(n) is impractical at a node. Correspondingly an algorithm of Ω(n) complexity
is undesirable as a drain on energy and time. It is however possible to use some
nodes with greater resources to complement the model. This topic is discussed in
subsection 1.1.3.

Wireless communication. The wireless communication ability defines much of
the characteristics of the system. While communication enables innovative uses of
the network, wireless communication is also the largest drain on energy of a device.
Further, since the wireless medium works on local broadcasting of data, many nodes
transmitting at the same time can cause excessive interferences, slowing down all
communications.

The wireless radio on a sensor is not very powerful. A powerful radio is not
practical on a small energy constrained device. If many devices are transmitting
within range of each-other, that can slow down communication, therefore, from an
efficiency and throughput viewpoint, low power radios are desirable. These restriction
gives rise to many of the issues and research questions in sensor networks.

It is assumed that all the sensors are connected into a single network. Of course,
it is possible to have many networks, but our intent is to utilize the communication
abilities of nodes for collaborative data processing, so we consider one connected
component at a time.

Location and distribution of nodes. This is an important aspect of sensor net-
works. Location is often important with respect to sensor data, because a data may
be relevant only when it is coupled with the information of where the reading was
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obtained. Obtaining location for a sensor is a challenge on its own and much research
has been devoted to localization (see Subsection 1.1.2). Some such approach may be
suitable in certain scenarios. In other cases, GPS service may be available or a node
may be able to obtain approximate locations from nearby or passing GPS enabled
devices.

In many situations, knowledge of location may not be a valid assumption at all.
But locations of sensor nodes still play an important role, particularly in determining
the structure of the network. The low power radio on sensors means that a node
typically will be able to communicate directly only with a small set of nodes. All other
communication must be through multi-hop routing where nodes forward messages on
behalf of others. The locations therefore determine the network.

In general, it is desirable to have nodes densely deployed - this gives better sensing
resolution and redundancy. However, it is not economical to have a very high density,
also a high density of active nodes may increase wireless interference. Therefore, in
subsequent chapters we will assume the density to be bounded from above. There is
also an implicit lower bound on a network, since a very low density network is likely
to lose connectivity. In general, however, we allow network domain to have large
regions without sensors – often called holes.

Unreliable nodes and links. The small energy source makes sensors likely to fail
once the battery runs out. Once a device fails, its communication links are also lost.
The need to have a large number of low cost devices, that are possibly of different
types and from different manufacturers makes it difficult to have consistent quality
and behavior. Wireless communication itself often fails transiently and individual
links cannot be relied on. On the whole, it is preferable to have methods that do not
rely on long term reliability of individual nodes and links.

Data centric addressing. Given a large number of devices monitoring some ex-
ternal quantity, an individual sensor’s data is not useful. “What is the temperature
at sensor 42673?” - is not the most interesting question. Much more useful are ag-
gregate questions “What is the average temperature?” or “What is the maximum
temperature?” or “Which sensor has the maximum temperature?” Answering these
questions is a different sort of challenge.

Location also plays an important role in this respect - “What is the temperature at
location (X,Y)?” may be of interest. The answer possibly lies in finding the sensor(s)
nearest to that location. In fact, sensor network methods frequently rely on location
as a method of addressing instead of node id. The advantage is that every node is
then given a unique id as its location, also every location in the underlying continuous
domain maps to a node – the one nearest to that location.

1.1.2 Common questions in distributed sensor networks

The combination of properties and restrictions described above have given rise to
questions that are unique to sensor networks. Even conventional well studied topics
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like routing must be approached differently in this model.
The restrictions on communication costs force us to consider distributed processing

of data. Gathering all data at a sink has the shortcoming that much resource is spent
in simply forwarding data. Consider a network of 5000 nodes and one sink. If all the
data is sent to the sink, then the few nodes near the sink have to forward thousands
of messages in each pass when every sensor takes one reading. The numbers can be
higher when we consider retransmissions and acknowledgments. Other than the loss
of energy in such forwarding, this slows down data processing by slowing down the
routing. In certain applications, some types of data may be more significant than
others. For example, an unusually high temperature at a sensor is more significant
than regular temperature readings. Again, high temperature at a close group of
sensors is more significant than high temperature at a single sensor. It is faster and
more efficient to be able to make such decisions locally, and inform the sink only of
the aggregate decision.

Of course, not all decisions can be made locally. Certain information are inherently
global, and some facts may only be deduced with a powerful central computation. It
is however desirable to have distributed local processing to the extent possible, and
reduce communication needed for the central operation by distributed pre-processing.
Therefore it is important to know to what extent computations and deductions can
be kept distributed. This will be the approach in this dissertation – to perform
non-trivial tasks while keeping operations as local and distributed as possible.

The following are some of the important research topics in distributed sensor
networks. These have been considered in various forms and using different tools.
The diversity in possible constructions and applications of sensor networks makes it
difficult to solve any of these problems completely. Therefore, all these questions
remain open in some respect or other. We mention below only a few of the problems
and approaches that are relevant to the core chapters of the dissertation.

Wireless communication. The unreliable, possibly noisy nature of wireless links
coupled with signal interference make this a difficult question. Wireless com-
munication at the physical and medium access layers has been studied exten-
sively [42, 94, 153, 162] for sensor networks, and from the viewpoints of different ob-
jectives. Specialized radios and protocols have been built. In this dissertation we will
not consider the details of wireless communication. The existing work lets us assume
that hardware and protocols exist such that devices are within communication range
of each-other can communicate freely.

Localization. This topic deals with finding the locations of the nodes from the
knowledge of existing communication links. Since pairs of nodes are typically within
communication range of each-other only if they are within a reasonably short distance,
the communication graph of the network is to an extent determined by the relative
locations of nodes. It is natural to ask if it is possible to determine the locations, given
the knowledge of the communication graph. Typically, this problem is considered in
the case where all nodes are in a plane. Of course, the question of finding perfect
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locations is impossible to solve. Consider nodes A, B and C within a very small
distance of each-other, so that they are all in communication, and in addition are
in communication with exactly the same set of other nodes. There is no way to
distinguish their locations purely from the communication graph.

A more reasonable question is to try to deduce a set of locations that is consis-
tent with some knowledge of the communication links. For example, one can assume
the communication links to be of the unit-disk nature, where two nodes are in com-
munication if and only if they are within a unit distance of each-other. Another
model suggests that radio signal attenuates with distance and therefore for each link
the distance between communicating nodes is known from the signal strength. Both
these models are far from reality, because radio signals do not attenuate uniformly
at all directions and distances. The precise propagation characteristics depend on
the irregularities of the transmitter as well as the surrounding environment and other
transmitters. However, even under such unrealistic assumptions, finding a consistent
set of locations is known to be NP-hard [40].

We will not address the question of localization in this dissertation. Much work
has been done on this topic [13, 137, 138], and in most cases this has been shown to
be an intractable problem [16, 40]. The improvement of GPS technologies gives us
hope that in near future it may be possible to rely on it for localization. All sensors
need not carry a GPS unit. Presence of some GPS positioned sensors will allow us
to approximately localize the rest. Given the proliferation of GPS in cellular phones
and hand held devices, it may be practical for sensors to obtain locations from nearby
GPS enabled units.

Routing. Routing on sensor networks is different form routing in other environ-
ments. Here there is no routing infrastructure, and the nodes themselves have to take
responsibility for routing. The number of nodes being large rules out flooding based
methods such as AODV [126] and DSR [76].

Locations play an important role, leading to various forms of geometric routing [14,
78, 83, 92, 93]. Additionally, there are other forms of geometric routing that rely on
virtual coordinates [17, 18, 119, 129]. In these methods, coordinates are assigned to
nodes artificially, and may not be related to their true location. This allows a certain
flexibility that aids geometric routing. Routing without the knowledge of locations is a
particularly interesting challenge, and various methods including virtual coordinates,
and landmark routing have been applied to this case. Landmark routing [44,48,108]
is a method where certain nodes are designated beforehand, and other nodes know
their respective distances to these landmarks. The routing proceeds in multiple stages
by moving in the direction of different landmarks.

Aggregation. Aggregation may refer to either collecting all the data to one
place [106], or to the process of computing aggregate functions or summary of the
data such as sum, average, maximum, minimum or others. In either case, it requires
information from all the sensors, and repeated aggregation can be a challenge when
it is important to keep communication requirements under control. The unreliable
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nature of communication links can create additional difficulties [28, 118,141].
A variety of methods have been applied to aggregation. These have used meth-

ods from distributed systems, as well as those from database, signal processing and
information theory.

Preprocessing and spatial query. Sensor networks are expected to be able to
respond to queries that relate to the monitored space. For example, an aggregate
value (e.g. max or mean) in a given region R, or the problem of finding regions with
a reading higher than some user specified value. Ordinarily, answering this question
requires aggregating the values of all sensors in R. The efficiency can be improved
by constructing some initial summary of the data. Such preprocessing constitute an
important aspect of sensor data processing. The challenge here arises from the global
nature of the question, whereas we would prefer to pre-process and respond using local
distributed methods that do not require global coordination among sensors [53,57,63,
100]. Parts I and III in the following deal with questions of distributed uncoordinated
preprocessing to efficiently answer global queries.

Handling mobility. Mobility of sensors introduces many more considerations. The
network changes due to mobility makes it difficult to execute usual operations of
communication and routing. Change in locations of sensors makes it difficult to
correlate data. The final chapter of the dissertation presents an elegant method for
tracking and adapting to mobility for certain types of questions.

1.1.3 Sensor network as a general model

Let us reconsider our view of sensor networks. The model appears to place many
restrictions on the nature of a network, and one might question its validity in any
foreseeable real system. In fact, it is unlikely that any real system will satisfy all
the assumptions made here. It is therefore important to verify the sanity of the
assumptions that they are sufficiently general to be useful and we are not developing
methods that are applicable only in an unlikely or impossible universe.

The model we have set up is in general more difficult to work with than others.
In most cases, the assumptions constrain the resources available to the algorithm
designer. A method that works with a more restricted set of resources also works
when better resources are available. This makes the model more general than the
configuration of individual sensor networks, and therefore an effective baseline for the
initial algorithm or protocol design.

Heterogeneous networks. The assumption about the sensors do not address any
possibility of different nodes having different shares for resources. The subsequent
chapters treat all nodes to be identical to each-other in hardware and resources. A
real system is likely to be built of different types of components, particularly, some
nodes (let us call them super-nodes) may be more endowed in computation, storage
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and communication resources than others. Treating them to be equal to the small
low power nodes may look like a suboptimal use of resources.

The difficulty of trying to design algorithms directly for a heterogeneous network
is that the configuration of such a network cannot be predicted beforehand. There are
no specific standards for the positioning and design of super-nodes. Other conditions,
for example the physical environment and financial considerations may restrict the
power and distribution of available super-nodes in networks. Therefore, we need to
design methods that are oblivious to the distribution of super-nodes.

Restricting design to homogeneous systems is not as wasteful as it may seem. An
algorithm or protocol designed specifically with some distribution of super nodes in
mind may not be able to operate at all, or work very inefficiently when the distribution
of super-nodes is very different. The same problems may appear if some super-nodes
fail. However, an algorithm that is efficient on the homogeneous networks oblivious
to super-nodes, also works on a network with super-nodes. To better utilize the
resources it is always possible to elect the super-nodes as leaders who gather data
from nearby sensors and perform part of the computation on their behalf. This makes
the homogeneous network model the more general one, and covers the possibilities of
heterogeneous networks.

Distributed computation. Similar reasons as homogeneous systems suggest a
more distributed computation effort compared to centralized methods. A design
for distributed computation works when computation can be or must be done in a
centralized fashion - the centralized entity can simply emulate the operations of the
interconnected nodes. This is particularly effective for the sensor network model.
The restrictions of small computation power and memory means that any algorithm
designed for the model is efficient overall and can be emulated relatively easily by
a centralized computer. The model therefore requires designing methods that are
efficient in both distributed and centralized settings.

Communication. The model mentions that the communication is assumed to be
wireless. But wireless communication is difficult to characterize. What we mean
really by wireless communication is the following.

1. For each node, there is a set of neighbor nodes that it can communicate bidi-
rectionally with at a bounded cost.

2. The number of neighbors is bounded for each node.

3. The communication graph is the graph created by connecting each node to its
neighbors with unweighted edges.

4. The metric of the graph (each edge having equal weight) equals the communi-
cation costs in the multi-hop network.

Note that the assumptions do not rely on any fundamental way on the communi-
cation being wireless. A neighbor need not be one in direct wireless communication.
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As long as it can be reached at some bounded cost, it qualifies as a neighbor. The sig-
nificance of the wireless model really is that the communication graph has bounded
degree. Depending on the scenario certain other assumptions may be made. This
topic will be discussed further in the next section in reference to geometric treatment
of sensor networks.

The model therefore is suitable even when some other efficient infrastructures
(wired, wireless or otherwise) are available for long distance communications. Even if
such facilities are available, it is reasonable to assume that nodes physically nearby can
communicate at a low cost. In distributed information processing, this is important.
A sensor frequently needs to communicate with its physical neighbors to compare
data. For example, to decide if a node is a local maximum, its value needs to be
compared with others near it. Any reasonable communication infrastructure should
preserve this property that nodes very close to each other can communicate at a low
cost. As before, we are taking the more constrained option that only the few close
links are low cost. An algorithm that is efficient under these conditions will also be
able to operate when better resources are available.

The consequence of these properties is that we are considering a model that reduces
to a type of graph, with certain data associated with the nodes and edges. This is
very general, not only for networks, but for questions related to graphs, metrics and
information processing. Thus, ideas developed on this model may well serve as a
starting point for more general algorithms.

The purpose of using this model is to test the limits of distributed local compu-
tation. In using it, we may be sacrificing certain possibilities. However, every model
has its shortcomings, in this case, it is the price to be paid for the generality of the
model. In cases where an efficient solution is not possible by distributed computation,
an investigation can still be fruitful. It may bring to light new structures and prop-
erties associated with the problem or may suggest efficient approximations - both of
which could be useful in other scenarios.

1.2 Geometric abstractions

Geometry is visual. This gives a certain advantage in working with geometric models.
It is possible to apply intuitive thinking and diagrams in solving problems and rep-
resenting ideas. The solutions and ideas can then be verified for correctness with the
associated formal framework. In the other direction, a formal system, when cast into
a geometric form becomes easier to visualize, understand and manipulate, thereby
opening up new possibilities. The subject has been investigated for centuries, and
many interesting structures, results and tools have been invented. Geometric inter-
pretation of a problem makes it possible to bring this arsenal into operation.

To apply this approach to sensor networks, the elements of the network model (in-
cluding nodes, communication links and data) need to be associated with the objects
in a suitable model of geometry. The geometric representation forms the Abstrac-
tion in the given context. It is then possible to utilize different known properties
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associated with the geometric abstraction. Geometric models and objects that have
been studied are rich in structure, which can create novel possibilities for applications
and algorithms. The chapters of this dissertation are based on several such versatile
structures.

Geometry comes in many different forms and flavors. For each question, the
suitable geometric idea must be selected. In certain cases, it may be possible to
apply different abstractions to the same problem to obtain different structures and
therefore different properties and applications.

1.2.1 Geometry in sensor networks

There are two common aspects of sensor networks that suggest a geometric approach:

1. Node data are often associated with locations.

2. Communication is wireless.

Neither of these is necessary, but that they can be found in sensor networks has
encouraged the development of geometric methods. As will be seen in later chapters
of the dissertation, geometric ideas can be generalized sufficiently to provide solutions
to cases even where neither of these hold. In fact, this is a particularly appropriate
approach for sensor networks.

Consider a situation where nodes sense a certain quantity and are aware of their
own locations. In such a case, the data forms a sampling of a function over the domain
that is being monitored. Given this data, it is possible to analyze this sampling of
the function to recover information about the function implicit in the data. The
precision of the answer is necessarily restricted by the resolution of the sampling, but
that is a limitation of any real data. The implicit information beyond the raw data
is the purpose of any computational method. Consider a few types of questions one
may ask to be computed from raw data - for example, the number and locations of
maxima or minima. or the contours at a particular signal value, or a compressed
summary of the function, or aggregate in a certain region. Similar questions can be
asked of derived quantities - for example, the region where the reading is changing
the fastest. All these questions are geometric in nature. In particular, they depend
on comparison with nearby data; in the case of changing data, on comparison with
data close in time.

For multiple quantities being monitored the same ideas hold, but now at a higher
dimension. Locations and time can also be treated as additional dimensions of data
to get a unified view. The upshot is that when locations are available, the domain
and the important questions about it are fundamentally geometric. It is therefore
natural to consider geometric methods to address them.

The most natural concept of a Location is as cartesian coordinate (x, y) in the
plane. But location need not always be in the plane. It may be in higher dimen-
sions, and also in non-euclidean spaces. For example, it may be more practical to
address a sensor location as L1=“Computer Science Building, East wing, Floor 2,
Server Room.” Of course, designing such a location description scheme is a challenge
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in itself. But putting that aside, the concept here is that locations may be from more
complicated spaces. The important aspect of locations is that they can still supply
proximity information. For example, L2=“Computer Science Building, East wing,
Floor 2, Corridor 3” may be close to L1. This proximity can be taken into considera-
tion the same way that nearby data is compared for locations in the euclidean plane.
An ability to determine neighborhoods this way makes it possible to apply geometric
techniques to process sensor information.

Wireless communication plays a strong role in determination of proximity. Radio
signal degrades with distance. Effectively, nearby nodes are in direct communication
with each-other. This naturally creates neighborhoods for nodes where information
can be exchanged efficiently. Since such local communincation is in any case necessary
in many of the information processing tasks, it can be hoped that a geometry suitable
for processing the data can be associated with the communication graph.

The Unit Disk Graph (UDG) has been considered widely as a theoretical model
to abstract the geometry of the communication graph. In this model, two nodes are
in communication if and only if they are within a unit distance of each-other. While
unit disks can be defined on any metric, they have generally been considered as unit
disks in R2. This makes it possible to apply local algorithms in determining global
structures that help network operations. For example, in this model, it is easy to
compute planar subgraphs such as relative neighborhood graphs and Gabriel graphs
of the communication graph. The planar structure of these graphs make it possible
to apply geometric techniques otherwise not applicable.

While UDG gives a simple model in the local neighborhood, the metric determined
by it still does not quite represent a large network. Due to presence of large regions
without nodes, commonly known as communication holes, the UDG distance may
be largely disproportionate to the true euclidean distance. Equally importantly, true
radio communication does not behave in a unit disk fashion. Spatial variations in radio
signal propagation produces communication graphs that are much more uneven.

Note that while communication links do not quite form a UDG, they do form a
metric. It is the metric of the unweighted graph created by the communication links.
It is possible to apply geometric methods purely on the proximity determined by this
metric without regard to real physical distances of the sensors. This is the basis of
location-free geometric algorithms. This is an extremely general principle that can
potentially be applied to a wide variety of scenarios. For example, even in domains
outside of sensor networks or wireless networks.

Implicit in the discussion above is that geometry surfaces at several levels of
abstraction in the question of sensor information processing.

1. Local geometry at a node. Location of the node, nearby nodes and local
signal characteristics determine its neighborhood in the communication graph.
The combination of all such local neighborhoods creates the graph itself.

2. Global geometry of the network. The network has an intrinsic geometry -
the hop count metric formed by the communication graph. This metric deter-
mines much of the communication possibilities in the network, such as shortest
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paths, number of nodes within any k hop neighborhood of a node, and costs of
information dissemination.

Closely related to the intrinsic geometry of the metric is the extrinsic geometry
- the shape of the network. This is the shape of the “cloud” of nodes embedded
in a physical space. Sometimes it is useful to work on this more explicit and
intuitive idea of the network shape, where it is possible to directly deal with
aspects such as network boundary and holes.

3. Geometry of the signal. Beyond the network itself, the signal monitored by
the sensors has a geometry. Imagine a signal defined over the region where the
sensors are deployed - over the shape of the network. Plotting this signal in an
additional dimension creates a surface over the network. It is the geometry of
this surface that can be analyzed to extract hidden structures in the data and
the network.

For both the geometry of the network and of the signal, an interesting question
is how the local structures add up to create the large scale global properties. Since
sensors are best utilized as local operators, it raises the natural question of how much
of global problems we can solve through local algorithms. Much of this dissertation
deals with this local to global relation. In fact much of geometry deals with questions
of local to global integration. This topic will be revisited in the conclusion chapter
after we have discussed geometric algorithms for sensor networks.

1.3 Overview of the chapters

A sensor network has two types of tasks. The first is to manage the data in the net-
work. This implies acquiring, processing and storing the data suitably and afterwards
answering queries on this data efficiently and quickly. In case of changing data, it
may also be necessary to update the stored information and data structures to adapt
to the changes.

The other task of the network is to manage itself. For example, localization,
scheduling sleep cycles and transmissions, handling interference and routing; and
other facilities that may be needed by efficient data processing algorithms.

Each part of the dissertation looks at these two types of tasks from different ge-
ometric perspectives. As will be seen, these tasks are not too different, and similar
abstractions can help both. Routing will be used as the unifying network management
task and will be revisited in each part. Routing can be seen as an information pro-
cessing task – the search for a path in the network. In the other direction, information
processing can be seen as a routing question – finding route(s) to store/retrieve the
right data. In the final part of the dissertation, routing and information processing
merge to be almost indistinguishable.

Part I: Metric Spaces and Spatial Distributions. This part abstracts the
network with its intrinsic geometry – the metric space. Sufficient conditions are
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derived for routing in a metric with a short stretch – a path of length at most (1+ ε)
times the length of the shortest path.

Next, growth bounded metric spaces are considered. This is a slightly more re-
stricted type of metric space where the volume of a ball increases polynomially with
the radius. This restriction lets the local geometry at a node be arbitrary, but restricts
the global geometry to behave approximately like a euclidean metric. For this type
of metric, it is shown that (1 + ε) stretch routing can be achieved with small routing
tables. The routing tables themselves can be constructed efficiently provided some
approximate estimates of multi-hop distances are available. Parts of these results
have previously appeared in [135].

The last chapter in this part shows that for the growth bounded model, it is
possible to efficiently perform spatial gossip. This is a form of information exchange
where nodes select exchange partners by distances. After execution of the gossip, it
is possible to efficiently answer aggregate queries in sub-regions of the network. This
chapter is based on [134].

The results described above that depend on a growth bounded metric actually
utilize a spatial distribution that is known to create graphs with a small world struc-
ture. This structure is known to provide short stretch paths using relatively few links,
which is the secret of the (1 + ε) stretch routes. The short routes enable efficient the
gossip method in the last chapter.

Part II: Virtual Coordinates and Metric Deformation. Virtual coordinates
are coordinates assigned to nodes without performing localization. The availability
of coordinates allows using location based geometric algorithms. Additionally, vir-
tual coordinates permit the flexibility to modify the geometry so as to gain better
properties from the geometric algorithm than when applied to raw locations.

The virtual coordinate computation in this part relies on Ricci Flow – a powerful
technique in modern mathematics. This method can be applied distributedly. The
result is a set of coordinates in the plane that allows efficient routing and data storage.

This part is based on differential geometry. The metric is modified locally to obtain
global properties. The local changes to intrinsic geometry lead to a simplified shape
of the network where the “holes” are circular. This simplified geometry allows us to
perform routing and storage more easily and more uniformly. In fact, the simplified
geometry makes it possible to eliminate the holes in a certain sense. These results
have recently been published in [131,132]

Part III: Geometry and Topology of Information. The last part is more
information oriented than the rest. Here the emphasis is on analyzing available data
to answer queries and routing requests with respect to the data.

The first abstraction in this section is a contour tree that is a compact distributed
summary of the data. This structure allows us to answer queries such as “What are
the regions in the network where the temperature is greater than 40?” or routing
queries such as “Find a path from A to B that does not go through a temperture
greater than 35.” This result has been published in [136].
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The second abstraction is a differential form. Using this, it is possible to track
moving objects in the sensor field. The differential form essentially maintains infor-
mation to be able to answer questions like “What is the total weight of objects in
region R?” The solution in fact is an adaptation that lets us apply Stokes Theorem
to sensor networks. This basic primitive allows searching and delivering messages to
individual mobile objects, searching for a nearby object and several other function-
alities. The method also works when the network itself is mobile and dynamic. This
recent result is unpublished as yet, appearing for the first time in this dissertation.

These methods once again relate local properties to global properties, this time
for the data. The contour tree is a concept from Morse theory to interconnect critical
points of data in a meaningful way. While critical points are local features, the
interconnections yield global properties. The differential form similarly adapts the
local data in suitable ways to efficiently answer questions at larger scale.
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Part I

Metric Spaces and Spatial
Distributions

16



Chapter 2

Introduction to Metric Growth

The communication graph of a network in our model always induces a metric, a
measure of distances, and the properties of this metric can be utilized to build efficient
algorithms. An edge in the graph signifies that the end-points of the edge are within
direct communication of each-other. The ‘distance’ between any two nodes is the
number of communications (also called hops) that need to be executed. This distance
forms a metric.

Definition 2.0.1 (Metric.). A metric on a set S is a function d : S×S → R, where
R is the set of real numbers, such that d has the following properties for x, y, z ∈ S.

1. Positive definite: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

2. Symmetric d(x, y) = d(y, x)

3. Triangle inequality d(x, z) ≤ d(x, y) + d(y, z)

Function d is called the distance function, and S and d together are said to form a
metric space.

In our case, the distance function is really the communication cost between nodes,
and adjacent nodes in the graph can communicate within a unit cost - by a single
transmission, while nodes farther apart require more intermediate transmissions to
communicate. Observe that the metric idea is not specific to the case where the graph
constitutes of pairs in direct communication. It can be used in general where nodes
adjacent to an edge are within a bounded communication cost or ‘distance’.

The first chapter in this part investigates the abstraction of a network as a metric
space to perform efficient routing. Routing a message from a source node to a desti-
nation node is inherently a question of making decisions based on the metric. If the
metric over the entire network is known, routing becomes trivial. A node with com-
plete knowledge can always decide which of its neighbors is nearer to the destination
in the given metric, and forward the message to that neighbor to advance the mes-
sage further. In particular, complete knowledge makes it possible to find the shortest
route from source to destination. A shortest route is generally desirable because it
delivers the message at fewest hops, therefore is in a sense most efficient and reliable.
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The entire metric is however a great deal of information, and not really practical to
know except in very small networks. more precisely, it needs at Ω(n) storage and
processing at each node, which is impractical in our model.

In chapter 3 we present a concept that shows how a path almost as short as the
shortest one can be found without always storing large amount of data for the routing.
This works even when the knowledge of the metric is only approximate. Formally
abstracted as an approximate distance oracle that takes as input the pair of nodes
to return their metric distance to within constant factor. Under these conditions, we
derive a set of sufficient conditions that when satisfied, will deliver the message by a
path almost as short as the shortest path. The essential concept is general, and holds
for any metric.

Certain network metrics have additional structure. These have been considered in
different contexts to obtain better routing properties. For an unweighted graph G and
we denote by Nr(p) the set of nodes within r hops from p, also called the ball of radius
r centered at p. A graph is said to have ∆-expansion rate if |N2r(p)| ≤ ∆|Nr(p)|, for
any p, r [4,77]. A graph is said to have doubling dimension ∆ if any ball of radius 2r
can be covered by at most 2∆ balls of radius r [65]. A graph is said to have bounded
growth rate ∆ if |Nr(p)| = O(r∆) [102]. All three models try to capture that the
metric growth is restrictive. For example, a binary tree does not satisfy any of the
definitions above.

In the sensor network model, we impose the (upper and lower) bounded growth
rate model. If we place at most a constant number of sensor nodes inside any unit
disk and the holes in the sensor networks are not very fragmenting, the number of
nodes at k hops from a node p will be around Θ(k). More precisely, we consider a
graph such that the number of nodes at a distance exactly r from p, represented by
|∂Nr(p)| is bounded by |∂Nr(p)| = Θ(ρrρ−1). This is equivalent to |Nr(p)| = Θ(rρ).
This model is shown to imply a bounded doubling dimension, therefore it is stronger.

The significance of this model (and the implied bounded doubling dimension) is
that it acts as a coarse approximation of a Euclidean metric. Imagine the number
number of nodes |∂Nr(p)| in any ball to represent the volume of the ball in the metric
space. In Euclidean space, this volume grows in direct proportion to rd where r
is the radius and d the dimension. The growth bounded model is analogous and
asymptotically show similar growth, but the Θ(rρ) allows a sufficient relaxation that
a discrete graph can realize the growth. Consider for example the ZZ × ZZ lattice of
vertices with the natural two dimensional grid as the graph. This embeds isometrically
into R × R. The the area of a ball of radius r in the grid graph is approximated to
within constant factors by the number of lattice points in a ball of same radius in
the euclidean plane. The model we employ expands this idea to more general graphs
and allow for holes, occasional longer links and other irregularities to create a better
representation of network graph that can still be analyzed in analogy with Euclidean
plane.

The bound on metric growth allows construction of small world graphs. For
any two nodes that are a distance r from each-other, a link is added between with
probability proportional to 1

rρ
. J. Kleinberg [87] showed that these links produce

a small world graph where any two nodes are at a small number of hops from each-
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other. This property is utilized in each of the following two chapters. In chapter 3 the
property is used to create a routing scheme where the small world links coupled with
the sufficient conditions of small stretch routing guarantee efficient routing with only
a small amount of data stored at each node. In chapter 4 the small world property
is used (following Kempe et al. [80]) to build an aggregation scheme where nodes
exchange data randomly according to the distribution of the small world links, and
thereby obtain aggregate information for different neighborhoods - otherwise called
multiresolution aggregates.

In a sensor network, there is no freedom to change the network graph to insert
additional edges, therefore it is not possible to create actual small-world links. In-
stead, these links act as a suggestion for useful node-pairs for communication. The
actual communication is still achieved by multi-hop routing between these nodes.
In the following section we review the research in routing, small world models, and
information processing that are related to the chapters in this part.

2.1 Review of related research

In this section we survey related work and establish their connection to our results.

2.1.1 Spatial distribution and routing

The spatial distribution in selecting the long links in our chapter coincides with the
small-world model and decentralized search proposed by Kleinberg [86, 87] to model
Stanley Milgram’s famous experiment [111, 152] on the small-world phenomena in
social networks. The setup in the small world model is the following. Given a 2D
grid (possibly of infinite size), each node chooses a long link with probability 1/r2

where r is the length of the long link. Together with the four neighbors per node
on the grid, a greedy routing with the location of the destination can be achieved
with O(log2 n) jumps (on either short links between neighbors on the grid or the
long links constructed) with high probability. Notice that in this setting an accurate
distance oracle is actually available and greedy routing on the original grid suffices to
deliver the message along the shortest paths on the grid. In the small world literature
people care most about adding extra long links to create short paths between any
two nodes. In our setting the long links are realized as paths in the original network.
Nevertheless, our results show that if each node chooses O(log2 n) long links, a slightly
more sophisticated but distributed routing scheme with long links has O(log n) jumps,
and also a total travel distance at most 1 + ε of the distance between source and
destination on the grid.

The spatial distribution has been explored in a number of other data delivery
and information dissemination scenarios in sensor networks, e.g., for adding long
communication wires to reduce power consumption [139], or, for gossip and locality-
sensitive information exchange [80,134].

Small state routing in sensor networks. To deal with the problem of local
minimum in geographical forwarding, various techniques have been proposed to solve
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the problem of ‘routing around holes’. Earlier proposals assume unit disk graph model
on the communication network and propose to planarize the network and apply face
routing [14, 78, 93]. Such planarization unfortunately fails badly in practice due to
complex radio characteristics [84]. Improvement of the planarization process may
selectively remove crossing edges [62], or use a generalized face routing on graphs
with crossing edges [164], or planarize an abstracted graph to filter out the local
connectivity irregularity [50]. Alternatively, one may also develop virtual coordinates
to support greedy routing [17, 44, 48, 119, 120, 129]. Most of them do not guarantee
small stretch routing and often require preprocessing to first discover and understand
the network topologies.

We explain two protocols in more details as they are more relevant and compare
with our scheme. In virtual ring routing (VRR) [18], proposed by Caesar et al., the
nodes are ordered by their node IDs (or any other identifiers) on a ring and the paths
for nearby nodes on the ring are stored in the routing tables of the nodes on these
paths. Notice that nearby nodes on the ring may be far away in the communication
network. When a packet is routed to a destination, it is delivered by using the
local routing table to the next hop on the pre-constructed path leading to a node
closest to the destination in the ID space. VRR can be understood as building long
links connecting nodes with adjacent IDs, which can be arbitrarily far apart in the
network. The routing table size is roughly in the order of O(

√
n) in a uniform and

dense network. And there is no guarantee on the path stretch.
The small state and small stretch (S4) routing by Mao et al. [108] adopted the

idea of compact routing schemes by Thorup and Zwick [149, 150]. The basic idea
is to select about O(

√
n) landmarks. These landmarks flood the network and other

nodes record the hop count distance to these landmarks. In addition, a node p also
maintains routing table entries to the nodes that are closer to p than their closest
landmarks. The routing table size is about O(

√
n) and a greedy routing scheme is

guaranteed to deliver the message to the destination with maximum stretch of 3. By
exploiting the geometric properties of the sensor network deployment, we are able to
get 1+ ε stretch and reduce both the number of landmarks and the routing table size
to polylogarithmic in the network size.

Compact routing in general. From a theoretical aspect, compact routing that
minimizes the routing table size while achieving low stretch routing has been studied
extensively [122]. There are two popular models in the literature, the labeled routing
model and name-independent routing. In the labeled routing model [29, 38, 150], one
is allowed to produce for each node a label (typically of polylogarithmic size) such
that routing is done with the labels of the source and destination. In the name-
independent model [4, 90], the nodes are given generic IDs that are independent of
the routing scheme. Thus routing is inherently more difficult as the routing scheme
needs to also find out where the node is. To understand this in the case of sensor
network routing, name-independent routing works directly on the node IDs (such as
in the virtual ring routing scheme). If we use geographical locations or any other
virtual coordinates, such coordinates are the ‘labels’ and to complete the solution
one needs to also employ a location service (as in [99]) that maps node IDs to their
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geographical locations or virtual coordinates. Put in this perspective, our scheme
stays in between the labeled model and the name-independent routing model. We
have a label of the nodes (such as the geographical locations) naturally, but the labels
only give imperfect distance information and do not guarantee delivery.

Generally speaking, the theoretical results in compact routing in a graph whose
shortest path metric has a constant doubling dimension are able to obtain, with poly-
logarithmic routing table size, 1 + ε stretch routing in the labeled routing scheme
(see [21] and many others in the reference therein), and constant stretch factor rout-
ing in the name-independent routing scheme [3, 90] (getting a stretch factor of 3− ε
will require linear routing table size [3]). The results here are all centralized con-
structions and aim to get the best asymptotic bounds. Our focus in the following
chapter is on a principle for distributed implementation at each node and its practical
implementation in the scenario of ad-hoc sensor network routing.

2.1.2 Information processing in sensor networks

Existing approaches for processing information in sensor networks can be classified
into two main approaches: the standard sink model and distributed indexing and
storage. In the standard sink model, data is delivered to the sink for out-of-network
processing. Queries are disseminated from the sink to sensor nodes who will then
report their readings. Data pruning and aggregation can be undertaken when data
propagates up the tree to the sink (e.g., in TinyDB) [106]. The sink model assumes
little or no in-network processing and most of the intelligence stays outside the net-
work.

The second approach uses in-network storage, builds distributed indices and stores
partial aggregates to facilitate user queries. Examples of this category include DI-
MENSIONS [53–55], DIFS [63], DIM [100], and fractional cascading [57]. As stor-
age devices such as flash drives become cheaper and smaller, the approach of using
collective distributed storage becomes increasingly feasible. A distributed indexing
structure typically involves a hierarchy to bring together data across different at-
tribute space or spatial separations (e.g., quad-tree or kd-tree). Partial aggregates
are computed bottom up for each node in the hierarchy. Queries take a drill-down
approach and traverse the hierarchy to visit nodes holding relevant data for detailed
information. Important considerations for distributed indexing and storage include
how the partial aggregates are computed and who holds the aggregated data/indices.
A straight-forward way is to take a hashing scheme and make certain nodes be re-
sponsible to hold aggregated data/indices on the hierarchy (e.g., in DIMENSIONS
and DIFS). Special care is typically taken for nodes holding data at high levels of the
tree to alleviate communication and query bottleneck [55].

The approach of fractional cascading in [57] belongs to the second category and
tries to avoid the bottleneck created by higher level nodes in the hierarchy. In [57],
the sensor field is recursively partitioned by a standard quad-tree. Aggregates from
each quad in the tree are computed and stored at all sensor nodes in the quad. Each
node has the values of itself and aggregates of all the quads in which it resides.
This improves data survivability and query efficiency as important information (e.g.,
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the aggregates of larger regions) are naturally replicated more widely. Our multi-
resolution representation can be considered as an alternative way to achieve fractional
cascading. To see the difference of this method with [57], instead of a fixed quad-tree
partitioning, we keep the data summarization hierarchy of each node adaptive and
centered on the node itself. Thus any two nodes will have slightly different world
views at each scale, as their multi-resolution ranges differ, while two leaf nodes in a
fixed quad-tree may share the same data of many high-level quads. Another novelty
of this chapter is to investigate gossip-based algorithm to disseminate information and
construct the multi-resolution data representation. A survey of gossip algorithms and
applications in sensor networks is covered in the next subsection.

2.1.3 Gossip algorithms

Gossip algorithm is attractive for sensor networks, due to its distributed nature,
robustness to network dynamics, and good load balancing. In a gossip algorithm each
node picks, according to some underlying deterministic or randomized rule, another
node and exchanges information with it [70]. There are two important aspects in a
gossip algorithm: the gossip communication mechanism that decides which node to
communicate with; and the gossip computation protocol that decides what data to
exchange.

In the literature two rules to select node to gossip with are prevailing. In uniform
gossip, each node chooses to communicate with a randomly chosen node at each
step [34]. In standard gossip on a graph, a node picks, according to a probabilistic
distribution, one of its immediate neighbors in the graph [15,158,159]. Of particular
relevance to our work is the spatial gossip algorithm proposed by Kempe, Kleinberg
and Demers, where a node x selects a node y with probability proportional to 1/dρ,
where d is the distance between x and y and ρ is some constant parameter [80].
The intuition of the spatial distribution complies with the principle of fractional
cascading and our multi-resolution data representation. Data from a sensor node
should, intuitively, be disseminated more to its nearby neighbors and less to far away
neighbors.

On top of the gossip communication mechanism, a gossip computation protocol
specifies what information to be exchanged. In probably the simplest setting, infor-
mation spreading [80], gossip is used to disseminate a piece of data from one node to
the rest of the network. When two nodes communicate, the message is propagated.
The protocol stops when all the nodes receive the message. More sophisticated in-
formation exchange protocols can be used to compute aggregations and global statis-
tics among the gossip nodes. For the problem of distributed averaging [15], each
node takes the average of the values of itself and its gossip partner. The algorithm
converges when all nodes hold values close to the true average. Gossip-type proto-
cols have also been developed in various settings to compute, in a distributed way,
consensus [15, 114], various aggregates [79, 116], distributed linear parameter estima-
tion [158,159], spectral analysis [81] or random linear projections of the data field for
information compression and recovery [128].
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Chapter 3

Routing in Metric Spaces Using
Spatial Distributions

We propose a generic design principle for scalable routing in ad hoc wireless sensor
networks. In our setting we assume an approximate distance oracle that estimates
the graph distance (hop count distance) of any two nodes up to constant factor upper
and lower bound. Such an approximate distance oracle can be constructed by using a
landmark-based scheme, or obtained through the Euclidean distance of the geographic
locations of the nodes. We store a small number of routing paths for selective pairs
of nodes, which, when integrated with the approximate distance oracle, allows 1 + ε
stretch routing.

In particular, we first derive a set of sufficient conditions to select the next hop
of the routing path such that these conditions can be verified locally at each node
and enable 1 + ε stretch routing on any metric. These conditions will serve as the
‘greedy routing’ rule. Next, to satisfy these conditions, the routing paths from each
node u to O(log2 n) destinations are stored in the network, where the destination
is selected with probability proportional to 1/rα, with r as the distance to u and α
as an appropriate constant. For metrics of bounded growth, the routing algorithm
conforming to the set of sufficient conditions guarantees with high probability 1 + ε
stretch routing with routing table size O(

√
n log2 n) on average for each node. This

scheme is favorable for its simplicity, generality and blindness to any global state.
Global routing properties emerge from purely distributed and uncoordinated routing
table design.

3.1 Introduction

Scalable routing is one of the most challenging problems in distributed network de-
sign — considerations include compact storage with aggressive address aggregation,
efficient propagation of topology update, and most importantly, distributed and un-
coordinated decisions to enable globally close to optimal routing properties.

Internet routing achieves scalability through subnetwork partitioning hierarchy
and address aggregation, with one routing table entry representing routing informa-
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tion to many IP addresses in a subnetwork, and extremely efficient high-end switches
to quickly classify and deliver packets. For resource constrained wireless nodes used in
ad hoc and sensor networks, scalable routing requires even more aggressive methods
to produce compact routing information, and innovative ways to exploit the special
properties of such networks.

Large-scale wireless sensor networks have strong spatial properties — they are
closely related with the underlying geometric domain in which they are embedded,
in terms of node distribution and the strong correlation of graph connectivity and
node proximity. Various properties of the geographical embedding of the nodes have
been exploited for compact routing in a sensor network — mostly in an explicit
manner, as the geographical locations used in geographical routing families [14,78,93],
or as in many virtual coordinate system design [17, 44] that abstracts the global
geometric/topological properties of the embedding.

In this chapter we use the metric properties of a wireless network graph for routing
implicitly, and store selective routing paths in the network, such that the average
routing table size is small, the path stretch is close to optimal (the length of the path
is 1 + ε times the shortest path for a given ε > 0), and both the preprocessing and
the routing can be achieved by the nodes making decisions on their own, blind to any
global state.

We investigate the following problem:

Given an approximate distance oracle O, how to design compact routing tables to
help deliver messages in a large network.

First we remark that if we are given an accurate distance oracle that returns the hop
distance of any two nodes in the network, then greedily selecting the next hop with
smallest distance to the destination will guarantee delivery along the shortest path.
Of course, the construction, maintenance and compact representation of an accurate
distance oracle is not easy in a distributed setting. As shown in [149], accurate
distance oracle would require about Ω(n) storage per node in a network of n nodes.
An approximate distance oracle is easier to obtain. In many cases, some approximate
distance estimation is readily available.

For an example, in the sensor network setting, one can use the Euclidean distance
to approximate the hop count distance of two nodes in the network. Obviously it is
in most cases not an accurate distance oracle, and a message can get stuck at a local
minimum if the neighbor on the shortest path to the destination estimates its distance
to be larger than the distance estimation between source and destination [14, 78].
Therefore we will have to augment the approximate distance oracle with additional
routing information to help packets get out of or avoid the local minimum.

With any approximate distance oracle, the solution we propose for routing is to
store the routing paths between some pairs of nodes that are not immediate neighbors,
called long links. In particular, for some selected pair u, v a path between u, v, P (u, v),
is recorded in the routing table of all nodes on this path. When a node p wants to
send a message to a node q, it uses its immediate neighbors, together with the nodes
with which p has long links. We define a forwarding region (see Fig. 3.1), from which
p selects the next hop in the path. If the selected node x is a neighbor through a long
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link, then the routing information stored on the path P (p, x) is used to deliver the
message to x. Node x then repeats an identical procedure to advance the message.
Now the question is, what long links should each node build and what is the forwarding
region, without any global knowledge of the network, such that the routing table size
is small, the path stretch is low, and delivery rate is high?

Our main theoretical results apply to arbitrary metrics of bounded growth. As an
illustration, we describe the special case with Euclidean distance as an approximate
distance oracle. That is, δ1|pq| ≤ σ(p, q) ≤ δ2|pq|, with δ1 ≤ δ2 as two constants, |pq|
as the Euclidean distance between p, q and σ(p, q) as the minimum hop count between
p, q. This assumption makes no unit disk graph requirement on the wireless radio
communication model and uses two relaxation constants δ1 and δ2 incorporating both
local distance disturbances due to wireless communication and global irregularities
such as fat network holes1. It also allows localization errors as accurate location
discovery is difficult. The routing tables are built by each node selecting its long links
randomly with a spatial distribution. In particular, a node p would select a long link
partner q with probability proportional to 1/|pq|2. The number of long links for each
node is O(log2 n) with the constant depending on the stretch requirement 1 + ε and
the distance oracle error factors δ1, δ2. The routing algorithm using the augmented
long links is able to deliver the message along a path of stretch 1 + ε.

In fact, the theoretical results in this chapter address a general setting in which
an approximate distance oracle is given for a metric space with bounded growth
rate. A graph has bounded growth rate ρ if the number of nodes within r hops
from any node p in the network is bounded by c1r

ρ and c2r
ρ from below and above

respectively, with two constants c1 ≤ c2. This model has been used to capture any
physical constraints that disallow too many nodes ‘packed’ within certain distance
and the graph has a bounded polynomial growth pattern instead of an exponential
growth pattern (e.g., a balanced binary tree). This kind of geometric growth has been
observed in many different scenarios such as VLSI design, the delay metric on the
Internet overlay networks, and in our setting, wireless sensor networks. When sensor
nodes are roughly uniformly deployed in a geometric region with bounded density per
unit area2 and when the network is not too much fragmented by deployment holes,
the graph growth rate is typically 2. It is this packing property that allows us to
aggressively compress the routing table entries by a simple routing table neighbor
selection rule dominated by a spatial distribution.

For a metric with growth rate ρ, the long link p, q is selected by p with probability
proportional to 1/rρ, for r = σ(p, q) being the network hop distance between p, q.
With O(log2 n) long links per node and on average routing table size of O(n1/ρ log2 n)
per node, the 1 + ε stretch routing can be achieved with the help of the approximate
distance oracle and the long links. Thus this principle of using spatial distribution
in routing table design can be applied to applications in which a decentralized search
is desired with only some approximate proximity information. For example, in an

1We define a hole to be fat if any two nodes on the boundary of a hole has its hop count distance
to be at most a constant factor of the Euclidean distance.

2If the density in a region becomes too high, it is easy to cluster neighboring nodes and operate
on clusterheads so that the density of clusterheads is bounded by a constant.
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ad hoc network setting when location information is not available, one can use other
distance estimation (e.g., by landmark scheme [44, 88]). In the design of overlay
networks on the Internet, one can estimate the distance between two peers by the
round-trip delay estimation. For all these scenarios the results in this chapter show a
way to achieve distributed routing along approximate shortest paths with a modest
sized routing table on each node.

We also report simulation evaluations of this approach in a sensor network set-
ting, to complement the theoretical analysis. For a connectivity network in which
geographical greedy routing only achieves a delivery rate of 50% or so, with about
7 long links per node, we are able to achieve a delivery rate of 99% or higher. The
routing table construction can be implemented in a completely distributed manner.
Each node simply chooses its respective long links by sampling geographical locations
under the spatial distribution, rounded to the nodes closest to the sampled locations,
as in [134]. The routing table information for these long links is constructed in a boot-
strapping manner, with the routes for nearby pairs constructed first and the routes
for far away pairs constructed by using the routing tables already constructed so far,
in the same manner as regular routing requests.

We have a second implementation by using landmark-based routing to show the
power of the spatial distribution in routing table design. In particular, we select
O(log2 n) landmarks that flood the entire network and each node records the landmark
distance vector. The approximate distance oracle is implemented by the centered
virtual distance as proposed in [44], which only requires the landmark distance vector
of two nodes. We select on the paths to the landmarks long link neighbors to help
improve the delivery rate. This implementation will involve some preprocessing of
flooding the network from the landmarks but the routing paths of the long links are
implicitly implied by the landmark distances. Thus the routing table size is improved
to O(log4 n), compared with O(n1/ρ log2 n) when the routes have to be explicitly
stored on the nodes of the paths.

In summary, the augmentation of long links with spatial distribution to get 1 +
ε stretch routing on an approximate distance oracle is favorable for its simplicity,
generality and ‘blindness’ to any global state. Global routing properties emerge from
purely distributed and uncoordinated routing table design.

3.2 Small stretch routing with approximate dis-

tances

In this section we describe the idea of routing with 1 + ε stretch in a suitable metric
space M. We use d(p, q) to represent the estimate of distance between p and q
supplied by the approximate oracle O, and σ(p, q) to denote the true but possibly
unknown graph distance (hop count distance) inM. We assume that a node is able to
get the approximate distance d(p, q) from just the names of p, q. The implementation
of this distance oracle is elaborated in a later section. Here we show that when the
long links are carefully chosen the routing stretch is low.
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Accurate distance oracle. To demonstrate the basic concept, consider the case in
which the oracle is in fact accurate, that is, d = σ. The objective is to recursively
build a route from s to t with the help of the long links. Suppose s takes a long link
to node p, then we want σ(s, p) + σ(p, t) to be not very large compared to σ(s, t):

σ(s, p) + σ(p, t) ≤ γ · σ(s, t), (3.1)

Where γ ≥ 1 is a parameter depending on ε. Observe that inequality (3.1) defines
an ellipse in R2 with s and t at foci. Now we impose an additional restriction that
moving from s to p implies a certain progress in direction of t. In particular, p is
closer to t by a factor of at least 0 ≤ β ≤ 1:

σ(p, t) ≤ β · σ(s, t). (3.2)

This describes a disk centered at t.
Next, we select γ and β such that the selection procedure enforced by inequal-

ities (3.1) and (3.2) when applied recursively, produces a path of stretch at most
1 + ε:

R(s, t) ≤ (1 + ε) · σ(s, t), (3.3)

where R gives the length of the path created recursively.
A forwarding region Fε(s, t) is a set of points p in M from which s can select p

satisfying the above relations. The following lemma gives a detailed description:

Lemma 3.2.1. Values of γ and β satisfying γ+εβ ≤ 1+ε constitute the forwarding
region, with the equality corresponding to the region boundary.

Proof: Observe that we have:

R(s, t) ≤ σ(s, p) +R(p, t)
≤ σ(s, p) + (1 + ε) · σ(p, t)
≤ σ(s, p) + σ(p, t) + εσ(p, t)
≤ γσ(s, t) + εβσ(s, t),

When γ + εβ ≤ 1 + ε, the right hand side is no greater than (1 + ε) · σ(s, t). �

It is easy to see that γ must lie in the interval [1, 2+3ε
2+ε

] for a given ε. For each
value of γ, we have a region Hγ,ε(s, t) ⊆M which is the intersection of the ellipse
bounded region and the disk. Thus, formally, the forwarding region is the union:
Fε(s, t) = ∪γHγ,ε(s, t). See Figure 3.1.

Approximate distance oracle. Now we look at the case in which the oracle supplies
an approximate measure of the distance, with δ1 and δ2 as the lower and upper
bounds: ∀p, q ∈M, δ1d(p, q) ≤ σ(p, q) ≤ δ2d(p, q). Then, allowing for approximation
error, it would be sufficient to guarantee the following inequalities (corresponding to
relations (3.1)-(3.2) respectively,):

δ2d(s, p) + δ2d(p, t) ≤ γδ1d(s, t)
δ2d(p, t) ≤ βδ1d(s, t)

(3.4)
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It can be verified that a sufficient relation between γ, β and ε is again given by the
same inequality as lemma 3.2.1. And we can obtain again that R(s, t) ≤ (1+ε)σ(s, t).

The idea of forwarding region is very general and hold in any metric space. This
implies that for any metric space, including all network graphs, a routing scheme
based on this concept guarantees a low stretch. What is necessary is that a node
should have a long link to some node p in the forwarding region for the current
destination.

Routing Mechanism. The analysis above suggests a natural routing scheme. Each
node selects long links such that it has either an immediate neighbor or a long link
to the forwarding region of any destination, and keeps corresponding routing table
entries. The routes to the long link neighbors are stored on the routing table of the
nodes on the path. When a node s has a message to be delivered to a destination
t, s will check its routing table to find a node p (either s’s 1-hop neighbor, s’s long
link neighbor, or an endpoint of a long link whose route goes through s), such that
p lies in the forwarding region Fε(s, t). Node p on receiving the message will exe-
cute an identical procedure to forward the message into Fε(p, t) and so on. Efficient
randomized construction of the routing table is shown in next section.

3.2.1 (1 + ε)-stretch forwarding region

Geometric setting. We first discuss the case of the Euclidean plane R2, which
provides sound intuition about the geometry of the method. W.l.o.g. the coordinates
of s and t, separated by a distance r, are (−r/2, 0) and (r/2, 0) respectively. We
examine the forwarding region to select the long link neighbor p to realize a 1 + ε
stretch path to t.

With an accurate distance oracle, the relation (3.1) defines in R2 a region whose
boundary is given by an ellipse:

4x2

γ2r2
+

4y2

r2(γ2 − 1)
= 1.

And (3.2) defines a disk whose boundary is given by a circle:

(

x− r

2

)2

+ y2 =
(1 + ε− γ)2

ε2
r2.

As gamma is varied, the locus of intersection of these two curves traces out the
boundary of the forwarding region Fε(s, t) (see Fig. 3.1 (i)).

For any point q on the boundary of Fε(s, t), the angles ∠qst and ∠qts are func-
tions of γ and ε only, and are independent of r. This implies that the shape of the
forwarding region is scale invariant, i.e., it does not depend on the distance between
source and destination. Figure 3.1 (ii) shows the shapes of forwarding regions for
different values of ε. Smaller values of ε create smaller and narrower forwarding
regions.
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Figure 3.1. (i) Boundary of Fε as intersection of ellipses and circles. (ii) Forwarding regions
for different values of ε from 0.2 to 2. (iii) Forwarding regions for different values of ε from
0.2 to 2 for approximate oracle.

With an approximate distance oracle, the corresponding ellipse and circle equa-
tions are given by:

δ22
δ21
· 4x

2

γ2r2
+

4y2

r2
(

δ21
δ22
γ2 − 1

) = 1

(

x− δ2
r

2

)2

+ y2 =

(

δ1
δ2
· 1 + ε− γ

ε
· r
)2

The corresponding forwarding regions are shown in Fig. 3.1 (iii). Observe that in
this case the forwarding regions are smaller and source s is not in the forwarding
region. This is due inaccurate distance estimates and necessitates the use of long
links - without which s cannot access the forwarding region.

The graph setting. The geometric intuition needs to be realized in an ad hoc
sensor network setting. In this section, we use the concept of a graph and a continuous
metric space interchangeably for ease of description, but the results hold for any metric
space that fits the model. A graph metric refers to the shortest path metric.

In general, we consider a graph such that the number of nodes at a distance
exactly r from p, represented by |∂Nr(p)| is bounded by |∂Nr(p)| = Θ(ρrρ−1). This is
equivalent to |Nr(p)| = Θ(rρ). Note that the diameter D of such a graph is bounded
by Θ(n1/ρ). We have the following quick observation.

Lemma 3.2.2. Given an unweighted graph G with |Nr(p)| = Θ(rρ), the graph has
a doubling dimension η = O(ρ).

Proof: Consider a ball N2r(p), we use a greedy algorithm to select balls of radius r to
cover it. In particular, we select a node q in N2r(p) that is not yet covered, and cover
all nodes in Nr(q). Iterate until all nodes are covered. Now we bound how many balls
are selected (denote this set as Q). To see that, we take the selected nodes q ∈ Q and
the balls Nr/2(q). First they do not overlap as any two nodes in Q are of distance at
least r away. Thus by a volume argument we have |Q| ≤ |N2r(p)|/min(|Nr/2(q)|) =
O( (2r)ρ

(r/2)ρ
) = O(4ρ). �
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Lemma 3.2.3. In a metric space with doubling dimension η, a ball of radius R can
be covered with O(cη) balls of radius R/c.

Proof: A ball of radius R can be covered with 2η balls of radius R/2. We recursively
cover each such ball with balls of half the radius, until the size of balls used falls below
R/c. The resultant number of balls is 2ηk, where k = ⌈log c⌉. This is equivalent to
O(cη). �

We now show the presence of a sizeable forwarding region for such a graph, when
one routes from s to t:

Lemma 3.2.4. There is a ball of radius δ1
δ2

(

γ−1
2

)

r that lies inside Fε(s, t).

Proof: Consider a point q on the shortest path between s and t separated by d(s, t) =
r. Now, we take a ball of radius h = δ1

δ2

(

γ−1
2

)

r centered at q. One can verify that
all the points inside the ball Nh(q) are inside Fε(s, t), as they satisfy the inequalities
(3.4). In particular, for any point p ∈ Nh(q), d(s, p) ≤ d(s, q)+h, d(p, t) ≤ d(q, t)+h.
Now we can verify that δ2(d(s, p) + d(p, t)) ≤ δ2(r + 2h) ≤ δ1γr. Also δ2d(p, t) ≤
δ2(d(q, t) + h) ≤ δ1βr ≤ δ1

(

1+ε−γ
ε

)

r.

This ball is inside a neighborhood of δ2r − δ1
δ2

(

1+ε−γ
ε
− (γ − 1)

)

r from s. The

number of nodes inside this ball is at least Ω
((

δ1
δ2

(

γ−1
2

)

r
)ρ)

. �

This lower bound on the size of forwarding region suggests that among long links
chosen randomly according to a spatial distribution, at least one is likely to lie in
the forwarding region with high probability. The next subsection shows that this is
indeed the case.

3.3 Routing table construction by spatial distribu-

tion

To build the routing table, we use a spatial distribution of directed links. In particular,
for nodes p and q separated by a distance r, the probability of a directed link pq being
built is proportional to 1/rρ. The rest of this section analyzes random selection of
long links to make sure there is a long link in the forwarding region for every possible
destination. Combined with the recursive routing in the beginning of this section,
the existence of such links guarantee 1 + ε stretch routing.

The analysis below uses essentially balls and bins probabilistic analysis. When
a long link is picked randomly with the spatial distribution, we have the following
lemma.

Lemma 3.3.1. For any µ > 1, a link from p lies in the annulus Nr(p)−Nr/µ(p) with

probability Θ
(

lnµ
lnn

)

.
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Proof: Suppose C is the normalizing factor of the probability distribution for the

given network. This means: C
∫ D

1
1
rρ
|∂Nr(p)| dr = 1. Integrating, C = Θ

(

1
ρ lnn

)

.

The probability that a given link lies in an annulus Nr(p)−Nr/µ(p) is given by

Pr(r/µ, r) = C

∫ r

r/µ

1

ξρ
|∂Nξ(p)| dξ = Θ

(

lnµ

lnn

)

.

Note that this probability is independent of r. �

Theorem 3.3.2. From each node it is sufficient to select k = O
(

(

2
ε

)O(ρ)
ln2 n

)

links,

to guarantee a link in the forwarding region for any destination with probability at
least 1− 1/n2.

Proof: Consider the forwarding region Fε(s, t), with d(s, t) = ℓ. We choose a valid
value γ. By lemma 3.2.4, there is a ball Bh of radius h′ = δ1

δ2

γ−1
2
ℓ within a distance

of r = δ2ℓ− δ1
δ2

(

1+ε−γ
ε
− (γ − 1)

)

ℓ from s.
Choose µ′ such that Bh′ lies in the annulus Nr(s) − Nr/µ′(s). This implies that

µ′ = r
r−2h′

. Substituting, and simplifying, we have µ′ = Ω(1 + ε). To show that a
link lies in Bh′ , it is sufficient to show that it lies in a smaller ball Bh ⊆ Bh′ , which
is defined below. If h ≥ r/4 we assign Bh = Br/4, and µ = 2, where Br/4 ⊆ Bh, and
Br/4 ⊆ Nr(s)−Nr/2(s). If h < r/4, we assign: Bh = Bh′ and µ = µ′. Thus, the width
of the annulus Nr(s)−Nr/µ(s) is at most r/2, and µ ≤ 2.

Now we show that with k = O
(

(

2
ε

)O(ρ)
ln2 n

)

links, there is a link to Bh (and

hence to Bh′) with high probability. The basic idea is the following. The annulus
Nr(s)−Nr/µ(s) can be covered by a small number of balls, by the constant doubling
dimension property. Thus with randomly selected links, at least one will fall inside
Bh.

By Lemma 3.2.3, the ball Nr(s) can be covered by at most A = a
(

2µ
µ−1

)η

balls

of radius h for some constant a. Restricting attention only to links from s to inside
Nr(s) − Nr/µ(s), consider a covering of the annulus with balls of radius h. The ball
Bh belongs to this set, and each node in Bh is selected by s with probability at least
C 1

rρ
, where C = Θ(1/(ρ lnn)) is the normalizing factor. Similarly, every node in the

other A− 1 balls is selected with a probability at most C µρ

rρ
.

Thus, given that a link is in the annulus Nr(s) − Nr/µ(s) the probability that it
is in Bh is:

Pr(Bh|(Nr(s)−Nr/µ(s))) ≥
(µ− 1)η

a(2µ)ηµρ + (µ− 1)η
.

Combining with the result of lemma 3.3.1 of the link being in the annulus, we get that

the probability of a random link to Bh is Pr(Bh) ≥
(

1
K lnn

)

, where K = O
(

(

2
ε

)O(ρ)
)

.

If 2K ln2 n links are chosen from s, then the probability that none of them lie in

Bh is
(

1− 1
K lnn

)(K lnn)2 lnn
. Therefore, the probability that at least one link lies in Bh

is (1− 1/n2). Therefore, O(
(

2
ε

)O(ρ)
ln2 n) links per node suffice to obtain the given

probability. �
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The theorem above describes a guarantee for a suitable link to a forwarding region
to exist. In fact, the detailed proof says that a link exists to a ball Bh′ of a radius
h′ inside the forwarding region. However, we still need to prove the existence of a
path of (1 + ε) stretch for a given routing request, that will take us to within a small
constant distance of the destination. This is done by showing the existence of a short
sequence of forwarding links. First we show, that if the path exists, it only involves
a few long links.

Lemma 3.3.3. If a path obtained by appending the long links in the balls Bh′ exists
then it consists of O(log n) long links and has a stretch of (1 + ε).

Proof: As in the proof of theorem 3.3.2, there is a ball Bh′ of radius h′ = δ1
δ2

γ′−1
2

l

which by lemma 3.2.4 lies within a distance δ1
δ2

1+ε−γ′

ε
l = δ1

δ2
β′l of t.

Thus, by selecting the long link to the ball Bh′ , we take the message to be within a
constant fraction β′ of the remaining distance to the destination at every step. Since
the diameter of the network is n1/ρ, this recursive forwarding will reach a constant
neighborhood of t using O(log n) hops. Given that Bh′ is selected to be inside the
forwarding region for each step, this path will have a stretch 1 + ε. �

Now we combine the number of links with the probability of each link to get the
final result:

Theorem 3.3.4. It is sufficient to select O
(

(

2
ε

)O(ρ)
ln2 n

)

long links per node to

guarantee a path of stretch at most 1 + ε with probability at least 1− 1/n.

Proof: Observe that by lemma 3.3.3 the path consists of O(log n) long links, each
of which exists with probability at least 1 − 1/n2, by theorem 3.3.2. Combining the

two, we get that the path exists with probability
(

1− 1/n2
)O(logn)

, which is at least
1− 1/n. �

And the routing table size is not too large.

Theorem 3.3.5. The average routing table size of the scheme is bounded by

O
(

(

2
ε

)O(ρ)
n1/ρ ln2 n

)

.

Proof: The length of a long link is at most the diameter of the network, which
is O(n1/ρ). Thus a link can contribute at most O(n1/ρ) number of routing tables

entries. By theorem 3.3.2, each node of n nodes can add O
(

(

2
ε

)O(ρ)
ln2 n

)

such links

to the network. Thus, the average number of entries, when divided among n nodes,

is O
(

(

2
ε

)O(ρ)
n1/ρ ln2 n

)

. �

In the case of sensor networks in a plane (ρ ≈ 2), for a given stretch ε, this
amounts to a table size of O

(√
n ln2 n

)

per node. In the next section we describe an
implementation that implicitly stores the long links with substantially smaller routing
table sizes of O(ln4 n).
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3.4 Implementation in sensor networks

Here we describe the implementation of the routing table design in a distributed
setting. In particular, how to implement the approximate distance oracle, how to
choose the long links with the spatial distribution and how to build routes representing
the long links. We give two different approaches to implement the distributed routing
table, one with the geographical locations, one with landmarks and landmark-based
distances.

Note that the implementation of approximate distance oracle is really independent
of our routing table design and the implementations can be entirely decoupled. Any
method that provides reasonably good distance estimate can be used as a distance
oracle.

3.4.1 Geographic routing table design

In this part we describe using the spatial distribution principle to augment standard
geographical forwarding with additional routing information to increase the delivery
rate.

Approximate distance oracles. As mentioned in the introduction, the geograph-
ical locations often serve as a good approximate distance oracle to the minimum
hop count distance metric on the communication network. To formulate this notion
rigorously, we assume that the sensor field is deployed in an environment with fat
(not necessarily convex) obstacles. That is, for any two points p, q on the boundary
of a hole, the geodesic distance3 g(p, q) is at most τ times the Euclidean distance
d(p, q) for a constant τ > 1, as shown in Figure 3.2. Given this, we can show that for

b2

p

q
g(p, q)

d(p, q)a1

b1 a2

Figure 3.2. The geodesic distance g(p, q) is at most τ · d(p, q) with fat holes.

any two points p, q in the underlying geometric domain, we have g(p, q) ≤ τd(p, q).
In addition, we assume that the sensor nodes are deployed in the environment
approximately uniformly such that the minimum hop count distance is at most τ ′

the geodesic distance. Thus we have d(p, q) ≤ σ(p, q) ≤ δ · d(p, q), for a constant
δ = τ · τ ′ > 1.

3The geodesic distance between two points in a geometric domain is defined as the Euclidean
length of the shortest path connecting the two points in the domain, avoiding obstacles.
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Geographic spatial sampling. We include the routing paths between pairs of nodes
chosen with a spatial distribution. With geographical locations, we will implement
the spatial sampling of a partner q of p by choosing with probability proportional to
1/r2 a geographical location q∗ and round it to the nearest node q. That is, the node q
whose Voronoi cell contains the sampled location q∗ is taken as the long link partner
of p. If the nodes are not uniformly distributed, the Voronoi cells have different areas
and the nodes are selected with a biased probability. Thus we use von Neumann’s
rejection sampling to ‘smooth out’ the non-uniformity introduced by the variation
of Voronoi cell area. This idea is originally proposed and used in taking a uniform
random sampling of sensor nodes [12, 34] and later adapted to get a similar spatial
sampling [134].

Incremental routing table construction. The last implementation problem is
to discover and store the routes of the long links selected by the spatial distribution
for each node. Notice that here we have a seemingly chicken-and-egg problem, as
route discovery requires a routing algorithm, while the routing table construction is
to supply such a routing scheme. We actually find the routes with bootstrapping
and incrementally construct the routes for the long links with increasing lengths.
Specifically, every node first selects their long link partners (in fact, the geographical
locations). The routes for the pairs with shorter distances are constructed first, and
the routes for the pairs with length k are discovered with the current routing table
information, that is, with the help of the long links with lengths smaller than k.

The route for a long link pq is stored on the routing table of the nodes on this
path. Specifically, each routing table entry is a tuple (p, q,Nq), where Nq is the next
hop neighbor leading to q. Thus a node maintains the routes to its long link partners
as well as the routes that pass through it.

The simplicity of this scheme also suggests an ‘on-demand’ implementation to
improve the basic routing. That is, when a packet is stuck at a local minimum we
will select long links according to the spatial distribution. Thus routing delivery rate
might be low or the delay can be long initially but as the routes for the long links are
constructed and recorded the network gradually ‘learns’ and ‘repairs’ the imperfect
distance oracle.

3.4.2 Landmark-based routing table design

When the location information is not available or when the sensor field is deployed
in an environment so that the Euclidean distance does not provide a good approx-
imate distance oracle, we propose a second scheme with landmark-based distances.
Specifically, we select m = O(log2 n) landmarks ℓi uniformly randomly in the sen-
sor network. For example, each node proposes to be a landmark with probability
log2 n/n. The landmarks then flood the network and every other node records the
hop count distance to these landmarks. The communication cost for the preprocessing
is O(n log2 n).

Landmark-based distance oracles. Each node p is given a landmark-based dis-
tance vector, represented by the vector of minimum hop count distance to all m
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landmarks, (σ(p, ℓ1), σ(p, ℓ2), · · · , σ(p, ℓm)). We would like to use the landmark dis-
tances to estimate the hop count distance of any two nodes. In the simulations we
used the centered distance measure proposed in [44], which is a ℓ2 norm of the cen-
tered landmark-based distance vector (σ(p, ℓ1)

2−M,σ(p, ℓ2)
2−M, · · · , σ(p, ℓm)2−M),

where M =
∑

i σ(p, ℓi)
2/m.

Landmark-based sampling. To build the long links for a node p, we will use the
landmarks to help with sampling. In particular, we select first randomly k out of
the m landmarks. For each landmark ℓi, we select from the distribution 1/(r lnD)
(D is the network diameter) a distance ξ. If ξ ≤ σ(p, ℓi), we take the node q along
the path from p to ℓi with distance ξ from p as the long link partner. Otherwise we
drop landmark ℓi. Intuitively, we select along the path from p to ℓi a node q with
the spatial distribution restricted on this path. Since the landmarks are randomly
selected, the probability that a landmark ℓi is at distance r from p is proportional to
r. Now the probability that for each landmark ℓi we can obtain a valid long link is

Prob{ξ < σ(p, ℓi)} =
∫ D

0

∫ ζ

1

1

ξ lnD
dξ

2ζ

D2
dζ = 1− 1

2 lnD
.

Thus in expectation we obtain k(1− 1
2 lnD

) long links for each node. This means that
choosing m = O(log2 n) landmarks suffices to get enough long links for each node.
At last we remark that although different nodes use the same set of landmarks to
create their long links, the theoretical analysis in the previous section still holds – as
the only requirement is that we have a sufficient number of independent long links
for each individual node.

Landmark-based routing tables. With the long links constructed by the land-
marks, the routing table size can be further reduced. In fact, a node p remembers in
its routing table the long link partners and their landmark-based addresses. Different
from the geographical case, the routes for the long links are implicitly implied by the
landmark distances. The size of the routing table is therefore O(log4 n), for O(log2 n)
landmarks/long link neighbors, and a storage of O(log2 n) for storing the address of
each long link neighbor.

3.4.3 Routing scheme implementation

We implemented our routing algorithm for simulations, using both the Euclidean
distance oracle and the landmark based oracle. Each node keeps the routing table
entries for its immediate neighbors, as well as the long link neighbors it has selected.
The routes to the long link neighbors are stored on the routing tables of the nodes on
the path. When a node s has a message to be delivered to a destination t, s will check
its routing table to find a next hop node p. The node p was selected randomly from
the set of feasible nodes in the forwarding region. Other than this stretch guaranteed
strategy, we also simulated the effects of selecting a long link greedily from the routing
table, where the p is the node in the routing table that is nearest to t according to
the oracle. The message may not travel the entire long link if on a node in the the
middle the message finds a closer neighbor to the destination.
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The simulations (Figure 3.4) show that the greedy heuristic performs well in prac-
tice. Both schemes achieve high delivery rate and low stretch. The greedy routing
may sometimes have lower delivery rate, but has better stretch. These results are
understandable in the light of the fact that the forwarding region contains the des-
tination, and a large region in between the source and the destination. Thus, the
link in routing table that reaches closest to the destination is likely to be one in the
forwarding region. Which means, in many cases, this heuristic satisfies the conditions
of the algorithm, and because greedy choice is more likely to be nearer the destination
than a random choice, it results in a low stretch. Thus, in simulations, we consider
the greedy strategy to be comparable to the theoretical strategy. This also suggests
further study and analysis of the spatial distribution and routing table constructions
along these lines.

3.5 Simulations

In this section, we present simulation results to show the performance of the proposed
schemes in practice. We mainly focus on geographic routing table to show the tradeoff
of the routing table size v.s. routing stretch. We also evaluate the performance
of landmark-based scheme on a network of complex topology, for which landmark-
based approximate distance oracle captures the underlying network connectivity more
accurately. We compare our approach with two recently proposed routing protocols,
S4 [108] and VRR [18], on three important criteria, i.e., delivery rate, the size of
routing table and routing stretch. We also discuss the preprocessing cost of each
scheme. In summary, our approach achieves high delivery rate (above 99%) and small
stretch (about 1.03) with only a small number of long links, and a small routing table
with modest preprocessing.

Simulation setup. We focus on evaluating the performance of all approaches at the
routing layer, and assume the underlying details (i.e., packet loss and interference)
have been handled at MAC and link layers. This is sufficient for our purpose of ver-
ifying the validity of the proposed ideas. Respecting reality, we adopt a lossy radio
model used in the standard simulator TOSSIM [98] to determine direct communi-
cation links between nodes. The lossy radio model is generated based on empirical
data and specifies the loss rate on the link between a pair of nodes. We only consider
links with sufficient low loss rate and the resulted network is not necessarily unit disk
graph, and could have directional links. We run simulations on three typical topolo-
gies, i.e., a sparse network with 1000 random distributed nodes, a network with a
large hole in the center and a network with multiple holes (see Figure 3.3). Each
simulation run is repeated 10 times. In each round, we randomly selected 10000 pairs
of source and destination. All results are averaged on all pairs.

3.5.1 Geographic routing table

We evaluate the performance of our approach with geographic routing table, as ex-
plained in Section 3.4.1.
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Figure 3.3. Network topologies used in simulations. (i) Topology 1. Random network:
1000 nodes, avg. degree 7.2; (ii) Topology 2. Network with one hole: 2400 nodes, avg.
degree 9.5; (iii) Topology 3. Network with multiple holes: 2000 nodes, avg. degree 10.6.
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Figure 3.4. (i) Delivery rate for Topology 2. (ii) Stretch for Topology 2.

Delivery rate. To show the effect of long links on the delivery rate, we vary the
number of long links each node maintains from 0 to 16. When the number of long
links is set to 0, the routing protocol is essentially the geographical greedy routing
based on the location information within one-hop neighborhood. Figure 3.6 (i) shows
that greedy routing performs very poorly without long links. The delivery rate is only
around 50%, 65% and 44% in Topology 1, 2 and 3 respectively. When the number
of long links increases, the delivery rate reaches 99% with 6, 8, 7 long links per node
in three different topologies, respectively. The results confirm that a small number
of long links are sufficient and can significantly improve the delivery rate in most of
typical network topologies. Since our scheme behaves similarly in various topologies,
in the rest of this subsection, unless mentioned otherwise, we only present results on
Topology 2 due to space limitation.

We show the preprocessing cost of our scheme with varying number of long links
in Figure 3.6 (iv). More long links results in higher preprocessing cost and increased
delivery rate.

Routing table size. The size of routing table is measured by the number of entries
in the table. We compare the average routing table size of our scheme with VRR and
S4. For VRR, each node maintains routes to a set of virtual neighbors on the ID ring.
Those virtual neighbors can be viewed as “long links”. Thus, we show the change of
routing table size as the number of long links changes for both our scheme and VRR
in Figure 3.6(ii). It is easy to see that the size of routing table is proportional to the
number of long links. But our scheme uses much smaller routing table than VRR
when maintaining the same number of long links. Our scheme saves routing table
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size by taking long links with probability 1/r2 rather than the uniform distribution
used in VRR. Thus, our scheme favors relatively shorter links. Figure 3.5 shows the
distribution of the lengths of the long links in terms of hop counts. In our scheme
there are fewer long links, while the distribution in VRR is more uniform.

Size of routing table Our scheme S4 VRR

Topology 1 26.08 68.83 41.52

Topology 2 39.02 105.85 62.48

Topology 3 37.28 90.62 63.82

Table 3.1. Average size of routing table.

Table 3.1 shows the routing table size of three schemes with a set of fixed param-
eters. For comparisons, we use 50 landmarks for S4 and each node maintains routes
to 4 virtual neighbors in VRR. We select those parameters since they give the best
performance of S4 and VRR in terms of both routing table size and stretch. For our
scheme, we use 6, 8, 7 long links in three topologies respectively to get above 99%
delivery rate. We use the same set of parameters in other Tables. From Table 3.1,
S4 requires the largest routing table, since each node needs to maintain routes to
roughly O(

√
n) landmarks and O(

√
n) nodes within its local cluster. Our scheme has

the smallest routing table size, but achieves comparable delivery rate.

Figure 3.5. The distribution of long links w.r.t their lengths in hops.

Stretch. Figure 3.6(iii) shows the average stretch of our scheme and VRR with
varying number of long links. The stretch of our scheme is always below 1.1 and
decreases when the number of long links increases. With 6 long links, the stretch is
only about 1.03. With more long links, each node has more choices when choosing
the next hop and can switch to the best direction as soon as it finds a neighbor or
long link closer to the destination. Table 3.2 compares the average stretch of three
schemes. It shows that our scheme achieves similar stretch as S4 (but with smaller
routing table) and is much better than VRR.

Diversity of inaccuracy. The inaccuracy of distance oracle is due to diverse dis-
turbances of the network, like low density of node distribution or holes and obstacles.
Here, we study the impact of different types of links (relatively short links and long
links) on different types of network topologies. We compare spatial-distribution link
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Figure 3.6. (i) Delivery rate of geographical routing table with varying number of long links
in different network topologies. (ii)-(iv) Performance of our scheme and VRR in Topology
2. (ii) The average size of routing table. (iii) Average stretch. (iv) Communication cost in
preprocessing stage.
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Topology 3.

Average stretch Our scheme S4 VRR

Topology 1 1.03 1.03 1.73

Topology 2 1.03 1.03 1.80

Topology 3 1.04 1.02 1.75

Table 3.2. Average stretch.
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selection scheme with other four schemes, i.e., schemes that only select nodes within
5 hops (< 5), within 10 hops (< 10), at least 5 hops apart (> 5) and at least 10 hops
apart (> 10). From all three figures (Figure 3.7), we can see that spatial distribution
with a mixture of short and long links (blue line) achieves the highest delivery rate for
all topologies. Relatively short links (< 5 hops) works best for Topology 1 compared
to the other two topologies, and the scheme with only links shorter than 10 hops even
performs better than other schemes with relatively longer links, because the local
disturbance due to sparsity can be resolved by short links to close nodes. Longer
links (> 10 hops) performs significantly better than pure short links in Topology 3,
since global disturbance (big holes) requires longer links to compensate the inaccurate
distance measure. Different network topologies may require different types of links,
but the spatial distribution with a mixed set of short and long links gives a generic
solution and hides the diversity of distance inaccuracy, with high delivery rate, small
routing table size, low stretch and cost.

3.5.2 Landmark-based routing table

We evaluate the performance of the landmark-based routing table (in 3.4.2) on three
topologies, compared with S4, as both use a set of landmarks. The benefits of our
scheme are that it incurs much cheaper preprocessing cost with smaller routing table
size than S4. Our scheme needs fewer landmarks (O(log2 n) rather than O(

√
n) land-

marks). Each node only needs to remember the next hop to each landmark and the
sample along the path to that landmark, and does not construct any additional local
routing tables. So the size of the routing table is exactly the number of landmarks.
The total preprocessing cost is just the message flooding from the landmarks. After
that, routes to all long links are built up automatically.

Simulation results show that 30 landmarks are sufficient to achieve good delivery
rate (above 94%) and small stretch (about 1.04) in our scheme. In S4, we use 50
landmarks with an average routing table size of 90.62 to achieve the best stretch and
routing table size tradeoff. The routing table size in our scheme is 30, with the total
preprocessing cost only about 1/3 that of S4 on Topology 3.

3.6 Conclusion

We presented in this chapter a geometric theory to build a small number of routing
links in very general domains. The method is distributed and uncoordinated, but
guarantees global properties such as routing with low stretch and compact routing
tables. The use of spatial distribution ensures that the routing works well at all scales
and distances.

We have presented here implementation details and simulation results for sensor
networks, but the core results are expected to be useful in a wide variety of graphs.
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Chapter 4

Spatial Gossip and
Multi-Resolution Aggregation

In this chapter we propose a lightweight algorithm for constructing multi-resolution
data representations for sensor networks. We compute, at each sensor node u, O(log n)
aggregates about exponentially enlarging neighborhoods centered at u. The ith ag-
gregate is the aggregated data among nodes approximately within 2i hops of u. We
present a scheme, named the hierarchical spatial gossip algorithm, to extract and con-
struct these aggregates, for all sensors simultaneously, with a total communication
cost of O(n polylog n). The hierarchical gossip algorithm adopts atomic communica-
tion steps with each node choosing to exchange information with a node distance d
away with probability 1/d3. The attractiveness of the algorithm attributes to its sim-
plicity, low communication cost, distributed nature and robustness to node failures
and link failures. We show in addition that computing multi-resolution aggregates
precisely requires a communication cost of Ω(n

√
n), which does not scale well with

network size. The approximation in aggregate computation like that introduced by
the gossip mechanism is therefore necessary in a scalable efficient algorithm. Besides
the natural applications of multi-resolution data summaries in data validation and
information mining, we also demonstrate the application of the pre-computed spatial
multi-resolution data summaries in answering range queries efficiently.

4.1 Introduction

Distributed wireless sensor networks provide revolutionary ways to attain large scale,
dense data collection and long-term environment monitoring. The immediate chal-
lenge is to develop efficient methods to extract, encode, and distribute information
gathered by sensors, for both the robustness and survivability of data, as well as the
flexibility and efficiency to answer user queries. In this chapter we study the problem
of constructing multi-resolution data representation in a sensor network to facilitate
routing and answering multi-dimensional range queries. Our approach of processing
data in a multi-resolution format follows the principle of fractional cascading that
states: “a sensor knows a fraction of the information from distant parts of the net-
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work, in an exponentially decaying fashion by distance” [57]. This multi-resolution,
locality-preserving representation is motivated by observations that sensors are typ-
ically monitoring a physical phenomena, which exhibits high correlation in both the
spatial and temporal domain. Naturally information relevant to each node is decaying
with the distance to this node.

In the setup of this chapter we have n sensors deployed uniformly and densely in-
side a region monitoring a continuous data field. We compute, at each sensor node u,
O(log n) aggregates about exponentially enlarging neighborhoods centered at u. The
ith aggregate is the aggregated data among nodes approximately within 2i hops of
u. The specifics of aggregation techniques will be application dependent. For exam-
ple, the aggregates can be the MAX/MIN or AVG, or more involved aggregates such
as histogram [141], parameter estimations [158], or random linear projections used
for compressed sensing and information recovery [128]. This multi-resolution scheme
is inherently load-balanced. The storage requirement at each node is bounded by
O(log n). We present a scheme to extract and construct these aggregates, for all
sensors simultaneously, by a hierarchical spatial gossip algorithm. The total com-
munication cost is O(n polylog n), only a small polylogarithmic factor of the cost for
flooding or information aggregation at a sink, yet we obtain multi-resolution aggre-
gation for each and every sensor node in the network.

The multi-resolution data summaries provide a basis for information mining, data
validation and efficient range queries. One of the major challenges in a sensor network
is that nodes start with no idea of the big picture over the data field. Thus it is
difficult for a node to assess whether its sensor reading is valid or not since detection
of outlier or abnormality usually requires comparison with other sensor readings. In
certain applications, the sensor field is deployed to detect events of interest to the
owner. A sensor node often needs to decide, by itself, whether it holds interesting
data or not. In some cases it is trivial, e.g., an unusually high reading by an acoustic
sensor typically means activities in its vicinity. Sometimes this requires comparison
with the average of sensor readings in an appropriate neighborhood. For example, the
temperature threshold considered as ‘high’ in winter is different from that in summer.
With the summarized data from each of its exponentially enlarging neighborhoods, a
node has a basis against which its own reading can be compared, in order to spot local
spikes which indicate data significance [156]. In addition, these partial aggregates can
be used to support range queries injected from any node in the network. Queries for
the aggregated value inside a geographical region can be answered by combining the
pre-computed partial aggregates, without the necessity of examining each and every
node in the geographical range. Thus both communication cost and query delay can
be improved.

The major contribution of this chapter is the development of a light-weight algo-
rithm for constructing multi-resolution data representations for sensor networks, as
well as the application of multi-resolution data for range queries.
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4.1.1 The challenge and our contribution

To construct the multi-resolution data representation, we first note that simple flood-
ing and aggregation from each node will incur too high communication cost – O(n2)
since each node incurs a cost of O(n) to flood the network. In this chapter we inves-
tigate gossip algorithms with almost linear communication cost.

In our setting the metric we care most is the total communication cost of the gossip
algorithm, which depends on two factors: the cost of communication for each iteration
step, and the number of iterations for it to converge. Existing gossip protocols either
assume that every two nodes can communicate with a unit cost (e.g., in peer-to-peer
networks and distributed systems), or allow only immediate neighbors to gossip (e.g.,
in the standard gossip model). In our setting, we allow far away nodes to be chosen as
gossip partners, and communication between them is performed by multi-hop routing.
Thus the cost of each gossip step may involve any two nodes and have a higher cost
if the nodes are far apart. This idea is also adopted in geographical gossip to reduce
the communication cost of distributed averaging in a random geometric graph [34].

Under the objective of minimizing the total communication cost, the selection
of gossip communication mechanism needs to balance two important factors. First,
the fast convergence of a gossip protocol depends critically on the selection of gossip
partners. Intuitively fast convergence requires information to be well mixed — one
of the best is to select a random node in the network as the gossip partner. On
the other hand, if we choose a random node to gossip in each iteration, the cost of
communication with multi-hop routing is proportional to the distance to a random
node in the network, which is roughly O(

√
n) in a grid-like network with uniformly

deployed sensors. To reduce the communication per each iteration, the best is to
simply gossip with its immediate neighbors. But analysis of standard gossip on a
random geometric graph or a 2-dimensional grid shows a slow convergence of roughly
O(n2) gossip steps1 [15, 157], which is asymptotically the same order with that of
naive flooding.

The second challenge of the gossip algorithm in this chapter, different from all the
other gossip protocols, is on its multi-resolution nature. We would like information
to be exchanged and mixed for fast convergence but also want to make sure that
information does not travel too far and pollute the aggregates at other nodes. Thus
the two conflicting considerations – fast convergence and restricted propagation range
– also need to be carefully balanced.

We propose to use a hierarchical spatial gossip algorithm that automatically takes
care of all the issues we worried about above. Our hierarchical gossip algorithm pro-
ceeds in O(log n) phases. In phase i, we compute, for all sensor nodes, their respective
aggregates in a roughly 2i neighborhood. This is achieved by a spatial gossip algo-
rithm in a restricted range, where each node x picks, from nodes within distance 2i, a
node y with probability proportional to 1/d3, where d is the distance between x and
y, 1 ≤ d ≤ 2i. Each phase stops after O(poly(i)) iterations, i ≤ log n. At the end of
phase i, we compute for each node u the aggregate of a subset of nodes Si(u) that
contains all the nodes within distance 2i from u with high probability, and does not

1Here we use ‘gossip step’ to refer to the atomic operation of one node gossiping with its partner.
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contain any node more than distance poly(i)2i apart. The total communication cost
over all phases is bounded by O(n polylog n). Notice that this achieves a substantial
improvement in terms of communication cost to the naive flooding approach and is
only at most a polylogarithmic factor away from an obvious lower bound of Ω(n log n)
for constructing the multi-resolution data representation2.

In this chapter, we use the spatial distribution in the form 1/d3 to simplify dis-
cussion. This is really equivalent to a distribution 1/dρ+1 on a growth bounded
graph, and this distribution also produces a small world. All the analysis here can
accordingly be adapted to the graph scenario. Our aim here is really to summarize
a continuous signal sampled from a physical space. This is typically useful when the
sensors are aware of their locations. Therefore we assume here that the sensors know
their coordinates, and work in terms of an explicit embedding in the two dimensional
euclidean plane.

What is critical to the success of our hierarchical gossip algorithm is that we
use order and duplicate insensitive synopsis (ODI-synopsis) [28,118] to compute and
represent the partial aggregates. The idea of an ODI-synopsis is that the same data
can be aggregated multiple times but it is counted only once. Certain aggregates such
as MAX/MIN are naturally ODI-synopses. ODI-synopsis for other aggregates such
as COUNT and SUM/AVG are available, by implementation through MAX/MIN
or boolean OR computations [27, 28, 56, 118]. ODI-synopsis combined with gossip
algorithm removes trouble caused by the same data disseminated and aggregated
multiple times. In addition, ODI-synopsis is helpful for range queries as we do not
need to worry about over-counting resulting from partial aggregates from overlapping
regions.

One last note is that our gossip-based method is randomized. The multi-resolution
aggregation covers roughly the 2i neighborhood, for i = 0, · · · , log n. The question
of computing an accurate set of multi-resolution aggregates, i.e., the aggregate of
all the nodes precisely within 2i hops, is considered in section 4.4. We describe a
deterministic algorithm to achieve this. This algorithm has a communication cost of
Θ(n
√
n). We show that this is in fact asymptotically optimal, and there is a lower

bound of Ω(n
√
n) for the message complexity. Accurate multi-resolution computation

therefore does not scale well with network size. This makes it necessary to introduce
approximate neighborhoods, as considered in our spatial gossip method.

4.2 Network setup

In this chapter we consider a network of n sensor nodes in a square. The sensor nodes
are deployed with sufficient sensing coverage such that any unit disk centered inside
the region contains at least 1 sensor node. Each sensor node knows its own location
and generates a reading which is the sample of an underlying continuous data field
at the location of this sensor.

2For each sensor node simply reading in their log n data summaries it requires a communication
cost of Ω(n log n).
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Notice that the above assumption guarantees sufficient coverage but does not
prevent regions with dense node distribution. We can further improve the uniformity
of the sensor sampling by clustering. We compute a set of clusterheads such that every
two clusterheads are of distance at least 1 away and every node is within distance 1
of at least one clusterhead. The clustering can be easily implemented by a greedy
and distributed algorithm. Each node checks its nearby nodes to see if there is a
clusterhead within distance 1. Otherwise it will promote itself as a clusterhead. By
local communication the nodes can select a subset of nodes as clusterheads as desired
above.

The set of clusterheads has bounded density. Every two clusterheads are at least
distance 1 apart, as specified by the algorithm. Further, inside any disc of radius 2,
denoted by D2, there are at least 1 clusterhead — this is because any clusterhead
outside this disc cannot cover the unit-radius disk D1 co-centric with D2. Thus by
the sampling assumption there is at least one node inside the unit disk D1, whose
clusterhead must be within D2.

Thus, without loss of generality we will assume in the following of the chapter
that: (i) any two sensor nodes are of distance at least 1 apart; (ii) any disk of radius
2 contains at least one sensor node.

We assume that two sensor nodes can communicate with each other directly if
they lie within a small distance of each other. However, we do not enforce that the
connectivity corresponds to a unit disk graph or any specific model. We assume
that the deployment permits the existence of a multi-hop routing algorithm that can
carry a message from node x to node y using at most O(dx,y) hops, where dx,y is the
Euclidean distance between the two nodes. For sensors uniformly deployed, simple
geographical forwarding would suffice to find a path with length proportional to the
Euclidean distance between them.

4.3 Spatial gossip

In this section we describe the hierarchical spatial gossip algorithm to compute multi-
resolution data summaries for every sensor node.

4.3.1 Hierarchical spatial gossip

We use a gossip mechanism where each node selects from a restricted neighborhood
a node to gossip with and sends a message to it. The algorithm proceeds in phases.
The phase i calculates for each node the aggregate of values inside a roughly 2i

neighborhood centered at itself. The phases are completely independent so that
phase i+ 1 starts fresh. Since we have a network of n nodes, with a lower bound on
density, O(log n) phases are sufficient for the phase with the largest neighborhood to
cover the entire network.

For phase i, we adopt a restricted spatial gossip algorithm. We implement the
selection of gossip partner with geographical routing. At each round, a node x chooses
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a location y∗ in the sensor field with probability:

pi(x, y
∗) =

{ 1
π
· 1
(|xy∗|+1)3

, |xy∗| ≤ 2i;

0, |xy∗| > 2i.

where |xy∗| is the Euclidean distance between nodes x and y∗. Notice that y∗ is
not necessarily the location of a sensor. x will send the information towards y∗ and
eventually reach the node y whose location is closest to y∗. Then y is x’s gossip
partner and takes the information delivered by x.

With the above gossip algorithm and the uniformity of sensors, the probability
that a node x chooses a sensor node located at y (also denoted by y by slightly abusing
the notation) is also proportional to 1/|xy|3.

Lemma 4.3.1. At phase i, let the probability that a node x gossips with a node y
be qi(x, y). Then if 2 ≤ |xy| ≤ 2i + 2,

qi(x, y) ≤
4

(|xy| − 1)3
;

and if |xy| ≤ 2i − 2,

qi(x, y) ≥
1

16(|xy|+ 3/2)3
;

if |xy| ≥ 2i + 2, qi(x, y) = 0.

Proof: We compute the Voronoi diagram of all the sensor nodes (a partitioning of
the region into cells such that all the points inside one cell are closest to the same
sensor node) and only inspect the part inside the bounding square. In order for x to
choose node y as its gossip partner, x must have chosen a location y∗ that falls inside
the Voronoi cell of sensor node y. Denote by V (y) the Voronoi cell of y, then we have
qi(x, y) =

∫

y∗∈V (y)
pi(x, y

∗).

y

u

v

Figure 4.1. The Voronoi cell of a sensor node y is enclosed inside a disk of radius 2 and
contains a disk of radius 1/2.

We now upper and lower bound the Voronoi region for y. V (y) is a convex region.
The point on the boundary of V (y) furthest from y is realized at a Voronoi vertex (u
in Figure 4.1), which has three sensors (including y) as its closest nodes. Thus the
disk centered at u with radius |yu| has no other sensor nodes inside. Since any disk
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of radius 2 has at least one sensor node inside, |yu| < 2. Thus V (y) is enclosed by
a disk centered at y with radius 2, denoted by D2(y). On the other hand, the point
on the boundary of V (y) closest to y, say v, is realized as the mid-point connecting
y and one of its Delaunay neighbors (the sensors whose Voronoi cells are adjacent to
that of y’s). Thus |yv| ≥ 1/2. Consider that y can be placed at the corner of the
sensor bounding square. V (y) includes at least 1/4 of a disk of radius 1/2 centered
at y.

With the upper and lower bound of V (y), we will bound the probability qi(x, y).
Take the point in V (y) closest to x, denoted by w. |xw| ≥ |xy| − 2. Therefore
qi(x, y) =

∫

y∗∈V (y)
pi(x, y

∗) ≤ pi(x, w) · π22 = 4/(|xw| + 1)3 ≤ 4
(|xy|−1)3

. Similarly, we

have qi(x, y) ≥ 1
16(|xy|+3/2)3

.

The above bound is valid when V (y) is completely within distance 2i from x,
which is true if |xy| ≤ 2i − 2. If |xy| ≥ 2i + 2, then all points in V (y) are of distance
2i away. Thus y will never be chosen as x’s partner. qi(x, y) = 0. �

We assume that all the nodes gossip in a synchronous way. At each clock tick,
every node selects and shoots its information to its respective gossip partner. We
consider each clock tick as a round. Once a node x chooses another node, say y, with
distance at most 2i from it, x sends its current synopsis to y. y will incorporate the
information it receives from x and maintain the aggregation of synopsis of its old value
with the synopsis from x. Note that this is asymmetric as only node y updates its
synopsis and node x keeps its current synopsis value. The asymmetry is an attractive
feature as reliable round-trip multi-hop routing adds communication overhead and
implementation difficulty. Denote by si,j(x) the synopsis at any node x after round
j of phase i. The original value at x is thus given by s0,0(x). After round j, each
node updates its synopsis to be the aggregation of its synopsis at round j − 1 and all
the values it received in this round. The value computed at node x at completion of
phase i is denoted by si(x).

All the aggregates in our scheme are order and duplicate insensitive synopsis. In
particular, given a set of values S, an ODI-synopsis is an aggregate computed for val-
ues in S that remains the same no matter how many times one duplicates some values
in S or what order the aggregation was performed. For example, MAX/MIN are nat-
urally ODI-synopsis. ODI-synopsis for other aggregates such as SUM or AVG are
available [27,28,56,118] by essentially implementing them by MAX/MIN or Boolean
operations. We remark that some of the ODI-synopsis are probabilistic in nature.
In this chapter we often use MIN as the example, but the algorithm works with any
ODI-synopsis.

The use of ODI-synopsis is key to the success of the spatial gossip algorithm for
constructing multi-resolution data representation. The insight is that aggregation
by ODI-synopsis tremendously simplifies gossip computation protocol. Each node u
keeps only a value s(v) which is the ODI-synopsis of the set of values it has received
so far and does not keep the set of values in its original form. When one node
u chooses to gossip with v, u sends to v its aggregate s(u) and v computes and
keeps the ODI-aggregation of the synopsis of both u and v. s(v) ← s(u) ⊕ s(v),
where ⊕ represents the aggregation function of the ODI-synopsis. This not only
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reduces the cost of transmission as only one aggregated value is delivered each step,
but also guarantees that over-counting is eliminated although the same value may
potentially be received multiple times. In short, with ODI-synopsis the model of
gossip computation is the same as alarm spreading — each node starts with its own
value and in each gossip step one node will send all the values it has received so far
— but with reduced communication cost since only the aggregate (not the whole set
of values) is delivered. When the algorithm stops, a node keeps the aggregate of all
the values it has received.

To make the analysis easier, we also denote by Si,j(x) the set of nodes whose
values x should have received if we deliver all the original values instead of a synopsis
in the gossip algorithm. In other words, si,j(x) is the aggregation of the values in the
set Si,j(x). The set corresponding to the value si(x) at node x at the completion of
phase i is denoted by Si(x).

To summarize, there are at most O(log n) phases in the hierarchical spatial gossip
algorithm. In phase i, every node executes O(i3.4) synchronous rounds. Each round
consists of a single gossip operation performed by every node, and each phase consists
of sufficient number of rounds so that nodes x and y that lie within a distance 2i of
each-other obtain each-other’s values with high probability. Thus, at the end of phase
i, any node has considerable information about values within a distance 2i from it.
Thus the synopsis aggregate at each node has incorporated sufficiently many nodes
within its 2i neighborhood.

The gossip algorithm for each phase is very similar to the spatial gossip protocol
proposed by Kempe et al. [80], except that we restrict the maximum range of gossip
partners. This modification is to reduce the level of pollution such that a node does
not receive information from nodes too far away, as will be made clear later.

4.3.2 Multi-resolution representations

In this section, we analyze the multi-resolution information computed by the algo-
rithm described above. We show that if we stop the algorithm at phase i after
j∗ = O(i3.4) rounds, the synopsis kept at node x, i.e., the aggregated value of a set
of nodes Si,j∗(x), captures the information is a roughly 2i neighborhood around x.
Without loss of generally we denote by Si(x) and si(x) the respective values when
j = j∗.

Specifically, we show upper and lower bounds for the set of nodes in Si(x). The-
orem 4.3.4 says that Si(x) includes with high probability each node within distance
2i from x. Theorem 4.3.5 says that Si(x) does not include nodes O(2ii3.4) away for
sure and with high probability does not include nodes with distance O(2ii2.4) or more
away.

Before we prove our main theorems, we first observe that when we run more
iterations of the gossip algorithm, the amount of information each node gets is mono-
tonically non-decreasing within a phase. Recall that Si,j(x) is the set of nodes whose
values have reached x, after j rounds at phase i. Thus,

Observation 4.3.2. Si,j(x) ⊆ Si,j+1(x), for any i, j, x.
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Lower bound

We first show a lemma that bounds the rate of information propagation by the re-
stricted spatial gossip algorithm. Intuitively the lemma says that after O(polylog d)
rounds information at one node reaches a node at distance d with high probability.

Lemma 4.3.3. In phase i, if the distance between nodes x and y is d ≤ 2i then
Si,j(x) ⊆ Si,j+α(y) within α = O(log3.4 d) rounds of iterations with probability at
least 1−O( 1

d
).

The proof is an adaptaion of the proof in [80] that bounds the information spread
rate in spatial gossip, with necessary modification that additionally takes care of the
restricted range. While the essential proof is the same, the adjustment to get the
specific result is not entirely trivial. We therefore include the complete proof in the
appendix. This lemma shows that information propagates pretty fast in the network.
Thus we can stop the algorithm in O(poly(i)) rounds for phase i, i ≤ log n, in order
to collect information from almost all nodes inside the desired range 2i.

Theorem 4.3.4. With probability at least 1−O(1/2i), the set Si,w(x) includes node
y with |xy| ≤ 2i in phase i consisting of w = O(i3.4) rounds.

Proof: Obviously x ∈ Si,0(x). We apply Lemma 4.3.3 with d = 2i to obtain the
theorem. This implies that in round i, any node collects information from each node
in its 2i neighborhood with probability at least 1−O(1/2i). �

Upper bound

The subsection above shows that in phase i, any node receives the information within
a distance 2i with high probability if we run the algorithm for O(i3.4) rounds. Now
we show an upper bound that a node does not get information from nodes too far
away. Thus the ‘pollution’ from far away nodes is under control.

Theorem 4.3.5. After k rounds of phase i,

1. Si,k(x) does not include nodes with distance d > k2i away from x, for sure.

2. Si,k(x) does not include nodes with distance d > 3k2i

i+1
away from x with proba-

bility at least 1− o(1/2k), when i is greater than a sufficiently large constant.

Proof: To make the analysis easier, we assume that we actually propagate, by the
hierarchical spatial gossip algorithm, the list of values together with their source
nodes. Initially each node has only its own value. Then they propagate to other
nodes. We examine, for the value of a node u ∈ Si,k(x), the path it may take to get
from u to x, denoted by P = {u, u1, · · · , uℓ = x}. ℓ ≤ k. In round j, uj selects uj+1

as its gossip partner.

Claim 1. The value of u cannot travel further than k2i because in any iteration,
a gossip step can go as far as 2i at most and there are total k rounds.
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Claim 2. Intuitively, for the value of u to reach a node x that is distance d =
(3+ε)k2i

i+1
away (ε is very small) via a path of length at most k, it must make enough

number of long jumps. We argue that the probability for this to happen is small.
The following analysis is to make this intuition rigorous.

First observe that the probability of a node uj choosing a node uj+1 of distance
d′ > 2i/(i+ 1)− 2 away is at most

∫ 2i

2i/(i+1)

2r

(r + 1)3
dr ≤ i+ 1

2i−1
.

Now consider a path P of at most k hops that starts from u and ends at x. Let k′ be
the minimum number of steps of length 2i/(i+ 1) or more in P . Then the minimum
value of k′ satisfies the relation

(k − k′)(
2i

i+ 1
− 2) + k′(2i + 2) ≥ d = 2i

(3 + ε)k

i+ 1
.

When i is sufficiently large, k′ ≥ (2 + ε/2)k
i
. Therefore, for a k-hop path to reach

node x, it needs to have at least k′ long jumps, the probability of which is at most
(

k
k′

) (

i+1
2i−1

)k′
. Thus, the probability that a k-hop path P does not have k′ or more

links of length 2i/(i+ 1) or more is at least
(

1−
(

k
k′

) (

i+1
2i−1

)k′
)

.

In each round, a node that has a data sends a copy of it to another node. Thus,
every existing copy gets replicated at a new node. At the end of k rounds, the total
number of copies in the network is at most 2k. We bound the probability that none
of these 2k paths reach x. This is at least

(

1−
(

k
k′

) (

i+1
2i−1

)k′
)2k

≈ 1−
(

k
k′

) (

i+1
2i−1

)k′
2k ≥ 1− 22k

(

i+1
2i−1

)k′

≥ 1−
(

(2(i+1))2/i

2ε/2

)k

≥ 1− 1/2k.

The last step is true when i is greater than a sufficiently large constant. �

For a phase i, with k = i3.4 rounds, the probability that the value at a node
does not spread beyond a distance 2i 3k

i+1
is at least 1 − o(1/2i

3.4
). Thus with high

probability Si(x) does not include nodes with distance O(2ii2.4) away.

4.3.3 Communication cost

In this section we show that the communication cost of constructing the multi-
resolution data representation is almost linear.

Lemma 4.3.6. The communication cost incurred by any node in a single round of
phase i is O(i).
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Proof: The expected distance to the gossip partner chosen by a node x is at most

2 +

∫ 2i

0

2r
r

(r + 1)3
dr ≃ O(i).

Since the cost of routing to a node distance d away is O(d), the communication cost
by any node in a round of phase i is O(i). �

Theorem 4.3.7. The algorithm creates multi-resolution data as described above at
every node using O(log4.4 n) rounds and total communication cost O(n log5.4 n). The
storage requirement at each sensor node is O(log n).

Proof: In an n node network, with a constant lower bound on density, the maximum
distance between any two nodes is O(n). Thus, the number of phases required by the
algorithm is O(log n). Each phase i consists of O(i3.4) rounds. Thus, the number of
rounds is

∑logn
i=1 O(i3.4) = O(log4.4 n). In phase i, at each round, a node uses a single

message with an expected communication cost of O(i). Thus, the communication cost
per node for the algorithm is:

∑logn
i=1 O(i ·i3.4) = O(log5.4 n). The total communication

cost is thus O(n log5.4 n). Notice that during the spatial gossip algorithm for phase i,
each node at any time only keeps one value. The total storage requirement for each
node is O(log n). �

4.4 Accurate multi-resolution data

The gossip based algorithm is randomized, and therefore has some inaccuracy asso-
ciated with the aggregates it computes. In this section, we discuss a deterministic
algorithm to compute multi-resolution aggregates and show a communication lower
bound of Ω(n

√
n) messages on computing multi-resolution data. These results show

that approximation is necessary in order to achieve near linear communication cost.
For the ease of description we use the ℓ∞ metric, and assume that the n nodes are

placed on a unit grid in a square. A disk in this metric looks like a square. Suppose
the aggregate minimum is being computed. The algorithm works as follows:

At step i, every node p finds the aggregate of the ℓ∞ disk of radius 2i centered at
itself. This is done as follows: p collects the aggregates of step i− 1 from each node q
at distance 2i−1 from p, and computes the minimum to find the aggregate minimum
of its 2i neighborhood. Each node q needs to send its (i− 1)th average to nodes at a
distance 2i−1 from it. This is done by traversing the boundary of the disk of radius
2i−1, at a cost of O(2i−1).

The total cost per node is therefore

log
√
n

∑

i=0

O(2i−1) = O(
√
n).

The following example shows that this is in fact a lower bound on the asymptotic
complexity of computing multi-resolution data.

Suppose that the left topmost corner of the grid has position (0, 0). The node at
row i and column j has position (i, j) and value vij = i

√
n+j. More importantly, this
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is also the rank of the value. Now consider the quadrant with i, j ∈ [
√
n/2,

√
n] and

in particular the node at (
√
n/2,

√
n/2). The minimum of its

√
n/2 neighborhood is

given by v00. The corresponding aggregate of any node in the quadrant at (
√
n/2 +

i,
√
n/2+j) is given by vi,j. Therefore, each such value has to be transmitted a distance

Ω(
√
n). Since at least a constant fraction of the values have to be transmitted this

distance, the lower bound on the message cost is Ω(n
√
n).

4.5 Range queries

The pre-computed data summaries by the hierarchical spatial gossip algorithm can be
useful in answering user queries about aggregates in large regions of the network with
reduced cost. For example, the aggregate for the entire network is available at any
single node. Similarly, it is possible to obtain probabilistic information about a large
region of radius 2i by visiting a single node at its center. If the query requires better
estimates of the aggregate, then it can be answered by making use of the different ODI
synopses computed at different phases of the algorithm. Thus, the query response
mechanism can adapt to the quality of estimate and restriction on pollution desired
by the user.

In the rest of this section we discuss a case where the user wishes to obtain
with high probability the correct ODI synopsis of a rectangular region, without any
pollution. The query consists of an a× b axis aligned rectangular area A, and a small
probability δ. The response to the query is the ODI synopsis s corresponding to a
set S, such that, for any node x, if x ∈ A then x ∈ S with probability at least 1− δ,
and if x /∈ A then x /∈ S. That is, no node outside the region A should be included
in set S, and no node inside A should be excluded with a probability more than δ.
Without loss of generality, we can assume that a ≤ b.

By Theorem 4.3.4, after phase i, the ODI synopsis at any node x includes the value
at any other node inside a disk of radius 2i with a high probability. For distances
measured in the L∞ metric, this disk corresponds to a square of side 2 · 2i. We refer
to such a square as a square of radius 2i (analogous to a disk of same radius), and
use a set of such squares to cover the given query region.

We denote by Bi(x) a square of radius 2
i centered at node x. For a node y ∈ Bi(x),

by Theorem 4.3.4, y /∈ Si(x) with probability O(1/2i). Corresponding to any square
Bi(x), there is a square Gi(x) of radius ηi3.42i, for a proper constant η, such that
for any node y /∈ Gi(x), y /∈ Si(x), by Theorem 4.3.5. If the user query requires no
pollution from outside the query region, the bigger square Gi(x) must be completely
inside the query range.

We refer to a square Bi(x) as a maximal piece if Gi(x) ⊆ A and Gi+1(x) * A, and
i as the maximal level of node x. Let Bp(x) be the largest maximal piece in A, then
formally

p = max
x∈A
{i : Bi(x) is a maximal piece}.

Then, we have

ηp3.42p ≤ a

2
< η(p+ 1)3.42(p+1).
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This implies that p = O(log a). Now we can collect the partial aggregates from these
maximal pieces to answer the query. This can be done in a manner similar to that
in [57] by starting at the boundary and spiraling inward accumulating synopsis for
maximal pieces that together cover the entire region. Additionally, we must ensure
that the probability of any node being excluded in the synopsis is small.

Query Range

Bi(x)

Gi(x)

Spiral
x

Figure 4.2. The spiral used for response for a given query region. Nodes are visited
individually in the shaded region at the perimeter. The figure also shows the maximal
square Bi(x) for a node x of maximal level i, and the corresponding pollution region Gi(x).

We use a spiral path that guarantees the required probability for every node in
the query region. By Theorem 4.3.4, if a node is covered by a maximal piece Bi(·),
the probability of it being included in the corresponding synopsis set Si(·) increases
with the size of Bi(·). This implies that given a δ, nodes more than a certain distance
(depending on delta) away from the boundary are covered by one or more maximal
pieces that provide the required probability. Thus, our spiral starting at the boundary
accumulates synopsis from all individual nodes up to this distance, and makes use of
maximal pieces to obtain the synopsis for the rest of the region. Figure 4.2 shows a
schematic representation of this idea. The following theorem gives the cost for such
a computation.

Lemma 4.5.1. Given a query (A, δ) where A is an a × b rectangular axis aligned
query region, the query can be answered at a cost of O(max(a, b) log4.4 min(a, b) +
max(a, b)(1/δ) log3.4(1/δ)).

Proof: For a node x, let dx be the distance of node x from the perimeter of the
region A. If i is the maximal level of x, then ηi3.42i ≤ dx < η(i + 1)3.42(i+1). This
implies that all nodes of maximal level i occur in an annular rectangular region of
inner boundary (b − 2η(i + 1)3.42(i+1)) × (a − 2η(i + 1)3.42(i+1)) and outer boundary
(b− 2ηi3.42i)× (a− 2ηi3.42i). The thickness of this annular rectangle is O(i3.42i).

To obtain the result with parameter δ, we start at the perimeter of region A, and
spiral inward accumulating the synopsis s. At a distance ηd log3.4 d from the boundary,
a maximal piece of level log d can be used, and the probability of a node at this level
being missed by a maximal piece is O(1/d). By the requirements of the query, it has
to be ensured that δ = O(1/d). Thus, the spiral visits each individual node until the
distance to the boundary reaches O((1/δ) log3.4(1/δ)). At every node x, the synopsis
is updated as s = s⊕ s0(x). The cost of such a path is O((a+ b)1

δ
log3.4(1/δ)).

After this point, the synopsis are updated according to maximal levels. At a
node x of maximal level i, we set s = s⊕ si(x), which is equivalent to the operation
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S = S ∪ Si(x). The lowest maximal level that we can use for the given query is
γ = O(log(1/δ)). The cost incurred to process nodes at any maximal level i ≥ γ is
O((a− i3.42i)i3.4 + (b− i3.42i)i3.4) = O(b · i3.4).

The cost for the spiral covering all maximal levels i for γ ≤ i ≤ p is given by

p
∑

i=log(1/δ)

O(b · i3.4) = O(bp4.4) = O(b log4.4 a).

Thus, the total communication cost for answering the query is
O(max(a, b) log4.4 min(a, b) + max(a, b)(1/δ) log3.4(1/δ)). �

Spatial gossip with no maximum range restriction. We note that the hierar-
chical spatial gossip for phase i makes only one change to the spatial gossip algorithm
as in [80]. Essentially a node chooses its gossip partner with a maximum distance
range 2i. This way we are able to restrict the amount of pollution from distant nodes.
In the above range query, we make use of the fact that the data summaries do not
include information beyond a certain distance threshold (claim 1 in Theorem 4.3.5),
to answer queries with no false positive errors.

For applications in which small false positive errors are not a problem, we can pro-
pose to use the single-phase spatial gossip algorithm to construct the multi-resolution
data representations. Essentially, we just run the standard spatial gossip algorithm
where each node chooses another node with distance d away with probability roughly
1/d3. We run the algorithm for O(log3.4 n) rounds. During the algorithm, we keep
the current aggregation value after round O(i3.4), as the data summary of the 2i-hop
neighborhood. Notice that the probabilistic upper bound on pollution as the second
claim in Theorem 4.3.5 still holds. Thus the ith data summary we compute has a
large probability to include every value inside a 2i-hop neighborhood and not include
values outside 2ii2.4 neighborhood. This alternative solution saves a factor of O(log n)
in the total communication cost, at the cost of more pollution from far away nodes.
For range query, a probabilistic solution with both small false positives and small false
negatives can be obtained. In practice either variation can be adopted, dependent on
application requirements. We evaluated and compared the gain of each variation in
the simulation section.

Error introduced by ODI synopsis. The analysis above considers the probabilistic
error introduced by the gossip. ODI-synopses for aggregates such as SUM, AVG are
probabilistic with small probabilities of error. Thus, the overall system error may
incorporate this factor, which will depend on the actual ODI synopsis used.

4.6 Simulations

In this section, we show that simulation results confirm our expectations on the prop-
erties of the hierarchical spatial gossip. We compare our approach with the naive
flooding and standard spatial gossip (single phase, with no restriction maximum
range) for the total communication cost and the effectiveness of multi-resolution
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representation. We focus on evaluating the performance of our approaches at the
algorithm level, and do not consider the underlying details, such as collisions and
packet loss, at MAC and link layers. We use geographical routing in the simulations.
Each packet transmitted only contains necessary location information and a piece of
aggregate data of the source node. All simulations are done in C++ on a unit-disk
graph model. For the simplicity of explanation, we denote the set of nodes within 2i

distance from node x as Di(x). The aggregate of Di(x) is referred as the aggregate
of resolution level i at node x. We compute the aggregate MIN as an example in
the following simulations, other ODI-synopsis can be evaluated in the same way. All
simulation results are averaged on 10 runs.

4.6.1 Total communication cost

We simulated a grid network where the sensor nodes have a fixed transmission range
2. Nodes can communicate directly if they are within the transmission range of each
other. Keeping the density of the network constant, we vary the number of nodes
from 256 to 4900, and vary the size of the sensor field from 32× 32 to 140× 140.

In the hierarchical spatial gossip, each phase i was terminated when at least
(1−0.5/i) fraction of nodes in the entire senor field correctly computed the minimum
value of resolution level i. This condition was found to provide a reasonable balance
between fast information propagation and low pollution rates.

Figure 4.3 shows the total communication cost in grid networks with various
sizes. Naive flooding incurs dramatically higher cost, because in a network with
n nodes, it requires O(n) transmissions for propagating one piece of data, and O(n2)
transmissions in total. As expected, the hierarchical spatial gossip costs slightly more
than the spatial gossip, but is still almost linear in the network size.

4.6.2 Effectiveness of multi-resolution representation

The approach of flooding the network is communication expensive. But with flooding
we can compute the accurate multi-resolution data summaries by labeling each flood
message with the location of its starting point. Thus, we only compare the effective-
ness of multi-resolution representation of our approach with the single phase spatial
gossip here.
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Figure 4.3. Total communication cost in grid networks with various size.
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Figure 4.4. (i) Maximum distance reached in each phase. (ii) Relative pollution in each
phase.

We compare the standard spatial gossip with hierarchical spatial gossip when
they reach roughly the same state. For example, if round 15 of spatial gossip is the
first round at which at least a fraction of (1 − 0.5/3) nodes correctly compute the
aggregates of resolution level 3, then the states of the 15th round is comparable to
phase 3 in hierarchical spatial gossip. The following simulations are conducted in a
128 × 128 grid network with 4096 sensor nodes. We take one piece of data s of the
node located in the center of the network as a representative, and evaluate the entire
process of its propagation. All other data is propagated in the same way. Intuitively,
an ideal multi-resolution representation should compute aggregates at level i of almost
all nodes belonging to Di, and little or no pollution beyond Di.

The example of one execution in Figure 4.6 shows different phases of the propa-
gation of s in the hierarchical spatial gossip. We can see that the information s is
propagated within a restricted range in each phase and pollutes very few nodes be-
yond a certain distance. In the following, we use three measurements, viz., percentage
of coverage, maximum distance and relative pollution, to compare the performance
of our approach with the spatial gossip.

Coverage. We define the percentage of coverage at distance d as the percentage of
the number of nodes receiving s at distance d from the origin of s. In Figure 4.5, we
show the percentage of coverage in an intermediate phase (phase 4) for both standard
spatial gossip and hierarchical spatial gossip. The result confirms that there is a disk
such that nodes within it receive the value with high probability. And the probability
of a node outside this disk receiving the values falls sharply with the distance from
the origin.

In the hierarchical spatial gossip, all nodes within a disk with radius 8 from the
center receive s. The percentage of coverage decreases quickly as the distance in-
creases, and goes below 10% beyond distance 30. The propagation quickly stops at
distance 44.6. In standard spatial gossip, all nodes within a disk with radius 6 from
the center receive s, but it pollutes the information at distant nodes up to a distance
of 78, almost to the boundary of the network.

Pollution. The small coverage in hierarchical spatial gossip implies low pollution
rates. This is visible in figure 4.5. The single-phase spatial gossip always selects
nodes from the entire network, thus it cannot guarantee a comparable restriction on
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Figure 4.5. Coverage of phase 4.

pollution. We characterize and compare the pollution caused by the two approaches
using two more criteria - maximum distance and relative pollution. We define the
maximum distance of phase i as the distance between the center and the furthest node
receiving s in phase i. The relative pollution of phase i is defined as the ratio of the
number of nodes receiving s beyond Di(center) and the number of nodes receiving s
within Di(center).

Figure 4.4(i) shows the maximum distance reached at the end of each phase in
both approaches. Since we simulate in a 128 × 128 grid network, the farthest point
from the center is at a distance of about 90 units. In the hierarchical spatial gossip,
the maximum distance increases relatively slowly with phases, while in the single-
phase spatial gossip, the data often reaches distant nodes within the first few rounds.
From Figure 4.4(ii), we can see that there is a big gap between the single-phase spatial
gossip and the hierarchical spatial gossip in terms of relative pollution. The peaks
are 9 and 2 respectively. Since we compare the states of the standard spatial gossip
at the point of reaching the same state in the hierarchical spatial gossip, the number
of nodes getting s within Di is roughly the same in both approaches. However, to
build up the same level resolution, the single-phase spatial gossip would pollute data
at about 4 times as many nodes beyond that level than the hierarchical spatial gossip.

Conclusion. Efficient communication and sharp multi-resolution representation are
two conflicting goals. The naive flooding can obtain exact accurate aggregates but
with high communication cost. The standard single phase spatial gossip is commu-
nication efficient, but it is possible that the information propagates to distant nodes
before a sufficient number of nearby nodes gets the data. The hierarchical spatial gos-
sip balances the above two goals by restricting the range of information propagation.
Compared with the single-phase spatial gossip, it achieves a sharper multi-resolution
representation with only a slightly higher communication cost.

4.7 Conclusion

In this chapter, we propose an efficient algorithm with a total communication cost of
O(n polylog n) to extract and construct sharp multi-resolution data representations
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Figure 4.6. Propagation of one piece of data of the node located in the center of the field.

for sensor networks. We believe that the multi-resolution data summary is a fun-
damental data storage paradigm to equip each node with compact sketches of the
global picture of the data field. As the future work we will explore more applications
of multi-resolution data summaries for advanced data processing and validation, as
well as efficient query evaluations.

Appendix

Proof (Lemma 4.3.3): From the setup of the network described in section 4.2,
observe that the density of the node deployment has lower and upper bounds in any
region of the network. In particular, for the following analysis we assume that there
are constants β1, β2 (β1 < β2) such that the number of nodes in any disk of radius
r ≥ 1 lies between β1r

2 and β2r
2.

The probability 1−O( 1
d
) can be rewritten as 1−γg(d) for γ = O(log−2.4− log d

log log d d)
and a suitable function g(d) = O(log2.4 d). And the number of rounds O(log3.4 n) can
be written as τg(d) for a suitable τ = O(log d).

Note that, if in the jth round of phase i a node x selects a node y to gossip, then
Si,j(x) ⊆ Si,k(y), ∀k > j. And this property holds transitively. So, all we need to
prove is that there would be a sequence of gossip selections taking the message from
x to y within g(d) = O(log2.4 d) rounds with probability at least 1 − γg(d). Our
induction hypothesis is that the result holds for distances upto d3/4.

First note that for the base case of r equal to some constant, any constant proba-
bility 1−γg(r) of the value from x reaching y can be obtained with constant k number
of selections by x. This constant will depend on β2, the upper bound on density since
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there can be β2d
2 nodes that are nearer to x than y.

u

yx

u′

d3/4d3/4

B̂

B B′

Figure 4.7. In a time interval τ , the long link uu′ exists with high probability, and links xu
and u′y exist with corresponding high probability.

Consider the disk B̂ of diameter d containing both x and y. Inside B̂, we take
two disks B and B′ of diameter d3/4 containing x and y respectively. Our induction
hypothesis is that the result holds for pairs of nodes d3/4 apart. Thus, g is the recursive
function g(r) = 1 + 2g(r3/4). It can be shown that g(r) = O(log2.4 r).

We divide the time interval τg(d) into intervals τg(d3/4), τ and τg(d3/4). We need
to show, that with high probability, some node u from B selects some node u′ from
B′ to gossip with in a time interval of length τ . The rest follows by induction. The
probability that in τ rounds, no node from B selects any node from B′ to gossip with,
is given by

(

1− cβ1
k3/2

4k3

)τβ1k3/2

≤
(

1

e

)cτβ2
1/4

.

We select τ such that
(

1
e

)cτβ2
1/4 = γ. Then the probability that some node u in B

selects some node u′ in B′ in an interval of τ rounds is at least 1− γ. In other words,
assuming that u has the message at the end of τg(d3/4) rounds, the probability that
some u′ ∈ B′ receives the message in the τ is at least 1− γ.

By induction hypothesis, u receives the message from x with probability 1 −
γg(d3/4) in the first τg(d3/4) rounds. And y receives the message from u′ with probabil-
ity 1−γg(d3/4) in another τg(d3/4) rounds after u′. Thus, the probability that in τg(d)
rounds the message propagates from x to y is at least 1− γ − 2γg(d3/4) = 1− γg(d).

Since γ = O(log−2.4− log d
log log d d) and τ = O( −1

β2
1c
log γ), we have τ = O(log d). There-

fore, in τg(d) = O(log3.4 d) rounds the message travels from x to y with a probability
of 1−O( 1

d
). �
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Part II

Virtual Coordinates: Modifying
Network Geometries
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Chapter 5

Introduction

This second part handles sensor networks through virtual coordinates. Instead of
relying on the default geometric properties of the graph metric, the approach will be
to modify the metric to suit our needs. By modifying the metric, we simplify the
shape of the network to have useful geometric properties. Of course, the shape or the
metric of a network itself cannot be modified without extensive re-wiring or physically
moving the nodes. The method therefore is to use artificial virtual locations unrelated
to a node’s physical placement, and modify that at will. We apply virtual coordinates
to perform easier routing, and for in-network storage.

Ricci flow is a powerful technique in differential geometry. It can be used to
deform the metric and shape of a surface. We use it for our modification of the
network in virtual coordinates. The flow acts locally at every node as an iterative
algorithm, interleaved with communication with neighbors. In this respect, its pattern
of operation is very much like a distributed gossip algorithm. As in the first part,
routing is a reference application. Along with introducing Ricci flow, we demonstrate
its utility in directly enabling greedy routing, which is perhaps the simplest possible
routing scheme.

Greedy routing has received a lot of attention since it was proposed for routing in
ad hoc wireless networks [14,78], due to its simplicity and efficiency. A node forwards
the packet to its neighbor whose distance to the destination is the smallest. Thus
routing decision is made with only local knowledge. On a dense network without holes
greedy routing typically works very well and gives close to optimal routing paths.

A well-known problem with geographical forwarding is that packets may get stuck
at nodes with no neighbor closer to the destination. There have been many ways to
handle this problem, the most well-known one is face routing [14,78,93]. In this paper
we take the approach of constructing a map of the network and finding virtual coor-
dinates for the sensor nodes such that simple greedy routing with virtual coordinates
always succeeds.

The property of Ricci flow that makes greedy routing possible is that the flow
causes the network holes to converge to circular holes in the virtual coordinate. As
will be seen in the following chapter, this suffices for successful greedy routing.

In chapter 7 we extend the virtual coordinate system for better routing and data
storage. The data storage question can be seen as a map from the data space to
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the physical network space - each piece of data is stored somewhere in the network.
We store the data on a covering space of the network. The covering space can be
imagined as the virtual coordinate system of chapter 6 from which the holes have been
practically removed. This provides better load balancing in routing and data storage.
In general, the practical absence of holes goes further in simplifying geometry of the
network, and methods conceived for a flat uniform plane are more readily adaptable
to a space without holes.

The mapping from the logical data space to the physical sensor field, done in a
straightforward manner, often leads to high data concentration on nodes near network
boundaries, simply for the reason that they are adjacent to empty or low density
regions. In GHT, for example, all the data hashed inside a hole will eventually be
mapped to the nodes on the hole boundary, that get a higher storage load. When
GHT exploits the nodes on the boundary of a planar face to also store the data (for
robustness to node failures), the load imbalance is even higher. Similarly for DIM,
the node near a zone empty of nodes will substitute to store the data. Nodes near
hole boundaries store more data and carry more traffic.

When the sensor field is irregular, many geometry based data storage and retrieval
schemes run into problems. As another example, double rulings, or quorum based
schemes, store data on a curve and retrieve data along another curve. As long as
the data retrieval curves intersect with the data storage curve, one can successfully
discover the desired data. When a sensor field has a regular shape (a square region
or a disk, for example), one can design the storage/retrieval curves as the horizon-
tal/vertical lines [105,146,160], or proper circles (great circles through a stereographic
mapping) [133]. Both of them may get stuck at network boundaries. Of course one
can use various hole bypassing techniques to get around the holes [43, 78]. This may
also lead to higher storage and traffic load on the hole boundaries – the same problem
encountered earlier.

The imbalance of storage or traffic load adversely affects the system performance.
On one hand, the nodes with high load are bottleneck nodes. They carry out more
tasks than average. If the nodes are battery powered, this means the highly loaded
nodes would run out of battery sooner. When these heavily used nodes are on hole
boundaries the problem is worse, as holes are enlarged and the network may be
disconnected prematurely. In addition, the nodes with high traffic load denote the
bottleneck of communication. Spatial diversity is not best utilized to avoid wireless
interference, leading to lower network throughput.

5.1 Research review

Using virtual coordinates for greedy routing was first used in NoGeo routing proposed
by Rao et al. [129]. In this method the network boundary is pinned on a convex planar
curve (such as a square or a circle) and the interior nodes are embedded by using the
rubberband representation [103]. The rubberband representation is obtained by each
node (that is not fixed) running an iterative algorithm of putting itself at the center
of mass of the neighbors’ current locations until convergence.
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Motivated by NoGeo, a few theoretical works ask under what conditions em-
bedding of a given graph in the plane exists such that greedy routing always
works [22, 121]. Such an embedding is called a greedy embedding. It is known that
not every graph admits a greedy embedding, for example a star with 7 leaves [121].
Some graphs are known to have greedy embeddings, for example, any graph with
a Hamiltonian path, any complete graph, any 4-connected planar graph (since they
are Hamiltonian [148]), and Delaunay triangulations. It still remains open to fully
characterize the class of graphs that admit greedy embeddings.

Papadimitriou and Ratajczak [121] made the conjecture that any planar 3-
connected graph1 has a greedy embedding in the plane. Dhandapani discovered that
any planar triangulation (without holes) admits a greedy embedding in the plane
for which greedy forwarding always succeeds [33]. Recently the 3-connected graph
conjecture was proved to be true by Leighton and Moitra [97], and independently by
Angelini et al. [8]. Later the algorithm in [97] was improved such that the coordinates
use O(log n) bits for a graph with n vertices [60].

A recent observation by Kleinberg [89] shows that if we use hyperbolic space then
greedy routing becomes easy. He showed that any connected graph has an embedding
in the hyperbolic space such that by using the hyperbolic distance greedy routing from
any node to any node always succeeds. The intuition is to embed a tree in a hyperbolic
space such that greedy routing works on the tree. Since any connected graph has a
spanning tree, greedy routing works at all times. A similar idea was used in [39].

For all the virtual coordinates schemes, one needs to have a location service such
that any node can inquire the virtual coordinate of any other node in the network.
Efficient location services for sensor networks have been developed [99, 130]. Such
location services can be used in routing with virtual coordinates developed in this
paper. The virtual coordinate addresses in this case, as in [129], are simple euclidean
coordinates of the form (x, y). The service simply needs to have tables of such coor-
dinates for the nodes.

Prior research on sensor networks have proposed the ‘data-centric’ notion [74,130]
for sensor network design. The generation, collection, processing, storage and retrieval
of sensor data are the most critical functions around which the network protocols
should be designed. As the state of the art, networks in the size of thousands of
sensor nodes are deployed [1, 113] with the target size of hundreds of thousands in
the next few years. As networks grow large in size, centralized data collection has a
fundamental bottleneck at nodes near the sink. Distributed in-network data storage
in which there is no single sink is more desirable for its robustness.

For distributed in-network storage, data is mapped to rendezvous sensors for stor-
age and processing. Such a mapping is often obtained by considering data in a logical
space with indices mapped to geographical locations. For example, in geographical
hash table (GHT) [130], data keys are hashed to a random geographical location in
the sensor field and the sensor node closest to the hashed location is denoted as the
home node and stores the data. In DIM [100], data in a multi-dimensional attribute
space is mapped to the sensor field by using a quad-tree, such that data with nearby

1A graph is 3-connected if it remains connected after the removal of any 2 nodes.
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indices are mapped to physically nearby zones, in order to support range queries.
Variations of quadtrees have also been used in other schemes to organize data and
the corresponding storage [53, 57,63].
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Chapter 6

Ricci Flow and Greedy Routing

Greedy forwarding with geographical locations in a wireless sensor network may fail
at a local minimum. In this chapter we propose to use conformal mapping to com-
pute a new embedding of the sensor nodes in the plane such that greedy forwarding
with the virtual coordinates guarantees delivery. In particular, we extract a planar
triangulation of the sensor network with non-triangular faces as holes, by either using
the nodes’ location or using a landmark-based scheme without node location. The
conformal map is computed with Ricci flow such that all the non-triangular faces are
mapped to perfect circles. Thus greedy forwarding will never get stuck at an inter-
mediate node. The computation of the conformal map and the virtual coordinates
is performed at a preprocessing phase and can be implemented by local gossip-style
computation. The method applies to both unit disk graph models and quasi-unit disk
graph models. Simulation results are presented for these scenarios.

6.1 Introduction

To find virtual coordinates for the sensor nodes in a network, we look at a more
fundamental problem of studying maps between spaces. This is motivated by the fact
that most practical applications of sensor networks require sufficient sensor density, for
both sensing coverage and system robustness/redundancy to cope with node failure.
Taking the view point of maps of spaces also introduces some insensitivity to link
dynamics and local disturbances. In a wireless network, communication links are
volatile and may go up and down. Nodes may also die or be replaced periodically.
The shape of the geometric region for which the sensors are deployed and aim to
monitor, is much more stable, provided that the sensor network still has sufficient
coverage for its normal functioning.

The question we ask is, given a domain surface R ⊆ R2, is there a continuous
map f : R → D such that greedy routing on D always succeeds? If the domain
R is a simply connected convex region (i.e., with no holes), then the identity map
is good, since greedy routing is essentially straight line routing in R and always
successfully delivers a message. If the domain R has holes, especially some concave
ones, then we need a non-trivial map to prevent greedy routing from getting stuck at
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hole boundaries. In fact, we would like to map the domain R to a domain D such
that all the holes in D are circular — since greedy routing never gets stuck at circular
hole boundaries. Thus the map that achieves this will produce virtual coordinate
system for the nodes with guaranteed delivery for greedy routing.

The map we will use is a conformal map, as shown in Figure 6.1. A conformal map
between two surfaces preserves angles. For any two arbitrary curves γ1, γ2 on the sur-
face S, a conformal map φ maps them to φ(γ1), φ(γ2) with the same intersection angle
as that of γ1, γ2. According to conformal geometry theory, a genus zero surface with
multiple boundaries (a topological multi-holed annulus) can be conformally mapped
to the unit disk with circular holes, as shown in Figure 6.1. Such a conformal map-
ping is unique up to a Möbius transformation in each homotopy class of degree one
mappings. Recent advances in differential geometry, in particular, on Ricci flow lead
to computationally efficient algorithms to construct such kind of conformal mapping.

Ricci flow was introduced by Richard Hamilton for Riemannian manifolds of any
dimension in his seminal work [66] in 1982. Intuitively, a surface Ricci flow is the
process to deform the Riemannian metric of the surface. The deformation is propor-
tional to Gaussian curvatures, such that the curvature evolves like the heat diffusion.
It has been considered a powerful tool for finding a Riemannian metric satisfying the
prescribed Gaussian curvature in mathematics and has been applied in the proof of
the Poincaré conjecture on 3-manifolds [123–125]. Chow and Luo [25] proved a gen-
eral existence and convergence theorem for the discrete Ricci flow on surfaces, and
proved that the Ricci energy is convex. Jin et al. provided a computer algorithm
in [75].

6.1.1 Our contribution

We investigate in this paper algorithms for computing a conformal map of a sen-
sor field and the application in enabling greedy routing. We first extract from the
communication network a planar graph H such that all non-triangular faces map to
network holes that will be later mapped to circular holes in the embedded domain
D. Ideally these holes in H are also real holes in the network/environment. Thus the
triangulated mesh H is a discrete representation and approximation of the underlying
domain R. We show that when the sensors are deployed densely in R such that any
disk with diameter 1 has at least one sensor inside, the unit disk graph on the nodes
contains such a triangulation H of R that can be computed locally. Note that the
density requirement here is simply a condition for detecting the topology faithfully
and is not necesaary for successful routing. We present a method to construct a suit-
able triangulation from any unit disk graph. Similar results can be proved as well for
certain quasi-unit disk graphs (when there must be a link between two nodes within
distance 1/α < 1 and no link when distance is greater than 1). When node locations
are not known, we use a landmark-based scheme as in [44, 50] to locally select land-
marks of constant bounded density (i.e., the Voronoi diagram of each landmark has
O(1) nodes) and compute a planar triangulation on the landmarks. The conformal
map is computed on this triangulation. The planar triangulation algorithm for a
sensor network may be of interest by itself since many surface processing algorithms
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assumes a nice triangular mesh and now can be applied in the network setting.
The triangulation and conformal map computation are performed as a preprocess-

ing phase during network setup. There are two major advantages of using Ricci flow
method for computing the virtual coordinates: distributed nature and conformality.

1. Ricci flow algorithm is intrinsically distributed, each node only requires the
information from its one-hop neighbors, and the curvature at that node can be cal-
culated, the metric deformation is proportional to the curvature, therefore the flow
can be performed completely in parallel.

2. Asymptotically, Ricci flow leads to a conformal mapping. We set the virtual
edge lengths of the triangulation to be one, therefore each triangle is an equilateral
one in the original triangulation.

The virtual coordinates are disseminated to every node with which they can use
greedy routing for point-to-point message delivery. In our simulation section we
demonstrate the efficiency of conformal map computation, in terms of the number of
messages used per node, different network topologies and node density.

On a last note, we remark that the rubberband representation used in NoGeo
algorithm [129] is essentially the discrete version of finding a harmonic map between
the simply connected domain defined by the sensor field outer boundary and a convex
planar domain. However, harmonic maps for multi-holed annulus can not
be guaranteed to be a diffeomorphism. Therefore holes in the network are
not handled properly. In particular, near a non-convex hole, the network may be
folded over itself, causing the routing to fail. Our algorithm can be considered as
an extension of Dhandapani’s result that any triangulation (without holes) admits
a greedy embedding. Our method considers triangulation of a domain with possible
holes and converges to an embedding of the network with holes mapped to circles
as long as such embedding exists [69]. The existence of embedding can be verified
by the combinatorics of the network as explained in [5]. An embedding can always
be ensured by appropriate local refinements to the triangulation. For conventional
methods, it is more challenging to handle dense networks. Our method is especially
good at handling dense networks. In fact, our discrete mapping converges to smooth
conformal mappings with the increase of density. The proof can be found in [15].

In the next section we will briefly introduce the theory behind the Ricci flow algo-
rithm to compute a conformal map. Readers may also choose to read the algorithm
section first in which we introduce the implementation of the algorithm in a network
setting and the entire pipeline for computing virtual coordinates for greedy routing.

6.2 Theory

In this section, we introduce several important concepts in differential geometry and
the theory of the Ricci flow.
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(a) Face surface (b) Conformal Mapping (c) Möbius transformed (d) Texture Mapping

Figure 6.1. Conformal Mapping. Genus zero surface (a) with multiple boundaries can
be mapped to the unit disk with circular holes conformally. Two such conformal mappings
differ by a Möbius transformation are shown in (b) and (c). The checker board image
is applied for texture mapping in (d), where all the right angles of the checkers are well
preserved, therefore, the mapping is conformal.

6.2.1 Riemannian metric and curvature

Suppose a surface S is embedded in R3, then it has a Riemannian metric, induced
from the Euclidean metric of R3. The metric tensor is denoted by g = (gij).

Riemannian metric determines the Gaussian curvature K and the geodesic cur-
vature k . Gauss-Bonnet theorem states that the total curvature is a topological
invariant

∫

S

KdA+

∫

∂S

kds = 2πχ(S), (6.1)

where ∂S represents the boundary of S, χ(S) is the Euler characteristic number of
S.

Suppose u : S → R is a scalar function defined on S, then it can be verified that
e2ug is another Riemannian metric on S, denoted by ḡ. It can be proven that angles
measured by g are equal to those measured by ḡ. Therefore, ḡ is conformal to g and
now e2u is called the conformal factor. The Gaussian curvatures are related by

K̄ = e−2u(−∆u+K), (6.2)

where ∆ is the Laplace-Beltrami operator under the original metric g. Similarly, the
geodesic curvatures satisfy

k̄ = e−u(∂nu+ k), (6.3)

where n is the tangent vector orthogonal to the boundary. According to Gauss-Bonnet
theorem (equation 6.1), the total curvature doesn’t change.

6.2.2 Surface Ricci flow

Suppose S is a smooth surface with Riemannian metric g. The Ricci flow is the
process to deform the metric g(t) according to its induced Gaussian curvature K(t),
where t is the time parameter

dgij(t)

dt
= −2K(t)gij(t). (6.4)
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Suppose T (t) is a temperature field on the surface. The heat diffusion equation is
dT (t)/dt = −∆T (t), where ∆ is the Laplace-Beltrami operator induced by the surface
metric. The temperature field becomes more and more uniform with the increase of
t, and it will become constant eventually.

In a sense, the curvature evolution induced by the Ricci flow is exactly the same
as heat diffusion on the surface, as follows:

K(t)

dt
= −∆g(t)K(t), (6.5)

where ∆g(t) is the Laplace-Beltrami operator induced by the metric g(t). We can
simplify the Ricci flow equation 6.4. Let g(t) = e2u(t)g(0), then Ricci flow is

du(t)

dt
= −2K(t). (6.6)

The following theorems postulate that the Ricci flow defined in 6.4 is convergent
and leads to the conformal uniformization metric.

Theorem 6.2.1 (Hamilton 1982). For a closed surface of non-positive Euler char-
acteristic, if the total area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is constant everywhere.

Theorem 6.2.2 (Chow [24]). For a closed surface of positive Euler characteristic,
if the total area of the surface is preserved during the flow, the Ricci flow will converge
to a metric such that the Gaussian curvature is constant everywhere.

The corresponding metric g(∞) is the uniformization metric. Moreover, at any
time t, the metric g(t) is conformal to the original metric g(0).

The Ricci flow can be easily modified to compute a metric with a prescribed
curvature K̄, and then the flow becomes

dgij(t)

dt
= 2(K̄ −K)gij(t). (6.7)

With this modification, any target curvatures K̄, which are admissible with the Gauss-
Bonnet theorem, can be induced from the solution metric g(∞).

6.2.3 Discrete Ricci flow

Smooth surfaces are often approximated by simplicial complexes (triangle meshes).
We consider such a triangle mesh Σ with vertex set V , edge set E and face set F .
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Figure 6.2. The circle packing metric.

Discrete Riemannian Metric In the discrete setting, the edge lengths on a mesh
Σ simply define the Riemannian metric on Σ,

l : E → R+,

such that for a face fijk the edge lengths satisfy the triangle inequality: lij + ljk > lki.
The discrete metric determines the angles. Suppose we have a triangle fijk

with edge lengths {lij , ljk, lki}, and the angles against the corresponding edges are
{θk, θi, θj} (see figure 6.2). By the cosine law,

l2ij = l2jk + l2ki − 2ljklki cos θk, (6.8)

The discrete Gaussian curvature is defined as the angle deficit on a mesh,

Ki =

{

2π −∑fijk∈F θjki , interior vertex

π −∑fijk∈F θjki , boundary vertex
(6.9)

where θjki represents the corner angle attached to vertex vi in the face fijk.
In the discrete setting, the Gauss-Bonnet theorem (equation 6.1) still holds on

meshes with the discrete Gaussian curvatures, as follows.
∑

vi∈V
Ki = 2πχ(M).

The circle packing metric was introduced [145,151] to approximate the conformal
deformation of metrics. Let us denote by Γ a function which assigns a radius γi to
each vertex vi.

Γ : V → R+

We also define a weight function:

Φ : E → [0,
π

2
].

by assigning a positive number Φ(eij) to each edge eij. The pair of vertex radii and
edge weight functions on a mesh Σ, (Γ,Φ), is called a circle packing metric of Σ.
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Figure 6.2 illustrates the circle packing metric. Each vertex vi has a circle whose
radius is ri. On each edge eij, an intersection angle φij is defined by two circles of vi
and vj, which intersect with or are tangent to each other. Two circle packing metrics
(Γ1,Φ1) and (Γ2,Φ2) on a same mesh are conformal equivalent, if Φ1 ≡ Φ2. Therefore,
a conformal deformation of a circle packing metric only modifies the vertex radii.

For a given mesh, its circle packing metric and the edge lengths on the mesh can
be converted to each other by using cosine law.

l2ij = γ2
i + γ2

j + 2γiγj cosφij (6.10)

Let ui to be log γi for each vertex. Then, the discrete Ricci flow is defined as
follows.

dui(t)

dt
= (K̄i −Ki) (6.11)

Discrete Ricci flow can be formulated in the variational setting, namely, it is a
negative gradient flow of some special energy form.

f(u) =

∫ u

u0

n
∑

i=1

(K̄i −Ki)dui, (6.12)

where u0 is an arbitrary initial metric. The integration above is well defined, and
called the Ricci energy. The discrete Ricci flow is the negative gradient flow of the
discrete Ricci energy. The discrete metric which induces k̄ is the minimizer of the
energy.

Computing desired metric with prescribed curvature K̄ is equivalent to minimizing
the discrete Ricci energy. The discrete Ricci energy is strictly convex (namely, its
Hessian is positive definite). The global minimum uniquely exists, corresponding
to the metric ū, which induces k̄. The discrete Ricci flow converges to this global
minimum [25].

Theorem 6.2.3 (Chow & Luo: Euclidean Ricci Energy). The Euclidean
Ricci energy f(u) on the space of normalized metric

∑

ui = 0 is strictly convex.

The convergence rate of the discrete Ricci flow using equation 6.11 is governed by
the following theorem

Theorem 6.2.4 (Chow & Luo). The Ricci flow 6.11 converges exponentially fast,

|K̄i −Ki(t)| < c1e
−c2t, (6.13)

where c1, c2 are two positive constants.

6.3 Algorithms

This section describes the distributed algorithm to compute the virtual coordinates
corresponding to the conformal map. The first step is to obtain a triangulation from
the network that is a compact manifold with boundaries and is homeomorphic to a
bounded subset of R2. Later, we describe the algorithm to compute the conformal
map of this triangulation.

71



(a) Nodes (b) Triangulation (c) Virtual Coordinates (d) Zoomed in

Figure 6.3. Algorithm pipeline. Given a network in (a), a triangulation is constructed in (b).
The boundaries are traced as γk’s in (b). A cut between γ1 and γ2 is located as η. The triangular
mesh is sliced open along η. By using Ricci flow the sliced mesh is flattened to a parallelogram in
(c), then mapped to the unit disk with circular holes in (c). Local region is zoomed in as shown in
(d), which shows all the triangles are with acute angles.

6.3.1 Obtain a triangulation

We describe methods for obtaining a triangulation in cases where the nodes are aware
of their locations as well as in cases where locations are not available. The methods
apply to quasi-unit disk graphs with suitable parameter. For unit disk graphs in the
plane, the only requirement is that the graph should be connected. We denote the
set of neighbors of a node u as N(u).

Location-based triangulation

A method for computing a triangulation of a unit disk graph through local computa-
tions is described in detail in [58]. This graph is called the restricted delaunay graph
(RDG). The essential method is as follows:

1. At each node u, compute the delaunay triangulation of N(u)∪{u}, denote this
triangulation as T (u).

2. For each node u, if an edge (u, v) is in T (u), then it is valid if and only if (u, v) ∈
T (x), for all common neighbors x of u, v, i.e. ∀x ∈ (N(u)∪{u})∩ (N(v)∪{v}).

3. All invalid edges are removed.

It is proved in [58] that RDG is connected and planar. The essential reason being
that for a pair of crossing edges of a unit disk graph, at least one of the four nodes
that lie at the end points of the edges is aware of both the edges, and hence can
force the crossing to be removed. Our goal here is to obtain virtual coordinates for
routing, but we would like to approximate the true topology of the network as closely
as possible. The following theorem suggests that at least for dense sensor networks,
the method above preserves the topology:

Lemma 6.3.1. If a bounded set R ⊆ R2 is covered by sensors P such that any disk
with unit diameter centered inside R has at least one node inside, any non-triangular
face in the RDG computed above is of distance at most 1/2 away from the boundary
of R.
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Proof: Denote by D(P ) the Delaunay triangulation on P and D′(P ) the graph with
all the Delaunay edges on P with lengths smaller than 1. It has been shown in [58]
that the restricted Delaunay graph RDG computed is a planar graph that includes
D′(P ). Therefore, any non-triangular face in the RDG must map to a non-triangular
face in D′(P ). In the following we argue that there can not be a non-triangular
face ‘deeply inside’ the region R. Consider any Delaunay triangle △uvw in D(P ),
if its circumcircle C is centered inside R, then the circumcircle has radius at most
1/2 — otherwise the sensor density requirement will put one node inside C, which
contradicts with the property that the circumcircle of a Delaunay triangle is empty of
any other nodes. This shows that all the three delaunay edges of △uvw have length
at most 1 and are then inside D′(P ). Therefore any Delaunay triangule △uvw not
in D′(P ) must have its circumcircle centered outside R. The circumcircle has radius
greater than 1/2 — otherwise the three edges are no longer than 1 hence the triangle
△uvw is in D′(P ). Now we argue that all three nodes u, v, w are within distance 1/2
from the boundary of R. Otherwise, we can shrink the circumcircle C of △uvw to a
unit diameter circle, completely inside C, with its center within R. By the density
requirement there must be a node inside the shrunk circle, thus inside C. This again
contradicts the Delaunay triangulation property. �

The above Lemma shows that the RDG we get indeed provides a triangular mesh
that covers the region R′ = {p|p ∈ R, d(p, ∂R) ≤ 1/2}, which does not include the
points within 1/2 distance from the boundary ∂R.

This distributed algorithm can be adapted to produce a planarization algorithm
for connected quasi unit disk graphs (quasi-UDG) 1 of parameter α ≤

√
2. This is

done as follows:

1. Compute the RDG with 1/α sized disks for neighborhoods instead of unit disk
neighborhoods. The RDG algorithm applies without modification, hence pro-
duces a planar graph. The planar graph produced may not be connected. It is
possible that connectivity of the quasi-UDG relied on some edges longer than
1/α.

2. Restore connectivity using edges of quasi-UDG.

The following method shows that connectivity can be restored without sacrificing
planarity.

Restoring connectivity. First, observe that any two nodes that are within distance
1/α must be in the same connected component of the RDG. Therefore, if RDG has
more than one connected component, then somewhere there must be a quasi-UDG
edge (u, v) longer than 1/α where u and v belong to different components. If no edge
of the current RDG crosses (u, v), we can simply add the the edge, and connect u
and v.

1In a quasi unit disk graph with parameter α ≥ 1, if two nodes are within distance 1/α, an edge
between the two exists, if they are at a distance more than 1, the edge does not exist; while for other
distances, the existence of the edge is uncertain.
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Figure 6.4. Restoring connectivity. Dark edges are RDG edges, light blue edge is a quasi-UDG edge
not in RDG. Dotted lines are virtual edges. (A) Crossing edge belonging to connected component
of u (B) Crossing edges belonging to different connected components.

If an existing edge (x, y) in RDG crosses (u, v) at point p, then one of the nodes
x, y must be within a distance 1/α to one of the nodes u, v, and therefore neighbors
in quasi-UDG [91]. Without loss of generality, we assume that u and x are within
distance 1/α. Then these nodes are in the same connected component of RDG. Note
that by this argument, for any RDG edge crossing (u, v) its endpoints must belong
to the connected component of u or v.

Now, consider the scenario of 6.4(A), where the crossing edges belong to the
connected component of u. If there are more than one such edges, we consider the
edge whose intersection with (u, v) is nearest to v. Observe that by construction, no
edge crossing (x, y) can exist in RDG. To restore connectivity, we insert the edge (x, v).
This can be done without compromising planarity, since no RDG edge intersects (p, v)
or (x, p), we can lay down an edge that is infinitesimally close to the path (x, p, v),
that does not intersect any RDG edge. Note that we only need a combinatorial
planar graph and do not require a straight-line planar embedding under the original
coordinates.

If another crossing edge such as (w, z) exists, in the connected component of v,
then we similarly choose to insert the virtual edge (x, w) via the corresponding path
(x, p, q, w).

These virtual edges do not correspond to real quasi-UDG edges, communication
between their endpoints are achieved in the network by routing through the quasi-
UDG edge (u, v).

Orientation and degeneracy removal. We need an oriented planar triangulation
to obtain a manifold on which the conformal map can be applied. Therefore, we start
with detecting all the triangles (K3) in G. This is done simply by gathering 2-hop
information at each node. Based on this, we find boundary edges:

Definition 6.3.2. Boundary Edge. Any edge that does not belong to exactly 2
different triangles.

The boundary cycles can now be determined by traversing connected components of
boundary edges. The boundary cycles bound the holes in the network.

Then we start with any triangle in G, and assign an arbitrary orientation to it.
This determines orientations of all faces of G, and are computed distributedly as
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Figure 6.5. Handling degeneracy. (A) Holes sharing a boundary vertex, (B) Holes sharing a
boundary edge and (C) triangulation using virtual nodes.

follows:

1. Once a triangle is oriented, any triangle adjacent to it can compute its own
orientation, by orienting the shared edge in the opposite direction.

2. Once an edge on a particular boundary cycle has been identified, that determines
the orientation of the hole, and is propagated along the boundary cycle.

Observe that given any vertex, the orientation of edges and faces incident on it,
determine a cyclic (clockwise or counterclockwise) order of incident edges.

The planar graph consists of two types of oriented faces - triangles and holes. For
our purposes, it is necessary that the union of the triangles form a 2-manifold. At this
point, however, the planar graph may not contain such a triangulation. In particular,
it is possible that an edge may belong to the boundary cycle of two different holes -
see Figure 6.5(B).

We handle such a case by creating triangulation of virtual nodes (Figure 6.5(C)).
First, the degenerate edge (v1, v2) is copied to a new edge (v′1, v

′
2). Then we add in

edges (v1, v
′
1), (v2, v

′
2) and diagonal (v1, v

′
2). Note that to maintain a triangulation,

one of the edges incident on each of v1 and v2 must be duplicated. For example,
in Figure 6.5(C), the edge e has been duplicated. Each other edge incident on an
original vertex is assigned to one of the copies, the assignment being uniquely deter-
mined by the cyclic order defined by the orientation, and the choice of the duplicated
edge. Orientation of all new triangles and edges are also determined uniquely by the
orientation of existing faces.

A degeneracy of the form of Figure 6.5(A) is also possible, where two holes share
a common boundary vertex. In this case, we duplicate the degenerate vertex v into
v1, v2 and connect by an edge. Then we repeat the method for the previous case.

Note that we need not assign coordinates to the new virtual nodes, since we are
working purely on the graph structure, and our mapping algorithm does not require
coordinates.

This method extends to chains of degenerate edges, dangling edges and to multiple
holes sharing a vertex. We omit the details at this point, and skip ahead to the next
topic.

Landmark-based triangulation

In a network where location information is not available, we have to rely only on the
hop-count distance metric to obtain a triangulation. This is achieved by means of the
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landmark Voronoi diagram. From the landmarks, we flood messages, that measure
distance of other nodes from the landmarks. This creates a set of Voronoi cells in
the graph. The adjacency of these cells give rise to a dual combinatorial delaunay
complex (CDC).

Landmark based Voronoi and delaunay graphs have been used to do routing in [44,
50].

We follow the approach of [50, 51], to select landmarks. The idea is to choose
landmarks such that:

• Any two landmarks are k hops apart (for a small k = 5 or 6).

• Any non-landmark node is within k hops of some landmark.

This method requires a flood from a landmark to last only k hops, hence the over-
all cost is linear for a network of bounded density. This produces a dense set of
landmarks. But the CDC obtained from the adjacency is not planar. The following
method for obtaining a planar graph from the CDC is described in detail in [51]:

An edge of CDC is valid if there is a path between the corresponding landmarks a
and b such that no node on the path has a neighbor that belongs to the Voronoi cell
of any landmark other than a and b. The graph formed by the set of valid edges is
called the Combinatorial delaunay map (CDM).

This method is proved to produce a planar graph from a quasi unit disk graph
(α ≤

√
2). At this point we can apply the methods from the previous discussion

to obtain a triangulation. While this landmark based method is more natural and
intuitive for large scale networks of high density, it applies in principle to any network
corresponding to a suitable quasi unit disk graph. The theory suggests that in certain
cases it may be necessary to refine the triangulation further. However, this was not
necessary in any of the networks we have tried.

6.3.2 Other triangulation methods

The algorithms above both require a quasi-UDGmodel and thus does not work when a
sensor network does not follow the quasi-UDG assumption. The following algorithms
compute planar graphs without such assumptions.

Kim et al. [62, 83] addressed the problem that planarization techniques using
relative neighborhood graph or Gabriel graph fail when the communication model
does not comply to the unit disk graph assumption. They developed a cross link
detection protocol to probe each link, detect and remove possible crossings with other
links. The resulting graph is combinatorially planar.

Zhang et al. [163] developed a location-free algorithm to extract a planar subgraph
from the connectivity graph. The main idea is to planarize adjacent layers of a shortest
path tree. Again this method does not require a unit disk graph model or quasi-UDG
model.

All these algorithms above can be used in our method. In our implementation,
we have used both the restricted Delaunay graph approach and the landmark based
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triangulation approach [51]. But all the other schemes can also work well with our
framework. In the worst case when a triangulation is not available, for example, when
crossing edges are introduced, the result of the Ricci flow algorithm is theoretically
unpredictable.

6.3.3 Computing the conformal map

Figure 6.3 shows the algorithm pipeline for computing the conformal mapping.

Algorithm description The conformal mapping can be achieved by using the dis-
crete Ricci flow algorithm. The algorithm only requires the connectivity information.
The locations of nodes are irrelevant, and all edges are assumed to be of length 1.

Discrete Ricci flow Each node vi is associated with a disk, with radius eui . For
simplicity, the length of each link connecting vi and vj equals to eui + euj . The corner
angles of each triangle can be estimated using cosine law by each node locally. The
curvature can be computed by each node directly. Then ui is modified proportionally
to the difference between the target curvature and the current curvature. Once the
curvature error is less than a given threshold, the process stops. The details can be
found in the algorithm 1.

Flattening The virtual coordinates can be estimated by flattening triangle by tri-
angle using the resulting metric (edge length) from the Ricci flow algorithm. First,
the root face is chosen. Given three edge lengths of the root triangle [v0, v1, v2], the
node coordinates can be constructed directly. Then the neighboring triangle of the
root, e.g. [v1, v0, vi], can be flattened, the virtual coordinates of vi is the intersection
of two circles, one is centered at p0 with radius l0i, the other is centered at p1 with
radius l1i. Furthermore, the normal of the triangle [v1, v0, vi] is consistent with the
root triangle. In similar way, the neighbors of the newly flattened triangles can be
further embedded. The whole network can be flattened by the flooding process. The
details can be found in the algorithm 2.
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Algorithm 1 Discrete Ricci Flow

Require: Triangular Mesh M , Target curvature for each vertex k̄i. Error threshold
ǫ. Step length δ.

Ensure: Discrete metric (edge lengths) satisfying the target curvature.
1: for all vertex vi, ui ⇐ 0
2: while true do
3: Compute edge length lij for edge [vi, vj],

lij = eui + euj

4: Compute the corner angle θjki in triangle [vi, vj, vk],

θjki = cos−1
l2ij + l2ki − l2jk

2lijlki

5: Compute the curvature ki at vi

ki =

{

2π −∑jk θ
jk
i , vi 6∈ ∂M

π −∑jk θ
jk
i , vi ∈ ∂M

6: if max |k̄i − ki| < ǫ then
7: return The discrete metric {lij}.
8: end if
9: Update ui

ui ⇐ ui + δ(k̄i − ki)

10: end while

Conformal Mapping Given a triangular mesh M , which is a multi-holed annu-
lus (genus zero surface with multiple boundaries), using above algorithm it can be
mapped to a canonical unit disk with circular holes. Furthermore, the mapping is
an approximation of a conformal mapping. In smooth case, the conformal mapping
is unique upto a Möbius transformation as shown in Figure 6.1. In the following
algorithm, the Möbius ambiguity is removed.

First, the boundary loops ofM are traced, and sorted by their lengths decreasingly
using hop distance, denoted as γk, where k is from 1 to n, as shown in Figure 6.3
frame (b). Second, the target curvature is set, such that all interior nodes have zero
curvatures, nodes on γ1 and γ2 are of zero curvatures also. Nodes on γk, k > 2 has the
target curvature −2π

|γk| , where |γk| denotes the length of γk. The edge lengths satisfying
the target curvatures are computed using the Ricci flow algorithm.

78



Algorithm 2 Flattening

Require: Triangular Mesh M , Discrete metric {lij} with zero curvatures on all in-
terior vertices.

Ensure: Virtual coordinates for each vertex.
1: for each node vi, label vi as un-accessed
2: flatten the first triangle [v0, v1, v2], such that

p0 ← (0, 0), p1 ← (l01, 0), p2 ← l20(cos θ
12
0 , sin θ120 ),

label v0, v1, v2 as accessed.
3: for each un-accessed node vi, check all its neighboring faces [vi, vj , vk], if vj, vk

have been accessed, then pi is the intersection point of two circles

|pi − pj| = lij , |pi − pk| = lki,

furthermore (pj − pi)× (pk − pi) > 0. Label vi as accessed.

Third, a shortest path η from γ1 to γ2 is traced, suppose η intersects γ1 and γ2
at v1, v2 respectively. M is sliced along η to form another mesh M̃ , vk is split to
v1k, v

2
k ∈ M̃, k = 1, 2. The edge lengths are copied from M to M̃ , M̃ is flattened to

the plane. The virtual coordinates of v1k, v
2
k, k = 1, 2 form a parallelogram. Without

loss of generality, v11, v
2
1 are mapped to the y-axis and their distance is h , as shown in

Figure 6.3 frame (c). Then by the following conformal map e
2πz
h , M̃ is mapped to the

canonical unit disk with circular holes, as shown in Figure 6.3 frame (c). Then the
virtual coordinates of nodes are copied from M̃ to M . This algorithm guarantees to
map γ1 and γ2 to concentric circles, and the only ambiguity left is a rotation. Detailed
description can be found in algorithm 3.

In practice, in order to make the inner holes more circular, the target curvatures
of vj ∈ γk, k > 2 can be updated and more iterations of Ricci flow algorithm are
performed. The target curvatures can be updated using the following formula

k̄j = −2π
lj−1 + lj
∑

ei∈γk li

where lj and lj−1 are the current edge lengths of edges adjacent to vj, li is the current
edge length of ei which is in the boundary γk. In general, 4 or 5 iterations are good
enough. Figure 6.3 frame (c) and (d) show the computational result of this algorithm.
In (c), all the boundaries become circular, in (d), all the triangle corners are acute,
the triangulation is with good quality.
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Algorithm 3 Conformal Mapping

Require: Triangular Mesh M , genus zero with multiple holes.
Ensure: Virtual coordinates pj for each node vj, all the boundaries are circular.
1: locate all the boundaries γ1, γ2, · · · , γn, sorted increasingly according to their

lengths using the hop distance.
2: set target curvature,

k̄i =







0 vi 6∈ ∂M
0 vi ∈ γ1 ∪ γ2

−2π
|γk| vi ∈ γk, k > 2

3: Compute the metric using Ricci flow algorithm 1.
4: compute the shortest cut from γ1 to γ2, denoted as η, η intersects γ1, γ2 at v1, v2

respectively.
5: slice M along η to get another mesh M̃ , vk is split to two nodes v1k, v

2
k, where

k = 1, 2.
6: compute the virtual coordinates of M̃ using algorithm 2, such that p11, p

2
1, p

1
2, p

2
2

form a parallelogram. p11, p
2
1 are along y-axis. The distance between them is h.

7: for each node vj ∈M , there exists a corresponding node ṽj ∈ M̃ , pj = (xj, yj),

pj ← e
2π
h
(xj+iyj)

Robustness The accuracy of the computation is mainly controlled by the curvature
error bound ǫ in the Ricci flow algorithm 1. According to theorem 6.2.4, the curvature
error decreases exponentially fast. Therefore, the number of steps to reach the desired
error bound is given by O(− log ǫ

δ
), where δ is the step size in the Ricci flow algorithm.

In practice, if the number of triangles in the network is about tens of thousands and
the error bound is about 1e− 8, the algorithm is stable.

6.3.4 Routing

Having obtained the virtual coordinates, greedy routing is straight forward. As men-
tioned earlier, a message cannot get stuck on the boundary of a circular hole. It has
been shown in [43] that greedy routing cannot get stuck at vertices with an angle less
than 2π/3. In the mappings we obtained, all angles were acute. However, in a case of
a large angled triangle appearing in the final embedding, the routing can be handled
by routing on edges as follows. Suppose in △ABC the angle ∠BAC > 2π/3, and the
current routing request to destination D arrives at A, and has no nearer neighbor.
We can create a virtual node E (representing the edge BC) and the message is deliv-
ered from A to BC (or E) in the sense that the edge BC is closer to the destination.
As all the non-hole faces are triangles, the triangle adjacent to △ABC sharing the
edge BC must have another edge closer to the destination. Thus greedy routing will
guarantee delivery.

Figure 6.6 shows the effect of greedy routing on the virtual coordinates. The
routing cannot be successful under normal greedy routing (Figure 6.6(a)). The path
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under the virtual coordinates, however, easily gets past the hole to the other side
(Figure 6.6(b)).

(a) (b) (c)

Figure 6.6. Routing. Network of about 8700 nodes, average degree of about 20 in quasi-UDG
setting, and nodes in a perturbed grid distribution. (a) Geedy routing gets stuck at a hole boundary.
(b) Routing based on virtual coordinates successfully goes around the hole. (c) The routing path in
the virtual coordinate space.

The domain can also be triangulated using landmarks as described in section 6.3.1.
Figure 6.7 shows the CDM triangulation of the domain of Figure 6.6, and the corre-
sponding virtual coordinates.

(a) (b)

Figure 6.7. (a) Landmark based triangulation of domain of fig 6.6. (b) The corresponding virtual
coordinate map.

Routing in the landmark based scheme is achieved in the usual way. At every
stage, the next Voronoi tile to visit is decided based on the virtual coordinates of the
landmarks of neighboring tiles. Then a local routing scheme is applied to reach the
chosen neighboring tile. This local routing can be executed in different ways. For
example, since the size of the tiles are constant in a bounded density network, it is
possible to store a routing table for the entire tile. Alternatively, it is possible to flood
a tile from the boundary with each neighbor, and thus obtain paths to neighboring
tiles from each node.

In theory, and in practice, the method also works for very fragmented networks
with many holes. Figure 6.8 shows an example.
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Figure 6.8. (a) Network of 7000 nodes with many holes (b) Virtual coordinates

6.4 Experimental results

We conducted extensive experimentation on UDG or quasi-UDG based network of
Figure 6.6 with about 8700 nodes, and on networks of similar topology but differ-
ent number of nodes. From a routing performance point of view, the following are
important observations from the experiments and simulations:

• 100% Routing guarantee. We selected 10,000 random source-destination
pairs in the network, and performed greedy routing based on the real coordinates
and using our virtual coordinates. With the real coordinates, the success rate of
routing is only about 52.29%, while with the virtual coordinate greedy routing,
we achieve 100% success rate.

• Small routing stretch. The path length of the virtual coordinate routing
was compared with the shortest path in the graph for 5000 random source-
destination pairs. The average stretch (ratio of routing path length to shortest
path) was 1.59, while the maximum stretch was 3.21.

Since our mapping algorithm uses a numerical method, we carried out some tests
to estimate the convergence time of the algorithm, and compared the results with
the convergence of NoGeo [129]. While NoGeo does not guarantee delivery even
on full convergence, the comparison is interesting, as described in the introduction.
The results are shown in Figure 6.9. Note that NoGeo iterates on the actual node
coordinates, whereas the Ricci-flow reduces the error in the curvature. The result
shows that in this case, the Ricci-flow method converges faster than NoGeo, and
guarantees delivery.

We further compared our method with NoGeo on routing stretch and delivery
guarantee on the network of Figure 6.6, over 5000 source-destination pairs. The
results are shown in table 6.1. Our algorithm incurs a larger stretch (ratio of routing
path length to shrotest path length) than NoGeo, but guarantes delivery.

The algorithm was executed on networks of several different sizes but of same
essential topology. We measured the number of iterations required to obtain a small
enough error on curvature to get a successful embedding and routing. The resulting
plot is shown in Figure 6.10. The curvature error bound was selected as 1e− 6.
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Figure 6.9. The solid blue curve shows the error in curvature after a number of iterations by the
Ricci flow method, the dashed green curve shows the error in location after a number of iterations
by NoGeo.

Table 6.1. Stretch and Delivery Comparison

Method Delivery rate Avg Stretch Max Stretch
Our Method 100% 1.59 3.21

NoGeo 83.66%∗ 1.17 1.54

*NoGeo performs extremely well in simply connected networks and networks with convex
holes, as shown in [129]. But as discussed earlier, in this case the presence of concave holes
and holes of large aspect ratio affects its performance adversely.

Table 6.2 lists some statistics about the triangulations of different networks shown
in the chapter.

Table 6.2. Experimental Statistics

Case Nodes Faces Edges Holes
Graph of Figure 6.7 250 378 630 3
Network of Figure 6.6 8714 17091 25807 3
Network of Figure 6.3 5299 10179 15482 6

6.5 Conclusion

This work proposes a novel method for greedy routing with guaranteed delivery based
on Ricci flow algorithm. The method has solid theoretic background and competi-
tive performance, compared with prior algorithms under the metric of preprocessing
cost and routing quality. The distributed nature of the Ricci flow method makes it
valuable for the practical applications on wireless sensor networks. Network dynam-
ics such as node failures and resultant topology changes can be handled efficiently
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Figure 6.10. The number of iterations required to obtain a given error bound on the curvature.

by incrementally recomputing the map starting from the previously computed one.
Analysis and experiments related to this aspect are under investigation.
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Chapter 7

Data Storage on Virtual
Coordinates

For in-network storage schemes, one maps data, indexed in a logical space, to the
distributed sensor locations. When the physical sensor network has an irregular
shape and possibly holes, the mapping of data to sensors often creates unbalanced
storage load with high data concentration on nodes near network boundaries. In this
chapter we propose to map data to a covering space, which is a tiling of the plane with
copies of the sensor network, such that the sensors receive uniform storage load and
traffic. We propose distributed algorithms to construct the covering space with Ricci
flow and Möbius transforms. The use of the covering space improves the performance
of many in-network storage and retrieval schemes such as geographical hash tables
(GHTs), and the double rulings (or quorum based schemes), and provides better load
balanced routing.

7.1 Introduction

We propose to solve the imbalance of storage and traffic load in an irregular sensor
network by ‘uniformizing’ the sensor field shape. As the logical data space is often
regular, we make the sensor field regular as well — irregular shape is turned into
circular, and holes are filled up. We propose to create a covering space of the sensor
network, which is a tiling of the space with transformed copies of the network itself.
Data hashed to a geographical location inside a hole is actually mapped to another
copy of the sensor field. Similarly, with a regular shape, previously proposed double
rulings scheme can be applied to irregular network with almost zero modification.
Thus our network regulation technique provides a generic solution for data storage
problems in an irregular network, and greatly extends the application scope of existing
schemes. See Figure 7.3 for an example of the original sensor field and the covering
space.

We achieve this by using Ricci flow and reflections in boundary circles. We first
extract a triangulation of the sensor network. And then apply Ricci flow to make all
holes circular. The new idea in this chapter is to use the embedding obtained from
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the Ricci flow algorithm and fill up the holes. Suppose the network has k (circular)
holes. For each interior hole Ci, we take a Möbius transform that essentially ‘reflects’
the network inward with respect to Ci. This Möbius transform is conformal and maps
circles to circles. Thus, Ci becomes the outer boundary of the reflected network with
all the nodes mapped inside it. This partially fills up the hole Ci, except that there
are k smaller circular holes. Now we can continue such transforms so that all the
holes are eventually filled up, with infinitely many transformed copies of the original
sensor field. The collection of Möbius transforms used to generate these mappings is
captured in the Schottky group. Thus, one does not need to precalculate any of these
mapping and is able to generate the reflections on the fly when necessary.

The generation of the covering space as described above asks for infinitely many
transformed copies to completely cover the space. We show that for any practical
applications only O(log 1/ε) copies are necessary, where ε is the threshold of the size
of a hole. Indeed, we prove that the total area of the holes shrinks by a fraction after
each Möbius transform, and is reduced exponentially fast. When the holes are tiny,
the chance that data is hashed to be inside a hole is very small and can be omitted.
Similarly, the chance that a double ruling curve hits the boundary of a tiny hole is
negligible. When it does happen, we can get around the hole by following the greedy
routes along the circular hole boundaries. In our simulations only 5 reflections are
necessary and for some applications 2 levels of reflections give the best result.

With the regulation of the network shape by conformal Möbius transforms, we
can improve the performance of various data storage schemes.

• GHT. When a piece of data is hashed to a geographical location p inside a hole,
in the original GHT scheme, it is allocated to the sensor node whose Voronoi
cell contains p. Nodes on the boundary have larger Voronoi cells and share
higher load. With the covering space, the area inside the hole is shared by the
entire network, eliminating fundamentally the storage and traffic overhead on
the holes boundaries.

• Double rulings. Double rulings design can be directly applied on the covering
space. When a curve hits a hole boundary Ci, it then enters another copy of the
network mapped to the interior of Ci. Equivalently, in the original embedding,
the curve ‘reflects’ on the hole boundary. The intersection properties are still
maintained with the conformal Möbius transforms.

• Load balanced greedy routing. The embedding generated by the Ricci flow algo-
rithm allows greedy routing to work with delivery guarantee, as greedy routing
can not get stuck at circular holes. However, such greedy routes still tend to hug
the hole tightly causing high traffic load on the boundary nodes. Instead, we
can execute the greedy routing in the covering space. Instead of getting around
the hole by following the circular hole boundary, one can ‘enter’ the hole to
route in another copy of the network, effectively reflect on the hole boundary.
Thus the boundary nodes are not used as often, improving the load balancing.
The greedy routing can be used in combination with the GHT scheme to deliver
and retrieve data from the hashed location.
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In summary, the covering space universally improves the load imbalance in data
storage and routing in an irregular network. Essentially, in the covering space the
holes are filled up so there are no ‘boundaries’. The nodes on the boundary are now
treated in the same way as the other nodes with respect to data storage or relay
routing.

In the following of the chapter we first present the mathematics of the conformal
Möbius transform, the Scottky group, and the covering space. We then present the
use of the covering space in applications such as GHT, double rulings and greedy
routing with simulation results.

7.2 Theoretical background

This section focuses on the theoretic background of Möbius transformation and re-
flections to generate the covering space. We refer readers to [35] and [127] for further
details.

7.2.1 Conformal mapping for multiply connected domain

Let (S1, g1) and (S2, g2) be two surfaces with Riemannian metrics g1, g2. A mapping
φ : S1 → S2 is called a conformal map (angle preserving map), if the intersection
angle of any two curves are preserved.

A planar domain D of connectivity n is called a circular domain, if all its n
boundaries are circles. It is known from conformal geometry that any genus zero
multiply connected planar domain can be mapped to a circular domain by conformal
maps. The different circular mappings of a given planar domain differ by Möbius
transforms [32,127].

One way to compute the conformal mapping from a surface to a circular domain
is to use Ricci flow, as introduced in [75, 131]. Given a multiply connected domain
Ω with m interior holes, denoted as ∂Ω = {γ1, γ2 · · · , γm}, by Ricci flow, we can
construct a conformal map φ : Ω→ C∪{∞} to a circle domain, such that each φ(γj)
is a circle,

∂[φ(Ω)] = {C1, C2, . . . , Cm}, Cj = {z : |z − cj| = rj}.
where j = 1, 2 · · · ,m. Examples can be found in Figure 7.3, 7.8 and 7.9.

7.2.2 Möbius transform and circular reflection

A Möbius transformation is a map that maps a complex plane to itself, represented
by f(z) = az+b

cz+d
, where a, b, c, d are four complex numbers satisfying ad − bc = 1. A

Möbius transformation is a conformal map and maps circles to circles. A special case
of Möbius transformation

ρC(z) := c+
r2

z̄ − c̄
. (7.1)

is a circular reflection that maps the points inside a circle C with center c and radius
r to the points outside C, and vice versa. For a circular domain Ω with interior
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Ω
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ω = ω1ω2 · · · ωn−1ωn

Cωωn−1
Cωj

Cω1···ωn−1

Cω1···ωn−1j

(a) Circular reflection (b) Naming convention

Figure 7.1. Circular Reflection and naming convention.

circular holes C1, C2, · · · , Cm, we denote ρCj
by ρj for C = Cj. ρj essentially fills up

the hole Cj by reflecting the points out of Cj. We use such circular reflections to fill
up the holes in a sensor network.

An example. Figure 7.1 (a) shows an example of a triply connected circular domain
Ω with boundary ∂Ω = {C1, C2, C3}. Reflect Ω through Ck to get

Ωk = ρk(Ω).

The circle Cj is reflected by ρi to be circle Cij,

Cij = ρi(Cj), i 6= j.

Ωk is a bounded domain with outer boundary Ck and 2 circular inner boundaries. The
boundary of Ωk’s in Figure 7.1 (a) are ∂Ω1 = {C1, C12, C13}, ∂Ω2 = {C2, C21, C23},
∂Ω3 = {C3, C31, C32}.

Now Ω1 has two small holes C12 and C13. We reflect Ω1 with respect to each of
the interior hole. Thus we have the reflected domains in the next level. In general,

Ωij = ρij(Ωi), 1 ≤ i, j ≤ 3, i 6= j.

The new boundary circles are

C121 = ρ12(C1), C123 = ρ12(C13), ∂Ω12 = {C12, C121, C123}

C131 = ρ13(C1), C132 = ρ13(C12), ∂Ω13 = {C13, C131, C132}
The boundaries of Ω21,Ω23,Ω31 and Ω32 are similar.

In general, for a circular domain with m interior holes, the reflected regions and
circles are labeled with multi-indices

ω = ω1ω2 · · ·ωq, 1 ≤ ωj ≤ m,ωk 6= ωk+1, 1 ≤ k ≤ q − 1.

A reflected domain is defined by the reflections following the indices.
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Figure 7.2. Schottky Group generators.

Definition 7.2.1. The set of multi-indices of length q (q > 0) is denoted

σq = {ω1ω2 · · ·ωq : 1 ≤ ωj ≤ m,ωk 6= ωk+1, 1 ≤ k ≤ q − 1},

and ω0 = ∅.

As shown in Figure 7.1 (b), if ω ∈ σq, q > 1, the circular domain

Ωω = ρω(Ωω1ω2···ωq−1
)

has exterior boundary Cω and m− 1 interior boundary circles

Cωωq−1
= ρω(Cω1ω2···ωq−1

),

and
Cωj = ρω(Cω1ω2···ωq−1j), j 6= ωq−1, ωq.

There are m(m− 1)q−1 elements in σq, at the level q, and m(m− 1)q−1 circles.

7.2.3 Schottky groups

Taking reflections of a circular domain with respect to the circular holes to the limit
will eventually have all the holes ‘filled up’. This is shown by using the Schottky
groups, as described below.

Suppose Cj is the circle |z − cj| = r2j , C0 is the unit circle |z| = 1, denote ρ0(Cj)
as C ′

j (see Figure 7.2). The Möbius map

θj(z) = cj +
r2j z

1− c̄jz

maps the exterior of C ′
j to the interior of Cj (and C ′

j to Cj).
The Schottky group Θ is defined to be the infinite free group of Möbius mappings

generated by compositions of the 2m basic Möbius maps {θj|j = 1, · · · ,m} and their
inverses {θ−1

j |j = 1, · · · ,m}. Consider the unbounded region Ω of the plane exterior
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to the 2m circles {Cj|j = 1, · · · ,m} and {C ′
j|j = 1, · · · ,m}. The union of copies of

Ω generated by the θ ∈ Θ is denoted as

Θ(Ω) :=
⋃

θ∈Θ
θ(Ω).

This work is based on the following fundamental theorem of Schottky groups.

Theorem 7.2.2. The complement set of Θ(Ω)

Θ(Ω)c := C−Θ(Ω)

is a Cantor set of zero measure.

The detailed discussion can be found in [35], [127] and [32].
θj can be generated by two circular reflections: first the exterior of C ′

j is reflected
through the unit circle C0, then the interior of C0 is reflected through Cj. The
composition of these two reflections is θj. In this work, we use circular reflections
instead of explicitly using Schottky group.

7.2.4 Shrinkage estimation

Asymptotically the whole plane can be covered by the copies of the network using
Schottky transformation. But in practice, only a finite number of reflections can be
used. Therefore, we need a precise estimation of the size of holes after n levels of
reflections. In the following, we give the estimation of the area shrinkage of the holes.
We follow the method in [127] and [32].

As shown in figure 7.4, Ω is a bounded double connected domain on the complex
plane C, with exterior boundary Γ0 and interior boundary Γ1, ∂Ω = Γ0 − Γ1. There
exists a conformal map φ : Ω → D, where D is a circular domain, with inner radius
µ01 and outer radius 1,

D = {z ∈ C : µ01 < |z| < 1, }.
We call µ01 the conformal modulus of the original domain Ω.

Definition 7.2.3. The separation modulus for two circles Cj, Ck is defined as

µ̃jk :=
γj + γk
djk

< 1, j 6= k, 1 ≤ j, k ≤ m, (7.2)

where γj and γk are the radii of Cj, Ck respectively, and djk is the distance between
the centers of Cj, Ck.

The separation modulus of the region is given by

∆ := max
i,j,i 6=j

µ̃ij.

As shown in Figure 7.5, suppose C̃j is the circle with the center cj and radius
γj
∆
,

then 1
∆
is the smallest magnification of the m circles, such that at least two C̃j’s just

touch.
The following lemma shows that the separation modulus is bounded by conformal

modulus, the proof can be found in the Appendix.
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(a) original network (b) circular domain

(c) level 1 reflection (d) level 2 reflection

(e) level 3 reflection (f) level n ≥ 4 reflection

Figure 7.3. 4-level circular reflections for a 3-hole sensor network with 5492 nodes. The initial
network (a) is conformally mapped to the circular domain (b). The level 1 reflection is in red color
in (c), level 2 reflection is in green in (d), level 3 reflection is in blue in (e), level 4 reflection is in
yellow in (e).

Γ0

Γ1 µ01 1

Figure 7.4. Conformal modulus µ01 of a doubly connected domain.
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Figure 7.5. Separation modulus of a doubly connected circular domain.

Lemma 7.2.4. The conformal modulus is the lower bound of the separation modu-
lus:

µjk < (µ̃jk)
2 ≤ ∆2.

Proof: Let µ denote µjk and µ̃ denote µ̃jk. The conformal module can be calculated
directly for circular domain as

µ =
d2jk − γ2

j − γ2
k −

√

[(djk − γj)2 − γ2
k][(djk + γj)2 − γ2

k]

2γjγk
.

Then

α =
1

2
(µ+

1

µ
) =

d2 − (γ2
j + γ2

k)

2γjγk

(µ̃d)2 = (γj + γk)
2,

It follows

αµ̃2 − 1 = (1− µ̃2)
γ2
j + γ2

k

2γjγk
≥ 1− µ̃2.

Then
1

µ̃2
≤ α + 1

2
= [

1

2
(
√
µ+

1√
µ
)]2.

Because µ < 1,
√
µ <

2
√
µ

µ+ 1
≤ µ̃ ≤ ∆.

�

Theorem 7.2.5. At level q + 1, the total area of holes is

∑

ω∈σq+1

S(C̃ω) ≤ ∆4q

m
∑

i=1

S(C̃i), (7.3)

where S(Ci) is the area inside the circle Ci.
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Figure 7.6. Area Shrinkage.

The proof depends on the following lemma. As shown in Figure 7.4, Ω is a bounded
double connected domain on the complex plane C, with exterior boundary Γ0 and
interior boundary Γ1, µ01 is the conformal modulus.

Lemma 7.2.6. Suppose S(Γk) is the area bounded by Γk, k = 0, 1, then

S(Γ1) ≤ µ2
01S(Γ0).

Detailed proof can be found in [127], Lemma 17.7c(a), P.503. The proof for theo-
rem 7.2.5 is as follows:

Proof: As shown in Figure 7.6. Ω has three boundary circles C1, C2, C3. Magnify
each circle by factor 1

∆
, we get (dashed) circles C̃1, C̃2, C̃3. By definition of separation

modulus, C̃1, C̃2, C̃3 may touch, but have no overlaps. Then C̃2, C̃3 are in the exterior
of C̃1.

Reflect C̃j through circle C1 (the red circle). Denote

C̃ij := ρi(C̃j), i 6= j, 1 ≤ i, j ≤ 3.

Then C̃12 and C̃13 are contained in ρ1(C̃1),

S(C̃12) + S(C̃13) < S(ρ1(C̃1)).

The annulus bounded by C1 and C̃1 has conformal modulus ∆. After reflection,
the image is the annulus bounded by C1 and ρ1(C̃1). By Lemma 7.2.6,

S(ρ1(C̃1)) ≤ ∆2S(C1) ≤ ∆4S(C̃1).

Similarly
S(C̃23) + S(C̃21) < ∆4S(C̃2),

S(C̃32) + S(C̃31) < ∆4S(C̃3).

By induction, we can prove Equation 7.3. �

This theorem shows that the total area of the holes is reduced exponentially fast.
Thus, after − log ε number of levels, each hole has a maximum area of ε. This shows
that only a small number of levels is needed in practice. The proof of the theorem is
put in the Appendix.
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(a) Original mapping; (b) Optimized mapping

Figure 7.7. Improve separation modulus by Möbius transformation.

7.3 Algorithms

For a sensor network, we compute the covering space up to level q (for a constant q
typically) in the following steps.

1. Extract a triangulation of the network.

2. Apply a distributed Ricci flow algorithm from the previous chapter to embed
the triangulation T such that T is a circular domain — it is embedded in the
plane with each hole (a non-triangular face) embedded on a circle.

3. With the circular domain T we apply circular reflections to compute the covering
space.

Figure 7.3, 7.8 and 7.9 demonstrate the pipeline of the algorithm.

7.3.1 Circle estimation

For a circular domain T , for each boundary γk, we need to estimate the circle
Ck(ck, rk). We take three consecutive nodes {z1, z2, z3} on the hole boundary to
form a triangle, the circle Ck(ck, rk) is the circumcircle of the triangle. Its center is

c =
|z1|2(z2 − z3) + |z2|2(z3 − z1) + |z3|2(z1 − z2)

z1(z3 − z2) + z2(z1 − z3) + z3(z2 − z1)
(7.4)

and its radius is r = |z1 − c|. The derivation of the equation above can be found
in [35].

Since the circle can be computed by any three adjacent boundary nodes, the
computation of the circular hole equation can be done locally at each boundary node.
The computation only involves a constant number of algebraic operations.

7.3.2 Separation modulus optimization

From the theoretical result, we can see that the total area of circular holes shrink to
zero exponentially fast. The convergence rate is governed by the separation modulus
∆. In order to make the holes as small as possible, we can find an optimal Möbius
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transformation, that minimizes the separation modulus. In some sense, this transfor-
mation will map the holes to be as ‘well-separated’ as possible. We remark that this
optimization step is optional.

A Möbius transformation preserving the unit disk is given by

φθ,z0(z) = eiθ
z − z0
1− z̄0z

, |z0| < 1,

which maps circles to circles. φθ,z0(Ck) is still a circle, whose center and radius can
be computed from

{φθ,z0(A), φθ,z0(B), φθ,z0(C)}
using formula 7.4, where A, B and C are three points on the original circle. The
rotation part eiθ doesn’t affect the separation modulus, in practice, we always set the
rotation angle θ to 0. Let µ(Cj, Ck) = µ̃jk be the separation modulus between circles
Cj, Ck as in formula 7.2. Define

∆(z0) := max
j 6=k

µ(φ0,z0(Cj), φ0,z0(Ck)).

The optimization problem is formulated as:

min|z0|<1∆(z0).

In practice, we use gradient descent method to solve this non-linear optimization. See
Figure 7.7 for an example.

To run this optimization step in a sensor network, we only need the knowledge of
the center and radii of the circular holes. One node can pull the information of all
circular holes together and run the optimization to get the Möbius transformation,
which is then disseminated to all nodes in the network. The nodes apply the Möbius
transformation to obtain the new mapping.

7.3.3 Circular reflection

In a circular domain we perform circular reflection of the network. In our implemen-
tation, we use a Hermitian matrix H, HT = H and detH < 0 to represent a circle
with center c and radius r. Suppose

H(c, r) =

[

a b
b̄ c

]

Then the circle equation represented by H(c, r) is given by

0 = [ z̄ 1 ]

[

a b
b̄ c

] [

z
1

]

, (7.5)

where the center is c = − b
a
and the radius r =

√
|b|2−ac

|a| . For a circle |z − c| = r, the
corresponding Hermitian matrix format is

0 = [ z̄ 1 ]

[

1 −c
−c̄ |c|2 − r2

] [

z
1

]

. (7.6)
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Orientation preserving Möbius transformation on C ∪ {∞}

m(z) =
αz + β

γz + δ

is represented as a matrix

M =

[

α β
γ δ

]

, α, β, γ, δ ∈ C, (7.7)

its inverse is given by

M−1 =

[

δ −β
−γ α

]

.

The reflection through a circle C is represented as

(ρC) =

[

c r2 − |c|2
1 −c̄

]

. (7.8)

Thus, the composition of Möbius transformations are represented as matrix mul-
tiplications. A Möbius transformation m maps a circle H to a circle. The Hermitian
matrix representation of the image circle is given directly by

M−1
T
HM−1.

For orientation reverse Möbius transformation

m(z) =
αz̄ + β

γz̄ + δ
,

the matrix representation of the transformed circle is

M−THM−1.

Therefore, all the computations are carried out using complex matrix multiplica-
tion. Notice that the matrices H and M are only two by two matrices. So the matric
multiplication and the Möbius transformation can both be done with a constant
number of algebraic operations.

The reflection ρC through a circle C is given by the analytic formula 7.1.
The reflection process is recursive. The naming conventions for all the circles Cω

and all the reflections Cω have been explained in details in subsection 7.2.2, where ω
is a a word in the multi-index set σn in definition 7.2.1. Suppose we are given a multi-
index word ω = ω1ω2 · · ·ωn, the recursive algorithms for computing the reflection ρω
and the circle Cω (represented as matrices) are as follows.
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Algorithm 4 Matrix circle(word ω)

if(|ω| = 1) then
return H(Cω1

); (Eqn.7.6)
end if
Matrix M = reflection(ω1ω2 · · ·ωn−1);
if(ωn = ωn−2)then
Matrix H = circle( ω1ω2 · · ·ωn−2);
else
Matrix H = circle( ω1 · · ·ωn−2ωn );
end if
return m−THm−1;

Algorithm 5 Matrix reflection(word ω)

Matrix H = circle( ω );
Compute center and radius (c, r) from H;
(Eqn.7.5)
return M(ρ(c, r) ); (Eqn.7.8)

Figure 7.8. 3-level circular reflections for a 4-hole network with 4764 nodes.

Figure 7.9. 3-level circular reflections for a 3-hole network with 1376 nodes.
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7.3.4 Computation and communication costs

The communication cost of the scheme is analyzed for each component. In the first
step of triangulation extraction, the algorithms used to extract a triangulation are
localized algorithms. Each node only requires the knowledge of nodes in a constant
size neighborhood. For most practical networks with constant average node degree,
the total number of messages required is O(n). The Ricci flow algorithm is an it-
erative algorithm with all nodes adjusting local metrics and local curvatures. The
curvature error decreases exponentially fast. Therefore, the number of steps to reach
the desired error bound is given by O(− log ǫ

δ
), where δ is the step size in the Ricci flow

algorithm. The total communication cost is thus O(−n log ǫ
δ

). The computation of
network reflections are done locally in an on-demand manner. When a message hits a
node on the boundary, depending on the number of levels of reflections required, the
node can locally compute the reflection transform. The indices of the reflections are
attached to the message. No additional communication is needed. Thus the commu-
nication cost in theory is linear in the number of nodes. In practice, the Ricci flow
algorithm is the dominating factor of the communication cost.

7.4 Applications

7.4.1 Geographic hash tables

We apply the covering space with geographical hash table (GHT) [130] for storing
data in the network. Data is indexed with a key. Each data item x is hashed to a
geographical location by using a random hash function h(x) = g′. The producer of
the data item delivers the data towards the location g′ using geographical routing
(GPSR [78] in particular). If GPSR can not find a node right at the hashed location,
it will eventually enter the face routing mode, by following the edges of a planar
face f enclosing g′. Such face routing will necessarily fail to find the destination g′

and return to the first node when the message enters this face. At this point the
algorithm stops. The node on the face f closest to g′ is denoted as the home node.
The face f is denoted as the home perimeter. A perimeter refresh protocol is used to
maintain the home perimeter when there are node or link failures. Except the home
node, the other nodes on the home perimeter are called replica nodes. The home
node stores the data. The replica nodes may also hold data, to improve the system
robustness to failures. GHT also has a hierarchically structured replication scheme
where multiple hash images are used. In our case as we examine the influence of the
network irregularity to the storage balancing, we use the basic scheme only.

A node p is the home node for all the hashed locations inside its Voronoi cell
(which contains all the points closest to p than all other nodes). Thus the storage
load of a node is directly proportional to the area of its Voronoi cell. It can be seen
that the nodes near a hole has a large Voronoi cell and thus are allocated more data
compared with the average load. An example is shown in Figure 7.10. When the
replica nodes also store data, the storage load on boundary nodes is even higher, as
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Figure 7.10. Voronoi diagram for the network in Figure 7.9 .

the hole creates a large perimeter face such that all the data on the nodes of this face
are shared.

One way to deal with the high concentration of data on the nodes in sparse region
or near network holes is to use rejection sampling [155]. In particular, we select a
random geographical location g′ and round to the closest sensor node g. But we only
accept the node g with probability A/(cnA(g)), where A(g) is the Voronoi cell area of
node g, A is the total area of the domain from which g′ is selected, n is the number of
sensors, and c is a sufficiently large universal constant to make sure A/(cnA(g)) ≤ 1.
In the case of a sample g being rejected, another random location is selected and so on,
until a sample node is accepted. This procedure will produce a sensor node uniformly
randomly chosen from the network after about c trials. With the presence of holes,
the smallest area of a Voronoi cell might be far smaller than A/n. Thus c needs to
be large, leading to the waste of communication messages. To ensure a data-centric
query eventually finds the data, we assume a source of randomness common to all
nodes. Thus, if a node g rejects a data, the data-centric query for this piece of data
will be re-directed to the same node and eventually either finds the data or claims
failure (when the data is not rejected and the current node is not holding the data).
With rejection sampling the storage load can be made uniform, but the rejections can
increase the network traffic and energy consumption.

With the reflections and the covering space, the holes are filled by transformed
copies of the network. If we use k levels of reflections for a m-hole circular domain,
each node has mk−1 + 1 images (including itself) in the covering space. We calculate
the Voronoi diagram of the sensor nodes and their images in the covering space. The
chance that a random location is rounded to a sensor node is proportional to the total
sum of the area of the Voronoi cell of p and all its images. Since the holes are now
covered up, the area of the holes are then distributed to the entire network. All nodes
are then selected with similar probability. Thus the maximum storage load of any
node is substantially reduced. When rejection sampling is used, the maximum traffic
load caused by delivering data to the hashed locations is reduced dramatically, as not
only the number of rejections is smaller but also the traffic of the greedy routes are
also spread more evenly in the network. For the improvement of traffic load balancing
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for greedy routing with the covering space, please see Section 7.4.3.

7.4.2 Double rulings

We also apply double rulings, or quorum-based data storage and retrieval scheme,
with the covering space. In a double rulings scheme, the producer stores data or
data pointers along a storage curve and the consumer (the user who would retrieve
the data) routes the request along a retrieval curve. As long as any storage curve
intersects with any retrieval curve, it is guaranteed for successful discovery of data.
In fact, any retrieval curve can discover all the data stored in the network making
it more efficient to retrieval data. These curves are often designed as some nice
geometric curves. When we route data or request packets, we use greedy routing
to select the next hope as the one near the geometric curve and making progress
along the curve (e.g., the projection onto the geometric curve is further away) [117].
This leads to routing paths that approximate the geometric double ruling curves.
For example, when a network has a rectangular shape, one can use the horizontal
lines as storage curves and vertical lines as retrieval curves [105,146,160], denoted as
rectilinear double rulings. The data packets are routed to the neighbor furthest in
the vertical directions, and the retrieval packets are routed to the neighbor furthest
in the horizontal directions.

Existing double rulings schemes all assume some nice regular shape (rectangular
or circular). When there are holes, many geometric curves may hit a hole. Thus the
greedy routing paths approximating the double ruling curves may either get stuck at
a local minimum, or, when advanced hole bypassing techniques [43,78] are used, cause
high traffic load on the hole boundaries. Another problem with an irregular shape
is that it is not easy to design the geometric double ruling curves that guarantee
intersection without using perimeter mode face routing. One can easily construct
examples such that rectilinear double rulings, or many other elegant geometric curves
fail to intersect inside the sensor domain.

h

h∗

r

Figure 7.11. Stereographic projection.

With the covering space, the network is turned into a circular disk D with radius
R. Designing geometric double ruling curves is trivial. For example, one can use
co-centric circles and rays emitting from an origin as storage and retrieval curves
respectively. In our simulation, we use spherical double rulings [133]. We map the
covering space to the bottom hemisphere tangent to the center of D with the stereo-
graphic projection [30]. We put a sphere with radius r < R/2 tangent to the plane at
the origin. Denote this tangent point as the south pole and its antipodal point as the
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Figure 7.12. Path in covering space.

north pole. A point h∗ in the plane is mapped to the intersection of the line through
h∗ and the north pole with the sphere. See Figure 7.11 for a cross intersection. We
choose r < R/2. Thus the bottom hemisphere is covered by image of the disk into
which the network is embedded. For a data item x, we use a hash function f to
select a random hash location g∗ in the plane and store the data along the storage
curves, defined as the great circle through the producer and g. The use of hashing is
to allow multiple data items of the same type to be possibly stored and aggregated
at the hashed node. The retrieval curve is any great circle through the consumer. It
can be shown that any storage curve and retrieval curve have a common intersection
in the bottom hemisphere. In the implementation, we find the routing path travers-
ing through the triangles that intersect with a storage (or retrieval) curve. With a
sufficiently high k (the number of levels of reflections), the holes are mostly filled up
with only tiny holes left in the domain. Thus the chance that a double ruling curve
hits a tiny hole is very small. For a retrieval curve to discover the data, we only need
the intersection of the retrieval curve and the storage curve to be not in a tiny hole.
The chance for this to happen is small as well.

7.4.3 Load balanced greedy routing

Greedy routing selects the next hop as the neighbor whose distance to the destination
is minimum, with the distance defined in some coordinate system. It is an extremely
simple and completely local algorithm but may not always work if all the neighbors
have greater distances to the destination. In our previous work [131], we embed a
sensor network in the plane such that all the holes are circular. Thus greedy routing
can not get stuck at any hole boundaries. This leads to guaranteed delivery of greedy
routing in the generated virtual coordinates. Nevertheless, greedy routes that hit a
node on the boundary of a hole C will lead to a path that follows the hole boundary
until the tangent point of the line through the destination and C (i.e, when the
packet is able to ‘see’ the destination). This effect causes higher traffic load on the
hole boundary.

By using the covering space, we can mitigate the imbalance of traffic load caused
by the greedy routing method. When a packet reaches a node on the hole boundary,
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Figure 7.13. Path in real network.

greedy routing directs it to enter another copy (Figure 7.12), effectively reflect on
the hole boundary and take a detour to get around the hole in the real network
(Figure 7.13). Therefore, not all the packets that arrive at a hole boundary will
necessarily route along the hole. The detours they take are spread out in the network,
reducing the traffic pressure on the hole boundaries.

The routes, reflected on the holes, are possibly longer than before. But this is
in some sense necessary in order to improve load balancing. Minimizing the path
length and minimizing the maximum traffic load are two contradicting objectives
that cannot be achieved at the same time [59]. There is also an interesting trade-off
as longer paths increase the total message cost and the average traffic load. In our
simulations we demonstrate that a small number of reflections suffice to strike a good
balance of path stretch and load balancing.

7.5 Simulations

We carried out extensive simulation tests on several different networks to verify the
utility of this method. The data presented in this section are based on the network
represented in figure 7.9. This network has about 1400 nodes in a perturbed grid
distribution, spread over a 200× 200 region, and a maximum communication radius
of 12 units. The graph is a quasi-unit disk graph of inner radius 12/

√
2.

The following are the important observations we obtained from this set of simu-
lations:

1. The reflection based covering space reduces the maximum storage load at any
sensor to almost half, compared with the original embedding, if we uniformly
sample geographical locations and then round to the closest sensors.

2. Greedy routing on the covering space has better load distribution than GPSR
on the original network.

3. Using the reflections, double ruling schemes can be extended to networks of
non-trivial topology. The storage cost is higher but the retrieval cost is much
lower.
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7.5.1 In-network storage and sampling

As described in the previous section, when using a GHT type storage scheme, the
storage load at any node is proportional to the area of its Voronoi cell. The nodes at
the boundary of a hole tend to get higher load because their voronoi cells together
cover the area of the entire hole. We compared the maximum Voronoi areas of the
original embedding with those of covering spaces obtained by one or more reflections.
Reflections create multiple images of points for each node, the load on the node is
taken to be the sum of the Voronoi cell area of all images.

The results are shown in Figure 7.14 and Table 7.1. The total load is normalized
to be 1. It is shown that the covering space reduces the max load to almost half that
of the original embedding. This is achieved with only 2 or 3 reflections, after which
the load does not change too much. This can be understood as follows. The uneven
loads are caused by big Voronoi cells, which can be created by the presence of holes,
and/or by distortions introduced by the conformal map. After a few reflections the
area of the holes are shared by nodes of the entire network and do not contribute
large areas to any node in particular. Thus the larger cells created by the distortion
of the conformal map are the major reason for the uneven load. This does not get
smaller with more reflections.

We carried out rejection sampling on these embeddings, and found that the cover-
ing spaces created by 2 or more reflections require about 15% fewer trials on average.
Further, when the communication costs are considered, the communication loads are
much better balanced in the covering space scheme. This is essentially because greedy
routing in generally is better load balanced on the covering space than GPSR on the
original network. We describe the routing results in the next subsection.
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Figure 7.14. The largest fraction of the storage load at any sensor.

Table 7.1. Maximum storage load for GHT.

Scheme 1-ref 2-ref 3-ref 4-ref 5-ref

Covering Space 0.0092 0.0065 0.0062 0.0062 0.0062
Regular GHT 0.0106 0.0106 0.0106 0.0106 0.0106

+n-ref - n depth reflection
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7.5.2 Load balanced routing

We selected 2000 random source-destination pairs and computed routes. On the orig-
inal network we used GPSR. On the covering spaces we used simple greedy routing,
since greedy routing guarantees delivery in these networks. The number of reflections
only shows the maximum number of reflections we permit. The covering space is not
pre-computed to that depth, reflections are computed locally as a route progresses
and the relevant data is attached to the message.

The results are shown in Table 7.2. Clearly, 2-3 reflections give the best results.
Beyond this point, the route lengths tend to increase as some paths go through
several reflections. However, the load balancing is always good, since the covering
space method does not hug the boundary when going past a hole. The path bounces
off the boundary and spreads the load more evenly (see the plot in Figure 7.15).

Table 7.2. Traffic load and path length for greedy routing.

Scheme Avg. load Max load Avg. length Max length

GPSR 33.6840 620.0 24.1915 92
1-ref 24.0682 319.0 17.571 42
2-ref 35.4960 190.0 25.439 117
3-ref 39.1742 241.0 27.9715 159
4-ref 43.9143 199.0 31.235 196
5-ref 46.3129 216.0 32.8865 228

+n-ref - n depth reflection
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Figure 7.15. Cumulative distribution of load. Showing that the covering space method has fewer
nodes with high load, and also fewer nodes with very low load. GPSR on the other hand has 5% to
10% nodes with substantially high load.

Node lifetime experiments We carried out experiments on how the load bal-
ancing properties affect the longevity of nodes. Each node is assumed to have the
energy to transmit 200 messages, after which it is considered dead. We count how
many nodes die in the process of delivering 4000 messages. As nodes die, the network
loses the property of circular holes and guaranteed delivery. We count the number
of messages that are delivered successfully under these conditions. GPSR guarantees
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delivery, but with dying nodes, the network eventually gets partitioned and then some
messages fail. The results are shown in 7.3.

Table 7.3. Death and message delivery rates for 4000 routing attempts.

Scheme GPSR 0-ref 1-ref 2-ref 3-ref 4-ref

Deaths 286 33 29 50 122 154
Deliveries 3164 3361 3790 3849 3886 3842

+n-ref - n depth reflection

Double rulings Double ruling is a general method that extends GHT. The intuition
being that storing data on a path makes it easier for consumers to find that data.
Existing double ruling schemes such as [133] design the storage and retrieval paths
with simple networks in mind. The covering space, by almost eliminating the holes
in the network can be expected to make double ruling applicable to more general
networks. In particular, as the holes get smaller in size, it can be expected that fewer
of the storage and retrieval paths hit them. We carried out experiments to test this
and other properties on covering spaces of different depths. The radius of the sphere
was taken to be one-third the radius of the embedded network in virtual coordinates.
The results below are for 2000 random producer, consumer and hash location triples.
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Figure 7.16. Percentage of successful double ruling retrievals for different depths of covering space.

Figure 7.16 shows the success rate of double ruling with increasing depth of cover-
ing space. For no reflections, the percentage of successes are very small, about 10%,
but as holes get smaller, success rate climbs to 86% for 5 reflections. In the following,
We ugmented the process at the final level by perimeter mode traversal of boundaries
to obtain full success rate.

We carried out path length and load measurements. The results are shown in
figures 7.17 and 7.18 respectively. The storage costs can be seen to be relatively high,
as producers may sometime select a curve that goes through many reflections. In
comparison, consumer retrieval costs are lower. This is because the consumer path
stops as soon as it intersects a producer path. While this is also true for double ruling
in the original embedding, the covering space introduces additional properties. there
are many copies of a node x in the covering space. Imagine that the storage path
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passes through a copy x′. Now it is possible that the retrieval path hits a different
copy x′′ before it intersects the storage curve in the coring space. In such a case, the
consumer has hit a storage node in the real network, and can stop searching. This
possibility reduces retrieval costs even further. In a sense, the higher storage costs
are compensated by a smaller retrieval cost.
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Figure 7.17. Producer storage costs.
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Figure 7.18. Consumer retrieval costs.

7.5.3 Network dynamics

Finally, we tested some effects of network dynamics. In a general sensor network
nodes may fail, and occasionally some nodes added. These cause changes in the
triangulation. For example, failure of a node creates a ‘hole’ in the triangulation.
Many of these changes can be handled by simple adjustments. Failure of a node in
a dense network can be handled by adding edges between its neighbors to fill up the
hole. In certain cases, say after several failures, such simple local adjustments may
no longer suffice and then the embedding needs to be recomputed. However, instead
of computing the embedding from scratch, we can use the existing configuration as
a starting point to speed up the process. We found that for small changes to the
triangulation, the reconvergence is quite fast.
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Table 7.4. Reconvergence Time.

Error bound 1e-1 1e-2 1e-3 1e-4 1e-5
Iterations 129 274 697 1392 2221

We made some small changes to the triangulation, such as edge swaps, and mea-
sured the time taken for the ricci flow to converge to some desired error. The results
are shown in table 7.4.

7.6 Conclusion

The network metric and embedding are crucial to sensor network operations. In this
chapter we presented ideas of using Möbius transforms and Ricci Flow algorithms to
regulate a sensor network. All networks can be made to be circular with the interior
holes filled up. The created covering space embedding is universally useful to even
out sensor storage and traffic load for in-network data storage schemes. We plan to
investigate further applications of the embedding in sensor network and sensor data
management.
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Part III

Geometry and Topology of
Information
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Chapter 8

Introduction

Geometry and topology can be applied to analyze functions, and therefore to un-
derstand and summarize data. Suitable geometric structures associated with data
can reflect fundamental properties hidden in the raw information. In our goal of in-
formation processing in sensor networks, recovering structural properties of data is
essential. The approach in this chapter will be to construct geometric abstractions
that represent attributes of data that is not evident from the direct sensor readings.
These abstractions help us intelligently answer queries about the data in a distributed
manner from within the network.

The next chapter is based on a structure from differential topology called the con-
tour tree. This tree represents the nesting relations between contours of a function.
We present an algorithm to compute the contour tree and the various applications
it has in sensor networks. The computation and representation of the tree are both
distributed, and do not rely on availability of locations. A contour tree can be con-
structed as long as the domain is simply connected. Accordingly, the our algorithm
is for dense sensor networks that do not have holes.

Contours are fundamental aspects of real valued functions, and their analysis
enables us to answer questions related to ranges of values occurring in different regions
of the network. In particular, we concentrate on the following problems:

• Iso-contour query : from a query node q, find the iso-contours at value x, or
count/report iso-contour components at given value/range.

• Value-restricted routing : find a path from a source node s to a destination node
t with all values on the path within a user-specified range. This can be used for
navigation of packets in the network (e.g., avoiding sensor nodes with low energy
level), or navigation of objects in the physical environment (e.g., avoiding traffic
jam).

The second functionality can be modified to answer queries of the type “Find a path
on which the maximum value is minimized.” We show a labeling scheme that makes
it possible to perform the value restricted routing with distributed information at the
nodes, so that nodes do not need to know the complete contour tree, and can operate
with local information about the tree.
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The last chapter relies on a very basic geometric construct called a differential
form. It is used here to compute aggregate information about data. In particular,
given a region R in the network, we compute the sum of sensor values inside it by
simply summing the differential form along the boundary of R. This is the sensor
network application of Stokes theorem.

The differential forms approach works for any function, but our main focus will be
on a function that tracks mobile targets detected by the network. This is because in
the case of mobile targets that move along continuous paths, the form can be updated
very efficiently to adjust to target movement. The method has enormous flexibility – it
adjusts automatically and naturally to node failures, network holes, rapid movements
of targets, even addition and mobility of the sensor nodes themselves.

Differential forms are fundamental constructs in geometry and analysis, and the
ability to compute general sums in arbitrary regions opens up many other possibility.
For example, in a network where a planar graph can be computed, contour trees can be
computed distributedly, with an algorithm that is different from the sweep paradigm
of existing methods. Further, this approach can handle domains with holes, unlike
the direct computation of contour tree. This method is described briefly in chapter
10.

8.1 Research review

There are a lot of previous works on tracking mobile targets and on queries of sensor
data. We briefly review these work.

Range queries. For a typical range query, we are given a query sensor region plus
possibly a range of the sensor data, and then ask for all the the sensors in the query
region whether any sensor data is within the data range. This is a problem that
has been studied a lot in computational geometry. Centralized data structures for
geometric range query on static points [6] or motion data [5], have been developed.
But they are obviously not a good fit for a distributed sensor network setting. Various
distributed schemes have been proposed. In the case of a scalar field, one solution is
to partition the information about large geographic regions into subsets according to
smaller ranges of the field value, and store these subsets in different nodes. This is the
approach taken in the DIFS system [63], where each node in a quad-tree has multiple
parents, according to a finer partition based on smaller field ranges. Thus the wider
the spatial extent an index node knows about, the more constrained the value range
it covers. In the DIM system [100] a locality preserving hash function is used to
map portions of a multidimensional attribute space to sensors so that all data needed
to answer a range searching query can be located conveniently. In the fractional
cascading approach [57], information is stored so that more detailed information is
available about data obtained in the spatio-temporal locality of the sensor where the
query is injected—but without sacrificing the ability to query distant regions or times
as well. All of these schemes are designed to support range queries for static sensor
data. For mobile data such as a swarm of mobile targets, constant updates in a
global manner make these schemes too costly. In addition, these prior schemes are

110



mainly for rectangular ranges only. Ranges of other shape must be first partitioned
into smaller rectangular ranges, which are queried separately.

Location services. Existing solutions for tracking and searching for mobile targets,
termed as location services, focus on the tracking and searching of a single target.
The earliest work is by Awerbuch and Peleg [10] and followed up in [2, 47,99] to fine
tune the system. The location of a mobile target is updated to a carefully selected
set of nodes, called the location servers, whose spatial density cascades exponentially
as we move away from the target. This allows ‘locality-sensitive’ queries, i.e., the
cost of a query is proportional to the distance to the target. When a target moves,
information is updated on a location server, with the frequency inversely proportional
to the distance to the target. Note that this method requires tracking data to be sent
and stored at far away nodes. Thus, even if targets are concentrated only one region
of the network, other nodes have to stay awake for storage and communication of the
tracking data. Thus the information of a nearby location server is more up-to-date.
Forwarding pointers are left at the old position pointing to the current position of
the target. A query far away from the target may first obtain outdated information
pointing to a past location, from where the query can be delivered to the current
position by following the forwarding pointers. This family of schemes focused on the
tracking and searching of an individual, identifiable target. Location services have
amortized update cost of O(d log d) when a target moves a distance d, and a query cost
of O(d′) if the query node is of distance d′ away from the target’s current location. In
comparison, we have better asymptotic bounds. Our update cost is worst case O(d)
and query cost is no more than O(d′). In addition, location services do not support
range queries very well. If there are multiple targets, they are handled separately. For
range queries or aggregated queries (such as density) one has to search for location
servers for all potential targets within the range, which can be highly inefficient. In
this chapter we evaluate the performance of using location services and using our
method for range queries in the simulation section. We show that for both update
cost and the query cost, our method is substantially better.

Information gradients. The third approach is to define a potential field centered
at the target. Such information potential fields can be either the natural gradients of
physical phenomena, since the spatial distribution of many physical quantities, e.g.,
temperature measurements for heat, follows a natural diffusion law [26, 45, 46, 104],
or built explicitly on a mobile target. One scheme in this family uses harmonic
function to build such information strength field [101], which satisfies the Laplace’s
equation ∇2Φ(x) = 0 with proper Dirichlet boundary condition (1 at the target
location and 0 at the network boundary). Such an information field is guaranteed
to be free from local minima. Thus every node can follow the local information
gradient to arrive at the target. This works for both identifiable (information fields
are maintained separately) and non-identifiable targets (a single information field is
maintained for all targets). In addition, the divergence-free property of harmonic
gradients and Faraday’s law of induction imply an easy solution for counting range
queries — touring the boundary of a given range and summing up the difference of
the potential values on the edges across the region boundary provide the number
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of targets in the interior of the range. When a target moves, the information field
needs to be updated to ensure the harmonic function property. The limitation of the
scheme is that updating the potential field for mobile target is costly by the global
nature – nodes far away from the target have to update their information strength,
while ideally we hope to restrict the updates to be within a small neighborhood of the
target. If we ‘rotate’ the gradient vectors by 90◦, the result is a differential harmonic
one-form. In our scheme we do not require the differential one-form to be harmonic –
thus one can not easily navigate towards the target as in the scheme in [101]. However,
the benefit of using a relaxation as simply a differential one-form is to allow quick
maintenance of the one-form under target motion. As we have shown, the update is
completely restricted to the target neighborhood.
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Chapter 9

Topology of Data and Iso-Contour
Queries

We study the problem of data-driven routing and navigation in a distributed sensor
network over a continuous scalar field. Specifically, in this chapter we address the
problem of searching for the collection of sensors with readings within a specified
range. This is named the iso-contour query problem. We develop a gradient based
routing scheme such that from any query node, the query message follows the sig-
nal field gradient or derived quantities and successfully discovers all iso-contours of
interest. Due to the existence of local maxima and minima, the guaranteed delivery
requires preprocessing of the signal field and the construction of a contour tree in
a distributed fashion. Our approach has the following properties: (i) the gradient
routing uses only local node information and its message complexity is close to opti-
mal, as shown by simulations; (ii) the preprocessing message complexity is linear in
the number of nodes and the storage requirement for each node is a small constant.
The same preprocessing also facilitates route computation between any pair of nodes
where the the route lies within any user supplied range of values.

9.1 Introduction

Wireless sensor networks have shown great potential for providing dense monitoring
and sensing capabilities with modest cost and management effort. In many typical
sensor network applications, sensors are densely deployed in a physical environment to
provide good coverage at fine sensing resolutions. Existing work has established many
fundamental mechanisms for sensor deployment to ensure coverage [11,95,109,165] as
well as energy efficient networking functions to collect data from these nodes.

There are two fundamental aspects of sensor networks that differentiate them
from other types of wireless networks. First, it is the data from the sensor nodes,
rather than the network nodes themselves, that is of most interest to the users.
While many wireless networks, such as wireless LANs, cellular networks, and ad hoc
mobile networks, focus on supporting low-latency end-to-end communications and
maximizing the system throughput, sensor network designs are often tailored towards
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their target application and are bound tightly to the physical environment that they
are supposed to monitor/sense. In the most prevailing applications of environmental
monitoring, sensors measure readings of the physical space, such as temperature,
pressure, chemical concentration, and many others. Such physical quantities often
exhibit continuity properties over space and/or time. Thus the smoothness of the
physical signal field, and the spatial correlation of discrete sensor data, naturally
suggest possibilities for data compression and exploitation for efficient system design.

A second unique property of sensor networks resides in their great potential in
allowing seamless interaction between users and the physical world. In many civilian
and military applications, the users operate in the same space in which the sensors are
embedded. This allows novel applications in which real-time sensor data is quickly
delivered to users of interest for appropriate response and actions. All of this even-
tually leads to a smart environment that could revolutionize the way we observe,
interact with and influence the physical world.

In this chapter we look at the iso-contours of a scalar signal field represented by
sensor data, together with a local gradient descent routing scheme, with which the
users can navigate in this signal field with guaranteed success.

Iso-contour related queries. For a continuous field, an iso-contour at an isovalue
x is the collection of points with value equal to x. In a discrete sensor network, this is
often approximated by the collection of sensors with readings sufficiently close to x.
The iso-contours encode spatial structures of the signal field, such as boundaries of the
‘hot’ regions that indicate overheating or a fire, or pollution dissemination that may
require special treatment. The signal field can also be the energy map or traffic load
on the networked sensors, and thus the iso-contours are related closely and provide
information about the general health of the network or its traffic bottlenecks.

A few papers have studied compression, approximation and aggregation of iso-
contours with space-efficient data structures, when sensors report their data along
an aggregation structure to the base station [52, 71, 110]. In this chapter we are
interested in in-network data processing and the usage of iso-contours for navigation
in the signal field. Consider a scenario in which sensors and users (such as rescuers
or patrol officers) are embedded in the same physical space. Users with hand-held
devices communicate with nearby sensors to obtain directions to places that require
attention or service, indicated by the sensor data being within a specified range. We
consider the following two routing and navigation functions:

• Iso-contour query : from a query node q, find the iso-contours at value x, or
count/report iso-contour components at given value/range.

• Value-restricted routing : find a path from a source node s to a destination node
t with all values on the path within a user-specified range. This can be used for
navigation of packets in the network (e.g., avoiding sensor nodes with low energy
level), or navigation of objects in the physical environment (e.g., avoiding traffic
jam).

For both problems, we are looking for efficient solutions without flooding all the
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nodes. The chapter is tailored to the iso-contour query as it best demonstrates the
basic idea, with which the value-restricted routing can be answered easily.

Gradient descent routing. The most intuitive solution for iso-contour queries
is to use gradient descent, by exploiting the natural continuity of the signal field.
Starting from the query node q, the query message can be greedily guided either
downhill or uphill, depending on the comparison of the value at q and the target value
x. This greedy descent routing is simple and requires only local knowledge. Thus it
has been explored in a number of settings for low-cost data-centric routing [26,45,46,

104, 161]. Greedy descending/ascending can typically lead the query message to one
iso-contour, unless the query message reaches a local minimum or local maximum,
in which case the query gets stuck. Indeed, using simple gradient descent for an
iso-contour query has a serious defect: the signal field may have multiple peaks and
valleys, and greedy descending discovers at most one iso-contour, and is not able to
discover all of the iso-contours due to the existence of local optima.
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Figure 9.1. The level sets of a signal field and the contour tree spanning all the critical
points (in the right). The figure also shows some descending paths connecting the critical
points.

Figure 9.1 shows an example of a potential field by drawing its level sets. Red
colors mean hot and blue colors mean cold. We also show all the local maxima,
minima and saddle points. A greedy gradient routing from a query node q looking
for a desired level contour will follow the local gradient and climb up the mountain.
Once the query reaches the desired level it can locally trace out one contour, e.g, the
contour on the left peak in the figure. However with only local information the query
does not know whether there are other peaks and if so where they are.

The difficulty here is that the greedy gradient routing is completely local, while
iso-contours reflect the global topology of the signal field. This is a general problem
in navigation with a potential field, as has also been studied in robotics: with only
information about the local potential one lacks the big picture of the signal field
which is important for guaranteed success. In particular, the collection of critical
points (local maxima, minima and saddle points) represents the global topology of
the signal field. Thus, in order to make the local greedy descend algorithm always
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work, one needs to augment it with a compact representation of the critical points
and their relationships.

Our contribution. We propose to investigate distributed algorithms to pre-process
the iso-contour structures of the signal field by what is called the contour tree [154],
using which a gradient routing scheme can successfully discover all iso-contours. In
short, a contour tree is a tree on all the critical points of the signal filed and captures
the topology of the iso-contours. It is a special case of the Reeb graph in Morse
theory [112]. Take Figure 9.1 as an example, the right figure shows the topological
contour tree consisting of eight vertices, corresponding to two local maxima, three
local minima, and three saddle points. A contour tree captures how the connected
components of the iso-contours merge/split as we increase/decrease the isovalue.

We propose an algorithm for the construction of the contour tree in a fully dis-
tributed manner. The basic idea is similar to the centralized construction [19, 31,

147, 154]. But we need to account for numerous robustness issues due to local noise
and degeneracies, and lack of global coordination. We use distributed sweeps [144],
initiated at local maxima and minima to identify the saddle points and nodes on the
saddle contour. Next an information dissemination phase following the contour tree
structure distributes necessary information for gradient descent routing. The prepro-
cessing involves all together four rounds of sweeps of the signal field and has a linear
message complexity.

The invariant we maintain on a node p is the max/min value in the interior
and exterior of the iso-contour component through each point p. This represents
only a small constant storage requirement at each node. For iso-contour queries,
the gradient descent routing alternates between two operations (i) at a node on some
saddle contour, it checks the split/merged contours and send one or two (if necessary)
messages to the new connected components. (ii) at other nodes, the query message
either follows an iso-level or follows gradient ascending/descending path to reach the
desired contour. The gradient routing only uses information stored at a node itself
and every routing step is justified, in the sense that there will definitely be a contour
discovered for each query message. Thus no effort is wasted. Our simulations show
that the gradient routing achieves comparable message complexity, when compared
with the minimum spanning tree covering the iso-contour components, which is at
most twice the length of the minimum Steiner tree, the optimal solution if the global
knowledge about the entire signal field were available.

At the same time, the same contour tree permits a scheme for restricted value
routing, and a labeling scheme such that validity of a restricted value route request can
be determined simply from the labels of the source and destination nodes. Intuitively,
the spatial structures of the signal field are entirely captured by the contour tree, and
low values paths in the field can be mapped to a low value path on the tree.

Lastly we note here that in this chapter we only consider a static signal field,
because the problem for a static signal field is already quite challenging. In practice, as
the signal evolves over time we can periodically execute the contour tree construction
phase. The maintenance of the contour tree for a time-varying signal field will be
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future work.

9.2 Contour trees and gradient routing

Given a continuous signal field F , the iso-contour (aka. level sets) at an isovalue x
is the collection of points p with value F(p) = x, and may have multiple connected
components. We denote by C one connected component of an iso-contour and by
C(p) the connected component containing node p.

As we decrease the isovalues from the global maximum to the global minimum,
the connected components on the iso-contours may merge together, split, emerge,
or disappear. These changes happen at critical points, such as local minima, local
maxima and saddle points. The contour tree captures such topological changes of the
iso-contours. In a contour tree, each node corresponds to a critical point, and an arc
in the contour tree connects two critical points. In particular, as we start from +∞
and decrease the isovalue,

• at a local maximum, a contour component emerges;

• at a local minimum, a contour component vanishes;

• at a saddle point, two contour components merge into one or one contour com-
ponent splits into two (see Figure 9.2). In the first case, there are two branches
of the iso-contour eminating from the saddle point, representing the two compo-
nents. Such a saddle point is called a merge saddle (with respect to decreasing
isovalues). The second case with respect to decreasing isovalues is called a split
saddle. (For increasing isovalues, split saddles and merge saddles are inter-
changed.)

p

p

(i) (ii)
Figure 9.2. ⊕ indicates a local maximum. ⊖ indicates a local minimum. ⊙ indicates a
saddle point. Dark colors mean larger values. When we start from ∞ and decrease the
isovalue, at a saddle point, (i) two contour components merge into one; (ii) one contour
component splits into two.

It has been proved that the merging and splitting of contour components are
indeed represented by a tree. Further, without degeneracy (no two saddle points
have the same values), a local maximum or a local minimum has degree 1; a critical
point has degree 3. To visualize, we place the vertices of a contour tree, i.e., the
critical points, at the height levels of their values. A merge saddle has a ‘Y’ shape
and a split saddle has an inverted ‘Y’ shape. Then we can map contour components
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in an iso-contour at value x to the points obtained by cutting the tree at level x.
The contour component through a saddle is mapped to the saddle vertex on the tree.
Thus, at a point p in the signal field, if its contour component C(p) is mapped to a
point on arc α in the contour tree, then we say p is on arc α. In Figure 9.1, the iso-
contour at the query value x has two components, the left contour stays on the arc AC
and the right one stays on the arc BC. If we embed the contour tree in the domain by
representing each edge with a monotonic path connecting the corresponding critical
points, it can be verified that this mapping is continuous and the contour tree is a
retract of the original domain under this mapping.

In a sensor network the continuous signal field is sampled by discrete sensors. To
compute the contour tree in the discrete setting, we have the following challenges:

Local identification of critical points. In a continuous signal field, a critical
point p is a point with all partial derivatives vanishing at p. In a sensor network we
can easily identify the local maxima and local minima. A local maximum (minimum)
has all the neighboring values no greater (smaller) than itself. However, it is not easy
to identify saddle points, which have larger and smaller values in its neighborhood in
an alternating way. When we do not have sensor locations or do not have accurate
locations (say, the neighbors may switch their angular ordering), identifying a saddle
point robustly is not straight-forward. In our algorithm, the saddle points are discov-
ered along with the construction of the contour tree, as the nodes where the contour
components merge.

Distributed construction of the contour tree. The construction of the contour
tree of a piecewise linear mesh has been studied before [19, 23, 31, 147, 154]. The best
algorithm achieves a running time of O(n log n) on a piece-wise linear surface with
n vertices and can even be made to be output sensitive [19, 23]. However, these
algorithms are centralized and are not appropriate for low-cost in-network processing
in a distributed sensor network. We propose a distributed algorithm that involves four
passes of sweeps, to be explained in details in subsection 9.2.2. Thus the construction
costs roughly 4nmessage transmissions. After the preprocessing phase gradient-based
routing with guaranteed success for iso-contour queries can be performed at any node
in the network.

Handling noises and plateau regions. An important practical issue regarding
contour trees for a sensor network is that the sensor data is a noisy approximation
of the underlying smooth signal field, due to sensor inaccuracy, hardware noise, etc.
Thus there could be many more local maxima and minima in the sensor data than
the the original (unknown, smooth) signal field. We propose two methods to handle
this. First, we will locally simplify a contour tree by using topological persistence [20].
Small bumps will be chopped off. Second, we will not keep the entire contour tree at
each node but rather only keep enough information for gradient routing. Thus, local
optima due to noises in the measurement only influence a small neighborhood and
are ‘invisible’ to queries from far away regions.
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9.2.1 Notations

Before we describe the algorithm, we first state conceptually what we want to achieve
with the contour tree construction and what we want to store at each node. An
example of a contour tree is given in Figure 9.3 (i). A node w on an arc AB has a
contour component C(w) in between C(A) and C(B). The contour component C(w)
decomposes the entire signal field into two components, the interior and the exterior,
corresponding to the two subtrees when w is removed. The interior contains the
critical point A, which is reachable from C(w) via a gradient ascending path. We call
A the ascending saddle. The exterior contains the critical point B, which is reachable
by a gradient descending path. B is called the descending saddle. Not every node
has both ascending/descending saddles. Now we will state what is needed to store at

B

w

A

P2

p

P2

p

P1

P2

P1
S

(i) (ii) (iii)
Figure 9.3. (i) A contour tree and the interior of C(w) shown in the bounded region; (ii)
merge tree; (iii) split tree.

each node for gradient descent routing with success.
At a node w (not on the contour component of a saddle), we will store four values:

• I+(w), I−(w) correspond to the maximum and minimum value in the interior
of C(w);

• E+(w), E−(w) correspond to the maximum and minimum value in the exterior
of C(w).

This information is to guarantee that when we send a query message either uphill or
downhill, we know for certain that there exist some contours for which we are looking.

For the consideration of easy navigation with the contour tree, each node also keeps
information about the contours that split off/merge together at their ascending merge
saddle or descending split saddle. Take point p on the arc P2A and its descending
split saddle A in Figure 9.3 (i) as an example. The contour component C(A) is the
union of two contours C1(A) and C2(A) splitting up soon. Thus we keep at each node
u ∈ C(p),

• the maximum/minimum values of the interior/exterior of both C1(A) and
C2(A);

• gradient descending pointers leading to C1(A) and C2(A).

This information helps us decide before we reach a saddle contour, whether it is worth
visiting one or two of the contour components that split off of it and if so, how to get
there.

To summarize, each node only keeps a small constant amount of information.
Next we will explain how to get this information. In the rest of this chapter we
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assume a dense deployment of sensors in which each node u has an value F(u). The
nodes have a communication graph G that models the pairs of nodes who can directly
communicate with each other. We assume no two sensors have the same values, if
they do, ties are broken by their IDs (the one with higher ID is considered larger).

9.2.2 Sweep to identify saddle points

The construction of the contour tree and the spread of information about the
peaks/valleys of the signal field are conducted by a sweep algorithm, similar to the
one in [144]. Without loss of generality, we explain the details with the sweep top
down. A node has its higher (lower) neighbors as the subset of neighbors with value
strictly higher (lower) than itself.

Each sweep is initiated and labeled by a critical node (a maximum, minimum or
a saddle node). A node identifies itself as a local maximum if it discovers that all
its 1-hop neighbors have value no greater than itself. It then initiates a sweep top
down. The sweep algorithm runs in a distributed fashion on all the nodes. A node
has two possible states, swept and not swept. Each local maximum node initializes
itself as a swept node. When a node has all of its higher neighbors in the swept state,
it changes itself to be swept. The nodes who participate in the sweep do not need to
be synchronized and advance the sweep frontier with their local knowledge.

In the sweep initiated by a local maximum p, the sweep message carries the tuple
(p,F(p)), i.e., the node ID and value of p. Each node being swept will keep this
information, as well as from which nodes it received this information. We define
a descending path as a path in which each node has a value no greater than its
precedent. During the sweep the information about a local maximum p is propagated
along descending paths from p. In addition, each node swept learns ascending pointers
which eventually lead to the local maximum.

If a node gets two sweep messages from different local maxima, this indicates that
two contour components start to merge. Thus a saddle should be identified. Since
the nodes advance the sweep frontier in a distributed fashion, it may happen that
two nodes at the same time both receive the sweep messages from two peaks. Thus
we will need to define a saddle rigorously and resolve the ambiguity.

Definition 9.2.1. We define a node to be a merge saddle node if it is the one with
highest iso-value with two descending paths from different critical points (other merge
saddles or local maxima), i.e., it receives two sweep messages from different critical
points.

Notice that this definition is recursive in nature. A merge saddle is precisely the first
node when two contour components merge, as shown below.

Lemma 9.2.2. For a merge saddle q of two critical nodes p1, p2, if we remove the
sensors with values strictly smaller than F(q), and obtain a subgraph G′, then q is
the cut node of G′ (removing q will result in two or more disconnected components.).

Proof: First, define L1 (L2) as the set of nodes in G′ with ascending paths to p1 (p2).
We claim that L1 and L2 has only node q in common. If otherwise, q 6= q′ ∈ L1 ∩L2.
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Since q′ is a node in G′, q′ has a higher value than q. Now this contradicts with the
definition that q is the saddle node.

Now we argue that once q is removed from G′, then the set of nodes L1 is discon-
nected from L2. Suppose otherwise, that there are two nodes x1 ∈ L1, x2 ∈ L2 and
a path P connecting them that does not go through q. This path P must use nodes
other than those in L1 ∪ L2. Now take the first node on P coming out of x1 that is
not in L1 ∪L2, denoted by y1. Without loss of generality we can also assume that y1
is just next to x1 (otherwise take x1 to be the preceding node of y1). Now we must
have F(y1) > F(x1), since y1 is not in L1. Now take an ascending path from y1, it
will lead eventually to either a local maximum or a saddle, denoted by p3. Thus the
node q cannot be a merge saddle with p1, p2, since there will be another saddle of p1
and p3, which is at least higher than node y1 and q. This shows a contradiction. �

We also remark that with a top-down sweep we do not identify the saddle when
one contour component splits into two – the split saddles will be discovered when we
do a bottom-up sweep from local minima, in a completely symmetric fashion.

Now we show how the merge saddle node is identified in a robust and efficient
way. A node who is not a local minimum and first receives two sweep messages from
different peaks P1, P2 will promote itself to be a potential merge saddle S(P1, P2).
In a distributed setting we need to worry about two issues: (i) two nodes u, v (or
more) may become potential merge saddles S(P1, P2) for the same two peaks. In this
case only the real saddle node (the one with highest isovalue) should survive. (ii) it
may happen, if the sweep frontier does not proceed in the same speed, that the lower
saddle may be discovered before the higher saddle, as shown in Figure 9.4.

sweep frontier

P3

C(S2)

P2

P1

S1

S2

C(S1)

Figure 9.4. If the sweep from P2 proceeds faster and reaches S1 before it reaches S2, then
S1 will notice it is a potential saddle for S(P1, P2). The correct contour tree should have
the saddle S1 to be the merge saddle for P1, S2.

The two problems will be resolved by the traversal of contour component, de-
scribed below. Once a node u becomes a potential saddle for two peaks p1, p2, it
starts to traverse the contour component C(u), defined as,

Definition 9.2.3. The contour component C(u) for a node u is defined as the set
of nodes that have values above F(u) and have a lower neighbor lower than F(u). If
u is a merge saddle for two critical points p1, p2, then C(u) is partitioned into two
components C1(u), C2(u) (sharing only node u) that have ascending paths to p1, p2
respectively.

Thus a potential saddle node u sends the tuple (p1, p2) to the nodes in C(u). To
resolve the first issue that several potential saddle nodes compete for the real saddle,
the traversal message from u is suppressed if it hits a node x with a traversal message
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Figure 9.5. A merge saddle (shown as the triangle) and its contour component (in red).

from a winning potential saddle u′ (with higher value) for the same two peaks. x
stops forwarding the message from u. Thus the traversal from u will stop because it
either visits all the nodes in C(u) or if u loses to some other potential saddle.

During the message dissemination, a backward pointer is cached at each node
in the traversal. Thus a tree rooted at u, named T (u), is established and used
for information aggregation and for u to learn about whether it wins and becomes
the real saddle, or whether it loses the competition. In particular, a leaf w in this
aggregation tree will return to its parent ‘loser’ if w has another winning traversal
message, otherwise return the sweep message it has received. If a node is not yet
swept, it waits for its sweep message before it reports back. An interior node in the
aggregation tree returns to its parent the union of the messages from its children.
Now the potential saddle node u becomes the real saddle for p1, p2, if (i) it does not
get the ‘loser’ message from its aggregation tree; (ii) all nodes in C(u) are swept by
p1 or p2.

The new saddle q will start with a new top-down sweep and they propagate the
tuple (q,F(q),M(p1, p2)), where M(p1, p2) indicates that q is the merge saddle of two
critical points p1, p2. All the nodes in C(q) are considered swept by q and the new
sweep moves forward.

Notice that the sweep from a merge saddle q is distinct from the sweeps from
p1, p2. In fact, the merge saddle q and all the nodes who receive the traversal message
from q do not forward the sweep from p1 or p2 anymore. In the case when a node
w has already forwarded the sweep from p1 or p2 by the time it gets the traversal
message, it simply participates in the new sweep of q. Notice that again we do not
require synchronization. The old sweeps from p1 and p2 cannot propagate very far
from C(q), since q stopped participating; thus, q’s lower neighbors cannot possibly
be swept, and so on and so forth.

If the merge saddle q also happens to be a local minimum (in a setting with low
discrete resolution), q is in fact a merge saddle, a split saddle, and a local minimum
all by itself. One trouble this may potentially cause is that the old sweeps from p1
and p2 may propagate without being dragged behind by q, since q does not have lower
neighbors. The system however, will eventually arrive at the correct state, since the
sweep from saddle q will overwrite the old sweeps from p1, p2.

The traversal also resolves the second issue mentioned above. In particular, S1

cannot win before the saddle S2 successfully identifies itself and proceeds with its
sweep — this is because S1 will only get its aggregated message when all the nodes in
C(S1) have been swept, and S2 and its descendants cannot be possibly swept before
the saddle S2 is done. During the aggregation phase for S1, S1 will learn about the
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sweep messages on C(S1). A subtle issue is that some nodes in C(S1) may considered
them swept by P2 and report P2 back to S1. Thus S1 learns that some of the nodes
are swept by S2 = M(P2, P3) and some nodes are swept by P2 or P3 alone. Now
S1 un-sweeps the nodes only swept by P2 or P3 and will only proceed to be the real
saddle for P1, S2 when all the nodes are swept by P1, S2. In this case S1 is initially
proposed to be a saddle for P1, P2 but eventually becomes a saddle of P1, S2 when it
wins.

To summarize, If there are two nodes both identifying themselves as a merge
saddle, then the one with lower value will be swept and corrected (i.e., removed)
eventually.

Lemma 9.2.4. With the algorithm above, there cannot be two nodes both identify-
ing themselves as the merge saddle of two critical nodes. Thus the algorithm defines
a unique contour tree structure.

After the top-down sweep, we have identified all merge saddles. By symmetry,
we perform another sweep bottom-up initiated by local minima. Thus, after both
sweeps we identify all saddle points and all nodes on the contour components of these
saddles, thereby obtaining inherently the entire contour tree structure.

9.2.3 Construction of the contour tree

In this section we will extract the combinatorial contour tree after the saddles are
identified. Notice that during top-down and bottom-up sweeps we have identified the
merge tree (on all local maxima/minima and merge saddles) and the split tree (on all
local minima/minima and split saddles). We will combine them to the contour tree
such that each critical node learns its parent/child on the tree. Figure 9.3 (ii) (iii)
shows the merge tree and split tree, respectively.

We use descending and ascending paths to discover the contour tree. Starting
from a merge saddle p = M(P1, P2), we follow ascending paths towards P1, P2 respec-
tively. If the ascending path towards P1 reaches P1 before it hits any other critical
contour level, then p will consider P1 its parent in the contour tree. If the ascending
path towards P2 hits a split saddle contour S, then p will consider S as its other
parent in the contour tree. Similarly p also sends a descending path and identify its
child in the contour tree. The operations for a split saddle, maximum/minimum are
very similar and not repeated.

The operations require that an ascending path does not cross a split saddle contour
without noticing it. This is guaranteed by the definition of a contour component.
Suppose that in an ascending path x has value F(x) < F(q), with q as a split saddle
node, and the next node on the path y has value F(y) ≥ F(q). Thus x must be on
the saddle component C(q), because x has a value below F(q) and has a neighbor
y above it. This guarantees that the contour tree will be detected precisely as the
combination of the merge tree and the split tree.
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9.2.4 Information dissemination

With the contour tree constructed, we will need to disseminate information such that
each node w learns

1. the maximum/minimum value, I+(w), I−(w), inside the interior of its contour
component C(w);

2. the maximum/minimum value, E+(w), E−(w), inside the exterior of C(w).

This is done by information dissemination along the contour tree. By symmetry, we
first explain how a node w learns about the maximum value inside the interior/exterior
of its contour component. Suppose that w is on an arc AB. Recall that the interior
of C(w) corresponds to the subtree containing the ascending neighbor A, when C(w)
is removed. Thus the maximum of the exterior (interior) of C(p) for a local minimum
(maximum) p is its own value.

We explain the basic operation by using the contour tree. For an arc e, the
removal of w ∈ e leaves two subtrees T1 and T2, the maximum value in T1 is sent
through the arc, by a sweep, to T2, and vice versa. In particular, we specify the
dissemination rules at saddle points. See Figure 9.6. First, examine a merge saddle
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Figure 9.6. Information dissemination on (i) merge saddle; (ii) split saddle.

p with two incoming arcs e1, e2 and one outgoing arc e3. Suppose by induction that
the maximum is already learned and propagated along the arcs e1, e2, e3 to saddle
p, as shown by I+1 , I

+
2 , E

+
3 in the figure. The contour component C(p) has two

components C1(p), C2(p), corresponding to the nodes with ascending paths along e1
and e2 respectively. Now for a node w,

• if w ∈ C1(p), w sends E+
1 = max(I+2 , E

+
3 ,F(w)) along the bottom-up sweep of

e1;

• if w ∈ C2(p), w sends E+
2 = max(I+1 , E

+
3 ,F(w)) along the bottom-up sweep of

e2;

• if w ∈ C(p), w sends I+3 = max(I+1 , I
+
2 ) along the top-down sweep of e3.

This says that the nodes on C(q) will initiate a sweep bottom-up along e1 and e2,
and a top-down sweep along e3 and propagate information as shown in Figure 9.6(i)
accordingly. At a split saddle, information propagates in a similar way as shown in
Figure 9.6(ii). We do not repeat here.

Notice that we do not need close synchronization among these sweeps. In partic-
ular, the bottom-up sweep on e2 in Figure 9.6(i) can start when both I+1 and E+

3 are
done, even if the sweep I+2 is not finished yet.
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The information dissemination phase is initiated by the local minima and local
maxima. A local minimum p initiates a bottom-up sweep with value E+(p) = F(p).
A local maximum p initiates a top-down sweep with value I+(p) = F(p). Along each
arc there are at most two sweeps in different directions. In addition, the dissemination
of both the minimum and the maximum can be integrated in the same sweep so that
the total cost for this phase is roughly 2n.

For navigation purposes, we will also disseminate information such that a node
traveling in a gradient ascend path can easily find ways to each of the two peaks
that will split up on the upcoming merge saddle p (so that we do not need to reach
the saddle to decide). Specifically, each node on C1(p) records its hop count within
C1(p) from the saddle p. This is called its index. For a node w with p as its ascending
merge saddle, if w has higher neighbors with ascending pointers to p1, then w has an
ascending pointer to p1 and its index is the minimum of the indices of those higher
neighbors. A node may have ascending pointers to both p1, p2, for example, the saddle
node p itself and all the nodes with ascending paths to p. Similarly we disseminate
the descending pointers along the ascending paths from a split saddle until the next
critical contour. This information sweep can be combined with the previous sweep
thus it does not incur extra cost.

To summarize, the total communication cost is bounded by the cost of sweeps,
and the cost of traversing the saddle contours. In the ideal case when the saddle
contours do not severely overlap and the sweeps are stopped in time by the saddle
contour traversal, both the sweep cost and the saddle contour traversal cost are a
constant factor of the network size. The construction cost in practice is evaluated in
simulations.

9.2.5 Handing noises

With real sensor data, the signal field may have noises, causing lots of local optima.
In practice we will de-noise the signal field by simplifying the contour tree during
construction, to improve the construction efficiency. At a saddle node q, we will
check the values of the two peaks p1, p2. Say F(p1) > F(p2). If F(p2) − F(q) < ε
and q is at least γ hops away from p2, with ε and γ as upper bounds on the height
and size of a bump to be considered as noises, we consider p2 insignificant and chop
it off. See Figure 9.7 (i). At the saddle q, q will detect that p2 is too small, thus it
will be chopped at the value of F(q) and the sweep of p1 will take over.

p1

q

p2
p1 p2

q

p2

q

p1

(i) (ii) (iii)
Figure 9.7. (i) a bump considered as noise and flattened; (ii) too high to be a noisy bump;
(iii) too wide to be a noisy bump;

The above operations effectively ‘smooth out’ the signal field, guided by local
geometric measures. This can substantially simplify the contour tree in a noisy data
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field. The gradient routing for iso-contour queries will miss at most some small
components, whose sizes are controlled by ε and γ.

9.3 Iso-contour queries

9.3.1 Gradient descent routing for iso-contour queries

The invariant we constructed so far enables an efficient gradient routing for iso-
contour queries with guaranteed success. The gradient descent algorithm uses only
the information stored at a node and its immediate neighbors.

Starting at q we first check whether x is beyond the range of the signal field, in
which case we do not travel even one step and immediately return ∅. Effectively, this
is by checking whether I+(q) < x and E+(q) < x, or I−(q) > x and E−(q) > x.
If not, we know that there must be some non-empty iso-contours at level x and we
use a greedy gradient algorithm to find them. The main idea is to send the query
message along the contour tree, possibly splitting at internal branches, and discover
all components of the iso-contour of interest. At the query node q,

• If I+(q) ≥ x ≥ I−(q), then q initiates a query message to follow the gradient
uphill.

• If E+(q) ≥ x ≥ E−(q), then q initiates a query message to follow the gradient
downhill.

We first explain the ascending query message from q. If a query message hits a node
w with isovalue x, it will then start a traversal along the contour component C(w).
This is done by the same algorithm as explained earlier. At the same time, we also
need to check at w whether it is worth getting even higher up — it is possible that at
the interior of C(w) there are still contours of value x. Again this is done by checking
a higher neighbor of w, say v, whether I+(v) ≥ x ≥ I−(v).

For an ascending query message at a node w, suppose w stays on an arc with p
being an ascending merge saddle. Then we will check for two parents of p, denoted
by p1, p2, whether we will need to ascend on one peak or both of them. Luckily this
information has been disseminated for all the nodes on this arc. Thus w will check
the value range within the interior of C1(p), C2(p) respectively. If the query value x
falls in the range, w will initiate an ascending query message for it. See the red query
in Figure 9.8 as an example of two query messages, one for each peak.

p1 p

p2

q

q′

Figure 9.8. Examples of two queries.

For an ascending query message towards say peak p2, if w has ascending pointers
to p2, this query message is simply delivered by gradient ascent routing, as the query
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from q′ shown in Figure 9.8. If not, then the query message will follow a contour at
a random value (below F(p) and above F(w)) and follow the index-decreasing path,
in order to cross the ridge and discover some ascending paths to p1. The descending
query message is delivered in a symmetric manner looking for contour components
at x. We may go a random number of hops further after ascending pointers are
discovered, in order to avoid always using the nodes on the ridge. To summarize,

• The gradient routing algorithm is completely local and distributed and success-
fully finds all contour components at a given query level.

• Every step of the routing algorithm is justified, we send a query message only
when we are sure there is something to be found. So no message will end up in
vain.

• The routing scheme does not have to go through the saddles or follow critical
contours, thus does not overload those nodes.

We note that this iso-contour query is the most basic query of a family of queries
on iso-contours. Other iso-contour queries include: reporting the number of contours
at value x, in particular, is there a single contour component? Range-limited queries
(count/report contours within a value range)? These can be handled with either the
iso-contour query as a subroutine, or by using a similar gradient routing algorithm.
We omit the details here as the extension is relatively straight-forward.

9.3.2 Value restricted routing

The contour tree can be used for value restricted routing : given a source s and
destination t, find a path P from s to t such that at every node x on P , a ≤ F(x) ≤ b,
abbreviated as a ≤ F(P) ≤ b. Recall that the contour tree is produced by a retraction
R which maps every point on a contour component to a point on the arc in the contour
tree. Thus we have:

Lemma 9.3.1. For any path P between points s and t, the image R(P) in the tree
contains the unique path P ′ in the tree between R(s) and R(t).

Theorem 9.3.2. A value restricted path exists in the network if and only if a value
restricted path exists in the contour tree.

Proof: In the following, we assume F(s),F(t) ∈ [a, b], since otherwise the request
is clearly invalid. First, a path P ′ in the contour tree implies a path in the network.
Since the tree is a retract of the domain, a path P ′ in the tree is also a path in the
network. Also it is possible to traverse from s to R(s) and from t to R(t) along C(s)
and C(t) respectively. Appending these to P ′ gives the required path.

For the other direction, a path P in the network implies a path in the tree. Let P ′

be the unique path between R(s) and R(t). Then by lemma 9.3.1, P ′ ⊆ R(P). Since
∀p,F(R(p)) = F(p), we have max(P ′) ≤ max(R(P)) = max(P ) and min(P ′) ≥
min(R(P)) = min(P ). �
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The results have a number of implications. The contour components on path P ′

on the contour tree are ones that any path from s to t in the network must intersect.
In moving from s to t along any path, we can keep record of number of times each
component appears, or simply push and pop them on a stack. The ones remaining
in the stack at the end constitute the path P ′. Thus, a value restricted path can be
obtained by deforming any path connecting source and destination.

To answer the value restricted routing problem in a sensor network, if we dissem-
inate the entire contour tree to every node, the a route in the network can be found
in a greedy manner by following the contour components connecting the source and
destination. If we do not store the entire tree at every sensor, we can develop a node
labeling scheme, such that by using the labels of source and destination we can tell
whether a path exists or not.

Given a contour tree with m vertices, we first do a balanced decomposition of
the tree. For any tree there is a cut node, whose removal will leave subtrees each
of size no more than 2/3 of the total vertices. Repeatedly partition each subtree
to get a balanced decomposition of depth logm. The label of a node u will be the
concatenation of the IDs of all the cut nodes along the path from u to the root of the
decomposition tree, as well as the max/min value of the paths from u to these cut
nodes. Thus the size of the label is O(logm). For any two nodes s and t, by their
labels, we can immediately find the lowest level cut node w shared by them. The
path between them will necessarily go through w. Thus by taking the union of the
range of the paths from s, t to w, we get the value range of the path connecting s, t
in the contour tree.

With the labels pre-computed, each node p in the contour component will store
the labels of its ascending and descending critical points. Thus one can use the labels
of source and destinations to answer the value restricted routing requests.

9.4 Simulations

We implemented the algorithm for constructing contour tree and for answering iso-
contour queries with gradient routing. Our simulations do not take into consideration
many important networking details, e.g., packet loss, delay and channel contention.
This set of simulations is a proof of concept and aims to verify the correctness of the
algorithm and evaluate the feasibility of the approach on the algorithmic level.
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(i) (ii)
Figure 9.9. (i) Elevation map of West Reno (obtained from usgs.gov). (ii) The critical
points discovered by our contour tree algorithm with a 2500 node sampling.
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Unless specified otherwise, the simulation setup consists of 1600 nodes, deployed in
a 16 units by 16 units square region with unit disk graph as the communication model.
Nodes are deployed in a perturbed-grid distribution, where each node is assigned a
random position within its grid square. The average number of neighbors per node is
about 21. The sensors sample from a continuous signal field shown as in Figure 9.10
(i).
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Figure 9.10. (i) The continuous signal field sampled by the distributed sensors; (ii) The
message complexity of contour tree construction; (iii) The CDF of the ratio of our query
cost v.s. the cost of MST; (iii) The CDF of the node load distribution.

9.4.1 Preprocessing cost for contour tree construction

We first evaluate the cost of contour tree construction. We vary the number of
nodes with the same signal field and count the total number of messages, assuming a
broadcast medium. In our implementation, a random node on the sweep frontier is
selected to become swept. The number of messages grows linearly in the number of
nodes as shown in Figure 9.10 (ii). The constant factor is about 6 ∼ 7.

9.4.2 Cost of iso-contour queries

We compare the cost of gradient routing versus a global solution of using the minimum
spanning tree to connect the query node q and all the nodes on the iso-contour at value
x, which is a 2-approximation of the minimum Steiner tree, the optimal (minimum
cost) solution if the full knowledge of the signal field is available. We take 300 random
queries with q randomly selected within the field of deployment and the query value
x randomly chosen between the global minimum and global maximum values. For
each query, we take the ratio of our query cost versus the cost of MST (both in terms
of number of hops). We calculated the cumulative distribution, i.e., the percentage
of queries for which the ratio is below x, in Figure 9.10 (iii). Roughly all cases have
a ratio below 2 and 80% of the queries have a ratio below 1.4.

9.4.3 Load balancing

In the same setup as the previous section, we plot the load on every node involved in
the query procedure. A node is involved if it is on the routing path or is on the iso-
contour to be queried. The maximum message load on any node is 148, the average
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message load is about 48.7. The load distribution is shown in Figure 9.10 (iv), in
which 90% of the nodes have a message load of below 70.

9.5 Conclusion and future work

In this chapter we presented the distributed construction of a contour tree and its
application in iso-contour queries by gradient routing with guaranteed delivery. Our
future work is to update and maintain the contour tree for a time-varying signal
field [37].
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Chapter 10

Differential Forms for Tracking and
Searching

Consider a static sensor field used to track and monitor a swarm of mobile targets, we
develop distributed algorithms for in-network storage and range queries for aggregated
data. For example, to return the number of targets within any user given region. Our
scheme stores the target detection information locally in the network, and answers a
query by examining the perimeter of the given range R. The cost of updating data
about mobile targets is proportional to the target displacement. The key insight is to
maintain in the sensor network a function with respect to the target detection data
on the graph edges that is a co-vector field, also called a differential one-form. The
integral of this one-form along any closed curve C gives the integral within the region
bounded by C.

The differential one-form has great flexibility. The basic range query can be used
to find a closest target or any given identifiable target with cost O(d) where d is the
distance to the target in question. Dynamic insertion, deletion, coverage holes and
mobility of sensor nodes can be handled with only local operations, making the scheme
suitable for a highly dynamic network. Although we illustrate the major application
of the differential forms for tracking swarms of targets, the same routine can be
applied for organizing streaming scalar sensor data (such as temperature data field),
to support efficient range queries. We demonstrate through analysis and simulations
that this scheme compares favorably with existing schemes using location services for
answering aggregated range queries of target detection data.

10.1 Introduction

Tracking of mobile targets is a major motivating application for sensor networks [64,
82, 143, 166]. Target tracking algorithms and architectures have been extensively
investigated in the past few years. A few tracking systems have also been deployed
and evaluated on real testbeds (such as [9, 68,142]). A closely related problem is the
design of the interface with which the target trajectories are accessed by the users.
Arguably, the most adopted approach so far has the sensors that detect a target
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record the detection event in the data logger or report it to a base station, where the
target trajectories are assembled from the individual detections for post-experiment
analysis. As sensor networks mature and become large scale, they intrude into the
space where people live and work, the detection data needs to be processed in a timely
manner, and accessed by users residing in the same physical space, sometimes with
stringent delay requirements.

Consider the following scenario of wide-area deployment of sensors along major
roads to track and monitor moving vehicles. A sensor can detect the position and
velocity of a target within its sensing range [96]. A target may either have a distinct
signal signature (e.g., a visual signature), or, for privacy protection, a non-identifiable
signature (e.g., acoustic ones). The moving vehicles come in swarm as in the typical
case of medium to heavy traffic situation. A user may use hand-held devices (smart-
phones, PDAs, etc) to communicate with nearby sensors or other portals and inquire
for the target distribution. Of particular interest to us are range queries for aggregated
data, for example, the level of traffic congestion in a specified neighborhood and its
evolution over time. Formally, we ask a counting range query: what is the number
of targets in any user-specified region R? The topic for this chapter is to develop an
efficient data processing and query scheme for such applications. A desirable solution
should have low query delay, low communication costs, as well as low maintenance
cost as the targets move.

In many practical scenarios, movements of targets are relevant only in the local
region and for a short period of time. For example, some cars turning on a particular
by-road is a relevant traffic information only while they are in the neighborhood.
The communication and storage costs of updating a remote server are hard to justify
for such fleeting pieces of data. A centralized solution also represents a single point
of failure, is not resilient to attacks and is not efficient when handling many such
updates. Very often, users might be in a neighborhood of where the data is generated.
A centralized solution would require both the data and query from the users to
be delivered to a (possibly) remote server. This leads to unacceptable delay and
unnecessary network traffic.

Alternatively, the sensor in the proximity of a target can detect the target and
can locally cache the detection event. This scheme has low maintenance cost as data
is stored locally and only local updates are needed when target moves. But with
such raw detection data stored directly in the network it is not easy to answer range
queries. One has to flood all the nodes inside the range R to find out the total number,
the communication cost of which is proportional to the area of R, A(R).

Both central and local data storage methods suffer from issues with sensing holes.
Targets may enter and leave these holes at arbitrary times. It becomes difficult to
track possible presence of targets in a hole unless entry and exit data are stored for
long durations and carefully matched. This is even harder in the local caching scheme
since the entry and exit may happen at different points on the boundary of the hole.

The solution we propose in this chapter uses local maintenance, but instead of
storing raw detection data, stores target movements implicitly. It has a query cost
proportional to the perimeter of R, P(R) ≪ A(R). For this we use a novel notion
of differential one-form on the network. The key insight is to maintain in the sensor
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network a function on the edges that is the co-vector field with respect to target
detection data. Thus integral along any closed curve C gives the integral of the
region bounded by C. The details are introduced below.

Differential one-form. The tangent bundle on a manifold is the collection of all
tangent vectors, along with the information of the point to which they are tangent.
The co-tangent bundle is the dual of the tangent bundle, i.e., the vector space of
linear functions on the tangent vectors. A co-vector field or differential one form that
we consider is a section of the co-tangent bundle, that is, a co-vector defined at every
point. In the discrete case as in the sensor network setting, a differential form can
be defined on a cell complex, for example, a decomposition of the plane into non-
overlapping faces by a planar graph. This particular idea of differential forms, while
not common, can be found in mathematics literature [49,67,115]. The vertices, edges,
and faces are called 0, 1, 2-cells respectively. Consider the simplest case, one target is
located within a face f0 and has a weight of w. The differential one-form is to define
a value ξ for each directed edge. The value for ab is the negation of the value for ba.
We maintain the property that for the face f0, the summation of all the values of the
edges on its boundary, in clockwise order, is w, and the summation of all the values of
the boundary edges of all other faces is 0. This ensures that any cycle containing the
face f0 will have a total summation of w, and any cycle not containing f0 will have a
sum of 0. In other words, one is able to answer range queries by simply integrating the
differential one-forms along the range boundary. The basic definition for one target
can be generalized to multiple non-identifiable targets – such that the integral of a
face is the total weight of the targets within the face. This way range query can be
done for a swarm of targets with the same query cost. Using range queries we can
implement the query for locating a closest target or a given identifiable target. The
idea is to use exponentially enlarging range around the query node and once the range
includes the target, reduce the range by using divide and conquer. The cost for such
is bounded by O(d), where d is the distance to the target in question, representing
locality sensitivity.

The differential one-form has great flexibility that allows low maintenance cost
under both network dynamics and target movements. When a target moves from one
face f0 to an adjacent face f1, we only need to update the differential one-form on the
edge ab common to f0, f1. In particular, f(ab)← f(ab)−w, for a target of weight w.
This ensures that the property of the one-form is maintained. The cost for the update
is a constant and can be done locally. Network dynamics such as link addition and
removal, or node insertion and removal, can be handled in constant time. We also
show that the differential one-form can be initialized in linear communication cost,
i.e., constant cost per node. Further, this aids in energy management. Sensors only
need to be active if there are targets nearby. A region of the network where there are
no targets need not perform any communications to maintain tracking data, and can
sleep or go to low power mode for extended periods.

Further, the method automatically handles sensing holes. A target’s movement
in and out of a hole are recorded implicitly and gets processed automatically at the
time of query at no additional computation or storage. In fact, the network need not
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even be aware of the hole.
Although we present as the major application of the differential forms the tracking

of targets in swarm, the same routine can be applied for organizing streaming scalar
sensor data (such as temperature data field), to support efficient range queries.

10.2 Differential one-form on cell complexes

The network we consider consists of the nodes embedded in a region in the plane,
and has an associated communication graph G. As a first step, we obtain a planar
subgraph P ⊆ G that contains all the nodes, but is drawn in the plane without
crossing edges. We can apply planarization techniques to extract a planar graph
from the network connectivity graph. Such methods have been developed in the
past [51, 58, 131,163]. Note that any such algorithm can be used for our purpose.

The vertices, edges and faces of the planar graph are the 0, 1 and 2 dimensional
elements created by the planar graph. We refer to these as the 0-cells, 1-cells and
2-cells respectively. See Figure 10.1 for examples. The composition of the different
dimensional cells covering the deployment region is called a cell complex. A more
detailed treatment of cell complexes can be found in [67].

Figure 10.1. 0, 1, 2-cells.

Our goal is to track targets in the plane that move from face to face of the planar
graph. We assume that all nodes know their locations and a sensor node can detect
and locate a target in its sensing range. Various target detection schemes and signal
processing primitives have been developed in the literature [96]. Our strategy assigns
values to edges of the planar graph, and changes these values as the target moves.
We introduce the following definitions and notations to represent the related faces,
edges and values.

10.2.1 Boundaries and boundary chains

A face is demarcated by the edges or 1-cells that surround it. Such a set of edges form
the boundary of the cell. For an edge pq, we use the ordered pair (p, q) to represent a
directed edge whose direction or orientation is from p to q. Further, we use −(p, q) to
represent the same edge with orientation (q, p). For brevity, we can represent (p, q)
and (q, p) as e and −e respectively. In a diagram, when an edge is labeled simply as e,
an arrowhead is used to represent the intended orientation. The opposite orientation
will naturally correspond to −e.

Definition 10.2.1. Edge chain or 1-chain. Suppose a, b, c . . . are oriented edges
or 1-cells, then a chain on these edges is a formal sum λ1a + λ2b + λ3c + . . . , where

134



each λi is an integer.

This chain simply signifies λ1 occurrences of a, λ2 occurrences of b etc. The advantage
of the summation notation will be clear in a short while. Note that in many cases we
consider, the edges will be adjacent to each other and form a connected path. But
this is not necessary in general, and the edges in an edge chain can in fact be any set
of edges from the complex.

We can also associate orientations with 2-cells or faces. These correspond to
traversing the boundary cycle of a face in some direction, clockwise or counter-
clockwise. In this chapter we assume that all faces are oriented in the clockwise
direction. Such a consistent orientation of cells is made possible by the fact that
the 2-dimensional plane is orientable [85]. Thus, given a cell σ represented as an
ordered tuple σ = (p, q, r, s, t), as shown in Figure 10.2, we understand that the order
corresponds to a clockwise traversal of edges (p, q), (q, r), (r, s), (s, t) and (t, p). Cor-
respondingly, −σ is the same cell with the opposite orientation, −σ = (t, s, r, q, p).
Observe that the orientation of a cell implies a specific orientation for each edge on
its boundary.

p

σ

s

tt r r

∂

p

s

q q

Figure 10.2. Action of boundary operator on a face σ will give a chain of its boundary edges with
orientations inherited from the orientation σ.

Definition 10.2.2. Boundary operator ∂. The boundary operator ∂ acts on a
2-cell or a face σ to produce a chain ∂(σ) = a+ b+ c . . . where a, b, c . . . are the edges
on the boundary of σ, with orientations inherited from the clockwise orientation of

σ. For a set of faces U = {σ, τ . . . }, we extend ∂ to operate on it as ∂U =
∑

σ∈U
∂σ.

The idea behind this definition is shown in Figure 10.3. The two neighboring faces
σ and τ have boundaries ∂σ = a+b+c and ∂τ = d+e+(−c), respectively. Note that
a shared edge like c must always appear with opposite orientation, and therefore have
opposite signs for the two faces. Thus the resultant boundary ∂{σ, τ} = a+ b+ d+ e
is exactly the boundary of the union of two faces. This applies more generally to any
set of faces. We refer the reader to [85] for more details on the algebra of chains.

10.2.2 One-forms and tracking forms

In this subsection we define functions over edge chains and show how they help in
tracking a target.

We consider a function f that assigns a value to each directed edge in the planar
graph P . The function is defined to have the property that f(−e) = −f(e). We
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Figure 10.3. Action of the boundary operator ∂ on faces σ and τ produces the boundary of the
union of the two.

extend this function to edge chains by making it distributive over summation: f(a+
b+ c+ . . . ) = f(a)+ f(b)+ f(c)+ . . . . Let us refer to such functions as one-forms or
edge forms. A one-form can also make sense on the faces of the planar graph, if we
let it take the value on the boundary of that face, that is, f(σ) = f(∂σ).

Now suppose there is a single target T of weight w in the domain. Then at any
given time this target resides in single unique face of the planar graph P 1. Then we
define a one-form on the faces and edges such that it is non-zero on this face and is
zero on every other face:

Definition 10.2.3. Tracking form ξ. A tracking form ξ for a target T of weight
w is a one-form such that

ξ(σ) =

{

w if σ contains T
0 otherwise

Remember that on the face σ the form is defined to take a value equal to its sum on
the boundary edges, ξ(σ) = ξ(∂σ). We can extend the form to a set U of faces by

simple summation : ξ(U) =
∑

σ∈U
ξ(σ).

As a direct consequence of this definition, we know that to evaluate the presence
of the target within a subset U of faces, it suffices to add the tracking-form ξ on the
faces in U . If a face in U contains the target T , then ξ(U) sums to w, else it sums to
zero. The following lemma implies that it is sufficient to sum the form ξ only on the
edges that form the boundary of the set U to obtain ξ(U).

Lemma 10.2.4. The sum of the form on the faces in a set U equals its sum applied
only to the boundary of U , that is: ξ(U) = ξ(∂U).

Proof: This follows directly from the definitions that

ξ(U) =
∑

σ∈U
ξ(σ) from definition 10.2.3

=
∑

σ∈U
ξ(∂σ) from extension of ξ to faces

= ξ

(

∑

σ∈U
(∂σ)

)

by distributivity of ξ over +

= ξ(∂U) by definition 10.2.2

1The degenerate cases of the target being on an edge or a vertex can be resolved locally by a
predetermined policy between the local nodes to assign the target to a face. Therefore, we ignore
these cases to keep our discussion simple
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The significance of this lemma becomes clear in Figure 10.4. Given any cycle L in
P , it is possible to detect if the target T is inside the loop or not, by simply adding
the tracking form along L. If T is in the interior, then ξ(L) = w, and if T is not in
the interior, then ξ(L) = 0. In either case, the query does not need to visit the nodes

T

L

ξ(L) = w

TL

ξ(L) = 0

(a) (b)

Figure 10.4. Query for a target T inside L. (a) T is inside L, therefore ξ(L) = w. (b) T is not
inside L, therefore ξ(L) = 0.

in the interior of L. A simple walk on the loop suffices to find the answer. Further,
this works exactly the same way for any arbitrary loop L and position of the target
T .

Multiple Targets. This idea extends to any number of targets in the domain. Sup-
pose targets T1, T2, . . . , Tk of weights w1, w2, . . . , wk, individually give rise to tracking
forms ξ1, ξ2, . . . , ξk. Then we can construct a combined tracking form as the sum of
these ξ = ξ1+ ξ2+ · · ·+ ξk on each edge. Given any loop L, the sum ξ(L) will provide
the total weight of targets inside L.

The weights assigned to targets can be adjusted to suit the needs of the system.
For example, if all weights are equal, then ξ(L) provides the count of targets inside.
If each individual target Ti is given weight 2i, then from ξ(L) it is possible to deduce
exactly which ones are located inside L. This is equivalent to maintaining a form
for each individual target. It is possible to imagine other scenarios where targets are
assigned different weights according to their importance, for example, objects can be
classified according to needs and weights assigned according to their types.

Note that given the weights and target locations, it is always possible to create a
suitable tracking form. In the next section we will describe an efficient algorithm.

Updating one-form for mobile targets. When a target moves from one face to
another, we need to update the tracking form by changing its value on the directed
edges. Without loss of generality, we consider the example in Figure 10.5, where
T moves from face σ to an adjacent face τ . Let us say, the shared edge that was
crossed by T appears as c in ∂σ, and as −c in ∂τ . In the initial configuration, we had
ξ(σ) = w and ξ(τ) = 0. After the move, we need to have a final configuration with
ξ(σ) = 0, and ξ(τ) = w. This is achieved by the following simple modification to the
form on the shared edge:

ξ(c) := ξ(c)− w (10.1)

The same assignment can alternately be written from the point of view of τ as:

ξ(−c) := ξ(−c) + w (10.2)
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Figure 10.5. Target T of weight w moves from face σ to face τ . Modify ξ(c)← ξ(c)−w to obtain
the new form.

Evidently, these two are the same operation, since ξ(−c) = −ξ(c).
This operation works for a system with any number of targets and any preexisting

weights on the faces and edges. For a system with a single target, the final values are
ξ(σ) = 0 and ξ(τ) = w, as required. In general, the weight of T is removed from the
weight of σ and added to the weight of τ .

10.3 Algorithms

In this section, we describe the algorithms for constructing the one-form, and for
supporting range queries or other queries. First we compute the planar graph. The
correctness of the basic scheme does not depend on the exact graph chosen. We
only assume that the edges of the graph are short enough that they are ‘covered’ by
their end-points, so that when a target crosses the edge, the event is detected by at
least one sensor. In section 10.3.6 we remove this requirement, and in fact describe a
tracking scheme for cases where sensors only detect the presence of a target, but do
not know their locations.

10.3.1 Constructing a tracking form

In this subsection, we show how to initialize a tracking one-form in the network. First,
we describe the simple case where the network is empty of targets to start with, and
all targets enter through the outer boundary. Next we will see that the ideas from
this case provide a mechanism for initializing the more general case where targets
may be present at the time of initialization.

Starting with an empty field. In this case, we initialize all edges to zero, that
is for every edge e ∈ P, ξ(e) = 0. Now, suppose that a target T of weight w enters
the network. It crosses the edge c ∈ ∂τ to enter the face τ . Then we modify ξ(c) :=
ξ(c) + w. Clearly, after this modification, ξ(τ) = w. As T moves, we can adaptively
modify the form according to equation (10.1) or (10.2).

The process is shown in Figure 10.6(a). As the target moves from face to face, it
modifies ξ on the shared edges between adjacent faces. Creating a trail of edges with
non-zero values.

Now, let us look a complex P̄ that is the dual complex of P . A vertex (say σ̄)
in P̄ corresponds to a face (σ) in P . An edge ē between vertices in P̄ represents the
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T

(a) (b)

Figure 10.6. The entry of a target T into the network. (a) As it moves from face to face, it leaves
a trail of edges that it modified - shown in bold blue. (b) The trail in the dual graph. The edges of
the dual graph are shown as dotted lines, and the dual trail of the target as a solid blue path.

shared edge e between corresponding faces of P . The trail of edges in P thus results
in a dual trail, which is a path in P̄ , shown in Figure 10.6(b). For a more complete
picture, we can regard the region outside of the planar graph as a face at infinity,
and then the dual trail of T is a path from this face to the current position of T .

Initializing a field with targets. The idea of the dual trail directly leads to a
simple algorithm to initialize targets in the field. We simply take a dual path to the
face at infinity and add the suitable weight to edges of P whose dual are on the path.

More formally, for a target T , we select any simple directed path α in P̄ from the
current face of T to the face at infinity. If ē = (σ̄, τ̄) is on α, and e ∈ ∂σ, then we do
the following modification:

ξ(e) := ξ(e) + w, (10.3)

where w is the weight of T . Quite clearly, any simple directed clockwise loop that
contains T passes through one such edge. In cases where the loop has more than one
such edges, the additional edges appear in oppositely oriented pairs and the values
on them cancel out each other.

The following theorem shows that the algorithm above creates a correct tracking
form.

Theorem 10.3.1. Suppose we had ξ(σ) = u, then after the algorithm above is exe-
cuted,

1. If a face σ contains target T , then ξ(σ) = u+ w

2. Else ξ(σ) = u.

Proof: Suppose T ∈ σ, then σ̄ ∈ α and has an outgoing edge ē. Therefore, after the
algorithm is executed, ξ changes on e ∈ ∂σ by ξ(e) := ξ(e) + w. All other edges on
∂σ remain unchanged. Therefore, after the modification, ξ(σ) = u + w. This proves
the first claim.

Suppose T /∈ σ, if σ̄ is not on the trail α, then of course nothing changes, and
ξ(σ) = u. So, the only case we need to consider is when σ̄ is on the path α. We
know that α is a path from the current face of T to the face at infinity, and σ is
neither of these. Therefore, σ̄ has degree exactly 2 in α. Suppose the incoming and
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outgoing edges are ē1 and ē2 respectively. Then the algorithm will have made the
following modifications : ξ(−e1) = ξ(−e1) + w and ξ(e2) = ξ(e2) + w. Therefore,
the original sum ξ(σ) = a + · · · + ξ(e1) + ξ(e2) + · · · = u remains unchanged :
ξ(σ) = a+ · · ·+(ξ(e1)−w)+(ξ(e2)+w)+ · · · = u. This proves the second claim. �

Once again, the proof works for domains with multiple targets. We execute this
once for each target in the domain or for each face containing targets with the total
weight of these targets. Thus producing the correct form for initialization. The same
procedure can be executed in case a target appears in the middle of the network at
any time during the operation.

In cases where there are many targets in the field, creating a trail to the boundary
for each can be expensive. In such cases, we perform the initialization as a sweep on
the network. We discuss this further in section 10.3.7.

10.3.2 Containment queries

Given a one-form on the planar graph, we can query the number of targets inside any
loop on the planar graph. In this subsection we extend it to queries of a geometric
range. In the following we use the example of user specified squares. Other geometric
ranges can be handled in a similar manner.

For now, we assume that the network is sufficiently dense so that every point
within it is covered (sensed) by one or more sensors, in particular that every point
in a face is within a small constant distance δ of some vertex of the face. We also
assume that the density is bounded, that is inside any disk of radius 1 the number
of nodes is bounded by some constant k. This is not a very restrictive assumption.
In a very dense network, we can select a sample of bounded density that still covers
the region. We assume geographic face routing [78] is used to follow the faces that
intersect a given geometric curve.

Let us use the notation Sp(r) to denote the square of side length 2r, centered at
point p. We sometimes use p to denote both a node and its location. We call the
size of Sp(r) to be r. The goal is to compute the weight of targets inside this box, or
equivalently, compute the sum of the tracking form on the boundary ∂[Sp(r)].

Consider the faces of P that intersect this boundary. By the assumptions above,
there are at most a constant number of these within a unit distance of any point on
∂Sp(r). Therefore, the number of faces intersected by the boundary is O(|∂Sp(r)|) or
O(r).

Let Q represent this set of faces at the boundary. For a sufficiently large box
queried, Q is an annulus and ∂Q has 2 different connected components — say ∂Q =
β + γ where each is a connected edge chain, in fact a cycle. One of these, say γ
lies outside Sp(r) and β lies inside. We say that γ and −β respectively form the
outer and inner approximations of ∂Sp(r). The reason for taking −β is that β by
default is oriented counter clockwise, therefore we reverse the orientation to match
our conventions. ξ(−β) gives a lower bound on the weight of targets inside the box,
while ξ(γ) gives an upper bound.
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We can now find the answer to our query. First, we find ξ(−β). Next, for every
face σ ∈ Q, we manually check the total weight of targets inside σ ∩ Sp(r). The sum
of these values with ξ(−β) gives the answer.

Note that this entire computation can be done in a distributed manner by a
single walk along the cycle ∂Sp(r). The size of the sub-complex induced by Q and
therefore the cost of this computation is O(r).

10.3.3 Search queries

In this section, we build an algorithm to answer queries of the type “Find the target
nearest to node p.” The same method applies to searching for an identifiable target.

We search in two stages. First, we find the smallest box Sp(2
i) that contains

a non-zero weight of targets. This is done by successively checking Sp(2
i) for i =

0, 1, 2, 3, . . . . Suppose the nearest target is at a distance d, then the size of the largest
box tested in this process is 2⌈lg(d)⌉. Now suppose the cost of checking a box of size
r is bounded by ar for some constant a. Then the total cost of the test above is

a

⌈lg(d)⌉
∑

i=0

2i = O(d).

In the second step, we search this box recursively for the actual location of the
target. We partition the box Bp(r) into four quads, each of size r/2, and check each
of these for the presence of a target. Each test costs ar/2, therefore, the total test
for 4 quads costs 2ar. This is done recursively until we arrive at a node that ‘sees’
the target. Clearly, the cost of this recursive search is 4ar(1

2
+ 1

4
+ 1

8
+ · · · ) = O(r).

Since r is at most 2⌈lg(d)⌉, we have that the total cost of finding the nearest target is
O(d), that is of the order of the distance to the target.

Our query cost is sensitive to the distance to the target. Notice that whether we
simply want to deliver a message to the nearest target or obtain the identity and
location of it, the cost is Ω(d). Thus our query cost is asymptotically optimal.

10.3.4 Update costs

The network incurs a certain cost in updating the tracking form as a target moves.
To be precise, every time the target moves from one face of P to another, the form
on that edge has to be updated. Therefore, the total cost of the update equals the
number of faces traveled by the target. By the arguments in section 10.3.2 as a target
moves along a straight line segment of length d, the system requires O(d) updates
at nodes. If updating an edge requires communication between the endpoints, then
the communication cost is also O(d). Note that in some cases this may not be
necessary. If both the sensors can detect a target entering a face, which can happen
for example if the sensing range covers the entire edge, then the target is sensed by
both these sensors, and each can update their view of the edge without any mutual
communication. In such cases, the update is carried out without any communication
at all.
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One can consider adversarial behavior, for example where a target repeatedly
crosses an edge back and forth to induce many updates in the sensors. However, this
sort of behavior is easy to detect, and can be handled simply. In such a case, the
system stops updating that edge for some time. That is, the edge is assumed not
to exist in P for that duration. Note that this ‘hole’ in the graph does not affect
anything in the rest of the network at all. Updates and queries can proceed as usual.
Later, the edge can be reinstated when appropriate.

In general, when a part of the network is very active with many and frequent
movements, it is not very useful to track all such changes. Our scheme is sufficiently
flexible and robust that tracking can be turned off in such regions without any loss
to other parts or any overhead. Alternatively, it is possible to reduce the tracking
resolution in that region by selectively removing nodes and edges so that the faces
are larger and therefore incur fewer updates.

10.3.5 Network holes, fault tolerance and network dynamics

If a network has coverage holes, that does not affect the correctness of the tracking
form. The ‘hole’ is treated as just another face, and the target entering that face does
not induce any extra storage or communication. When trying to detect the weight of
targets inside a box Sp(r), precise estimates are impossible with any method if the
boundary of the box possibly intersects an uncovered region, and it is not clear if a
target is just inside or outside. We can however get upper and lower bounds (such
as ξ(γ) and ξ(−β) in section 10.3.2) by computing the weights inside such uncovered
faces. When initializing a network with large holes, these are simply disregarded,
that is, the corresponding vertex does not exist in the dual. The dual trail for the
initialization therefore never goes through the hole.

The scheme is also fault tolerant and adaptive to network dynamics. If some
nodes fail, or all nodes in a region fail even including those near the target, that does
not affect the correctness of the tracking form. Thus, this permits dynamic networks
where nodes can be turned off without any overhead. Nodes can also be inserted
into the network. This only requires refining the planar graph and the tracking form
locally. See Figure 10.7 for an example.

s

q q

s

p

σ

tt r r

p

x

Figure 10.7. Suppose a node x is inserted inside a face {p, q, r, s, t} of total weight w and the
face is partitioned into three faces {p, q, x}, {q, r, s, x}, {p, x, s, t}, where the total weights within
these faces are w1, w2, w3 respectively, w1 + w2 + w3 = w. We simply set the values of the edges
f(x, p) = 0, f(x, q) = f(p, q) − w1, f(x, s) = f(p, q) + f(q, r) + f(r, s) − w1 − w2. One can verify
easily that these values conform to the definition of a tracking form.

The effect of sensing noise is extremely local. Suppose an edge gets updated
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incorrectly due to sensing or communication failure. This only affects the evaluation
of loops that actually pass through that edge. All other loops still produce the correct
results.

10.3.6 Tracking without target locations

Up to this point, we have assumed that the location of the target can be sensed by
the nearby sensors. We now show how to modify the tracking scheme so that it can
work without localization.

Suppose the target T is detected by exactly one sensor at a time. We initialize this
scenario as follows. Suppose s is the sensor detecting T . Remove s (and all incident
edges) from P to get a new planar graph P ′. Then in P ′, T is assumed to reside in
the new face with the neighbors of s on the boundary. Now, we can initialize the
form as usual on the dual of P ′. When the target moves from s to a neighboring node
t, we first remove t from P ′ and then reinstate s and its edges using the method for
inserting vertices.

The method naturally extends to cases where a target is detected by a set of
sensors. In this case, we just remove all the detecting nodes, and when the target
moves, we reinstate those that no longer detect it.

10.3.7 Aggregation of signal over all nodes

Beyond tracking moving targets, differential forms can also be used to compute ag-
gregates of arbitrary functions sampled by sensor network. Suppose that h is an
arbitrary function sampled by the network. Since we have a method for comput-
ing sums of values defined over faces of P , we adapt to make use of that existing
method. For any node s, we apply small perturbation to the location. That is, the
value h(s) is assumed to exist as an added weight in a face σ incident on s, that is
ξ(σ)← ξ(σ) + h(s).

First, for every face σ, we find the initialization dual path α to the face at infinity.
We build these paths such that the reduced graph of these paths is acyclic. We
can build these paths as the shortest hop-count paths by flooding from the face at
infinity. Alternatively, these can be computed by ordering faces (dual nodes) from
west-to-east. In either case, this creates an aggregation tree T rooted at the face at
infinity. Now, starting at the leaves of T , we compute an aggregate at each interior
node by summing its value with those of its children in the the aggregation tree. Let
us denote this function on the dual nodes as µ.

Now, for every node σ̄ ∈ T , consider the outgoing edge ē and its dual e in the
original graph P . We set ξ(e) = µ(σ̄).

Note that this initialization can be executed as a single aggregation sweep on the
tree T . Therefore, it can be computed at a cost of O(n).

Note that for the function h, this can give slightly erroneous results, since we
perturbed the function to assign it to a face. However, this is easily rectified. Observe
that for a loop not passing through s, the contribution of h(s) is estimated correctly.
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We only need to adjust carefully for nodes lying on the given loop. This we do by
means of another differential form, calculated on the fly.

Given a loop L, we compute ξ(L) in a single walk around L. Let us say e is the
first edge traveled along L, and say σ1 and σ2 are the faces adjoining e. Now, we
choose points p1 ∈ σ1 and p2 ∈ σ2 respectively. We maintain two other one-forms η1
and η2, these are the winding numbers around p1 and p2 respectively. That is, for any
edge (u, v) on L, we add the clockwise angle ∠upiv to ηi. Suppose without loss of
generality that p1 is on the exterior and p1 is on the interior of the region bounded by
L, then we have η1(L) = 0, and η2(L) will sum to 2π or −2π depending on orientation
of L. This tells us if the interior of the bounded region lies to the right or left of the
oriented cycle L. With this information, we know in which cases the h(s) needs to be
added or subtracted from the ξ(L) computed. Note that the method allows the user
to query the interior of a region as well as a region closed as a point set.

Further, this automatically detects orientation of L so that the user does not
always need to supply a clockwise loop. If η2(L) < 0 then the given L is oriented
counter clockwise, and following our convention we should take −ξ(L) as the result.

Changing values. Unlike the case of mobile targets, if an arbitrary function h
changes with time, local updates may not suffice. In particular, the local update
scheme works only when the function has certain local conservation properties, such
as when a change of δ in a face always causes a change −δ in an adjacent face.

Instead we simply re-initialize the form at regular intervals or on sufficient changes.
With an initialization of cost O(n), we create a network-wide one-form with which
we can find the aggregate in any region of the network.

10.3.8 Completely mobile networks

Consider a network where all nodes are mobile. That is, beyond the targets, the
sensors themselves are mobile. Our method naturally extends to such scenarios. As
a sensor moves, it may cross an edge of the planar graph. Suppose that s crosses
an edge e to enter a face τ . Then we update the network simply by first discarding
all edges incident on s, then by inserting s into τ as in Figure 10.7. Many existing
planarization algorithms work for mobile networks [58]. We can use such methods to
maintain the graph. In all cases, the removal of an edge will not incur a cost, the
insertion of an edge will be made according to the idea in Figure 10.7.

Care needs to be taken in cases where we are considering forms to monitor values
defined on nodes. For example, when a mobile network tracks its own nodes to be able
to answer aggregate counts and weighted sums inside regions. Suppose in such a case
s crosses an edge e ∈ ∂τ to enter τ . Then along with the usual insertion, the value
h(s) must be assigned to one of the new faces, for example by ξ(e) := ξ(e) + h(s).

10.3.9 Contour tree computation

The contour tree described in the previous chapter can also be computed using dif-
ferential forms. The fundamental idea is that if a contour component encloses a set
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(a) (b)
Figure 10.8. cost per move of a target. (a) Average update cost per move. (b) Max update cost
for any move.

of maxima, then it also encloses the corresponding merge saddles. The same holds
for the region bounded by any two contours.

To find the contour tree therefore, we need to count the number of maxima and
minima inside a contour component, then search contour levels inside it for saddles.
Also observe that given a contour component, we can as easily find the number of
elements outside it. What is significant for contour tree computation is that a contour
separates the plane into 2 components, and locally at the contour, one component
represents the increasing direction of signal, one represents the decreasing direction
of signal. In the following, we will refer to the increasing direction as the inside.

In the pre-processing, we create two different differential forms - for the maxima
and the minima. Then the following procedure is executed.

From an arbitrary node p, build a monotone ascending path µ, up to a maximum
m. Next, count the number of maxima inside C(p). If there is only one, then nothing
is to be done. If there are more than one, then we do the following. Pick a node q in
the middle of µ. Count the number of maxima inside C(q). If this number is the same
as the number inside C(p), that means there are no saddles in the regions bounded
by these two contours. Otherwise the region contains saddle(s) and we repeat the
procedure selecting a point in between p and q on the path.

Once we hit a saddle contour C(s) by this method, it will demarcate two inside
components. One contains q and part of µ and can be searched continuing the proce-
dure as before. The other inside component can be searched by creating an ascending
path from s. These searches run independently. Further, if the region bounded by
C(p) and C(s) contains saddles, that can be searched independently as well. Note
that while searching a region for merge saddles, we can simultaneously search it for
split saddles.

At the same time, a search can be started from p with a descending path to
construct the contour tree outside C(p).

10.4 Simulations

We conducted extensive simulation tests to see how the theoretical guarantees of our
algorithm translate to a network graph and compare with LLS [2] in performance,
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particularly in terms of communication costs. This section describes the findings. The
simulations were done with networks that are quasi unit disk graphs2 of inner radius
1/
√
2. This choice of parameters allows local planarization algorithms [51,131] to be

used. The underlying sensor networks have nodes in a perturbed grid distribution,
where the node is placed uniformly randomly in the grid box assigned to it. We
consider networks without any significant coverage holes. In all cases, the average
degree was about 10, and the size of the network was varied between 400 nodes and
10, 000 nodes to test the scaling properties.

To evaluate the update costs, we introduce moving targets to the network domain.
At each step, a target selects a random direction and moves up to a unit distance
in that direction. After the move, the initial and final position are compared and
updates are made.
LLS scheme. This is a locality aware location service for mobile networks. The prin-
ciple here is to use location servers at different levels. At each level i = 0, 1, 2, 3, . . .
the network region is tiled by squares of side 2i. The squares are aligned so that a
square at level i is precisely covered by exactly 4 squares of level i−1. In each square
at each level, one node is designated to be the location server for that square, and
keeps track of more precise locations of nodes in the square.

Location updates are performed in a certain lazy manner. Suppose mobile node
p was in a square Si at level i, and moves to a neighboring square at that level. The
scheme does not update the location of p to the respective location servers. Instead, it
waits until p has left this surrounding neighborhood of Si before it actually performs
an update. Thus, around Si there is a ring of 8 squares moving where does not cause
an update. As a compensation, LLS keeps its location information at the location
servers of these nodes in addition to Si. The idea here is to delay updates to avoid
unnecessary communication. On average, if a node moves a distance d, then this
scheme can be shown to have update costs of O(d log d). The cost is amortized. That
is, the average cost is guaranteed to be low, but the update cost at a particular step
can be arbitrarily high compared to the movement at that step.

The location search for a particular node starts at some other node in a network,
and proceeds by searching nearby location servers at increasing levels. This goes on
until some location server at the current or neighboring square for the current level
claims to know the target location square at that level. Then the search proceeds
in that square, successively searching lower levels. Of course, it is possible that due
to the lazy update scheme, a server claiming to have the target is in fact in error.
However in such a case, the target is guaranteed to be in one of the neighboring
squares. It can be shown that this does not incur too high a cost. In fact, if the
distance to the target is d, then the search finds the target at a cost of O(d).

We compared costs with LLS in updates and query response. The following are
the important observations:

• Update costs. Our algorithm adapts to node movements very efficiently. It

2A quasi unit disk graph is one where nodes more than unit distance away do not have an edge,
nodes less than a distance r away always have an edge, and for other distances, the presence of an
edge is uncertain.
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Figure 10.9. Search query costs. (a) Average cost per query. (b) Max cost for any query.

has an average cost of about 2 messages per each small move (explained above)
of the target, as compared to a cost of 10 to 12 messages for LLS. The max-
imum update cost for our scheme is about 7, while that for LLS is orders of
magnitude higher — at 200 or 300 or more messages for a single small move.
Most importantly, the costs of our scheme are independent of the network size,
making it scalable to very large networks.

• Search queries. In answering queries where the one node searches for a specific
target, our scheme performs slightly worse — consuming about 2 times the
messages compared to LLS.

• Aggregate range queries. Given a geometric region such as a rectangle or
ellipse, this query asks for the number of targets inside it. On this sort of
queries, our scheme outperforms LLS by an order of magnitude.

10.4.1 Update costs

As a target moves, the tracking system has to update its data to be consistent with
the current target position. LLS does this by suitably sending updates to it location
severs, while our scheme changes the weights on the edges crossed by the target.

The results are shown in Figure 10.8(a). Our scheme is extremely efficient, since
a small move does not cross too many edges, and the mean cost is about 2 per
move. LLS is designed so that on certain moves, it does not require any updates.
However, when the target has undergone sufficient displacement, it has to update
several nearby lower level location severs - this incurs a reasonable cost. Later on,
after further displacement, a move may require higher level servers further away to
be updated, increasing the cost for that move, as well as the mean cost. The distance
of the farthest server that may be tracking a target is proportional to the network
diameter. After a proportional displacement this server will need to be updated as
well. Thus, the update costs of LLS depend on the network size, though the amortized
cost of LLS is still quite manageable, at about 10 to 12 messages per move.

The worst case behavior of LLS is poor. This is because the strategy of avoiding
updates until necessary means that the updates build up and on certain moves servers
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Figure 10.10. Aggregation query costs for random rectangle regions. (a) Average Costs. (b) Max
costs

and neighboring servers at several levels of hierarchy need to be updated. Thus
the update cost of a single move can go into several hundred messages (shown in
Figure 10.8(a)). Our scheme, on the other hand, never has to update more than 8
edges.

Note that the costs in our scheme are taken to be proportional to the number
of edge updates needed. In certain scenarios, where the target sensing does not
require any communication, and when there is agreement among nodes on monitoring
different parts of edges, it is possible to perform the updates at zero cost.

10.4.2 Search costs.

Location service schemes are designed to answer queries that ask for the location of a
specific mobile target, or to deliver a message to the target. Our scheme of tracking
forms on the other hand was designed with aggregate queries pertaining to groups
of targets in mind. Nevertheless, we find that it is a good instrument for search of
specific targets, and has performance comparable to the location service scheme. We
can maintain a tracking form ξi for each target Ti and then use that to search for it
starting from the query node. The scheme is described in section 10.3.3.

In this experiment, we chose random query nodes, and random mobile targets.
We execute a search for the target starting at the query node. The two schemes
use analogous methods of searching exponentially growing regions for presence of the
target, and in the suitable region searching exponentially smaller subregions until
reaching the target. The asymptotic costs are the same for the two schemes. The
simulation results in Figure 10.9 show that with tracking forms it costs about twice
that of LLS to search.

10.4.3 Aggregate range queries.

Given a region R, say a rectangle or an ellipse, we wish to find the number of targets
inside the region. With tracking forms, this is easy to do by summing the form in
walk around the boundary. The details of the methods are in section 10.3.2. With a
location sever scheme, the process is a little more complicated.
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Figure 10.11. Aggregation query costs for random circular regions. Costs for random ellipses show
similar characteristics. (a) Average Costs. (b) Max costs

LLS maintains a quad-tree hierarchy, and recursively tracks nodes inside the quads
at different levels. To find the aggregate, we need to look at quads of different levels
that intersect with R. In particular, if a quad Q intersects the boundary ∂R, that
means sub-quads of Q need to be analyzed further, to see which targets inside Q are
actually inside R. Therefore, the method boils down to finding quads at all levels
that contain targets and intersect ∂R. This turns out to be reasonably costly.

Figure 10.10 shows the costs when R is a random rectangle inside the network re-
gion. Figure 10.11 shows the corresponding costs when R is a random circle. Clearly,
location server based schemes incurs a substantial cost in this type of query. Note
that for target searching LLS using a different quadtree hierarchy for each target.
This would be impractically expensive in this sort of query, where the presence of
each target in R will then have to be checked individually, driving the costs very
high. We therefore used a common hierarchy where a location server can provide
information about all targets in its quad region.

Even with this modification, the costs of our scheme are much lower, in principle
only proportional to the size of the boundary of R.

Discussion. In a network with mobile entities, it can be expected that a targets
move often. Our scheme handles the movements very efficiently and locally. There
is never any need to send updates to a distant point. This is also significant from
power management point of view. If a target of interest is present in a part of the
network, nearby nodes can be expected to be awake and actively monitoring it. If all
movements are handled locally, then relatively distant nodes can sleep or go to low
power mode to save energy without fear of interruptions.

10.5 Conclusions

In this chapter we presented the use of differential one-form in the application of
target tracking and range queries. The method is simple, has low maintenance cost
under target movement, is extremely flexible and robust to network changes and
node mobility. The performance of our method is orders of magnitude better than
previous location services schemes for tracking mobile targets. We expect that more
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applications can be found by using the differential one-form for a diverse set of queries
of aggregated data, which remains as our future work.
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Chapter 11

Conclusion Chapter

. . .Our intuition is our most powerful tool. That is quite clear if you try
to explain a piece of mathematics to a student or a colleague. You have
a long, difficult argument and finally the student understands. What does
the student say? The student says, “I see!” Seeing is synonymous with
understanding. . .

Michael Atiyah
Mathematics in the 20th Century

The goal in each of the chapters were to construct distributed algorithms. These
methods are more general, and effective on a wide range of platforms, as described in
the introduction. This also makes the methods more robust. No particular node is
substantially more significant than any other. The failure of a few nodes do not cause
the setup to collapse. The overall workload is also more or less evenly distributed.

The challenge in a distributed method is to compute structures with global prop-
erties. This we achieved in the cases described here. In the questions of routing,
this made it possible to route without explicitly finding routes for every other node
in the network. In the questions of information processing, this made it possible to
answer at a low cost, questions about aggregates, contours and individual data items
anywhere in the network.

In general it is difficult to compute such global properties. Global properties re-
quires global information, which is difficult to obtain and maintain without incurring
large communication costs. That the nodes have small storage and computation abili-
ties makes it impractical to store and compute large quantities of data frequently. The
distributed computation therefore works best when nodes operate only on information
from the local neighborhood. This provides two advantages. First, communication
within the local neighborhood is efficient, therefore acquiring the local information
is economical. Second, the local neighborhood is bounded in size, therefore the total
information from this neighborhood can be stored, processed, and results communi-
cated easily at a small cost. The ideal distributed algorithm therefore is one that
extracts global properties from processing of local informations.

The local to global requirement is the reason that geometric methods work in
finding distributed algorithms. Euler characteristic, Morse theory, Ricci flow, Gauss
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Bonnet theorem, Stokes theorem are all examples of local-global relations and were
useful in constructing different distributed methods for networks. Spatial distribution
is also in a sense a local-global relation. The distribution can be applied locally from
each-node, oblivious to other nodes and without any need for coordination, and yet
generates a structure with global properties.

The correlation with geometry makes it possible to use our visual intuition when
designing distributed algorithms for sensors. As with any design and analysis process,
the importance of pictures, diagrams and the formidable visual center of the human
brain should not be underestimated. That images and geometric constructs can be
used to reason about distributed information makes it an attractive model of study.

This dissertation has a limited scope, and cannot cover all apsects of sensor net-
work information processing. One important omission is perhaps the issue of commu-
nication failures and noises. in general, sensor data can be expected to be noisy. How
to adapt techniques such as the contour tree method to such noises is not entirely
clear. In general, adapting to noisy lossy data in a graceful manner is an interesting
research challenge, Communication links, particularly wireless ones may be unreliable
and transient. For a dense network, our essential assumption that to each node there
is a small persistent neighborhood of low cost communincation will hold, because it
is likely that even when a link deteriorates, its end points will be connected through
a short path within the neighborhood. But this may not be the case in a sparse
network. In such a case, failure of a few links can entirely change the the character
of a network. How to adapt to such scenarios and take full advantage of live links is
an interesting question. It will require a suitable abstraction that represents network
topology and geometry compactly and distributedly, and can be updated suitably to
reflect changes.
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[101] H. Lin, M. Lu, N. Milosavljević, J. Gao, and L. Guibas. Composable information
gradients in wireless sensor networks. In Proc. of the International Conference
on Information Processing in Sensor Networks (IPSN’08), pages 121–132, April
2008.

[102] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15:215–245, 1995.

[103] N. Linial, L. Lovász, and A. Wigderson. Rubber bands, convex embeddings
and graph connectivity. Combinatorica, 8(1):91–102, 1988.

[104] J. Liu, F. Zhao, and D. Petrovic. Information-directed routing in ad hoc sensor
networks. IEEE Journal on Selected Areas in Communications, 23(4):851–861,
April 2005.

[105] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: balancing push
and pull for discovery in large-scale sensor networks. In SenSys ’04: Proceedings
of the 2nd international conference on Embedded networked sensor systems,
pages 122–133, 2004.

[106] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[107] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of
an acquisitional query processor for sensor networks. In SIGMOD, June 2003.

[108] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith. S4: Small state and small
stretch routing protocol for large wireless sensor networks. In Proceedings of
the 4th USENIX Symposium on Networked System Design and Implementation
(NSDI 2007), April 2007.

[109] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Cover-
age problems in wireless ad-hoc sensor networks. In Proc. of INFOCOM 2001,
volume 3, pages 1380–1387, 2001.

[110] X. Meng, L. Li, T. Nandagopal, and S. Lu. Contour maps: Monitoring and
diagnosis in sensor networks. Computer Networks.

[111] S. Milgram. The small world problem. Psychology Today, (1), 1967.

161



[112] J. W. Milnor. Morse Theory. Princeton University Press, Princeton NJ, 1963.

[113] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Li, and G. Dai. Canopy closure
estimates with greenorbs: Sustainable sensing in the forest. In ACM SenSys
2009, November 2009.

[114] C. C. Moallemi and B. V. Roy. Consensus propagation. to appear.

[115] S. Mortita. Geometry of Differential Forms. American Mathematical Society,
2001.

[116] D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In
PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Princi-
ples of distributed computing, pages 113–122, New York, NY, USA, 2006. ACM
Press.

[117] B. Nath and D. Niculescu. Routing on a curve. SIGCOMM Comput. Commun.
Rev., 33(1):155–160, 2003.

[118] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for
robust aggregation in sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 250–262,
2004.

[119] J. Newsome and D. Song. GEM: graph embedding for routing and data-centric
storage in sensor networks without geographic information. In SenSys ’03:
Proceedings of the 1st international conference on Embedded networked sensor
systems, pages 76–88, 2003.

[120] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas. Landmark se-
lection and greedy landmark-descent routing for sensor networks. In Proceedings
of the 26th Conference of the IEEE Communications Society (INFOCOM’07),
pages 661–669, May 2007.

[121] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theor. Comput. Sci., 344(1):3–14, 2005.

[122] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications, 2000.

[123] G. Perelman. The entropy formula for the ricci flow and its geometric applica-
tions. Technical Report arXiv.org, November 11 2002.

[124] G. Perelman. Finite extinction time for the solutions to the ricci flow on certain
three-manifolds. Technical Report arXiv.org, July 17 2003.

[125] G. Perelman. Ricci flow with surgery on three-manifolds. Technical Report
arXiv.org, March 10 2003.

162



[126] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector routing. In
Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 90–100, 1999.

[127] P.Henrici. Applied and Computational Complex Analysis, volume 3. Wiley, New
York, 1986.

[128] M. Rabbat, J. Haupt, A. Singh, and R. Nowak. Decentralized compression and
predistribution via randomized gossiping. In IPSN ’06: Proceedings of the fifth
international conference on Information processing in sensor networks, pages
51–59, New York, NY, USA, 2006. ACM Press.

[129] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing with-
out location information. In Proceedings of the 9th annual international con-
ference on Mobile computing and networking, pages 96–108, 2003.

[130] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage in sensornets. In Proc.
1st ACM Workshop on Wireless Sensor Networks ands Applications, pages 78–
87, 2002.

[131] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaran-
teed delivery using ricci flows. In Proc. of the 8th International Symposium on
Information Processing in Sensor Networks (IPSN’09), April 2009.

[132] R. Sarkar, W. Zeng, J. Gao, and X. D. Gu. Covering space for in-network sensor
data storage. In Proc. of the 9th International Symposium on Information
Processing in Sensor Networks (IPSN’10), April 2010.

[133] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in sen-
sor networks. In Proc. of the ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages 286–297, September 2006.

[134] R. Sarkar, X. Zhu, and J. Gao. Hierarchical spatial gossip for multi-resolution
representations in sensor networks. In Proc. of the International Conference on
Information Processing in Sensor Networks (IPSN’07), pages 420–429, April
2007.

[135] R. Sarkar, X. Zhu, and J. Gao. Spatial distribution in routing table design for
sensor networks. In Proc. of the 28th Annual IEEE Conference on Computer
Communications (INFOCOM’09), mini-conference, April 2009.

[136] R. Sarkar, X. Zhu, J. Gao, L. J. Guibas, and J. S. B. Mitchell. Iso-contour
queries and gradient descent with guaranteed delivery in sensor networks. In
Proc. of the 27th Annual IEEE Conference on Computer Communications (IN-
FOCOM’08), pages 1175–1183, May 2008.

163



[137] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localiza-
tion in ad-hoc networks of sensors. In Proc. 7th Annual International Conference
on Mobile Computing and Networking (MobiCom 2001), pages 166–179, Rome,
Italy, July 2001. ACM Press.

[138] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from
mere connectivity. In MobiHoc ’03: Proceedings of the 4th ACM international
symposium on Mobile ad hoc networking & computing, pages 201–212, 2003.

[139] G. Sharma and R. Mazumdar. Hybrid sensor networks: a small world. In
MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile
ad hoc networking and computing, pages 366–377, 2005.

[140] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric
storage in sensornets. SIGCOMM Comput. Commun. Rev., 33(1):137–142,
2003.

[141] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond:
New aggregation techniques for sensor networks. In SenSys ’04: Proceedings of
the 2nd international conference on Embedded networked sensor systems, pages
239–249, 2004.

[142] N. Shrivastava, R. M. U. Madhow, and S. Suri. Target tracking with binary
proximity sensors: fundamental limits, minimal descriptions, and algorithms.
In SenSys ’06: Proceedings of the 4th international conference on Embedded
networked sensor systems, pages 251–264, 2006.

[143] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking multiple
targets using binary proximity sensors. In IPSN ’07: Proceedings of the 6th
international conference on Information processing in sensor networks, pages
529–538, New York, NY, USA, 2007. ACM Press.

[144] P. Skraba, Q. Fang, A. Nguyen, and L. Guibas. Sweeps over wireless sensor
networks. In IPSN ’06: Proceedings of the fifth international conference on
Information processing in sensor networks, pages 143–151, 2006.

[145] K. Stephenson. Introduction To Circle Packing. Cambridge University Press,
2005.

[146] I. Stojmenovic. A routing strategy and quorum based location update scheme
for ad hoc wireless networks. Technical Report TR-99-09, SITE, University of
Ottawa, September, 1999.

[147] S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in
O(n log n) steps. In SCG ’98: Proceedings of the fourteenth annual symposium
on Computational geometry, pages 68–75, 1998.

[148] R. Thomas and X. Yu. 4-connected projective-planar graphs are hamiltonian.
J. Comb. Theory Ser. B, 62(1):114–132, 1994.

164



[149] M. Thorup and U. Zwick. Approximate distance oracles. In Proc. ACM Sym-
posium on Theory of Computing, pages 183–192, 2001.

[150] M. Thorup and U. Zwick. Compact routing schemes. In SPAA ’01: Proceedings
of the thirteenth annual ACM symposium on Parallel algorithms and architec-
tures, pages 1–10, 2001.

[151] W. P. Thurston. Geometry and Topology of Three-Manifolds. Princeton lecture
notes, 1976.

[152] J. Travers and S. Milgram. An experimental study of the small world problem.
Sociometry, (32), 1969.

[153] T. van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for
wireless sensor networks. In SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 171–180, 2003.

[154] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore.
Contour trees and small seed sets for isosurface traversal. In Proc. 13th Annu.
ACM Sympos. Comput. Geom., pages 212–220, 1997.

[155] J. von Neumann. Various techniques used in connection with random digits.
U.S. National Bureau of Standards Applied Mathematics Series, 12:36–38, 1951.

[156] W. Wang and K. Ramchandran. Random distributed multiresolution repre-
sentations with significance querying. In IPSN ’06: Proceedings of the fifth
international conference on Information processing in sensor networks, pages
102–108, New York, NY, USA, 2006. ACM Press.

[157] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems
and Control Letters, 53:65–78, 2004.

[158] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion
based on average consensus. In Proceedings of the Fourth International Sympo-
sium on Information Processing in Sensor Networks, pages 63–70, 2005.

[159] L. Xiao, S. Boyd, and S. Lall. A space-time diffusion scheme for peer-to-peer
least-squares estimation. In Proceedings of the Fifth International Symposium
on Information Processing in Sensor Networks, pages 168–176, 2006.

[160] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination
model for large-scale wireless sensor networks. In MobiCom ’02: Proceedings of
the 8th annual international conference on Mobile computing and networking,
pages 148–159, 2002.

[161] F. Ye, G. Zhong, S. Lu, and L. Zhang. GRAdient broadcast: A robust data
delivery protocol for large scale sensor networks. ACM Wireless Networks
(WINET), 11(2), March 2005.

165



[162] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for
wireless sensor networks. In INFOCOM 2002, 2002.

[163] F. Zhang, A. Jiang, and J. Chen. Robust planarization of unlocalized wireless
sensor networks. In Proc. of INFOCOM 2008, pages 798–806, 2008.

[164] F. Zhang, H. Li, A. A. Jiang, J. Chen, and P. Luo. Face tracing based geographic
routing in nonplanar wireless networks. In Proceedings of the 26th Conference
of the IEEE Communications Society (INFOCOM’07), pages 2243–2251, May
2007.

[165] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in
large sensor networks. Wireless Ad Hoc and Sensor Networks: An International
Journal, 1(1-2):89–123, January 2005.

[166] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collabora-
tion. IEEE Signal Processing Magazine, 19(2):61–72, 2002.

166


