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Abstract of the Dissertation

X-ray Diffraction Microscopy: Computational
Methods and Scanning-type Experiments

by

Jan Felix Steinbrener

Doctor of Philosophy
in
Physics
Stony Brook University
2010

X-ray Diffraction Microscopy (XDM) has been gaining in popular-
ity for nanoscale imaging of biological and material science samples.
Its high penetration depth (compared to electron microscopy) and
its good dose efficiency (compared to its lens-based X-ray alterna-
tive) make it uniquely suited for imaging whole biological speci-
mens, where radiation damage is a concern. Despite these advan-
tages, XDM is still far from being a routine imaging tool. This
is due to the computational challenge of reconstructing an image
from recorded diffraction intensities as well as difficult-to-satisfy
experimental requirements.

I address these challenges by improving on the computational meth-
ods and by implementing a more reliable experimental geometry for
our existing diffraction microscope at the Advanced Light Source,
Lawrence Berkeley Lab. First, a software library has been devel-
oped that streamlines the post-experiment processing of data and
that improves on an important aspect of data analysis. Results
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will be shown that illustrate the collective improvement to the re-
construction process. A modified version of a tool commonly used
to assess the consistency of reconstructions is proposed and crite-
ria of its validity are derived. Results show that it has improved
utility for judging reconstruction quality. Second, a scanning-type
experimental setup has been implemented for our existing diffrac-
tion microscope. Several possible geometries are discussed and
preliminary results from recent experimental data are shown.
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Chapter 1

Introduction

1.1 Why X-rays?

Eukaryotic cells are complex biological systems. The dynamic processes in-
volved in their life cycle pose many questions and are subject to intense re-
search. High-resolution imaging of hydrated cells has been a powerful tool
to study the interaction mechanisms between small functional substructures
(proteins) that drive the evolution of the entire cell. Today, advanced fluo-
rescence based visible light microscopy can deliver resolutions of up to 50 nm
(see for example Hell [1]) while electron microscopy routinely achieves reso-
lutions below 10 nm on thin sections or peripheral regions of whole hydrated
cells. X-ray microscopy, using photons with wavelengths well below 10 nm,
has the potential for higher spatial resolution than visible light microscopy.
Furthermore, both x-ray and electron microscopy offer capabilities for elemen-
tal and chemical state mapping; however, this comes at the cost of damage to
the specimen caused by the ionizing nature of the radiation. To minimize the
effects of radiation damage, cryofixation of hydrated structures is used in elec-
tron and x-ray microscopy. It has been found [2] that the required radiation
dose to image a small structure in ice depends strongly on the ice thickness,
with x-rays offering lower dose than electrons if the thickness of the ice exceeds
500 nm. All together, this suggests that x-rays are uniquely suited for high
resolution imaging of whole frozen-hydrated eukaryotic cells which typically
are several micrometers in size.

1.2 X-ray Interactions with Matter

As primary interaction mechanisms of x-rays with matter I want to consider
absorption, elastic scattering, and inelastic scattering; the latter is also referred
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Figure 1.1: Cross sections for x-ray interactions with carbon atoms. The
probability of Compton scattering below 1 keV is negligible compared to elastic
scattering and absorption. Figure reprinted from Kirz et al. [3]

to as Compton scattering. Absorption occurs when the energy of an x-ray is
fully transferred to an electron of an atom in the sample. The electron is
then ejected, leaving an ionized atom behind. In elastic scattering, the wave
field of the photon causes the bound electrons in the sample to oscillate. The
oscillating electrons then reradiate the incoming photons in a new direction;
the photon’s energy is preserved in the process. Inelastic scattering transfers
some momentum and energy of the photon to the electron. The photon scatters
of in a different direction and with reduced energy. The total energy and
momentum of photon, electron, and atom is conserved.

The probability for either event to occur is given by its cross sections o.
Figure 1.1 shows a plot of the cross sections of absorption o, elastic scattering
Ocon, and Compton scattering oj,.on for a carbon atom. It can be seen that
for the energies of interest (below 1 keV) inelastic scattering processes can
be neglected and that absorption processes dominate. In what follows, I will
therefore ignore all effects related to Compton scattering.

In the semi-classical picture, we can think of an atom as an N-times pos-
itively charged nucleus surrounded by a cloud of N negatively charged elec-
trons. An incident electromagnetic wave will force the electrons to oscillate in
the restoring potential of the nucleus. The equation of motion of the electrons



depends on the frequency of the incident field w and their resonant frequency
w,. Including dissipative forces (characterized by the damping ratio v,.), we
can write it as

d*x, dz,
med—; + me%d—i + mew?x, = —e(E + v, x B) (1.1)
with solution
1
z, = = —E (1.2)
me w? — w2 + iy,w

1 dE

v, = — (1.3)

M, w? — w? +i”yrwﬁ’

where I have dropped the term v, x B on the right hand side of Eq. 1.1
and assumed that the system will oscillate with the frequency of the driving
force w. How do these oscillations affect the wavefield traveling through a
material made up of many atoms? From Maxwell equations we can derive the
wave equation assuming no net charge density p as

82 22 . 18JT(T,t)

where Jr is the transverse current density; since the electric field vector E is
perpendicular to the direction of propagation of the wave, only the transverse
component of the current density matters. It can be calculated from the sum
over all oscillating electrons as

Jr(r,t) = —en, Y hyv(r,1), (1.5)

where n,, is the density of atoms in the material and h, the number of electrons
of an atom that have the resonance frequency w,; the factor h, is referred to
as oscillator strength. Plugging Eqgs. 1.3 and 1.5 into Eq. 1.4 and rearranging,
we get

(59—; - C—2)V2) E(r,t) =0 (1.6)

n?(w



which has the form of a wave equation again. The factor

1/2

e’n, h,
nw) = |1-—
() €0Me XT: w? — w? + iyw

2
1- ey fr (1.7)

2€0Me w? — w2 + W

12

T

is the complex index refraction of the material. The approximation in the last
step is valid when the second term under the square root is much smaller than
one. This is the case for x-rays where w? is large compared to ¢*na/com.. It is
customary [3] to define a complex oscillator density f as

f(w) = filw) +ifa(w)

such that )
n(w) =1 — — [fy(w) + ifo(w)]. (1.8)

2€0me

The quantity f(w) is also referred to as complex atomic scattering factor. Its
real and imaginary parts are related to the cross sections for absorption and
elastic scattering by

Oab, = 2r A fe, and (1.9)
8 .
Ocoh = §7T7“3|f1 +Z.f2|2a (110)

where 7. is the classical radius of the electron (r. = 2.82 fm) and A the wave-
length [3]. A description more common to x-ray physics [4] can be obtained
when we express the complex index of refraction as

n=1-68—ipB, (1.11)

where for x-rays both ¢ and [ are small. The relationship between ¢ and
and the complex electron density f is then given by

e’n,
b = 2€0mef1(w), and (1.12)
e’n,
= . 1.1
B = (113

Using Eq. 1.11, the solution to the wave equation in a homogeneous material



with index of refraction n (Eq. 1.6) is given by
w(z) _ woe—inkz _ ¢06—ikze—6kzei6kz’ (114)

where I have assumed a wave traveling in z-direction and dropped the harmonic
term. We now see that relative to propagation in vacuum (first factor), the
wave gets attenuated (second factor) and phase shifted (third factor). The
intensity of a wave traveling through such a medium can then be calculated
as

I(z) = ¥(2) - " (2) = ge . (1.15)

1.3 Synchrotron-based X-ray Microscopy

Methods used for generating x-ray beams have evolved considerably over the
recent years. An early source that is still popular today are X-ray tubes. They
produce x-rays by bombarding a target anode with energetic electrons from a
source cathode. As the electrons are decelerated in the anode they produce
Bremsstrahlung and a fluorescence peak, characteristic of the material of the
anode. Nowadays, x-ray tubes find widespread use for low-resolution imaging
applications in the field of medicine and material science; however, they are
not suited for high resolution imaging due to their low brightness.

A more powerful x-ray source is a synchrotron in which electrons are ac-
celerated to highly relativistic speeds and forced on a circular trajectory with
the help of bending magnets. As the electrons are traveling through a bend-
ing magnet, they exhibit a constant transverse acceleration which gives rise
to synchrotron radiation. The characteristics of bending magnet radiation are
a long continuous spectral range of the emitted radiation and the high flux
output measured in photons per second, per bandwidth, and per solid angle.
Alternative sources to bending magnet radiation at a synchrotron are insertion
devices: undulators and wigglers. Both consist of a number of pairs of magnets
arranged in an alternating fashion along the trajectory of the electrons such
that the electrons oscillate transversely to their direction of travel. Due to the
highly relativistic motion of the electrons, the emitted radiation is strongly
collimated in the forward direction. A characteristic of undulator radiation is
that its spectrum has discrete peaks; that is, a fundamental energy and higher
harmonics. It also is of higher brightness (flux per source area) than bending
magnet radiation and thus provides more coherent light. The spectrum can be
shifted to higher or lower energies by increasing or decreasing the gap between
the two opposing magnetic structures. A detailed mathematical treatment of
synchrotron radiation and radiation from insertion devices can be found for



example in Wiedemann [5].

1.3.1 The X-ray Diffraction Microscope at Beamline
9.0.1 of the Advanced Light Source

Our existing x-ray diffraction microscope is installed at beamline 9.0.1 of the
Advanced Light Source at Lawrence Berkeley National Lab'. Since high resolu-
tion x-ray diffraction microscopy requires lots of coherent flux, our microscope
is fed by the undulator U100%. Based on its design parameters, we adjust the
gap to maximize the flux of the third harmonic at our target energy (around
520 eV or 750 eV). To further increase the temporal coherence of the beam,
an off-axis zone plate monochromator has been included in the beamline. Its
initial design was conceived by Howells et al. [6]. A schematic of the setup is
shown in Fig. 1.2. An off-axis segment of a full zone plate is illuminated by the

Off-axis segment

Focal length f

&
<

A 4

Side view Spectrum

Figure 1.2: Schematic of the zone plate monochromator. An off-axis segment
of a full zone plate focuses the incoming undulator radiation based on its
energy. The peaks in the output spectrum can be identified by the undulator
harmonic and zone plate focal order that produced them. Figure adapted from
Lima [7].

radiation coming from the undulator. It focuses the different harmonics of the
undulator radiation based on their energy. The output spectrum is comprised
of different undulator harmonics and zone plate focal orders. The first order
focal length of a zone plate can be calculated as

D,,-d

N (1.16)

FO) = 2

lhttp://www.als.1bl.gov/
2http://www.als.1lbl.gov/als/curves/U10.html
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where Dyp is the diameter of the full zone plate, and d,, is the width of the
outermost zone. We select a peak in the spectrum by placing a pinhole in
the focal plane of the desired energy. The resolving power of the zone plate
monochromator %/ax has been estimated to be about 500 [6].

The spatial coherence of the radiation that is transmitted through the pin-
hole can be calculated by the van Cittert-Zernike theorem (VCZ). It says that
the complex degree of coherence between two points in a plane downstream
of an incoherent source is equal to the normalized Fourier transform of the
intensity function of the source if the distance between the source and the
two points is much larger than the linear dimension of the source and the
separation between the two points. The Fourier transform of a pinhole is an
Airy pattern. Note that VCZ assumes an incoherent source which is not true
for undulator radiation that can be considered partially coherent. A more
exact analysis can be done by using for example the Gauss-Schell model. The
coherence width can also be determined experimentally by observing the inter-
ference pattern of several pairs of pinholes with different separation distances
that are illuminated with the beam from the pinhole. A detailed description
of both theoretical and experimental analyses can be found in Miao [8]. The
experimental results suggest that the coherence width of our illumination in
the sample plane is around 6 gm in both the horizontal and vertical direction
when using a 5 gm monochromator pinhole.

The x-rays will then enter the chamber that holds the sample and the
detector. The original chamber was designed by Beetz et al. [9]. A main feature
was the incorporation of a cryo-tilt stage that is used in electron microscopy as
sample mount. The chamber received a major upgrade in the fall of 2008 with
the help of the Experimental Systems Group at the Advanced Light Source.
The upgrade retained the original sample mounting scheme but replaced the
motor stages and extended the vacuum enclosure to accommodate a system
of rails that hold all the optics involved in the experiment. The advantage
of this is that the optics can be aligned to the optical path independently
of the sample. An overview of the internal hardware is shown in Fig. 1.3
Two additional features of the upgraded chamber that are not shown in the
drawing are an in-vacuum visible light microscope (VLM) and a cold shield for
the sample called anti-contamination device (ACD). The VLM consists of an
in-vacuum objective and light source and an out of vacuum CCD camera. It
can be used to identify regions of interest on a sample that is already mounted
in the chamber and has been described in detail in Nelson [10]. The ACD
consists of a cold shield that surrounds the sample and that is cooled by an
out of vacuum liquid nitrogen reservoir that is connected to the shield by a
cold path. The ACD prevents that residual moisture in the vacuum condenses



Figure 1.3: Overview over internal features of the diffraction chamber after
the upgrade in fall 2008. The original sample mounting scheme was retained.
All the optics are now mounted on a pair of rails which can be aligned to
the x-rays independently of the sample. Solidworks drawing courtesy of Rich
Celestre.



on the cold sample. It has been described in detail by Huang [11].

1.4 Contributions of This Dissertation

The work of this dissertation was carried out in the setting of a research group.
The particular contributions I have made to the group’s activities include the
following;:

Leading the group’s experiments in scanning x-ray diffraction microscopy.
Modifying the apparatus of ALS beamline 9.0.1 as described in Sec. 4.1

Writing an automated merging program (AMP) for diffraction data as
described in Sec. 3.3

Developing a common file format for diffraction imaging as explained in
Sec. 3.1

Developing a platform independent subroutine library with parallel pro-
cessing capabilities for diffraction data analysis tools (Sec. 3.2)

Writing a platform independent reconstruction code based on the sub-
routine library

Writing a 3D data assembly program based on the subroutine library

Contributing to a shared code archive of common post-reconstruction
data analysis routines

Developing improved methods to evaluate reconstructions, such as the
wPRTF (Sec. 3.4)

Programming a reconstruction code for scanning x-ray diffraction mi-
CTOSCOpY

Analysis of SXDM data taken during an experiment at the APS (Sec. 4.2)

Adapting the existing client-side experimental control software to work
with a new server-side control software as part of the fall 2008 upgrade
to our diffraction chamber
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Chapter 2

Basic Concepts in X-ray
Diffraction Microscopy

In this chapter I will derive some basic results of diffraction theory (Sec. 2.1)
and describe the experimental requirements and data analysis techniques of
both diffraction microscopy modalities that are the subject of this disserta-
tion, namely full-field X-ray Diffraction Microscopy (XDM, Sec. 2.2) and Scan-
ning X-ray Diffraction Microscopy (SXDM or Ptychography, Sec. 2.3). T will
talk about common tools to assess quality and resolution of resulting images
(Sec. 2.4) and compare the two diffraction-based techniques with their lens-
based alternatives (Sec. 2.5). Finally, in Section 2.6, I will motivate my work
(described in the following chapters) based on the information presented here.

2.1 Scalar theory of diffraction

In Sec. 1.2 we described the basic interactions of x rays with matter in terms of
the complex index of refraction. Now we will put it in the context of diffraction
by deriving a relationship between an object [represented by its complex index
of refraction n(r, w)] and the scattered complex wavefield U*(r, w) that occurs
at some plane downstream of the object when it is illuminated with light of a
certain wavelength U™¢(r,w). The following derivation is based on Ch. 13 of
Born and Wolf [12].

The basic assumptions are that we have a monochromatic field oc e=™?,
incident on a linear, isotropic, nonmagnetic medium that occupies a finite do-
main volume V' which contains no sources (p, 7), and finally, that the dielectric
constant of the material €(r) varies on length scales > \.

Based on these assumptions we can derive a wave equation from the Maxwell
equations that in the scalar approximation (i. e. no mixing in the components)
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reduces to

V2U(r,w) + K*U(r,w) = —47F(r,w)U(r,w), (2.1)

where U(r) denotes the total wavefield at point r, and the scattering potential
(or “object function”) F'(r,w) is given by
I
F(r,w)=—k*[n"(r,w) — 1]. (2.2)
47
The total wavefield can be written as a superposition of incident and scattered
wavefield in the form

U(r,w) = U™ (r,w)+ U*(r,w). (2.3)

Since the incident wavefield satisfies the Helmholtz equation, Eq. 2.1 reduces
to
(V2 + U (r,w) = —47F(r,w)U(r,w). (2.4)

With the Green’s function of the Helmholtz operator
(V2 +E) G(r — v',w) = =476 (r — 1)

and with Green’s theorem ignoring contributions of the resulting surface inte-
gral, we may write from Eq. 2.4

Us“(r,w) = /VF('r’,w)U(fr’,w)G(r — 7' w)d*. (2.5)

Ignoring contributions from the surface integral is possible if we assume that
the scattered field behaves like a spherical wave for R — oo. We therefore
choose the outgoing free-space Green’s function

G(r—r w)= &—r’\ (2.6)
v

as solution to the Helmholtz equation which when plugged into Eq. 2.5 leads

to . )
€2k|r—r |

d3 (2.7)

r—r|

Usc(r,w):/VF(r’,w)U(r’,w)

This represents a solution to the scattered wavefield we are interested in; how-
ever, it is not immediately solvable since one can notice that the scattered
wavefield also appears in the integrand of the right hand side (see Eq. 2.3).
Approximations are therefore necessary. The two most common ones are the
Born and the Rytov approximations. Since the diffraction imaging techniques
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1 pm Au sphere at 540 eV

Z=1pm - 500 pm
F>1 > 0.87

Figure 2.1: This figure illustrates the validity and the geometry of the far-
field approximation. Left: Radial diffraction pattern of a 1 um gold sphere at
540 eV as a function of distance and corresponding Fresnel number. Far-field
diffraction occurs for F' < 1. Right: Geometry of the far-field approximation.

subject to this dissertation only rely on the Born approximation, we will ex-
plain it in more detail below and mention the Rytov approximation only for
completeness.

2.1.1 The 1%-Order Born Approximation in the Far-
Field

If we assume a weak scatterer with |n| ~ 1 we can write U(r,w) ~ U™(r, w)
and Eq. 2.7 becomes

) ik|r—r’|
U (r,w) = / F(r w)Um(r' w) . (2.8)
1% r — 1|

This approximate solution is referred to as the first-order Born approxima-
tion (corresponding to the first term of the perturbation expansion derived in
Born [13]) Notice that this now represents a solvable solution to the scattered
wavefield since the integrand now only contains the incident wavefield as a
factor.

A further simplification can be achieved by looking at the scattered signal
far away from the scatterer. This is called far-field or Fraunhofer diffraction.
All data collected for the purpose of this dissertation was recorded in this

13



geometry. The approximation is valid if the so-called Fresnel number

CL2

F=_—_
Z\

(2.9)
is less than 1 for our experimental geometry, where Z is the distance behind
a diffracting object of diameter a. The relationship of scattered wavefield and
Fresnel number is illustrated on the left of Fig. 2.1 which shows a radial cut
through the scattered intensities of a 1 um gold sphere at 540 eV as a function
of distance. We are in the Fraunhofer regime when F' < 1. At this point the
angularly resolved scattered intensities will not change with the distance Z
anymore; instead they only scale radially.

Mathematically the fact that we are in the Fraunhofer regime translates
into a first order expansion of the Green function, see Eq. 2.6. The geometry
is illustrated on the right side in Fig 2.1. The expansion assumes that " < r,
thus

eik|'r—r’\ B ez’kr ik

lr — /| oy

)

where § is the direction of the scattered wave. Plugging this into Eq. 2.8 and
leaving out frequency dependent terms, we obtain

where f is the so-called scattering amplitude of
f(8) = / F(r U™ (r')e* 7 d% = F{F(r\U™ (')} . (2.10)

From this we see that there is a Fourier transform relationship between the
product of the object with the incident wavefield, and the complex scattering
amplitude in the far field (assuming the Born approximation). This is the
basic idea of diffraction imaging: by measuring the scattering amplitudes we
can obtain information about the object by a simple inverse Fourier transform!

Of course it is not that straightforward in real life. The first point is that
the Fourier transform relationship of Eq. 2.10 still involves the product of
object times incident wavefield. To solve for the object alone, one either has
to make further assumptions regarding the incident wavefield (as is done for
full-field XDM; see Sec. 2.2) or find a way of separating out the contributions
of object and incident wavefield to the scattering amplitude (as is done for
SXDM as described in see Sec. 2.3, and other diffraction imaging techniques
mentioned in Sec. 2.3.5). The other major roadblock to successful Fourier
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inversion is so well-known and fundamental that it deserves its own section.

2.1.2 The Crystallographic Phase Problem

When we are measuring the scattering amplitudes with a detector, we are
measuring intensities and thus loose all information about the phases of the
scattered wavefield. As it turns out, the phases are crucial to a successful
reconstruction of the object function from a measurement of its diffraction
pattern. This is commonly referred to as the “crystallographic phase problem”
as it was first described in the x-ray crystallography community, but it also
applies to our case of non-crystallographic objects as well as other imaging
and signal processing techniques.

Figure 2.2 illustrates the effects of lost phase information with an example
object. The object is shown on top, and its Fourier magnitudes and Fourier
phases are shown in the middle on the right and left, respectively. Discarding
the phases of the scattered wavefield and inverting the Fourier magnitudes
alone results in an image that bears no resemblance to the original object, as
can be seen on the bottom left of the figure. However, discarding the Fourier
magnitudes and inverting the Fourier phases alone leads to a recognizable
representation of the original object. In other words the lost phase information
needs to be recovered before a successful inversion can be performed.

The task of reconstructing the original object becomes the task of phase
retrieval. Various strategies have been developed for different techniques. In
the field of x-ray diffraction imaging, phase retrieval is performed by a whole
class of iterative algorithms. The first successful algorithm to be able to re-
construct an object function from intensity measurements in the Fourier plane
alone was demonstrated by Fienup in 1978 [14]. It was based on an earlier
algorithm invented to solve the inverse problem from intensity measurements
in the Fourier and the real space domain, the “Gerchberg-Saxton” algorithm
[15]. Several generalizations have since been developed [16, 17], all of which
are based on the same principle of iteratively enforcing constraints in real and
Fourier space. The type of constraint that is being used depends on the object
that is being imaged and the experimental conditions. Suppose our measured
diffraction pattern is an N x N array. This represents a set of N? equations
we can use to solve for our object in real space. However, our object is com-
plex and thus consists of 2 - N? unknowns. The basic idea behind additional
constraints is to reduce the number of unknowns in our data space to have
enough equations to solve for the missing phases.

The constraints that we used for our data analyses are the Fourier modulus
constraint in inverse space, and the support constraint (for XDM data; see
Sec. 2.2) or the overlap constraint (for SXDM data; see Sec. 2.3) in real space.
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Fourier magnitudes /\

Fourier phases

Figure 2.2: Illustration of the (non-)crystallographic phase problem: No rec-
ognizable image of the original object is obtained when discarding phase in-
formation and inverting the Fourier magnitudes alone (on left). However, dis-
carding the Fourier magnitudes and inverting the Fourier phases alone leads
to a recognizable representation of the real object (on right).
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Other types of constraint (mainly used in x-ray crystallography) include the
atomicity constraint and the object histogram constraint.

2.1.3 The Object Function F(r)

Before moving on to explaining the particulars of each experimental technique
(XDM or SXDM), I would like to take a closer look at the “object function”
(introduced in Eq. 2.2) that we are striving to recover from our diffraction
measurements. Remembering Eq. 1.8 we see that

k> (1 — n2) = dmrep(r’),

where p(7') = n,f(r’) is the effective complex electron density; that is, what
we are recovering from measuring the scattered wavefield

F(r') = —rep(r)) (2.11)

is like an effective complex electron density. With Eq. 1.11, we can rewrite

Eq. 2.2 as )
F(r') ~ A_Z 5(r') +iB()]; (2.12)

that is, the object function can be related to the absorption and phase shift
coefficients of the elements it is made of.

2.2 Full-field X-ray Diffraction Microscopy

The idea of phase retrieval from recorded diffraction intensities alone was first
conceived by Sayre in 1952 [18]. The first experimental demonstration of XDM
was achieved by Miao et al. in 1999 on a fabricated test pattern [19]. Since
then the technique has been successfully applied in 2D to biological [20-22]
and material science samples [23], and in 3D to test structures [24], material
science [25, 26] and biological [27] samples. Many details of this section are
based on a very nice paper by Chapman et al. [24].

The full-field experimental geometry of x-ray diffraction microscopy oper-
ates on two underlying assumptions:

1. the incident wavefield is a plane wave and
2. the object to be imaged is surrounded by empty space.

I have already hinted at the first assumption after the derivation of Eq. 2.10.
Let’s see how this relationship is further simplified if the incident wavefield is
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Figure 2.3: The wave vector transfer q in elastic scattering processes is equal to
the volume grating spatial frequency u. Recording the scattered wavefield at
various positions § fills in the g-values on a sphere with radius &, the so-called
Ewald sphere of diffraction.

a plane wave traveling in direction 39, U™ oc ¢*%0. Plugging this into Eq. 2.10

we obtain
f(50,8) = / F(r')e *E=50" 30 — F k(3 — )] . (2.13)

From this we see that in the far-field the scattering amplitude of the wavefield
in direction § and for an incident wave with direction 3y is given by one and only
one Fourier component of the object function F (q), namely by the component
q = k(5§ — Sp). We can think of the scattering object as being comprised
of a number of volume gratings w each of which has a defined orientation,
and magnitude. The magnitude is a measure of the periodicity of the volume
grating; it is referred to as spatial frequency. The exact composition depends
of course on the object and its internal features. For volume rather than
planar grating scattering, the Bragg condition must be satisfied so that the
wave vector transfer ¢ = k — ko must be equal to the grating spatial frequency
u as can be seen in Fig. 2.3. In other words, by measuring the scattered
wave at various different locations s we can fill in the ¢-space of the object
function, such that for a given incident wave direction §; we can measure
Fourier components of the object function that lie on a sphere (the so-called
Ewald sphere) with radius & which results in g-values ranging from 0 to 2k,
ideally. In reality we can only record a small range of g-values due to the
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Figure 2.4: Rotating the object is equivalent with having the incident wave
come from a different direction k(()z). Doing so provides access to more g-space
values centered around ¢ = 0. Due to limited solid angle acceptance of our
experiment 260,,,, we are limited to small ¢-values. This is indicated by the
solid black arcs.

limited solid angle acceptance of our detector 26,,,,. This limits our resolution
with which we can image details of the object as is explained in more detail
in Sec. 2.2.1.

So far we have only recorded a diffraction pattern for one direction kg of
the incident wavefield, measuring mainly contributions from volume gratings
that are perpendicular to the incident wavefield, w 1 k. It is possible to
invert such a measurement and reconstruct something referred to as 2D exit
wave leaving the object. The implications of reconstructions from such limited
measurements are discussed in Sec. 2.2.3. For now I will focus on obtaining
sufficient data to describe the object for all directions of its volume grating
vectors uw. A practical way of collecting a different set of g-values is given by
rotating the object in real space which is equivalent to the incident wavefield
coming from a different direction k((f). This situation is illustrated in Fig. 2.4.
By rotating the object we rotate the Ewald sphere and thus can fill in our
g-space.
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2.2.1 Geometry of the experiment

We now want to quantitatively understand how we are mapping out the g¢-
space when recording the diffraction pattern for different object orientations
with a flat detector; for example a CCD. The left part of Fig. 2.5 shows the
basic geometry of the scattering process. Again we call the direction of the
incident wavefield kg, and the direction of the scattered wavefield k. Let’s
assume the incident wave travels in the z-direction. The scattering angle 26
describes the angle between kg and k. The components of the scattered wave
vector can be written in terms of the angles 260 and [ as

ky = 277T51n29cosﬁ
ky, = 2Twsin%sinﬁ

2
k, = — cos26.
A
From that it follows that the wave vector transfer which is equal to the spatial
frequency of the scattering volume grating w is

sin 20 - cos 8
g=u=—| sin260-sinp
cos20 — 1

Since our CCD is rather flat and not curved, the geometry of the actual
experiment is slightly different and illustrated in the right part of Fig. 2.5. If
we express the angles 20 and [ in terms of the measured quantities z,y and
Zy, where x and y are absolute distances in the detection plane and Z; is the
distance between the object and the CCD, we find

in2 — ——
S1n = ;
Z
20 = 0 __
con Zo+ AP

Zo+ AP = \/Z2 + 12,
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g=k—ko
Ko 20
k-
. !
x/ Object

Figure 2.5: This figure illustrates the geometry of the scattering process in
both spherical coordinates (left) and coordinates of the experiment (right).
Left: The scattered wave vector k subtends an angle 20 with the incoming
wave vector kg || Z and the wave vector transfer ¢ = k — ko is equal to the
volume grating frequency. Right: We can express the scattering angle 26 in

terms of the geometry of the experiment.

so that we can express the wave vector transfer as

T

\/ Z34a?+y?

27 y
q - T /Zg+x2+y2
Zo

\ Z3 a2 +y?

Of course we are dealing with discrete arrays, where

1P
= Jp

for a camera with pixelsize p. Equation 2.14 then becomes

ip
Zg+(i2+j2)p?
_ 2_7T Jp
=" Z3+(2+)p?
Zo

B+
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Similarly, we want to express q in terms of its Miller indices in reciprocal space
[,m,n as a function of camera indices 7, j

Qe = lAq
@ = m-Aq
. = n-Aq.

Let’s first determine the frequency sampling Ag: the highest spatial frequency
(max that we can record is determined by the geometry of the experiment. If
we assume small angle approximation then we can write
q prm— 1 = p i %
max dmm ZO . )\7

(2.16)

where d,,,;, is the size of the smallest volume grating we can record, p is the
pixelsize of the camera and N is the number of pixels on the CCD. Note that
dmin is the theoretical resolution limit of our reconstruction and is directly
determined by the maximum spatial frequency that we can record. The actual
resolution of a reconstruction d,. depends on the quality of the recorded data
and real space constraints. It is

dres 2 dmim (217)

and we will look into ways of assessing the actual resolution of a reconstruction
in Sec. 2.4.2.
Finally, the sampling rate in reciprocal space is given by

p
Ag = 7N (2.18)
If we divide Eq. 2.14 by Eq. 2.18 then we will obtain real dimensionless numbers
which can be round to the nearest integer to give us the indices k, [, m of the
g-space array as a function of the indices i, j of the measured array. In other
words, Eq. 2.14 tells us how to map the measured array back onto the Ewald
sphere on a per pixel basis.

There are two things left to worry about. Once we found the appropriate
Miller indices [, m,n for a voxel in reciprocal space, its magnitude is found
from the average of all combinations of detector pixels and orientations that
contribute to this voxel. The other one is how to incorporate different orien-
tations of the object with respect to the incident wavefield. The easiest way is
to use Eq. 2.14 in conjunction with a 3D rotation matrix R that corresponds
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to the rotation of the object (usually only around one axis), such that

q(9) = Req (2.19)

2.2.2 Sampling Requirements

The array resulting from Eq. 2.19 represents a discretely sampled version of
the continuous diffraction pattern described by Eq. 2.13. Whenever we are
sampling a continuous function we have to be careful to avoid aliasing effects.
The proper sampling of continuous signals has been discussed in many great
publications; see for example Shannon [28] in general and Sayre [18], Bates
[29] and Crowther et al. [30] specific to Fourier phase problems. In our case,
the object function is recovered by inverse Fourier transform of Eq. 2.13, such

that
F(r)=Aq) _ F(qye ™%,
J

In other words, the recovered object is a convolution of itself with the inverse
transform of the sampling function. The result of this will only be close to
the real object if the inverse transform of the sampling function has a sharp
spike at the origin and is approximately 0 for all other values at least out to
the radius of the object. This can only be accomplished with regular sampling
functions. An important consequence of a regular sampling function is that
its inverse transform is periodic with a period inversely proportional to the
sample spacing. Due to the convolution effect, the recovered object will also
be repeated with this period. It is desirable to have the period be larger than
the width of the object which is equivalent of a sample spacing in inverse
space of greater than 1/p for an object of width D. This is what happens in
Shannon sampling [18]. If the phases were known, then Shannon sampling
the Fourier-plane signal of the object would suffice to record all information
within the object. Since we do not record the phases but merely intensities, the
information we record is band-limited not by the extent of the actual object
but by its autocorrelation

FTHI(q)} x F(r) o F*(—r). (2.20)

In general the autocorrelation will be twice as large as the object itself therefore
leading us to conclude that we have to sample at 1/2p rather than 1/p to record
all information present. This is sometimes referred to as “oversampling” but
it really is just Shannon sampling for the autocorrelation of the object. In
the lingo of oversampling, Shannon sampling corresponds to an oversampling
factor of 2. From simulations it turns out that Shannon sampling a non-ideal
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dataset (such as a dataset with noise) is not sufficient to reconstruct. Rather,
an oversampling factor of around 2.6 or more is needed to recover the missing
phases [31].

In the far-field we can derive a relationship between the pixel size of the de-
tector and the size of the sample as a function of oversampling s. The frequency
sampling in the actual experiment is determined by the detector position and
pixel size according to Eq. 2.18. Thus, the oversampling in reciprocal space
can be written as
I TV
 A¢g-D pD’
We are in the far-field limit if the Fresnel number of Eq. 2.9 is less than one
and thus

s (2.21)

Z()>T.

Plugging this into Eq. 2.21 leads to the expression
D < sp, (2.22)

which says that the sample must be on the order of the CCD pixelsize to fulfill
minimum oversampling requirements with s = 2.

Angular Sampling Requirements

Similar to the transverse coordinates described above, the width of a speckle
due to an object of size D in the longitudinal coordinate is given by 1/p. To
record 3D data, the sample is rotated about one axis. At the highest spatial
frequency gumax this leads to a separation of

AQmax = @max ° A¢

between two Ewald spheres. Using the same oversampling criterion as for the
transverse coordinates we can achieve critical sampling (s = 2) when

_ AQmax Az
 Guax D

A¢

where Az is the real-space sampling interval given by Az = 1/2¢u... Again,
this corresponds to Shannon sampling of a band-limited sample of width D
as one can quickly verify by plugging in the relationship obtained above for
(max- In other words, as long as we have 2 samples per longitudinal width of
speckle (1/D) we fullfill the Shannon criterion. To be able to do so over the
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full angular range we need

2T 27 - D
m _

:A—gb_ Az

different views of the specimen. A more thorough derivation of this theorem
can be found in Crowther et al. [30]. In order to collect enough data to
reconstruct an object of width D = 5pum down to a resolution of 2Az =
10 nm we need an angular spacing of approximately A¢ = 1 mrad or 0.05°.
In reality such a small angular spacing is hardly achievable. Experimentally
feasible are steps of 0.5° which will lead to a decrease in resolution for the 3D
reconstruction.

Coherence

The required spatial coherence of the illumination is given by the size of the
object D and the minimum oversampling factor (s = 2). It can be shown [32]
that in order to avoid overlap from mutually incoherent speckle patterns due
to different coherent patches in the illumination the spatial coherence width
w, should be

we > 2D. (2.23)

To get an estimate on the required temporal coherence required, let’s assume
that we want the diffracted radiation from one volume grating element due to
two slightly different wavelengths A and A + A\ to not be separated by more
than a pixel on the detector (which corresponds to the half width of a speckle
for critical sampling with s = 2), i. e.

U1
L
qZo
2 Ay AN
qZo
Y1 —Y2 < P

Together with Eq. 2.18 this leads to the requirement that
A g N
AN Ag 27

where NNV is the number of pixels in our detector. The coherence properties of
our beamline 9.0.1 at the Advanced Light Source have already been described
in Sec. 1.3.1. We note that for samples of diameter D = 3 ym and a CCD with
N = 1024 pixels we satisfy both spatial and temporal coherence requirements.
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2.2.3 2D imaging

When inverting the diffraction pattern obtained from a single projection of the
specimen one obtains the complex wavefield leaving the object This is called
an exit wave. Compared to 3D reconstructions there are some important
limitations due to the nature of the Ewald sphere; most notably there will
be defocus artifacts. A 2D diffraction pattern delivers information on spatial
frequencies that lie on a sphere with

1 /1 A, 9
Qz:X— p—qi—qix—g(quy),

where 1/\ is the radius of the sphere and the origin ¢ = (0,0,0) is on the
sphere centered in the forward direction. The approximation is valid for small
scattering angles. The numerical aperture of the diffraction pattern can be
defined as NA = g, 1ax A similar to imaging with a lens. With that the maximal
longitudinal coordinate g, max is given as

~ NA?
qz,max - 2)\ .

An object of width D will have speckles of width 1/D in longitudinal direc-
tion. Defocus artifacts occur if, for a given ¢, max, the Ewald sphere does not
cut through a speckle that is centered at ¢ = (¢u max, @ymax, 0). This can be
understood by looking at the extreme case of an object that cannot experience
defocus artifacts, an object of width D — 0. Such an object will scatter no
information in the longitudinal direction and thus measuring its 2D diffraction
pattern on a sphere is equivalent to measuring the 2D diffraction intensities
on the plane g = (¢, ¢y, 0). In other words we can consider our sample to be
free of defocus artifacts or truly 2D if its Ewald sphere departure for a given
NA of the system is no more than 1/(4D) in the longitudinal coordinate. This
leads to a maximum thickness of the object of

e
2NA?’

so that the object thickness should be less than the depth of focus of a lens
of the same numerical aperture to be considered a 2D object. If we want
to measure out to very high spatial frequencies, the numerical aperture of the
system will be high and the depth of focus of the imaging system will be small.

A 2D object that does not fulfill the requirement from Eq. 2.24 will experi-
ence defocus artifacts, where out of focus planes will acquire quadratic phase
factors according to the Fresnel propagator [33]. This out-of-focus information

D (2.24)
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is especially distracting in a coherent imaging system. One can change the fo-
cal plane during the reconstruction process by adapting the support constraint
to reflect the shape of the object in the desired focal plane [34] or after recon-
struction by Fresnel-propagating the complex exit wave [35].

2.2.4 Experimental Setup at Beamline 9.0.1

Now that we have developed a firm understanding on how the object can be
related to its scattered amplitudes and what the geometry of the scattering
process is, let’s switch gears and look at the experimental implementation of
a diffraction setup at beamline 9.0.1 at the Advanced Light Source, Lawrence
Berkeley Lab. The beamline itself has already been described in detail in
Sec. 1.3.1 and we have also introduced the endstation in general terms in
the same section. What we are concerned with here, are the parts of the
microscope that are directly related to performing the diffraction experiment:
the optics and the detector.

The Detector

As detector we use a charge-coupled device (CCD) from Princeton Instru-
ments'. We have two different versions of the chip differing slightly in terms
of pixel number and size, and well depth. The relevant parameters of each chip
are summarized in Tab. 2.1. In this discussion we are mostly interested in how

Number of pixels N | Pixel size p (um) | Well depth (10%¢™)
1.3k chip | 1300 x 1340 20.0 200
2k chip 2048 x 2048 13.5 100

Table 2.1: Parameters of our two CCD chips used to record the diffraction
intensities.

many photons per pixel we can record before the CCD saturates. A simpli-
fied description of how a CCD works will help in understanding the two ways
saturation can occur. Photons incident on a pixel on the CCD will produce a
charge proportional to the total energy deposited in the pixel. Once the image
has been recorded, the CCD is read-out by column-wise shifting the charges
of all pixels by one row. The charges of pixels on the edge of the chip will end
up in what’s called the horizontal register. In the next step, the charges in
the horizontal register are sent pixel-by-pixel to the ADC that converts their

'http://www.princetoninstruments.com/products/xraycam/pimte/
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charges into counts using a certain conversion factor defined as

cain = number of e (2.25)
counts
This process is then repeated until all rows have been read-out.

Saturation can occur due to the limited amount of charge that each pixel
can store before being read-out (this is called the well depth) or due to the lim-
ited dynamic range of the ADC (our CCDs have a 16-bit ADC, corresponding
to a maximum count of 2!%). For an unbinned CCD it makes sense to adjust
the gain factor such that the two saturation levels are the same. For example,
a gain factor of around 3 would saturate the ADC of the 1.3k chip when a
pixel is charged to its well depth of 200 e™.

Now let’s look at how many of our photons we can record before the CCD
is saturating. It takes an energy of 3.65 eV to create an electron-hole pair in
the doped Silicon layer, so that the maximum number of photons that can be

counted is
well depth - 3.65

= , 2.26

EPhoton(ev) ( )
where the well depth depends on the chip used (see Tab. 2.1). For the 2k-chip
with 520 eV photons, saturation occurs at nppetons =~ 700 photons and for
the 1.3k-chip at npnotons =~ 1400 photons. In other words, the detector has a

dynamic range of 3 orders of magnitude.

NPhotons

Dynamic Range of the Scattered Intensities

How does this compare to the dynamic range of the scattered intensities that
we want to record with our detector? Small angle x-ray scattering data sug-
gests that the diffracted signal follows an inverse power law relationship with
spatial frequency

I(g) < g™ (2.27)

(m = 4 according to Porod’s law). In our experiment we find the recorded
power spectral densities to decline with exponents ranging from m = 3 to
m = 4. This is also confirmed by other theoretical estimates in the literature,
such as by Howells et al. [36] and Shen et al. [37]. The total dynamic range
(DR) of the diffraction pattern can then be calculated as

Gmax " dmax "
DR = = 2.2
R ( Gmin ) < dmin ) 7 ( 8)
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where d;, is the desired resolution corresponding to the smallest feature to
be imaged and d,.x is the largest feature to be imaged (the size of the object).
Assuming a 3 pm cell with desired resolution of 10 nm, we calculate a dynamic
range of the diffracted signal to be DR ~ 10%°. This is far beyond the dynamic
range of our CCD as described above. It is therefore necessary to record low
and high spatial frequency regimes of the scattered signal separately to extend
the dynamic range of our CCD.

Optical Components inside the Chamber

We use a movable piece of opaque silicon as a beamstop; this is mounted
right in front of the CCD to block different parts of the intense low spatial
frequency scatter. The entire optical setup is shown schematically in Fig. 2.6.
The pinhole on the left serves as both beam defining aperture as well as en-

CCD

Pinhole

Corner

Figure 2.6: Schematic of the experimental setup for full-field XDM. The X
rays first encounter a pinhole which acts as beam defining aperture as well as
coherence and energy selecting aperture. Then they pass through the corner,
a windowless Silicon Nitride frame that is meant to prevent scattered light
from the pinhole to reach the detector. Then they hit the sample which is
mounted on a rotation stage. Finally, the diffracted signal is recorded with a
CCD, where a movable beamstop is used to block the intense 0-th order beam
(not to scale).

ergy selecting and coherence defining aperture. We have already explained
the relevant parameters in Sec. 1.3.1 but we recapitulate here: typically the
experimental geometry is such that we have an Airy pattern of 30 pm diameter
footprint in the plane of the sample and a coherence width of around 12 pm.
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Figure 2.7: Due to dynamic range limitations in the detector, the diffracted
signal has to be recorded in stages by blocking part of the intense low spatial
frequency signal with a movable beamstop. The different parts then have to be
merged afterwards to recreate the full 2D diffraction pattern (shown on right).
To prevent damage to the CCD, a small area around ¢ = 0 um™! cannot be
recorded.

Just in front of the sample and downstream of the pinhole is mounted an
“empty” Silicon Nitride window (in fact, only its frame is used) that removes
higher order Airy rings and other pinhole scatter. Its size is determined by
the condition that it have the same footprint on the CCD as the beamstop.
Without a corner, we run the risk that the weak high spatial frequency signal
from the sample is overpowered by pinhole scatter.

Since the pinhole-sample distance is fixed by the focal length of the monochro-
mator zone plate (as described in Sec. 1.3.1), it is by varying the distance from
sample to CCD, Z,, that we can dial the experimentally important factors of
oversampling s and maximum momentum transfer ¢.. that is recorded by
the detector. Since gumax X Yz, and s x Zj, we have to find a trade-off po-
sition where we satisfy minimum oversampling criteria yet still record a high
enough spatial frequency. For 520 eV X rays (A = 2.38 nm) we typically use
Zy = 10 cm. Plugging this into Eqgs. 2.16 and 2.21 we see that we can record
out to a maximum spatial frequency of guax = 55 um~! at an oversampling
factor of s = 4 (where we have assumed the 1.3k chip, see Tab. 2.1, and a
sample of 3 um diameter).

A Typical Data Collection Script

We use the in-vacuum VLM described in Sec. 1.3.1 to find a region of interest
on the sample and then do a small 2D scan with the sample while monitoring
the diffracted signal for a nice speckle pattern. Once a nicely scattering object
has been found, we can start recording data on it. Due to the aforementioned
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limited dynamic range of our CCD, we have to record each 2D diffraction
pattern in several steps using the movable beamtsop arm to block different
parts of the intense low spatial frequency signal while recording diffraction
patterns at various different exposure times. Typically we record for at least
5 different beamstop positions and two to three different exposure times per
position depending on the scattering of the object. The basic idea is as follows:

e We start with one corner of the beamstop (say the top corner) barely
blocking the 0-th order and using shortest exposure times to measure
the very low spatial frequency data

e We move the beamstop up a bit to block more of the intense low spatial
frequency scatter and we record at slightly longer exposure times to fill
in the intermediate spatial frequency range

e We center the beamstop on the beam to be able to record long exposure
times to fill in the very high spatial frequency data

e The whole procedure has to be repeated for the bottom corner of the
beamstop

Typical exposure times range from 1 msec for the low spatial frequencies to
60 sec or more for the high spatial frequencies. Additionally, we also record
several frames for each position and exposure time to increase the signal-to-
noise ratio for the scattered intensities. All these different exposures will have
to be merged afterwards to recreate the full 2D diffraction pattern that we
would have obtained in one shot if our detector had a high enough dynamic
range. We have recently learned that this merging process is crucial to obtain-
ing reconstructions of very high quality. This will be explained in more detail
in Sec. 3.3.

Even with the help of a beamstop, there is usually a frequency range (typ-
ically spatial frequencies below ¢ = 1 um™!) that is not accessible for CCDs
because even shortest exposure times (on the order of 1 msec) would lead to
damage to the chip. This is why one is left with an “empty” region in the
center of the assembled diffraction pattern. The process is schematically illus-
trated in Fig. 2.7. On the left are shown representative diffraction patterns
for all seven unique beamstop positions used for this particular data set. On
the right is shown the full 2D diffraction pattern obtained by merging these
seven positions. Note that the area around ¢ = 0 um~" could not be recorded
to prevent damaging the CCD and is therefore black.

Recently, there has been an advance in Pixel Array Detectors (PAD) [38,
39] that have a dynamic range much higher than conventional CCDs, but high
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pixel number detectors with good sensitivity in the soft x-ray energy regime are
not yet widely available. Alternatively, one can try to attenuate the incident
beam experimentally to be able to record the low spatial frequency data. We

have recently implemented such a setup and show some preliminary results in
Sec. 4.1.3.

2.2.5 The Reconstruction Process

Once the data have been recorded and merged into full 2D diffraction patterns,
they can be assembled into a 3D diffraction pattern according to Eq. 2.15, if
applicable. We then start the phase retrieval process by iteratively enforc-
ing constraints in real and Fourier space as described below. Note that this
procedure is also valid for single 2D projections whose limitations have been
described in Sec. 2.2.3. In what follows, I(q) refers to the set of measured
diffraction intensities (mapped onto the Ewald-sphere for 3D), ¥ (x) to the
current real space iterate, ¥(q) to the current iterate in Fourier space, and
o(q) to the experimental error associated with the measured diffraction mag-
nitudes (\/1(q)).

Available Constraints

In order for any reconstruction to be successful we have to provide it with
information that is known to be true, or at least assumed to be true for now
subject to later improvement. These so-called constraints are enforced in both
real and inverse space in an alternating fashion. Different reconstruction al-
gorithms differ on how they update the current iterate based on their use of
the constraints. The two most common constraints in non-crystallographic
diffraction microscopy are modulus and support constraints.

A modulus constraint operator Py; is applied in inverse space and will
project the modulus of the current guess of the Fourier amplitude W(u) onto
the nearest measured diffraction amplitude while keeping the reconstructed
phase,

) [mjug(q)} , it |W(q)| > \/I(q) + o(q)
P = FT7' 3 01 /Tg) — o(g), if [W(a)] < /T(@) ~olq) (229)

U(q), otherwise, orif \/I(q) =0

\

The first factor % is responsible for keeping the reconstructed phase, while
the second factor projects the magnitudes onto the closest point in the interval
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Figure 2.8: From autocorrelation of the object shown on left to first support
guess (middle). Usually the support is updated multiple times during the
reconstruction process. A good support guess (shown on right for this data
set) is crucial for successful reconstruction.

[ I(q) —o(q),\/I1(q) +a(q)] The modulus constraint operator will only

project any W(q) that differ by more than one standard deviation from the
measured data. It does nothing if it is already within that interval or if the
intensities have not been measured for a particular q, such as due to a limited
number of angles recorded or missing central area from the beamstop.

The modulus constraint is usually supplemented by a support constraint
in real space. The support constraint is the current guess of the outline of
the object in real space and will set all magnitudes and phases of the current
object guess outside that outline to zero while leaving everything on the inside
of the outline unchanged.

| Y(x), fxes
Psy = { 0, otherwise.

If warranted by the object one can additionally impose positivity and reality
constraints; that is, setting negative imaginary and/or real values in the cur-
rent iterate in real space to 0 or setting its imaginary values to 0, respectively.
Looking back at Eq. 2.12 we see that imposing a reality constraint is equiva-
lent to neglecting absorption in our object. We assume that our specimen only
introduces phase advances. Imposing a positivity constraint on the imaginary
part only, or on both imaginary and real part of the object, limits the max-
imum phase shift introduced by each voxel in 3D, or between any two pixels
in the exit wave in 2D, to be less than 7 or 7/2, respectively.
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Updating the Support Constraint

While the modulus constraint is given to us by the experimental data, the
support constraint is not known a priori and usually has to be determined
empirically. Being able to find a correct representation of the actual outline
of the object is crucial to successful reconstruction. Typically, the support
guess is updated several times during the reconstruction process. An example
is illustrated in Fig. 2.8: The first guess is usually obtained by looking at
the autocorrelation of the object given by Eq. 2.20 and shown on the left of
Fig. 2.8. One then runs several iterations with the initial guess (shown in the
middle) and then updates the support either by hand or in a semi-automated
fashion using the Shrinkwrap algorithm [40]. One then repeats the procedure
with the new support guess until one finds a support that minimizes the error
metric discussed below.

Error Metric

During the phase retrieval process the quality of the current support guess is
monitored using the error metric

2 2
Eg _ Z W}n - PSwn| _ ngzs ‘wn(w)‘ ' (2.30)

Z|Ps¢n|2 Zmeswn(w>|2

It is a measure of how much power lies outside the support estimate S for a
given reconstruction. High values indicate that the current support guess is
inconsistent with the measured diffraction pattern. An example plot of the
error metric for the reconstruction of an object with very well defined support
is shown in Fig. 2.9. The error drops quickly after only a few iterations and
then stays at a constant low level. Alternatively we can also define an error
metric for the inverse space which measures the normalized distance between
the current iterate and the modulus constraint set

E2 _ Zhbn_PMwnF
Y S Pl

Phase Retrieval Algorithms

A variety of phase retrieval algorithms exist that all iteratively enforce the
modulus and support constraints discussed above; they differ in how the next
iterate is computed from the previous one. The ones we used for our recon-
structions and that I will explain in more detail here are Fienup’s Hybrid
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Figure 2.9: An example plot of the error metric for an object with well defined
support. The error drops quickly and then stays at a low level.
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Input-Output (HIO) algorithm and Elser’s Difference Map algorithm (DM).
A good comparison of most available algorithms in terms of convergence and
likelihood of being stuck in local minima can be found in Marchesini [41].

Hybrid Input-Output (HIO) The hybrid input-ouput algorithm has been
developed by Fienup [16]. In its general form it can be described as
Py, ife e 5’
R , (2.31)
(I — BPy)tYyn, otherwise,

where (3 is the feedback or damping parameter and S’ is the set of elements
where Py1), satisfies the support and reality and positivity constraints if de-
sired. A typical value for the feedback parameter that is known to lead to
good convergence is 5 = 0.9. Note that the damping is applied in real space
and only for elements outside the support S’. A schematic of how the next
iterate is calculated in the case of intersecting one-dimensional constraint sets
(S, M) is shown on the left of Fig. 2.10. After the desired number of iterations
N, the final result is obtained after one more modulus constraint, i. e.

Y = Putn. (2.32)

The Difference Map (DM) This algorithm was developed by Elser [17].
It is defined by the iteration relation

where

v, = Pu((ys+1) Ps (¥n) — vstbn)
vs, = Ps((y+1)Pu(¥n) — i) -

An optimal value for the v parameters is 5 = 7! and v = —37!. Note
that with this choice and with 8 = 1, the difference map algorithm becomes
the hybrid input-output algorithm described above. In our experiment we
used a value of § = —1.15. It is also noteworthy that in its general form the
difference map algorithm is computationally more demanding than HIO since
it involves two time consuming modulus constraint projections per iteration.
A schematic of how the next iterate is calculated in the case of intersecting one-
dimensional constraint sets (S, M) is shown on the right of Fig. 2.10. After the
desired number of iterations N, the final result is given by either the support
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Figure 2.10: Calculation of the next iterate for the hybrid input—output (on
left) and the difference map algorithm (on right) in the case of one-dimensional
modulus and support constraint sets (S, M). The HIO algorithm applies the
damping S in real space and for elements that are outside the support. This is
represented by the perpendicular dotted line S. The DM algorithm damps the
application of both constraint operators Pys. The new iterate is calculated
by evaluating the difference map A = (¢, — ¢s,). Figure adapted from
Marchesini [41].

estimate or the modulus estimate, 1. e.

¥ =g, or Y, (2.34)

Note that in 3D, the final result ¢ corresponds to the actual object function
F(7) as explained in Sec. 2.1.3. In 2D, it corresponds to the exit wave leaving
the object as described in Sec. 2.2.3.

2.2.6 Post Reconstruction Data Analysis

As explained above, iterative phase retrieval in the far-field geometry works by
finding a complex wavefield which satisfies real-space constraints such as the
imposition of a finite support (and possibly others such as a limit on maximum
phase variation), and the Fourier-space constraint of adjustment towards the
measured diffraction magnitudes. Because one pixel in Fourier space affects
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all pixels in real space and vice versa, one can start the algorithm with ran-
dom phases and converge to a solution. Since the real-space constraints are
not known perfectly, and since random and systematic errors are possible in
the measurement of the Fourier plane magnitudes, one cannot find a single,
numerically unique solution to the complex wavefield (though in “good” re-
constructions the variations between different possible solutions are small). As
a result, various iterate averaging procedures have been adopted [21, 24, 35],
based on the idea that consistent phases add coherently, while inconsistent
phases add incoherently. In order to make the result more statistically sig-
nificant, one usually averages several independently obtained reconstruction
results (thus eliminating any high frequency noise components) and then ap-
plies a high-pass filter to suppress the unconstrained low spatial frequency
modes. We will take a detailed look into what constitutes sufficient averaging
in Sec. 3.4.4; here we will look at how to average properly: Before averaging
we have to remove any linear phase ramps and we have to set the global phase
to be the same for each reconstruction.

Removing Linear Phase Ramps

The Fourier shift theorem states that translation of the object in real space
corresponds to a phase ramp in Fourier space and vice versa. Thus if a diffrac-
tion pattern is not perfectly centered (in the sense that the pixel corresponding
to ¢ = 0 is at index (0,0,0) in the array) it will lead to a phase ramp in the
reconstruction. To remove the phase ramp, we go through the reconstructed
phases line-by-line, calculate the average slope and subtract it from the entire
array. We then repeat this procedure for the other dimensions. Note that this
procedure will not work if we have a phase ramp that extends over more than
27 in one or more dimensions. In this case one first has to remove the phase
wrap by properly centering the diffraction pattern, as has been described for
example in Chapter 4 of Miao [8].

Adjusting the Global Phase

We want to set the global phase of all images so that they add up mostly
coherently instead of canceling themselves. The choice of global phase for the
first image then determines the global phase for subsequent images. There are
different ways of doing this; we follow the approach of Chapman et al. [24].
The idea is to find the global phase that maximizes the real part of the first
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image 9. We do this by maximizing the quantity

o = 3 {Re[uo(k)e™]}’
= > . (Re{Re[¢o(k)] cos ¢y — Im[tho (k)] sin ¢y
+ i {Re[tho (k)] sin ¢g + Im[ehe (k)] cos ¢} })?
= >, {Reftoo(k)]? cos ¢o” — 2Re[thy (k)] Im[tho (k)] cos ¢y sin ¢y
+ Im[yh (k)]* sin ¢o” }
= 2 {20 (B)* + [o(R)]* €% + [ho (k)] e~} /4.

(
( (2.35)

This can be achieved by either maximizing the second or the third term of
Eq. 2.35. We are going for the second term and maximize it by setting ¢ =

—¢/2, where

Im {3, wmf}]

Re {32 [va(k)]"} |
The global phase ¢ for subsequent images 1 is then determined by minimizing
>k Wo(k‘) —p(k)et® ‘2 which is equivalent to maximizing the real part of the

mixed term ), Re [¢0(k)w(k)ei¢1], i. e. having them add up coherently. This
is equivalent to the negative of the phase of >, [t(k)]" ¢ (k). Thus

Im {3, [Yo(R)]" w<k>}}
Re {32, [Wo(R)" ¢ (k)}

Failure to adjust the global phase in the aforementioned manner will lead to
less consistent phase retrieval.

¢ = arctan [

¢1 = — arctan {

Highpass Filtering

As described in Sec. 2.2.4, we have missing data in the low spatial frequency
regime around ¢ = 0. During the reconstruction process the affected pixels
are left untouched; that is, we let the algorithm fill in the missing values with-
out imposing any constraints on them. Independent reconstructions of the
same data set will have slightly different values in these pixels. When look-
ing at reconstruction results, this leads to variations in larger-scale features
since diffraction data from spatial frequencies less than about 1 ym~! were not
recorded. These differences can be very confusing when comparing or averag-
ing several reconstructions of the same data set. Since they can be considered
artifacts inconsistent with the measured data it is permissible to remove the
contributions of this low-¢ data by either calculating and constraining the data
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Figure 2.11: A qualitative illustration of the effects of applying a high-pass
filter to a reconstruction of a budding yeast cell. The original result (on left)
looks “fuzzier” due to unconstrained low spatial frequency features. When
applying the high-pass filter, the contrast due to these unmeasured spatial
frequencies is suppressed, resulting in improved image quality.

to the most likely modes that can exist in the missing region or by simply fil-
tering out their contribution to the image with a high-pass filter. The former
has been described in Thibault et al. [35].

Here we use the latter approach with a filtering function f(q) similar to
what has been described in Chapman et al. [24]. It is

f(q)Z{ w+(1—w)(§)4exp< _%z)’ ifg<o (2.36)

1, otherwise,

where w is the depth of the filter and o is the width of the filter. A typical
value for the depth is w = 0.5 and for the width 10 % of the size of the array.

An example of the effects of the high-pass filter is shown in Fig. 2.11.
Both panels show reconstruction results of diffraction data taken on a budding
yeast cell. The image on the left is the original (unfiltered) reconstruction.
Compared to the filtered image on the right it shows less contrast for internal
features and has an overall “fuzzier” appearance.
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2.3 Scanning X-ray Diffraction Microscopy

The full-field geometry discussed in the previous section requires the object to
be isolated, i. e. surrounded by non-scattering empty space. This reduces the
number of unknowns to less than the number of available equations. Alter-
natively, one can record a certain amount of redundant data and use this to
reduce the number of unknowns. This is the case in Scanning X-ray Diffraction
Microscopy (SXDM), also called “Ptychography”.

CCD

Sample

Figure 2.12: Illustration of scanning the probe across the sample in SXDM.
For each position of the probe (shown as dashed circle) on the sample, a full
2D diffraction pattern is recorded. Redundancy in the data obtained through
overlap in neighboring probe positions enables the reconstruction of extended
objects.

The idea to solve the crystallographic phase problem in this way was orig-
inally developed in the electron microscopy community by Hegerl and Hoppe
[42] in 1970. The idea was later picked up and proposed for super-resolution
imaging by Bates and Rodenburg [43] in 1989 and it has been demonstrated
soon after for visible light microscopy [44], electron microscopy [45], and x-ray
microscopy [46]. The early methods relied on a non-iterative scheme using
Wigner-deconvolution to solve for the missing phases. It was not until a few
years later that iterative schemes were proposed [47]. Since then, a variety
of phase retrieval algorithms have been developed; I will introduce the ones
relevant to this work in Sec. 2.3.1.

The basic idea in SXDM is to scan a probe of finite extent across an ob-
ject and to record the diffraction pattern at each scan position. We create
redundancy in the data by stepping by less than the size of the probe so that
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the information content between neighboring scan positions overlaps. The
situation is illustrated in Fig. 2.12. During the reconstruction process, the
redundant information is used as a constraint to reduce the number of un-
knowns. An advantage of this is that one no longer has to satisfy an isolated
object requirement; in principle the object can be of unlimited size. However,
remembering Eq. 2.10, we can now no longer assume a plane wave for the
illumination and thus we will have to find a way to separate the contributions
of the object F(r) and the incident wavefield U™¢(r) in order to be able to
solve for the object function. One way is to know the incident wavefield from a
different measurement (see e. g. Quiney et al. [48]) and to use this information
to separate object and probe. Even if such a measurement can be done for the
particular probe that one has to work with, it comes with the obvious disad-
vantage of having to perform a second experiment. Moreover, the amount of
detail that one can achieve for the object function is limited by the amount
of detail within the probe function which can make the probe-characterization
experiment very challenging. In Sec. 2.3.1, I will describe a class of algorithms
that are capable of reconstructing both the object and the probe function si-
multaneously [49, 50], requiring only a rough estimate of the probe function
as a starting guess.

2.3.1 The Reconstruction Process

Let’s assume we have a probe function U™ (r — ;) incident on an object F(r)
and that we record the diffraction pattern for a number of different positions
r; by scanning the probe across the object. At each scan position we will have
an exit wave leaving the object that is defined as

p(r) = Ume(p — r;)F(r). (2.37)

What we measure with our detector in the far field is then the square of the
absolute value of the Fourier transform of this quantity 7(q).

Available Constraints

Again, we can rely on a set of two constraints for the reconstruction. The
first one, based on the measured diffraction intensities, is the same modulus
constraint that is used for full-field XDM and its formalism is described in
Eq. 2.29. Instead of the support constraint, the second constraint is the overlap
constraint, making use of the redundant information from partially overlapping
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regions on the object. It can be written as
Potp = U™ (r — 7)) F(r),

where U and F are the current guesses of the probe and the object function,
respectively.

Reconstruction Algorithms

There are several different ways of updating the object and probe guesses and
of calculating the next iterate. I will restrict myself to the algorithm that was
used to obtain the results discussed in Ch. 4.

Difference Map for SXDM The extension of the Difference Map algo-
rithm to SXDM was conceived of by Thibault et al. [49]. The update rules for
the object and the probe function, respectively, are

Fr) = ZjU*(:'“—Tj)@Dj(ZT)
5|0 —r)

O(r) = S (r )y (r ;F Tj),

S| F(r+r))

where the sum is over all positions of the probe. For better legibility I have
dropped the superscript of the probe function. The next iterate 1/)](-"“) is
calculated using the difference map as described in Eq. 2.33 but using the
overlap constraint instead of the support constraint. With v5 = 871, v =
—B7!and B =1 it becomes

0 = 4 Py 2P0 (07) = | = Po(u") (2.38)

where each exit wave for each probe position is updated. The entire recon-
struction process is as follows:

1. Start with an initial guess of the probe function U as described above.
2. Initialize all exit waves v; by setting them equal to the probe function.
3. Compute the object guess F according to the update rule above.

4. After some iterations, also update the probe function U by alternating
between both update rules.
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5. Calculate the next iterate of the exit waves @Dj(-"ﬂ) according to Eq. 2.38.
6. Start over with step 3

Convergence is monitored with the error metric described above. After con-
vergence has been observed, the solution is given by the current object and
probe guesses, F' and U, respectively.

Initial Guess of the Probe Function

The initial guess of the probe function is a crucial step. A bad initial probe
guess can lead to prolonged convergence times of the algorithms. In a dis-
cussion with Pierre Thibault, I found out that one can get reasonably good
starting guesses by summing up all recorded diffraction patterns and taking
an inverse Fourier transform, i. e.

Ulr)=FT* [Z A /fj(q)] . (2.39)

The idea is that by summing over all diffraction patterns, contributions of the
object are averaged out and only contributions of the probe remain. Another
option is to use knowledge of the probe defining aperture to come up with
a guess of the probe function in the object plane, e.g. if the beam defining
aperture is a pinhole, then one can get a good approximation of the probe by
propagating the pinhole to the object plane.

Error Metric

In SXDM it is convenient to monitor the changes between two different iterates.
Thus, the error metric is defined as

B2, =Y [ g, (2.40)

In this case, 1 is the 3D vector of all 2D exit waves ;.

2.3.2 Experimental Requirements

The experimental requirements are very similar to what has already been
described for full-field XDM. We have the same oversampling requirements
(see Sec. 2.2.2) but in the case of SXDM it is the autocorrelation of the probe
function U™ that needs proper sampling, rather than the autocorrelation of
the object function F'.
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Since we are using the same CCD-type detector for our SXDM experi-
ments, we also have the same dynamic range issues that have been described
in Sec. 2.2.4. Again, we will resort to using a beamstop to block parts of the
intense low spatial frequency signal, which also means that we have to assem-
ble the full 2D diffraction pattern from several beamstop positions. I will talk
about the optical setup in more detail in Ch. 4.

Overlap parameter

Experimentally important is the overlap parameter, 7. e. the relative degree
of overlap between two different probe positions. Detailed simulations and
experimental data have shown [51] that a relative overlap parameter of 60 %
is sufficient for high quality, highest resolution reconstructions. One can get
away with an overlap parameter as little as 30 % if the main concern are low-
dose imaging and fast scanning. To be able to dial the correct step size for
the probe scans, one has to know the size of the footprint of the probe on the
sample.

2.3.3 Stability of the Experimental Setup

A major difference between full-field XDM and SXDM is that in SXDM we are
sensitive to small transverse shifts of the object with respect to the illumination
function:

In the full-field case we measure the square of the Fourier transform of the
object F'(r) alone. A transverse shift in object position that is small compared
to the coherence width of the illumination will only produce a linear phase
ramp in the complex scattering amplitudes in the far-field that is lost in the
detection process. The same is true for small transverse vibrations of the
object.

In SXDM, on the other hand, we are measuring the square of the Fourier
transform of the product of object times probe F(r)U™(r — r;). A change
in relative position Az will change the diffraction pattern for length scales
of up to Az. In other words, we need to know the relative positioning of
object and probe to at least the same resolution that we want to achieve
in the reconstruction. It is possible to correct for some aberrations in the
positions by treating them as additional variables to be recovered during the
reconstruction process [52], however this only works for small deviations from
the target positions. Again, the same is true for vibrations of the object with
respect to the illumination. If these vibrations occur on time scales shorter
than the longest exposure time, they cannot be corrected for. Obviously, if a
resolution of 10 nm is to be achieved, one needs a very stable experimental
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setup. I will talk about my attempts to improve the stability of our setup at
beamline 9.0.1 at the Advanced Light Source in Sec. 4.1.4.

2.3.4 SXDM in 3D

What I have described so far will lead to a 2D reconstruction of an extended
object. It is possible to record a series of 2D SXDM data sets while rotating the
object and then perform a tomographic reconstruction on the set of 2D recon-
structions obtained for each angle. It should also be possible to come up with
a scheme to assemble the recorded 2D data sets into a 3D data cube directly
in Fourier space (similar to Eq. 2.15) and to reconstruct a 3D representation
of the object. However, it has not been shown yet.

2.3.5 Other Experimental Geometries

There are other experimental geometries besides full-field XDM and SXDM. I
will only mention two of them here, and only for completeness since I have not
used any of them for the results shown in later chapters. In Fresnel Coherent
Diffractive Imaging [53, 54] one uses as probe a wavefield with nonzero phase
curvature. As in full-field XDM one needs to have an isolated object. Due
to the phase curvature of the illumination, however, rapid convergence to a
unique solution is achieved.

In Keyhole Coherent Diffractive Imaging [55] the concept of Fresnel Coher-
ent Diffractive Imaging is extended to objects of unlimited size by imposing
an additional constraint that the illumination be of finite extent (such as a
diverging focused beam). For both geometries the quality of the reconstruc-
tion depends critically on the knowledge of the illuminating beam which must
be known to a resolution equal or better than the desired resolution of the
reconstruction. The latter geometry has the advantage that when scanning an
extended sample there needs to be no overlap in illumination between neigh-
boring scan positions. This decreases the dose administered to the sample.

2.4 Resolution and Quality of a Reconstruc-
tion

2.4.1 Radiation Damage

Before 1 explain ways to estimate the resolution of a reconstruction, I want
to talk about the effects of radiation damage first. It is important to know
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about the effects of radiation damage and at what radiation levels they oc-
cur. This is true especially for biological specimen, where radiation induced
structural changes happen at low doses and can make the interpretation of a
reconstructed image difficult.

Dose Calculations

First, let’s have a look at how to estimate the amount of radiation that an
object received. This is commonly measured in terms of the dose, i.e. the
amount of energy absorbed per unit mass. Remembering Eq. 1.15 we can
calculate the decrease in intensity of the incident radiation per thickness as

I
_ % =l (2.41)

where z is the penetration depth into the object. We can calculate the energy
absorbed at z = 0 (the skin dose) as

,UnEphoton
D = By (2.42)
where Ax is the pixel size of the reconstruction, n is the number of pho-
tons per pixel and p is the density of the object. This skin dose will be a
measure of radiation that has been absorbed by the object. Unless otherwise
noted, it will be calculated for protein with a stoichiometric composition of
Hys.6C32.9Ng.0050S0.3 and density of p = 1.35 g/cm?® [56]. When recording
data for one 2D projection of the sample we typically administer a skin dose
of 1-10° Gy at our microscope.

Effects of Radiation Damage

A nice overview of primary and secondary effects of radiation damage in or-
ganic specimens can be found in Talmon [57]. Here I will restrict myself to
the coupled effects of C=0 double-bond breaking and mass loss. The latter
results from the former because the scission creates smaller molecules that can
leave the object by sublimation. Mass loss is observed as structural changes
in the object. Obviously this is what we want to avoid for imaging.

At what dose levels do these effects occur in representative biological spec-
imens at the target resolution? There have been a number of experiments
for both electron microscopy and x-ray microscopy; a good summary is given
in Howells et al. [36]. Specifically for x-ray diffraction microscopy there has
been work done by Shapiro [58] that looked into fractional changes in feature
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Figure 2.13: Changes in speckle position corresponding structural changes of
features 25 nm in size are observed as a function of cumulative dose for room-
temperature dried biological specimens. Frozen-hydrated samples do not show
any change over the same range of doses. Reprinted from [58] and [22].
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size of a specimen as a function of cumulative dose. The results of this work
are shown in Fig. 2.13 (reprinted from [58] and [22]). Briefly summarized,
the results indicate that freeze-dried samples are stable up to ~ 5 - 10® Gy
while frozen-hydrated samples are stable up to 3 - 10° Gy and beyond. This
illustrates that we want to work with frozen samples in order to minimize the
visible effects of radiation damage during prolonged 3D data collection, where
the cumulative dose exceeds 10° Gy.

Minimizing Dose to the Object

When trying to minimize radiation exposure to biological specimen it is im-
portant to choose the energy of the x rays to maximize absorption (or phase)
contrast of protein in ice. Figure 2.14 shows a plot of contour lines of equal
dose required to image a 10 nm protein structure embedded in ice as a func-
tion of ice thickness and energy of the incident x rays. “Imaging” in this case
means having a signal-to-noise ratio of greater than 5 according to the Rose
criterion [59] and the plot shows the dose of either absorption contrast or phase
contrast, whichever is lower. From the figure one can see that there are two
interesting energy ranges. For samples of a few micron thickness (which are
the ones we are interested in), energies in the “water window” [60], between
the carbon and oxygen K-edges at 284.2 eV and 543.1 eV, respectively, provide
very good contrast for protein in ice. Thus, in our experiments with frozen
samples, we use x rays with an energy of 520 eV. The figure also shows that
for thicker samples of several tens of microns it is better to work at higher
energies.

It is important to note that the maximum allowable dose before struc-
tural changes occur is lower for smaller length scales than for larger ones. At
the same time, the dose required to image small structures is larger than for
imaging large structures. This means that radiation damage sets an ultimate
limit to the resolution that can be achieved. Based on experimental data and
theoretical calculations, this limit has been estimated to be around 10 nm for
protein structures [36].

2.4.2 Two Common Measures of Reconstruction Qual-
ity; PRTF and PSD

In the following discussion I will assume a careful experimenter that kept dose
levels at the sample below threshold levels for structural changes as discussed
above. Let’s say a reconstruction has been obtained and we want to know how
good the resolution is. Intuitively, one could look at the assembled diffraction
intensities and see what spatial frequency the scattered signal extends out
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Figure 2.14: Contours of equal dose required to image a 10 nm protein struc-
ture in ice as a function of ice thickness and photon energy. Figure courtesy
of Chris Jacobsen.

to. Assuming that this is the amount of detail that has been captured in the
experiment, the resolution can then be calculated by Eq. 2.16. In fact, the
first papers [19, 20] in x-ray diffraction microscopy did just that and used the
presence of measured diffraction signal as a function of spatial frequency to
estimate the resolution achieved in the reconstruction.

However, the simple presence of signal is only part of the story: one must
consider the presence of noise, partial coherence in the beam, and the possible
presence of small scatterers outside of the assumed support constraint. Taken
together, these effects can lead to a decrease in the consistency of the estimated
phases, and Fourier plane pixels which cannot be reliably retrieved will not
contribute useful and reproducible information to the reconstructed image. To
estimate the real resolution of a reconstruction, one typically does one of the
following;:

e Determine resolution from a line-out across edge of a sharp feature within
object [22].

e Calculate point spread function (PSF) of the imaging system through
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correlative microscopy [61].

e Look at the maximum information transfer in the Power Spectral Den-
sities (PSD) of the reconstructed object [62].

e Determine the spatial frequency at which the Phase Retrieval Transfer
Function (PRTF) has suffered a significant decline [21, 24, 35].

I want to dwell on the last two points since we will need it later on. The PSD
is simply the radially averaged sum over the reconstructed Fourier intensities

pspig) = Zece V0L o)

where NN is the number of array elements for ¢ = constant. An example of
a PSD curve is shown on the right of Fig. 2.15. As I have already explained
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Figure 2.15: Examples of Phase Retrieval Transfer Function (PRTF) and
Power Spectral Density (PSD) curves for a reconstructed object. The PSD
gives an indication for the maximum information transfer, the PRTF mea-
sures consistency in the retrieved phases.

in Sec. 2.2.4, we expect the scattered power to decline as the inverse m-th
(m = 3 —4) power with spatial frequency. Plotted on a log-log scale this will
result in a declining straight line as can be seen in Fig. 2.15. The interesting
point is where the PSD deviates from the straight line and rolls off into a hor-
izontal line. This suggests that noise is the predominant signal at this spatial
frequency (we expect the PSD of shot noise to follow the Fourier transform of
a delta function, i. e. a flat power spectrum) and gives an estimate as to the
maximum information transfer within the reconstruction.
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Estimating the resolution by itself is not sufficient however. One also needs
to look into the “quality” of the phase retrieval process, i. e. how consistent
is the reconstructed object with the measured data. A tool commonly used

to measure the quality of a reconstruction is the Phase Retrieval Transfer
Function (PRTF) defined as

Zq:const. |\Ij(q)|
Zq:const. I(Q>.

It is the square root of the ratio of power spectral densities of reconstructed
Fourier magnitudes over measured Fourier magnitudes (the intensity ratio
21, 35]). An example of a PRTF is plotted on the left of Fig. 2.15. The
PRTF is a measure of consistency in phase retrieval. When averaging many
reconstruction results as described in Sec. 2.2.6 the resulting magnitudes will
be equal or smaller than the measured ones due to variations in retrieved
phases. In the extreme cases of perfect phase retrieval or completely random
phase retrieval, the PRTF will have a value of 1 or 0, respectively. The PRTF
is an important tool for x-ray diffraction microscopy and also subject of my
research. In Sec. 3.4 T will derive criteria of validity for the PRTF and look
into ways of improving its utility for judging reconstruction quality.

PRTF(q) =

(2.44)

2.5 Comparison of XDM to Lens-based Alter-
natives

Now that I have explained the experimental requirements, reconstruction pro-
cedures and post-reconstruction data analyses of x-ray diffraction microscopy,
I want to compare it to its lens-based analogue, namely Transmission X-ray
Microscopy (TXM). A typical TXM microscope setup is shown in Fig. 2.16.
A condenser lens illuminates the sample and an objective lens placed further
downstream of the sample focuses a magnified image of the sample onto a de-
tector, for example a CCD. Because the index of refraction of most elements is
slightly less than unity in the x ray regime, one relies on diffractive lenses for
focusing rather than refractive ones. These Fresnel zone plates are comprised
of alternating opaque and transparent rings that are of equal area and whose
radii satisfy the condition that all transmitted light constructively interferes
in the focal spot. For incoherent illumination of the object, the width of the
outermost zone determines the resolution of the resulting image (see for ex-
ample Michette [63]). In the soft x-ray regime, resolutions down to 12 nm
[64] have been demonstrated for specific cases. However, at these wavelengths
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Source Condenser Objective Detector

Figure 2.16: Schematic of a typical TXM system. The sample is illuminated
by a condenser zone plate and the objective zone plate phases the light coming
from the sample to form a real image on the detector.

Source Detector Reconstruction Algorithm

Figure 2.17: Typical setup of a XDM system. The sample is illuminated with
coherent light and the diffracted signal is recorded with a detector. Without
an objective lens image has to be reconstructed computationally.

Fresnel zone plates with outermost zone widths of less than 20 nm suffer from
sub-millimeter focal lengths and diffraction efficiencies of less than 10%. The
former poses a practical challenge of how to implement a 3D tomographic
setup with the optic that close to the sample, while the latter results in an
increase in dose to the specimen. In fact, recent simulations [65] have shown
that to image an object with the same resolution, XDM is up to 50-times more
dose efficient than a TXM system that uses zone plates. In the spirit of the
discussion of Sec. 2.4.1, XDM is advantageous when working with radiation
sensitive biological materials.

On the other hand, TXM is a direct imaging method. The objective zone
plate phases the light coming from the sample and forms a real image on the
detector. Besides alignment of the individual 2D projections and routine tomo-
graphic reconstruction, there is no computationally intensive phase retrieval
process. When compared with a schematic of a typical diffraction setup as
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is shown in Fig. 2.17, it becomes obvious that we have traded the inefficient
objective lens with intensive post-experiment data processing requirements.

2.6 Motivation for Thesis Work

Based on the discussion above, XDM is a very attractive technique for high res-
olution imaging of biological specimens because a) unlike electron microscopy
it can image thick unsliced biological specimen in their natural hydrated state
and b) it is more dose efficient than its x-ray competitor TXM. At this point
I would like to talk about some challenges in XDM and what I have done to
address them.

Computational Methods The post-experiment processing of data in x-ray
diffraction microscopy is often time-consuming and difficult; it is computation-
ally demanding but results are also difficult to interpret. In Ch. 3, I show how
to improve, automate and speed up the data analysis process and how to better
judge the quality of a reconstruction.

Scanning X-ray Diffraction Microscopy Full-field XDM requires the ob-
ject to be isolated. This is difficult to achieve for frozen-hydrated specimens.
Scanning x-ray diffraction microscopy does not require an isolated object and
is therefore an attractive alternative. In Ch. 4, I will present several imple-
mentations of a SXDM setup for our existing microscope and show preliminary
results from recent experimental data.
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Chapter 3

Computational Methods in
XDM

The post-experiment processing of data in an XDM experiment poses some
computational challenges. Apart from the actual reconstruction process one
has to deal with the assembly of 2-dimensional diffraction patterns from a
large set of raw diffraction data (this is done in order to increase the dynamic
range of the imaging system, improve on signal-to-noise statistics, and to min-
imize the missing area in the center of the diffraction pattern as described in
Sec. 2.2.4). Given the amount of data processing necessary, it is desirable to
automate the assembly of raw data as much as possible, without introducing
artifacts due to generalizations, and to integrate it into the general recon-
struction process. This is especially important towards 3D imaging, where a
number of 2D projections must be assembled before being merged into a 3D
cube. Additionally, even if a preliminary result has been reconstructed, there
is no definitive answer as to whether or not a better result with more consis-
tently retrieved phases can still be obtained. While the PRTF (introduced in
Sec. 2.4.2) is a common measure of the quality of a reconstruction, no con-
sensus on its use has emerged in the community and its utility is limited by
artifacts caused from incorrect support constraints, from errors in measure-
ment of the Fourier plane intensity or from noise which produces consistent
yet erroneous structure.

I address these challenges in several ways. In Sec. 3.1, I will introduce a
file format for diffraction imaging that carries along all important information
about a data set and thus integrates the various steps of data analysis. To
further facilitate data analysis, I have developed a subroutine library with sup-
port for parallel processing that allows for platform independent programming
of data analysis tools, as is described in Sec. 3.2. Together, the file format and
the library provide a standardized way of sharing reconstruction results with
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collaborators. I will further introduce a program that automates and improves
the assembly process of 2D diffraction patterns; this is described in Sec. 3.3.
Finally, in Sec. 3.4, I will present some criteria of validity for the PRTF and
suggest a modified version that improves its utility for judging reconstruction
quality. The collective improvement to the reconstruction process is illustrated
with results from recent experimental data.

3.1 A File Format for Diffraction Experiments

The analysis process of diffraction data involves quite a number of different
parameters that one needs to keep track of, from filenames of raw data to
experimental parameters, to details of the reconstruction process. A typical
3D data set from our microscope will involve some 100 2D diffraction patterns
and several thousand raw CCD frames. The amount of data produced at 4
generation light sources (x-ray FELs) is far greater even, so the challenge to
manage this amount of data will only get greater. In order to facilitate the
data analysis process and to prevent confusion between similar data files, it
is desirable to store all essential information together with the data itself into
one binary file. The resulting file should be in a format that is flexible, scalable
and supported by a wide variety of platforms and programming languages.

I propose here a file format for diffraction experiments based on the widely
available, platform-independent HDF5 hierarchical data file format library!.
The main structural elements of the HDF5 file structure are group, datatype,
dataspace, and dataset. HDF5 groups are structures containing datasets
or more groups (similar to folders in the file structure of modern operating
systems). Datasets hold the data and supporting information. The header of
a dataset contains the parameters datatype and dataspace. The datatype
defines the type of the data (int, char, double, etc), the dataspace defines the
dimensionality of the dataset. The advantages of HDF5 are that it is very
flexible, very well supported and available for a wide variety of computing
platforms and languages. Particularly interesting to us is that datasets can
be initialized with an unlimited dataspace and that they can be read into
memory in small chunks of data. The former means that we can easily extend
the size of a dataset after it has been created. This even works if the file
has already been saved. The latter enables us to overcome memory shortages
when reading large 3D arrays that can be as big as 16 GB.

http://www.hdfgroup.org/HDF5/
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3.1.1 General Structure of the File Format

This section is concerned with the overall structure of our file format; the li-
brary routines that perform the actual read and write processes are described
in Sec. 3.2. The general idea for the file format is to identify and store the
relevant data sets and additional important information that is needed during
the reconstruction process and for bookkeeping. We typically start out with
raw data which is currently recorded in a netCDF? format. We then assemble
the raw data from different beamstop positions into one full 2D diffraction
pattern which will be saved along with supporting information in the file for-
mat described here. If we have recorded a 3D data set, we take several of the
assembled 2D diffraction patterns and merge them into a 3D data cube which
will also be saved using the same file format. Having the same file format
with (almost) the same information for 2D and 3D data sets makes sense since
the basic data analysis techniques are the same for 2D and 3D. Using the
structural elements provided by the HDF5 library, we define groups for each
relevant data set that hold the actual data as well as supporting information.
An overview over the general structure of the file format is shown in Fig. 3.1.
The file format currently contains five groups each with a different purpose,
as is explained below. Note that except for the /comments group, all groups
have a version attribute (shown in red). This is important for backwards
compatibility should the file format definition be updated in the future.

3.1.2 The "/comments" Group

This group will contain strings identifying the specimen that data was recorded
on, the date and time of the assembly, and an array of comments meant to
keep track of what type of analyses were performed on the particular data
set. There is no explicit format requirement for the strings in the array of
comments; however, for uniformity I suggest to always use the following string
template:

’NAME_OF_PROGRAM, time of analysis, relevant parameters’

It is up to the programmer of a specific data analysis tool to make sure that
the software adds an entry to the /comments group. A detailed definition of
the /comments group is given in Appendix A.1.

’http://www.unidata.ucar.edu/software/netcdf/
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Figure 3.1: Schematic of the internal structure of the file format. The raw
data will be assembled in an HDF5 file with predefined groups and data sets
that are meaningful in the context of diffraction microscopy.

3.1.3 The Assembly Info Group - "/ainfo"

The /ainfo group keeps track of all the information that is not the same for
all data files that were merged. For example, it will store the names of all
files that were merged as well as their date of creation. Since the file format
is supposed to be flexible and accommodate 2D as well as 3D data sets, not
all of the structure tags of the /ainfo group will be used for each data file.
For example, for 3D data, the /ainfo group will save an array of rotation
angles (corresponding to diffraction patterns taken at different rotation angles
of the specimen with respect to the x-ray beam) of the 2D data files that were
merged into the 3D data cube. For a 2D data set we don’t need to save this
information because the rotation angle does not change. The file input-output
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libraries (see Sec. 3.2) are written so that they handle missing structure tags
gracefully. A detailed definition of the /ainfo group is given in Appendix A.2.

3.1.4 The Assembled Diffraction Intensity Group
_ ll/adill

This group holds the actual 2D or 3D data array that results from the assembly
(called adi_array). It also stores experimental information that is the same
for all data files that were merged, such as the wavelength that the experiment
was carried out with or the sample-detector distance.

The optional array adi_error_array (e; ;) can be used to store informa-
tion on the error of each voxel in an assembled data file. It is meant to store
an array of relative errors that when multiplied with the pixel values of the
associated adi_array (a; ;) results in an absolute error of each pixel of the
form 0 j 1 = €; 1 X a; ;1; for example, the automated assembly program that I
will introduce in Sec. 3.3 determines the error from CCD read-out and thermal
noise plus photon statistics. This information will be used during reconstruc-
tion when applying the Fourier-modulus constraint according to Eq. 2.29. A
detailed definition of the /adi group is given in Appendix A.3.

3.1.5 The Support Mask Group - "/spt"

The support mask (a real-space array of 1 byte per pixel) defines a support
constraint in 2D or 3D. It is usually not present in the beginning but will be
created once the user defined a support mask that he wants to use for the
reconstruction. As I have explained in Sec. 2.2.5 the support guess is updated
several times during the reconstruction process until a satisfactory result is
obtained. To prevent confusion and for convenience, it is important to store
the current support guess along with the current iterate amplitudes (see below)
and the assembled data in one file. A detailed definition of the /spt group is
given in Appendix A .4.

3.1.6 The Iterate Amplitude Group - "/itn"

This group holds the result of a reconstruction calculation (a complex ampli-
tude in real space) in itn_array. It also stores an array of reconstruction errors
(recon_errors) calculated for each iteration according to Eq. 2.30. Again, it is
convenient to store the reconstructed result together with the assembled data.
For example, to calculate the PRTF of a reconstruction according to Eq. 2.44
one needs both the assembled data and the reconstructed result. Keeping these
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different arrays in one file minimizes potential confusion and error. Since the
itn_array is a complex array, it requires a lot of memory, especially for 3D
data sets. We therefore make use of the property of the HDF5 library that
allows us to only read little chunks of data into memory. This is described
in more detail in Sec. 3.2. A detailed definition of the /itn group is given in
Appendix A.5.

3.2 A Platform Independent Subroutine Li-
brary with Parallel Processing Capabili-
ties

Our subroutine library has two main parts. First, it consists of an array of
functions that perform the read and write operations that are required to
create and update files in a manner consistent with the definition of the file
format (described in the previous section). Its name is the dm_fileio library
and it is described in more detail in Sec. 3.2.2. Second, it defines a set of basic
array manipulation routines that are common to reconstruction algorithms
of diffraction data. This subset of functions is called the dm_array library,
explained in more detail in Sec. 3.2.3. The entire library is available through
Concurrent Versioning System (CVS) from our server® and a comprehensive
user guide* is available online as well. Finally, I will give an overview of data
analysis tools that make use of the library in Sec. 3.2.4.

The basic idea of the subroutine library is to provide high-level functions for
common operations (such as reading and writing a file) that worry about lower-
level details such as platform specific implementation or parallel processing.
In other words, we want to present the user with a set of routines to the tune
of write file(...), get_phases(...), and so on whose outcome is obvious
but which hide all the nitty-gritty detail from the user. That way, the user
can write data analysis tools which will work automatically on all platforms
that are supported by the subroutine library.

Internally, this is achieved by a) a Makefile that defines which libraries to
use, where they are located for the platform the library is compiled on, and
that sets appropriate define-commands and b) #ifdef-statements in the li-
brary that invoke the correct code depending on what define-commands were
set in the Makefile. Currently, the library supports single processor machines
using fftw3® for Fourier transforms, and multiple processor machines using

Shttp://xrayl.physics.sunysb.edu/data/software.php
‘http://xrayl.physics.sunysb.edu/~micros/diffmic_recon/
Shttp://www.fftw.org/
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Figure 3.2: Schematic of the basic structure of the subroutine library. In the
C implementation, a Makefile defines the system relevant parameters which
(with the help of #ifdef statements) invoke different snippets of code in the
library when compiled. The file input/output routines are also implemented
in IDL which is used for visualization and post-reconstruction data analysis.

Message Passing Interface (MPI) [66, 67] and Apple’s dist_fft library [68]
for distributed Fourier transforms. Up to now, it is still the responsibility of
the user to modify the Makefile according to the specifics of the platform
being used. A schematic overview of the library is given in Fig. 3.2. It is
advantageous to use fast C code for memory-intensive number crunching (re-
constructions which involve many Fourier transforms on large arrays), and
a higher-level programming language for convenient visualization and post-
reconstruction data analysis (we use the Interactive Data Language (IDL)
from ITT® which is very similar to Matlab, another popular choice). This is
why the dm_array library only exists in C but the file input/output routines
are written in both languages. The following sections and code examples are
assumed to refer to the C implementation of the library unless otherwise noted.

Shttp://www.ittvis.com/IDL
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3.2.1 Basic Conventions: the File dm.h

There are some simple conventions that have to be followed when using the
library. Most of these conventions are defined in the header file dm.h; it has
to be included in any program making use of the library. I will list here the
most important coding conventions.

e Use of data types defined in dm.h. This ensures that we can work with
double and single precision arrays and takes care of custom types defined
by certain libraries, such as the complex-valued array types in fftw and
dist_fft.

e Use of array structures defined in dm.h. The array structures will auto-
matically use the correct data types and also hold additional informa-
tion such as the number of array elements per process (needed for the
dm_array library).

e Use of memory allocation and array-element selection macros defined in
dm.h. This will ensure that the array structures are correctly initialized
and that the memory is allocated according to the requirements of the
Fast Fourier Transform (FFT) library that is being used. It also allows
us to work with either

— split complex arrays
(arr = {[Reg, Rey, ..., Re,], [Img, Imy, ..., Im,]]}) or

— interleaved complex arrays
(arr = {[Rep, Imo], [Rey, Imy], ..., [Rey,, Im,]})

in memory.

e Initialize and finalize the subroutine library by calling the functions
dm_init and dm_exit before a routine from the library is called and af-
ter the last routine from the library has been called, respectively. These
routines will gather important runtime dependent parameters, such as
the number of processes and the current rank of each process when using
MPI. Thus the basic structure of a user written program is as follows:

int my_rank,p;

/* Obtain info on number of processes and rank of current
* process. Initialize MPI session if applicable.

x/
dm_init (&p,&my_rank) ;
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/* call to library functions */

/* Finalize MPI session if applicable */
dm_exit();

3.2.2 File-Input/Output Routines: the dm fileio
Library

The dm_fileio library is the actual software implementation of our file format
that I described in Sec. 3.1. It contains all functions that are needed to create,
read and write the various parts of the file format. Its routines are defined in
the header file dm_fileio.h which needs to be included in any program that
wants to make use of the library. The names of the functions are as descriptive
as possible to make clear what their main purpose is. There are two prefixes
"dm_" and "dm_h5_" to the function names. The first one is used for routines
that will not directly access a file on disk (read or write) while the second one
indicates that a routine will do just that. The library functions are written
to be very flexible and thus accommodating to the user. Here are the most
important features:

e Floating point data arrays will be written according to the value of
typedef dm_array_real: that is, as double-precision if DM_ARRAY_DOUBLE
is specified at compile time (C) or as a keyword (IDL), or otherwise as a
single-precision float. When reading the file, the file’s native data type
will be converted into float or double based on the type of dm_array_real.

e The dm_fileio routines automatically handle any byte-swapping that
might be required. This enables one to read and modify files that were
created on a big-endian system on a little-endian system and vice-versa.
This is important since many data analyses involve the use of several
computing systems, such as reconstruction on a remote Apple G5 cluster
and visualization on a local Linux PC).

e Not all files will have all groups. The dm_fileio library handles read or
write requests of missing groups gracefully. The same is true for missing
values in one of the arrays of supporting information (such as the array
of rotation angles in the /ainfo group).
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e The functions are written to deal with large arrays by reading them in
small slices rather than the whole array at once; this is a feature of
the underlying HDF'5 library. It is also important to prevent memory
allocation issues and it also facilitates parallelization, as described below.

e The functions are capable of parallel processing using MPI. If applicable,
both read and write operations can be split up among the processes
according to the parameters determined by the dm_init(...) routine.
In both cases, the process with rank 0 will be the only process that
does the actual reading and writing but it will do so in slices that it
sends/receives to/from other processes including itself.

e Provision for future additions is built-in through version attributes that
are saved with each group (except the /comments group).

e The library exists in C and IDL. Both implementations are fully com-
patible.

3.2.3 Basic Array Manipulation Routines: the dm array
Library

The second part of the subroutine library is the dm_array library. It defines
a set of basic array manipulation routines that are commonly used in recon-
struction processes of diffraction data. Its functions are defined in the header
file dm_array.h that needs to be included in every program making use of
its routines. The function names are very descriptive and indicate the main
purpose of each routine. All names have the prefix "dm_array " to identify
the library they are part of. The main features of this library are

e The library is fully integrated with the dm_fileio library described above
by relying on the same data types and macros defined in dm.h as de-
scribed in Sec. 3.2.1.

e All routines are capable of parallel processing using MPI.

e Since the dm_array library uses the types and macros of dm.h it au-
tomatically works with single- or double-precision, split or interleaved
complex arrays.

e The library includes an FFT wrapper routine that invokes either the
fftw3 library for single processor machines or the dist_fft library for
multi-node Apple machines. It provides the user with a simple interface
while taking care of the idiosyncrasies of each FFT implementation.

64



3.2.4 The Code Archive

Based on the subroutine library, our group has written an extensive code
archive of data assembly, reconstruction and post-reconstruction analysis tools.
All of these tools are shared through Concurrent Versioning System (CVS) and
all of them make use of the IDL or C implementations of the subroutine library.
Because of this, they are all compatible, in that in principle any routine can
be used on any file by anyone in the group without complications. I want to
introduce some of them and close with a real life example.

The IDL archive "dm_recon" includes a number of routines for different
stages of the data analysis process. There are routines that prepare data sets
for reconstruction (centering of diffraction patterns, defining initial support
guesses, etc), routines that help during reconstruction (redefining the support
guess, removing phase ramps, etc.) as well as routines for post-reconstruction
data analyses (averaging, adjusting global phase, high-pass filtering, calcula-
tion of phase retrieval transfer functions, and so on). Most of these routines
have been written either by Johanna Nelson or me.

The 2D assembly program AMP was written to automate and improve the
assembly of 2D diffraction patterns. I will explain it in more detail in Sec. 3.3.
It saves its output into our custom file format defined above using the IDL
implementation of our subroutine library. AMP was written by me and debugged
mainly with the help of Johanna Nelson; it’s an ongoing process!

Finally, I want to introduce two more programs that I wrote: the recon-
struction program "dm recon.c" and the 3D assembly program "cewald.c".
The program dm_recon.c was written in C making use of the C implementa-
tion of the subroutine library. Because of this, it is capable of reconstructing
large 3D data sets using parallel processing on our 16-node Apple G5 cluster
but it can also be used on single-processor machines. Its output is saved in
the respective groups of our custom file format. The program "cewald.c"
also makes use of the C implementation of our library. Its main purpose is to
take a many 2D diffraction patterns produced by AMP and to assemble them
into a 3D cube according to Eq. 2.15. In the process it will use a lot of exper-
imental parameters such as wavelength, pixel size of the CCD, and angle of
rotation that thanks to our custom file format have been stored with the 2D
files created by AMP.

A Case Study: From 2D to 3D

To illustrate the convenience and advantages of the library and the code archive
I want to describe an example data analysis process of actual experimental data
that involved several scientists and several programs.
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In August 2008 the experimental team was taking data on nano-porous
glass particles. After they had found a promising scatterer they recorded a
2D diffraction pattern on it and immediately started to analyze it to see if
it was worth spending several hours recording 3D data. Three quite similar
reconstructions were obtained within 24 hours so it was decided to record 3D
data on it (the details of the rapid 2D reconstructions are discussed elsewhere
[69]). One of the three reconstructions was obtained by Johanna Nelson. She
assembled the raw data using the automated merging program (AMP) intro-
duced in Sec. 3.3. Because her own reconstruction code makes use of the IDL
implementation of the subroutine library, it was straightforward for her to
access this file and reconstruct it.

Based on the preliminary information obtained from the 2D assembly and
reconstruction, Joshua Turner assembled all remaining 2D data sets of the 3D
tilt series using AMP. He then centered and cropped each file using routines from
the IDL dm_recon archive. After this was done, I assembled his 2D files into
a 3D cube using cewald.c and started reconstructing the 3D data set using
dm_recon.c. The whole process was straightforward thanks to the subroutine
library and the file format.

3.3 AMP - An Automated Assembly Program

As T have mentioned in Sec. 2.2.4, the dynamic range of the scattered intensities
can present challenges for many pixelated x-ray detectors. To recapitulate,
in using direct detection on CCDs one generates several hundred electron-
hole pairs per soft x-ray photon absorbed, which when coupled with a full-
well charge capacity of 105-10° electrons means that a dynamic range of only
something over three orders of magnitude can be achieved in a single recording.
(Pixel array detectors are beginning to overcome these limitations, but high
pixel number detectors with good sensitivity for soft x rays are not yet widely
available). As a result, a common experimental strategy that I have already
described in Sec. 2.2.4 is to to use a movable beamstop to block various parts
of the strong, low spatial frequency signal while adjusting the exposure time
to collect the weaker, high spatial frequency signals. These various intensity
recordings must then be combined into a full 2D diffraction pattern. Typically,
one merges multiple Fourier plane intensity recordings by using a per-dataset
procedure based on manual adjustments of noise thresholds and requested
exposure times. This is not only tedious but will also result in slight user-
dependent variations in the assembled diffraction pattern. In this section I
want to introduce a program that automates this merging process and in-
troduces improvements in two key areas, resulting in improved reconstruction
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quality [70].

3.3.1 Manual Data Assembly

First, lets look at a typical per-dataset assembly, where the following procedure
is performed for each beamstop position. Saturated pixels (where the full-well
capacity of the CCD had been reached) are first removed. Next, pixels with
anomalously high values due to large charge deposition by cosmic ray events
are found and removed, as are pixels with anomalous values due to either
manufacturing flaws or radiation-induced damage. Individual recordings are
then normalized to the synchrotron beam current, after which images with
the same exposure time are averaged and a noise threshold floor is applied.
The area behind the beamstop is then masked. Beam-normalized averages
from the different exposure times are then scaled and averaged, taking care to
include only those pixels with non-zero signal. In what follows I will refer to
results obtained with this protocol as hand-assembled data sets.

3.3.2 Improvements Provided by AMP

The assembly performed by AMP improves upon this basic assembly protocol
in several key areas. The first difference is a quantitative analysis of the CCD
chip. Given a series of dark current images at different exposure times, AMP
will calculate an average dark current and the variation in dark current either
as an average for all pixels in the chip, or (if enough redundant dark current
files are present) on a per-pixel basis. The variance in each pixel corresponds
to the total CCD noise comprised of thermal noise and readout noise. From
these data the scaling of average dark current and CCD noise with exposure
time is determined from a linear fit. This dark current information is used
twice: first to subtract an average dark current signal from each recorded
image, and second to calculate an error value for each pixel. The latter is de-
termined by the square root sum of CCD noise and noise due to initial photon
statistics; this error array is kept throughout the entire assembly process and
updated according to the rules of error propagation. It is a crucial ingredi-
ent to two other improvements that AMP introduces: weighted averages and
weighted normalizations.

During the assembly process, arrays are frequently normalized with respect
to some constant (such as exposure time or ring current) and subsequently
averaged such that in the end there is only one data set containing all the
information from all initially recorded images. Even though the arrays are
normalized, problems may arise from insufficient knowledge of the normaliza-
tion constants. We have found for instance that our shutter timing (which
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ultimately determines the exposure time) is not very accurate at short expo-
sure times. This will lead to scaling errors between different regions of the
final assembled array. To overcome this problem, AMP calculates a normaliza-
tion correction based on pixels that are common to the two arrays about to
be averaged. This correction is applied just after the “regular” normalization
(using beam current or exposure time), before the arrays are averaged. For
both the calculation of the normalization correction and the averaging of two
arrays, AMP makes use of their error arrays by weighting each pixel’s influence
on the result with its respective error. This makes good sense as we want
pixels that we are more confident in, (with smaller error) to contribute more
to the final result than pixels with higher uncertainties. Given two previously
normalized arrays 1 and 2 with intensity values at the k-th pixel of I} ; and I -
respectively, the normalization correction c is calculated from the minimum of
the goodness-of-fit parameter

L1 —clis)?
X@g:M, (3.1)

2
k Tk

where oy, is the effective total error for the k-th pixel. To calculate o5 we
express the intensity at the k-th pixel of the i-th array I;; as the sum of true

signal I ,ggue) and error o ;. With this, Eq. 3.1 becomes
2
SO £ oy = e (15 £ 0r2) | =0 (3.2)
k
Rearranging the left hand side to
2
SO = eI ) £ o £ o] (3.3)
k

and assuming ¢ ~ 1, we arrive at

Z (ok1 + Uk,2)2 ~ Z (01371 + ‘713,2) (3.4)
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where we have assumed that the errors are uncorrelated, or ) oy 00 = 0.
Now we can go back to the original idea and calculate the normalization
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constant by taking the derivative of Eq. 3.1 with respect to c:
d ‘]k 1—C [k 2|2
— E —— =0. 3.6
dc - o? (36)

Performing the derivation and solving for ¢, we end up with
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Note that the sum above is performed over pixels that are defined; that is,
greater than some threshold or zero and not saturated) in both arrays. After
normalizing the arrays in the pre-described manner, we can average them. As
with the normalization, we have to make sure that we give more weight to
pixels with little uncertainty than to pixels with high uncertainty. Therefore
AMP calculates for each pixel k& the weighted average I;"® over all arrays i =
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where o; i, is the previously normalized error of the k-th pixel in the ¢-th image.
The new error o, for each pixel can then be calculated as the square root sum
of all errors of pixels that were averaged, or

02—71
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which can be used in subsequent analysis.

Apart from providing a more rigorous defined and consistent assembly
of the data, AMP was also written to facilitate and speed up the process of
assembling a 2D diffraction pattern. A simple script file indicating the names
of the raw data files to be assembled is sufficient to start AMP. Given such a basic
script file, AMP will attempt to infer all information it needs directly from the
data; for all else, it prompts the user for input. As the assembly progresses, AMP
will write important data-set-specific parameters it determined to the script
file for future reference. It also automatically saves information that can be
re-used for a subsequent assembly of the same data and even for other data
sets if applicable, such as if the same dark current parameters can be used for
data sets recorded with the same CCD, or the same beamstop mask pattern
for data sets that were recorded using the same beamstop. Finally, AMP will

(3.9)
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Figure 3.3: Assembled diffraction intensities of data collected on a freeze-
dried labeled yeast cell. On the left, the same subsection of the entire array is
shown on a false color scale for both AMP-assembled data (in black) and data
assembled by hand (in red). On the right, the power spectral densities for
both arrays are plotted on a log-log scale. The hand-assembled data follows
a different power law and shows a peak around 40 pum~! due to a cosmic ray
recorded on the CCD that has not been removed during the assembly. The
location of the cosmic ray is indicated by a white arrow in the magnified subset
of the hand-assembled array.
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save the final assembled diffraction intensities along with meta data important
for reconstruction into our own custom file format that I have explained in
Sec. 3.1. Automating these steps is especially important for data intensive
three-dimensional x-ray diffraction microscopy [24, 71|, where 2D diffraction
patterns are recorded over a wide angular range with small angular steps prior
to mapping the resulting Ewald spheres into a 3D data cube. I will refer
to the 2D diffraction data assembled by the above automated procedure as
“AMP-assembled” data in what follows.

Figure 3.3 illustrates some advantages AMP-assembled data has over hand-
assembled data. Subsections of the assembled diffraction intensities for both
AMP-assembled data (black) and hand-assembled data (red) on a logarithmic
intensity scale are shown on the left. The x-axis spatial frequency range in each
case is from 0 to ~ 48 um~!. Scaling issues are present in the hand-assembled
array but not in the AMP-assembled array. This is illustrated by the plot of the
power spectral densities (PSD) for each array, shown on the right on a log-log
scale. While the PSD of AMP-assembled data (in black) follows a straight line
as would be expected for most objects, the PSD of hand-assembled data (red)
changes its slope at a spatial frequency of around 10 um~!' suggesting that
low and high spatial frequency data have not been properly scaled. Another
prominent difference is the occurrence of a sharp peak at ~ 40 ym~! marked by
a black arrow in the PSD of the hand-assembled data. This peak, presumably
due to a cosmic ray incident on our CCD at the time of data collection, is found
in one single exposure of the recorded raw data. Due to the large standard
deviation of the affected pixels it is filtered out by weighted averaging early
on in the AMP assembly process. This is not true for the hand-assembled data
where the peak ends up in the final assembled array, as is indicated by the
white arrow in the magnified inset of the hand-assembled data. I would like to
point out that while a more careful assembly by hand is possible, it would be
considerably more time consuming and its steps would have to be readjusted
for each new data set.

3.3.3 Comparison of Reconstructed Images

The ultimate judgement of the quality of data assembly comes from seeing
the quality of the reconstructed image. In this section I will compare images
reconstructed from AMP-assembled versus hand-assembled diffraction data.
While Section 3.4.4 below involves a comparison between different iter-
ate averaging procedures, for this result I used a variation of an already-
demonstrated averaging procedure [35]. Reconstructions to determine the ob-
ject’s support were carried out first, starting with an initial support guess cal-
culated from the autocorrelation of the diffraction pattern, then by application
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Figure 3.4: Final averaged reconstructions of both AMP-assembled diffraction
intensities and hand-assembled diffraction intensities obtained in experiments
on gold-labeled freeze-dried yeast [61]. Magnitude is represented as brightness
and phase as hue according to the inset color bar. The hand-assembled re-
construction shows streaks and other variations in intensity that would not be
expected in the cell; the AMP-assembled reconstruction provides an improved
visual appearance.

of the shrinkwrap algorithm [40] with occasional by-hand adjustment as is de-
scribed in Sec. 2.2.5. The final support guess was then used in 10 separate
reconstructions with different random starting phases [72]. In each reconstruc-
tion, the difference map algorithm [17] was used with a positivity constraint
on the imaginary part of the object’s exit wave (this corresponds to a maxi-
mum phase shift of 7 or 1.5 pm of solid dry protein for X-rays of wavelength
1.65 nm), and a linear phase ramp was continuously removed (thus constrain-
ing the object to be centered in the real space array). In each of these sep-
arate reconstructions, every 50" iterate from iterations 5,000 to 10,000 was
set aside; the global or zero-spatial-frequency phase of each real-space iterate
was adjusted to a common value as described in Sec. 2.2.6, and the complex
iterates were then averaged together. Finally, the 10 separate reconstructions
were averaged together, again with the global phase adjusted to a common
value (the global phase has no effect on diffraction intensities and thus is un-
constrained by measured data). This procedure yields a reconstruction with
minimal sensitivity to those phases that are poorly constrained by the data.
The images reconstructed using the above procedure on both hand-assembl-
ed and AMP-assembled data are shown in Fig. 3.4. Magnitude is displayed
as brightness, and phase as hue with a color bar illustrating the phase—hue
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relationship. (Note that because the global or zero-spatial-frequency phase is
unknown, the color bar serves only as an indicator for relative phase differ-
ences). Both reconstructions agree in key features; however, the AMP-assembled
reconstruction shows less phase variation at low spatial frequencies. This is in
better agreement with what would be expected from less-dense areas of the
yeast cell which should have greater uniformity of projected thickness. It is
also similar to the goal of maximum-entropy methods of image reconstruction,
which seek to find the image with the least variation yet which is still con-
sistent with the measured constraints. If we assume that the hand-assembled
Fourier magnitudes have variations associated with erroneous assembly rather
than with scattering properties of the specimen, then we would expect the
reconstruction from hand-assembled magnitudes to give rise to more, but er-
roneous, contrast in the reconstructed image. This is consistent with the visual
impression of Fig. 3.4.

3.3.4 Comparison of Reconstruction Consistency Using
PRTF and PSD

Aside from the visual inspection discussed in the previous section, there are
more quantitative means to assessing and comparing the “quality” of recon-
structions. I have already introduced two common measures in Sec. 2.4.2, the
Phase Retrieval Transfer Function (PRTF) and the Power Spectral Density
(PSD). As discussed in this section, the PRTF is a measure of phase retrieval
consistency while the PSD gives and indication of the maximum information
transfer from measured data to reconstructed data. Figure 3.5 shows a plot
of both the PRTF (on left) and the PSD (on right) for both reconstructed
data sets, the AMP-assembly in black and the hand-assembly in red. The plot
of PRTF curves on the left suggests that the AMP-assembled data set leads
to reconstructions with more consistently retrieved phases than the hand-
assembled data. Its PRTF curve stays above 0.5 up to a spatial frequency
of slightly more than 40 pum~! corresponding to a real space half-period of 13
nm; this is consistent with the resolution estimated from examining real-space
features [61]. The hand-assembled data, however, has lower PRTF values for
all spatial frequencies except for the very high spatial frequencies. It also
behaves differently than the PRTF of the AMP-assembled data in that its val-
ues start to increase again after a spatial frequency of around 25 pm=!. It
seems counter-intuitive to have a better quality reconstruction at high spatial
frequencies because one would assume that phase retrieval would get progres-
sively harder for high spatial frequencies where the signal-to-noise ratio of the
recorded data is lower. Instead it suggests that there are either systematic
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Figure 3.5: PRFT (left) and PSD (right) curves of both AMP-assembled (black)
and hand-assembled reconstructions (red). Both plots suggest more consis-
tent phase retrieval and higher maximum information transfer for the AMP-
assembled reconstruction. The PRTF of the hand-assembled data displays an
artifact that makes its interpretation ambiguous.

errors in diffraction intensity measurement or noise that lead to erroneous
but consistent structure. This is the same conclusion that I already drew in
Sec. 3.3.3.

The same view is also supported by looking at the plot of the PSD curves
shown on right of Fig. 3.5. The reconstruction of the AMP-assembled data fol-
lows an inverse power law (as one would expect from Porod’s law, see Sec. 2.2.4)
out to about 50 um~! and then rolls off into a flat noise-like power spectrum.
The reconstruction of the hand-assembled data, on the other hand, already
rolls off at 25 pm~! suggesting that its maximum information transfer is only
out to this spatial frequency and thus less than a factor of two of what the
AMP-assembled reconstruction achieves.

3.4 Improving the Utility of PRTF Curves for
Judging Reconstruction Quality

As I have already explained in Sec. 2.4.2, measurement of the spatial frequency
at which the PRTF has suffered a significant decline can be used to provide
an estimate of the spatial resolution of the reconstructed image [21, 24, 35],
since of course a PRTF value of 1 indicates perfectly reproducible phases while
a value of 0 indicates completely random phases. Unfortunately no consen-
sus has emerged on what PRTF value should be used to judge reconstructed
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image resolution, with various authors using values of about 0.4 [21], 0.1 [73],
“close to zero” [62], or unspecified values [27] as their criteria. In addition
to that, the PRTF can exhibit strange behavior that make it hard to inter-
pret. For example, Fig. 3.5 of the last section shows that the PRTF of the
hand-assembled data increases again after a certain spatial resolution mak-
ing the choice of a cutoff-value and its interpretation ambiguous. Finally, the
PRTF measures phase retrieval consistency by averaging many independently
obtained reconstructions, yet so far there has been no attempt to quantify how
different averaging protocols affect the validity of the PRTF.

In this section, I will illustrate how the PRTF works with a simple ex-
ample, propose a modified version of the PRTF that improves its utility for
judging reconstruction quality, and experimentally derive some criteria of what
constitutes sufficient averaging for the PRTF [70].

3.4.1 How the PRTF Works: A Simple Example

I mentioned above that there is no consensus in the community as to what
value of the PRTF should be used as a cutoff to define the highest spatial
frequency with (still) trustworthy phase retrieval. It is therefore instructive
to relate the range of PRTF values to a measure of phase variation in the
averaged pixels.

Let’s assume that for a specific pixel, the ensemble of phases obtained in
many reconstructions follows a Gaussian distribution about a fixed valus with
a standard deviation of gy. Figure 3.6 shows the relationship between the
standard deviation of such an ensemble and the resulting magnitude obtained
by averaging all pixels of the ensemble (the pixels were assumed to be of unit-
magnitude without loss of generality). This plot can be used to compare a
possible cutoff-criteria of the PRTF with the corresponding range of phase
variations between the averaged iterates. For example, a value of the PRTF of
0.1 translates to a phase variation with a standard deviation of 123°. It seems
unreasonable to use such a low value as cutoff for consistent phase retrieval. In
fact, a classic quantity used as threshold for aberration free imaging in optics
fabrication, the Rayleigh quarter-wave criterion, says that an imaging system
can be considered free of aberrations if the maximum path length difference
does not exceed /4 [74]. If we compare the results of Fig. 3.6 to this criterion
then we will conclude that a value of 0.7 is a more reasonable cutoff value for
the PRTF of Gaussian-distributed phase ensembles.

75



1.0 — T T T T T T T T T 1
| Complex addition of unit magnitudes ]|
| with Gaussian-distributed random phase |
0.8 —
r 0.73 at 45° (Rayleigh 1/4 wave criterion) T
. L _
'g - -
= 06 -
& L _
=l - 0.50 at 67° .
= L _
S 04 -
2 L _
£ | 0.29 at 90° 1
02 _
I 0.10at123° |
0.0 Y S e J
0 50 100 150 180

O, in degrees

Figure 3.6: The magnitude resulting from a sum of random phases with Gaus-
sian phase distribution characterized by oy, calculated for a range of values of
og. Since the phase retrieval transfer function or PRTF measures the magni-
tude (at a particular spatial frequency) of the average of many iterates, this
figure provides insight into the range of phase variations between the iterates.
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3.4.2 Wiener-filtered PRTFs

Even with a better sense of how to interpret different values of the PRTF,
we still have to make sure to not get fooled by pathological behavior which
can result from a too-small support constraint, or from errors in measurement
of the diffraction intensities, or from noise which might place consistent but
erroneous structure within the support constraint.
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Figure 3.7: The use of a Wiener filter provides an improved measure of recon-
structed image quality. This figure shows the phase retrieval transfer function
(PRTF; shown in thick shaded lines at left) and power spectral density (PSD;
right) curves corresponding to the reconstructions of Fig. 3.4. In the PSD
curves, the square of the spatial-frequency-independent noise floor value |N|?
is shown by a dashed line, and a linear fit to the square of the high spatial fre-
quency signal trend |S(q)|? is shown with a thick shaded line. A Wiener filter
function was then calculated according to Eq. 3.10 and applied to the PRTF
curve, leading to the Wiener-filtered PRTF curve or wPRTF curve which is
shown in thin, non-shaded lines at left. Applying the Wiener filter suppresses
the artificially high PRTF-values of the hand-assembled reconstructed data
(red) above a spatial frequency of about 25 pm~' and underlines the higher
quality of the reconstruction of the AMP-assembled data.

As mentioned in the introduction of this section, this can also make in-
terpreting the PRTF difficult. Let’s take another look at the data from the
AMP-assembled vs. hand-assembled comparison of Sec. 3.3.4. Figure 3.7 shows
again a plot of phase retrieval transfer functions (on left) and power spectral
densities (on right) of both data sets, similar to Fig. 3.5. On the left, the
original PRTF's of both the AMP-assembled (in black) and the hand-assembled
results (in red) are plotted as shaded curves and labeled “Not filtered”. As
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discussed in Sec. 3.3.4, the shape of the hand-assembled PRTF curve suggests
pathological behavior.

To make this a better tool for assessing reconstruction quality overall, we
need a way to combine the PRTF’s measure of reconstruction consistency with
a measure of maximum information transfer. I propose that a Wiener filter [75]
provides such a measure. If one can estimate the spatial frequency dependent
trend S(q) of the true signal, and the trend N(g) in noise, the Wiener filter
W (q) is formed from
_ ISP

1S(@)[*+ [N(q)
so that it varies smoothly between 1 for signal dominated and 0 for noise
dominated spatial frequencies. Note that what I refer to here as true signal
S(q) is actually a convolution of the true signal with the point-spread-function
(PSF) of our imaging system, but since we do not apply the filter to the
actual image, it does not make a difference. Since many noise sources (such
as photon statistical noise, and thermal charge fluctuations in CCD detectors)
are uncorrelated pixel-to-pixel, the power spectral density PSD of noise usually
follows the form of the Fourier transform of a delta function: namely, a “flat”
power spectrum consisting of a constant value at all spatial frequencies. The
diffraction signal is much different; as was noted in Sec. 2.2.4, it tends to
decline as I oc ¢~™ with m ~ 3-4. We can therefore follow a straightforward
procedure suggested by Press et al. [76] to generate a Wiener filter from the
power spectral density of a measured diffraction pattern: If we assume the
measured signal C'(q) to consist of true signal S(q) plus frequency independent
noise N, such that its power spectral density is given by

W(q) (3.10)

PSD(q) = [C(a)|" = |S(a)|" + IN|’ (3.11)

then the trend of |C(q)|* can be found from a straight line fit in a log-log plot,
while the square of the spatial frequency independent noise floor |N| can be
found from where the power spectral density rolls off to a constant at high
spatial frequencies. From these two quantities, we can extrapolate the square
of the true signal as |S(q)|? = |C(q)]* — |N|?> and use this to determine the
Wiener filter according to Eq. 3.10. This procedure is illustrated at right in
Fig. 3.7; it has been used with success for image deconvolution [77] and phase
contrast Fourier filtering [78] in lens-based x-ray microscopy.

Application of the Wiener filter to the phase retrieval transfer function (ab-
breviated here as wPRTF) provides an improved measure of the reconstructed
image. In Fig. 3.7, the wPRTF for the AMP-assembled and hand-assembled
reconstructed images of Fig. 3.4 is shown. While the non-filtered PRTF of the
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hand-assembled data has a pathological increase at higher spatial frequencies,
the wPRTF shows a sharp decrease. In addition, the wPRTF of the hand-
assembled data is now below that of the AMP-assembled data for all spatial
frequencies, which is consistent with the improved visual impression of the
reconstructed images in Fig. 3.4.

3.4.3 wPRTF and Varied Specimen Exposures

To make sure that Wiener-filtered PRTFs are a reliable tool to assess the qual-
ity of reconstructions of a wide variety of diffraction data, I show here recon-
structed diffraction data from a simulated object at various different incident
photons per pixel values. The simulated object was designed to approximate
a pair of frozen-hydrated biological cells in a 5123 array with 15 nm pixel
size, similar to simulated cells we have used in other computational studies
[65]. The larger cell has an outer diameter of 2.1 pum while the smaller cell
has an outer diameter of 1.27 ym. Together they are embedded in a 30 nm
thin layer of ice. Both cells have a 45 nm thick double-layer cell membrane
made from 50/50 protein and lipid, and are filled with a 10:1 ice and protein
mixture. Several lipid balls of 60 nm diameter are distributed throughout the
volume of both cells. Each cell also has a cell nucleus (assumed to be filled
with chromatin) with a 15 nm thin single layer cell membrane made from the
same composition as the outer cell membrane. Finally, each cell has a vacuole
that is filled with ice and has a 15 nm thin lipid membrane. The values of the
refractive index are calculated according to tabulated data of Henke et al. [79]
assuming a stoichiometric composition of HygC32.9Ng 9Og950.3 and density of
p = 1.35 g/cm? for protein, Hgy 5C31.506.3 with p = 1.0 g/cm? for lipid [56], and
H.9.05C24.64N5.66015.57P1.07S0.03 and p = 1.527 g/cm?® for chromatin [80]. As-
suming an x-ray energy within the “water window” [60, 81] of 520 eV, an exit
wave leaving the object was calculated using a multislice propagation process
[35, 82] and then propagated to the far-field. Diffraction patterns were simu-
lated for 11 different exposures with photons per pixel values ranging from 10*
to 10°, with simulated Poisson noise included [65]. The power spectral density
of the highest exposure diffraction pattern shown in the grey curve at left in
Fig. 3.8 indicates that the simulated cell showed strong scattering out to a
spatial frequency of about 13 um™!. Each data set was reconstructed similar
to what has been described in Sec. 3.3.3 for the experimental data, except
that averaging was applied to every 10th iterate starting at 2,000 iterations
up until a total of 10,000 iterations had been run.

Results from these simulations are shown at right in Fig. 3.8. As expected
[65], lower exposures lead to poorer signal-to-noise values in the final recon-
structions and thus poorer resolution. As a measure of the effective resolution
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Figure 3.8: The Wiener-filtered phase retrieval transfer function (wPRTF)
provides a good measure of reconstructed image quality over a wide range of
photon exposures. Shown at right are a series of wPRTF curves for recon-
structions of simulated data with several different photons per pixel values
and simulated Poisson noise. The spatial frequency at which the wPRTF
crosses the dashed 0.5 line is taken as effective resolution for each data set.
On left, a power law fit to the power spectral density (PSD) of the data set
with the highest photons per pixel value (black) is compared to a power law
fit to the dose-resolution data (red) derived from the figure on the right. The
magnitudes of both slopes agree within their error, indicating that the degree
to which scattering decreases with spatial frequency in an object is equal to
the degree at which reconstructed image resolution falls off with decreasing
exposure [65].
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of the reconstruction at each photon exposure value, I took the spatial fre-
quency at which the filtered PRTF curve falls below 0.5. These values are
plotted as red + marks at left in Fig. 3.8; plotting the values against the sim-
ulated photons per pixel values results in a power-law fit with an exponent
of 3.76 & 0.27 (after excluding resolution measures above the 13 ym=! spa-
tial frequency at which there was little signal present in the simulated object;
these are shown as red x marks). Also shown in Fig. 3.8 is a fit to the power
spectral density of the highest exposure diffraction pattern; this gave a slope
of —3.59 4+ 0.04. The magnitude of both exponents agree within error; this is
as expected, since one needs signal at a spatial frequency to see structure over
the corresponding length scale, so that achievable resolution should follow the
same spatial frequency trend with exposure as the spatial frequency content
of the object does [65]. The fact that the Wiener-filtered PRTF provides such
a straightforward illustration of this result of this confirms the utility of the
wPRTF measure.

3.4.4 wPRTF and Iterate Averaging

[terate averaging provides a way to improve image reproducibility, and to
measure the resolution via the Wiener-filtered phase retrieval transfer function
(wPRTF). In this section I will consider how many iterates should be averaged,
and at what frequency the iterates should be sampled. Sufficient averaging
supresses the contribution of poorly-phased Fourier scattering to the real-space
image, since phases which are not reliably retrieved will add up incoherently.
A lack of sufficient averaging will lead to artificially high PRTF values, since
not enough potentially inconsistent phases will have been sampled. In fact,
in the extreme case of no averaging the PRTF will be unity for all spatial
frequencies as follows from Egs. 2.44 and 2.29.

How frequently should one sample particular iterates for averaging? To
address this question, both the AMP-assembled experimental data, and the sim-
ulated data set described above, were reconstructed for 5,000 iterations of the
difference map algorithm. Then the algorithm was run further, and a total of
100 iterates taken every i'! iteration (i € {1, 5, 10, 20, 30, 40, 60, 70, 80, 90, 100,
200}) was averaged to obtain the final result. The resulting wPRTF curves
shown in Fig. 3.9 are nearly identical for all different averaging intervals. This
suggests that the frequency at which iterates are sampled is unimportant.

How many iterates should be averaged?” One would expect that the result
would depend on the quality of the data, since data with systematic errors
should show more fluctuations in the reconstructed phase. Rather than plot a
series of individual wPRTF curves as in Fig. 3.9, in this case the RMS residual
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Figure 3.9: Illustration of the effect of choosing different iterate averag-
ing frequencies. For both the AMP-assembled experimental data at left, and
the simulated data set at right, the difference map algorithm was first run
for 5,000 iterations. Next, 100 iterates were taken every i*" iteration (i €
{1, 5,10, 20, 30, 40, 60, 70, 80, 90, 100, 200}) to obtain a final result. Wiener-
filtered phase retrieval transfer function (WPRTF) curves are plotted for each
of the iterate averaging frequencies. An example reconstructed image is shown
as an inset. As judged by the wPRTF, all iterate sampling frequencies give
essentially the same result.

change in the wPRTF as one went from ¢ to ¢ + 1 averages was measured as

|3 (wPRTF, — wPRTF,;,)°

RMSH—I N )

(3.12)

where the sum extends over all N spatial frequencies up to the spatial fre-
quency where the PSD rolls off to a steady noise floor for a given reconstruc-
tion. I calculated the RMS residual according to the above equation for the
set of reconstructions with 12 different averaging frequencies that were already
used for the analysis leading to Fig. 3.9. Since this analysis showed that the
consistency in phase retrieval as measured by the wPRTF does not depend on
the averaging frequency, I assume only statistical differences between these re-
constructions and calculate the mean of all RMS residuals and their standard
deviation as a function of number of iterates averaged. Based on examina-
tion of the resulting average RMS residual on a linear-log plot, the average
RMS residual is fitted to a function of the form y(z) = az® + ¢ in order to
characterize the residual trend.

Figure 3.10 shows graphs of this analysis for reconstructions of A) the AMP-
assembled data set, B) the hand-assembled data set, and C) the simulated
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Figure 3.10: Changes in the wPRTF as a function of number of iterates aver-
aged for A) AMP-assembled experimental data, B) hand-assembled experimen-
tal data, and C) simulated data. The RMS residual changes in the wPRTF
(calculated using Eq. 3.12) as one goes from i to i + 1 iterates averaged were
then fitted to a function of the form y(z) = a2’ + ¢, plotted in red. The error
bars indicate the standard deviation between 12 different averaging frequen-
cies. A horizontal dashed line marks a value of RMS residual of 0.001 selected
to compare the results for the three different data sets.
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data set. The calculated means of all 12 reconstructions with different iterate
averaging frequencies are plotted as crosses with error bars indicating their
standard deviation. The fitted function is plotted in red and its fit parameters
are indicated for each respective graph. An arbitrary threshold of 0.001 RMS
residual was chosen to define convergence of the wPRTF; it is marked in the
graph by a horizontal dashed line. The number of iterates at which the fitted
function falls below the threshold (i.e., the number of averages at which I de-
clare the wPRTF to have converged) is indicated for each data set by a vertical
dotted line. The reconstructions of both the AMP-assembled and the simulated
data set converge after &~ 30 averaged iterates, while the reconstruction of the
hand-assembled data set converges only after about 50 averaged iterates. This
result gives an estimate as to how many iterates need to be averaged for the
PRTF to be a valid representation of the consistency in phase retrieval of a
reconstruction. It also shows that AMP-assembly leads to data sets that have
fewer systematic errors in the Fourier plane intensities.
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Chapter 4

Scanning X-ray Diffraction
Experiments

Full-field x-ray diffraction microscopy is limited by the requirement that the
object be isolated within the coherent footprint of the illuminating beam.
This puts constraints on what kind of object can be used in the experiment
and how it has to be prepared. I commented in Sec. 2.4.1 that for biological
specimen it is best to work with frozen-hydrated samples in order to minimize
radiation damage. This poses an additional challenge since we have to make
sure that scattering due to the always present ice layer outside the cell is
negligible. Scattering from the ice background surrounding a specimen will
violate the isolated object constraint and it will also amplify the effects of
poor coherence in our illumination; if the coherence width is less than the
illumination width then the recorded diffraction pattern will be a superposition
of several mutually incoherent diffraction patterns due to different coherent
patches in the illumination. It has been shown that partially coherent data
does not properly reconstruct [83].

While others in our group have focused on improving specimen prepara-
tion conditions to minimize the effects of the ice layer, here I want to talk
about an alternative experimental geometry (Scanning X-ray Diffraction Mi-
croscopy) that can overcome the above limitations. I have introduced the
concept of SXDM along with reconstruction schemes and sampling require-
ments in Sec. 2.3. I also commented on the necessity of a stable experimental
setup. In this Chapter I discuss my efforts to integrate a SXDM setup into our
existing microscope at beamline 9.0.1 of the Advanced Light Source, Lawrence
Berkeley Lab (Sec. 4.1). T will talk about the main design goals, possible op-
tical geometries, improvements to the apparatus and show some preliminary
results of recent experimental data. I also want to discuss the results of a
SXDM experiment using a Pixel-Array-Detector (PAD) at beamline 2-ID-B of
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the Advanced Photon Source, Argonne National Lab in Sec. 4.2.

4.1 Implementing SXDM at Beamline 9.0.1,
ALS

4.1.1 Main Design Considerations

The main goal for the SXDM setup was to be able to record a properly sampled
diffraction pattern of a frozen eukaryotic cell (using X rays with energies in
the water window) that has no missing low spatial frequency data and extends
out to at least 50 um~"' (corresponding to a half-period resolution of 10 nm),
and all this in a reasonable amount of time and with a minimum amount of
dose to the sample. In this section I discuss how these main goals are related
to each other. Some goals are complementary, some are competing. I will
describe optimal choices to satisfy as many goals as possible. Note that I will
ignore for now how limitations of the experimental hardware affect these goals;
it will come up later again.

Beam Footprint on Sample

This is one of the most important parameters, and it is linked with all the other
goals. By beam footprint I mean both the size and the shape of the beam.
The shape of the beam footprint should be well defined. Ideally, there is a
central bright area that is surrounded by lower intensity areas. However, this
requirement is not as stringent as in the case of Keyhole Coherent Diffractive
Imaging (Sec. 2.3.5) where the probe needs a well defined edge in the sense
that the slope in intensity change going across the edge is very steep. Here,
we can tolerate some “fuzziness” of the probe as long as our oversampling
requirements are met (see below).

The size of the beam footprint primarily depends on the size of the sample.
Our model biological specimen is a yeast cell of type Saccharomyces cerevisiae
with whi-5 mutation. These types of cells are typically around 3 pm in diame-
ter. To avoid overdosing, the size of the beam footprint should be significantly
smaller than that, ideally less than 1 pm.

Oversampling and Resolution

The oversampling requirements in SXDM are the same as the ones I discussed
for full-field XDM (Sec. 2.2.2) except that here the size of the autocorrelation
of the beam footprint on the object (rather than of the object itself) is the
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critical parameter. Let’s assume that our beam footprint has diameter D; the
oversampling can then be calculated according to Eq. 2.21 (repeated here for
convenience) as
I TV
o Aqg-D  pD’

where Z; is the distance between the object and the detector and p is the
pixel size of the detector. We can see that to increase oversampling for a given
detector and beam footprint, the detector has to be moved further back.
Increasing Z, will decrease the solid angle subtended by the detector, which
decreases the theoretical maximum momentum transfer ¢,.x that can be mea-
sured. The latter is derived in Eq. 2.16 (repeated here for convenience) as

1 p-%

qmax:m - ma

where N is the number of pixels of the detector. Clearly we need to find a
good trade-off position between the two quantities.

Flux Considerations

Two things are of interest to us in this section. First, we want to calculate
how long we need to expose the specimen to record scattered signal out to
qmax = 50 pum~! with a signal-to-noise ratio of at least five [59]. Second, we
want to know if we can record down to lowest spatial frequencies without
saturating our detector. For both we need to look into how the total incident
flux is distributed across the detector.

To answer the first question, we also need to estimate how scattered pho-
tons relate to signal-to-noise ratio. Let’s first try to quantify the flux incident
on the detector. At our beamline, we measure the photon flux np;, after the
monochromator. We then have to take into account the efficiency of the beam-
defining aperture n and the transmittance of the sample Tiymple. With this we
can calculate the rate of photons transmitted through the sample (i.e. the

scattered signal for all spatial frequencies) ngﬂans)

(trans)

Npy = Npn -7 Tsample- (41)

Since we are actually measuring the photon flux with a photodiode that pro-
duces a current on the order of nano-Amperes, it makes more sense to rewrite

[pD (I’IA)

=228.1010 =—"—"~
Npn Eph(ev)u

(4.2)
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where 2.28 - 10'° is a conversion factor relating the photons incident on the
photodiode with its output current in convenient units. With this, the flux
behind the sample becomes

[PD (DA) -n- Tsamplo
Eph(eV) )

nirene) — 998101 (4.3)

Now onto the question of the relationship between signal-to-noise and num-
ber of scattered photons. The noise in a pixel ¢ on the CCD is given by the
readout noise and the noise due to photon statistics, or

Noise; = \/U%CDJ- + Ncepyi, (4.4)

where Neep,; is the number of CCD counts produced by photons incident on
this pixel and o, ,; is the read-out noise in pixel i of the detector which can be
determined from the variance of a series of dark current images (as described
in Sec. 3.3.2, this value is calculated by AMP). The signal-to-noise ratio is then
defined as

N, .
SNR; = SIS . (4.5)
\/U%CD,i + Ncep,i

Solving for Nocp; for SNR; > 5 yields

1
Noeni > 5 (25+ /625 + 1002, ) (4.6)

where I dropped the negative solution. A typical value for the read-out noise
of the 1.3k chip is
ocep,i = 1.5 4 0.06 - texp. (4.7)

With this I calculate that we need photons equivalent to at least thirty CCD
counts (Nccp,; > 30) to obtain a signal-to-noise ratio that satisfies the Rose-
criterion. Remembering Eq. 2.26 along with the parameters of our two avail-
able detectors summarized in Tab. 2.1, we see that one 520 eV photon will
produce around 46 (93) counts for the 1.3k (2k) chip, i. e. a single scattered
photon should suffice for both CCDs. Note that this assumes that the photon
noise linearly translates into “count-noise” on the CCD, which is only approx-
imately true. It also does not take into account that the interference pattern
of one photon at 10 nm half-period might be distributed over several pixels in
which case we should calculate the SNR as an ensemble average of all pixels
that contribute. Nonetheless we can use this simple argument to get some
rough idea of what exposure time is required.
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To get a sense of how the total transmitted intensity calculated in Eq. 4.3
is distributed across the detector, we can use Porod’s law as described in
Sec. 2.2.4. Using the fact that 1(g) o npn(¢) and assuming m = —4, we can
write for the number of photons scattered in a small frequency range [q, ¢+ d¢]

nen(q) dg = ng - ¢~ *dg, (4.8)

We can calculate the constant ng from the requirement that the sum of scat-
tered photon rates over all length scales add up to the total rate of photons
transmitted through the specimen

S o
Gmin
= - 3 (trans) 3
o = OSNpp  Guin; (4.10)

where ¢, is the smallest spatial frequency in inverse space which corresponds
to the largest length scale in the real space plane, i. e. the size of the beam
footprint D. In particular, we note that for the lowest spatial frequency quin

3. ng:flans)
1ph (Gmin) dg = E— dq. (4.11)
Remembering the dynamic range of scattered intensities according to Eq. 2.28,
repeated here for convenience

4 4
max dmax
o (i) - (i)
Gmin dmin
we are now in a position to derive an equation that links the desired resolution
dwin to the required exposure time t., by arguing that we need at least DR

photons at spatial frequency ¢, in order to get one scattered photon at our
resolution length scale duin (= Gumax), i-€.

Gmin

4
texp - MPh(Gmin) dg = DR = (qmax) . (4.12)

The frequency interval dg in our case is given by the frequency sampling in
the detector plane Ag = 2max/N. Using Eq. 4.11, we can rewrite in terms of
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the total rate of photons transmitted through the specimen ngff“) as

N . qf;lax N-d3

o _ max (4.13)
’ 6- ngﬁanS) f)nin 6- trans df’mn
V' Ndax
= dmin = , (4 14)

where I switched from frequencies (¢min, Gmax) t0 their real space equivalents
(dmax, dmin) in the last equation. Note that ngﬁans) is given by Eq. 4.3. The
last result is particularly useful to estimate what resolution can be obtained in
a reasonable amount of time, given a certain photon flux and size of the beam
footprint on the sample. I will show concrete examples when discussing the
different optical geometries in Sec. 4.1.2. Note that due to the inverse third
root relationship, one needs to increase the exposure time by a factor of 103
to gain a factor of 10 in resolution.

Finally, I wanted to calculate the longest exposure time that we can record
before the detector saturates. The brightest pixels will be the ones measuring
scattered photons of spatial frequency ¢ui,. The number of pixels that sample
this spatial frequency in one dimension is given by the oversampling factor s
from Eq. 2.21. If we are assuming square speckles then the total number of
pixels sampling this spatial frequency will be s2. Each of these s? pixels will
again sample a frequency interval Ag which can be expressed in terms of the
oversampling factor using the same equation; it is Aq = 1/s.dma. With that
and Eq. 4.11, the number of photons per pixel Ny is given by

3. (trans)
Npixel - n;;h : texP- (415)

As discussed in Sec. 2.2.4, both our CCDs have a 16-bit ADC allowing for a
maximum count rate of 2'® —1 = 65535 and I have calculated before that each
520 eV photon produces 46 (93) counts for the 1.3k (2k) chip and each 750 eV
photon produces 67 (135) counts. That means that the chip saturates at 1425
(705) incident photons of 520 eV and at 973 (487) incident photons of 750 eV.
Calling the maximum number of photons for either case Ny.x, the maximum
exposure time before saturation is then given as

Nmax N max )\3Z3
texp,max - (trajs) - (trans ’ (416)
3-np, 3-npy, PP

where I have used Eq. 2.21 in the last step. In words, the maximum exposure
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time before saturation occurs goes as the inverse third power of the size of
the beam footprint on the sample. Experimentally, the shortest exposure time
that we can record is given by the speed with which we can open and close
the shutter that blocks the x-rays from continuously exposing the sample. For
our experiment this time is 1 msec. If the parameters of the experiment are
such that texpmax < 1 msec then we will not be able to record the low spatial
frequencies without saturation and have to find other experimental solutions,
such as the use of an absorbing beam attenuator, see Sec. 4.1.3.

Now that I have derived all important quantities, let’s look into how they
are related to each other in terms of the parameters to choose, dy.x and Zy:

Oversampling s and resolution d,;, are weakly linked competing goals.
Both vary linearly with the sample detector distance Zj; thus we cannot
achieve larger oversampling and smaller resolution at the same time by
adjusting the detector sample distance, see Eqgs. 2.21 and 2.16. However,
we can increase the oversampling by choosing a smaller footprint of the
beam on the sample. This will not affect the resolution.

Oversampling s and maximum exposure time before saturation ey, max
are strongly linked complementary goals. Looking at Eqs. 2.21 and 4.16,
we see that texp max X s3. This is good, because we want large oversam-
pling and long maximum exposure times.

Oversampling s and required exposure time for a certain resolution ey,
are weakly linked complementary goals. From Egs. 2.21 and 4.13 we
can see that a smaller footprint of the beam increases the oversampling
and decreases the exposure time for a certain resolution by decreasing
the dynamic range of the signal. However, the exposure time is also
dependent on the desired resolution which is a competing goal to both
oversampling and exposure time for a certain resolution.

Resolution dp,;, and maximum exposure time before saturation Zexp max
are indirectly linked competing goals. We can see from Eq. 4.16 that
Texp max X s% and I have commented above that resolution and oversam-
pling are weakly competing goals.

Resolution d,,;, and required exposure time for a certain resolution ey,
are strongly linked competing goals. As can be seen from Eq. 4.14, we
have to increase the exposure time by a factor of 10® to increase the
resolution by a factor of 10.

Since each goal also depends on a variety of other parameters, most notably
the incident flux which can vary greatly with different optical geometries, I will
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Figure 4.1: Distances between monochromator zone plates and the sample at
our existing diffraction microscope at beamline 9.0.1 of the Advanced Light
Source, Lawrence Berkeley Lab. Photo courtesy of Chris Jacobsen.

give specific examples of how to choose the best combination of parameters in
the next section.

4.1.2 Different Optical Geometries

Now that we know how different experimental goals are related to each other
I want to talk about the actual implementation of an SXDM setup for our
existing microscope. Besides the goals above, we have additional constraints
given to us by the existing apparatus. Most notably, we need to use the
current monochromator design scheme and we want to be able to use the Anti-
Contamination Device for cryogenic samples. Both features are described in
more detail in Sec. 1.3.1.

An overview of the beamline distances is given in Fig. 4.1. The focal length
for our zone plate monochromator is given by Eq. 1.16 and I have summarized
the focal lengths for the two energies that we would like to be able to use at
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Energy (eV) | Focal length (mm)
520 77.5
750 111.8

Table 4.1: Focal lengths of the monochromator zone plate for the two energies
commonly used at our microscope.

this beamline in Tab. 4.1. If we compare these values for the focal lengths
with the distances of the monochromator zone plates from the sample shown
in Fig. 4.1 then we see that in either case the energy selecting pinhole will
be about an inch from the sample. In order to get a sufficiently small beam
footprint on the sample, we had to change this up a little bit. I will describe
the three setup options that were used in experiments

Zone Plate as Beam-defining Aperture

The basic geometry is shown in Fig. 4.2, where the x rays are assumed to
travel from left to right. A distance Zzp downstream of the monochromator
pinhole of diameter Dp is a zone plate of outer diameter Dzp. The sample
sits in the focal plane of the zone plate with focal length Z;. It is illuminated
with a demagnified image of the monochromator pinhole which is of size D.
The diffracted signal is then recorded onto a CCD detector which is a distance
Zy further downstream of the sample. Apart from achieving our experimental
goals outlined in the previous section, there are additional constraints that we
have to fulfill: the zone plate should have a sufficient number of zones (N > 50)
to avoid phase ringing effects but less zones than the temporal coherence of the
beamline (N < A/ax &~ 500) to avoid chromatic aberrations. The focal length
of the zone plate Z; should be long enough to accommodate an Order Sorting
Aperture (OSA) between zone plate and cryo shield of the sample but not too
long to exceed the extent of the vacuum enclosure. As discussed above, the
size of the focal spot should be on the order of 1 pm. Finally, the distance
between the zone plate and the monochromator pinhole Zzp should be long
enough so that the zone plate is fully illuminated.

The main equations describing the relationship between the relevant pa-
rameters of zone plate diameter Dyp, outermost zone width ¢, , wavelength
A, number of zones N, size of the focal spot D and focal length f are given by
Eq. 1.16 and

_ e 4.1
Or AN (4.17)
D = 1226, (4.18)
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Figure 4.2: Schematic of illuminating the sample with a zone plate of diameter
Dzp

hv = 520 eV hv = 750 eV
Zy=1cm | D=500nm | N =36 N =25
Dyzp =59.0pum | Dzp =41.0 um
D =1pm N=9 N =6
DZP =29.5 m sz =19.7 Jeainl
Zy=5cm | D=500nm | N =180 N =125
DZP = 295.0 Jeainl sz = 205.0 m
D =1pm N =44 N =35
DZP =144.3 Am DZP = 98.5 Am

Table 4.2: Example zone plate parameters. Only a zone plate with focal
length of Z; = 5 c¢m and size of the focal spot of D = 500 nm satisfies both
the minimum and maximum number of zones constraint.

From this I can calculate some possible combinations of zone plate parameters
for both energies, which are shown in Tab. 4.2. Looking at these numbers we
see that only a zone plate with focal length of Z; = 5 cm and focal spot size of
D = 500 nm satisfies both number of zone requirements for both wavelengths.
We can now use Egs. 2.21 and 2.16 to estimate the oversampling and maxi-
mum measured spatial frequency for such a zone plate. I will do this for two
representative detector sample distances 7, and for both CCDs whose param-
eters I have summarized in Tab. 2.1. The results are shown in Tab. 4.3 with
the values for the 2k-chip in parentheses. All possible combinations satisfy
the experimental goals of sufficient oversampling (s > 3) and high resolution
(Az < 10 nm). However, to be able to illuminate an entire zone plate of
several hundred microns diameter with a monochromator pinhole of a few mi-
cron diameter (typically 5 um) we need to move the entire monochromator
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hv = 520 eV hv = 750 eV
Zy =10 cm | s =24 (35) s =17(24)
Ax =9.2(8.65) nm | Az =6.3(6.0) nm
Zy =5 cm 5—12(18) s =19(12)
Ar =4.6(4.3) nm | Az =3.2(3.0) nm

Table 4.3: Oversampling and resolution as a function of sample detector dis-
tance and energy. Values in parentheses are for the 2k-chip.

assembly (pinhole and monochromator zone plate) further upstream. Looking
at Fig. 4.1, one possibility is to move everything upstream by approximately
80 cm, that is, move the 750 eV zone plate to where the unused Order Sorting
Mirrors (OSM) are, the 520 eV zone plate to where the 750 eV zone plate is
and the monochromator pinhole to where the 520 eV zone plate is. This was
done in preparation of the first SXDM experiment. I also used the occasion
to improve on the stability and stiffness of the optical setup; these efforts are
described in more detail in Sec. 4.1.4. With this change to the beamline, the
distance between the beam-defining zone plate and the monochromator pin-
hole Zzp becomes roughly 77 cm. Assuming a monochromator pinhole with
Dp = 5pum diameter we have a footprint of the beam on the zone plate of
Dyeam = 900 pm for 520 eV and Dyean, = 620 pm for 750 eV. This corresponds
to a linear overfill factor of 3 in each case.

We can now calculate the rate of photons in the focal spot according to
Eq. 4.3. Assuming a typical zone plate diffraction efficiency of 10%, the total
efficiency 7 (taking the overfill factor into account) is around 1%. A frozen-
hydrated eukaryotic cell of 5 um diameter transmits around 22% of the incident
radiation of 520 eV. A typical reading on the photodiode for the photon flux
after the monochromator pinhole is 75 nA (although it can vary in either
direction by a factor of 2 or more). With this, I calculate the rate of photons
in the focal spot to

photons

9 (520eV) = 7.2-10° - (4.19)
h

) (750 6V) = 5.0 108 PO (4.20)
Sec

We can now estimate the longest exposure time before saturation of our de-
tector occurs using Eq. 4.16. The results for both energies and two sample
detector distances 7, are summarized in Tab. 4.4, where values in parentheses
are for the 2k-chip. All these times are substantially longer than the shortest
exposure time that we can record with our experimental setup (1 msec), so I
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hv = 520 eV hv = 750 eV
Zy =10 em | texpmax = 870 (1420) msec | texpmax = 291 (474) msec
Zy=>5cm | texpmax = 111 (178) msec | fexpmax = 36 (59) msec

Table 4.4: Longest exposure time before the detector saturates at both photon
energies and 2 representative sample detector distances. Values for the 2k-chip
are in parentheses.
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Exposure time (sec)

Figure 4.3: A log-log plot of Eq. 4.14 for the zone plate setup and both de-
tectors. It illustrates that we can reach our experimental goal of recording
statistically significant data out to 10 nm with an exposure time of < 10 sec
for all combinations.

conclude that saturation effects are not a concern when using a zone plate as
described above.

Finally, we want to estimate the exposure time required to record sta-
tistically significant data out to high spatial frequencies (corresponding to
dpmin < 10 nm). Figure 4.3 shows a log-log plot of Eq. 4.14 for both detectors.
We can see that an exposure time of about four seconds for the 1.3k chip and
six seconds for the 2k chip at 520 eV is sufficient. The exposure times for
750 eV are slightly longer but of the same order of magnitude. In summary,
the zone plate setup is able to achieve all of the experimental goals that I men-
tioned in the beginning of this section: it provides for sufficient oversampling,
the spot size on the sample is of the desired size, we can record data of smallest
spatial frequency ¢, without having to worry about saturation, and we can
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Figure 4.4: Schematic setup of SXDM with a pinhole as illumination source.
The size of the beam footprint on the sample D due to a pinhole of size Dp can
be determined numerically (similar to how I calculated the diffracted wavefield
behind an Au sphere in Fig. 2.1).

record statistically significant data at our resolution target spatial frequency
(corresponding to dy,;, = 10 nm) in only a few seconds of cumulative exposure
time. Despite the requirement of having to rearrange the beamline to create
the space that is needed for the additional zone plate, we decided to use this
setup for our first SXDM experiment with our microscope. I will provide more
detail on the experiment in Sec. 4.1.5.

Pinhole as Beam-defining Aperture

An alternative to using a zone plate as beam-defining aperture is to use a
pinhole. A schematic of the setup is shown in Fig. 4.4. A pinhole of diameter
Dp is a distance Z; from the sample and illuminates it with a beam of size
D. The detector then records the diffraction pattern a distance Zy behind the
sample. To create a small beam footprint D on the sample with a pinhole it
has to be very close to the sample, as I will explain in more detail below. The
monochromator pinhole is located about an inch upstream of the sample; this
is the location for 520 eV or 750 eV. We now have two options: a) introduce
an additional pinhole after the monochromator pinhole that can be moved
arbitrarily close to the sample or b) use the monochromator pinhole as beam-
defining aperture. The latter involves a slight change in energy as we move
the monochromator pinhole closer to the sample. This change is less than 3%
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and thus tolerable. With that, the first option does not provide any additional
advantages over the second one. Instead, introducing a second pinhole will
severely limit the available flux. This is why I decided early on to go with
option b) and I will also restrict my explanations here to this type of setup.
The new energies considered in the following derivation are thus 535 eV and
770 eV.

First, I want to determine the best combination of pinhole size Dp and
pinhole-sample separation Z; in terms of size of the beam footprint on the
sample D. Typical pinhole sizes are on the order of a few micrometers; smaller
pinholes are difficult to produce and tend to close up fast due to carbon buildup
from imperfect vacuum. In the far-field the shape of the beam that is origi-
nating from the pinhole will be an Airy-pattern with footprint of the central
maximum of

244\ Z
p=2HAG

Dp
where D is always larger than Dp. Thus it seems unlikely that we will be
able to achieve a spot on the sample of size 1 um or less with pinholes that
are 1 um or more in diameter. If we bring the pinhole close to the sample
such that we have Fresnel diffraction rather than far-field diffraction, the sit-
uation is slightly different. The transition from near to far-field is given by
the dimensionless Fresnel number introduced in Eq. 2.9. We can see that for
a pinhole of 3 ym diameter, near-field diffraction effects dominate up to a dis-
tance Z; of 3.90 mm for 535 eV light. The behavior of the diffracted beam is
now no longer described by Eq. 4.21. To estimate the footprint of a pinhole
in the near-field, we can numerically propagate the wavefield immediately be-
hind the pinhole to the plane of interest; this is similar to how I calculated the
diffracted wavefield behind a gold sphere in Fig. 2.1. T have done such anal-
ysis for different size pinholes using our IDL routine propagate.pro which
evaluates the propagator function derived in Collier et al. [84]. The results
are shown in Fig. 4.5. On top, cross sections through the intensity profile of
a wavefield emanating from a pinhole for different propagation distances are
plotted as surface plot for a 2 ym diameter pinhole on left and a 5 um diameter
pinhole on right. The illuminating photons have an energy of 535 eV. We can
see the transition from almost geometric projection for short propagation dis-
tances to near-field diffraction in both cases. For the 2 ym pinhole we can also
see the far-field diffraction in form of a diverging Airy pattern for propagation
distances of more than 1.7 mm which corresponds to a Fresnel number of less
than one. On bottom, the ratio of intensity within a 1pum spot over total
intensity is plotted as a function of propagation distance for a 2 ym pinhole on
left and a 5 pym pinhole on right. The simulations show that a 2 ym pinhole at

(4.21)
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Figure 4.5: On Top: cross sections through the intensity profiles of the beam
footprint produced by a pinhole as a function of propagation distance for two
different size pinholes; 2 ym on left and 5 pum on right. The transition from
geometric to near field diffraction can be seen. The photon energy is 535 eV.
On bottom: ratio of intensity within a 1 um spot over total intensity as a
function of propagation distance for a 2 um pinhole on left and a 5 um pinhole
on right.
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Figure 4.6: Cross section through the intensity profile of the beam footprint
produced by a 3 um pinhole at a distance of 2.3 mm. Most of the intensity is
contained within a 4 um spot.

a propagation distance of less than 1 mm produces a beam that has most of
its intensity within a 1 um footprint; however, a distance between pinhole and
sample of less than 1 mm is not experimentally feasible. The wavefield behind
a 5 pm pinhole (shown on right) has at most 40% of its intensity concentrated
in a 1 pm spot. These results as well as repeating the same analysis for more
pinhole sizes show that we won’t be able to find a combination of pinhole size
and pinhole-sample distance that results in a beam on the sample of size 1 ym
or less. The same is true for photons of 770 eV (not shown).

We can work with a larger size beam on the sample if we can tolerate more
dose to our specimen. Giving up on this goal, we can for example work with a
3 pm diameter pinhole that will produce a beam of approximately 4 um in size
at a distance of Zy = 2.3 mm for 535 eV light. A cross section through the
intensity profile of the wavefield produced by a 3 um pinhole at Z; = 2.3 mm
is shown in Fig. 4.6. Most of the intensity is contained within a spot of
4 pm diameter. For 770 eV light a similar spot profile can be obtained at
Zy = 3.4 mm. A 3 um diameter pinhole will transmit less than the 5 p pinhole
that we typically use as monochromator pinhole but I will show below that it
is still tolerable. A pinhole-sample distance of 2.3 mm is also experimentally
convenient as it allows us to introduce a corner between pinhole and sample.

Similar to the zone plate setup, I now want to characterize the pinhole
setup in terms of oversampling, resolution and flux for both energies and two
representative sample-detector distances. The values for oversampling and
resolution are again calculated using Eqgs. 2.21 and 2.16 and are summarized
in Tab. 4.5. Note that here I have chosen Z; = 15 cm as the second option
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hv = 535 eV hv =770 eV

Zy=10cm | s = 3(4) s =3(3)
Ar =8.9(5.8) nm | Az =6.2(5.8) nm
Zy=15cm | s =5(6) s=5(5)

Ar =13.3(8.7) nm | Az =9.3(8.7) nm

Table 4.5: Oversampling and resolution as a function of sample detector dis-
tance and energy. Values in parentheses are for the 2k-chip.

hv = 535 eV hv =770 eV
Zy =10 cm | texpmax = 0.04(0.06) msec | texpmax = 0.01(0.02) msec
Zp =15 cm | texpmax = 0.14(0.20) msec | texpmax = 0.03 (0.07) msec

Table 4.6: Longest exposure time before the detector saturates at both photon
energies and two representative sample detector distances. Values for the 2k-
chip are in parentheses.

for the sample-detector distance. We can see from the results that we barely
satisfy the oversampling requirements for the shorter distance. Working at the
longer distance and with the 2k-chip we can still satisfy both the oversampling
requirements and our resolution target of 10 nm.

We can estimate the flux transmitted through the pinhole using Eq. 4.3.
Since we are dealing with a 3 um pinhole now, we would expect a smaller
reading on the photodiode, say 30 nA. At the same time, we have no efficiency
losses as with the zone plate setup, thus n = 1. With this, the incident flux
becomes

rans h t
n{0) (535 ¢V) = 2.8 108 2o (4.22)
Sec
(trans) ¢ Photons
np™(770eV) = 2.0-10° (4.23)

Using these numbers and Eq. 4.16, we can calculate the longest exposure
time before saturation occurs for both energies and sample-detector distances.
Due to the slight change in energies, the maximum number of photons before
saturation occurs is now 1364 (682) for 535 eV and 948 (474) for 770 eV. The
results are summarized in Tab. 4.6. All of these values are below the shortest
exposure time that we can record with our experimental setup. This setup
therefore requires the use of a beamstop as described in Sec. 2.2.4 or some
means to attenuate the incident beam by at least a factor of 10 as described
in Sec. 4.1.3.

Finally, I want to calculate the exposure time that is required to record
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Figure 4.7: A log-log plot of Eq. 4.14 for the pinhole setup and both detectors.
It illustrates that we can reach our experimental goal of recording statistically
significant data out to 10 nm with an exposure time of < 100 sec for all
combinations.

statistically significant data at our resolution target length scale of 10 nm.
Figure. 4.7 shows a log-log plot of Eq. 4.14 for the pinhole setup at both
energies and for both detectors. To fulfill the goal of 10 nm resolution, we have
to expose the sample from 50 seconds to 110 seconds depending on detector
and energy. In summary, the pinhole setup does not fulfill all of our goals. We
have to compromise on the spot size and we barely satisfy the oversampling
requirements. Due to the increased flux and the small oversampling we cannot
record the lowest spatial frequencies without saturating the detector. We
are able to record data at our target resolution length scale but the required
exposure times are an order of magnitude longer than with the zone plate
setup. I therefore conclude that the zone plate setup is the better option.
However, as I will describe in more detail in Sec. 4.1.5, the pinhole setup is
experimentally more feasible.

4.1.3 Recording Low-spatial Frequency Data

We would like to be able to record down to lowest spatial frequencies. Sim-
ulations have shown [11] that missing low spatial frequency data results in
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poor contrast in the reconstruction; even when a perfect support is assumed.
The calculations presented above show that we can record the center speckles
with the zone plate setup. To achieve the same for the pinhole setup I will
introduce here an experimental solution.

Based on the maximum exposure times that are presented in Tab. 4.6 we
can see that, in order to be able to record 1 msec exposures without saturation,
we need to attenuate the incident beam by a factor of 10 to 100. The exact
amount depends on the actual geometry of the setup and the flux that is
available during the experiment. The amount of data that is typically lost
when using a beamstop amounts to an area of 20 x 20 pixels on the 1.3k
detector; that is, a square of 400 x 400 um. To attenuate the beam over
such an area, I chose to coat a silicon nitride window with gold and mount it
directly in front of the CCD. Standard windows are available in sizes of up to
5 x 5 mm; however, the window membrane is only about 150 nm thin so that
smaller windows are more stable. To leave room for overlapping data between
positions with and without the beam attenutator, I decided on a 1 x 1 mm
window in a 6 x 6 mm frame. The thickness of the gold layer required to
attenuate the incident beam by a factor of 10 can be calculated from Eq. 1.15.
Looking up the tabulated value of 5 [79] for both gold and silicon-nitride at
535 eV, we find fgixy = 7.36 - 10~* and Ba, = 4.188 - 1073, Solving

0.1 = exp [—2k (Bsintsin + Sautau)] (4.24)

for the thickness of the gold layer we find that tx, ~ 75 nm; I have assumed
that tg;v = 150 nm. For photons of 770 eV we would need a thicker layer
of gold but we explicitly designed it for the lower energy. The silicon-nitride
windows were coated by Pete Davis from the Physics Department at Stony
Brook University using an evaporator. To be on the safe side we deposited
close to 100 nm of gold.

To record the low spatial frequency data with this device, we would first
run a regular data acquisition script with beamstop (as described in Sec. 2.2.4),
then center the beam attenuator on the direct beam and record a few exposures
with it. To be able to move the beam attenuator in the vacuum chamber, I
redesigned the mount for the beamstop so that it also accommodates the beam
attenuator. An image of the mount, with both beamstop and beam attenuator
glued to it, is shown in Fig. 4.8. In the actual experiment we noticed that the
CCD was still slightly saturating even with the beam attenuator. We therefore
had to narrow the horizontal beam defining aperture behind the undulator to
further decrease the flux. With this we were able to record the whole diffraction
pattern down to lowest spatial frequencies. An example diffraction pattern
that was obtained by merging positions with and without beam attenuator
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Figure 4.8: Combined mount to attach both beamstop and beam attenuator
to a motor stage. Photo courtesy of Johanna Nelson.
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is shown in Fig. 4.9. The newly developed merging program AMP (described

Figure 4.9: Diffraction pattern obtained by merging several positions with and
without beam attenuator using AMP. The extent of the direct beam on the CCD
is indicated as a red circle. The window of the beam attenuator is indicated
as a green square.

in Sec. 3.3) was used to assemble the pattern from the various beamstop and
beam attenuator positions. It automatically scales the different positions with
respect to each other; this takes care of differences in flux incident on the
detector for positions with and without beam attenuator. The footprint of
the direct beam on the CCD is indicated by a red circle; the window of the
beam attenuator is indicated by a green square. To convince ourselves that we
can record the data and have AMP take care of the scaling differences, we can
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Figure 4.10: Power spectral densities (PSD) of the diffraction pattern shown
in Fig. 4.9. The extent of the direct beam is indicated with a red dashed line;
the extent of the beam attenuator with a green dashed line. As expected, the
PSD follows an inverse power law approximated by the black dashed line in
this log-log plot. The fact that the slope seems to be the same for all spatial
frequencies confirms that AMP successfully deals with the scaling differences
between data collected with beam attenuator and data collected without.

look at the power spectral densities (PSD) of the merged diffraction pattern.
Figure 4.10 shows a plot of the PSD of the diffraction pattern shown in Fig. 4.9.
For this particular data set, we used a pinhole of 5 yum diameter Dp which was
mounted a distance Z; + Zy = 12.5 cm from the detector. Thus, the footprint
of the direct beam on the CCD would be an Airy pattern of size

244N (Zi + )

=14 4.2
Dn 5 pm (4.25)

w

which is equivalent to about 7 pixels on the 1.3k chip. Since our frequency
sampling given by Eq. 2.18 is Ag = 0.084 um ™!, we would expect to see effects
of the direct beam to extend out to a spatial frequency of 3.5 - 0.084 yum~! ~
0.3 um~1; this frequency is indicated with a red dashed line in Fig. 4.10. As
expected, there is a plateau in the PSD out to this frequency before it starts
to decline. Similarly, the window of the beam attenuator should extend out
to a spatial frequency of 25 - 0.084 yum~' = 2.1 ym~"'; this is indicated with a
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green dashed line. We can now confirm the scaling by looking at the trend
of the PSD as a function of frequency. As discussed in Sec. 2.2.4, we would
expect the PSD to decline as ¢7™ which in a log-log plot is represented as a
straight line of slope —m. Approximating the average trend of the PSD with a
straight line, we see that both ranges of spatial frequencies (recorded with and
without beam attenuator) follow the same inverse power law. This confirms
the validity of the approach.

4.1.4 Improving the Stability of the Existing Setup

One disadvantage of SXDM as compared to full-field XDM is the high stability
requirements of the experimental setup. As discussed before, the uncertainty in
relative position between sample and illumination limits the achievable resolu-
tion. We have to distinguish between absolute aberrations in positions (caused
by limited resolution of motor encoders or slow thermal drifts of mechanical
components during the course of a data acquisition script) and vibrations of
optical components. The latter is more detrimental to the experiment. My
main focus in improving the stability and stiffness of our optical setup was
to a) decrease the length of the mechanical path that separates the sample
and the beam-defining aperture, b) redesign the monochromator zone plate
mounts to provide a more stable illumination of the monochromator pinhole.

Decreasing the mechanical path between the sample and the beam-defining
aperture was achieved by moving the mounting point for the motor stage that
controls the latter to the wall directly next to the sample interlock. Previously,
the attachment point was on the double rails. This was convenient because
both sample and illumination could be aligned independently; however, the
mechanical path is orders of magnitude longer and involves in-vacuum as well
as out of vacuum components. The location of the new and old mount point in
relation to the sample and other components of the optical path are shown in
Fig. 4.11. The actual bracket to hold the motor stage to the wall was designed
by Rich Celestre of the Experimental Systems Group of the Advanced Light
Source.

To provide a more stable illumination of the monochromator pinhole, and
to be able to use a zone plate as beam defining aperture, I had to move and
redesign the existing monochromator setup; as described in Sec. 1.3.1, the
monochromator consists of a zone plate and a pinhole further downstream.
The old monochromator zone plate mounts are shown in Fig. 4.1; they are
labeled with 750 eV and 520 eV, respectively. The location of the monochro-
mator pinhole is just in front of the sample inside the vacuum chamber. As
I have already explained in Sec. 4.1.2, we have to shift everything upstream
by about 80 c¢m to be able to use a zone plate. Thus, the new position of
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Figure 4.11: The mechanical path between the beam-defining aperture and
the sample has been shortened by moving the mounting point of the latter
next to the sample. The old mounting point on the rails was convenient but
was separated by a long mechanical path from the sample. Solidworks drawing
courtesy of Rich Celestre.
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the monochromator pinhole will be where the current 520 eV zone plate is
mounted, which in turn will be moved to the position of the 750 eV zone plate,
which in turn will be moved to where the old order sorting mirrors (OSM) are.
I took this opportunity to replace the old monochromator zone plate mounts
which have been found in the past to be not very convenient to adjust and to
drift slowly over time. They consist of an in-vacuum linear translation stage
that is coupled with an out of vacuum tilt stage to provide x-y motion. The

| —motion:
2” linear shift

to pinhole

" x-motion: =%
1 100 mm linear travel 4
Figure 4.12: New monochromator zone plate mounts. They offer truly inde-

pendent x,y-motion and are more stable than the previous ones. Note that
during installation, the vacuum connection to the pinhole has been unmounted.

instability could be due to the design of the mounting brackets that clamp
onto the flange of the 4-1/2” cross on the one end. On the other end they have
a pair of vertical slits through which they are bolted onto the supporting rails.
The clamping mechanism is bound to over-constrain the position of the zone
plate mounts which will lead to competing equilibrium positions of the assem-
bly. The vertical slits are convenient for adjusting the height of the zone plate
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mounts; however it is likely that they will creep under the influence of gravity
over time. To improve on this, I replaced both mounts with a new assembly
that is shown in Fig. 4.12. The in-vacuum y-motion of the zone plates is per-
formed by a 2”7 linear shift mechanism from Kurt J. Lesker company which is
mounted on top of the 4-1/2” cross. The entire y-assembly is then bolted to a
100 mm linear travel stage from Thorlabs which is responsible for the motion
in z. The Thorlabs stage is bolted top-down to the supporting rails. Aside
from providing true independent x,y-motion, the new monochromator zone
plate mounts are very stable; they can also be equipped with stepper motors
for remote control. To mount the monochromator pinhole in its new position,

Pinhole mount

Figure 4.13: 3D rendering of the new monochromator pinhole mount. The
motor stage that moves the mount sits in a 6” cross (shown on left, hidden on
right), that is attached to the chamber by a 4” tube (not shown).

I decided to extend the vacuum chamber further upstream by mounting a 6”
cross to a 4”7 tube that connects to the 10” upstream flange of the chamber;
where the 6”7 cross houses the motorized x,y-stage for the monochromator
pinhole. A 3D rendering of the pinhole stage inside the 6” cross is shown in
Fig. 4.13; the cross is hidden on the right to show the pinhole mount inside
it. Both the monochromator pinhole and the zone plate inside the chamber
are now supported by the same platform which will minimize the relative drift
between the two components. Finally, to still be able to use the old full-field
setup, I designed the monochromator pinhole mount such that it can also hold
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a monochromator zone plate; which is then at the correct distance for 520 eV
with the monochromator pinhole an inch away from the sample.

4.1.5 Results of ALS Experiments

So far we have conducted three SXDM experiments using three different ge-
ometries; one used a zone plate as beam-defining aperture and two relied on
a pinhole. Here, I want to summarize the main findings of all three runs.

Based on the results of Sec. 4.1.2 we implemented a zone plate setup first.
Unfortunately we spent most of the time aligning the zone plate and order
sorting aperture (OSA) with the x-rays. This was partly due to the fact that
we had unforeseen motor problems but mostly because the chamber is not well
equipped for precise alignment of optics. Even though we did get the zone plate
and OSA aligned and focused on our sample it was not until the last day of
beam time. We also noticed strange light leakage through the central stop
of the zone plate presumably due to having higher order photon energies in
our illumination; these are not filtered out with our current monochromator
setup. In addition to that, the leaking light scattered off of the OSA and
projected an image of our specimen onto the CCD. We misinterpreted the
faint projection of the grid bars as speckles; thus the data that was recorded
is of limited use. Note though, that we were able to use dwell times of up to
2 sec without saturation of the detector. Given the poor incident flux that
we had on that day, these values are in agreement to the values estimated for
zone plate illumination in Tab. 4.4.

For the next experiment we implemented the pinhole setup that was de-
scribed in Sec. 4.1.2. 1 designed two mounts to hold the pinhole and a
corner. Since both corner and pinhole had to be very close to the sample
(Zy = 2.3 mm), we had to modify the ACD shield. A 3D rendering of the
setup is shown in Appendix B.1. During the experiment we again had trouble
with alignment of the optics with respect to the beam. Once we were aligned,
we noticed the beamstop and the corner become misaligned over time due to
drifting motor stages. Nonetheless we were able to record a ptychographic
data set on a sample of gold balls. Unfortunately the exposure times were not
properly matched so that there are missing data in the intermediate spatial
frequency range. We also recorded some data on a frozen-hydrated sample
but found that the scattered signal was coming from the plane of the corner
instead of the sample; the closeness of the corner stage to the cold sample
lead to a buildup of scatterers on the corner stage. Both data sets are thus
of limited use. It also puts a question mark on whether this type of setup is
useful for the imaging of frozen-hydrated specimen.

The most promising experiment so far was conducted in May of 2010. It
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also involved a pinhole but this time the goal was to have a setup that can
be used for both full-field XDM and SXDM. Working at 520 eV, we used a
5 pm diameter pinhole at a distance of Z; = 2.5 cm from the sample. In
this geometry we would expect the beam footprint on the sample to have a
diameter of about 30 um. This should violate the oversampling requirements
according to Eq. 2.21. However, since we were working with samples prepared
for full-field, they were isolated so that the combined size of all scatterers within
the illumination was small enough to satisfy oversampling requirements. We
recorded data on a mixture of different size gold balls, as well as on freeze-dried
and frozen-hydrated yeast cells. This was also the first SXDM experiment
where we used the beam attenuator described in Sec. 4.1.3. I have already
shown one example merged diffraction pattern of the gold ball data in Fig. 4.9.
The entire data set consists of 4 x 4 positions where the step size between
adjacent positions was 5 pum. The quality of the data is illustrated by the
autocorrelation of the object at each scan position (the autocorrelation of the
object is given by the inverse Fourier transform of the recorded diffraction
pattern). Figure 4.14 shows the autocorrelation at each scan position. In each
case the object is sufficiently oversampled and ghosts in the autocorrelation
suggest the presence of smaller scatterers in the vicinity. The other recorded
data sets are of similar quality; this is promising for good reconstruction results
in the near future.

The experiments showed us that the zone plate setup is the best choice for
SXDM on frozen-hydrated specimen. The flux estimates derived in Sec. 4.1.2
have been confirmed. Thus, out of the three experimental geometries that
we tested, this setup seems the only one that is suited for dose-efficient and
speedy data collection on frozen-hydrated samples. Unfortunately, the micro-
scope chamber in its current form is ill equipped for zone plate imaging. The
pinhole setup is not favorable in terms of spot size and dynamic range. A close
pinhole interferes with the required shielding for frozen-hydrated imaging. A
pinhole that is further away restricts ourselves to isolated samples to satisfy
oversampling requirements and it is also not very dose efficient. However, we
were able to record nice data with the help of the beam attenuator with this
setup.

4.2 SXDM Experiment at the APS

To get some experience with SXDM experiments before implementing the
setup described above, I also took part in a collaborative experiment where
Christian Holzner was the lead researcher from our group. The experimental
goal was to simultaneously record phase contrast and SXDM data using the
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Figure 4.14: Autocorrelation of the object at each scan position of SXDM data
taken on a mixture of different size gold balls. The data satisfy oversampling
requirements. Ghosts in the autocorrelations suggest the presence of smaller
scatterers in the vicinity.
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pixel array detector (PAD) developed by Vernon et al. [38]. We used the
existing Scanning Transmission X-ray Microscope (STXM) at beamline 2-1D-
B of the Advanced Photon Source at Argonne National Lab. The experiment
was a collaboration between our group, the Cornell detector group and the
2-1D-B staff. An overview of the setup is shown in Fig. 4.15. A pixel array

SRS

Detector :
(flight tube) =S

Figure 4.15: Side view of the SXDM setup at beamline 2-1D-B of the Advanced
Photon Source. The x-rays were focused onto the sample using a zone plate
and the scattered signal was recorded by a pixel array detector. Photo courtesy
of Christian Holzner.

detector has the advantage of having a very large dynamic range, since each
pixel has its own read-out electronics. The detector we used consisted of
128 x 128 pixels; each was 150 x 150 um in size. As zone plate we used a
160 pm diameter, 450 um thick gold zone plate with an outermost zone width
of 50 nm (thus a focal spot of 60 nm). The energy of the photons was 2850 eV
and the sample-detector distance was about 22 cm. With these parameters, we
can calculate the oversampling and the theoretical resolution using Eqs. 2.21
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and 2.16 to s = 10 and d,,;, = 10 nm, respectively.

We recorded SXDM data (and phase contrast data simultaneously) on sev-
eral samples: two Siemens star test patterns and one material science sample.
While the data analysis is still ongoing, I want to show a preliminary result
here. Figure 4.16 shows the best reconstruction results of data taken on a
180 nm thin gold test pattern; only the phases are shown. The entire field of
view of the scan is 2.5 x 2.5 ym, the step size was 25 nm in each direction. At
each position we exposed for 42 msec. The diffracted data was reconstructed
with the algorithm described in Sec. 2.3.1; the code has been written in IDL.
The data was reconstructed for only 20 iterations. This was possible because
I previously reconstructed the probe from a small subset of the same scan and
then used it for the reconstruction of the entire field of view; this saves com-
putation time. Looking at Fig. 4.16 we can recognize the spoke pattern of the
Siemens star. We also see that the small features in the top right quadrant are
not clearly reproduced. We think that this is due to vibrations of the sample
with respect to the beam. Further evidence for this is given in the absorption
and phase contrast images of the same scan which also show the same “washed-
out” structures in the top right quadrant. We plan on addressing the errors
in the relative position of sample and probe by implementing a conjugate-
gradient algorithm which has been shown to be able to right incorrect probe
positions [52].
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Figure 4.16: Phases of a gold test pattern reconstructed from SXDM data.
The spokes are visible. Smaller features toward the top have a washed-out
appearance. This indicates errors in the assumed relative positions of sample
and probe (possibly due to vibrations of the sample during data collection).
The entire field of view of the scan is 2.5 x 2.5 ym.
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Chapter 5

Conclusions and Outlook

The goal of 3D high resolution imaging of frozen-hydrated biological specimen
with x-ray diffraction microscopy is challenging but promises new insights
into the molecular processes of these cells. The contributions of this thesis
address some of the remaining challenges to achieve that goal. Here, I want
to summarize the main results and outline the next steps.

To facilitate data analysis, I have written an automated merging program
(Sec. 3.3) that improves on an important step in the data analysis process and
can improve reconstruction quality considerably. Its current implementation
is in the proprietary IDL language and it is available through Concurrent Ver-
sioning System. In order to make it more accessible for other research groups
I suggest to port it to an open source programming language such as Python!
and to provide pre-compiled binaries for various platforms as downloads on our
group’s homepage. This also has the advantage that people can write their
own extensions, such as support for different raw data file formats.

The merging program is integrated into the general reconstruction process
through a common file format that I have described in Sec. 3.1. It is also
meant to organize all the files and information that are important to a specific
data set in one central place. Finally, it facilitates the exchange of data and
reconstruction results between different scientists. With the community ever
expanding and the advent of new sources that produce unprecedented amounts
of data, the issue of sharing and organizing data cannot be overlooked. 1
suggest that we actively search the dialogue with members of the community
and start a larger collaboration towards a standard file format for diffraction
imaging; our working file format can be the starting point for the discussion.

The subroutine library discussed in Sec. 3.2 presents a platform indepen-
dent implementation of the file format as well as a library of array manipulation

'http://www.python.org/
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routines common to diffraction data analyses. It provides users with a simple
interface to write data analysis tools that work on many different comput-
ing systems; including multiple node clusters using Message Passing Interface.
To further facilitate its use, I suggest to provide a configure script that au-
tomates the installation process on different computing platforms. Recently,
Graphics Processing Units (GPU) have become a very popular and powerful
tool in scientific computing. With several hundred cores per graphics card,
they provide a highly parallelized workstation with computation speeds far
exceeding regular, multiple CPU clusters. A simple C-based library (CUDA?)
exists to harness the power of GPUs for scientific computation and a success-
ful implementation of CUDA code for diffraction data analysis can be found
in Filipe Maia’s hawk? library. I recommend that the dm_array library is ex-
tended to work on these types of systems by collaborating with Filipe and
starting a common code archive.

An important question is how to assess the quality of a reconstruction in a
reliable way. In Sec. 3.4, I introduced an improved version of a tool commonly
used for this purpose. The Wiener-filtered phase retrieval transfer function
removes artifacts that can make its interpretation ambiguous. I also derived
some criteria that have to be satisfied for the PRTF to be valid. To make the
PRTF even more meaningful I suggest to investigate the actual distribution
of phase variations in a reconstruction; this can help to get a better sense of
what different values of the PRTF mean. During my research I also found
out that the convergence properties of the PRTF depend to some extent on
the spatial frequency content of the object. This is something that should be
investigated further.

Full-field XDM on frozen-hydrated specimens imposes some hard-to-satisfy
experimental constraints, such as the requirement that the object be isolated
in the coherent footprint of the beam. Scanning x-ray diffraction microscopy
removes the constraint of having an isolated object. To investigate its suitabil-
ity for imaging frozen-hydrated specimens, I implemented several experimental
geometries for our existing diffraction microscope (as described in Sec. 4.1).
Based on flux considerations, it was found that using a zone plate as beam
defining aperture is the most promising option. However, the apparatus in its
current form is ill-equipped for the precise alignment that is required for zone
plate imaging. I suggest to look into simple upgrades that facilitate the align-
ment of optics and sample in the vacuum chamber; this should be followed by
another experiment with a zone plate setup. We did collect some promising
data sets with the second version of the pinhole setup and I am eager to work

2http://www.nvidia.com/object/cuda_home_new.html
3http://xray.bmc.uu.se/~filipe/

118


http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://xray.bmc.uu.se/~filipe/
http://xray.bmc.uu.se/~filipe/

on reconstructing this data. Finally, from my experiences of the experiment
at the APS (described in Sec. 4.2) T know of the advantages of a pixel array
detector (PAD) over a regular CCD. Since PADs with good sensitivity in the
soft x-ray regime are not yet widely available, I suggest starting a collabora-
tion with pertinent research groups aiming at developing a PAD that meets
our specific needs.
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Appendix A

Detailed Definition of the File
Format

A.1 The "/comments"-group

The /comments-group holds important information on the history of a partic-
ular data file. Within the /comments-group you will find:

string length tells the maximum length of each string. (We use fixed
string lengths because HDF 5 variable length strings are not supported
by IDL 6.2).

n_strings tells how many strings are in the array.
specimen name is a string for a short description of the specimen.

collection_date is a string that is meant to hold the C systime()
string from when the original data was recorded.

string array is the array of strings, each string of which is no longer
than string length-1 characters in length.

A.2 The "/ainfo"-group

The /ainfo-group stores important information about the files that were used
for the assembly of an adi-array. Within it you will find:

The attribute ainfo_version is used to indicate to the dm_fileio rou-
tines any changes in the structure of information in the ainfo_group.
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file directory contains the path to the folder where all the files that
were used for the assembly are stored.

filename_array contains an array of filenames of all the files used for
the assembly.

systime_array stores the creation date and time for every file that was
used for the assembly.

theta_x_radians_array: GMR position for each file .

xcenter_offset pixels_array: number of pixels the center of the diffrac-
tion pattern is offset from the center of the array in x.

ycenter_offset_pixels_array: see above.

n_frames stores the number of files that were used for the assembly.
This value is entered by the user and has to be checked carefully since it
determines the size of the above arrays.

string length: the minimum string length required to store the longest
filename, systime, or file directory. Automatically determined in the IDL
implementation. For C the user has to define a keyword.

no_background: either 1 or 0 depending on whether background has
been subtracted during assembly or not

dk_by_pix: either 1 or 0 depending on whether dark current was sub-
tracted on a per pixel basis or as average.

merge first: either 1 or 0 depending on whether sample and back-
ground have been merged independently before subtraction or whether
background was subtracted for each position separately.

A.3 The "/adi"-group

The /adi-group holds the array of assembled diffraction intensities and sup-
porting information. Within the /adi-group, you will find:

The attribute adi_version is used to indicate to the dm_fileio routines
any changes in the structure of information in the "/adi" group.

adi_array contains the actual data.
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adi_struct contains a structure of parameters pertaining to the data.
adi_error_array is an optional array as described in Sec. 3.1.4.

The "/adi" group contains both the data, and a structure adi_struct of
related parameters. The elements of this structure are as follows:

photon_scaling: multiply adi_array by this factor to convert it into
photons per pixel. Set to zero if unknown.

error_scaling: optional scaling factor s. to apply to error_array.
lambda meters: x-ray wavelength in meters.

camera_alpha/beta/gamma_radians: optional rotation angles of the
CCD camera in radians.

median filter_width: width of median filter used to search for abnor-
mally high pixel values in percent.

median_filter_threshold: threshold value in percent of the maximum
of the median filtered array to determine outlier pixels.

camera_z meters: CCD camera distance from sample.

camera x_pixelsize meters: size of camera pixels in the nx direction,
in meters.

camera_y_pixelsize_meters: size of camera pixels in the nx direction,
in meters.

saturation_min: minimum level of CCD counts below which we don’t
assume saturation effects to occur.

saturation_max: maximum level of CCD counts above which we don’t
assume saturation effects to occur.

theta x radians: GMR position (rotation about the horizontal trans-
verse direction) to which the sample was set to be at. Obsolete since
already defined in "/ainfo" group!

theta_y_radians: orientation of the specimen about the vertical trans-
verse direction. Set to zero if unknown. Should be moved to "/ainfo"
group!
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theta_z_radians: orientation of the specimen about the beam axis di-
rection. Set to zero if unknown. Should be moved to "/ainfo" group!

xcenter_offset_pixels: location of the true center of the array relative
to pixel n, /2. Obsolete since already defined in "/ainfo" group!

ycenter_offset_pixels: location of the true center of the array relative
to pixel n,/2. Obsolete since already defined in "/ainfo" group!

A.4 The "/spt"-group

The /spt-group holds the current support guess array as well as supporting
information. Within the /spt-group you will find:

The attribute spt_version is used to indicate to the dm_fileio routines
any changes in the structure of information in the "/spt" group.

spt_array contains the actual mask. This is usually a byte image.
spt_struct contains a structure of parameters pertaining to the mask.
The parameters contained in the associated spt_struct are:

support_scaling (s,): multiply spt_array by this factor (or s, - s; k)
to give a value which is 0 for fully outside the support, and 1 for fully
inside the support. This allows one to use, for example a gray-scale byte
support array by setting s, = 1/255.

pix_x meters: real space pixel size in the first dimension.
pix_y meters: real space pixel size in the second dimension.

pix_z meters: real space pixel size in the third dimension. The value
will be ignored if the mask is 2D.

A.5 The "/itn"-group

The /itn-group holds the current complex iterate, an array of reconstruction
errors, as well as supporting information. Within the /itn-group you will find:

The attribute itn_version is used to indicate to the dm_fileio routines
any changes in the structure of information in the "/itn" group.
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itn_array contains the actual complex iterate. This array will have C
array ordering [nzny, nx,2| so that the index between interleaved real
and imaginary parts will vary most rapidly.

recon_errors: an array that saves the current value of the error metric
for each iteration.

itn_struct contains a structure of parameters pertaining to the mask.
The itn_struct information associated with these files is:

pix_x meters: real space pixel size in the first dimension.

pix_y meters: real space pixel size in the second dimension.

pix_z meters: real space pixel size in the third dimension. This value
must be present but is ignored for 2D arrays.

photon_scaling (s,): multiply itn_array by this factor to convert it
into photons per pixel. Set to zero if unknown.

iterate_count (i; uint32): counter of iteration number.
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Appendix B
Details of the SXDM Setup

B.1 Design of the pinhole setup

This shows the design of the close scanning pinhole setup. Its design parame-
ters have been described in Sec. 4.1.2.

Corner

Figure B.1: 3D rendering of pinhole setup. To accommodate both pinhole and
corner very close to the sample, the ACD shield had to be modified.
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