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Abstract of the Dissertation

Simulation studies of hydrodynamic aspects of
magneto-inertial fusion and high order adaptive

algorithms for Maxwell equations

by

Lingling Wu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2010

Three-dimensional simulations of the formation and implosion of plasma liners for

the Plasma Jet Induced Magneto Inertial Fusion (PJMIF) have been performed using

multiscale simulation technique based on the FronTier code. In the PJMIF concept,

a plasma liner, formed by merging of a large number of radial, highly supersonic

plasma jets, implodes on the target in the form of two compact plasma toroids, and

compresses it to conditions of the nuclear fusion ignition. The propagation of a single

jet with Mach number 60 from the plasma gun to the merging point was studied

using the FronTier code. The simulation result was used as input to the 3D jet

merger problem. The merger of 144, 125, and 625 jets and the formation and heating

of plasma liner by compression waves have been studied and compared with recent

theoretical predictions. The main result of the study is the prediction of the average
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Mach number reduction and the description of the liner structure and properties. We

have also compared the effect of different merging radii.

Spherically symmetric simulations of the implosion of plasma liners and compres-

sion of plasma targets have also been performed using the method of front tracking.

The cases of single deuterium and xenon liners and double layer deuterium - xenon

liners compressing various deuterium-tritium targets have been investigated, opti-

mized for maximum fusion energy gains, and compared with theoretical predictions

and scaling laws of [P. Parks, On the efficacy of imploding plasma liners for mag-

netized fusion target compression, Phys. Plasmas 15, 062506 (2008)]. In agreement

with the theory, the fusion gain was significantly below unity for deuterium - tritium

targets compressed by Mach 60 deuterium liners. In the most optimal setup for a

given chamber size that contained a target with the initial radius of 20 cm compressed

by 10 cm thick, Mach 60 xenon liner, the target ignition and fusion energy gain of

10 was achieved. Simulations also showed that composite deuterium - xenon liners

reduce the energy gain due to lower target compression rates. The effect of heating of

targets by alpha particles on the fusion energy gain has also been investigated. The

study of the dependence of the ram pressure amplification on radial compressibility

showed a good agreement with the theory. The study concludes that a liner with

higher Mach number and lower adiabatic index gamma (the radio of specific heats)

will generate higher ram pressure amplification and higher fusion energy gain.

We implemented a second order embedded boundary method for the Maxwell

equations in geometrically complex domains. The numerical scheme is second order

in both space and time. Comparing to the first order stair-step approximation of

complex geometries within the FDTD method, this method can avoid spurious solu-

tion introduced by the stair step approximation. Unlike the finite element method

and the FE-FD hybrid method, no triangulation is needed for this scheme. This
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method preserves the simplicity of the embedded boundary method and it is easy to

implement. We will also propose a conservative (symplectic) fourth order scheme for

uniform geometry boundary.
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Chapter 1

Introduction

This Dissertation deals with two main problems: (i) numerical study of plasma jet

driven magneto-inertial fusion (PJMIF) and (ii) numerical algorithms for Maxwell’s

equations in geometrically complex domains. Although these problems seem very dis-

tinct from the first point of view, they have common mathematical features requiring

closely related numerical algorithms. Mathematically, both problems are described by

systems of hyperbolic partial differential equation with discontinuous material prop-

erties along geometrically complex interfaces. An advanced numerical method of front

tracking have been developed for such systems and implemented in the FronTier code.

In this work, we enhanced the FronTier code with new physics modules and used it for

the numerical study of PJMIF. The embedded boundary method has been recently

combined with the method of front tracking for the description of free surface magne-

tohydrodynamic flows in the low magnetic Reynolds number approximation [21] and

multi-component elliptic and parabolic problems and the Stefan problem describing

phase transitions [27]. In this work, we extend the embedded boundary method for

discretizing Maxwell’s equations in geometrically complex domains.

The two problems have also natural physics connection. The plasma jet driven

magneto-inertial fusion operates with matter in extreme thermodynamic states. This
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area of science is also called high energy density laboratory plasma. While the main

processes studied in this work can be sufficiently accurately approximated by pure

hydrodynamic equations, a better approximation would require solving the resistive

system of magnetohydrodynamic (MHD) equations. The use of MHD equations is

especially important for the study of target physics which is beyond the scope of this

work (except spherically symmetric simulations of the idealized target the main goal

of which is the validation of certain theories and the fusion gain scaling laws). How-

ever the standard MHD approximation also fails at certain conditions and one has

to resort to more fundamental description of the matter and fields such as two-fluid

MHD, kinetic equations etc. Particle techniques [11] play an important role in the

description of both neutral plasmas and systems of charged particles in electromag-

netic fields. Therefore the research on numerical algorithms for Maxwell’s equations

in geometrically complex domains can be considered as the first step in the devel-

opment of a fully electromagnetic particle-in-cell code suitable for the description of

numerous problems involving plasmas and charged particles. Such a code would be

critical for the complete PJMIF simulation. The success of the PJMIF techniques

ultimately depends on the existence of high performance plasma guns. Numerical

simulations will play a critical role in the optimization of plasma guns. In order to

capture all physics processes in plasma guns, numerical simulations must be based

on the electromagnetic particle-in-cell method in complex geometries. Therefore the

research on Maxwell equations in complex geometries can be considered as the first

step that will lead to end-to-end simulation studies of PJMIF.

Complicated geometry problem is one of most important field in numerical sim-

ulation. There are two main branches in this field, front capturing method, including

Level Set method and Volume of Fluid method, front tracking method, including

our front tracking method based on tracking of interface and marker point method.
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[23],[7], [8].

1.1 Front Tracking Method in FronTier

FronTier is a computational package for the direct numerical simulation of multi-

phase flows based on the method of front tracking developed at Stony Brook Univer-

sity in collaboration with LANL and BNL [5, 20]. An important and unique feature

of this package is its robust ability to track dynamically moving fronts or material

interfaces.

Front tracking is a hybrid Lagrangian - Eulerian method. FronTier represents

interfaces as lower dimensional Lagrangian meshes moving through a volume filling

Eulerian grid. FronTier can evolve and resolve topological changes of a large number

of interfaces in 2D and 3D spaces. The dynamics of interfaces is described by the

theory of the Riemann problem for systems of conservation laws which is the problem

of finding self-similar solutions to the systems of conservation laws with discontinuity

of initial conditions at one point. The main advantage of explicitly tracked interfaces is

the absence (or large reduction) of numerical diffusion. Explicit geometrical interfaces

also enable us to describe accurately physics processes occurring at material interfaces

(for instance phase transitions).

1.1.1 System of Hydrodynamic Equations

The hydrodynamic equation system, which we call Euler equations, consists of

conservation of mass equation, conservation of momentum equation and conservation

of energy equation.

∂U

∂t
+

∂F

∂X
= 0 (1.1)
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where
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ρ

ρu

E













F (U) =













ρu

P + ρu2

u(E + P )













In order to close the system, an equation of state is required. And Energy is

defined as

E = ρe +
1

2
ρ ∗ u2 (1.2)

MUSCL scheme (Monotone Upstream-centered Schemes for Conservation Laws)

is used to solve the Euler equation with a five-point stencil {xi−2, xi−1, xi, xi+1, xi+2}.

MUSCL scheme is second order in space.

1.1.2 Front Tracking Method and its Implementation

Front Tracking method is implemented in FronTier library. The interface is

explicitly tracked and Riemann problem is solved between two different components.

In one-dimensional case, the interface is a point; In two-dimensional case, the interface

is a bond with a start point and an end point information; In three-dimensional case,

the interface is a mesh surface constructed by triangles.

For the same component, the N-dimensional Riemann problem will split into N

directions. The one-dimensional MUSCL scheme is conducted. If the stencil is near

the boundary or near an interface, the information of boundary condition or interface

point will be adopted.
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Figure 1.1: An illustration of the geometric data structures used for the front tracking
method in three dimensions.

5



1.2 Embedded Boundary Method

The main idea of embedded boundary method is simple. It is a finite volume

method. It extends the boundary cell or cut cell, which is smaller than a full cell, to

a ghost full cell. The value of boundary cell will be represented by a constant value

or some piecewise linear function or a high order function. The order of boundary

cell approximation could be n− 1, so the whole computational domain may have nth

order if the interior part use nth order scheme.

1.2.1 Embedded Boudary Method in FronTier

Embedded boundary method is a conservative finite volume discretization for

elliptic and parabolic equations [9], [16], [17]. Roman Samulyalk et al combined this

method with front tracking method in the simulation of free surface flows at low

magnetic Reynolds numbers [21]. Shuqiang Wang et al[27] extended this method

to solve the elliptic and parabolic problem with interior boundaries or interfaces

of discontinuities of material properties or solutions. Their code is implemented in

FronTier and the second order accuracy is achieved in space and time. Unlike the

immersed interface method, the embedded boundary method is conservative for fixed

interior boundaries. For spatial discretization, They use linear interpolation to cal-

culate the flux. For temporal discretization, they use two step implicit Runge-Kutta

method. For interior cell, standard second order finite difference method or finite

volume method is used. For partial cell containing two different components, two un-

knowns are defined for each component. One extra unknown is defined at the center

of each partial cell interior boundary to facilitate the discretization of the jump con-

ditions. A classical Stephan problem is solved to simulate the temperature increasing

and melting of uranium fuel in the fuel assembly during the transient overpower and
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loss of coolant accidents.

1.2.2 Embedded Boundary Method for Maxwell equations

Maxwell equations:

∇× E = −∂B

∂t
(1.3)

∇× B = µ0ǫ
∂E

∂t
+ µcJ (1.4)

Here E = (Ex, Ey, Ez), E = (Bx, By, Bz), D = ǫ0E, B = µ0H .

Finite-difference time-domain (FDTD) [28] is a popular scheme for Maxwell equa-

tion. It is second order for regular grid and zero order for irregular grid, so if there

exist some cut cells near the boundary, FDTD scheme will only show a first order

accuracy.

For high order accuracy in complex geometry boundary, Supriyo Dey and Raj

Mittra [4] introduced a technique for cut cells. The idea is following embedded bound-

ary method. It is stable and second order.

1.3 Dissertation Organization

The rest of my thesis is organized as following: In Chapter 2 We present the

one dimensional ideal symmetric liner target interaction results. In Chapter 3 two

dimensional detached jet simulation results with flow through boundary condition. In

Chapter 4 we explore the three dimensional liner structure. In Chapter 5, we review

FDTD and the embedded boundary method for Maxwell equations.
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Chapter 2

Spherical Symmetric Simulation of Plasma Liners

Implosion and Target Compression

2.1 Introduction for PJMIF

Nuclear fusion is potentially an unlimited and environmentally clean source of

energy. But practical realization of the nuclear fusion remains a challenging unsolved

problem for several decades.

Two traditional approaches to nuclear fusion are the inertial confinement fu-

sion (ICF) and the magnetic confinement fusion (MCF). The main advantage of the

magnetized target inertial fusion approach compared to the conventional inertial con-

finement fusion, which has no embedded magnetic field, is the potential for reducing

the driver power needed to achieve ignition conditions in the central hot spot [13]

- [10]. In the magnetized target, the transport of heat and energetic fusion alpha

particles is greatly reduced. The conventional magneto-inertial fusion method uses

an imploding solid metal liner in cylindrical or spherical geometry to adiabatically

compress a preformed magnetized plasma target [24]. The proposed targets are either

spherical ones formed by two compact toroids of fusion materials containing magnetic

fields in the force-free Woltjer-Wells-Taylor state of minimum energy, or linear targets,
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such as a Z-pinch [19].

A longstanding concern with most solid liner driven MIF concepts is the “stand-

off problem”: the target-related hardware has to be located at a sufficient stand-off

distance from the fusion hot spot in order to be reusable. Another important concern

is the solid liner manufacturing cost. To solve these problems, Thio et al. [26]

suggested that a spherical array of supersonic plasma jets launched from the periphery

of the implosion chamber could be used to create a spherically symmetric plasma liner

to implode the central magnetized target. Such a plasma liner is assembled when the

jets intersect and merge with each other at an intermediate radius rm, as shown

schematically in Figure (2.1). The plasma liner was intended to have dual purpose:

to serve as an imploding driver compressing the target and to provide surrounding

deuterium fuel clad.

Figure (2.1) shows the three steps to form liner and liner imploding process. Uni-

formly distributed guns in the chamber wall will generate plasma jets simultaneously.

After moving for several meters long, these jets will touch each other and generate a

compression wave. Then a liner with the turbulence will keep a high speed implosion

until the liner affects the magnetized target. In this paper, we will use FronTier code

to simulate the liner merged by plasma jets and analysis the liner property.

Plasma is called the fourth state of matter. In fact it is a gas with the ionized

particles. Unlike gas, plasma have a high conductivity and number of charge carriers.

Hence when there is a magnetic or electric field, we need to introduce Maxwell equa-

tions and heat transfer problem into fluid equation system. However during the jet

moving and liner merging process, hydrodynamic equations are sufficiently accurate.

There are numerous papers investigating different numerical methods to simulate

the three-dimensional plasma liner. Charles E. Knapp [14] used implicit smooth

particle method to solve the ordinary differential equations and simulated the two-

9



Figure 2.1: Schematic of the plasma jet induced magnetized target fusion. a) Plasma
guns at the chamber wall shoot high velocity, supersonic plasma jets. b) Jets merge
at the merging radius rm and form a liner. c) Plasma liner implodes and compresses
the target.

dimensional 2 jets merging and three-dimensional liner merging. He calculated 60

cylindrical D-T jets in a soccer ball pattern, but the distance from gun to target is

only 20 cm which is not the same as the machine building now. Parks [18] analyzed

a simplified model to calculate the energy ratio which we are also interested in. To

compare with Parks’ paper, We set a 6-meter numerical simulation first. Then we

set two 3-meter numerical simulations to check what is the effect for the different

merging radius.

A new experiment is being built now in Los Alamos National Laboratory [12].

This machine will merge 30 5-cm plasma jets with Mach number 10 to 35 and velocity

50 to 70 km/s in a 9 ft (2.74 meter) diameter spherical vacuum chamber. The goal is

to reach high pressure ( 0.1 Mbar) via imploding plasma jets. The jets are injected

and nearly fully ionized by HyperV coaxial plasma guns. HyperV claim that they

recently achieved 100km/s. After merging, they could choose to use solid or gaseous

target in the middle of the spherical chamber. The whole machine will be expected

10



to run in Mar 2010 to Feb 2013.

For one dimensional ideal case, a symmetric liner and target simulation is per-

formed. For three dimensional case, we decompose the whole computing process into

two parts. First experiment will initialize the jet with uniform density, pressure and

velocity. Then this detached jet will move 500cm in a high vacuum environment

with Mach number 60 at the beginning. During this process, we solve the hyperbolic

equation system by MUSCL scheme and track the status of the jet. The second step

is to use the physical data from first numerical experiment to study the liner merging

process. We initialize the total 144/125/625 jets by the result from the first detached

jet experiment. These jets will penetrate each other and generate shock like compres-

sion wave, finally they will merge together to form a plasma liner. We will track the

liner structure during this process by using MUSCL scheme.

2.2 Spherically symmetric simulation of PJMIF

The work in this section is published in [22].

2.2.1 Background and Motivation

Several simplified analytical and semi-analytical models have been used for the

study of spherically symmetric PJMIF. The 1-D Lagrangian model [25] showed the

target ignition and burn can be achieved in a target of a 1 mg plasma, 10 cm initial

diameter imploded by a plasma liner with about 1 g of material, target magnetic

field of 10 T, and implosion velocity of about 250 km/s. Without the magnetic field,

the target temperature was limited to about 1 keV. Plasma jet induced PJMIF was

also analyzed by Parks in [18] using a new theoretical model. [18] states that for a

spherically imploding plasma liner shell with high initial Mach number, the rise in
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liner density with decreasing radius r goes as 1/r2, for any constant adiabatic index

γ = d log p/(d log ρ). The ram pressure of the liner is amplified on the target by

the factor A ∼ C2, indicating strong coupling to its radial convergence C = rm/R,

where rm is the jet merging radius, R is the compressed target radius, and A is

the compressed target pressure divided by the initial liner ram pressure. The study

showed that deuterium-tritium (DT) plasma liners with initial velocity of about 100

km/ s and γ = 5/3, need to be hypersonic M ∼ 60 and thus cold in order to

realize values of A ∼ 104 necessary for target ignition. For optically thick DT liners,

T < 2 eV, n > 1019 − 1020 cm3, black-body radiative cooling is appreciable and may

counteract compressional heating during the later stages of the implosion. The fluid

then behaves as if the adiabatic index were depressed below 5/3, which in turn means

that the same amplification A = 1.6×104 can be accomplished with a reduced initial

Mach number M ≃ 12.7(γ − 0.3)4.86, valid in the range of 10 < M < 60. Analytical

calculations indicated that the hydrodynamic efficiency for plasma liners assembled

by current and anticipated plasma jets was less than 4%. The estimated confinement

time was 100 ns. Finally, the study concluded that spark ignition of the DT liner fuel

does not appear to be possible for magnetized fusion targets with typical threshold

values of areal density ρR < 0.02 g cm2.

We have performed spherically symmetric simulations of the implosion of plasma

liners and compression of plasma targets in the concept of the Plasma Jet driven Mag-

neto Inertial Fusion (PJMIF) using the method of front tracking. The cases of single

deuterium and xenon liners and double layer deuterium - xenon liners compressing

various deuterium-tritium targets have been investigated, optimized for maximum

fusion energy gains, and compared with theoretical predictions and scaling laws of

[P. Parks, On the efficacy of imploding plasma liners for magnetized fusion target

compression, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the
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fusion gain was significantly below unity for deuterium - tritium targets compressed

by Mach 60 deuterium liners. In the most optimal setup for a given chamber size

that contained a target with the initial radius of 20 cm compressed by 10 cm thick,

Mach 60 xenon liner, the target ignition and fusion energy gain of 10 was achieved.

Simulations also showed that composite deuterium - xenon liners reduce the energy

gain due to lower target compression rates. The effect of heating of targets by alpha

particles on the fusion energy gain has also been investigated.

The main goal of this work is the verification of theoretical predictions and scaling

laws of [18], gaining a better understanding of hydrodynamics of the PJMIF method,

and finding ways of increasing the fusion energy gain via spherically symmetric simu-

lations of the liner implosion and target compression. Although 1D simulations lack

the accuracy of 3D studies with improved physics models and resolved spatial phe-

nomena like fluid instabilities, they are an excellent tool for the quick exploration of

new regimes and providing guidance to more refined simulations with resolved physics

and spatial dimensions. While main conclusions of this work were obtained from 1D

spherically symmetric simulations, full 3D simulations of the merger of jets and the

formation and implosion of the plasma liner are in progress and will be reported in

next chapters.

2.2.2 Main Equations

In this section, we perform detailed comparison of numerical simulations with

theoretical predictions of [18]. The main formulas are summarized below.

The fusion energy gain was obtained in simulations using the following approach.

At each time step, the production of fusion neutrons was calculated for each compu-

tational cell of the target based on the thermodynamic state of the target and the
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fusion reactivity [1]

< σv >= c1θ(T )

√

[BG2/(4θ(T ))]1/3

D T 3
exp

[

−3
[

BG3/(4θ(T ))
]1/3
]

, (2.1)

where

θ(T ) =
T

1 − T (c2+T (c4+Tc6))
1+T (c3+T (c5+Tc7))

.

Here the temperature T is in keV units, the dimension of the fusion reactivity is

cm3/s, and coefficients have the following numerical values c1 = 1.17302 × 10−9,

c2 = 0.0151361, c3 = 0.0751886, c4 = 0.00460643, c5 = 0.0135, c6 = −1.0675 × 10−4,

c7 = 1.366 × 10−5, BG = 34.3827, D = 1.124656× 106. The neutron production was

integrated in the target volume and time to obtain the total fusion energy

Efusion = (eneutron + eα)

∫ ∞

t0

∫ ∫ ∫

Vtarget(t)

< σv >
n2

4
dV dt, (2.2)

where n is the target number density, eneutron = 14.1 MeV is the neutron energy

and eα = 3.5 MeV is the alpha particle energy released in the process of fusion.

Finally, the fusion gain was obtained as

Gsimulation = Efusion/Eliner, (2.3)

where

Eliner = Ekinetic + Einternal ≃ Ekinetic

is the total initial energy of the liner. Notice that (2.3) does not account for the

efficiency of electromagnetic plasma guns that generate plasma jets. The efficiency of

the plasma guns is not precisely known. We believe that it is currently in the range

of 20% - 70% and can be increased in the future as the technology develops.
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We will compare the simulated fusion energy gain (2.3) with theoretical estimates

of [18] obtained as follows. If all the deuterium - tritium fuel in the target could be

burned up, then the maximum (ideal) fusion energy gain would be 293 at the ignition

temperature of 10 keV. The actual fusion energy gain is

Gtheory = 293fbηh. (2.4)

In this expression, ηh is the hydrodynamic efficiency and fb is the fuel burn up fraction

coefficient

fb =< σv > nτdc/2, (2.5)

where n is the target number density and τdc is the deconfinement time defined as the

time during which the pressure in the target decreases by the factor of two compared

to the fully compressed state. The hydrodynamic efficiency is defined as the ratio of

the internal energy of the compressed target to the initial energy of the liner,

ηh =
Etarget

Eliner
, (2.6)

where

Etarget =
PV

γ − 1
.

According to [18], the hydrodynamic efficiency can be expressed as

ηh =
R

L
H
(

γ, Mliner
)

, (2.7)

where R is the compressed target radius, L is the initial thickness of the liner (the

length of merging jets), and H is a function of the adiabatic gamma and the initial

Mach number of the liner. H = 1.23 for γ = 5/3 and Mliner = 60. The deconfinement
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time was estimated in [18] as

τdc ∼ 2R/uj ∼ (R/csc)(ρ2/ρ)1/2, (2.8)

where uj is the initial plasma jet (liner) velocity, ρ2 and ρ are density values of the

compressed liner and target (at the liner - target interface), correspondingly, and

csc = (2Tign/m)1/2 = 8.78 × 107 cm/s is the thermonuclear sound speed. Replacing

this value with the actual sound speed in the target c =
√

(γP/ρ), we obtain the

deconfinement time as

τdc ∼ R(ρ2/γP )1/2. (2.9)

This formula predictions will be compared in the next section with computed values

of the deconfinement time.

2.2.3 Comparison of Simulations with Theoretical Predic-

tions

In this section, we study the liner - target setup suggested in [18]. A 15 cm

thick deuterium liner implodes and compresses the plasma target. The initial inner

radius of the liner is 60 cm, which corresponds to the merging radius of plasma

jets forming the liner. The initial state of the liner is as follows: the density ρ =

3.8× 10−5 g/cm3 = 9.2× 1018 1/cm3, temperature T = 0.0358 eV = 415.4 K, pressure

P = 0.65 bar, velocity v = 100 km/s, and the Mach number M = 60. The total energy

stored in the liner is 164 MJ. The plasma target is initially 5 cm in radius, and its

initial density, pressure, and temperature are ρ = 8.3× 10−6 g/cm3 = 2× 1018 1/cm3,

T = 100 eV and P = 640.3 bar, correspondingly. The ideal gas equation of state

with γ = 5/3 was used for the target, and the pressure - temperature relation in the
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form P = 2nkT accounted the ion and electron pressure of the fully ionized target

material.

Simulation verified that the liner density increases proportionally to r−2 during

the implosion, as predicted in [18] (see Figure 2.2). The liner density profile before the

interaction with the target is shown in Figure 2.3. After the contact with the liner,

the target was almost adiabatically compressed until it reached the stagnation point

at time 6 µs. The fully compressed target radius was 0.73 cm, and the corresponding

compression ratio was 6.8. By “almost adiabatic compression” we mean that a small

component of the stagnation pressure can be attributed to the shock wave sent by

the liner: while the adiabatic compression would result in the stagnation pressure of

9.3 Mbar, the maximum pressure observed in the target was 11 Mbar. In simulations,

the liner failed to compress the target to R = 0.5 cm, the expected compressed radius

of the theoretical model. As the pressure during the adiabatic compression increases

proportionally to the fifth power of the compression ratio, smaller target compres-

sion led to a much smaller stagnation pressure compared to theoretical model: [18]

predicted 64 Mbar for to the compression ratio of ten. The resulting decrease of the

fusion energy gain in simulations is analyzed below. The evolution of the liner - target

interface near the stagnation point is shown in Figure 2.4. The velocity of the initial

target expansion is approximately 0.58 cm/µs. Below we compare main quantities

used in theoretical estimates such as the deconfinement time, the hydrodynamic effi-

ciency, and the fuel burn-up fraction predicted by theory and simulations. Although

these quantities are not explicitly used in simulations for obtaining the energy gain,

their calculation from simulation data and comparison with theoretical predictions is

useful for a better understanding of the theoretical model.

Deconfinement time. Figure 2.5 depicts the evolution of the normalized pressure

in the target and the normalized fusion energy in the vicinity of the stagnation point.
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It shows that the fusion gain is more than 90% complete after the pressure in the

target is reduced by the factor of two. This justifies the definition of the deconfine-

ment time given above. The deconfinement time calculated from this pressure plot is

equal to 220 ns, which is 2.2 times bigger than the estimate of [18]. Formula (2.9),

applied to computed target - liner properties at stagnation, gives the deconfinement

time of 114 ns while the left hand side of formula (2.8) (2R/uj ) gives the value of

146 ns. Both theory and simulations results are significantly different from estimates

obtained with a converging shock model [2] which are of the order of 1 µs.

Hydrodynamic efficiency. The hydrodynamic efficiency calculated using the sim-

ulation data and formula (2.6) gives the value of 0.016. The corresponding theoretical

value reported in [18], obtained using (2.7), is 2.5 times larger: η = 0.04

Fuel burn-up fraction. The total number of fusion neutrons, obtained in simula-

tions during the entire target evolution, divided by the total initial number of atoms

in the target gives the value of the burn-up fraction as 6.67×10−4. The corresponding

theoretical prediction is 16.5 times bigger: [18] reports 0.011. The reason for such

a big discrepancy is that, despite the longer deconfinement time, the temperature

in the target remains well below 10 keV. Even at the maximum compression, only

small central spot in the target reached the temperature higher than 10 keV while

the volume averaged temperature T =
∫ R

0
T (r)r2dr/

∫ R

0
r2dr was only 5.2 keV.

Distributions of density, pressure, and temperature at the stagnation point are

shown in Figures 2.6.

Fusion energy gain. The total fusion energy gain achieved in the simulation was

0.012. This value is 10.8 times smaller than the theoretical prediction. The value

reported in [18] is 0.026 using the coefficient 0.2 as the electromagnetic efficiency of the

plasma gun. Since we do not consider specific values of the electromagnetic efficiency

in this work, the corresponding theoretical value is 0.13. Such a large discrepancy
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between the theory and simulation is due to the failure of the liner to compress the

target to the radius of 0.5 cm and can be easily explained by the theoretical scaling

law. Assuming that the fusion reactivity in the vicinity of the ignition temperature

scales as T 2, we can derive from (3) and (4) that the fusion gain scales as

G ∼ P τdc ηh. (2.10)

Comparing the stagnation pressures, deconfinement times and hydrodynamic effi-

ciencies of the theoretical model and simulation, we conclude that the scaling law

predicts 6.5 times smaller fusion gain for the compressed target achieved in the simu-

lation compared to theoretical prediction. Since the actual gain was 10.8 times lower,

the discrepancy between the theory and simulation in the sense of the scaling law is

approximately 1.7.

To complete the discussion, we also employed the idealized “solid target” model

of [18] for the purpose of verification of theoretical predictions. In this model, the

plasma target offers no resistance to the liner after the collision of the inner liner

surface with the initial target surface. The target freely compresses until it reaches

the final compressed state R and then suddenly responds to the liner with infinite

resistance. The target pressure sharply increases and reaches the stagnation pressure

Pst. In the computer code, this process was modeled by inserting a solid ball in the

center of the chamber with the radius equal to the compressed target radius of R = 0.5

cm. The solid target model was used to compute the dependence of the logarithm

of the ram pressure amplification factor A vs. the logarithm of the compressibility

factor C = rm/R. Results are summarized in Figure 2.7. We define the ram pressure

amplification factor as

A =
Pst

ρm ∗ V 2
m

,
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Figure 2.2: Verification of the density scaling ρ ∼ 1/r2. Solid line: maximum density
in the liner; dashed line: average density across the liner.

where ρm and Vm are the initial density and velocity of the liner (or density and veloc-

ity of plasma jets at the merging radius). In agreement with theoretical predictions,

plots of the simulation data never exceed the ideal line A = C2 (line 1 in Figure

2.7). According to the theory, A initially increases as C increases and then diverges

from the ideal line towards saturation (constant A) regime. Such a behavior was

obtained for the M = 60 liner with adiabatic index γ = 5/3 (curve 3). Simulations

at Mach number 60 and γ = 1.3 have not reached the saturation at realistic values of

the compressibility factor (curve 2). In numerical simulations with low Mach num-

ber liners (M = 20), A reached its maximum value at some radial compression value

(log10C ≃ 2.15), and then slightly decreased. In agreement with the theory, the point

of divergence from the monotonic increase of A can be increased by increasing of the

Mach number or reducing of the adiabatic index γ.

20



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3

Distance,  cm

D
en

si
ty

,  
g/

cc

Figure 2.3: Density profile of the DT liner before the interaction with the target.
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Figure 2.6: Density, pressure and temperature at maximum target compression for
DT liner with initial thickness of 15 cm.
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Figure 2.7: Logarithm of the ram pressure amplification factor A vs. logarithm of the
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obtained using simulation data. (2): Mach number 60 and adiabatic index γ = 1.3,
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2.2.4 Scaling Laws and the Fusion Gain Improvement

In this section, we investigate a possibility of improving the fusion energy gain by

varying target and liner parameters within reasonable limits. Theoretical predictions

of the impact of parameters on the fusion gain is summarized in the scaling law

derived from Parks formulas [18]:

G = 10−4< σv >DT

T 3/2

R2

Ljet
(n0nL)1/2

(

mjet

2.5

)1/2

CLC
3/2
T

ηE

0.25
(2.11)

= 10−4< σv >DT

T 3/2

rm R0√
RLjet

(n0nL)1/2

(

mjet

2.5

)1/2
ηE

0.25

where T and R are the target temperature and radius at stagnation (cm), n0 is the

initial target density (cm−3), Ljet is the length of jets forming the liner (cm), nL is

the initial liner density (cm−3), mjet is the jet ion mass (amu), CL = Rm/R is the

radial convergence of the liner, CT = R0/R is the radial convergence of the target,

and ηE is the electric gun efficiency which is equal to one throughout this paper.

As (2.11) suggests, the fusion energy gain increases with the reduction of the liner

thickness provided that such a liner is still capable of compressing the target. A thin

liner carries less initial kinetic energy and increases the fusion energy gain by higher

values of the hydrodynamic efficiency. We performed simulation reducing the liner

thickness to 5 cm and leaving other parameters of the previous setup unchanged.

Numerical results showed that the 5 cm deuterium liner has the same ability to

compress the target to the fusion condition: the compressed target radius as well as

profiles of the temperature, density and pressure at stagnation, and the evolution of

pressure (deconfinement time) are practically identical to those for the 15 cm liner. A

small difference in details of the thermodynamic profiles at stagnation contributes to

1.9% decrease of the total fusion energy of the target compressed by the 5 cm liner.
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In agreement with the scaling law, the fusion gain increases by 3.4 times compared

to the 15 cm liner. Notice that the increase of the length of plasma jets forming the

liner is not identical to the increase of the liner thickness in a 1D model and the 15

cm thick liner carries 3.5 times larger kinetic energy compared to 5 cm thick liner.

Further reduction of the liner thickness for the purpose of the fusion gain increase is

not practical as the propagation of very short plasma jets prior to their merger will

result in the spreading of their density.

In the previous section, we assumed that alpha particles produced in the nuclear

fusion process escape the target without interaction with the target material. Here

we employ a very simplified model for the absorption of alpha particles in order to

evaluate its effect on the target temperature, pressure, and the fusion energy gain.

We assume that some fraction of alpha particles are absorbed locally and deposit

their energy of 3.5 MeV per alpha particle. Numerically, we added the energy of the

alpha particles to the same computational cells where particles were created. We used

0.35 as the alpha particle absorption coefficient in most of simulations. Anticipating

larger burn-up fractions of targets, we also reduced the density of the target at each

time step proportionally to the reaction products that left the target.

The inclusion of alpha particle heating had very small effect on the stagnation

state and fusion gain of the target compressed by the 15 cm thick deuterium-tritium

liner. While the stagnation state was practically identical in both cases, the alpha

heating resulted in slightly higher values of the pressure and temperature during the

deconfinement process and contributed to the fusion gain increase of 4.3%. As we will

see later, the alpha particle heating has much bigger effect on large targets compressed

by heavy xenon liners.

In the next simulation series, we replaced the deuterium liner with a 5 cm thick

xenon liner with density ρ = 8.5 × 10−4 g/cm3 ≃ 4 × 1018 1/cm3, temperature T =
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2.27 eV, pressure P = 14.2 bar, velocity v = 100 km/s, and Mach number M =

60. The total kinetic energy of such a liner is 1 GJ. We also increased the initial

target radius to 10 cm. The heavy liner compressed the target to R = 0.84, slightly

exceeding the compression ratio of 10. The pressure reached 265 Mbar but some

transient pressure peaks associated with the focusing of shock waves during the target

compression reached 287 Mbar. The volume averaged temperature was 32.6 keV while

the temperature in the target center reached 65 keV. The alpha heating caused slight

increase of the averaged temperature during early stages of the target expansion. The

highest averaged temperature of 36.8 was reached at 6.3 µs or 300 ns after stagnation.

Since the deconfinement time was 200 ns, the highest temperature was reached at

1.5τdc. The computed value of the deconfinement time agrees reasonably well with

the theory: 2R/uj = 168 ns while formula (2.9) gives 141 ns. The inclusion of alpha

heating and the resulting increase of temperature after stagnation does not require

modifications of the definition of deconfinement time: the nuclear fusion process was

completed by 84% when the pressure dropped by half. The fusion gain obtained in

simulations was 2.6 or 217 times bigger compared to the 15 cm deuterium liner setup.

The scaling law (2.11) predicts the fusion gain of 12.8.

Keeping the liner unchanged, we performed a series of simulations by increasing

the target radius to 30 cm with 5 cm increments. The dynamics of the corresponding

fusion gains is plotted in Figure 2.8. We observed that the 20 cm target was the most

optimal for the given liner: it achieved the compression ratio of 10, the stagnation

pressure of 130 Mbar (the pressure increase is higher than predicted by the adiabatic

compression law because of the alpha heating), the average temperature of 16 keV,

and produced the fusion gain of 10. Alpha heating caused further increase of the

target temperature during deconfinement and the average temperature reached the

maximum value of 23.3 keV at 200 ns after the stagnation. The computed value of the
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deconfinement time was 150 ns and theoretical predictions are as follows: 2R/uj = 400

ns while formula (2.9) gives 360 ns. The profiles of density, pressure, and temperature

at stagnation and 200 ns after stagnation are shown in Figure 2.9. The value of the

fusion gain calculated from the scaling law (2.11) is 30. The interplay between the

target size, compression ratio, and the stagnation temperature led to smaller values

of the fusion gain for smaller and bigger targets: G = 6.7 for 15 cm radius target,

G = 7.0 for 25 cm target, and G = 2.5 for 30 cm radius target in the presence

of alpha heating. While the small target size was the critical factor for 10 and 15

cm targets, smaller stagnation temperatures for 25 and 30 cm targets contributed

to reduced fusion gains. In order to evaluate the effect of alpha heating for targets

producing significant energy gains, we performed the same series of simulations with

the alpha heating turned off. Results are illustrated in Figure 2.10. The absence of

alpha heating reduced the fusion gain of 15 cm target to 5.6 while the fusion gain for

20 cm target was reduced to 6.0. The corresponding theoretical value for the 20 cm

target obtained from (2.11) is 27.6. Therefore the scaling law predicts approximately

4 times higher fusion gain compared to simulations because higher target compression

rates are assumed in theoretical estimates.

It was suggested in the original paper on the plasma jet MIF [25] that the inner

layer of a composite liner containing deuterium-tritium inner part and an outer xenon

pusher may provide additional fuel for the thermonuclear reaction. For testing of this

idea, we included a 5 cm deuterium layer in front of a 5 cm xenon layer. The initial

density was 3.8× 10−5 g/cm3 for the deuterium layer, 8.5× 10−4 g/cm3 for the xenon

layer, the initial pressure was 14.2 bar in both layers, and the Mach number was 60

in xenon and 12.5 in deuterium, correspondingly. The liner was used to compress

the 20 cm radius target that gave the highest fusion gain for the single-layer xenon

liner. Because of high pressure and much lower Mach number in the deuterium
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layer compared to the single deuterium liner simulations, the deuterium layer quickly

spread out reaching the thickness of 10 cm before the interaction with the target.

Then the process consisted in the compression of both the deuterium layer and the

target. At stagnation, the deuterium liner thickness was only 6 mm while the target

was compressed to 2.4 cm. Because of the compression of the deuterium liner layer,

the pressure in the target reached only 57 Mbar while the average temperature in

the target was about 14.5 keV. Without α-heating of the liner layer, the released

fusion energy was reduced by 2 times compared to the single xenon liner case. The

compression of the deuterium layer of the liner raised the temperature in the liner at

the target - liner interface to 4.5 keV at stagnation and the temperature was reduced

to 1 keV within 2 mm. Therefore the fusion energy production in the deuterium layer

was negligible without the α-heating. The state of the target at stagnation is shown

in Figure 2.12. The use of the composite deuterium - xenon liner also reduced the

fusion production of the 10 cm target by 2 times and 30 cm target by 1.5 times. In

future work, the effect of alpha heating of the inner liner layer will be addressed.

2.2.5 Conclusions

Using the method of front tracking, we have performed spherically symmetric

simulations of the implosion of plasma liners and compression of targets related to the

plasma jet driven magneto inertial fusion. The study of the ram pressure amplification

factor A and its dependence on the radial compressibility C = rm/R is in good

agreement with theoretical predictions. Simulations of a deuterium-tritium target

with the initial radius r = 5 cm, density n = 2 × 1018 1/cm3, and temperature 100

eV, compressed by a 15 cm thick deuterium liner with the initial radius of 60 cm,

density of 9.2×1018 1/cm3 and Mach number 60, have been compared in details with

theoretical predictions of [18]. Simulations showed that such a liner will not be able
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Figure 2.8: Dynamics of the fusion gain of targets compressed by 5 cm thick single
layer xenon liner. Initial target radii are: 10 cm (1), 15 cm (2), 20 cm (3), 25 cm (4),
and 30 cm (5).
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Figure 2.9: Target surface evolution (a) and density (b), pressure (c), and temperature
(d) at stagnation (solid line) and 200 ns after stagnation (dashed line) of initially 20
cm target compressed by the 5 cm thick xenon liner.
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Figure 2.10: Influence of alpha heating on the fusion gain of targets compressed by 5
cm thick single layer xenon liner. Solid lines show the fusion gain in the presence of
alpha heating and dashed lines show the fusion gain when alpha heating was turned
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Figure 2.12: Density (a), pressure (b), and temperature (c) at stagnation (solid line)
and 200 ns after stagnation (dashed line) of initially 20 cm target compressed by the
composite deuterium - xenon liner.
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to achieve the compression rate of 10 obtained in the theoretical work. In simulations,

the target was compressed to R = 0.73 cm at stagnation. It reached the pressure

of 11 Mbar and produced 10.8 smaller amount of the fusion energy compared to the

theory. However when the theoretical scaling law was used to estimate the fusion

gain of the target compressed by 6.8 times to the stagnation radius of 0.73 cm, the

disagreement with the theory was only by the factor of 1.7. Simulations showed that

the inclusion of alpha particle heating had very small effect on the fusion gain in this

liner - target setup: the local deposition of the energy of alpha particles using the

absorption coefficient of 0.35 increased the fusion gain by only 4.3%. In agreement

with the scaling law, the fusion energy gain increased with the reduction of the initial

liner thickness to 5 cm since such a liner, while carrying 3.5 times smaller kinetic

energy, has the same ability to compress the target as a much thicker one: the profiles

of pressure, density and temperature at stagnation and the deconfinement time are

practically identical to ones obtained with 15 cm thick liner. Further reduction of the

liner thickness seems impractical because of the diffusion of short plasma jets during

their propagation from the plasma gun to the merging point.

We have also investigated the fusion gain produced by larger targets compressed

by heavy xenon liners and double layer deuterium - xenon liners. With the inclusion

of alpha heating, the fusion energy gains significantly improved and reached 10 in

the most optimal setup for a given chamber size: 20 cm radius target compressed

by a single layer xenon liner. The theoretical formula for the fusion gain predicts

approximately 4 times higher fusion gain compared to simulations because the theo-

retical target compression rates are higher. For all simulations, deconfinement times

calculated from simulation data agreed within the factor of two with theoretical for-

mulas of [18] and were significantly lower compared to estimates of the order of 1 µs

obtained with the converging shock model of [2].
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Turning off the alpha particle heating reduced the fusion gain by 1.7 times.

The double layer deuterium - xenon liners, expected to provide extra fuel for the

thermonuclear reaction, have been simulated as well. Because of the compression of

the deuterium liner layer, the compression ratio of the target decreased. Without

the α-heating of the inner liner layer, the fusion gain was twice smaller for the 20

cm target. Similar reductions were observed for different target sizes. Simulations

showed that the compression of the inner liner layer is not sufficient to achieve the

ignition without α-heating. This effect will be investigated in the future work.
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Chapter 3

Cylindrically Symmetric Simulation of Detached

Jet

In this section, we simulate the propagation of plasma jets from the nozzle of the

plasma guns to the merging radius. The purpose of this simulation is to calculate the

distribution of density and pressure in plasma jets before their merging. The initial

conditions of the jet depends on some complex processes in plasma guns and are not

known exactly. As the research on plasma guns continues, these questions will be

clarified. For this study, we assume constant states.

The plasma jet runs more than 5 meter with velocity 100 km/s in the chamber.

We use the following initial condition: Mach number = 60, ρ = 3.8e-5 g/cm3, pressure

= 0.6332 bar, R = 41.3. Ambient gas is high vacuum with ρ ∼ 10−10 g/cm3, pressure

∼ 10−6 bar. We use 2-dimensional cylindrical coordinate system which represents the

3-dimensional problem.

Boundary condition are as follows: top and bottom are both flow through bound-

ary condition; left is the reflecting boundary condition; right is the flow through

boundary condition. We use reflecting boundary condition, so only half domain is

calculated.

In [18], Parks estimated the jet expansion during its propagation from the plasma
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gun to the merging point. Using the following assumptions

(1) the jet keeps uniform density during expansion;

(2) the length of jet is long enough, L ≫ r;

(3) the jet expansion speed equal to the sound speed at time = 0.

the jet radium at the merging point is: b(rm) = b0 + cs0(rc − rm)/uj. Here b0 is the

jet radius when jet leaves the plasma gun; cs0 is the initial sound speed; rc is the

chamber radius; rm is the merging radius. This is a linear expansion model.

We will still keep the assumption 1 and 2. However, expanding velocity is a

function of time. Assuming the adiabatic jet expansion,

ds

dt
=

√

γ
P

ρ
=
√

γ ∗ const ∗ ργ−1 (3.1)

ρ =
mass

π ∗ (r + s)2 ∗ L
(3.2)

A =

√

const ∗ γ ∗ (
mass

πL
)γ−1 (3.3)

ds/dt = A ∗ (r + s)−2/3 (3.4)

s(t) = A ∗ t3/5 + C1, s(0) = 0

t = (rc − rm)/uj, rjet(t) = s(t) + 5

We can also eliminate assumption 2, so the length of jet should be considered

during jet expansion. If we neglect the compression wave in the jet head and the

rarefaction in the jet tail, the jet has the same expansion speed in the head as in the

tail part. Then the relation between volume and density should be written as:

ρ =
mass

π ∗ (r + s)2 ∗ (L + 2s)
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Then we need to solve a third order polynomial and only the real root is the

solution. To contain sufficient mass, the jet length should be at least 2 times of jet

radius. In our simulation we choose the jet length about 4 times bigger than the jet

radius, so we still use the first prediction to predict the jet radius.

Let us keep the second assumption and consider that the shape of jet is not a

cylinder with flat edges but a cylinder with half sphere ends. Then after substituting

all parameters we obtain

rjet = ((t + 0.03) ∗ 487.291)
3

5 (3.5)

In figure (3.1) the comparison is shown of Parks’ linear velocity prediction, our

non-linear prediction and the numerical simulation with the density cut at 0.1*original

density.

Strong rarefaction wave behind the detached jet affects the Mach number at the

tail of the jet. if we include the jet tail data to calculate the average Mach number,

the big Mach number in vacuum behind the jet tail will significantly raise the average

Mach number. We only consider the top half of the jet body when we calculate the

average Mach number from the numerical data. We also use a weighted method to

calculate the average Mach number and average temperature. The weight factor is

the density, therefore the center of jet which has a small volume and a big density

will play an important role in the average value. We define:

M̂ =

∫

M ∗ ρ
∫

ρ

T̂ =

∫

T ∗ ρ
∫

ρ

The figure (3.2) shows the adiabatic cooling process. The average Mach number
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Figure 3.1: Jet expansion.

increases with time and the average temperature decreases with time.

In the remaining part of thesis, we will use weighted average if there is no special

note.

The density, pressure and temperature profiles change along the transverse di-

rection in the process are shown in figure 3.4.

The length of jet affects the Mach number in inverse ratio. We compare 2 rect-

angular jets. One is 10 cm long, another is 20 cm long. The average Mach number

of 20 cm jet is smaller than 10 cm jet. When the jet length is increasing, the Mach

number will decrease, but the difference is negligible.

In the cylindrically symmetric simulations, we also examined the effect of the

boundary condition at the domain edge opposite to the jet axis. In addition to

the flow-through boundary condition, we also used other boundary conditions that
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Figure 3.2: Weighted Average Mach number and temperature of detached jet

modeled the presence of another jet at some distance. Simulations showed that the

flow-through boundary condition is sufficient for practical purpose.

The jet expansion during the propagation determines the number of jets N that

is needed for a given chamber size and the chosen merging radius. Let us assume that

at the merging time, the jets will form a liner without holes,

4

3
πr2

m = Nπr2
jet.
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Chapter 4

3D Liner Implosion

4.1 Introduction

In this chapter, we use the results of previous chapter to initialize 3D simulations

of the jets merging and liner formation. Simulations were performed on New York

Blue using 4096 processors. The purpose of these simulations is to examine the

structure of the liner, the uniformity and the reduction of the Mach number during

the liner implosion. We also examine the dependence of the liner properties on the

number of jets, the merging radius and the chamber size.

We need to initialize the 3D problem with the 2D results from the last chapter,

so we need to do a transform from 3D Cartesian coordinates (x, y, z) to 2D cylindrical

coordinates (R, Z). We use the following algorithm

Step 1: Find the nearest jet center point (x0, y0, z0), then construct the line from the

original point (0, 0, 0) to the nearest jet center point;

Step 2: Find the shortest distance R from (x, y, z) to the line;

Step 3: Find the distance L from (x, y, z) to the original point (0, 0, 0), Z =
√

L2 − R2.

Parks [18] studies theoretically th collision of jets with each other at a very small

angle and the formation of oblique shocks the flow field. He describes this process
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Figure 4.1: Coordinate transform.

as analogous to the supersonic flow past a wedge with a small turning angle. The

main oblique shock is on the edges of the jets, so pressure at this shocked region

is much larger than in the interior region. Given this fact, he concludes that there

will be a sideways rarefaction fan and a series of internal shocks. As a result, Mach

number will be reduced as M = 12.7(γ − 0.3)4.86 because of the oblique shock. This

is partially responsible for the hydrodynamic efficiency less than 0.04 in his study

because the energy supplied to the system goes mostly into the plasma liner rather

than the target plasma.

As we have seen from last chapter, the Mach number increases during the jets

propagation step. Our simulations of the detached jets described the profile of jets

before the merger. The spreading of jets may significantly decrease the strength

of oblique-shock-like compression wave. In this chapter will use three dimensional

numerical simulation to answer the question about the Mach number reduction.
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4.2 Spherical Centroidal Voronoi Tesselation

In the jet merger 3D simulations, the initial array of N jets must be initialized

behind the merging radius with jets distributed uniformly. The problem of the jet

placement can be solved using the spherical centroidal Voronoi tesselation.

The SCVT problem (Spherical Centroidal Voronoi Tesselation) distributes N

points in the unit sphere surface as uniformly as possible. In general two dimensional

centroidal Voronoi tesselation, the purpose is to get the minimum value of the integral

of the whole domain point density function using the iteration method. Since SCVT

problem should be implemented in a sphere, the problem is solved as a constrained

optimization problem. We use the software by John Burkardt that implements Qiang

Du’s algorithm [6] (old.math.iastate.eduburkardt/f srcscvtscvt.html).

The result of one simulation that places 70 points on a unit sphere using 200

iterations is shown in Figure (4.2). We checked the error after 200 iterations and

obtained a satisfactory result. The distance between any point and its nearest neigh-

bor is almost the same up to 4 significant digits for every other points in the sphere.

The increase of the iteration number does not increase the accuracy of the point

placement. Firther increase could be obtained by randomly changing the initial point

placement and repeating the optimization procedure. It is known that such a problem

can not be solved with arbitrary accuracy.

4.3 Merging of jets in the 6-meter radius chamber

In Park’s paper, 70 jets were used to obtain rm = 60cm, because the final jet

radius before the merger was takes as rjet = 15cm. Out simulation of the jet spreading

suggests that we need 144 jets.

Figure (4.4) shows the Mach number reduction during merging process. The
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Figure 4.2: SCVT result for 70 points with 200 iterations

Mach number reduces from 100 to 30 during merging. A 8003 grid is compared with

5123 grid and comparison shows good convergence on the Mach number reduction.

Before jets are fully merged, the biggest density appears in the center of each

jet. However the highest pressure appears at the edge of each jet because of the

compression wave. We observe the formation of high pressure contours having shapes

of the pentagon, hexagon, etc. This phenomenon is also observed in Charles Knapp’s

thesis. The density contour figures before and after merging process are shown in

Figure 4.6.

4.4 Merging of jets in the 3-meter radius chamber

We will keep the same 2-dimensional input data as in section 2, all the geometry

parameters, such as length and radius, and physical parameters,density, pressure, and
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Figure 4.4: Comparison between 1D and 3D average Mach number.
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Figure 4.5: Density contour before merging: t= 0.49ms and t=0.50ms

Figure 4.6: Density contour with cut after merging: t = 0.053ms and t = 0.054ms.

Figure 4.7: Pressure contour before merging: t = 0.049ms and t = 0.050ms
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Figure 4.8: Pressure contour after merging: t = 0.053ms and t = 0.054ms.

velocity. The only change is the merging radius. Since the merging radius is changed,

the number of jets is changed too. We will compare the merger of 125 and 625 jets

corresponding to the merging radius of 50 and 100 cm correspondingly.

We performed 3 meter chamber simulations with rm = 50cm and rm = 100cm

and the number of jets and their fadii before the merger as N = 125, rjet = 9cm and

N = 625, rjet = 8cm correspondingly which the same density limit = 3.6e − 06g/cc.

Figure 4.9 shows the relation between the average Mach number and the radius.

At latyer stages of the liner implosion, 125 jets and 625 jets give almost the same

Mach number, while at the early stages 125 jets show bigger average Mach number.

The Mach numner reduction can be better described by comparing 1D and 3D liner

as shown in Figure 4.10.

As the liner is compressing the target, the biggest density appears in the head of

liner. We will change the measurement of liner radius. Originally we use the center

position of each jet to calculate the liner radius. Now we use the density peak as liner

radius. For the liner of 125 jets, density peak moves in about 15 cm in 0.001ms, while

the peak of liner of 625 jets arrives the center. This is also predicted in Park’s paper

ρr2 = constant
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Figure 4.9: Mach number comparison for 125 jets and 625 jets

The pressure at merging time in perpendicular direction is shown in Figure (4.11).

We still use the average pressure weighted by density to get rid of the effect of high

vacuum.

P̂ =

∫

P ∗ ρ
∫

ρ

We choose r = 27.5cm and r = 12.5cm to compare 125 jets with 625 jets. We

will use ǫ = 0.5 to get a piece of liner (r − ǫ, r + ǫ) and calculate the deviation in

this piece. In fact the peak of 625 jets moves faster than the peak of 125 jets. After

r = 27.5cm at which 125 jets and 625 jets have the same peak position, the peak of

625 jets reach the (0, 0, 0) when peak of 125 jets reach r = 12.5cm.

The deviation of the liner density and the pressure increase with number of jets.

The range from the minimum density to the maximum density, the range from the
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Table 4.1: Standard deviation for density
density σ max relative σ

125 (r = 27.5) 1.99e-5 8.75e-5 0.5655
625 (r = 27.5) 6.52e-5 4.79e-4 0.4066
125 (r = 12.5) 3.84e-5 2.997e-4 0.4434
625 (r = 12.5) 4.93e-5 6.55e-4 0.1108

Table 4.2: Standard deviation for pressure
pressure σ max relative σ

125 (r = 27.5) 40.36 153.4 1.0935
625 (r = 27.5) 59.21 509.7 0.4847
125 (r = 12.5) 129.89 1431 0.5362
625 (r = 12.5) 122.33 1249 0.1450

minimum pressure to the maximum pressure are also shown in the following table.

The relative deviation is defined by relativeσ = σ
average

. By comparing the

relative deviation, we see that 625 jets generate more uniform liner that will generate

less amount of the Rayleigh-Taylor instability in the target.

Spherical slice of 125 jet and 625 jets, density and pressure at r = 27.5 are shown

in Figures (4.12)-(4.13).

Our numerical simulation results suggests that Mach number decreasing may not

as much as Parks predicted because no strict oblique shock was observed during the

jets merging process. In the future a fully three dimensional numerical simulation will

answer the question about fusion gain and the target compression ratio. However

development of new physics models is necessary to achieve better estimates of the

fusion energy gain.
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Figure 4.12: Left:625 jets; right:125 jets.

56



Figure 4.13: Left:625 jets; right:125 jets.
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Chapter 5

4th order Solver for Maxwell Equation

5.1 Introduction

In this chapter, we focuse on the finite difference method for the Maxwell equa-

tions. Comparing to the finite element method, finite difference method is easy to

implement and easy to couple with particle in cell technique which is important for

many applications including PJMIF (plsma guns) and devices of particle accelerators.

The idea of embedded boundary method will be adopted for geometrically complex

domain.

5.1.1 FDTD method of Yee

The basic FDTD space grid and time-stepping algorithm trace back to a seminal

1966 paper by Kane Yee in IEEE Transactions on Antennas and Propagation [28].

Consider rectangular mesh shown in Figure 5.1. In the Yee FDTD scheme, the electric

field is assigned to the edges of the mesh and the magnetic field is assigned to cell

faces. In the second order discretization, the values of the electric and magnetic fields

are constants on the cell edges and faces, correspondingly.

If we discrete the Maxwell equations far from the boundary, we obtain 6 equations
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Figure 5.1: Yee cell

which depend on values located on only two-dimensional plane. The decoupling of

three dimensional system of equations into a set of two-dimensional ones is one of the

most important features of this method making it simple to implement and fast to

compute. The discretized equations are as follows:

E
n+1/2
xi,j,k − E

n−1/2
xi,j,k

dt
=

1

ǫ
(
Hn

zi,j+1,k
− Hn

zi,j−1,k

2dy
−

Hn
yi,j,k+1

− Hn
yi,j,k−1

2dz
)

E
n+1/2
yi,j,k

− E
n−1/2
yi,j,k

dt
=

1

ǫ
(
Hn

xi,j,k+1
− Hn

xi,j,k−1

2dz
−

Hn
zi+1,j,k

− Hn
zi−1,j,k

2dx
)

E
n+1/2
zi,j,k − E

n−1/2
zi,j,k

dt
=

1

ǫ
(
Hn

yi+1,j,k
− Hn

yi,j,k−1

2dx
−

Hn
xi,j+1,k

− Hn
xi,j−1,k

2dy
)

Hn+1
xi,j,k

− Hn
xi,j,k

dt
= −1

µ
(
E

n+1/2
zi,j+1,k − E

n+1/2
zi,j−1,k

2dy
− E

n+1/2
yi,j,k+1

− E
n+1/2
yi,j,k−1

2dz
)
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Hn+1
yi,j,k

− Hn
yi,j,k

dt
= −1

µ
(
E

n+1/2
xi,j,k+1

− E
n+1/2
xi,j,k−1

2dz
− E

n+1/2
zi+1,j,k − E

n+1/2
zi−1,j,k

2dx
)

Hn+1
zi,j,k

− Hn
zi,j,k

dt
= −1

µ
(
E

n+1/2
yi+1,j,k − E

n+1/2
yi−1,j,k

2dx
− E

n+1/2
xi,j+1,k − E

n+1/2
xi,j−1,k

2dy
) (5.1)

Furthermore, Yee proposed a leapfrog scheme for marching in time wherein the

E-field and H-field updates are staggered so that E-field updates are conducted mid-

way during each time-step between successive H-field updates, and conversely. This

explicit time-stepping scheme avoids the need to solve simultaneous equations, and

furthermore yields dissipation-free numerical wave propagation. The time step is lim-

ited by the standard CFL condition involving the computational grid size and the

speed of light.

The disadvantage of FDTD method is also caused by the advantage of simplic-

ity of dual grid. For some complex geometry domain, the staircase dual grid will

introduce spurious waves and FDTD method becomes zeroth-order. However FDTD

method is good for rectangular computational domains and shows second order in

both space and time. The second order for space is coming from central difference

and the second order for time is derived by leap frog scheme. Since E field are calcu-

lated at n+ 1
2

step, and H field are calculated at n+1 step. The dual grid is adopted

in time too. Another view is one step forward time step and one step backward time

step, and this easily give us the matrix formula for Maxwell differential equations.

Let us write the discrete formula for Maxwell equation. For example, the follow-

ing is finite difference equation for Ex, and other components are same.

E
n+ 1

2
x (i, j, k) − E

n− 1
2

x (i, j, k)

dt

=
1

ǫ
∗ (

Hn
z (i, j + 1, k) − Hn

z (i, j − 1, k)

2dy
−

Hn
y (i, j, k + 1) − Hn

y (i, j, k − 1)

2dz
) (5.2)
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5.1.2 4th Order Explicit Method with Yoshida Time Step-

ping

In this section, we develop 4th order accurate discretization of the Maxwell sys-

tem of equations using Yoshida’s ideas of the combination of symplectic maps. For

4th order space discretization, we need to calculate dH
dx

and dE
dx

.

In second order FDTD method,

∆y(ui,j) =
1

∆y
∗ (ui,j+1/2 + ui,j−1/2) (5.3)

By Taylor series , we can obtain the 4th order central scheme

∆y(ui,j) =
1

∆y
∗ (−1/24ui,j−3/2 + 9/8ui,j−1/2 + 9/8ui,j+1/2 + 1/24ui,j+3/2) (5.4)

If near the boundary, one-side stencil will be adopted.

Compact method will use smaller stencil, 3 points instead of 5 points, but need

to solve linear system every time step [29].

A =
1

24







































26 −5 4 −1 0 . . . 0

1 22 1 0 0 . . . 0

0 1 22 1 0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 . . . 1 22 1 0

0 0 . . . 0 1 22 1

0 0 . . . −1 4 −5 26







































(5.5)
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A
∂

∂y



















u1/2

u3/2

...

u(2n−1)/2



















=
1

∆y
∗ (



















u1

u2

...

un



















−



















u0

u1

...

un−1



















) (5.6)

The most common method for 4th order time discretization is the 4th order

Runge-Kutta scheme:

En+1
z = En

z +
∆t

6
(k1 + 2k2 + 2K3 + k4)

tn+1 = tn + ∆t

k1 =
∂Hn

y

∂x
− ∂Hn

x

∂y

k2 =
∂H

n+1/2∆t
y

∂x
− ∂H

n+1/2∆t
x

∂y

k3 =
∂H⋆

y

∂x
− ∂H⋆

x

∂y

k4 =
∂Hn+∆t

y

∂x
− ∂Hn+∆t

x

∂y
(5.7)

The disadvantage of the Runge-Kutta scheme is the loss of simplectic property due to

the fact that the scheme was developed based on truncated Taylor series. Physically,

the loss of symplecticity leads to the loss of energy conservation which can be critical

for long-time simulations of high-frequency processes. For instance, non-simplectic

methods can not be used for the modeling of long-time, multiple-turn dynamics of

particles in accelerators: the loss of energy conservation due to numerical errors would

lead to the deviation of trajectories of particles which eventually would fall on the

accelerator chamber wall.
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The second order leap-frog algorithm is symplectic. To preserve the symplecticity

of the 4th order time stepping, we used the Yoshida approach. The main result due

to Yoshida, as well as wide applicability of his approach, is described in [30]. Let

M2n is a symplectic mapping that is an approximate solution to the problem and is

accurate to the order 2n. Also suppose that M2n has the following property

M2n(t)M2n(−t) = I,

where I is the identity mapping. Then the following mapping is symplectic and

accurate through order 2n + 2:

M2n+2(t) = M2n(Z0t)M2n(Z1t)M2n(Z0t), (5.8)

where

Z0 =
1

2 − 21/(2n+1)
, Z1 =

−21/(2n+1)

2 − 21/(2n+1)
.

Therefore, the Yoshida method gives an algorithm of constructing higher order sym-

plectic maps from lower order ones. In application to the time stepping problem

for discrete Maxwell equations, the leap-frog scheme, which is a second-order sym-

plectic map, can be used as a building bloc of a three step, 4th order symplec-

tic scheme. The coefficients in the method of Yoshida are roots of an integral

equation and may be not unique. Three leapfrog steps come with unique coef-

ficients (1.351207191959657,-1.702414383919315,1.351207191959657). Piet Hut and

Jun Makino called this positive-negative-positive process as dancing-cat scheme.
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Figure 5.2: Yoshida 3 steps

5.1.3 Dey-Mittra Embedded Boundary Method

Dey and Mittra [4] developed a conformal (embedded boundary) FDTD method

for the simulation of electromagnetic equations in geometrically complex domains.

The schematic of the method is given in Figure 5.3. In the Dey-Mittra method,

the undistorted cells are treated in the same way as in the standard Yee algorithm

for both electrical and magnetical fields. For distorted cells, no special treatment is

needed for the electric field. However the magnetical field will be calculated by using

finite volume idea in an extended cell. It is assumed that H located in the center

of the corresponding undistorted cell (the Cartesian cell obtained by removing the

partial filling), irrespective of whether the location of the center is inside or outside

the computational domain.

Hn+1/2
z (i, j, k) = Hn+1/2

z (i, j, k) +
∆t

µ ∗ Area(i, j, k)

∗{En
x (i, j, k) ∗ lx(i, j, k) − En

x (i, j − 1, k) ∗ lx(i, j − 1, k))

−En
y (i, j, k) ∗ ly(i, j, k) − En

y (i − 1, j, k) ∗ ly(i − 1, j, k))} (5.9)

En+1
x (i, j, k) = En

x (i, j, k)

+
∆t

ǫ ∗ δy
∗ {Hn+1/2

z (i, j + 1, k) − Hn+1/2
z (i, j, k)}
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Figure 5.3: cut cell method

− ∆t

ǫ ∗ δz
∗ {Hn+1/2

y (i + 1, j, k) − Hn+1/2
y (i, j, k)} (5.10)

5.2 Numerical test problem set up

The exact solution for geometrically complex domain does not exist, so we have

to use rectangular cavity as our numerical test problems. To obtain cut cells from

rectangular cavity, a rotation will be conducted with a rotation matrix generated by

Euler angle.
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The analysis solution of TM (m,n,p) model is shown as following [3]. In the

numerical test, we choose TM (1,1,0).

Ez(x, y, z) = E0sin(
mπ

a
x)sin(

nπ

b
y)cos(

pπ

d
z)

Ex(x, y, z) = − 1

h2

mπ

a

pπ

d
E0cos(

mπ

a
x)sin(

nπ

b
y)sin

pπ

d
z)

Ey(x, y, z) = − 1

h2

nπ

b

pπ

d
E0sin(

mπ

a
x)cos(

nπ

b
y)sin

pπ

d
z)

Hx(x, y, z) =
jωǫ

h2

nπ

b
E0sin(

mπ

a
x)cos(

nπ

b
y)cos

pπ

d
z)

Hy(x, y, z) = −jωǫ

h2

mπ

a
E0cos(

mπ

a
x)sin(

nπ

b
y)cos

pπ

d
z)

Here:h2 = (mπ
a

)2 + (nπ
b

)2

We will use a rotation to get cut cell and then calculate the error by reverse

rotation. The advantage is the exact solution is easier to obtain than other shape.

R−1 = RT

R =













cos α cos γ − cos β sin α sin γ − cos β cos γ sin α − cos α sin γ sin α sin β

cos γ sin α + cos α cos β sin γ cos α cos β cos γ − sin α sin γ − cos α sin β

sin β sin γ cos γ sin β cos β













(5.11)

The following table shows the numerical results. The order is a little worse than

2nd order because percentage of cut cells is too high, so the error from first order

approximation dominate.

This numerical test uses CFL=0.5, Euler angle=PI/3.0,PI/4.0,PI/5.0. Here grid

number is the total computational domain contain some outside cavity domain. Even
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Figure 5.4: Left: stair case; right: cut cell case

Table 5.1: 2nd order numerical examination
grid L2 normal error order

16*16*16 3.2e-2 NA
32*32*32 2.7e-2 1.25
64*64*64 1.8e-2 1.47

128*128*128 1.2e- 1.42

in 1283 domain, cut cells percentage is greater than 0.05 which makes error bigger

than theoretical analysis.

5.3 Simulation Results and Stability Analysis

In this section, we will show CFL condition and leading error term for 4th order

center scheme in space and 4th order Yoshida scheme for time.[15]

5.3.1 Stability for General Hyperbolic Laws

For the stability analysis, it is sufficient to consider a linear system of hyperbolic

laws.

∂u

∂t
= ~A · ∇u. (5.12)
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Here u(x, t) = (u1, u2, ..., un), and ~A is a d-vector of n×n matrices. A finite difference

solver is stable if and only if there is no unstable mode. To construct an unstable

mode, let

u(x, 0) = ei~k·~xu0.

The spatial differentiation is approximated by certain finite difference. Under such

approximation, spatial differentiation becomes a constant factor. For convenience we

denote the factor by i~α. For example, the central difference scheme gives

∂u(~x)

∂xj

.
=

u(~x +
∆xj

2
~ej) − u(~x +

∆xj

2
~ej)

∆xj

=
2i sin(

kj∆xj

2
)

∆xj

u(~x),

and so

∇̂u = i~αu = i

(

2
d
∑

j=1

~ej

∆xj

sin θj

)

u. (5.13)

where ∇̂ denotes the finite difference approximation of ∇, and θj = kj∆xj/2. For

|~θ| ≪ 1, ~α ≈ ~k. For the 4th order central difference scheme,

∂u(~x)

∂xj

.
=

− 1
24

u(~x +
3∆xj

2
~ej) + 9

8
u(~x +

∆xj

2
~ej) − 9

8
u(~x − ∆xj

2
~ej) + 1

24
u(~x − 3∆xj

2
~ej)

∆xj
,

the corresponding ~α is

~α = 2

d
∑

j=1

~ej

∆xj

(

9

8
sin θj −

1

24
sin(3θj)

)

= 2

d
∑

j=1

~ej

∆xj

(

sin θj +
1

6
sin3 θj

)

, (5.14)

with the same θj as defined before.

Given ~α, the solver becomes an ODE solver. Denote the propagation matrix of

the solver from 0 to ∆t by O, i.e.û(∆t) = Ou(0). The stability condition is that all

eigenvalues of O for any ~k, or equivalently, for any ~θ have norms no larger than 1.

Now we specialize the stability analysis to symplectic solvers of the Maxwell
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Figure 5.5: Eigenvalue for symplectics methods and non-symplectics methods

equations in the three dimensional vacuum space. Assuming c = 1,

∂ ~E

∂t
= ∇× ~B,

∂ ~B

∂t
= −∇× ~E. (5.15)

Define the propagation matrices OE
t and OB

t respectively by

OE
t







~E

~B






=







~E + t∇̂ × ~B

~B






, OB

t







~E

~B






=







~E

~B − t∇̂ × ~E






.

A symplectic solver takes the form

O = OB
t2k

OE
t2k−1

...OB
t2O

E
t1 , (5.16)

in which

t1 + t3 + ... + t2k−1 = t2 + t4 + ... + t2k = ∆t, (5.17)

with possible zero ti’s.
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To do the stability analysis, replace ∇̂ by i~α. Decompose ~E and ~B to components

parallel to ~α and perpendicular to ~α, ~E = ~E|| + ~E⊥, ~B = ~B|| + ~B⊥. Since OE
t and OB

t

don’t change ~E|| and ~B||, except for the uninteresting eigenvalue of 1, we can assume

~E and ~B are perpendicular to ~α. Denote i(~α/α) × ~B by ~D (where α = |~α|), the

propagation matrices of OE
t and OB

t can be rewritten as

OE
t







~E

~D






=







~E + tα ~D

~D






, OB

t







~E

~D






=







~E

~D − tα ~E






. (5.18)

From the equations above it is clear that with given ~α, the spectrum of O for the

Maxwell equations is the same (except possibly the uninteresting eigenvalue of 1) as

the spectrum of the same solver O in Eq. (5.16) applied to the ODE,

dE

dt
= αD,

dD

dt
= −αE. (5.19)

Here the action of OE
t and OB

t on (E, D) are given by Eq. (5.18) with the vectors

replaced by corresponding scalars. O has determinant 1 because all OE
t and OB

t in Eq.

(5.18) have determinant 1. The 2 × 2 matrix O with determinant 1 has eigenvalues

with norm no larger than 1 if and only if

|Tr(O)| ≤ 2

.

Denote O by

O =







O11 O12

O21 O22






.
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Its explicit form is

O11 = 1 − α2
∑

i1 > i2

alt. parity, i1 odd

ti1ti2 + α4
∑

i1 > i2 > i3 > i4

alt. parity, i1 odd

ti1ti2ti3ti4 − . . .

O12 = α
∑

i1 odd

ti1 − α3
∑

i1 > i2 > i3

alt. parity, i1 odd

ti1ti2ti3 + . . .

O21 = −α
∑

i1 even

ti1 + α3
∑

i1 > i2 > i3

alt. parity, i1 even

ti1ti2ti3 − . . .

O22 = 1 − α2
∑

i1 > i2

alt. parity, i1 even

ti1ti2 + α4
∑

i1 > i2 > i3 > i4

alt. parity, i1 even

ti1ti2ti3ti4 − . . .

All subscripts of t are within the range from 1 to 2k, and each equation has no more

than k + 1 terms. Adding up O11 and O22,

Tr(O) = 2 − α2
∑

i1 > i2

alt. parity

ti1ti2 + α4
∑

i1 > i2 > i3 > i4

alt. parity

ti1ti2ti3ti4 − . . .

= 2 − α2∆t2 + α4
∑

i1 > i2 > i3 > i4

alt. parity

ti1ti2ti3ti4 − . . . . (5.20)

Equation (5.17) has been used in the derivation of the coefficient of α2.
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The actual calculation of Tr(O) can be simplified if we know the order of the

scheme. Suppose the scheme is of order at least 2m in time, then we know Tr(O) is

accurate at least up to ∆t2m. The solution to Eq. (5.19) has the exact propagation

matrix,

Oex =







cos α∆t sin α∆t

− sin α∆t cos α∆t






,

which gives

Tr(Oex) = 2 cosα∆t = 2 − α2∆t2 +
2

4!
α4∆t4 − . . . . (5.21)

For the purpose of stability analysis, we can assume that the scheme has even

number of nonzero sub steps. To see that, assume t2k = 0, then Tr(O) = Tr(O′),

where

O′ = OB
t2k−2

OE
t2k−3

...OB
t2O

E
t1O

E
t2k−1

= OB
t2k−2

OE
t2k−3

...OB
t2O

E
t1+t2k−1

. (5.22)

The leap-frog scheme has nonzero sub steps

t1 = t3 =
∆t

2
, t2 = ∆t, (5.23)

or equivalently by Eq. (5.22), t1 = t2 = ∆t. The stability condition is

|Tr(O)| = |2 − α2∆t2| ≤ 2,

or equivalently, |α∆t| ≤ 2. For the 2nd order spatial central difference scheme, using

Eq. (5.13) we arrive at the CFL condition

∆t max
~θ

|1
2
~α(~θ)| = ∆t

√

√

√

√

3
∑

j=1

(∆xj)−2 ≤ 1.
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For the 4th order spatial central difference scheme, using Eq. (5.14) we arrive at the

CFL condition

∆t max
~θ

|1
2
~α(~θ)| =

7

6
∆t

√

√

√

√

3
∑

j=1

(∆xj)−2 ≤ 1.

The 4th order symplectic scheme has nonzero sub steps

t1 = t7 =
1

2(1 + a)
∆t, t3 = t5 =

a

2(1 + a)
∆t, t2 = t6 =

1

1 + a
∆t, t4 =

a − 1

1 + a
∆t,

(5.24)

where a = 1 − 3
√

2. In terms of stability, it is more convenient to use the equivalent

scheme with

t1 =
1

1 + a
∆t, t3 = t5 =

a

2(1 + a)
∆t, t2 = t6 =

1

1 + a
∆t, t4 =

a − 1

1 + a
∆t.

Since the scheme is 4th order in time, the coefficient of α4 in Eq. (5.20) is the same

as in Eq. (5.21). Therefore the stability condition is

|2−α2∆t2+
1

12
α4∆t4−α6t1t2t3t4t5t6| = |2−α2∆t2+

1

12
α4∆t4− a2(a − 1)

4(1 + a)6
α6∆t6| ≤ 2.

Substituting in the value of a, one can verify that the stability condition is

(α∆t)2 ≤ 12(1 − 1/
3
√

2).

Similarly, for the 2nd order spatial central difference scheme, the CFL condition is

∆t max
~θ

|1
2
~α(~θ)| = ∆t

√

√

√

√

3
∑

j=1

(∆xj)−2 ≤
√

3(1 − 1/
3
√

2) ≈ 0.7867.

For the 4th order spatial central difference scheme, the CFL condition is stricter by
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a factor of 6/7.

5.3.2 Error Analysis for the Maxwell Equations

For general hyperbolic conservation laws as in Eq. (5.12), the error at time t,

denoted by ∆u(t), is

∆u(t) =
1

∆t

∫ t

0

Oex(τ → t)δu(τ)dτ, (5.25)

where δu(τ) is the error introduced by the finite difference solver at time τ , and

Oex(τ → t) is the propagation matrix from τ to t. For constant coefficient matrix A,

Oex(τ → t) is a function of t − τ whose analytic form depends on the properties of

δu(τ).

For the Maxwell equations given in Eq. (5.15), δ ~E and δ ~B consist of contributions

from temporal and spatial discretizations.

δ ~E = kn
E∂n

t E + ∆t(δ∇× ~B), δ ~B = kn
B∂n

t B − ∆t(δ∇× ~E), (5.26)

where n is the leading order of the temporal error, and δ∇ is the error of the gradient

operator in the spatial central difference scheme. For the 2nd leap frog temporal

scheme, n = 3 and

k3
E =

∑

i1 > i2 > i3

alt. parity, i1 odd

ti1ti2ti3 −
(∆t)3

6
, k3

B =
∑

i1 > i2 > i3

alt. parity, i1 even

ti1ti2ti3 −
(∆t)3

6
, (5.27)
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with ti’s given in Eq. (5.23). For the 4th symplectic temporal scheme, n = 5 and

k5
E =

∑

i1 > . . . > i5

alt. parity, i1 odd

ti1ti2ti3ti4ti5−
(∆t)5

120
, k5

B =
∑

i1 > . . . > i5

alt. parity, i1 even

ti1ti2ti3ti4ti5−
(∆t)5

120
, (5.28)

with ti’s given in Eq. (5.24). For the 2nd order spatial central difference,

δ∇ =
3
∑

j=1

1

24
~ej(∆xj)

2∂3
xj

. (5.29)

For the 4th order spatial central difference

δ∇ = −
3
∑

j=1

3

640
~ej(∆xj)

4∂5
xj

. (5.30)

Now we derive the propagation of the error for monochromatic waves. For a monochro-

matic wave with the following form,

~E(t) = ~E0e
−iωt, ~B(t) = ~B0e

−iωt, (5.31)

it can be verified that δ ~E and δ ~B satisfy the following conditions if they are substi-

tuted into ~Ei and ~Bi respectively,

∇2 ~Ei = −ω2 ~Ei, ∇2 ~Bi = −ω2 ~Bi. (5.32)
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With such initial conditions, the propagated fields after time t are

~E(t) = ( ~Ei +
∇(∇ · ~Ei)

ω2
) cosωt − ∇(∇ · ~Ei)

ω2
+

sin ωt

ω
∇× ~Bi (5.33)

~B(t) = ( ~Bi +
∇(∇ · ~Bi)

ω2
) cos ωt − ∇(∇ · ~Bi)

ω2
− sin ωt

ω
∇× ~Ei (5.34)

Be aware that δ ~E and δ ~B are not divergence free as ~E and ~B.

Now we can apply Eq. (5.25) to find the accumulated error of ~E and ~B at time

t. Here we are interested in the error for large t, i.e.,

ωt ≫ 1.

For large t, the dominant error is from the components in the propagated errors that

add up coherently. More specifically, substituting Eq. (5.33) into Eq. (5.25), we have

∆ ~E(t) =

∫ t

0

dτ

∆t
[(δ ~E(τ)+

∇(∇·δ ~E(τ))

ω2
) cos ω(t − τ)−∇(∇·δ ~E(τ))

ω2
+

sin ω(t− τ)

ω
∇×δ ~B(τ)]

.
=

∫ t

0

dτ

∆t
[1
2
(δ ~E(t) +

∇(∇ · δ ~E(t))

ω2
) +

i

2

∇× δ ~B(t)

ω
]

=
t

2∆t
[δ ~E(t) +

∇(∇ · δ ~E(t))

ω2
+ i

∇× δ ~B(t)

ω
] (5.35)

Substituting Eq. (5.26) into Eq. (5.35), and using Eq. (5.31) along with the condition

∇ · ~E = 0 in the vacuum, we have

∆ ~E =
t

2∆t
{(kn

E + kn
B)∂n

t
~E − i∆t

ω
[δ∇× (∇× ~E) −∇(δ∇ · ~E) + ∇× (δ∇× ~E)]}

=
t

2∆t
{(kn

E + kn
B)∂n

t +
2i∆t

ω
(∇ · δ∇)} ~E. (5.36)

Similarly, substituting Eqs. (5.34) and (5.26) into Eq. (5.25), we get the error in the

magnetic field,
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∆ ~B(t) =
t

2∆t
[δ ~B(t) +

∇(∇ · δ ~B(t))

ω2
− i

∇× δ ~E(t)

ω
]

=
t

2∆t
{(kn

E + kn
B)∂n

t +
2i∆t

ω
(∇ · δ∇)} ~B. (5.37)

Note that Eqs. (5.36) and (5.37) are the action of the same operator on ~E and ~B

respectively. For arbitrary electromagnetic waves, the error need to be integrated

over the spectrum. Assuming ωt ≫ 1 over the entire spectrum of the wave, the error

in the electric field is

∆ ~E(t) =
t

2∆t
(kn

E + kn
B)∂n

t
~E(t) + ∇ · δ∇

∫ t

0

~E(τ)τdτ.

The same formula applies to the magnetic field with all ~E’s replaced by ~B’s.

Substituting Eqs. (5.27) and (5.29) along with n = 3 into Eq. (5.36), we have

∆ ~E(t) =
it

24ω
[

3
∑

j=1

(∆xj)
2∂4

xj
− (∆t)2ω4] ~E(t).

The same formula applies to ∆ ~B(t) with ~E(t) replaced by ~B(t). It has a π/2 phase

difference from the actual field.

For a single mode wave, ∂2
xj

~E = −k2
j
~E. The error is proportional to

∑3
j=1(∆xj)

2k4
j−

(∆t)2ω4, which is minimized when ∆t satisfies the maximum CFL condition,

∆t−2 =
3
∑

j=1

(∆xj)
−2.

Since the average L2 error of the field is the sum of the L2 error of single mode waves,

the total error is also minimized when ∆t satisfies the maximum CFL condition.
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Substituting Eqs. (5.28) and (5.30) along with n = 5 into Eq. (5.36), we have

∆ ~E(t) =
−it

2ω
[

3

320

3
∑

j=1

(∆xj)
4∂6

xj
− (∆t)4ω6(

1 − 2a

24(a + 1)2
+

1

60
)] ~E(t).

≈ −3it

640ω
[

3
∑

j=1

(∆xj)
4∂6

xj
− 14.11(∆t)4ω6] ~E(t).

In the formula a = 1 − 3
√

2. The average L2 error of the field is smaller for a smaller

∆t.

5.3.3 Comparison with Runge-Kutta

Similar to the analysis for symplectic schemes, we can derive the CFL condition

and leading order error terms for Runge-Kutta schemes applied to the Maxwell equa-

tions. The stability condition of the PDE solver reduces to the ODE solver for Eq.

(5.19) as before. The discretized propagator for the 2nd order Runge-Kutta scheme

is

O =







1 − (α∆t)2

2
α∆t

−α∆t 1 − (α∆t)2

2






.

Unlike symplectic schemes, the determinant of the matrix above is not 1. It’s well

known that the central difference scheme is unstable, and the 2nd order Runge-Kutta

scheme based on spatial central difference is also unstable because

det(O) = 1 +
(α∆t)4

4
> 1.
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However, the 4th order Runge-Kutta scheme based on spatial central difference is

conditionally stable. Indeed,

O =







1 − (α∆t)2

2
+ (α∆t)4

24
α∆t − (α∆t)3

6

−α∆t + (α∆t)3

6
1 − (α∆t)2

2
+ (α∆t)4

24






, (5.38)

and

det(O) = 1 − (α∆t)6

72
+

(α∆t)8

576
≤ 1 for |α∆t| ≤ 2

√
2.

So the CFL condition with the 4th order spatial central difference scheme is

∆t max
~θ

|1
2
~α(~θ)| =

7

6
∆t

√

√

√

√

3
∑

j=1

(∆xj)−2 ≤
√

2.

It is about 1.8 times less stringent than the CFL condition for the 4th order symplectic

scheme. Similar analysis leads to the following dominant error in the electric field

for the 4th order Runge-Kutta method with the 4th order spatial central difference

scheme,

∆ ~E(t) =
−3it

640ω
[

3
∑

j=1

(∆xj)
4∂6

xj
− 16

9
(∆t)4ω6] ~E(t).

It is noted that the 4th order Runge-Kutta method and the 4th order symplectic

scheme based on the 4th order spatial central difference have the same order of accu-

racy in space and time, therefore they also conserve the total field energy up to the

same order.

However, Runge-Kutta method has an significant deficiency. So far we have

been discussing the stability and error of numerical schemes in the limit that ∆t → 0

with t fixed. Now we consider the stability from another point of view, i.e., t → ∞

with ∆t fixed. Due to the symplectic structure of the Maxwell equations, ~E and ~B

neither diverge to ∞ nor converge to 0 as time increases. A stable numerical solver
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should have the same property, but Runge-Kutta method does not have it. Since

the eigenvalues of the propagator O in Eq. (5.38) has norm less than 1 for a stable

scheme, for a given mode the wave at late time t is proportional to

(

1 − (α∆t)6

72
+

(α∆t)8

576

)
t

2∆t

≈ exp(−(α∆t)5

144
αt) ≈ exp(−(ω∆t)5

144
ωt), (5.39)

which decreases exponentially in time. Here we assume that ω∆t = |~k|∆t ≪ 1. For a

fixed ∆t, the exponent in Eq. (5.39) can have a large negative value for large t, which

makes the field converge to 0 undesirably. On the other hand, if we only care about

the field propagation in finite time such that the exponent in Eq. (5.39) is always

much less 1, Runge-Kutta scheme can still be used. It is noted that the undesirable

convergence happens later in time for a higher order Runge-Kutta scheme. In con-

trast, the outcome of symplectic schemes neither increases nor decreases exponentially

because the eigenvalues of their propagators all have norm 1.

Besides the long time stability, symplectic schemes requires less memory space

than Runge-Kutta schemes. Since the symplectic scheme updates ~E and ~B alterna-

tively, it only need the space for a set of ~E and ~B distributions. Runge-Kutta method

need extra space to save the approximate temporal derivatives, e.g., the total space

needed for the 4th order scheme is 3 times of that for symplectic schemes.

For 4th order methods, the symplectic scheme has fewer sub steps than the

Runge-Kutta scheme. Combining the last sub step and the first sub step of the next

time step, the 4th order symplectic scheme has only 6 sub steps per step, while the

4th order Runge-Kutta method has 8 sub steps per step that calculate the temporal

derivatives of the fields. However, the conclusion may not apply to higher order

schemes. For examples, the 6th order symplectic scheme given by Yoshida[30] has 14

sub steps, while the 6th order Runge-Kutta scheme has only 12 sub steps.
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Table 5.2: 4th order symplectic vs 4th order Runge-Kutta
4th order Yoshida scheme 4th order Runge-Kutta scheme

memory space 2 6
CFL condition 0.7867 1.4142

Fix t, operation time 1.2622 1

Table 5.3: 4th order numerical examination
grid L2 normal error order

16*16*16 1.44e-4 NA
32*32*32 6.96e-5 4.15
64*64*64 3.25e-6 4.19

128*128*128 1.63e-7 4.11

since we combine the first substep in tn+1 of Yoshida with the last substep in

tn, total operation time for Yoshida becomes 6*3*11. The total operation time for

Runge-kutta is 6*(3*11+14). The step 1 to step 3 for Runge-Kutta are same as

first order time forward while step 4 for Runge-Kutta need weighted sum. so total

operation time ratio is determined by

Y oshida

Runge − Kutta
=

6 ∗ 3 ∗ 11/0.7867

6 ∗ (3 ∗ 11 + 14)/1.4142
= 1.2622

For regular grid, numerical order is verified as the following tables. CFL=0.5,

Euler angle=0,0,0.

5.4 4th order Embedded Boundary Discretization

We notice that there is a ”hidden” mapping between the point value and the

average value in the 2nd order embedded boundary method. The mapping is hidden

a 2nd order finite difference scheme is equivalent to a 2nd order finite volume scheme.

E and H in FDTD scheme both represent point values, but in the 2nd order Embedded

boundary method, H represents average value. This is because in the 2nd order finite
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Figure 5.6: Left: fv-fd coupling; right: integrate E field to calculate curl H

volume approximation, the average value, which is defined as integral value over area,

is approximated by an center value with a 2nd order error term. Therefore in the

2nd order EBM, Hi,j,k represents an average value of the extended area instead of the

point value.

It is natural to consider the 4th order mapping between the point value and the

average value to extend the 2nd order EBM to 4th order EBM. The other ideas of

2nd order EBM will be kept in 4th order EBM. The position of average value for

magnetic field in cut cell is still in the center of extended cell. The position of point

value for electric field is still in the center of cell edge. Center scheme for spatial

discretization is adopted but we need to use 4th order schemes.

The 2nd order EBM for the interior cells is the same as the general FDTD

method. This gives a concise mathematical formula, but for the 4th order EBM, we

lose such advantage. We need to deal with interior cells by 4th order FDTD and deal

with cut cells by 4th order EBM separately.

3 steps for cut cell EBM:

(1) Update the point value En+1 from En and Ĥn by using the 4th order spatial
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Figure 5.7: Full-rank 10-point stencil

discretization of derivatives. If the point is near the boundary, 3rd order one-side

derivatives will be calculated to avoid using outside information.

(2) Update the average value Ĥn+1 by integration for En+1 along the cut cell bound-

aries and Ĥn in the center of the extended cell. We may use a cubic polynomial to

fit E field and integrate the cubic polynomial.

(3) Mapping between Hn+1 and Ĥn+1 can be obtained by a 2D cubic polynomial fit

to the magnetic field. 2D cubic polynomial contains 10 coefficients, so at least 10

points are required to calculate the coefficients. There are 2 choices. One is to use

exact 10-point stencil; the other way is to using more than 10 points and then solve

least square problem.

This discretization cannot be combined with an explicit time scheme, otherwise

it will not be stable. Implicit method may bring stability, but implicit method is

more time consuming.

The mapping from Ĥ to H is not easy to obtain. The computation requires re-
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verse matrix computing for a big size matrix which contain the geometric information

for all cut cells in whole computational domain. EM structures usually do not change

shape during computing process. In this case, we just need to calculate the reverse

matrix once, at the first time step, and can use it directly in all other computing

steps.
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Chapter 6

Conclusions

We performed simulation of hydrodynamic processes in the plasma jet induced

magnetized target fusion.

(1) Deuterium jet propagation is simulated with MUSCL scheme and the profile of

density, pressure and velocity field are obtained. A new jet radius increasing predic-

tion model is compared with this numerical simulation. Since the jet moving in high

vacuum is adiabatically cools down and gains the radial componetn of velocity, the

Mach number increasing and temperature decreasing are observed. With weight of

density factor, the Mach number of jets increases from 60 to around 110 in a 6-meter

chamber.

(2) The process of the jet merger and the formation of liner is simulated with differ-

ent chamber radius, 3 meter and 6 meter, and different merging radius, 50 cm and 1

meter. Simulations were performed on New York Blue using 4096 processors. Simu-

lations confirmed a possibility to form sufficiently uniform liner. The Mach number

decreasing for liner merging is studied for different mesh and good convergence result

is shown. The different liner structures of density and pressure are analyzed. The

bigger merging radius is, the more jets we need. As a results, the deviation is bigger,

however the relative deviation is smaller, so a more uniform liner will be obtained.
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(3) Spherically symmetric simulations of the implosion of plasma liners and compres-

sion of plasma targets have also been performed using the method of front tracking.

The cases of single deuterium and xenon liners and double layer deuterium - xenon

liners compressing various deuterium-tritium targets have been investigated, opti-

mized for maximum fusion energy gains, and compared with theoretical predictions

and scaling laws of [P. Parks, On the efficacy of imploding plasma liners for mag-

netized fusion target compression, Phys. Plasmas 15, 062506 (2008)]. In agreement

with the theory, the fusion gain was significantly below unity for deuterium - tritium

targets compressed by Mach 60 deuterium liners. In the most optimal setup for a

given chamber size that contained a target with the initial radius of 20 cm compressed

by 10 cm thick, Mach 60 xenon liner, the target ignition and fusion energy gain of

10 was achieved. Simulations also showed that composite deuterium - xenon liners

reduce the energy gain due to lower target compression rates. The effect of heating of

targets by alpha particles on the fusion energy gain has also been investigated. The

study of the dependence of the ram pressure amplification on radial compressibility

showed a good agreement with the theory. The study concludes that a liner with

higher Mach number and lower adiabatic index gamma (the radio of specific heats)

will generate higher ram pressure amplification and higher fusion energy gain.

We also implemented 3 dimensional, second order embedded boundary method

for complex geometries and forth order symplectic method for the Maxwell equations.

Stability and error analysis are proved in both numerical experiments and in theory.

Until now, our PJMIF simulations consider only hydrodynamic process. In future

MHD process will be considered in the liner target interaction simulation. The second

order embedded boundary method for Maxwell equations will be the main component

of an electromagnetic particle-in-cell code for the simulation of plasma guns.
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