

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Using Horn Clauses and Binary Decision
Diagrams for Program Analysis

A Dissertation Presented

by

Wenxin Song

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2010

Copyright by

Wenxin Song

2010

Stony Brook University

The Graduate School

Wenxin Song

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Eugene Stark, Dissertation Advisor
Professor, Department of Computer Science

Radu Grosu, Chairperson of Defense
Professor, Department of Computer Science

Scott Stoller
Professor, Department of Computer Science

Aarti Gupta
Department Head, NEC Laboratories America

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Using Horn Clauses and Binary Decision Diagrams for Program

Analysis

by

Wenxin Song

Doctor of Philosophy

in

Computer Science

Stony Brook University

2010

Logic programming languages have been widely used to express program analy-

ses. In this dissertation, we present a framework of program analysis using Horn

clauses and Binary Decision Diagrams (BDDs). In contrast to previous work of

Whaley, et al. that used Datalog and BDDs for program analysis, we use Horn

clauses (which can be viewed as an extension of Datalog) to express program

analysis problems. Horn clauses are more expressive than Datalog by allowing

functions as arguments of predicates. Many type-based program analysis prob-

lems involve type information in which the type is usually a recursively defined

object consisting of subtypes. The use of function symbols makes it possible to

specify a type in a natural way.

iii

BDDs are very popular tool in hardware verification and model checking. Re-

cently, BDDs have also been used in program analysis to efficiently analyze large

programs. Unlike Datalog, Horn clauses cannot be implemented by using ordi-

nary BDDs due to the presence of functions. In this dissertation, we propose an

automata-based approach that treats terms as strings reading from left to right and

represents terms by automata. We devise various operations on automata to ma-

nipulate terms. Moreover, we show that such automata lend themselves readily to

a representation using Multi-Terminal Binary Decision Diagrams (MTBDDs).

We present a top-down set-at-a-time depth-first evaluation algorithm for Horn

clauses in terms of sets of ground atoms. Such evaluation algorithm computes

relevant results starting from the query in a top-down fashion, operates over a

set of atoms at a time, and gains efficiency by taking the advantage of symbolic

representation of sets of ground atoms in Horn clauses.

The combination of the above ideas yields a framework for program analysis

such that analysis queries are naturally expressed as Horn clauses and the evalua-

tion of Horn clauses is efficiently implemented by MTBDDs. Such a framework is

suitable for type-based program analysis, such as strictness analysis, binding-time

analysis, secure information flow analysis, and so on.

iv

This dissertation is dedicated to my wife, Xuefang, and my

daughter, Sabrina

Contents

List of Figures x

Acknowledgements xii

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 4

1.3 Our Solution . 7

1.4 Organization . 7

2 Related Work 9

2.1 Using Logic Program Languages for Program Analysis 10

2.1.1 Expressing Program Analysis in Datalog 11

2.1.2 From Datalog to Relational Algebra 15

2.1.3 From Relations to Boolean Functions 17

2.1.4 From Boolean Functions to BDDs 18

2.1.5 Using Datalog and BDDs for Program Analysis 20

vi

2.2 Evaluation of Horn Clauses . 21

2.3 Type-based Program Analysis 23

3 Expressing Strictness Analysis in Horn Clauses 26

3.1 Horn Clauses . 27

3.2 Type-based Strictness Analysis 28

4 Top-down Set-oriented Algorithm 34

4.1 Set-At-A-Time Evaluation . 35

4.2 Notations . 35

4.3 The Algorithm . 38

4.4 Correctness . 43

5 Definition of Automata for Sets of Ground Tuples 50

5.1 Representing Sets of Ground N-Tuples 51

5.2 Previous Work . 51

5.3 Informal Definition . 55

5.4 Notations . 59

5.5 Formal Definition . 66

5.6 Automaton for An N-Tuple . 70

6 Conjunction and Disjunction of Automata 77

6.1 Conjunction of Automata . 78

6.2 Disjunction of Automata . 88

vii

7 Normalization of Automata 100

7.1 Definition of Normalized Automata 101

7.2 Eliminating a Single Color from Step States 102

7.3 Stratified Automata . 118

7.4 Eliminating Colors from Step States 121

8 Grouping and Ungrouping of Automata 126

8.1 Grouping of Automata . 127

8.2 Ungrouping of Automata . 142

9 Expansion and Projection of Automata 152

9.1 Expansion of Automata . 153

9.2 Projection of Automata . 158

9.3 Canonically Colored Automata 167

10 Other Automata Operations 171

10.1 Other Operations . 172

10.2 Implementation of Top-Down Algorithm 181

11 MTBDD Implementation of Automata 185

11.1 Overview of MTBDD Representation 186

11.2 BDD Representation of Acceptance Conditions 186

11.3 MTBDD representation of Automata 187

12 SML/NJ Implementation of the Framework 192

viii

13 Conclusions 195

13.1 Contributions . 196

13.2 Future Work . 197

Bibliography 201

ix

List of Figures

2.1 Java context-insensitive points-to analysis (taken from [58]) 13

2.2 A simple Java program fragment 14

2.3 Relational operations (taken from [58]) 17

3.1 Transform syntax of lambda calculus to facts 29

3.2 The type inference rules for strictness analysis 31

3.3 Horn clauses for strictness analysis 32

4.1 Bugaj and Nguyen’s algorithm 41

4.2 A Horn clause program . 46

4.3 A subgoal dependency graph for the first iteration 47

4.4 A subgoal dependency graph for the second iteration 48

5.1 An automaton that represents all the ground substitution instances

of a set of terms . 53

5.2 An optimal automaton that represents all the ground substitution

instances of a set of terms . 55

x

5.3 An automaton that represents the complete instance of n-tuple

(f (x,x),g(y,y)) . 57

5.4 An automaton that represents the complete instances of n-tuples

{(f (x,x),g(y,z)),(f (x,y),g(z,z))} 59

5.5 An automaton for n-tuple f xxgyy 72

6.1 Example of conjunction . 78

6.2 Example of disjunction . 89

7.1 An automaton that contains unsatisfiable colors 101

7.2 An example of occur check failure 103

7.3 Branching on skip states . 104

7.4 Examples of derived colors . 106

7.5 Normalization of automata . 124

8.1 Example of grouping . 128

8.2 Example of ungrouping . 143

8.3 Non-empty color sets on step states cause problems in ungrouping 145

9.1 Colors occur at the same state 160

9.2 Changing colors in a projection operation 161

9.3 Non-empty color sets on step states cause problems in projection . 162

9.4 Using unordered pairs of states as colors 169

11.1 BDD representation of acceptance conditions 187

11.2 A MTBDD that represents n-tuple bXX 190

xi

Acknowledgements

• First of all, I would like to express my deepest gratitude to my advisor, Pro-

fessor Eugene Stark, for teaching me so much and inspiring me to solve

challenging problems. I would never have been able to finish my disserta-

tion without his guidance. The most important thing I have learned from

him is to be open-minded when finding solutions and to be extremely pre-

cise when writing technical reports.

• I also want to thank my dissertation committee members, Professor Radu

Grosu, Professor Scott Stoller and Dr. Aarti Gupta, for their feedbacks and

comments.

• I gratefully acknowledge the help from many colleagues of Stony Brook

computer science department. Diptikalyan Saha helped me to understand

the tabled evaluation of logic programs and Rahul Agarwal introduced me

some basic concepts of type-based program analysis. I also want to thank

useful discussions from Xiaowan Huang and Wenkai Tan.

• Finally, I cannot finish without saying “thanks” to my wife and parents, who

were always supporting me and encouraging me during these years.

1

Chapter 1

Introduction

2

1.1 Motivation

Program analysis is a process of analyzing computer programs and gathering

information to optimize executable codes via compilers or to ensure that certain

properties are satisfied by those programs. This process can also be used to find

program bugs and software vulnerabilities. The National Institute of Standards

and Technology conducted a study in 2002 to find out that software bugs cost the

US economy about $59.5 billion annually [1]. The same study also pointed out

that more than a third of that cost, about $22.2 billion, could be eliminated by an

improved infrastructure that includes static program analysis tools [1].

Although static analysis is very useful in detecting program bugs, it is not

easy to design and implement a static analysis on a real program. Static analysis

algorithms are often complicated. In order to achieve good results, the user has to

be an expert of both those algorithms and the target languages that are analyzed.

An implementation of a static analysis in some traditional programming language

often takes hundreds or even thousands of lines of code. Making changes to such

implementation is time-consuming and error-prone.

In order to make it easier to design and develop advanced program analy-

ses, some researchers have recently used logic programming languages to spec-

ify static analysis problems [17, 44, 58]. In such approach, the source code of a

program is stored as a set of tuples in a relational database and the analysis is

expressed as a set of deductive rules. Then the analysis problem is solved by

evaluating a query along with the deductive rules and the database. For example,

3

consider the following fragment of Java code:

String a =” f ido”;

String b;

b = a;

The tuples generated from the code are vP0(a,h1) and assign(b,a). The former

corresponds to the first statement. It says that variable a points to heap object h1

when it is declared and initialized. There is no corresponding tuple for the second

statement since it is just a declaration. The latter is corresponding to the third

statement and it says that there is an assignment from a to b. Suppose we want to

find out all the points-to relations in this piece of code. We specify “might point

to” relation vP by the following rules:

vP(v,h) ← vP0(v,h).

vP(v1,h) ← assign(v1,v2),vP(v2,h).

The rule A ← B1, . . . ,Bn is interpreted as: if B1 and . . . and Bn all hold then

A holds. The first rule stores the initial points-to relations into vP. The transitive

closure of vP is computed by the second rule such that if v2 is assigned to v1 and

v2 may point to heap object h, then v1 may also point to h. Now we run the query

vP(X ,Y) along with the rules and the tuples. Since vP0(v,h) holds, vP(a,h1) also

holds by following the first rule. Since assign(b,a) and vP(a,h1) hold, vP(b,h1)

holds by following the second rule. Thus, the results are tuples vP(a,h1) and

vP(b,h1).

Using logic programs to specify program analyses has many advantages. First

of all, logic programming languages, such as Prolog and Datalog, are simple and

4

easy to understand. Program analyses expressed as logic programs take only a few

lines of code. Second of all, for logic programs, the implementation is handled

by the evaluation system of the language. Therefore, the analysis specifiers do

not have to worry about the implementation of the analysis in this case. Finally,

there are many implementations of logic programing languages, which can be

used directly as the implementations of program analyses.

1.2 Challenges

Although logic programming simplifies the work required to design and im-

plement program analyses, it is still difficult to build general and practical static

analysis tools that use logic programming languages.

Many researchers use Datalog to express program analysis. Since Datalog

does not allow functions, it can have difficulty in expressing analysis problems

that involve recursively defined objects. Here is an example of how functions can

be used to define recursive objects. Suppose we have the following type inference

rule (for any typed language): if expression y has type t1 and there is a function

application x y such that function x is applied to argument y and x has function type

t1→ t2 (given an input of type t1, produce an output with type t2), then application

x y has the type t2. This rule can be expressed naturally by a Horn clause with the

help of functions:

type(A,T2) ← application(A,X ,Y), type(X ,arrow(T1,T2)), type(Y,T1).

5

In this rule, atom type(X ,T) says that expression X has type T and the atom

application(A,X ,Y) says that expression A is an application X Y . Here, we use

function symbol arrow to indicate the function type T1→ T2.

The implementations of program analysis that use logic programming sys-

tems are often slower than the ones using traditional languages and are difficult to

scale to large programs. Reps found that, for on-demand inter-procedural reach-

ing definitions analysis, a native C implementation is six times faster than the

implementation using Corel (which is a general-purpose logic programming sys-

tem) [44]. Some researchers have used XSB, which is a state-of-the-art imple-

mentation of logic programs, to perform program analysis [17]. However, those

analyses are only performed on programs with several hundred lines. Moreover,

it has been pointed out that XSB uses “tuple-at-a-time” evaluation strategy and is

not efficient to access large set of tuples [20]. An alternative of tuple-at-a-time is

“set-at-a-time” strategy. Recently, a BDD-based implementation of Datalog has

been successfully used to do analyses on large programs that have over 1014 con-

texts [58]. This implementation employs set-at-a-time strategy, which computes

a set of tuples at a time. However, it has two issues. One is the limited expres-

siveness of Datalog, which has been addressed before. Another is its bottom-up

evaluation strategy, which starts from the initial tuples and repeatedly applies old

tuples to rules to obtain new tuples until a fixed point is reached. This strategy

can avoid infinite loops by recognizing cycles of queries. However, bottom-up

strategy cannot handle functions (a set of ground tuples that contain functions is

an infinite set) and is inefficient for answering queries because queries are solved

6

only after all the tuples have been computed and many possibly irrelevant tuples

are generated. Comparing to bottom-up, top-down is a strategy that starts from the

query and translates it to sub-query (by following the rules) until the initial tuples

are reached. The solution of the query is obtained by composing the solutions

from the sub-queries. A top-down strategy is efficient to answer queries because

it only computes relevant tuples.

One might ask whether we can have an efficient implementation of Horn

clauses that employs both top-down and set-at-a-time strategies. If that is the case,

then we would have a framework for program analysis that possesses the expres-

siveness of Horn clauses and is able to scale to large programs. Unfortunately,

there is no easy solution to this question. Unlike Datalog, Horn clauses cannot

be implemented by using traditional BDDs because of the presence of function

symbols. The set of tuples in a Datalog program is a finite set. Thus, each tuple

can be encoded by a fixed length of bits. Suppose a Datalog program has only

four constants {a,b,c,d}. Then we can use two bits to encode each constant.

Any tuple that contains k elements is then encoded by 2k bits. We cannot do the

same to Horn clauses. Suppose a Horn clause program has only four symbols

{ f ,a,b,c} such that a,b and c are constants and f is a function symbol whose

arity is 1. We can also use two bits to encode each symbol, but we cannot use

fixed length of bits to encode the tuples that have the same arity. For example,

suppose the arity of predicate p is 2, then in this case we would have tuples like

p(a,b), p(a, f (b)), p(a, f (f (b))), Clearly, it is impossible to encode those tu-

ples with fixed length of bits.

7

1.3 Our Solution

This dissertation provides a solution that leads to an efficient implementation

of Horn clauses that employs both top-down and set-at-a-time strategies. We pro-

pose an automata-based approach to represent a set of tuples as an automaton.

Various operations are devised to implement the top-down set-at-a-time evalua-

tion algorithm on automata. More importantly, such automata lend themselves

readily to a representation using MTBDDs. Thus, the solution proposed by this

dissertation answers the question being asked before, we can have an efficient

BDD-based implementation of Horn clauses that employs both top-down and set-

at-a-time strategies. The results of this dissertation lead to a framework for pro-

gram analysis such that analysis problems are naturally expressed as Horn clauses

and the evaluation of Horn clauses is efficiently implemented by MTBDDs. This

framework is especially suitable for type-based program analysis since types are

naturally expressed as functions.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents

a literature review of the materials that are related to our work. Chapter 3 gives an

example that uses Horn clauses to express a typical type-based program analysis,

strictness analysis, by taking the advantage of functions. A top-down set-at-a-time

evaluation algorithm of Horn clauses is presented in Chapter 4. In order to find

a way that implements Horn clauses with a BDD-like data structure, an automata

8

representation for Horn clause terms is proposed in Chapter 5. Chapter 6 describes

conjunction and disjunction operations of automata. Chapter 7 describes the nor-

malization procedure of automata. Chapter 8 describes grouping and ungrouping

operations of automata. Chapter 9 describes expansion and projection operations

of automata. Chapter 10 discusses other automata operations and the implemen-

tation of operations used in top-down evaluation algorithm. Chapter 11 presents a

MTBDD implementation of automata. Chapter 12 briefly describes the modules

in the implementation of our framework. Finally, Chapter 13 concludes.

9

Chapter 2

Related Work

10

2.1 Using Logic Program Languages for Program

Analysis

Logic program languages, such as Prolog and Datalog, have been used suc-

cessfully to express program analysis problems. Dawson, et al. [17] performed

groundness analysis on logic programs and strictness analysis on functional pro-

grams by using Prolog. Thomas Reps [44] suggested that logic programming lan-

guage is useful for many context-free language reachability problems. However,

the implementations of logic program systems did not show impressive perfor-

mances when they are used in program analysis. Dawson only performed anal-

yses on programs with several hundred lines of code in the XSB system. The

performance of doing those analyses on large programs in the XSB system is

unknown. It has been pointed out that the XSB system is not efficient for manip-

ulating large set of tuples [20]. Reps indicated that a native C implementation is

six times faster than his logic programming approach with the Coral system. The

poor performance may come from the bottom-up evaluation strategy of the Coral

system. As I pointed out before, in general, bottom-up evaluation is inefficient

for answering queries. Recently, Whaley, et al. [31, 58, 59] have used Datalog to

express content-sensitive pointer alias analysis and efficiently perform the analy-

sis on large programs that have over 1014 contexts with a BDD-based deductive

database system BDDBDDB. The success of this framework indicates that a logic

programming language with a BDD-based implementation can efficiently con-

duct program analyses on large programs. CodeQuest is another scalable program

11

analysis tool using Datalog as a querying language with a traditional database sys-

tem as its back-end [25]. In the sequel, we briefly explain the framework of using

Datalog and BDDs for program analysis. Readers are referred to [31, 58, 59] for

more details.

2.1.1 Expressing Program Analysis in Datalog

Datalog is a query language for relations. It became popular around 1978 [22]

and was first formalized by Ullman [51]. The atoms in Datalog have the form

R(t1, . . . , tn) where R is a predicate and t1, . . . , tn are constants or variables. A rule

of Datalog has the form p← q1, . . . ,qn, where p, q1, . . ., qn are atoms. It can be

read as “p is true if q1 and . . . and qn are true”. The atom on the left hand side of a

rule is called head, the conjunction of atoms on the right hand side is called body,

a rule without body is called a fact (a fact is always true) and a rule without head is

called a query or a goal. All the rules in Datalog are range-restricted in the sense

that any variable in the head must appear somewhere in the body. A relation is

viewed as a two-dimensional table associated with a predicate R. The columns of

the table are called attributes and each attribute is associated with a finite domain

that ranges over all possible attribute values. The rows of the table are called

tuples each of which contains a value for each attribute. If tuple (a1, . . . ,an) is

in table R then we have a fact R(a1, . . . ,an). Since the domains of attributes are

finite, relations can be represented by BDDs such that the values in a domain of

size 2n are encoded by n bits.

A Datalog program generally consists of a set of rules and a set of relations,

12

where a relation is a set of facts with the same predicate. In order to use Dat-

alog and BDDs for program analysis, computer programs are first transformed

(or abstracted) to relations and stored as BDDs. Program analysis problems are

expressed as Datalog rules. In BDDBDDB, a specification of program analysis

consists of three parts:

1. Domain Declarations: Each declared domain has a name and may have a

file that maps the numerical values in this domain to their meanings. The

size of each domain (the total number of elements) is also declared.

2. Relation Declarations: Each relation is declared with its attributes. Each

attribute has a name and is assigned to a domain.

3. Rules: Program analysis is expressed as Datalog rules with the declared

relations.

Figure 2.1 is a specification for context insensitive Java points-to analysis. In

this specification, domain V is defined for local variables and method parameters,

domain H is defined for heap objects and domain F is defined for field descrip-

tors. There are four input relations. Relation vP0 is the initial points-to relation

such that vP0(v,h) holds if and only if variable v is initialized to refer to a heap

object h. Relation store represents store operations such that store(x, f ,y) holds

if and only if there is a statement x. f = y in the program. Similarly, relation

load represents load operations such that load(x, f ,y) holds if and only if there

is a statement y = x. f in the program. Relation assign represents assignments

13

DOMAINS
V 262144 variable.map
H 65536 heap.map
F 16384 field.map

RELATIONS
input vP0 (variable : V,heap : H)
input store (base : V, f ield : F,source : V)
input load (base : V, f ield : F,dest : V)
input assign (dest : V,source : V)
out put vP (variable : V,heap : H)
out put hP (base : V, f ield : F, target : V)

RULES
(1) vP(v,h) ← vP0(v,h).
(2) vP(v1,h) ← assign(v1,v2),vP(v2,h).
(3) hP(h1, f ,h2)← store(v1, f ,v2),vP(v1,h1),vP(v2,h2).
(4) vP(v2,h2) ← load(v1, f ,v2),vP(v1,h1),hP(h1, f ,h2).

Figure 2.1: Java context-insensitive points-to analysis (taken from [58])

such that assign(x,y) holds if and only if there is an assignment x = y in the pro-

gram. Assume that a call graph of the program is built in advance. Then relation

assign includes the assignments for method invocations that assign arguments to

formal parameters, and the assignments for function returns that assign the values

of return statements to return value destinations. The output relations specify the

possible points-to relation between heap objects, and points-to relation from vari-

ables to heap objects. That is, hP(h1, f ,h2) holds if heap object field h1. f may

point to heap object h2, and vP(v,h) holds if variable v may point to heap object

h.

14

String a =“ f ido”; // vP0(va,h1)
String b;
Ob jd = newOb j(); // vP0(vd,h3)
b = a; // assign(vb,va)
d.name = b; // store(vd,name,vb)

Figure 2.2: A simple Java program fragment

Now we explain the rules in Figure 2.1. Rule (1) stores the initial points-to

relation into vP. The transitive closure of relation vP is computed by rule (2) such

that if v1 includes v2 and v2 may point to heap object h, then v1 may point to h

as well. Rule (3) and (4) deal with store and load operations respectively. In rule

(3), if there is a store operation such that v1. f = v2 and variable v1 may point to

heap object h1 and variable v2 may point to heap object h2, then field h1. f may

point to h2 as well. Similarly, in rule (4), if there is a load operation such that

v2 = v1. f and variable v1 may point to heap object h1 and field h1. f may point to

heap object h2, then v2 may point to h2 as well.

Context insensitive points-to analysis is illustrated by a simple Java program

(shown in Figure 2.2). In that figure, the initial relations that are transformed from

the source code are listed as comments following the corresponding statements.

Domain V contains three variables va, vb and vd , domain H contains two heap

objects h1 and h3, and there is only one field name in domain F . Initial points-

to relation contains vP0(va,h1) and vP0(vd,h3). There is one assignment in the

program, its corresponding relation is {assign(vb,va)}, and there is one store op-

eration that corresponds to relation {store(vd,name,vb)}. The analysis starts from

15

rule (1), which finds that vP(va,h1) and vP(vd,h3) hold from the initial points-to

relation. Moreover, rule (2) says that vP(vb,h1) holds since both assign(vb,va)

and vP(va,h1) hold. Similarly, rule (3) finds that hP(h3,name,h1) holds since

store(vd,name,vb) and vP(vd,h3) and vP(vb,h1) all hold.

2.1.2 From Datalog to Relational Algebra

A Datalog query is said to be domain independent if its answers only depend

on the databases and the constants in the query, and not on the domain of in-

terpretation. When a Datalog program is domain independent and only has finite

answers, it is said to be a safe program and there is an equivalent relational algebra

expression for every safe Datalog program [61].

The Datalog used in BDDBDDB has the following differences from standard

Datalog:

• Totally ordered finite domain. In BDDBDDB, each variable in a relation is

given a finite domain.

• Comparison operators. BDDBDDB includes built-in comparison operators

for comparing domain elements with respect to the associated ordering.

• Unbound variables in the head predicate. BDDBDDB allows unbound vari-

ables appearing in the head. Since each variable in BDDBDDB is associated

with a finite domain, the evaluation of a query with unbound variables also

has finite number of answers.

16

From the above, we conclude that the Datalog used in BDDBDDB is a safe pro-

gram. Thus, its rules can be translated into relational algebra expressions via the

following operations:

1. Natural join ./: Given two relations R and S, R ./ S returns a set of all com-

binations of the tuples from R and S that agree on the common attributes.

2. Union ∪: Given two relations R and S, R∪S returns the union of R and S.

3. Difference \: Given two relations R and S, R\S returns the difference of R

and S.

4. Projection π: Given a relation R, πa1,...,ak(R) returns a new relation obtained

by removing attributes a1, ...,ak from R.

5. Renaming ρ: Given a relation R, ρa→a′(R) returns a new relation obtained

by renaming attribute a to a′ in R.

6. Selection σ: Given a relation R, σa=c(R) returns the tuples in R whose value

on attribute a is equal to c.

Figure 2.3 shows the corresponding relational algebra operations for the rule

vP(v1,h)← assign(v1,v2),vP(v2,h). Relation vP contains attributes variable and

heap, and relation assign has attributes dest and source. We first rename attribute

variable to source in relation vP and get a new relation t1 that contains two at-

tributes source and heap. Since relation assign contains attributes dest and source,

the natural join assign ./ t1 returns a relation t2 that contains three attributes dest,

17

rule:
vP(v1,h)← assign(v1,v2),vP(v2,h)

relational operations:
t1 = ρvariable→source(vP);
t2 = assign ./ t1;
t3 = πsource(t2);
t4 = ρdest→variable(t3);
vP = vP∪ t4;

Figure 2.3: Relational operations (taken from [58])

source and heap. Then we project away attribute source from relation t2 and

rename attribute dest to variable, the resulting relation is t4, which contains at-

tributes variable and heap. Finally, the union of t4 and relation vP is the resulting

relation after applying the above rule. The difference operation is used in the

semi-naive bottom-up strategy [7] to drop off answers computed in the previous

iteration and keep the new answers for the next iteration.

2.1.3 From Relations to Boolean Functions

The elements of a domain in a relation can be represented by numbers starting

from 0. A domain with size 2m is encoded with m bits. An n-ary relation R can

be represented as a boolean function f : D1× . . .×Dn→ {0,1}, where Di is the

numerical domain for the ith attribute and corresponds to a sequence of boolean

variables. A tuple (d1, ...,dn) is in R if and only if f (d1, ...,dn) = 1. There is a log-

ical operation, which produces the same result when applied to boolean function

18

representations of relations, for each relational algebra operation. Suppose rela-

tion R1 is represented by f1 : D1×D2→ {0,1} and R2 by f2 : D2×D3→ {0,1}.

Then natural join R1 ./ R2 is represented by f3 : D1×D2×D3 → {0,1}, where

f3(d1,d2,d3) = f1(d1,d2)∧ f2(d2,d3). Relation σa=c(R) is equivalent to the nat-

ural join R ./ R′ such that R′ has only one attribute a and contains only one tuple

{c}. The ∪ operation is implemented by the logical operation ∨ and R1 \ R2

is equivalent to R1 ./ (¬R2) in which ¬R2 is represented by function f ′2 such

that f ′2 = ¬ f2. Expression πa2(R1) (a2 is associated with domain D2) is repre-

sented by f : D1 → {0,1} such that f (d1) = ∃d2. f1(d1,d2). A renaming opera-

tion ρd1→d3(R1) is translated into a replace operation on f1 : D1×D2 in which

the boolean variables corresponding to attribute d1 are replaced with the boolean

variables corresponding to attribute d3, and the result is a function f3 : D2×D3

such that f1(d1,d2) = 1 if and only if f3(d2,d1) = 1.

2.1.4 From Boolean Functions to BDDs

Boolean functions are efficiently represented by BDDs [11, 12]. A BDD rep-

resents a function f : {0,1}n→ B that maps a finite set of boolean variables to 1 or

0. Such representation is a rooted directed acyclic graph with two terminal nodes

0 and 1, and a set of non-terminal nodes. Each non-terminal node is labeled by

a boolean variable and has two outgoing edges that are called “high” (or “then”)

edge and “low” (or “else”) edge. Given a set of input bits, we evaluate a BDD by

following the path from the root to a terminal node such that at each node if the

corresponding bit is “1” then the “high” edge is taken, otherwise the “low” edge

19

is chosen.

We say a BDD is ordered if variables appear in the same order on all the paths

from the root. A BDD is called reduced if identical structures are collapsed into

a single graph. Reduced and ordered BDDs are maximally sharing structures that

compactly represent boolean functions.

The classical BDD operation apply implements the basic logic operations ∧,

∨ and−. Moreover, other BDD operations that are needed to implement relational

operations are listed as follows:

1. exists: Given a BDD B f for boolean function f and a boolean variable

x, exists(B f ,x) replaces any non-terminal node u that is labeled by x with

the “OR” of the children of u. The resulting BDD exists(B f ,x) represents

boolean function ∃x. f .

2. replace: Given a BDD B and a function ϕ that maps a boolean variable

to another boolean variable, replace(B,ϕ) is obtained from B by replacing

the label x of each non-terminal node with ϕ(x) and reordering the nodes to

enforce the ordering on the new labels. The complexity of this operation is

linear if the new variables keep the relative ordering of the old ones. If the

relative ordering is changed then the cost of reordering could be exponen-

tial.

Note that, in the translation of a logic program, a natural join operation is al-

ways followed by a projection operation and these operations can be efficiently

20

combined into one operation named rel prod (stands for relational product). Sim-

ilarly, a selection and a projection can be combined into one operation named

restrict. Since the complexity of BDD operation only depends on the size and

the shape of the BDD and not on the size of the relation, large relation can be

manipulated very efficiently as long as its BDD representation is compact. More-

over, BDD implementations always use caches to maintain computed results and

to guarantee that identical sub-problems are computed only once.

2.1.5 Using Datalog and BDDs for Program Analysis

A specification used in BDDBDDB for context-insensitive Java points-to anal-

ysis is shown in Figure 2.1. To conduct a context-sensitive points-to analysis,

Whaley, et al. [59] presented a cloning-based approach such that a clone of a

method is created for each distinct call context, a complete call graph is built from

those clones and then a context-insensitive points-to analysis is performed on the

pre-computed call graph to get the context-sensitive results. Although exponential

explosion may occur due to the large number of clones, the underlying BDDs are

created with reasonable sizes since the clones of the same method usually share

some commonalities. With this cloning-based approach, context-sensitive points-

to analysis can be completed on a program with over 1014 contexts. Although

BDDs implementation of Datalog has been proved very efficient for some pro-

gram analysis problems, the fact that function symbols are prohibited in Datalog

makes it not suitable for some type-based program analyses in which types are

formed by recursively defined objects. For example, with function symbols, it

21

is easy to express the function type in the following type inference rule that we

mentioned before:

type(A,T2) ← application(A,X ,Y), type(X ,arrow(T1,T2)), type(Y,T1).

More importantly, in this case, the domain of variables T1 and T2 may contain

arbitrarily large types because of the presence of function symbol arrow. BDDB-

DDB can only handle this type object under certain assumptions (such as fixed

nesting depth of functions).

2.2 Evaluation of Horn Clauses

In general, there are two ways to evaluate a logic program, top-down and

bottom-up.

Top-down evaluation is efficient for answering queries because it is goal-

directed, i.e., only the results relevant to the goal are computed. However, this

approach may go into an infinite loop because of recursive clauses. Moreover,

most of implementations of top-down evaluation compute a tuple at a time. This

strategy may lose some efficiency when accessing large set of tuples. To over-

come the termination problem, researchers introduced the memoing (also called

tabling) technique into top-down evaluation to memorize the answers of a sub-

goal so that they can be reused in the future when the same subgoal is called [57].

22

To remove the potential bottleneck of tuple-at-a-time strategy, researchers con-

vert the depth-first subgoal scheduling scheme to a breadth-first one in order to

obtain a set-at-a-time search engine [20]. However, this conversion is not natural

since it loses the essential feature of top-down evaluation, namely “depth-first”.

If we only search some but not all answers for a query, then depth-first evaluation

method is more efficient than the breadth-first evaluation.

Bottom-up evaluation can avoid infinite loops by recognizing cycles gener-

ated by recursive clauses. It is usually adopted in deductive databases since it is

set-at-a-time and is efficient for disk-resident data. However this approach is in-

efficient for answering queries because queries are solved only after all the tuples

have been computed and many possibly irrelevant tuples are generated. A goal-

directed bottom-up evaluation can be achieved by transforming the logic program

to a form in which the evaluation only focuses on relevant tuples. This transforma-

tion is called the magic-set transformation [8]. For Datalog program, bottom-up

evaluation with magic-set transformation is at least as efficient as top-down eval-

uation [52]. However for more general logic programs, bottom-up evaluation can

do much worse than top-down evaluation due to the non-ground terms. In the

presence of large non-ground terms, the “answer-return” unifications performed

by bottom-up search are very costly. Bottom-up evaluation with non-ground terms

was optimized by Sudarshan and Ramakrishnan [50] with a somewhat refined ver-

sion of the magic-set transformation. They proved that given a program P and a

query Q, if the cost of Prolog evaluation of Q is time unit t, then their optimization

evaluates Q on P in time O(t · log log t). However, Ramakrishnan and Ullman also

23

pointed out that Prolog-style (top-down depth-first tuple-at-a-time) evaluation is

likely to run faster for many programs in practice [43].

It is desirable to have an evaluation, which is top-down depth-first and set-at-

at-time, to efficiently answer queries with large programs. However, this kind of

strategy did not receive much attention in the last decade. Early in 1987, Vieille

proposed the query-subquery recursive (QSQR) evaluation algorithm for Datalog,

which is top-down and set-at-a-time [53] but incomplete [54]. The QSQR algo-

rithm is generalized by Bugaj and Nguyen to a top-down set-at-a-time depth-first

evaluation for Horn knowledge bases [33]. However, Bugaj and Nguyen’s orig-

inal algorithm is incomplete in the sense that it fails to find all the answers in

certain cases. Recently, they released a revised and extended report to correct the

incompleteness [34]. The revised evaluation algorithm is complete for the goals

with bounded nesting depth of functions.

2.3 Type-based Program Analysis

Type-based program analysis is a collection of techniques that uses types to

infer the properties of computer program and takes advantage of the assumption

that the program type checks [42]. This approach is simple because type rules are

easy to understand and type derivations of programs are more convenient for de-

signing static analysis. Moreover, it is easy to prove the correctness of an analysis

that uses types since there is a well understood method to prove the soundness of a

type system [40,60] and the soundness proof of a type system often automatically

24

verifies the correctness of the analysis.

Type-based program analyses are usually used in the following applications:

1. Bind-Time Analysis: This analysis is to identify static variables and expres-

sions of a program that can be evaluated at compile-time, and dynamic vari-

ables and expressions that can only be evaluated at run-time [23,27,28,41].

The target programs are optimized by compilers via partial evaluations of

static variables and expressions.

2. Strictness Analysis: If a functional programming language does not evalu-

ate function arguments unless their values are required to evaluate the func-

tion call itself, then such language is called a lazy functional programming

language. We say a function is strict in a parameter if this parameter is un-

defined implies that the result of the function is also undefined. The purpose

of strictness analysis is to show that a function in a lazy functional program-

ming language is strict in one or more parameters. The compiler can then

use this information to decide whether it is safe to evaluate a parameter be-

fore passing it to the function. The strictness analysis was first introduced

by Mycroft who showed how to use abstract interpretation for strictness

analysis for first order functions [36]. Burn, et al. [14] extended Mycroft’s

work to higher order functions. Type inference was first used in strictness

analysis by Kuo and Mishra [30]. After that, a number of researchers pro-

posed more accurate strictness analysis based on types and generalized the

approaches to type-based program analysis frameworks [10, 13, 26, 29].

25

3. Totality Analysis: This analysis is as useful as strictness analysis, but it has

not received so much attention until recently. This analysis is to show that

an argument of a function is terminating so that it is safe to evaluate that

argument before performing the function call [16, 47–49].

4. Race Detection: In a multi-threaded program, threads accessing shared data

structures without synchronization may cause inconsistencies. Race detec-

tion is to ensure that the lock of a shared data structure is held by at most

one thread at a time. Type-based race detection for Java programs has been

proposed by several groups such as Flanagan, et al. [2, 18, 19], Agarwal, et

al. [3, 4, 45].

5. Secure Information Flow Analysis: This analysis is to ensure that secure

information of a program is not leaking, that is, there is no information flow

from “high” level variables to “low” level ones if we classify variables into

different security levels. A type-based system for secure information flow

analysis was proposed by Volpano, et al. [55, 56]. This system is extended

by Banerjee and Naumann to a Java-like object-oriented programming lan-

guage [9].

26

Chapter 3

Expressing Strictness Analysis in

Horn Clauses

27

3.1 Horn Clauses

In this chapter, we show an example that uses Horn clauses to express a typical

type-based analysis, strictness analysis. In the sequel, we introduce some basic

notations and then give the definition of Horn clauses.

A set of variable symbols is denoted by V . A set of function symbols is de-

noted by Σ. We use x,y,z,v for variable symbols and a,b,c,d, f ,g for function

symbols. The arity of a function symbol f is denoted by # f . We use the term

constant to refer to a symbol c in Σ such that #c = 0 and we use the term function

symbol to refer to a symbol f in Σ such that # f > 0. We define a term to be a

constant, or a variable, or a function f (t1, . . . , t# f) in which f is a function symbol

and t1, . . . , t# f are terms themselves. Sometimes, we omit parentheses and commas

from a term f (t1, . . . , t# f) and denote it by f t1 . . . t# f . A term t is linear if each vari-

able of t occurs only once, otherwise t is non-linear. In this dissertation, when we

use the word “term”, we always entertain the possibility of non-linearity. An atom

has the form p(t1, . . . , tn), where p is called a predicate and t1, . . . , tn are terms. A

Horn clause is a clause of the form L← R, where L is an atom called head, R

is a conjunction of atoms called body, and ← means “is implied by”. The Horn

clause of the form A← B1, . . . ,Bn can be read as “if B1 and . . . and Bn then A”.

If A is an atom of the form p(t1, . . . , tm) then we say this clause defines predicate

p. We also call a clause with the form A← B1, . . . ,Bn a definite Horn clause. In

this dissertation, we restrict our attention to definite Horn clauses. A Horn clause

without body is called a fact, and a Horn clause without head is called a query or

28

a goal. If a Horn clause has a head and a non-empty body, then we call it a rule.

A Horn clause program is a set of rules and facts.

3.2 Type-based Strictness Analysis

In this section, we use Horn clauses to express strictness analysis for a simple

typed lambda calculus. The grammar of this typed lambda calculus is shown as

the following:

σ = Int | Bool | σ→ σ

e = x | c | e1 op e2 | λxσ.e | e1e2 | i f e1 then e2 else e3

As we mentioned before, a function is strict in a parameter if the undefinedness

of this parameter implies that the result of the function is also undefined. Com-

pilers of lazy functional programming languages use the information provided by

strictness analysis to decide whether it is safe to evaluate a parameter before pass-

ing it to the function (i.e., to use a pass-by-value strategy). In type-based strictness

analysis, two type constants are defined. The symbol⊥ denotes undefinedness and

the symbol > denotes all values of the type. In strictness analysis, a function with

strictness type ⊥→ ⊥ means this function is strict. The strictness logic used in

this dissertation follows Jensen’s work [29]. For simplicity, we do not consider

conjunctive types.

In order to perform strictness analysis on the simple typed lambda calculus, we

index lambda calculus expressions by integers (e.g., by numbering the nodes of

29

λxσ.x : lambda expr(e1,x,σ,e2).
var expr(e2,x).

xy : app expr(e,e1,e2).
var expr(e1,x).
var expr(e2,y).

x op c : binop expr(e,e1,e2).
var expr(e1,x).
const expr(e2,c).

i f c then x else y : i f expr(e,e1,e2,e3)
const expr(e1,c).
var expr(e2,x).
var expr(e3,y).

Figure 3.1: Transform syntax of lambda calculus to facts

the parse tree) and transform the syntax of a lambda calculus into facts as shown

in Figure 3.1 (note that, the facts are examples and not general rules). In such

transformation, each expression of lambda calculus corresponds to a predicate

whose first argument is the index of the expression and the rest of arguments

correspond to the components in that expression. For example, application xy

is transformed to a predicate app expr(e,e1,e2) in which e is the index of this

expression and e1 and e2 are indices of the sub-expressions x and y respectively.

We use V to denote the finite domain of all the variables appearing in a lambda

calculus program, C to denote the domain of all the constants, T to denote the

domain of the types, and we use I to denote the domain of the indices of the

expressions. The domain of each predicate is listed as follows:

• lambda expr : I×V ×T × I.

30

• app expr : I× I× I.

• binop expr : I× I× I.

• i f expr : I× I× I× I.

• var expr : I×V .

• const expr : I×C.

The type inference rules for strictness analysis are shown in figure 3.2. A

judgment has the form E ` e : t, where E is the environment that maps program

variables to their strictness types, e stands for an expression and t is the strictness

type of e under the environment E. Rule Var deduces the trivial strictness types

for variables. Rule Abs states that if expression e has the type t2 under the en-

vironment E combined with a mapping that binds variable x to strictness type t1,

then the lambda expression λxt .e has strictness type t1→ t2 under the environment

E. Rule App expresses that if e1 maps arguments with type t1 to results with type

t2, then applying this expression to an argument with type t1 will get the result

with strictness type t2. Rule Op-Left and rule Op-Right handle arithmetic opera-

tions and logical operations, they say that a binary operation is strict in each of its

arguments. Rule If-1 and rule If-2 for the conditional imply that the conditional

has strictness type ⊥ if the boolean condition is undefined or both of the branches

are undefined.

The Horn clauses for strictness analysis are shown in Figure 3.3. Note that, by

following the convention of Prolog, we use lower-case characters for constants,

function symbols and predicates, use upper-case characters for variables, and use

wildcard () in a predicate to define an argument that can match anything. The

31

Var E[x : t] ` x : t

Abs E[x : t1] ` e : t2
E ` λxt .e : t1→ t2

App E ` e1 : t1→ t2 E ` e2 : t1
E ` e1e2 : t2

Op-Left E ` e1 :⊥ E ` e2 : t2
E ` e1 op e2 :⊥

Op-Right E ` e1 : t1 E ` e2 :⊥
E ` e1 op e2 :⊥

If-1 E ` e1 :⊥
E ` i f e1 then e2 else e3 :⊥

If-2 E ` e2 : t E ` e3 : t
E ` i f e1 then e2 else e3 : t

Figure 3.2: The type inference rules for strictness analysis

predicate type represents the judgment E ` e : t with three arguments, the first

one is for environment E, the second one is for expression e and the third one

is for strictness type t. The environment is coded as a list of pairs of the form

(x, t) such that (x, t) binds strictness type t to variable x. Atom env((X ,T),Env)

represents an environment (list) such that the binding (X ,T) is the head and en-

vironment (list) Env is the tail. The empty environment is represented by con-

stant []. Clauses (1) and (2) define the predicate is member. Clause (1) says

that if there is an environment that contains the head (X ,T) then (X ,T) is a

member of that environment. Clause (2) says that if X and X ′ are not literally

32

(1) is member((X ,T),env((X ,T),Env)).

(2) is member((X ,T),env((X ′,T ′),Env)) ← not eq(X ,X ′),
is member((X ,T),Env).

(3) type(Env,X ,T)← var expr(X ,), is member((X ,T),Env).

(4) type(Env,L,arrow(T1,T2))←lambda expr(L,X ,T1,E),
type(env((X ,T1),Env),E,T2).

(5) type(Env,A,T2)← app expr(A,E1,E2),
type(Env,E1,arrow(T1,T2)), type(Env,E2,T2).

(6) type(Env,B,bottom)← binop expr(B,E1,), type(Env,E1,bottom).

(7) type(Env,B,bottom)← binop expr(B, ,E2), type(Env,E2,bottom).

(8) type(Env, I,bottom)← i f expr(I,E1, ,), type(Env,E1,bottom).

(9) type(Env, I,T)← i f expr(I, ,E2,E3), type(Env,E2,T),
type(Env,E3,T).

Figure 3.3: Horn clauses for strictness analysis

identical then we have that is member((X ,T),env((X ′,T ′),Env)) holds when-

ever is member((X ,T),Env) holds. Note that, not eq is a primitive predicate and

not eq(X ,Y) holds if and only if X and Y are not literally identical. In this disser-

tation, inequality comparisons are only allowed on finite domains. Clause (3) is

for rule Var, it says that if X is the index of a variable expression and the binding

(X ,T) is a member of environment Env then X has strictness type T under the en-

vironment Env. Rule Abs is expressed in clause (4) such that if there is a lambda

33

expression L = λX t .E and term E is associated with strictness type T2 under envi-

ronment env((X ,T1),Env) (in which variable X has type T1) then expression L is

associated with type arrow(T1,T2) under environment Env. Here, arrow(T1,T2)

stands for strictness type T1→ T2, which is a recursively defined type that consists

of subtypes T1 and T2. The rest of the clauses express the corresponding rules

straightforwardly. Clause (5) is for rule App, clauses (6) and (7) are correspond-

ing to rules Op-Left and Op-Right, and clause (8) and (9) are corresponding to

rules If-1 and If-2. This example shows that Horn clauses are expressive enough

to define type-based program analysis by utilizing the functions for recursively

defined objects.

34

Chapter 4

Top-down Set-oriented Algorithm

35

4.1 Set-At-A-Time Evaluation

Top-down depth-first evaluation is efficient for answering queries of Horn

clauses due to its goal-directed strategy. Most of implementations of top-down

evaluation compute a single tuple at a time. This strategy may lose some effi-

ciency when accessing large set of tuples. To remove the potential bottleneck of

tuple-at-a-tome strategy, Bugaj and Nguyen proposed a top-down set-at-a-time

depth-first evaluation algorithm that computes a set of tuples at a time. Their orig-

inal algorithm is incomplete in the sense that it fails to find all the answers in

certain cases [33]. Recently, they released a revised and extended report to cor-

rect the incompleteness [34]. In this Chapter, we present the corrected version of

top-down set-at-a-time evaluation algorithm in terms of sets of ground n-tuples.

4.2 Notations

A substitution is defined to be a function that maps a variable to a term, and

is denoted by [θ(x1)/x1, . . . ,θ(xn)/xn] in which {x1, . . . ,xn} is the domain of the

substitution. If θ is a substitution and E is a term, a tuple of terms, an atom,

a substitution or a Horn clause, then Eθ is obtained from E by simultaneously

replacing each variable x of E with θ(x). If θ and δ are substitutions such that

θ = [θ(x1)/x1, . . . ,θ(xn)/xn], then θδ = [θ(x1)δ/x1, . . . ,θ(xn)δ/xn]. If E ′ = Eθ

then we say E ′ is a substitution instance of E. Moreover, if θ(xi) is a ground

term for all i ∈ [1,n], then we say θ is a ground substitution and E ′ is a ground

substitution instance of E. For example, atom p(X ,Y,a) is substitution instance of

36

atom p(X ,Y,Z) with substitution [a/Z] and atom p(a,b,c) is a ground substitution

instance of p(X ,Y,Z) with ground substitution [a/X ,b/Y,c/Z].

If θ is a substitution such that Eθ = E ′θ then we say θ is a unifier of E and E ′.

A substitution θ is called a most general unifier (mgu) of E and E ′ if for any other

substitution δ of E and E ′, we have δ = θγ, where γ is also a substitution. The

most general unifier is unique up to renaming. For example, [a/X ,b/Y,b/Z] is a

unifier of atoms p(X ,Y,c) and p(a,Z,c) and [a/X ,Y/Z] is a mgu of those atoms.

We define an n-tuple to be a tuple of n terms and a ground n-tuple to be an

n-tuple that does not contain any variable. An n-tuple t is linear if each variable

of t occurs only once, otherwise t is non-linear. We say a set of ground n-tuples

S is an instance of atom p(t) if and only if the arity of p is n and every ground

n-tuple of S is a ground substitution instance of t. In some cases, we also say

S is an instance of tuple t. If S contains all the ground substitution instances of

n-tuple t then we say S is the complete instance of atom p(t). Similarly, in some

cases, we also say S is the complete instance of tuple t. Note that, a set of ground

n-tuples that is the complete instance of an atom may be infinitely large because

of the presence of function symbols. The term depth of a ground n-tuple is the

maximal nesting depth of function symbols that appear in that n-tuple, and we

denote the term depth of n-tuple t by |t|Σ. For example, |(a, f (a,g(b)))|Σ = 2.

We denote an n-tuple that contains all the distinct variables appearing in a set

of atoms S by Var(S) (in which variables appear in an arbitrary ordering). For

example, Var({p(X ,g(Z)),q(X ,Y)}) could be (X ,Y,Z).

37

We classify each predicate as either intensional predicate or extensional pred-

icate. Intensional predicates are defined by rules, while extensional predicates are

defined by facts. For example, if we have a rule

path(X ,Y)← path(X ,Z),edge(Z,Y)

and a fact edge(a,b), then path is an intensional predicate while edge is an exten-

sional one.

In this chapter, a Horn knowledge base is defined to be a Horn clause program

P that defines intensional predicates, and an extensional instance I, which is a

function that maps each n-ary extensional predicate to a set of ground n-tuples.

For example, a Horn knowledge base that computes the transitive closure of a

graph contains a program

P = {path(X ,Y)← edge(X ,Y)., path(X ,Y)← path(X ,Z),edge(Z,Y).}

and an extensional instance I that maps predicate edge to a set of ground 2-tuples

{(a,b),(b,c),(b,d)}.

Note that, each ground n-tuple t in I(p) is treated as an atom p(t) and I(p) is

treated as a set of ground atoms of p. We use EI to denote an extensional database

associated with extensional instance I such that EI = I(p1)∪ . . .∪ I(pn), where

p1, . . . , pn are all the extensional predicates. Suppose a set S of ground n-tuples

has the same arity as predicate p. If t ∈ S, then we also say that atom p(t) is in S.

Suppose (P, I) is a Horn knowledge base. Then a goal (or query) has the form

38

← A1, . . . ,Ak in which A1, . . . ,Ak are all atoms. Note that, an arbitrary goal can

be transformed into an equivalent one of the form← q(x) in which q is a predi-

cate and x is a tuple of variables. Such transformation is done in polynomial time

by introducing new intensional predicates and new Horn clauses. For example,

goal← p(X),q(X ,Y) can be transformed into← r(X ,Y) by introducing new in-

tensional predicate r and new clause r(X ,Y)← p(X),q(X ,Y). Without loss of

generality, we assume that a top goal always has the form q(x). A correct answer

of a top goal q(x) on Horn knowledge base (P, I) is a ground substitution θ such

that q(x)θ is a logical consequence of P∪EI , and we write P∪EI |= q(x)θ.

4.3 The Algorithm

The following operations are used in Bugaj and Nguyen’s algorithm:

1. instance(t):

• where t is an n-tuple,

• returns a set of ground n-tuples S, which is the complete instance of t.

2. union(S1,S2) and diff(S1,S2):

• where S1 and S2 are sets of ground n-tuples,

• return S1∪S2 and S1 \S2 respectively.

3. join with head atom(J,A,X):

• where:

(a) J is a set of ground n-tuples.

39

(b) A is an atom of an n-ary predicate,

(c) X is a k-tuple of variables that contains all the variables appearing

in A,

• returns a set of ground k-tuples

{Xθ | Aθ ∈ J and θ is a ground substitution

whose domain is X}.

4. join with body atom(X ,S,B,M):

• where

(a) X is a k-tuple of variables that contains all the variables appearing

in B,

(b) S, which is a set of ground k-tuples, is an instance of k-tuple X ,

(c) B is an atom,

(d) M, which is a set of ground n-tuples, is an instance of atom B,

• returns the set of ground k-tuples

{Xθ | Xθ ∈ S and Bθ ∈M}.

5. map(X ,S,B):

• where

(a) X is a k-tuple of variables that contains all the variables appearing

in B,

40

(b) S, which is a set of ground k-tuples, is an instance of k-tuple X ,

(c) B is an atom,

• returns the set of ground n-tuples {Bθ | Xθ ∈ S}.

6. f ilter(S,L):

• where S is a set of ground k-tuples and L is an integer,

• returns the set S′ of ground n-tuples such that S′ = {t | t ∈ S and |t|Σ ≤

L}.

We show Bugaj and Nguyen’s algorithm in Figure 4.1. Given a Horn knowl-

edge base (P, I) and a top goal g = q(x), their algorithm starts from the top goal,

iteratively searches all the rules that define q until no new answers are found. In

each iteration, a goal is recursively reduced to subgoals by following those rules

that define the predicate of that goal. Suppose g′ is a goal for predicate p. If p

is extensional, then the answers of g′ are I(p). If p is intensional, then the algo-

rithm recursively evaluates g′ by searching all the rules that define p, reducing g′

to subgoals, and obtaining the answers of g′ by composing the answers from its

subgoals. We will discuss the answer returning process in detail when we present

the searching process of a single rule. Note that a goal (or subgoal) is always

a set of ground n-tuples. Obviously, this algorithm is top-down, depth-first and

set-at-a-time.

This top-down evaluation may go into a cycle if a subgoal is directly or in-

directly reduced to itself. To avoid infinite computations caused by cycles, two

kinds of variables are introduced:

41

TOPDOWN Algorithm
(* Evaluate a top goal q(x) on a Horn knowledge base (P, I) *)
1. Initialize variables ansp to be empty

sets for all intensional predicate p of P
2. Initialize variable L to be the maximal term depth
3. Repeat

3.1 Initialize variables inputp to be empty
sets for all intensional predicates p of P

3.2 Call eval(the complete instance of {x},q)
Until no new tuples are added to any variable ansp

4. Return ansq

Function eval(J, p)
1. J = diff(J, inputp)
2. if J is empty then return
3. inputp = union(inputp,J)
4. For each program clause A← B1, . . . ,Bn of P that defines p, do:

1. i = 0
2. X = Var({A,B1, . . . ,Bn})
3. S0 = join with head atom(J,A,X)
4. While i < n and Si is not empty do:

4.1 i = i+1
4.2 if the predicate pi of Bi is extensional

then
Si = join with body atom(X ,Si−1,Bi, I(pi))

else
Call eval(f ilter(map(X ,Si−1,Bi),L), pi)
Si = join with body atom(X ,Si−1,Bi,anspi)

5. ansp = union(ansp,map(X ,Sn,A))

Figure 4.1: Bugaj and Nguyen’s algorithm

42

• A variable inputp is created for each intensional predicate p to maintain the

subgoals that are generated so far for p in each iteration.

• A variable ansp is created for each intensional predicate p to maintain the

answers that have been computed for p through all the iterations.

This caching scheme (storing evaluated subgoals in inputp and computed answers

in ansp) is also called tabling or memoing and it is a well-known technique that is

applied in the implementations of logic programming languages to avoid infinite

computations.

Suppose now we evaluate a subgoal J for predicate p. First, we would have

J′ = diff(J, inputp). If J′ is empty then the subgoal J has been evaluated before,

the evaluation terminates and the answers in ansp for this subgoal are returned

directly. If J′ is not empty then the new subgoal J′ is merged into inputp and is

evaluated by searching all the rules that define p. If after searching a rule that

defines p, some answers of J′ are found, then those answers are merged into ansp.

Suppose now we search a rule A← B1, . . . ,Bn for a goal J whose predicate is

p. The searching process is to iteratively compute a set Si−1 of ground k-tuples

that is an instance of X , where X = Var({A,B1, . . . ,Bn}). Each ground k-tuple

Xδ in Si−1 represents a potential answer Aδ of J. The subscription i− 1 means

that the unevaluated goals of this rule are {← Biδ, . . . ,Bnδ | Xδ ∈ Si−1}. After the

search of this rule is finished, {Aδ | Xδ ∈ Sn} is the answers of J and it is merged

into ansp.

Initially, S0 is equal to join with head atom(J,A,X). That is, Xθ is in S0 if

there is a ground n-tuple Aθ ∈ J with some ground substitution θ. Suppose Si−1

43

is computed and the predicate of atom Bi is pi. Now we compute set Si. If pi is

extensional, then

Si = join with body atom(X ,Si−1,Bi, I(pi)).

If pi is intensional, then function

eval(f ilter(map(X ,Si−1,Bi),L), pi)

is called to recursively evaluate the subgoal generated from atom Bi and Si−1 (Note

that, f ilter(map(X ,Si−1,Bi),L) only contains ground n-tuples whose term depths

are less than or equal to L). After the call terminates,

Si = join with body atom(X ,Si−1,Bi,anspi).

That is, Si is equal to join with body atom(X ,Si−1,Bi,R) in which R is either I(pi)

or anspi . Suppose Xθ is in Si−1 with some ground substitution θ. If there exists a

ground m-tuple Biθ in R, then Xθ is also in Si. That is, ground n-tuple Aθ of J is

still a potential answer of J after the ith atom Bi is processed.

4.4 Correctness

In this section, we first show that TOPDOWN algorithm always terminates, and

it is sound and is complete for the goals with bounded nesting depth of functions.

44

Then we present an example to illustrate the iterative execution of TOPDOWN

algorithm.

Theorem 4.4.1 (Termination) Suppose (P, I) is a Horn knowledge base and we

run a query on TOPDOWN algorithm with a fixed term depth bound L. Then the

algorithm runs in polynomial time in the size of the extensional instance I.

Proof. Directly from Theorem 3.7 of [34].

To show that TOPDOWN algorithm is sound and complete (for the goals with

bounded nesting depth of functions), we first introduce the following definitions

related to SLD resolution.

Let g = (A1, . . . ,Ak) be a goal. We say goal g′ is derived from g by using

an answer F in some global variable ansp or a fact F from extensional instance

I if there exists a unifier θ such that A1θ = F and g′ = (A2, . . . ,Ak)θ. We say

goal g′ is derived from g by using a clause A← B1, . . . ,Bm if A1θ = Aθ and g′ =

(B1, . . . ,Bm,A2, . . . ,Ak)θ. In this case, A1 is said to be the parent of B1, . . ., and

Bm. The relation ancestor is defined recursively from the parent relation. If g′ is

derived from g then we write g⇒ g′. Let g0 be a given goal. Suppose (P, I) is a

Horn knowledge base and g0 is a goal. Then an SLD resolution from P∪ I∪{g0}

is a derivation g0⇒ g1⇒ . . .⇒ gn. An SLD-refutation of from P∪ I ∪{g0} is a

finite SLD-derivation in which the last goal has an empty sequence of subgoals.

A computed answer θ for P∪ I ∪{g0} is the substitution obtained by restricting

the composition θ1 . . .θn to the variables of g0, where θ1, . . . ,θn is the sequence

of mgu’s used in an SLD-refutation of P∪ I∪{g0}. The SLD-resolution is sound

45

and complete for definite programs and goals [15, 32].

Theorem 4.4.2 (Soundness) Suppose we execute TOPDOWN algorithm to eval-

uate a query q(x) on Horn knowledge base (P, I). Then, for every answer A′ in

some variable ansp, we have P∪EI |= A′.

Proof. Directly from Theorem 3.6 of [34].

Theorem 4.4.3 (Completeness) Suppose θ is the computed answer of an SLD-

refutation P∪ I ∪ {q(x)} that uses the leftmost selection function and does not

contain any goal with term depth greater than L. Then the execution of TOPDOWN

algorithm (with term depth L) for the query q(x) on Horn knowledge base (P, I)

returns a set ansq that contains the set {t | t ∈ S and |t|Σ ≤ L}, where S is the

complete instance of q(x)θ.

Proof. Directly from Theorem 3.6 of [34].

Now we show an example in Figure 4.2 to illustrate the recursive execution of

TOPDOWN algorithm.

To trace the complete evaluation of this example, we build a graph, which

is called the subgoal dependency graph (SDG), to indicate the dependencies be-

tween subgoals. In such a graph, each node contains a subgoal and the answers

for that subgoal. There is only one root node in a SDG, which contains the top

goal. If there is a directed edge from a node n1 to another node n2, then subgoal

in n1 is dependent on the subgoal in n2. We also say node n1 is dependent on node

n2. Suppose we give an ordering on the rules in Horn clause program P as we do

46

• Rules:

1. n(X ,Y)← r(X ,Y).

2. n(X ,Y)← p(X ,Z), n(Z,W), q(W,Y).

• Facts:
p(c,d). p(b,c). p(c,b).
q(e,a). q(a, i). q(i,o).
r(d,e).
• Query: ← n(c,Y).
• Expected answers: {(c,a), (c,o)}.
• Answers returns by TOPDOWN algorithm: {(c,a)}.

Figure 4.2: A Horn clause program

to this example. Then the label on directed edge is a pair (i, j) and it indicates that

the dependency happens on the jth atom in the body of the ith rule.

After running the first iteration of TOPDOWN algorithm for this example, we

obtain a SDG that is shown in Figure 4.3. Each node has three rows. The first

row is the index of the node, the second row is a subgoal and the third row is the

answer set for that subgoal. Note that, in each node, a subgoal is specified by a

set of atoms, which stands for the set {t | t ∈ S and |t|Σ ≤ L}, where S is a set that

contains all the complete instances of those atoms. Now we trace the complete

evaluation of this example. We start from node 1 with goal {n(c,Y)}. At this

time, variable inputn contains only (c,Y) and ansn is empty. We go to node 2

by following a directed edge (start searching rule (1)). The subgoal {r(c,Y)} has

no answers. Thus, this directed edge would not contribute any answers to ansn.

We go to node 3 by following another directed edge (start searching rule (2)). At

node 3, we obtain answers {p(c,b), p(c,d)} for subgoal {p(c,Y)}. These answers

47

Figure 4.3: A subgoal dependency graph for the first iteration

produce subgoal {n(b,W),n(d,W)} at node 4.

Now we are at node 4. At this time, variable inputn is the set

{(c,Y),(b,W),(d,W)}

and ansn is still empty. We go to node 7 by following a directed edge (start search-

ing rule (1)). At node 7, the answer for subgoal {r(b,W),r(d,W)} is r(d,e). This

will produce an answer n(d,e) at node 4. We go to node 6 by following another

directed edge (start searching rule (2)). At node 6, we obtain answer p(b,c) for

subgoal {p(b,Y), p(d,Y)}. This answer produces subgoal {n(c,W)} at node 8.

48

Figure 4.4: A subgoal dependency graph for the second iteration

Since subgoal {n(c,W)} is the same as goal n(c,Y) and there is no answer for

goal {n(c,Y)} yet, node 6 does not contribute any answers to node 4.

After searching all the rules that define predicate n, we obtain an answer

n(d,e) at node 4 for subgoal {n(b,W),n(d,W)}. In turn, the answer n(d,e) will

form subgoal {q(e,Y)} at node 5. At node 5, the answer for subgoal {q(e,Y)}

is q(e,a). By joining the answers in nodes 3, 4 and 5, we obtain an answer

n(c,a) for goal {n(c,Y)} at node 1. Thus, after the first iteration, inputn is

{(c,Y),(b,W),(d,W)} and ansn is {(d,e),(c,a)}.

After running the second iteration of TOPDOWN algorithm for this example,

we obtain a SDG that is shown in Figure 4.4. This time, we start the search from

49

node 1. Again, node 2 does not contribute any answers. We go from node 1 to

node 3 and then to node 4. Now we search answers for subgoal {n(b,W),n(d,W)}

at node 4. We go to node 7 by following a directed edge (start searching rule (1)),

however, node 7 does not contribute any new answers this time. We go to node 6

by following another directed edge (start searching rule (2)). Then we will reach

node 8 with subgoal {n(c,W)}. Since n(c,W) is already contained in inputn (it is

the same as n(c,Y)) and there is an answer n(c,a) for goal {n(c,Y)}, an answer

n(c,a) is obtained at node 8. This answer forms a subgoal {q(a,Y)} at node 9.

At node 9, the answer for subgoal {q(a,Y)} is q(a, i). By joining the answers in

nodes 6, 8 and 9, we obtain an answer n(b, i) for subgoal {n(b,W),n(d,W)} at

node 4. In turn, the answer n(b, i) will form a subgoal {q(i,Y)} at node 10. At

node 10, the answer for subgoal {q(i,Y)} is q(i,o). By joining the answers in

nodes 3, 4 and 10, we obtain a new answer n(c,o) for goal {n(c,Y)} at node 1.

Thus, after the second iteration, ansn is {(b, i),(d,e),(c,a),(c,o)}. If we repeat

this process, we will not find any new answers for predicate n. Thus, TOPDOWN

algorithm finds all the answers for this example via iteratively searching.

50

Chapter 5

Definition of Automata for Sets of

Ground Tuples

51

5.1 Representing Sets of Ground N-Tuples

In previous chapter, we gave a presentation of TOPDOWN algorithm by using

sets of ground n-tuples to represent subgoals and sets of answers. Generally, a

set of ground n-tuples that is the complete instance of some atom is an infinite set

because of the presence of function symbols. Therefore, a finite representation

of sets of ground n-tuples is needed to implement TOPDOWN algorithm. Here

we present an automata-based representation for sets of ground n-tuples, which

is called step/skip-automaton. This representation readily leads itself to a sym-

bolic representation of sets of ground n-tuples. In this chapter, we first give the

background of automata representations of terms. Then we present some basic

notations and the definition of step/skip-automata. Finally we define various op-

erations on automata to implement those operations used in TOPDOWN algorithm.

5.2 Previous Work

Generally, an automata representation of terms is to build a deterministic finite

automaton M that represents a set of terms T such that:

• All and only ground substitution instances of T are accepted by M .

• A ground substitution instance t of T is accepted by M with a single scan.

The automata representations of terms have been studied for decades and various

automata have been proposed [24, 37–39, 46].

52

Albert Gräf [24] proposed a tree automata representation for terms in which

an automaton is a tuple (S,s0,F,δ), where S is a finite set of states, s0 is the start

state, F is a set of final states and F ⊂ S, δ is the state transition function. A state

is essentially a matching set, which is defined as follows:

1. Each term in the original term set T has the form r : αβ in which αβ is a

term and r is the index of that term.

2. A matching item has the form r : α •β in which αβ is a term and r is the

index of that term and the meta-symbol • is called the matching dot. For

matching item r : α•β, α and β are called the prefix and suffix respectively.

The first symbol of β is called the matching symbol.

3. A matching set is a set of matching items that have the same prefix.

Suppose automaton A = (S,s0,F,δ) represents all the ground substitution in-

stances of a set of terms T . The terms in T are all linear and any variable occur-

rence in the terms is replaced by ω. Suppose f is a function symbol. Then ω# f

denotes a string of # f variable symbols.

The initial state s0 of A is the set {r : •αβ | r : αβ ∈ T}. Suppose M is a state

(matching set) and b is a symbol in Σ∪{ω}. Then the next state δ(M,b) is defined

as follows:

1. accept(M,b) = {r : αb•β | r : α•bβ ∈M}.

2. close(M) = M∪{r : α • f ω# f β | r : α •ωβ ∈M and there is an item q : α •

f µ in M with some suffix µ and some f in Σ}.

53

Figure 5.1: An automaton that represents all the ground substitution instances of a set of
terms

3. δ(M,b) = close(accept(M,b)).

Clearly, the set accept(M,b) is formed by those items in M whose matching sym-

bol is b. If accept(M,b) contains suffixes of the form ωβ and f µ, then a matching

item with suffix f ω# f β is added into δ(M,b) by the close function to postpone

the decision between those two suffixes by one more symbol. Without such extra

matching items, backtracking will be required to match suffix ωβ when the input

54

f fails to match suffix f µ. Note that, transition δ(M,ω) is taken only when the

current input is b (with b 6= ω) and δ(M,b) is not defined. Moreover, when tran-

sition δ(M,ω) is taken, a complete term in the input is read. Finally, in a final

state s, any matching item in s has the form αβ•. Let T = { f gaa, f ωb,qωb} with

#a = #b = 0 and #g = 1 and # f = 2 and #q = 2. The automaton A that represents

all the ground substitution instances of T is shown in Figure 5.1. Note that, in this

dissertation, when we show a figure of an automaton, we always omit the error

states.

The automaton A mentioned above is time-efficient, because it does not re-

examine any symbol. However A may not be space-efficient, because multiple

states may share the same set of suffixes. Nadia Nedjah, et al. [39] optimized

A by representing states with suffixes and collapsing states that contain the same

set of suffixes to a single state. An optimal automaton A ′ that represents all the

ground substitution instances of T is shown in Figure 5.2.

The above automata are based on left-to-right traversal of terms. Another

class of automata are based on adaptive traversals, which refer to traversals that

are adapted for different terms and are opposed to fixed order traversal [38, 46].

Adaptive automata for terms usually have fewer states than fixed order automata.

Consequently, matching an instant of a term with adaptive traversal usually uses

less time. However, adaptive automata are not suitable for applications in which

terms are changed frequently. This is because the traversal order itself must be

changed when a term is changed.

55

Figure 5.2: An optimal automaton that represents all the ground substitution instances of
a set of terms

5.3 Informal Definition

The automata representation for terms presented in previous section (proposed

by Gräf and optimized by Nedjah, et al.) is to compile a set T of terms into a tree

automaton A such that the states are essentially rewriting rules. In this chapter,

we propose a special kind of automata as finite representations of infinite sets of

56

ground n-tuples, not as efficient pattern matchers. Moreover, in order to imple-

ment the TOPDOWN algorithm, we devise various operations on our automata

representation to implement those operations on sets of ground n-tuples.

Our automata representation represents ground substitution instances of non-

linear n-tuples based on left-to-right traversal. We first consider an automaton that

represents the complete instance of 2-tuple (f (x,x),g(y,y)), where f ,g ∈ Σ with

f = #g = 2 and x,y ∈V . Our automaton representation for this n-tuple is shown

in Figure 5.3. In that figure, each state is denoted by a circle and is distinguished

from others by a label outside the circle. In order to read a substitution instances

of an n-tuple t, we need two kinds of states:

• A state that takes a constant or a function symbol in the input and goes to

the next state. This state corresponds to a constant or a function symbol in

t, which is called “step state”. For example, in Figure 5.3, states s1 and s4

are step states. An out-going edge of a step state is labeled by a symbol b in

Σ to indicate that symbol b is read by this transition.

• A state that skips a complete term in the input and goes to the next state.

This state corresponds to a variable in t, which is called “skip state”. For

example, in Figure 5.3, states s2, s3, s5 and s6 are skip states. A skip state

has only one out-going edge that is dotted. The dotted edge indicates that a

complete term is skipped by this transition.

Note that, a non-terminal state is either a step state or a skip state, but cannot be

both. Since the proposed automata consists of step states and skip states, they are

57

Figure 5.3: An automaton that represents the complete instance of n-tuple
(f (x,x),g(y,y))

called step/skip-automata. In the sequel, without special notation, term “automa-

ton” is used to mean step/skip-automaton and term “automata” is used to mean

step/skip-automata.

Suppose after reading a ground n-tuple t, we reach a terminal state s7 in Figure

5.3. At this time, we can only say that t is a ground substitution instance of

the “linear version” of (f (x,x),g(y,y)) since we have not checked the equality

constraints of the variables appearing in non-linear 2-tuple (f (x,x),g(y,y)). In

order to address the equality constraints among the variables of (f (x,x),g(y,y)),

we do the following:

1. We define C to be a finite set of colors.

2. We label each non-terminal state in our automaton with a set of colors. For

example, in Figure 5.3, states s2 and s3 are labeled with set {r}, and states

58

s5 and s6 are labeled with set {b}.

3. We associate each terminal state with a set of sets of colors. For example, in

Figure 5.3, terminal state s7 is associated with a set of sets of colors {{r,b}}.

Basically, a color is treated as an atomic proposition:

• if ground n-tuple t satisfies c, then whenever two states that are reached in

the same run (after scanning t) share a common color c, the ground terms

that are read starting at those states or skipped at those states must be iden-

tical.

For example, in Figure 5.3, color r is satisfied by a ground n-tuple t whenever the

ground terms of t that are skipped at state s2 and s3 are identical. Similarly, color

b is satisfied by t whenever the ground terms of t that are skipped at state s5 and

s6 are identical.

A set of colors is treated as a conjunction of atomic propositions and a set of

sets of colors is treated as a disjunction of conjunctions. For example, in Figure

5.3, if ground n-tuple t satisfies colors r and b, then we say that t is a ground

substitution instance of (f (x,x),g(y,y)) since the formula associated with terminal

state s7 is a set {{r,b}}.

In this chapter, we devise various operations on automata to implement the

operations used in TOPDOWN algorithm. One operation is called disjunction,

which can construct an automaton that represents the complete instances of a set

of n-tuples. For example, suppose we have two automata M1 and M2 that rep-

resents the complete instances of 2-tuples (f (x,x),g(y,z)) and (f (x,y),g(z,z))

59

Figure 5.4: An automaton that represents the complete instances of n-tuples
{(f (x,x),g(y,z)),(f (x,y),g(z,z))}

respectively, a disjunction of M1 and M2 that represents the complete instances of

{(f (x,x),g(y,z)),(f (x,y),g(z,z))} is shown in Figure 5.4. Note that, here we only

show the resulting automaton of the disjunction operation, the details of the dis-

junction operation and all other operations will be discussed afterwards. The only

difference between Figure 5.3 and Figure 5.4 is that the formula associated with

terminal state s7 in Figure 5.4 is {{r},{b}} instead of {{r,b}}. That is, ground

n-tuple t is a ground substitution instance of {(f (x,x),g(y,z)),(f (x,y),g(z,z))} if

we reach terminal state s7 after reading t and t satisfies either color r or color b.

5.4 Notations

In this section, we present the notations used in this chapter. We omit paren-

theses and commas of any term f (t# f , . . . , t1) and denote it by f t# f . . . t1. Similarly,

60

we omit parentheses and commas of an n-tuple and denote an n-tuple (tn, . . . , t1)

by a sequence tn . . . t1 of terms. For our purposes, it turns out to be more conve-

nient as we traverse an n-tuple from left to right if we number the arguments of an

n-tuple or a term in descending order. The ordering of these numbers corresponds

to the way that we compute the positions of prefixes of an n-tuple, which will be

introduced below.

In order to identify the terms and sub-terms in an n-tuple, we introduce the

notation of positions. A position is a sequence of positive integers, and the empty

position (sequence) is denoted by ε. We denote the set of all positions by POS and

the set of nonempty positions by POS+. An ordering� on POS+ is defined as fol-

lows: m1m2 . . .mk � n1n2 . . .nl if and only if one of the following two conditions

holds:

1. m1m2 . . .mk is a proper prefix of n1n2 . . .nl .

2. ∃i≥ 1 such that m1m2 . . .mi−1 = n1n2 . . .ni−1 and mi > ni.

By convention, we define p� ε for all positions p in POS+.

Lemma 5.4.1 The ordering � on POS is a total ordering.

Proof. Each position n1 . . .nk other than ε can be viewed as an infinite sequence

n1 . . .nk∞ . . ., where ∞ is greater than all of the positive integers. Then the or-

dering defined above is exactly the restriction to sequences of this form of the

lexicographic ordering on all infinite sequences formed from {1,2, . . . ,∞}.

We denote the concatenation of two positions p1 and p2 by p1 p2. If p1 =

m1 . . .mk and p2 = n1 . . .nl , then p1 p2 = m1 . . .mk n1 . . .nl . Note that, if p1 = ε

61

then p1 p2 = p2. If position p is p1 p2, then we say p1 is a prefix of p and p2 is

a suffix of p. Moreover, we denote prefix p1 of p by p \ p2. We define function

next : POS+→ POS as follows:

1. next(p) = q (k− 1), provided p = q k 11 . . .1︸ ︷︷ ︸
m

in which q is a position and

k > 1 and m≥ 0.

2. next(p) = ε, provided p = 11 . . .1︸ ︷︷ ︸
m

and m > 0.

Note that for all p ∈ POS+, we have p � next(p) and p � p # f (# f > 0). We

claim the following facts about function next and notation p\ p2.

Lemma 5.4.2 If p1 � p2 � next(p1) then next(p2)� next(p1).

Proof. If p1 = p2 then we have next(p2) = next(p1). Now suppose p1 � p2.

In general, p1 has the form q k 11 . . .1︸ ︷︷ ︸
u

, in which q is a position and k > 1 and

u ≥ 0. Then next(p1) is q (k− 1). Since p1 � p2 � next(p1), it follows that p2

is p1 q′ h11 . . .1︸ ︷︷ ︸
v

, in which q′ is a position and h > 1 and v ≥ 0. Consequently,

next(p2) is p1 q′ (h− 1). Since p1 q′ (h− 1) =q k 11 . . .1︸ ︷︷ ︸
u

q′ (h−1) �q (k− 1),

next(p2)� next(p1).

Lemma 5.4.3 Suppose p is a position and p2 is a suffix of p. Then the following

conditions all hold:

1. If p3 is a position, then (p p3)\ (p2 p3) = p\ p2.

2. If next(p2)� ε, then next(p)\next(p2) = p\ p2.

62

3. If p2 = ε or next(p2) = ε, then next(p\ p2) = next(p).

Proof. Suppose p = p1 p2. Then p\ p2 = p1. Moreover, p p3 = p1 p2 p3. Thus,

(p p3)\ (p2 p3) = (p1 p2 p3)\ (p2 p3).

That is, (p p3) \ (p2 p3) = p1. It follows that (p p3) \ (p2 p3) = p \ p2. Thus,

condition (1) holds.

Suppose next(p2) � ε. Then p2 has the form k α with some k > 1 and some

position α. Since p = p1 p2, next(p) = p1 next(p2). Thus, next(p) \ next(p2) =

p1. If follows that if next(p2)� ε then next(p)\next(p2) = p\ p2. Thus, condition

(2) also holds.

Suppose p2 = ε. Then next(p) = next(p1). Suppose next(p2) = ε. Then p2

has the form 11 . . .1. Since p = p1 p2, next(p) = next(p1). In either case, we have

next(p1) = next(p\ p2) = next(p). Thus, condition (3) holds as well.

Lemma 5.4.4 Suppose p is a position with p � ε and p2 is a suffix of p. Then

next(p)� next(p\ p2).

Proof. Suppose p = p1 p2. If p2 = ε then next(p) = next(p\ p2). If p2 � ε then

we have two cases:

1. next(p2)� ε. Then next(p) = p1 next(p2). Since p1 � next(p1), next(p)�

next(p1) = next(p\ p2).

2. next(p2) = ε. Then next(p) = next(p1) = next(p\ p2).

63

In summary, we always have next(p)� next(p\ p2).

We now associate positions with prefixes of n-tuples. We use e to denote an

empty prefix. Given PF the set of all prefixes of n-tuple tn . . . t1, we define function

posn : PF → POS as follows:

1. posn(e) = n.

2. posn(α f) = posn(α) # f , provided f is a function symbol.

3. posn(αc) = next(posn(α)), provided c is a constant.

4. posn(αx) = next(posn(α)), provided x is a variable.

We say p is a position of n-tuple t if there exists a prefix α of t such that posn(α) =

p. We say b is the symbol of n-tuple t at position p, and we write b = t @ p, if αb

is a prefix of n-tuple t with posn(α) = p and b is a symbol in Σ or V . We denote

the set of all the positions of n-tuple t by POS(t).

Given a position p and a symbol b ∈ Σ, we define position f ollow(p,b) to be:

f ollow(p,b) =


ε if #b = 0 and p = ε

next(p) if #b = 0 and p� ε

p #b if #b > 0

Note that for all p ∈ POS+ and all symbol b ∈ Σ, we have p� f ollow(p,b).

The following facts are related to notation f ollow(p,b).

Lemma 5.4.5 Suppose p is a position with p� ε and b is a symbol in Σ and p′ is a

suffix of p such that f ollow(p′,b)� ε. Then f ollow(p,b)\ f ollow(p′,b) = p\ p′.

64

Proof. We consider the following cases:

1. #b = 0. Since f ollow(p′,b)� ε, p′ � ε. Moreover, f ollow(p,b) = next(p)

and f ollow(p′,b) = next(p′). Since f ollow(p′,b) = next(p′) � ε, then by

condition (2) of Lemma 5.4.3, next(p)\next(p′) = p\ p′.

2. #b > 0. Then f ollow(p,b) = p b and f ollow(p′,b) = p′ b. By condition (1)

of Lemma 5.4.3, (p b)\ (p′ b) = p\ p′.

In either case, we have f ollow(p,b)\ f ollow(p′,b) = p\ p′.

Lemma 5.4.6 Suppose p is a position with p � ε and p2 is a suffix of p and b is

a symbol in Σ. Then the following conditions all hold:

1. If f ollow(p2,b)� ε, then f ollow(p,b)� next(p\ p2).

2. If f ollow(p2,b) = ε, then f ollow(p,b) = next(p\ p2).

Proof. Suppose p = p1 p2. We consider the following cases:

1. #b = 0. Then f ollow(p,b) = next(p) and f ollow(p2,b) = next(p2). There

are two cases:

(a) f ollow(p2,b)� ε. Then p2 � next(p2)� ε. Moreover, next(p) = p1 \

next(p2). Clearly, f ollow(p,b) = next(p)� next(p1) = next(p\ p2).

It follows that condition (1) holds in this case.

(b) f ollow(p2,b) = ε. This leaves two possibilities:

65

i. p2 = ε. Then p = p1 and f ollow(p,b) = next(p) = next(p1) =

next(p\ p2).

ii. p2 � ε. Then f ollow(p2,b) = next(p2) = ε. Moreover, we have

f ollow(p,b) = next(p) = next(p1) \ next(p2) = next(p1). That

is, f ollow(p,b) = next(p\ p2).

In either case, condition (2) holds.

2. #b > 0. Then f ollow(p2,b) = p2 #b � ε. Thus, Condition (2) holds vacu-

ously in this case. Moreover, f ollow(p,b) = p #b = p1 p2 #b � next(p1) =

next(p\ p2). It follows that condition (1) holds in this case.

We define the sub-term of a term t = f tn . . . t1 (n > 0) starting at nonempty

position p (denoted by t � p) recursively as follows:

1. If p is the singleton sequence k, then t � p is defined if and only if n≥ k. In

that case, t � p = tk.

2. If p has the form k q (q ∈ POS+ and k > 0) then t � p is defined if and only

if n≥ k and tk �q is defined. In that case, t � p = tk �q.

Now we define the sub-term of n-tuple t starting at nonempty position p (denoted

by t � p) recursively as follows:

1. If p is the singleton sequence k, then t � p is defined if and only if t is

tntn−1 . . . t1 with n≥ k. In that case, t � p = tk.

66

2. If p has the form k q (q ∈ POS+ and k > 0) then t � p is defined if and only

if t is tntn−1 . . . t1 with n≥ k and tk �q is defined. In that case, t � p = tk �q.

For example, if t = f x1 a g x2 (abbreviation of (f (x1,a),g(x2))) then t �2 = f x1 a

and t �21 = f x1 a�11 = a.

5.5 Formal Definition

Formally, we define an step/skip-automaton M to be a tuple

(Q,s0,δ,σ,color,τ)

as follows:

1. Q is a finite set of states.

2. s0 ∈ Q is the initial state.

3. color : Q→ 2C is a function that maps each state to a finite set of colors.

4. δ : Q×Σ 9 Q is a partial function called the step function that takes a state

and a symbol b in Σ to the next state by reading b. The states on which

function δ is defined with at least one symbol in Σ are called step states. We

denote the set of all the step states in Q by Qδ. Note that, for a step state s,

δ(s,b) may not be defined for all the symbols b in Σ.

5. σ : Q 9 Q is a partial function called the skip function that takes a state to

the next state by skipping a complete term in the input. The states on which

67

function σ is defined are called skip states. We denote the set of all the skip

states in Q by Qσ.

6. The states on which no transition function is defined are called terminal

states. We denote the set of all the terminal states in Q by QT .

7. Qδ and Qσ and QT are pairwise disjoint sets.

8. τ is a mapping that assigns to each terminal state in Q a set of sets of colors.

We also call τ(t) the acceptance condition of t. The acceptance condition /0

corresponds to F, i.e., the equality constraint is not satisfiable. The accep-

tance condition { /0} corresponds to T, i.e., the equality constraint is trivially

satisfiable.

9. The underlying directed graph of automaton M is defined to be the di-

rected graph G = (Q,E) such that E = {(s1,s2) | s1 ∈Qσ and σ(s1) = s2} ∪

{(s1,s2) | s1 ∈ Qδ and δ(s1,b) = s2 with some symbol b in Σ}. We require

that the underlying directed graph of M must be acyclic.

The requirement that an automaton M must be acyclic is very important. In the

following sections, we will discuss various operations on automata, which are

performed by traversing the underlying directed graphs from the initial states and

following the edges. By enforcing this restriction, we can avoid going into cycles

while we perform those operations on automata.

We define a path in automaton M to be a sequence of states s1, . . . ,sn such

that s1 = s0 and for any integer i in [1,n− 1], there is an edge from si to si+1 in

68

the underlying directed graph of M . Since all automata are acyclic, any path in

an automaton is a finite sequence. We say a state s′ in automaton M is reachable

from another state s if s′ is reachable from s in the underlying directed graph of

M . In that case, we say s′ is a successor of s and s is a predecessor of s′.

Suppose t is a ground n-tuple and automaton M is defined to be a tuple

(Q,s0,δ,σ,color,τ). We define the partial computation of M on t to be a map-

ping CM ,t that maps the positions of some prefix of t to states in Q such that the

following conditions all hold:

1. CM ,t(n) = s0.

2. Suppose CM ,t(p) is a skip state s with some position p of t and t @ p = b.

Suppose further, q is the greatest position of t with CM ,t(q) = s. Then we

have:

• CM ,t(f ollow(p,b)) = s if f ollow(p,b)� next(q).

• CM ,t(f ollow(p,b)) = σ(s) if f ollow(p,b) = next(q).

3. Suppose CM ,t(p) is a step state s with some position p of t and t @ p = b.

Then we have:

• CM ,t(f ollow(p,b)) = δ(s,b) if δ(s,b) is defined.

• CM ,t(f ollow(p,b)) is not defined if δ(s,b) is not defined.

We say CM ,t is a computation of M on t if CM ,t maps all the positions in

POS(t) to Q. If CM ,t is a computation of M on t and CM ,t(ε) ∈ QT , then we say

CM ,t is terminating. In the sequel, we denote the greatest position p of t with

CM ,t(p) = s by ps
M ,t .

69

Lemma 5.5.1 Suppose M = (Q,s0,δ,σ,color,τ) is an automaton. Then the fol-

lowing condition holds for all positions p of a ground n-tuple t:

• If CM ,t(p) = s is a step state, then p = ps
M ,t .

Proof. We verify this by induction on positions p of t that the stated condition

holds for p. Suppose p = n. Then CM ,t(p) = s0 and p = ps0

M ,t . Clearly, the stated

condition holds for position n of t.

Suppose p is a position of t such that n� p� ε and the stated condition holds

for p and t @ p = b ∈ Σ. We show that the stated condition also holds for position

f ollow(p,b) of t. Suppose CM ,t(p) = s. We consider the following cases:

1. s is a step state. By induction, p = ps
M ,t . By the definition of partial compu-

tation, if δ(s,b) is not defined, then CM ,t(f ollow(p,b)) is not defined, and if

δ(s,b) is defined, then CM ,t(f ollow(p,b)) = δ(s,b) = s′. In the former case,

the stated condition holds vacuously. In the latter case, f ollow(p,b) = ps′
M ,t .

Thus, the stated condition holds for position f ollow(p,b) of t.

2. s is a skip state. Then there are two cases:

• f ollow(p,b) � next(ps
M ,t). Then by the definition of partial compu-

tation, CM ,t(f ollow(p,b)) = s. Since s is still a skip state, the stated

condition holds vacuously in this case.

• f ollow(p,b) = next(ps
M ,t). Then by the definition of partial compu-

tation, CM ,t(f ollow(p,b)) = σ(s) = s′. In this case, f ollow(p,b) =

ps′
M ,t . Thus, the stated condition holds for position f ollow(p,b) of t.

70

Given an automaton M = (Q,s0,δ,σ,color,τ), we say a color c occurs at a

non-terminal state s if c ∈ color(s), and we say color c occurs at a terminal state

s if c is contained in some set of τ(s). We denote the set of all the colors that occur

at the states of automaton M by CM . Suppose t is a ground n-tuple such that

CM ,t is a computation of M on t. We say ground n-tuple t satisfies a color c with

respect to M if and only if for all positions p and q of t such that p = ps1
M ,t � ε

and q = ps2
M ,t � ε and c occurs at states s1 and s2, we have t � p = t � q. If t

satisfies color c with respect to M , then we write t |=M c. We say ground n-tuple

t satisfies a set C of colors with respect to M if and only if t satisfies all the colors

in C with respect to M , and we write t |=M C. We say ground n-tuple t satisfies

an acceptance condition S = {C1, ...,Cm} with respect to M if and only if there

exists at least one integer i ∈ [1,m] with t |=M Ci, and we write t |=M S.

We say M accepts a ground n-tuple t if CM ,t is terminating and in addition

t |=M τ(CM ,t(ε)). An automaton M1 is equivalent to another automaton M2 if

and only if M1 and M2 accept the same set of ground n-tuples.

5.6 Automaton for An N-Tuple

We say automaton M is for n-tuple t if M accepts and only accepts all the

ground substitution instances of t.

To obtain an automaton for an n-tuple t, we shall construct an automaton

71

M = (Q,s0,δ,σ,color,τ) such that each state in M is a position of t. The for-

mal definition of M is given as follows:

1. s0 = n.

2. Q is the least subset of POS that contains s0 and is closed under skip and

step functions, as described in the sequel.

3. p is a step state if t @ p = b ∈ Σ. In that case, color(p) = /0 and δ(p,b) =

f ollow(p,b) and δ(p,b′) is not defined for all symbol b′ ∈ Σ such that b′ 6=

b.

4. p is a skip state if t @ p = x ∈V . In that case, color(p) = {cx} and σ(p) =

next(p).

5. ε is the terminal state of M and τ(ε) = {{cx1, . . . ,cxk}} in which x1, . . . ,xk

are all the variables appearing in t.

For example, an automaton M that is for 2-tuple f xxgyy with # f = #g = 2 is

shown in Figure 5.5.

Formally, we say an n-tuple t ′ is a linear version of an n-tuple t, and we write

t ′ = t, if t ′ is obtained from t as follows:

1. For all position p of t, if t @ p = b ∈ Σ, then t ′ @ p = b.

2. For all position p of t, if t @ p = x∈V , then t ′@ p = xp, where xp is a fresh

variable.

72

Figure 5.5: An automaton for n-tuple f xxgyy

For example, f xgyz is an 2-tuple with # f = 1 and #g = 2. Then a linear version

of f xgyz is f x21gx12x11. Clearly, each variable in a linear version of an n-tuple

occurs only once. Moreover, a ground substitution instance of t is also a ground

substitution instance of t, but the reverse may not be true.

Lemma 5.6.1 Suppose µ is an n-tuple and t is a ground substitution instance of

µ. If for all positions p and q of µ such that µ @ p = µ @ q = x ∈ V , we have

t � p = t �q, then t is a ground substitution instance of µ.

Proof. Since t is a ground substitution instance of µ, by the definition of µ, for

all positions p of µ such that µ @ p = b ∈ Σ, we have t @ p = µ @ p = µ @ p = b.

Suppose for all positions p and q of µ such that µ @ p = µ @ q = x ∈V , we have

t � p = t � q. Then it is clear that t is a ground substitution instance of µ since t

satisfies all the equality constraints in µ.

Suppose p is a position of t and α is the prefix of t with posn(α) = p. We

73

denote the prefix α by t← p (read as “t up to p”). If t← p = α and t @ p = b∈ Σ,

then t← f ollow(p,b) = αb. For example, if t = f x1 a g x2 (that is the abbrevia-

tion of (f (x1,a),g(x2))), then we have pos2(e) = 2 and t← 2 = e, pos2(f) = 22

and t← 22 = f , . . ., pos2(p x1 a g x2) = ε and t← ε = f x1 a g x2. Now we claim

the following facts about the above construction.

Lemma 5.6.2 Suppose M = (Q,s0,δ,σ,color,τ) is an automaton that is obtained

by applying the construction mentioned in the beginning of this section with re-

spect to an n-tuple µ. Suppose further, t is a ground n-tuple. Then the following

conditions hold for all the positions p of t:

1. CM ,t(p) is defined and is equal to q if and only if t← q is a ground substi-

tution instance of µ← q.

2. If CM ,t(p) = q and q is not a skip state then p = q.

Proof. We verify this by induction on positions p of ground n-tuple t that the

stated conditions all hold for p. Suppose p = n. Then CM ,t(n) = n. Clearly, the

stated conditions all hold in this case.

Suppose p � ε is a position of t such that the stated conditions all hold for

p and t @ p = b ∈ Σ. We show that the stated conditions all hold for position

f ollow(p,b) of t. Suppose CM ,t(p) is defined and is equal to q. We consider the

following cases:

1. q is a step state of M . By condition (2) of the induction hypothesis, p = q.

Then we have that CM ,t(f ollow(p,b)) is defined if and only if µ @ p = b

74

(equivalently, δ(p,b) is defined). By condition (1) of the induction hypoth-

esis, t ← p is a ground substitution instance of µ← p. If µ @ p = b, then

t ← f ollow(p,b) is a ground substitution instance of µ ← f ollow(p,b).

Thus, CM ,t(f ollow(p,b)) is defined if and only if t ← f ollow(p,b) is a

ground substitution instance of µ← f ollow(p,b). Thus, condition (1) holds

in this case. Suppose CM ,t(f ollow(p,b)) is defined. Then

CM ,t(f ollow(p,b)) = δ(p,b) = f ollow(p,b).

Clearly, condition (2) also holds in this case.

2. q is a skip state of M . Then there are two cases:

(a) f ollow(p,b) � next(q). Then CM ,t(f ollow(p,b)) is defined if and

only if CM ,t(p) is defined. By condition (1) of the induction hy-

pothesis, condition (1) still holds in this case. Since CM ,t(p) = q,

CM ,t(f ollow(p,b)) is defined and is equal to q. Since q is still a skip

state, condition (2) holds vacuously in this case.

(b) f ollow(p,b) = next(q). Since CM ,t(p) = q, CM ,t(f ollow(p,b)) =

next(q). Since f ollow(p,b) = next(q), condition (2) also holds in this

case. By condition (1) of the induction hypothesis, t ← q is a ground

substitution instance of µ← q. If CM ,t(f ollow(p,b)) is defined and

is equal to next(q), then t ← f ollow(p,b) is a ground substitution in-

stance of µ← next(q) = µ← f ollow(p,b) since the complete ground

75

sub-term t � q is skipped at skip state q and t ← f ollow(p,b) = (t ←

q)(t � q). Conversely, if t ← f ollow(p,b) is a ground substitution in-

stance of µ← next(q) = µ← f ollow(p,b), then b is the last symbol of

sub-term t �q that is skipped by skip state q. Thus, CM ,t(f ollow(p,b))

is defined and is equal to next(q) = f ollow(p,b). It follows that con-

dition (1) also holds in this case.

Theorem 5.6.3 Suppose M = (Q,s0,δ,σ,color,τ) is an automaton that is ob-

tained by applying the construction mentioned in the beginning of this section

with respect to an n-tuple µ. Then M is an automaton for n-tuple µ.

Proof. Suppose t is a ground n-tuple that is a ground substitution instance of

µ. Then t ← ε is a ground substitution instance of µ← ε. By condition (1) of

Lemma 5.6.2, CM ,t(ε) is defined and is equal to ε. By the definition of M , ε

is the terminal state of M . Thus, CM ,t(ε) is terminating. Since t is a ground

substitution instance of µ, for all color cx in {cx | x is a variable appearing in µ},

we have t |=M cx. Moreover, τ(ε) = {{cx1, . . . ,cxk}} in which x1, . . . ,xk are all the

variables appearing in t. It follows that t |=M τ(ε). Thus, t is accepted by M .

Conversely, suppose t is a ground n-tuple that is accepted by M . Then CM ,t(ε)

is terminating and is equal to ε. By condition (1) of Lemma 5.6.2, t ← ε = t is

a ground substitution instance of µ← ε = µ. Moreover, τ(ε) = {{cx1, . . . ,cxk}}

in which x1, . . . ,xk are all the variables appearing in t. Since t is accepted by M ,

t |=M τ(ε). That is, for all color cx in {cx | x is a variable appearing in µ}, we have

76

t |=M cx. Thus, for all positions p and q of µ such that µ @ p = µ @ q = x ∈ V ,

we have t � p = t �q. By Lemma 5.6.1, t is a ground substitution instance of µ.

77

Chapter 6

Conjunction and Disjunction of

Automata

78

Figure 6.1: Example of conjunction

6.1 Conjunction of Automata

We say an automaton M is a conjunction of a collection of automata {M1,

. . . ,Mm}, if M accepts a set S of ground n-tuples such that S = S1 ∩ . . .∩ Sm in

which S1 and . . . and Sm are sets of ground n-tuples accepted by M1 and . . . and

Mm respectively.

Informally, to obtain a conjunction of a collection of automata, we shall con-

struct an automaton M such that each state in M is a set {(si, pi) | i ∈ [1,m]} such

that:

• s1 and . . . and sm are states from M1 and Mm respectively.

• For all i ∈ [1,m], pi is the relative position of si. At least one of pi is

ε. Suppose we give all the automata the same input and reach a state

79

{(si, pi) | i ∈ [1,m]} and the next input is a symbol b ∈ Σ. Then for all

the states si with pi = ε, si is a state in Mi that reads b (if si is a step state) or

skips a complete sub-term whose first symbol is b (if si is a skip state). For

all the states s j with p j � ε, s j is a skip state in M j that skips a complete

term t such that t @ p j = b. That is, the relative positions tells us how to

“synchronize” the states from all the components to read the same input.

For example, two automata A and B are shown in Figure 6.1 with # f = 1. Au-

tomaton C is a conjunction of those two automata.

Formally, suppose {M1, . . . ,Mm} is a collection of automata such that

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. We assume that for all i, j ∈ [1,m] with i 6= j, CMi and CM j

are disjoint sets. This assumption can be implemented by replacing each color u

appearing in Mi with ui and each color v appearing in M j with v j, where i and j

are called tags. Now we construct M = (Q,s0,δ,σ,color,τ) as follows:

1. s0 = {(s0
i ,ε) | i ∈ [1,m]}.

2. Q is the least subset of (Q1×POS)× . . .× (Qm×POS) that contains s0 and

is closed under skip and step functions, as described in the sequel.

3. If s = {(si, pi) | i ∈ [1,m]} is non-terminal state in M , then color(s) =⋃
{colori(si) | i ∈ [1,m] and pi = ε}. Note that, by our assumption, for all

i, j ∈ [1,m] with i 6= j, colori(si) and color j(s j) are disjoint sets.

80

4. s = {(si, pi) | i ∈ [1,m]} is a step state in M if there is at least one i ∈ [1,m]

such that si is a step state. Suppose b is a symbol in Σ. If δi(si,b) is not

defined for some step state si with i ∈ [1,m], then δ(s,b) is not defined,

otherwise δ(s,b) is {(s′i, p′i) | i ∈ [1,m]}) such that:

• If si is a step state, then p′i = ε and s′i = δi(si,b).

• If si is a skip state and f ollow(pi,b)� ε, then p′i = f ollow(pi,b) and

s′i = si.

• If si is a skip state and f ollow(pi,b) = ε, then p′i = ε and s′i = σi(si).

5. s = {(si, pi) | i ∈ [1,m]} is a skip state in M if si is a skip state for all

i ∈ [1,m]. In that case, σ(s) is {(s′i, p′i) | i ∈ [1,m]} such that:

• If either pi = ε or next(pi) = ε, then p′i = ε and s′i = σi(si).

• If next(pi)� ε, then p′i = next(pi) and s′i = si.

6. A terminal state s in M has the form {(si, pi) | i ∈ [1,m]} such that at least

one si is a terminal state. In that case, if for all i ∈ [1,m], si is a terminal

state, then τ(s) is

{C1∪ . . .∪Cm |C1 ∈ τ1(s1) and . . . and Cm ∈ τm(sm)},

otherwise, τ(s) = /0.

We claim the following facts about the above construction.

81

Lemma 6.1.1 Suppose automaton M = (Q,s0,δ,σ,color,τ) is obtained by ap-

plying the above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Then for all the states {(si, pi) | i ∈ [1,m]} of M that are reach-

able from s0, if si is not a skip state for some i ∈ [1,m], then pi = ε.

Proof. We verify this by induction on states s of M that are reachable from s0

that if s has the form {(si, pi) | i ∈ [1,m]} in which si is not a skip state with some

i ∈ [1,m], then pi = ε. Suppose s = s0 = {(s0
i ,ε) | i ∈ [1,m]}. Then the stated

condition holds for s.

Suppose s is a non-terminal state of M such that s is a successor of s0 and

the stated condition holds for s. We show that the stated condition also holds for

the states s′ that are directly reachable from s (via a step or skip function). We

consider the following cases:

1. s = {(si, pi) | i ∈ [1,m]} is a skip state. Then by the definition of M , for all

i ∈ [1,m], si is a skip state. In that case, s′ = σ(s) = {(s′i, p′i) | i ∈ [1,m]}.

For all i ∈ [1,m], there are two cases:

• Either pi = ε or next(pi) = ε. Then p′i = ε and s′i = σi(si).

• next(pi)� ε. Then p′i = next(pi) and s′i = si.

For all i ∈ [1,m], if p′i = ε then s′i = σi(si) could be any kind of state (step,

or skip, or terminal), otherwise s′i = si is still a skip state. Thus, the stated

82

condition also holds for state s′.

2. s = {(si, pi) | i ∈ [1,m]} is a step state. Then by the definition of M , there

exists at least one step state si with some i∈ [1,m]. Suppose b is a symbol in

Σ such that δi(si,b) is defined for all step state si with some i ∈ [1,m]. Then

s′ = δ(s,b) = {(s′i, p′i) | i ∈ [1,m]}). For all i ∈ [1,m], there are three cases:

• si is a step state. Then p′i = ε and s′i = δi(si,b).

• si is a skip state and f ollow(pi,b) � ε. Then p′i = f ollow(pi,b) and

s′i = si.

• si is a skip state and f ollow(pi,b) = ε. Then p′i = f ollow(pi,b) = ε

and s′i = σi(si).

For all i ∈ [1,m], if p′i = ε then s′i is either δi(si,b) (if si is a step state), or

σi(si) (if si is a skip state). In either case, s′i could be any kind of state (step,

or skip, or terminal). For all i ∈ [1,m], if p′i � ε, then s′i = si is still a skip

state. Thus, the stated condition also holds for state s′.

Lemma 6.1.2 Suppose automaton M = (Q,s0,δ,σ,color,τ) is obtained by ap-

plying the above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i∈ [1,m]. Then the following condition holds for all positions p of a ground

n-tuple t:

83

• CM ,t(p) is defined and is equal to a state s = {(si, pi) | i ∈ [1,m]} in M

if and only if for all i ∈ [1,m], CMi,t(p) is defined and is equal to si and

ps
M ,t \ pi = psi

Mi,t
.

Proof. By induction on positions p of a ground n-tuple t. If p = n, then

CM ,t(n) = s = s0 = {(s0
i ,ε) | i ∈ [1,m]} = {(CMi,t(n),ε) | i ∈ [1,m]}. The stated

condition holds in this case.

Suppose p � ε is a position of t such that the stated condition holds and

t @ p = b with some symbol b ∈ Σ. We show that the stated condition also holds

for position f ollow(p,b) of t. Suppose CM ,t(p) = s = {(si, pi) | i ∈ [1,m]}. By

induction, for all i ∈ [1,m], CMi,t(p) = si and ps
M ,t \ pi = psi

Mi,t
. We consider the

following cases:

1. s is a skip state. In this case, CM ,t(f ollow(p,b)) is always defined. By the

definition of M , for all i ∈ [1,m], si is a skip state. There are two cases:

• f ollow(p,b)� next(ps
M ,t). In this case,

CM ,t(f ollow(p,b)) = s.

Since ps
M ,t � p� ε, by Lemma 5.4.4,

next(ps
M ,t)� next(ps

M ,t \ pi) = next(psi
Mi,t

)

for all i ∈ [1,m]. It follows that for all i ∈ [1,m], f ollow(p,b) �

next(psi
Mi,t

) and CMi,t(f ollow(p,b)) = si. The stated condition still

84

holds in this case.

• f ollow(p,b) = next(ps
M ,t). Then CM ,t(f ollow(p,b)) = σ(s) = s′ and

f ollow(p,b) = ps′
M ,t . Suppose s′ = {(s′i, p′i) | i ∈ [1,m]}. Then for all

i ∈ [1,m], there are two possibilities:

(a) Either pi = ε or next(pi) = ε. By condition (3) of Lemma 5.4.3,

next(ps
M ,t \ pi) = next(psi

Mi,t
) = next(ps

M ,t) = f ollow(p,b).

Thus, in this case, we have CMi,t(f ollow(p,b)) = σi(si) = s′i and

p′i = ε. Moreover, ps′
M ,t \ p′i = next(psi

Mi,t
) = ps′i

Mi,t
.

(b) next(pi)� ε. Since next(pi)� ε,

f ollow(p,b) = next(psi
Mi,t

pi) = psi
Mi,t

next(pi).

It follows that f ollow(p,b)� next(psi
Mi,t

). Thus,

CMi,t(f ollow(p,b)) = si = s′i

and p′i = next(pi). Moreover,

ps′
M ,t \ p′i = ps′

M ,t \next(pi) = psi
Mi,t

= ps′i
Mi,t

.

Thus, the stated condition still holds in either case.

2. s is a step state. Then by the definition of M , there exists at least one

85

step state si with some i ∈ [1,m]. Since s is a step state, by Lemma 5.5.1,

p = ps
M ,t and p \ pi = psi

Mi,t
for all i ∈ [1,m]. If CM ,t(f ollow(p,b)) is de-

fined, then δi(si,b) is defined for all step state si with some i ∈ [1,m]. Thus,

CMi,t(f ollow(p,b)) is defined for all i ∈ [1,m]. Conversely, if we have

CMi,t(f ollow(p,b)) is defined for all i ∈ [1,m], then δi(si,b) is defined for

all step state si with some i ∈ [1,m]. Thus, CM ,t(f ollow(p,b)) is defined

and is equal to δ(s,b). Suppose CM ,t(f ollow(p,b)) = δ(s,b) = s′. Then

f ollow(p,b) = ps′
M ,t . Suppose s′ = δ(s,b) = {(s′i, p′i) | i ∈ [1,m]}). Then

for all i ∈ [1,m], there are three cases:

(a) si is a step state. Then p′i = pi and s′i = δi(si,b). By Lemma 6.1.1, p′i =

pi = ε. Thus, p = ps
M ,t = psi

Mi,t
. In this case, CMi,t(f ollow(p,b)) =

δi(si,b) = s′i. Moreover, we have ps′
M ,t \ p′i = f ollow(p,b) = ps′i

Mi,t
.

(b) si is a skip state and f ollow(pi,b)� ε. Since f ollow(pi,b)� ε,

f ollow(p,b) = f ollow(psi
Mi,t

pi,b)� next(psi
Mi,t

).

It follows that CMi,t(f ollow(p,b)) = si = s′i and p′i = f ollow(pi,b).

By Lemma 5.4.5, ps′
M ,t \ p′i = f ollow(p,b)\ f ollow(pi,b) = p\ pi =

psi
Mi,t

= ps′i
Mi,t

.

(c) si is a skip state and f ollow(pi,b) = ε. Since f ollow(pi,b) = ε, by

condition (2) of Lemma 5.4.6,

f ollow(p,b) = f ollow(psi
Mi,t

pi,b) = next(psi
Mi,t

).

86

It follows that CMi,t(f ollow(p,b)) = σi(si) = s′i and p′i = ε. Since

p′i = ε, ps′
M ,t \ p′i = f ollow(p,b) = next(psi

Mi,t
) = ps′i

Mi,t
.

Thus, the stated condition still holds in all the above cases.

Lemma 6.1.3 Suppose automaton M = (Q,s0,δ,σ,color,τ) is obtained by ap-

plying the above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Suppose further that CM ,t is a computation of M on ground

n-tuple t and c is a color. Then t |=M c if and only if t |=Mi
c for all i ∈ [1,m] such

that c ∈CMi .

Proof. Suppose t |=M c. Then for all positions p and q of t such that p =

ps1
M ,t � ε and q = ps2

M ,t � ε and c occurs at states s1 and s2, we have t � p = t �q.

Since c appears in τ(CM ,t(ε)), by the definition of M , c occurs at the states of

automaton Mi with some i ∈ [1,m]. Since c occurs at s1 = {(s1
j , p1

j) | j ∈ [1,m]}

and s2 = {(s2
j , p2

j) | j ∈ [1,m]}, c occurs at s1
i with p1

i = ε and s2
i with p2

i = ε. By

Lemma 6.1.2, ps1
i

Mi,t
= ps1

M ,t = p and ps2
i

Mi,t
= ps2

M ,t = q. That is, t � ps1
i

Mi,t
= t � ps2

i
Mi,t

.

It follows that t |=Mi
c.

Conversely, Suppose t |=Mi
c with some i∈ [1,m]. Then for all positions p and

q of t such that p = ps1
i

Mi,t
� ε and q = ps2

i
Mi,t
� ε and c occurs at states s1

i and s2
i ,

we have t � p = t � q. Since CM ,t is a computation of M on t, by Lemma 6.1.2,

87

there exist states s1 and s2 in M such that CM ,t(p′) = s1 = {(s1
j , p1

j) | j ∈ [1,m]} in

which p1
i = ε and CM ,t(q

′) = s2 = {(s2
j , p2

j) | j ∈ [1,m]} in which p2
i = ε. By the

definition of M , c occurs at s1 and s2. Again, by Lemma 6.1.2, ps1
M ,t = ps1

i
Mi,t

= p

and ps2
M ,t = ps2

i
Mi,t

= q. That is, t � ps1
M ,t = t � ps2

M ,t . It follows that t |=M c.

Theorem 6.1.4 Suppose M = (Q,s0,δ,σ,color,τ) is obtained by applying the

above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Then M is a conjunction of {M1, . . . ,Mm}.

Proof. Suppose t is a ground n-tuple that is accepted by M1 and . . . and Mm.

Then for all i ∈ [1,m], CMi,t(ε) is a terminal state si and t |=Mi
τi(si). By Lemma

6.1.1 and Lemma 6.1.2, CM ,t(ε) is defined and is equal to s = {(si,ε) | i ∈ [1,m]}.

Clearly, CM ,t is terminating. By the definition of M , τ(s) is

{C1∪ . . .∪Cm |C1 ∈ τ1(s1) and . . . and Cm ∈ τm(sm)}.

Since t |=Mi
τi(si) for all i ∈ [1,m], there exists a set C = C1∪ . . .∪Cm such that

Ci ∈ τi(si) and t |=Mi
Ci for all i ∈ [1,m]. Following Lemma 6.1.3, we have t |=M

C. Since C is a set in τ(s), t |=M τ(s). It follows that t is also accepted by M .

Conversely, suppose t is a ground n-tuple that is accepted by M . Then CM ,t(ε)

is defined and is equal to a terminal state s and t |=M τ(s). By Lemma 6.1.2,

s = {(si,ε) | i ∈ [1,m]} and for all i ∈ [1,m], CMi,t(ε) = si. Since t |=M τ(s),

88

τ(s) 6= /0. It follows that si is a terminal state for all i ∈ [1,m]. Clearly, for all

i ∈ [1,m], CMi,t(ε) is terminating. By the definition of M , τ(s) is

{C1∪ . . .∪Cm |C1 ∈ τ1(s1) and . . . and Cm ∈ τm(sm)}.

Since t |=M τ(s), there exists a set C = C1∪ . . .∪Cm such that Ci ∈ τi(si) for all

i∈ [1,m] and t |=M C. Following Lemma 6.1.3, we have t |=Mi
Ci for all i∈ [1,m].

Since Ci is a set in τi(si), t |=Mi
τi(si) for all i ∈ [1,m]. It follows that t is also

accepted by M1 and . . . and Mm.

6.2 Disjunction of Automata

We say an automaton M is a disjunction of a collection of automata {M1,

. . . ,Mm}, if M accepts a set S of ground n-tuples such that S = S1∪ . . . ,∪Sm in

which S1 and . . . and Sm are sets of ground n-tuples accepted by M1 and . . . and

Mm respectively.

In the sequel, we denote a subset of {1, ...,m} by I . Informally, to obtain a

disjunction of a collection of automata, we shall construct an automaton M such

that each state in M is a set {(si, pi) | i ∈ I} such that si is a state in Mi and pi is

the relative position of si that has the same meaning as it is used in the conjunction

operation. Unlike the conjunction operation, a state of M may have fewer than m

pairs. If (si, pi) with some i ∈ [1,m] does not appear in a state of M , then it means

that Mi has (at some previous point) failed to execute a transition at a step state.

89

Figure 6.2: Example of disjunction

For example, two automata A and B are shown in Figure 6.2 with # f = #g = 1.

If we build a disjunction (automaton C shown in Figure 6.2) of those two au-

tomata, then we have a sequence of composite states {(s1,ε),(s4,ε)},{(s2,ε)},

and {(s3,ε)} that read a ground substitution instance of n-tuple f x. Similarly, we

have a sequence of composite states {(s1,ε),(s4,ε)},{(s5,ε)}, and {(s6,ε)} that

read a ground substitution instance of n-tuple gx. In the composite state {(s2,ε)},

we only have one pair because step state s4 from another automaton cannot exe-

cute a transition to read symbol f . A similar situation happens in the composite

state {(s5,ε)}.

90

Formally, suppose {M1, . . . ,Mm} is a collection of automata such that

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. We assume that for all i, j ∈ [1,m] with i 6= j, CMi and CM j are

disjoint sets. We have already shown how to implement this assumption in the

conjunction operation. Now we construct M = (Q,s0,δ,σ,color,τ) as follows:

1. s0 = {(s0
i ,ε) | i ∈ [1,m]}.

2. Q is a set whose elements are indexed sets {(si, pi) | i ∈ I} in which si is a

state in Mi and pi is a position.

3. If s = {(si, pi) | i ∈ I} (I 6= /0) is a non-terminal state in M , then color(s) =⋃
{colori(si) | i ∈ I and pi = ε}. Note that by our assumption, for all i, j ∈ I

with i 6= j, colori(si) and color j(s j) are disjoint sets.

4. s = {(si, pi) | i ∈ I} (I 6= /0) is a step state in M if si is a step state for at least

one i ∈ I . Suppose b is a symbol in Σ and Ib denotes the following set

{i | i ∈ I and either si is a skip state or δi(si,b) is defined}.

If Ib = /0 then δ(s,b) is not defined, otherwise δ(s,b) = {(s′i, p′i) | i ∈ Ib})

such that for all i ∈ Ib, we have:

• If si is a step state such that δi(si,b) is defined, then p′i = ε and s′i =

δi(si,b).

91

• If si is a skip state and f ollow(pi,b)� ε, then p′i = f ollow(pi,b) and

s′i = si.

• If si is a skip state and f ollow(pi,b) = ε, then p′i = ε and s′i = σi(si).

5. s = {(si, pi) | i ∈ I} (I 6= /0) is a skip state in M if I 6= /0 and si is a skip state

for all i ∈ I . In that case, σ(s) is {(s′i, p′i) | i ∈ I} such that:

• If either pi = ε or next(pi) = ε, then p′i = ε and s′i = σi(si).

• If next(pi)� ε, then p′i = next(pi) and s′i = si.

6. A terminal state s in M has the form {(si, pi) | i∈ I} such that either I = /0 or

there is at least one terminal state si with some i ∈ I . If I = /0 then τ(s) = /0,

otherwise τ(s) is

⋃
{τi(si) | i ∈ I and si is a terminal state}.

We claim the following facts about the above construction.

Lemma 6.2.1 Suppose automaton M = (Q,s0,δ,σ,color,τ) is obtained by ap-

plying the above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Then for all the states {(si, pi) | i ∈ I} of M that are reachable

from s0, if si is not a skip state for some i ∈ I , then pi = ε.

Proof. We verify this by induction on states s of M that are reachable from s0

92

that if s has the form {(si, pi) | i∈ I} and si is not a skip state with some i∈ I , then

pi = ε. Suppose s = s0 = {(s0
i ,ε) | i ∈ [1,m]}. Then the stated condition holds for

s.

Suppose s is a non-terminal state of M such that s is a successor of s0 and

the stated condition holds for s. We show that the stated condition also holds for

the states s′ that are directly reachable from s (via a step or skip function). We

consider the following cases:

1. s = {(si, pi) | i ∈ I} is a skip state. Then by the definition of M , I 6= /0 and

for all i ∈ I , si is a skip state. In that case, s′ = σ(s) = {(s′i, p′i) | i ∈ I}. For

all i ∈ I , there are two cases:

• Either pi = ε or next(pi) = ε. Then p′i = ε and s′i = σi(si).

• next(pi)� ε. Then p′i = next(pi) and s′i = si.

For all i ∈ I , if p′i = ε then s′i = σi(si) could be any kind of state (step, or

skip, or terminal), otherwise s′i = si is still a skip state. Thus, the stated

condition also holds for state s′.

2. s = {(si, pi) | i ∈ I} is a step state. Then by the definition of M , there exists

at least one step state si with some i ∈ I . Suppose b is a symbol in Σ. Then

s′ = δ(s,b) = {(s′i, p′i) | i ∈ Ib}), where Ib is not empty and is defined to be

{i | i ∈ I and either si is a skip state or δi(si,b) is defined}.

Moreover, for all i ∈ I , there are four cases:

93

• si is a step state and δ(si,b) is not defined. Then i is not in Ib. The pair

(si, pi) has no successor in s′.

• si is a step state and δ(si,b) is defined. Then p′i = ε and s′i = δi(si,b).

• si is a skip state and f ollow(pi,b) � ε. Then p′i = f ollow(pi,b) and

s′i = si.

• si is a skip state and f ollow(pi,b) = ε. Then p′i = f ollow(pi,b) = ε

and s′i = σi(si).

For all i ∈ Ib, if p′i = ε then s′i is either δi(si,b) (if si is a step state with

δ(si,b) is defined), or σi(si) (if si is a skip state). In that case, s′i could be

any kind of state (step, or skip, or terminal). For all i ∈ Ib, if p′i � ε, then

s′i = si is still a skip state. Thus, the stated condition also holds for state s′.

Lemma 6.2.2 Suppose automaton M = (Q,s0,δ,σ,color,τ) is obtained by ap-

plying the above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Suppose t is a ground n-tuple and set I(t, p) is defined to be

{i | i ∈ [1,m] and CMi,t(p) is defined}. Then the following condition holds for all

positions p of ground n-tuple t:

• CM ,t(p) is defined and is equal to {(si, pi) | i ∈ I(t, p)} if and only if

I(t, p) 6= /0 and for all i∈ I(t, p), CMi,t(p) is equal to si and ps
M ,t \ pi = psi

Mi,t
.

94

Proof. By induction on positions p of ground n-tuple t. If p = n, then CM ,t(n) =

s = s0 = {(s0
i ,ε) | i ∈ [1,m]} = {(CMi,t(n),ε) | i ∈ [1,m]}. The stated condition

holds in this case.

Suppose p � ε is a position of t such that the stated condition holds and

t @ p = b with some symbol b ∈ Σ. We show that the stated condition also holds

for position f ollow(p,b) of t. Suppose CM ,t(p) = s = {(si, pi) | i ∈ I(t, p)}. By

induction, I(t, p) 6= /0 and for all i ∈ I(t, p), CMi,t(p) = si and ps
M ,t \ pi = psi

Mi,t
.

We consider the following cases:

1. s = {(si, pi) | i ∈ I(t, p)} is a skip state. In this case, CM ,t(f ollow(p,b)) is

always defined. By the definition of M , for all i ∈ I(t, p), si is a skip state.

There are two cases:

• f ollow(p,b)� next(ps
M ,t). In this case,

CM ,t(f ollow(p,b)) = s.

Since ps
M ,t � p� ε, by Lemma 5.4.4,

next(ps
M ,t)� next(ps

M ,t \ pi) = next(psi
Mi,t

)

for all I(t, p). It follows that for all i ∈ I(t, p),

f ollow(p,b)� next(psi
Mi,t

)

and CMi,t(f ollow(p,b)) = si. The stated condition still holds in this

95

case.

• f ollow(p,b) = next(ps
M ,t). Then CM ,t(f ollow(p,b)) = σ(s) = s′ and

f ollow(p,b) = ps′
M ,t . Suppose s′ = {(s′i, p′i) | i ∈ I(t, p)}. Then for all

i ∈ I(t, p), there are two possibilities:

(a) Either pi = ε or next(pi) = ε. By condition (3) of Lemma 5.4.3,

next(ps
M ,t \ pi) = next(psi

Mi,t
) = next(ps

M ,t) = f ollow(p,b).

Thus, in this case, we have CMi,t(f ollow(p,b)) = σi(si) = s′i and

p′i = ε. Moreover, ps′
M ,t \ p′i = next(psi

Mi,t
) = ps′i

Mi,t
.

(b) next(pi)� ε. Since next(pi)� ε,

f ollow(p,b) = next(psi
Mi,t

pi) = psi
Mi,t

next(pi).

It follows that f ollow(p,b)� next(psi
Mi,t

). Thus,

CMi,t(f ollow(p,b)) = si = s′i

and p′i = next(pi). Moreover,

ps′
M ,t \ p′i = ps′

M ,t \next(pi) = psi
Mi,t

= ps′i
Mi,t

.

Thus, the stated condition still holds in either case.

2. s = {(si, pi) | i ∈ I(t, p)} is a step state. Then by the definition of M , there

96

exists at least one step state si with some i ∈ I(t, p). Since s is a step state,

by Lemma 5.5.1, p = ps
M ,t and p\ pi = psi

Mi,t
for all i ∈ I(t, p). Suppose b

is in Σ and Ib(t, p) is

{i | i ∈ I(t, p) and either si is a skip state or δi(si,b) is defined}.

Suppose CM ,t(f ollow(p,b)) is defined. Then Ib(t, p) 6= /0 and δi(si,b) is

defined for all the step states si with some i ∈ Ib(t, p). Thus, we have

that CMi,t(f ollow(p,b)) is defined for all i ∈ Ib(t, p). Conversely, suppose

Ib(t, p) 6= /0 and CMi,t(f ollow(p,b)) is defined for all i ∈ Ib(t, p). Then

δi(si,b) is defined for all the step state si with some i ∈ Ib(t, p). Thus,

CM ,t(f ollow(p,b)) is defined and is equal to δ(s,b). Suppose Ib(t) 6= /0

and CM ,t(f ollow(p,b)) = δ(s,b) = s′. Then f ollow(p,b) = ps′
M ,t . Suppose

s′ = δ(s,b) = {(s′i, p′i) | i ∈ Ib(t)}). Then for all i ∈ Ib(t), there are three

cases:

(a) si is a step state and δi(si,b) is defined. Then p′i = pi and s′i = δi(si,b).

By Lemma 6.2.1, p′i = pi = ε. Thus, CMi,t(f ollow(p,b)) = δi(si,b) =

s′i. Since p′i = ε, ps′
M ,t \ p′i = f ollow(p,b) = ps′i

Mi,t
.

(b) si is a skip state and f ollow(pi,b)� ε. Since f ollow(pi,b)� ε,

f ollow(p,b) = f ollow(psi
Mi,t

pi,b)� next(psi
Mi,t

).

It follows that CMi,t(f ollow(p,b)) = si = s′i and p′i = f ollow(pi,b).

97

By Lemma 5.4.5, ps′
M ,t \ p′i = f ollow(p,b)\ f ollow(pi,b) = p\ pi =

psi
Mi,t

= ps′i
Mi,t

.

(c) si is a skip state and f ollow(pi,b) = ε. Since f ollow(pi,b) = ε, by

condition (2) of Lemma 5.4.6,

f ollow(p,b) = f ollow(psi
Mi,t

pi,b) = next(psi
Mi,t

).

It follows that CMi,t(f ollow(p,b)) = σi(si) = s′i and p′i = ε. Since

p′i = ε, ps′
M ,t \ p′i = f ollow(p,b) = next(psi

Mi,t
) = ps′i

Mi,t
.

Thus, the stated condition still holds in the above cases.

Lemma 6.2.3 Suppose automaton M = (Q,s0,δ,σ,color,τ) is obtained by ap-

plying the above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Suppose further that CM ,t is a computation of M on ground

n-tuple t and c is a color. Let I(t,ε) = {i | i ∈ [1,m] and CMi,t(ε) is defined}. Then

t |=M c if and only if there exists some i ∈ I(t,ε) with t |=Mi
c.

Proof. Suppose t |=M c. Then for all positions p and q of t such that p =

ps1
M ,t � ε and q = ps2

M ,t � ε and c occurs at states s1 and s2, we have t � p = t �q.

Since c appears in τ(CM ,t(ε)), by the definition of M , c occurs at the states of

98

automaton Mi with some i ∈ I(t,ε). Since c occurs at s1 = {(s1
j , p1

j) | j ∈ I1} and

s2 = {(s2
j , p2

j) | j ∈ I2}, by the definition of M , c occurs at s1
i with p1

i = ε and s2
i

with p2
i = ε. By Lemma 6.2.2, ps1

i
Mi,t

= ps1
M ,t = p and ps2

i
Mi,t

= ps2
M ,t = q. That is,

t � ps1
i

Mi,t
= t � ps2

i
Mi,t

. It follows that t |=Mi
c.

Conversely, Suppose t |=Mi
c with some i ∈ I(t,ε). Then for all positions p

and q of t such that p = ps1
i

Mi,t
� ε and q = ps2

i
Mi,t
� ε and c occurs at states s1

i and

s2
i , we have t � p = t �q. Since CM ,t is a computation of M on t, by Lemma 6.2.2,

there exist states s1 and s2 in M such that CM ,t(p′) = s1 = {(s1
j , p1

j) | j ∈ I1}

in which p1
i = ε and CM ,t(q

′) = s2 = {(s2
j , p2

j) | j ∈ I2} in which p2
i = ε and

i ∈ I1∩ I2. By the definition of M , c occurs at s1 and s2. Again, by Lemma 6.2.2,

ps1
M ,t = ps1

i
Mi,t

= p and ps2
M ,t = ps2

i
Mi,t

= q. That is, t � ps1
M ,t = t � ps2

M ,t . It follows that

t |=M c.

Theorem 6.2.4 Suppose M = (Q,s0,δ,σ,color,τ) is obtained by applying the

above construction on a collection of automata {M1, . . . ,Mm}, where

Mi = (Qi,s0
i ,δi,σi,colori,τi)

for all i ∈ [1,m]. Then M is a disjunction of {M1, . . . ,Mm}.

Proof. Let t be a ground n-tuple and I(t, p) be

{i | i ∈ [1,m] and CMi,t(p) is defined}.

Suppose t is accepted by M1 or . . . or Mm. Then I(t,ε) contains at least one

99

integer i ∈ [1,m] and CMi,t(ε) is a terminal state si and t |=Mi
τi(si). By Lemma

6.2.2, CM ,t(ε) is defined and is equal to s = {(s j,ε) | j ∈ I(t,ε)}. Since si is a

terminal state, by the definition of M , s is a terminal state of M . Thus, CM ,t is

terminating. By the definition of M , τ(s) is

⋃
{τ j(s j) | j ∈ I(t,ε) and s j is a terminal state}.

Since t |=Mi
τi(si), following Lemma 6.2.3, t |=M τi(si). Thus, t |=M τ(s). It

follows that t is also accepted by M .

Conversely, suppose t is a ground n-tuple that is accepted by M . Then CM ,t(ε)

is defined and is equal to s and t |=M τ(s). By Lemma 6.2.2, I(t,ε) 6= /0 and

s = {(s j,ε) | j ∈ I(t,ε)} and for all j ∈ I(t,ε), CM j,t(ε) = s j. Since s is a terminal

state, there is at least one terminal state si with some i ∈ I(t,ε). Clearly, CMi,t(ε)

is terminating. By the definition of M , τ(s) is

⋃
{τ j(s j) | j ∈ I(t,ε) and s j is a terminal state}.

Since t |=M τ(s), following Lemma 6.2.3, there exists at least one integer i in

I(t,ε) such that t |=M τi(si) and t |=Mi
τi(si), i.e., t is accepted by Mi. It follows

that t is also accepted by M1 or . . . or Mm.

100

Chapter 7

Normalization of Automata

101

Figure 7.1: An automaton that contains unsatisfiable colors

7.1 Definition of Normalized Automata

We say an automaton M = (Q,s0,δ,σ,color,τ) is normalized if for all step

states s in Q, color(s) = /0. Normalized automata have the following advantages:

• There are no “unsatisfiable” colors in the acceptance conditions of a nor-

malized automaton. A color is unsatisfiable with respect to acceptance con-

dition τ(s) if there does not exist any ground n-tuple t such that CM ,t(ε) = s

and t |=M c. For example, in the automaton shown in Figure 7.1, color r is

unsatisfiable since a 6= b.

• In this chapter, we present the following operations on automata: conjunc-

tion, disjunction, grouping, ungrouping, expansion and projection. Those

are used to implement the operations in TOPDOWN algorithm and they re-

quire as a condition of correctness that the automata are normalized.

102

7.2 Eliminating a Single Color from Step States

To transform an arbitrary automaton to a normalized one, we have to eliminate

the colors on those step states and make appropriate changes so that the resulting

automaton is equivalent to the original one. We first consider how to safely elimi-

nate a single color from step states.

Suppose s is a step state in automaton M = (Q,s0,δ,σ,color,τ). We define a

related successor of s at position p as follows:

1. δ(s, f) is a related successor of s at position # f if # f > 0.

2. If s1 is a related successor of s at position p with p� ε and s1 is a skip state

and next(p)� ε, then σ(s1) is a related successor of s at position next(p).

3. If s1 is a related successor of s at position p with p � ε and s1 is a step

state and s2 = δ(s1,b) is a successor of s1 with f ollow(p,b)� ε, then s2 is

a related successor of s at position f ollow(p,b).

If s′ is a related successor of s at position k and k is an integer, then we say s′ is a

direct successor of s at position k.

Suppose c occurs at some step state s of automaton M . We define≡c to be the

least equivalence relation on states that relates s and s′ whenever s and s′ are both

colored by c and lie on some path to a terminal state whose acceptance condition

contains c. We then define Φc
M to be the least set closed under the following

conditions:

103

Figure 7.2: An example of occur check failure

1. If s is a step state with c ∈ color(s) and there does not exists a state s′ such

that s≡c s′ and s is a related successor of s′, then s is in Φc
M .

2. If s is a skip state and s≡c s1 with some s1 ∈Φc
M and there does not exists a

state s2 ∈Φc
M such that s is a related successor of s2, then s′ is also in Φc

M .

In order to safely remove color c from all the step states of M , we have to elimi-

nate color c from all the states in Φc
M to make the resulting automaton be equiv-

alent to M . Note that by the above definition, there are no states s and s′ in Φc
M

such that s′ is a related successor of step state s. If a step state s and a related

successor s′ of s are colored by the same color c, then it is called “occur check”

failure. For example, there is an “occur check” failure in Figure 7.2 with # f = 1.

In that case, there is no ground n-tuple that can satisfy color c.

Suppose s is a skip state in automaton M = (Q,s0,δ,σ,color,τ). We define

the branching operation on s to be the following process:

1. Transform s into a step state.

2. For every symbol b ∈ Σ with #b = 0, we define δ(s,b) = σ(s).

104

Figure 7.3: Branching on skip states

3. For every symbol b ∈ Σ with #b > 0, we create a sequence of skip states

sb
#b

, . . . ,sb
1 and define δ(s,b) = sb

#b
, σ(sb

#b
) = sb

#b−1,. . ., σ(sb
1) = σ(s). That

sequence of skip states are all direct successors of step state s.

An example of branching operation is shown in Figure 7.3 with # f = 1 and #a = 0.

Informally, to eliminate color c from all the states in Φc
M , we first transform

all the skip states in Φc
M to be step states by using branching operations. Then

we add corresponding colors derived from c on direct successors of all the (step)

states in Φc
M . After that, the equality constraints defined by color c are reduced

105

to the equality constraints defined by those derived colors. Finally, color c can be

safely eliminated from all the (step) states in Φc
M .

Informally, we construct M1 from M to eliminate color c from all the states

in Φc
M . The branching operations are automatically performed in the construction

M1. Suppose M = (Q,s0,δ,σ,color,τ). A state in the new construction M1 is a

tuple (s,b, p) such that:

• s is a state in M .

• b is a symbol in Σ∪{⊥,>}. We use symbol b to memorize the symbols that

are read by the states in Φc
M . If b ∈ Σ, then all the predecessors of s that are

in Φc
M read the same symbol b. If b =⊥, then none of the predecessors of

s is in Φc
M . If b =>, then one of the following errors occurs:

1. “Contradictory path”, i.e., both δ(s1,b1) and δ(s2,b2) are predecessors

of s with s1 ∈ Φc
M and s2 ∈ Φc

M and b1 6= b2. In this case, color c is

unsatisfiable.

2. “Occur check” failure, i.e., there are predecessors s1 and s2 of s such

that s1 is a step state and s2 is a related successor of s1 and both s1 and

s2 are colored by c.

• k is a “relative” position. We use k to keep track of the relative position from

a state in Φc
M . If k is a positive integer, then s is a direct successor of some

state s′ (s′ ∈ Φc
M) at position k. The pair (b,k) will be used to generate

a color cb,k that is derived from color c. Those derived colors are used to

specify the equality constraints among the corresponding direct successors

106

Figure 7.4: Examples of derived colors

of the states in Φc
M . For example, we have # f = 1 in Figure 7.4. States

s1 and s3 are in Φc
M , states s2 and s4 are states that have the same relative

position 1 from the states in Φc
M . Then derived color c f ,1 is used to color

states s2 and s4 since the terms skipped at them must be identical in order to

satisfy the color c. After removing color c from states s1 and s3, the resulting

automaton is equivalent to the original one due to the derived color c f ,1.

Formally, we construct an automaton M1 = (Q1,s0
1,δ1,σ1,color1,τ1) from au-

tomaton M = (Q,s0,δ,σ,color,τ) as follows:

1. s0
1 = (s0,⊥,ε).

2. Q is the least subset of Q×(Σ∪{⊥,>})×POS that contains s0
1 and is closed

under skip and step functions, as described in the sequel.

3. (s,b,ε) is a step state if s is a step state and s 6∈ Φc
M . In that case, we have

color1(s,b,ε) = color(s) and for all symbol b′ ∈ Σ, if δ(s,b′) is defined then

δ1((s,b,ε),b′) = (δ(s,b′),b,ε), otherwise δ1((s,b,ε),b′) is not defined.

107

4. (s,b,ε) is a skip state if s is a skip state and s 6∈ Φc
M . In that case, we have

color1(s,b,ε) = color(s) and σ1(s,b,ε) = (σ(s),b,ε).

5. (s,b,ε) is a step state if s is a step state and s ∈ Φc
M . In that case, we have

color1(s,b,ε) = color(s) \ {c}. Moreover, for all symbol b′ ∈ Σ such that

δ(s,b′) is not defined, δ1((s,b,ε),b′) is not defined. For all symbol b′ ∈ Σ

such that δ(s,b′) is defined,

δ1((s,b,ε),b′) = (δ(s,b′),b′′, f ollow(ε,#b′))

in which:

• b′′ => if b =>.

• b′′ = b′ if b =⊥.

• b′′ is either > if b ∈ Σ and b 6= b′, or b if b = b′. In the former case, a

contradictory symbol has been read.

6. (s,b,ε) is a step state if s is a skip state and s ∈ Φc
M . In that case, we have

color1(s,b,ε) = color(s)\{c}. Moreover, for all symbol b′ ∈ Σ,

δ1((s,b,ε),b′) = (s′,b′′, f ollow(ε,#b′)),

where s′ is either s if f ollow(ε,#b′)� ε or σ(s) if f ollow(ε,#b′) = ε and:

• b′′ => if b =>.

• b′′ = b′ if b =⊥.

• b′′ is either > if b ∈ Σ and b 6= b′, or b if b = b′. In the former case, a

108

contradictory symbol has been read.

7. (s,b,k) is a skip state if s is a skip state in Φc
M and k� ε. In that case, if b∈Σ

and k is an integer, then color1(s,b,k) = {cb,k}, otherwise color1(s,b,k) =

/0. In the former case, a color cb,k derived from c is added. In addition, we

have σ1(s,b,k) = (s′,b,next(k)) where s′ is either s if next(k) � ε, or σ(s)

if next(k) = ε.

8. (s,b,k) is a skip state if s is a skip state and s 6∈ Φc
M and k � ε. In that

case, if b ∈ Σ and k is an integer, then color1(s,b,k) = color(s)∪{cb,k},

otherwise color1(s,b,k) = color(s). In the former case, a color cb,k derived

from c is added. In addition, we have σ1(s,b,k) = (σ(s),b′,next(k)), where

b′ is either b if c 6∈ color(s) or > if c ∈ color(s). If c ∈ color(s), then we

find an “occur check” failure.

9. (s,b,k) is a step state if s is a step state and k� ε. In that case, if b∈ Σ and k

is an integer, then color1(s,b,k) = color(s)∪{cb,k}, otherwise color1(s) =

color(s). In the former case, a color cb,k derived from c is added. In addi-

tion, we have:

• δ1((s,b,k),b′) is not defined if δ(s,b′) is not defined.

• δ1((s,b,k),b′) = (δ(s,b′),b, f ollow(k,b′)) if δ(s,b′) is defined and c 6∈

color(s).

• δ1((s,b,k),b′) = (δ(s,b′),>, f ollow(k,b′)) if δ(s,b′) is defined and

c ∈ color(s). In this case, we find an “occur check” failure.

109

10. (s,⊥,ε) is a terminal state if s is a terminal state. In that case, τ1(s,⊥,ε) =

τ(s).

11. (s,>,ε) is a terminal state if s is a terminal state. In that case, τ1(s,>,ε) is

obtained from τ(s) by eliminating any set that contains c.

12. (s,b,ε) is a terminal state if s is a terminal state and b ∈ Σ. In that case,

τ1(s,b,ε) is obtained from τ(s) by replacing any set C that contains c with

(C \{c})∪{cb,#b , . . . ,cb,1}.

We call the above constructiona c-normalized automaton and call the proce-

dure that builds such construction a c-normalization procedure. The following

facts are related to c-normalized automata.

Lemma 7.2.1 Suppose

M1 = (Q1,s0
1,δ1,σ1,color1,τ1)

is a c-normalized automaton obtained from M = (Q,s0,δ,σ,color,τ) and (s,b,k)

is a state in M1 with some state s in M and some symbol b in Σ∪{⊥,>} and some

position k. Then the following conditions hold for all positions p of a ground n-

tuple t:

• CM1,t(p) is defined if and only if CM ,t(p) is defined. Moreover, if we have

CM1,t(p) = (s,b,k) then CM ,t(p) = s.

• If p = p(s,b,k)
M1,t

, then p is either ps
M ,t k whenever s is skip state in Φc

M and

k � ε, or ps
M ,t in all other cases.

110

Proof. We verify this by induction on positions p of ground n-tuple t that the

stated conditions hold for p. If p = n, then ps
M ,t = n and CM1,t(n) = (s0,⊥,ε) =

(CM ,t(n),⊥,ε). The stated conditions hold in this case with s = s0 and b =⊥ and

k = ε.

Suppose p is a position of t such that n � p � ε and t @ p = b′ with some

symbol b′ ∈ Σ and the stated conditions hold for p. We show that for position

f ollow(p,b′) of t, the stated conditions also hold. Let CM ,t(p) = s. We consider

the following cases:

1. CM1,t(p) = (s,b,k) is a skip state. Then s is a skip state. In this case, Both

CM1,t(f ollow(p,b′)) and CM ,t(f ollow(p,b′)) are defined. There are two

cases:

(a) k = ε. Then s is not in Φc
M . By condition (2) of the induction hypoth-

esis, p(s,b,k)
M1,t

= ps
M ,t . This leaves two possibilities:

i. f ollow(p,b′) � next(ps
M ,t). Then CM ,t(f ollow(p,b′)) = s and

CM1,t(f ollow(p,b′)) = (s,b,ε). The stated conditions still hold

in this case.

ii. f ollow(p,b′) = next(ps
M ,t). Then CM ,t(f ollow(p,b′)) = σ(s).

Moreover, CM1,t(f ollow(p,b′)) = σ1(s,b,ε) = (σ(s),b,ε) by the

definition of M1. In this case, f ollow(p,b′) = p(σ(s),b,ε)
M1,t

= pσ(s)
M ,t .

The stated conditions hold in this case.

(b) k � ε. This leaves two possibilities:

i. s ∈ Φc
M . By condition (2) of the induction hypothesis, p(s,b,k)

M1,t
=

111

ps
M ,t k. By Lemma 5.4.4, next(ps

M ,t k) � next(ps
M ,t). We con-

sider two cases:

A. f ollow(p,b′) � next(ps
M ,t k). Then CM ,t(f ollow(p,b′)) =

s and CM1,t(f ollow(p,b′)) = (s,b,k). The stated conditions

still hold in this case.

B. f ollow(p,b′) = next(ps
M ,t k). Suppose next(k) > ε. By con-

dition (2) of 5.4.3,

f ollow(p,b′) = next(ps
M ,t k) = ps

M ,t next(k)� next(ps
M ,t).

By the definition of M1,

CM1,t(f ollow(p,b′)) = (s,b,next(k)).

Moreover, we have CM ,t(f ollow(p,b′)) = s. Thus, condition

(1) holds in this case. Now p(s,b,next(k))
M1,t

= ps
M ,t next(k). Thus,

condition (2) also holds in this case. Now suppose next(k) =

ε. By condition (3) of Lemma 5.4.3,

f ollow(p,b′) = next(ps
M ,t k) = next(ps

M ,t).

By the definition of M1,

CM1,t(next(ps
M ,t)) = (σ(s),b,ε).

112

Moreover, we have CM ,t(next(ps
M ,t)) = σ(s). Thus, condi-

tion (1) holds in this case. Now p(σ(s),b,ε)
M1,t

= next(ps
M ,t) =

pσ(s)
M ,t . Thus, condition (2) also holds in this case.

ii. s 6∈ Φc
M . By condition (2) of the induction hypothesis, p(s,b,k)

M1,t
=

ps
M ,t . We consider two cases:

A. f ollow(p,b′) � next(ps
M ,t). Then CM ,t(f ollow(p,b′)) = s

and CM1,t(f ollow(p,b′)) = (s,b,k). The stated conditions

still hold in this case.

B. f ollow(p,b′) = next(ps
M ,t). By the definition of M1,

CM1,t(f ollow(p,b′)) = (σ(s),b′,next(k)),

where b′ is either b if c 6∈ color(s) or> if c∈ color(s). More-

over, we have CM ,t(f ollow(p,b′)) = σ(s). Thus, condition

(1) holds in this case. Now p(σ(s),b,next(k))
M1,t

= next(ps
M ,t) =

pσ(s)
M ,t . Thus, condition (2) also holds in this case.

2. CM1,t(p) = (s,b,k) is a step state. By Lemma 5.5.1, p = p(s,b,k)
M1,t

. Moreover,

by the definition of M1, s is either a step state in M , or a skip state in M

with s ∈ Φc
M and k = ε. In the former case, if CM ,t(f ollow(p,b′)) is de-

fined, then δ(s,b′) is defined since we have CM ,t(f ollow(p,b′)) = δ(s,b′).

It follows by the definition of M1 that CM1,t(f ollow(p,b′)) is also defined.

If CM1,t(f ollow(p,b′)) is defined, then δ(s,b′) is defined. It follows that

CM ,t(f ollow(p,b′)) is also defined since CM ,t(f ollow(p,b′)) = δ(s,b′). In

113

the latter case, we have that CM1,t(f ollow(p,b′)) and CM ,t(f ollow(p,b′))

are defined for all symbol b′ ∈ Σ since s is a skip state in M . Now suppose

CM ,t(f ollow(p,b′)) is defined. There are two cases:

(a) k = ε. By condition (2) of the induction hypothesis, p(s,b,ε)
M1,t

= ps
M ,t .

This leaves two possibilities:

i. s 6∈Φc
M . Then s is a step state and CM ,t(f ollow(p,b′)) = δ(s,b′).

By the definition of M1,

CM1,t(f ollow(p,b′)) = δ1((s,b,ε),b′) = (δ(s,b′),b,ε).

Clearly, the stated conditions hold in this case.

ii. s ∈Φc
M . Then we have two cases:

A. s is a step state. Then CM ,t(f ollow(p,b′)) = δ(s,b′) and by

the definition of M1,

CM1,t(f ollow(p,b′)) = δ1((s,b,ε),b′)

= (δ(s,b′),b′′, f ollow(ε,#b′)),

where b′′ = > if either b = > or b ∈ Σ and b 6= b′, or else

b′′= b′ if either b = b′ or b =⊥. Clearly, the stated conditions

hold in this case.

B. s is a skip state. Then we have the following cases:

114

• f ollow(ε,#b′)� ε. Then

f ollow(p,b′)� next(p) = next(ps
M ,t).

Thus, CM ,t(f ollow(p,b′)) = s. By the definition of M1,

CM1,t(f ollow(p,b′)) = δ1((s,b,ε),b′)

= (s,b′′, f ollow(ε,#b′)),

where b′′ = > if either b = > or b ∈ Σ and b 6= b′, or else

b′′ = b′ if either b = b′ or b = ⊥. Clearly, condition (1)

holds in this case. Now

p(s,b′′, f ollow(ε,#b′))
M1,t

= ps
M ,t f ollow(ε,#b′).

Thus, condition (2) also holds in this case.

• f ollow(ε,#b′) = ε. Then

f ollow(p,b′) = next(p) = next(ps
M ,t).

Thus, CM ,t(f ollow(p,b′)) = σ(s). By the definition of M1,

CM1,t(f ollow(p,b′)) = δ1((s,b,ε),b′)

= (σ(s),b′′,ε),

115

where b′′ = > if either b = > or b ∈ Σ and b 6= b′, or

else b′′ = b′ if either b = b′ or b = ⊥. Clearly, condition

(1) holds in this case. Now p(σ(s),b′′,ε)
M1,t

= f ollow(p,b′) =

next(ps
M ,t) = pσ(s)

M ,t . Thus, condition (2) also holds in this

case.

(b) k � ε. Then s is a step state and CM ,t(f ollow(p,b′)) = δ(s,b′). By

condition (2) of the induction hypothesis, p(s,b,k)
M1,t

= ps
M ,t . By the defi-

nition of M1,

CM1,t(f ollow(p,b′)) = (δ(s,b′),b′′, f ollow(k,b′)),

where b′′ is either b if c 6∈ color(s), or > if c ∈ color(s). Clearly,

condition (1) holds in this case. Now

p(δ(s,b′),b′′, f ollow(k,b′)))
M1,t

= f ollow(p,b′) = pδ(s,b′)
M ,t .

Thus, condition (2) also holds in this case.

Theorem 7.2.2 Suppose M1 = (Q1,s0
1,δ1,σ1,color1,τ1) is a c-normalized au-

tomaton obtained from M = (Q,s0,δ,σ,color,τ). Then M1 is equivalent to M .

Proof. Suppose t is a ground n-tuple that is accepted by M . Then CM ,t(ε) is a

terminal state s in M and t |=M τ(s). By Lemma 7.2.1, CM1,t(ε) = (s,b,ε) with

116

some symbol b in Σ∪{⊥,>}. By the definition of M1, CM1,t is terminating. We

consider the following cases:

1. b = ⊥. Then by the definition of M1, τ1(s,⊥,ε) = τ(s). Since t |=M τ(s),

t |=M τ1(s,⊥,ε).

2. b = >. Then color c is unsatisfiable. Thus, t 6|=M c. Since t |=M τ(s),

there is at least one set C in τ(s) such that C does not contain color c and

t |=M C. Moreover, by the definition of M1, τ1(s,>,ε) is obtained from

τ(s) by eliminating any set that contains c. Thus, τ1(s,>,ε) contains the set

C. Since t |=M C, t |=M1
τ1(s,>,ε).

3. b ∈ Σ. Then by the definition of M1, τ1(s,b,ε) is obtained from τ(s) by

replacing any set C that contains c with set C′, where C′ = (C \ {c})∪

{cb,#b, . . . ,cb,1}. There are two cases:

(a) t 6|=M c. By following the proof in case (2), we have t |=M τ1(s,b,ε).

(b) t |=M c. Since b ∈ Σ, by the definition of M1, for all the predecessors

(s′,b′, p′) of (s,b,ε) such that c∈ color(s′) (s′ ∈Φc
M), (s′,b′, p′) reads

the same symbol b. Moreover, direct successors of s′ are colored by

cb,#b , . . . ,cb,1 (that are derived from c) respectively. Since t |=M c, for

all i ∈ [1,#b], we have t |=M1
cb,i. That is, if C is a set of τ(s) that

contains c, then t |=M1
C′ whenever t |=M C. It follows that t |=M1

τ1(s,b,ε).

Since CM1,t is terminating and t |=M1
τ1(s,b,ε), t is also accepted by M1.

117

Conversely, suppose t is a ground n-tuple that is accepted by M1. Then

CM1,t(ε) is a terminal state (s,b,ε) in M1 and t |=M1
τ1(s,b,ε) with some sym-

bol b in Σ∪{⊥,>}. By Lemma 7.2.1, s = CM ,t(ε) is a terminal state in M . Thus,

CM ,t is terminating. We consider the following cases:

1. b = ⊥. Then by the definition of M1, we have τ(s) = τ1(s,⊥,ε). Since

t |=M1
τ1(s,⊥,ε), t |=M τ(s).

2. b =>. Then color c is unsatisfiable. Thus, t 6|=M c. Since t |=M1
τ1(s,>,ε),

there is at least one set C in τ1(s,>,ε) such that C does not contain color c

and t |=M C. Moreover, by the definition of M1, τ1(s,>,ε) is obtained from

τ(s) by eliminating any set that contains c. Thus, τ(s) contains the set C.

Since t |=M C, t |=M τ(s).

3. b ∈ Σ. Then by the definition of M1, τ1(s,b,ε) is obtained from τ(s) by

replacing any set C that contains c with set C′, where C′ = (C \ {c})∪

{cb,#b, . . . ,cb,1}. Since t |=M1
τ1(s,b,ε), there exists at least one set C′ in

τ1(s,b,ε) such that t |=M1
C′. Suppose C′ is obtained from the set C ∈ τ(s).

Then there are two cases:

(a) c ∈C. Then C′ = (C \{c})∪{cb,#b, . . . ,cb,1}. Since t |=M1
C′, t |=M1

cb,i for all i ∈ [1,#b]. Moreover, any state in the computation of t

on M colored by c is a state that starts reading or skipping symbol

b. It follows that t |=M c. Thus, we also have t |=M C, and in turn,

t |=M τ(s).

118

(b) c 6∈C. Then C′ = C. Since t |=M1
C′, t |=M C. It follows that t |=M

τ(s).

Since CM ,t is terminating and t |=M τ(s), t is also accepted by M .

A c-normalization procedure is basically a unification procedure that performs

the following reductions:

1. Reduces an equation f (t1, . . . , tn) = f (t ′1, . . . , t
′
n) to a set of equations t1 =

t ′1, . . . , tn = t ′n. This happens when color c occurs at two step states and we

eliminate c from both states.

2. Reduces an equation x = f (t1, . . . , tn) to a set of equations x1 = t1, . . . ,xn = tn

in which x is reduced to f (x1, . . . ,xn). This happens when color c occurs at

a skip state and a step state and we eliminate c from both states.

This procedure is called term reduction in [35].

7.3 Stratified Automata

We have defined c-normalized automata in the previous section. Clearly, an

automaton M is normalized if and only if it is c-normalized for all colors c. We

can construct a normalized automaton by repeatedly applying c-normalization

procedure on the original automaton for all colors c. To show that the iterative

application finally terminates, we need the following definition.

We say M = (Q,s0,δ,σ,color,τ) is stratified if there exists a mapping posM :

Q→ POS such that for all ground n-tuples t, if p = ps
M ,t is a position of t with

119

some state s in M , then p must be posM (s). We call the mapping posM a position

assignment of M .

We claim that the following facts about stratified automata.

Theorem 7.3.1 For any automaton M1, there exists an equivalent stratified au-

tomaton M .

Proof. Suppose M1 = (Q1,s0
1,δ1,σ1,color1,τ1) accepts ground n-tuples. Let

M be a conjunction of M1 and M2 in which M2 is defined to be a tuple

(Q2,s0
2,δ2,σ2,color2,τ2)

as follows:

1. Q2 = {un, . . . ,u1,u0}.

2. s0
2 = un.

3. un, . . . ,u1 are all skip states such that ∀i ∈ [1,n], σ2(ui) = ui−1.

4. There are no step states in Q2.

5. u0 is the only terminal state in Q2 with τ2(u0) = T.

Clearly, M2 accepts all ground n-tuples. By Theorem 6.1.4, M is equivalent

to M1.

Now we show that M is stratified. Suppose t is a ground n-tuple and p is a

position of t with ps
M ,t , where s = ((ε,s1),(p2,ui)). By Lemma 6.1.2, CM1,t(p \

120

ε) = s1 and CM2,t(p\ p2) = ui. Clearly, p is either i p2 if i > 0 or ε if i = 0 (note

that, by the definition of M , if i = 0 then p2 = ε). That is, there exists a mapping

posM : Q→ POS such that for all ground n-tuples t, if p = ps
M ,t , then p must be

posM (s), where s = ((ε,s1),(p2,ui)) and posM (s) is either i p2 if i > 0 or ε if

i = 0. It follows that M is stratified.

Lemma 7.3.2 Suppose M ′ is a c-normalized automaton obtained from stratified

automaton M . Then M ′ is also stratified.

Proof. Suppose M = (Q,s0,δ,σ,color,τ) and M ′ = (Q′,s′0,δ′,σ′,color′,τ′).

Since M is stratified, there exists a mapping posM : Q→ POS such that for all

ground n-tuples t, if p = ps
M ,t is a position of t with some state s in M , then p

must be posM (s). Suppose (s,b,k) is a state of M ′ with some state s in M and

some symbol b ∈ Σ∪{>,⊥} and some relative position k. Suppose further, t is a

ground n-tuple and posM (s) = ps
M ,t .

By condition (2) of Lemma 7.2.1, we obtain a mapping pos′M : Q′→ POS as

follows:

• If s is a skip state in Φc
M and k � ε, then posM ′(s) = posM (s) k = p(s,b,k)

M ′,t .

• In all other cases, posM ′(s) = posM (s) = p(s,b,k)
M ′,t .

It follows that M ′ is also stratified.

121

7.4 Eliminating Colors from Step States

Now we claim that a normalized automaton equivalent to any given stratified

automaton always exists.

Theorem 7.4.1 Suppose M is an arbitrary stratified automaton. Then there is a

normalized automaton M ′ that is equivalent to M .

Proof. If for all the step states s in M , color(s) = /0, then there is nothing to do.

Suppose there exists a step state s in M such that color(s) contains at least

one color c. Since M = (Q,s0,δ,σ,color,τ) is stratified, there exists a mapping

posM : Q→ POS. We define ‖M ‖ to be the pair (p,k), where p is a position and

k is a natural number, defined as follows:

• p is the greatest position for which there exists a color c and a state s such

that posM (s) = p and s ∈Φc
M .

• k is the number of colors c for which there exists a state s such that we have

posM (s) = p and s ∈Φc
M .

Suppose ‖M ‖= (p,k). Then when we do c-normalization on M , we always

choose a color c such that there exists a state s with posM (s) = p and s ∈ Φc
M .

This is called “picking a color with the greatest position” strategy.

Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained from M by repeatedly ap-

plying c-normalization with the “picking a color with the greatest position” strat-

egy. Suppose further, p is the greatest position for which there exists a color c′

and a state s such that pos′M (s) = p and s ∈ Φc′
M ′ . Then there are four cases for

state s:

122

1. s is a step state in the original automaton M .

2. s is a skip state in the original automaton M .

3. s is a step state in M ′ and is a skip state in the original automaton M . That

is, s is transformed into a step state by a c-normalization procedure.

4. s is a skip state in M ′ and not a state in the original automaton M . Then

s is new skip state introduced by the last c-normalization procedure and

color′(s) = {c′} in which c′ is a derived color.

In the first three cases, p is a position of some state in M . In the last case, p

has the form α β with some positions α � ε and β � ε such that the following

conditions hold:

1. There exists a skip state s1 in M with posM (s1) = α that is transformed into

a step state in M ′ with a c-normalization on some automaton M ′′. That is,

s1 is in Φc
M ′′ . Moreover, s is a related successor of s1 in M ′.

2. There exists a step state s2 in M with posM (s2) = q for some position q

and s2 is also in Φc
M ′′ .

3. There is a step state s3 in the original automaton M such that s3 is a related

successor of s2 with posM (s3) = q β and s3 is in Φc′
M ′ .

That is, in the last case, position α is a position of some state in M and β is also

a relative position of some state in M . In summary, since M has finite number of

123

states, we can only choose finite number of positions p to form pairs (p,k) with

respect to the original automaton M .

Now we define a total ordering on the pairs as the following:

• If p1 � p2, or p1 = p2 and k1 > k2, then we say (p1,k1)� (p2,k2).

Since we can only choose finite number of positions p from set POS to form pairs

(p,k) with respect to the original automaton M , no infinite decreasing sequence

can be obtained from the set POS×N with the above ordering.

Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is a c-normalized automaton obtained

from M by using the “picking a color with the greatest position” strategy. By

Lemma 7.3.2, M ′ is also stratified with a mapping posM ′ : Q′→ POS. Suppose

‖ M ‖= (p1,k1) and ‖ M ′ ‖= (p2,k2). By the definition of M ′, we have the

following facts:

1. For all colors c′ that is derived from c, c′ only occurs at states s of M ′ with

p1 � posM ′(s). That is, new colors appearing M ′ but not in M only occur

at states s with p1 � posM ′(s).

2. For all colors c′ appearing in M with c′ 6= c, if c′ occurs at a state s in

M with posM (s) = p, then p1 � p and c′ occurs at a state s′ in M ′ with

posM ′(s) = p.

It follows that p1 � p2. If p1 � p2, then we have (p1,k1) � (p2,k2). If p1 = p2,

then k1 > k2. That is, there is one fewer color c for which there exists a state s

such that posM ′(s) = p1 = p2 and s ∈ Φc
M ′ . This is because such a color c has

been eliminated.

124

Figure 7.5: Normalization of automata

In summary, we always have ‖M ‖�‖M ′ ‖. It follows that repeatedly ap-

plying c-normalization procedure as described above will finally terminate. By

Theorem 7.2.2, the resulting automaton is equivalent to M .

We show an example of normalization of automata in Figure 7.5. The original

automaton M is shown in Figure 7.3. After eliminating color c, we obtain an

automaton shown in the top of Figure 7.5. After eliminating color d, we obtain a

125

normalized automaton shown in the bottom of Figure 7.5. In the sequel, without

special notation, an automaton is always normalized (and stratified).

126

Chapter 8

Grouping and Ungrouping of

Automata

127

8.1 Grouping of Automata

We need the following definitions for the grouping operation of automata.

Suppose µ is a linear m-tuple with free variables xn, . . . ,x1 and tn . . . t1 is an n-tuple,

we denote m-tuple µθ by µ{tn . . . t1}, where θ is a substitution [tn/xn, . . . , t1/x1].

We assume that for linear m-tuple µ and all i, j ∈ [1,n] with i > j, if µ @ pi = xi

and µ @ p j = x j then pi � p j. That is, in m-tuple µ, if n≥ i > j ≥ 1 then variable

xi always occurs on the left of x j. Moreover, we denote position pi by pµ,i (read

as the position of xi in µ).

We say an automaton M ′ is a grouping of automaton M with respect to m-

tuple µ, if the following condition holds:

• a ground m-tuple t ′ is accepted by M ′ if and only if ground n-tuple t is

accepted by M , where t ′ = µ{t}.

Informally, to obtain a grouping of M with respect to µ, we shall construct an

automaton M ′ such that each state in M ′ is a tuple (p,q,s) such that:

• p is a position of linear m-tuple µ,

• s is a state of automaton M ,

• and q is the relative position of s.

The initial state of M ′ is (m,ε,s0) in which s0 is the initial state of M . Suppose

after reading a prefix of a ground m-tuple µ{tn . . . t1}, we reach a state (p,q,s) of

automaton M ′. If µ @ p is a function symbol or a constant, then q is always ε. In

this case, (p,ε,s) is a step state and has only one transition, that is, read the symbol

µ @ p (that is equal to (µ{tn . . . t1}) @ p) and go to the next step. Note that, in this

128

Figure 8.1: Example of grouping

case, no transition is executed on state s by the M component. If p = pµ,i with

some i ∈ [1,n], then a transition is executed on state s with the following cases:

1. If s is a step state, then (p,q,s) is a step state that reads either the first

symbol of ti if q = ε, or the symbol ti @ q if q� ε.

2. If s is a skip state, then (p,q,s) is a skip state that skips either the complete

term ti if q = ε, or the complete sub-term ti �q if q� ε.

That is, the relative position q is meaningful only when p = pµ,i with some

i ∈ [1,n], and in that case, it tells us which symbol of ti is read by s or which

complete sub-term of ti is skipped by s.

129

For example, linear 2-tuple µ = f xy and automaton M are shown in the top of

Figure 8.1 with # f = #g = 1. Then a grouping of M with respect to µ is shown in

the bottom of Figure 8.1.

Formally, given a linear m-tuple µ with free variables xn, . . . ,x1 and an automa-

ton M that is defined to be (Q,s0,δ,σ,color,τ), we define a construction

M ′ = (Q′,s′0,δ′,σ′,color′,τ′)

as follows:

1. s′0 = (m,ε,s0).

2. Q′ is the least subset of POS×POS×Q that contains s′0 and is closed under

skip and step functions, as described in the sequel.

3. (p,ε,s) is a step state in M ′ if µ @ p = b∈ Σ. In that case, color′(p,ε,s) = /0

and δ′((p,ε,s),b′) is:

• not defined if b′ 6= b.

• (f ollow(p,b),ε,s) if b′ = b.

4. (p,q,s) is a step state in M ′ if p = pµ,i with some i ∈ [1,n] and s is a step

state. In that case, color′(p,q,s) = color(s) and δ′((p,ε,s),b) is:

• not defined if δ(s,b) is not defined.

• (p, f ollow(q,b),δ(s,b)) if δ(s,b) is defined and f ollow(q,b)� ε.

• (next(p),ε,δ(s,b)) if δ(s,b) is defined and f ollow(q,b) = ε.

130

5. (p,q,s) is a skip state in M ′ if p = pµ,i with some i ∈ [1,n] and s is a skip

state. In that case, color′(p,q,s) = color(s) and σ′(p,q,s) is:

• (p,next(q),σ(s)) if next(q)� ε.

• (next(p),ε,σ(s)) if next(q) = ε.

6. (ε,ε,s) is a terminal state in M ′ if s is a terminal state. In that case,

τ′(p,q,s) = τ(s).

Suppose µ{t} is a ground m-tuple and p is a position of µ{t}, we define a

function mapµ : POS → POS that maps p to a position of ground n-tuple t as

follows:

• If p� pµ,n, then mapµ(p) = n (if µ has n free variables).

• If p = pµ,i w with some position w and some i ∈ [1,n], then mapµ(p) = i w.

• If next(pµ,i)� p� pµ,i−1 with some i ∈ [2,n], or next(pµ,i)� p with i = 1,

then mapµ(p) = next(i).

The following facts are related to function mapµ.

Lemma 8.1.1 Suppose µ{t} is a ground m-tuple. Then the following conditions

all hold for all positions p of µ{t} with p� ε:

1. If µ @ p = b ∈ Σ then mapµ(f ollow(p,b)) = mapµ(p).

2. If p = pµ,i w with some position w and some i ∈ [1,n] and µ{t}@ p = b,

then mapµ(f ollow(p,b)) = f ollow(mapµ(p),b).

Proof. We consider two cases:

131

1. µ @ p = b ∈ Σ. Condition (2) holds vacuously in this case. There are two

cases:

(a) p � pµ,n. Then mapµ(p) = n (if µ has n free variables). This leaves

two possibilities:

i. µ @ (f ollow(p,b)) ∈ Σ. Then we have mapµ(f ollow(p,b)) =

mapµ(p) = n.

ii. µ @ (f ollow(p,b)) = xn. Then we have mapµ(f ollow(p,b)) = n.

In either case, we have mapµ(f ollow(p,b)) = mapµ(p). Thus, condi-

tion (1) holds in this case.

(b) next(pµ,i)� p� pµ,i−1 with some i ∈ [2,n], or next(pµ,i)� p� ε with

i = 1. Then mapµ(p) = next(i). This leaves three possibilities:

i. µ @ (f ollow(p,b)) ∈ Σ. Then we have mapµ(f ollow(p,b)) =

mapµ(p) = next(i).

ii. µ @ (f ollow(p,b)) = xi−1 (i > 1). Then we have

mapµ(f ollow(p,b)) = i−1 = next(i) = mapµ(p).

iii. f ollow(p,b) = ε. Then i = 1 and

mapµ(f ollow(p,b)) = next(i) = ε = mapµ(p).

In either case, we have mapµ(f ollow(p,b)) = mapµ(p). Thus, condi-

tion (1) holds in this case.

132

2. p = pµ,i w with some position w and some i∈ [1,n] and µ{t}@ p = b. Then

condition (1) holds vacuously in this case. Moreover, we have mapµ(p) =

i w. There are two cases:

(a) f ollow(p,b)� next(pµ,i). This leaves two possibilities:

i. #b = 0. Since p = pµ,i w and f ollow(p,b) = next(p)� next(pµ,i),

next(w) � ε. Thus, we have f ollow(p,b) = pµ,i next(w). Since

mapµ(p) = i w and next(w)� ε, f ollow(mapµ(p),b) = i next(w).

ii. #b > 0. Since p = pµ,i w, we have f ollow(p,b) = pµ,i w #b. Since

mapµ(p) = i w, f ollow(mapµ(p),b) = i w #b.

In either case, if f ollow(p,b) = pµ,i w′ with some position w′ and

some i ∈ [1,n], then

mapµ(f ollow(p,b)) = i w′ = f ollow(mapµ(p),b).

Thus, condition (2) holds in this case.

(b) f ollow(p,b) = next(pµ,i). Then mapµ(f ollow(p,b)) = next(i). Since

p = pµ,i w and f ollow(p,b) = next(pµ,i), #b = 0 and next(w) = ε.

It follows that f ollow(mapµ(p),b) = next(i w) = next(i). That is,

mapµ(f ollow(p,b)) = f ollow(mapµ(p),b) = next(i). Thus, condi-

tion (2) holds in this case.

Following Lemma 8.1.1, if p = pµ,i w with some position w and some i∈ [1,n],

133

then µ{t}� p = t �mapµ(p).

Lemma 8.1.2 Suppose µ{t} is a ground m-tuple and p is a position of µ{t} with

µ{t}@ p = b. Suppose further, p = pµ,i w with some position w and some i∈ [1,n],

and z is a position such that z � w � next(z). Then the following conditions all

hold:

1. f ollow(p,b)� next(pµ,i z) if and only if

f ollow(mapµ(p),b)� next(mapµ(pµ,i z)).

2. f ollow(p,b) = next(pµ,i z) if and only if

f ollow(mapµ(p),b) = next(mapµ(pµ,i z)).

Proof. We consider the following cases:

1. z = ε or next(z) = ε. Then next(pµ,i z) = next(pµ,i) and next(mapµ(pµ,i z)) =

next(i). There are two cases:

(a) #b = 0. Then f ollow(p,b) = next(p) = next(pµ,i w) and

f ollow(mapµ(p),b) = f ollow(i w,b) = next(i w).

This leaves two possibilities:

134

i. next(w)� ε. Then f ollow(p,b) = pµ,i next(w) and

f ollow(mapµ(p),b) = f ollow(i w,b) = i next(w).

Clearly, f ollow(p,b)� next(pµ,i) = next(pµ,i z) and

f ollow(mapµ(p),b)� next(i) = next(mapµ(pµ,i z)).

Thus, condition (2) holds vacuously and condition (1) holds in

this case.

ii. w = ε or next(w) = ε. Then f ollow(p,b) = next(q) and

f ollow(mapµ(p),b) = f ollow(i w,b) = next(i).

Clearly, f ollow(p,b) = next(pµ,i) = next(pµ,i z) and

f ollow(mapµ(p),b) = next(i) = next(mapµ(pµ,i z)).

Thus, condition (1) holds vacuously and condition (2) holds in

this case.

(b) #b > 0. Then f ollow(p,b) = pµ,i w #b � next(pµ,i) = next(pµ,i z) and

f ollow(mapµ(p),b) = i w #b � next(mapµ(pµ,i z)).

135

Thus, condition (2) holds vacuously and condition (1) holds in this

case.

2. next(z)� ε. Then next(pµ,i z) = pµ,i next(z) and next(i z) = i next(z). Since

z�w� next(z)� ε, by Lemma 5.4.2, next(w)� next(z)� ε. There are two

cases:

(a) #b = 0. Then f ollow(p,b) = next(pµ,i w) and

f ollow(mapµ(p),b) = f ollow(i w,b) = next(i w).

Since next(w)� next(z)� ε, f ollow(p,b) = pµ,i next(w) and

f ollow(mapµ(p),b) = f ollow(i w,b) = i next(w).

If next(w)� next(z), then

f ollow(p,b)� pµ,i next(z) = next(pµ,i z)

and

f ollow(mapµ(p),b)� i next(z) = next(mapµ(pµ,i z)).

Thus, condition (2) holds vacuously and condition (1) holds in this

case. If next(w) = next(z), then we have f ollow(p,b) = pµ,i next(z) =

136

next(pµ,i z) and

f ollow(mapµ(p),b) = i next(z) = next(mapµ(pµ,i z)).

Thus, condition (1) holds vacuously and condition (2) holds in this

case.

(b) #b > 0. Then f ollow(p,b) = pµ,i w #b and

f ollow(mapµ(p),b) = i w #b.

Since w� next(z), we have f ollow(p,b)� pµ,i next(z) = next(pµ,i z)

and f ollow(mapµ(p),b)� i next(z) = next(mapµ(pµ,i z)). Thus, con-

dition (2) holds vacuously and condition (1) holds in this case.

Now we claim the following facts about the construction mentioned above.

Lemma 8.1.3 Suppose µ is a linear m-tuple with free variables xn, . . . ,x1 and

M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by applying the above construction on

automaton M , where M = (Q,s0,δ,σ,color,τ). Suppose µ{t} is a ground m-

tuple in which t is a ground n-tuple. Then the following condition holds for all

positions p of ground m-tuple µ{t}:

• CM ′,µ{t}(p) is defined and is equal to a state (α,β,s) with some positions

α and β if and only if CM ,t(mapµ(p)) is defined and is equal to s. Moreover,

α β = p(α,β,s)
M ′,µ{t} and mapµ(α β) = ps

M ,t .

137

Proof. By induction on positions p of ground m-tuple µ{t}. If p = m, then

CM ′,µ{t}(m) = s′0 = (m,ε,s0). Moreover, we have mapµ(m) = n and CM ,t(n) = s0.

The stated condition holds in this case.

Suppose p � ε is a position of µ{t} such that the stated condition holds and

µ{t}@ p = b with some symbol b ∈ Σ. We show that the stated condition also

holds for position f ollow(p,b) of µ{t}. Suppose CM ,µ{t}(p) = (α,β,s) with some

positions α and β. By induction, CM ,t(mapµ(p)) = s and α β = p(α,β,s)
M ′,µ{t} and

mapµ(α β) = ps
M ,t . We consider the following cases:

1. (α,β,s) is a step state. Then there are two cases:

(a) µ @ α = b ∈ Σ. By the definition of M ′, β = ε. Since (α,ε,s) is

a step state, by Lemma 5.5.1, p = α = p(α,ε,s)
M ′,µ{t}. That is, µ @ p =

b. It follows that CM ′,µ{t}(f ollow(p,b)) is defined and is equal to

(f ollow(p,b),ε,s). Since µ @ p ∈ Σ, by condition (1) of Lemma

8.1.1, mapµ(f ollow(p,b)) = mapµ(p). Since CM ,t(mapµ(p)) = s,

CM ,t(mapµ(f ollow(p,b))) = s. Now f ollow(p,b) = p(f ollow(p,b),ε,s)
M ′,µ{t} .

Since mapµ(α β) = mapµ(p) = ps
M ,t and

mapµ(f ollow(p,b)) = mapµ(p),

mapµ(f ollow(p,b)) = ps
M ,t . Clearly, the stated condition also holds

in this case.

(b) α = pµ,i with some i ∈ [1,n] and s is a step state. Since (α,β,s) is

a step state, by Lemma 5.5.1, p = α β = p(α,β,s)
M ′,µ{t}. Then we have

138

CM ′,µ{t}(f ollow(p,b)) is defined if and only if δ(s,b) is defined. Since

CM ,t(mapµ(p)) = s, CM ,t(f ollow(mapµ(p),b)) is defined if and only

if δ(s,b) is defined. Since p = αβ with α = pµ,i, by condition (2) of

Lemma 8.1.1,

f ollow(mapµ(p),b) = mapµ(f ollow(p,b)).

Thus, CM ,t(mapµ(f ollow(p,b)) is defined if and only if δ(s,b) is de-

fined. It follows that CM ′,µ{t}(f ollow(p,b)) is defined if and only if

CM ,t(mapµ(f ollow(p,b)) is defined. Suppose δ(s,b) is defined. This

leaves two possibilities:

i. f ollow(β,b) � ε. Then we have f ollow(p,b) = α f ollow(β,b)

and CM ′,µ{t}(f ollow(p,b)) = (α, f ollow(β,b),δ(s,b)).

ii. f ollow(β,b) = ε. Then f ollow(p,b) = next(α) and

CM ′,µ{t}(f ollow(p,b)) = (next(α),ε,δ(s,b)).

In either case, we have

CM ,t(mapµ(f ollow(p,b))) = CM ,t(f ollow(mapµ(p),b)) = δ(s,b).

Now f ollow(p,b) = α′β′= p(α′,β′,δ(s,b))
M ′,µ{t} with some positions α′ and β′.

Moreover, mapµ(f ollow(p,b)) = pδ(s,b)
M ,t . Thus, the stated condition

holds in this case.

139

2. (α,β,s) is a skip state. Then by the definition of M ′, α = pµ,i with some

i ∈ [1,n] and s is a skip state. In this case, CM ′,µ{t}(f ollow(p,b)) and

CM ,t(mapµ(f ollow(p,b)) are defined. There are two cases:

(a) f ollow(p,b) � next(α β). Then CM ′,µ{t}(f ollow(p,b)) = (α,β,s).

Since f ollow(p,b)� next(α β), by condition (1) of Lemma 8.1.2,

f ollow(mapµ(p),b)� next(mapµ(α β)).

Since CM ,t(mapµ(p)) = s,

CM ,t(f ollow(mapµ(p),b)) = s.

Thus, the stated condition holds in this case.

(b) f ollow(p,b) = next(α β). Then

CM ′,µ{t}(f ollow(p,b)) = σ
′(α,β,s) = s′,

where s′ is either (α,next(β),σ(s)) provided next(β)� ε, or

(next(α),ε,σ(s))

provided next(β) = ε. Since f ollow(p,b) = next(α β), by condition

140

(2) of Lemma 8.1.2,

f ollow(mapµ(p),b) = next(mapµ(α β)).

Since CM ,t(mapµ(p)) = s,

CM ,t(f ollow(mapµ(p),b)) = σ(s).

Moreover, f ollow(p,b) = ps′
M ′,µ{t} and f ollow(mapµ(p),b) = pσ(s)

M ,t .

By condition (2) of Lemma 8.1.1,

mapµ(f ollow(p,b)) = f ollow(mapµ(p),b) = pσ(s)
M ,t .

Thus, the stated condition holds in this case.

Lemma 8.1.4 Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by applying the

above construction on automaton M = (Q,s0,δ,σ,color,τ). Suppose further, t is

a ground n-tuple such that CM ,t is a computation of M on t. Then t |=M c if and

only if µ{t} |=M ′ c.

Proof. Suppose t |=M c. Then for all positions p and q of t such that p =

ps1
M ,t � ε and q = ps2

M ,t � ε and c occurs at states s1 and s2, we have t � p = t �q.

Since CM ,t is a computation of M on t, by Lemma 8.1.3 and the definition of

M ′, c occurs at the state CM ′,µ{t}(p′) = s′1 = (α1,β1,s1) with some positions α1

141

and β1 such that α1 = pµ,i with some i ∈ [1,n], and on the state CM ′,µ{t}(q
′) =

s′2 = (α2,β2,s2) with some positions α2 and β2 such that α2 = pµ,i with some

i∈ [1,n]. Again, by Lemma 8.1.3, α1 β1 = ps′1
M ′,µ{t} and mapµ(α1 β1) = p = ps1

M ,t .

Similarly, α2 β2 = ps′2
M ′,µ{t} and mapµ(α2 β2) = q = ps2

M ,t . Since µ{t} �α1 β1 =

t � p and µ{t}�α2 β2 = t �q, we have µ{t}�α1 β1 = µ{t}�α2 β2. It follows that

µ{t} |=M ′ c.

Conversely, suppose µ{t} |=M ′ c. Then for all positions p and q of µ{t} such

that p = ps′1
M ′,µ{t}� ε and q = ps′2

M ′,µ{t}� ε and c occurs at states s′1 and s′2, we have

µ{t}� p = µ{t}�q. By the definition of M ′, c occurs at the state s′1 = (α1,β1,s1)

with some positions α1 and β1 such that α1 = pµ,i with some i ∈ [1,n], and on

the state s′2 = (α2,β2,s2) with some positions α2 and β2 such that α2 = pµ,i with

some i∈ [1,n]. Moreover, c also occurs at states s1 and s2 of M . By Lemma 8.1.3,

p = ps′1
M ′,µ{t} and mapµ(p) = ps1

M ,t . Similarly, q = ps′2
M ′,µ{t} and mapµ(q) = ps2

M ,t .

Since µ{t} � p = t �mapµ(p) and µ{t} � q = t �mapµ(q), we have t �mapµ(p) =

t �mapµ(q). It follows that t |=M c.

Theorem 8.1.5 Suppose µ is a linear m-tuple with free variables xn, . . . ,x1 and

M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by applying the above construction on

automaton M , where M = (Q,s0,δ,σ,color,τ). Then M ′ is a grouping of M

with respect to µ.

Proof. Suppose t is a ground n-tuple that is accepted by M . Then CM ,t(ε) is

a terminal state s and t |=M τ(s). By Lemma 8.1.3, CM ′,µ{t}(ε) is defined and

is equal to a terminal state (ε,ε,s). Thus, CM ′,µ{t}(ε) is terminating. By the

142

definition of M ′, τ′(ε,ε,s) = τ(s). Following Lemma 8.1.4, we have µ{t} |=M ′

τ′(ε,ε,s). Thus, µ{t} is also accepted by M ′.

Conversely, suppose µ{t} is a ground m-tuple that is accepted by M ′. Then

CM ′,µ{t}(ε) is a terminal state (ε,ε,s) and µ{t} |=M ′ τ′(ε,ε,s). By Lemma 8.1.3,

CM ,t(ε) is defined and is equal to terminal state s. Thus, CM ,t(ε) is terminating.

By the definition of M , τ(s) = τ′(ε,ε,s). Following Lemma 8.1.4, we have t |=M

τ(s). Thus, t is also accepted by M .

8.2 Ungrouping of Automata

Suppose µ is a linear m-tuple as considered in the definition of grouping of au-

tomata. We say an automaton M ′ is an ungrouping of automaton M with respect

to m-tuple µ if the following condition holds:

• a ground n-tuple t ′ is accepted by M ′ if and only if ground m-tuple t is

accepted by M , where t = µ{t ′}.

For example, linear 2-tuple µ = f xy and automaton M are shown in the top of

Figure 8.2 with # f = #g = 1. Then an ungrouping of M with respect to µ is shown

in the bottom of Figure 8.2.

Suppose p is a position of linear m-tuple µ such that p� pµ,n, or next(pµ,i)�

p � pµ,i−1 with some i ∈ (1,n], or next(pµ,1) � p � ε. Then we say p is a non-

variable position of µ.

To obtain an ungrouping of M with respect to µ, we first construct a strati-

fied automaton M1 that is a conjunction of M µ and M , where M µ is a stratified

143

Figure 8.2: Example of ungrouping

automaton for m-tuple µ and use M1 as the original structure to construct an un-

grouping of M . By doing so, we guarantee that M1 is an automaton that accepts

ground m-tuples that are substitution instances of µ. By the definition of M µ, M µ

contains only one path from the root to the terminal state and for all the states

p� ε in M µ, p is a position of µ with the following properties:

• If p is non-variable position of µ, then p is a step state. Otherwise p is a

skip state.

We assume that M1 does not contain any non-terminal state s such that there

is no terminal state reachable from s. If there exists such state s then we can safely

remove it since it does not lead to any terminal state. If M1 does not have any

state, then an ungrouping of M with respect to µ does not exist. By the definition

144

of conjunction of automata, there is a mapping pos1 that maps all the states s in

M1 to a position pos1(s) with the following properties:

1. If pos1(s)� pµ,n then there is an unique path in M1 from s to a state s′ with

pos1(s′) = pµ,n.

2. If next(pµ,i)� pos1(s)� pµ,i−1 with some i ∈ (1,n], then there is an unique

path in M1 from s to a state s′ such that pos1(s′) = pµ,i−1.

3. If next(pµ,1) � pos1(s) then there is an unique path in M1 from s to a ter-

minal state s′ with pos1(s′) = ε.

In the above cases, the states on the path from s to s′ (excluding s′) are all step

states.

We also assume that M1 = (Q1,s0
1,δ1,σ1,color1,τ1) is normalized. This re-

quirement is very important. Consider the example shown in Figure 8.3. Suppose

we have a linear 2-tuple µ = f xy and an automaton A that is shown in Figure 8.3

with # f = 1. In that figure, s1 is a step state with color1(s1) = {r}. If we do the

ungrouping by skipping the states that correspond to the function symbols or the

constants in µ, then we would obtain an automaton B in Figure 8.3. This is not

correct, according to the equality constraint on states s1 and s3, state s3 should

skip a ground substitution instance of term f x instead of an arbitrary ground term.

A correct ungrouping automaton C is shown in Figure 8.3. If M1 is not normal-

ized, then by using normalization operation mentioned in Theorem 7.4.1, we can

always arrange that M1 is normalized.

145

Figure 8.3: Non-empty color sets on step states cause problems in ungrouping

Given a ground m-tuple t = µ{t ′} as the input, in order to read ground n-tuple

t ′ from t (skipping other parts from t), we have the following choices when we are

at a state s of stratified automaton M1:

1. If pos1(s) is a non-variable position of µ, then s is a step state and the current

input b is a function symbol or a constant appearing in µ. In this case, b is

not a symbol in t ′. Thus, we skip symbol b and jump to the next state δ1(s,b)

to check the next input. By the assumption about M1 (every non-terminal

state leads to a terminal state), δ1(s,b) is always defined.

146

2. If pµ,i � pos1(s)� next(pµ,i) with some i ∈ [1,m], then b is a symbol in t ′.

In this case, we read b or skip b as we do in M1.

3. If pos1(s) = ε, then s is a terminal state. In this case, we are done.

Suppose M1 = (Q1,s0
1,δ1,σ1,color1,τ1). For all states s in Q1, we define a

function jump : Q1→ Q1 to handle the above cases as follows:

1. If pos1(s) � ε is not a non-variable position of µ or pos1(s) = ε, then

jump(s) = s.

2. If p = pos1(s) � ε is a non-variable position of µ and µ @ p = b, then

jump(s) = jump(δ1(s,b)). Again, by the assumption about M1 (every non-

terminal state leads to a terminal state), δ1(s,b) is always defined.

Formally, given a stratified and normalized automaton M1 such that:

1. M1 is a conjunction of M µ and M , where M µ is an automaton for linear

m-tuple µ.

2. and M1 is defined to be (Q1,s0
1,δ1,σ1,color1,τ1) with position assignment

pos1,

we construct M ′ = (Q′,s′0,δ′,σ′,color′,τ′) as follows:

1. s′0 = jump(s0
1).

2. Q′ is the least subset of Q1 that contains s′0 and is closed under skip and

step functions, as described in the sequel.

147

3. For all state in Q′, color′(s) = color1(s).

4. s is a step state in M ′ if s is a step state in M1. In that case, δ′(s,b) is

jump(δ1(s,b)).

5. s is a skip state in M ′ if s is a skip state in M1. In that case, σ′(s) =

jump(σ1(s)).

6. s is a terminal state in M ′ if s is a terminal state in M1. In that case, τ′(s) =

τ1(s).

We claim the following facts about the above construction.

Lemma 8.2.1 Suppose stratified and normalized automaton M1 is a conjunction

of M µ and M , where M µ is an automaton for linear m-tuple µ, and M1 is defined

to be (Q1,s0
1,δ1,σ1,color1,τ1). Suppose further, M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is

obtained by applying the above construction on automaton M1. Then M ′ is also

stratified with a position assignment pos′ and for all the states s of M ′ that are

reachable from s′0, pos′(s) = mapµ(pos1(s)).

Proof. Since Q′ is a subset of Q, it is easy to verify that M ′ is also stratified with

a position assignment pos′ by following the definition of M ′. By the definition

of M ′, for all states s in M ′, s = jump(s′) with some state s′ in M1. By the

definition of jump, if s is a non-terminal state in M1 then pos1(s) is not a non-

variable position of µ, if s is a terminal state in M1, then pos1(s) = ε. In either

case, we have pos′(s) = mapµ(pos1(s)) for all the states s in M ′ starting from

pos′(s′0) = mapµ(pos1(jump(s0))) = pµ,n.

148

Lemma 8.2.2 Suppose stratified and normalized automaton M1 is a conjunction

of M µ and M , where M µ is an automaton for linear m-tuple µ, and M1 is defined

to be (Q1,s0
1,δ1,σ1,color1,τ1). Suppose further, M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is

obtained by applying the above construction on automaton M1. Then the follow-

ing condition holds for all positions p of a ground n-tuple t:

• CM ′,t(p) is defined and is equal to a state s if and only if CM1,µ{t}(p′) is

defined and is equal to s, where p′ is the least position of µ{t} with p =

mapµ(p′).

Proof. By induction on positions p of ground n-tuple t. If p = n, then we have

CM ′,t(n) = s′0 = jump(s0
1) = CM1,µ{t}(pµ,n). Clearly, the stated condition holds in

this case.

Suppose p � ε is a position of t such that the stated condition holds and

t @ p = b with some symbol b ∈ Σ. We show that the stated condition also holds

for position f ollow(p,b) of t. Suppose CM ′,t(p) = s. By induction, CM1,µ{t}(p′) =

s and p′ is the least position of µ{t} with p = mapµ(p′). Since p � ε, s is a non-

terminal state in M ′ and p = i q with some i ∈ [1,m] and some position q. By

Lemma 8.2.1, p′ = pµ,i q. We consider the following cases:

1. f ollow(p,b)� next(i). By condition (1) of Lemma 8.1.2,

f ollow(p′,b)� next(pµ,i).

In this case, after state s reads or skips symbol b, the complete term t � i has

not been read or skipped in automaton M ′, and the complete term µ{t}� pµ,i

149

has not been read or skipped in automaton M1. By the definition of M ′ and

the definition of jump, CM ′,t(f ollow(p,b)) is defined and is equal to a state

s′ if and only if CM1,µ{t}(f ollow(p′,b)) is defined and is equal to s′. It

follows that the stated condition holds in this case.

2. f ollow(p,b) = next(i). By condition (2) of Lemma 8.1.2,

f ollow(p′,b) = next(pµ,i).

In this case, after state s reads or skips symbol b, the complete term t � i has

been read or skipped in automaton M ′, and the complete term µ{t} � pµ,i

has been read or skipped in automaton M1. Thus, CM ′,t(next(i)) is defined

and is equal to a state s′′ = jump(s′) if and only if CM1,µ{t}(next(pµ,i)) is

defined and is equal to s′. Moreover, CM1,µ{t}(next(pµ,i)) is defined and is

equal to s′ if and only if CM1,µ{t}(p′′) is defined and is equal to s′′, where p′′

is either pµ,i−1 (i > 1) or ε (i = 1). It follows that CM ′,t(next(i)) is defined

and is equal to s′′ if and only if CM1,µ{t}(p′′) is defined and is equal to s′′,

where p′′ is either pµ,i−1 (i > 1) or ε (i = 1). Clearly, the stated condition

holds in this case.

Lemma 8.2.3 Suppose stratified and normalized automaton M1 is a conjunction

of M µ and M , where M µ is an automaton for linear m-tuple µ, and M1 is defined

to be (Q1,s0
1,δ1,σ1,color1,τ1). Suppose further, M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is

150

obtained by applying the above construction on automaton M1 and t is a ground

n-tuple such that CM ′,t is a computation of M ′ on t. Then t |=M ′ c if and only if

µ{t} |=M1
c.

Proof. Suppose t |=M ′ c. Then for all positions p and q of t such that p =

ps1
M ′,t � ε and q = ps2

M ′,t � ε and c occurs at states s1 and s2 of M ′, we have

t � p = t � q. By the definition of M ′, c also occurs at the states s1 and s2 of

M1. By Lemma 8.2.2, mapµ(ps1
M1,µ{t}

) = ps1
M ′,t = p and mapµ(ps2

M1,µ{t}
) = ps2

M ′,t =

q. Thus, µ{t} � ps1
M1,µ{t}

= t � p and µ{t} � ps2
M1,µ{t}

= t � q. Clearly, we have

µ{t}� ps1
M1,µ{t}

= µ{t}� ps2
M1,µ{t}

. It follows that µ{t} |=M1
c.

Conversely, suppose µ{t} |=M1
c. Then for all positions p and q of µ{t} such

that p = ps1
M1,µ{t}

� ε and q = ps2
M1,µ{t}

� ε and c occurs at states s1 and s2 of M1,

we have µ{t}� p = µ{t}�q. Since M1 is normalized, both s1 and s2 are skip states.

Thus, p = pµ,i w1 with some i ∈ [1,m] and q = pµ, j w2 with some j ∈ [1,m]. It

follows that jump(s1) = s1 and jump(s2) = s2. Thus, by the definition of M ′,

c also occurs at the states s1 and s2 of M ′. By Lemma 8.2.2, mapµ(ps1
M1,µ{t}

) =

mapµ(p) = ps1
M ′,t and mapµ(ps2

M1,µ{t}
) = mapµ(q) = ps2

M ′,t . Thus, µ{t} � p = t �

ps1
M ′,t and µ{t}�q = t � ps2

M ′,t . Clearly, we have t � ps1
M ′,t = t � ps2

M ′,t . It follows that

t |=M ′ c.

Theorem 8.2.4 Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by applying

the above construction on automaton M1, where M1 is defined to be

(Q1,s0
1,δ1,σ1,color1,τ1)

151

and has the following properties:

1. M1 is a conjunction of M µ and M , where M µ is an automaton for linear

m-tuple µ.

2. and M1 is defined to be (Q1,s0
1,δ1,σ1,color1,τ1) with position assignment

pos1,

Then M ′ is an ungrouping of M1 with respect to µ.

Proof. Suppose t is a ground n-tuple that is accepted by M ′. Then CM ′,t(ε)

is a terminal state s of M ′ and t |=M ′ τ′(s). By Lemma 8.2.2, CM1,µ{t}(ε) is

defined and is equal to s since ε is the least position of µ{t} with mapµ(ε) = ε.

By the definition of M ′, s is also a terminal state of M1. Thus, CM1,µ{t}(ε) is

terminating. By the definition of M ′, τ′(s) = τ1(s). Following Lemma 8.2.3, we

have µ{t} |=M1
τ1(s). Thus, µ{t} is accepted by M1.

Conversely, suppose µ{t} is a ground m-tuple that is accepted by M1. Then

CM1,µ{t}(ε) is a terminal state s of M1 and t |=M1
τ1(s). By Lemma 8.2.2, CM ′,t(ε)

is defined and is equal to s since ε is the least position of µ{t} with mapµ(ε) =

ε. By the definition of M ′, s is also a terminal state of M ′. Thus, CM ′,t(ε) is

terminating. By the definition of M ′, τ′(s) = τ1(s). Following Lemma 8.2.3, we

have t |=M ′ τ′(s). It follows that t is accepted by M ′.

152

Chapter 9

Expansion and Projection of

Automata

153

9.1 Expansion of Automata

We say an automaton M ′ is an expansion of automaton M with respect to

integer m if the following condition holds:

• a ground m-tuple tm . . . t1 is accepted by M ′ if and only if ground n-tuple

tn . . . t1 is accepted by M (m > n).

To obtain an expansion of M with respect to m, we simply create a sequence

of (m− n) skip states such that each one of them skips a complete sub-terms

and the last skip state reaches the initial state of M . Given an automaton M

that is defined to be a tuple (Q,s0,δ,σ,color,τ), we define a construction M ′ =

(Q′,s′0,δ′,σ′,color′,τ′) as follows:

1. Q′ = Q∪{sm, . . . ,sn+1}.

2. s′0 = sm.

3. For all i in [n+1,m], si is a skip state in Q′ and σ′(si) = si−1 and color′(si) =

/0. In addition, σ′(sn+1) = s0.

4. s is a skip state in Q′ if s is a skip state in Q. In that case, σ′(s) = σ(s) and

color′(s) = color(s).

5. s is a step state in Q′ if s is a step state in Q. In that case, if δ(s,b) is

defined for some symbol b ∈ Σ, then δ′(s,b) = δ(s,b), otherwise δ′(s,b) is

not defined. In addition, color′(s) = color(s).

154

6. s is a terminal state in Q′ if s is a terminal state in Q. In that case, τ′(s) =

τ(s).

We claim the following facts about the above construction.

Lemma 9.1.1 Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is an automaton obtained

by applying the above construction on an automaton M , where

M = (Q,s0,δ,σ,color,τ)

and Q′ = Q∪{sm, . . . ,sn+1} (n < m). Suppose further, t ′ = tm . . . t1 is a ground

m-tuple. Then the following conditions all hold for all positions p of t ′:

1. If p = i α with some i ∈ [n+1,m], then CM ′,t ′(p) is defined and is equal to

si.

2. If n � p, then CM ′,t ′(p) is defined and is equal to state s if and only if

CM ,tn...t1(p) is defined and is equal to s.

Proof. We verify this by induction on all positions p of t ′ that the stated condi-

tions all hold for p. Let t = tn . . . t1. Suppose p = m. Then p� n. By the definition

of M ′, CM ′,t ′(p) = sm. It follows that condition (1) holds and condition (2) holds

vacuously in this case.

Suppose p is a position of t ′ such that p� ε and the stated conditions all hold

for p and t ′ @ p = b. We show that the stated conditions all hold for position

f ollow(p,b) of t ′. We consider the following cases:

155

1. p = i α with some i ∈ [n + 1,m]. By condition (1) of induction hypothesis,

CM ′,t ′(p) = si. By the definition of M ′, si is a skip state. In this case,

CM ′,t ′(f ollow(p,b))

is always defined. Suppose p′ is the greatest position of t ′ with CM ′,t ′(p′) =

si. By condition (1) of the induction hypothesis, p′ = i. There are two

cases:

• f ollow(p,b)� next(p′). Then CM ′,t ′(f ollow(p,b)) = si. Since

f ollow(p,b)� next(p′)

and p′ = i, we have f ollow(p,b) � next(i). Thus, f ollow(p,b) = i β

with some position β. It follows that condition (1) holds and condition

(2) holds vacuously in this case.

• f ollow(p,b) = next(p′) = next(i). Then

CM ′,t ′(f ollow(p,b)) = σ
′(si).

This leaves two possibilities:

(a) i > n+1. Then f ollow(p,b) = i−1 and σ′(si) = si−1. It follows

that condition (1) holds and condition (2) holds vacuously in this

case.

(b) i = n + 1. Then f ollow(p,b) = n and σ′(si) = s0. In this case,

156

CM ,t(f ollow(p,b)) = s0. It follows that condition (1) holds vac-

uously and condition (2) holds in this case.

2. n� p. Suppose CM ′,t ′(p) = s. By condition (2) of the induction hypothesis,

we have CM ,t(p) = s. In this case, n � f ollow(p,b) and s is a state in M .

Thus, by the definition of M ′, CM ′,t ′(f ollow(p,b)) is defined and is equal

to s′ if and only if CM ,t(f ollow(p,b)) is defined and is equal to s′, where

s′ is either s or a state that is directly reachable from s via a step or a skip

function. It follows that condition (1) holds vacuously and condition (2)

holds in this case.

Lemma 9.1.2 Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is an automaton obtained

by applying the above construction on an automaton M , where

M = (Q,s0,δ,σ,color,τ)

and Q′ = Q∪{sm, . . . ,sn+1} (n < m). Suppose further, c is a color and tm . . . t1

is a ground m-tuple such that CM ′,tm...t1 is a computation of M ′ on tm . . . t1. Then

tm . . . t1 |=M ′ c if and only if tn . . . t1 |=M c.

Proof. Suppose tm . . . t1 |=M ′ c. Then for all positions p and q of tm . . . t1 such

that p = ps1
M ′,tm...t1

� ε and q = ps2
M ′,tm...t1

� ε and c occurs at states s1 and s2 of

M ′, we have tm . . . t1 � p = tm . . . t1 � q. By the definition of M ′, c also occurs

at the states s1 and s2 of M . By Lemma 9.1.1, n � p and n � q. It is easy to

157

verify that p = ps1
M ,tn...t1

and q = ps2
M ,tn...t1

. Thus, tm . . . t1 � p = tn . . . t1 � p and

tm . . .1 � q = tn . . . t1 � q. Clearly, we have tn . . . t1 � p = tn . . . t1 � q. It follows that

tn . . . t1 |=M c.

Conversely, suppose tn . . . t1 |=M c. Then for all positions p and q of tn . . . t1

such that p = ps1
M ,tn...t1

� ε and q = ps2
M ,tn...t1

� ε and c occurs at states s1 and s2

of M ′, we have tn . . . t1 � p = tn . . . t1 � q. By the definition of M ′, c also occurs

at the states s1 and s2 of M ′. It is easy to verify that p = ps1
M ′,tm...t1

and q =

ps2
M ′,tm...t1

. Thus, tm . . . t1 � p = tn . . . t1 � p and tm . . .1 � q = tn . . . t1 � q. Clearly, we

have tm . . . t1 � p = tm . . . t1 �q. It follows that tm . . . t1 |=M ′ c.

Theorem 9.1.3 Suppose automaton M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by

applying the above construction on automaton M that is defined to be

(Q,s0,δ,σ,color,τ).

Then M ′ is an expansion of M with respect to m.

Proof. Let n be an integer that is less than m. Suppose ground m-tuple tm . . . t1

is accepted M ′. Then CM ′,tm...t1(ε) = s and s is a terminal state and tm . . . t1 |=M ′

τ′(s). By condition (2) of Lemma 9.1.1, we have CM ,tn...t1(ε) = s. By the definition

of M ′, s is a terminal state in M and τ(s) = τ′(s). Thus, CM ,tn...t1(ε) is terminating.

Following 9.1.2, we have tn . . . t1 |=M τ(s). It follows that ground n-tuple tn . . . t1

is accepted by M .

Conversely, suppose ground n-tuple tn . . . t1 is accepted M . Then we have

CM ,tn...t1(ε) = s and s is a terminal state and tn . . . t1 |=M τ(s). Suppose tm, . . . , tn+1

158

are arbitrary (m−n) ground sub-terms. By condition (2) of Lemma 9.1.1,

CM ′,tm...t1(ε) = CM ,t(ε) = s.

By the definition of M ′, s is a terminal state in M ′ and τ′(s) = τ(s). Thus,

CM ′,tm...t1(ε) is terminating. Following Lemma 9.1.2, we have tm . . . t1 |=M ′ τ′(s).

It follows that ground m-tuple tm . . . t1 is accepted by M ′.

9.2 Projection of Automata

We say an automaton M ′ is a projection of automaton M if the following

condition holds:

• a ground (n−1)-tuple tn . . . t2 is accepted by M ′ if and only if there exists a

term t1 such that ground n-tuple tn . . . t1 is accepted by M .

We can define a projection construction assuming that

M = (Q,s0,δ,σ,color,τ)

is stratified. In this case, there is a mapping pos that maps a state in Q to a position.

Suppose s is a state in M . We denote the set of all the paths that start from s and

end at a terminal state in M by ∆s. Suppose ξ is such a path, we denote the

terminal state on ξ by term(ξ). We define an equivalence relation≡(ξ,C) on colors

with respect to a path ξ ∈ ∆s and a set C of colors as follows:

159

• We say c1 ≡(ξ,C) c2 if:

1. both c1 and c2 occur at some non-terminal state s1 in ξ,

2. and both c1 and c2 are in the same set C of τ(term(ξ)).

We denote the equivalence class of color c under the above equivalence relation

≡(ξ,C) by Ec
(ξ,C). For each class Ec

(ξ,C), we associate a color with it and denote that

color by υc
(ξ,C). Moreover, we denote the set {υc

(ξ,C) | c ∈C} by Cξ.

Informally, to perform a projection operation on M , we use the following

naive method:

• For all the states s such that pos(s)� 1, we build the new color set color′(s)

of s such that for each color c in color(s) and for each successor s′ of s with

pos(s′) = 1 and for each path ξ ∈ ∆s′ and for each set C in τ(term(ξ)) that

contains c, we add the color υc
(ξ,C) in color′(s).

• For all the states s in M such that pos(s) = 1, we change s to a terminal

state and build new acceptance condition τ′(s) such that for each path ξ that

is in ∆s and for each set C in τ(term(ξ)), we add the set Cξ to τ′(s).

Now we explain the usefulness of equivalence class Ec
(ξ,C) and the associated

color υc
(ξ,C). We consider an automaton A shown in Figure 9.1. In that figure,

if colors r and g are satisfied by the input, then the ground sub-terms skipped at

states s1, s2 and s3 must be identical. If we remove state s4 and turn state s3 into

a terminal state simply with τ′(s3) = τ(s4), then we would obtain an automaton

B in Figure 9.1. Clearly, the resulting automaton is not correct since the equality

constraint on states s1 and s2 is lost. To solve this problem, we should treat colors

160

Figure 9.1: Colors occur at the same state

r and g as a single color since they occur at the same state and also appear in the

same set of an acceptance condition.

We consider another example. An automaton A is shown in Figure 9.2 with

f = #g = 2. State s3 will be changed into a terminal state in projection operation.

We also change the colors on all the states to obtain an automaton B as shown in

Figure 9.2. Note that, in projection operation, we do not perform any changes on

the successors of state s3 since those states will be removed. Color r1 stands for

υr
(ξ1,C′)

and b1 stands for υb
(ξ1,C′)

and w2 is for υr
(ξ2,C′)

(υb
(ξ2,C′)

), where C′ = {r,b}

and ξ1 = s3s4s6s7 and ξ2 = s3s5s6s7. After performing projection operation, we

obtain an automaton C in Figure 9.2, which is indeed a projection of the original

automaton.

To guarantee that the naive method is correct, we also assume that M is nor-

malized. This requirement is very important. We consider an automaton A shown

161

Figure 9.2: Changing colors in a projection operation

in Figure 9.3 with # f = 1. In that figure, color(s3) = {r} for step state s3. If we

remove states s4 and s5 and turn state s3 into a terminal state (with τ′(s3) = τ(s4))

as described in the naive method, then we would obtain an automaton B in Figure

9.3. This is not correct, according to the equality constraint on states s1, s2, and

s3, states s1 and s2 should skip a ground substitution instance of term f x instead

of an arbitrary ground term. A correct projection automaton C is shown in Figure

9.3. By Theorem 7.4.1, we can always arrange that M is normalized.

162

Figure 9.3: Non-empty color sets on step states cause problems in projection

Formally, suppose M = (Q,s0,δ,σ,color,τ) is a normalized automaton with

a position assignment pos. We construct M ′, which is a tuple

(Q′,s′0,δ′,σ′,color′,τ′),

as follows:

1. s′0 = s0.

2. Q′ is the least subset of Q that contains s′0 and is closed under skip and step

functions, as described in the sequel.

163

3. For all non-terminal states s in Q′, color′(s) =Cs1∪ . . .∪Csm , where {s1, . . . ,

sm} is the set of all the successors s′ of s in M with pos(s′) = 1 and for all

i ∈ [1,m], Csi is

{υc
(ξ,C) | ξ ∈ ∆si and C ∈ τ(term(ξ)) and c ∈ color(s)∩C}.

4. s is a step state in M ′ if pos(s)� 1 and s is a step state in M . In that case,

δ′(s,b) is:

• not defined if δ(s,b) is not defined.

• δ(s,b) if δ(s,b) is defined.

5. s is a skip state in M ′ if pos(s)� 1 and s is a skip state in M . In that case,

σ′(s) = σ1(s).

6. s is a terminal state in M ′ if s is a state in M with pos(s) = 1. Moreover,

τ′(s) = Ss1 ∪ . . .∪Ssm , where s1, . . . ,sm are all the terminal states in M that

are reachable from s and for all i ∈ [1,m], Ssi =
⋃

ξ∈∆
{Cξ | C ∈ τ(si)} in

which ∆ is the set of all the paths in ∆s that end at si.

We define a function map↓ : POS→ POS as follows:

map↓(i α) =


(i−1) α if i > 1

ε if i = 1 and α = ε

undefined otherwise

Now we claim the following facts about the above construction.

164

Lemma 9.2.1 Suppose M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by applying the

above construction on normalized automaton M . Then the following condition

holds for all positions p of a ground n-tuple tn . . . t1 with p� 1:

• CM1,tn...t1(p) is defined and is equal to a state s in M1 if and only if

CM ′,tn...t2(map↓(p))

is defined and is equal to state s in M ′. Moreover, map↓(ps
M ,tn...t1

) =

ps
M ′,tn...t2

.

Proof. We verify this by induction on positions p of tn . . . t1 with p � 1 that

the stated condition holds for p. Suppose p = n. Then CM1,tn...t1(n) = s0. By the

definition of M ′, CM ′,tn...t2(n− 1) = s0. Thus, the stated condition holds in this

case.

Suppose p is a position of tn . . . t1 such that p � 1 and the stated condition

holds for p and (tn . . . t1) @ p = b. We show that the stated conditions all hold

for position f ollow(p,b) of tn . . . t1. Suppose CM ,tn...t1(p) = s. By induction,

CM ′,tn...t2(map↓(p)) = s. By the definition of M ′, CM ,tn...t1(f ollow(p,b)) is de-

fined and is equal to s′ if and only if CM ′,tn...t2(map↓(f ollow(p,b))) is defined and

is equal to s′, where s′ is either s or a state that is directly reachable from s via a

step or a skip function. It follows that the stated condition holds in this case.

Theorem 9.2.2 Suppose automaton M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by

165

applying the above construction on normalized automaton

M = (Q,s0,δ,σ,color,τ)

with a position assignment pos. Then M ′ is a projection of M .

Proof. Suppose t = tn . . . t1 is a ground n-tuple that is accepted by automaton

M and let t ′ = tn . . . t2. Then CM ,t(ε) is defined and is equal to a terminal state

s′ in M and t |=M τ(s′). Since CM ,t(ε) is defined, CM ,t(1) is also defined and

is equal to a state s that is a predecessor of s′. By Lemma 9.2.1, CM ′,t ′(ε) is

defined and is equal to state s. By the definition of M ′, s is a terminal state and

τ′(s) = Ss1 ∪ . . .∪ Ssm , where s1, . . . ,sm are all the terminal states in M that are

reachable from s and for all i ∈ [1,m], Ssi =
⋃

ξ∈∆
{Cξ | C ∈ τ(si)} in which ∆ is

the set of all the paths in ∆s that end at si. Clearly, s′ is in {s1, . . . ,sm}. Suppose ξ

is the path from s to s′ following the definition of CM ,t (ξ is unique with respect to

t and M). Suppose further, C is a set in τ(s′) such that t |=M C. By the definition

of M ′, for all the states s1 in M ′ that are predecessors of s, a color c′ in Ec
(ξ,C) ⊆C

occurs at state s1 in M if and only if color υc
(ξ,C) in Cξ occurs at s1 in M ′. Since

t |=M C, t |=M Ec
(ξ,C) for all the colors c ∈C. By the definition of Ec

(ξ,C), all the

colors in Ec
(ξ,C) can be treated as a single color υc

(ξ,C). Since t ′ is a prefix of t, we

have t ′ |=M ′ υc
(ξ,C) for all the colors c ∈C. Clearly, t ′ |=M ′ Cξ. Since Cξ is a set in

Ss′ , we have t ′ |=M ′ Ss′ and in turn, t ′ |=M ′ τ′(s). It follows that t ′ is accepted by

M ′.

166

Conversely, suppose t ′ = tn . . . t2 is a ground (n− 1)-tuple that is accepted by

automaton M ′. Then CM ′,t ′(ε) is defined and is equal to a terminal state s in M ′

and t ′ |=M ′ τ′(s). By the definition of M ′, τ′(s) = Ss1 ∪ . . .∪Ssm , where s1, . . . ,sm

are all the terminal states in M that are reachable from s and for all i ∈ [1,m],

Ssi =
⋃

ξ∈∆
{Cξ |C ∈ τ(si)} in which ∆ is the set of all the paths in ∆s that end at si.

Since t ′ |=M ′ τ′(s), there exists a terminal state s′ of M such that s′ ∈ {s1, . . . ,sm}

and t ′ |=M ′ Ss′ . Suppose ξ is a path from s to s′ such that Cξ is a set in Ss′ and

t ′ |=M ′ Cξ. Clearly, C is a set in τ(s′). Now we construct a complete ground

sub-term t1 based on ξ and C as follows:

1. If s1 is a step state on path ξ with pos(s1) = 1 p with some position p, then

t1 @ p = b provided δ(s1,b) is also on the path ξ. Since M is normalized,

color(s1) = /0.

2. If s1 is a skip state on path ξ with pos(s1) = 1 p with some position p, then

t1 � p is:

(a) an arbitrary ground sub-term if there is no color c such that c occurs at

s1 and c is also in the set C.

(b) a particular ground sub-term tEc
(ξ,C)

if there exists a color c such that

• c occurs at state s1 and c is also in the set C,

• υc
(ξ,C) does not occurs at any predecessor s2 of s in M ′ such that

CM ′,t ′(p2) = s2 with some position p2 � 1.

Suppose color c′ occurs at a state s3 on path ξ with pos(1 q) = s3 and

c′ ∈ Ec
(ξ,C). Then c′ is also in C and t1 � p = t1 �q = tEc

(ξ,C)
.

167

(c) t ′ � p2 if there exists a color c such that

• c occurs at state s1 and c is also in the set C,

• color υc
(ξ,C) occurs at a predecessor s2 of s in M ′ such that

CM ′,t ′(p2) = s2

with some position p2 � 1.

Since t ′ |=M ′ Cξ, t ′ |=M ′ υc
(ξ,C). Thus, for all predecessors s2 of s such

that υc
(ξ,C) occurs at s2 and CM ′,t ′(p2) = s2, t ′ � p2 is unique. That is,

t1 � p is unique with respect to color c and path ξ and set C. Suppose

color c′ occurs at a state s3 on path ξ with pos(1 q) = s3 and c′ ∈Ec
(ξ,C).

Then c′ is also in C and t1 � p = t1 �q.

By the definition of M ′, for all the states s2 in M ′ that are predecessors of s, color

υc
(ξ,C) occurs at s2 in M ′ if and only if a color c′ in Ec

(ξ,C) ⊆C occurs at state s2 in

M . Since t ′ |=M ′ Cξ, t ′ |=M ′ υ
c
(ξ,C) for all the colors c ∈C. Then by the definition

of ground term t1 and the definition of Ec
(ξ,C), we have t ′t1 |=M Ec

(ξ,C) for all the

colors c ∈C. Clearly, t ′t1 |=M C. Since C is a set in τ(s′), we have t ′t1 |=M τ(s′).

It follows that t ′t1 = tn . . . t1 is accepted by M .

9.3 Canonically Colored Automata

In previous section, we show that there is an equivalence relation≡ξ on colors

with respect to some path ξ in an automaton and colors that are equivalent under

168

such relation can be represented by a single color. In this section, we show that we

can construct an automaton M ′ from an automaton M such that colors that occur

at the states of M ′ are pairs of states in M and the number of colors occurring in

M ′ is at most O(n2), where n is the number of states in M (M ′).

Suppose M = (Q,s0,δ,σ,color,τ) is an automaton. We introduce a color cs,s′

for each unordered pair of states {s,s′} in M such that s and s′ are on the same

path and color(s)∩ color(s′) 6= /0. Color cs,s′ is treated the same as cs′,s. Now we

construct an automaton M ′ = (Q′,s′0,δ′,σ′,color′,τ′) as follows:

1. s′0 = s0.

2. Q′ is the same as Q.

3. For all non-terminal states s in Q′, color′(s) = {cs1,s2 | s = s1 or s = s2}.

4. s is a step state in M ′ if s is a step state in M . In that case, δ′(s,b) is:

• not defined if δ(s,b) is not defined.

• δ(s,b) if δ(s,b) is defined.

5. s is a skip state in M ′ if s is a skip state in M . In that case, σ′(s) = σ1(s).

6. s is a terminal state in M ′ if s is a terminal state in M . Moreover, τ′(s) is

obtained from τ(s) by replacing each color c appearing in τ(s) with the set

C (s,c) such that C (s,c) is

{cs1,s2 | s1 and s2 are on the same path to s

and c ∈ color(s1)∩ color(s2)}.

169

Figure 9.4: Using unordered pairs of states as colors

For example, an automaton A and automaton B obtained (as described above)

from A are shown in Figure 9.4. Note that, in color ci, j, i stands for state si and j

stands for s j.

We call the above construction a canonically colored automaton and we claim

the following facts related to such construction.

Lemma 9.3.1 Suppose M ′ is obtained by applying the above construction to au-

tomaton M . Then the following condition holds for all positions p of a ground

n-tuple t:

• CM ,t(p) is defined and is equal to a state s in M if and only if CM ′,t(p) is

defined and is equal to state s in M ′. Moreover, ps
M ,t = ps

M ′,t .

Proof. Directly from the definition of M ′.

Theorem 9.3.2 Suppose automaton M ′ = (Q′,s′0,δ′,σ′,color′,τ′) is obtained by

applying the above construction on an automaton M = (Q,s0,δ,σ,color,τ). Then

170

M ′ is equivalent to M .

Proof. Suppose ground n-tuple t is accepted by M . Then CM ,t(ε) = s and s

is a terminal state in M and t |=M τ(s). By Lemma 9.3.1, CM ′,t(ε) = s. By the

definition of M ′, s is a terminal state in M ′ and τ′(s) is obtained from τ(s) by

replacing each color c appearing in τ(s) with C (s,c). Suppose C is a set of τ(s)

such that t |=M C. Then for all colors c in C, t |=M c. Moreover, c occurs at states

s1 and s2 in M if and only if cs1,s2 ∈ C (s,c) occurs at s1 and s2 in M ′. Since

t |=M c, t |=M ′ C (s,c) and in turn, t |=M ′
⋃

c∈C C (s,c). Since
⋃

c∈C C (s,c) is a set

in τ′(s), we have t |=M τ′(s). Thus, t is also accepted by M ′.

Conversely, suppose ground n-tuple t is accepted M ′. Then CM ′,t(ε) = s and

s is a terminal state in M ′ and t |=M ′ τ′(s). By Lemma 9.3.1, CM ,t(ε) = s. By

the definition of M ′, s is a terminal state in M and τ′(s) is obtained from τ(s)

by replacing each color c appearing in τ(s) with C (s,c). Suppose C is a set of

τ′(s) such that t |=M ′ C and C (s,c) is a subset of C that is obtained from color c

appearing in τ(s). Clearly, t |=M ′ C (s,c). Moreover, color c occurs at states s1

and s2 in M if and only if cs1,s2 ∈ C (s,c) occurs at s1 and s2 in M ′. It follows that

t |=M c and in turn, t |=M
⋃

C (s,c)⊆C{c}. Since
⋃

C (s,c)⊆C{c} is a set in τ(s), we

have t |=M τ(s). Thus, t is also accepted by M .

171

Chapter 10

Other Automata Operations

172

10.1 Other Operations

In section 9.2, we presented a projection operation that projects away the states

in an automaton M that read or skip the symbols of the last term of a ground n-

tuple that is accepted by M . It is more desirable to construct an automaton M ′

from automaton M such that a ground (n− 1)-tuple tn . . . ti+1ti−1 . . . t1 (i > 1) is

accepted by M ′ if and only if ground n-tuple tn . . . t1 is accepted by M , i.e., an

operation that projects out an “internal” term. To obtain such a construction, we

need to build an automaton M ′′ from M such that a ground n-tuple

tn . . . ti+1ti−1 . . . t1ti (i > 1)

is accepted by M ′′ if and only if ground n-tuple tn . . . t1 is accepted by M . Then

M ′ is a projection of M ′′. Clearly, M ′′ accepts a permutation of ground terms

{t1, . . . , tn}.

Let π be a permutation of {1, . . . ,n}. We say an automaton M ′ is a permuta-

tion of stratified automaton M with respect to π if the following condition holds:

• a ground n-tuple t ′n . . . t ′1 is accepted by M ′ if and only if ground n-tuple

tn . . . t1 is accepted by M , where t ′
π(i) = ti for all i ∈ [1,n].

Formally, we construct M ′ from stratified automaton M as follows:

1. We build an automaton M1 for 2n-tuple xn . . .x1yn . . .y1, as described in

section 5.6, such that for all i ∈ [1,n], xi and yi are variables and xπ(i) = yi.

2. We obtain an expansion M2 of M with respect to integer 2n as described in

173

section 9.1.

3. We obtain a conjunction M3 of M1 and M2 as described in section 6.1.

4. We apply projection operation n times on automaton M3 to obtain an au-

tomaton M ′ as described in section 9.2.

Theorem 10.1.1 Suppose M ′ is obtained by applying the above construction on

stratified automaton M . Then M ′ is a permutation of stratified automaton M

with respect to π.

Proof. By Theorem 5.6.3, automaton M1 accepts all the ground 2n-tuples

t ′n . . . t ′1tn . . . t1 such that t ′
π(i) = ti for all i∈ [1,n]. By Theorem 9.1.3, M2 accepts all

the ground 2n-tuples t ′n . . . t ′1tn . . . t1 such that tn . . . t1 is accepted by M . By Theo-

rem 6.1.4, M3 accepts all the ground 2n-tuples t ′n . . . t ′1tn . . . t1 such that t ′
π(i) = ti for

all i ∈ [1,n] and tn . . . t1 is accepted by M . Finally, by Theorem 9.2.2, M ′ accepts

all the ground n-tuples t ′n . . . t ′1 such that t ′
π(i) = ti for all i ∈ [1,n] and tn . . . t1 is

accepted by M .

We also need an operation to determine whether S1 is a subset of S2, where

S1 and S2 are sets of ground n-tuples that are accepted by automata M1 and M2

respectively. We say an automaton M ′ is subsumed by automaton M if every

ground n-tuple t accepted by M ′ is also accepted by M .

Formally, suppose M = (Q,s0,δ,σ,color,τ) is a stratified and normalized au-

tomaton with a position assignments pos. We construct

M ′ = (Q′,s′0,δ′,σ′,color′,τ′)

174

as follows:

1. s′0 = {s0}.

2. Q′ is the least subset of 2Q that contains s′0 and is closed under skip and

step functions, as described in the sequel.

3. For all non-terminal states S in Q′, color′(S) = color(s), where s ∈ S and

pos(s) is the least position in {pos(s′) | s′ ∈ S}. We denote the state s by

least(S). Such state always exists since � is a total ordering and the set S is

finite.

4. S is a step state in M ′ if s = least(S) is a step state in M . In that case,

δ′(S,b) is:

• not defined if δ(s,b) is not defined.

• S∪{s′} if δ(s,b) is defined and s′ = δ(s,b).

5. S is a skip state in M ′ if s = least(S) is a skip state in M . In that case,

σ′(S) = S∪{s′}.

6. S is a terminal state in M ′ if s = least(S) is a terminal state in M . In that

case, τ′(S) = τ(s).

Clearly, M ′ is equivalent to M . Each state S in M ′ is formed by all the states on

an unique path from s0 to the state s = least(S).

We say the above construction M ′ is an unwinding of M . Suppose S is a set

of states that is a state in automaton M ′ and C is a set of colors. We define an

175

equivalence relation R1
(S,C) on positions with respect to S and C and an equiva-

lence relation R2
(S,C) on colors with respect to S and C such that both equivalence

relations simultaneously satisfy the following conditions:

• If (c1,c2) is in R2
(S,C) and s1 and s2 are states in S such that c1 ∈ color(s1)

and c2 ∈ color(s2), then

(pos(s1), pos(s2)) ∈ R1
(S,C).

• If both c1 and c2 are in C and are in the set color(s) with some state s ∈ S,

then (c1,c2) ∈ R2
(S,C).

Note that, since M is normalized, a color c only occurs at skip states of M . Thus,

for all pairs (p,q) in R1
(S,C), p and q are positions for skip states.

We define a equivalence relation Rt on positions with respect to a ground n-

tuple t to be the set {(p,q) | t � p = t �q}. We claim the following facts.

Lemma 10.1.2 Suppose M ′ is an unwinding of stratified and normalized au-

tomaton M = (Q,s0,δ,σ,color,τ). Then a ground n-tuple t is accepted by M ′

if and only if CM ′,t(ε) is a terminal state S in M ′ and there exists at least one set

C ∈ τ(least(S)) such that R1
(S,C) ⊆ Rt .

Proof. Suppose ground n-tuple t is accepted by M ′. Then CM ′,t(ε) is a terminal

state S in which s = least(S) is a terminal state in M and t |=M τ(s). Thus, there

exists at lease one set C in τ(s) such that t |=M C. Suppose s1 and s2 are two

arbitrary states such that (pos(s1), pos(s2)) ∈ R1
(S,C). By the definition of M ′, s1

176

and s2 are skip states and both CM ′,t(pos(s1)) and CM ′,t(pos(s2)) are defined.

Thus, p1 = pos(s1) and p2 = pos(s2) are positions of ground n-tuple t. Since

(p1, p2) ∈ R1
(S,C), there are two cases:

• There exists a color c ∈C such that c ∈ color(s1)∩ color(s2). Since c ∈C,

t |=M c. Clearly, in this case, t � p1 = t � p2.

• There exist colors c1 and c2 such that:

1. both c1 and c2 are in R2
(S,C) with c1 ∈ color(s1) and c2 ∈ color(s2),

2. and both c1 and c2 are in the set color(s′) with some state s′ ∈ S.

Since c1 and c2 are in C, t |=M c1 and t |=M c2. Since c1 occurs at s1

and s′, we have t � p1 = t � pos(s′). Since c2 occurs at s2 and s′, we have

t � p2 = t � pos(s′). It follows that t � p1 = t � p2.

In summary, (p1, p2) is also in Rt . It follows that R1
(S,C) ⊆ Rt .

Conversely, suppose CM ′,t(ε) is a terminal state S in M ′ and there exists at

least one set C ∈ τ(least(S)) such that R1
(S,C) ⊆ Rt . Suppose c is an arbitrary color

in C. For all the states s1 and s2 in S with c ∈ color(s1)∩ color(s2), we have

(pos(s1), pos(s2)) ∈ R1
(S,C). By the assumption, (pos(s1), pos(s2)) ∈ Rt . Thus,

t � pos(s1) = t � pos(s2). Clearly, we have t |=M c. It follows that t |=M C. Since

C is a set in τ(s), t |=M C. Thus, t is accepted by M and in turn, t is accepted by

M ′.

177

Theorem 10.1.3 Suppose M1 and M2 are unwindings of two stratified and nor-

malized automata. Suppose further, M is an automaton that is built as a construc-

tion (a disjunction) described in section 6.2 on M1 and M2. Then M1 is subsumed

by M2 if and only if for all the terminal states S in M , one of the following condi-

tions holds:

1. s = {S2} such that S2 is a terminal state in M2.

2. s = {S1,S2} such that:

• S1 and S2 are terminal states in M1 and M2 respectively,

• and for all the sets C1 in the acceptance condition of S1, there exists a

set C2 in the acceptance condition of S2 such that

R1
(S2,C2) ⊆ R1

(S1,C1).

Proof. Suppose M1 is subsumed by M2. Suppose further, t is a ground n-tuple

that is accepted by M . Thus, CM ,t(ε) is a terminal state s in M . We consider the

following cases:

• s has the form {S1} such that S1 is a terminal state in M1. Then t is accepted

by M1 but t is not accepted by M2. This is impossible since M1 is subsumed

by M2.

• s has the form {S2} such that S2 is a terminal state in M2. Then t is ac-

cepted by M2 but t is not accepted by M1. Clearly, condition (1) holds and

condition (2) holds vacuously in this case.

178

• s has the form {S1,S2} such that S1 and S2 are terminal states in M1 and

M2 respectively. Clearly, condition (1) holds vacuously in this case. Now

consider condition (2). Suppose for the purpose of obtaining a contradic-

tion, we assume that there exists a set C1 in the acceptance condition of S1

such that there does not exist a set C2 in the acceptance condition of S2 that

possesses the following property:

R1
(S2,C2) ⊆ R1

(S1,C1).

Suppose t ′ is a ground n-tuple such that CM1,t ′(ε) = S1 and Rt ′ = R1
(S1,C1)

. As

we mentioned before, for all pairs (p, q) in R1
(S1,C1)

, p and q are positions for

skip states. Thus, such that ground n-tuple t ′ does exist. By Lemma 10.1.2,

t ′ is accepted by M1. Since M1 is subsumed by M2, t ′ is also accepted

by M2. However, for all the sets C2 in the acceptance condition of S2,

R1
(S2,C2)

6⊆ R1
(S1,C1)

= Rt ′ . Thus, By Lemma 10.1.2, t ′ is not accepted by M2,

which is a contradiction. It follows that condition (2) also holds in this case.

Conversely, suppose for all the terminal states s in M , one of the stated con-

ditions holds. Suppose further, t is a ground n-tuple that is accepted by M . Then

CM ,t(ε) is a terminal state s. By the assumption, there are two cases:

1. s = {S2} such that S2 is a terminal state in M2. In this case, t is only accepted

by M2.

2. s = {S1,S2} in which S1 and S2 are terminal states in M1 and M2 respec-

tively, and for all the sets C1 in the acceptance condition of S1, there exists

179

a set C2 in the acceptance condition of S2 such that

R1
(S2,C2) ⊆ R1

(S1,C1).

Suppose t is accepted by M1. Then by Lemma 10.1.2, there exists at least

one set C1 in the acceptance condition of S1 such that R1
(S1,C1)

⊆ Rt . By the

assumption, there exists a set C2 in the acceptance condition of S2 such that

R1
(S2,C2) ⊆ R1

(S1,C1).

Clearly, R1
(S2,C2)

⊆ Rt . Again, by Lemma 10.1.2, t is also accepted by M2.

In summary, if t is accepted by M1 then t is also accepted by M2. Thus, M1 is

subsumed by M2.

Suppose M1 and M2 are unwindings of two stratified and normalized au-

tomata, and M = (Q,s0,δ,σ,color,τ) is an automaton that is constructed as de-

scribed in section 6.2. Suppose further,

M1 = (Q1,s0
1,δ1,σ1,color1,τ1)

and

M2 = (Q2,s0
2,δ2,σ2,color2,τ2).

We define an automaton M ′ = (Q′,s′0,δ′,σ′,color′,τ′) as follows:

1. s′0 = s0.

180

2. Q′ is the least subset of Q that contains s′0 and is closed under skip and step

functions, as described in the sequel.

3. For all non-terminal states s in Q′, color′(s) = color(s).

4. s is a step state in M ′ if s is a step state in M . In that case, δ′(s,b) is:

• not defined if δ(s,b) is not defined.

• δ(s,b) if δ(s,b) is defined.

5. s is a skip state in M ′ if s is a skip state in M . In that case, σ′(s) = σ(s).

6. s is a terminal state in M ′ if s is a terminal state in M . Moreover, we have

the following cases:

• If s has the form {S1} such that S1 is a terminal state in M1, then

τ′(s) = τ1(S1).

• If s has the form {S2} such that S2 is a terminal state in M2, then

τ′(s) = {}.

• If s has the form {S1,S2} such that S1 and S2 are terminal states of M1

and M2 respectively, then τ′(s) is obtained from τ1(S1) by eliminating

all the sets C1 ∈ τ1(S1) such that there exists a set C2 ∈ τ2(S2) with

R1
(S2,C2) ⊆ R1

(S1,C1).

Clearly, M ′ accepts a subset of ground n-tuples that are accepted by M1, and

by Theorem 10.1.3, M ′ is not subsumed by M2. We call the construction M ′ a

181

rough-difference of automata M1 and M2 since there may exist a ground n-tuples

t such that t is accepted by M1 and t is also accepted by M2.

10.2 Implementation of Top-Down Algorithm

In this section, we show the implementation of the operations used in the

TOPDOWN algorithm with automata operations.

We say an automaton M represents a set S of ground n-tuples if and only if

M accepts S and nothing more than S. Now the following operations used in

TOPDOWN algorithm can be directly implemented with automata operations as

follows:

1. instance(t) is represented by an automaton that is for n-tuple t.

2. Suppose automata M1 and M2 represents sets of ground n-tuples S1 and S2

respectively. Then union(S1,S2) is represented by a disjunction of M1 and

M2. Moreover, diff(S1,S2) is represented by a rough-difference of M1 and

M2. Note that, TOPDOWN algorithm does not require an exact difference

operation. An exact difference operation is just an optimization.

Suppose S is a set of ground n-tuples that is an instance of an atom A and t

is a ground n-tuple in S. Then we denote the sub-term of t that is correspond-

ing to a variable x appearing in A by t[x]. Looking closely to the remaining op-

erations join with head atom, join with body atom and map used in TOPDOWN

algorithm, we find that two major tasks are accomplished in those operations:

182

1. Given a m-tuple X of distinct variables and an atom A and a set S of ground

n-tuples that is an instance of A, S is transformed to a set S′ of ground m-

tuples that is an instance of X such that:

• S′ is the set of all ground m-tuples t ′ for which there exists a ground

n-tuple t in S with t ′[x] = t[x] for all variables x that appear in both X

and A.

2. Given a m-tuple X of distinct variables and an atom A and a set S of ground

m-tuples that is an instance of X , S is transformed to a set S′ of ground

n-tuples that is an instance of A such that:

• S′ is the set of all ground n-tuples t ′ for which there exists a ground

m-tuple t in S with t ′[x] = t[x] for all variables x that appear in both X

and A.

Now we devise two automata operations to accomplish the above tasks:

1. FROMATOM(M ,A,X) (for task (1)): Function FROMATOM takes as argu-

ments:

• a atom A and a m-tuple X of distinct variables,

• and an automaton M that represents a set S of ground n-tuples that is

an instance of A,

and returns an automaton M ′ that represents the set S′ that is obtained from

S and is an instance of X . Formally, FROMATOM(M ,A,X) is defined as

follows:

183

• Let M1 be an ungrouping of M with respect to the linear version of

A. Let X ′ be the k-tuple of all the variable occurrences appearing in

A. Then M1 represents the set S1 that is obtained from S and is an

instance of X ′.

• Let M2 be an expansion of M1 with respect to m+ k.

• Let M3 be an automaton for (m+ k)-tuple XX ′.

• Let M4 be a conjunction of M2 and M3.

• We apply projection operation k times on automaton M4 to obtain an

automaton M ′.

• Return M ′.

2. TOATOM(M ,X ,A) (for task (2)): Function TOATOM takes as arguments:

• a atom A and a m-tuple X of distinct variables,

• and an automaton M that represents a set S that is an instance of X ,

and returns an automaton M ′ that represents the set S′ that is obtained from

S and is an instance of A. Formally, TOATOM(M ,X ,A) is defined as fol-

lows:

• Let X ′ be the k-tuple of all the variable occurrences appearing in A.

• Let M1 be an expansion of M with respect to k +m.

• Let M2 be an automaton for (k +m)-tuple X ′X .

• Let M3 be a conjunction of M1 and M2.

• We apply projection operation m times on automaton M3 to obtain an

automaton M4. Then M4 represents a set that is an instance of X ′.

• Let M ′ be a grouping of M4 with respect to the linear version of A.

184

• Return M ′.

Now the remaining operations used in TOPDOWN algorithm can be imple-

mented with automata operations as follows:

1. join with head atom(J,A′,X): Suppose automaton M represents a set J

such that J is an instance of atom A and A has the same predicate as A′.

Then

join with head atom(J,A′,X)

is represented by FROMATOM(M ′,A′,X), where M ′ is a conjunction of M

and M ′′ in which M ′′ is an automaton for atom A′.

2. join with body atom(X ,S,B,S′): Suppose set S is an instance of X and set S′

is an instance of atom B. Suppose further, automaton M and M ′ represent

sets S and S′ respectively. Then

join with body atom(X ,S,B,S′)

is represented by a conjunction of M and FROMATOM(M ′,B,X).

3. map(X ,S,B): Suppose automaton M represents a set S that is an instance

of X . Then map(X ,S,B) is represented by TOATOM(M ,X ,B).

185

Chapter 11

MTBDD Implementation of

Automata

186

11.1 Overview of MTBDD Representation

In this chapter, we propose a variant of Multi-Terminal Decision Diagrams

(MTBDDs) [21] to represent automata. Since acceptance conditions are proposi-

tional formulas and color sets can be treated as conjunctions, standard BDD tech-

niques can be used to represent acceptance conditions and color sets. A MTBDD

is a function f : {0,1}n→ D, where D is an arbitrary range. In order to represent

automata as MTBDDs, we first encode each symbol in the set Σ by K bits given

the assumption that Σ is finite and has 2K distinct symbols. Thus, a MTBDD rep-

resentation for a step/skip−automaton is a function f : {0,1}K → D, where D is

the set of all the BDD representations of acceptance conditions.

11.2 BDD Representation of Acceptance Conditions

We impose a total ordering � on all the colors in the set C and assign each

color a boolean variable. Then an acceptance condition is naturally represented by

a reduced and ordered BDD. In such BDD representation, each non-terminal node

corresponds to a color c, and if we take the “high” (or “then”) edge of that node,

then we assume that c is satisfied, and if we take the “low” (or “else”) edge, then

we assume that c is not satisfied. When evaluating a BDD representation of an

acceptance condition S, if we reach terminal node 1 then S is satisfied, otherwise

S is not satisfied. For example, a BDD representation of acceptance condition

{{r,b},{g,d}} (with r � b� g� d)is shown in Figure 11.1.

We also represent a set of colors with a BDD by treating a set of colors as a

187

Figure 11.1: BDD representation of acceptance conditions

conjunction of atomic propositions. The boolean function operations such as ∧

and ∨ are all the operations needed to manipulate coloring sets and acceptance

conditions. Those operations are implemented by using BDD conjunction and

disjunction operations respectively [11, 12].

11.3 MTBDD representation of Automata

Suppose each symbol in the set Σ is encoded by K bits. Now we give the defi-

nition of MTBDD representation of automata. A Multi-Terminal Binary Decision

188

Diagram MD for automaton M is defined to be a tuple

(N,T,S,F,r,high, low,color,value)

such that:

1. r is the root node that corresponds to the initial state of M .

2. N is a finite set of step nodes that correspond to the step states of M .

3. T is a finite set of auxiliary nodes. In the sequel, we will show that auxiliary

nodes are only related to step nodes.

4. S is a finite set of skip nodes that correspond to the skip states of M .

5. F is a finite set of terminal nodes that correspond to the terminal states of

M . We say a node u is a non-terminal node if u ∈ N∪T ∪S.

6. N, T , S and F are pairwise disjoint sets. This is directly from the fact that

the sets of step states, skip states and terminal states of M are pairwise

disjoint.

7. color is a labeling function that maps a non-terminal node to a BDD repre-

sentation of a set of colors.

8. value is a labeling function that maps a terminal node to a BDD representa-

tion of an acceptance condition.

189

9. high is a function that maps a non-terminal node u to its high child, and

low is a function that maps a non-terminal node u to its low child. We also

call the directed edge from u to high(u) a “high” (or “then”) edge, and the

directed edge from u to low(u) a “low” (or “else”) edge. We say u is the

parent node of high(u) and low(u).

In normal “reduced” BDDs, a non-terminal node with identical high and low

children is skipped and reduced to either one of its children. In the MTBDD

representation of automata, this kind of reduction does not happen (this is called

“quasi-reduced”). Formally, a MTBDD representation of an automaton also sat-

isfies the following conditions:

1. A skip node must have identical high and low children.

2. The high and low children of a step node must be auxiliary nodes.

3. Suppose n is an auxiliary node. Then color(n) must be a BDD that repre-

sents empty set of colors.

4. Suppose n1 . . .nm is a sequence of nodes such that for all i∈ [1,m−1], there

is a “high” edge or “low” edge from ni to ni+1. Suppose further, n1 is a

step node and nm is a step or skip node, and for all i ∈ [1,m− 1], ni is an

auxiliary node. Then m must be K + 1. In this case, the K directed edges

from n1 to nm is a binary encoding of some symbol in Σ (“high” edge for bit

1 and “low” edge for bit 0).

190

Figure 11.2: A MTBDD that represents n-tuple bXX

5. If there exist two non-terminal nodes u and v such that u and v are in the

same set (N, T , or S) and color(u) = color(v) and high(u) = high(v) and

low(u) = low(v), then u must be identical to v.

6. If there exist two terminal nodes u and v such that value(u) = value(v), then

u must be identical to v.

We say a MTBDD that satisfies the above conditions is a quasi-reduced or-

dered MTBDD (QRO-MTBDD), which is a variant of ordinary MTBDD. We

show an example of QRO-MTBDD that represents an n-tuple bXX in Figure 11.2.

191

In this example, we suppose Σ = {a,b,c,d} such that a,b,c and d are all constants.

The encoding of the constants is also shown in Figure 11.2. In that figure, we

use circles to represent non-terminal nodes and use squares to represent terminal

nodes. The numbers outside of the nodes are the indices of those nodes. For all

the nodes n of MTBDDs, n contains a pointer that points to a BDD that represents

either a set of colors or an acceptance condition. For all the non-terminal nodes n

of BDDs, n contains a boolean variable that stands for a color, and there are only

two terminal nodes 1 and 0 in a BDD. In Figure 11.2, root node (1) is a step node

and it contains a pointer that points to terminal node (9) that represents an empty

set of colors. Node (2) is an auxiliary node. Nodes (3) and (4) are skip nodes and

both of them contain a pointer that points to a BDD that represents coloring set

{r}. Node (5) is a terminal node and it contains a pointer that points to a BDD

that represents acceptance condition {{r}}. Node (6) is an auxiliary node and

both children of node (6) lead to a terminal node (7) that contains a pointer that

points to a BDD that represents acceptance condition /0.

We devise various MTBDD operations to implement automata operations by

directly following those constructions defined in the previous chapter.

192

Chapter 12

SML/NJ Implementation of the

Framework

193

I have coded a prototype implementation of the framework proposed in this

dissertation under the Standard ML of New Jersey (SML/NJ) language system.

The following is a brief description of all the modules in the SML/NJ implemen-

tation:

1. Module for Horn clauses: This module contains a parser for Horn clauses,

which is built upon ML-Lex and ML-Yacc programs. It provides utility

functions to manipulate Horn clause programs, such as divide a program

into a set of rules and a set of facts. It also provides the following interfaces:

(a) Interface to access the statistical information of a Horn clause pro-

gram, such that the total number of function symbols and constants.

This information is used to determine how many bits are needed to

encode all the function symbols and constants.

(b) Interface to map a function symbol or a constant to its binary encoding,

or verse versa. The former is useful when we create an automaton for

an n-tuple (see Section 5.6).

(c) Interface to map a function symbol to its arity. This interface is used to

add # f new skip states with respect to some function symbol f while

we perform a branching operation on a skip state (see Section 7.2).

2. Basic BDD module: This module implements all the logical operations of

BDDs and operation caches. In this module, maximally structure-shared

storage of BDDs is achieved by using node tables, and operation caches

are used to avoid repeating the calculation of an operation on particular

194

arguments after it has been done once. In order to avoid swamping the

system through overly aggressive memory allocation, the implementation

applies a heuristic that automatically monitors garbage-collection activity to

determine when to adjust the maximal sizes of the node table and operation

caches.

3. Coloring module: This module is built upon the basic BDD module to im-

plement BDD representations for color sets and acceptance conditions. It

implements the union operation for color sets. It also implements And, Or

and other operations for acceptance conditions.

4. Basic MTBDD module: This module is built upon the basic BDD module

to implement MTBDD representation for automata. It implements conjunc-

tion, disjunction, grouping, ungrouping, expansion, projection and rough-

difference operations for automata.

5. Module for ground tuples: This module is built upon the basic MTBDD

module to implement MTBDD representation for sets of ground tuples. It

implements union, intersection operations for sets of ground tuples. It also

implements major operations in top-down set-at-a-time algorithm such as

join with head atom, join with body atom and map (see Section 10.2).

6. Horn clauses evaluator module: This module implements the top-down

depth-first set-at-a-time evaluation algorithm for Horn clauses.

195

Chapter 13

Conclusions

196

13.1 Contributions

Static program analysis tools can help developers build reliable software with

fewer errors and security vulnerabilities. In order to make it easier to design and

develop program analysis tools, we propose a framework in this dissertation such

that program analysis algorithms are expressed as Horn clauses and the evaluation

of Horn clauses is implemented in MTBDDs.

Horn clauses are very useful in expressing analysis algorithms that involve

complex objects. Chapter 3 shows that a typical type-based analysis can be natu-

rally expressed by Horn clauses in which types are represented as functions.

Although, Horn clauses are simple and easy to use, the existing implemen-

tations of Horn clauses do not show impressive performances on analyzing large

programs. The framework proposed in this dissertation leads to an efficient imple-

mentation of Horn clauses that can scale to large programs. First of all, the frame-

work employs a top-down depth-first set-at-a-time evaluation strategies. Such

strategy is good for answering queries, efficient to find partial answers, and can

manipulate symbolic representations of terms. In this dissertation, the top-down

depth-first set-at-a-time evaluation algorithm proposed by Bugaj and Nyugen is

interpreted in terms of sets of ground tuples. This interpretation leads to a BDD-

based implementation of top-down evaluation. Second of all, the framework rep-

resents sets of ground tuples as automata. Various operations on automata are de-

vised to implement the top-down set-at-a-time evaluation algorithm. More impor-

tantly, such automata lend themselves readily to a symbolic representation using

197

MTBDDs. Finally, the framework is equipped with a MTBDD implementation

of automata and a prototype implementation of the framework is coded under the

Standard ML of New Jersey (SML/NJ).

13.2 Future Work

There are many improvements that could be made to the framework to pro-

duce better performance. One improvement could be made by reducing the cost

of normalization operation with an idea that eliminates all the colors on the step

states in one scan instead of repeatedly applying c-normalization procedures. An-

other improvement could be to implement the rough-difference operation without

building “unwinding” constructions. Projection operation can also be optimized

by using the idea of canonically colored automata to handle equivalent colors.

In developing the ideas presented in this dissertation, we have primarily fo-

cused on automata whose underlying directed graphs are acyclic. However, it now

seems to us that allowing step/skip-automata to have cycles could make them

more expressive in terms of the predicates they can represent. Such automata are

more general and may be useful in the applications of theorem proving. In or-

der to implement operations like conjunction and disjunction, though, it will be

necessary to use “position counters” (relative positions used in conjunction and

disjunction operations) explicitly. That is, it is possible that we do not reach the

undecidability by introducing the infinity in a controlled way as an explicit “posi-

tion counter” feature.

198

In this dissertation, we build a program analysis tool that uses Horn clauses as

the specification language and implements Horn clauses with MTBDDs. It would

be interesting to compare the following techniques for program analysis with our

tool, which might suggest new directions for using logic programs in program

analysis:

1. Visibly pushdown languages: They are a subclass of context-free languages

that were introduced by Alur and Madhusudan [6]. Visibly pushdown lan-

guages are accepted by visibly pushdown automata whose stack behavior is

determined by the input symbol. If the input symbol is a call action then

the automaton must push, if it is a return action then the automaton must

pop, otherwise it (is a internal action) cannot change the depth of the stack.

It has been shown that the class of visibly pushdown languages is closed

under intersection, union, complementation, renaming, concatenation and

Kleene star [6]. Some undecidable problems for context-free languages,

such as universality, language equivalence and language inclusion, become

EXPTIME-complete for visibly pushdown languages. Visibly pushdown

languages are suitable for formal program analysis. One example would

be using visibly pushdown languages to specify and verify the correctness

requirements of structured programs [5].

2. Satisfiability modulo theories (SMT) solver: SMT problem is to determine

whether a logic formula, which is expressed in classical first-order logic

199

with the combinations of background theories, is satisfiable (has a solu-

tion). Under Satisfiability modulo theories (SMT), the interpretation of

function symbols and predicates in first-order logic formulas is constrained

by a background theory. For example, predicates for inequalities (e.g.,

3x + 2y− z ≥ 4) are evaluated by using the rules of the theory of linear

real arithmetic, and the theory of arithmetic restricts the interpretation of

function symbols such as +,≤,0, and 1. The procedures for SMT prob-

lems are called SMT solvers. The origin of SMT solvers can be traced

back to early 1980s. Since then several SMT solvers have been developed

in academia and industry, which made an enormous progress in the scale

of problems that can be solved. SMT solvers usually use a so called lazy

approach, which tightly integrates boolean SAT solvers and theory-specific

solvers (T-solvers) such that SAT solvers and T-solvers repeatedly commu-

nicate via simple APIs. The advantage of this approach is that SAT solvers

take care of Boolean information and Theory solvers take care of theory in-

formation, that is, everyone does what it is good at. It is worth to mention

that there is an efficient SMT solver developed at Microsoft, which is called

Z3, that is used in several program analysis projects at Microsoft.

3. Top-down breadth-first evaluation: This evaluation strategy builds a search-

ing tree starting the root node (the goal G) and searches all the children

(produced by all the rules that define the predicate of G). Then for each

child node, it searches all the children and so on, until it finds the facts.

200

To remove the potential bottleneck of tuple-at-a-time strategy in XSB, re-

searchers convert the depth-first subgoal scheduling scheme in XSB to a

breadth-first one in order to obtain a set-at-a-time search engine [20]. Ex-

perimental results in breadth-first XSB have shown excellent performance

for queries involving disk-resident data [20].

201

Bibliography

[1] National institute of standards and technology, department of commerce.

software errors cost u.s. economy $59.5 billion annually. NIST News Re-

lease, 2002-10.

[2] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race

detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, 2006.

[3] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run-time

race detection and atomicity checking using partial discovered types. In ASE

’05: Proceedings of the 20th IEEE/ACM international Conference on Auto-

mated software engineering, pages 233–242, New York, NY, USA, 2005.

ACM.

[4] R. Agarwal and S. D. Stoller. Type inference for parameterized race-free

java. In VMCAI, pages 149–160, 2004.

[5] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls

and returns. In Tools and Algorithms for the Construction and Analysis of

202

Systems Lecture Notes in Computer Science, volume 2988, pages 467–481.

Springer, 2004.

[6] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC ’04:

Proceedings of the thirty-sixth annual ACM symposium on Theory of com-

puting, pages 202–211, New York, NY, USA, 2004. ACM.

[7] I. Balbin and K. Ramamohanarao. A generalization of the differential ap-

proach to recursive query evaluation. J. Log. Program., 4(3):259–262, 1987.

[8] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other

strange ways to implement logic programs (extended abstract). In PODS

’86: Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Prin-

ciples of database systems, pages 1–15, New York, NY, USA, 1986. ACM

Press.

[9] A. Banerjee and D. Naumann. Secure information flow and pointer confine-

ment in a java-like language, 2002.

[10] P. N. Benton. Strictness properties of lazy algebraic datatypes. In WSA ’93:

Proceedings of the Third International Workshop on Static Analysis, pages

206–217, London, UK, 1993. Springer-Verlag.

[11] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[12] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

203

[13] G. L. Burn. A logical framework for program analysis. In Proceedings

of the 1992 Glasgow Workshop on Functional Programming, pages 30–42,

London, UK, 1993. Springer-Verlag.

[14] G. L. Burn, C. L. Hankin, and S. Abramsky. The theory of strictness analysis

for higher order functions. In on Programs as data objects, pages 42–62,

New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[15] K. Clark. Predicate logic as a computational formalism. Technical Report

DOC 79/59, Dept. of Computing, Imperial College, 1979.

[16] M. Coppo, F. Damiani, and P. Giannini. Strictness, totality, and non-

standard-type inference. Theor. Comput. Sci., 272(1-2):69–112, 2002.

[17] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program anal-

ysis using general purpose logic programming systems — a case study. In

ACM Symposium on Programming Language Design and Implementation,

pages 117–126, 1996.

[18] C. Flanagan and S. N. Freund. Type-based race detection for java. SIGPLAN

Not., 35(5):219–232, 2000.

[19] C. Flanagan and S. Qadeer. A type and effect system for atomicity. SIGPLAN

Not., 38(5):338–349, 2003.

[20] J. Freire, T. Swift, and D. S. Warren. Taking i/o seriously: Resolution recon-

sidered for disk. In International Conference on Logic Programming, pages

198–212, 1997.

204

[21] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision

diagrams: An efficient datastructure for matrix representation. Form. Meth-

ods Syst. Des., 10(2-3):149–169, 1997.

[22] H. Gallaire and J. Minker, editors. Logic and Data Bases. Perseus Publish-

ing, 1978.

[23] C. K. Gomard and N. D. Jones. A partial evaluator for the untyped lambda-

calculus. Journal of Functional Programming, 1(1):21–69, 1991.

[24] A. Gräf. Left-to-right tree pattern matching. In RTA, pages 323–334, 1991.

[25] E. Hajiyev, M. Verbaere, O. de Moor, and K. de Volder. Codequest: query-

ing source code with datalog. In OOPSLA ’05: Companion to the 20th an-

nual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, pages 102–103, New York, NY, USA, 2005.

ACM.

[26] C. Hankin and D. L. Metayer. A type-based framework for program analysis.

In Static Analysis Symposium, pages 380–394, 1994.

[27] R. Heldal and J. Hughes. Binding-time analysis for polymorphic types. In

PSI ’02: Revised Papers from the 4th International Andrei Ershov Memorial

Conference on Perspectives of System Informatics, pages 191–204, London,

UK, 2001. Springer-Verlag.

[28] F. Henglein. Efficient type inference for higher-order binding-time analy-

sis. In Proceedings of the 5th ACM conference on Functional programming

205

languages and computer architecture, pages 448–472, New York, NY, USA,

1991. Springer-Verlag New York, Inc.

[29] T. Jensen. Types in program analysis. In The essence of computation:

complexity, analysis, transformation, pages 204–222, New York, NY, USA,

2002. Springer-Verlag New York, Inc.

[30] T.-M. Kuo and P. Mishra. Strictness analysis: a new perspective based on

type inference. In FPCA ’89: Proceedings of the fourth international con-

ference on Functional programming languages and computer architecture,

pages 260–272, New York, NY, USA, 1989. ACM Press.

[31] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin,

and C. Unkel. Context-sensitive program analysis as database queries.

In PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 1–12, New

York, NY, USA, 2005. ACM Press.

[32] J. W. Lloyd. Foundations of logic programming; (2nd extended ed.).

Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[33] E. Madalińska-Bugaj and L. A. Nguyen. Generalizing the QSQR evaluation

method for Horn knowledge bases. In N. Nguyen and R. Katarzyniak, ed-

itors, New Challenges in Applied Intelligence Technologies, volume 134 of

Studies in Computational Intelligence, pages 145–154. Springer, 2008.

206

[34] E. Madalińska-Bugaj and L. A. Nguyen. Generalizing the QSQR evaluation

method for Horn knowledge bases. (Revised and extended version: http:

//www.mimuw.edu.pl/˜nguyen/GQSQR-revised-long.pdf), 2010.

[35] A. Martelli and U. Montanari. An efficient unification algorithm. ACM

Trans. Program. Lang. Syst., 4(2):258–282, 1982.

[36] A. Mycroft. The theory and practise of transforming call-by-need into call-

by-value. In International symposium on programming, 1980.

[37] N. Nedjah. Minimal deterministic left-to-right pattern-matching automata.

SIGPLAN Not., 33(1):40–47, 1998.

[38] N. Nedjah and L. de Macedo Mourelle. Minimal adaptive pattern-matching

automata for efficient term rewriting. In CIAA ’01: Revised Papers from

the 6th International Conference on Implementation and Application of Au-

tomata, pages 221–233, London, UK, 2002. Springer-Verlag.

[39] N. Nedjah, C. D. Walter, and S. E. Eldridge. Optimal left-to-right pattern-

matching automata. In ALP ’97-HOA ’97: Proceedings of the 6th Interna-

tional Joint Conference on Algebraic and Logic Programming, pages 273–

286, London, UK, 1997. Springer-Verlag.

[40] F. Nielson. The typed lambda-calculus with first-class processes. In PARLE

’89: Proceedings of the Parallel Architectures and Languages Europe, Vol-

ume II: Parallel Languages, pages 357–373, London, UK, 1989. Springer-

Verlag.

http://www.mimuw.edu.pl/~nguyen/GQSQR-revised-long.pdf
http://www.mimuw.edu.pl/~nguyen/GQSQR-revised-long.pdf

207

[41] H. R. Nielson and F. Nielson. Automatic binding time analysis for a typed

lambda-calculus. Science of Computer Programming, 10:139–176, 1988.

[42] J. Palsberg. Type-based analysis and applications. In PASTE ’01: Proceed-

ings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, pages 20–27, New York, NY, USA, 2001.

ACM Press.

[43] R. Ramakrishnan and J. D. Ullman. A survey of research on deductive

database systems. Journal of Logic Programming, 23(2):125–149, 1993.

[44] T. Reps. Demand interprocedural program analysis using logic databases.

in applications of logic databases. In R. Ramakrishnan, editor, Applications

of Logic Databases, pages 163–196. Kluwer Academic Publishers, Boston,

MA, 1994.

[45] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated type-based

analysis of data races and atomicity. In PPOPP, pages 83–94, 2005.

[46] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching.

SIAM J. Comput., 24(6):1207–1234, 1995.

[47] K. Solberg. Annotated type systems for program analysis, 1995.

[48] K. L. Solberg. Strictness and totality analysis. In SAS, pages 408–422, 1994.

[49] K. L. Solberg. Strictness and totality analysis with conjunction. In TAP-

SOFT, pages 501–515, 1995.

208

[50] S. Sudarshan and R. Ramakrishnan. Optimizations of bottom-up evaluation

with non-ground terms: extended abstract. In ILPS ’93: Proceedings of

the 1993 international symposium on Logic programming, pages 557–574,

Cambridge, MA, USA, 1993. MIT Press.

[51] J. Ullman. Principles of Databases and Knowledge-Base Systems, volume 2

edition. Computer Science Press, Rockville, MD, 1989.

[52] J. D. Ullman. Bottom-up beats top-down for datalog. In PODS ’89: Pro-

ceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Prin-

ciples of database systems, pages 140–149, New York, NY, USA, 1989.

ACM Press.

[53] L. Vieille. Recursive axioms in deductive databases: The query-subquery

approach. In L. Kerschberg, editor, Proc. from the First International Con-

ference on Expert Database Systems, pages 253–267. Addison-Wesley, Red-

wood City, CA, 1987.

[54] L. Vieille. Recursive query processing: the power of logic. In Theory of

Computer Science, volume 69:1, pages 1–53, Essex, UK, 1989. Elsevier

Science Publishers Ltd.

[55] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow

analysis. Journal of Computer Security, 4(3):167–187, 1996.

[56] D. M. Volpano and G. Smith. A type-based approach to program security.

In TAPSOFT ’97: Proceedings of the 7th International Joint Conference

209

CAAP/FASE on Theory and Practice of Software Development, pages 607–

621, London, UK, 1997. Springer-Verlag.

[57] D. S. Warren. Memoing for logic programs. Commun. ACM, 35(3):93–111,

1992.

[58] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using datalog and binary

decision diagrams for program analysis. In K. Yi, editor, Proceedings of

the 3rd Asian Symposium on Programming Languages and Systems, volume

3780 of LNCS. Springer-Verlag, Nov. 2005.

[59] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. In PLDI ’04: Proceedings of the

ACM SIGPLAN 2004 conference on Programming language design and im-

plementation, pages 131–144, New York, NY, USA, 2004. ACM Press.

[60] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.

Comput., 115(1):38–94, 1994.

[61] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and

R. Zicari. Advanced database systems. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1997.

	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Our Solution
	1.4 Organization

	2 Related Work
	2.1 Using Logic Program Languages for Program Analysis
	2.1.1 Expressing Program Analysis in Datalog
	2.1.2 From Datalog to Relational Algebra
	2.1.3 From Relations to Boolean Functions
	2.1.4 From Boolean Functions to BDDs
	2.1.5 Using Datalog and BDDs for Program Analysis

	2.2 Evaluation of Horn Clauses
	2.3 Type-based Program Analysis

	3 Expressing Strictness Analysis in Horn Clauses
	3.1 Horn Clauses
	3.2 Type-based Strictness Analysis

	4 Top-down Set-oriented Algorithm
	4.1 Set-At-A-Time Evaluation
	4.2 Notations
	4.3 The Algorithm
	4.4 Correctness

	5 Definition of Automata for Sets of Ground Tuples
	5.1 Representing Sets of Ground N-Tuples
	5.2 Previous Work
	5.3 Informal Definition
	5.4 Notations
	5.5 Formal Definition
	5.6 Automaton for An N-Tuple

	6 Conjunction and Disjunction of Automata
	6.1 Conjunction of Automata
	6.2 Disjunction of Automata

	7 Normalization of Automata
	7.1 Definition of Normalized Automata
	7.2 Eliminating a Single Color from Step States
	7.3 Stratified Automata
	7.4 Eliminating Colors from Step States

	8 Grouping and Ungrouping of Automata
	8.1 Grouping of Automata
	8.2 Ungrouping of Automata

	9 Expansion and Projection of Automata
	9.1 Expansion of Automata
	9.2 Projection of Automata
	9.3 Canonically Colored Automata

	10 Other Automata Operations
	10.1 Other Operations
	10.2 Implementation of Top-Down Algorithm

	11 MTBDD Implementation of Automata
	11.1 Overview of MTBDD Representation
	11.2 BDD Representation of Acceptance Conditions
	11.3 MTBDD representation of Automata

	12 SML/NJ Implementation of the Framework
	13 Conclusions
	13.1 Contributions
	13.2 Future Work

	Bibliography

