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Abstract of the Dissertation

A Variational Framework of Multivariate Splines and Its Applications

by
Kexiang Wang

Doctor of Philosophy
in
Computer Science
Stony Brook University
2010

Multivariate spline technique has proved to be a powerfulh@@matical tool for
solving variational problems in a great number of researchengineering tasks,
such as computer vision, scientific computing, engineediggign, etc. As present,
tensor-product B-splines and NURBS are the prevailing indsttandards and
have been widely used in different disciplines. There haxenba few new mul-
tivariate spline techniques developed recently bestow#dunique and favorable
features, e.g., triangular B-splines and manifold spliéswever, their potentials
in facilitating practical scientific and industrial ap@itons have not yet been fully
explored.

In this dissertation, we presented a variational framevioik upon a range
of newly proposed multivariate splines, and then applied golve a few research
problems in medical imaging, scientific computing and gemimeesign. More
specifically, we introduced a novel image registration mmdtempowered by tri-

angular B-splines, which is capable of modeling local riggdi inside a global



non-rigid transformation. We also developed triangularpBrg finite element
method (TBFEM) and solved an elastic problem on a pseudotoreaiel for tem-
poral mammogram registration. Combining B-spline with featdetection and
matching techniques, we proposed a registration algorittanspecifically regis-
ters mammogram images with little human interventions diditeon, we simulated
elastic deformations on thin-shell objects with compkchggeometries and arbi-
trary topologies, which are rigorously represented by fatohsplines. Moreover,
we proposed the new RTP-spline, a trivariate spline witltricged boundaries and
defined over polycubic parametric domain. It is virtuallyd<class of trivariate T-
splines, but constructed in a different top-down fashiashghat semi-standardness
can be preserved via knot insertion and blending functifinement. RTP-splines
are featured with the ability of local refinement, restricb®undaries, domain flex-
ibility and efficient evaluation of basis functions, all ohigh would greatly benefit
a variety of applications working on solid objects and/diuwoetric data.

Through extensive experiments, we demonstrated that liileiniqgue and
advantageous properties of those new multivariate spéireesxploited and applied
to appropriate applications, our proposed framework waoutd into an effective
and powerful tool for solving variational problems in maigyesice and engineering

areas.
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Chapter 1

Introduction

With the advent of advancing data acquisition technologied increasing
computing power, it's more and more demanded by scientifet industrial ap-
plications for computers of nowadays to handle massive nicalelata. Raw data
obtained from the real-world are unlikely to be directly eerted into analytical
representations, therefore must be stored as sets of @istata points. For exam-
ple, image data acquired through CT-scan are stored on aregd, and scanned
range data are converted to digital models in forms of paam@es and/or tri-
angular meshes, approximating real world surfaces. It¥ kvewn that discrete
presentation method suffers from two major disadvantafEstaking too much
memory/disk spaces for data handling, (2) resorting to migaleapproximation
via bilinear/trilinear interpolation for computing diffential quantities. By convert-
ing large discrete dataset into splines, we will achieve mparct representation
with much smaller data size as well as a convenient way tagglyccompute dif-
ferential quantities such as surface geodesics, cunstume elastic-strain tensors.
Rapid and accurate calculation of such differential propeit the key to facilitate

the applications which requires to solve variational peofs.



Tensor-product B-spline and NURBS are the prevailing mathiealabols
used in a great number of research areas, such as geomety, gés/sics-based
modeling, and computer vision. On the contrary, a few rdgatdgveloped multi-
variate splines such as triangular B-splines and manifdidesphave not been rec-
ognized by the researchers outside shape modeling comesuiihese new splines
schemes are equipped with many unique and favorable fsatwhech could po-
tentially benefit solving of certain research and engimggporoblems. For instance,
triangular B-splines are defined over triangular domain diog/a locally modeling
of sharp features in arbitrary orientation, so that it maysas a fundamental tools
for applications that have irregular problem domain andnbeessity of handling
regional discontinuities within globally continuous datslanifold splines marry
traditional planar spline schemes and recent surface gdraation technique, able
to naturally model surfaces of complicated geometries agl-genus topologies
as a single-piece spline function, which is impossible ton@ntional ones without
performing cumbersome domain manipulation like patchind @imming. Such
advantage gives users the freedom in calculation differleptoperties of mani-
fold surfaces and make solving of variational problems oan-trivial manifold
domain possible. Therefore, it's urged for us to carry outsearch work on how
to apply these new spline techniques effectively into neseproblems other than
shape modeling. And we hope the results of this work woulerégt more people
and extend the applications of these newly developed nauisite splines into a

broader research and engineering area.



Shape modeling
Physical analysis

Mediéal image registration

Figure 1.1: As popular mathematical tools, spline functions have been widely used in many
research areas, for example, geometric design(courtesy of [@@pesnodeling(courtesy

of [142]), physical analysis(courtesy of [74]), image registrationftesy of [150]), and
visualization(courtesy of [107])

1.1 Problem Statements

As mentioned above, unlike B-spline and NURBS being widely usede-
searchers and engineers, newly developed spline tectsngyeh as triangular B-
spline and manifold spline have not received enough attesfirom people outside
shape modeling community. However, these new splines atargd with unique
and novel properties which would potentially facilitate mgpavell-known applica-
tions. In this dissertation, we review a couple of multiesei spline techniques
proposed recently, build a general variational framewgs&ruit, and apply it to

solve a series of practical problems. The applicationsradted in this dissertation



fall into the following categories.

1.1.1 Spline-based Feature-sensitive Image Registration

Image registration is the process of transforming differsats of data into
one coordinate system. In medical image registration,rresformation is usually
nonrigid to cope with the deformations of the subjects duaréathing, anatomical
changes and so forth. To represent unknown transformatithrt@nsor-product B-
spline is a widely accepted practice in computer visionti®aearly, pre-identifying
significant anatomical features, for instance nipples immagrams, and matching
them between source and reference images would subdiaestiilance the regis-
tration results.

Correct mammogram registration is critical for physiciamdétect breast can-
cers at their early stages. Mammogram images are frequentihaining excessive
disordered texture features, therefore the optimizatiwnritensity-based registra-
tion tends to get trapped in local minima, unlikely to yieltisfactory results. To
achieve better registration results, features must besggeiented from mammo-
grams and paired between source and target images. Howeperk up and match
features from mammogram images manually is subjective arekimemely labor-
intensive task. Therefore, it would be ideal to have an magrara registration
algorithm that can identify and align features automaltycal

In medical images, features lines are usually found betw&pd and soft
anatomical structure®.gthe interfaces between muscles and bones. The signif-
icance of these lines is th& continuities could possibly vanish along them in
the recovered transformation. As the transformation israitnes modeled by B-

splines as a single nonrigid function, it's necessary toe&C! discontinuities



along features lines for accurate registration. Such distoities can be approx-
imated by either incorporating a penalty term into variadibregistration frame-
work as soft constraints, or applying boundary conditiolos@ features lines as
hard ones. Unless the transformation has such a splinesesgiegion that models
C! continuities and discontinuities within the same framekydtis not possible to

precisely recove€! discontinuities between rigid and soft anatomical struegu

1.1.2 Spline Thin-Shell Deformation

It's well-known that the deformations of thin-shell objecre governed by
a fourth-order differential equilibrium equations deyed from Kirchhoff-Love
theory. According to approximate theory, the convergerfdinie-element solu-
tions to these equations requires so-callédnterpolation. However, in conven-
tional finite element method, the shape functions are detisgourely local poly-
nomial functions and the nodal degrees of freedom only sbsidisplacements
and slopes so that it's not possible to ensGfecontinuity anywhere especially
across the element boundaries. Inclusion of high-ordevateres among element
nodal variables would introduce spurious oscillationshia $olutions. Alternative
approaches of degenerated solid elements, reducedatitegpenalty method and
many others [11, 70] have been proposed to compro@idaterpolation require-
ment. Nevertheless, they still rely @9 elements which exhibit poor performance
in the presence of sever element distortion and it's diffituintegration them with
established finite-element system. A recent paradigm e [16] induceCt
continuous shape functions from Loop’s scheme and solvestell problem di-
rectly on subdivision surfaces. However the shape funstiged have no closed-

form, thus unable be evaluated easily. Moreover, extraargipoints need special



treatment and the number of them depends on the mesh contiestiather than
the intrinsic topologies of the underlying surfaces. ltstaworthy that Element-
Free Galerkin(EFG) has also been attempted in thin-shrelllsition, which unfor-
tunately requires extra efforts in combining CAD models vdiimulation process
via data conversion.

In CAD systems of nowadays, shell surfaces are oftentime®septed by
spline functions. Also it's preferred to compute elasti¢odmations over spline-
based thin-shell surfaces directly without convertingrihieto an intermediate rep-
resentation. However, it's not possible for conventiorlahpr splines to complete
this task by modeling displacement field on complicated| shefaces as a single-
piece function without domain patching/trimming. So itscessary to adopt man-
ifold spline technique [39] proposed recently, and deveopvel simulation sys-
tem, where both geometries and deformations of shell abgretmodeled by man-

ifold splines

1.1.3 Trivariate Polycube Splines

Trivariate splines are smooth functions piecewise defimethiiee dimensional
domain. They have received increasing attention as moraramtd 3D data are
available today for processing in research and enginearegs. For instance, su-
per splines [107] are quadratic trivariate functions psmabfor precise iso-surface
visualization. The are defined over uniform tetrahedraiifp@m of gridded volume.
Trivariate simplex splines are constructed on unstrudtte¢rahedral grids in or-
der to improve the modeling and rendering of volumetric otgeas well as their

associated physical attributes. The major drawbacks vdrtate simplex splines



are the inefficiency of computing basis functions and themtives, and the dif-
ficulty in configuring sub-knots to avoid undesired degeciesa Similar to their
counterparts in lower dimensions, trivariate tensor-poddB-splines and NURBS
are prevailing solid modeling tools and have been used irymesearch works due
to their regular domain structure and computational efficye However, to model
complicated geometries with trivariate tensor-productpBags and NURBS re-
quires gluing different spline patches and imposing casntynconstraints between
them, which is extremely cumbersome and unfriendly to users

T-spline is an extension of NURBS and its partition-of-urft¢U) property is
guaranteed by dividing the sum of all basis functions evéne. Several NURBS
patches may patch together into a polycube, forming a tataf-spline as a single-
piece continuous representation. The flexibility of polyicicdomains enables ones
to model unstructured volume data, or solid objects withifgéitions and arbitrary
topologies, which would potentially facilitate many agaliions in solid modeling,
scientific computing and so on.

In this dissertation, we pursue to improve trivariate Tirsgd, particularly
those defined over polycubes, by solving two problems. JFadtiing up all ba-
sis functions and conducting a division operation everyehgs computationally
expensive. Can we construct a semi-standard [116] trieapatycube spline so
that POU requirement is automatically satisfied? Seconid pisssible to restrict
blending function influential regions inside the polycut@main such that control
points are prohibit from contributing to other regions asreaoncaved corners? If
yes, this kind of polycubic spline would serve as a promisoa for isogeometric

analysis.



1.2 Contributions

M“Slﬁ;nmate NURBS Triangular B-splines T-Splines Trlvarlgisi'ﬁ’:slycube
plines
physics model| Pseudo physics model Local
Variational Sharp subdivision
: Intensity similarity, feature alignment, feature and
Models 2Df?hlil)n_eéisg|\|cny harmonic energy, reqularization, other modeling adaptive
pseudo energy refinement
‘*’kk,lf’ v L J
. Image Manifold surface Thirrshell Solid modslin
Applications registration modeling simulation d

| I I I

~—Global Surface ™
Automatic feature e ) ™ Special knot
; LOD ! Parameterization N ;
extraction and . \ ) insertion
) modeling . and volume / )
matching ; ) algorithm
~—jarameterization—

Figure 1.2: The overview of the variational framework of multivariate splines and the its
applications

In this dissertation, we systematically study the muliaigr spline theory, then
present an computational framework for solving a range aftianal problems.
Incorporated with additional proposed techniques, fomgxa automatic feature
extraction and matching, our framework exhibits its suscasd effectiveness in
solving many variational problems in the areas of shape fimgjemage registra-
tion and physics-based simulation.

In summary, our specific contributions include:

1. We introduce a registration algorithm which succesgftdcovers non-rigid



deformation between two images while retaining sharp fesatwn pre-
identified local rigid objects. Both global non-rigidity amakcal rigidities
are naturally modeled by an unified transformation repriasem of triangu-
lar B-spline. In contrast to conventional methods, our atgor can precisely
model sharp features with fewer degrees of freedom. (Chapter

. We develop triangular B-spline finite element method (TBFEMd apply it
to solve elastic PDE on a pseudo physical model, simulatiagleformation
between temporal mammogram pairs for image alignment. Xperenental
results show that the registration accuracy is improvedwatures bound-
aries are properly modeled by triangular B-spline. (Chapter 4

. We propose an novel image registration method designedifglly for
mammograms. images. It automatically identifies signifitexture features
and breast contours, matches them between source and itaeggts, and
then recovers the transformation by solving a variatiomabjem, which is
guided by soft feature constrains and maximization of isitgrsimilarities.
Through extensive experiments, the proposed algorithmagsra effective
one requiring minimal human interventions. (Chapter 5)

. We develop a new paradigm that integrates thin-shell Isition and geo-
metric design on arbitrary manifold spline surfaces. Baldirly, we extend
triangular B-spline from planar domain to manifold domaingd apply it to
simulate elastic deformation of thin-shell objects withmmicated geome-
tries and non-trivial topologies. (Chapter 6)

. We propose the technique of restricted trivariate pddgcsplines (RTP-
splines), inspired by volumetric T-splines, but signifitardiffering in its

top-down construction way. Our top-down construction apph includes
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four major steps: extending given polycubes to boundingdmmain, build-
ing B-spline volumes, inserting duplicate knots to isoladéypubic domain
as well as retaining restricted boundaries, and finally rengpexterior cells
of original polycube. The proposed RTP-splines is semrmddad, that is,
POU is guaranteed without any enormous efforts in summingdaviding

basis functions everywhere. Aside from local refinemernittglnherit from

T-spline, RTP-splines are also featured with restrictednidary, efficient
evaluation of blending functions and their derivatives] #axible polycubic
domain, all of which would potentially benefit many applioas of nowa-

days, where sold objects and volumetric data are involvedapter 7)

1.3 Dissertation Organization

This proposal is organized in the following fashion. In Clea#, we begin
with detailed review of a few dominate spline techniquesictiis followed by a
brief review on their applications in different disciplmeln Chapter 3, we present
a novel image registration algorithm based on triangulaplBis. It is capable
of recovering a global non-rigid transformation as well againing local rigidi-
ties, under a unified registration framework. In Chapter 4,deeelop triangular
B-spline finite element method, or TBFEM and apply it to solveetastic prob-
lem on a pseudo physical model for temporal mammogram ratjst. Chapter 5
is devoted to an automatic registration method particylddsigned for aligning
mammogram images. It combines B-spline with proposed textased feature
extraction and matching technique, and uses local intessitilarities as the guide
to the solution. In Chapter 6, we simulate elastic defornrmstiof complicated

thin-shell objects by solving governing PDE with manifofalises. In Chapter 7,
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we present restricted trivariate polycube splines (RTliag) and conduct experi-
ments on a few solid models. Finally, we conclude the diatiert and propose a

few future works in Chapter 8.
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Chapter 2

Background Review

This section first survey the theory of multivariate splinéarticularly, we
will cover tensor-product B-spline and NURBS, triangular Busgs, Powell-Sabin
spline and T-splines. After that, we will review the theintabution in a variety of

practical applications.

2.1 Multivariate Splines

Itis well known that spline functions play very importantesin both theories
and practices in many sciences and engineering areas. Diheitovariety and
complexity, it's important to study the theory of multivare splines. Between the
1960’s and early the 1970's, Birkhoff, Garabedian and deB&dt ftudied and
established a series of theories on Cartesian tensor protuittvariate splines.
Although the Cartesian tensor product multivariate splias its own application
value, they are a simple extension of univariate splinetfans, so they have many
limitations. To combat such shortcoming, new spline sclehae been invented

for the last few decades. They include triangular B-splirspline and etc.
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2.1.1 Tensor-product B-spline and NURBS

B-splines (short for Basis Splines) go back to Schoenberg wtroduced
them in 1946 [113, 114] for the case of uniform knots. B-s@im&er nonuni-
form knots go back to a review article by Curry in 1947 [18]. deoBderived
the recursive evaluation of B-spline curves [9]. It was tleisursion that made B-
splines a truly viable tool in CAGD. Before its discovery, Biapk were defined
using a tedious divided difference approach which was nioalér unstable. Later
on, Gordon and Riesenfeld realized that de Boor’s recursivpliBes evaluation
is the natural generalization of the de Casteljau algoritimeh Bezier curves are
just subset of B-spline curves. Versprille [133] generaigraof B-spline curves to
NURBS (non-uniform rational B-spline) which has become thaddiad curve and

surface form in the CAD/CAM industry [93].

=3, k=3
Ny Mg ™

t|:| tl tj t3 t4 tS tﬁ

(a) (b)

Figure 2.1: (a) shows the non-rational basis functions of quadratic B-spline.hys a
patch of surface represented by NURBS

A NURBS curve generalizes the B-spline. It is the combinatiom skt of

piecewise rational functions with+ 1 control pointg; and associated weights:

_ XioPiwiBik(u)
> 1—oWiBj (W)

c(u)
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whereu is the parametric variable arl|  (u) are B-spline basis functions. As-
suming basis functions of degr&e- 1, a NURBS curve has+ k+ 1 knotst; in

nondecreasing sequendg:<t; < ... <tp.k. The basis functions are defined re-

cursively as:
1 forti<u<tig
Bi1(u) =
0 otherwise
with
u—t; tik—u
Bix(u) = —— Bk 1(u) + ——Bi; 14 1(u)
tik-1—t Gk —tit1

The parametric domain tg_; < u <ty 1. In many applications, the end knots are
repeated with multiplicityk in order to interpolate the initial and final control points
po andpy. Figure 2.1(a) shows the basis functions of uniform quaclBspline.

A NURBS surface is the generalization of the tensor-produgbiBs surface.

It is defined over the parametric variableandv as

>0 2 —0Pi,iWi,Bik(U)Bj (V)
> im0 2 —oWi,Bik(U)Bj (V)

s(u,v) =

A NURBS surfaces hagn+1)(n+ 1) control points; ;. Assuming basis functions
along the two parametric axes of degkeel andl — 1, respectively, the number of
knots is(m-+k+1)(n+1+1). The nondecreasing knot sequencigist; <... <
tmik along theu-axis andsg < < ... < sn+ l) along thev-axis. The parametric
domainisty ;1 <tm.1ands_; < syy1. If the end knots have multipliciti andl in
theu andv axis respectively, the surface patch will interpolate twr fcorners of
the boundary control points. Figure 2.1(b) shows a surfapeessented by NURBS.
NURBS generalize the non-rational parametric form. Like national B-

splines, the rational basis functions of NURBS sum to unitgythre infinitely
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smooth in the interior of a knot span provided the denomimitamot zero, and
at a knot they are at lea€k1-" continuous with knot multiplicityr, which en-
ables them to satisfy different smoothness requiremertigy inherit many of the
properties of uniform B-splines, such as the strong convdkgraperty, varia-
tion diminishing property, local support, and invarianceler standard geometric
transformations. More material of NURBS and further detadestussion of its

properties can be found in [7,31,88-90,92,129]

2.1.2 Triangular B-spline

Figure 2.2: Modeling features using triangular B-spline with degenerate knots. (a) the
parametrization of the fandisk model. (b) the domain triangulation and regubaicknfig-
urations (no three knots in a domain triangle are collinear). (c) Place ths kiang the
user-specified edges of domain triangulation. (d) A cubic spline suréaomstructed using

the knot configurations in (b). The spline@$ continuous everywhere. (e) A cubic spline
surface reconstructed using the knot configurations in (c). The sgli@®continuous on
smooth regions an@® on sharp features.
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Based on the blossom or polar form [99] aBgpatch [118], Dahmen, Mic-
chelli and Seidel [20] propose a general spline schemgdimensional space,
which constructs a collection of multivariate B-splines wldinear span comprises
all polynomials of degree at most The bivariate case is called triangular B-spline
or DMS spline. Due to its elegant construction and many etitra properties for
geometric modeling, triangular B-spline has received mutdntion since its in-
ception. Fong and Seidel [33] present the first prototypdempntation of triangu-
lar B-splines and show several useful properties, such ameafivariance, convex
hull, locality, and smoothness. Greiner and Seidel [38stite practical feasi-
bility of multivariate B-spline algorithms in graphics andepe design. Pfeifle and
Seidel [87] demonstrate the fitting of a triangular B-splingace to scattered func-
tional data through the use of least squares and optimizétichniques. Gormaz
and Laurent study the piecewise polynomial reproductidnafgular B-spline and
give a direct and intuitive proof [37]. Franssen et al. [3&jgse an efficient eval-
uation algorithm, which works for triangular B-spline swés of arbitrary degree.

The construction of triangular B-spline in [35] is as follovist pointst; € R?,

i € N, be given and define a triangulation
T ={A(1) = [tiy ti i) : 1 = (i0,i1,i2) € T € N?}

of a bounded regio® C R?. Next, with every vertex; of T we associate a cloud

of knotsti o, .. .,ti n such that; o = t; and for every trianglé = [t;,,t;,,ti,] € T,

1. allthe triangle$i01B07ti17[317ti2,[32] with B = (BO? Blv BZ) and‘B‘ = ZiZ:O Bi <n

are non-degenerate.

2. the set

interior(ﬂ|B|§nXé) =+ @,Xé = [tioﬁo’til,Bl’ti&BZ] (21)
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3. If I has a boundary edge, sdt,, ti, ), then the entire area

[tio.05- - -» tig,n, L0, - - -, tiy.n) Must lie outside of the domain.

Then the triangular B-spline basis functiué, IB] = n, is defined by means of

simplex splinewl(u|vg) (for details about simplex splines, please refer to [79.) a
N(uVg) = |dgIM(u|Vg)
wherevé = {tig,0,-- -+ tig fgs - - -+ Lin,0, - - -» i pp b @NC

1 1 1

liogo linpy lizps

Assuming (2.1), these B-spline basis functions can be showoetall non-
negative and to form a partition of unity. Then, the triaraguB-spline is defined

as

Fu)=> "> caN(uM) (2.2)

€l |B|=n

wherec g is the control point. This spline globally"~1 if all the setsxé, Bl <n
are affinely independent.

One favorable characteristic of triangular B-splines ig thaadjusting knots
along feature lines explicitly, we can model local sharpuess {.e.C° continuity)
in the approximated space, while keeping @fe! smoothness over the other re-

gions. This advantage is demonstrated in a surface recotistnt example shown

in Figure 2.2.
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2.1.3 Powell-Sabin Spline

Powell-Sabin splines are functions in the sp&éA,s) of C! continuous
piecewise quadratic functions on a Powell-Sabin refinerf@jt Such a refine-
mentAps can be obtain from an arbitrary triangulatidrby splitting each triangle
into six sub-triangles with a common interior point. In a@st to triangular Bzier
splines, where imposing smoothness conditions betweah@atequires a great
number of nontrivial relations among the control points ¢écshtisfied. th€ con-
tinuity of a Powell-Sabin spline is guaranteed for any chaitthe control points.

The first B-spline representation of Powell-Sabin spline dexrsved by Shiet
al. [121]. However, their construction approach had serioasvbdacks from the
numerical point of view. Dierckx [26] resolved the numelipaoblem by con-
structing a normalized B-spline basis for Powell-Sabinrsgdi This representation
has a very nice geometric interpretation involving the &mgontrol triangles for
manipulating the Powell-Sabin surfaces. Since then, thmalized Powell-Sabin
spline has been receiving much attention in the computerdaigtometric design
community. Surface approximation and interpolation udtogvell-Sabin spline
have been reported in [27, 73, 145]. Windmolders and Diestkxed the subdi-
vision problem for uniform Powell-Sabin splines, that istaangulations with all
equilateral triangles [146]. Recently, Vanraesal present the subdivision rule for
general Powell-Sabin spline [131].

Let Q be a polygonal domain i&? and letA be a conforming triangulation
of Q, constituted of trianglepj, j = 1,...,N, having vertices/; := (x,Vi),i =
1,...,Ny. A Powell-Sabin refinemenfy,s of A is the refined triangulation, obtained
by subdividing each triangle & into six sub-triangles as follows. Select an interior

pointZ; in each trianglgp; and connect it with the three verticesmfand with the
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pointsZ;,,Zj,,.Zj, wherepj, ,pj,,Pj, are the triangles adjacentpg (See Figure 2.3).

(@) )

Figure 2.3: The Powell-Sabin refinement (b) of a triangulatior (a).

We denote b)gl(Aps) the space of piecewige! continuous quadratic poly-
nomials onAps. Powell-Sabin [95] proved that the dimension of the sp@mps)
equals 8l, and any element (ﬂ%(Aps) is uniquely determined by its value and its
gradient at the vertices df, i.e., there exists a unique solutisfx,y) € Ss(Aps) for
the interpolation problem

Os Os

s(Vi) = fi a_x(vi):fx,i 3,

M) =fy i=1,... Ny (2.3)

So given the function and its derivative values at each x&ftehe Bezier ordinates
on the domain sub-triangles are uniquely defined and therzotyt conditions be-
tween sub-triangles are automatically fulfilled.

Dierckx [26] showed that each piecewise polynonsiay) € S%(Aps) has a

unique representation

3

Ny
ZZC.J Ixy X,y) € Q (2.4)

i=1j=1
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where the basis functions form a partition of unity, i.e.,

Bl(xy) > 0 (2.5)

3
> Bl(xy) = 1forall x,yeQ (2.6)

Furthermore, these basis functions have local supBé)(K, y) vanishes outside the
so-called molecul®; of vertexV;, which is the union of all triangleg, containing
Vi.

The basis functionBij (x,y) can be obtained by finding three linearly indepen-
dent triplets(aij, Bij,vij), j = 1,2,3 for each verte¥. Bij (x,y) is the unique so-
lution of the interpolation problem withfy, fyk, fyk) = (dkidtij, OkiBij, dxiVij ), Where
& is the Kronecker delta. The tripletsiij, Bij,vij), j = 1,2,3 are determined by

the following Dierckx’s algorithm [26, 130]:

1. For each vertex;, find its Powell-Sabin triangle points, which are the im-
mediately surrounding &ier domain points of the vertex and vertexy;
itself.

2. For each vertex;, find a trianglet;(Qi1, Qi2, Qiz) which contains all the
Powell-Sabin triangle points of from all the triangles in the moleculd;.
DenoteQjj = (Xij, Yij) the position of verticeg);.

3. Three linearly independent triplets of real numhmysp;j, vij, j = 1,2,3 can

be derived from the Powell-Sabin triangief a vertexv; as follows:

e (0j1,0i2,0i3) = barycentric coordinate of with respect td;
o (Bi1,Bi2,Biz) = ((Yia—Yiz)/h, (Yiz—Yi1)/h, (Yi1 —Yi2) /h)
o (Yi1,Vi2,Yiz3) = ((Xiz—Xi2) /h, (Xi1 — Xi3)/h, (Xi2 — Xi1) /h),
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111
whereh = det| X;Xi>Xi3
Yi1Yi2Yis
We then define the control triangles §$Ci1,Ci2,Ciz). Dierckx proved that
the normalized Powell-Sabin spline has a very nice geomattérpretation that
the control triangle is tangent to the spline surface [26QuFe 2.4 illustrates an

example of Powell-Sabin spline surface over a planar tuktgd domain.

(b)

Figure 2.4: Powell-Sabin spline over a planar domain: (Courtesy of [44]) (a) Domain
triangulation; (b) Spline surface; (c) Spline surface, the red curegespond to the edge

in the domain triangulation; (d) Spline surface overlaid by the control trisngleown in
red) which are tangent to the surface;

2.1.4 T-spline

T-splines, developed by Sederberg, Zheng, Bakenov, and 45, are a
generalization of NURBS surfaces that are capable of significaeducing the
number of superfluous control points by using the T-junctio@chanism. The
main difference between a T-spline control mesh and a NURB&aamesh is
that T-splines allow a row or column of control points to terate at anywhere
without strictly enforcing the rectangular grid structdineoughout the parametric
domain. Consequently, T-splines enable much better lotiakraent capabilities
than NURBS. Furthermore, using the techniques presentedlii],[&t is possible
to merge adjoining T-spline surfaces into a single T-sphitbout adding new con-

trol points. However, this patching process requires thatknot intervals of the
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to-be-merged edges must establish an one-to-one cormdspos between the two
surfaces. Sederberg et al. also develop an algorithm toecbRNNJRBS surfaces
into T-spline surfaces, in which a large percentage of lymers control points are
eliminated [116]. Most recently Song and Yang [123] gerieeal T-spline scheme
to weighted T-spline and demonstrated its applicabilitin free-form deforma-

tion.

(Siz: tio)

(Si2 ti)

(Sior t2)  [(Sirs ) [(Sizs )  [(Sias b2} [(Sias ti2)

(Sizs tia)

(Siz tia)

(@) (b)

Figure 2.5: (a) Local knot lines for basis functidg (s,t); (b) P; is aT-junction.

s, s, S5

T-spline is aPB-spline for which some order has been imposed on the con-
trol points by means of a control grid calledTamesh A T-mesh is basically a
rectangular grid that allow$-junctions. Each edge ifi-mesh is a line segment of
constants (which is calleds-edge) or constarit(which is calledi-edge) [117]. A
T-junction is a vertex shared by oseedge and twa-edges, or by oneedge and
two s-edges. For exampl®; (see Figure 2.5(b)) is @-junction. Each edge in a

T-mesh is labeled with a knot interval, constrained by thi¥ahg rules:

1. The sum of knot intervals on opposing edges of any face brustjual.
2. If aT-junction on one edge of a face can be connectedTtgunction on an
opposing edge of the face (thereby splitting the face into faces) without

violating Rule 1, the edge must be included in Thenesh.

In contrast to tensor-product B-spline that uses a rectanguid of control
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points, PB-spline is point-based and requires no topological retetigp among

control points. The equation forRB-spline is given by:

P(S, t) _ ZF:l Pi Bi (57 t)

- XikaBi(st) sV eb

where theP; are control points. ThB;(s,t) are basis functions written as
Bi(st) = Ng(SIND(t)

whereN3 (s) is the cubic B-spline basis function associated with the kaotors =
[S0,S1,S2,S3,S4] and Ni% is associated with the knot vectgr= [tio, ti1, ti2, ti3, ti4]
as illustrated in Figure 2.5(a). Every control point hagnffuence domairb; =
(S0,S4) X (tio, ti4). The T-spline equation is very similar to the equation faeresor-
product rational B-spline surface, except that knot vecaaadt; are deduced from
the T-mesh neighborhood ;.

Knot vectors andt; for the basis functiorB;(s,t) are determined as follows.
Let (s2,ti2) are the knot coordinate &. Consider a ray in parameter spd@) =
(s2+0a,ti2). Thensz andsy are thescoordinates of the first tweedges intersected

by the ray. The other knots can be found in like manner.

(a) B-spline surfaces

(b) T-splines

Figure 2.6: A gap between two B-spline surfaces, fixed with a T-spline (Courtes{ b7])
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T-junctions allow T-splines to be locally refinable, that antrol points can
be inserted into the control grid without propagating arirerow or column of
control points. Figure 2.6(a) shows a small rectangulaa dtewn up to magnify
a hold where neighboring B-spline surfaces do not match xa€igure 2.6(b)
shows the model after being converted into gap-free T-sptimereby eliminating

the need for repair.

2.1.5 Other Multivariate Splines

Besides the aforementioned splines, there are many othéwamigte splines
developed in the last few decades. They were usually otigih&or specific
tasks, gradually received more attention from other comtmsnlater. Thin plate
splines(TPS) were introduced by Duchon to model spatialstamation. Both
global affine and local non-affine components are succégsepresented by a
group of radial basis functions(RBF). TPS has become an efeanhd popular
tool in image alignment, shape matching and many other ctenpision applica-
tions. [8]. Robssl et al's [107] introduce quadratic trivariate super spline on uni-
form tetrahedral partition to reconstruct continuous nte®d@®m gridded volume.
Bernstein-Ezier technique is used for evaluation of spline value amdriadient.
Box splines are extension of B-splines with equidistant knddamely they can
be viewed as the projection of higher dimensional boxes. Bdires consists of
triangular polynomial pieces, and can simply construcitaty two-dimensional
surfacesi.e., manifolds. A very comprehensive discussion of box spliagsven in
the book [25]. Cauchy-Navier spline(CNS) was first proposedayis et al.[22]
for matching 3D Magnetic Resonance images of the breast. &maapment and

application of the CNS is similar to that of Thin-Plate spéné is time-dependent
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and based on a physical model of a homogeneous isotropiticaiasly. Such a
physical model is especially appropriate for matching roadand biological im-
ages. Due to the limit of pages, we are unable to review th@sees in details. But

their applicational potential will be explored in our fuburesearch.

2.2 Applications of Multivariate Splines

In the last few decades, many research literatures havevixégen on bivari-
ate, respectively multivariate splines. This work has beetivated in many cases
by the aim to develop powerful tools for fields of applicaspsuch as scattered data
fitting, the construction and reconstruction of surfaces e numerical solution

of boundary-value problems.

2.2.1 Shape Representation

In computer graphics, polygonal models are still the mostroon form of
surface representation. However, polygonal models of itegument attempt to
describe a basically continuous surface with linear agpraons requiring many
polygons to obtain a visually smooth surfaces. Mathemidificplines are powerful
and effective tools to represent continuous and smootlasesfby parameterizing
them with a number of control points. NURBS, generalizing Bregd [113, 114]
and Bezier splines, have become industry standard tools foeseptation of geom-
etry and thus been incorporated into many commercial moglelystems [91]. In
spite of the popularity, tensor-product splines have ltnins arising from their
rectilinear nature. Inserting a single control point on Hrsp surface requires
propagating an entire row or column of control points. To bamthis, Hierar-

chical B-splines [34] [61] were introduced for local refinemhesing an efficient
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representation and constructing multilevel spline spadesplines [116,117] are
a generalization of NURBS surface that are capable of significaeducing the
number of superfluous control points when doing local refeemOne the other
hand, triangular splines, such as DMS-splines [20], Pe®abin splines [95] and
box-splines [25], are introduced to handle representatiocontinuous surfaces
over irregular domains. Nevertheless, all these splinesdafined on planar do-
main. It is hard for them to model complicated surfaces wih-trival topologies
without patching and stitching, which is cumbersome. Maldifspline [39] is a
systematical extension of traditional planar domain frrhto manifold domain,
which can elegantly model open/close surfaces with aryitt@pologies. Mani-
fold spline is theoretically founded upon the techniquesrgly proposed by Giet
al. [40,41]. Implicit functions are another widely used mettiodshape represen-
tation. Gradients and high-order derivatives determimethfvolumetric implicit
functions are essential to volume rendering, iso-surfat@etion and other appli-
cations. Huaet al.[52] represent volumetric implicit function by using hiechical
trivariate B-splines, and then use such framework for dpagsics-based modeling
of the underlying shapes [51].dRsl et al.construct a super-spline representation
of complicated surfaces from their discrete implicit fuontvalues, and efficiently

visualize them with ray casting.

2.2.2 Shape Modeling

Free-form deformation (FFD), as introduced by Sederbetgal. [115], is
known to be a shape modification method that has been exédénsipplied to

computer animation and geometric modeling. This techngferms an object
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(a) (b)

Figure 2.7: The surface of a hearing-aid model is treated as free-form deformaduel
and interactively modified by users. The green sphere is a handle to tpgiddesired
deformation.

by embedding it within a solid, which is usually parametedny a group of con-
trol points. Davis et al. [23] used rational Bzier spline bases for the parametric
volume, and later Griessmaiet al. ffd-bspline used a trivariate B-spline. Lam-
ousin et al. [63] used NURBS volume for embedding volume. Hstial's [49]
proposed an FFD with trivariate B-spline that allows usemsémipulate points on
the surface of the embedded object directly. Most receS8tiyg et al. [123] de-
veloped w-TFFD based on weighted T-spline, which allowstitenkl construction
and deformation. Instead of deforming the embedding vo|utua et al. [51, 52]
directly manipulate underlying shapes by modifying theiplicit volumes, which
are parameterized with trivariate B-splines.

Free-form deformable models were first introduced to coepgtaphics by
Terzopoulos et al. [128]. They employed elasticity theory to construct diffier
tial equations that model the behavior of non-rigid cungsfaces, and solids as
functions of time. This technique provides users with aitivietway for interactive

shape modeling and sculpture. It is ideal for free-form defible models to be
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represented by splines, which will unify the stages of shapestruction and de-
signing. Qin et al.[97] introduced D-NURBS surfaces, an extension to tradifiona
NURBS that permits more natural control of the surface gegmdtigure 2.7
shows that the surface of a hearing-aid model is convertgee¢sform deformable
model, then is adjusted interactively by professionista tomputer-aided design

system.

2.2.3 Image Processing

Digital images are captured with designated resolutioreyTusually need re-
sampling to achieve desired resolution in computer visigplieations. B-spline
interpolation, or cubic convolution [71], is one of the mpsipular mathematical
tools for this task. In nonrigid image registration, mudtisate spline also plays
an important role in representing continuous spatial frangation between source
and target images. FFD with spline basis functions has deamrsto be a valuable
tool in medical image registration [10,108]. In [124fBer spline are used to ex-
press deformation. However, Bernstein basis functions hawarict local support,
which leads to large computational complexity and inswgficideformation. In
[101,108], B-spline is utilized for MRl and Mammogram regigion. B-spline ba-
sis functions have strict local support and better flexipilsince the quality of the
quality of the registration is directly related to the trinmsnation’s degree of free-
dom [47], Wanget al.[137] propose to replace uniform B-spline basis functions by
NURBS, which allows nonuniform distribution of control pardand knot vectors.
Recently, Xie et al.[150] propose to use hierarchical B-spline to registraticairb
MRI images, which offers local refinement for preserving fie¢agls. Thin-spline

splines (TPS) as a mathematical interpolator introduce®lghon have become



29

an alternative choice for general image warping. Katal.[57,58] present an au-
tomated thin-plate spline, where an arbitrary set of lamtisare supplied initially
and then are iteratively repositioned until certain crées met. Rohret al.[106]
propose an approximating thin-plate spline with landmavkgyhted by the uncer-
tainty in their localization, which relax the interpolati@onstrain and allows for
semi-auto landmark extraction. In addition to non-rigicage registration, mul-
tivariate splines, especially cubic B-spline curves andesas, are widely used to
represent evolvable surfaces or volumes in deformable lmsgistem, which offers

a unique and powerful tools for image segmenting, matchmbteacking [77].

2.2.4 Scientific Computation

Due to their intrinsic properties of non-negativity and fgon-of-unity”,
multivariate spline functions are ideal to serve as basistians in finite element
method to solve scientific and engineering problems. In #ié &if computer graph-
ics, Qinet al. [97, 98] proposed D-NURBS, a physics-based framework for in-
tuitive geometric shape design. In this framework, pseudygsical energies are
defined over NURBS surfaces to enforce certain criteria, tbéred by finite ele-
ment method with NURBS basis functions to achieve optimabsertiesign. In the
broad areas of physics and engineering industry, manyesfilimctions have been
widely incorporated in finite element method to solve paditierential equations
in mechanics, thermodynamics and etc. Detgal. [19] apply splitting method to
Burger’'s equation and solve the equations by using both qtiadand cubic B-
spline Gakerkin finite element techniques. A finite elemehitson of Kdv equa-
tion is presented in [2]. The numerical solutions obtaingdbkspline finite ele-

ment is found to in better agreement with the exact solutibaa other numerical
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solutions in the literature. Yang [154] present graded Bagpfinite element so-
lution, which allows for direct interaction between the idasand analysis model
of heterogeneous objects without laborious meshing opetaiKhalifa et al. [56]
numerically solved modified regularized long wave equatpiollocation method
using cubic B-spline finite element. In additional to popiaspline scheme, other
elements such as Hermite triangular, Powell-Sabin etc h#se been attempted
for solving specific problems. For example, in [125], Povw&dibin splines are at-
tempted for numerical solution of partial differential etgjons defined on polygonal
domains. Special discussion also goes to the treatmentrmhiit and Neumann

boundary conditions for Powell-Sabin spline finite elemanf125].
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Chapter 3

Triangular B-spline based Image

Registration

3.1 Motivation

For the last decade, image registration has become an iampdgchnique
for various computer vision and medical applications,fgghe information from
images acquired either at different times or on multiple aliteés. A number of re-
views have been documented in [10,72,158]. The earliesthatis made by [85,94]
typically restrict the deformation between the correspogdnages to be rigid and
consider global geometric differences only. Later, n@udriregistration was in-
troduced in [12, 108] to additionally cope with local diféerces, resulting from
different anatomy, intraoperative deformation, or dister induced during imag-
ing process. Itis often assumed by the non-rigid registnainat the objects in the
matching images behave as if they were a single elastic b@dythe stiffness is
constant everywhere. However, this is rarely the case whemnmaged anatomy

contains both rigid and soft structures. A practical clhiexample was described
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in [30] where the shape of the brain changed after subdueatreldes were im-
planted in a surgical procedure. Neither a single rigid bmdyion nor a nonlinear
model with invariant smoothness can accurately representransformation be-
tween preoperative and postoperative scans since theaelesttranslate and rotate
only, while the others deform nonlinearly. Therefore, mappropriate methods
are required to combine the modeling of both rigidity and-nigidity in the recov-
ered transformation. Especially, t88 continuity on the borders of rigid structures
needs to be simulated correctly for precise registration.

In principle, we could build patient-specific physical mbtiepredict the in-
teraction between rigid structures and soft tissues. Hewavis impractical to
achieve solution with desired accuracy due to high comymurtak cost and insuffi-
cient details on mass, elasticity, and other mechanicaleptiees. The efforts made
so far were either based on interpolatory spline schemerough a variational
framework. Little et al.[68] incorporated independent rigid objects in a modified
thin-plate spline (TPS) based nonrigid registration. Atigpic landmarks were in-
troduced by Rohet al.[104] to TPS to enforce local rigidity constraints. Dugty
al. [29] simulated the rigid motions by adaptively adjustingSTRadial basis func-
tions according to local stiffness. Tanredral. [126] represented the deformation
using B-splines and locally couple control points in ordemmodel local rigidi-
ties. Most recently, Loecket al.[69] introduce a penalty term to keep voxel-based
rigidities in their variational framework by enforcing tleethogonality of Jaco-
bian matrix. Nevertheless, none of the above approachespehat in [68], can
precisely describ€® continuity in the displacement field. In spite of the attempt
made in [78], it's not straightforward for thin-plate smto be incorporated with
variational framework, which is quite a powerful tool fortemsity-based image

registration. On the other hand, tensor-product B-splirzssiieen widely used for
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optimization-based registration approaches [108] [1Q@3P]. Although it is possi-

ble for tensor-product B-splines to describe sharp featwhesn the corresponding
knots collapse, such features can not lie in arbitrary tivacdue to the regular
domain of B-splines.

In this chapter, we develop a novel non-rigid registratitgoathm in which
the recovered deformation field is represented by triamgBiaplines. We first
build the domain triangulation and adjust correspondingt&mo the boundaries of
pre-segmented rigid structures. As a result,@Recontinuity is guaranteed at the
desired places in the displacement field. The landmarksgteal at the vicinities of
rigid objects, are brought into correspondence betweerce@nd target images as
point-based constraints. The optimal transformationes thstimated by minimiz-
ing a composite energy function, which measures imageeapsaeicy, deformation
distortion, and desired local rigidities. Empowered by lhenerous advantages of
triangular B-splines, such as flexible domain, local consphce-varying smooth-
ness modeling, etc., our registration approach makes tleaviog contributions:
The local linear motion in the global non-rigid transforioat caused by rigid
structures, can be accurately recovered using relatieslerf degrees of freedom
(DOFs), as long as the feature lines are properly alignethendomain triangu-
lation. With C° continuity modeled at the interface between rigid and rigitHr
objects, the deformable region nearby can move more frewlytend to improve

the registration quality considerably.

3.2 Method

Given source imagk, and target imagé, defined on the domai@ c R?, the

problem of registration is to find an optimal geometricahgfrmationT : Q — R?
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such that the pixels in both images are matched properly.

3.2.1 Transformation Model

To reduce the global geometric differences betwkemdl;, an initial align-
ment is achieved using conventional rigid registrationogtgm. This obtained
transformation will be used as the initial estimation fag thllowing registration.

The concept of free-form deformation (FFD) is to deform ajeobby ma-
nipulation underlying control points. In our work, the FF®decomposed as an
identity transformation plus a displacement field, whicheisresented by triangu-

lar B-splines as:

T(X)=X+u=Xx+ Y @Bi(x), (3.1)

i=1.m
where@ is the control point an®; is the associated basis function.

Unlike tensor-product B-spline based FFD [103], whose darisa rectangu-
lar lattice, our triangular B-spline based FFD has its dorbaitt upon a tessellation
of either triangles for 2D or tetrahedra for 3D. It is not diffit to triangulate the ref-
erence image domai using established techniques. In order to model the sharp
features (see Fig.3.2(c)) at the boundaries of pre-idedtrigid bodies, we have to
keep them in the triangulated tessellation. Such conssraen be satisfied using
the triangulation algorithm proposed by Shewchuk [120].céding to the defi-
nition of triangular B-splines, the free-form deformatioeldi hasC"~* continuity
everywhere if there is no degeneracy for any triple of knotthe same triangle.
However, we purposely collapse adjacent sub-knots togeetified feature lines
in order to model desire@® continuity.

Due to the flexibility of the domain triangulation, it is alpossible for users

to overlay the registration domain exactly upon the regibmterest (ROI), rather
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than covering the entire reference image. Thus, the cortipogd effort will be

saved considerably, especially when the ROI can be suctlgssttracted.

3.2.2 Point-based Constraints

Point-based constraints are incorporated in our framevarketter registra-
tion. The points on the boundary contours of rigid structuite high curvature are
good candidates for landmarks (see Fig.3.2(d)). Assuntingt sigidity of bony
structures, only two pairs of landmarks are required toyfuticover local linear
transformationi(e. translation and rotation), if there is no rotoinversion.prac-
tice, we often introduce more constraints to ensure thelisyadf the registration.

Let ? = {p1,...,pn} be the set of landmarks chosen on the reference domain
(It in our implementation). Their correspondencessiare Q = {qs,...,qn} such
that:

T(pj;®)=0q; for j=1...n, (3.2)

where® denotes the set of the control points of triangular B-splinBse above
equations are treated as hard constraints and have to &ty satisfied in the fol-
lowing optimization process. In most cases, the linearesysvf (3.2) is under-
determined. But it is possible to become over-constrainednwdxcessive land-
marks are selected on a single spline patch. Two approaeelsecused to solve
such problem. One is to subdivide the triangular mesh, wtiesee are overly-
condensed landmarks, and re-initialize the domain trikatigun. The drawback of
it is that the problem dimension is increased accordinghe @ther approach aims

to find a compromised solution for (3.2), which will be dissed later.
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3.2.3 Cost Function

In this chapter, we registdg to I; using a variational approach, in which a
metric measuring image similarity and constraints of gl@maoothness and local

rigidity are combined into an overall cost functi@ny that is defined as:
Etotal = OE| + BER+ VEs, (3.3)

whereaq, [3, andy control the relative influence among three energy terms3.18) (
E, is the driving force behind the registration process andsamnmaximize the
image similarity, whereagg is a constraint term to ensure local rigidity akgd
tries to regularize the transformation as smooth as p@ssibl

A number of approaches have been proposed in literaturel¢alate either
similarity or dissimilarity between images. Mutual infoatron [17, 134] and cor-
relation ratio [102] are the methods to measure image gitiglg, while the sum-
of-squared-difference (SSD) measures the dissimilaritie our current work, we
simply use SSD metric to test the feasibility of our registra algorithm. The

differences betweeh andly, represented bk, is evaluated by:

£ =5 [ I1T060) — (0] 2 (3.4)

In the theory of continuum physics, the non-rigid transfation is often mea-

sured byGreen-St. Venardtrain tensoE defined as
E=0u+0Ou’ +0u'Ou (3.5)

Then a necessary and sufficient condition to obtain a logal transformation is
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E = O for rigid structures regions. This is identical to that preed in [69], where
the Jacobian matrices are considered instead. We enfacgyitlity constraint by
defining a penalty term as the integral of fi®ebeniusnorm of E. Since different
structures in the image exhibit different deformation s, and do not need to
deform similarly, we introduce a characteristic functiofx) to separate the rigid
objects from deformable regions. The valueagk) is 1 on rigid structures and O

elsewhere. The penalty term for local rigidity is given by:

1

Er = [ WO EIE dx. (3.6)

where|| - || denotes thé&robeniusnorm.

A regularization ternEs, measuring the bending energy of a thin plate metal
subject to external forces [103, 108], is also incorporabediscourage improbable
or impossible transformations. It depends on the 2nd deresof the deformation

and is written as:

Es:%/g(l—w(x))Q

where the functiorw(x) makes the regularization term valid only over non-rigid

0%u

NG

92u
ay?2

azu 2 2

2
) dx, (3.7)

regions.

3.2.4 Optimization

The optimization problem is stated to find an id@alsuch that the overall
energy (3.3) is minimized with the constraints in (3.2) S&d. There are various
algorithms available to accomplish such constrained neali programming task.

In particular, we convert the constrained optimizationigbea to a unconstrained
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one, rather than applying established methods directlgnTehsimplex line search
approach described in [96] is performed to update the paemieratively along
the steepest descent of gradient until the cost functionncérbe decreased any
further.

Putting (3.1) and (3.2) together, we discretize the poasgda constraints and

write them in a matrix format:

P+C®=0Q, (3.8)

whereP andQ are the vectors collecting the landmark positiong;iand s re-
spectively, the vecto® consists of the control points of triangular B-splines, and
the triangular B-spline basis functions constitute the ma@rwhich is extremely
sparse and rank-deficient.

By solving the original optimization problem in the Null-SmaofC, we can
successfully remove the point-based constraints. Themetv parameter vect&

in Null-Space is related to the old odeby the equation:

®=NY+ d,, (3.9)

in which CN = 0 andC®g = Q — P. We use Gaussian-Jordan-Elimination-like
approach proposed in [36] to constrixstand solve foi®g by either singular value
decomposition (SVD) or QR decomposition, both of which asenputationally

viable here, since most columns@nare zero.
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Instead of estimating the gradientBf,5 using finite-difference approxima-

tion, we analytically calculate the derivative with respec¥ and obtain:

(3.10)

aEtotal N T 6E| aER aES
w N (%0 TPe Yoo )

where
E
= [ 0T00) = (0 DT (0B
¢ Ja
Let@;j denotes thedi + j)-th component o andB; j be the derivative of the basis

function inj direction, wherg = 1,2, 3 forx, y andz coordinates, respectively. The

derivative of the local rigidity penalty term is:

Er / OM st
— = W(X M dx
0@ Q ) 2, Ms 0]

st=12,3
Mst = D @uBrs+ OBt + PesPuaBE,

155
Mgt _ 3it (Bis+@sBZ ) + s (Bit + @B
o, —rﬂ;’s jt( i,s T @sbi js (Bit + G5y

in which g;j is Dirac function which equals to 1 if and only if= j. Likewise, the

derivative of the regularization term is given by:

E
0_(;-/9(1_\/\/()())( Z jBxsBis+ Z (W,jBk,stBi,st) dx,
J

sk=1,2.3 st.k=1,23

whereB; st stands for the second derivative of basis functions. Faildedn effi-
cient evaluation of triangular B-spline basis functions #melr derivatives, please

refer to [86] [35] [45].
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Note that the integration operation in (3.3) is performety @m the pixels of
ROI. Therefore, we could significantly speedup the redistngorocedure if all the

basis functions and their derivatives over the interestgtbn are pre-computed.

3.3 Experimental Results

(@ (b)

Figure 3.1: The first experiment: (a) Source image. (b) Target image. (c) Registratio
result when sharp features are NOT modeled. The minimized energy tesiag-ar97.6,

Er = 39.9. (d) Registration result when sharp features are modeled, the minimieeglyen
terms arees = 71.8, Egr = 30.8.

In order to evaluate the feasibility and applicability o¢ ghroposed algorithm,
we test it on both synthetic and real data. Cubic triangulaplBiss are chosen
in the experiments to compare with the frequently used ctémsor-product B-
splines.

The first example demonstrated in Fig.3.1 doesn’t consid&cihmg image
intensitiesi.e.,, a = 0 in (3.3)), but tries to align corresponding points instead
green square is included in the source image to represegicaabject, and its
counterpart is included in the target image with a rotatibA%5. 8 pairs of land-
marks are selected at the corners of both the image and tiesqggare, and applied
as the point-based constraints in the registration. Thyetamage is chosen as the
reference domain, which is triangulated into 32 patched,tha cubic triangular

B-splines built on it have 361 control points. After applyiogr algorithm without
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and with sharp feature modeling respectively, the achieggtstration results are
plotted in Fig.3.1(c) and Fig.3.1(d). It is noticeable thtia background and the
square are more smoothly connected in Fig.3.1(c) than irBHi@yl), because they
are treated as a single elastic object in the former one,dngidered as separate
parts in the latter one. It is more physically appropriatertodel C° continuity
between the background and the square, when we simulateténadtion between
them. Therefore, the method with sharp feature modelingachreve better regis-
tration result (the minimized energy terms &= 71.8, Er = 30.8) than the other

one Es= 97.6, Er = 39.9), when the same parameter settifg{y= 1) is used.

|
i

(b)

(e) (f) (9)

Figure 3.2: The second experiment: (a) Source image. (e) Target image. (b) Thainlo
triangulation with feature lines highlighted in red. (f) 13 landmarks are higtdayin red.

(c) Registration result obtained from tensor-product B-spline basdkothe (g) Registra-
tion result obtained from triangular B-spline based method. (d) Deformaticovered

using tensor-product B-spline based method. (h) Deformation restwesing triangular
B-spline based method.

For the second example, both images (see Fig.3.2(a)(didmdhree geo-
metric objects to represent rigid structures, whose msstare quite different in

the source and the target images. The reference domainrfshdvig.3.2(b)) has
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130 triangles and the triangular B-splines thus have 63Tralopbints. 13 pairs of
landmarks are picked up to ensure correct alignment betweiehstructures (see
Fig.3.2(f)). The registration result and the recovere@dation field are shown in
Fig.3.2(g) and Fig.3.2(h). An alternative approach userggsbr-product B-splines
is also applied for the comparison purpose. Its domain isxddfon a 25 25 to
match the number of triangular B-spline control points. Thmparison between
the results from both approaches (shown in Fig.3.2(c) ag8BF(g)) indicates that
the tensor-product based method fails to align the imagesdatsired resolution,
when there exist large deformations near rigid structudessharp contrast, tri-
angular B-spline is built on a flexible domain, so that its mimdepower can be
ideally concentrated on the interested region for bettgistetion. Furthermore,
its power of modeling sharp features helps to improve thestegion quality far
more better.

Two MRI images of human spines (see Fig.3.3(a)(b)) are usebarthird
experiment. The spinal bones are first segmented from thettanage, then the
characteristic functiom is set accordingly to decide where the rigidity constraints
should be applied. The source image is registered to thettarmgge as shown in
Fig.3.3, in which all of the rigid structures are succedgfulatched.

Our algorithm is implemented using MS VC++, and all experitaeare con-
ducted on a platform with 2.8GHz Pentium IV CPU and 1G RAM. Bothtkgtic
images have the size of 460100, and the size of the MRI images used for the third
experiment is 51% 512. The running time for the three experiments are about 1

minute, 6 minutes, and 12 minutes respectively.
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Figure 3.3: The third experiment: (a) Source image. (b) Target image. (c) Registration

result. (d) Rigid structures segmented from the target image.
3.4 Summary and Discussion

This chapter presents a nonrigid registration techniguehich the transfor-
mation between corresponding images are representecabgiar B-splines. By
preserving feature lines in the domain triangulation andsiohg knots accordingly,
the proposed method successfully recovers local rigidonetand accurately sim-
ulatesC? continuities at desired regions, using relatively fewegrdes of freedom
and lower degree polynomials. The actual registration rsedihrough the use of
a variational framework, in which a constrained optimiaatproblem is solved to
reduce the differences between images and enforce bothrigichty and global
smoothness at the same time. The method has been testecha@ybtitetic exam-
ples and real data for its efficacy.

Although tensor-product B-spline based approaches ardatilinating in the
field of non-rigid registration, their applicability is s@iow limited due to the
structure of their regular domain. On the contrary, oursegtion method can cor-
rectly delineate the boundaries of rigid bodies in its dontaangulation at a much
coarser level, and thus model the local rigid motions morutely. Further-

more, with the degenerate knots on the boundaries of rigidtstresC° continuity
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is automatically guaranteed in the described displacefinrgdt and can be natu-
rally coupled with the optimization process. This advaatagables us to precisely
simulate the behavior of rigid objects inside elastic tsssuFrom the registration
point of view, the deformable regions around the rigid dtitees may become less
constrained by the regularization term and contributeaeitéxibility to the min-
imization of the cost function (3.3). As a result, the regison quality can be
considerably improved. An alternative way to mo@#8l continuities could be to
separate rigid and non-rigid regions into different domaigces. However, extra
efforts must be spent to keep the overall transformatiorsistent across different
pieces in a different hierarchy, and in general, the vamieti approaches over irreg-
ular domains in a hierarchical fashion have not been fulpl@ed. In this chapter,
only rigid structures with simple geometric shapes are ic@nsd in our experi-
ments for the feasibility test. To accommodate more comap#it structures, we
can subdivide the domain mesh adaptively along their baigglantil the desired
accuracy is achieved. The landmarks applied in our regjistrare interactively
selected by users based on their knowledge and subjectiatyrally, the registra-

tion result is affected by the quality of landmark selection
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Chapter 4

Registration of Temporal
Mammogram Using Triangular
B-splines Finite Element Method

(TBFEM)

4.1 Motivation

Breast cancer is one of the most common causes for canceseralaath,
with annual mortality of over 40000 women worldwide. Taking regular mam-
mographic screening and comparing corresponding mammmogra necessary for
early detection of breast cancer, which is also the key toesgful treatment. To
seek abnormality through comparison, the clinical diagnowolves either pairs
of mammogram from the bilateral breasts of the same patieatseries of mam-

mogram acquired from the same breast at different time. Wewéhe first method
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tends to be unreliable when the left and right breasts corsignificantly differ-
ent structures. But the latter one, which aims at detectiaderoporal changes in
the same breast, produces more robust results. Unfortynateemporal pair of
mammogram may vary quite significantly due to the spatigdatiies caused by
the variety in acquisition environments, including 3D piosi of the breast, the
amount of the pressure applied, etc. Such disparities caoibected through the
process offemporal RegistrationThis chapter contributes to the existing state of
the art in temporal registration of digital mammography.

Earliest attempts for mammogram registration typicallyumsed rigidity and
affinity of breast deformation. Yiet al. [156] align mammograms using an opti-
mal rigid transformation which minimizes the least squarerebetween two group
of control points. However, due to the elastic nature of theabt, it's far from
correct to match mammograms using solely rigid models. rl_gdial basis func-
tions (RBF) based on Thin-plate Spline (TPS) [110] and Cauchyidd Spline
(CNS) [148] are incorporated to build a global smooth nodrtgansformation from
a local displacement vector field representing spatiabcifices between corre-
sponding control points. However, those registration meftlepending on control
points are prone to failure when the pre-segmentation igrate enough. To this
end, recent techniques tend to incorporate the metricsuriagsntensity similar-
ities between corresponding images. Wetral.[149] align subregions according
to local mutual information, then combine them into a glalbahsformation using
TPS. Hadjiiskiet al.[42] propose an automatic regional registration methodglvh
bases on the identification of corresponding lesions in teaipnammogram pairs.
A pyramid-based multiresolution technique given by Kastelt al. [60] integrates
a least square measurement with TPS transformation to nbatderal mammo-

grams. Likewise, Rueckest al. [109] hierarchically match corresponding breast
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images, but using a B-spline based free-form deformatiobjf&chnique instead.
Due to the large variety of breast tissues and their mechbbahaviors, however,
it's more appropriate to register temporal mammograms Wiging model-driven
simulation. Pathmanathaet al. [83] build a patient-specific nonlinear 3D model
to predict the tumor location. Kitat al. [59] simulate the deformation of breasts,
and accordingly establish the correspondences betwegr@eand MLO mam-
mographic views. Richardt al.[101] [100] build a 2D FEM model from X-ray
mammograms, then conduct the registration by deformingpigext to both feature
and intensity-driven constraints.

Our approach is inspired by Richaed al's work [101]. But we employ a
novel triangular B-spline finite element method (TBFEM) isst@nd recover large
deformation between temporal mammograms following nealirelasticity theory.
Triangular B-splines, introduced by Dahmenal. [20], has many favorable fea-
tures, such as flexible simplex-based domain, space-acgintinuities, local con-
trol, etc. The most unique one of them is the ability to modekal sharp fea-
tures along in the approximated smooth solution. A exampléis is illustrated
in Figure.4.1(c). Therefore, the incorporation of TBFEM huit our registration
framework gives the following advantages over conventiGiiéMs: i) The region
of interest (ROI) can be accurately described and seleddtearegistration do-
main, while the tensor-product B-splines methods [109] s&itate extra efforts to
refine the problem domain along the irregular boundaries@i R) In contrast to
other simplex-based elements, such_agrange Polynomialsour TBFEM offers
a global smooth solution (Note that the continuities of tbkitsons given by tra-

ditional Lagrange FEM are not ensured across the elememidaoes). iii) Users
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are allowed to model the spatially varying continuitieshie pproximated defor-
mation field by manipulating the knot configuration accogdio pre-identified fea-

tures. Sharp features may appear in the displacement fiedd e elastic object
contains different materials (see Figure.4.1(a)(b) far toncept). iv) The accurate
simulation of the elastic deformation incorporating mateneterogeneity can be

achieved by using relatively fewer finite-elements.
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Figure 4.1: (a) A one dimensional cascaded spring system system consisting of three
springs with stiffness ok, 2k andk respectively. When the system is compressed by an
external forceF, it is deformed and the displacement caused aleagis is plotted in (b).

The sharp features andB in the displacement profile are built at the joint points between
different springs. (c) A functional approximated by a single triangulspbBne, where both

C! andCP continuities co-exist.
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4.2 Method

Template
Image

STEP 1:
Nonlinear
Elastic
Deformation

Deformed
Template
Image STEP 2:
Refinement
Intensity Result

Difference

Selecting and
Corresponding
Features Points

Reference
Image

Figure 4.2: Overview of the registration process.

The temporal registration problem can be stated as: givéngrevious mam-
mogram? (templatg and current oneR_(referencg, we are asked to find an opti-
mal transformatiop such that the disparities between them are reduced mayimall
Our registration process(see Figure.4.2) consists of msecutive steps, whose

details will be developed in the following.

4.2.1 Nonlinear Elastic Deformation

First, the registration domaif is defined over the breast region, which is
previously segmented frorg, and usually circumvented by the breast skin contour
and partial image boundaries. The domgiris then triangulated with the user-
specified feature lines(see Figure.4.3(a)). Then we atipesknots configuration
such that the knots collapse to their adjacent sharp featdfaus,C° continuity

will be successfully modeled in the solution of the recodettessplacement field.
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The objective of this registration step is to estimate tispldicement field™ :
Q — R? betweenZ and ®_such that they are aligned as much as possible. Since
the breasts compressed during mammography usually untsge deformation

(> 5%), our framework follows nonlinear elastic theory andegmsu by:

A(u)=—0-(14+0u)(Atr(E(u))l +2pE(u)) =f
u=ug on T[4 (4.1)
(I 4+ Ou)(Atr (E(u))l +2uE(u)) =go on "

in which St. Venant-Kirchhofielastic material is assumed afaeen-St. Venant

strain tensorE(u) is written in its second order:
Loagr LT T
E(u) = E(D(P Oo—1)= E(Du 4+ Ou+ Ou' Ou) (4.2)

The body forcd does not exist in this step. Andandp arelamecoefficient related
to elastic properties.

Due to the nature of registration problems, bbBinchlet andNeumanrcon-
ditions in Equation.(4.1) are dropped, and replaced by aloes of discretized
geometric constraints [101]. Such constraints in our fraor& consist of two
set of control pointgP and Q, selected fromR and‘Z respectively. The major-
ity of the control points come from the breast skin contourd their correspon-
dences are established following the approach proposeditig J¥47]. Further-
more, salient anatomical structures(vessels branchgdgenietc.) and pathological
points(microcalcification, etc.) are ideal to serve as lgaryi control points. Dif-
ferent from the control points automatically matched onliheast contour using
arc-length parametrization, the interior points need tmbaually selected and cor-

responded to each other in our current implementation. Mhatiesuch process can
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be automated by incorporating the technique proposed bydragltet al.[82]. An
example of the control points selected from both the tereat] reference images
is shown in Figure.4.3(b)(c).

The geometric constraints given lyandQ are formulated as follows:

Where thep; andg; are corresponding points. These constraints can be viesved a
a bunch of displacement vectors fraRnto 7.
To solve Equation.(4.1), we linearize it withewton’s Method55], thus the

solution can be approximated incrementally by:

AU~ AUM +A/(UMdU" = M+ 5 (4.4)
6fn _ fn+1_fn _ A(un—i-l) —A(Un)

ou" = u

in which the total displacement fieldis iteratively updated with the increment of

ou", which in turn is the solution of:

A'(uMdu" = " (4.5)

Finally we discretize Equation.(4.5) in our TBFEM model antis it in the
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approximate spac¥ := spar{B1,By,...,By}, whereB; denotes the triangular B-
spline shape function. After applyin@alerkin Method[15], we achieve its dis-

cretization form written by:

EN:&]E/ 23: &ijpq(u")oB@Bdx=0 [=1,....N (4.6)
k=1 Qi j.pg=1

in which 30" = 3"}, 30M'B; and&jjpq denotes a FEM discretization operator, the
detail of which is available in [15]. The equation above Iscdnditioned unless
combined with constraints given in Equation.(4.3). Sueptbsit there are toté
steps in the elastic deformation, the constraints cortethto the deformation at

then'" step are:

Bi(P)3 = (@~ u"(p) =17 (@7)

H'Mz
=

In essence, the constraints above progressively drag tiieotpoints in®_ to their
corresponding location iff. A linear-interpolation scheme is employed here to
predict the position of control points of the next time stéyote that alternative
schemes can be incorporated as well.

Substituting Equation.(4.7) into Equation.(4.5), we cahagconstrained linear

problem:

MPAU" = O
st. CAU" = D(U")
UMl=uU"4+AU" and U°=0 (4.8)

In current implementation, we first convert the problem abtw/an unconstrained
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system by usind\ull-space projectechnique [36], then solve it by Conjugate Gra-
dient method(CG). Note that if there is only one time-stepaes] for the simula-

tion, the deformation will degenerate to a linear elastie.on

(b) (c)

Figure 4.3: (a) The triangulated registration doma&Xwhere the feature line is highlighted
between the pectoral muscles and breast tissue. (b)(c) 8 interior acdn®&ur control
points in template and reference images respectively.
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4.2.2 Refinement with Intensity Difference Minimization

Let the displacement field obtained in the previous stephe¢he deformed
7 denoted byT’(x) = T (x+u*) which is in rough alignment witR. To fur-
ther improve the registration results, we pert@rbwith an additional displacement
field v by minimizing a intensity-based metric, which measuresstira of squared

difference (SSD) betweern’ andR :
1 /
E(T Rov) = o5 [ [7700+) ~ R00] (4.9)

wherea weighs the contribution of.

Similar to Equation.(4.1), the governing PDE in this step ba written as:
A(v)=—0-(Mr(E(v))l +2pE(v)) =f (4.10)

Note that we assume linear elasticity here because onlyl slefrmations are
allowed in the second step. Thus, the second order strasortendropped ané
becomes a linear differential operator. Instead of usingrgeric constraints, we
incorporate artificial body forces derived from the miniatinn of £. In addition,
we pin the images at both the upper and lower left corners ¢adavnnecessary

floating. Consequently, Equation.(4.10) is discretized to:
MOV = F(V) (4.11)
whereF(V) denotes the virtual body force, whose elements are:

(F(V))i = /Q(T(xntv)—K(x))D‘I(erv)Bidx (4.12)
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Note that the stiffness matrM ? is identical to that in Equation.(4.8) at the previous

registration step. A gradient descent like algorithm is kygd to solve it:

MOA™ L — F(v") (4.13)

vl — hA+(1-hV (4.14)

associated with a small positive valhe The iteration stops when a predefined
thresholde is met:
f(T, K;vn—i—l)
E(T,R;V")

<E&

4.3 Experiment and Results

Two temporal pairs of 2D X-ray mammograms in MLO views obéairwith
one year interval (see Figure.4.4 and Figure.4.5) are useéelst the registration
framework proposed in this chapter. All of the mammogrametsaze of 2294«
1914, resolution of 94um and 12-bit intensity depth. To suppress the noise as well
as speedup the registration process, a Gaussian filter Wwethna&| of 200 pixels is
applied to the mammograms before the registration.

The breast region is automatically segmented from eachentaged on a
threshold which is the value of the gray-level correspogdmthe first peak in the
smoothed histogram of the image. Our registration domathas defined over
the breast region, which is further delaunay-triangulatéti pre-identified sharp
features as geometric constraints [119].

For both pair of temporal mammograms, we approximate thenyidg dis-
placement field using second order triangular B-splines, hiickvsharp features

are naturally accommodated. A simple heterogeneous medataorporated with
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TBFEM to model different elastic material in mammograms. ¥oeng’'s Mod-
ules ofE = 10* andE = 1% are assigned to pectoral muscles and breast region
respectively to model stiff and soft tissue. These valueshosen empirically and
only their ratio matters in the first registration step, inieththere are no Neumann
conditions involved [28]. We choose poisson ratias 0495 to simulate incom-
pressible breast tissues.

During first registration step, control points are sele@atbmatically on the
parameterized breast skin contours and manually from &esbmterior region. 29
pairs of contour points and 8 pairs of interior points are&kedcfor the first exper-
imental case, while 33 and 6 pairs respectively for the sg.cdhe total nonlinear
deformation is divided into 20 time steps; In the second,stie@ regularization
term, weighted by the Young’s Modulg, counteracts the artificial image forces,
whose magnitude is controlled by the coefficient Choosing correct values for
these registration parameters is essential to the suc€eag algorithm. In our
case studies, we empirically setto 10~ andh to 1072, and receive satisfactory
results as well as adequate numerical stabilities. Thestragion result of both
experiments are illustrated in Figure.4.4. and Figure.4.5

To evaluate our approach, we quantitatively compare it with other simi-
lar registration methods. One of them is also based on TBFEMvlibout sharp
features modelingi.e knots are all fixed), the other uses second otdegrange
triangular elements instead. The experimental results@aamented in Table.4.2
where the registration qualities are measured by the ggsstration improvement
between template and reference images. It is noticeabtehbagre-registration
disparity is mainly reduced in the deformation step while ffecond registration
step makes only small contribution to the final result. Tresom is that the salient

information provided by X-ray mammograms are apt to trapititensity-based
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optimization within local minima. We also find that the regasion quality in our
framework can be improved by incorporation of prior knovgedf feature lines.
However, these improvements seem small in Table.4.2 beadube massive pre-
registration error between template and reference imagasipared with conven-
tional triangular FEM (Lagrange triangular FEM) with thersadegree of freedom
(DOF) and degree of order, TBFEM can delineate the recoveztatmation field
more accurately, and thus is superior in our simulatioredaggistration frame-
work.

Our algorithm was implemented with MSVC++. The experiment \par-
formed on a platform with 3GHz CPU and 4G RAM. Each step of naalirelastic
deformation takes up to 10 seconds. At refinement stage, agtaiset of images
re-sampled from the original mammograms with differenbhesons. The perfor-

mances of refinement step working on multi-resolution insagye documented in

Table 4.1.
| Image size | # of Iterations steps Timing |
2294x 1914 28 157m
1147x 957 21 22m
573x 478 16 7m19s
286x 239 12 92s

Table 4.1: Statistics of refinement step applied on multi-resolution mammogram images
(case 1)

4.4 Summary

In this chapter, we presented a simulation-based regmtrétamework for
temporal pair of 2D x-ray mammograms. A novel triangular Brspfinite element

method(TBFEM) is incorporated to accurately model the reoed deformation,
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TBFEM with TBFEM without | 2nd-order Lagrange
feature modeling feature modeling triangular FEM
Casel| stepl 86.41% 86.29% 85.93%
step 2 86.45% 86.32% 85.97%
Case 2| step 1 94.69% 94.66% 94.56%
step 2 94.72% 94.69% 94.58%

Table 4.2: The registration quality is measured by the post-registration improvement be-
tween template imagé and reference imag® , which is formulated ag|7 — R |?> — | 7. —

R |?)/|T — R |?> whereZ, denotes the new after the registration is conducted. In Case-1,
there are 2514 DOFs with 600 triangular elements, and for Case-2, tleeP6@0 DOFs

with 619 triangles.

as well as the sharp features between different tissue girepesing the technique

of knots collapsing. Our registration algorithm employsa®-stepped scheme:

the massive disparities between temporal mammograms stresfituced through a

nonlinear elastic simulation; then the mapping betweerptata and reference im-

ages is further refined according to intensity-based inédion. The results of our

experiment have also shown that the TBFEM incorporated withframework is

superior to traditional FEM method by improving registoatiguality considerably.
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Figure 4.4: Image registration for case one (a) Template Imdgé) Reference Image
R (c) Pre-registered error (d) Post-registered error after two-stgiptration technique is
applied
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Figure 4.5: Image registration for case two (a) Template Im&g€b) Reference Image
R_(c) Pre-registered error (d) Post-registered error after two-stgiptration technique is
applied
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Chapter 5

Automatic Registration of
Mammograms using Anisotropic

Features

5.1 Motivation

Breast cancer is one of the most common causes for cancedalaath,
with annual mortality of over 40@00 women worldwide. Taking regular mam-
mographic screening and comparing corresponding mammuogra necessary for
early detection of breast cancer, which is also the key foceasssful follow-up treat-
ment. However, the comparative analysis can be difficulabse of the great vari-
ability in the appearance of mammograms. Therefore, tHentque ofregistration
is often applied to reduce the spatial disparity between magram pairs during
Computer Aided Diagnosis (CAD).

The earliest attempt [156] for mammogram registration dgifly assumed

rigidity and affinity of breast deformation. Nevertheledse to the elastic nature of
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the breast, it is much more appropriate to match mammogramg nonrigid mod-

els. The warping techniques based on Thin-plate Spline \TE®] and Cauchy-
Navier Spline (CNS) [148] is widely used to estimate a globaingid transfor-

mation from local spatial differences between correspamdbntrol points. Since
the accuracy of control points extraction is usually nostworthy, the differences
between image intensities are often considered as the imgtchterion for better

registration [149]. However, mammogram images are fretip@ontaining ex-

cessive disordered texture features, therefore the ggtron for intensity-based
registration tends to get trapped in local minima, unlikelyield satisfactory re-
sults.

In this chapter, we present an automated framework for magrapbic regis-
tration, which is inspired by the work of [111]. Instead, weent a novel method
to match breast skin boundaries, and apply an accurate pmgaechnique which
matches both the positions and anisotropic attributeslettss landmarks simul-
taneously. The breast region is first segmented with thentqak proposed in [81],
then the skin contours are smoothed by using cubic B-splippsoaimation. To
robustly match the corresponding breast boundary poiresegk an optimal trans-
formation such that the mutual information given by the atmve functionals of
both skin contours is maximized. Then, the texture-basatilife points associated
with orientation attributes are selected from the interegion of breast images us-
ing Gabor filters, and then matched appropriately acrossmages. The extracted
feature points can be naturally characterized by the waythies are more distin-
guishable from surrounding pixels than the others. Finally extend the warping
technique initially proposed in [105], in order to integrdtoth the orientation and

intensity information in our imaging framework for bettechl registration.
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5.2 Extraction of Breast Boundary

(b) (©)

Figure 5.1: (b) shows the segmented breast region (white) from the mammogram image
(a). (c) displays the histograim of the mammogram, where the threshold value denoted
by tg is selected at the first valley left to the maximum histogram value.

Our goal is to obtain the breast boundary by segmenting #gesbregion from
the mammogram. We use histogram thresholding techniqusttoglish the bright
breast region from the dark background. An example is giudfig.5.1, where the
indicated thresholdy identifies the pixels left to it as the background, while the
others as the breast region. It's obvious that the succebe gegmentation largely
depends on how the threshold vatges chosen. A number of strategies to decide
the histogram threshold can be found in the literature [2], & our implemen-
tation, we select the threshalglas follows: First, the lowest and highest bins of
the histogranH of the mammogram are purposely discarded since they actarunt
the background noise. TheH, is further smoothed by applying a low-pass filter,
e.g. median filter or mean filter. After identifying the maxim histogram value
pp according to the approach proposed in [81], we choose tleslibidty as the

first valley value left top,. A example of the segmented breast region using the
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thresholdg is shown in Fig.5.1(b).

Since the border of the breast region segmented as abovinés reoisy, we
smooth it by sequentially applying a pair of morphologicpérationsclosingand
opening An octagonal-shaped operator with radius of 10 is used esqmve the
shape of breast region and gives the best smoothing reshiéin We can extract
the breast skin contour by traveling along the border pigethe segmented breast
region. If the contour is not smooth enough, we will filterytissing cubic B-spline

approximation method.

5.3 Matching Boundary Points

curvature

-10 L L L L L I I

Figure 5.2: Ag, A; represent the discretized curvature function€eandC;. A*{ is the
curvatures o€, after being stretched.

The deformation of breast skin contours determine how ttexior deforma-
tion take place to a large degree. Rather than match the bogupdamts with the

assumption of local linear stretching [111], we treat thea skntours as nonlinearly
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stretchable and align the points on them by maximizing theualunformation be-
tween the corresponding curvature functionals.

Let Co, C;1 represent the corresponding boundary contours,canhch denote
their curvature functions, respectively. To facilitate tiegistration proces€y, Cq,
Co andc; are uniformly parameterized to the doménl|, and treated as function-
als. We further convert the value af,c; into finite bins[1...M], thus obtain their
discretized functional representationfgsandA; (see Fig.5.2). It is obvious that if
bothAg andA; are considered as one dimensional images, the problem ohmgt
boundary points can be converted to one dimensional rag@trproblem. That is,
given the discretized curvature functiohgandA;, we are asked to find an optimal
transformation (or stretchindy: [0,1] — [0, 1] such that

h:argmin(—Ml(Ao,Afl‘) —t)

2
dt) (5.1)

where the stretched curvature function, denotedhys equal toA; (h(t)), and the

mutual informatiorM| is:
M M 0l
. ph (Ia J)
AO Ah Pr 1 O—F——
ZZ po(l)p%(J)

in which p°, pﬁ represent the corresponding marginal probabilitie&iandA”, and
pAt denotes the joint probability df, j) betweerdg andAY. In equation (5.1), the
minimization of the first ternMI| aims to matching the boundary contours accord-
ing to the likelihood between their curvatures, while theos®l term discourages
undesirable transformations, which helps to improve theerical stability.

To decrease the dimension of the optimization problemdtatequation (5.1),

we represenh by using cubic B-splines approximation. And the error fubictis
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minimized through the gradient descent method. Note tlsatd@n-trivial to calcu-
late the gradient of the mutual informatidhl because it depends on the discretized
bin values, thus is discontinuous. However, this obstaate e tackled by esti-
matingMI with Parzen windowechnique, and an efficient method to evaluate the

gradient can be found in work documented in [48].

5.4 Extraction and Matching of Texture Features

In order to recover the local deformation in the interior loé¢ treast region,
it's desirable to extract texture-based features and nth&ah between correspond-
ing mammograms. Similar to the selector introduced in [L&diere the features
with rotation and invariant properties are extracted aedrsible filters are used, we
propose to employ Gabor filters to detect those featuregusecthey have been
reported more robust and more responsive to oriented &=a{G} than steerable
filters.

The real Gabor filter kernel oriented at anfle- —11/2 is defined as:

X2

(X,y) = ! ex . —+y—2
g ’y_2T[0X0y P72 o7 o

cog 2rtfx) (5.2)

where the parametedg, oy andf are decided from the following rules: Lebe the
full-width at half-maximum of the Gaussian term aloxgxis. Thenox =1/2.3,
andf =1/1. The value oby is defined agy = | ox, wherel denotes the elongation
of the filter alongy axis. In current implementation, we empirically set 5 and
| =5.

The kernels at other angles can be obtained by rotating (v&) the range

[—11/2,1/2]. In our experiment, we used a filter bank of Gabor filtgrgx,y), k =
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0,1,---,15, oriented at the angles af = —1/2+ 1k/16. If the a imagé(X,y) is
processed, the filtered images becdMgx,y) = (I x gk)(X,y), where the asterisk
operator denotes linear convolution.

Due to the huge dimension of mammograms, it's not neceseatgtect fea-
ture points over the entire breast region. Instead, we ansthe selection done
only on certain points, which are decided Banny Edge Detectiotechnique.
Since many overlapping structures exist in mammogram isyage local estima-
tion of feature orientations is not reliable. To this end,pxepose that the response
S(x,y) at pixel (x,y) to thekth Gabor filter is measured as the average of neighbor-

ing responses, and defined by:

S00Y) = o S MGG P 53)

’ |ieN

whereN represents a & 5 neighborhood. Le§, > S, > S be the first three
largest magnitude of responses in descending order atgoéity), and the cor-
responding angles akg(X,y) = Ok,, Y2(X,y) = Ok, andys(X,y) = O,. To find the
bifurcate structures among all candidate points, we checkt following condi-

tion:
Sa=Se g3
S, — S <0.

If it's satisfied at a certain poirik,y), we consider there exists a bifurcate structure.

Let P andQ be the set of the junction points detected on both mammogram
images. The correspondence between betvirandQ can be established as fol-

lows:

1. Let both mammogram images denotedlpyndl;. We estimate two ap-

proximate transformatioris andT ~! between them, whef& mappers from
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lo to I1, while T~1is its inverse. Note that these mappings can be easily
constructed using thin-plate spline approximation, usimggboundary corre-

spondences that have been established in section (5.3).

. If eitherP or Q is empty, stop.

. Pickp as the point with the maximum value §f, from P. Denote its prin-
cipal and secondary orientation ly(p) andy»(p), respectively. Thus the

actual angle between them is calculated as:

Y2—=Y1 @ Y2—Y1>0
0(p) =
Y2—VY1+TU . otherwise
To improve the robustness of our algorithm, we also comgaeearby in-
tensities of the feature points for best matching. To thid, @m additional
image regiorL(p) centered ap with size of 30x 30 is selected, then after

cancellation of shearing and rotation effects, its nornagion formR(p) is

written by lo(A(L —p) +p), where

COSy1 —cCosy;/tand —siny;

siny; —siny;/tanB+ cosy;

. Letp’ =T (p) be the estimated transformed pointpoin 1;. We search irQ
for candidate feature poit such that: 1)p’ —q| < ry; 2) the smallest angle
betweeny;(p) andyi(q) is less tharrt/4; 3) |8(p) — 6(q)| < T/4. rq is the
maximum distance between each pair of feature point, wisdei to 20 in

our experiment. If we can'’t find any candidate@) then removep from P
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and jump to 2; otherwise, we select the best apayhose normalized local
imageR(q) shares the maximum mutual information wikp).

5. To avoid condensed feature points, which may introduggeldistortion in
the recovered transformation, those point®iwith distances tg less than
ro are removed; Likewise, the neighboring pointgjtare also dropped iQ.
ro is the threshold that decides the minimum distance amongriEsapoints.

6. Swaplp andly, PandQ, T andT 1, then go to 2.

(@)

Figure 5.3: (a)(b) show 40 pairs of anisotropic features extracted in the left ahtimgm-
mograms, respectively.

Fig.5.3 shows a pair of bilateral mammograms, in which thearopic fea-

tures are extracted using our approach.
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5.5 Recovering Transformation with Anisotropic
Features

Each of the feature point extracted above is associatedanitirientation that
is the principal direction of1. Therefore, for better registration result, it's more
appropriate to align the orientations of the landmarks whitéah to the matching of
positions [105].

We denotep; andq; the corresponding landmarks igandly. Their orien-
tations are represented by two unit veatiprand g, which points to eithey; or
y1 £ Tt Then the transformation betweenly andl, can be recovered by solving

the following constrained optimization problem:

E(u) =M(lo,l3,u) + A1) det(e, (ud — (ud)T)|pdi) (5.4)
i=1

Whereu denotes the transformation to be recovered. The first Mrim designed
to match the intensity information between two images ashhascpossible. The
criteria,summed squared differen¢8§D), is currently incorporated in our current
implementation. It is obvious that other metrics, for exésnpnutual informa-
tion and correlation, are also possible here. The secomd i®the penalty for
the misalignment between the orientations of correspanidindmarks. Note that
(ud— (uO)T)|p,di is the rotated vector of; after the transformation, which is re-
quired to be collinear witle, to register anisotropic information.

Note that there is no regularization term included in equa(b.4). This is
because we discretize the transformation field by usingccBespline represen-
tation, which already has an inherent nature for regulidaa To achieve better

registration result, we introduce several pseudo landsairkhe image corners and
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boundaries to avoid unnecessary image floating. In the gg#tron of equation
(5.4), all of the positional correspondences are treatdubhes constraints, which
further ensure the correct matching between the oriemstigsociated with land-

marks.

5.6 Results

Our registration framework is demonstrated by matching magrams from
the MIAS digital mammogram database. Three bilateral paitsft and right im-
ages are selected and demonstrated in Fig.5.4, repregéatiyrglandular tissues
(MIAS 015/016), dense-glandular tissues (MIAS 35/36) aatlyftissues (MIAS
75/76) respectively. The right mammogram is registerechéléft one in each
case. The effectiveness of the registration process cawdhgaded using compar-
ative measures such as image-subtraction. By comparingpdepost-registration
errors, we found that much of the misregistration in thenegastration difference
image occurs along the periphery of the breast. After thadtreoundary points
aligned using technique proposed in this chapter, mosteopénipheral differences
can be removed from the subtraction image. In addition, th&ching of texture-
based anisotropic features selected from the interiorebtieast region also helps

to further improve the registration result.

5.7 Conclusion

In this chapter, we presented an automatic imaging franmeteoregister cor-
responding mammograms with little human intervention. dinbines a robust

contour-matching algorithm for the matching of breast lotaries, and a novel
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feature-matching technique, which unwarps correspongiagimograms accord-
ing to the texture-based anisotropic features automatisalected from the breast
region. The experimental results also indicate that thegsed approach can pro-
vide useful information for better detection of breast abmalities. In future, we
will test our registration method on real clinical data farther evaluation of its

robustness and efficacy.



(€)

(k) 0

Figure 5.4: (a)-(f) represent MIAS15/16(fatty-glandular), MIAS35/36(defigandular)
and MIAS75/76(fatty) pairs, respectively. (g)(i)(k) show the pegistration error. (h)(j)(I)
demonstrate the post-registration error. The asymmetry structure (highlightethe blue
circle) in (I) is more distinguishable from the surrounding pixels than thatarregistration
error map of (k).
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Chapter 6

Spline Thin-Shell Simulation of

Manifold Surfaces

6.1 Motivation

Flexible plates and shells are the fundamental geometuctstes found in
many fields of applied engineering nowadays. Since physased method is of
great popularity for geometric modeling and simulation in[@&AM, the sim-
ulation of thin-shell objects is frequently required in neod engineering design
practice. However, the modeling and simulation of thinishleave traditionally
been treated as two different stages due to the lack of a comepresentation
scheme. An intermediate data conversion process is oft@toged to couple the
modeling and simulation, but it may deteriorate both acoyi@nd robustness of
the whole system. Therefore, an unified representationdvoeiideal to overcome
such difficulties.

In theory, FEM can provide an approximate solution to thebfmm of thin-

shell deformation, but it still remains as a challenginggbem due to two obstacles:



75

Traditional finite-element is exclusively defined on pladamain, thus incapable of
describe smooth surfaces and accompanying vector fieldsmflex manifolds and
topologies without patching/trimming; Thin-shell finidement must be at least
continuous to ensure the convergence of the solution acgptd Kirchhoff-Love
theory. However, traditional finite-elements, endowedhwatirely local polyno-
mial shape functions, usually suffer from the difficultia®nforcing the desire@*
continuity across the element boundaries.

A number of different approaches have been attempted to abthb afore-
mentioned obstacles in thin-shell simulation. Due to theeient difficulties inCt
interpolation, alternative methods have been proposedrtgpmomise th€?! conti-
nuity requirement, such as degenerated solid elements;edentegration penalty
methods, and many others [11, 70]. Most recently, Ciedlal. [16] used the shape
functions induced by subdivision rules for thin-shell flaglement simulation. De-
spite their modeling advantages, the subdivision surfdoasot allow close-form
analytic for their basis functions, and have more unnecgsdraordinary points
depending on the connectivity of the control mesh (instddldepintrinsic topology
of the manifold). Another noteworthy FEM presented in [68ks Element-Free
Galerkin (EFG) method to simulate and analyze Kirchhofflstend plates. How-
ever, it requires extra efforts to combine the model geoynetth the simulation
process via data conversion. In general, all these appesafell to provide an
effective way to handle thin-shell surfaces with sophated topology.

In this chapter we articulate a novel framework that naty@uples the mod-
eling and simulation processes for arbitrary thin-shetfasies. Spline surfaces are
prevalent in commercial modeling systems because of timgue advantages in
shape modeling, manufacturing and visualization. Withrdeent development of

manifold spline theory [39], which enables the flexible donstion of splines over
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any manifold of arbitrary topologies, we particularly imiuce a novel thin-shell
finite-element based on triangular B-spline [20] defined avanifold domain. The
advantages of our method over the previous state-of-tttearshell simulation in-
clude: First, the shell objects of arbitrary topology carebeily modeled by man-
ifold triangular B-splines, with a minimum number of singufaints intrinsic to
the topological structures of the manifolds; Second Gheontinuity requirement
can be easily achieved for triangular B-splines; Finally, spline-based primitive
naturally integrates geometric modeling with physicaldation by avoiding un-
necessary data conversion and meshing procedure, whidbawto faster product

design and development cycle.

6.2 Spline Representation of Manifold Surfaces

(a) domain (b) spline (c) control points

Figure 6.1: A genus-3 manifold triangular B-spline. (a) domain manifold with 742 trian-
gles. (b) cubic manifold triangular B-spline surface. (c) spline overlaild eontrol points

In [39], Gu, He and Qin systematically build the theoretenfiework of man-
ifold spline, which locally is a traditional spline, but d¢lally defined on the mani-
fold. First, the manifold is covered by a special atlas, et the transition func-

tions are affine. Then, the knots are defined on the manifddiam evaluation of
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polar form is carried out on the charts. Although on différelmarts, the knots are
different, the evaluation value is consistent and indepandf the choice of charts.
Furthermore, the existence of such atlas depends on thenltwpalogy. This new
paradigm unifies traditional subdivision surfaces andhggli

The geometric intuition of the definition of manifold splime that first we
replace a planar domain by the atlas of the domain manifold tlen all the con-
stituent spline patches naturally span across each otlieowtiany gap. The cen-
tral issue of constructing manifold splines is that thesathaust satisfy some special
properties in order to meet all the requirements for theuatadn independence of
chart selection.

In [39], Gu et al. show that for a local spline patch, the ordyngssible pa-
rameterizations differ by an affine transformation. Thiguiees that all the chart
transition functions are affine. Furthermore, they show ¢gingen a domain mani-
fold M of genusg, a manifold triangular B-spline can be constructed with n@eno
than|2g — 2| extraordinary points.

The manifold triangular B-spline can be written as follows:

Fu)=>"> cgN(@u)Ng), ueM (6.1)
I IBl=n
wherec; g € RS are the control points. Given a paramaier M, the evaluation can
be carried out on arbitrary charts covering
Manifold triangular B-splines have many valuable propesrtigich are criti-
cal for geometric and solid modeling. For examples, madifolngular B-splines
are piecewise polynomial defined on the manifold domain bitary triangula-

tion. Therefore, the computation of various differentiedgerties, such as normals,
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curvatures, principal directions, are robust and effici&he splines have local sup-
port, i.e., the movement of a single control paing only influences the surface on
the trianglel and on the triangles directly surroundihgThe manifold triangular
B-splines are completely inside the convex hull of the cdrgmnts. The degree

n manifold triangular B-splines are @"~-continuous if there are no degenerate
knots. Furthermore, by intentionally placing knots alohg edges of the domain
triangulation, we can model sharp features easily. The folanspline of genus
g(> 1) has 3 — 2 singular points. See Figure.6.1 for an example of genus#d-m

fold triangular B-spline.

6.3 Spline Thin-shell Simulation

6.3.1 Elastic Thin-shell Mechanics

The mechanical response of a spline surface with an attabiedchess prop-
erty can be computed with the classical Kirchhoff-Love bktiedory. In the interest
of smooth technical flow, let us briefly review the derivatadrthin-shell equations.
Detailed presentation of classical shell theories can bedelsewhere in mechan-
ical engineering literatures.

Thin-shell is a particular form of three-dimensional soklose thickness is
significantly small as compared with the other two dimensiopetX(6,0,) de-
note the middle surface of the thin shell, whé&eand 6, are the parametric co-
ordinates of the surface. The generic configuration of thedl €lan be described
as

h
S={x € R¥|x = X(01,62) + 83X 3(61,67), —Egegg 1

NI D

whereX 3 is a unit director vector normal to the middle surface of thelisboth
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in the reference and deformed configuration under the KotfHtove hypothesis.
The internal energy of the shell depends on the differeqgtiahtities of the middle
surface, such as the metric and curvature tensor. Assuiniegrized kinematics,
the displacement field of the middle surface is introducad &g 62) = X(01,6,) —
xo(el,ez), where the superscript “0” is used to denote the measuremehe
reference configuration. Thus, the linearized membranebanding strain tensor

can be expressed as:

1
&j = E(Xf)i'UJ +X?j uj), (6.2)
pij = —Ujj - XS+ (30 Hua- (X5 x XG) +uz- (X§ x X)) (6.3)

whered = |X 1 x X 2|, X3 =J"1(X 1 x X 2), and|X 3| = 1. Here, the subscripts
take the values of 1 and 2, and a comma denotes partial diffatien. Note that,
the derivation of the membrane and strain is independefhieoiitroduction of the
Kirchhoff-Love hypothesis.

Under the assumption of linearity of elasticity, the straimergy density is

defined as follows:

1 Eh 1 ER
W(u) = 57— 5H " eapeys + QmHGBV%aBPV& (6.4)

in which, the first term is the membrane strain energy demsit/the second one is

the bending strain energy density. Thus, the overall p@teshergy is as follow:
E(u) = /QW(U)dQ‘f' Eext = Eint + Eext,

whereEj is the internal elastic energy akgy; is the potential of the applied forces.
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Following the principle of minimum potential energy, we aget the stable equilib-
rium configurations of the thin-shell. The Euler-Lagrangeations corresponding

to the minimum principle may be expressed in the weak form as:
(DEjnt(u),V) 4+ (DEexi(u),v) =0 (6.5)

wherev is the trial displacement field.

6.3.2 Spline Element Discretization

Following the construction of manifold triangular B-splggiven in (6.1), we

can extract the basis functions and write them by:

Z N(@(V)Vg) VEM (6.6)
&(1B
in which& : N x N2 — N associates each local simplex-spline with an unique global
shape functions it contributes tpjs the conformal mapping, anglv) denotes the
point in the planar domain, mapped from a manifold peintWe will use these
expression in the following discussion, and repreggn} by x if necessary.
Thus, we can easily extend the membrane and bending strasorgefrom

planar parametric domain to manifold domain and write thetmeé form:

L
e(Q(v)) = > M (g(v))ur, (6.7)

L
(V) = B (a(v))u (6.8)

=1

whereB' are the membrane and bending strain matrices {and = 1,...,L} are
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the nodal displacement vectors.
Substituting equations (6.7) and (6.8) into (6.5) yields timear equations

developed from the manifold domain as:

KU =F (6.9)

where K is the stiffness matrix,U is the collection of nodal displacement
[ul ---ul]T, andF is the nodal force vectorK is a block matrix which can be

conveniently assembled by filling in the following<33 matrices:

Ehd

INT J
—12(1_V2)(M) HM? | dM

Eh
KN — MOTHM?
i [Hz( THM +
with the constitutive matridd made of contravariant metric tensors, the definition

of which is available in [16]. The construction Bfwill be discussed later.

6.3.3 Implementation Details

Numerical Integration The thin-shell FEM simulation needs to compute the
Kirchhoff energy of the deformed shell surfaces. Howeves,dvaluation of the in-
tegrations over arbitrary manifold surfaces has been destgahg problem, which
is usually awkwardly handled by piecewise parameterinatidVith the global con-
formal mapping coupled with triangular B-splines theory,ea@ conduct the inte-
gration on an equivalent planar domain instead, and usesaplesshed numerical
integration techniques. In our system, the shell elemartsaected as the trian-
gles of the tessellation, from which the triangular splise€onstructed. Then we
regularly subdivide each element into small congruenngiies, and compute the

integration using triangle Gaussian quadratures.
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Boundary Condition HandlingTo facilitate the process of intuitive geometric
design, we include point-based constraints as the inputtfothin-shell simulation
system. The users are allowed to pick up a group of pointsesyline surfaces, i.e.
PO = {p?,pd,...,p8}, and assign them with desired positions after the defoomati
i.e.P={p1,p2,...,Pn}, Wwheren denotes the total number of the point constraints.

This linear constraints thus defined can be grouped in axfatmat as:

PP+Cu=P

whereC is an extremely sparse matrix that stores the basis functilues at corre-
sponding constraint poin®°. To combine the constraints with the Equation (6.9),

we solve foru in the Null-space o€, such that:

u=Nu4u®

whereCN = 0 andCu® = P— P%. We use Gaussian-Jordan-elimination-like ap-
proach [14] to construd, and solve foru® by either singular value decomposi-
tion (SVD) or QR decomposition method. Due to the extremessfyaand rank-
deficiency ofC, such method is computationally viable to handle poinieldageo-
metric constraints.

Level-of-Detail (LOD) SimulationThe shell objects with affluent surface de-
tails requires massive number of degrees of freedom (DQFdcurate geometric
modeling. However, the triangular B-splines models havarge number of con-

trol points are not suitable for interactive geometric dasiThus, we incorporate
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a level-of-detail (LOD) strategy to accommodate thin-sbeformation of sophis-
ticated models. Any thin-shell surfacdscan be decomposed to a smooth spline-
based surfac& and a scalar functiod describing the additional displacements,
ie.

S(X) = So(x) +d(x) - n(x)

wheren is the normal vector 0%&. Practically,Sy can be estimated by fitting the
original surface using manifold triangular B-spline witHatésely small number
of control points [45]. Then the magnitudes of the fittingoesralong the normal
directions will be further modeled as a spline-based famaiwith more degree of
freedoms. For the LOD simulation of a complicated thin-sheddel, our system
allows users to sculpt on the base surfagggshen the previously recorded details
will be automatically applied to give the final design resulFigure.6.2 gives two

examples of geometric design with LOD thin-shell simulatio

6.4 Results

Our system is implemented on a Microsoft Windows XP PC witklIRentium
IV 3.0GHz CPU, 1.0GB RAM, and an nVidia GeForce Fx 5600 Ultra G
have run a variety of examples to verify and test the efficawy @erformance of
our method. These examples includes a female face, the@stddninny, a torus and
a kitty. Both the face and the bunny are LOD-modeled. And baghtorus and the
kitty models have non-trivial genus. The statistics andgvarances of thin-shell

simulation on these examples are documented in Table.6.1.
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| | Kitty | Torus| Bunny(LOD)| Face(LOD)|

So(X) #DOF | 990 324 662 256
Order 3 3 3 5
d(x) #DOF | N/A N/A 3106 3181
Order | N/A N/A 4 5
#Constraints 8 6 30 9
Stagel| 25.06s| 3.25s 17.81s 7.34s
Timing | Stage2| 0.56s | 0.15s 8.38s 0.53s
Stage3d| 2.34s | 1.19s 2.09s 1.53s

Table 6.1: Model statistics and performance data. Stage one is assenlistgge two is
to handle boundary constraints, and stage three is deformation.

6.5 Summary

In this chapter, we propose a novel paradigm that succéssiatulates the
elastic deformation of thin-shell objects. We also prowiders with a LOD sculpt-
ing tool for esthetical geometric design. The experimestiits show demonstrate
that the proposed thin-shell FEM method has the followingaathges over the
traditional ones. It can easily achieve #8& continuity requirement, and repre-
sent arbitrary thin-shell surfaces using splines with minin number of singular
points. Our spline-based primitive naturally integratesmetric modeling with
physical simulation in the entire CAD/CAM process, thus umssary data con-
version and meshing procedure is total avoided. For futwekywve will extend
current framework to handling large thin-shell deformatiwy considering non-
linear elastic energy, and solve the simulation problenemgoral dimension for

animation applications.
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(d)
V)
(h)
Figure 6.2: LOD thin-shell simulation (a)(e) the original surfaces with feature details.

(b)(f) the base surfaces with geometric constraints. (c)(g) the bafsess after thin-shell
deformation. (d)(h) the original surface after LOD thin-shell defornmatio

(9)
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(9) (h)

Figure 6.3: (a)(b) 6 points constraints applied on the torus surface. (c)(d) thelsafter
deformation. (e)(f) the front and side view of the kitty with points constraifgd(h) the
front and side view of the deformed kitty shell.
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Chapter 7

Restricted Trivariate Polycube

Splines (RTP-splines)

7.1 Motivation

Volumetric data of massive size are now available in a widetyaof scien-
tific and research fields, because of the rapid advancememb@dérn data acquisi-
tion technologies. A frequently occurring problem is howctmvert acquired 3D
raw data of discrete samples into a continuous representafion which simula-
tion and analysis processes can be efficiently developedendately computed.
The majority of traditional solid modeling techniques dgyithe past four decades
have been established upon the following theoretic fouodst constructive solid
geometry (CSG), boundary representation (B-reps), andgpatie decomposition.
Most of these representations lack the ability of smoothiygleling solid geometry,
which is required by modern engineering design in order teatlly apply physi-

cal simulations on modeled solids, without the necessitgxplensive remeshing
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of finite-element structure and shape data conversion legt@iscrete and continu-
ous representations and between linear finite elementsighértpiecewise splines
in 3D. In practice, real-world objects (directly acquireid the scanning process)
have complex geometry and non-trivial topologies. Theeefaonstructing effi-

cient representations for general solid objects in favoplofsical simulation and

engineering design remains to be a very challenging task.

Trivariate simplex splines [50] have been developed to rhadelti-
dimensional, material attributes of volumetric objectewtdver, computing blend-
ing functions and their derivatives on simplex splines i$ stoaightforward and
inefficient, compared with NURBS and tensor-product B-splifdso, how to au-
tomatically place boundary sub-knots to avoid numericaleteracies remains to
be an open problem. Trivariate simplex splines are defined am unstructured
tetrahedral grid, which can be easily obtained from tridagmeshes by certain
mesh generation softwares suchTasgen[122]. Although solid object of com-
plex topologies and geometries can be modeled by trivasiaiplex splines upon
such unstructured grids, the majorities of simulation svhave preferences on
structured grid. This is because, low-quality tetrahedrashes usually cause large
simulation errors or numerical instability. Motivated byrent industrial practice
in various engineering design and analysis systems, wesfoculesigning a volu-
metric spline modeling framework based on structured goithains.

In the framework ofisogeometric analysiproposed by [53, 157], trivariate
tensor-product B-splines/NURBS are directly used for modedimooth geometry,
material attributes, and physical simulation of solid abgesimultaneously. Mar-
tin et al. [75] convert a solid femur mesh to a cylindricalvariate B-spline by
parameterizing the model into a solid cylinder. Due to thgotogical limitation

of the cylinder domain, the constructed trivariate tenm@duct splines can not
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model solid objects with bifurcations and arbitrary togpés, without enormous
efforts in patch gluing/trimming, and imposing smoothnemsstraints along patch
boundaries. Furthermore, local refinement required inlHef+eetail modeling is
not supported by tensor-product splines because basisdaonefinement will in-
troduce many superfluous control points across the entimeado As an extension
to NURBS, T-splines [116, 117] solve this problem on semi-taggrid domains.
To the best of our knowledge, no work has generalized T-splfor three dimen-
sional, multi-attribute data and directly applied them tduwmetric geometry and
data modeling.

Directly generalizing T-spline surface to volumetric dstaot straightforward
and far from trivial. A general T-spline function defined oasivariate domain can

be formulated as

_ X WpiBi(u.Y) (u,v) € R?, (7.1)

Fluv) = > ik WiB; (U, V)

wherep; are control points associated with weight andB;j(u,v) denote basis
functions. With this definition, two pieces of T-spline pags can be stitched to-
gether by blending boundary basis functions, and we formnaTspline that can
preserve smoothness across the boundary. Trivariateiriesphherit such nice
features, and T-splines defined on polycube volumetric dlosnzan be similarly
constructed by gluing a group of T-spline cubes. Howeveg, d¢hlculation of
this T-spline function and its derivatives requires to dé/blending functions by
the sum of all the contributed ones. This will make the evamacomputation-
ally inefficient. RecentlySemi-standard-splines introduced in [116] guarantee
> 1 wWiBi(u,v) = 1 in Equation (7.1) across the entire domain. In this setting

computingF(u,v) and its derivatives can be much more efficient.
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Figure 7.1: Extra support regions. On a concave domain, if the supporting boxrregio
a blending function intersects with the domain boundary (e.g., boxes afidv,), extra
control points (e.g., in red regions) could contribute to the function blendiamgcessarily.

However, how to construct a semi-standard T-spline, eafigadver non-
trivial parametric domains, is a challenging problem. Awotissue is that, con-
ventional T-splines are defined with open boundaries, the. ,support regions of
blending functions may go across the domain boundariesh Suopen-boundary
scheme upon polycube domain will cause control points t@aessarily contribute
to extra domain regions. Two examples are shown as redaggioFigure 7.1.
This might cause geometric inconsistency in modeling ugiohgy solid objects,
and in physical simulations. Therefore, it is ideal to havieiariate spline in-
herit from T-splines, that (1) is defined within the largessile region inside the
domain, and (2) has the property of semi-standardness. SuaH splines will
greatly facilitate direct modeling and physical simulasaf arbitrary solid objects
with complex geometries and sophisticated topologies. Siti@e constructed in
this chapter has these properties, and we call it the Rexdribtivariate Polycube
Spline (RTP-spline). We present a framework of RTP-splow@sstruction and the
data conversion of volumetric models to this spline repreden.

The main contributions of this chapter include:
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1. A new spline (RTP-spline) scheme is uniquely formulateer @olycube do-
main, with blending functions restricted inside domaindaries. The RTP-

splines also have the following advantages:

e Itis capable of local refinement;

e Computing RTP-spline functions and their derivatives is monore ef-

ficient than that on traditional T-spline surfaces;

e The polycube domain enables natural modeling of arbitratil ob-
jects, since low distortions and few singularity points areoduced
in volumetric parametrization when the domain mimics thergetries
and topologies properly;

e The restricted boundaries of RTP-spline effectively eaghe physical
modeling and simulations adhere to the geometries of uyidgrbb-

jects.

2. We develop a novel framework to construct RTP-splinesiieféective top-
down fashion.

3. We construct RTP-splines on several volumetric modetls baoth geometry
and synthesized texture information (to mimic materialpgries), which
demonstrates that our RTP-splines can model not only gegprbat also

multi-attribute fields within an unified paradigm.

7.2 Related Works

Research on spline-based volumetric modeling has gained attention re-
cently. 4D uniform rational cubic B-spline volume is used ¢mstructively model
FRep solids defined by real-valued functions [112]. The neth@sented in [76]

represents and specifies physical attributes across aidt&yaNURBS volume.
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However, it is more desirable in engineering design to haventegrated model-
ing framework that represents geometry, material atteuand conducts simula-
tions simultaneously. Trivariate NURBS are used to modeles&kimuscle with
anisotropic attributes [157], on which NURBS-FEM analysidirectly conducted.
Martin et al. [75] present a method based on volumetric harofunctions to pa-
rameterize a volumetric solid to a solid cylinder in ordeffitca single trivariate
B-spline to geometric data and model simulation attribufemodeling technique
based on triangular simplex spline [50] is developed to rhadd render multi-
dimensional, material attributes for solid objects withmgdicated geometries and
topologies.

The splines proposed in this chapter are founded upon tipdiflegechnique,
which is invented in [117]. T-spline is a generalization dJRBS, but permits
T-junctions on its control mesh and enables local insexicadditional knots with-
out introducing superfluous control points. A local refinet@ethod is proposed
in [13, 116] to simplify NURBS surfaces to T-spline represéntes by removing
superfluous control points. The merge of B-spline patchesefover different
local domains for getting a single T-spline representatiorthe manifold domain
is thoroughly discussed in [54].

Bazilevs et al. [4] propose an isogeometric analysis framnkewased on T-
splines. Its main focus is on planar T-splines for surfaaad,volumetric T-splines
is only briefly mentioned without offering any technical aiét. Generalized trivari-
ate T-splines (whose control points are associated witlghts) are employed
by [123] to model free-form deformation fields. For the puspm®f shape meta-
morphosis, 3D level sets represented by T-splines are adap{32, 151-153] for
its efficiency. This is because, the distribution of T-selicontrol points can be

made adaptive to the geometry of the morphing objects.
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Our work relies on the generation of a polycube domain andrpatrization
upon it. The concept of polycube domain is originally pragmbfor seamless texture
mapping with low distortion [127]. Polycube volume and itsface parameteriza-
tion can be constructed either manually [127, 135, 136] ¢oraatically [46, 67].
Based upon specially-designed surface parametrizati@] [duilds manifold bi-
variate T-spline over a polycube that can handle models avhitrary topology. A
few recent work [65,74,143] studies the parameterizati@swolid object to canon-
ical domains such as spheres, polycubes, etc. Volumet@erpterization typically
starts from any given surface mapping, and parameterizshgmetric data onto a
solid polycube domain serves as an important pre-procgssap for the conversion

of any solid model to RTP-splines.

7.3 Preliminaries and Notations

In this section, we introduce the general algorithm to cwmsttrivariate T-
spline with duplicate knots on regular box domain, reviewttieory of basis func-

tion refinement, and define necessary notations for the féisisacchapter.

7.3.1 Trivariate T-spline with Duplicate Knots

Defined on a grid structure that allows T-junctions (or T-heshe T-spline
proposed in [117] is a generalization of non-uniform B-spiinflor NURBS).
When considering a simple cube domain, the definition of Taspsurfaces can
be straightforwardly extended to three dimensions andrgéng&ivariate T-splines
on T-lattice grids. We can use “T-junctions” to refer to tiersections between
faces and/or lines. LeéE(7/,C, F) denote a rectilinear grid structure that permits

T-junctions, wherel/, C, and ¥ are sets of vertices, cells, and faces, respectively.
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Figure 7.2: At vertexv;, there are at most 27 duplicate knots that can be placed on an
imaginary 3x 3 x 3 grid. The center one is master knot (red), while the rest are sub-knots
(black). Examples of indexing duplicate knots are also shown.

In order to define a T-spline updn we specify a set of knots oh, which are
denoted byX. In this chapter, each knot must reside at a certain vertemast 27
duplicate knots are allowed at every vertex, and they aramizgd on a % 3 x 3
grid of infinitesimal size, as shown in Figure 7.2. Every ggit has amaster knat
and some other optional duplicate knots, calleth knots We refer a knot at; by
a,B,ye {—1,0,+1}, in which the triplet a, 3, y) indicates an unique nodal position
on the local grid. The coordinate af B,y € {—1,0,+1} can be written in the form
of

£
Kiagy) = Vi+ 5[0(, B.v]" (7.2)

wheree denotes an infinitesimal size. If we assueng 0, every knot is considered
differently, and its coordinate is called thapological coordinatesTwo knots are
topologically equivalenif their topological coordinates are the samee # 0, then

the coordinates of all duplicate knots\atdegenerate into an identicalimerical
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coordinate and these knots areimerically equivalentin the rest of this chapter,
when there is no ambiguity, we represent a knot by a simpl&tionkj, wherej
indicates the index df in X.
GivenT and X, a trivariate T-spline can be defined as
| Bl
i iBi(u,v,w
F(u,v,w) = L1 PiBi(u W) (u,v,w) € R3 (7.3)

‘B
i|:‘1 Bi(u7V7W)

where(u,v,w) denotes 3D parametric coordinatesare control points, an® =
{Bi(u,v,w)} is the collection of blending functions. Ea&h(u,v,w) is a tensor-

product of three B-spline basis functions, written as
Bi(u, v, ) = N (U)N (VN3 (w) (7.4)

whereN3(u), N3 (v) andN3(w) are defined along, v, andw directions, respec-
tively. In the case of cubic T-spline, the univariate funmN?j is constructed upon
knot vectorEij = [EijO,Eijl,Eijz,Eij3,Eij4], which is deduced froni and a collection of
knots K.

The way to inferEij is parallel to that for T-mesh. Starting from a knot
k = (£3,8L,82), £9 and£, are found by shooting a ray(t) = (€9 +t,€%,£2)
into parametric domair% and&?, are the coordinate values at the first two inter-
sections wheré (t) comes across either a knot or a faceL(f) goes out of the
domain without two intersections, the last one is replidatech thag’ = &0, (see

Figure 7.3), o€ = &% = £0,. The other knots are determined in a similar fashion.
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Figure 7.3: Knot vector extraction on T-lattice. The intersection betwiegand the bound-
ary appears twice in the resulting knot vector, and the same is trig .for

| K | a | c2 | knotvector ofNi(§) | knot vector ofN;(¥) |
Go<k<& | g2 | 1 | [EokE1EE [k,&1,82,€3,E4]
E1<k<& | g | e | [o&kE & [€1,k,&2,E3,84]
E2<k<&|fip | o2 | [E1&kEs & [€0,€1, &2,k &3]
Ea<k<& |5 | 1 | [E& & kE [€0,€1,€2,€3,K

&a—&0

Table 7.1: RefiningN(&) by insertingk into knot vector[§o,&1,&2,&3,&4] generates two
basis function®N; (§) andN(§), which are scaled by, andc;, respectively.

7.3.2 Refinement of B-spline functions

To refine blending functions on trivariate T-splines, we dhé review knot
insertion algorithm for univariate B-spline functions. et [§o,&1,&2,§3,&4] be a
knot vector andN(§) denote the cubic B-spline basis function defined on it. Iféher

is an additional knok € [§o,&4] inserted into=, N(§) can be written as a linear
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combination of two scaled B-spline functions as

N(E) = caNy (&) +C2N2(&) (7.5)

wherecs, ¢ and knot vectors foN; (&) andNx(§) are determined by Table 7.1.

Note thatN>(&) andN(§) always share the center kript

7.4 Constructing RTP-splines

Figure 7.4: Overview of RTP-spline construction. The construction consists of riwax
jor steps, extending polycube domain to its bounding-box, building B-spbheme with
bounded boundaries, inserting knots and conducting local refinenmehthan removing
exterior regions.

The construction of RTP-splines includes four major stegs(Figure 7.4):
(1) extending given polycubP domain to a box domain, (2) building trivariate
B-splines with restricted boundaries, (3) inserting dwgikcknots and performing
local refinement to separate interior and exterior blentlingtions, and (4) produc-
ing RTP-spline by removing structures/knots outdtlerhese steps are discussed

in the following four subsections respectively.
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7.4.1 Extension of Polycubes to Bounding-Boxes

Following notations introduced in Section 7.3.1, on thestmiate T-spline do-
main, letP = (77, cP, ¥P) be a given polycube structure, wher¥, c” and FP
denote vertices, cuboids and cell faces respectively. deraio extend to a box
volume with rectilinear grid, there must be no T-junctions mtersections between
cell faces orP. Our parameterization polycube domains (see Section)d5.hot
contain T-junctions. If other polycube mapping methodsiesed to construct the
parametric domain and the generated domain has T-junctioeis we can always
eliminate them simply by splitting the cells across the donpthrough the extended
planes of these intersecting cell faces. Newan be extended to its bounding-box
domainT (¥, C, F) by filling in some solid cuboid$s = (¢, C®, F©), where
Ve=v—9P, cC=Cc—CP FC=F — FP. Grepresents the exterior &and
we call it theghost region

Note that there is a rectilinear grid embedded in the spade ahd the grids

coordinates irk-axis direction are represented by

S=1s.s5,....5] k=123

wheren is the resolution of rectilinear grid alorkgaxis.

7.4.2 Building B-spline Volume with Restricted Boundary

With the bounding box domail constructed, it is not difficult to construct a
trivariate tensor-product B-spline from the rectilineaidgstructure onl by using
S1, S andS; as knot vectors. We must augmegtto have a valid B-spline def-

inition on theny x Ny x n3 control grid. One approach is to add extra knots with
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(@) (b)

Figure 7.5: (a) Knot configuration at corner, edge and face vertices for réstricound-
aries. (b) Examples of extraordinary corners on a polycube.

coordinates outside domain region, generating an opendasy scheme. In this
chapter, we replicate the knots at both end§pin order to restrict the B-spline

blending function within domaift, i.e., S¢ turns into

S= [ﬁaéivﬁﬂsli—'—s?slé?""%k_8’$k’¢lk’sﬁk]

in which 6 extra knots are added to both ends. Note that th@lusget € here is
to emphasize its topological difference frcﬂp while € is actually treated as 0 for
B-spline evaluation. This also appliessﬁg — ¢ here.

Therefore, the trivariate tensor-product B-spline defined as formulated as
n
Fluv,w) =) piBi(u,vw) (uv,w) € R® (7.6)
i=1

wheren = n; x ny x n3 is the number of control points, amj(u, v,w) are blending

functions defined in Equation (7.4).
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As an extension of tensor-product B-spline, we can locallystwict blend-
ing functions using the method for T-spline (Section 7.3ii3tead of computing
them directly from 3 global knot vectors. The knot gétto be used for local knot
extraction is a tensor-produef, s} + €,8, ..., ) — €&, 53| X [S[,S[+€,S),..., S5, —

e, s, % [, +€,55,...,5, —€,55,]. Superimposingk with T reveals that dupli-
cated knots only exist at corner, edge and face verticeshamdconfigurations are
depicted in Fig 7.5(a). These sub-knots serve for a commaguoge: to guarantee

the partition-of-unity of blending functions inside bowamy cells.

7.4.3 Local Refinement and Knot Insertion

We need to disjoin the blending functions definedrimnom those defined on
G, i.e. the support regions of these two group of blendingtions will not overlap

at all. This task is fulfilled via a two-step knot insertions.

e First, we insert duplicated knots on the boundaryPoto separate interior
and exterior blending functions centered at master kn8ect(on 7.4.3.2)
e Second, we iteratively eliminate violation case®iby knot insertion. (Sec-

tion 7.4.3.3)

Introducing new knots may change the underlying local keaters of exist-
ing blending functions. Therefore, we need to design arrdlgo (Section 7.4.3.1)
to resolve disagreements of blending functi@hsvith new knot configuration, in

order to preserve the partition-of-unity during the knatartion.

7.4.3.1 Local Refinement of Blending Functions

We need to introduce an algorithm to refine blending funaiBraccordingly,

whenever there are new knots added or any changes made tindstnoatureT .
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The refinement algorithm proposed in [13, 116] works on a §mbut its primary
goal is to keep the shape of T-spline surfaces when new dginats are inserted.
In this chapter, we enhance this algorithm by extending itetdilinear grid and
supporting duplicated knots explicitly. We convert thevooesly obtained trivariate
B-spline to a generalized T-spline volume and rewrite Equafi.6 as
512 WipiBi (U, v, W) 3
F(u,v,w) = (u,v,w) € R (7.7)

i|£|1Wi Bi(u,v,w)

where each control poim; is associated with a weight, which is collected init/.
At the beginning, allv; are equal to 1, angzi@lwi Bi(u,v,w) = 1 holds for every
(u,v,w).

If there are new knots inserted, ®rundergoes any changes such as vertex
insertion or cell splitting, we denote the new knot set4y and the new domain
structure byT*(7*,C*, F*). And the new blending function s&* and weights
W* can be generated by Algorithm 26 from inp&s, T*, W andB.

In Algorithm 26, the superscript indicates the index of theniding function
with which a variable is associated and subscript referetioe central knots of a
blending function. For examplﬁ} is a blending function centered at krigtthat
originates from the-th blending function inB. The star superscript indicates that
the variables are obtained from updated donTaine.g, = denotes a knot vector
implied by currentT* and centered &;. The basic idea of Algorithm 26 is as
follows. First, we decouple blending functions from themoks. Then, by either
inserting new knots or refining basis functions (SectionZj,3ve keep resolving
the discrepancies betwe@h and the local knot vectors implied b§* and 7*.

A cell splits into two halves if the vertices on its edges camf an axis-aligned

cutting plane. Finally, we merge same blending function#) their weights being
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Algorithm 1: Blending functions refinement for trivariate T-spline wih-
plicate knots
Input: T*(V*,C*, %), K*, BandW.
Output: updatedr *, updatedX™*, B* and W* while
B* v« _ B
S W B = Y17 wib

1 Q< {(W,B):w € W,B; € B}

2 while 3(wt,Bl) € Q: = £="do

s | forallthe (w,B!) € Qdo

4 obtain knot vectorg; from T*

5 if =! is numerically equivalent t&; then

6 | ez

7 else if=" is more refined thai! then 3 N

8 add a knot fronE; to =} and do the refinemenB; = c;B} + c;B|

(Section 7.3.2) _

9 Wew-c; Wewee

10 Q= Q—{(w,B)}uU{(w,B]), (w,B)}

1 else if={ has a knokj(q g, ¢ X* then

2 K" <= K" UKj(apy

13 if k j(0,0,0) ¢ K* then

14 K* <= K*U{Kj000}

15 V* <= V*U{vj};Il Insert a new vertex

16 endif

17 endif

18 endfall

19 | forallthe ce C* do

20 if any new vertices on ¢ forming an axis-aligned plane cutsaant
and ¢ then

21 | ¢* < —{c}u{ci,c2};// divide cinto c1 and ¢,

22 endif

23 endfall

24 endw

25 B* < {Bj: (w},B}) € Q}
26 W= {wj = ZV(vvtj,Btj)eQW[j}

summed up.
In comparison with the refinement algorithm proposed in [11&], Algo-

rithm 26 disregards control points, conducts refinementlkarat extraction on a
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much more complicated 3D grid, and explicitly support degied knots (i.e. comb-
ing numerically equivalent but topologically inequivaidmot vectors). Note that
in the refinement result, the center of each blending funatiost lie at a knot, but
it's not necessary for every knot to have an associated ligrfdnction. More-
over, the algorithm does not change the value of denomimatiguation 7.7 for
every parametric point after the refinement. This keepsémai-standardnesf

the original splines, and can be explained by
wB =w -ClBtj +w Bt = V\~/tjl3~t] —|—VTI}I§'I[

7.4.3.2 Knot Insertion on Polycube Boundary

The purpose of inserting duplicated knots to the boundaByisfto cut off the
connection between the polycube domain and the rest. Itiaaddd the three kinds
of boundary vertices shown in Figure 7.5(a), polycube stines have many other
types of boundary vertices, especially at corners. Somepbes of corner vertices
on polycube are given in Figure 7.5(b). To create restribmahdary for polycube
domain, we develop a general approach to configure duplicates at arbitrary
boundary vertices, the description of which is as the foloftor a boundary vertex
Vi, we insert the master knot and all the sub-knots that topoddy lies insideT
(due to the definition oT, the boundary is considered as the interioff ofand the
same is foiP). We color the sub-knots topologically insieby red, and those in-
sideG by blue. We compare the knot configuration and colors on dpptaces of
local 3x 3x 3 grid for each axis direction. If they are identical, all kmts on both
faces are removed. For instance, if therelare; g y) for every existing118 ),

and they share the same color, then all the kjgts.1py) B,y=—1,0,+1} are
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removed. Then, Algorithm 26 is applied to generate a féwVv,w) to accom-
modate newly inserted knots. The motivation of this methotbi minimize the

sub-knots inserted so that the spline function is as smafossible.

7.4.3.3 Disjointing Blending Functions

k;
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Figure 7.6: Violation cases to be eliminated in RTP-spline construction. The pink dot
denotes the center knot of a violating blending function. The blue trianggaba duplicate
knots inserted in order to resolve the violations. The shaded region siatitkfinterior
polycube domain.

In order to disconned® from G by disjointing their blending functions, there
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are two conditions must be satisfied:

(a). there are no exterior blending functions influencinghdm P;

(b). removingG does not affect the shape of blending functions in§lde

The knot insertion introduced in Section 7.4.3.2 guarantbat the blending
functions lie at the interior and exterior master knots @&asated by the polycube
boundary, except for the following four violation cases,athneed to be resolved

for conditions (a) and (b).

1. ArayL from ghost knok; (k;) crosses the boundary and gets iRtoKnot
ka (kp) is added to resolve the violation. (Figure 7.6(a))

2. Inthe vicinity of a convex corner, althougitdoes not go insidB, the support
region of blending function &k; still overlapsP. For this case, extra knots
are inserted at wherk intersects the extended faces from the corner cell.
(Figure 7.6(b))

3. From a sub kndt; (k) that lies topologically insid®, L intersects boundary
atc and ends at either a ghost knot or a ghost face. Subkgd,) is added
to ¢ to make the blending function centeredkavanish on the boundary.
(Figure 7.6(c))

4. From a knok; that lies exactly on the boundatygoes directly intdG with-
out meeting any other knots at vertex In this cases, an exterior sub knot
is added at; so that the continuity of blending function on the boundary i

reduced tcCP. (Figure 7.6(d))

Case 1 and 2 deal with the violations for condition (a), whexely inserted
knots break down the blending functions centered at ghdskaeots, and restrict
them insideG. Violations of condition (b) are fixed in case 3 and 4. Durieg r

moval of ghost regions, if whose knots vectors include ioteghost knots ofG,
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these blending function will be affected. To resolve suablations, we can ei-
ther eliminate interior ghost knots from the knot vectorasg 3), or introduc€®
continuity to the blending function on polycube boundargsE 4). To understand
the later one, let's examine a cubic B-spline functidfu) defined on knot vector
[ko, k1, K1, Ky, ko] wherekg < ki < ka. N(u) hasC? continuity atky, so that its shape
betweenrky andk; is independent ok, and that betweeky andk; is independent
of ko. It's worth to mention that in case 4, it's impossible for tilending function
atk; to influence the domain region beyond the planelue to the boundary knot
insertion in Section 7.4.3.2.

Once all the violations are resolved, the refinement algarigiven in Sec-
tion 7.4.3.1 is applied again to updaeand 7/. Since new knots may be in-
troduced, the above steps are repeated until no violat®feund and no further
refinement is necessary dn In our experiment, constructing RTP-splines for most
models requires only one or two iterations. And our propaagdrithm is guar-
anteed to terminate because no vertices is added, and tleclienged number of

knots can be inserted, which will makeend up with each cell being a&Bier solid.

7.4.4 Generating RTP-splines

By removingG and the ghost knots that topologically lie insi@ewe obtain
a RTP-spline, defined over polycube domRias a single-piece smooth function.
The restricted boundary of RTP-spline is guaranteed by ¢mstcuction steps in
Section 7.4.2, Section 7.4.3.2 and Section 7.4.3.3, wi@lgorithm introduced in
Section 7.4.3.1 ensures the partition-of-unity and seamdardness of RTP-spline.

As the denominator is 1 everywhere over the parametric doma can simplify
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Equation 7.7 to obtain the formulation of RTP-spline:

|B|
F(U, V7W> = ZwipiBi (U, V7W> (U7V7W) S R3 (78)
i=1

7.5 Modeling Solid Objects

It is a challenging task to build single-piece and smootimsplepresentations
for arbitrary solid objects, especially those with bifuroas and high genus. In this
section, we explain how to convert a volumetric modedliscretized as a tetrahedra
meshMT, into a RTP-spline representation. Given the triangulanioary ofM, we
define a polycube domain adaptive to its geometry and topology, then compute
a volumetric mapping : P — M. A RTP-spline is constructed on polyculdedy

using the method given in Section 7.4, and then we fit the sp&ivi T .

7.5.1 Volumetric Parametrization

Computing lowly distorted volumetric parameterization isimportant issue
for the RTP-spline construction. Tensor-product trivirsplines usually need to be
defined over a parametric (box) domain, and the quality oplrameterization can
affect the fitting efficacy of splines. In this chapter, wetfasmpute the volumetric
harmonic mapping between the given solid object and a prezttfrolycube, then
build our splines upon this polycube domain.

A volumetric parameterization of a solid modélembedded ifR3 on a poly-
cubeP is a bijective mapping : P — M,P,M c R3. The polycubeP can be com-
puted either manually [135, 136, 155] or automatically Bid, These techniques

also provide the boundary mappifigrom the polycube boundary surface (denoted
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asdP) to the boundary oM (0M). We use such a surface mappifig 0P — oM
as the boundary condition d¢f The volumetric parameterization is then defined as

the seeking of a harmonic energy minimizer:

Af(x)=0 xeP,

f(x)=f(x) xeadP.
whereA is the 3-dimensional Laplace operator, defined for eachfueation f in
R3 as

0°f 0°f 0°f

Af=0-0f = .
6x2+6y2+622

Af =0 for f = (f1, f2, £3) is equivalent taAf' = 0 in all thei = 1,2, 3 coordinate
directions.

We compute the volumetric polycube mapping using the methashdamen-
tal solutions (MFS) [65, 66]. The idea and algorithm are ppeal as follows and
we refer more details to [65, 66].

Based on the maximum principal of harmonic functions, ailtmoints of har-
monic functions exist only on the boundary. Furthermoracftion values in the
interior region ofP are fully determined by the boundary valugx),x € 0P and
can be computed by Green’s functions. Specifically, the haamonic function
value f (x) can be computed as the integration of its boundary valuegharkernel
function (i.e. fundamental solutions associated with tBd_3placian operataf).

The kernel function of\ has the following formula:

1 1

KX = g

which matches the electrostatistics. In other words, sgha harmonic function

can be converted to designing a specific electric field detertnby a electronic
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particle system, whose electric potential mimicand shall satisfy the boundary
conditionf’ on dP.

The computation pipeline is to first place a set of chargetpdigs} outside
the domairgs € aP, P ¢ P c R3. Then we conduct a boundary fitting which solves
the charge distributiofws} on these point§gs}. The harmonic functiorf (X) is

represented using the MFS equation:

f(x,W,Q) = Zws (X,0s),X € P.gs € 9P.

The generated functioh is guaranteed to be harmonic, and we only need to
enforce the boundary condition @®. For the boundary fitting, we samph
collocation points on the domain bounda&#y to set up the constraint equations. If
we haveNs charge points anbl; collocation points, for a real harmonic functidn
(e.g. on an individual axis direction) we only need to solwé\a= b linear system
whereA is anN; * Ng matrix.

Following the algorithm of [66], instead of solving one sumy linear system,
we compute a set of smaller harmonic functions by solvinglleminear systems
and linearly combine them together to get a more accuratadaoy fitting. The
computation is also more efficient than solving a single bajrir. The mapping
f: P — M computed here provides us a lowly distorted parameteoizaif M on

the polycubeP.
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7.5.2 RTP-spline volume fitting

Let {v1,V2,...,Vm} be the vertices of tetrahedra melsth. The problem of
fitting RTP-splineF(u,v,w) to volumetric objectM resorts to minimizing the fol-

lowing equation, with respect to control points

S (R w) —wi)? (7.9)

i=1

which can be rewritten in matrix format of

1
EPTBTBP—VTBP (7.10)

wherePj = pjT, Vi =v], andBjj = I3.3Bi(f~(vj)). This is a typical least square
problem, and we solve it using the optimization packisi§eSEK( [1]).

If the fitting results do not meet certain pre-defined critetthey can always be
improved by adaptively performing subdivisions over thgioas with large fitting
errors and then refitting the spline functién Each cell to be divided is broken
down into two, four or eight small sub-cells, depending anshape. Our goal
is to keep the aspect ratio of sub-cells as low as possiblen Rigorithm 26 is
employed to refine RTP-spline blending functions and inicednew degree-of-
freedoms for better fitting. Note that such refinement atboriis originally pro-
posed for trivariate T-splines that defined over box domébuas it can be applied
to our RTP-splines after a minor revision: whenever a mdstet is added to a
new boundary vertex, additional sub-knots must be insesegell in order to keep
the boundary restriction. What sub-knots are required is sicenario has been

explained in Section 7.4.3.2.
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| Model | #Data Pointg Control Points| RMS Error | Timing |
Bimba 35511 4543 1.20x 1073 | 31.21s
Kitten 60144 3820 1.27x 1073 | 44.53s
Eight 26384 2888 3.69x 1073 | 20.65s
hand 1502700 9035 554x 1074 | 1150s
head 472122 12880 2.91x 1074 | 422.4s
Beethoven 103361 1001 1.80x 1073 | 67.79s
Beethoven (2nd level) 103361 3283 1.34x 103 | 80.78s
Beethoven (3rd level 103361 14699 7.18x 107 | 123.28s

Table 7.2: Statistics of solid reconstruction with RTP-splines

. Polycube Spline General T-spline
Model | Sample Pointg ) ‘ 5 ‘ B B ‘ & ‘ B
bimba 2512 0.18s| 0.6s | 1.12s| 0.35s| 1.14s| 2.62s
kitten 23076 1.61s| 5.21s| 9.59s| 2.95s| 9.75s| 23.1s
eight 9768 0.71s| 2.42s| 4.36s| 1.37s| 4.43s| 10.2s

Table 7.3: Comparison between the computational cost for calculating spline basis func
tions and their derivatives on RTP-splines and those on general BspliThe total
cost is to compute basis functions and their directives at all sample points. bdh

sis functions of RTP-splines at& (u,v,w) = wiB;(u,v,w), while those of T-splines are

5 B

Bi(u,v,w) = wiBi(u, vow) / 317 wiBj (u, vw).

A system consisting of RTP-spline construction, volunteprarametrization

and data fitting is implemented in VC++ and the program is mgran a 3GHz

Pentium-1V PC with 4GRAM. Our experimental data include tléumetric mod-

els of bimba, beethoven, the Eight(genus 2), kitten(gepulsahd(5 bifurcations),

and head(with brain excavated).

In our experiments, it takes only seconds to construct Rilires from ex-

perimental solid models, in which the Beethoven model ofll8iekes the longest

time: 6 seconds. In comparison, fitting RTP-splines to datauch more compu-

tationally expensive, and their statistics are documemtdable.7.2, in which the
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data points are the vertices of original tetrahedral mesresbthe fitting results are
measured by RMS errors that are normalized to the dimensi@oroésponding
solid models. The table shows that the volumetric fitting ooppsed RTP-splines
is computationally efficient and can yield reasonable tesuAlso, the capability
of RTP-splines in supporting local refinements allows userisnprove fitting re-
sults by adaptively introducing new degree-of-freedomtheregions with large
errors. For example, the RMS fitting errors on beethoven nsadeteduced from
1.80x 103 to 7.18 x 10~* after two rounds of adaptive local subdivision, and the
geometric details on model surfaces are also gradualhales€Figure 7.11).

Due to the uniqueness of RTP-splines construction, comguiending func-
tions and their derivatives on RTP-splines is much fastan ttihat on traditional
T-splines. To demonstrate this, we conducted a few expeatsrend compare the
evaluation times for spline functions and their derivagio® RTP-splines and those
on traditional T-splines. The comparisons are conducteblimmba, kitten, and the
Eight models. For the purpose of fairness, we slightly mo&TP-spline source
code to emulate T-spline, by adding denominator calculdto every basis func-
tion. The comparison results are documented in Table 7.3y Bhow that the
computational costs for calculatirigy B’ andB” on RTP-splines are respectively
reduced to 53%, 54% and 42% of those on general T-splines.

By increasing the dimension of control pomtn Equation 7.8, RTP-splines
can model not only geometry but also other attributes semelbusly. To demon-
strate this, we synthesized texture information for thedh@@del, and then fit a
RTP-spline to both its geometry and associated attribdigs.types of textures are
synthesized. One is the distance field to the boundary (he#ate and the insider

brain surface). The other is a procedure 3D texture, gezebtay the fractal sum
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of Perlin noise [84] }:i“zlnoise(ip),p € R3). The fitting result is shown in Fig-
ure 7.12. As the distance values are proportional to the miina of head model,
we still use normalized RMS error to measure the fitting eroordistance field,
which is 60 x 10~* in our experiment. For the noise texture, the maximum scale
value of original noise function is.81 and the minimum is-1.33. The absolute

RMS fitting error is 73 x 1074,

Figure 7.7: RTP-spline volume generated from the bimba tetrahedron meshes.
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Figure 7.8: RTP-spline volume generated from the “eight” tetrahedron meshes.

7.7 Summary

In this chapter we propose the concept and constructiorrigigo of RTP-
splines and present an effective framework to convert veldio data into rep-
resentations of RTP-splines. Due to the topological fléikyoof the polycube
domain, RTP-spline can naturally model solid objects wiflarbations and high
genus, while ensuring lower parametrization distortionsamparison to traditional

splines defined over box domains. Our novel algorithm guaesthat the initially
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Figure 7.9: RTP-spline volume generated from the kitten tetrahedron meshes.

constructed RTP-splines is semi-standard, so that it eadbé efficient computa-
tion of spline functions and their derivatives, without theerhead of dividing the
sum of all basis functions. The proposed RTP-spline suppactl refinement, and
a refinement algorithm is developed to preserve the semdatdness on the RTP-
splines undergoing knot insertion and local subdivisioie Particular restricted
boundary requirement of RTP-spline presents control pdimin affecting domain
regions by crossing boundaries. We demonstrate the effafaioyr RTP-splines
as a powerful solid modeling tool in various experimentsjcltconvert tetrahe-

dral models into RTP-splines representations, modelirg theeir geometries and
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Figure 7.10: RTP-spline volume modeled from the hand tetrahedron meshes.

other attributes within an unified paradigm. Due to thoseifable features of RTP-
splines, we will explore the isogeometric analysis foundedn RTP-splines in the
near future. Also, the particular polycube domains of Rpfss can be natu-
rally decomposed into a set of regular structures, which erable GPU-friendly

computing and image-based geometric shape processing.
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Figure 7.11: From top to bottom, the pictures show the fitting results for Beethoven model,
after 0, 1 and 2 levels of local subdivision respectively.
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Figure 7.12: Fitting both geometry and attributes of the head model. The first row show
the polycube domain(left) with one corner removed to reveal internaltates; and the
volumetric meshes(right) generated from fitted RTP-splines. The secwndhow the
fitted result(left) for the distance-field texture and its error map(right). thivd row show

the fitted result(left) for synthesized noise texture and its error map(rightt)ese pictures,

red color denotes the largest scalar value while blue color denotes thestroake
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we presented an computational framnewased on the
theory of multivariate splines and used it to solve a serfegractical problems
successfully. Triangular B-splines and T-splines are maniployed in the frame-
work due to the fact that they have not received enough atenoutside computer
graphics communities while their unique advantageousufeatcould potentially
benefit many applications in research and engineering .areasaddition, other
techniques, such as feature extraction and curve matchie@glso developed and
incorporated into our framework for tackling specific prils. Through our ex-
tensive experiments, the proposed framework proves asc@ssfal and effective
tool for solving practical variational problems found inogeetric shape modeling,
surface editing, imaging processing and scientific contmuta Our specific con-

tributions include:
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1. We introduced a registration algorithm that recoverdglamon-rigid trans-
formation between two images while keeping the sharp featuear pre-
identified local rigid structures. With proper knots aligemb along feature
lines, we effectively model both global non-rigidity anccéd rigidity in an
unified displacement field represented by triangular B-splim contrast to
conventional methods where additional mathematical tearasn need for
feature constraints, our method recovers local rigiditthviewer degrees of
freedom and accurately models sharp features in a moreenatay [139].

2. We developed triangular B-spline finite element method @RI, and use
it to solve elastic PDE on a pseudo physical model, in ordasirtmlate the
deformation between a pair of temporal mammograms. Thexiswities
of the deformation due to the different elasticities of peat muscles and
breast tissues are naturally modeled by triangular B-sglifiee experimen-
tal results show that the proposed registration methodfiéstafe and accu-
rate [140].

3. We proposed an automatic mammogram registration afgoritThe breast
contours are first aligned according to the curvature mape gignificant
anisotropic texture features are extracted and pairedalitnement between
two mammograms is finally inferred from the deformation omaxe spline-
based elastic model, which is stimulated by intensity sinty forces and
constrained by paired features. The method was tested orea seéselected
bilateral mammogram images and proves a effective retjmtrapproach
requiring little human intervention [141].

4. We developed a new paradigm integrates thin-shell stimualavith manifold
spline surfaces for geometric design. We patrticularly eygdl triangular

B-spline to solve Kirchhoff-Love equations on manifold domavhich is
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globally parameterized. The proposed framework can sstdéssimulate
thin-shell deformation of arbitrary manifold shell surdgcwith non-trivial
topologies [138].

. We proposed a method to construct restricted trivarialgcpbe splines,
where are inspired by general volumetric T-splines, buedsfsignificantly
in its construction way. Our top-down approach starts fréw bounding
box of a given polycubic domain, converts it into B-splinewk, performs
special knot insertion and blending function refinements| #gnen remove
exterior cells of the polycubic structure. Aside from thdigbof local sub-
division inherit from T-splines, the proposed RTP-spliaes bestowed with
three unique features, domain flexibility, restricted baany and fast basis
function evaluation, all of which are desirable for engmireg analysis and

other applications on solid objects and volumetric data.

8.2 Future Work

Although B-splines nowadays play an important role in masgaech and en-

gineering areas, other multivariate spline schemes rigcdaveloped having not

been widely recognized outside computer graphics commesnitMoreover, with

the advent of computing power and data acquisition tecl&igqre and more ap-

plications are required to handle volume/solid data. Tioeee we aim the future

work in the following directions:

1. Image registration with novel multivariate splines The goal of image reg-
istration is to find an optimal free-form transformationweén two images.
Currently B-spline is prevailingly used in computer visionnimdel defor-

mation field. However, there are many novel new spline sckerae benefit
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image registration because of their special advantageh, asilocal refine-
ment and feature modeling. One example would be image ratiest with
T-splines. Xie and Farin [150] preserve the image detaithéir registration
method by using hierarchical B-splines. However, multiglgers of grids
have to be applied from coarse to dense, which is computatiensive. On
the contrary, T-splines have more compact and flexible ocbregion, thus is
ideal to model different level-of-detail on a single layAnother example is
to register user-specified non-rectangular regions of mgbaiolumetric im-
ages, which could be modeled by the trivariate splines megam Chapter 7.
. Precise iso-surface extraction and visualizatiorDne approach to extract
and display ios-surfaces from an unorganized point clotd t®nstruct im-
plicit representation of underlying surfaces, then extthe geometric sur-
faces with marching cube algorithm and render the meshesheR#tan
render an approximate mesh, it's however more desirablastmhze the
implicit surfaces directly. This requires calculation otdrsection points
between casting rays and the implicit surfaces, and difteakeproperties,
i.e.normals and tangential planes, at these locations. Theditm@presenta-
tion generated from the approach [80] is not an unified aitallyformula,
therefore unable to be used for precise intersection pailcutation. Volu-
metric T-spline is a good candidate for implicit functiopresentation due to
the following facts. First, T-splines are defined on regdlamains so that the
intersection points can be analytically extracted by sm\a cubic equation
(in the case of cubic T-splines). Second, T-splines can ifodedetails in
implicit functions via local refinement.

. Volumetric data denoise and fairing The data obtained from real world are

oftentimes contaminated by equipment defect or unprediio@dents during
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data acquisition. Many techniques have been invented taradeaning. For
example, Gaussian filter is used to get rid of high frequeraigen In other
works, even missing part in scanned range data can recotestrilhrough ra-
dial basis function interpolation along with the help ofte@r heuristic infor-
mation. More recently, variational models are proposedrfgalicit surface
fairing [5, 6,43, 144]. However, in this work all the data pisi are organized
on a regular grid and differential properties are estimétech nearby grid
points, both of which hinder calculation in variational nebtfom achieving
accurate results. Therefore it might be ideal for multaggisplines to take
the role in modeling implicit functions. Implicit functiotmus represented by
splines is a single piece analytical formula, on which aatievaluation of
fairing equations can be performed anywhere. Moreovergsuouel splines,
such as T-splines, can be locally refined, allowing usergépHiairing errors
below desired thresholds without global refinement.

. Isogeometric analysis based on RTP-splindsogeometric analysis [53] is
a recently developed approach that integrates finite elearatysis directly
on geometric objects modeled by NURBS in CAD system, withouhgha
ing the geometries or their parametrization. The advantddkis method
is obvious, that is, the basis functions are shared betwegmesdesign and
physical analysis in CAD system, thus no data conversiongégssary and
the exact geometry is maintained at different stages. Hewd&NURBS is
tensor-product spline that can not naturally model soligects having bi-
furcations and arbitrary topologies without enormousngfon patching and
trimming. We have demonstrated in Chapter 7 that our propB3é&dsplines
can successfully model complicated solid objects withrg#itions and non-

trivial topologies. Moreover, computing basis functiomsi@heir derivatives
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over RTP-splines is quite efficient due to the unique cocsitn way, where
POU is guaranteed without the necessity of summing andidiyidll basis
functions everywhere. All of these advantageous featugdseRTP-spline a

promising tool in the field of isogeometric analysis for dadbjects.
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