

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Efficient Datalog Queries with Time and Space

Complexity Guarantees

A Dissertation Presented

by

Kazım Tuncay Tekle

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2010

Stony Brook University

The Graduate School

Kazım Tuncay Tekle

We, the dissertation committee for the above candidate for

the degree of Doctor of Philosophy,

hereby recommend the acceptance of this dissertation.

Yanhong A. Liu – Dissertation Advisor

Professor, Computer Science Department

David S. Warren – Chairperson of Defense

Professor, Computer Science Department

Michael Kifer – Committee Member

Professor, Computer Science Department

Patrick Cousot – External Committee Member

Professor, École Normale Supérieure, Paris

This dissertation is accepted by the Graduate School.

Lawrence Martin

Dean of the Graduate School

ii

Abstract of the Dissertation

Efficient Datalog Queries with Time and Space Complexity

Guarantees

by
Kazım Tuncay Tekle

Doctor of Philosophy
in

Computer Science
Stony Brook University

2010

Many complex analysis problems can be most clearly and easily specified
as logic rules and queries, where rules specify how given facts can be com-
bined to infer new facts, and queries select facts of interest to the analysis
problem at hand. However, it has been extremely challenging to obtain effi-
cient implementations from logic rules and understand their time and space
complexities, particularly for answering queries of interest without inferring
all facts.

This dissertation focuses on Datalog—an important class of rules for ap-
plications in databases, program analysis, security, semantic web, and many
other areas. We describe a systematic method for precisely analyzing the
time and space complexities of best known strategies for answering Datalog
queries. We also characterize precise relationships among these strategies.
Furthermore, we develop new transformations and combine them with ex-
isting transformations to drastically optimize the rules and queries for gen-
erating efficient implementations. Finally, we show the effectiveness of our
analyses and transformations for solving important problems in program
analysis, language processing, and semantic web, and for answering graph
queries, which have many applications.

iii

et sur ma thèse
j’écris ton nom

To liberty, equality, fraternity

Contents

List of Figures vii

1 Introduction 1
1.1 Declarative languages and challenges 1
1.2 Analyses and optimizations for efficient implementations . . . 3

2 Datalog 5
2.1 Syntax and semantics . 5
2.2 Top-down evaluation . 8
2.3 Bottom-up evaluation . 10

3 Query-driven evaluations and their complexity analysis 13
3.1 Complexity analysis for top-down evaluation with variant tabling 14

3.1.1 Binding annotation . 17
3.1.2 Time complexity analysis 20
3.1.3 Space complexity analysis 21

3.2 Variant demand transformation for bottom-up evaluation . . 22
3.2.1 Variant demand transformation 23
3.2.2 Comparing with magic set transformation 24

3.3 Relating top-down evaluation with variant
tabling and bottom-up evaluation after variant demand trans-
formation . 25
3.3.1 Time complexity comparison 25
3.3.2 Space complexity comparison 28

3.4 Experiments . 29
3.5 Related work . 31

4 Subsumptive tabling beats variant tabling and magic sets 33
4.1 Complexity analysis for subsumptive tabling 35

v

4.1.1 Subsumptive binding annotation and complexity anal-
ysis . 36

4.1.2 Subsumptive beats variant and magic sets 40
4.2 Subsumptive demand transformation for

bottom-up evaluation . 43
4.2.1 Relationship to subsumptive tabling and magic set

transformation . 47
4.3 Subsumption optimization . 49
4.4 Experiments . 52
4.5 Related work . 54

5 Specialization and recursion conversion 58
5.1 Static removal of redundancies using specialization 59
5.2 Recursion conversion for chain queries 62

5.2.1 Complexity comparison 65
5.3 Related work . 67

6 Applications 68
6.1 Program pointer analysis . 69
6.2 Context-free grammar parsing 74
6.3 Ontology queries . 76
6.4 Graph queries . 79

6.4.1 Graph query language 80
6.4.2 Example graph queries for program analysis 82
6.4.3 Generating efficient implementations 83
6.4.4 Demand transformation and graph queries 92
6.4.5 Effect of transformations on graph queries 93
6.4.6 Related work . 97

7 Conclusion and future work 99

Bibliography 102

vi

List of Figures

2.1 Prolog evaluation for the query and first set of rules in Ex-
ample 2.2.1. 9

2.2 Prolog evaluation for the query and second set of rules in
Example 2.2.1. 9

2.3 Exponential-time edges for left-recursive transitive closure . . 10

3.1 V-topdown evaluation of query q, given a set of facts F and
a set of rules R . 18

3.2 Returns for v-topdown evaluation, firings for bottom-up eval-
uation, and space units for both, for benchmark Join1. The
difference between returns and firings has been multiplied by
1000 for illustration. 30

3.3 Running time and memory usage of transitive closure in XSB
for a query with both arguments bound. 30

3.4 Returns for v-topdown evaluation, firings for bottom-up eval-
uation, and space units for both, for the same generation
benchmark. 31

4.1 Top-down evaluation of query q, given a set of facts F and a
set of rules R, with subsumptive tabling and local scheduling 55

4.2 Top-down evaluation of query q, given a set of facts F and a
set of rules R, with subsumptive tabling and batched scheduling 56

4.3 Firings/returns and space units for v-topdown, s-topdown,
v-bottomup, and s-bottomup for the running example. 57

4.4 Firings/returns and space units for s-bottomup with and with-
out subsumption optimization (SO) for the pointer analysis
benchmark. 57

5.1 Algorithm for optimization of rules using specialization and
recursion conversion. 64

vii

5.2 A comparison of time complexities of computation using ex-
isting methods. 65

6.1 Running time of rules resulting from heuristics in XSB and
YAP . 78

6.2 Grammar for the graph query language. 81
6.3 Example queries for program analysis. 83
6.4 Time complexities for the original rules and the rules after

demand transformation. 89
6.5 Running time of the implementation of rules in C++ at dif-

ferent implementation stages. 95
6.6 Memory usage of the implementation of rules in Python at

different implementation stages. 96
6.7 Running time in milliseconds of implementations generated

by our method, of the generated rules in XSB, and of the
manually found best version of these rules in XSB, and simi-
larly for bddbddb. - denotes incompletion in 10 minutes. . . . 96

viii

Acknowledgements

Getting a Ph.D. is a long journey. Getting a Ph.D. away from home is even
longer. At the end of this long journey, I believe that it is very hard to do
justice to people involved in the process. I will try nonetheless.

First off, I could not have imagined a better advisor than my own advisor
Prof. Annie Liu. During this long journey, her academic guidance was great,
her personal guidance even better. In research, she showed me how to find
great problems to do research on, how to solve the problems, how to present
the solutions, and how to refine the presentations. In personal terms, she
set an example of sincerity and compassion, and showed that one can do
good research with these qualities. When I failed, she showed me the way
through; when I succeeded, she showed me the way to succeed further. This
dissertation would not have been possible without her.

My committee members, Prof. David Warren and Prof. Michael Kifer,
continuously provided invaluable feedback for my research. Their guidance
gave me direction on the problems to attack, and how to fit the solutions
in context. My endless questions to retrieve information from their wide
expertise were always welcome and answered in the friendliest and keenest
way possible. Prof. Patrick Cousot kindly agreed to be on my thesis com-
mittee, and provided excellent feedback to shape my future research as well.
I thank all of you.

Our lab provided a great environment for both intellectual stimulation
and friendly conversation. Whether discussing research or chatting about a
random subject, I was always glad spending time with my labmates. I thank
you all in chronological order of meeting: Katia Hristova, Tom Rothamel,
Michael Gorbovitski, Puneet Gupta, Jon Brandvein, Bo Lin.

Friendship in Stony Brook was precious, and the friends I found knew
how to put a smile on my face. I cannot thank you enough: Ankush, Arzu,
Asım, Basia, Celine, Costas, Güneş, İrem, José, Marija, Manas, Max, Nik,
Tom. Friends from Turkey spread around the U.S. made the journey much
better than it would be otherwise. I thank Emre, Osman, Mert and Gülfem

the most among these.
Leaving my family and friends in Turkey was the hardest part. My

parents and my sister always supported me and inspired me to do better.
My friends in Turkey were always supportive in times of desperation and
fueled me with energy on each vacation. I will not enumerate your names
here, but you know who you are. Without your support from 5000 miles
away, this day would never come.

Most of the time, women are much less appreciated than they should
be. To take a small step in changing this, I would like to conclude by
paying homage to three women who taught me almost everything I know.
My mom, Fatma Günal, was my first teacher; she taught me both my first
words and how to be a good person even when most people are not. My
first formal teacher in primary school, Meral Demiray, taught me both my
first formal classes and that anything is possible if you work for it. My last
formal teacher and Ph.D. advisor, Annie Liu, taught me both how to do
great research and how to be a good person doing it. I will try very hard to
succeed, because I know that my success will make you proud.

Chapter 1

Introduction

1.1 Declarative languages and challenges

Many complex analysis problems can be most effectively and easily described
using a declarative language. The declarative specification makes it easy to
understand the nature of the problem, without being distracted by imple-
mentation details. One way of writing a declarative specification is to write
logic rules and queries.

Logic rules specify how given facts in a problem setting can be combined
to infer new facts. For example, for program analysis, definitions of flow and
dependence relations can be specified as rules; for model checking, definitions
of system behaviors can be specified as rules; and for system security, access
control policies can be specified as rules.

Once the specification of a problem is given by logic rules, queries can
be used to select facts of interest to the analysis problem at hand. For pro-
gram analysis, flow and dependence information involving particular pro-
gram points of interest can be specified as queries; for model checking the
properties to be checked can be specified as queries; and for system security,
checking access to resources by users can be specified as queries. Queries
can be used to filter the facts inferred by the rules, and moreover be a guide
in the inference of the facts of interest. We use query-driven evaluation to
refer to an evaluation that is expressed by a query, querying over facts that
can be inferred from the rules.

Despite the clarity and ease-of-use of rules, efficient implementations of
rules have been extremely challenging, as seen in the large amount of existing
work in logic programming and deductive databases. Also, understanding

1

the time and space complexities of logic programs has been just as challeng-
ing, if not more. This is especially so for answering rule-based queries on
demand, e.g. for top-down evaluation of rules, because the queries and given
facts can be far apart, and can be connected via the rules in many ways.

Furthermore, the running times of implementations using these methods
can vary dramatically depending on seemingly small changes in recursive
rules, and the orders of hypotheses in rules, and even less is known about
the space usage. Developing efficient implementations for answering queries
on-demand for any given rules and queries with time and space guarantees
is a nontrivial, recurring task.

In this work, we address these challenges for an important class of logic
rules, Datalog [15], used in deductive databases [1], program analysis [77],
security [25], and many other applications [44, 32, 63].

Given a set of Datalog rules, facts, and a query, answers to the query
can be inferred using bottom-up evaluation starting with the facts or top-
down evaluation starting with the query. Many evaluation methods have
been studied [14, 7, 34, 71, 72], notably including top-down evaluation with
tabling [66] that guarantees termination in polynomial time, and optimal
bottom-up evaluation with complexity guarantees [51] after program trans-
formations such as the magic set transformation [8].

Despite extensive research on improving Datalog evaluation methods,
and on optimizing Datalog programs, e.g., [13, 16, 55, 65, 24], the per-
formance of rule engines remains little understood [45, 46]. In particu-
lar, performance differences using different evaluation methods are most
often drastic, and even using the same evaluation method, changing the
order of hypotheses in rules most often yields dramatically different per-
formance that is easily observed to be asymptotic. Recent work studied
efficient bottom-up evaluation with precise complexity guarantees [51], but
precise complexities for efficiently answering queries using top-down evalu-
ation with tabling remain unknown. Significant research in relating various
top-down and bottom-up evaluation methods exist, but a large gap remains
in precisely relating top-down evaluation with tabling and demand-driven
bottom-up evaluation.

2

1.2 Analyses and optimizations for efficient imple-

mentations

This work first describes precise time and space complexity analysis for
efficiently answering Datalog queries, and precise relationships between top-
down evaluation with the dominant tabling strategy, variant tabling and
demand-driven bottom-up evaluation obtained by a novel transformation
called variant demand transformation.

We present a systematic method for precisely calculating the worst-case
time and space complexities of top-down evaluation with variant tabling.
The calculation is based on possible binding patterns of arguments of pred-
icates during the evaluation, and expresses the complexities in terms of
parameters that characterize the actual number of facts used.

We then describe variant demand transformation (VDT), which trans-
forms Datalog rules for efficiently answering queries using bottom-up evalu-
ation of the transformed rules. The transformation is akin to the magic set
transformation, but is simpler and produces simpler rules that yield expo-
nentially smaller space in the number of arguments of predicates.

Additionally, we establish precise relationships between top-down eval-
uation with variant tabling and bottom-up evaluation after VDT, in terms
of precise time and space complexities; and confirm our analysis results
through experiments on benchmarks from OpenRuleBench [45].

This work then discusses another tabling strategy for top-down evalu-
ation, called subsumptive tabling [58], performing more reuse of previously
inferred answers than variant tabling, and its relationship to other methods.
This work gives precise time and space complexity analysis for efficiently
answering Datalog queries using subsumptive tabling, and precise relation-
ships between different tabling strategies and magic set transformation. We
show that subsumptive tabling is equal to or better than variant tabling in
time and space complexities. Furthermore, we characterize a class of Dat-
alog rules and queries, for which subsumptive tabling is guaranteed to be
better than variant tabling in time and space complexities. We also show
that subsumptive tabling is guaranteed to be better than MST and VDT
for the identified class of rules in time and space complexities.

Despite extensive research on optimizing the evaluation of Datalog rules,
given a set of rules, a query, and a fixed order of hypotheses for each rule,
no source-level transformation that leads to guaranteed better time com-
plexity than MST or mimicking subsumptive tabling is known to the best
of our knowledge. This work describes a transformation, called subsumptive

3

demand transformation (SDT) such that bottom-up evaluation of rules pro-
duced by SDT achieves the complexity performance of subsumptive tabling.
We show that for rules that have no more than two hypotheses and no
wildcards, time complexities of bottom-up evaluation after SDT and sub-
sumptive tabling are equal, and that bottom-up evaluation after SDT may
be better otherwise. Therefore, we give the first transformation method for
bottom-up evaluation that beats MST in time complexity.

Building on our analyses, we devise a transformational method for forc-
ing queries to be subsumed when it is better to do so in time complex-
ity. Using this method, we show how to systematically derive Heintze and
Tardieu’s demand-driven pointer analysis [33] from the definition of Ander-
sen’s pointer analysis that provide precise complexity guarantees.

Then, we describe powerful transformational methods for optimization of
Datalog queries. These include recursion conversion to transform recursive
rules into appropriate left or right linear recursive forms based on the kinds
of queries, so that the connection between the queries and given facts can be
established efficiently, and specialization to remove unnecessary predicates,
rules, and constant arguments. The complexity analyses are employed for
selecting the most efficient implementation of the query after the transfor-
mations are applied.

We show the effectiveness of our analyses and transformations for solving
important problems. In program analysis, we show an extensive analysis for
Andersen’s pointer analysis. In language processing, we show the effective-
ness of our methods on rules for parsing context-free grammars. In semantic
web, we analyze and optimize ontology queries. In answering graph queries,
which have many applications, we show a method for transforming graph
queries to Datalog rules and queries, and we obtain improved complexities
in contrast to the original implementations by using the powerful analyses
and optimizations described.

The rest of this work is organized as follows. Chapter 2 describes Datalog
and major evaluation strategies. Chapter 3 describes the complexity anal-
yses for query-driven evaluation strategies, and describes transformations
for obtaining query-driven bottom-up evaluation. Chapter 4 describes com-
plexity analyses for subsumptive tabling, SDT and properties of these two
strategies. Chapter 5 describes transformational methods for optimization.
Chapter 6 describes applications. Chapter 7 concludes the thesis.

4

Chapter 2

Datalog

Datalog is a language for defining rules, facts, and queries, where rules can be
used with facts to answer queries. In this chapter, we describe the syntax and
semantics of Datalog, extensions to Datalog, the terminology used through-
out the work, and two major evaluation strategies for Datalog queries.

2.1 Syntax and semantics

A Datalog rule is of the form:

p(a1, ..., ak) : − p1(a11, ..., a1k1), ..., ph(ah1, ..., ahkh).

where h is a finite natural number, each pi (respectively p) is a predicate
of finite number ki (respectively k) arguments, each aij and ai is either a
constant or a variable, and each variable in the arguments of p must also be
in the arguments of some pi.

A predicate with arguments is called an atom. The : − operator (read
if) splits the rule into two parts: the left side and the right side. If the
right side of a rule is empty, the atom on the left must have only constant
arguments, and is called a fact; indicated with an ending dot. The left side
of a rule cannot be empty. For the rest of this work, “rule” refers only to
the case where both sides of the rule are not empty, where each atom on the
right is called a hypothesis, and the atom on the left is called the conclusion.
A Datalog query is an atom followed by a question mark.

For defining the semantics of Datalog rules, we give the following defini-
tions.

• A substitution θ is a map from variables to constants or variables. A

5

substitution θ can be applied to an atom a, denoted θ(a), which results
in an atom identical to a except each variable that appears in θ has
been replaced with the corresponding value.

• A fact f matches an atom a, if there exists a substitution θ such that
f = θ(a).

For a rule r whose conclusion is c, if there exists a substitution θ such
that for each hypothesis h of r, θ(h) is a fact, then θ(c) can be inferred as a
fact.

The meaning of a set of rules, facts, and a query is the set of facts that
are given or can be inferred using the rules and that match the query.

Example 2.1.1. For a graph whose edges are given as the facts of a binary
edge predicate, the transitive closure of edges can be specified in Datalog
as follows, where x, y, and z are variables:

path(x,y) :- edge(x,y). (B)

path(x,y) :- path(x,z), edge(z,y). (L)

A query for this set of rules is path(c,x)?, where c is a constant, whose
meaning is the set of facts of path whose first argument is c. The second
argument of the set of facts in the meaning of the query will be vertices that
are reachable from c.

Notation and other terminology. In examples, we use c, c1, c2, etc.
for constants, and the other letters for variables.

Two atoms a and a′ unify if there are two substitutions θ and θ′ of
variables such that θ(a) = θ′(a′).

An IDB (intensional database) predicate is a predicate defined by the
rules, and an EDB (extensional database) predicate is a predicate for which
facts are given. A hypothesis is called an IDB hypothesis if its predicate is
an IDB predicate, and an EDB hypothesis otherwise.

For complexity calculation, we use the following notations.

• #p: the number of facts of predicate p, called the size of p.

• #p.i1,...,in/j1,...,jm: the maximum number of combinations of dif-
ferent values of the i1,...,inth arguments of the facts of predicate p

(given or inferred), given any fixed value for the j1,...,jmth arguments.

6

• #p.i: actual number of values of the ith argument of a particular
instance of p.

• dom(p.i): the size of the domain of the ith argument of predicate p,
i.e., the number of all possible values of that argument of p.

A set of rules is said to be in minimal form, if there exists no more
than two hypotheses in each rule and each variable appears in either two
hypotheses or one hypothesis and the conclusion. Any set of Datalog rules
can be trivially transformed into minimal form.

Negation. Datalog may be extended by allowing negated hypotheses. Ar-
bitrary negation leads to semantics issues as seen in the following example.

Example 2.1.2. Consider the following rules, where not denotes negation.

p(x) :- r(x), not q(x).

q(x) :- p(x).

r(c).

Is q(c) in the meaning of the rules and fact above? Since r(c) is a fact,
and q(c) is not a fact, p(c) should be a fact due to the first rule. However,
due to the second rule, since p(c) is a fact, q(c) should be a fact as well,
which contradicts our previous assumptions. Therefore, arbitrary negation
leads to contradictory facts.

There are various semantics proposed for Datalog with arbitrary nega-
tion, including well-founded semantics [29], stable-model semantics [30], and
inflationary semantics [39].

There is a form of negation called stratified negation for which an intu-
itive semantics exists and can be efficiently evaluated. Stratified negation
disallows negation on each hypothesis which is mutually recursive with the
conclusion of its rule. Formally speaking, given a set of rules, we construct
a graph G whose nodes are predicates. There is an edge from predicate p
to predicate q in G if there is a rule whose conclusion’s predicate is p and
which contains a hypothesis of predicate q; and the edge is labeled ¬ if the
hypothesis is negated. If there exists no cycle containing an edge with label
¬ in G, then we say that the rules are stratified.

If a set of rules is stratified, for rule r whose conclusion is c, if there
exists a substitution θ such that for each positive (non-negated) hypothesis
h of r, θ(h) is a fact, and for each negated hypothesis n of r, θ(n) cannot
be inferred as a fact, then θ(c) can be inferred as a fact.

7

In this work, we will mainly consider rules without negation, but will
explicitly state the type of negation and the semantics used when we use
negation.

2.2 Top-down evaluation

To answer a query, standard Prolog evaluation [52] starts with the query,
generates subqueries from hypotheses of rules whose conclusions match the
query, considering rules in the order given, and considering hypotheses from
left to right, and does so repeatedly until the subqueries match given facts.

For Datalog queries, Prolog evaluation may suffer from repeated sub-
queries or infinite recursion when recursive rules exist. For a given query,
the time to answer the query is also highly dependent on the order of rules
and the order of hypotheses within rules. The following example illustrates
that the difference may even be from finite time to infinite time.

Example 2.2.1. Consider the following fact and rules:

q(c1,c2).

p(x,x).

p(x,z) :- q(x,y),p(y,z).

and the query p(x,c2)?.
We represent Prolog evaluation by a tree, where each branch represents

using a rule to find facts for the next hypothesis. The tree in Figure 2.1
represents the evaluation of the query for the rules and fact above. The an-
swers to the query are given in finite time as can be seen from the evaluation
tree.

Given the same query, same fact, same first rule, but reordering the
second rule’s hypotheses to be:

p(x,z) :- p(y,z), q(x,y).

Prolog evaluation of the query no longer terminates in finite time. The
evaluation tree is shown in Figure 2.2.

It may seem conceivable that there exists an ordering of hypotheses and
rules for any set of rules, such that Prolog evaluation will terminate. How-
ever, the following example shows that it is not possible. Therefore, Prolog
evaluation is inherently not suitable for Datalog queries, when recursive rules
exist.

8

p(x,c2)

�

{x/c2}
success

q(x,y),p(y,c2)

p(c2,c2)

�

{x/c1}
success

q(c2,u),p(u,c2)

failure

Figure 2.1: Prolog evaluation for the query and first set of rules in Example
2.2.1.

p(x,c2)

�

{x/c2}
success

p(y,c2),q(x,y)

q(x,b)

�

{x/c1}
success

p(u,b),q(y,u),q(x,y)

q(y,b),q(x,y)

q(x,c1)

failure

p(v,b),q(u,v),q(y,u),q(x,y)

infinite

Figure 2.2: Prolog evaluation for the query and second set of rules in Ex-
ample 2.2.1.

Example 2.2.2. Consider the following facts and rules:

p(c1,c2).

p(c2,c3).

p(x,y) :- p(y,x).

p(x,z) :- p(x,y),p(y,z).

and the query p(c1,c3)?. It is obvious that the query is a fact, due to the
second rule and the given facts. However, there exists no ordering of rules

9

c11

!!C
CC

CC
CC

C
c21

!!C
CC

CC
CC

C
c31

!!C
CC

CC
CC

C
c41

!!C
CC

CC
CC

CC

c1

=={{{{{{{{

!!C
CC

CC
CC

C
c2

=={{{{{{{{

!!C
CC

CC
CC

C
c3

=={{{{{{{{

!!C
CC

CC
CC

C
c4

=={{{{{{{{

!!C
CC

CC
CC

C
...

c12

=={{{{{{{{
c22

=={{{{{{{{
c32

=={{{{{{{{
c42

=={{{{{{{{{

Figure 2.3: Exponential-time edges for left-recursive transitive closure

and hypotheses such that Prolog evaluation terminates for this query.

Prolog evaluation may be terribly inefficient for Datalog queries, even
when it does terminate. Vardi [69] showed that Datalog is P-complete for
data complexity, therefore it should be possible to evaluate Datalog queries
in polynomial time in the size of the given facts.

Given the rules in Example 2.1.1 (left-recursive definition of transitive
closure) and query path(c1,y)?, when the edge predicate is defined by the
edges shown in Figure 2.3, Prolog evaluation takes exponential time in the
number edges.

For efficiently answering a Datalog query with top-down evaluation,
tabling [18] is used. Tabling is a strategy for storing and reusing facts in-
ferred for subqueries to avoid repetitive evaluation. In the next chapters,
we discuss different tabling strategies in detail.

2.3 Bottom-up evaluation

Bottom-up evaluation starts with given facts, infers new facts from conclu-
sions of rules whose hypotheses match existing facts, and does so repeatedly
until all facts are inferred.

The most basic strategy for bottom-up evaluation is naive evaluation [3,
67]. For a set of rules R, a set of facts F , and a query Q, the algorithm for
naive evaluation is shown in Algorithm 0.

Naive evaluation always terminates finitely because inference for Datalog
queries is monotonic, i.e., adding new facts can only result in the inference
of more facts. However, it is inefficient. Without specifying any techniques
for evaluating efficiency, consider the following. Suppose we call the com-
putation of Di+1 a function of R and Di, i.e., Di+1 = f(R,Di) where f
infers facts using R given facts in Di at one step. Therefore, at step i of the

10

Algorithm 0 Naive Evaluation

D0 = F
i = 0
repeat

U = all possible facts inferable using R at one step, given facts in Di.
Di+1 = D ∪ U
i = i+ 1

until Di = Di−1

Filter Di wrt Q

loop in the algorithm, we compute Di+1 = f(R,Di). Since f is monotonic,
Di ⊆ Di+1. Therefore, we can write

f(R,Di) = Di + df(R,Di)

where df denotes the new facts inferred at step i. Step i+1 of the algorithm
will compute

Di+2 = f(R,Di+1) = f(R,Di + df(R,Di))

Therefore, at step i+1, the algorithm infers facts in f(R,Di) again, which
were already inferred at step i. Thus, naive evaluation performs duplicate
computations.

Instead of computing the entire set f(I,Di), one should only compute the
effect of df if possible, since f(I,Di−1) is already known. Using a definition
of df and only inferring facts using the difference at each step in the loop
of naive evaluation yields semi-naive evaluation [7]. However, finding df
is hard in general, and particular df functions have been shown for some
subclasses of rules [7].

The method of Liu et al. [51] takes the idea of differentiating even further,
and generates bottom-up implementations that processes facts one by one,
and maintains auxiliary maps for efficient retrieval of relevant facts at each
step. For best time complexity, this method decomposes any rule that has
more than two hypotheses into a set of rules of two hypotheses. In this
work, we decompose the hypotheses from left to right. We call this method
left-optimal bottom-up evaluation, because the time complexity of evaluating
a set of rules using this method is optimal for the fixed left-to-right ordering
of the hypotheses in a rule.

11

• The time complexity incurred by each rule for this method is the num-
ber of firings of the rule—the number of combinations of facts that
make all hypotheses true.

• The space complexity of this method consists of the space used by
the inferred facts, and the space used by auxiliary maps as indices for
constant time retrieval of relevant facts.

For the rest of this work, bottom-up evaluation refers to left-optimal bottom-
up evaluation.

Bottom-up evaluation infers all facts that can possibly be inferred with-
out taking the given query into account, and thus may take asymptotically
more time than necessary. To take the query into account, we perform
demand transformation, which is discussed in the next chapter in detail.

12

Chapter 3

Query-driven evaluations

and their complexity analysis

This chapter describes precise time and space complexity analysis for effi-
ciently answering Datalog queries, and precise relationships between top-
down evaluation with the dominant tabling strategy, variant tabling, and
bottom-up evaluation after variant demand transformation (VDT), a novel
transformation for making bottom-up evaluation query-driven.

We first present a systematic method for precisely calculating the worst-
case time and space complexities of top-down evaluation with variant tabling.
The calculation is based on possible binding patterns of arguments of pred-
icates during the evaluation, and expresses the complexities in terms of
parameters that characterize the actual number of facts used. We then de-
scribe variant demand transformation, which transforms Datalog rules for
efficiently answering queries using bottom-up evaluation of the transformed
rules. The transformation is akin to the magic set transformation, but is
simpler and produces simpler rules that yield exponentially smaller space in
the number of arguments of predicates.

Additionally, we establish precise relationships between top-down evalu-
ation with variant tabling and bottom-up evaluation after VDT, in terms of
precise time and space complexities. We show that the time complexity of
bottom-up evaluation after VDT is better than or equal to top-down eval-
uation with variant tabling, and that for rules that have no more than two
hypotheses and no wildcards (i.e., rules in minimal form), their complexi-
ties are equivalent. Then, we show that the space complexity of top-down
evaluation with variant tabling is better than or equal to demand-driven

13

bottom-up evaluation, and that if the time complexity of bottom-up eval-
uation after VDT is better than top-down evaluation with variant tabling,
then its space complexity must be worse. We confirm our analysis results
through experiments on benchmarks from OpenRuleBench [45].

Notation. We refer to the different evaluation methods to be described
as follows:

• V-topdown: Top-down evaluation with variant tabling

• V-bottomup: Bottom-up evaluation after variant demand transforma-
tion

The precise descriptions of these methods will be given in the consequent
sections. The asymptotic time complexities of the above methods are de-
noted Tv−topdn and Tv−botup. Similarly, asymptotic space complexities are
denoted with S and the corresponding subscript. For asymptotic time com-
plexity analysis, we assume perfect hashing, i.e., finding the value for a key
in a hash map takes O(1) time. For space complexities, we do not consider
the stack space used by the methods, therefore we only consider the space
taken by the subqueries generated and facts inferred.

3.1 Complexity analysis for top-down evaluation

with variant tabling

To answer a query, top-down evaluation starts with the query, generates
subqueries from hypotheses of rules whose conclusions match the query,
considering rules in the order given, and considering hypotheses from left to
right, and does so repeatedly until the subqueries match given facts. This
may lead to repeated subqueries or infinite recursion when recursive rules
exist. To address this problem, tabling memoizes answers to subqueries, and
reuses them when possible.

In this chapter, we consider top-down evaluation using variant tabling
with depth-first scheduling and without early completion.

• Variant tabling [18] is the dominant tabling strategy. It stores and
reuses the answers to variants of previously encountered subqueries,
where a subquery is a variant of another if they are equal modulo
variable renaming.

14

• Depth-first scheduling selects the next subqueries to evaluate in a
depth-first manner. The two major scheduling strategies, local and
batched [27], have the same asymptotic time and space complexities as
depth-first scheduling. We describe complexity analysis using depth-
first scheduling, because it is simpler.

• Early completion stops evaluation for a subquery whose arguments
are all bound, once the subquery is evaluated to be true. No early
completion means using all relevant rules to infer answers to a subquery
even if it is a subquery whose arguments are all bound and has been
evaluated to be true.

We also make the following two assumptions.

• All IDB predicates are tabled. This allows the best possible asymp-
totic time complexity; it may use unnecessarily large space, which is
a problem that should be addressed, but is beyond the scope of this
work.

• All predicates are perfectly indexed, so that it takes constant time
to retrieve a fact of the predicate given fixed values for some of its
arguments. In systems implementing variant tabling, perfect indexing
can be manually specified, such as in XSB [61], or is automatically
performed, such as in YAP [22].

For the rest of the chapter, v-topdown evaluation refers to evaluation using
variant tabling, with depth-first scheduling, without early completion, and
with the two assumptions above.

Figure 3.1 gives the algorithm for v-topdown evaluation. It recursively
calls invoke as described below. Two global maps are used: Table and
Suspension. A map maps a key to a set of values, where each pair of key and
set of values is called an entry. Table maps each subquery encountered that
is not a variant of a previously encountered subquery to a set of facts inferred
for the subquery. The keys of Suspension are pairs of atoms consisting of
a key k of Table and a hypothesis for which an answer for k can be used
to resume computation. The values for each key are tuples of arguments to
call invoke with when a fact for the hypothesis in the key is inferred.

In the algorithm, the following functions are used:

• concl(r) and hypos(r): the conclusion and the set of hypotheses of
rule r, respectively.

15

• unify(a,b): a most general unifier of atoms a and b if it exists, ∅
otherwise.

• subst(a,θ): the atom a after substitution of variables using θ.

• variant(a,b): whether atoms a and b are equal modulo variable re-
naming.

• keys(m): keys of map m.

The algorithm starts from the given query, and calls procedure invoke
for each rule whose conclusion matches the given query. The procedure takes
four arguments:

1. a query q,

2. a rule r whose conclusion matches q,

3. an index i of the hypothesis of r to process,

4. a substitution θ from matching q against the conclusion of r, and
matching facts against up to the ith hypothesis of r.

If the number of hypotheses of r is smaller than or equal to i, the proce-
dure substitutes variables of the ith hypothesis of r using θ (called hi), and
performs the following on hi:

• If hi is not an IDB hypothesis, then find each fact that matches the hy-
pothesis, and call invoke with i incremented for the next hypothesis,
and with θ extended with the new match.

• If hi is an IDB hypothesis and is a variant of an existing key of Table,
then for each fact in the values for that key, match the fact against hi,
and call invoke with i incremented for the next hypothesis, and with
θ extended with the new match. Also, record the current arguments
of invoke for resuming computation after a new fact is added to the
values of this table entry.

• If hi is an IDB hypothesis and is not a variant of an existing table
key, create a table entry whose key is hi, and whose set of values is
the empty set. For each rule r′ whose conclusion matches hi, call
invoke with the arguments hi, r

′, 1, and the substitution from the
match. Also, record the current arguments of invoke for resuming
computation after a new fact is added to the values for the new table
entry.

16

If the number of hypotheses of r is smaller than i, then a fact is inferred
and the substitution θ must contain all variables in q, because the rules are
safe. The fact inferred is q after substitution using θ. The fact is added to
the values for key q if it is not already in the values, and finally for each
tuple of arguments that can resume computation with a new fact, invoke
is called with the arguments after updating the substitution in the tuple to
account for the inferred fact.

The time complexity is the number of calls to invoke, because all other
operations are constant time in data size. We make the following observa-
tions for counting the number of calls to invoke: (1) The combination of the
first two arguments of invoke are determined by the call to invoke whose
index argument is 1, because other calls copy these two arguments from the
enclosing call to invoke. (2) The calls to invoke whose index argument
is 1 must be for queries that are not variants of the subqueries in Table,
and match the conclusion of some rule. (3) For each pair of the first two
arguments to invoke, rule r and query q that matches the conclusion of r,
the combinations of the last two arguments, index i and substitution θ, are
the combinations of facts that match the hypotheses of r.

The space complexity is the number of facts stored in the table entries.
We do not consider stack space in this work.

For easier and more precise calculation, we first generate a query and
rules annotated with the patterns of argument bindings based on the given
query, but whose evaluation is otherwise the same as the given query and
rules. Then, we calculate the complexity of evaluating the annotated query
and rules. Annotations make complexity calculation easier by distributing
the complexity to parts of the query and rules that contribute to it in simpler
ways.

3.1.1 Binding annotation

To annotate a set of rules with respect to a query, we first determine the
patterns of argument bindings during the evaluation of the query, called
variant demand patterns, and then generate an annotated rule for each pat-
tern determined.

Variant demand patterns. Given a set of rules and a query, each sub-
query p(a1,...,ak) encountered during v-topdown evaluation yields a vari-
ant demand pattern 〈p, s〉, where s is a string, called the pattern string, of
length k whose ith character is ‘b’ if ai is bound, and ‘f’ otherwise. For an

17

Suspension = new map
Table = new map
Table [q] = ∅
// Cal l invoke f o r each ru l e matching q
f o r r ∈ R | θ =un i f y (conc l (r) ,q) 6= ∅ :

invoke (q ,r , 1 ,θ)
return Table [q]

procedure invoke (q ,r , i ,θ) :
// I f ther e are s t i l l hypotheses o f r to p r o c e s s
i f i ≤ |hypos (r) | :

hi = subst (the ith hypothes i s o f r ,θ)
i f hi i s not an IDB hypothes i s :

// Ca l l invoke f o r each matching f a c t
f o r fact ∈ F | θ′ =un i f y (hi ,fact) 6= ∅ :

invoke (q ,r , i+ 1 ,θ ∪ θ′)
// I f hi i s a var i ant o f an e x i s t i n g tab l e key
e l s e i f ∃k ∈ keys (Table) | va r i an t (hi ,k) :

// Record cur r ent arguments
// f o r resuming invoke l a t e r
Suspension [〈k, hi〉] ∪ = {〈q ,r ,θ , i〉}
// Cal l invoke f o r each f a c t in va lues f o r key k
f o r fact ∈ Table [k] :

θ′ = un i f y (hi ,fact)
invoke (q ,r , i+ 1 ,θ ∪ θ′)

// I f a var i ant does not e x i s t i n tab l e keys
e l s e :

Table [hi] = ∅
// Record cur r ent arguments
// f o r resuming invoke l a t e r
Suspension [〈hi ,hi〉] ∪ = {〈q ,r ,θ , i〉}
// Cal l invoke f o r each r matching new query hi

f o r r′ ∈ R | θ′ =un i f y (conc l (r′) ,hi) 6= ∅ :
invoke (hi ,r′ , 1 ,θ′)

// I f no more hypothes i s i s l e f t to p r o c e s s
e l s e :

fact = subst (q ,θ)
// I f the f a c t has not been i n f e r r e d be f o r e
i f fact /∈ Table [q] :

// Add the f a c t to the tab l e
Table [q] ∪ = {fact}
// Resume computations
f o r 〈k, h〉 ∈ keys (Suspension) | k = q :

f o r 〈q′ ,r′ ,θ′ , i′〉 ∈ Suspension [〈q ,h〉] :
θ′′ =un i f y (h ,fact)
invoke (q′ ,r′ , i′ + 1 ,θ′ ∪ θ′′)

endproc

Figure 3.1: V-topdown evaluation of query q, given a set of facts F and a
set of rules R

atom p(a1,...,ak) and a pattern string s of length k, we say that ai is bound
by s if the ith character of s is ‘b’.

18

Variant demand patterns are computed iteratively as follows until no
new variant demand patterns can be added. The variant demand pattern
of the given query p(a1,...,ak) is 〈p, s〉, where the ith character of s is ‘b’
if ai is a constant, and ‘f’ otherwise. For each computed variant demand
pattern 〈p, s〉, for each rule r that defines p, and for each IDB hypothesis h
of r whose predicate is, say, q, add a variant demand pattern 〈q, t〉, where
the ith character of t is ‘b’ if the ith argument of h is a constant, or appears
in a hypothesis to the left of h in r, or is an argument of the conclusion of
r bound by s; and ‘f’ otherwise.

Annotation. For each variant demand pattern 〈p, s〉 computed, and for
each rule r that defines p, we generate an annotated rule that obeys the pat-
tern string s, where the conclusion is annotated with s, and each hypothesis
is annotated with the pattern string obtained as described above.

Formally, for each variant demand pattern 〈p, s〉, and each rule of the
form

p(...) : −h1(...), ..., hn(...).

We generate the rule

p s(...) : −h1 s1(...), ..., hn sn(...).

where for each 1 ≤ k ≤ n, the ith character of sk is ‘b’ if the ith argument
of hk is a constant, or appears in a hypothesis to the left of hk, or is an
argument of the conclusion bound by s, and ‘f’ otherwise.

For the given query p(...)?, the annotated query p s(...)? is generated,
where the ith character of s is ‘b’ if the ith argument of the given query is
a constant; and ‘f’ otherwise.

Example. For rules (B) and (L), and target query path(c,y)?, the set
of variant demand patterns is {〈path,‘bf’〉}, and annotation results in the
annotated query path bf(c,y)? and two annotated rules:

path_bf(x,y) :- edge_bf(x,y). (B’)

path_bf(x,y) :- path_bf(x,z), edge_bf(z,y). (L’)

For rules (B) and (R), and the same target query, the set of variant
demand patterns is the same, and annotation results in the same annotated
query, rule (B’), and the following rule:

path_bf(x,y) :- edge_bf(x,z), path_bf(z,y). (R’)

Annotation is the same as predicate splitting [68], except we annotate
all hypotheses, in contrast to only IDB, for ease of complexity analyses.

19

3.1.2 Time complexity analysis

For an annotated rule, the asymptotic time complexity it incurs is the prod-
uct of: (1) local complexity—the number of different values that the free
variables in the rule can take, and (2) number of invocations—the number
of different values that the bound arguments of the conclusion can take. We
give a method to calculate an upper bound for each factor. Summing the
complexities incurred by all rules gives the overall complexity.

The local complexity of a rule is the product of complexity factors in-
curred by all hypotheses of the rule. Each hypothesis, say p s(a1,...,an),
of r incurs the complexity factor O(#p.f1,...,fk/b1, ..., bl), where fi is the
index of the ith ‘f’ in s, and bi is the index of the ith ‘b’ in s.

For example, for rule (L’), the first hypothesis incurs the complexity
factor O(#path.2/1), and the second hypothesis incurs the complexity fac-
tor O(#edge.2/1). Therefore, the local complexity is
O(#path.2/1×#edge.2/1).

For computing the number of invocations of a rule r, three steps are
performed. First, among all hypotheses of all rules and the given query, find
those whose predicate is the same as the predicate of the conclusion of r.
Second, for each one found, say called h, calculate the number of different
values its bound arguments can take. If a bound argument is a constant,
then it can take only that one value. If a bound argument is a variable, say
x, then the minimum of the following is taken: (1) If x is the ith argument of
a hypothesis to the left of h whose predicate is p, then x may take O(#p.i)
different values. (2) If x appears in the conclusion c, there are two cases: if
c is a variant of h, and the bound arguments of c and h are the same, then
x may take one value; otherwise it may take O(dom(p.i)) values, where p

is the predicate of c, and x is the ith argument of c. The product of the
numbers of different values that the bound arguments can take in h is the
total number of invocations of r due to h. Third, the sum of the products
due to all h’s is the number of invocations to r.

For example, the predicate of the conclusion of rule (R’) appears in the
query, and in the second hypothesis of rule (R’) itself. The first argument
of the query is constant, so it takes only one value. The first argument of
the second hypothesis is a variable z, which appears as the second argu-
ment of the first hypothesis, and thus takes O(#edge.2) different values.
Therefore, the number of invocations of rule (R’) is O(1+#edge.2), which
is O(#edge.2).

The calculated complexities for rules (B’), (L’), and (R’) are respec-
tively:

20

• O(#edge.2/1)

• O(#path.2/1 × #edge.2/1)

• O(#edge.2/1 ×#path.2/1 × #edge.2)

Therefore, the time complexity of the target query using left-recursion is
O(#path.2/1 × #edge.2/1), and using right recursion is
O(#edge.2/1 × #path.2/1 × #edge.2).

3.1.3 Space complexity analysis

The asymptotic space complexity of v-topdown evaluation is bounded by the
space for table entries. Each table entry is keyed on an annotated predicate
and values for the bound arguments. For an annotated predicate, the space
it takes is the product of: (1) number of table entries created—the number
of values that the bound arguments can take in subqueries of the annotated
predicate, and (2) size of each table entry—the number of different values
that the free arguments can take in the facts inferred for the annotated
predicate. We give a method to calculate an upper bound for each factor.
Summing the space used for all predicates gives the total space.

The number of table entries created for an annotated predicate p is
calculated as follows. First, among all hypotheses of all rules and the given
query, find those whose predicate is p. Then, for each such hypothesis,
perform the second and third step of the method for computing the number
of invocations in the previous subsection.

For example, for the left-recursive version of transitive closure and tar-
get query path(c,y)?, the number of table entries created for the predicate
path bf is O(1) due to the given query and rule (L’), since the first hy-
pothesis of (L’) is a variant of its conclusion. For the right-recursive ver-
sion and the same query, the number of table entries created for path bf is
O(#edge.2) due to the query and rule (R’).

The size of each table entry for each annotated predicate p is calculated
as follows. For each rule r that defines p, we calculate the number of values
that the free variables of the conclusion can take. Each of these free variables
can take O(#q.i) different values if it is the ith argument of a hypothesis of
r whose predicate is q; if there are multiple such hypotheses, the minimum
of these is taken. The product of the numbers of different values that the
free variables of the conclusion can take in r is the size of each table entry
for facts inferred by r. The sum over all rules gives the final size of each
table entry.

21

For example, consider the left-recursive version of transitive closure, and
the target query. For the size of each table entry of path bf, rule (B’) incurs
O(#edge.2) due to the first hypothesis, and rule (L’) incurs O(#edge.2)
due to the second hypothesis. Therefore, the total size of each table entry
is O(#edge.2). The number of table entries created for path bf is O(1)
as shown above. Therefore, the total space complexity is O(1×#edge.2).
Using this analysis, the space complexity for the right-recursive version for
the target query is O(#edge.2×(#edge.2+#path.2)).

Besides estimating memory usage, space complexity analysis can also
help compare the actual running time for queries that have the same asymp-
totic time complexity. Creating a table entry is more expensive than adding
a fact to a table entry in implementations such as XSB [61]. Therefore, the
query that creates fewer table entries uses a constant factor less memory,
and runs a constant factor faster.

For example, consider the left-recursive and right-recursive version of
transitive closure. Given a query where both arguments are bound, the
time complexities of both versions are the same. The left-recursive version
contains rule (L’), for which the number of table entries is analyzed above.
However, annotated rules for the right-recursive version contains the rule
(R’’).

path_bb(x,y) :- edge_bf(x,z), path_bb(z,y). (R’’)

The second hypothesis of (R’’) creates O(#edge.2) table entries, in contrast
to O(1) table entries created by (L’). Therefore, we conclude that the right-
recursive version should run a constant factor slower. The experiments in
Section 3.4 confirm this.

3.2 Variant demand transformation for bottom-up

evaluation

Bottom-up evaluation, as discussed in the previous chapter, infers all facts
that can possibly be inferred without taking the given query into account,
and thus may take asymptotically more time than necessary. To take the
query into account, we perform variant demand transformation.

• Variant demand transformation transforms the given set of rules and
query into a new set of rules and a fact, so that bottom-up evaluation
using the new rules and fact, for any given set of facts, infers only useful
facts for answering the query. It achieves this by mimicking top-down

22

evaluation of the given query q so that for predicates in the given rules,
only facts that would be inferred during v-topdown evaluation of q are
inferred in a bottom-up evaluation of the transformed rules.

• We also show that variant demand transformation can be obtained
by simplifying the output of the well-known magic set transforma-
tion (MST). Annotations in MST are not necessary using bottom-up
evaluation, because the indices corresponding to the annotations are
generated automatically. Therefore, the output of our transformation
is simpler.

For the rest of this section, v-bottomup evaluation refers to performing
bottom-up evaluation on the rules generated by variant demand transfor-
mation.

3.2.1 Variant demand transformation

To perform variant demand transformation, we first compute variant de-
mand patterns as shown in Section 3.1.1. Then, for each variant demand
pattern 〈p, s〉, and for each rule

p(...) :- h1,..., hn.

the following rule is generated

p(...) :- d p s(a1,...,ak), h1,..., hn.

where a1,...,ak are the arguments of the conclusion bound by s. The new
hypothesis is added to ensure that only facts that would be inferred in v-
topdown evaluation are inferred. Then, a fact and rules that define the facts
of each predicate d p s are generated. For the given query, p(a1,...,ak)?,
the following fact is generated

d p s(ab1,...,abl).

where ab1,...,abl are the constant arguments of the query, and s is the pattern
string of the query. For each rule r generated, c :- h0,..., hn., and for
each hi whose predicate is an IDB predicate p, the following rule is generated

d p s(a1,...,ak) :- h0,..., hi−1.

where a1,..., ak are the bound arguments of hi, and s is the pattern string
of hi.

For example, for rules (B) and (L), and target query
path(c,y)?, the set of variant demand patterns is {〈path,‘bf’〉}. Variant
demand transformation generates the following fact and rules.

23

d_path_bf(c). (F)

path(x,y) :- d_path_bf(x), edge(x,y). (Bd)

path(x,y) :- d_path_bf(x), path(x,z), (Ld)

edge(z,y).

d_path_bf(x) :- d_path_bf(x). (D)

Fact (F) corresponds to the given query. Rules (Bd) and (Ld) correspond
to the variant demand pattern 〈path,‘bf’〉. Rule (D) is for the second hy-
pothesis of rule (Ld). Bottom-up evaluation using the generated rules has
smaller time complexity, because in the given rule (L), the variable x could
take an arbitrary value, whereas in rule (Ld), its value is restricted by the
new hypothesis, d path bf, for which only one fact, (F), exists, so x can
only be c.

Note that variant demand transformation does not necessarily reduce the
asymptotic time complexity. Consider rules (B) and (L), and source query
path(x,c)?, instead of target query. The set of variant demand patterns is
{〈path,‘fb’〉, 〈path,‘ff’〉}. Demand transformation generates the following
fact and rules.

d_path_fb(c).

path(x,y) :- d_path_fb(y), edge(x,y).

path(x,y) :- d_path_fb(y),

path(x,z), edge(z,y).

path(x,y) :- d_path_ff(), edge(x,y).

path(x,y) :- d_path_ff(),

path(x,z), edge(z,y).

d_path_ff() :- d_path_fb(y).

d_path_ff() :- d_path_ff().

The time complexity of bottom-up evaluation using the generated rules is
not better than the original rules if the underlying graph is connected, since
no variable is restricted analogous to x in the previous example. For variant
demand transformation to improve the complexity for target query as it
did for source query, the left-recursive rule needs to be transformed into a
right-recursive rule using recursion conversion as we show in Chapter 5.

3.2.2 Comparing with magic set transformation

Magic set transformation (MST) has the same goal as variant demand trans-
formation. MST has three similar steps: binding annotation, generating
rules and adding hypotheses for reflecting the demand of computation, and

24

generating a fact for the demand by the query. A detailed description of the
MST algorithm can be found in [68].

The disadvantage of MST, in contrast to variant demand transformation,
is that it annotates the IDB predicates in the generated rules, and this may
result in exponentially increased space complexity in program size, as shown
below.

Consider the last example in the previous subsection. MST yields the
following fact and rules.

d_path_fb(c).

path_fb(x,y) :- d_path_fb(y), edge(x,y).

path_fb(x,y) :- d_path_fb(y),

path_fb(x,z), edge(z,y).

path_ff(x,y) :- d_path_ff(), edge(x,y).

path_ff(x,y) :- d_path_ff(),

path_ff(x,z), edge(z,y).

d_path_ff() :- d_path_fb(y).

d_path_ff() :- d_path_ff().

The difference is the extra annotations in the annotated path predicates in
the rules generated by MST. These rules may infer some same facts of path
for two differently annotated predicates, path fb and path ff.

In general, annotating IDB hypotheses with their pattern strings is not
necessary, because using bottom-up evaluation, indices for matching hy-
potheses are created automatically. Removing these annotations yields sim-
pler rules, and reduces space taken by the same fact duplicated for multiple
new predicates generated. The extra space from keeping the annotations is
exponential in the number of arguments of differently annotated predicates.

Removing annotations of IDB predicates in the generated rules by MST
yields the rules generated by variant demand transformation.

3.3 Relating top-down evaluation with variant

tabling and bottom-up evaluation after variant

demand transformation

3.3.1 Time complexity comparison

We establish the time complexity relationship between v-topdown and v-
bottomup evaluations. First, we show the relationship in the general case,

25

then identify a subset of Datalog for which the two evaluations are equiva-
lent, and finally show that adding early completion may improve v-topdown
evaluation.

Theorem 3.3.1 states that v-bottomup evaluation is faster than or equal
to v-topdown evaluation in time complexity.

Theorem 3.3.1 (V-bottomup is no slower than v-topdown).
Tv−botup ≤ Tv−topdn.

Proof. For a set of rules and query P , let Pa be the set of rules and query
after annotating P .

Tv−topdn is the sum of the complexities incurred by each rule in Pa.
For each rule r in Pa of the form p(...) :- body., there is a rule r′ of
the form p(...) :- d(...), body. in P ′, where d(...) is the new demand
hypothesis. The complexity incurred by r for Tv−topdn is i × l, where i is
the number of invocations to r, and l is the local complexity, and l is the
product of the sizes of hypotheses. Since facts of d are obtained from all of
the call sites to p with the same binding pattern as top-down evaluation,
#d= i. For Tv−botup, the complexity incurred by a rule is the number of
times the rule fires. Therefore, the complexity incurred by r′ has an upper
bound #d×l = i× l.

The only rules in P ′ that do not correspond to a rule in Pa are the
rules that infer facts of the predicates added for demand. The additional
complexity incurred for Tv−botup by each such rule is already dominated by
a component of the complexity in Tv−topdn, because this complexity equals
the number of invocations for the rule that the demand hypothesis would be
added to, and the number of invocations is used as a factor in a summand
of Tv−topdn.

Hence, Tv−botup ≤ Tv−topdn.

We show that for Datalog rules in minimal form, i.e., rules with no more
than two hypotheses, and no singleton variables, the time complexities of
v-topdown evaluation and v-bottomup evaluation are equal.

Lemma 3.3.2. In bottom-up evaluation, if all variables in the hypotheses
of a rule r are also in the conclusion of r, then the number of facts inferred
using r equals the number of firings of r.

Proof. The number of facts inferred using r cannot be larger than the num-
ber of firings of r, since a fact is inferred only in a firing of r.

Let f1 and f2 be two different firings of a rule r. There is at least one
variable whose value is different between f1 and f2. Since all variables in

26

the hypotheses also appear in the conclusion, the facts inferred from f1 and
f2 must be different.

Therefore, the number of facts inferred using r equals the number of
firings of r.

Theorem 3.3.3 (Equivalence for a subset of Datalog). For rules in minimal
form, Tv−botup = Tv−topdn.

Proof. Let P be a set of rules in minimal form and a query. Let Pa be the
set of rules after annotating the rules in P . Each rule r in Pa is of one of
two forms:

(i) r has one hypothesis, so has the form c :- h. In P ′, there is a
rule r′ corresponding to r, and is of the form c :- d, h., where d is the
new demand hypothesis. The complexity incurred by r′ to Tv−botup and by
r to Tv−topdn are both dominated by the size of the predicate of h, since h

contains all variables in d.
(ii) r has two hypotheses, so has the form c :- h1, h2. In P ′, there

is a rule r′ corresponding to r, and is of the form c :- d, h1, h2., where
d is the demand hypothesis added. As before, the complexity incurred by
r to Tv−topdn, denoted Tv−topdn(r), equals the product of the sizes of the
predicates d, h1, and h2. However, bottom-up computation can decompose
the rules to possibly improve performance. In this case, it would obtain the
following two rules: new :- d, h1. and c :- new, h2. The complexity of
the first rule is less than Tv−topdn(r). Since there are no singleton variables,
the variables of d and h1 must appear in new. Then, by Lemma 3.3.2, the
size of the predicate of new equals the running time of the rule that generates
it, and hence the complexity incurred by the second rule obtained from r′

equals Tv−topdn(r).
Therefore, for each complexity summand incurred by rules in Pa for

Tv−topdn, there is a rule in P ′ that incurs the same complexity summand for
Tv−botup. Combining this with Theorem 3.3.1, which states that Tv−botup ≤
Tv−topdn, we obtain Tv−botup = Tv−topdn.

Early completion is an optimization for v-topdown evaluation. It stops
backtracking for queries with all arguments bound immediately after they
are proven to be true. Theorem 3.3.4 states that adding early completion to
v-topdown evaluation may make it asymptotically faster than v-bottomup
evaluation.

Theorem 3.3.4 (V-topdown with early completion may be faster). If early
completion is used by v-topdown evaluation, Tv−topdn may be smaller than
Tv−botup.

27

Proof. With early completion, v-topdown evaluation stops backtracking when
it proves that a subquery with all arguments bound is true, whereas bottom-
up evaluation always exhausts all possible ways of proving facts. Therefore,
with early completion, the time complexity of v-topdown evaluation can be
smaller than v-bottomup evaluation.

3.3.2 Space complexity comparison

We establish the space complexity relationship between v-topdown and v-
bottomup evaluation. We first show the relationship in the general case. We
then show that if v-bottomup evaluation has better time complexity, then
its space complexity must be worse.

Theorem 3.3.6 states that v-topdown evaluation does not use asymptot-
ically more space than v-bottomup evaluation. We prove it by showing the
components of space used for v-bottomup evaluation and their correspon-
dence with the space usage in v-topdown evaluation.

Lemma 3.3.5. Let P be a set of Datalog rules and a query. For each
predicate p in P , let BU(p) be the set of facts of p inferred using v-bottomup
evaluation of P , and let TD(p) be the set of facts of p inferred during v-
topdown evaluation of P . Then, BU(p) = TD(p).

Proof. We showed in Theorem 3.3.1 that the bound argument values of
subqueries for which each rule will be invoked in v-topdown computation is a
fact for the demand hypothesis added in bottom-up computation. Therefore,
for each predicate p, the same facts will be inferred by each rule that defines
p using either method. Hence, BU(p) = TD(p).

Theorem 3.3.6 (V-topdown uses no more space than v-bottomup).
Sv−topdn ≤ Sv−botup.

Proof. Sv−botup consists of the sums of each of the following items: (i) the
number of facts of each predicate defined by rules, (ii) the number of facts
of each demand predicate, (iii) the number of facts of each predicate defined
for decomposing rules into rules with at most two hypotheses, and (iv) the
size of the auxiliary maps maintained for fact retrieval. Sv−topdn consists
only of the sum of the sizes of table entries for each predicate defined by
rules.

For a predicate p, by Lemma 3.3.5, the set of facts of p inferred by either
evaluation method is the same. Each fact of p is stored only once in the
bottom-up method, but they can be stored in 2k auxiliary maps, where k is
the number of arguments of p. For v-topdown evaluation, each fact of p may

28

be stored in at most 2k tables, where the number of table entries correspond
exactly to the auxiliary maps. Therefore, Sv−topdn ≤ Sv−botup.

Theorem 3.3.7 states that improvement in time complexity for v-bottomup
evaluation is only possible by using more space. We prove it by using the fact
that such improvement is only possible by using more space in decomposed
rules.

Theorem 3.3.7 (V-bottomup is faster only when it uses more space). For
a set of rules and a query, if Tv−botup < Tv−topdn, then Sv−topdn < Sv−botup.

Proof. Let P be a set of rules and query for which Tv−botup < Tv−topdn.
Then, in the bottom-up evaluation of P , there is a rule which is decomposed
into multiple rules for bottom-up evaluation. This implies that the third
component of Sv−botup shown in Theorem 3.3.6 is nonzero. Since Sv−topdn

only consists of the first and fourth item of Sv−botup, Sv−topdn < Sv−botup.

3.4 Experiments

We support our complexity analyses and comparisons by experiments. For
top-down evaluation, we use XSB [75]. For bottom-up evaluation, we use
the implementation method of [51] to generate Python code from the rules.

We examined all benchmarks in OpenRuleBench [45]. All benchmark
rules can be classified as pure joins (no recursion), transitive closure, and
same generation (whether two nodes are in the same generation in trees).
We show experimental results for three benchmarks, one for each class.

We instantiate the complexity parameters in predicted complexities with
their values computed from the data. We use space units to mean number of
unique table inserts for v-topdown, and the number of facts inferred plus the
number of elements in auxiliary maps for v-bottomup evaluation. We use
returns to mean the number of total facts returned from rules for v-topdown
evaluation, and firings to mean the number of firings for v-bottomup evalu-
ation.

In all three benchmarks, the predicates have two arguments. For exper-
iments, we fix #p and #p.1/2 for each input predicate p to generate a set
of data such that the size of each predicate is maximal, i.e., the worst-case
behavior is exhibited. Then, we increase #p and #p.1/2 to generate the next
set of data, and repeat.

For pure joins, we show results for the benchmark Join1, which contains
4 rules that join 5 predicates, with a query with all arguments free. Figure

29

0 20 40 60 80 100 120 140 160
Predicted time units (in millions)

0

20

40

60

80

100

120

140

160

180

R
e
tu

rn
s

a
n
d
 f

ir
in

g
s

(i
n
 m

ill
io

n
s)

Top-down

Bottom-up

Difference x 1000

10 20 30 40 50 60 70 80 90 100
Predicted space units (in millions)

0.0

0.5

1.0

1.5

2.0

2.5

S
p
a
ce

 u
n
it

s
(i

n
 m

ill
io

n
s)

Top-down

Bottom-up

Figure 3.2: Returns for v-topdown evaluation, firings for bottom-up evalua-
tion, and space units for both, for benchmark Join1. The difference between
returns and firings has been multiplied by 1000 for illustration.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Predicted time units (in millions)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
u
n
n
in

g
 t

im
e
 (

s)

Right recursive

Left recursive

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Predicted space units (in millions)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
e
m

o
ry

 u
sa

g
e
 (

M
B

)

Right recursive

Left recursive

Figure 3.3: Running time and memory usage of transitive closure in XSB
for a query with both arguments bound.

3.2 shows that returns for v-topdown evaluation and firings for v-bottomup
evaluation are linear in predicated time units. It also shows that the space
units for both is linear in predicted space units. These confirm our analyses.
The time difference between v-topdown and v-bottomup evaluations arise
from the rules that infer demand. The space difference between them arise
from demand predicates and auxiliary maps.

For transitive closure, we analyze the time complexity, and by using the
space complexity analysis for v-topdown evaluation, give a comparison of
actual running times when the asymptotic time complexity is the same. We
showed in Section 3.3 that the left- and right-recursive versions of transitive
closure have the same asymptotic time and space complexities for a query

30

0.2 0.4 0.6 0.8 1.0 1.2
#par (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
tu

rn
s

a
n
d
 f

ir
in

g
s

(i
n
 m

ill
io

n
s) Top-down

Bottom-up

0.2 0.4 0.6 0.8 1.0 1.2
#par (in thousands)

0

50

100

150

200

250

300

S
p
a
ce

 u
n
it

s
(i

n
 t

h
o
u
sa

n
d
s)

Top-down

Bottom-up

Figure 3.4: Returns for v-topdown evaluation, firings for bottom-up evalu-
ation, and space units for both, for the same generation benchmark.

with both arguments bound, but the right-recursive version creates asymp-
totically more table entries. Therefore, the right-recursive version will run
slower by a constant factor, and use a constant factor more space. Figure 3.3
confirms that their complexities are the same, since the actual time and space
are linear in the predictions. It also confirms that the right-recursive version
uses a constant factor more time and space.

The same generation benchmark contains a rule with three hypothe-
ses: sg(x,y) :- par(x,z1), sg(z1,z2), par(y,z2). We use the query
sg(c,y)?, and show the time and space tradeoff. Bottom-up evaluation
eliminates variable z1 after decomposing the rules into rules with two hy-
potheses, and has better time complexity than v-topdown evaluation. There-
fore, v-topdown evaluation has better space complexity. Figure 3.4 confirms
our analysis: the returns of v-topdown evaluation increases faster asymptot-
ically, and the space units of v-topdown evaluation increases slower asymp-
totically.

3.5 Related work

Top-down evaluation with variant tabling was introduced in [66], and an
implementation of it is described in [18]. Optimal bottom-up evaluation, on
which our left-optimal bottom-up evaluation is based, is described in [51].

For top-down evaluation of Datalog with variant tabling, the only known
bound on the time complexity is O(kv), where k is the number of constants
in the input data, and v is the maximum number of variables in a rule [75],
and there is no complexity analysis studied for space. Our method calculates

31

worst-case time complexity much more precisely, and is the first to calculate
worst-case space complexity and calculates it precisely.

For bottom-up evaluation, time and space complexities have been ana-
lyzed before, using prefix-firing by Ganzinger et al. [28] and optimal bottom-
up evaluation by Liu et al. [51]. Bottom-up evaluation was used to mimic
top-down evaluation after program transformations, mostly notably magic
set transformation [8]. Our variant demand transformation is simpler and
produces simpler rules that have the same time and space in terms of data
complexity and exponentially smaller space in terms of program complexity.

The relationship between top-down and bottom-up evaluation has been
studied [57]. Ullman [68] shows that bottom-up evaluation after magic set
transformation has better than or equal time complexity with a breadth-first
top-down strategy called QRGT without tabling. Ramakrishnan et al. [56]
describe magic set transformation with tail recursion optimization that is
better than or equal to than top-down evaluation with tail recursion opti-
mization. Bry [12] shows that top-down evaluation with variant tabling and
bottom-up evaluation after magic set transformation can be implemented in
a unified framework, and that they infer the same facts for the given predi-
cates, but does not study time and space complexities. Our work is the first
to establish precise relationships between top-down evaluation with variant
tabling and bottom-up evaluation after a demand-driven transformation in
terms of precise time and space complexities.

The complexity results can be used for optimizations by comparing the
complexity formulas of different rules with the same semantics. However,
comparison of complexity formulas may be difficult in general, in which case
estimations of size parameters [47] can be used to help.

32

Chapter 4

Subsumptive tabling beats

variant tabling and magic

sets

In the last chapter, we have seen that for a subquery encountered during top-
down with variant tabling, only answers from identical subqueries are reused.
However, there may exist another subquery already encountered which is
guaranteed to contain all answers to the current subquery, i.e., subsumes
the current subquery. Using this, top-down evaluation can be coupled with
a tabling strategy that performs more reuse of previously inferred answers,
called subsumptive tabling [58].

Despite extensive research on optimization of Datalog rules [20, 60, 54,
43], given a set of rules, a query, and a fixed order of hypotheses for each rule,
no transformations that yield better time complexity than MST are known.
In the last chapter, we introduced demand transformation with better space
complexity in program size, but the same time complexity. There exists
no transformation such that the bottom-up evaluation of transformed rules
achieves the performance of subsumptive tabling.

This chapter describes precise time and space complexity analysis for effi-
ciently answering Datalog queries that uses subsumptive tabling, and precise
relationships between top-down evaluations with variant and subsumptive
tabling, and their relationship to bottom-up evaluation after MST. We give
complexity analyses for top-down evaluation with subsumptive tabling by
determining the binding patterns of arguments for queries, and the sub-
queries that are guaranteed to reuse answers from subsuming subqueries,
and then extending the analysis in the previous chapter for subsumptive

33

tabling. We show that top-down evaluation using subsumptive tabling is
equal to or better than using variant tabling in both time and space com-
plexities. We also characterize a class of Datalog rules, for which subsump-
tive tabling is guaranteed to be better than variant tabling in both time
and space complexities. Using this result, and the relationships established
in the last chapter, we show that subsumptive tabling beats MST in time
and space complexities as well. We also show that subsumptive tabling is
guaranteed to be better than MST for the previously identified class of rules
in time and space complexities.

Additionally, we describe a transformation, called subsumptive demand
transformation (SDT), such that the bottom-up evaluation of the rules pro-
duced by SDT achieves the performance of subsumptive tabling. We modify
bottom-up evaluation slightly, and couple it with SDT to obtain subsump-
tive bottom-up evaluation. We show that for a set of rules where each rule
has no more than two hypotheses and no wildcards, the time and space
complexities of subsumptive bottom-up evaluation and subsumptive tabling
are equal, and for other rules the time complexity of subsumptive bottom-
up evaluation may be better than subsumptive tabling. By extension, we
show that using SDT is equal to or better than using MST. We show that
for rules for which subsumptive tabling outperforms variant tabling, SDT
outperforms MST.

Building on our analyses, we devise a transformation for making sure
that a query that subsumes another in subsumptive tabling is queried first
when it is better to do so in time complexity. Using this method, we show
how to systematically derive Heintze and Tardieu’s demand-driven pointer
analysis [33] from the definition of Andersen’s pointer analysis.

We show experimental results on an illustrative set of Datalog rules,
rules for Andersen’s pointer analysis [4], and ontology queries for semantic
web from OpenRuleBench [45]; and confirm when subsumptive tabling and
SDT are necessary for efficient evaluation of queries, confirm our complexity
analyses when the best evaluation methods are chosen.

Notation. We refer to the different evaluation methods described in this
and the previous chapter as follows:

• V-topdown: Top-down evaluation with variant tabling

• S-topdown: Top-down evaluation with subsumptive tabling

• V-bottomup: Bottom-up evaluation after variant demand transforma-
tion

34

• S-bottomup: Bottom-up evaluation after subsumptive demand trans-
formation

The asymptotic time complexities of the above methods are denoted
Tv−topdn, Ts−topdn, Tv−botup, Ts−botup. Similarly, asymptotic space complex-
ities are denoted with S and the corresponding subscript. For space com-
plexities, we do not consider the stack space used by the methods. As in
the last chapter, for asymptotic time complexity analysis, we assume perfect
hashing, i.e., finding the value for a key in a hash map takes O(1) time; and
for space complexities, we do not consider the stack space used by the meth-
ods, therefore we only consider the space taken by the subqueries generated
and facts inferred.

Running example. For the running example, we define a predicate of
being related. Two people x and y are said to be related if they are in an
immediate family, or if there are two other people u and v in an immediate
family, where the x is related to u, and y is related to v. This relation can
be defined in Datalog using the following rules:

rel(x,y) :- imm(x,y). (1)

rel(x,y) :- imm(u,v), rel(u,x), rel(v,y). (2)

4.1 Complexity analysis for subsumptive tabling

Subsumptive tabling. To answer a query, top-down evaluation starts
with the query, generates subqueries from hypotheses of rules whose conclu-
sions match the query, considering rules in the order given, and considering
hypotheses from left to right, and does so repeatedly until the subqueries
match given facts. This may lead to repeated subqueries or infinite recur-
sion when recursive rules exist. To address this problem, tabling memoizes
answers to subqueries, and reuses them when possible.

Subsumptive tabling [58] reuses more answers by considering previous
subqueries that subsume a new query; in contrast to variant tabling, which
only considers previous queries that are equivalent to the new query. A
subquery q1 subsumes another subquery q2 if there is a substitution θ of
variables such that θ(q1) = q2.

For example, given the rules in the running example and a query rel(x,y)?,
a subquery rel(c,x)? for some constant c will be generated from the sec-
ond hypothesis of the second rule. In variant tabling, this subquery will be
used to generate more subqueries. In subsumptive tabling, since the given

35

query subsumes this subquery, the answers to the subquery will be looked
up in the table entry for the given query.

For analyzing the time and space complexities of subsumptive tabling
for top-down evaluation, we make the following assumptions:

• Depth-first scheduling is used. This selects the next subqueries to
evaluate in a depth-first manner.

• No early completion is used. This uses all relevant rules to infer an-
swers to a subquery, even when it is a subquery whose arguments are
all bound and has been evaluated to be true.

• All IDB predicates are tabled. This allows for the best asymptotic
time complexity.

• All predicates are perfectly indexed. So, it takes constant time to re-
trieve a fact of a predicate given fixed values for some of its arguments.

For v-topdown, the selection of the scheduling strategy does not change
complexities, since each distinct subquery is guaranteed to be processed, re-
gardless of when. But, for s-topdown, the order of evaluation of subqueries
may change whether a subquery is processed or not, since a subsuming one
may have been encountered before in an order, and may not have been en-
countered in another. We show complexity analyses for depth-first schedul-
ing, and then describe the changes necessary for other dominant scheduling
strategies. The algorithms for top-down with subsumptive tabling using
local scheduling and batched scheduling are given in Figure 4.1 and 4.2.

The time complexity of s-tabling is the sum of the number of facts that
match the hypotheses in the body of each rule for each subquery that is not
looked up in the table. This is impossible to determine statically, since it
is not possible to determine if a subquery will be looked up or evaluated.
The space complexity is the number of facts stored in the table entries, and
similarly is impossible to determine statically.

4.1.1 Subsumptive binding annotation and complexity anal-

ysis

In this section, we show the calculation of time and space complexities for
s-topdown, that it beats v-topdown, and that it beats MST for a form of
rules that is always possible to obtain, and identified a class of rules for
which s-topdown is guaranteed to outperform the other methods.

36

The time complexity of s-topdown is the sum of the number of facts that
match the hypotheses in the body of each rule for each subquery that is not
looked up in the table. The space complexity is the number of facts stored
in the table entries. These are impossible to determine statically, since it is
not possible to determine if a subquery will be looked up or evaluated.

We give a method for obtaining an upper bound on the complexities that
is as close as possible to the actual complexities. For easier and more precise
calculation of the complexities, we first generate a query and rules annotated
with the patterns of argument bindings based on the given query, but whose
evaluation using s-topdown is otherwise the same as the given query and
rules. Then, we calculate the complexity of evaluating the annotated query
and rules.

To annotate a set of rules with respect to a query, we first determine
the patterns of argument bindings during the evaluation of the query, called
subsumptive demand patterns, and then generate an annotated rule for each
pattern determined. This method is a generalization of the binding annota-
tion method shown in the last chapter that is used for v-topdown.

Subsumptive demand patterns. For each subquery, we determine if it
is guaranteed to be evaluated during s-topdown, where a subquery is guar-
anteed to be evaluated if it will be evaluated during s-topdown regardless
of the given or inferred facts. Given a set of rules and a query, each sub-
query p(a1,...,ak) encountered during s-topdown yields an s-demand pat-
tern 〈p, n, r, g, s〉, where the subquery is the nth hypothesis of rule r, s is a
string, called the pattern string, of length k whose ith character is ‘b’ if ai
is bound, and ‘f’ otherwise, and g is a boolean value that determines if this
subquery is guaranteed to be evaluated. For an atom p(a1,...,ak) and a
pattern string s of length k, we say that ai is bound by s if the ith character
of s is ‘b’.

An s-demand pattern d1 is said to subsume another s-demand pattern
d2 if d2 is guaranteed to be evaluated and any subquery with the pattern d1
subsumes subqueries with the pattern d2. Formally, an s-demand pattern
〈p1, n1, r1, g1, s1〉 subsumes an s-demand pattern 〈p2, n2, r2, g2, s2〉 if g1 is
true, and (i) s1 contains no ‘b’s, or (ii) for each j such that the jth character
of s1 is ‘b’, the jth character of s2 is ‘b’, and the hypotheses of r1 to the
left of its n1th hypothesis is a subset of the hypotheses of r to the left of its
n2th hypothesis.

S-demand patterns are computed iteratively as follows until no new s-
demand patterns can be added. The s-demand pattern of the given query

37

p(a1,...,ak) is 〈p, 1, ∅, true, s〉, where the ith character of s is ‘b’ if ai
is a constant, and ‘f’ otherwise. For each computed s-demand pattern
〈p, n, r, g, s〉, for each rule r2 that defines p, and for each IDB hypothesis hj
of r2 whose predicate is, say, q, add an s-demand pattern 〈q, n2, r2, g2, s2〉,
if this s-demand pattern is not subsumed by an s-demand pattern already
computed, where n2 is j, g2 is true if g is true and n2 is 1, the ith character
of s2 is ‘b’ if the ith argument of h is a constant, or appears in a hypothesis
to the left of h in r, or is an argument of the conclusion of r bound by s;
and ‘f’ otherwise.

After s-demand patterns are computed as above, we take the projection
of the first and last element of each tuple to obtain a set of predicate-
annotation pairs.

Annotation. For each predicate-annotation pair 〈p, s〉 computed, and for
each rule r that defines p, we generate an annotated rule that obeys the pat-
tern string s, where the conclusion is annotated with s, and each hypothesis
is annotated with the pattern string obtained as described above.

Formally, for each demand pattern 〈p, s〉, and each rule of the form

p(...) : −h1(...), ..., hn(...).

We generate the rule

p s(...) : −h1 s1(...), ..., hn sn(...).

where for each 1 ≤ k ≤ n, the ith character of sk is ‘b’ if the ith argument
of hk is a constant, or appears in a hypothesis to the left of hk, or is an
argument of the conclusion bound by s, and ‘f’ otherwise.

For the given query p(...)?, the annotated query p s(...)? is generated,
where the ith character of s is ‘b’ if the ith argument of the given query is
a constant; and ‘f’ otherwise.

Example. For the rules in the running example and the query rel(x,y)?,
we show the difference between the annotated rules for v-topdown and s-
topdown. For s-topdown, the computed set of s-demand patterns is
{〈rel,‘ff’〉}, since the given query with both arguments free subsumes
all other subsequent subqueries for rel, and hence the following query
rel ff(x,y)? and two annotated rules are generated.

rel_ff(x,y) :- imm(x,y). (1a)

rel_ff(x,y) :- imm(u,v), rel_bf(u,x), (2a)

rel_bf(v,y).

38

For v-topdown, since subsumption is not used, the set of demand pat-
terns would be {〈rel,‘ff’〉, 〈rel,‘bf’〉, 〈rel,‘bb’〉}, and annotation results in
the same annotated query, the two rules above and the following four anno-
tated rules:

rel_bf(x,y) :- imm(x,y). (1b)

rel_bf(x,y) :- imm(u,v), rel_bb(u,x), (2b)

rel_bf(v,y).

rel_bb(x,y) :- imm(x,y). (1c)

rel_bb(x,y) :- imm(u,v), rel_bb(u,x), (2c)

rel_bb(v,y).

To the best of our knowledge, subsumptive binding annotation is the
first annotation method that considers subsuming queries, and is distinct
from previous methods used for v-topdown in the last chapter and predicate
splitting [68].

Other scheduling strategies. For local scheduling, batched-scheduling
or other scheduling strategies, the method for obtaining the demand pat-
terns need to be modified. The idea is that for each scheduling strategy,
one needs to determine a heuristic that identifies subqueries guaranteed to
be evaluated. For example, for batched scheduling, which retrieves one an-
swer from a subquery and then continues to other hypothesis, only the given
query and the first hypothesis of the first rule that defines the given query
is guaranteed to be evaluated. For local scheduling, which retrieves all an-
swers from a subquery before continuing to other hypotheses, a subquery
is guaranteed to be evaluated if it is the first hypothesis of a rule whose
conclusion is guaranteed to be evaluated.

Using these heuristics, the demand pattern identification method can be
modified to obtain the relevant demand patterns, and the same annotation
method can be used afterwards.

Time and space complexity analyses. Once we perform subsumptive
binding annotation, we use the method in the last chapter on the annotated
rules obtained for computing time and space complexity.

The time complexity is the sum of asymptotic complexities incurred by
all annotated rules. For an annotated rule, the asymptotic time complexity it
incurs is the product of: (1) local complexity—the number of different values
that the free variables in the rule can take, and (2) number of invocations—
the number of different values that the bound arguments of the conclusion
can take.

39

The local complexity of a rule is the product of complexity factors incurred
by all hypotheses of the rule. Each hypothesis, say p s(a1,...,an), of
r incurs the complexity factor O(#p.f1,...,fk/b1,...,bl), where fi is
the index of the ith ‘f’ in s, and bi is the index of the ith ‘b’ in s.

The number of invocations of a rule is the sum of all values possibly taken
by its bound arguments in all possible subqueries. This is calculated by
looking at the hypotheses with the same annotation as the conclusion
of the rule. For each hypothesis in each rule whose annotation is the
same as the conclusion of the analyzed rule, we determine how many
values the bound arguments take by looking at the origin of the binding
of those bound arguments.

For the running example, the local time complexity of (2a) is
O(#imm×#rel.2/1×#rel.2/1), and the number of invocations is O(1) since
the annotation of the conclusion is ‘ff’, and hence can only take one value.
Therefore, the time complexity incurred by (2a) is
O(#imm×#rel.2/1×#rel.2/1).

The space complexity of s-topdown consists of the facts stored. This
is the sum of the product of the number of distinct table entries for an
annotation and the number of facts for each table entry over all s-demand
patterns.

The number of distinct table entries is the number of values that the bound
arguments in the conclusion take for an annotated predicate. It can be
calculated as shown for the number of invocations in time complexity.

The number of facts for each table entry is the number of values that the
free arguments in the conclusion take for rules defining that annotated
predicate. It is calculated by analyzing which hypotheses bind the free
arguments in the conclusion.

For the running example, the only s-demand pattern is 〈rel,‘ff’〉, therefore
there is O(1) table entries, and the number of facts for that table entry is
O(#rel). Hence, the space complexity is O(#rel).

4.1.2 Subsumptive beats variant and magic sets

We show that s-topdown always beats v-topdown, and therefore beats the
magic set transformation (MST) for a form of Datalog rules, which all Dat-
alog rules can be reduced to.

40

The following lemma shows that the check for subsuming used in s-
topdown is more expensive than the check for being variant in v-topdown.

Lemma 4.1.1. Let q be an IDB subquery of k arguments. The first time q
is encountered in top-down evaluation, the time complexity of table lookup
for q is O(k) in variant tabling, and O(2k) in subsumptive tabling.

Proof. In variant tabling, the evaluation looks up whether there is a pre-
vious table entry with the same label up to variable renaming, and create
it otherwise. This lookup can be trivially done in O(k) time. Table entry
creation can also be done in O(k) time.

In subsumptive tabling, the evaluation needs to look up for every possible
subsuming query, whether there is a table with that label. If the query has
b bound arguments, there are 2b queries that subsume q, and b is O(k),
therefore table lookup takes O(2k) time. Table entry creation can be done
in O(k) time. Therefore, the total time complexity is O(2k).

However, the difference is asymptotic only in the number of arguments.
From now on, we assume that the number of arguments of any predicate is
bounded by a constant.

We show that the time complexity of s-topdown is no worse than the
time complexity of v-topdown. For the theorems below, the time and space
complexities are compared for a set of rules and a given query.

Theorem 4.1.2 (Subsumptive beats variant in time).
Ts−topdn ≤ Tv−topdn.

Proof. A subquery generated during s-topdown is guaranteed to be gener-
ated during v-topdown, since they follow the same algorithm, except that
s-topdown may avoid generating some subqueries. Therefore, the facts in-
ferred during s-topdown is a subset, not necessarily proper, of the facts
inferred during v-topdown. Table lookup is more costly in s-topdown as
shown in Lemma 1. However, since the number of arguments of a predicate
is constant, we obtain Ts−topdn ≤ Tv−topdn.

Using a similar argument, we show that s-topdown uses no more space
than v-topdown asymptotically.

Theorem 4.1.3 (Subsumptive beats variant in space).
Ss−topdn ≤ Sv−topdn.

41

Proof. As described in the last proof, the subqueries generated during s-
topdown is a subset of the subqueries generated during v-topdown. There-
fore, the number of tables created during s-topdown is no more than dur-
ing v-topdown, and the number of answers stored in the tables that ex-
ist in both are equivalent since they both need to be correct. Therefore,
Ss−topdn ≤ Sv−topdn.

We have established that s-topdown is at worst equal to v-topdown. The
following theorem shows that it can in fact be be better both in time and
space complexity.

Theorem 4.1.4 (Subsumptive properly beats variant). There exists a set
of rules and a query for which Ts−topdn < Tv−topdn and Ss−topdn < Sv−topdn.

Proof. We prove this theorem using the running example. Recall that sub-
sumptive binding annotation of the rules for the query with both arguments
free results in rules (1a) and (2a), whereas annotation for v-topdown results
in the same two rules plus four extra rules.

We have shown that the time complexity incurred by (2a) is
O(#imm×(#rel.2/1)2). However, for v-topdown, consider the following an-
notated rules.

rel_bf(x,y) :- imm(u,v), rel_bb(u,x), rel_bf(v,y).

rel_bb(x,y) :- imm(u,v), rel_bb(u,x), rel_bb(v,y).

The local complexity for (2c) is O(#imm), however, there are at least
O((#imm.2)2) invocations to (2c) due to the last hypothesis of (2c). There-
fore, the time complexity of v-topdown is at least O(#imm×(#imm.2)2).

Now, notice that values for the second argument of rel always come
from the second argument of imm, therefore O(#imm.2) may asymptotically
be larger than O(#rel.2/1), but not vice versa. Therefore,
O(#imm×(#rel.2/1)2) is asymptotically smaller than O(#imm×(#imm.2)2).
Therefore, we have proven our theorem for time complexity.

For space complexity, we have shown that the space complexity of these
rules for s-topdown is O(#rel), which is optimal since it is only as large as
the output. For v-topdown, there are O((#imm.2)2) table entries created
for rel bb, which is asymptotically larger than O(#rel) in the worst-case.
Therefore, we have proven our theorem for space complexity as well.

Using Theorems 4.1.2, 4.1.3, and 4.1.4 and theorems about v-topdown in
the last chapter, we establish that s-topdown beats MST for Datalog rules in
minimal form. First, we recall the following theorem from the last chapter.

42

Theorem 4.1.5 (Variant vs. MST for minimal form). For rules in minimal
form, Tv−botup = Tv−topdn and Sv−topdn ≤ Sv−botup.

Combining this theorem with the results above, we obtain that for rules
in minimal form, s-topdown beats v-bottomup.

Corollary 4.1.6 (Subsumptive beats magic sets for minimal form). For
rules in minimal form, Ts−topdn ≤ Tv−botup and Ss−topdn ≤ Sv−botup.

We finally would like to give a class of rules for which the time complexity
of s-topdown is better than v-topdown and v-bottomup. The property of this
class is that the free variables in hypotheses are bound without considering
the bound arguments from the conclusions.

Theorem 4.1.7. Let P be a set of Datalog rules and a query, such that
there exists a rule r in P which contains a free variable v such that (i)
in the leftmost hypothesis h that v appears in, all arguments of h are free,
(ii) v appears in another hypothesis in r that has bound arguments, (iii) v
appears in an IDB hypothesis in r that will be subsumed in s-topdown, then
Ts−topdn ≤ Tv−topdn.

Proof. We analyze a rule r that satisfies the given properties. If there ex-
ists such a v with properties (i) and (ii), then that means that v may take
asymptotically more values in a hypothesis than it can after all hypotheses
are considered, hence, those initial values are irrelevant. If an IDB hypoth-
esis as given in (iii) exists, there will be subqueries generated from that
hypothesis using those irrelevant values for v. If those subqueries are sub-
sumed in s-topdown, then v-topdown will have to process asymptotically
more facts than s-topdown; since the irrelevant values for v will be looked
up in the table for s-topdown, and discarded, whereas in v-topdown, they
contribute to the complexity. Therefore, a set of rules with the given prop-
erties are guaranteed to be worse in time complexity in v-topdown.

4.2 Subsumptive demand transformation for

bottom-up evaluation

We have shown that s-topdown beats v-topdown and the analogous trans-
formation MST for bottom-up. However, there exists no transformation
analogous to subsumptive tabling for bottom-up evaluation. In this sec-
tion, we develop subsumptive demand transformation (SDT) for which the
bottom-up evaluation of resulting rules have no worse performance than
s-topdown.

43

Subsumptive demand transformation transforms a set of rules and a
query into a new set of rules, such that all the facts that can be inferred
from the new set of rules contain only facts that would be inferred during
v-topdown of the original rules. It adds new rules that define needed facts
for each hypothesis in each rule, adds hypotheses to the original rules to
restrict computation to infer only needed facts, and adds negated hypotheses
to the rules that define needed facts to make use of subsumption. For each
subsumptive demand pattern 〈p, s〉, and for each rule

p(...) :- h1,..., hn.

it generates

p(...) :- d p s(a1,...,ak), h1,..., hn.

where a1,...,ak are arguments of the conclusion that are bound by s. The
added hypotheses restrict the rules to infer only facts necessary. The pred-
icates of those hypotheses are defined as follows. For the given query,
p(a1,...,ak)?, the following fact is generated

d p s(ab1,...,abl).

where ab1,...,abl are the constant arguments of the query, and s is the pattern
string of the query. For each rule r generated, c :- h0,..., hn., and for
each hi whose predicate is an IDB predicate p, the following rule is generated

d p s(a1,...,ak) :- h0,..., hi−1,

not d p s1(ab1,...,abk), ...

where a1,..., ak are the bound arguments of hi, and s is the pattern string of
hi, and there exists a negated hypothesis not d p si(ab1,...,abk) for each
pattern string si which subsumes s, and the arguments of those hypotheses
correspond to the arguments of the conclusion bound with respect to si. A
pattern string s1 of length n subsumes a pattern string s2 of length n iff s1
and s2 are different, and for each i less than n, the ith character of s1 is
either ‘f’ or the same as the ith character of s2. Semantically, the negated
hypotheses ensure that no demand has been inferred that would correspond
to a subsuming query in s-topdown.

For the rules in the running example, and the query rel(c,y)?, sub-
sumptive demand transformation results in the following rules:

rel(x,y) :- d_rel_bf(x), imm(x,y). (1bf)

rel(x,y) :- d_rel_bf(x), imm(u,v),

rel(u,x), rel(v,y). (2bf)

rel(x,y) :- d_rel_bb(x,y), imm(x,y). (1bb)

rel(x,y) :- d_rel_bb(x,y), imm(u,v), (2bb)

44

rel(u,x), rel(v,y).

d_rel_bf(c) (Q)

d_rel_bb(u,x) :- d_rel_bf(x), imm(u,v), (2bf.3)

not d_rel_bf(u),

not d_rel_fb(x),

not d_rel_ff.

d_rel_bf(v) :- d_rel_bf(x), imm(u,v), (2bf.4)

rel(u,x),

not d_rel_ff.

d_rel_bb(u,x) :- d_rel_bb(x,y), imm(u,v). (2bb.3)

not d_rel_bf(u),

not d_rel_fb(x),

not d_rel_ff.

d_rel_bb(u,x) :- d_rel_bb(x,y), imm(u,v), (2bb.4)

rel(u,x).

not d_rel_bf(u),

not d_rel_fb(x),

not d_rel_ff.

where each rule (Ns1s2) is generated from rule (N) for the pattern string
s1s2, each rule (Ns1s2.M) captures the demand due to the Mth hypothesis
of rule (Ns1s2), and the fact (Q) corresponds to the given query.

Finally, each resulting rule is split into rules of two hypotheses from left
to right. This transformation coupled with the bottom-up evaluation pro-
vides an implementation method with same time complexity as and better
space complexity than v-bottomup.

This transformation follows the same method as variant demand trans-
formation, except that it uses subsumptive demand patterns and inserts the
negated hypotheses for subsumption of demand facts.

Handling negation. SDT introduces negated hypotheses to rules, and
negation in Datalog may be interpreted under several different semantics.
To match the behavior of subsumptive tabling, we use inflationary seman-
tics [39] for negation. Inflationary semantics is a temporal semantics, and
it checks whether a fact exists at the time when the negation is encoun-
tered. In other words, when there exists a substitution of variables in a rule
such that all non-negated hypotheses of a rule are facts, then the negated
hypotheses under that subsitution are checked whether any of them has
currently been inferred as a fact. If none has been inferred as a fact, the
rule is used to infer the conclusion under the substitution as a fact. We

45

call bottom-up evaluation extended with inflationary semantics inflationary
bottom-up evaluation.

During inflationary bottom-up evaluation, a fact may be considered false
at one point, and true at a later point. We show that the implementation of
the rules obtained by SDT with inflationary semantics infers the same facts
of the given predicates as the rules obtained by variant demand transforma-
tion, therefore SDT preserves correctness.

Theorem 4.2.1 (Correctness of SDT). Let P be a set of Datalog rules and a
query. Let Pv be the rules obtained by variant demand transformation from
P , and let Ps be the rules obtained by subsumptive demand transformation
from P . Then, for each predicate p in P , the bottom-up evaluation of Pv

and inflationary bottom-up evaluation of Ps infer the same facts of p.

Proof. The rules that define given predicates are the same in Pv and Ps, only
demand predicates from SDT have additional negated hypotheses. Suppose
a fact d of a demand predicate is inferred in bottom-up evaluation of Pv and
not in the bottom-up evaluation of Ps, and that d is used to infer a fact f of
a given predicate. Then, for the rule used to infer d in Pv , during bottom-up
evaluation of Ps, all positive hypotheses were satisfied, but at least one of
the negated hypothesis was a fact d′. By definition, d′ is a demand fact that
corresponds to a query subsuming the query corresponding to d, therefore
there exists a rule that infers f using d′. Hence, the evaluation of Pv does
not infer more facts for given predicates than the evaluation of Ps.

For the other direction, since the evaluation is monotonic, the evaluation
of Ps cannot infer more facts that the evaluation of Pd.

Scheduling in bottom-up. We have shown that the order of subqueries
are important for s-topdown as discussed in Section 3. Analogously, the
order of demand facts inferred and considered is important in s-bottomup.
In inflationary bottom-up evaluation, facts are processed in an undefined
order. We modify that by considering facts for the demand predicates first,
and in the order they are inferred. If no demand facts are left, then we
consider facts for given predicates. We call this evaluation method demand-
first inflationary bottom-up evaluation.

By considering demand facts first and in order, demand-first inflationary
bottom-up evaluation mimicks s-topdown. The only difference that remains
is the retrieval order of facts of given predicates. We have not defined such
an order for s-topdown either, and in practice, different systems may opt
for different orders. From now on, we assume that a particular retrieval

46

order is used for facts of given predicates, and the same order is used during
demand-first inflationary bottom-up evaluation.

For a set of rules and a query P , we call the demand-first inflationary
bottom-up evaluation of the rules resulting from SDT of P , s-bottomup of
P .

4.2.1 Relationship to subsumptive tabling and magic set trans-

formation

By using the analogy in the inferred demand facts and encountered sub-
queries, we first show that s-bottomup beats s-topdown in time complexity.

Theorem 4.2.2 (S-bottomup beats s-topdown).
Ts−botup ≤ Ts−topdn.

Proof. Let P be a set of rules and a query. Let Pa be the set of rules and
query after subsumptive binding annotation of P , and Ps be the set of rules
obtained by SDT of P .

Ts−topdn is the sum of the complexities incurred by each rule in Pa. For
each rule r in Pa of the form p(...) :- body., there is a rule r′ of the form
p(...) :- d(...), body, negated hypos. in Ps, where d(...) is the new
demand hypothesis. The complexity incurred by r for Ts−topdn is i× l, where
i is the number of invocations to r, and l is the local complexity, and l is the
product of the sizes of hypotheses.

Facts of d are obtained from all of the call sites to p with the same
binding pattern as s-topdown, and new facts for d are no longer inferred
in the same asymptotic time as it would take for s-topdown to reach a
subsuming subquery, since the scheduling for s-bottomup is analogous to
s-topdown, #d= i. For Ts−botup, the complexity incurred by a rule is the
number of times the rule fires. Therefore, the complexity incurred by r′ has
an upper bound #d×l = i × l. Note that the negated hypotheses do not
incur additional time complexity since they require constant-time lookups
in the set of facts inferred.

The only rules in P ′ that do not correspond to a rule in Pa are the
rules that infer facts of the predicates added for demand. The additional
complexity incurred for Ts−botup by each such rule is already dominated by
a component of the complexity in Ts−topdn, because this complexity equals
the number of invocations for the rule that the demand hypothesis would be
added to, and the number of invocations is used as a factor in a summand
of Ts−topdn.

Hence, Ts−botup ≤ Ts−topdn.

47

As is the case between v-topdown and v-bottomup, we show that s-
bottomup and s-topdown have the same time complexity for rules in minimal
form. For this purpose, we reuse the below lemma from the last chapter.

Lemma 4.2.3. In bottom-up evaluation, if all variables in the hypotheses
of a rule r are also in the conclusion of r, then the number of facts inferred
using r equals the number of firings of r.

Theorem 4.2.4 (S-bottomup equals s-topdown for minimal form). For
rules in minimal form, Ts−botup = Ts−topdn.

Proof. Let P be a set of rules and a query. Let Pa be the set of rules and
query after subsumptive binding annotation of P , and Ps be the set of rules
obtained by SDT of P . Each rule r in Pa is of one of two forms:

(i) r has one hypothesis, so has the form c :- h. In Ps, there is a
rule r′ corresponding to r, and is of the form c :- d, h., where d is the
new demand hypothesis. The complexity incurred by r′ to Ts−botup and by
r to Ts−topdn are both dominated by the size of the predicate of h, since h

contains all variables in d.
(ii) r has two hypotheses, so has the form c :- h1, h2. In Ps, there

is a rule r′ corresponding to r, and is of the form c :- d, h1, h2., where
d is the demand hypothesis added. As before, the complexity incurred by
r to Ts−topdn, denoted Ts−topdn(r), equals the product of the sizes of the
predicates d, h1, and h2, and the number of facts of d and the number of
invocations to the rule is the same as argued in the previous theorem. How-
ever, bottom-up computation can decompose the rules to possibly improve
performance. In this case, it would obtain the following two rules: new :-

d, h1. and c :- new, h2. The complexity of the first rule is less than
Ts−topdn(r). Since there are no singleton variables, the variables of d and h1
must appear in new. Then, by the lemma above, the size of the predicate
of new equals the running time of the rule that generates it, and hence the
complexity incurred by the second rule obtained from r′ equals Ts−topdn(r).

Therefore, for each complexity summand incurred by rules in Pa for
Ts−topdn, there is a rule in Ps that incurs the same complexity summand for
Ts−botup. Combining this with Theorem 4.2.2, which states that Ts−botup ≤
Ts−topdn, we obtain Ts−botup = Ts−topdn.

To compare s-bottomup and v-bottomup, note that we have already
shown that s-bottomup beats v-bottomup in space complexity in Theo-
rem 4.2.1, since both infer the same facts for given predicates and s-bottomup
may infer less facts for demand predicates.

48

For time complexity, s-bottomup beats v-bottomup due to Theorem 4.2.4
and Corollary 4.1.6, and is asymptotically faster for the class of rules and
queries described in Theorem 4.1.7 due to the aforementioned results. There-
fore, we obtain the following corollary.

Corollary 4.2.5. Ts−botup ≤ Tv−botup and Ss−botup ≤ Sv−botup. For the rules
described in Theorem 4.1.7, Ts−botup < Tv−botup and Ss−botup < Sv−botup.

4.3 Subsumption optimization

We have shown that s-topdown beats v-topdown, and s-bottomup beats v-
bottomup. However, there are cases when the subsumptive methods are not
effective because subqueries that subsume others may appear later during
evaluation, and the complexity may have been reduced if they had appeared
earlier. A class of rules and queries for which this is guaranteed to happen
has been shown in Theorem 4.1.7. In this section, we show a transformation
method to ensure that subqueries that subsume others for s-topdown and s-
bottomup are processed first. We first show the effectiveness of the method
for s-topdown, and show that it works for s-bottomup as well. We call our
transformation subsumption optimization.

The method first identifies demand patterns that should be subsumed,
and then transforms the rules so that any subquery with that demand pat-
tern is subsumed during s-topdown.

(i) Identification of demand patterns to subsume. For a set s of
demand patterns of a predicate determined for the given rules and query,
the method generates all sets of subsuming demand patterns, and generates
annotated rules for each such set. Then, for each set of the resulting rules,
we compare the time complexity of the resulting annotated rules with the
original annotated rules. If it can be proven that the asymptotic time com-
plexity of the resulting rules due to a set s2 of subsuming demand patterns
is lower than the original annotated rules, then we say that the demand
patterns in s should be subsumed by the demand patterns in s2.

For rules (1) and (2) in the running example, and the query pt(c,y)?,
the demand patterns are 〈rel,‘bf’〉 and 〈rel,‘bb’〉. The rules obtained by
subsumptive binding annotation are:

rel_bf(x,y) :- imm(x,y).

rel_bf(x,y) :- imm(u,v), rel_bb(u,x), rel_bf(v,y).

rel_bb(x,y) :- imm(x,y).

49

rel_bb(x,y) :- imm(u,v), rel_bb(u,x), rel_bb(v,y).

It would be asymptotically better in time complexity if the calls to rel bb

were subsumed by previously encountered rel bf subqueries. The intuition
is that if the outdegree of the rel relation is constant, then asymptotically
many more queries to rel bb may be made than the ones that would be
relevant due to the last rule. Therefore, 〈rel,‘bb’〉 should be subsumed by
〈rel,‘bf’〉.

(ii) Transformation. For each demand pattern 〈p, s〉 that should be sub-
sumed by 〈p, s2〉, for each rule r whose ith hypothesis’ is p(a1,...,an) and
pattern string is s, we generate the following rule:

q(ab1,...,abk) :- p(a1,...,an).

where q is a fresh predicate name, and b1,...,bk are the indices of the ‘b’ char-
acters in s2. Then, before the ith hypothesis of r, we insert q(ab1,...,abk)
as a hypothesis. Therefore, after this transformation, a subquery that sub-
sumes the subquery of the original ith hypothesis will be guaranteed to
be made during s-topdown, so all subqueries corresponding to the demand
pattern 〈p, s〉 will be avoided.

For the second rule in the running example, the second hypothesis is the
only hypothesis whose pattern string should be avoided (‘bb’). Thus, this
rule is transformed to the following two rules.

rel_bf(x,y) :- imm(u,v), i(u), rel(u,x), rel(v,y).

i(u) :- rel(u,x).

We prove that the subsumption optimization preserves the semantics of
the original set of rules.

Theorem 4.3.1. Let P be a set of Datalog rules and a query. For each
given predicate p of P , s-topdown of P and s-topdown of the rules resulting
from subsumption optimization infer the same facts for p.

Proof. The rules after subsumption optimization are more restricted due to
added hypotheses, so s-topdown of those rules could only infer the same facts
or less than s-topdown of P . However, they could not infer less either, since
the added hypotheses are defined by rules whose hypothesis subsume existing
hypotheses, therefore they could not be false while all other hypotheses are
true. Hence, s-topdown of P and s-topdown of the rules after subsumption
optimization infer the same facts for given predicates.

50

We show that this transformation achieves the same effect for s-bottomup,
by showing that the introduced hypotheses and rules ensure that demand
facts cannot be inferred for demand patterns that should be subsumed.

Theorem 4.3.2. Let P be a set of Datalog rules and a query. The s-
bottomup of P after subsumption optimization does not infer any fact for
the demand predicates that correspond to the demand patterns that should
be subsumed.

Proof. For any hypothesis h corresponding to a demand pattern that should
be subsumed, the transformation introduces a new hypothesis to its left. For
that hypothesis to be true, the demand fact that corresponds to a subsuming
demand pattern must be inferred by construction of the transformation.
Thus, when all of the hypotheses to the left of h is true, a demand fact
corresponding to a demand pattern subsuming the demand pattern for h
must have been inferred. Therefore, no fact can be inferred for demand
predicates of demand patterns that should be subsumed.

Application to demand-driven pointer analysis. We show that by
applying subsumption optimization to the specification of Andersen’s pointer
analysis for C [4], we automatically derive Heintze and Tardieu’s algorithm
for demand driven pointer analysis [33], and our complexity analysis can be
used to obtain a precise time and space complexity analysis.

Given a C program, statements in a program relevant to pointer analysis
can be reduced to four kinds, which can be represented directly as Datalog
facts:

• p = &q is represented by bare addr(p,q).

• p = q is represented by bare bare(p,q).

• p = *q is represented by bare star(p,q).

• *p = q is represented by star bare(p,q).

Andersen’s pointer analysis can be specified directly as four Datalog
rules, where pt(p,q) denotes p points to q:

pt(p,q) :- bare_addr(p,q). (A1)

pt(p,q) :- bare_bare(p,r), pt(r,q). (A2)

pt(p,q) :- bare_star(p,s), pt(s,r), pt(r,q). (A3)

pt(p,q) :- star_bare(r,s), pt(r,p), pt(s,q). (A4)

51

Given a query pt(c,q)? with the first argument bound, the demand
patterns are 〈pt,‘bf’〉 and 〈pt,‘bb’〉. Subsumptive binding annotation yields:

pt_bf(p,q) :- bare_addr_bf(p,q).

pt_bf(p,q) :- bare_bare_bf(p,r), pt_bf(r,q).

pt_bf(p,q) :- bare_star_bf(p,s), pt_bf(s,r), pt_bf(r,q).

pt_bf(p,q) :- star_bare_ff(r,s), pt_bb(r,p), pt_bf(s,q).

pt_bb(p,q) :- bare_addr_bb(p,q).

pt_bb(p,q) :- bare_bare_bf(p,r), pt_bb(r,q).

pt_bb(p,q) :- bare_star_bf(p,s), pt_bf(s,r), pt_bb(r,q).

pt_bb(p,q) :- star_bare_ff(r,s), pt_bb(r,p), pt_bb(s,q).

Our complexity analysis can be used to show that asymptotically many
more queries to pt bb may be made than the ones that would be relevant
due to the last two rules generated. The number of calls to pt bb may be as
many as v2 where v is the number of variables in the C program, however the
pt relation may not be as dense as O(v2). Due to this fact, if one carries on
the complexity analysis for the set of rules, it can be inferred that 〈pt,‘bb’〉
should be subsumed by 〈pt,‘bf’〉. Subsumption optimization results in the
rules (A1), (A2), (A3), and the following two rules due to (A4):

pt(p,q) :- star_bare(r,s), i(r), pt(r,p), pt(s,q).

i(r) :- p(r,p).

S-bottomup of the resulting rules corresponds precisely to Heintze and
Tardieu’s algorithm, and performing precise complexity analysis on the re-
sult gives the explanation for why and when the algorithm is efficient.

4.4 Experiments

We support our complexity analyses and comparisons by experiments. For s-
topdown and v-topdown, we use XSB [75]. For v-bottomup and s-bottomup,
we use the implementation method of [51] modified with the described ex-
tensions when necessary to generate Python code from the rules.

We show experimental results for the examples we have discussed, the
running example and the demand-driven pointer analysis. Our experiments
on the rules were conducted on a 3.0 GHz Intel Q9650 with 4 GB of memory,
running SuSE Linux, and using XSB 3.2.

We instantiate the complexity parameters in predicted complexities with
their values computed from the data. We use space units to mean number of

52

unique table inserts for v- and s-topdown, and the number of facts inferred
plus the number of elements in auxiliary maps [51] for v- and s-bottomup.
We use returns to mean the number of total facts returned from rule invo-
cations for tabled top-down evaluation, and firings to mean the number of
firings for demand-driven bottom-up evaluation.

In our benchmarks, predicates have two arguments. For experiments,
we fix #p and #p.1/2 for each input predicate p to generate a set of data
such that the size of each predicate is maximal, i.e., the worst-case behavior
is exhibited. Then, we increase #p and #p.1/2 to generate the next set of
data, and repeat.

For a query with both arguments free for the running example, we con-
firm the asymptotic time and space complexities. The left figure in Fig-
ure 4.3 shows that s-bottomup and s-topdown are asymptotically faster than
v-bottomup and v-topdown. It also shows that due to splitting rules into
two hypotheses s-bottomup is asymptotically faster than s-topdown. The
right figure in Figure 4.3 shows that the space usage of v- and s-topdown
is smaller than v-bottomup and s-bottomup, respectively. It shows that the
space usage of s-topdown and s-bottomup is smaller than v-topdown and
v-bottomup, respectively.

For demand-driven pointer analysis, and a query with the first argu-
ment bound, we apply subsumption optimization to the rules and confirm
the asymptotic improvement in time complexity against s-bottomup, and
show the difference in space usage. Figure 4.4 confirms that subsumption
optimization improves time complexity and reduces space usage.

We also performed experiments on a well-known benchmark in semantic
web [45] that has 961 rules and 654 facts; and we also performed the pointer
analysis on real data from a C program with 2430 facts. Both queries run
out of memory in XSB using v-topdown, but the ontology query runs in 12
seconds, and the pointer analysis runs in under 0.1 seconds when s-topdown
is used.

Finally, to compare our results with existing SQL database implemen-
tations, we converted the rules of the running example into SQL queries
and performed experiments on MSSQL, one of the few SQL databases that
support recursion. The running example timed out (more than 10 minutes)
for all of our data points except the first two. The variant and subsumptive
demand transformations cannot be used on SQL databases since no main-
stream SQL database implementation supports mutual recursion to the best
of our knowledge, and demand transformations result in mutually recursive
rules.

53

4.5 Related work

Datalog has been extensively studied [15, 1]. Variant tabling was introduced
in [66], and has been widely studied. It has been implemented in top-down
evaluation engines such as XSB [18] and YAP [22]. Subsumptive tabling [58]
was introduced more recently, but has not been studied widely, and only
implemented in XSB.

The time and space complexity of variant tabling for Datalog was given
an imprecise upper bound in [75], and a method for precise calculation of
time and space complexities of variant tabling for Datalog is given in the
last chapter. There is no prior work on complexity analysis of subsumptive
tabling to the best of our knowledge. The analyses in this chapter build
on the methods in the last chapter to present the first method for precise
calculation of worst-case time and space complexities of subsumptive tabling,
and establishes that it beats variant tabling.

For bottom-up evaluation, transformations for demand-driven evalua-
tion have been studied, including the well-known magic set transformation
(MST) [8] and variant demand transformation that our work extends. It
has been shown that both these transformations are equivalent to variant
tabling both operationally [12] and in terms of complexity in the last chap-
ter. We show that subsumptive tabling beats MST, and then give the first
transformation for bottom-up evaluation, for which the evaluation of result-
ing rules is analogous to subsumptive tabling. We show that the complexity
of the resulting rules from our transformation beats subsumptive tabling
and MST in time complexity.

The relationship between top-down and bottom-up evaluation has been
studied in a variety of contexts with different flavors of rules [57, 68, 56,
12]. Our work is the first to establish precise relationships between variant
and subsumptive tabling, and MST and the novel subsumptive demand
transformation.

By characterizing improvement using the complexity analysis, we also in-
troduce a transformation called subsumption optimization, to reuse as many
facts as possible. We have shown that our methods can be used to system-
atically derive a well-known demand driven pointer analysis algorithm [33].

Additionally, we have implemented our method and confirmed our anal-
ysis results through experiments on well-studied benchmarks.

54

. . . same top code . . .

procedure invoke (q ,r , i ,θ ,res=f a l s e) :
// I f ther e are s t i l l hypotheses o f r to p r o c e s s
i f i ≤ |hypos (r) | :

hi = subst (the ith hypothes i s o f r ,θ)
i f hi i s not an IDB hypothes i s :

// Ca l l invoke f o r each matching f a c t
f o r fact ∈ F | θ′ =un i f y (hi ,fact) 6= ∅ :

invoke (q ,r , i+ 1 ,θ ∪ θ′)
// I f hi i s a var i ant o f an e x i s t i n g tab l e key
e l s e i f ∃k ∈ keys (Table) | va r i an t (hi ,k) :

// Record cur r ent arguments f o r resuming invoke l a t e r
Suspension [〈k, hi〉] ∪ = {〈q ,r ,θ , i〉}
// Cal l invoke f o r each f a c t in va lues f o r key k
f o r fact ∈ Table [k] :

θ′ = un i f y (hi ,fact)
invoke (q ,r , i+ 1 ,θ ∪ θ′)

// I f a var i ant does not e x i s t i n tab l e keys
e l s e :

Table [hi] = ∅
// Cal l invoke f o r each r matching new query hi

f o r r′ ∈ R | θ′ =un i f y (conc l (r′) ,hi) 6= ∅ :
invoke (hi ,r′ , 1 ,θ′)

f o r fact ∈ Table [hi] :
θ′ = un i f y (hi ,fact)
invoke (q ,r , i+ 1 ,θ ∪ θ′)
resume (hi ,fact)

// Record cur r ent arguments f o r resuming invoke l a t e r
Suspension [〈hi ,hi〉] ∪ = {〈q ,r ,θ , i〉}

// I f no more hypothes i s i s l e f t to p r o c e s s
e l s e :

fact = subst (q ,θ)
// I f the f a c t has not been i n f e r r e d be f o r e
i f fact /∈ Table [q] :

// Add the f a c t to the tab l e
Table [q] ∪ = {fact}
i f res :

resume (q ,fact)
endproc

procedure resume (q ,fact) :
// Resume computations
f o r 〈k, h〉 ∈ keys (Suspension) | k = q :

f o r 〈q′ ,r′ ,θ′ , i′〉 ∈ Suspension [〈q ,h〉] :
θ′′ =un i f y (h ,fact)
invoke (q′ ,r′ , i′ + 1 ,θ′ ∪ θ′′ , t rue)

Figure 4.1: Top-down evaluation of query q, given a set of facts F and a set
of rules R, with subsumptive tabling and local scheduling

55

. . . same top code . . .

procedure invoke (q ,r , i ,θ ,res=f a l s e) :
// I f ther e are s t i l l hypotheses o f r to p r o c e s s
i f i ≤ |hypos (r) | :

hi = subst (the ith hypothes i s o f r ,θ)
i f hi i s not an IDB hypothes i s :

// Ca l l invoke f o r each matching f a c t
f o r fact ∈ F | θ′ =un i f y (hi ,fact) 6= ∅ :

invoke (q ,r , i+ 1 ,θ ∪ θ′)
// I f hi i s a var i ant o f an e x i s t i n g tab l e key
e l s e i f ∃k ∈ keys (Table) | va r i an t (hi ,k) :

// Record cur r ent arguments f o r resuming invoke l a t e r
Suspension [〈k, hi〉] ∪ = {〈q ,r ,θ , i〉}
// Cal l invoke f o r each f a c t in va lues f o r key k
f o r fact ∈ Table [k] :

θ′ = un i f y (hi ,fact)
invoke (q ,r , i+ 1 ,θ ∪ θ′)

// I f a var i ant does not e x i s t i n tab l e keys
e l s e :

Table [hi] = ∅
caller [hi] = 〈q ,r ,θ , i〉
// Cal l invoke f o r each r matching new query hi

f o r r′ ∈ R | θ′ =un i f y (conc l (r′) ,hi) 6= ∅ :
invoke (hi ,r

′ , 1 ,θ′)
f o r fact ∈ Table [hi] :

θ′ = un i f y (hi ,fact)
resume (hi ,fact)

// Record cur r ent arguments f o r resuming invoke l a t e r
Suspension [〈hi ,hi〉] ∪ = {〈q ,r ,θ , i〉}

// I f no more hypothes i s i s l e f t to p r o c e s s
e l s e :

fact = subst (q ,θ)
// I f the f a c t has not been i n f e r r e d be f o r e
i f fact /∈ Table [q] :

// Add the f a c t to the tab l e
Table [q] ∪ = {fact}
i f res :

resume (q ,fact)
e l s e :

〈q′ ,r′ ,θ′ , i〉 = caller [q]
invoke (q′ ,r′ , i′ + 1 ,θ ∪ θ′)

endproc

procedure resume (q ,fact) :
// Resume computations
f o r 〈k, h〉 ∈ keys (Suspension) | k = q :

f o r 〈q′ ,r′ ,θ′ , i′〉 ∈ Suspension [〈q ,h〉] :
θ′′ =un i f y (h ,fact)
invoke (q′ ,r′ , i′ + 1 ,θ′ ∪ θ′′ , t rue)

Figure 4.2: Top-down evaluation of query q, given a set of facts F and a set
of rules R, with subsumptive tabling and batched scheduling

56

0.2 0.4 0.6 0.8 1.0 1.2
Given predicate size (in thousands)

0

1

2

3

4

5
R

e
tu

rn
s

a
n
d
 f

ir
in

g
s

(i
n
 m

ill
io

n
s) S-bottomup

S-topdown

V-bottomup

V-topdown

0.2 0.4 0.6 0.8 1.0 1.2
Given predicate size (in thousands)

0

20

40

60

80

100

120

140

160

180

S
p
a
ce

 u
n
it

s
(i

n
 t

h
o
u
sa

n
d
s)

S-bottomup

S-topdown

V-bottomup

V-topdown

Figure 4.3: Firings/returns and space units for v-topdown, s-topdown, v-
bottomup, and s-bottomup for the running example.

0.2 0.4 0.6 0.8 1.0 1.2
Given predicate size (in thousands)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
tu

rn
s

a
n
d
 f

ir
in

g
s

(i
n
 m

ill
io

n
s) With SO

Without SO

0.2 0.4 0.6 0.8 1.0 1.2
Given predicate size (in thousands)

0

20

40

60

80

100

120

S
p
a
ce

 u
n
it

s
(i

n
 t

h
o
u
sa

n
d
s)

With SO

Without SO

Figure 4.4: Firings/returns and space units for s-bottomup with and without
subsumption optimization (SO) for the pointer analysis benchmark.

57

Chapter 5

Specialization and recursion

conversion

Given a set of rules and a kind of query, i.e., a query predicate with indica-
tions of which arguments will be bound, we show methods to generate a set
of rules that is specialized for the kind of query, and produces complexity
formulas for the time and space complexities of the generated rules.

We first describe static removal of redundancies that specializes the
transformed rules with respect to the kinds of query, so that bound parame-
ters of the query predicate are used to restrict possible instantiations of the
rules as much as possible. This is a simplified form of partial evaluation [42]
and may yield asymptotic improvements in running time.

Then, we describe recursion conversion that transforms recursive rules
into appropriate left or right linear recursive forms based on the kinds of
queries, so that the connection between the queries and given facts can be
established efficiently. Queries can then be answered equally efficiently for
equivalent but slightly different recursive rules, which could otherwise differ
asymptotically in running times.

In the methods, we use versions of transitive closure as our running
example as below.

Doubly recursive: path(x,y) :- edge(x,y).

path(x,y) :- path(x,z), path(z,y) .
(5.1)

Right recursive: path(x,y) :- edge(x,y).

path(x,y) :- edge(x,z), path(z,y) .
(5.2)

58

Left recursive: path(x,y) :- edge(x,y).

path(x,y) :- path(x,z), edge(z,y) .
(5.3)

These three sets of rules can be proven by induction to infer the same
path facts. The right- and left-recursive versions of the transitive closure
concatenate edges from the vertex on the left, respectively right, with paths
to the vertex on the right, respectively left.

For these rules, there are 4 possible queries: path(x,y)? returns all
pairs of vertices that have a path between them. path(c,y)? returns all
vertices that are reachable from c. path(x,c)? returns all vertices that can
reach c. path(c1,c2)? returns whether c2 is reachable from c1.

We use the following notation for complexity analysis. For queries re-
garding transitive closure, if the first argument is bound, it is denoted by
c1, and if the second argument is bound, it is denoted by c2.

• V : number of vertices, P : number of paths, E: number of edges.

• E(c): number of edges that are on any path from c to any vertex.
IE(c): number of edges that are on any path from any vertex to c.

• o(c): outdegree of c, o: maximum outdegree of vertices.
i(c): indegree of c, i: maximum indegree of vertices.

• R(c): number of vertices reachable from c, R: maximum number of
vertices reachable from any vertex.
IR(c): number of vertices that reach c.

5.1 Static removal of redundancies using special-

ization

Constants in the arguments of a query are called static inputs. For example,
in the query path(c,x)?, c is a static input. Specialization uses static inputs
to restrict the number of inferred facts by transforming the rules. Program
specialization is also known as partial evaluation, and has been studied in
logic programming [42], where it is sometimes called partial deduction.

Specialization for a set of Datalog rules S, and a query Q is obtaining
another set of rules S′ and a query Q′ that satisfy the following: Every
fact inferred as an answer to Q′ during the evaluation of S′ is a projection
of a fact inferred as an answer to Q during the evaluation of S, where a
projection of a fact is a selection of zero or more arguments from that fact
up to a renaming of the predicate.

59

As an example, consider S being (5.3), and path(c,y)? being Q. Let
S′ be:

path1c(y) :- edge(c,y).

path1c(y) :- path1c(z), edge(z,y).
(5.4)

and Q′ be path1c(y)?. The original query finds all vertices that are reach-
able from c by selecting the path facts whose first argument is c. Q′ and
S′ do exactly that, and the answers to Q′ are the vertices that are reach-
able from c. By inserting c as the first argument in the answers of Q′, one
trivially reconstructs the answers of Q.

To describe specialization, we need to define substitution. For a set of
rules S, we denote the set of hypotheses of all rules by h(S). We denote
the conclusion of a rule r by c(r). A substitution is a map from variables
to constants. A substitution θ applied to a rule r, denoted rθ, replaces the
variables in r with constants according to θ. We say that an atom a′ is an
instance of an atom a if there is a substitution θ such that aθ = a′; in case
such a substitution exists, it is denoted subst(a, a′).

We specialize a set of Datalog rules with respect to a query via the
fixpoint of a function f , which takes a set S of rules and a set A of atoms, and
returns both of them with new elements added. At each step of computation,
if there is an atom a in A, and a rule r in S for which a is an instance
of the conclusion of r, then a new rule r′, which is r updated with the
substitution that makes a and the conclusion of r identical, is added to S
and all hypotheses of r′ are added to A. That is:

f(〈S,A〉) = 〈S ∪ S′, A ∪ h(S′)〉

where S′ = {rθ|a ∈ A, r ∈ R, θ = subst(c(r), a) 6= undef}.

Given a set of rules S, and a query Q, specialization computes the fixpoint
of f(S,Q) and returns the first component of the output pair as the desired
set of specialized rules. The output of the function also has the original
rules in the specialized set, therefore we need to remove them if they are not
needed for the evaluation of the specialized query. An original rule r in the
output is not needed, unless a hypothesis of a specialized rule is identical to
the conclusion of r up to variable renaming. Once these rules are removed,
we rewrite all atoms that have constant arguments to remove constants,
and assign names based on the original predicate names and the places and
values of bound arguments. We only rewrite the atoms whose predicates
appear in the conclusion of some rule.

60

Specialization of (5.3) with respect to the query path(a,y)? yields:

path1c(y) :- edge(c,y).

path1c(y) :- path1c(z), edge(z,y).
(5.5)

and the query path1c(y)?. Given the same query, if one applies specializa-
tion to (5.1), the original unspecialized rules remain since the path(z,y)

hypothesis of the second rule is identical to the conclusion of the original
rules up to variable renaming. The original rules of (5.2) also remain after
specialization for the same reason.

To make specialization independent of the values of the static input, we
perform the following: For any query Q with n distinct static inputs, we
generate n fresh constants: say c1, ... ,cn, and replace the constants in Q
with these fresh constants in order (i.e. the first distinct constant by c1, the
second by c2, and so on). Next, we do specialization as described above for
the given rules and rewritten Q. Note that, at this point, constants occur
in the specialized rules only in the atoms for which no facts are derived by
the rules. For any rule in the given set of rules, if a constant ci occurs in
the rule, we replace it with a variable, say x, that does not occur in the rule,
add ci(x) as a new hypothesis, where ci is a fresh predicate name to be
used with ci, and add the fact ci(oci) to the set of rules, where oci is
the ith original constant in the query. With this result, if another query Q′

whose bound arguments are in the same places as Q is given, and Q′’s ith
constant is different than Q’s, we retract the fact related to ci, and add a
fact of ci that represents the new constant. For example, specialization of
(5.3) with respect to the query path(c,x)? yields:

c(c).

path1c(y) :- c(x), edge(x,y).

path1c(y) :- path1c(z), edge(z,y).

(5.6)

and the query path1c(y)?. If one wants to change the original query to
path(c2,x)?, it is not necessary to re-perform specialization, but just re-
place the fact c(c), with c(c2).

Note that, for any set of rules, specialization does not result in different
time complexities of the generated rules when the rule order within the set
or the hypothesis order inside the rules is changed.

We have shown that specialization may result in a set with more special-
ized rules, however it may include unspecialized rules as well. Evaluating
a purely specialized set of rules should be more advantageous. The purely
specialized rules derived from (5.3), and the query path(c,x)? can be eval-
uated in linear time in the number of edges. Since the time is proportional

61

to the combination of facts that make the hypotheses true, and z can only
be assigned the vertices that can be reached from c as values, the evaluation
takes time proportional to E(c). Specialization of the programs (5.1) and
(5.2) with respect to the same query is evaluated in asymptotically worse
time since they include the original rules. Therefore, programs with the
same semantics might have different execution times with respect to the
same queries, even after specialization.

Differences in time complexity of the specialized programs can only result
from the combination of the bound arguments in the query and the version
of program that is being specialized, so we show such cases. If the left-
recursive version is given and the left argument of the query is bound, or
symmetrically if the right-recursive version is given and the right argument of
the query is bound, the specialized versions have cost O(E). For the doubly
recursive version, no matter which arguments are bound, the complexity is
O(R × P). The following are the complexities of evaluating programs with
respect to queries with different bound arguments:

Bound
argument

Time complexity
Left-rec. Right-rec. Doubly-rec.

None O(R ×E) O(R×E) O(R× P)
First O(E(c)) O(R×E) O(R× P)

Second O(R ×E) O(IE(c2)) O(R× P)
Both O(E(c)) O(IE(c2)) O(R× P)

5.2 Recursion conversion for chain queries

In the previous section, we showed that specialization might not obtain a
more specialized set of rules for a given query. In general, for any set of
unspecializable rules, another set of rules that infers the same set of facts
may be specializable. For transitive closure, one needs to convert a particular
form of recursion into another for the specialization to work. We give a
general transformation which is applicable to transitive closure. Given the
following set of rules:

r(~x) :- p1(~x1), .. , pn(~xn).

r(~x) :- r(~y), r(~z).

where ~x, ~xn, ~y, ~z each denote one or more variables, ~y and ~z have common
variables ~t, the uncommon ones are in different places in ~y than in ~z, and
at the same place in ~x as in ~y or ~z, and the variables in ~t do not appear
in ~x. Also pi is not mutually recursive with r. Then the above rules are
equivalent to both sets of rules below:

62

r(~x) :- p1(~x1),..,pn(~xn). r(~x) :- p1(~x1),..,pn(~xn).

r(~x) :- p1(~y1),..,pn(~yn),r(~z). r(~x) :- r(~y),p1(~z1),..,pn(~zn).

where each ~yi (and ~zi) is obtained by substituting the variables of ~xi with
the substitution that makes ~x and ~y (respectively ~z) identical.

All versions of transitive closure are instances of one of these schemas.
Since they are all shown to be equivalent and there is a transformation
method to transform from one to another, we exploit this fact before spe-
cialization.

We give a detailed complexity analysis of specialization extended with
recursion conversion for transitive closure. Recursion conversion is also in-
sensitive to hypothesis order or rule order. We just need to consider the
main three versions of the transitive closure.

After applying the described transformations to any version of transitive
closure, if any of the arguments is bound in the query, the program can be
evaluated in O(E) time, and if both arguments are free then the program
can be evaluated in O(R × E) time. One can revise the O(E) bound by
more precise bounds as follows:

Bound argument Time complexity for all three programs
None O(R× E)
First O(E(c))

Second O(IE(c2))
Both O(min(E(c1), IE(c2)))

Recursion conversion as described is possible only for the given schema,
i.e., doubly-recursive or linear Datalog programs, so it is of significance
to convert a Datalog program into a linear one if possible. The question
whether it is possible to perform such a transformation has been answered
negatively in general, and a subset of Datalog programs have been shown to
be convertible to linear ones [2].

For our purposes, any linearization procedure for a subset of Datalog
is useful. If we obtain a program which obeys the schema for recursion
conversion, we apply the recursion conversion to obtain different versions
of the same program. We then apply our specialization algorithm to these
different versions. After these steps, we can generate the program as in [51]
and automatically analyze the time complexity of the bottom-up evaluation
of each resulting program and choose the best one. In any of the steps if
the transformation is not possible, we skip that step. The whole method
can be summarized as: linearize (if possible), apply recursion conversion (if
possible), specialize all versions, generate program, calculate complexity and
choose the best. The algorithm is presented in Figure 5.1.

63

Algorithm Optimization of rules
Input: A set of Datalog rules S and a query Q
Output: A sequential program for the generation of answers to Q, with

time complexity guarantees
1. if any rule in S is linearizable
2. then S = Linearize(S)
3. RS ← {S}
4. for each predicate p in S that fits the recursion conversion schema
5. do S′ = p’s recursion type converted in S
6. RS ← RS ∪ {S′}
7. RSC = {} : to keep rule sets with complexities
8. for each set R of rules in RS
9. do R′ ← R specialized for Q
10. C ← Time complexity of evaluating R′

11. RSC ← RSC ∪ {(R′, C)}
12. Among all pairs in RSC, remove the ones that are provably worse in

complexity than at least one pair.
13. for each pair (R,C) in RSC
14. do generate program from R
15. output C as the time complexity associated with it

Figure 5.1: Algorithm for optimization of rules using specialization and
recursion conversion.

The time complexity of the method is dominated by the specialization
step, which has a super-exponential upper bound in the maximum arity of
the predicates. In practice, the arity of the predicates is relatively small,
2-3 in many realistic Datalog programs and almost never exceeds 10. Thus,
assuming a small constant for the maximum arity of predicates, the trans-
formation takes linear time in the size of the set of rules, since for each
rule, there is a constant number of different atoms that can unify with its
conclusion, and specialization of a rule with respect to an atom takes time
proportional to its size.

There are Datalog programs for which recursion conversion is not possi-
ble; and specialization cannot succeed in obtaining better running time. In
this case, a transformation method such as magic sets may obtain asymp-
totic speedup with tighter complexity bounds, but the worst-case running
times of programs transformed by both our method and magic sets are the
same.

64

5.2.1 Complexity comparison

We show the complexity of evaluating all versions with respect to various
other strategies. We consider 12 versions of the transitive closure: the left,
right and doubly-recursive programs, and for each program, different order
of the two rules, and different order of hypotheses in the recursive rule. We
denote the versions by three fields, the first being the recursion type (right,
left, or doubly), the second being the order of rules (base-first or recursion-
first), the third being the order of hypotheses (regular or inverse). Then
for each version, we ask 4 different kind of queries: both arguments bound,
only the first argument bound, only the second argument bound, and both
arguments free. All results for left- and right-recursive rules are summarized
in Figure 5.2. For the doubly-recursive rule, regardless of the version, Prolog
takes infinite time, tabling and magic set takes O(V 3), and static filtering
takes O(R× P) time.

In this figure, we omit the order of rules, because the complexities and
inferred facts remain the same for static filtering and magic sets, since they
are bottom-up methods. For tabling, since termination is guaranteed, the
complexities and inferred facts also remain the same. However, for Prolog
evaluation, if the program does not terminate, there will be no inferred facts
if the recursive rule is first, otherwise the evaluation will infer some facts,
before it gets stuck in an infinite loop.

Method
Bound Time complexity
arg. Left-rec. Right-rec.

Regular Inverse Regular Inverse
Prolog, Any Infinite
cyclic gr
Prolog, Any Infinite Exponential Exponential Infinite

acyclic gr
Tabling None O(V 3) O(V ×E) O(V 3) O(V × E)

First O(E) O(V ×E) O(V 2) O(V × E)
Second O(V 3) O(V 2) O(V 3) O(E)
Both O(E) O(V 2) O(V 2) O(E)

Static None O(V × E) O(V × E)
filtering First O(R(c) × o) O(R ×E)

Second O(R× E) O(IR(c2)× i)
Both O(R(c) × o) O(IR(c2)× i)

Magic None O(V × E) O(V × E)
set First O(R(c)× o) O(E) O(V × R(c) × o) O(V × E)

Second O(V ×E) O(V × IR(c2)× i) O(E) O(IR(c2)× i)
Both O(R(c)× o) O(E) O(E) O(IR(c2)× i)

Figure 5.2: A comparison of time complexities of computation using existing
methods.

65

Prolog. Prolog evaluation resolves subgoals in a top-down fashion. It
has the general vulnerability that for any version of the transitive closure,
for cyclic graphs, it will not terminate once it enters a cycle, because it
will be doomed to resolve the same subgoals infinitely many times. Even
when the input is restricted to acyclic graphs, it may still not terminate
or it may terminate in exponential time. Prolog does not keep track of
discovered vertices and discovers a vertex through all possible paths, which is
exponential in the worst case. For versions whose first hypothesis is recursive
in the recursive rule, the evaluation will be infinite with respect to all queries
regardless of the graph structure. The doubly-recursive versions are always
infinite; what differs is the generated facts due to the order of rules and
hypotheses.

Tabling. Tabling adds memoization to Prolog evaluation to avoid repeat-
ing subgoals. It is guaranteed to be finite and be bounded by O(V 3) for any
version and query. If during tabled execution, one ever encounters a path

call with both arguments free, the time complexity bound will be either
O(V ×E) or O(V 3). If one encounters calls to path with both or one of the
arguments bound, but bound to different values during the execution, then
the time is O(V × E) or O(V 3). If one only encounters calls to path with
one of the arguments bound to the same value and the other argument free,
then the time is O(E) or O(V 2). The criterion on obtaining the bounds in
Figure 5.2 is the amount of data kept for each tabled predicate.

Static filtering and off-line partial evaluation. These are bottom-up
procedures, and are not affected by the order of rules and hypotheses. Static
filtering and partial evaluation work in essence as the specialization proce-
dure described. Static filtering restricts, i.e. filters, the facts used during
the evaluation using constants in the query. It is vulnerable to changes of
the recursion type in the definition. For example, the method will be able
to impose filters on the first argument for the rules in case the left-recursive
version is used and the first argument is bound in the query, but will not
be able to impose any filters on rules if such a query is asked to the right-
recursive version. The doubly-recursive version is not filterable.

If static filtering yields linear time evaluation, it does so using less than
all edges (except the time to read in all facts); more precisely speaking it
only looks at edges reachable from c, which is bound by R(c)× o. Symmet-
rically, using the right-recursive program with the second argument bound,
the evaluation only considers edges that can reach b, which is bound by

66

IR(c2)× i.

Dynamic filtering. Dynamic filtering is a version of filtering where the
filters are set according to the underlying database during the evaluation.
It is not easy to analyze, because the complexity measure may drastically
change from one data set to another. As a simplistic overview, we can say
that for dense graphs, dynamic filtering behaves exactly the same as static
filtering; in contrast, for sparse graphs the filters imposed may remain fairly
strict and the evaluation may be better than static filtering, although even
for sparse graphs, the filters may reduce to those imposed by static filtering.

5.3 Related work

Various methods for efficiently evaluating Datalog programs such as static
filtering [37] and dynamic filtering [36] have been proposed. These methods
use special data structures for evaluating Datalog programs rather than
using traditional evaluation engines. For static filtering, the computational
complexity of the evaluation can be analyzed easily from the rules. For
dynamic filtering, however, the computational complexity depends on input
data therefore cannot be determined statically.

Using static filtering for the evaluation a Datalog program can be shown
to be the same as using partial evaluation combined with the program gen-
eration method described. Partial evaluation for logic programming [42] is
a general framework for taking static inputs into account for general logic
programs. The specialization method described in this chapter is a form of
partial evaluation for Datalog programs.

Borrowing ideas from the theory of grammars for logic programming is
natural since the evaluation of both involve similar components. We have
incorporated one such idea [11] for our conversion between left-recursive
and right-recursive programs. Grammar related ideas for Datalog programs
can also be found in, e.g., [31]. Forms of recursion conversion have been
discussed in other contexts as well. The conversion from doubly-recursive
rules to rules with only one recursive hypothesis is a specific instance of
linearization [78, 53].

67

Chapter 6

Applications

In this chapter, we show the application of our complexity analyses and
optimizations on several important applications.

We first show two variants of Andersen’s pointer analysis expressed as
Datalog rules, and show complexity analyses on both; and show that sub-
sumptive tabling is asymptotically faster than variant tabling for it. We
also illustrate the subsumption optimization and its effectiveness on this ex-
ample. The application of subsumption optimization results in a systematic
derivation of Heintze and Tardieu’s demand-driven pointer analysis algo-
rithm [33].

Secondly, we show that context-free grammars can be expressed as Dat-
alog rules, show that the complexity of tabled top-down evaluation as ana-
lyzed by our method is more precise than the manually derived and analyzed
algorithm of Earley [26]. Using our analyses, we show the complexity of dif-
ferent subsets of context-free grammars.

Thirdly, we describe the analyses and optimizations for an example from
ontology queries. We show that the complexity analyses help determine that
subsumptive tabling will perform asymptotically better for the example,
and the actual running times are aligned with that observation. We also
use our complexity analyses to reorder hypotheses in the rules so that the
performance is improved for variant tabling.

Finally, we describe the use of a powerful graph query language for query-
ing programs, and show that the combination of transformations we have
described so far are an effective method for efficient implementations of
the queries. Our implementation method combines transformation to Dat-
alog, recursion conversion, demand transformation, and specialization, and

68

finally generates efficient analysis programs with precise complexity guar-
antees. This combination improves an O(V E) time complexity factor using
previous methods to O(E), where V and E are the numbers of graph vertices
and edges, respectively.

6.1 Program pointer analysis

Andersen’s pointer analysis is a flow-insensitive pointer analysis. We first
show the analysis for C, analyze the complexity of evaluation strategies, and
apply our optimization methods for obtaining efficient implementations of
the analysis with complexity guarantees.

Given a C program, the C statements and their corresponding represen-
tation as Datalog facts are as follows.

• p = &q is represented by bare addr(p,q).

• p = q is represented by bare bare(p,q).

• p = *q is represented by bare star(p,q).

• *p = q is represented by star bare(p,q).

Then, Andersen’s pointer analysis can be defined using Datalog rules as
follows, where pt(p,q) denotes p points to q:

pt(p,q) :- bare_addr(p,q). (A1)

pt(p,q) :- bare_bare(p,r), pt(r,q). (A2)

pt(p,q) :- bare_star(p,s), pt(s,r), pt(r,q). (A3)

pt(p,q) :- star_bare(r,s), pt(r,p), pt(s,q). (A4)

Complexity analysis and comparison of evaluation methods. We
first discuss the complexity for variant and subsumptive tabling for a query
where both arguments are free. For the query pt(p,q)?, subsumptive bind-
ing annotation obtains the query pt ff(p,q)?, and the rules

pt_ff(p,q) :- bare_addr_ff(p,q). (1FF)

pt_ff(p,q) :- bare_bare_ff(p,r), pt_bf(r,q). (2FF)

pt_ff(p,q) :- bare_star_ff(p,s), pt_bf(s,r), pt_bf(r,q). (3FF)

pt_ff(p,q) :- star_bare_ff(r,s), pt_bf(r,p), pt_bf(s,q). (4FF)

69

No annotated rules are generated from subqueries whose predicates are
pt bf, since a more general query, whose predicate is pt ff, is guaranteed
to be evaluated.

For variant tabling, the same query, the four rules above and the follow-
ing rules are obtained:

pt_bf(p,q) :- bare_addr_bf(p,q). (1BF)

pt_bf(p,q) :- bare_bare_bf(p,r), pt_bf(r,q). (2BF)

pt_bf(p,q) :- bare_star_bf(p,s), pt_bf(s,r), pt_bf(r,q). (3BF)

pt_bf(p,q) :- star_bare_ff(r,s), pt_bb(r,p), pt_bf(s,q). (4BF)

pt_bb(p,q) :- bare_addr_bb(p,q). (1BB)

pt_bb(p,q) :- bare_bare_bf(p,r), pt_bb(r,q). (2BB)

pt_bb(p,q) :- bare_star_bf(p,s), pt_bf(s,r), pt_bb(r,q). (3BB)

pt_bb(p,q) :- star_bare_ff(r,s), pt_bb(r,p), pt_bb(s,q). (4BB)

Both for variant and subsumptive tabling, the complexity of the rules
(1FF)-(4FF) are as follows:

• (1FF): O(#bare addr)

• (2FF): O(#bare bare × #pt.2/1)

• (3FF): O(#bare star × #pt.2/1 × #pt.2/1)

• (4FF): O(#star bare × #pt.2/1 × #pt.2/1)

For the rules generated only for variant tabling, we first show their local
complexity as follows:

• (1BF): O(#bare addr.2/1)

• (2BF): O(#bare bare.2/1 × #pt.2/1)

• (3BF): O(#bare star.2/1 × #pt.2/1 × #pt.2/1)

• (4BF): O(#star bare × #pt.2/1)

• (1BF): O(1)

• (2BF): O(#bare bare.2/1)

• (3BF): O(#bare star.2/1 × #pt.2/1)

70

• (4BF): O(#star bare)

The number of invocations for these rules is more involved to analyze. Us-
ing our systematic analysis, we first identify the number of invocations to
path bf. There are many calls to path bf, we show the lower bound for
a few of these. For example, due to the second hypothesis of (2FF), there
are O(#bare bare.2) invocations; due to the third hypothesis of (3FF),
there are O(#pt.2) invocations. The sum of all such invocations form a
lower bound for the number of invocations to path bf. Now, we identify a
lower bound on the number of invocations to path bb. For example, due
to the third hypothesis of (3BB), the number of invocations to path bb

is O(#pt.2×#pt.2). The complexity of each rule in the above list is the
product of the local complexity as shown and the number of invocations as
identified.

We show that subsumptive tabling has better time and space complexity
than variant tabling for this query. The time complexity of (3FF) and (4FF)

dominate the time complexity for subsumptive tabling. Therefore, we need
to show there exists a rule in the extra rules for variant tabling that incurs
more time complexity than one of these rules. The complexity incurred by
(4FF) is O(#star bare×(#pt.2/1)2). For (4BB), the local complexity is
O(#star bare), and the number of invocations is at least O((#pt.2)2) as
shown; this is asymptotically worse than O((#pt.2/1)2). Therefore, the
time complexity of top-down evaluation with variant tabling is worse than
top-down evaluation with subsumptive tabling for this example.

The space complexity of top-down evaluation with subsumptive tabling
is O(#pt), since there is only one table for the given query, and all answers
are stored in that table. However, variant tabling uses the mentioned space,
plus creates furthermore tables, such as O((#pt.2)2) tables due to the last
hypothesis of (3BB) as shown in the analysis for the number of invocations,
which is asymptotically worse than the space used by subsumptive tabling.
Therefore, the space complexity of top-down evaluation with variant tabling
is worse than top-down evaluation with subsumptive tabling for this exam-
ple.

Deriving Sridharan and Fink’s complexity analyses systematically.
Using our analyses and optimizations, we have already shown how to obtain
Heintze and Tardieu’s demand driven pointer analysis. We now show the
application of precise complexity analyses. The complexity of Andersen’s
analysis has been obtained manually in previous work with regard to differ-
ent constraints. Sridharan and Fink [64] give such analysis for Andersen’s

71

analysis for Java. We show that the bounds manually obtained are looser
than our bounds by systematically deriving their bounds from our analysis.

We represent relevant Java statements in Datalog as follows:

• x = new T() is represented by create(x,o), where o is a unique iden-
tifier for the object created with this statement.

• x = y is represented by assign(x,y).

• x = y.f is represented by deref(x,y,f).

• x.f = y is represented by ref(x,f,y).

Given this representation, Andersen’s analysis for Java as defined by [64]
can be written in Datalog as follows:

pt(x,o) :- create(x,o). (R1)

pt(x,t) :- assign(x,y), pt(y,t). (R2)

pt(x,t) :- deref(x,y,f), pt(y,o), pt_f(o,f,t). (R3)

pt_f(o,f,t) :- ref(x,f,y), pt(x,o), pt(y,t). (R4)

Any fact pt(x,o) that can be inferred by the above rules means that
the variable x may point to object o, and pt f(x,f,y) means that the field
reference x.f may point to object o.

The alias analysis algorithm in [64] uses the following graph and defini-
tions, and performs a dynamic transitive closure on the graph.

A graph G is defined whose nodes are variables and field references in
the program, and whose edges are as follows:

• an edge from x to o, for each statement create(x,o).

• an edge from x to y, for each statement assign(x,y).

• an edge from x to o.f for each o that y points to, for each statement
deref(x,y,f).

• an edge from o.f to y for each o that x points to, for each statement
ref(x,f,y).

The meaning of an edge x → y in G is: if y is an object, then x may point
to y, otherwise the objects that x may point to is a subset of the objects
that y may point to.

72

The complexity of the algorithm in [64] is O(N2×maxxD(x) +N ×E),
where E is the number of edges, N is the number of variables and new

statements, andD(x) is the number of statements that dereference a variable
x. We first express their algorithm in Datalog rules, and show that it is
equivalent to our rules above. The edges are defined by rules (S1)-(S4),
and the pt relation is defined by the transitive closure of the edges (rules
(S5)-(S6)).

edge_d(x,o,f) :- deref(x,y,f), pt(y,o). (S1)

edge_r(o,f,y) :- ref(x,f,y), pt(x,o). (S2)

pt(x,y) :- create(x,y). (S3)

pt(x,y) :- assign(x,z), pt(z,y). (S4)

pt(x,y) :- edge_d(x,z,f), pt_f(z,f,y). (S5)

pt_f(x,f,y) :- edge_r(x,f,z), pt(z,y). (S6)

It is trivial to see that unfolding edge d and edge r, we obtain an equiv-
alent set of rules as (R1)-(R4), therefore these sets of rules compute the
same pt relation.

We show that even imprecise systematic complexity analysis can achieve
the complexity in [64]. The complexity of (S3) is discarded since it has only
one hypothesis, and is bound by the input or output size. The complexity
of (S1) is O(N2 ×maxyD(y)), since y and o can take N values, and there
are only D(y) deref statements per y. The complexity of (S2) is O(N2 ×
maxxD(x)), since x and o can take N values, and there are only D(x) ref
statements per x. The complexity of (S5) and (S6) is O(E×N), since there
are E edges and y can take N values. Therefore, an upper bound on the
time complexity of the rules is O(N2 ×maxxD(x) + N × E), which is the
complexity of the algorithm given in [64]. Using this complexity, a subset
of programs called k-sparse are defined with the following properties:

• maxxD(x) < k, for a constant k

• E < kN , for a constant k

Using the complexity formula above, and substituting the constraints,
the complexity of the algorithm in [64] is O(N2) for k-sparse programs.
On the other hand, we have a more precise complexity analysis for such
programs. The time complexity of each rule using subsumptive tabling for
the query where both arguments are free is as follows.

• (S1): O(#deref×#pt.2/1)

73

• (S2): O(#ref×#pt.2/1)

• (S3): O(#create)

• (S4): O(#assign×#pt.2/1)

• (S5): O(#edge d×#pt.2/1)

• (S6): O(#edge r×#pt.2/1)

The total complexity is the sum of the precise complexities for each rule,
which is more precise than the complexity bound in [64].

6.2 Context-free grammar parsing

A context-free grammar is a grammar whose rules are of the form:

V → w

where V is a single nonterminal symbol, and w is a sequence of terminal
and non-terminal symbols.

Earley[26] proposed a top-down parsing algorithm for context-free gram-
mars. The worst-case running time of the algorithm is O(n3), where n is
the length of the input string. Earley showed that the algorithm runs in
O(n2) for unambiguous grammars, and in O(n) for LR(k) grammars for
any constant k. We show a method for generating Datalog rules from a
context-free grammar so that top-down evaluation with tabling achieves at
least the same time complexity in general, and for the applicable classes of
context-free grammars. We show that the complexity of the generated rules
is more precise.

Given any grammar rule, V → a1a2...an, where each ai is either a ter-
minal or a nonterminal, we generate n− 2 Datalog rules of the form:

V(k0,kn) :- a1(k0,k1), a2(k1,k2), ..., an(kn−1,kn).

If n ≥ 3, we decompose each such Datalog rule to generate multiple rules,
so that they contain two hypotheses each, by joining two leftmost hypotheses
first in an intermediate rule, and the conclusion of this intermediate rule with
third hypothesis in another intermediate rule, and so on. For example, for
the above rule we obtain:

int1(k0,k2) :- a1(k0,k1), a2(k1,k2).

int2(k0,k3) :- int1(k0,k2), a3(k2,k3).

...

74

V(k0,kn) :- intn−1(k0,kn−1), an(kn−1,kn).

The input string s of the form s1...sn is converted to a set of facts of the
form, si(i,i+ 1) for each 1 ≤ i ≤ n, and we generate a query R(1,n+ 1)?
where R is the root nonterminal of the grammar.

Complexity analysis. The complexity of either tabled top-down or per-
fect bottom-up evaluation of the generated rules is trivially O(n3), since
each rule contains at most 3 variables in the body, and each variable can
take values in the domain [1, n+1]. Now, we consider the precise complexity.
We consider each rule is of one of the following forms:

p(i,j) :- q(i,j). (R1)

p(i,j) :- q(i,k), r(k,j). (R2)

We perform binding annotation to the rules with respect to the query.
The only possible annotations are bf or bb, because (i) the first argument
of the query is bound, (ii) the first argument of the first hypothesis in each
rule is bound if the first argument of the conclusion is bound, (iii) the first
argument of the second hypothesis in each rule is bound since it appears
in the first hypothesis. Notice that if the second argument is bound, then
it is always bound to n + 1, because the second argument of the query is
bound to n+1, and the only way that the second argument of a hypothesis
is bound is propagation from the second argument of the conclusion. We
specialize the hypotheses annotated with bb so that we remove the second
argument. We get rules of either of the four forms:

p_bf(i,j) :- q_bf(i,j). (R1’)

p_b(i) :- q_b(i). (R1’’)

p_bf(i,j) :- q_bf(i,k), r_bf(k,j). (R2’)

p_b(i) :- q_bf(i,k), r_b(k). (R2’’)

From rules of this form, we can generate the precise complexities as we
have shown before.

Unambiguous context-free grammars. An unambiguous context-free
grammar is one for which there is no string s that has more than one parse
tree. In [26], it is shown that the algorithm runs in O(n2) for unambiguous
context-free grammars. We show the same holds for the generated rules.

The only rule form that can take more than O(n2) among the forms
above is (R2’), since it has 3 variables. Note that every time a rule of

75

the form (R2’) generates a fact of the form p bf(i,j), the generation is
due to a substitution of the variables i,j,k, where i is substituted by the
conclusion, and j,k by the hypotheses.

Lemma 6.2.1. If the grammar is unambiguous, for each rule of the form
(R2’), for each i,j pair, there can be at most one k.

Proof. Suppose there is a rule r for which there is more than one k for an i,j
pair for some input string s. This would imply that the nonterminal that
corresponds to the conclusion of r has multiple parse trees. This would in
turn imply that there exists a string s that has multiple parse trees, which
can be trivially constructed using s. Hence, we arrive at a contradiction,
and the lemma must be true.

Due to the lemma above, there can be at most n2 values for i,j,k, hence
the complexity of the rules for unambiguous grammars is O(n2).

LR(k) grammars. An LR(k) grammar [38] is a grammar that intuitively
corresponds to a grammar for which while looking at the nth character of
the string, the grammar rule to use next can be determined by looking at
until the n + kth character. Earley’s algorithm parses LR(k) grammars in
linear-time.

We do not have a mechanism for lookahead, so we only consider LR(0)
grammars. Intuitively, an LR(0) grammar is a grammar for which the gram-
mar rule to be applied while looking at the nth character can be determined
by looking at it only. More technically speaking, LR(0) grammars have no
shift-reduce or reduce-reduce conflict. Since there are no shift-reduce or
reduce-reduce conflicts, there is one and only one fact for each subquery
with a bf annotation in the rules of the form above. Therefore, rules of any
form can take at most linear time. Hence, the complexity of the generated
rules for LR(0) grammars is O(n).

6.3 Ontology queries

Ontology queries are an important class of queries that are becoming in-
creasingly important as more progress is made in the semantic web efforts.
The OWL Web Ontology Language guide by the World Wide Web consor-
tium1 contains an example ontology for a wine portal2. This ontology is

1http://www.w3.org/TR/owl-guide/
2http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

76

converted to Datalog rules and facts by the KAON2 tool from the Semantic
Web organization3. Our experiments on the rules were conducted on a 3.0
GHz Intel Q9650 with 4 GB of memory, running SuSE Linux, and using
XSB 3.2 and YAP 6.2.

The set of rules and facts resulting from the wine portal ontology contains
961 rules defining 225 predicates, 654 facts for 113 predicates. Although the
number of facts is small, we will observe that bad asymptotic time and space
complexity characteristics may make evaluation infeasible even for such a
small set of data, depending on the rules and query.

First, we discuss our complexity analysis to determine if subsumptive
tabling will outperform variant tabling. Since the number of rules is high,
we do not show all of the results of our complexity analyses, but we provide
an insight to the analyses via a few of the rules. One of the resulting rules
is the following:

kaon2equal(x,z) :- kaon2hu(x),kaon2hu(y),kaon2hu(z),

kaon2equal(x,y),kaon2equal(y,z).

For a query that finds all wines from California (californiawine(x)?),
our analysis determines that there exists a query for kaon2equal with both
arguments free. Then, we get the following annotated rules for variant
tabling:

kaon2equal_ff(x,z) :- kaon2hu_f(x),kaon2hu_f(y),kaon2hu_f(z),

kaon2equal_bb(x,y),kaon2equal_bb(y,z).

kaon2equal_bb(x,z) :- kaon2hu_b(x),kaon2hu_f(y),kaon2hu_b(z),

kaon2equal_bb(x,y),kaon2equal_bb(y,z).

and only the first of the above rules for subsumptive tabling. Although
the time complexity of these two rules are the same in the worst case; the
space used by variant and subsumptive tabling is different. For subsump-
tive tabling, since all the bb calls to kaon2equal are subsumed, no table is
created for them, and the space complexity is O(#kaon2equal). However,
in variant tabling, all such calls will be evaluated, and therefore there will
be table entries for each such call. Notice that the values for the bound
arguments come from kaon2hu hypotheses without restriction, therefore the
total space complexity is O(#kaon2equal+#kaon2hu2).

In a real implementation such as XSB or YAP, the time to create ta-
bles, i.e. allocate space, is constant but significant in contrast to many

3http://kaon2.semanticweb.org/

77

operations. We have already discussed in previous chapters that rules with
the same complexity can be separated in running time by their space com-
plexity. There are many predicates in the rules that are defined similar
to kaon2equal, therefore the space complexity is significant in determining
actual performance.

We performed the first set of experiments on the given set of rules in
XSB and YAP, with a query that finds all wines from California as above.
The experiment results were aligned with our complexity analyses. XSB and
YAP both ran out of memory after several minutes of computation when
variant tabling is used. On the other hand, XSB with subsumptive tabling
returned all answers to the query in 12 seconds with local scheduling and
20 seconds with batched scheduling.

To improve performance of variant tabling, reordering hypotheses is the
first optimization in mind. However, precise complexity comparison over
all of the rules for different versions is not feasible due to the number of
rules and predicates. Therefore, we apply the following three heuristics for
reordering hypotheses in rules to improve the performance of variant tabling.

1. Minimize the number of free variables in a rule, preserve original order
if multiple such alternatives exist.

2. Among the alternatives for minimal number of free variables, choose
one that avoids calls to unary predicates with a variable argument if
possible.

3. Among the alternatives for minimal number of free variables, choose
one that avoids calls to binary predicates with both variable arguments
if possible.

We performed experiments in XSB with local and batched scheduling,
and in YAP for the resulting rules from the application of these heuristics,
and all resulting rules terminate in contrast to the original set of rules. The
results are in Figure 6.1.

Engine
Heuristics

1 2 3
XSB-local 268 s 329 s 273 s

XSB-batched 19 s 23 s 16 s
YAP 12 s 14 s 11 s

Figure 6.1: Running time of rules resulting from heuristics in XSB and YAP

78

Note that there is a dramatic difference between the different schedul-
ing strategies in XSB, and this is an interesting topic for investigation but
beyond the scope of this thesis.

After the heuristics are applied, using subsumptive tabling does not help,
because there are no subqueries that are subsumed. We have observed that
in such cases, subsumptive tabling is on average 8% slower than variant
tabling.

To sum up, we showed that our analyses can be effectively used to de-
termine when subsumptive tabling outperforms variant tabling. We also
showed that even when complexity comparison is not feasible for different
versions of the rules with the same semantics, heuristics educated by the un-
derstanding of analyses can be used for obtaining versions that have better
running time and memory usage.

6.4 Graph queries

Graph queries can be used to express many problems from different areas, in-
cluding program analysis in particular. Such queries can help find bugs [35],
detect malicious virus patterns [19], report security violations [62], check
temporal safety properties [6], etc. Efficient hand-written implementations
for program analyses are difficult to develop, verify, and maintain, and query
languages for specifying such analysis problems are desirable for ensuring
the correctness of analyses while reducing the effort of implementations.
However, higher-level query languages often lack efficient implementations
or complexity guarantees. An automated approach to generating efficient
implementations with complexity guarantees is needed for practical uses of
such languages.

This section describes the use of a powerful graph query language for
querying programs, and a novel combination of transformations for auto-
matically generating efficient implementations of the queries. We show that
a wide range of program analysis problems can be expressed using queries in
the language. The language supports graph path expressions that allow con-
venient use of both vertices and edges of arbitrary kinds as well as additional
global and local parameters in graph paths. Our implementation method
for the language combines transformation to Datalog, recursion conversion,
hypothesis permutation, demand transformation, and specialization, and
finally generates efficient analysis programs with precise complexity guaran-
tees.

79

This combination of transformations improves an O(V E) time complex-
ity factor using previous methods to O(E), where V and E are the numbers
of graph vertices and edges, respectively. We show precise time complexity
analysis for an example program analysis problem using this method. We
also describe implementations of the example analysis problem and experi-
ments for analyzing a set of programs of varying sizes, and confirm the calcu-
lated complexities. Additionally, we compare our results against XSB [61], a
state-of-the-art top-down evaluation engine that employs tabling strategies,
and bddbddb [41], a bottom-up Datalog evaluation engine that employs bi-
nary decision diagrams for storing and manipulating relations. For both
systems, tight complexity guarantees are not available, and we demonstrate
that they show different behavior with respect to different forms of rules
without a method of predetermining the best form.

Even though the graph query language and most of the transformations
to Datalog were proposed before [50], and similar languages have been used
for program transformations [70], this work presents the first substantial
use of the language to give precise complexity analyses for program analyses
that are more complex than analyses possible without the power of the lan-
guage [49]. We also show that our novel combination of transformations is
necessary for generating efficient implementations that are both asymptot-
ically better, and with better constants than possible before [50]. Finally,
we conduct the first substantial experimental evaluation of different combi-
nations of transformations that our method uses, and compare them with
implementations of rules in XSB and bddbddb.

6.4.1 Graph query language

We use a graph query language that can specify the existence of paths with
various properties proposed in [50]. For our examples, we use the language to
query the control-flow graphs of programs. We consider control-flow graphs
whose vertices correspond to program points, and labeled edges correspond
to operations. We use edge labels that reflect only information relevant
to the analysis of interest. Consider an assignment statement a = 5 in a
program. If we are interested in analyzing reaching definitions, then this
statement may be represented by the label def(a), indicating a definition
of (i.e., assignment to) a. One may use several abstractions to represent one
statement, therefore multiple edges between two vertices are possible. For
the statement x = y + 1, edges can correspond to the definition of x, and
the usage of y. We denote the entry point of a program as start.

Many analyses can be performed on a control-flow graph. For example,

80

the use of an uninitialized variable in a program can be determined by finding
a path starting from the entry point in the program such that a variable is
never initialized but eventually used on the path.

The graph query language supports graph path expressions that allow
convenient use of both vertices and edges of arbitrary kind as well as ad-
ditional global and local parameters in graph paths. Figure 6.2 gives a
grammar of the language.

query → var,...,var: pexp
pexp → path

| pexp ∧ pexp | pexp ∨ pexp | ¬pexp
path → ov epath ov ... epath ov

ov → [v] | ǫ
epath → label

| epath ∧ epath | epath ∨ epath | ¬epath
| epath* | epath epath | epath ∧ constraint
| local var,...,var: path

label → p(a1,...,ak) |
v, p, a → const | var |

constraint : boolean expression
var : identifiers (denoted by letters t to z)

const : literals

Figure 6.2: Grammar for the graph query language.

A graph query consists of a list of variables to be returned and a path
expression. A path expression is a path or a conjunction, disjunction, or
negation of path expressions. A path is a sequence of edge paths separated
by optional vertices. An edge path is an edge label; a conjunction, disjunc-
tion, or negation of edge paths; a repetition (denoted *) of an edge path, a
concatenation of edge paths, an edge path with a constraint, or a path with
local variables. Repetition of an edge path means a concatenation of any
number of the edge paths. Negation of an edge path means the nonexistence
of the edge path. A path with local variables means that local variables in
the path may take different values each time the path is repeated. An edge
label is a predicate with arguments or a wildcard label (denoted). A wild-
card label holds for any edge. A vertex, predicate, or argument is a variable,
constant, or a wildcard variable. A wildcard variable (denoted) is treated
like a local variable.

The meaning of a graph query is all the values of return variables such
that the path expression holds.

Since we transform our queries to Datalog, we need to represent the

81

graph data as Datalog facts. For each edge label p(a1,...,ak) between
vertices x and y, the corresponding Datalog fact is p(x,y,a1,...,ak).

6.4.2 Example graph queries for program analysis

We show a variety of program analysis problems specified as graph queries,
and illustrate the power of the language with queries that use different lan-
guage features. The queries are shown in Figure 6.3 and explained below.

(i) Uninitialized variables. We use this example as our running ex-
ample. An edge corresponding to the definition of a variable x is labeled
def(x), and an edge corresponding to the use of a variable x is labeled
use(x). The query shown in Figure 6.3 returns the set of pairs of program
point w and variable x such that x is not defined or used before w, and used
for the first time at w.

(ii) Hash values in a map. In Java, it is illegal to change the hash value
of an object while it is in a HashMap [10]. We use add/rem map(x,y) to
denote adding/removing y to/from map x, and change hash(x) to denote
changing the hash value of x. The query shown in Figure 6.3 returns the set
of program points w at which an object’s hash is changed after it has been
added to a HashMap and not removed subsequently.

(iii) Expensive loops. Concatenation to a string is an expensive compu-
tation if done repeatedly. We use concat(x,y) to represent the operation
that concatenates y to x. The query shown in Figure 6.3 returns the set of
pairs of program point w and variable x, such that a string is concatenated
to x after program point w, and there is a loop containing the program point
w.

Examples (i) to (iii) show that variables on vertices make the analyses
powerful by adding both the flexibility of returning arbitrary information
from the graph, and relating vertices in the query.

(iv) Live branches. The semantics of MATLAB implies that an if-branch
with a set s as the condition is taken if s is nonempty and all elements of
s are positive numbers. Dead-code elimination for if-branches is possible
if the branch can never be taken. The query shown in Figure 6.3 returns
the set of program points w such that the if-branch at w is not removable

82

(i) Uninitialized vars (ii) Hash values in a map

w, x : [start]
(¬(def(x) ∨

use(x)))∗

[w]
use(x)

w : [start]
∗

add map(x, y)
(¬rem map(x, y))∗

[w]
change hash(y)

(iii) Expensive loops (iv) Live branches

w, x : [start]
∗

[w]
concat(x,)
∗

[w]

w : [start]
(¬add(x,))∗

(add(x, y) ∧ y > 0)
(local z : ((add(x, z)∧ z > 0)∨¬add(x,)))∗

[w]
if(x)

Figure 6.3: Example queries for program analysis.

by dead-code elimination. This is done by finding a path in the program
such that all elements added to a set x are guaranteed to be positive. We
use add(x,y) to denote the addition of y to set x, and if(x) to denote an
if-branch with condition x.

This example shows that the use of local variables in queries helps im-
posing properties on each edge in a path while ensuring global properties at
the same time.

Many more examples can be shown, but we do not show them here since
they are not conceptually different. Such examples include the specifica-
tion of malicious virus patterns [19], security violations in programs and
operating systems [62, 5, 17], and temporal safety properties [6].

6.4.3 Generating efficient implementations

To generate an efficient implementation for a graph query, our method does
(i) transformation to Datalog, (ii) recursion conversion and hypotheses per-
mutation, (iii) demand transformation, (iv) specialization, and (v) program
generation. The generation takes as input the graph query and the graph
data, and produces efficient implementations and corresponding complexity

83

guarantees. We demonstrate the steps on our running example, the unini-
tialized variables query.

Step 1: Transformation to Datalog. This step transforms a graph
query into a set of rules and a query in Datalog extended with negation and
constraints. The resulting rules naturally capture the query structure, and
are subsequently drastically optimized and efficiently implemented.

(1) Preprocessing. The query is preprocessed as follows. (i) If there is
any edge label, whose predicate is and which has no arguments, then that
label is replaced by the label edge(). The facts are updated as follows: for
each pair of vertices x and y such that there is a fact p(x,y,a1,...,ak), a
fact edge(x,y) is introduced. (ii) For all remaining occurrences of , each
occurrence is replaced with a new local variable, distinct for each occurrence.
(iii) After these are applied, if there is any edge label v(a1,...,ak), where v
is a variable, then this label is replaced with label(v,a1,...,ak). The facts
are updated as follows: for each fact p(x,y,a1,...,ak). given, a new fact
label(p,x,y,a1,...,ak) is added.

(2) Construction of rules. The query is recursively processed to obtain
Datalog rules and a query. For this task, a function f is defined that maps
the query to a Datalog query, and that maps subexpressions of the query
to atoms. Also, rules are added to an initially empty set R during the
application of f . Given a query q preprocessed as above, f(q) returns a
Datalog query, and upon return, R contains the set of rules. We use two
new variables vs and vt that do not appear in the query for insertion as
source and target vertices, respectively.

• For an edge label e of form p(a1, ..., ak), f(e) =
p(vs,vt,a1,...,ak). For example, assuming we use y and z for vs and
vt, f(def(x)) = def(y,z,x).

• For a constraint c, a fresh predicate name pc is used. f(c) = pc(v1,...,vn),
where v1,...,vn are the variables in c.

• For an edge path e,

– if e is of form e1 ∧ ... ∧ en, and each f(ei) =
pi(vi1,...,viki), then f(e) =p(v1,...,vk), where p is a fresh pred-
icate name, and v1,...,vk is the subsequence of v11,...,vnkn that are
variables and appear anywhere else in the query except e. In this
case, the following rule is added to R:

84

p(v1,...,vk) :- p1(v11,...,v1k1), ...,
pn(vn1,...,vnkn).

– if e is of form e1∨...∨en, then f(e) is exactly as for the conjunction
case above. However, in this case, n rules of the following form
are added to R:

p(v1,...,vk) :- pi(vi1,...,viki).

For example, f(def(x) ∨ use(x)) = defuse(y,z,x), and the
following rules are added to R:

defuse(y,z,x) :- def(y,z,x). (R1)

defuse(y,z,x) :- use(y,z,x). (R2)

– if e is of form ¬e1, and f(e1) = p1(v11,...,v1k1), then f(e) =
p(v1,...,vk), where p is a fresh predicate name, and v1,...,vk
is the subsequence of v11,...,v1k1 that are variables and appear
anywhere else in the query except e. In this case, the following
rule is added to R:

p(v1,...,vk) :- not p1(v11,...,v1k1).

For example, f(¬(def(x) ∨ use(x))) = ndu(y,z,x), and the
following rule is added to R:

ndu(y,z,x) :- not defuse(y,z,x). (R3)

– if e is of form e1∗, and f(e1) = p1(v11,...,v1k1), then f(e) =
p(vs,vt,v1,...,vk), where p is a fresh predicate name, and v1,...,vk
is the subsequence of v13,...,v1k1 that are variables and appear
anywhere else in the query except e. In this case, the following
two rules are added to R, where vf is a fresh variable:

p(vs,vs,v1,...,vk).
p(vs,vt,v1,...,vk) :- p(vs,vf,v1,...,vk),

p1(vf,vt,v13,...,vnk1).

For example, f((¬(def(x) ∨ use(x)))∗) =
ndus(y,z,x), and the following fact and rule are added to R:

85

ndus(y,y,x). (R4)

ndus(y,z,x) :- ndus(y,t,x), ndu(t,z,x). (R5)

– if e is of form e1e2...en, and f(ei) =
pi(vi1,...,viki), then f(e) = p(vs,vt,v1,...,vk), where p is a
fresh predicate name, and v1,...,vk is the subsequence of v11,...,vnkn
that are variables and appear anywhere else in the query except
e. The following rule is added to R, where each vfi is a fresh
variable.

p(vs,vt,v1,...,vk) :- p1(vs,vf2,v13,...,v1k1),
p2(vf2,vf3,v23,...,v2k2),
...,
pn(vfn,vt,vn3,...,vnkn).

– if e is of form local var1, ..., varn : e1, and f(e1) =
p1(v11,...,v1k1), then f(e) = p(v1,...,vk), where p is a fresh
predicate name, and v1,...,vk is the subsequence of v11,...,v1k1
that are variables and not in var1, ..., varn. The following rule is
added to R:

p(v1,...,vk) :- p1(v11,...,v1k1).

• For a path e of form ov1 e1 ... ovn en ovn+1, a placeholder vertex
with a fresh variable name is inserted for each optional vertex ovi
that is not specified. For example, in our running example, a place-
holder vertex [u] is inserted at the end of the query. After this, if each
f(ei) =pi(vi1,...,viki), then f(e) = p(v1,...,vk), where p is a fresh
predicate name, and v1,...,vk is the subsequence of v11,...,vnkn that
are variables and appear anywhere else in the query except e. The
following rule is added to R:

p(v1,...,vk) :- p1(ov1,ov2,v13,...,v1k1), ...,
pn(ovn,ovn+1,vn3,...,vnkn).

For example, if we denote the path expression in the running query
pe, then f(pe) = result(w,x), and the following rule is added to R:

result(w,x) :- ndus(start,w,x), use(w,u,x). (R6)

86

• For a path expression e, if e is a negation, conjunction or disjunction of
path expressions, then we proceed precisely as we did for the negation,
conjunction and disjunction cases for edge paths.

• For a query q in the form var1, ..., varn : p, we define f(q) = f(p)?.
For the running example, if we denote the query q, then f(q) =
result(w,x)?.

(3) Postprocessing. Postprocessing removes unsafe rules. First, for each
atom generated for constraints, we replace the atom with the constraint it
was generated for. Then, if any rule in the result is unsafe, we perform the
following: (i) For each pair of vertices x and y such that there is a fact
p(x,y,a1,...,an), we introduce a fact edge(x,y). Also, for each constant c
that appears in the facts as arguments, we introduce a fact any(c). (ii) For
each rule whose conclusion has arguments that are not bound by positive
hypotheses, for each unbound argument a, if a is among the first two argu-
ments of the conclusion (say a1 and a2), we add a hypothesis edge(a1,a2),
otherwise we add a hypothesis any(a). Finally, we remove any duplicate hy-
potheses added. For the running example, rules (R3) and (R4) are modified
to obtain the final set of rules below.

defuse(y,z,x) :- def(y,z,x). (R1)

defuse(y,z,x) :- use(y,z,x). (R2)

ndu(y,z,x) :- edge(y,z), any(x), (R3)

not defuse(y,z,x).

ndus(y,y,x) :- edge(y,z), any(x). (R4)

ndus(y,z,x) :- ndus(y,t,x), ndu(t,z,x). (R5)

result(w,x) :- ndus(start,w,x), use(w,u,x). (R6)

The time complexity of computation using each rule is given in the left col-
umn of Figure 6.4. The bottleneck is the complexity for (R5), O(V×#ndu);
since #ndu is bounded by O(E×#any) based on (R3), this complexity is
O(V × E×#any).

Step 2: Recursion conversion and hypothesis permutation. This
step generates different forms of the rules from Step 1 with the same se-
mantics. It is essential because different forms of rules may have drastically
different running time and space usage after demand transformation and
specialization in the subsequent steps.

This step first performs recursion conversion to obtain both left- and
right-recursive forms of recursive rules. This uses the transformations in

87

Chapter 5. For example, for (R5), an alternative rule with the same seman-
tics is:

ndus(y,z,x) :- ndu(y,t,x), ndus(t,z,x). (R5’)

This step then permutes hypotheses that are not constraints or negations
in each rule; constraints and negations are placed immediately after all of
their arguments are bound. For example, for (R6), an alternative rule with
a different order of hypotheses is:

result(w,x) :- use(w,u,x), ndus(start,w,x). (R6’)

Finally, a new set of rules is generated for each combination of different
recursive forms of rules and different permutation of hypotheses in rules.
We avoid unnecessary combinations using three heuristics described below.

1. For a recursively defined predicate p, if there is a hypothesis whose
predicate is p and its first argument is a constant, then we only gen-
erate the left-recursive form for the recursive rule that defines p, and
respectively if the second argument is a constant, then we only gen-
erate the right-recursive form. These forms are asymptotically better
to use, since after demand transformation, the chosen recursive form
will be asymptotically faster than the alternative form.

2. Among two permutations in each rule, if the predicate of one of the
hypotheses h1 is a predicate for which facts are given, and the predicate
of the other hypothesis h2 is a predicate defined by rules, then we
always order the hypotheses so that h1 is first and h2 is second. This
reduces the time complexity, since after demand transformation, the
demand for h2 will be stricter.

3. If the positive hypotheses of the original rule do not share any vari-
ables, then we use the given order. This is due to the fact that the
join of these hypotheses costs the same in either direction when no
variables are shared, so we can ignore the alternative order.

For the running example, there are two choices of recursion forms, and
16 hypothesis orders for each form. Thus, 32 different versions exist. Using
heuristic 1 above, we obtain only the left-recursive form (R5), not (R5’)

since the predicate of the first hypothesis of (R6) is ndus and its first argu-
ment is a constant (start). Using heuristic 2, we obtain only the reversed

88

Original rules After demand transformation

(R1) O(#def) (R1) O(#def)
(R2) O(#use) (R2) O(#use)
(R3) O(E×#any) (R3d) O(E×#dem2.2/1)
(R4) O(E×#any) (R4d) O(#dem)
(R5) O(V×#ndu) (R5d1) O(#ndu)

(R5d2) O(#ndu)
(R6) O(#use) (R6d) O(#use)

Figure 6.4: Time complexities for the original rules and the rules after de-
mand transformation.

hypothesis order for (R6), i.e., (R6’), since use is a predicate for which
facts are given, and ndus is a predicate defined by rules. Using heuristic 3,
we use the given orders for (R3) and (R4) since their positive hypotheses
do not share any variables. Therefore, we are left with only one ordering for
each rule.

Step 3: Demand transformation. This step performs, for each rule
set obtained from Step 2, demand transformation as shown in the previous
chapter.

After demand transformation, we calculate the complexity of each trans-
formed rule set, and choose the one with the best complexity via comparison
of the obtained formulas. Comparing the time complexity of two sets of rules
is not possible in general, but for all the graph query examples we have en-
countered, it is possible to choose one set of rules with the best complexity.
In case multiple rule sets have non-comparable complexities, the method
proceeds on all rule sets, and the output contains multiple programs with
different complexities.

For the running example, the resulting set of rules with the best com-
plexity is for the original set of rules but with (R6) replaced by (R6’). It
contains (R1), (R2), and the following rules; recall that rules are split into
rules with at most two positive hypotheses each:

89

ndu(y,z,x) :- dem2(z,x), edge(y,z), (R3d)

not defuse(y,z,x).

ndus(y,y,x) :- dem(y,y,x). (R4d)

split(y,z,t,x) :- dem(y,z,x), ndu(t,z,x). (R5d1)

ndus(y,z,x) :- split(y,z,t,x), (R5d2)

ndus(y,t,x).

result(w,x) :- use(w,u,x), (R6d)

ndus(start,w,x).

dem(start,w,x) :- use(w,u,x). (D1)

dem(y,t,x) :- split(y,z,t,x). (D2)

dem2(z,x) :- dem(y,z,x). (D3)

The time complexity of the resulting rules is given in the right column of
Figure 6.4. It is reduced asymptotically, including dropping an O(V) factor
from (R5), and the reduction of all O(#any) factors to tighter factors. The
bottleneck complexity is reduced to O(E×#dem2.2/1) fromO(V ×E×#any).

Step 4: Specialization. This step applies specialization and determin-
istic unfolding to the result from Step 3, to remove unnecessary predicates,
arguments, and rules. Specialization uses a simplified version of partial
evaluation, as described in Chapter 5.

For specialization, we define a function f that takes an atom p(a1,...,ak)
as an argument, and returns pf(v1,...,vl), where pf is a fresh name, and
v1,...,vl is the subsequence of a1,...,ak that are variables. For a set of rules
R, and a query q?, we add q to a queue Q. For each atom a in Q, for each
rule in R of the form c :- h1,..., hn such that there exist two substitutions
θ and θ′ such that θ(c) = θ′(a), we perform two steps. First, for each hi, we
add θ(hi) to Q. Second, we add the following rule to the output:

θ(c) :- f(θ(h1)), ..., f(θ(hn)). (Rs)

We also unfold hypotheses. For each rule r of the form c :- h1, ...,
hn, for each hypothesis hi, if there is only one rule of the form c’ :- h’

for which there is a substitution θ such that θ(hi) = c’, we replace hi in
r with θ(h’). Unfolding a hypothesis whose predicate is defined by more
than one rule may decrease space, but increase time by a constant factor
since the size of the rules become larger. We compare the performance of
two unfolding strategies in the experiments section. A decision needs to
be made for when to stop unfolding. We choose to stop unfolding at each
recursive predicate, and we only unfold hypotheses that are defined by one

90

rule, because it guarantees improvements in both time and space. This
unfolding scheme is called deterministic unfolding [42].

This step does not reduce the asymptotic complexity, but reduces both
running time and space by constant factors. For the running example, the
resulting rules are (R1), (R2), and the following:

ndu(y,z,x) :- dem_s(z,x), edge(y,z), (R3ds)

not defuse(y,z,x).

ndus_s(start,x) :- dem_s(start,x). (R4ds)

split_s(z,t,x) :- dem_s(z,x), ndu(t,z,x). (R5d1s)

ndus_s(z,x) :- split_s(z,t,x), (R5d2s)

ndus_s(t,x).

result(w,x) :- use(w,u,x), ndus_s(w,x).(R6ds)

dem_s(w,x) :- use(w,u,x). (D1s)

dem_s(t,x) :- split_s(z,t,x). (D2s)

This step removes the predicate dem2 and rule (D3) that defines it; the
first argument of predicate dem in rules (R4d), (R5d1), (D1), and (D2); the
first argument of predicate split in rules (R5d2) and (D2); and the first
argument of predicate ndus in rules (R4d), (R5d2), and (R6d).

Specialization applied after demand transformation does not change the
asymptotic time complexity. However, when it is effective, it (i) reduces the
space used by the computation by removing arguments of predicates that
are guaranteed to be constants, (ii) reduces the time by a constant factor,
and (iii) makes the resulting set of rules smaller and simpler.

Step 5: Program generation. This step generates efficient implementa-
tions with specialized data structures for the set of rules from Step 4. This
uses the method by Liu and Stoller [51]. It guarantees that the generated
implementation has the analyzed complexity. For the running example, the
generated program in Python is 171 lines, and the generated program in
C++ is 3534 lines.

We have shown that the application of the above five steps, and the order
in which they are applied are crucial in obtaining efficient implementations
for graph queries. After obtaining a set of Datalog rules, and a query whose
set of answers are equivalent to the graph query, we use Datalog optimiza-
tions to asymptotically reduce the complexity of the resulting rules, and
finally generate an efficient implementation of the optimized rules.

91

6.4.4 Demand transformation and graph queries

We discuss the properties of the rules generated by applying demand trans-
formation to the rules generated from graph queries, and why it is an effec-
tive method for efficient implementation of graph queries.

In the following theorem, we show that for rules generated for graph
queries, the rules obtained after demand transformation contain only strat-
ified negation.

Theorem 6.4.1. Let R and q be the set of rules and query obtained from a
graph query as described, and let R′ be the set of rules obtained after demand
transformation of R with respect to q. Both R and R′ contain only stratified
negation.

Proof. For a rule generated from an expression e in a graph query, if the
rule has a negated hypothesis, the negated predicate refers to a predicate
for a subexpression of e, therefore the negation is stratified for all rules in
R. In R′, we add positive demand hypotheses to rules, and rules that define
the predicates of demand hypotheses. The added hypotheses cannot violate
stratification since they are positive. The rules that define the demand
predicates only contain positive hypotheses, since the last hypothesis of a
rule cannot appear as the hypothesis of those rules, and a negated hypothesis
is always the last hypothesis of a rule if it exists. Therefore, the added rules
in R′ cannot violate stratification.

There are two reasons for demand transformation’s success in reducing
asymptotic complexity for graph queries. Focusing on our examples for pro-
gram analysis, first, most queries for program analyses start from the entry
point of the program, which is a constant. Other constants occasionally
occur in edge labels in queries. Having constant vertices significantly re-
duces the complexity of transitive closure after demand transformation is
applied. Secondly, edge and any hypotheses are usually removed after de-
mand transformation, since demand hypotheses usually bind the arguments
of those hypotheses. The effect depends heavily on the form of recursion
and order of hypotheses.

Note that specialization may be applied without applying demand trans-
formation first. There are cases when demand transformation without spe-
cialization obtains better asymptotic complexity than specialization with-
out demand transformation. However, if specialization alone provides the
same complexity as demand transformation, then it is more preferable to
obtain the set of rules from specialization since the rules become simpler

92

and smaller. In our running example, applying specialization directly to
(R5) would yield (R5d1s) and (R5d2s), but demand transformation and
specialization applied in order also yields the same rules.

Theorem 2 shows that when specialization yields rules with the same
complexity as demand transformation, demand transformation and special-
ization applied in sequence yields the same set of rules as only applying
specialization.

We say that a set of rules RS obtained by specializing R is simpler than
R if there is a predicate p such that for every rule r that defines p in R,
its counterparts in RS have fewer variables in arguments than r. We say
that a set of rules R is in no-copy normal form, if there is no rule in R
with only one hypothesis such that the argument list of the conclusion is a
permutation of the argument list of the hypothesis.

Theorem 6.4.2. For any specialization method S, if S obtains a set of rules
RS that is simpler than the original set of rules R, and is in no-copy normal
form, then there is a form of recursion and an ordering of hypotheses of
R, say R′, such that demand transformation, S, and unfolding applied in
sequence to R′ produces RS.

Proof. If RS is simpler than R, then there is a constant c in R that is
propagated to a rule r by S to specialize r by removing an argument v. This
means that v always takes the value c in r due to the hypotheses that refer to
it. Therefore, there is a form of recursion and an ordering of hypothesis of R,
say R′, such that demand transformation will add a demand hypothesis that
binds v in r, due to its assignment to c at the hypotheses referring to it, and
the rule that defines that demand predicate will reflect that v takes the value
c. When S is applied to the rules obtained after demand transformation to
R′, and unfolding is performed, the rule that defines the demand predicate
is unfolded, and then the obtained constant from unfolding is propagated,
and unnecessary constants and rules are eliminated. As a result, demand
transformation, S, and unfolding applied in sequence to R′ produces RS .

6.4.5 Effect of transformations on graph queries

We have implemented the method described in Python. As the final output
of our method, the implementation emits both Python code, and Patton [59]
code that is transformed automatically to C++ code by Patton, which is
finally compiled by GCC.

We show the results of experiments using the running example on the
control-flow graphs of six benchmark programs of varying size written in

93

Python. The programs chunk, bdb, tarfile, and pickle are from the Python
library; Fortran is a Fortran2003 implementation; RBAC is an implemen-
tation of an RBAC (Role Based Access Control) standard. In some figures,
we omit one of the programs to avoid label overlapping. The experiments
were conducted on a 3.0 GHz Intel Q9650 with 4 GB of memory, running
SuSE Linux, and using Python 2.6.1 and GCC 4.3.3.

Running time and memory usage of the generated implementa-
tions. We have shown via automatic complexity analysis that the rules
obtained after Step 1 in Section 4 are asymptotically worse than the final
set of rules. The implementation of those rules only completes the smallest
benchmark in 9.2 seconds, and cannot complete the rest of the benchmarks
in less than 10 minutes.

The complexity of the set of rules obtained after the transformations is
O(E×#dem2.2/1). A systematic manual analysis of the rules reveals that
#dem2.2/1 is bounded by the number of variables in scope at a program
point, since the first argument of #dem2 is a program point, and the second
argument only takes the variables that can reach that program point via
edges. We computed the average number of variables in scope (s) at each
point using static analysis for each program, and the line with plus markers
in Figure 6.5 shows the running times of set of rules with respect to E × s.
The resulting plot is almost linear as expected; we think that the deviations
from linearity are due to the fact that the benchmarks do not exhibit worst-
case time complexity.

Specialization after demand transformation reduces running time and
memory usage by a constant factor, and the decision for when to stop un-
folding affects the running time and memory usage. In Figures 6.5 and 6.6,
unfolding 1 denotes only unfolding predicates defined by one rule, and un-
folding 2 denotes unfolding predicates defined by possibly multiple rules
with only one hypothesis.

Figure 6.5 shows the running time of the set of rules at different imple-
mentation stages. Unfolding 1 has the best running time, since it avoids
duplicate inference for predicates defined by only one rule. On average,
compared to the rules after demand transformation, specialization with un-
folding 1 reduces running time by 17%.

Figure 6.6 shows the memory usage of the implementations at different
implementation stages. We obtain the memory usage of generated Python
implementations, since memory profiling for Python is very precise using

94

chunk,
520

bdb,
1890

Fortran,
6425

pickle,
10756

tarfile,
19573

#edge x s

0

500

1000

1500

2000

2500

R
u
n
n
in

g
 t

im
e
 (

m
s)

Post-demand
Post-specialization
Unfolding 1
Unfolding 2

Figure 6.5: Running time of the implementation of rules in C++ at different
implementation stages.

Heapy4. As expected, all steps show a constant decrease in memory usage,
and unfolding 2 uses the least memory, since it removes the most rules. On
average, compared to the rules after demand transformation, specialization
with unfolding 2 reduces memory usage by 26%.

Comparison with state-of-the-art top-down and bottom-up sys-
tems. We have shown that recursion conversion and hypothesis permuta-
tion are important steps before demand transformation and specialization
are applied for bottom-up computation. This is also true for top-down sys-
tems. A prominent top-down evaluation engine with tabling is XSB [61].
There is no known systematic analysis to find the best combination of form
of recursion and hypothesis order for top-down evaluation in the literature,
and we confirmed this by consulting the main developer of XSB [76].

We generated all recursion forms and hypothesis permutations for the
running example, and manually ran and timed all benchmarks for all combi-
nations in XSB. In general, the number of such combinations is exponential
in program size. Among 32 possible combinations for our running example,
16 versions do not complete the benchmarks in less than 10 minutes, and
all versions are slower than our generated code in C++. Note that our code
generators are implemented for proof-of-concept, and they are not optimized

4Available at http://guppy-pe.sourceforge.net

95

chunk,
520

bdb,
1890

Fortran,
6425

pickle,
10756

tarfile,
19573

#edge x s

0

20000

40000

60000

80000

100000

120000

M
e
m

o
ry

 u
sa

g
e
 (

K
B

)

Post-demand
Post-specialization
Unfolding 1
Unfolding 2

Figure 6.6: Memory usage of the implementation of rules in Python at
different implementation stages.

Programs # of facts
Our method XSB bddbddb

Python C++ Gen. Man. Gen. Man.
chunk 367 57 12 36098 47 18354 454
bdb 926 664 110 - 215 145240 1027

RBAC 4701 2289 384 - 702 - 2296
Fortran 2890 2795 454 - 765 - 630
pickle 3201 4673 784 - 968 - 2477
tarfile 4300 10136 1724 - 3151 - 4416

Figure 6.7: Running time in milliseconds of implementations generated by
our method, of the generated rules in XSB, and of the manually found
best version of these rules in XSB, and similarly for bddbddb. - denotes
incompletion in 10 minutes.

for constants in contrast to the effort put into the development of a mature
system like XSB. Figure 6.7 shows the running time of our generated code,
the running time of the rules and query generated in Step 1 of Section 4 in
XSB, and the running time of the manually found best version for XSB.

A bottom-up evaluation engine that has been used to solve large prob-
lems is bddbddb [41]. bddbddb does not employ any transformations for
efficiency, but employs binary decision diagrams (BDDs) to store and ma-
nipulate the relations. It does not provide any complexity guarantees for a

96

set of Datalog rules. We conducted experiments on bddbddb using both the
original set of rules generated, and the rules yielded by our combination of
transformations.

As expected, bddbddb shows asymptotically worse behavior on the orig-
inal set of rules. On the final set of rules, we observed that the performance
of bddbddb is highly dependent on the several options provided, especially
the ordering of variables in the BDDs. We used the provided option of us-
ing machine learning to automatically find the best variable order, and also
manually tried all 13 variable orderings possible. There is a large discrep-
ancy between the results, using the worst variable ordering is up to 6 times
slower, and using the automated variable ordering is up to 1.8 times slower
than the manually obtained best result. The running times are shown in
Figure 6.7.

Our experiments show that despite the large amount of effort spent to
find the version of rules for minimum running time in XSB and bddbddb, the
code automatically generated by our combination of transformations out-
performs these systems. For all examples we have encountered, our method
succeeds in finding the version of rules with the best complexity among all
versions in less than a second. The complexity analysis provided by our
method is confirmed by the actual running times, whereas such analysis is
not available in the state-of-the-art systems compared.

6.4.6 Related work

The design and implementation of graph query languages for program anal-
ysis has been studied extensively. These include languages for both static
analysis and runtime monitoring. The study of programs as relational data
has been first proposed by Linton [48] with a language called QUEL. How-
ever, early query languages such as QUEL did not allow recursion and
showed poor performance due to lack of optimization. Several other lan-
guages such as JQuery [74] and ASTLOG [21] have demonstrated better
performance, but they lack support for specifying path properties in forms
of regular expressions with parameters. We compare our work with several
languages and implementations below.

Manual implementations. One of the most popular program analysis
tools is FindBugs [35], which is used to find bugs in Java programs. Find-
Bugs only supports the specification of bug patterns via manual implemen-
tations. However, the 355 different types of bugs that can be found by the
tool are well-documented, and out of the 17 common bugs described, we can

97

express 16 of them in the language we use. The only one that cannot be
expressed is for a bug that involves counting the number of occurrences of an
edge; such aggregation operators are currently missing in the query language
we use. Integrating the language we use and our method into a tool such
as FindBugs would make it easier to add new analyses to the tool. Such
analyses could then be clearly specified, and the efficient implementation
can be automatically provided by our method.

Path queries. Regular path queries have been used in program analysis,
e.g. in [23]. Parametric regular path queries [49] are regular-expression-like
queries that allow the use of parameters, but do not support vertices and
local parameters. Therefore, the language of parametric regular path queries
is a strict subset of the query language proposed in [50] and used in this work.
The language we use also strictly contains Condate [73]. The query language
of Blast [9] is also a path query language for software verification, however
it operates only on a particular kind of graph generated from the program,
whereas the language we use can work with different graphs generated from
the same program.

More powerful languages. PQL [40] is a more powerful program query
language and is also transformed into Datalog rule. However, its imple-
mentation does not perform rule transformations as we do in this work, or
provide complexity guarantees. The resulting Datalog rules from a PQL
query are evaluated using bddbddb, a BDD-based implementation of Dat-
alog. However, as shown in Section 6, transformations affect the running
time of the resulting rules significantly, and the BDD-based implementation
of Datalog does not provide any complexity bounds and shows irregular
behavior.

PQL is more powerful in the sense that it allows arbitrary query dec-
larations which are Datalog-like, rather than only graph expressions. It is
less expressive in the sense that it does not allow arbitrary variables on
vertices for return or reuse. Since Datalog rules are generated from PQL,
our combination of transformations for Datalog can be used in conjunction
to provide better complexity with precise complexity guarantees. This also
applies to systems that use Datalog directly to query source code such as
CodeQuest [32]. Additionally, since our implementation first transforms
graph queries into Datalog, we can easily add support for Datalog in the
graph query language too.

98

Chapter 7

Conclusion and future work

In this work, we focused on Datalog, an important rule-based language with
the expressive power of polynomial-time algorithms. We have addressed the
following aspects:

1. Precise time and space complexity analysis of the implementation of
rules using different methods,

2. Source-level optimizations to improve time and space complexities of
the implementation of queries,

3. Specifications of problems from different application areas as rules,
and the complexity analysis of the implementation of rules.

4. Reduction of other high-level languages to rules for efficient implemen-
tation of those languages,

All of these aspects have been identified as research directions in previous
work, however, not much progress had been made on the precise complexity
analyses of the evaluation of Datalog queries, especially for evaluation meth-
ods that are known to be effective and used widely in practice. Inadequate
complexity analyses often lead to ineffective optimization, since assessing
the effectiveness of an optimization is much harder without a precise metric.

In this work, we first develop complexity analyses for important query
evaluation methods. Then, utilizing these analyses, for the aspects above,
we accomplish the following:

1. Precise time and space complexity analyses of the most effective meth-
ods for top-down evaluation, variant and subsumptive tabling, develop-
ment of methods for bottom-up evaluation that have at least the same

99

complexity as these strategies, and the first demand-driven transfor-
mational method that beats the well known magic set transformation.

2. Use of specialization and rewriting of rules in different recursive forms
for efficient implementation.

3. The precise complexity analyses of transitive closure, pointer analysis
for C and Java, and context-free grammar parsing.

4. Reduction of powerful graph queries to Datalog and efficient imple-
mentation of them.

5. Implementation of all the methods and integration of the methods with
XSB, a state-of-the-art top-down evaluation engine, when relevant.

Future work. The research in all four aspects is far from complete. In
the short term, the following research problems are within grasp.

• The complexity analysis can be improved by approximation of the
symbolic factors in the complexities, which will in turn improve the
comparison of the complexities of different rules.

• There are many directions for the optimization of rules, such as heuris-
tics for join-order optimization complemented by the complexity anal-
ysis, analysis for constant factor differences, optimizations for bottom-
up evaluation to improve space complexities, etc.

• There are various high-level languages designed for the semantic web,
database, security, and provenance communities, which can be trans-
formed into rules, and effectiveness of optimizations for rules could be
investigated.

In the long term, there are various directions to pursue, all of which
are interesting and highly challenging. The following are a few of these
directions.

• Extension of rules: The rule language that is analyzed and optimized
can be extended with various features, such as aggregates, function
symbols, and arbitrary negation. The analysis and subsequently opti-
mization of a wider range of programs need to be studied.

100

• The design of a framework for expressing textbook algorithms as rules:
This involves the expression of all standard textbook algorithms (greedy,
dynamic programming, divide-and-conquer) as rules with automati-
cally generated implementations guaranteeing matching (or even bet-
ter!) complexities. Apart from the obvious benefits such as reducing
implementation effort for algorithms, this can make teaching algo-
rithms easier, by separating the logic of the algorithm from the imple-
mentation.

• Distributed computation: As networks grow larger and become ubiq-
uitous, so does the necessity of algorithm specification in high-level
languages for them. All of the current and proposed work can be
extended to a rule language that supports distributed computation.
This will pave the way for easier specification of algorithms over dis-
tributed networks. The complexity analyses can be extended for such
specifications.

• Concurrent algorithms: The hardest algorithms to design are con-
current algorithms, and even harder is to systematically derive them.
Even simplest concurrent algorithms are designed manually, and ter-
mination and complexity properties are mostly shown via complicated
manually devised arguments,. A language for high-level specification
of concurrent algorithms, and an implementation of the language with
automated termination and complexity analysis is highly desirable,
even for understanding the nature of the basic concurrent algorithms.

101

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. Linearisabil-
ity on Datalog programs. Theoretical Computer Science, 308(1-3):199–
226, 2003.

[3] Alfred V. Aho and Jeffrey D. Ullman. The universality of data retrieval
languages. In Conf. Rec. of the Sixth Annual ACM Symp. on Principles
of Programming Languages, pages 110–120, 1979.

[4] Lars Ole Andersen. Program analysis and specialization for the C pro-
gramming language. Technical report, DIKU, Department of Computer
Science, University of Copenhagen, 1994.

[5] Ken Ashcraft and Dawson R. Engler. Using programmer-written com-
piler extensions to catch security holes. In Proc. of the 2002 IEEE
Symp. on Security and Privacy, pages 143–159, 2002.

[6] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom
to cause: localizing errors in counterexample traces. In Proc. of the
30th annual ACM SIGPLAN - SIGACT Symp. on Principles of Pro-
gramming Languages, pages 97–105, 2003.

[7] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduc-
tion to recursive query processing strategies. In Proc. of the 1986 ACM
SIGMOD Intl. Conf. on Management of Data, pages 16–52, 1986.

[8] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. J.
Logic Programming, 10(1/2/3&4):255–299, 1991.

[9] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and
Rupak Majumdar. The Blast query language for software verification.
In Proc. of the 11th Intl. Static Analysis Symp., pages 2–18, 2004.

102

[10] Eric Bodden, Laurie J. Hendren, and Ondrej Lhoták. A staged static
program analysis to improve the performance of runtime monitoring.
In Proc. of the 21st European Conf. on Object-Oriented Programming,
pages 525–549, 2007.

[11] Derek R. Brough and Christopher J. Hogger. Grammar-related trans-
formations of logic programs. New Generation Computing, 9(2):115–
134, 1991.

[12] Francois Bry. Query evaluation in deductive databases: Bottom-up and
top-down reconciled. Data Knowledge Engineering, 5:289–312, 1990.

[13] Stefano Ceri, Georg Gottlob, and Luigi Lavazza. Translation and opti-
mization of logic queries: The algebraic approach. In Proc. of the 12th
Intl. Conf. on Very Large Data Bases, pages 395–402, 1986.

[14] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always
wanted to know about Datalog (and never dared to ask). IEEE Trans.
Knowledge and Data Engineering, 1(1):146–166, 1989.

[15] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming
and Databases. Springer, 1990.

[16] Stefano Ceri and Letizia Tanca. Optimization of systems of algebraic
equations for evaluating datalog queries. In Peter M. Stocker, William
Kent, and Peter Hammersley, editors, Proc. of the 13th Intl. Conf. on
Very Large Data Bases, pages 31–41. Morgan Kaufmann, 1987.

[17] Hao Chen, Drew Dean, and David Wagner. Model checking one million
lines of C code. In Proc. of the 11th Annual Network and Distributed
System Security Symp., pages 171–185, 2004.

[18] Weidong Chen and David S. Warren. Tabled evaluation with delaying
for general logic programs. J. ACM, 43(1):20–74, 1996.

[19] Mihai Christodorescu and Somesh Jha. Static analysis of executables
to detect malicious patterns. In Proc. of 12th USENIX Security Symp.,
pages 12–12, 2003.

[20] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and
Moshe Y. Vardi. Decidable optimization problems for database logic
programs (preliminary report). In Proc. of the 20th Annual ACM Symp.
on Theory of Computing, pages 477–490, 1988.

103

[21] Roger F. Crew. ASTLOG: A language for examining abstract syntax
trees. In Proc. of the Conf. on Domain-Specific Languages, page 18,
1997.

[22] Anderson Faustino da Silva and Vı́tor Santos Costa. The design of
the YAP compiler: An optimizing compiler for logic programming lan-
guages. J. of Universal Computer Science, 12(7):764–787, 2006.

[23] Oege de Moor, David Lacey, and Eric Van Wyk. Universal regular path
queries. Higher-Order and Symbolic Computation, 16(1-2):15–35, 2003.

[24] Oege de Moor, Damien Sereni, Pavel Avgustinov, and Mathieu Ver-
baere. Type inference for datalog and its application to query optimi-
sation. In Proc. of the 27th ACM SIGMOD-SIGACT-SIGART Symp.
on Principles of Database Systems, pages 291–300, 2008.

[25] John DeTreville. Binder, a logic-based security language. In Proc. of
the 2002 IEEE Symp. on Security and Privacy, pages 105–113, 2002.

[26] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94–102, 1970.

[27] Juliana Freire, Terrance Swift, and David S. Warren. Beyond depth-
first strategies: Improving tabled logic programs through alternative
scheduling. J. of Functional and Logic Programming, 1998(3), 1998.

[28] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In Proc. of the 1st Intl. Joint
Conf. on Automated Reasoning, pages 514–528, 2001.

[29] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. J. ACM, 38(3):620–650,
1991.

[30] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Proc. of the Fifth Intl. Conf. and Symp. on
Logic Programming, pages 1070–1080, 1988.

[31] Sergio Greco, Domenico Saccà, and Carlo Zaniolo. Grammars and au-
tomata to optimize chain logic queries. Int. J. Foundations of Computer
Science, 10(3):349–, 1999.

[32] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest:
Scalable source code queries with Datalog. In Proc. of the 20th Eu-
ropean Conf. on Object-Oriented Programming, pages 2–27, 2006.

104

[33] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.
In Proc. of the 2001 ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 24–34, 2001.

[34] Lawrence J. Henschen and Shamim A. Naqvi. On compiling queries in
recursive first-order databases. J. ACM, 31(1):47–85, 1984.

[35] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN
Notices, 39(12):92–106, 2004.

[36] Michael Kifer and Eliezer L. Lozinskii. A framework for an efficient
implementation of deductive database systems. In Proc. of the Advanced
Database Symp., 1986.

[37] Michael Kifer and Eliezer L. Lozinskii. On compile-time query optimiza-
tion in deductive databases by means of static filtering. ACM Trans.
Database Systems, 15(3):385–426, 1990.

[38] Donald E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, 1965.

[39] Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation
by fixpoint? J. Computer and System Sciences, 43(1):125–144, 1991.

[40] Monica S. Lam, Michael Martin, V. Benjamin Livshits, and John Wha-
ley. Securing web applications with static and dynamic information flow
tracking. In Proc. of the 2008 ACM SIGPLAN Symp. on Partial Eval-
uation and Semantics-based Program Manipulation, pages 3–12, 2008.

[41] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Mar-
tin, Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In Proc. of the 24th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pages 1–12, 2005.

[42] Michael Leuschel. Logic program specialisation. In Partial Evaluation,
pages 155–188, 1998.

[43] Alon Y. Levy and Yehoshua Sagiv. Semantic query optimization in Dat-
alog programs. In Proc. of the Fourteenth ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, pages 163–173,
1995.

105

[44] Ninghui Li and John C. Mitchell. Datalog with constraints: A founda-
tion for trust management languages. In 5th Intl. Symp. on Practical
Aspects of Declarative Languages, pages 58–73, 2003.

[45] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Open-
RuleBench: An analysis of the performance of rule engines. In Proc. of
the 18th Intl. Conf. on World Wide Web, pages 601–610, 2009.

[46] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Open-
RuleBench: Detailed report. Technical report, Department of
Computer Science, Stony Brook University, 2009. Available at
http://semwebcentral.org/docman/view.php/158/69/report.pdf.

[47] Senlin Liang and Michael Kifer. Deriving predicate statistics in Datalog.
In Proc. of the 12th Intl. ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, 2010.

[48] Mark A. Linton. Queries and Views of Programs Using a Relational
Database System. PhD thesis, EECS Department, University of Cali-
fornia, Berkeley, Dec 1983.

[49] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller, and
Nanjun Hu. Parametric regular path queries. In Proc. of the ACM
SIGPLAN 2004 Conf. on Programming Language Design and Imple-
mentation, pages 219–230, 2004.

[50] Yanhong A. Liu and Scott D. Stoller. Querying complex graphs. In
Proc. of the 7th Int. Symp. on Practical Aspects of Declarative Lan-
guages, pages 199–214, 2006.

[51] Yanhong A. Liu and Scott D. Stoller. From Datalog rules to efficient
programs with time and space guarantees. ACM Trans. on Program-
ming Languages and Systems, 29(1), 2009.

[52] John W. Lloyd. Foundations of Logic Programming, 2nd Edition.
Springer, 1987.

[53] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and Vardi. Proof-tree trans-
formation theorems and their applications. In Proc. of the 8th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
pages 172–181, 1989.

106

[54] Raghu Ramakrishnan. Magic templates: A spellbinding approach to
logic programs. In Proc. of the Fifth Intl. Conf. and Symp. on Logic
Programming, pages 140–159, 1988.

[55] Raghu Ramakrishnan, Yehoshua Sagiv, Jeffrey D. Ullman, and
Moshe Y. Vardi. Logical query optimization by proof-tree transfor-
mation. J. of Computer and System Sciences, 47(1):222 – 248, 1993.

[56] Raghu Ramakrishnan and S. Sudarshan. Top-down versus bottom-up
revisited. In Proc. of the 1991 Intl. Symp. on Logic Programming, pages
321–336, 1991.

[57] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of deductive
database systems. J. Logic Programming, 23(2):125–149, 1995.

[58] Prasad Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan. A thread
in time saves tabling time. In Proc. of the 1996 Joint Intl. Conf. and
Symp. on Logic Programming, pages 112–126, 1996.

[59] Tom Rothamel and Yanhong A. Liu. Efficient implementation of tuple
pattern based retrieval. In Proc. of the 2007 ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-based Program Manipula-
tion, pages 81–90, 2007.

[60] Yehoshua Sagiv. Optimizing datalog programs. In Foundations of
Deductive Databases and Logic Programming., pages 659–698. Morgan
Kaufmann, 1988.

[61] Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren.
XSB as a deductive database. In Proc. of the 1994 ACM SIGMOD
Intl. Conf. on Management of Data, page 512, 1994.

[62] Benjamin Schwarz, Hao Chen, David Wagner, Jeremy Lin, Wei Tu,
Geoff Morrison, and Jacob West. Model checking an entire Linux dis-
tribution for security violations. In Proc. of the 21st Annual Computer
Security Applications Conf., pages 13–22, 2005.

[63] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakr-
ishnan. Declarative information extraction using datalog with embed-
ded extraction predicates. In Proc. of the 33rd Intl. Conf. on Very
Large Data Bases, pages 1033–1044, 2007.

107

[64] Manu Sridharan and Stephen J. Fink. The complexity of andersen’s
analysis in practice. In 16th Intl. Symp. on Static Analysis, pages 205–
221, 2009.

[65] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic
and randomized optimization for the join ordering problem. The VLDB
Journal, 6(3):191–208, August 1997.

[66] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In
Proc. of the 3rd Intl. Conf. on Logic Programming, pages 84–98, 1986.

[67] Jeffrey D. Ullman. Implementation of logical query languages for
databases. ACM Trans. Database Systems, 10(3):289–321, 1985.

[68] Jeffrey D. Ullman. Bottom-up beats top-down for Datalog. In Proc.
of the 8th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 140–149, 1989.

[69] Moshe Y. Vardi. The complexity of relational query languages (ex-
tended abstract). In Proc. of the 14th Annual ACM Symp. on Theory
of Computing, pages 137–146, 1982.

[70] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a scripting
language for refactoring. In Proc. of the 28th Intl. Conf. on Software
Engineering, pages 172–181, 2006.

[71] Laurent Vieille. A database-complete proof procedure based on SLD-
resolution. In Proc. of the 4th International Conference on Logic Pro-
gramming, pages 74–103, 1987.

[72] Laurent Vieille. From QSQ towards QoSaQ: Global optimization of
recursive queries. In Proc. from the 2nd Intl. Conf. on Expert Database
Systems, pages 743–778, 1988.

[73] Eugen-Nicolae Volanschi. A portable compiler-integrated approach
to permanent checking. Automated Software Engineering, 15(1):3–33,
2008.

[74] Kris De Volder. JQuery: A generic code browser with a declarative
configuration language. In Proc. of the 8th Intl. Symp. on Practical
Aspects of Declarative Languages, pages 88–102, 2006.

[75] David S. Warren. Programming in tabled prolog. Early draft available
at http://www.cs.sunysb.edu/ warren/xsbbook/, 1999.

108

[76] David S. Warren. Personal communication, 2009.

[77] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.
Using Datalog with binary decision diagrams for program analysis. In
Proc. of the 3rd Third Asian Symp. on Programming Languages and
Systems, pages 97–118, 2005.

[78] Weining Zhang, Clement T. Yu, and Daniel Troy. Necessary and
sufficient conditions to linearize double recursive programs in logic
databases. ACM Trans. on Database Systems, 15(3):459–482, 1990.

109

