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Abstract of the Dissertation

A Variational Framework of Multivariate Splines and Its Applications

by

Kexiang Wang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2010

Multivariate spline technique has proved to be a powerful mathematical tool for

solving variational problems in a great number of research and engineering tasks,

such as computer vision, scientific computing, engineeringdesign, etc. As present,

tensor-product B-splines and NURBS are the prevailing industrial standards and

have been widely used in different disciplines. There have been a few new mul-

tivariate spline techniques developed recently bestowed with unique and favorable

features, e.g., triangular B-splines and manifold splines.However, their potentials

in facilitating practical scientific and industrial applications have not yet been fully

explored.

In this dissertation, we presented a variational frameworkbuilt upon a range

of newly proposed multivariate splines, and then applied itto solve a few research

problems in medical imaging, scientific computing and geometric design. More

specifically, we introduced a novel image registration method empowered by tri-

angular B-splines, which is capable of modeling local rigidities inside a global
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non-rigid transformation. We also developed triangular B-spline finite element

method (TBFEM) and solved an elastic problem on a pseudo breast model for tem-

poral mammogram registration. Combining B-spline with feature detection and

matching techniques, we proposed a registration algorithmthat specifically regis-

ters mammogram images with little human interventions. In addition, we simulated

elastic deformations on thin-shell objects with complicated geometries and arbi-

trary topologies, which are rigorously represented by manifold splines. Moreover,

we proposed the new RTP-spline, a trivariate spline with restricted boundaries and

defined over polycubic parametric domain. It is virtually a sub-class of trivariate T-

splines, but constructed in a different top-down fashion such that semi-standardness

can be preserved via knot insertion and blending function refinement. RTP-splines

are featured with the ability of local refinement, restricted boundaries, domain flex-

ibility and efficient evaluation of basis functions, all of which would greatly benefit

a variety of applications working on solid objects and/or volumetric data.

Through extensive experiments, we demonstrated that whilethe unique and

advantageous properties of those new multivariate splinesare exploited and applied

to appropriate applications, our proposed framework wouldturn into an effective

and powerful tool for solving variational problems in many science and engineering

areas.

iv



This dissertation is dedicated to my wife, Sicong, and my children,

Eric and Luna. I give my deepest expression of love and

appreciation for the encouragement that you gave and the sacrifices

you made during this graduate program.



Contents

List of Tables x

List of Figures xi

Acknowledgements xiv

1 Introduction 1

1.1 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Spline-based Feature-sensitive Image Registration .. . . . 4

1.1.2 Spline Thin-Shell Deformation . . . . . . . . . . . . . . . . 5

1.1.3 Trivariate Polycube Splines . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background Review 12

2.1 Multivariate Splines . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Tensor-product B-spline and NURBS . . . . . . . . . . . . 13

2.1.2 Triangular B-spline . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Powell-Sabin Spline . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 T-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.1.5 Other Multivariate Splines . . . . . . . . . . . . . . . . . . 24

2.2 Applications of Multivariate Splines . . . . . . . . . . . . . . .. . 25

2.2.1 Shape Representation . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Shape Modeling . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Scientific Computation . . . . . . . . . . . . . . . . . . . . 29

3 Triangular B-spline based Image Registration 31

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Transformation Model . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Point-based Constraints . . . . . . . . . . . . . . . . . . . 35

3.2.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . 43

4 Registration of Temporal Mammogram Using Triangular B-splines Fi-

nite Element Method (TBFEM) 45

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Nonlinear Elastic Deformation . . . . . . . . . . . . . . . . 49

4.2.2 Refinement with Intensity Difference Minimization . . .. . 54

4.3 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Automatic Registration of Mammograms using Anisotropic Features 61

vii



5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Extraction of Breast Boundary . . . . . . . . . . . . . . . . . . . . 63

5.3 Matching Boundary Points . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Extraction and Matching of Texture Features . . . . . . . . . .. . . 66

5.5 Recovering Transformation with Anisotropic Features . .. . . . . . 70

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Spline Thin-Shell Simulation of Manifold Surfaces 74

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Spline Representation of Manifold Surfaces . . . . . . . . . . .. . 76

6.3 Spline Thin-shell Simulation . . . . . . . . . . . . . . . . . . . . . 78

6.3.1 Elastic Thin-shell Mechanics . . . . . . . . . . . . . . . . . 78

6.3.2 Spline Element Discretization . . . . . . . . . . . . . . . . 80

6.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . 81

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Restricted Trivariate Polycube Splines (RTP-splines) 87

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Trivariate T-spline with Duplicate Knots . . . . . . . . . .. 93

7.3.2 Refinement of B-spline functions . . . . . . . . . . . . . . 96

7.4 Constructing RTP-splines . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.1 Extension of Polycubes to Bounding-Boxes . . . . . . . . . 98

7.4.2 Building B-spline Volume with Restricted Boundary . . . . 98

viii



7.4.3 Local Refinement and Knot Insertion . . . . . . . . . . . . 100

7.4.4 Generating RTP-splines . . . . . . . . . . . . . . . . . . . 106

7.5 Modeling Solid Objects . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5.1 Volumetric Parametrization . . . . . . . . . . . . . . . . . . 107

7.5.2 RTP-spline volume fitting . . . . . . . . . . . . . . . . . . 110

7.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusions and Future Work 119

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 125

ix



List of Tables

4.1 Statistics of refinement step . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Experimental result evaluation for TBFEM registration .. . . . . . 58

6.1 Model statistics and performance data for stiffness matrix assem-

bling, boundary constraint handling and surface deformation . . . . 84

7.1 Refinement of univariate B-spline function . . . . . . . . . . . . .. 96

7.2 Statistics of solid reconstruction with RTP-splines . .. . . . . . . . 111

7.3 Computational comparison between RTP-splines and general T-

splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

x



List of Figures

1.1 As popular mathematical tools, spline techniques have been widely

used in many research areas. . . . . . . . . . . . . . . . . . . . . . 3

1.2 The overview of the variational framework of multivariate splines

and the its applications . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Non-rational basis functions of quadratic B-spline and aNURBS

patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Modeling features using triangular B-spline with degenerate knots. . 15

2.3 Powell-Sabin Refinement . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Planar Powell-Sabin spline surface . . . . . . . . . . . . . . . . .. 21

2.5 Illustration of T-mesh and knot lines extracted on it . . .. . . . . . 22

2.6 A gap between two B-splines is fixed with T-spline . . . . . . . .. 23

2.7 Example of shape modeling with free-form deformation technique . 27

3.1 Experimental results(case 1) for triangular B-spline based image

registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Experimental results(case 2) for triangular B-spline based image

registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Experimental results(case 3) for triangular B-spline based image

registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



4.1 Discontinuities form in the displacement profile of a compressed

spring system which consists of three springs with different stiffness 48

4.2 Overview of the registration process. . . . . . . . . . . . . . . .. . 49

4.3 Triangulation of registration domain and feature points selection . . 53

4.4 Registration results(case 1) for TBFEM registration method . . . . . 59

4.5 Registration results(case 2) for TBFEM registration method . . . . . 60

5.1 Segmentation of breast region in mammogram image with his-

togram thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Curvature functions of boundary contours before and after being

stretched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Anisotropic features extraction and mapping between left and right

mammograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Registration results on selected MIAS data . . . . . . . . . . . .. . 73

6.1 Domain mesh, rendered smooth surface and control pointsof a ex-

ample manifold triangular B-spline . . . . . . . . . . . . . . . . . . 76

6.2 Thin-shell simulation with level-of-detail . . . . . . . . .. . . . . 85

6.3 Thin-shell deformations on a torus and a kitty surface model . . . . 86

7.1 Extra support regions . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Duplicate knot structure at grid vertex . . . . . . . . . . . . . .. . 94

7.3 Example of local knot vector extraction on T-lattice . . .. . . . . . 96

7.4 Overview of RTP-spline construction . . . . . . . . . . . . . . . .. 97

7.5 Knot configuration on polycube surfaces and extraordinary corners

of polycube structures . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 Violation cases to be eliminated in RTP-spline construction . . . . . 104

xii



7.7 RTP-spline solid modeling (bimba) . . . . . . . . . . . . . . . . . .113

7.8 RTP-spline solid modeling (“eight”) . . . . . . . . . . . . . . . .. 114

7.9 RTP-spline solid modeling (kitten) . . . . . . . . . . . . . . . . .. 115

7.10 RTP-spline solid modeling (hand) . . . . . . . . . . . . . . . . . .116

7.11 Adaptive local subdivision on RTP-splines . . . . . . . . . .. . . . 117

7.12 Fitting both geometry and attributes with RTP-splines(head) . . . . 118

xiii



Acknowledgements

I owe my deepest gratitude to my thesis advisor, Professor Hong Qin, whose

guidance, encouragement, patience and support from the initial to the final level

enabled me to fulfill this dissertation.

I would also like to thank my committee members Professor Joseph S.B.

Mitchell, Professor Jeffrey Ge, and Professor Xiangmin Jiao for their very help-

ful insights, comments and suggestions as well as ProfessorKlaus Mueller, and

Professor Xianfeng Gu for serving on my thesis proposal committee.

Additionally, I would like to acknowledge all of those people who provided

support and assistance with my dissertation work: Jing Hua,Xiaohu Guo, Ying He,

Bo Li, Xin Li, Hongyu Wang. Many thanks also go to Professor WeiZhao, and

MD. Paul R. Fisher for their enlightenment education in medical imaging.



1

Chapter 1

Introduction

With the advent of advancing data acquisition technologiesand increasing

computing power, it’s more and more demanded by scientific and industrial ap-

plications for computers of nowadays to handle massive numerical data. Raw data

obtained from the real-world are unlikely to be directly converted into analytical

representations, therefore must be stored as sets of discrete data points. For exam-

ple, image data acquired through CT-scan are stored on a regular grid, and scanned

range data are converted to digital models in forms of point samples and/or tri-

angular meshes, approximating real world surfaces. It’s well known that discrete

presentation method suffers from two major disadvantages:(1) taking too much

memory/disk spaces for data handling, (2) resorting to numerical approximation

via bilinear/trilinear interpolation for computing differential quantities. By convert-

ing large discrete dataset into splines, we will achieve a compact representation

with much smaller data size as well as a convenient way to precisely compute dif-

ferential quantities such as surface geodesics, curvatures and elastic-strain tensors.

Rapid and accurate calculation of such differential properties is the key to facilitate

the applications which requires to solve variational problems.
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Tensor-product B-spline and NURBS are the prevailing mathematical tools

used in a great number of research areas, such as geometry design, physics-based

modeling, and computer vision. On the contrary, a few recently developed multi-

variate splines such as triangular B-splines and manifold splines have not been rec-

ognized by the researchers outside shape modeling communities. These new splines

schemes are equipped with many unique and favorable features, which could po-

tentially benefit solving of certain research and engineering problems. For instance,

triangular B-splines are defined over triangular domain and allows locally modeling

of sharp features in arbitrary orientation, so that it may serve as a fundamental tools

for applications that have irregular problem domain and thenecessity of handling

regional discontinuities within globally continuous data. Manifold splines marry

traditional planar spline schemes and recent surface parametrization technique, able

to naturally model surfaces of complicated geometries and high-genus topologies

as a single-piece spline function, which is impossible for conventional ones without

performing cumbersome domain manipulation like patching and trimming. Such

advantage gives users the freedom in calculation differential properties of mani-

fold surfaces and make solving of variational problems overnon-trivial manifold

domain possible. Therefore, it’s urged for us to carry out a research work on how

to apply these new spline techniques effectively into research problems other than

shape modeling. And we hope the results of this work would interest more people

and extend the applications of these newly developed multivariate splines into a

broader research and engineering area.
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Figure 1.1: As popular mathematical tools, spline functions have been widely used in many
research areas, for example, geometric design(courtesy of [97]), shape modeling(courtesy
of [142]), physical analysis(courtesy of [74]), image registration(courtesy of [150]), and
visualization(courtesy of [107])

1.1 Problem Statements

As mentioned above, unlike B-spline and NURBS being widely usedby re-

searchers and engineers, newly developed spline techniques such as triangular B-

spline and manifold spline have not received enough attentions from people outside

shape modeling community. However, these new splines are featured with unique

and novel properties which would potentially facilitate many well-known applica-

tions. In this dissertation, we review a couple of multivariate spline techniques

proposed recently, build a general variational framework upon it, and apply it to

solve a series of practical problems. The applications attempted in this dissertation
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fall into the following categories.

1.1.1 Spline-based Feature-sensitive Image Registration

Image registration is the process of transforming different sets of data into

one coordinate system. In medical image registration, the transformation is usually

nonrigid to cope with the deformations of the subjects due tobreathing, anatomical

changes and so forth. To represent unknown transformation with tensor-product B-

spline is a widely accepted practice in computer vision. Particularly, pre-identifying

significant anatomical features, for instance nipples in mammograms, and matching

them between source and reference images would substantially enhance the regis-

tration results.

Correct mammogram registration is critical for physicians to detect breast can-

cers at their early stages. Mammogram images are frequentlycontaining excessive

disordered texture features, therefore the optimization for intensity-based registra-

tion tends to get trapped in local minima, unlikely to yield satisfactory results. To

achieve better registration results, features must be pre-segmented from mammo-

grams and paired between source and target images. However,to pick up and match

features from mammogram images manually is subjective and an extremely labor-

intensive task. Therefore, it would be ideal to have an mammogram registration

algorithm that can identify and align features automatically.

In medical images, features lines are usually found betweenrigid and soft

anatomical structures,e.g.the interfaces between muscles and bones. The signif-

icance of these lines is thatC1 continuities could possibly vanish along them in

the recovered transformation. As the transformation is oftentimes modeled by B-

splines as a single nonrigid function, it’s necessary to enforceC1 discontinuities
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along features lines for accurate registration. Such discontinuities can be approx-

imated by either incorporating a penalty term into variational registration frame-

work as soft constraints, or applying boundary conditions along features lines as

hard ones. Unless the transformation has such a spline representation that models

C1 continuities and discontinuities within the same framework, it’s not possible to

precisely recoverC1 discontinuities between rigid and soft anatomical structures.

1.1.2 Spline Thin-Shell Deformation

It’s well-known that the deformations of thin-shell objects are governed by

a fourth-order differential equilibrium equations developed from Kirchhoff-Love

theory. According to approximate theory, the convergence of finite-element solu-

tions to these equations requires so-calledC1 interpolation. However, in conven-

tional finite element method, the shape functions are definedas purely local poly-

nomial functions and the nodal degrees of freedom only consist of displacements

and slopes so that it’s not possible to ensureC1 continuity anywhere especially

across the element boundaries. Inclusion of high-order derivatives among element

nodal variables would introduce spurious oscillations in the solutions. Alternative

approaches of degenerated solid elements, reduced-integration penalty method and

many others [11, 70] have been proposed to compromiseC1 interpolation require-

ment. Nevertheless, they still rely onC0 elements which exhibit poor performance

in the presence of sever element distortion and it’s difficult to integration them with

established finite-element system. A recent paradigm proposed in [16] induceC1

continuous shape functions from Loop’s scheme and solve thin-shell problem di-

rectly on subdivision surfaces. However the shape functions used have no closed-

form, thus unable be evaluated easily. Moreover, extraordinary points need special
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treatment and the number of them depends on the mesh connectivities rather than

the intrinsic topologies of the underlying surfaces. It’s noteworthy that Element-

Free Galerkin(EFG) has also been attempted in thin-shell simulation, which unfor-

tunately requires extra efforts in combining CAD models withsimulation process

via data conversion.

In CAD systems of nowadays, shell surfaces are oftentimes represented by

spline functions. Also it’s preferred to compute elastic deformations over spline-

based thin-shell surfaces directly without converting them into an intermediate rep-

resentation. However, it’s not possible for conventional planar splines to complete

this task by modeling displacement field on complicated shell surfaces as a single-

piece function without domain patching/trimming. So it’s necessary to adopt man-

ifold spline technique [39] proposed recently, and developa novel simulation sys-

tem, where both geometries and deformations of shell objects are modeled by man-

ifold splines

1.1.3 Trivariate Polycube Splines

Trivariate splines are smooth functions piecewise defined on three dimensional

domain. They have received increasing attention as more andmore 3D data are

available today for processing in research and engineeringareas. For instance, su-

per splines [107] are quadratic trivariate functions proposed for precise iso-surface

visualization. The are defined over uniform tetrahedral partition of gridded volume.

Trivariate simplex splines are constructed on unstructured tetrahedral grids in or-

der to improve the modeling and rendering of volumetric objects as well as their

associated physical attributes. The major drawbacks of trivariate simplex splines
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are the inefficiency of computing basis functions and their derivatives, and the dif-

ficulty in configuring sub-knots to avoid undesired degeneracies. Similar to their

counterparts in lower dimensions, trivariate tensor-product B-splines and NURBS

are prevailing solid modeling tools and have been used in many research works due

to their regular domain structure and computational efficiency. However, to model

complicated geometries with trivariate tensor-product B-splines and NURBS re-

quires gluing different spline patches and imposing continuity constraints between

them, which is extremely cumbersome and unfriendly to users.

T-spline is an extension of NURBS and its partition-of-unity(POU) property is

guaranteed by dividing the sum of all basis functions everywhere. Several NURBS

patches may patch together into a polycube, forming a trivariate T-spline as a single-

piece continuous representation. The flexibility of polycubic domains enables ones

to model unstructured volume data, or solid objects with bifurcations and arbitrary

topologies, which would potentially facilitate many applications in solid modeling,

scientific computing and so on.

In this dissertation, we pursue to improve trivariate T-splines, particularly

those defined over polycubes, by solving two problems. First, adding up all ba-

sis functions and conducting a division operation everywhere is computationally

expensive. Can we construct a semi-standard [116] trivariate polycube spline so

that POU requirement is automatically satisfied? Second, isit possible to restrict

blending function influential regions inside the polycubicdomain such that control

points are prohibit from contributing to other regions across concaved corners? If

yes, this kind of polycubic spline would serve as a promisingtool for isogeometric

analysis.
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1.2 Contributions

Figure 1.2: The overview of the variational framework of multivariate splines and the its
applications

In this dissertation, we systematically study the multivariate spline theory, then

present an computational framework for solving a range of variational problems.

Incorporated with additional proposed techniques, for example automatic feature

extraction and matching, our framework exhibits its success and effectiveness in

solving many variational problems in the areas of shape modeling, image registra-

tion and physics-based simulation.

In summary, our specific contributions include:

1. We introduce a registration algorithm which successfully recovers non-rigid
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deformation between two images while retaining sharp features on pre-

identified local rigid objects. Both global non-rigidity andlocal rigidities

are naturally modeled by an unified transformation representation of triangu-

lar B-spline. In contrast to conventional methods, our algorithm can precisely

model sharp features with fewer degrees of freedom. (Chapter3)

2. We develop triangular B-spline finite element method (TBFEM), and apply it

to solve elastic PDE on a pseudo physical model, simulating the deformation

between temporal mammogram pairs for image alignment. The experimental

results show that the registration accuracy is improved when features bound-

aries are properly modeled by triangular B-spline. (Chapter 4)

3. We propose an novel image registration method designed specifically for

mammograms. images. It automatically identifies significant texture features

and breast contours, matches them between source and targetimages, and

then recovers the transformation by solving a variational problem, which is

guided by soft feature constrains and maximization of intensity similarities.

Through extensive experiments, the proposed algorithm proves a effective

one requiring minimal human interventions. (Chapter 5)

4. We develop a new paradigm that integrates thin-shell simulation and geo-

metric design on arbitrary manifold spline surfaces. Particularly, we extend

triangular B-spline from planar domain to manifold domain, and apply it to

simulate elastic deformation of thin-shell objects with complicated geome-

tries and non-trivial topologies. (Chapter 6)

5. We propose the technique of restricted trivariate polycube splines (RTP-

splines), inspired by volumetric T-splines, but significantly differing in its

top-down construction way. Our top-down construction approach includes
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four major steps: extending given polycubes to bounding-box domain, build-

ing B-spline volumes, inserting duplicate knots to isolate polycubic domain

as well as retaining restricted boundaries, and finally removing exterior cells

of original polycube. The proposed RTP-splines is semi-standard, that is,

POU is guaranteed without any enormous efforts in summing and dividing

basis functions everywhere. Aside from local refinement ability inherit from

T-spline, RTP-splines are also featured with restricted boundary, efficient

evaluation of blending functions and their derivatives, and flexible polycubic

domain, all of which would potentially benefit many applications of nowa-

days, where sold objects and volumetric data are involved. (Chapter 7)

1.3 Dissertation Organization

This proposal is organized in the following fashion. In Chapter 2, we begin

with detailed review of a few dominate spline techniques, which is followed by a

brief review on their applications in different disciplines. In Chapter 3, we present

a novel image registration algorithm based on triangular B-spline. It is capable

of recovering a global non-rigid transformation as well as retaining local rigidi-

ties, under a unified registration framework. In Chapter 4, wedevelop triangular

B-spline finite element method, or TBFEM and apply it to solve anelastic prob-

lem on a pseudo physical model for temporal mammogram registration. Chapter 5

is devoted to an automatic registration method particularly designed for aligning

mammogram images. It combines B-spline with proposed texture-based feature

extraction and matching technique, and uses local intensity similarities as the guide

to the solution. In Chapter 6, we simulate elastic deformations of complicated

thin-shell objects by solving governing PDE with manifold splines. In Chapter 7,
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we present restricted trivariate polycube splines (RTP-splines) and conduct experi-

ments on a few solid models. Finally, we conclude the dissertation and propose a

few future works in Chapter 8.
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Chapter 2

Background Review

This section first survey the theory of multivariate splines. Particularly, we

will cover tensor-product B-spline and NURBS, triangular B-splines, Powell-Sabin

spline and T-splines. After that, we will review the their contribution in a variety of

practical applications.

2.1 Multivariate Splines

It is well known that spline functions play very important roles in both theories

and practices in many sciences and engineering areas. Due totheir variety and

complexity, it’s important to study the theory of multivariate splines. Between the

1960’s and early the 1970’s, Birkhoff, Garabedian and deBoor [24] studied and

established a series of theories on Cartesian tensor productmultivariate splines.

Although the Cartesian tensor product multivariate spline has its own application

value, they are a simple extension of univariate spline functions, so they have many

limitations. To combat such shortcoming, new spline schemes have been invented

for the last few decades. They include triangular B-spline, T-spline and etc.
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2.1.1 Tensor-product B-spline and NURBS

B-splines (short for Basis Splines) go back to Schoenberg who introduced

them in 1946 [113, 114] for the case of uniform knots. B-splines over nonuni-

form knots go back to a review article by Curry in 1947 [18]. de Boor derived

the recursive evaluation of B-spline curves [9]. It was this recursion that made B-

splines a truly viable tool in CAGD. Before its discovery, B-splines were defined

using a tedious divided difference approach which was numerically unstable. Later

on, Gordon and Riesenfeld realized that de Boor’s recursive B-spline evaluation

is the natural generalization of the de Casteljau algorithm and Bézier curves are

just subset of B-spline curves. Versprille [133] generalization of B-spline curves to

NURBS (non-uniform rational B-spline) which has become the standard curve and

surface form in the CAD/CAM industry [93].

(a) (b)

Figure 2.1: (a) shows the non-rational basis functions of quadratic B-spline. (b) shows a
patch of surface represented by NURBS

A NURBS curve generalizes the B-spline. It is the combination ofa set of

piecewise rational functions withn+1 control pointspi and associated weightswi :

c(u) =

∑n
i=0piwiBi,k(u)∑n
j=0w jB j,k(u)
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whereu is the parametric variable andBi,k(u) are B-spline basis functions. As-

suming basis functions of degreek−1, a NURBS curve hasn+ k+1 knotsti in

nondecreasing sequence:t0 ≤ t1 ≤ . . . ≤ tn+k. The basis functions are defined re-

cursively as:

Bi,1(u) =

⎧
⎨
⎩

1 for ti ≤ u< ti+1

0 otherwise

with

Bi,k(u) =
u− ti

ti+k−1− ti
Bi,k−1(u)+

ti+k−u
ti+k− ti+1

Bi+1,k−1(u)

The parametric domain istk−1 ≤ u≤ tn+1. In many applications, the end knots are

repeated with multiplicityk in order to interpolate the initial and final control points

p0 andpn. Figure 2.1(a) shows the basis functions of uniform quadratic B-spline.

A NURBS surface is the generalization of the tensor-product B-spline surface.

It is defined over the parametric variablesu andv as

s(u,v) =

∑m
i=0
∑n

j=0pi, jwi, jBi,k(u)B j,l (v)∑m
i=0
∑n

j=0wi, jBi,k(u)B j,l (v)

A NURBS surfaces has(m+1)(n+1) control pointspi, j . Assuming basis functions

along the two parametric axes of degreek−1 andl −1, respectively, the number of

knots is(m+k+1)(n+ l +1). The nondecreasing knot sequence ist0 ≤ t1 ≤ . . .≤

tm+k along theu-axis ands0 ≤ s1 ≤ . . .≤ s(n+ l) along thev-axis. The parametric

domain istk−1 ≤ tm+1 andsl−1 ≤ sn+1. If the end knots have multiplicityk andl in

theu andv axis respectively, the surface patch will interpolate the four corners of

the boundary control points. Figure 2.1(b) shows a surface represented by NURBS.

NURBS generalize the non-rational parametric form. Like non-rational B-

splines, the rational basis functions of NURBS sum to unity, they are infinitely
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smooth in the interior of a knot span provided the denominator is not zero, and

at a knot they are at leastCk−1−r continuous with knot multiplicityr, which en-

ables them to satisfy different smoothness requirements. They inherit many of the

properties of uniform B-splines, such as the strong convex hull property, varia-

tion diminishing property, local support, and invariance under standard geometric

transformations. More material of NURBS and further detaileddiscussion of its

properties can be found in [7,31,88–90,92,129]

2.1.2 Triangular B-spline

(a) (b) (c)

(d) (e)

Figure 2.2: Modeling features using triangular B-spline with degenerate knots. (a) the
parametrization of the fandisk model. (b) the domain triangulation and regular knot config-
urations (no three knots in a domain triangle are collinear). (c) Place the knots along the
user-specified edges of domain triangulation. (d) A cubic spline surfacereconstructed using
the knot configurations in (b). The spline isC2 continuous everywhere. (e) A cubic spline
surface reconstructed using the knot configurations in (c). The splineis C2 continuous on
smooth regions andC0 on sharp features.
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Based on the blossom or polar form [99] andB-patch [118], Dahmen, Mic-

chelli and Seidel [20] propose a general spline scheme ins-dimensional space,

which constructs a collection of multivariate B-splines whose linear span comprises

all polynomials of degree at mostn. The bivariate case is called triangular B-spline

or DMS spline. Due to its elegant construction and many attractive properties for

geometric modeling, triangular B-spline has received much attention since its in-

ception. Fong and Seidel [33] present the first prototype implementation of triangu-

lar B-splines and show several useful properties, such as affine invariance, convex

hull, locality, and smoothness. Greiner and Seidel [38] show the practical feasi-

bility of multivariate B-spline algorithms in graphics and shape design. Pfeifle and

Seidel [87] demonstrate the fitting of a triangular B-spline surface to scattered func-

tional data through the use of least squares and optimization techniques. Gormaz

and Laurent study the piecewise polynomial reproduction oftriangular B-spline and

give a direct and intuitive proof [37]. Franssen et al. [35] propose an efficient eval-

uation algorithm, which works for triangular B-spline surfaces of arbitrary degree.

The construction of triangular B-spline in [35] is as follows: let pointst i ∈ℝ
2,

i ∈ ℕ, be given and define a triangulation

T = {∆(I) = [t i0, t i1, t i2] : I = (i0, i1, i2) ∈ I ⊂ ℕ
2}

of a bounded regionD ⊆ ℝ
2. Next, with every vertext i of T we associate a cloud

of knotst i,0, . . . , t i,n such thatt i,0 = t i and for every triangleI = [t i0, t i1, t i2] ∈ T,

1. all the triangles[t i0,β0
, t i1,β1

, t i2,β2
] with β = (β0,β1,β2) and∣β∣=

∑2
i=0βi ≤ n

are non-degenerate.

2. the set

interior(∩∣β∣≤nXI
β) ∕= /0,XI

β = [t i0,β0
, t i1,β1

, t i2,β2
] (2.1)
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3. If I has a boundary edge, say,(t i0, t i1), then the entire area

[t i0,0, . . . , t i0,n, t i1,0, . . . , t i1,n) must lie outside of the domain.

Then the triangular B-spline basis functionNI
β, ∣β∣ = n, is defined by means of

simplex splinesM(u∣V I
β) (for details about simplex splines, please refer to [79].) as

N(u∣V I
β) = ∣dI

β∣M(u∣V I
β)

whereV I
β = {t i0,0, . . . , t i0,β0

, . . . , t i2,0, . . . , t i2,β2
} and

dI
β = d(XI

β) = det

⎛
⎜⎝

1 1 1

t i0,β0
t i1,β1

t i2,β2

⎞
⎟⎠

Assuming (2.1), these B-spline basis functions can be shown to be all non-

negative and to form a partition of unity. Then, the triangular B-spline is defined

as

F(u) =
∑

I∈I

∑

∣β∣=n

cI ,βN(u∣V I
β) (2.2)

wherecI ,β is the control point. This spline globallyCn−1 if all the setsXI
β, ∣β∣ ≤ n

are affinely independent.

One favorable characteristic of triangular B-splines is that by adjusting knots

along feature lines explicitly, we can model local sharp features (i.e.C0 continuity)

in the approximated space, while keeping theCn−1 smoothness over the other re-

gions. This advantage is demonstrated in a surface reconstruction example shown

in Figure 2.2.
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2.1.3 Powell-Sabin Spline

Powell-Sabin splines are functions in the spaceS1
2(∆ps) of C1 continuous

piecewise quadratic functions on a Powell-Sabin refinement[95]. Such a refine-

ment∆ps can be obtain from an arbitrary triangulation∆ by splitting each triangle

into six sub-triangles with a common interior point. In contrast to triangular B́ezier

splines, where imposing smoothness conditions between patches requires a great

number of nontrivial relations among the control points to be satisfied. theC1 con-

tinuity of a Powell-Sabin spline is guaranteed for any choice of the control points.

The first B-spline representation of Powell-Sabin spline wasderived by Shiet

al. [121]. However, their construction approach had serious drawbacks from the

numerical point of view. Dierckx [26] resolved the numerical problem by con-

structing a normalized B-spline basis for Powell-Sabin splines. This representation

has a very nice geometric interpretation involving the tangent control triangles for

manipulating the Powell-Sabin surfaces. Since then, the normalized Powell-Sabin

spline has been receiving much attention in the computer aided geometric design

community. Surface approximation and interpolation usingPowell-Sabin spline

have been reported in [27, 73, 145]. Windmolders and Dierckxsolved the subdi-

vision problem for uniform Powell-Sabin splines, that is ontriangulations with all

equilateral triangles [146]. Recently, Vanraeset al.present the subdivision rule for

general Powell-Sabin spline [131].

Let Ω be a polygonal domain inℝ2 and let∆ be a conforming triangulation

of Ω, constituted of trianglesρ j , j = 1, . . . ,Nt , having verticesVi := (xi ,yi),i =

1, . . . ,Nv. A Powell-Sabin refinement,∆ps of ∆ is the refined triangulation, obtained

by subdividing each triangle of∆ into six sub-triangles as follows. Select an interior

pointZ j in each triangleρ j and connect it with the three vertices ofρ j and with the
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pointsZ j1,Z j2,Z j3 whereρ j1,ρ j2,ρ j3 are the triangles adjacent toρ j (See Figure 2.3).

(a) (b)

Figure 2.3: The Powell-Sabin refinement∆∗ (b) of a triangulation∆ (a).

We denote byS1
2(∆ps) the space of piecewiseC1 continuous quadratic poly-

nomials on∆ps. Powell-Sabin [95] proved that the dimension of the spaceS1
2(∆ps)

equals 3Nv and any element ofS1
2(∆ps) is uniquely determined by its value and its

gradient at the vertices of∆, i.e., there exists a unique solutions(x,y) ∈ S1
2(∆ps) for

the interpolation problem

s(Vi) = fi
∂s

∂x
(Vi) = fx,i

∂s

∂y
(Vi) = fy,i i = 1, . . . ,Nv. (2.3)

So given the function and its derivative values at each vertex Vi, the B́ezier ordinates

on the domain sub-triangles are uniquely defined and the continuity conditions be-

tween sub-triangles are automatically fulfilled.

Dierckx [26] showed that each piecewise polynomials(x,y) ∈ S1
2(∆ps) has a

unique representation

s(x,y) =
Nv∑

i=1

3∑

j=1

ci j B
j
i (x,y),(x,y) ∈ Ω (2.4)
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where the basis functions form a partition of unity, i.e.,

B j
i (x,y) ≥ 0 (2.5)

n∑

i=1

3∑

j=1

B j
i (x,y) = 1 forall x,y∈ Ω (2.6)

Furthermore, these basis functions have local support:B j
i (x,y) vanishes outside the

so-called moleculeMi of vertexVi, which is the union of all trianglesTk containing

Vi.

The basis functionsB j
i (x,y) can be obtained by finding three linearly indepen-

dent triplets(αi j ,βi j ,γi j ), j = 1,2,3 for each vertexVi. B j
i (x,y) is the unique so-

lution of the interpolation problem with( fk, fxk, fyk) = (δkiαi j ,δkiβi j ,δkiγi j ), where

δki is the Kronecker delta. The triplets(αi j ,βi j ,γi j ), j = 1,2,3 are determined by

the following Dierckx’s algorithm [26,130]:

1. For each vertexvi, find its Powell-Sabin triangle points, which are the im-

mediately surrounding B́ezier domain points of the vertexvi and vertexvi

itself.

2. For each vertexvi, find a triangleti(Qi1,Qi2,Qi3) which contains all the

Powell-Sabin triangle points ofvi from all the triangles in the moleculeMi.

DenoteQi j = (Xi j ,Yi j ) the position of verticesQi j .

3. Three linearly independent triplets of real numbersαi j ,βi j ,γi j , j = 1,2,3 can

be derived from the Powell-Sabin triangleti of a vertexvi as follows:

∙ (αi1,αi2,αi3) = barycentric coordinate ofvi with respect toti

∙ (βi1,βi2,βi3) = ((Yi2−Yi3)/h,(Yi3−Yi1)/h,(Yi1−Yi2)/h)

∙ (γi1,γi2,γi3) = ((Xi3−Xi2)/h,(Xi1−Xi3)/h,(Xi2−Xi1)/h),



21

whereh= det

⎛
⎜⎜⎜⎜⎝

111

Xi1Xi2Xi3

Yi1Yi2Yi3

⎞
⎟⎟⎟⎟⎠

.

We then define the control triangles asTi(Ci1,Ci2,Ci3). Dierckx proved that

the normalized Powell-Sabin spline has a very nice geometric interpretation that

the control triangle is tangent to the spline surface [26]. Figure 2.4 illustrates an

example of Powell-Sabin spline surface over a planar triangulated domain.

(a) (b) (c) (d)

Figure 2.4: Powell-Sabin spline over a planar domain: (Courtesy of [44]) (a) Domain
triangulation; (b) Spline surface; (c) Spline surface, the red curves correspond to the edge
in the domain triangulation; (d) Spline surface overlaid by the control triangles (shown in
red) which are tangent to the surface;

2.1.4 T-spline

T-splines, developed by Sederberg, Zheng, Bakenov, and Nasri [117], are a

generalization of NURBS surfaces that are capable of significantly reducing the

number of superfluous control points by using the T-junctionmechanism. The

main difference between a T-spline control mesh and a NURBS control mesh is

that T-splines allow a row or column of control points to terminate at anywhere

without strictly enforcing the rectangular grid structurethroughout the parametric

domain. Consequently, T-splines enable much better local refinement capabilities

than NURBS. Furthermore, using the techniques presented in [117], it is possible

to merge adjoining T-spline surfaces into a single T-splinewithout adding new con-

trol points. However, this patching process requires that the knot intervals of the
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to-be-merged edges must establish an one-to-one correspondence between the two

surfaces. Sederberg et al. also develop an algorithm to convert NURBS surfaces

into T-spline surfaces, in which a large percentage of superfluous control points are

eliminated [116]. Most recently Song and Yang [123] generalized T-spline scheme

to weighted T-spline and demonstrated its applicability in3D free-form deforma-

tion.

(a) (b)

Figure 2.5: (a) Local knot lines for basis functionBi(s, t); (b) Pi is aT-junction.

T-spline is aPB-spline for which some order has been imposed on the con-

trol points by means of a control grid called aT-mesh. A T-mesh is basically a

rectangular grid that allowsT-junctions. Each edge inT-mesh is a line segment of

constants (which is calleds-edge) or constantt (which is calledt-edge) [117]. A

T-junction is a vertex shared by ones-edge and twot-edges, or by onet-edge and

two s-edges. For example,P1 (see Figure 2.5(b)) is aT-junction. Each edge in a

T-mesh is labeled with a knot interval, constrained by the following rules:

1. The sum of knot intervals on opposing edges of any face mustbe equal.

2. If a T-junction on one edge of a face can be connected to aT-junction on an

opposing edge of the face (thereby splitting the face into two faces) without

violating Rule 1, the edge must be included in theT-mesh.

In contrast to tensor-product B-spline that uses a rectangular grid of control
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points, PB-spline is point-based and requires no topological relationship among

control points. The equation for aPB-spline is given by:

P(s, t) =
∑n

i=1PiBi(s, t)∑n
i=1Bi(s, t)

(s, t) ∈ D

where thePi are control points. TheBi(s, t) are basis functions written as

Bi(s, t) = N3
i0(s)N

3
i0(t)

whereN3
i0(s) is the cubic B-spline basis function associated with the knotvectorsi =

[si0,si1,si2,si3,si4] andN3
i0 is associated with the knot vectort i = [ti0, ti1, ti2, ti3, ti4]

as illustrated in Figure 2.5(a). Every control point has itsinfluence domainDi =

(si0,si4)×(ti0, ti4). The T-spline equation is very similar to the equation for a tensor-

product rational B-spline surface, except that knot vectorssi andt i are deduced from

theT-mesh neighborhood ofPi.

Knot vectorsi andt i for the basis functionBi(s, t) are determined as follows.

Let (si2, ti2) are the knot coordinate ofPi. Consider a ray in parameter spaceR(α) =

(si2+α, ti2). Thensi3 andsi4 are thescoordinates of the first twos-edges intersected

by the ray. The other knots can be found in like manner.

(a) B-spline surfaces (b) T-splines

Figure 2.6: A gap between two B-spline surfaces, fixed with a T-spline (Courtesy of [117])
.
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T-junctions allow T-splines to be locally refinable, that is control points can

be inserted into the control grid without propagating an entire row or column of

control points. Figure 2.6(a) shows a small rectangular area blown up to magnify

a hold where neighboring B-spline surfaces do not match exactly. Figure 2.6(b)

shows the model after being converted into gap-free T-spline, thereby eliminating

the need for repair.

2.1.5 Other Multivariate Splines

Besides the aforementioned splines, there are many other multivariate splines

developed in the last few decades. They were usually originated for specific

tasks, gradually received more attention from other communities later. Thin plate

splines(TPS) were introduced by Duchon to model spatial transformation. Both

global affine and local non-affine components are successfully represented by a

group of radial basis functions(RBF). TPS has become an effective and popular

tool in image alignment, shape matching and many other computer vision applica-

tions. [8]. R̈ossl et al’s [107] introduce quadratic trivariate super spline on uni-

form tetrahedral partition to reconstruct continuous models from gridded volume.

Bernstein-B́ezier technique is used for evaluation of spline value and its gradient.

Box splines are extension of B-splines with equidistant knots. Namely they can

be viewed as the projection of higher dimensional boxes. Box splines consists of

triangular polynomial pieces, and can simply construct arbitrary two-dimensional

surfaces,i.e., manifolds. A very comprehensive discussion of box splinesis given in

the book [25]. Cauchy-Navier spline(CNS) was first proposed byDavis et al. [22]

for matching 3D Magnetic Resonance images of the breast. The development and

application of the CNS is similar to that of Thin-Plate splines. It is time-dependent
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and based on a physical model of a homogeneous isotropic elastic body. Such a

physical model is especially appropriate for matching medical and biological im-

ages. Due to the limit of pages, we are unable to review these splines in details. But

their applicational potential will be explored in our future research.

2.2 Applications of Multivariate Splines

In the last few decades, many research literatures have beenwritten on bivari-

ate, respectively multivariate splines. This work has beenmotivated in many cases

by the aim to develop powerful tools for fields of applications, such as scattered data

fitting, the construction and reconstruction of surfaces and the numerical solution

of boundary-value problems.

2.2.1 Shape Representation

In computer graphics, polygonal models are still the most common form of

surface representation. However, polygonal models of the integument attempt to

describe a basically continuous surface with linear approximations requiring many

polygons to obtain a visually smooth surfaces. Mathematically, splines are powerful

and effective tools to represent continuous and smooth surfaces by parameterizing

them with a number of control points. NURBS, generalizing B-splines [113, 114]

and B́ezier splines, have become industry standard tools for representation of geom-

etry and thus been incorporated into many commercial modeling systems [91]. In

spite of the popularity, tensor-product splines have limitations arising from their

rectilinear nature. Inserting a single control point on B-spline surface requires

propagating an entire row or column of control points. To combat this, Hierar-

chical B-splines [34] [61] were introduced for local refinement using an efficient
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representation and constructing multilevel spline spaces. T-splines [116, 117] are

a generalization of NURBS surface that are capable of significantly reducing the

number of superfluous control points when doing local refinement. One the other

hand, triangular splines, such as DMS-splines [20], Powell-Sabin splines [95] and

box-splines [25], are introduced to handle representationof continuous surfaces

over irregular domains. Nevertheless, all these splines are defined on planar do-

main. It is hard for them to model complicated surfaces with non-trival topologies

without patching and stitching, which is cumbersome. Manifold spline [39] is a

systematical extension of traditional planar domain fromR 2 to manifold domain,

which can elegantly model open/close surfaces with arbitrary topologies. Mani-

fold spline is theoretically founded upon the technique recently proposed by Guet

al. [40,41]. Implicit functions are another widely used methodfor shape represen-

tation. Gradients and high-order derivatives determined from volumetric implicit

functions are essential to volume rendering, iso-surface extraction and other appli-

cations. Huaet al.[52] represent volumetric implicit function by using hierarchical

trivariate B-splines, and then use such framework for directphysics-based modeling

of the underlying shapes [51]. Rössl et al.construct a super-spline representation

of complicated surfaces from their discrete implicit function values, and efficiently

visualize them with ray casting.

2.2.2 Shape Modeling

Free-form deformation (FFD), as introduced by Sederberget al. [115], is

known to be a shape modification method that has been extensively applied to

computer animation and geometric modeling. This techniquedeforms an object
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(a) (b)

Figure 2.7: The surface of a hearing-aid model is treated as free-form deformablemodel
and interactively modified by users. The green sphere is a handle to guidethe desired
deformation.

by embedding it within a solid, which is usually parameterized by a group of con-

trol points. Davis et al. [23] used rational B́ezier spline bases for the parametric

volume, and later Griessmairet al. ffd-bspline used a trivariate B-spline. Lam-

ousin et al. [63] used NURBS volume for embedding volume. Hsuet al’s [49]

proposed an FFD with trivariate B-spline that allows users tomanipulate points on

the surface of the embedded object directly. Most recently,Song et al. [123] de-

veloped w-TFFD based on weighted T-spline, which allows multilevel construction

and deformation. Instead of deforming the embedding volume, Hua et al. [51, 52]

directly manipulate underlying shapes by modifying their implicit volumes, which

are parameterized with trivariate B-splines.

Free-form deformable models were first introduced to computer graphics by

Terzopoulos et al. [128]. They employed elasticity theory to construct differen-

tial equations that model the behavior of non-rigid curves,surfaces, and solids as

functions of time. This technique provides users with a intuitive way for interactive

shape modeling and sculpture. It is ideal for free-form deformable models to be
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represented by splines, which will unify the stages of shapeconstruction and de-

signing. Qin et al. [97] introduced D-NURBS surfaces, an extension to traditional

NURBS that permits more natural control of the surface geometry. Figure 2.7

shows that the surface of a hearing-aid model is converted tofree-form deformable

model, then is adjusted interactively by professionists ina computer-aided design

system.

2.2.3 Image Processing

Digital images are captured with designated resolution. They usually need re-

sampling to achieve desired resolution in computer vision applications. B-spline

interpolation, or cubic convolution [71], is one of the mostpopular mathematical

tools for this task. In nonrigid image registration, multivariate spline also plays

an important role in representing continuous spatial transformation between source

and target images. FFD with spline basis functions has been shown to be a valuable

tool in medical image registration [10,108]. In [124], Bézier spline are used to ex-

press deformation. However, Bernstein basis functions haveno strict local support,

which leads to large computational complexity and insufficient deformation. In

[101,108], B-spline is utilized for MRI and Mammogram registration. B-spline ba-

sis functions have strict local support and better flexibility. Since the quality of the

quality of the registration is directly related to the transformation’s degree of free-

dom [47], Wanget al.[137] propose to replace uniform B-spline basis functions by

NURBS, which allows nonuniform distribution of control points and knot vectors.

Recently, Xieet al. [150] propose to use hierarchical B-spline to registration brain

MRI images, which offers local refinement for preserving fine details. Thin-spline

splines (TPS) as a mathematical interpolator introduced byDuchon have become
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an alternative choice for general image warping. Kimet al. [57,58] present an au-

tomated thin-plate spline, where an arbitrary set of landmarks are supplied initially

and then are iteratively repositioned until certain criteria is met. Rohret al. [106]

propose an approximating thin-plate spline with landmarksweighted by the uncer-

tainty in their localization, which relax the interpolation constrain and allows for

semi-auto landmark extraction. In addition to non-rigid image registration, mul-

tivariate splines, especially cubic B-spline curves and surfaces, are widely used to

represent evolvable surfaces or volumes in deformable models system, which offers

a unique and powerful tools for image segmenting, matching and tracking [77].

2.2.4 Scientific Computation

Due to their intrinsic properties of non-negativity and “partition-of-unity”,

multivariate spline functions are ideal to serve as basis functions in finite element

method to solve scientific and engineering problems. In the field of computer graph-

ics, Qin et al. [97, 98] proposed D-NURBS, a physics-based framework for in-

tuitive geometric shape design. In this framework, pseudo physical energies are

defined over NURBS surfaces to enforce certain criteria, then solved by finite ele-

ment method with NURBS basis functions to achieve optimal surface design. In the

broad areas of physics and engineering industry, many spline functions have been

widely incorporated in finite element method to solve partial differential equations

in mechanics, thermodynamics and etc. Daget al. [19] apply splitting method to

Burger’s equation and solve the equations by using both quadratic and cubic B-

spline Gakerkin finite element techniques. A finite element solution of Kdv equa-

tion is presented in [2]. The numerical solutions obtained by B-spline finite ele-

ment is found to in better agreement with the exact solutionsthan other numerical
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solutions in the literature. Yang [154] present graded B-spline finite element so-

lution, which allows for direct interaction between the design and analysis model

of heterogeneous objects without laborious meshing operation. Khalifa et al. [56]

numerically solved modified regularized long wave equationby collocation method

using cubic B-spline finite element. In additional to popularB-spline scheme, other

elements such as Hermite triangular, Powell-Sabin etc havealso been attempted

for solving specific problems. For example, in [125], Powell-Sabin splines are at-

tempted for numerical solution of partial differential equations defined on polygonal

domains. Special discussion also goes to the treatment of Dirichlet and Neumann

boundary conditions for Powell-Sabin spline finite elementin [125].



31

Chapter 3

Triangular B-spline based Image

Registration

3.1 Motivation

For the last decade, image registration has become an important technique

for various computer vision and medical applications, fusing the information from

images acquired either at different times or on multiple modalities. A number of re-

views have been documented in [10,72,158]. The earliest attempts made by [85,94]

typically restrict the deformation between the corresponding images to be rigid and

consider global geometric differences only. Later, non-rigid registration was in-

troduced in [12, 108] to additionally cope with local differences, resulting from

different anatomy, intraoperative deformation, or distortion induced during imag-

ing process. It is often assumed by the non-rigid registration that the objects in the

matching images behave as if they were a single elastic body,i.e., the stiffness is

constant everywhere. However, this is rarely the case when the imaged anatomy

contains both rigid and soft structures. A practical clinical example was described
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in [30] where the shape of the brain changed after subdural electrodes were im-

planted in a surgical procedure. Neither a single rigid bodymotion nor a nonlinear

model with invariant smoothness can accurately represent the transformation be-

tween preoperative and postoperative scans since the electrodes translate and rotate

only, while the others deform nonlinearly. Therefore, moreappropriate methods

are required to combine the modeling of both rigidity and non-rigidity in the recov-

ered transformation. Especially, theC0 continuity on the borders of rigid structures

needs to be simulated correctly for precise registration.

In principle, we could build patient-specific physical model to predict the in-

teraction between rigid structures and soft tissues. However, it is impractical to

achieve solution with desired accuracy due to high computational cost and insuffi-

cient details on mass, elasticity, and other mechanical properties. The efforts made

so far were either based on interpolatory spline scheme or through a variational

framework. Little et al. [68] incorporated independent rigid objects in a modified

thin-plate spline (TPS) based nonrigid registration. Anisotropic landmarks were in-

troduced by Rohret al. [104] to TPS to enforce local rigidity constraints. Duayet

al. [29] simulated the rigid motions by adaptively adjusting TPS radial basis func-

tions according to local stiffness. Tanneret al. [126] represented the deformation

using B-splines and locally couple control points in order tomodel local rigidi-

ties. Most recently, Loeckxet al. [69] introduce a penalty term to keep voxel-based

rigidities in their variational framework by enforcing theorthogonality of Jaco-

bian matrix. Nevertheless, none of the above approaches, except that in [68], can

precisely describeC0 continuity in the displacement field. In spite of the attempt

made in [78], it’s not straightforward for thin-plate splines to be incorporated with

variational framework, which is quite a powerful tool for intensity-based image

registration. On the other hand, tensor-product B-splines has been widely used for
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optimization-based registration approaches [108] [103] [132]. Although it is possi-

ble for tensor-product B-splines to describe sharp featureswhen the corresponding

knots collapse, such features can not lie in arbitrary direction due to the regular

domain of B-splines.

In this chapter, we develop a novel non-rigid registration algorithm in which

the recovered deformation field is represented by triangular B-splines. We first

build the domain triangulation and adjust corresponding knots to the boundaries of

pre-segmented rigid structures. As a result, theC0 continuity is guaranteed at the

desired places in the displacement field. The landmarks, selected at the vicinities of

rigid objects, are brought into correspondence between source and target images as

point-based constraints. The optimal transformation is then estimated by minimiz-

ing a composite energy function, which measures image discrepancy, deformation

distortion, and desired local rigidities. Empowered by thenumerous advantages of

triangular B-splines, such as flexible domain, local control, space-varying smooth-

ness modeling, etc., our registration approach makes the following contributions:

The local linear motion in the global non-rigid transformation, caused by rigid

structures, can be accurately recovered using relatively fewer degrees of freedom

(DOFs), as long as the feature lines are properly aligned in the domain triangu-

lation. With C0 continuity modeled at the interface between rigid and non-rigid

objects, the deformable region nearby can move more freely and tend to improve

the registration quality considerably.

3.2 Method

Given source imageIs, and target image,It , defined on the domainΩ ⊂ℝ
2, the

problem of registration is to find an optimal geometrical transformationT : Ω →ℝ
2
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such that the pixels in both images are matched properly.

3.2.1 Transformation Model

To reduce the global geometric differences betweenIs andIt , an initial align-

ment is achieved using conventional rigid registration algorithm. This obtained

transformation will be used as the initial estimation for the following registration.

The concept of free-form deformation (FFD) is to deform an object by ma-

nipulation underlying control points. In our work, the FFD is decomposed as an

identity transformation plus a displacement field, which isrepresented by triangu-

lar B-splines as:

T(x) = x+u = x+
∑

i=1..m

φiBi(x), (3.1)

whereφi is the control point andBi is the associated basis function.

Unlike tensor-product B-spline based FFD [103], whose domain is a rectangu-

lar lattice, our triangular B-spline based FFD has its domainbuilt upon a tessellation

of either triangles for 2D or tetrahedra for 3D. It is not difficult to triangulate the ref-

erence image domainΩ using established techniques. In order to model the sharp

features (see Fig.3.2(c)) at the boundaries of pre-identified rigid bodies, we have to

keep them in the triangulated tessellation. Such constraints can be satisfied using

the triangulation algorithm proposed by Shewchuk [120]. According to the defi-

nition of triangular B-splines, the free-form deformation field hasCn−1 continuity

everywhere if there is no degeneracy for any triple of knots in the same triangle.

However, we purposely collapse adjacent sub-knots to pre-identified feature lines

in order to model desiredC0 continuity.

Due to the flexibility of the domain triangulation, it is alsopossible for users

to overlay the registration domain exactly upon the region of interest (ROI), rather
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than covering the entire reference image. Thus, the computational effort will be

saved considerably, especially when the ROI can be successfully extracted.

3.2.2 Point-based Constraints

Point-based constraints are incorporated in our frameworkfor better registra-

tion. The points on the boundary contours of rigid structurewith high curvature are

good candidates for landmarks (see Fig.3.2(d)). Assuming strict rigidity of bony

structures, only two pairs of landmarks are required to fully recover local linear

transformation (i.e.,translation and rotation), if there is no rotoinversion. In prac-

tice, we often introduce more constraints to ensure the stability of the registration.

Let P = {p1, . . . ,pn} be the set of landmarks chosen on the reference domain

(It in our implementation). Their correspondences inIs areQ = {q1, . . . ,qn} such

that:

T(p j ;Φ) = q j for j = 1. . .n, (3.2)

whereΦ denotes the set of the control points of triangular B-splines. The above

equations are treated as hard constraints and have to be strictly satisfied in the fol-

lowing optimization process. In most cases, the linear system of (3.2) is under-

determined. But it is possible to become over-constrained when excessive land-

marks are selected on a single spline patch. Two approaches can be used to solve

such problem. One is to subdivide the triangular mesh, wherethere are overly-

condensed landmarks, and re-initialize the domain triangulation. The drawback of

it is that the problem dimension is increased accordingly. The other approach aims

to find a compromised solution for (3.2), which will be discussed later.
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3.2.3 Cost Function

In this chapter, we registerIs to It using a variational approach, in which a

metric measuring image similarity and constraints of global smoothness and local

rigidity are combined into an overall cost functionEtotal that is defined as:

Etotal = αEI +βER+ γES, (3.3)

whereα, β, andγ control the relative influence among three energy terms. In (3.3),

EI is the driving force behind the registration process and aims to maximize the

image similarity, whereasER is a constraint term to ensure local rigidity andES

tries to regularize the transformation as smooth as possible.

A number of approaches have been proposed in literature to calculate either

similarity or dissimilarity between images. Mutual information [17, 134] and cor-

relation ratio [102] are the methods to measure image similarities, while the sum-

of-squared-difference (SSD) measures the dissimilarities. In our current work, we

simply use SSD metric to test the feasibility of our registration algorithm. The

differences betweenIs andIt , represented byEI , is evaluated by:

EI =
1
2

∫

Ω
∥Is(T(x;Φ))− It(x)∥

2dx. (3.4)

In the theory of continuum physics, the non-rigid transformation is often mea-

sured byGreen-St. Venantstrain tensorE defined as

E = ∇u+∇uT +∇uT∇u (3.5)

Then a necessary and sufficient condition to obtain a local rigid transformation is
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E = 0 for rigid structures regions. This is identical to that proposed in [69], where

the Jacobian matrices are considered instead. We enforce the rigidity constraint by

defining a penalty term as the integral of theFrobeniusnorm ofE. Since different

structures in the image exhibit different deformation properties, and do not need to

deform similarly, we introduce a characteristic functionw(x) to separate the rigid

objects from deformable regions. The value ofw(x) is 1 on rigid structures and 0

elsewhere. The penalty term for local rigidity is given by:

ER =
1
2

∫

Ω
w(x)∥E∥2

F dx, (3.6)

where∥ ⋅ ∥F denotes theFrobeniusnorm.

A regularization termES, measuring the bending energy of a thin plate metal

subject to external forces [103,108], is also incorporatedto discourage improbable

or impossible transformations. It depends on the 2nd derivatives of the deformation

and is written as:

ES=
1
2

∫

Ω
(1−w(x))

(∥∥∥∥
∂2u
∂x2

∥∥∥∥
2

+

∥∥∥∥
∂2u
∂y2

∥∥∥∥
2

+2

∥∥∥∥
∂2u
∂x2

∥∥∥∥
2
)

dx, (3.7)

where the functionw(x) makes the regularization term valid only over non-rigid

regions.

3.2.4 Optimization

The optimization problem is stated to find an idealΦΦΦ such that the overall

energy (3.3) is minimized with the constraints in (3.2) satisfied. There are various

algorithms available to accomplish such constrained nonlinear programming task.

In particular, we convert the constrained optimization problem to a unconstrained
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one, rather than applying established methods directly. Then a simplex line search

approach described in [96] is performed to update the parameters iteratively along

the steepest descent of gradient until the cost function cannot be decreased any

further.

Putting (3.1) and (3.2) together, we discretize the point-based constraints and

write them in a matrix format:

P+CΦΦΦ = Q, (3.8)

whereP andQ are the vectors collecting the landmark positions inIt and Is re-

spectively, the vectorΦΦΦ consists of the control points of triangular B-splines, and

the triangular B-spline basis functions constitute the matrix C which is extremely

sparse and rank-deficient.

By solving the original optimization problem in the Null-Space ofC, we can

successfully remove the point-based constraints. Then, the new parameter vectorΨΨΨ

in Null-Space is related to the old oneΦΦΦ by the equation:

ΦΦΦ = NΨΨΨ+ΦΦΦ0, (3.9)

in which CN = 0 andCΦΦΦ000 = Q−P. We use Gaussian-Jordan-Elimination-like

approach proposed in [36] to constructN, and solve forΦΦΦ000 by either singular value

decomposition (SVD) or QR decomposition, both of which are computationally

viable here, since most columns inC are zero.
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Instead of estimating the gradient ofEtotal using finite-difference approxima-

tion, we analytically calculate the derivative with respect to ΨΨΨ and obtain:

∂Etotal

∂ΨΨΨ
= NT

(
α

∂EI

∂ΦΦΦ
+β

∂ER

∂ΦΦΦ
+ γ

∂ES

∂ΦΦΦ

)
, (3.10)

where

EI

∂φi
=

∫

Ω
(Is(T(x))− It(x))∇Is(T(x))Bi(x)dx.

Let φi j denotes the (3i + j)-th component ofΦΦΦ andBi, j be the derivative of the basis

function in j direction, wherej = 1,2,3 for x, y andzcoordinates, respectively. The

derivative of the local rigidity penalty term is:

ER

∂φi j
=

∫

Ω
w(x)

∑

s,t=1,2,3

Mst
∂Mst

∂φi j
dx

Mst =
∑

k=1...m
r=1,2,3

φktBk,s+φksBk,t +φksφktB
2
k,r

∂Mst

∂φi j
=
∑

r=1,2,3

δ jt
(
Bi,s+φisB

2
i,r

)
+δ js

(
Bi,t +φit B

2
i,r

)

in which δi j is Dirac function which equals to 1 if and only ifi = j. Likewise, the

derivative of the regularization term is given by:

ES

∂φi j
=

∫

Ω
(1−w(x))

⎛
⎝

∑

s,k=1,2,3

φk jBk,sBi,s+
∑

s,t,k=1,2,3

φk, jBk,stBi,st

⎞
⎠dx,

whereBi,st stands for the second derivative of basis functions. For details on effi-

cient evaluation of triangular B-spline basis functions andtheir derivatives, please

refer to [86] [35] [45].



40

Note that the integration operation in (3.3) is performed only on the pixels of

ROI. Therefore, we could significantly speedup the registration procedure if all the

basis functions and their derivatives over the interested region are pre-computed.

3.3 Experimental Results

(a) (b) (c) (d)

Figure 3.1: The first experiment: (a) Source image. (b) Target image. (c) Registration
result when sharp features are NOT modeled. The minimized energy terms are ES= 97.6,
ER = 39.9. (d) Registration result when sharp features are modeled, the minimized energy
terms areES= 71.8, ER = 30.8.

In order to evaluate the feasibility and applicability of the proposed algorithm,

we test it on both synthetic and real data. Cubic triangular B-splines are chosen

in the experiments to compare with the frequently used cubictensor-product B-

splines.

The first example demonstrated in Fig.3.1 doesn’t consider matching image

intensities(i.e., α = 0 in (3.3)), but tries to align corresponding points instead. A

green square is included in the source image to represent a rigid object, and its

counterpart is included in the target image with a rotation of 45∘. 8 pairs of land-

marks are selected at the corners of both the image and the rigid square, and applied

as the point-based constraints in the registration. The target image is chosen as the

reference domain, which is triangulated into 32 patches, and the cubic triangular

B-splines built on it have 361 control points. After applyingour algorithm without
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and with sharp feature modeling respectively, the achievedregistration results are

plotted in Fig.3.1(c) and Fig.3.1(d). It is noticeable thatthe background and the

square are more smoothly connected in Fig.3.1(c) than in Fig.3.1(d), because they

are treated as a single elastic object in the former one, but considered as separate

parts in the latter one. It is more physically appropriate tomodelC0 continuity

between the background and the square, when we simulate the interaction between

them. Therefore, the method with sharp feature modeling canachieve better regis-

tration result (the minimized energy terms areES= 71.8, ER= 30.8) than the other

one (ES= 97.6, ER = 39.9), when the same parameter setting (β = γ = 1) is used.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: The second experiment: (a) Source image. (e) Target image. (b) The domain
triangulation with feature lines highlighted in red. (f) 13 landmarks are highlighted in red.
(c) Registration result obtained from tensor-product B-spline based method. (g) Registra-
tion result obtained from triangular B-spline based method. (d) Deformationrecovered
using tensor-product B-spline based method. (h) Deformation recovered using triangular
B-spline based method.

For the second example, both images (see Fig.3.2(a)(e)) include three geo-

metric objects to represent rigid structures, whose positions are quite different in

the source and the target images. The reference domain (shown in Fig.3.2(b)) has
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130 triangles and the triangular B-splines thus have 631 control points. 13 pairs of

landmarks are picked up to ensure correct alignment betweenrigid structures (see

Fig.3.2(f)). The registration result and the recovered deformation field are shown in

Fig.3.2(g) and Fig.3.2(h). An alternative approach using tensor-product B-splines

is also applied for the comparison purpose. Its domain is defined on a 25×25 to

match the number of triangular B-spline control points. The comparison between

the results from both approaches (shown in Fig.3.2(c) and Fig.3.2(g)) indicates that

the tensor-product based method fails to align the images ata desired resolution,

when there exist large deformations near rigid structures.In sharp contrast, tri-

angular B-spline is built on a flexible domain, so that its modeling power can be

ideally concentrated on the interested region for better registration. Furthermore,

its power of modeling sharp features helps to improve the registration quality far

more better.

Two MRI images of human spines (see Fig.3.3(a)(b)) are used inthe third

experiment. The spinal bones are first segmented from the target image, then the

characteristic functionw is set accordingly to decide where the rigidity constraints

should be applied. The source image is registered to the target image as shown in

Fig.3.3, in which all of the rigid structures are successfully matched.

Our algorithm is implemented using MS VC++, and all experiments are con-

ducted on a platform with 2.8GHz Pentium IV CPU and 1G RAM. Both synthetic

images have the size of 400×400, and the size of the MRI images used for the third

experiment is 512×512. The running time for the three experiments are about 1

minute, 6 minutes, and 12 minutes respectively.
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(a) (b) (c) (d)

Figure 3.3: The third experiment: (a) Source image. (b) Target image. (c) Registration
result. (d) Rigid structures segmented from the target image.

3.4 Summary and Discussion

This chapter presents a nonrigid registration technique inwhich the transfor-

mation between corresponding images are represented by triangular B-splines. By

preserving feature lines in the domain triangulation and adjusting knots accordingly,

the proposed method successfully recovers local rigid motions and accurately sim-

ulatesC0 continuities at desired regions, using relatively fewer degrees of freedom

and lower degree polynomials. The actual registration is done through the use of

a variational framework, in which a constrained optimization problem is solved to

reduce the differences between images and enforce both local rigidity and global

smoothness at the same time. The method has been tested on both synthetic exam-

ples and real data for its efficacy.

Although tensor-product B-spline based approaches are still dominating in the

field of non-rigid registration, their applicability is somehow limited due to the

structure of their regular domain. On the contrary, our registration method can cor-

rectly delineate the boundaries of rigid bodies in its domain triangulation at a much

coarser level, and thus model the local rigid motions more accurately. Further-

more, with the degenerate knots on the boundaries of rigid structures,C0 continuity
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is automatically guaranteed in the described displacementfield, and can be natu-

rally coupled with the optimization process. This advantage enables us to precisely

simulate the behavior of rigid objects inside elastic tissues. From the registration

point of view, the deformable regions around the rigid structures may become less

constrained by the regularization term and contribute extra flexibility to the min-

imization of the cost function (3.3). As a result, the registration quality can be

considerably improved. An alternative way to modelC0 continuities could be to

separate rigid and non-rigid regions into different domainpieces. However, extra

efforts must be spent to keep the overall transformation consistent across different

pieces in a different hierarchy, and in general, the variational approaches over irreg-

ular domains in a hierarchical fashion have not been fully explored. In this chapter,

only rigid structures with simple geometric shapes are considered in our experi-

ments for the feasibility test. To accommodate more complicated structures, we

can subdivide the domain mesh adaptively along their boundaries until the desired

accuracy is achieved. The landmarks applied in our registration are interactively

selected by users based on their knowledge and subjectivity. Naturally, the registra-

tion result is affected by the quality of landmark selection.
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Chapter 4

Registration of Temporal

Mammogram Using Triangular

B-splines Finite Element Method

(TBFEM)

4.1 Motivation

Breast cancer is one of the most common causes for cancer-related death,

with annual mortality of over 400,000 women worldwide. Taking regular mam-

mographic screening and comparing corresponding mammogram are necessary for

early detection of breast cancer, which is also the key to successful treatment. To

seek abnormality through comparison, the clinical diagnosis involves either pairs

of mammogram from the bilateral breasts of the same patient or a series of mam-

mogram acquired from the same breast at different time. However, the first method
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tends to be unreliable when the left and right breasts contain significantly differ-

ent structures. But the latter one, which aims at detection oftemporal changes in

the same breast, produces more robust results. Unfortunately, a temporal pair of

mammogram may vary quite significantly due to the spatial disparities caused by

the variety in acquisition environments, including 3D position of the breast, the

amount of the pressure applied, etc. Such disparities can becorrected through the

process ofTemporal Registration. This chapter contributes to the existing state of

the art in temporal registration of digital mammography.

Earliest attempts for mammogram registration typically assumed rigidity and

affinity of breast deformation. Yinet al. [156] align mammograms using an opti-

mal rigid transformation which minimizes the least square error between two group

of control points. However, due to the elastic nature of the breast, it’s far from

correct to match mammograms using solely rigid models. Later, radial basis func-

tions (RBF) based on Thin-plate Spline (TPS) [110] and Cauchy-Navier Spline

(CNS) [148] are incorporated to build a global smooth nonrigid transformation from

a local displacement vector field representing spatial differences between corre-

sponding control points. However, those registration method depending on control

points are prone to failure when the pre-segmentation is accurate enough. To this

end, recent techniques tend to incorporate the metrics measuring intensity similar-

ities between corresponding images. Writhet al. [149] align subregions according

to local mutual information, then combine them into a globaltransformation using

TPS. Hadjiiskiet al. [42] propose an automatic regional registration method, which

bases on the identification of corresponding lesions in temporal mammogram pairs.

A pyramid-based multiresolution technique given by Kostelecet al. [60] integrates

a least square measurement with TPS transformation to matchbilateral mammo-

grams. Likewise, Rueckertet al. [109] hierarchically match corresponding breast
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images, but using a B-spline based free-form deformation(FFD) technique instead.

Due to the large variety of breast tissues and their mechanical behaviors, however,

it’s more appropriate to register temporal mammograms by utilizing model-driven

simulation. Pathmanathanet al. [83] build a patient-specific nonlinear 3D model

to predict the tumor location. Kitaet al. [59] simulate the deformation of breasts,

and accordingly establish the correspondences between their CC and MLO mam-

mographic views. Richardet al. [101] [100] build a 2D FEM model from X-ray

mammograms, then conduct the registration by deforming it subject to both feature

and intensity-driven constraints.

Our approach is inspired by Richardet al.’s work [101]. But we employ a

novel triangular B-spline finite element method (TBFEM) instead and recover large

deformation between temporal mammograms following nonlinear elasticity theory.

Triangular B-splines, introduced by Dahmenet al. [20], has many favorable fea-

tures, such as flexible simplex-based domain, space-varying continuities, local con-

trol, etc. The most unique one of them is the ability to model local sharp fea-

tures along in the approximated smooth solution. A example of this is illustrated

in Figure.4.1(c). Therefore, the incorporation of TBFEM within our registration

framework gives the following advantages over conventional FEMs: i) The region

of interest (ROI) can be accurately described and selected as the registration do-

main, while the tensor-product B-splines methods [109] necessitate extra efforts to

refine the problem domain along the irregular boundaries of ROI. ii) In contrast to

other simplex-based elements, such asLagrange Polynomials, our TBFEM offers

a global smooth solution (Note that the continuities of the solutions given by tra-

ditional Lagrange FEM are not ensured across the element boundaries). iii) Users
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are allowed to model the spatially varying continuities in the approximated defor-

mation field by manipulating the knot configuration according to pre-identified fea-

tures. Sharp features may appear in the displacement field when the elastic object

contains different materials (see Figure.4.1(a)(b) for this concept). iv) The accurate

simulation of the elastic deformation incorporating material heterogeneity can be

achieved by using relatively fewer finite-elements.

(a) (b)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c)

Figure 4.1: (a) A one dimensional cascaded spring system system consisting of three
springs with stiffness ofk, 2k andk respectively. When the system is compressed by an
external forceF, it is deformed and the displacement caused alongx-axis is plotted in (b).
The sharp featuresA andB in the displacement profile are built at the joint points between
different springs. (c) A functional approximated by a single triangular B-spline, where both
C1 andC0 continuities co-exist.
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4.2 Method

Figure 4.2: Overview of the registration process.

The temporal registration problem can be stated as: given both previous mam-

mogramT (template) and current oneR (reference), we are asked to find an opti-

mal transformationφ such that the disparities between them are reduced maximally.

Our registration process(see Figure.4.2) consists of two consecutive steps, whose

details will be developed in the following.

4.2.1 Nonlinear Elastic Deformation

First, the registration domainΩ is defined over the breast region, which is

previously segmented fromR and usually circumvented by the breast skin contour

and partial image boundaries. The domainΩ is then triangulated with the user-

specified feature lines(see Figure.4.3(a)). Then we adjustthe knots configuration

such that the knots collapse to their adjacent sharp features. Thus,C0 continuity

will be successfully modeled in the solution of the recovered displacement field.
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The objective of this registration step is to estimate the displacement fieldu∗ :

Ω̄ → ℝ
2 betweenT andR such that they are aligned as much as possible. Since

the breasts compressed during mammography usually undergolarge deformation

(> 5%), our framework follows nonlinear elastic theory and governsu by:

⎧
⎨
⎩

A(u) =−∇ ⋅ (I +∇u)(λtr(E(u))I +2µE(u)) = f

u = u0 on Γd

(I +∇u)(λtr (E(u))I +2µE(u)) = g0 on Γn

(4.1)

in which St. Venant-Kirchhoffelastic material is assumed andGreen-St. Venant

strain tensorE(u) is written in its second order:

E(u) =
1
2
(∇φT∇φ− I) =

1
2
(∇uT +∇u+∇uT∇u) (4.2)

The body forcef does not exist in this step. Andλ andµ arelamecoefficient related

to elastic properties.

Due to the nature of registration problems, bothDirichlet andNeumanncon-

ditions in Equation.(4.1) are dropped, and replaced by a bunches of discretized

geometric constraints [101]. Such constraints in our framework consist of two

set of control pointsP andQ , selected fromR andT respectively. The major-

ity of the control points come from the breast skin contours and their correspon-

dences are established following the approach proposed by Wirth [147]. Further-

more, salient anatomical structures(vessels branches, nipple, etc.) and pathological

points(microcalcification, etc.) are ideal to serve as auxiliary control points. Dif-

ferent from the control points automatically matched on thebreast contour using

arc-length parametrization, the interior points need to bemanually selected and cor-

responded to each other in our current implementation. Notethat such process can
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be automated by incorporating the technique proposed by Paqueraultet al.[82]. An

example of the control points selected from both the template and reference images

is shown in Figure.4.3(b)(c).

The geometric constraints given byP andQ are formulated as follows:

φ(pi) = qi pi ∈ P ,qi ∈ Q , i = 1, . . . , ∣P ∣ (4.3)

Where thepi andqi are corresponding points. These constraints can be viewed as

a bunch of displacement vectors fromR to T .

To solve Equation.(4.1), we linearize it withNewton’s Method[55], thus the

solution can be approximated incrementally by:

A(un+1) ≈ A(un)+A′(un)δun = fn +δfn (4.4)

δfn = fn+1− fn = A(un+1)−A(un)

δun = un+1−un

in which the total displacement fieldu is iteratively updated with the increment of

δun, which in turn is the solution of:

A′(un)δun = fn (4.5)

Finally we discretize Equation.(4.5) in our TBFEM model and solve it in the
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approximate spacêV := span{B1,B2, . . . ,BN}, whereBi denotes the triangular B-

spline shape function. After applyingGalerkin Method[15], we achieve its dis-

cretization form written by:

N∑

k=1

δûn
k

∫

Ω

3∑

i, j,p,q=1

âi jpq(un)∂Bk∂Bl dx= 0 l = 1, . . . ,N (4.6)

in which δûn =
∑N

k=1δûn
i Bi and âi jpq denotes a FEM discretization operator, the

detail of which is available in [15]. The equation above is ill-conditioned unless

combined with constraints given in Equation.(4.3). Suppose that there are totalM

steps in the elastic deformation, the constraints contributed to the deformation at

thenth step are:

N∑

j=1

B j(pi)δûn
j =

1
M−n+1

(qi −un(pi)) i = 1, . . . , ∣P ∣ (4.7)

In essence, the constraints above progressively drag the control points inR to their

corresponding location inT . A linear-interpolation scheme is employed here to

predict the position of control points of the next time step.Note that alternative

schemes can be incorporated as well.

Substituting Equation.(4.7) into Equation.(4.5), we can get a constrained linear

problem:

Mn∆∆∆Un = 0

s.t. C∆∆∆Un = D(Un)

Un+1 = Un +∆∆∆Un and U0 = 0 (4.8)

In current implementation, we first convert the problem above to an unconstrained
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system by usingNull-space projecttechnique [36], then solve it by Conjugate Gra-

dient method(CG). Note that if there is only one time-step assumed for the simula-

tion, the deformation will degenerate to a linear elastic one.

(a)

(b) (c)

Figure 4.3: (a) The triangulated registration domainΩ, where the feature line is highlighted
between the pectoral muscles and breast tissue. (b)(c) 8 interior and 29contour control
points in template and reference images respectively.
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4.2.2 Refinement with Intensity Difference Minimization

Let the displacement field obtained in the previous step beu∗, the deformed

T denoted byT ′(x) = T (x+u∗) which is in rough alignment withR . To fur-

ther improve the registration results, we perturbT ′ with an additional displacement

field v by minimizing a intensity-based metric, which measures thesum of squared

difference (SSD) betweenT ′ andR :

E(T ′,R ;v) = α
1
2

∫

Ω
∥T ′(x+v)−R (x)∥2dx (4.9)

whereα weighs the contribution ofE .

Similar to Equation.(4.1), the governing PDE in this step can be written as:

A(v) =−∇ ⋅ (λtr(E(v))I +2µE(v)) = f (4.10)

Note that we assume linear elasticity here because only small deformations are

allowed in the second step. Thus, the second order strain tensor is dropped andA

becomes a linear differential operator. Instead of using geometric constraints, we

incorporate artificial body forces derived from the minimization ofE . In addition,

we pin the images at both the upper and lower left corners to avoid unnecessary

floating. Consequently, Equation.(4.10) is discretized to:

M0V = F(V) (4.11)

whereF(V) denotes the virtual body force, whose elements are:

(F(V))i = α
∫

Ω
(T (x+v)−R (x))∇T (x+v)Bidx (4.12)
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Note that the stiffness matrixM0 is identical to that in Equation.(4.8) at the previous

registration step. A gradient descent like algorithm is employed to solve it:

M0∆∆∆n+1 = F(Vn) (4.13)

Vn+1 = h∆∆∆+(1−h)V (4.14)

associated with a small positive valueh. The iteration stops when a predefined

thresholdε is met:
E(T ,R ;Vn+1)

E(T ,R ;Vn)
< ε

4.3 Experiment and Results

Two temporal pairs of 2D X-ray mammograms in MLO views obtained with

one year interval (see Figure.4.4 and Figure.4.5) are used to test the registration

framework proposed in this chapter. All of the mammograms have size of 2294×

1914, resolution of 94.1µm and 12-bit intensity depth. To suppress the noise as well

as speedup the registration process, a Gaussian filter with akernel of 200 pixels is

applied to the mammograms before the registration.

The breast region is automatically segmented from each image based on a

threshold which is the value of the gray-level corresponding to the first peak in the

smoothed histogram of the image. Our registration domain isthen defined over

the breast region, which is further delaunay-triangulatedwith pre-identified sharp

features as geometric constraints [119].

For both pair of temporal mammograms, we approximate the underlying dis-

placement field using second order triangular B-splines, in which sharp features

are naturally accommodated. A simple heterogeneous model is incorporated with
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TBFEM to model different elastic material in mammograms. TheYoung’s Mod-

ules ofE = 104 andE = 102 are assigned to pectoral muscles and breast region

respectively to model stiff and soft tissue. These values are chosen empirically and

only their ratio matters in the first registration step, in which there are no Neumann

conditions involved [28]. We choose poisson ratioν as 0.495 to simulate incom-

pressible breast tissues.

During first registration step, control points are selectedautomatically on the

parameterized breast skin contours and manually from the breast interior region. 29

pairs of contour points and 8 pairs of interior points are picked for the first exper-

imental case, while 33 and 6 pairs respectively for the second. The total nonlinear

deformation is divided into 20 time steps; In the second step, the regularization

term, weighted by the Young’s ModuleE, counteracts the artificial image forces,

whose magnitude is controlled by the coefficientα. Choosing correct values for

these registration parameters is essential to the success of our algorithm. In our

case studies, we empirically setα to 10−3 andh to 10−2, and receive satisfactory

results as well as adequate numerical stabilities. The registration result of both

experiments are illustrated in Figure.4.4. and Figure.4.5.

To evaluate our approach, we quantitatively compare it withtwo other simi-

lar registration methods. One of them is also based on TBFEM but without sharp

features modeling (i.e.knots are all fixed), the other uses second orderLagrange

triangular elements instead. The experimental results aredocumented in Table.4.2

where the registration qualities are measured by the post-registration improvement

between template and reference images. It is noticeable that the pre-registration

disparity is mainly reduced in the deformation step while the second registration

step makes only small contribution to the final result. The reason is that the salient

information provided by X-ray mammograms are apt to trap theintensity-based
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optimization within local minima. We also find that the registration quality in our

framework can be improved by incorporation of prior knowledge of feature lines.

However, these improvements seem small in Table.4.2 because of the massive pre-

registration error between template and reference images.Compared with conven-

tional triangular FEM (Lagrange triangular FEM) with the same degree of freedom

(DOF) and degree of order, TBFEM can delineate the recovered deformation field

more accurately, and thus is superior in our simulation-based registration frame-

work.

Our algorithm was implemented with MSVC++. The experiment was per-

formed on a platform with 3GHz CPU and 4G RAM. Each step of nonlinear elastic

deformation takes up to 10 seconds. At refinement stage, we used a set of images

re-sampled from the original mammograms with different resolutions. The perfor-

mances of refinement step working on multi-resolution images are documented in

Table 4.1.

Image size # of Iterations steps Timing

2294×1914 28 157m
1147×957 21 22m
573×478 16 7m19s
286×239 12 92s

Table 4.1: Statistics of refinement step applied on multi-resolution mammogram images
(case 1)

4.4 Summary

In this chapter, we presented a simulation-based registration framework for

temporal pair of 2D x-ray mammograms. A novel triangular B-spline finite element

method(TBFEM) is incorporated to accurately model the recovered deformation,
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TBFEM with TBFEM without 2nd-order Lagrange
feature modeling feature modeling triangular FEM

Case 1 step 1 86.41% 86.29% 85.93%
step 2 86.45% 86.32% 85.97%

Case 2 step 1 94.69% 94.66% 94.56%
step 2 94.72% 94.69% 94.58%

Table 4.2: The registration quality is measured by the post-registration improvement be-
tween template imageT and reference imageR , which is formulated as(∣T −R ∣2−∣T∗−
R ∣2)/∣T −R ∣2 whereT∗ denotes the newT after the registration is conducted. In Case-1,
there are 2514 DOFs with 600 triangular elements, and for Case-2, there are 2600 DOFs
with 619 triangles.

as well as the sharp features between different tissue properties using the technique

of knots collapsing. Our registration algorithm employs a two-stepped scheme:

the massive disparities between temporal mammograms are first reduced through a

nonlinear elastic simulation; then the mapping between template and reference im-

ages is further refined according to intensity-based information. The results of our

experiment have also shown that the TBFEM incorporated with our framework is

superior to traditional FEM method by improving registration quality considerably.
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(a) (b)

(c) (d)

Figure 4.4: Image registration for case one (a) Template ImageT (b) Reference Image
R (c) Pre-registered error (d) Post-registered error after two-step registration technique is
applied
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(a) (b)

(c) (d)

Figure 4.5: Image registration for case two (a) Template ImageT (b) Reference Image
R (c) Pre-registered error (d) Post-registered error after two-step registration technique is
applied
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Chapter 5

Automatic Registration of

Mammograms using Anisotropic

Features

5.1 Motivation

Breast cancer is one of the most common causes for cancer-related death,

with annual mortality of over 400,000 women worldwide. Taking regular mam-

mographic screening and comparing corresponding mammogram are necessary for

early detection of breast cancer, which is also the key for successful follow-up treat-

ment. However, the comparative analysis can be difficult because of the great vari-

ability in the appearance of mammograms. Therefore, the technique ofregistration

is often applied to reduce the spatial disparity between mammogram pairs during

Computer Aided Diagnosis (CAD).

The earliest attempt [156] for mammogram registration typically assumed

rigidity and affinity of breast deformation. Nevertheless,due to the elastic nature of
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the breast, it is much more appropriate to match mammograms using nonrigid mod-

els. The warping techniques based on Thin-plate Spline (TPS) [110] and Cauchy-

Navier Spline (CNS) [148] is widely used to estimate a global nonrigid transfor-

mation from local spatial differences between corresponding control points. Since

the accuracy of control points extraction is usually not trustworthy, the differences

between image intensities are often considered as the matching criterion for better

registration [149]. However, mammogram images are frequently containing ex-

cessive disordered texture features, therefore the optimization for intensity-based

registration tends to get trapped in local minima, unlikelyto yield satisfactory re-

sults.

In this chapter, we present an automated framework for mammographic regis-

tration, which is inspired by the work of [111]. Instead, we invent a novel method

to match breast skin boundaries, and apply an accurate unwarping technique which

matches both the positions and anisotropic attributes of selected landmarks simul-

taneously. The breast region is first segmented with the technique proposed in [81],

then the skin contours are smoothed by using cubic B-splines approximation. To

robustly match the corresponding breast boundary points, we seek an optimal trans-

formation such that the mutual information given by the curvature functionals of

both skin contours is maximized. Then, the texture-based feature points associated

with orientation attributes are selected from the interiorregion of breast images us-

ing Gabor filters, and then matched appropriately across twoimages. The extracted

feature points can be naturally characterized by the way that they are more distin-

guishable from surrounding pixels than the others. Finally, we extend the warping

technique initially proposed in [105], in order to integrate both the orientation and

intensity information in our imaging framework for better local registration.
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5.2 Extraction of Breast Boundary

t0

(a) (b) (c)

Figure 5.1: (b) shows the segmented breast region (white) from the mammogram image
(a). (c) displays the histogramH of the mammogram, where the threshold value denoted
by t0 is selected at the first valley left to the maximum histogram value.

Our goal is to obtain the breast boundary by segmenting the breast region from

the mammogram. We use histogram thresholding technique to distinguish the bright

breast region from the dark background. An example is given in Fig.5.1, where the

indicated thresholdt0 identifies the pixels left to it as the background, while the

others as the breast region. It’s obvious that the success ofthe segmentation largely

depends on how the threshold valuet0 is chosen. A number of strategies to decide

the histogram threshold can be found in the literature [21, 64]. In our implemen-

tation, we select the thresholdt0 as follows: First, the lowest and highest bins of

the histogramH of the mammogram are purposely discarded since they accountfor

the background noise. Then,H is further smoothed by applying a low-pass filter,

e.g. median filter or mean filter. After identifying the maximum histogram value

pb according to the approach proposed in [81], we choose the thresholdt0 as the

first valley value left topb. A example of the segmented breast region using the
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thresholdt0 is shown in Fig.5.1(b).

Since the border of the breast region segmented as above is rather noisy, we

smooth it by sequentially applying a pair of morphological operations,closingand

opening. An octagonal-shaped operator with radius of 10 is used to preserve the

shape of breast region and gives the best smoothing result. Then we can extract

the breast skin contour by traveling along the border pixelsof the segmented breast

region. If the contour is not smooth enough, we will filter it by using cubic B-spline

approximation method.

5.3 Matching Boundary Points
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Figure 5.2: A0, A1 represent the discretized curvature functions ofC0 andC1. Ah
1 is the

curvatures ofC1 after being stretched.

The deformation of breast skin contours determine how the interior deforma-

tion take place to a large degree. Rather than match the boundary points with the

assumption of local linear stretching [111], we treat the skin contours as nonlinearly



65

stretchable and align the points on them by maximizing the mutual information be-

tween the corresponding curvature functionals.

Let C0, C1 represent the corresponding boundary contours, andc0, c1 denote

their curvature functions, respectively. To facilitate the registration process,C0, C1,

c0 andc1 are uniformly parameterized to the domain[0,1], and treated as function-

als. We further convert the value ofc0,c1 into finite bins[1. . .M], thus obtain their

discretized functional representation asA0 andA1 (see Fig.5.2). It is obvious that if

bothA0 andA1 are considered as one dimensional images, the problem of matching

boundary points can be converted to one dimensional registration problem. That is,

given the discretized curvature functionsA0 andA1, we are asked to find an optimal

transformation (or stretching)h : [0,1]→ [0,1] such that

h= argmin

(
−MI(A0,A

h
1)+λ

∫ 1

0

∣∣∣∣
∂
∂t
(h− t)

∣∣∣∣
2

dt

)
(5.1)

where the stretched curvature function, denoted byAh
1, is equal toA1(h(t)), and the

mutual informationMI is:

MI(A0,A
h
1) =−

M∑

i=1

M∑

j=1

p01
h (i, j) log

p01
h (i, j)

p0(i)p1
h( j)

in which p0, p1
h represent the corresponding marginal probabilities inA0 andAh

1, and

p01
h denotes the joint probability of(i, j) betweenA0 andAh

1. In equation (5.1), the

minimization of the first termMI aims to matching the boundary contours accord-

ing to the likelihood between their curvatures, while the second term discourages

undesirable transformations, which helps to improve the numerical stability.

To decrease the dimension of the optimization problem stated in equation (5.1),

we representh by using cubic B-splines approximation. And the error function is
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minimized through the gradient descent method. Note that it’s non-trivial to calcu-

late the gradient of the mutual informationMI because it depends on the discretized

bin values, thus is discontinuous. However, this obstacle can be tackled by esti-

matingMI with Parzen windowtechnique, and an efficient method to evaluate the

gradient can be found in work documented in [48].

5.4 Extraction and Matching of Texture Features

In order to recover the local deformation in the interior of the breast region,

it’s desirable to extract texture-based features and matchthem between correspond-

ing mammograms. Similar to the selector introduced in [111], where the features

with rotation and invariant properties are extracted and steerable filters are used, we

propose to employ Gabor filters to detect those features, because they have been

reported more robust and more responsive to oriented features [3] than steerable

filters.

The real Gabor filter kernel oriented at angleθ =−π/2 is defined as:

g(x,y) =
1

2πσxσy
exp

[
−

1
2

(
x2

σ2
x
+

y2

σ2
y

)]
cos(2π f x) (5.2)

where the parametersσx, σy and f are decided from the following rules: Letτ be the

full-width at half-maximum of the Gaussian term alongx axis. Then,σx = τ/2.3,

and f = 1/τ. The value ofσy is defined asσy = lσx, wherel denotes the elongation

of the filter alongy axis. In current implementation, we empirically setτ = 5 and

l = 5.

The kernels at other angles can be obtained by rotating (5.2)over the range

[−π/2,π/2]. In our experiment, we used a filter bank of Gabor filters,gk(x,y),k=
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0,1, ⋅ ⋅ ⋅ ,15, oriented at the angles ofαk = −π/2+πk/16. If the a imageI(x,y) is

processed, the filtered images becomeWk(x,y) = (I ∗gk)(x,y), where the asterisk

operator denotes linear convolution.

Due to the huge dimension of mammograms, it’s not necessary to detect fea-

ture points over the entire breast region. Instead, we constrain the selection done

only on certain points, which are decided byCanny Edge Detectiontechnique.

Since many overlapping structures exist in mammogram images, the local estima-

tion of feature orientations is not reliable. To this end, wepropose that the response

Sk(x,y) at pixel(x,y) to thekth Gabor filter is measured as the average of neighbor-

ing responses, and defined by:

Sk(x,y) =
1
∣N∣

∑

i∈N

∣Wk(xi ,yi)∣
2 (5.3)

whereN represents a 5× 5 neighborhood. LetSk1 > Sk2 > Sk3 be the first three

largest magnitude of responses in descending order at position (x,y), and the cor-

responding angles areγ1(x,y) = αk1, γ2(x,y) = αk2 andγ3(x,y) = αk3. To find the

bifurcate structures among all candidate points, we check for the following condi-

tion:
Sk1 −Sk2

Sk2 −Sk3

< 0.1

If it’s satisfied at a certain point(x,y), we consider there exists a bifurcate structure.

Let P andQ be the set of the junction points detected on both mammogram

images. The correspondence between betweenP andQ can be established as fol-

lows:

1. Let both mammogram images denoted byI0 and I1. We estimate two ap-

proximate transformationsT andT−1 between them, whereT mappers from
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I0 to I1, while T−1 is its inverse. Note that these mappings can be easily

constructed using thin-plate spline approximation, usingthe boundary corre-

spondences that have been established in section (5.3).

2. If eitherP or Q is empty, stop.

3. Pickp as the point with the maximum value ofSk1 from P. Denote its prin-

cipal and secondary orientation byγ1(p) andγ2(p), respectively. Thus the

actual angle between them is calculated as:

θ(p) =

⎧
⎨
⎩

γ2− γ1 : γ2− γ1 > 0

γ2− γ1+π : otherwise

To improve the robustness of our algorithm, we also compare the nearby in-

tensities of the feature points for best matching. To this end, an additional

image regionL(p) centered atp with size of 30×30 is selected, then after

cancellation of shearing and rotation effects, its normalization formR(p) is

written byI0(A(L−p)+p), where

A =

⎡
⎢⎣

cosγ1 −cosγ1/ tanθ−sinγ1

sinγ1 −sinγ1/ tanθ+cosγ1

⎤
⎥⎦

4. Letp′ = T(p) be the estimated transformed point ofp in I1. We search inQ

for candidate feature pointq, such that: 1)∣p′−q∣< r1; 2) the smallest angle

betweenγ1(p) andγ1(q) is less thanπ/4; 3) ∣θ(p)− θ(q)∣ < π/4. r1 is the

maximum distance between each pair of feature point, which is set to 20 in

our experiment. If we can’t find any candidate inQ, then removep from P
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and jump to 2; otherwise, we select the best one,q̄, whose normalized local

imageR(q̄) shares the maximum mutual information withR(p).

5. To avoid condensed feature points, which may introduce large distortion in

the recovered transformation, those points inP with distances top less than

r2 are removed; Likewise, the neighboring points toq are also dropped inQ.

r2 is the threshold that decides the minimum distance among features points.

6. SwapI0 andI1, P andQ, T andT−1, then go to 2.

(a) (b)

Figure 5.3: (a)(b) show 40 pairs of anisotropic features extracted in the left and right mam-
mograms, respectively.

Fig.5.3 shows a pair of bilateral mammograms, in which the anisotropic fea-

tures are extracted using our approach.
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5.5 Recovering Transformation with Anisotropic

Features

Each of the feature point extracted above is associated withan orientation that

is the principal direction ofγ1. Therefore, for better registration result, it’s more

appropriate to align the orientations of the landmarks in addition to the matching of

positions [105].

We denotepi andqi the corresponding landmarks inI0 and I1. Their orien-

tations are represented by two unit vectordi andei, which points to eitherγ1 or

γ1±π. Then the transformationu betweenI0 and I1 can be recovered by solving

the following constrained optimization problem:

E(u) = M(I0, I1,u)+λ1

n∑

i=1

det
(
ei ,(u∇− (u∇)T)∣pi di

)
(5.4)

Whereu denotes the transformation to be recovered. The first termM is designed

to match the intensity information between two images as much as possible. The

criteria,summed squared differences(SSD), is currently incorporated in our current

implementation. It is obvious that other metrics, for example, mutual informa-

tion and correlation, are also possible here. The second term is the penalty for

the misalignment between the orientations of corresponding landmarks. Note that

(u∇− (u∇)T)∣pi di is the rotated vector ofdi after the transformation, which is re-

quired to be collinear withei to register anisotropic information.

Note that there is no regularization term included in equation (5.4). This is

because we discretize the transformation field by using cubic B-spline represen-

tation, which already has an inherent nature for regularization. To achieve better

registration result, we introduce several pseudo landmarks at the image corners and
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boundaries to avoid unnecessary image floating. In the optimization of equation

(5.4), all of the positional correspondences are treated ashard constraints, which

further ensure the correct matching between the orientations associated with land-

marks.

5.6 Results

Our registration framework is demonstrated by matching mammograms from

the MIAS digital mammogram database. Three bilateral pairsof left and right im-

ages are selected and demonstrated in Fig.5.4, representing fatty-glandular tissues

(MIAS 015/016), dense-glandular tissues (MIAS 35/36) and fatty tissues (MIAS

75/76) respectively. The right mammogram is registered to the left one in each

case. The effectiveness of the registration process can be evaluated using compar-

ative measures such as image-subtraction. By comparing pre-and post-registration

errors, we found that much of the misregistration in the pre-registration difference

image occurs along the periphery of the breast. After the breast boundary points

aligned using technique proposed in this chapter, most of the peripheral differences

can be removed from the subtraction image. In addition, the matching of texture-

based anisotropic features selected from the interior of the breast region also helps

to further improve the registration result.

5.7 Conclusion

In this chapter, we presented an automatic imaging framework to register cor-

responding mammograms with little human intervention. It combines a robust

contour-matching algorithm for the matching of breast boundaries, and a novel



72

feature-matching technique, which unwarps correspondingmammograms accord-

ing to the texture-based anisotropic features automatically selected from the breast

region. The experimental results also indicate that the proposed approach can pro-

vide useful information for better detection of breast abnormalities. In future, we

will test our registration method on real clinical data for further evaluation of its

robustness and efficacy.
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(a) (b) (g) (h)

(c) (d) (i) (j)

(e) (f) (k) (l)

Figure 5.4: (a)-(f) represent MIAS15/16(fatty-glandular), MIAS35/36(dense-glandular)
and MIAS75/76(fatty) pairs, respectively. (g)(i)(k) show the pre-registration error. (h)(j)(l)
demonstrate the post-registration error. The asymmetry structure (highlighted with the blue
circle) in (l) is more distinguishable from the surrounding pixels than that in pre-registration
error map of (k).
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Chapter 6

Spline Thin-Shell Simulation of

Manifold Surfaces

6.1 Motivation

Flexible plates and shells are the fundamental geometric structures found in

many fields of applied engineering nowadays. Since physics-based method is of

great popularity for geometric modeling and simulation in CAD/CAM, the sim-

ulation of thin-shell objects is frequently required in modern engineering design

practice. However, the modeling and simulation of thin-shells have traditionally

been treated as two different stages due to the lack of a common representation

scheme. An intermediate data conversion process is often employed to couple the

modeling and simulation, but it may deteriorate both accuracy and robustness of

the whole system. Therefore, an unified representation would be ideal to overcome

such difficulties.

In theory, FEM can provide an approximate solution to the problem of thin-

shell deformation, but it still remains as a challenging problem due to two obstacles:
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Traditional finite-element is exclusively defined on planardomain, thus incapable of

describe smooth surfaces and accompanying vector fields of complex manifolds and

topologies without patching/trimming; Thin-shell finite-element must be at leastC1

continuous to ensure the convergence of the solution according to Kirchhoff-Love

theory. However, traditional finite-elements, endowed with purely local polyno-

mial shape functions, usually suffer from the difficulties in enforcing the desiredC1

continuity across the element boundaries.

A number of different approaches have been attempted to combat the afore-

mentioned obstacles in thin-shell simulation. Due to the inherent difficulties inC1

interpolation, alternative methods have been proposed to compromise theC1 conti-

nuity requirement, such as degenerated solid elements, reduced-integration penalty

methods, and many others [11,70]. Most recently, Ciraket al. [16] used the shape

functions induced by subdivision rules for thin-shell finite-element simulation. De-

spite their modeling advantages, the subdivision surfacesdo not allow close-form

analytic for their basis functions, and have more unnecessary extraordinary points

depending on the connectivity of the control mesh (instead of the intrinsic topology

of the manifold). Another noteworthy FEM presented in [62] uses Element-Free

Galerkin (EFG) method to simulate and analyze Kirchhoff shells and plates. How-

ever, it requires extra efforts to combine the model geometry with the simulation

process via data conversion. In general, all these approaches fail to provide an

effective way to handle thin-shell surfaces with sophisticated topology.

In this chapter we articulate a novel framework that naturally couples the mod-

eling and simulation processes for arbitrary thin-shell surfaces. Spline surfaces are

prevalent in commercial modeling systems because of their unique advantages in

shape modeling, manufacturing and visualization. With therecent development of

manifold spline theory [39], which enables the flexible construction of splines over
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any manifold of arbitrary topologies, we particularly introduce a novel thin-shell

finite-element based on triangular B-spline [20] defined overmanifold domain. The

advantages of our method over the previous state-of-the-art thin-shell simulation in-

clude: First, the shell objects of arbitrary topology can beeasily modeled by man-

ifold triangular B-splines, with a minimum number of singular points intrinsic to

the topological structures of the manifolds; Second, theC1 continuity requirement

can be easily achieved for triangular B-splines; Finally, our spline-based primitive

naturally integrates geometric modeling with physical simulation by avoiding un-

necessary data conversion and meshing procedure, which canlead to faster product

design and development cycle.

6.2 Spline Representation of Manifold Surfaces

(a) domain (b) spline (c) control points

Figure 6.1: A genus-3 manifold triangular B-spline. (a) domain manifold with 742 trian-
gles. (b) cubic manifold triangular B-spline surface. (c) spline overlaid with control points

In [39], Gu, He and Qin systematically build the theoretic framework of man-

ifold spline, which locally is a traditional spline, but globally defined on the mani-

fold. First, the manifold is covered by a special atlas, suchthat the transition func-

tions are affine. Then, the knots are defined on the manifold and the evaluation of
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polar form is carried out on the charts. Although on different charts, the knots are

different, the evaluation value is consistent and independent of the choice of charts.

Furthermore, the existence of such atlas depends on the domain topology. This new

paradigm unifies traditional subdivision surfaces and splines.

The geometric intuition of the definition of manifold splineis that first we

replace a planar domain by the atlas of the domain manifold, and then all the con-

stituent spline patches naturally span across each other without any gap. The cen-

tral issue of constructing manifold splines is that the atlas must satisfy some special

properties in order to meet all the requirements for the evaluation independence of

chart selection.

In [39], Gu et al. show that for a local spline patch, the only admissible pa-

rameterizations differ by an affine transformation. This requires that all the chart

transition functions are affine. Furthermore, they show that given a domain mani-

fold M of genusg, a manifold triangular B-spline can be constructed with no more

than∣2g−2∣ extraordinary points.

The manifold triangular B-spline can be written as follows:

F(u) =
∑

I

∑

∣β∣=n

cI ,βN(φ(u)∣V I
β), u ∈ M (6.1)

wherecI ,β ∈ℝ
3 are the control points. Given a parameteru ∈ M, the evaluation can

be carried out on arbitrary charts coveringu.

Manifold triangular B-splines have many valuable properties which are criti-

cal for geometric and solid modeling. For examples, manifold triangular B-splines

are piecewise polynomial defined on the manifold domain of arbitrary triangula-

tion. Therefore, the computation of various differential properties, such as normals,
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curvatures, principal directions, are robust and efficient. The splines have local sup-

port, i.e., the movement of a single control pointcI ,β only influences the surface on

the triangleI and on the triangles directly surroundingI . The manifold triangular

B-splines are completely inside the convex hull of the control points. The degree

n manifold triangular B-splines are ofCn−1-continuous if there are no degenerate

knots. Furthermore, by intentionally placing knots along the edges of the domain

triangulation, we can model sharp features easily. The manifold spline of genus

g(≥ 1) has 2g−2 singular points. See Figure.6.1 for an example of genus-3 mani-

fold triangular B-spline.

6.3 Spline Thin-shell Simulation

6.3.1 Elastic Thin-shell Mechanics

The mechanical response of a spline surface with an attachedthickness prop-

erty can be computed with the classical Kirchhoff-Love shell theory. In the interest

of smooth technical flow, let us briefly review the derivationof thin-shell equations.

Detailed presentation of classical shell theories can be found elsewhere in mechan-

ical engineering literatures.

Thin-shell is a particular form of three-dimensional solidwhose thickness is

significantly small as compared with the other two dimensions. LetX(θ1,θ2) de-

note the middle surface of the thin shell, whereθ1 andθ2 are the parametric co-

ordinates of the surface. The generic configuration of the shell can be described

as

S= {x ∈ R3∣x = X(θ1,θ2)+θ3X,3(θ1,θ2), −
h
2
≤ θ3 ≤

h
2
},

whereX,3 is a unit director vector normal to the middle surface of the shell both
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in the reference and deformed configuration under the Kirchhoff-Love hypothesis.

The internal energy of the shell depends on the differentialquantities of the middle

surface, such as the metric and curvature tensor. Assuming linearized kinematics,

the displacement field of the middle surface is introduced asu(θ1,θ2) =X(θ1,θ2)−

X0(θ1,θ2), where the superscript “0” is used to denote the measurementin the

reference configuration. Thus, the linearized membrane andbending strain tensor

can be expressed as:

εi j =
1
2
(X0

,i ⋅u, j +X0
, j ⋅u,i), (6.2)

ρi j =−u,i j ⋅X0
,3+(J0)−1[u,1 ⋅ (X0

,i j ×X0
,2)+u,2 ⋅ (X0

,1×X0
,i j )]. (6.3)

whereJ = ∣X,1×X,2∣, X,3 = J−1(X,1×X,2), and∣X,3∣ = 1. Here, the subscripts

take the values of 1 and 2, and a comma denotes partial differentiation. Note that,

the derivation of the membrane and strain is independent of the introduction of the

Kirchhoff-Love hypothesis.

Under the assumption of linearity of elasticity, the strainenergy density is

defined as follows:

W(u) =
1
2

Eh
1−ν2Hαβγδεαβεγδ +

1
2

Eh3

12(1−ν2)
Hαβγδραβργδ, (6.4)

in which, the first term is the membrane strain energy densityand the second one is

the bending strain energy density. Thus, the overall potential energy is as follow:

E(u) =
∫

Ω
W(u)dΩ+Eext = Eint +Eext,

whereEint is the internal elastic energy andEext is the potential of the applied forces.
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Following the principle of minimum potential energy, we canget the stable equilib-

rium configurations of the thin-shell. The Euler-Lagrange equations corresponding

to the minimum principle may be expressed in the weak form as:

⟨DEint(u),v⟩+ ⟨DEext(u),v⟩= 0 (6.5)

wherev is the trial displacement field.

6.3.2 Spline Element Discretization

Following the construction of manifold triangular B-splines given in (6.1), we

can extract the basis functions and write them by:

ϕl (φ(v)) =
∑

ξ(I ,β)=l

N(φ(v)∣V I
β) v ∈ M (6.6)

in whichξ :ℕ×ℕ
3 →ℕ associates each local simplex-spline with an unique global

shape functions it contributes to,φ is the conformal mapping, andφ(v) denotes the

point in the planar domain, mapped from a manifold pointv. We will use these

expression in the following discussion, and representφ(v) by x if necessary.

Thus, we can easily extend the membrane and bending strain tensors from

planar parametric domain to manifold domain and write them in the form:

ε(φ(v)) =
L∑

l=1

M l (φ(v))ul , (6.7)

ρ(φ(v)) =
L∑

l=1

Bl (φ(v))ul (6.8)

whereBl are the membrane and bending strain matrices, and{ul , l = 1, . . . ,L} are
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the nodal displacement vectors.

Substituting equations (6.7) and (6.8) into (6.5) yields the linear equations

developed from the manifold domain as:

KU = F (6.9)

where K is the stiffness matrix,U is the collection of nodal displacement

[uT
1 ⋅ ⋅ ⋅u

T
L ]

T , andF is the nodal force vector.K is a block matrix which can be

conveniently assembled by filling in the following 3×3 matrices:

K IJ =

∫

M

[
Eh

1−ν2(M
I )THM J+

Eh3

12(1−ν2)
(M I )THM J

]
dM

with the constitutive matrixH made of contravariant metric tensors, the definition

of which is available in [16]. The construction ofF will be discussed later.

6.3.3 Implementation Details

Numerical Integration: The thin-shell FEM simulation needs to compute the

Kirchhoff energy of the deformed shell surfaces. However, the evaluation of the in-

tegrations over arbitrary manifold surfaces has been a challenging problem, which

is usually awkwardly handled by piecewise parameterizations. With the global con-

formal mapping coupled with triangular B-splines theory, wecan conduct the inte-

gration on an equivalent planar domain instead, and use any established numerical

integration techniques. In our system, the shell elements are selected as the trian-

gles of the tessellation, from which the triangular spline is constructed. Then we

regularly subdivide each element into small congruent triangles, and compute the

integration using triangle Gaussian quadratures.
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Boundary Condition Handling: To facilitate the process of intuitive geometric

design, we include point-based constraints as the input forour thin-shell simulation

system. The users are allowed to pick up a group of points on the spline surfaces, i.e.

P0 = {p0
1, p

0
2, . . . , p

0
n}, and assign them with desired positions after the deformation,

i.e. P= {p1, p2, . . . , pn}, wheren denotes the total number of the point constraints.

This linear constraints thus defined can be grouped in a matrix format as:

P0+Cu = P

whereC is an extremely sparse matrix that stores the basis functionvalues at corre-

sponding constraint pointsP0. To combine the constraints with the Equation (6.9),

we solve foru in the Null-space ofC, such that:

u = Nu′+u0

whereCN = 0 andCu0 = P−P0. We use Gaussian-Jordan-elimination-like ap-

proach [14] to constructN, and solve foru0 by either singular value decomposi-

tion (SVD) or QR decomposition method. Due to the extreme sparsity and rank-

deficiency ofC, such method is computationally viable to handle point-based geo-

metric constraints.

Level-of-Detail (LOD) Simulation: The shell objects with affluent surface de-

tails requires massive number of degrees of freedom (DOF) for accurate geometric

modeling. However, the triangular B-splines models having large number of con-

trol points are not suitable for interactive geometric design. Thus, we incorporate
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a level-of-detail (LOD) strategy to accommodate thin-shell deformation of sophis-

ticated models. Any thin-shell surfacesS can be decomposed to a smooth spline-

based surfaceS0 and a scalar functiond describing the additional displacements,

i.e.:

S(x) = S0(x)+d(x) ⋅n(x)

wheren is the normal vector ofS0. Practically,S0 can be estimated by fitting the

original surface using manifold triangular B-spline with relatively small number

of control points [45]. Then the magnitudes of the fitting errors along the normal

directions will be further modeled as a spline-based functiond with more degree of

freedoms. For the LOD simulation of a complicated thin-shell model, our system

allows users to sculpt on the base surfacesS0, then the previously recorded details

will be automatically applied to give the final design results. Figure.6.2 gives two

examples of geometric design with LOD thin-shell simulation.

6.4 Results

Our system is implemented on a Microsoft Windows XP PC with Intel Pentium

IV 3.0GHz CPU, 1.0GB RAM, and an nVidia GeForce Fx 5600 Ultra GPU. We

have run a variety of examples to verify and test the efficacy and performance of

our method. These examples includes a female face, the stanford bunny, a torus and

a kitty. Both the face and the bunny are LOD-modeled. And both the torus and the

kitty models have non-trivial genus. The statistics and performances of thin-shell

simulation on these examples are documented in Table.6.1.
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Kitty Torus Bunny(LOD) Face(LOD)

S0(x)
#DOF 990 324 662 256
Order 3 3 3 5

d(x)
#DOF N/A N/A 3106 3181
Order N/A N/A 4 5

#Constraints 8 6 30 9

Timing
Stage1 25.06s 3.25s 17.81s 7.34s
Stage2 0.56s 0.15s 8.38s 0.53s
Stage3 2.34s 1.19s 2.09s 1.53s

Table 6.1: Model statistics and performance data. Stage one is assemblingK , stage two is
to handle boundary constraints, and stage three is deformation.

6.5 Summary

In this chapter, we propose a novel paradigm that successfully simulates the

elastic deformation of thin-shell objects. We also provideusers with a LOD sculpt-

ing tool for esthetical geometric design. The experiment results show demonstrate

that the proposed thin-shell FEM method has the following advantages over the

traditional ones. It can easily achieve theC1 continuity requirement, and repre-

sent arbitrary thin-shell surfaces using splines with minimum number of singular

points. Our spline-based primitive naturally integrates geometric modeling with

physical simulation in the entire CAD/CAM process, thus unnecessary data con-

version and meshing procedure is total avoided. For future work, we will extend

current framework to handling large thin-shell deformation by considering non-

linear elastic energy, and solve the simulation problem in temporal dimension for

animation applications.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: LOD thin-shell simulation (a)(e) the original surfaces with feature details.
(b)(f) the base surfaces with geometric constraints. (c)(g) the base surfaces after thin-shell
deformation. (d)(h) the original surface after LOD thin-shell deformation.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: (a)(b) 6 points constraints applied on the torus surface. (c)(d) torus shell after
deformation. (e)(f) the front and side view of the kitty with points constraints. (g)(h) the
front and side view of the deformed kitty shell.
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Chapter 7

Restricted Trivariate Polycube

Splines (RTP-splines)

7.1 Motivation

Volumetric data of massive size are now available in a wide variety of scien-

tific and research fields, because of the rapid advancement ofmodern data acquisi-

tion technologies. A frequently occurring problem is how toconvert acquired 3D

raw data of discrete samples into a continuous representation upon which simula-

tion and analysis processes can be efficiently developed andaccurately computed.

The majority of traditional solid modeling techniques during the past four decades

have been established upon the following theoretic foundations: constructive solid

geometry (CSG), boundary representation (B-reps), and cell/space decomposition.

Most of these representations lack the ability of smoothly modeling solid geometry,

which is required by modern engineering design in order to directly apply physi-

cal simulations on modeled solids, without the necessity ofexpensive remeshing
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of finite-element structure and shape data conversion between discrete and continu-

ous representations and between linear finite elements and higher piecewise splines

in 3D. In practice, real-world objects (directly acquired via the scanning process)

have complex geometry and non-trivial topologies. Therefore, constructing effi-

cient representations for general solid objects in favor ofphysical simulation and

engineering design remains to be a very challenging task.

Trivariate simplex splines [50] have been developed to model multi-

dimensional, material attributes of volumetric objects. However, computing blend-

ing functions and their derivatives on simplex splines is not straightforward and

inefficient, compared with NURBS and tensor-product B-splines. Also, how to au-

tomatically place boundary sub-knots to avoid numerical degeneracies remains to

be an open problem. Trivariate simplex splines are defined over an unstructured

tetrahedral grid, which can be easily obtained from triangular meshes by certain

mesh generation softwares such asTetgen[122]. Although solid object of com-

plex topologies and geometries can be modeled by trivariatesimplex splines upon

such unstructured grids, the majorities of simulation solvers have preferences on

structured grid. This is because, low-quality tetrahedralmeshes usually cause large

simulation errors or numerical instability. Motivated by current industrial practice

in various engineering design and analysis systems, we focus on designing a volu-

metric spline modeling framework based on structured grid domains.

In the framework ofisogeometric analysisproposed by [53, 157], trivariate

tensor-product B-splines/NURBS are directly used for modeling smooth geometry,

material attributes, and physical simulation of solid objects simultaneously. Mar-

tin et al. [75] convert a solid femur mesh to a cylindrical trivariate B-spline by

parameterizing the model into a solid cylinder. Due to the topological limitation

of the cylinder domain, the constructed trivariate tensor-product splines can not
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model solid objects with bifurcations and arbitrary topologies, without enormous

efforts in patch gluing/trimming, and imposing smoothnessconstraints along patch

boundaries. Furthermore, local refinement required in level-of-detail modeling is

not supported by tensor-product splines because basis function refinement will in-

troduce many superfluous control points across the entire domain. As an extension

to NURBS, T-splines [116, 117] solve this problem on semi-regular grid domains.

To the best of our knowledge, no work has generalized T-splines for three dimen-

sional, multi-attribute data and directly applied them to volumetric geometry and

data modeling.

Directly generalizing T-spline surface to volumetric datais not straightforward

and far from trivial. A general T-spline function defined over a bivariate domain can

be formulated as

F(u,v) =
∑n

i=1wipiBi(u,v)∑n
i=1wiBi(u,v)

(u,v) ∈ ℝ
2, (7.1)

wherepi are control points associated with weightwi, andBi(u,v) denote basis

functions. With this definition, two pieces of T-spline patches can be stitched to-

gether by blending boundary basis functions, and we form a new T-spline that can

preserve smoothness across the boundary. Trivariate T-splines inherit such nice

features, and T-splines defined on polycube volumetric domains can be similarly

constructed by gluing a group of T-spline cubes. However, the calculation of

this T-spline function and its derivatives requires to divide blending functions by

the sum of all the contributed ones. This will make the evaluation computation-

ally inefficient. Recently,Semi-standardT-splines introduced in [116] guarantee
∑n

i=1wiBi(u,v) ≡ 1 in Equation (7.1) across the entire domain. In this setting,

computingF(u,v) and its derivatives can be much more efficient.
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Figure 7.1: Extra support regions. On a concave domain, if the supporting box region of
a blending function intersects with the domain boundary (e.g., boxes ofv1 andv2), extra
control points (e.g., in red regions) could contribute to the function blendingunnecessarily.

However, how to construct a semi-standard T-spline, especially over non-

trivial parametric domains, is a challenging problem. Another issue is that, con-

ventional T-splines are defined with open boundaries, i.e.,the support regions of

blending functions may go across the domain boundaries. Such an open-boundary

scheme upon polycube domain will cause control points to unnecessarily contribute

to extra domain regions. Two examples are shown as red-regions in Figure 7.1.

This might cause geometric inconsistency in modeling underlying solid objects,

and in physical simulations. Therefore, it is ideal to have atrivariate spline in-

herit from T-splines, that (1) is defined within the largest visible region inside the

domain, and (2) has the property of semi-standardness. Suchnovel splines will

greatly facilitate direct modeling and physical simulations of arbitrary solid objects

with complex geometries and sophisticated topologies. Thespline constructed in

this chapter has these properties, and we call it the Restricted Trivariate Polycube

Spline (RTP-spline). We present a framework of RTP-splinesconstruction and the

data conversion of volumetric models to this spline representation.

The main contributions of this chapter include:
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1. A new spline (RTP-spline) scheme is uniquely formulated over polycube do-

main, with blending functions restricted inside domain boundaries. The RTP-

splines also have the following advantages:

∙ It is capable of local refinement;

∙ Computing RTP-spline functions and their derivatives is much more ef-

ficient than that on traditional T-spline surfaces;

∙ The polycube domain enables natural modeling of arbitrary solid ob-

jects, since low distortions and few singularity points areintroduced

in volumetric parametrization when the domain mimics the geometries

and topologies properly;

∙ The restricted boundaries of RTP-spline effectively ensure the physical

modeling and simulations adhere to the geometries of underlying ob-

jects.

2. We develop a novel framework to construct RTP-splines in an effective top-

down fashion.

3. We construct RTP-splines on several volumetric models with both geometry

and synthesized texture information (to mimic material properties), which

demonstrates that our RTP-splines can model not only geometry but also

multi-attribute fields within an unified paradigm.

7.2 Related Works

Research on spline-based volumetric modeling has gained much attention re-

cently. 4D uniform rational cubic B-spline volume is used to constructively model

FRep solids defined by real-valued functions [112]. The method presented in [76]

represents and specifies physical attributes across a trivariate NURBS volume.
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However, it is more desirable in engineering design to have an integrated model-

ing framework that represents geometry, material attributes, and conducts simula-

tions simultaneously. Trivariate NURBS are used to model skeletal muscle with

anisotropic attributes [157], on which NURBS-FEM analysis isdirectly conducted.

Martin et al. [75] present a method based on volumetric harmonic functions to pa-

rameterize a volumetric solid to a solid cylinder in order tofit a single trivariate

B-spline to geometric data and model simulation attributes.A modeling technique

based on triangular simplex spline [50] is developed to model and render multi-

dimensional, material attributes for solid objects with complicated geometries and

topologies.

The splines proposed in this chapter are founded upon the T-spline technique,

which is invented in [117]. T-spline is a generalization of NURBS, but permits

T-junctions on its control mesh and enables local insertionof additional knots with-

out introducing superfluous control points. A local refinement method is proposed

in [13, 116] to simplify NURBS surfaces to T-spline representations by removing

superfluous control points. The merge of B-spline patches defined over different

local domains for getting a single T-spline representationon the manifold domain

is thoroughly discussed in [54].

Bazilevs et al. [4] propose an isogeometric analysis framework based on T-

splines. Its main focus is on planar T-splines for surfaces,and volumetric T-splines

is only briefly mentioned without offering any technical details. Generalized trivari-

ate T-splines (whose control points are associated with weights) are employed

by [123] to model free-form deformation fields. For the purpose of shape meta-

morphosis, 3D level sets represented by T-splines are adopted in [32, 151–153] for

its efficiency. This is because, the distribution of T-spline control points can be

made adaptive to the geometry of the morphing objects.
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Our work relies on the generation of a polycube domain and parametrization

upon it. The concept of polycube domain is originally proposed for seamless texture

mapping with low distortion [127]. Polycube volume and its surface parameteriza-

tion can be constructed either manually [127, 135, 136] or automatically [46, 67].

Based upon specially-designed surface parametrization, [135] builds manifold bi-

variate T-spline over a polycube that can handle models witharbitrary topology. A

few recent work [65,74,143] studies the parameterization of a solid object to canon-

ical domains such as spheres, polycubes, etc. Volumetric parameterization typically

starts from any given surface mapping, and parameterizing volumetric data onto a

solid polycube domain serves as an important pre-processing step for the conversion

of any solid model to RTP-splines.

7.3 Preliminaries and Notations

In this section, we introduce the general algorithm to construct trivariate T-

spline with duplicate knots on regular box domain, review the theory of basis func-

tion refinement, and define necessary notations for the rest of this chapter.

7.3.1 Trivariate T-spline with Duplicate Knots

Defined on a grid structure that allows T-junctions (or T-mesh), the T-spline

proposed in [117] is a generalization of non-uniform B-splines (or NURBS).

When considering a simple cube domain, the definition of T-spline surfaces can

be straightforwardly extended to three dimensions and generate trivariate T-splines

on T-lattice grids. We can use “T-junctions” to refer to the intersections between

faces and/or lines. LetT(V ,C ,F ) denote a rectilinear grid structure that permits

T-junctions, whereV , C , andF are sets of vertices, cells, and faces, respectively.
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Figure 7.2: At vertex vi , there are at most 27 duplicate knots that can be placed on an
imaginary 3×3×3 grid. The center one is master knot (red), while the rest are sub-knots
(black). Examples of indexing duplicate knots are also shown.

In order to define a T-spline uponT, we specify a set of knots onT, which are

denoted byK . In this chapter, each knot must reside at a certain vertex. At most 27

duplicate knots are allowed at every vertex, and they are organized on a 3×3×3

grid of infinitesimal size, as shown in Figure 7.2. Every vertexv has amaster knot,

and some other optional duplicate knots, calledsub knots. We refer a knot atvi by

α,β,γ∈ {−1,0,+1}, in which the triplet(α,β,γ) indicates an unique nodal position

on the local grid. The coordinate ofα,β,γ ∈ {−1,0,+1} can be written in the form

of

k i(α,β,γ) = vi +
ε
2
[α,β,γ]T (7.2)

whereε denotes an infinitesimal size. If we assumeε ∕= 0, every knot is considered

differently, and its coordinate is called thetopological coordinates. Two knots are

topologically equivalentif their topological coordinates are the same. Ifε = 0, then

the coordinates of all duplicate knots atvi degenerate into an identicalnumerical
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coordinate, and these knots arenumerically equivalent. In the rest of this chapter,

when there is no ambiguity, we represent a knot by a simpler notationk j , where j

indicates the index ofk in K .

GivenT andK , a trivariate T-spline can be defined as

F(u,v,w) =

∑∣B ∣
i=1piBi(u,v,w)
∑∣B ∣

i=1Bi(u,v,w)
(u,v,w) ∈ ℝ

3 (7.3)

where(u,v,w) denotes 3D parametric coordinates,pi are control points, andB =

{Bi(u,v,w)} is the collection of blending functions. EachBi(u,v,w) is a tensor-

product of three B-spline basis functions, written as

Bi(u,v,w) = N3
i0(u)N

3
i1(v)N

3
i2(w) (7.4)

whereN3
i0(u), N3

i1(v) andN3
i2(w) are defined alongu, v, andw directions, respec-

tively. In the case of cubic T-spline, the univariate function N3
i j is constructed upon

knot vectorΞ j
i = [ξ j

i0,ξ
j
i1,ξ

j
i2,ξ

j
i3,ξ

j
i4], which is deduced fromT and a collection of

knotsK .

The way to inferΞ j
i is parallel to that for T-mesh. Starting from a knot

k = (ξ0
i2,ξ

1
i2,ξ

2
i2), ξ0

i3 andξ0
i4 are found by shooting a rayL(t) = (ξ0

i2+ t,ξ1
i2,ξ

2
i2)

into parametric domain.ξ0
i3 andξ0

i4 are the coordinate values at the first two inter-

sections whereL(t) comes across either a knot or a face. IfL(t) goes out of the

domain without two intersections, the last one is replicated such thatξ0
i3 = ξ0

i4 (see

Figure 7.3), orξ0
i2 = ξ0

i3 = ξ0
i4. The other knots are determined in a similar fashion.
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Figure 7.3: Knot vector extraction on T-lattice. The intersection betweenL0 and the bound-
ary appears twice in the resulting knot vector, and the same is true forL1.

k c1 c2 knot vector ofN1(ξ) knot vector ofN2(ξ)

ξ0 ≤ k< ξ1
k−ξ0
ξ3−ξ0

1 [ξ0,k,ξ1,ξ2,ξ3] [k,ξ1,ξ2,ξ3,ξ4]

ξ1 ≤ k< ξ2
k−ξ0
ξ3−ξ0

ξ4−k
ξ4−ξ0

[ξ0,ξ1,k,ξ2,ξ3] [ξ1,k,ξ2,ξ3,ξ4]

ξ2 ≤ k< ξ3
ξ4−k
ξ4−ξ0

k−ξ0
ξ3−ξ0

[ξ1,ξ2,k,ξ3,ξ4] [ξ0,ξ1,ξ2,k,ξ3]

ξ3 ≤ k≤ ξ4
ξ4−k
ξ4−ξ0

1 [ξ1,ξ2,ξ3,k,ξ4] [ξ0,ξ1,ξ2,ξ3,k]

Table 7.1: RefiningN(ξ) by insertingk into knot vector[ξ0,ξ1,ξ2,ξ3,ξ4] generates two
basis functionsN1(ξ) andN2(ξ), which are scaled byc1 andc2, respectively.

7.3.2 Refinement of B-spline functions

To refine blending functions on trivariate T-splines, we need to review knot

insertion algorithm for univariate B-spline functions. LetΞ = [ξ0,ξ1,ξ2,ξ3,ξ4] be a

knot vector andN(ξ) denote the cubic B-spline basis function defined on it. If there

is an additional knotk ∈ [ξ0,ξ4] inserted intoΞ, N(ξ) can be written as a linear
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combination of two scaled B-spline functions as

N(ξ) = c1N1(ξ)+c2N2(ξ) (7.5)

wherec1, c2 and knot vectors forN1(ξ) andN2(ξ) are determined by Table 7.1.

Note thatN2(ξ) andN(ξ) always share the center knotξ2.

7.4 Constructing RTP-splines

Figure 7.4: Overview of RTP-spline construction. The construction consists of fourma-
jor steps, extending polycube domain to its bounding-box, building B-spline volume with
bounded boundaries, inserting knots and conducting local refinement, and then removing
exterior regions.

The construction of RTP-splines includes four major steps(see Figure 7.4):

(1) extending given polycubeP domain to a box domain, (2) building trivariate

B-splines with restricted boundaries, (3) inserting duplicate knots and performing

local refinement to separate interior and exterior blendingfunctions, and (4) produc-

ing RTP-spline by removing structures/knots outsideP. These steps are discussed

in the following four subsections respectively.
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7.4.1 Extension of Polycubes to Bounding-Boxes

Following notations introduced in Section 7.3.1, on the trivariate T-spline do-

main, letP= (V P,C P,F P) be a given polycube structure, whereV P, C P andF P

denote vertices, cuboids and cell faces respectively. In order to extendP to a box

volume with rectilinear grid, there must be no T-junctions nor intersections between

cell faces onP. Our parameterization polycube domains (see Section 7.5.1) do not

contain T-junctions. If other polycube mapping methods areused to construct the

parametric domain and the generated domain has T-junctions, then we can always

eliminate them simply by splitting the cells across the domain, through the extended

planes of these intersecting cell faces. NowP can be extended to its bounding-box

domainT(V ,C ,F ) by filling in some solid cuboidsG = (V G,C G,F G), where

V G = V −V P, C G = C −C P, F G = F −F P. G represents the exterior ofP and

we call it theghost region.

Note that there is a rectilinear grid embedded in the space ofT, and the grids

coordinates ink-axis direction are represented by

Sk = [sk
1,s

k
2, . . . ,s

k
nk
] k= 1,2,3

wherenk is the resolution of rectilinear grid alongk-axis.

7.4.2 Building B-spline Volume with Restricted Boundary

With the bounding box domainT constructed, it is not difficult to construct a

trivariate tensor-product B-spline from the rectilinear grid structure onT by using

S1, S2 andS2 as knot vectors. We must augmentSk to have a valid B-spline def-

inition on then1× n2× n3 control grid. One approach is to add extra knots with
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(a) (b)

Figure 7.5: (a) Knot configuration at corner, edge and face vertices for restricted bound-
aries. (b) Examples of extraordinary corners on a polycube.

coordinates outside domain region, generating an open-boundary scheme. In this

chapter, we replicate the knots at both ends ofSk in order to restrict the B-spline

blending function within domainT, i.e.,Sk turns into

Sk = [sk
1,s

k
1,s

k
1,s

k
1+ ε,sk

2, . . . ,s
k
nk
− ε,sk

nk
,sk

nk
,sk

nk
]

in which 6 extra knots are added to both ends. Note that the useof sk
1+ ε here is

to emphasize its topological difference fromsk
1, while ε is actually treated as 0 for

B-spline evaluation. This also applies tosk
nk
− ε here.

Therefore, the trivariate tensor-product B-spline defined on T is formulated as

F(u,v,w) =
n∑

i=1

piBi(u,v,w) (u,v,w) ∈ ℝ
3 (7.6)

wheren= n1×n2×n3 is the number of control points, andBi(u,v,w) are blending

functions defined in Equation (7.4).
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As an extension of tensor-product B-spline, we can locally construct blend-

ing functions using the method for T-spline (Section 7.3.1), instead of computing

them directly from 3 global knot vectors. The knot setK to be used for local knot

extraction is a tensor-product[s0
1,s

0
1+ε,s0

2, . . . ,s
0
n0
−ε,s0

n0
]× [s1

1,s
1
1+ε,s1

2, . . . ,s
1
n1
−

ε,s1
n1
]× [s2

1,s
2
1+ ε,s2

2, . . . ,s
2
n2
− ε,s2

n2
]. SuperimposingK with T reveals that dupli-

cated knots only exist at corner, edge and face vertices, andtheir configurations are

depicted in Fig 7.5(a). These sub-knots serve for a common purpose: to guarantee

the partition-of-unity of blending functions inside boundary cells.

7.4.3 Local Refinement and Knot Insertion

We need to disjoin the blending functions defined onP from those defined on

G, i.e. the support regions of these two group of blending functions will not overlap

at all. This task is fulfilled via a two-step knot insertions.

∙ First, we insert duplicated knots on the boundary ofP, to separate interior

and exterior blending functions centered at master knots. (Section 7.4.3.2)

∙ Second, we iteratively eliminate violation cases inB by knot insertion. (Sec-

tion 7.4.3.3)

Introducing new knots may change the underlying local knot vectors of exist-

ing blending functions. Therefore, we need to design an algorithm (Section 7.4.3.1)

to resolve disagreements of blending functionsB with new knot configuration, in

order to preserve the partition-of-unity during the knot insertion.

7.4.3.1 Local Refinement of Blending Functions

We need to introduce an algorithm to refine blending functionsB accordingly,

whenever there are new knots added or any changes made to domain structureT.
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The refinement algorithm proposed in [13,116] works on a T-mesh, but its primary

goal is to keep the shape of T-spline surfaces when new control points are inserted.

In this chapter, we enhance this algorithm by extending it torectilinear grid and

supporting duplicated knots explicitly. We convert the previously obtained trivariate

B-spline to a generalized T-spline volume and rewrite Equation 7.6 as

F(u,v,w) =

∑∣B ∣
i=1wipiBi(u,v,w)
∑∣B ∣

i=1wiBi(u,v,w)
(u,v,w) ∈ ℝ

3 (7.7)

where each control pointpi is associated with a weightwi, which is collected inW .

At the beginning, allwi are equal to 1, and
∑∣B ∣

i=1wiBi(u,v,w) ≡ 1 holds for every

(u,v,w).

If there are new knots inserted, orT undergoes any changes such as vertex

insertion or cell splitting, we denote the new knot set byK ∗ and the new domain

structure byT∗(V ∗,C ∗,F ∗). And the new blending function setB∗ and weights

W ∗ can be generated by Algorithm 26 from inputsK ∗, T∗, W andB.

In Algorithm 26, the superscript indicates the index of the blending function

with which a variable is associated and subscript references the central knots of a

blending function. For example,Bt
i is a blending function centered at knotk i that

originates from thet-th blending function inB. The star superscript indicates that

the variables are obtained from updated domainT∗, e.g., Ξ∗
i denotes a knot vector

implied by currentT∗ and centered atk∗
i . The basic idea of Algorithm 26 is as

follows. First, we decouple blending functions from their knots. Then, by either

inserting new knots or refining basis functions (Section 7.3.2), we keep resolving

the discrepancies betweenB and the local knot vectors implied byK ∗ and T ∗.

A cell splits into two halves if the vertices on its edges can form an axis-aligned

cutting plane. Finally, we merge same blending functions, with their weights being
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Algorithm 1 : Blending functions refinement for trivariate T-spline withdu-
plicate knots

Input : T∗(V ∗,C ∗,F ∗), K ∗, B andW .
Output : updatedT∗, updatedK ∗, B∗ andW ∗ while∑∣B∗∣

i=1 w∗
i B∗

i ≡
∑∣B ∣

i=1wiBi

Q⇐{(wi
i ,B

i
i) : wi ∈ W ,Bi ∈ B}1

while ∃(wt
i ,B

t
i) ∈ Q : Ξt

i ∕= Ξ∗
i do2

forall the (wt
i ,B

t
i) ∈ Q do3

obtain knot vectorsΞ∗
i from T∗4

if Ξt
i is numerically equivalent toΞ∗

i then5

Ξt
i ⇐ Ξ∗

i6

else ifΞ∗
i is more refined thanΞt

i then7

add a knot fromΞ∗
i to Ξt

i and do the refinement:Bt
i = c1B̃t

j +c2B̃t
i8

(Section 7.3.2)
w̃t

j ⇐ wt
i ⋅c1; w̃t

i ⇐ wt
i ⋅c29

Q⇐ Q−{(wt
i ,B

t
i)}∪{(w̃t

j , B̃
t
j),(w̃

t
i , B̃

t
i)}10

else ifΞt
i has a knotk j(α,β,γ) /∈ K ∗ then11

K ∗ ⇐ K ∗∪k j(α,β,γ)12

if k j(0,0,0) /∈ K ∗ then13

K ∗ ⇐ K ∗∪{k j(0,0,0)}14

V ∗ ⇐ V ∗∪{v j} ; // Insert a new vertex15

endif16

endif17

endfall18

forall the c∈ C ∗ do19

if any new vertices on c forming an axis-aligned plane cuts c into c120

and c2 then
C ∗ ⇐ C ∗−{c}∪{c1,c2} ; // divide c into c1 and c221

endif22

endfall23

endw24

B∗ ⇐{Bi : (wt
i ,B

t
i) ∈ Q}25

W ∗ ⇐{w j =
∑

∀(wt
j ,B

t
j )∈Qwt

j}26

summed up.

In comparison with the refinement algorithm proposed in [13,116], Algo-

rithm 26 disregards control points, conducts refinement andknot extraction on a
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much more complicated 3D grid, and explicitly support duplicated knots (i.e. comb-

ing numerically equivalent but topologically inequivalent knot vectors). Note that

in the refinement result, the center of each blending function must lie at a knot, but

it’s not necessary for every knot to have an associated blending function. More-

over, the algorithm does not change the value of denominatorin Equation 7.7 for

every parametric point after the refinement. This keeps thesemi-standardnessof

the original splines, and can be explained by

wt
iB

t
i ≡ wt

i ⋅c1Bt
j +wt

i ⋅c2Bt
i ≡ w̃t

j B̃
t
j + w̃t

i B̃
t
i

7.4.3.2 Knot Insertion on Polycube Boundary

The purpose of inserting duplicated knots to the boundary ofP is to cut off the

connection between the polycube domain and the rest. In addition to the three kinds

of boundary vertices shown in Figure 7.5(a), polycube structures have many other

types of boundary vertices, especially at corners. Some examples of corner vertices

on polycube are given in Figure 7.5(b). To create restrictedboundary for polycube

domain, we develop a general approach to configure duplicateknots at arbitrary

boundary vertices, the description of which is as the follows. For a boundary vertex

vi, we insert the master knot and all the sub-knots that topologically lies insideT

(due to the definition ofT, the boundary is considered as the interior ofT, and the

same is forP). We color the sub-knots topologically insideP by red, and those in-

sideG by blue. We compare the knot configuration and colors on opposite faces of

local 3×3×3 grid for each axis direction. If they are identical, all theknots on both

faces are removed. For instance, if there arek i(∓1,β,γ) for every existingk i(±1,β,γ),

and they share the same color, then all the knots{k i(±1,β,γ) β,γ = −1,0,+1} are
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removed. Then, Algorithm 26 is applied to generate a newF(u,v,w) to accom-

modate newly inserted knots. The motivation of this method is to minimize the

sub-knots inserted so that the spline function is as smooth as possible.

7.4.3.3 Disjointing Blending Functions

(a) (b)

(c) (d)

Figure 7.6: Violation cases to be eliminated in RTP-spline construction. The pink dot
denotes the center knot of a violating blending function. The blue triangles are the duplicate
knots inserted in order to resolve the violations. The shaded region stand for the interior
polycube domain.

In order to disconnectP from G by disjointing their blending functions, there
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are two conditions must be satisfied:

(a). there are no exterior blending functions influencing domainP;

(b). removingG does not affect the shape of blending functions insideP.

The knot insertion introduced in Section 7.4.3.2 guarantees that the blending

functions lie at the interior and exterior master knots are separated by the polycube

boundary, except for the following four violation cases, which need to be resolved

for conditions (a) and (b).

1. A ray L from ghost knotk i (k j ) crosses the boundary and gets intoP. Knot

ka (kb) is added to resolve the violation. (Figure 7.6(a))

2. In the vicinity of a convex corner, althoughL does not go insideP, the support

region of blending function atk i still overlapsP. For this case, extra knots

are inserted at whereL intersects the extended faces from the corner cell.

(Figure 7.6(b))

3. From a sub knotk i (k j ) that lies topologically insideP, L intersects boundary

atc and ends at either a ghost knot or a ghost face. Sub knotka (kb) is added

to c to make the blending function centered atk vanish on the boundary.

(Figure 7.6(c))

4. From a knotk i that lies exactly on the boundary,L goes directly intoG with-

out meeting any other knots at vertexvi . In this cases, an exterior sub knot

is added atvi so that the continuity of blending function on the boundary is

reduced toC0. (Figure 7.6(d))

Case 1 and 2 deal with the violations for condition (a), where newly inserted

knots break down the blending functions centered at ghost sub-knots, and restrict

them insideG. Violations of condition (b) are fixed in case 3 and 4. During re-

moval of ghost regions, if whose knots vectors include interior ghost knots ofG,
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these blending function will be affected. To resolve such violations, we can ei-

ther eliminate interior ghost knots from the knot vectors (case 3), or introduceC0

continuity to the blending function on polycube boundary (case 4). To understand

the later one, let’s examine a cubic B-spline functionN(u) defined on knot vector

[k0,k1,k1,k1,k2] wherek0 < k1 < k2. N(u) hasC0 continuity atk1, so that its shape

betweenk0 andk1 is independent ofk2 and that betweenk1 andk2 is independent

of k0. It’s worth to mention that in case 4, it’s impossible for theblending function

at k i to influence the domain region beyond the planeA, due to the boundary knot

insertion in Section 7.4.3.2.

Once all the violations are resolved, the refinement algorithm given in Sec-

tion 7.4.3.1 is applied again to updateB and W . Since new knots may be in-

troduced, the above steps are repeated until no violations is found and no further

refinement is necessary onT. In our experiment, constructing RTP-splines for most

models requires only one or two iterations. And our proposedalgorithm is guar-

anteed to terminate because no vertices is added, and there are limited number of

knots can be inserted, which will makeT end up with each cell being a Bézier solid.

7.4.4 Generating RTP-splines

By removingG and the ghost knots that topologically lie insideG, we obtain

a RTP-spline, defined over polycube domainP as a single-piece smooth function.

The restricted boundary of RTP-spline is guaranteed by the construction steps in

Section 7.4.2, Section 7.4.3.2 and Section 7.4.3.3, while the algorithm introduced in

Section 7.4.3.1 ensures the partition-of-unity and semi-standardness of RTP-spline.

As the denominator is 1 everywhere over the parametric domain, we can simplify
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Equation 7.7 to obtain the formulation of RTP-spline:

F(u,v,w) =
∣B ∣∑

i=1

wipiBi(u,v,w) (u,v,w) ∈ ℝ
3 (7.8)

7.5 Modeling Solid Objects

It is a challenging task to build single-piece and smooth spline representations

for arbitrary solid objects, especially those with bifurcations and high genus. In this

section, we explain how to convert a volumetric modelM discretized as a tetrahedra

meshMT , into a RTP-spline representation. Given the triangular boundary ofM, we

define a polycube domainP adaptive to its geometry and topology, then compute

a volumetric mappingf : P→ M. A RTP-spline is constructed on polycubesP by

using the method given in Section 7.4, and then we fit the spline toMT .

7.5.1 Volumetric Parametrization

Computing lowly distorted volumetric parameterization is an important issue

for the RTP-spline construction. Tensor-product trivariate splines usually need to be

defined over a parametric (box) domain, and the quality of theparameterization can

affect the fitting efficacy of splines. In this chapter, we first compute the volumetric

harmonic mapping between the given solid object and a predefined polycube, then

build our splines upon this polycube domain.

A volumetric parameterization of a solid modelM embedded inℝ3 on a poly-

cubeP is a bijective mappingf : P→ M,P,M ⊂ ℝ
3. The polycubeP can be com-

puted either manually [135, 136, 155] or automatically [46,67]. These techniques

also provide the boundary mappingf′ from the polycube boundary surface (denoted
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as∂P) to the boundary ofM (∂M). We use such a surface mappingf′ : ∂P → ∂M

as the boundary condition off . The volumetric parameterization is then defined as

the seeking of a harmonic energy minimizer:

⎧
⎨
⎩

∆f(x) = 0 x ∈ P,

f(x) = f′(x) x ∈ ∂P.

where∆ is the 3-dimensional Laplace operator, defined for each realfunction f in

ℝ
3 as

∆ f = ∇ ⋅∇ f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 .

∆f = 0 for f = ( f 1, f 2, f 3) is equivalent to∆ f i = 0 in all the i = 1,2,3 coordinate

directions.

We compute the volumetric polycube mapping using the methodof fundamen-

tal solutions (MFS) [65, 66]. The idea and algorithm are recapped as follows and

we refer more details to [65,66].

Based on the maximum principal of harmonic functions, critical points of har-

monic functions exist only on the boundary. Furthermore, function values in the

interior region ofP are fully determined by the boundary valuesf (x),x ∈ ∂P and

can be computed by Green’s functions. Specifically, the realharmonic function

value f (x) can be computed as the integration of its boundary values andthe kernel

function (i.e. fundamental solutions associated with the 3D Laplacian operator∆).

The kernel function of∆ has the following formula:

K(x,x′) =
1
4π

1
∣x−x′∣

,

which matches the electrostatistics. In other words, solving a harmonic function

can be converted to designing a specific electric field determined by a electronic
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particle system, whose electric potential mimicsf and shall satisfy the boundary

condition f ′ on ∂P.

The computation pipeline is to first place a set of charge points {qs} outside

the domainqs∈ ∂P̃,P⊂ P̃⊂ ℝ
3. Then we conduct a boundary fitting which solves

the charge distribution{ws} on these points{qs}. The harmonic functionf (x) is

represented using the MFS equation:

f (x,W,Q) =

Ns∑

s=1

ws ⋅K(x,qs),x ∈ P,qs ∈ ∂P̃.

The generated functionf is guaranteed to be harmonic, and we only need to

enforce the boundary condition on∂P. For the boundary fitting, we sampleNc

collocation points on the domain boundary∂P to set up the constraint equations. If

we haveNs charge points andNc collocation points, for a real harmonic functionf

(e.g. on an individual axis direction) we only need to solve an Ax= b linear system

whereA is anNc∗Ns matrix.

Following the algorithm of [66], instead of solving one suchbig linear system,

we compute a set of smaller harmonic functions by solving smaller linear systems

and linearly combine them together to get a more accurate boundary fitting. The

computation is also more efficient than solving a single big matrix. The mapping

f : P → M computed here provides us a lowly distorted parameterization of M on

the polycubeP.
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7.5.2 RTP-spline volume fitting

Let {v1,v2, . . . ,vm} be the vertices of tetrahedra meshMt . The problem of

fitting RTP-splineF(u,v,w) to volumetric objectM resorts to minimizing the fol-

lowing equation, with respect to control pointspi:

m∑

i=1

(F(f−1(vi))−vi)
2 (7.9)

which can be rewritten in matrix format of

1
2

PTBTBP−VTBP (7.10)

whereP j = pT
j , V i = vT

i , andBi j = I3×3Bi(f−1(v j)). This is a typical least square

problem, and we solve it using the optimization packageMOSEK( [1]).

If the fitting results do not meet certain pre-defined criteria, they can always be

improved by adaptively performing subdivisions over the regions with large fitting

errors and then refitting the spline functionF. Each cell to be divided is broken

down into two, four or eight small sub-cells, depending on its shape. Our goal

is to keep the aspect ratio of sub-cells as low as possible. Then Algorithm 26 is

employed to refine RTP-spline blending functions and introduce new degree-of-

freedoms for better fitting. Note that such refinement algorithm is originally pro-

posed for trivariate T-splines that defined over box domains, but it can be applied

to our RTP-splines after a minor revision: whenever a master-knot is added to a

new boundary vertex, additional sub-knots must be insertedas well in order to keep

the boundary restriction. What sub-knots are required in this scenario has been

explained in Section 7.4.3.2.
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7.6 Experimental Results

Model #Data Points Control Points RMS Error Timing

Bimba 35511 4543 1.20×10−3 31.21s
Kitten 60144 3820 1.27×10−3 44.53s
Eight 26384 2888 3.69×10−3 20.65s
hand 1502700 9035 5.54×10−4 1150s
head 472122 12880 2.91×10−4 422.4s

Beethoven 103361 1001 1.80×10−3 67.79s
Beethoven (2nd level) 103361 3283 1.34×10−3 80.78s
Beethoven (3rd level) 103361 14699 7.18×10−4 123.28s

Table 7.2: Statistics of solid reconstruction with RTP-splines

Model Sample Points
Polycube Spline General T-spline
B̂ B̂′ B̂′′ B̂ B̂′ B̂′′

bimba 2512 0.18s 0.6s 1.12s 0.35s 1.14s 2.62s
kitten 23076 1.61s 5.21s 9.59s 2.95s 9.75s 23.1s
eight 9768 0.71s 2.42s 4.36s 1.37s 4.43s 10.2s

Table 7.3: Comparison between the computational cost for calculating spline basis func-
tions and their derivatives on RTP-splines and those on general T-splines. The total
cost is to compute basis functions and their directives at all sample points. The ba-
sis functions of RTP-splines arêBi(u,v,w) = wiBi(u,v,w), while those of T-splines are

B̂i(u,v,w) = wiBi(u,v,w)/
∑∣B∣

j=1w jB j(u,v,w).

A system consisting of RTP-spline construction, volumetric parametrization

and data fitting is implemented in VC++ and the program is running on a 3GHz

Pentium-IV PC with 4GRAM. Our experimental data include the volumetric mod-

els of bimba, beethoven, the Eight(genus 2), kitten(genus 1), hand(5 bifurcations),

and head(with brain excavated).

In our experiments, it takes only seconds to construct RTP-splines from ex-

perimental solid models, in which the Beethoven model of level 3 takes the longest

time: 6 seconds. In comparison, fitting RTP-splines to data is much more compu-

tationally expensive, and their statistics are documentedin Table.7.2, in which the
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data points are the vertices of original tetrahedral meshes, and the fitting results are

measured by RMS errors that are normalized to the dimension ofcorresponding

solid models. The table shows that the volumetric fitting on proposed RTP-splines

is computationally efficient and can yield reasonable results. Also, the capability

of RTP-splines in supporting local refinements allows usersto improve fitting re-

sults by adaptively introducing new degree-of-freedoms tothe regions with large

errors. For example, the RMS fitting errors on beethoven models is reduced from

1.80×10−3 to 7.18×10−4 after two rounds of adaptive local subdivision, and the

geometric details on model surfaces are also gradually revealed (Figure 7.11).

Due to the uniqueness of RTP-splines construction, computing blending func-

tions and their derivatives on RTP-splines is much faster than that on traditional

T-splines. To demonstrate this, we conducted a few experiments and compare the

evaluation times for spline functions and their derivatives on RTP-splines and those

on traditional T-splines. The comparisons are conducted onbimba, kitten, and the

Eight models. For the purpose of fairness, we slightly modify RTP-spline source

code to emulate T-spline, by adding denominator calculation for every basis func-

tion. The comparison results are documented in Table 7.3. They show that the

computational costs for calculatinĝB, B̂′ and B̂′′ on RTP-splines are respectively

reduced to 53%, 54% and 42% of those on general T-splines.

By increasing the dimension of control pointp in Equation 7.8, RTP-splines

can model not only geometry but also other attributes simultaneously. To demon-

strate this, we synthesized texture information for the head model, and then fit a

RTP-spline to both its geometry and associated attributes.Two types of textures are

synthesized. One is the distance field to the boundary (head surface and the insider

brain surface). The other is a procedure 3D texture, generated by the fractal sum
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of Perlin noise [84] (
∑4

i=1noise(ip),p ∈ ℝ
3). The fitting result is shown in Fig-

ure 7.12. As the distance values are proportional to the dimension of head model,

we still use normalized RMS error to measure the fitting error for distance field,

which is 6.0×10−4 in our experiment. For the noise texture, the maximum scale

value of original noise function is 0.81 and the minimum is−1.33. The absolute

RMS fitting error is 7.3×10−4.

Figure 7.7: RTP-spline volume generated from the bimba tetrahedron meshes.
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Figure 7.8: RTP-spline volume generated from the “eight” tetrahedron meshes.

7.7 Summary

In this chapter we propose the concept and construction algorithm of RTP-

splines and present an effective framework to convert volumetric data into rep-

resentations of RTP-splines. Due to the topological flexibility of the polycube

domain, RTP-spline can naturally model solid objects with bifurcations and high

genus, while ensuring lower parametrization distortions in comparison to traditional

splines defined over box domains. Our novel algorithm guarantees that the initially
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Figure 7.9: RTP-spline volume generated from the kitten tetrahedron meshes.

constructed RTP-splines is semi-standard, so that it enables the efficient computa-

tion of spline functions and their derivatives, without theoverhead of dividing the

sum of all basis functions. The proposed RTP-spline supports local refinement, and

a refinement algorithm is developed to preserve the semi-standardness on the RTP-

splines undergoing knot insertion and local subdivision. The particular restricted

boundary requirement of RTP-spline presents control points from affecting domain

regions by crossing boundaries. We demonstrate the efficacyof our RTP-splines

as a powerful solid modeling tool in various experiments, which convert tetrahe-

dral models into RTP-splines representations, modeling both their geometries and
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Figure 7.10: RTP-spline volume modeled from the hand tetrahedron meshes.

other attributes within an unified paradigm. Due to those favorable features of RTP-

splines, we will explore the isogeometric analysis foundedupon RTP-splines in the

near future. Also, the particular polycube domains of RTP-splines can be natu-

rally decomposed into a set of regular structures, which mayenable GPU-friendly

computing and image-based geometric shape processing.
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Figure 7.11: From top to bottom, the pictures show the fitting results for Beethoven model,
after 0, 1 and 2 levels of local subdivision respectively.
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Figure 7.12: Fitting both geometry and attributes of the head model. The first row show
the polycube domain(left) with one corner removed to reveal internal structures, and the
volumetric meshes(right) generated from fitted RTP-splines. The second row show the
fitted result(left) for the distance-field texture and its error map(right). Thethird row show
the fitted result(left) for synthesized noise texture and its error map(right).In these pictures,
red color denotes the largest scalar value while blue color denotes the smallest one.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we presented an computational framework based on the

theory of multivariate splines and used it to solve a series of practical problems

successfully. Triangular B-splines and T-splines are mainly employed in the frame-

work due to the fact that they have not received enough attentions outside computer

graphics communities while their unique advantageous features could potentially

benefit many applications in research and engineering areas. In addition, other

techniques, such as feature extraction and curve matching,are also developed and

incorporated into our framework for tackling specific problems. Through our ex-

tensive experiments, the proposed framework proves as a successful and effective

tool for solving practical variational problems found in geometric shape modeling,

surface editing, imaging processing and scientific computation. Our specific con-

tributions include:
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1. We introduced a registration algorithm that recovers global non-rigid trans-

formation between two images while keeping the sharp features near pre-

identified local rigid structures. With proper knots alignment along feature

lines, we effectively model both global non-rigidity and local rigidity in an

unified displacement field represented by triangular B-spline. In contrast to

conventional methods where additional mathematical termsare in need for

feature constraints, our method recovers local rigidity with fewer degrees of

freedom and accurately models sharp features in a more nature way [139].

2. We developed triangular B-spline finite element method (TBFEM), and use

it to solve elastic PDE on a pseudo physical model, in order tosimulate the

deformation between a pair of temporal mammograms. The discontinuities

of the deformation due to the different elasticities of pectoral muscles and

breast tissues are naturally modeled by triangular B-splines. The experimen-

tal results show that the proposed registration method is effective and accu-

rate [140].

3. We proposed an automatic mammogram registration algorithm. The breast

contours are first aligned according to the curvature map. The significant

anisotropic texture features are extracted and paired. Thealignment between

two mammograms is finally inferred from the deformation on a simple spline-

based elastic model, which is stimulated by intensity similarity forces and

constrained by paired features. The method was tested on a series of selected

bilateral mammogram images and proves a effective registration approach

requiring little human intervention [141].

4. We developed a new paradigm integrates thin-shell simulation with manifold

spline surfaces for geometric design. We particularly employed triangular

B-spline to solve Kirchhoff-Love equations on manifold domain which is
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globally parameterized. The proposed framework can successfully simulate

thin-shell deformation of arbitrary manifold shell surfaces with non-trivial

topologies [138].

5. We proposed a method to construct restricted trivariate polycube splines,

where are inspired by general volumetric T-splines, but differs significantly

in its construction way. Our top-down approach starts from the bounding

box of a given polycubic domain, converts it into B-spline volume, performs

special knot insertion and blending function refinements, and then remove

exterior cells of the polycubic structure. Aside from the ability of local sub-

division inherit from T-splines, the proposed RTP-splinesare bestowed with

three unique features, domain flexibility, restricted boundary and fast basis

function evaluation, all of which are desirable for engineering analysis and

other applications on solid objects and volumetric data.

8.2 Future Work

Although B-splines nowadays play an important role in many research and en-

gineering areas, other multivariate spline schemes recently developed having not

been widely recognized outside computer graphics communities. Moreover, with

the advent of computing power and data acquisition technique, more and more ap-

plications are required to handle volume/solid data. Therefore, we aim the future

work in the following directions:

1. Image registration with novel multivariate splinesThe goal of image reg-

istration is to find an optimal free-form transformation between two images.

Currently B-spline is prevailingly used in computer vision tomodel defor-

mation field. However, there are many novel new spline schemes can benefit
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image registration because of their special advantages, such as local refine-

ment and feature modeling. One example would be image registration with

T-splines. Xie and Farin [150] preserve the image details intheir registration

method by using hierarchical B-splines. However, multiple layers of grids

have to be applied from coarse to dense, which is computationintensive. On

the contrary, T-splines have more compact and flexible control region, thus is

ideal to model different level-of-detail on a single layer.Another example is

to register user-specified non-rectangular regions of a pair of volumetric im-

ages, which could be modeled by the trivariate splines proposed in Chapter 7.

2. Precise iso-surface extraction and visualizationOne approach to extract

and display ios-surfaces from an unorganized point cloud isto construct im-

plicit representation of underlying surfaces, then extract the geometric sur-

faces with marching cube algorithm and render the meshes. Rather than

render an approximate mesh, it’s however more desirable to visualize the

implicit surfaces directly. This requires calculation of intersection points

between casting rays and the implicit surfaces, and differential properties,

i.e.normals and tangential planes, at these locations. The implicit representa-

tion generated from the approach [80] is not an unified analytical formula,

therefore unable to be used for precise intersection point calculation. Volu-

metric T-spline is a good candidate for implicit function representation due to

the following facts. First, T-splines are defined on regulardomains so that the

intersection points can be analytically extracted by solving a cubic equation

(in the case of cubic T-splines). Second, T-splines can model fine details in

implicit functions via local refinement.

3. Volumetric data denoise and fairingThe data obtained from real world are

oftentimes contaminated by equipment defect or unpredicted incidents during
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data acquisition. Many techniques have been invented for data cleaning. For

example, Gaussian filter is used to get rid of high frequency noise. In other

works, even missing part in scanned range data can reconstructed through ra-

dial basis function interpolation along with the help of certain heuristic infor-

mation. More recently, variational models are proposed forimplicit surface

fairing [5,6,43,144]. However, in this work all the data points are organized

on a regular grid and differential properties are estimatedfrom nearby grid

points, both of which hinder calculation in variational model from achieving

accurate results. Therefore it might be ideal for multivariate splines to take

the role in modeling implicit functions. Implicit functionthus represented by

splines is a single piece analytical formula, on which accurate evaluation of

fairing equations can be performed anywhere. Moreover, some novel splines,

such as T-splines, can be locally refined, allowing users to keep fairing errors

below desired thresholds without global refinement.

4. Isogeometric analysis based on RTP-splinesIsogeometric analysis [53] is

a recently developed approach that integrates finite element analysis directly

on geometric objects modeled by NURBS in CAD system, without chang-

ing the geometries or their parametrization. The advantageof this method

is obvious, that is, the basis functions are shared between shape design and

physical analysis in CAD system, thus no data conversion is necessary and

the exact geometry is maintained at different stages. However, NURBS is

tensor-product spline that can not naturally model solid objects having bi-

furcations and arbitrary topologies without enormous efforts in patching and

trimming. We have demonstrated in Chapter 7 that our proposedRTP-splines

can successfully model complicated solid objects with bifurcations and non-

trivial topologies. Moreover, computing basis functions and their derivatives
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over RTP-splines is quite efficient due to the unique construction way, where

POU is guaranteed without the necessity of summing and dividing all basis

functions everywhere. All of these advantageous features make RTP-spline a

promising tool in the field of isogeometric analysis for solid objects.
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[16] F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm

for thin-shell finite element analysis.Int. J. Numer. Methods Eng., 47:2039–

2072, 2000.



127

[17] A. Collignon. Multi-modality medical image registration by maximization

of mutual information. PhD thesis, Catholic University of Leuven, Leuven,

Belgium, 1998.

[18] H. B. Curry. Review. Math. Tables Aids Comput., 2:167–169, 211–213,

1947.

[19] I. Dag, S. Bulent, and A. Boz. B-splinenext term galerkin methods for nu-

merical solutions of the burgers equation. InApplied Mathematics and Com-

putation, volume 116, pages 506–522, 2005.

[20] W. Dahmen, C. A. Micchelli, and H.-P. Seidel. Blossoming begetsB-spline

bases built better byB-patches.Mathematics of Computation, 59(199):97–

115, 1992.

[21] D. H. Davies and D. R. Dance. Automatic computer detection of clustered

calcifications in digital mammograms.Phys. Med. Biol., 35:1111–1118,

1990.

[22] M. Davis, A. Khotanzad, D. Flamig, and S. Harms. A physics-based coordi-

nate transformation for 3-d image matching. 16(3):317–328, June 1997.

[23] O. R. Davis and R. P. Burton. Free-form deformation as an interactive mod-

eling tool. InImaging Technology, volume 17, pages 181–187, 1991.

[24] C. de Boor. Splines as linear combinations ofB-splines. A survey. InApprox-

imation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976),

pages 1–47. Academic Press, New York, 1976.
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