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Abstract of the Dissertation
Variational Kinematic Geometry for Task Centered Design of

Mechanisms and Robotic Systems
by

Jun Wu
Doctor of Philosophy

in
Mechanical Engineering
Stony Brook University

2010

This dissertation deals with the problem of task centered design of mechanisms

and robotic systems via novel concept of variational kinematic geometry. The re-

sults can be extended to other field such as biomechanics, structure chemistry and

protein kinematics, as well as micro- and nano- systems, in which kinematics plays

an important roles.

Since the early days of Industrial Revolution, machine theorists and kinemati-

cians have sought to develop a theory to analyze and synthesize mechanisms so

that engineers could approach the problem in a rational way. This dissertation in-

troduces a task-centered approach to mechanism design using a constraint based

paradigm, and conducts a comparative study on the kinematic and the geometric

constraints of the motion.

Kinematic-constraint based synthesis approach, derived from the classical view-

point that a kinematic mechanism is a collection of kinematic links connected with

kinematic pairs (or joints), deals with the determination of mechanism types (type
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synthesis) and/or their link dimensions (dimensional synthesis). Hence, this ap-

proach is referred to as two-step-based mechanism-centric design paradigm.

This dissertation advocates a geometric-constraint based approach. Following

this approach, a designer would focus on the analysis of point (or line) trajecto-

ries associated with the motion, the goal of which is to obtain a trajectory that can

be constructed as a geometric condition or constraint that best describes the mo-

tion. Typically this is done in a geometric constraint identification and acquisition

process, i.e., by comparing various trajectories of a specified motion with known

constraints from a library of mechanically realizable constraints. The resulting fea-

sible constraints can be used directly for the simultaneous type and dimensional

synthesis of a physical device such as mechanical linkage that generates the spec-

ified motion task. This effectively reduces the problem of mechanism synthesis to

that of constraint identification and acquisition and thus bridges the gap between

type and dimensional synthesis. Furthermore, as a mechanism is defined by a com-

bination of geometric constraints, the geometric-constraint based approach reduces

the complexity in type synthesis significantly. This approach to motion modeling

has similarity to constraint based shape modeling in Variational Geometry and is

therefore referred to as Variational Kinematic Geometry.
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Chapter 1

Introduction
Since the early days of Industrial Revolution, machine theorists and kinemati-

cians have sought to develop a theory to analyze and synthesize mechanisms so that

engineers could approach the problem in a rational way. Franz Reuleaux, the au-

thor of “Theoretische Kinematik” [1], laid the foundation for modern kinematics by

determining the basic mechanical building blocks and developing a system for clas-

sifying mechanism types (There is an excellent digital library at Cornell University

that documents the work done by Reuleaux called Kinematic Models for Design

Digital Library). Another giant in mechanism classification is Ivan Artobolevsky

who published in 1975 an encyclopedia of known mechanisms titled “Mechanisms

in Modern Engineering Design” [2]. More recent comprehensive treatment of kine-

matic geometry in English language include Hunt [3], Phillips [4], Bottema and

Roth [5], Erdman and Sandor [6, 7], McCarthy [8, 9]. Erdman and Sadler [10]

summarizes the development of modern kinematics in the forty years preceding

1992.

While there exists comprehensive treatment of kinematics as a fundamental sci-

ence in its own right such as the seminal work titled “Theoretical Kinematics” by

Bottema and Roth [5], much of the existing work in kinematic geometry deals with
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the application of kinematics to the analysis and synthesis of mechanisms. Kine-

matic synthesis deals with the determination of mechanism types (type synthesis)

and/or their link dimensions (dimensional synthesis). Type synthesis is also known

as number synthesis, structural synthesis, systematics, classification and enumer-

ation, and census of linkages. The goal is to come up with the most appropriate

mechanism type for the specified motion requirement. Once a mechanism type is

determined, the next step is to determine the dimensions of the mechanism such as

the lengths of the links so that the output motion of the mechanism best matches

the specified motion. As type synthesis constitutes the genesis of innovation and

creativity in the design of mechanism-based products and systems, it is the most

critical part of the mechanism design process.

The dimensional synthesis of linkages is an extensively researched subject with

many textbooks. The synthesis equations can be systematically derived with var-

ious mathematical formulation such as vector loop closure equations [6], quater-

nion/dual quaternion [11], homogeneous matrices [12]. Recently Su and McCarthy

[13, 14] proposed an algebraic curve/surface formulation for spatial open chain

synthesis. By exploiting the intrinsic geometry of a specific mechanism type, this

formulation leads to a polynomial system with relatively low complexity compared

with general homogeneous matrix and dual quaternion formulation. The solution

to such a polynomial system in the context of mechanism design is a well studied

topic [15, 16] and the solution techniques include iterative optimization [17], exact

analytical methods [18, 19] and continuation (homotopy) method [20, 13].

Compared to dimensional synthesis, type synthesis is a much less researched
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subject. Nonetheless, there exists a sizable amount of literature, especially for

the case of planar mechanisms. The main approaches include augmentation of

polygonal-link patterns through introduction of binary links; transformation of bi-

nary chains; building up of desired chains by addition of links to simpler chains with

fewer links; and direct algebraic determination of matrices representing chains. The

tools used to implement these approaches can be based on direct visual inspection

and intuition, graph theory, group theory or matrix representation based algebraic

procedures. The focus of all these work, however, is not on the task to be accom-

plished but rather on the classification and enumeration of mechanisms. A compre-

hensive review of research in this area can be found in Mruthyunjaya [21]. In spite

of all the advances in this area, type synthesis remains to be the most elusive part

of the mechanism design process.

Deriving from the two-step based design approach, there have been a lot of aca-

demic research efforts in the development of software systems for the synthesis of

planar, spherical, and spatial mechanisms (see KINSYN III from Rubel and Kau-

famn [22], LINCAGES from Erdman and colleagues [23, 24], Kihonge et al. [25],

Spades from Larochelle [26], Sphinx from Larochelle et al. [27], Sphinxpc from

Ruth and McCarthy [28], Osiris from Tse and Larochelle [29], Perez and Mc-

Carthy [30], Su and McCarthy [31], Synthetica from Su et al. [32]). In the commer-

cial domain, SyMech [33] and WATT [34] are two well-known software systems

for planar mechanisms design.

The two-step based paradigm for mechanism design, which has been around for

over a century, is derived from the classical viewpoint that a kinematic mechanism
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is a collection of kinematic links connected with kinematic pairs (or joints). Links,

joints and the pattern of their interconnections are viewed as a natural descriptor

for the characteristics of a mechanism and provide an effective means for mech-

anism classification and enumeration. However, these basic mechanical elements

are in general not natural descriptor for the characteristics of the output motion of

a mechanism. Detailed kinematic analysis is in general required in order to under-

stand the motion or functional characteristics of a mechanism. Since the important

work by Freudenstein and Maki [35], there have been numerous attempt to separate

structural and functional (or task) considerations in mechanism design. For exam-

ple, Chiou and Kota [36] identified a finite set of kinematic building blocks that

provide simple kinematic functions and devised a matrix representation scheme for

automatic generation of conceptual designs. Yan [37] presented a comprehensive

approach to creative design of mechanisms. In spite of all the advances in this area,

including the application of artificial intelligence (Hoeltzel and Chieng [38], Yang

et al. [39]), this “mechanism-centric” approach to mechanism design makes type

synthesis a very challenging task, even for those who have been well trained with

mechanism theory.

It is believed that only through combing these two seeming distinct tasks in the

design process, one can find the best mechanism (optimal type and its ideal dimen-

sions) for a specific task [40]. There have been attempts to solve the combined

problem of type synthesis and dimensional synthesis through the use of Genetic

Algorithm (GA) (Sedlaczek et al. [41], Frecker et al.[42]) as well as a uniform

polynomial system by Hayes and Zsombor-Murray [43]. However, they have been
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carried out for very restricted applications with very limited number of mechanism

types. Furthermore, these approaches do not reduce the complexity of the type

synthesis problem. Researchers in AI (Artificial Intelligence) community have also

sought with very limited success to bridge the gap between type and dimensional

syntheses and developed what is known as Qualitative Kinematics [44] in the con-

text of qualitative spatial reasoning.

This dissertation deals with the task-centered design of mechanisms and robotic

systems. Typical task-driven problem, also known as motion synthesis problems,

seeks to synthesize the mechanisms that guides a rigid body to navigate through, or

as close as possible to a prescribed motion. In the processes to design a mechanical

system, task-driven design occurs in conceptual design, the critical stage leading

to the architectural solutions of a machine. The ways to constrain the motion is

the prime conditions for the design method. This document provides a comparative

study on the planar task-driven design with two approaches to constrain the motion

task: kinematic constraints and geometric constraints.

Mechanism design based on kinematic constraints is well-developed (see San-

dor and Erdman [7], Suh and Radcliffe [45], and McCarthy [9]). This design ap-

proach, falling into the category of two-step based paradigm, describes the task

motion as constrained by the mechanical joints. In this dissertation, we present

an design example of planar 6R closed chain synthesis to illustrate this design ap-

proach; the problem that we solve here is as follows: given a prescribed planar

rational motion, what are the dimensions of the links of a planar 6R closed chain

that accomplishes the given task? We use the well-known kinematic mapping ap-
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proach pioneered by Bottema and Roth [46] and McCarthy [8] to model the design

problem. In kinematic mapping, a planar displacement is represented by planar

quaternion. In the four-dimensional quaternion space, a planar displacement corre-

sponds to a point, referred as the image point, and analogically the quaternion space

is known as image space. Hence, the task motion transformed to a image curve, and

specifically the task given as a sequence of discrete positions is interpolated to be

a rational motion (see Jin and Ge [47, 48] and Purwar et. al. [49, 50, 51]). Mean-

while, the workspace of one mechanical joint is converted to the volume bounded

by a manifold, called the constraint manifold. Thereafter, the design problem can

be expressed as finding the proper dimensions of the 6R closed chain such that the

constraint manifold contains the image curve of the task motion. In details, our de-

sign method treats the 6R closed chains as mechanisms assembled using two open

chains connected together at the ends. Each open chains impose a kinematic con-

straint that limit the positions and orientations of the end effector. Algebraically, the

workspace of each chain are in inequality form and geometrically, that corresponds

to a quadratic manifold in the projective four dimensional space. The constraint

manifold is visualized in the three dimensional space by projecting it onto a hy-

perplane, which is a pair of co-centric and co-oriented hyperboloid. Favorably, the

position, the size and the orientation of the constraint hyperboloid correlate to the

dimensions of the each open chain in a simple and decoupled way. This nature

gives the birth to an interactive design scheme with which designer can manipulate

with the constraint manifolds to indirectly yet intuitively modify the dimension of

the links. In this dissertation, we studied the convexity of the image curve of the
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rational motion, and developed an interactive software for the design of planar 6R

closed chain.

In contrast to the prevailing mechanism-centric approach, this dissertation ad-

vocates a task-centered approach to mechanism design using a constraint based

paradigm. Following this approach, a designer would focus on the analysis of point

(or line) trajectories associated with a given motion task. The goal of the trajectory

analysis is obtain a trajectory that can be construed as a geometric condition or con-

straint that best constrains the given motion. Typically this is done in a constraint

identification and acquisition process, i.e., by comparing various trajectories of a

specified motion with known constraints from a library of mechanically realizable

constraints. The resulting constraints are feasible constraints that best approximate

the given motion in some measure, say, in a least squares sense. A motion task can

be given in various ways. It can be defined parametrically or discretely in terms of

an ordered sequence of displacements or in geometric means. The resulting feasi-

ble constraints can be used directly for the simultaneous type and dimensional syn-

thesis of a physical device such as mechanical linkage that generates the specified

motion task. This effectively reduces the problem of mechanism synthesis to that of

constraint identification and acquisition and thus bridges the gap between type and

dimensional synthesis. Furthermore, as a mechanism is defined by a combination

of geometric constraints, this constraint based approach reduces the complexity in

type synthesis significantly. Only combinations of the feasible constraints are con-

sidered for type synthesis. This constraint based approach to motion modeling has

similarity to constraint based shape modeling in Variational Geometry and is there-
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fore referred to as Variational Kinematic Geometry. The focus of this dissertation

is on the introducing the framework of this constraint based approach. We propose

some simple solutions to the constraint identification and acquisition problem by

directly comparing corresponding points associated with a point (or line) trajectory

and a given constraint. More sophisticated and indirect methods are also developed

for the solution to the problem. In the field of Computational Shape Analysis [52], it

is routine to process and simplify shapes before comparisons are made. The simpli-

fied representation of shapes is called shape descriptor or shape signature. The use

of shape descriptors often simplifies the process of not only shape comparison but

also shape storage and classification. We explore these methods for better solutions

to the problem of constraint identification.

The contribution of this dissertation is summarized as below: This disserta-

tion focuses on the task-centric design problem, and advocates a new geometric

constraint based design paradigm, namely “variational kinematic geometry”. For

the purpose to identify the merits of geometric constraint approach, we conduct

a comparative research on both the classical mechanical-centric (see chapter 4 to

6) and new geometric-centric (see chapter 7 to 10) methods. For the mechanical-

centric method, we study the synthesis methods for planar 6R closed chain and

four-bar mechanism, both of which follow the same design pattern that the type of

the mechanism is required to know first and the optimization is used to revise the

dimension. In the other words, there is a clear boundary between type synthesis

and dimensional synthesis if mechanical-centric approach is applied for mecha-

nism design. We propose the variational kinematic geometry method to deal with
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the task-centric design from the perspective of geometry. Our method is able to

simultaneously synthesize a mechanism both topologically and dimensionally. As

shown in chapter 7 to 10), our design approach emphasizes on the geometric fea-

ture of the task motion and follows such a procedure that geometric constraints are

firstly identified by using shape analysis method, and then multiple design solutions

are yielded by choosing diverse feasible mechanisms to generate the geometric con-

straints individually. Our design approach has similarity to ATLAS method in view

of both of them are using the geometric information of the task. ATLAS method

works in this way: the curves generated by different mechanisms are preprocessed

and stored in a library, and to design a mechanism is to look up a curve to match the

desired curve and choose the according mechanism. Our method is different from

ATLAS method from three ways. Firstly, up to our literature review, existing AT-

LAS method works for the synthesis of gear 2R chain, gear 5R closed chain, cam

and four-bar linkage. Obviously, ATLAS method requires to type of the mechanism

to be known. However, our method has no boundary between type and dimension

synthesis, and we can with more types than existing ATLAS method can do. Sec-

ondly, ATLAS method can be only applied to trajectory tasks, but the geometric

method works for motion generation, and we use ATLAS as part of our geometric

constraint library to build more complex mechanisms that are not available from

ATLAS methods. Thirdly, we use the FD based shape comparison algorithms to

retrieve the geometric features. This kind of constraint identification methods are

compatible with human vision according to the study by cognitive scientists[107].

This dissertation deals with the task-driven design problem through a compar-
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ative study on the mechanical- and geometrical-centric approach and is organized

as following. Chapter 2 and 3 briefly review kinematic mapping using quaternion

representation and Fourier descriptors, respectively. The mechanical-centric design

approach is covered by chapter 4 to 6: chapter 4 develops the concept of kinematic

convexity of the rational motion as a basic tool for geometric computations involv-

ing planar displacements; chapter 5 presents an interactive, visual design approach

for the dimensional synthesis of planar 6R single-loop closed chains for a given

rational motion using constraint manifold modification, an example of mechanical-

centric design method; and chapter 6 introduces a Fourier descriptor based method

for four-bar linkage synthesis for generation of the open and closed curves, which

is viewed as the complicated point-trajectory constraints. The geometrical-centric

design approach is explored by chapter 7 to 10: chapter 7 proposes the problem

of kinematic acquisition of point geometric constraints and provides a least-square

solution to the point-trajectory constraint retrieval; chapter 8 seeks to apply the

concept of Fourier Descriptors (FD) to the problem of estimating or extracting ge-

ometric constraints from a given planar motion task; for the interest to find a better

type of FD for constraint retrieval, chapter 9 conducts a comparative study on four

types of FDs based on different curve signatures; and finally, chapter 10 extends

the work of geometric acquisition of point constraints to line constraints with the

observation of the duality between points and lines. We draw conclusion remarks

in chapter 11.
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Chapter 2

Kinematic Mapping
2.1 Planar Quaternions

Consider a planar displacement in X-Y plane shown in Figure 2.1. Let d1, d2 denote

the coordinates of the origin of the moving frame M in the fixed frame F and φ

denote the rotation angle of M relative to F. Then a planar displacement can be

represented by a planar quaternion, Z = (Z1, Z2, Z3, Z4) (see McCarthy [8]):

Z1 = d1 cos(φ/2) + d2 sin(φ/2),

Z2 = −d1 sin(φ/2) + d2 cos(φ/2),

Z3 = sin(φ/2),

Z4 = cos(φ/2). (2.1)

They can be considered as a set of homogeneous coordinates that define the image

space of planar displacements (Ravani and Roth [53], McCarthy [8]).

These four components can be identified as coordinates of a point in a four di-

mensional space. The point Z is called the image point of a planar displacement.

The set of image points that represent all planar displacements is called the im-

age space of planar displacements and is denoted as Σp. In view of Eq. (2.1), the
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Figure 2.1: A planar displacement.

coordinates of an image point must satisfy the equation:

Z2
3 + Z2

4 = 1. (2.2)

The above equation may be interpreted as defining a hyper-circular cylinder in a 4D

space.

The components of a planar quaternion are related to the homogeneous trans-

form of a planar displacement by:

[A] =
1

Z2
3 + Z2

4




Z2
4 − Z2

3 −2Z3Z4 2(Z1Z4 − Z2Z3)
2Z3Z4 Z2

4 − Z2
3 2(Z1Z3 + Z2Z4)

0 0 Z2
3 + Z2

4


 . (2.3)

Note that when Zi (i = 1, 2, 3, 4) is replaced by wZi, where w is a nonzero scalar,

the matrix [A] is unchanged. From this perspective, the four components of a planar

quaternion can also be considered as a set of homogeneous coordinates for a planar

displacement. Ravani and Roth [53] considered the components of Z as defining a

point in a projective three-space, called the Image Space of planar kinematics.
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2.2 Dimensionless Planar Quaternions

The topic of distance metric has attracted significant interest in kinematics com-

munity in recent years. An excellent review of papers on the subject can be found

in Larochelle et al. [54]). One interesting approach is to approximate a planar

displacement (SE(2)) with a spherical displacement (SO(3)) in order to obtain a

distance metric that is approximately bi-invariant [55, 56, 57]. In order to resolve

the inconsistency in units between rotation and translation, it is commonly sug-

gested that the translation vector be divided by a characteristic length R so that the

translation vector will be dimensionless, just as rotation matrix is dimensionless as

well. Following this approach, in this paper, we propose a dimensionless version of

planar quaternion, F = (F1, F2, F3, F4), by replacing di with di/R in (2.1):

F1 =
d1

2R
cos(φ/2) +

d2

2R
sin(φ/2),

F2 = − d1

2R
sin(φ/2) +

d2

2R
cos(φ/2),

F3 = sin(φ/2),

F4 = cos(φ/2). (2.4)

In this way, all four components of the planar quaternion are dimensionless and

this makes it possible to define a distance metric in a consistent way. However, the

dimensionless planar quaternions as defined above still do not allow a bi-invariant

distance metric.

A planar quaternions is a special case of a dual quaternion associated with a

spatial displacement (SE(3)) (McCarthy [8]). A spatial displacement consists of

a rotation and a translation. The rotation can be represented by a unit quaternion

13



Q = Q1i + Q2j + Q3k + Q4, where (i, j, k, 1) denote the quaternion basis. The

four components of Q are defined by the unit vector along the axis of rotation,

s = (s1, s2, s3), and the angle of rotation, φ, as

Q = s1 sin(
φ

2
)i + s2 sin(

φ

2
)j + s3 sin(

φ

2
)k + cos(

φ

2
). (2.5)

Let d = d1i + d2j + d3k denote a vector quaternion representing the translation

component and let R denote the characteristic length. In the dual quaternion rep-

resentation of a spatial displacement, the translation part is represented by another

quaternion Q0. The dimensionless version of the quaternion is given by the quater-

nion product:

Q0 =
dQ

2R
. (2.6)

For a planar displacement in the X-Y coordinate plane, we have Q = sin(φ/2)k +

cos(φ/2) and d = d1i + d2j. Substituting them into Eq. (2.6), and after some

algebra, we obtain

Q0 = F1i + F2j (2.7)

where F1, F2 are given by (2.4). It is clear that four nonzero components of the dual

quaternion, (Q,Q0) reduce to those of the planar quaternion as given by (2.4).

2.3 Connection Between Planar Quaternion and Dou-
ble Quaternion

It is known that a general rotation in SO(4) can be represented by a pair of unit

quaternions G and H [58, 59] such that

X̃ = GXH∗ (2.8)
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where X and X̃ represent coordinates of a point before and after the rotation. The

quaternion pair is called a double quaternion in Study form as it keeps the mag-

nitudes of the vectors under the rotational transformation invariant. The double

quaternions can be recasted in the following form by introducing

B =
G + H

2
, B0 =

G−H
2

, (2.9)

They satisfy the Plücker condition

B1B
0
1 + B2B

0
2 + B3B

0
3 + B4B

0
4 = 0.

In addition, they also keep invariant the Plücker condition for line coordinates be-

fore and after the rotation, and thefore, they are called double quaternion in Plücker

form (see Ge [59] and Purwar and Ge [60]). It has further been shown in [60] that

the dual quaternion (Q,Q0) for SE(3) differs from the double quaternion (B,B0)

only by scaling factor, i.e., by extending the magnitude of (B,B0) so that B be-

comes a unit quaternion Q. The choice of the scaling factor determines how closely

a dual quaternion can be approximated by a double quaternion.

Let Q̂ = Q + εQ0 denote a dual quaternion where ε is the dual unit with the

property ε2 = 0. Then a planar quaternion in dual quaternion form is given by

Q̂ = F3k + F4 + ε(F1i + F2j). This means that

B = w(0, 0, F3, F4), B0 = w(F1, F2, 0, 0) (2.10)

where w is the scaling factor. In view of (2.9), we have

G = B + B0, H = B−B0. (2.11)
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After the substitution of (2.10) into (2.11), we obtain

G = w(F1, F2, F3, F4), H = w(−F1,−F2, F3, F4). (2.12)

This means that we can approximate a planar displacement as defined by a planar

quaternion F with a spherical displacement as defined by the unit quaternion G,

which is obtained by normalizing the planar quaternion F, i.e., by letting

w = (F 2
1 + F 2

2 + F 2
3 + F 2

4 )−1/2 =
2R√

d2
1 + d2

2 + 4R2
. (2.13)

Thus the larger the R, the better is the approximation. (More discussion of R can

be found in [61, 62]). Alternatively, one can also use H in (2.12) instead of G. In

this paper, we use G to represent a planar displacement.

2.4 Unconstrained Planar B-Spline Motion

This section reviews the idea of synthesis of unconstrained (also known as, free-

form) planar rational motion. For the purpose of this paper, if the input motion is

specified in terms of the given coupler positions, a rational motion that interpolates

to the given positions can be constructed using the method outlined in this section.

Since a planar quaternion Z can be seen as a point in the image space, a poly-

nomial curve in the image space corresponds to a rational motion in the Cartesian

space. Rational motions are defined as ratio of two polynomial functions of time.

By applying Computer Aided Geometric Design (CAGD) techniques for design-

ing curves in the image space, we obtain rational motions in the Cartesian space.

The rationale behind the choice of rational motions stems from the fact that the tra-

jectories of an object undergoing rational motions are rational curves and surfaces,
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thereby making them convenient for integration into existing Non-uniform Rational

B-spline (NURBS) based CAD/CAM system.

Let Zi, i = 0, ..., n be given quaternions, then the following represents a B-

Spline quaternion curve in the space of quaternions:

Z(u) =
n∑

i=0

Ni,p(u)Zi, (2.14)

where Ni,p(u) are pth-degree basis functions. See Farin [63], Hoschek and Lasser [64],

and Piegl and Tiller [65] for details on the B-spline curves. Since the given positions

Zi (called control positions in the language of B-spline formulation) represent pla-

nar displacements, we get a B-Spline quaternion curve Z(u) in the space of planar

quaternions.

A representation for the rational B-spline motion in the Cartesian space can be

obtained by substituting the coordinates of Z(u) into the matrix [A] (Eq 7.1), where

each element of the matrix is now given as a rational function in parameter u.
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Chapter 3

Fourier Descriptors
3.1 Complex Form of Fourier Transform

Consider a plane curve defined by z(t) = x(t) + iy(t) where x and y are the

coordinates of a point on the curve and i is the imaginary unit. If the curve is

closed, the complex function z(t) can be considered as a periodic function. Let T

denote the minimum positive period of the function. The Fourier transform of a

continuous periodic function z(t) in complex form is given by

z(t) =
∞∑

n=−∞
αnei2nπt/T , (3.1)

where the Fourier coefficients αn are complex numbers given by

αn =
1

T

∫ T

0

z(t)e−i2nπt/T dt. (3.2)

An intuitive interpretation of this complex form of Fourier transform comes from

the viewpoint of orthogonal projection in the inner product space[66]. Eq. (3.1)

represents z(t) as a linear combination of the Fourier basis. According to the defi-

nition of the inner product, ei2nπt/T is orthognol to any term other than e−i2nπt/T in

the Fourier basis {ei2kπt/T |k = −∞· · ·∞}. Essentially, the Fourier transfrom (see
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Eq.(3.2)) project the vector z(t) orthogonally onto basis e−i2nπt/T which is done

by taking and normalizing their inner product. Thus, the Fourier coefficient αn is

reserved as the projection and all other Fourier coefficient vanish because of the

orthogonality.

Among the coefficients, α0 defines the amplitude of the fundamental, α−1 and

α1 defines the amplitude of the first harmonic, and α−2 and α2 the amplitude of the

second harmonic, and so on. The fundamental coefficient, α0, defines the centroid,

or average of all points on the curve. Thus it defines the location of the curve but

not its shape. Now let us consider the contribution of the first harmonic terms to the

shape of the curve:

z1(t) = α−1e
−2πit/T + α1e

2πit/T (3.3)

As each coefficient is a complex number, we have

α−1 = r−1e
iφ−1 , α1 = r1e

iφ1 (3.4)

where r−1 and r1 are the magnitudes of the complex coefficients. It can be shown

that Eq.(3.3) defines an ellipse whose semi-major and semi-minor axes are given

by (r−1 + r1) and (r1 − r−1), respectively. The angle that the semi-major axis

makes with the horizontal is (φ1 + φ1)/2. When r1 > r−1, points on the ellipse are

traced out in counter-clockwise direction as t varies from 0 to T . Similarly, when

r1 < r−1, the ellipse is traced out in clockwise direction as t varies from 0 to T .

When r1 = r−1, the ellipse collapses into a straight line as the semi-minor axis

vanishes. When one of them is equal to zero, the ellipse becomes a circle.
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The shape defined by the second harmonic can be studied similarly:

z2(t) = α−2e
−4πit/T + α2e

4πit/T . (3.5)

It also defines an ellipse in general. The only difference is that as t changes from

0 to T , the ellipse gets traced out twice. For a smooth curve, the amplitudes αn

decreases as n increases. Thus lower harmonics captures the gross shape of z(t) and

higher harmonics add more details. In this paper, however, we are interested in the

development of an efficient algorithm for synthesizing a crank-rocker mechanism

such that its coupler curve traces out a smooth curve that can be approximated by

the first and second harmonics.

3.2 Discrete Fourier Transform (DFT)

Compared with the Fourier transform, which is useful for continuous function, the

DFT is a powerful technique to analyze discrete data. It is often used for numerical

approximation of the Fourier coefficients of a continuous periodic function. The

forward and inverse DFT of a finite-length sequence of N data points of a uniformly

sampled, periodic function z(t) are represented as:

z(2π
ti
T

) =
N−1∑
n=0

αne
j2nπ

ti
T (3.6)

and

αn =
N−1∑
i=0

z(2π
ti
T

)e−jn2π
ti
T

∆ti
T

(3.7)

where ti is the parameter for the ith sample point, ∆ti = ti+1− ti denotes the devi-

ation of the parameter, and N is the number of samples. DFT transforms the series
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of discrete data from the time domain, z(2π ti
T
), to the frequency domain, vn. The

frequency for DFT is ωn = 2πn/T , and both amplitude and phase spectrums have

definition identical to those for the continuous function. If the periodic function

z(t) are uniformly sampled, then ti
T

is simplified to be i
N

and ∆ti
T

becomes 1
N

; in

contrast, if the sample is non-uniform, ∆ti captures the sample intervals.

3.3 Curve Fitting with Finite Fourier Series

This section reviews the approximation of a complex curve function with finite

Fourier series in complex form. When a closed curve is defined by a sequence of

points rather than a continuous curve, a Discrete Fourier Transform (DFT) is used

instead of the continuous Fourier Transform. The forward and inverse DFT of a

finite-length sequence of N data points of a uniformly sampled, periodic function

z(t) = x(t) + jy(t) are represented as:

z(
2πi

N
) =

N−1∑
n=0

αnenj 2πi
N , (3.8)

where the Fourier coefficients are given by

αn =
1

N

N−1∑
i=0

z(
2πi

N
)e−nj 2πi

N . (3.9)

Now consider the problem of approximating a curve segment z(t) by a truncated

(or finite) series of sinusoidal functions in complex form:

z(t) ≈
+p∑

k=−p

αke
jkω0t (3.10)
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where p, is a small positive integer that defines the maximum order of the harmonic

terms used in the approximation. Such a curve is also known as a trigonomet-

ric polynomial curve of order p in the field of Computer Aided Geometric Design

[67, 68]. The goal is to find the coefficient αk so that the truncated series best

approximates the given curve segment z(t). In this case, DFT is in general not ap-

plicable, since the function z(t) represents an open curve segment and is therefore

not periodic. In this paper, we use a least-squares curve fitting approach to obtain

the coefficients αk. The resulting coefficients are not Fourier coefficients in general.

But when the least-squares curve fitting procedure is applied to a periodic function,

the resulting coefficients become Fourier coefficients. For the sake of convenience,

we use the term Fourier coefficients to describe coefficients αk associated with si-

nusoidal function series, regardless they are “proper” Fourier series or not.

We formulate the least squares problem by defining the error function:

∆ =
n∑

i=1

||z(ti)−
+p∑

k=−p

αke
jkω0ti||2 (3.11)

in which ||·|| denotes the magnitude of a vector, z(ti) (i = 1, . . . , n) denote n points

that are sampled from the original curve z(t). Then the error function, ∆, can be

rewritten as

∆ =
n∑

i=1

(Xi − xi)
2 +

n∑

k=0

(Yi − yi)
2 (3.12)

where xi and yi are the real and the imaginary part of z(ti) respectively, and Xi and
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Yi are given by

Xi = <{
+p∑

k=−p

αke
ikθi} =

+p∑

k=−p

(ak cos kθi − bk sin kθi) (3.13)

Yi = ={
+p∑

k=−p

αke
ikθi} =

+p∑

k=−p

(bk cos kθi + ak sin kθi) (3.14)

wherein αk = ak + jbk and θi = ω0ti

To minimize the error ∆ by selecting the variables am and bm (m = −p, · · · , p),

we require:
∂∆

∂am

= 0,
∂∆

∂bm

= 0 (3.15)

for all m ∈ [−p, · · · , p]. Rewrite the above necessary conditioins in complex form

to obtain
∂∆

∂am

+ j
∂∆

∂bm

= 0 (3.16)

and we can represent the conditions with a complex matrix equation

ΩX = Y (3.17)

where

X =
[ · · · , αm, · · · ]T

m → (3.18)

Ω =




· · ·
...

∑n
i=0 ej(k−m)θi

...
· · ·


 m ↓

k →
(3.19)

Y =
[ · · · ,

∑n
i=0 z(ti)e

−jmθi , · · · ]T

m → (3.20)
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and k and m vary from −p to p, respectively.

To obtain the best approximation of the curve z(t) with the finite Fourier series,

we seek to solve X from Eq. (3.17). The use of LU decomposition is recommended

to avoid potential numerical problems.
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Chapter 4

Kinematic Convexity of Planar
Displacements Based On an
Approximately Bi-Invariant Metric

The chapter deals with the concept of convexity from the viewpoint of compu-

tational kinematic geometry. The goal is to develop the concept of kinematic con-

vexity as a basic tool for geometric computations involving planar displacements.

Much of the existing work on kinematic geometry deals with rigid-body motions

generated by mechanisms and robot manipulators (see, for example, Hunt [3], Bot-

tema and Roth [5], McCarthy [8]). In recent years, researchers have sought to bring

together the fields of kinematics and Computer Aided Geometric Design (CAGD)

for the development of freeform parametric motions. These parametric motions

are typically defined by combining Bézier or B-spline representation in CAGD

with representations of rigid-body displacements in kinematics such as quaternions,

dual quaternions, Lie groups and Lie algebra (Ge and Ravani [69, 70], Purwar and

Ge [71], Park and Ravani [72], Kim and Nam [73], Jüttler and Wagner [74], Zefran

and Kumar [75], Srinivasan and Ge [76]. Applications of these freeform motions

include motion animation in computer graphics, spatial navigation in virtual reality
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as well as path planning in robotics and 5-axis CNC machining. More recently,

Zhe and Ge [77], and Purwar et al[49, 50]. have also studied the problem of mo-

tion interpolation under kinematic constraints for planar and spherical 2R, 3R open

chains, as well as 6R closed chains.

In this chapter, we seek to develop the notion of kinematic convexity as a ba-

sic tool for handling geometric computations for applications mentioned above.

The scope of this chapter is limited to planar kinematics. It follows our previous

work [78] on the kinematic convexity of SO(3) (i.e., special orthogonal group of

spherical displacements) and seeks to extend the concept to SE(2) (i.e., special

Euclidean group of planar displacements). In difference to SO(3) which has a bi-

invariant metric, SE(2) does not permit such a metric [79]. To address the issue of

distance metric for planar displacements, we explore the connection between pla-

nar quaternions and quaternions and formulate the concept of kinematic convexity

in the space of quaternions where a bi-invariant metric exists.

The organization of the chapter is as follows. Section 2 reviews the concept

of planar quaternions and introduced dimensionless planar quaternions. Section

3 explores the connection between dimensionless planar quaternions and double

quaternions. Section 4.1 studies the notion of kinematic convexity of a set of planar

displacements. Section 4.4 presents an example to illustrate the use of kinematic

convexity for estimating the “closest distance” from a fixed body to a moving body

undergoing a rational Bézier motion.
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4.1 Kinematic Convexity of Planar Displacements

In our recent work [78], we presented the notion of kinematic convexity for SO(3).

In this chapter, we take advantage of the aforementioned connection between SE(2)

and SO(3) and formulate the concept of kinematic convexity for planar displace-

ments in the space of quaternions where a bi-invariant metric exists. This results in

the treatment of kinematic convexity of planar displacements with a metric that is

approximately bi-invariant.

From the perspective of projective geometry, the quaternion G as given by

(2.12) can also be viewed as a set of homogeneous coordinates defining a point

in projective three-space. If we normalize G using (2.13) so that it becomes a

unit quaternion, then G defines a spherical displacement; if we normalize G so that

w = 1, i.e., so that G2
3+G2

4 = 1, then we obtain a planar quaternion F. Thus projec-

tive concepts such as projective convexity presented in [78] are directly applicable

to the image space of planar displacements. It is only when we are concerned with

the metric geometry of the image space, we need to consider how to normalize

the quaternion components of G. To envision the image, G is dehomogenized via

its projection onto the hyperplane G4 = 1 which results a three dimensional point

(G1/G4, G2/G4, G3/G4).

4.1.1 Convex Combination of Two Planar Displacements

We consider the image space defined by planar quaternions (2.4) as a projective

three-space P 3. A set in the space is said to be convex if it contains every line-

segment whose end points are in the set. The key here is to clarify the meaning of
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“line-segment”, especially in the case of antipodal points. To this end, we follow

Stolfi [80] and Ge et al. [78] and consider the image space as an oriented projective

space. Algebraically, this means that use signed homogeneous coordinates, i.e.,

wF and F represent the same point ( or planar displacement) if w > 1 and they

represent two oppositely sensed points (or planar displacements) if w < 1. This

allows an unambiguous definition of a line-segment from G0 to G1.

Given two image point pairs Gi (i = 0, 1), the line-segment joining G0 and G1

is given by the following linear combination:

G(α0, α1) = α0G0 + α1G1 (4.1)

where we restrict the sum G(α0, α1) to be nonzero and we require the real coeffi-

cients αi to be non-negative. The “nonzero sum” restriction implies that (α0, α1) 6=
(0, 0) when the two points are non-antipodal and that the ratio α1 : α0 is not in-

versely proportional to the weight ratio w0 : w1 associated with Gi(= wiFi) when

the two points of Gi are antipodal.

Now consider a spherical model of P 3 for G. For G, if the two points, G0 and

G1, are distinct and non-antipodal, then line-segment G0G1 is the shorter of the two

great circular arcs connecting them. If the two points are identical, then the line-

segment reduces to a single point; if the two points are antipodal, the line-segment

reduces to two antipodal points. Each of Figure 4.1 and 4.2 shows the convex hull

of two distinct, non-antipodal displacements.

A line-segment in P 3 corresponds to a motion segment, called convex hull of the

two planar displacements. When the two oriented points are identical, the convex

hull reduces to a single displacement; when the two oriented points are antipodal,
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Figure 4.1: (a) Convex hull of two displacements G0 and G1 such that relative
angle between them is less than but close to π so the path is close to a half turn. (b)
Linear interpolations in the space defined by G (and H), respectively.

Figure 4.2: (a) Convex hull of two displacements G0 and G1, where the relative an-
gle between them is small so the path is close to translation (b) Linear interpolations
in the space defined by G (and H), respectively.
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the convex hull consists of two displacements that are geometrically identical but

with opposite sense of orientation.

4.1.2 Convex Sets of Planar Displacements

In what follows we exclude geometrically equivalent but oppositely sensed dis-

placements, when defining a set of oriented displacements. This leads to the fol-

lowing definition:

Definition A set Z of planar displacements is convex if it is not empty, and for any

pair G0 and G1 ∈ Z, the convex hull of G0 and G1) is also in Z.

Let a set of planar displacements be represented by a set of point pairs Gi (i =

0, 1, 2, . . . , n) in P 3. These points form one simplex S in P 3 with Gi as their ver-

tices. Similar to the affine definition of convex combination, we define the following

as a convex combination of the set of points in P 3:

G =
n∑

i=0

αiGi (4.2)

where αi ≥ 0 for all i but (α0, α1, . . . , αn) 6= (0, 0, . . . , 0). The point G lies inside

of the simplex S. All convex combinations of the set of points Gi span a convex set

called the convex hull of this point set. Kinematically, every point G of the convex

hull in P 3 defines a planar displacement that belongs to the convex hull of the set of

planar displacements represented by Gi (i = 0, 1, 2, . . . , n). For example, Figure

4.3 illustrates the convex hull of three planar displacements.
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Figure 4.3: Convex hull of three displacements corresponding to a triangle-segment
in oriented projective three-space

4.2 A Projective Test for Kinematic Convex Hull

For the projective space P 3 of planar displacements, the convex hulls of both G can

be formed by the set of all simplices (S4) of corresponding components of the four

displacements from the given set. Any image point inside this simplex is not on

the boundary of that hull. Stolfi [80] proposed a simple test for the localization of

points relative to the flat spanned by simplices. This section applies this test to the

planar displacements.

A given displacement G∗, where G∗ = (G∗
1, G

∗
2, G

∗
3, G

∗
4), can be located with

respect to their simplex S4 by calculating the signs of the coefficients αi (i =

0 . . . 3) for linear combination from the following system of linear equations:

(α0 α1 α2 α3)




G0,1 G0,2 G0,3 G0,4

G1,1 G1,2 G1,3 G1,4

G2,1 G2,2 G2,3 G2,4

G3,1 G3,2 G3,3 G3,4


 = (G∗

1, G
∗
2, G

∗
3, G

∗
4) (4.3)
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where (Gi,1, Gi,2, Gi,3, Gi,4) denote coordinates of the ith(i = 0 . . . 3) displacement.

The sequence of signs of αi, given by ρ0ρ1ρ2ρ3; ρi = sign(αi) is also called sig-

nature of the component G relative to it simplex. The signature + + ++ implies

that the point lies strictly inside the S4, while the signature−−−− implies that the

point lies in the antipodal image of the simplex (∼ S4).

Now, we present a rather naı̈ve algorithm that combines the slow algorithm of

O’Rourke [81] and the projective test as devised above to obtain the set of displace-

ments that make up the boundary of the convex hull.

Algorithm: Given a displacement set Z = {G0, G1, G2, . . . , Gn−1}, classify those

displacements from set Z that lie inside the convex hull of Z and add to a new set

Z+.

for each i do

for each j 6= i do

for each k 6= j 6= i do

for each l 6= k 6= j 6= i do

for each m 6= l 6= k 6= j 6= i do

if Gm ∈ S4(Gi, Gj, Gk, Gl)

then add Gm to Z+.

Since Z+ is the set of non-extreme displacements (defined by all positive signa-

ture sequence), difference set Z−Z+ gives the desired set of displacements lying on

the boundary of the convex hull. A much more practical algorithm for determining

convex hull in higher dimensions is a similar to randomized incremental algorithm

called “Qhull” (Barber et. al. [82]) that can be used for much faster computation on
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moderately sized input sets.

4.3 Projective Representation of Planar Bézier Mo-
tions

As an application of the kinematic convexity, we now present a projective represen-

tation of planar Bézier motions by recursive application of the linear combination

(4.1).

Let b0,b1, · · · ,bn ∈ P 3 denote a set of oriented image point that represent a

set of planar displacements. Let αi ≥ 0 (i = 0, 1) but (α0, α1) 6= (0, 0). Set

br
i (α0, α1) = α0b

r−1
i + α1b

r−1
i+1 ; r = 1, · · · , n, i = 0, · · · , n− r. (4.4)

When r = 0, b0
i = bi. When r = n, bn

0 (α0, α1) traces out a Bézier curve in P 3 (de-

noted by bn) as (α0, α1) varies. Every image point on the Bézier curve corresponds

to a planar displacement that belong to a Bézier planar motion. The points bi are

called Bézier points or control points of the Bézier curve. The planar displacements

that they represent are called Bézier planar displacements. It is clear that the Bézier

planar motion must lie in the convex hull of the Bézier planar displacements.

Now let us impose an additional requirement that α0 + α1 = 1. This implies

that we treat the Bézier points as points in affine geometry. After letting α1 = t and

α0 = 1− t, Then Eq.(4.4) becomes the following well-known linear interpolation:

br
i (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t). (4.5)

The Bézier curve bn
0 (t) in this case defines a rational Bézier planar motion of degree

2n.
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4.4 Estimation of Kinematic Separation

The problem that we seek to solve is this: given a rigid body planar Bézier (or, B-

spline) motionM(t) in a plane and a fixed obstacle P (also in the plane), is there an

position of the motion kinematically similar to the obstacle or what is the shortest

distance between the trajectory of the moving object and the obstacle? To answer

these questions, we first kinematically map M(t) to M(t) and P to P, respectively

in the image space of planar displacements. Then, we form the convex hull of M(t)

and check for the location of P relative to the convex hull by using projective test

as given in the section 4.2. Depending on the location of M, either we subdivide

the convex hull and repeat the process or stop, as further described below.

Without loss of generality, we can assume that in the image space, the Bézier

control points of the motion are unit double quaternion and the curves of G and

H are cubic. In this case, the two convex hulls of the image curves are a four-

dimensional tetrahedron embedded on the surface of a 4-D unit hypersphere. Using

Lagrange multiplier method for constrained minimization, the nearest location on

the tetrahedron from P and the shortest distance between the two is calculated. To

get a good approximation to the location on the trajectory and the shortest distance,

the convex hulls are subdivided and the shortest distance calculations are done on

each subdivided segment repeatedly until either a certain number of subdivisions

have been performed or the relative difference in minimum distance between two

successive iterations falls below a predefined number. As the convex hull is subdi-

vided further, it approaches the swept volume of the moving object.

Consider a cubic Bézier curve in the image space, which corresponds to a de-
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Figure 4.4: 6th degree spherical Bézier motion M(t), convex hull boundary, obsta-
cle P

gree six motion in SE(2) given by four quaternions G; i = 0 . . . 3, and another

quaternion P, which corresponds to the transformation of an obstacle from canoni-

cal coordinate frame to its current location. The generic point G in the convex hull

of Gi (i = 0 . . . 3) is given by Eq. (4.2):

G = α0G0 + α1G1 + α2G2 + α3G3, (4.6)

where αi ≥ 0; i = 0 . . . 3 and not all αi = 0.

If G is to be the nearest location from P the objective is to:

maximize〈G, P〉2 (4.7)

subject to the constraint ||G|| = 1, where 〈..〉 denotes the inner product, and

〈G, P〉 = α0G0.P + α1G1.P + α2G2.P + α3G3.P. (4.8)

Using the Lagrange multiplier, we modify the above objective function to La-
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grangian function E that incorporates the constraint:

E = α0G0.P + α1G1.P + α2G2.P + α3G3.P− λ(GT G− 1), (4.9)

where λ is the Lagrange multiplier.

Optimization of Lagrangian function E require:

∂E

∂αi

= Gi.P− 2λG.
∂G
∂αi

= 0. (4.10)

The solution to Eq. (4.10)and the condition that GT G = 1 has the same prototype

as that of Eq. (4.10), given by the following equations:

αi = ci/2λ, (4.11)

where

c0 =

∣∣∣∣∣∣∣∣

m0 f1 f2 f3

m1 1.0 f4 f5

m2 f4 1.0 f6

m3 f5 f6 1.0

∣∣∣∣∣∣∣∣
,

c1 =

∣∣∣∣∣∣∣∣

1.0 m0 f2 f3

f1 m1 f4 f5

f2 m2 1.0 f6

f3 m3 f6 1.0

∣∣∣∣∣∣∣∣
,

c2 =

∣∣∣∣∣∣∣∣

1.0 f1 m0 f3

f1 1.0 m1 f5

f2 f4 m2 f6

f3 f5 m3 1.0

∣∣∣∣∣∣∣∣
,

c3 =

∣∣∣∣∣∣∣∣

1.0 f1 f2 m0

f1 1.0 f4 m1

f2 f4 1.0 m2

f3 f5 f6 m3

∣∣∣∣∣∣∣∣
,
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λ =
1

2

√√√√(
m∑

i=0

ciGi,2)2 + (
m∑

i=0

ciGi,3)2,

and
mi = Gi.P (i = 0 . . . 3),
f1 = G0.G1, f2 = G0.G2, f3 = G0.G3,
f4 = G1.G2, f5 = G1.G3, f6 = G2.G3.

(4.12)

If αi ≥ 0 for i = 0 . . . 3, then the optimal G can be obtained from Eq. (4.6).

The approximate shortest distance is given by arccos2(G · P). If all αi are not non-

negative, then the projection point of G is not inside the convex hull of Gi; i =

0 . . . 3. In this case, the optimal point may fall on one of the faces, edges, or the

vertices of the tetrahedron. So does the nearest position locate on the boundary of

the convex hulls. The nearest location method presented above can be generalized

to a simplex of any dimension. Expressions for the nearest location to the faces and

edges can be obtained in a similar fashion and is not included here due to space

limitations.

The problem of calculating the normal distance from a point to the image curve

has been effectively solved by Ravani and Roth [83, 53]. The resulting technique

has been refined and extended by Larochelle and McCarthy [?]. The algorithm

proceeds as follows:

1. Consider P as a test displacement and locate it relative to the convex hull by

solving for coefficients given by Eq. (4.3).

2. If all the coefficients are positive, P is inside the convex hull. Set shortest

distance to zero and the nearest point to P itself. If any of the coefficients are

non-positive, use the shortest distance method to find the nearest boundary of
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the tetrahedron. It can be one of the four faces or six edges or four vertices.

Record the distance and the nearest location.

3. Subdivide the motion recursively, form their convex hull, and repeat from

step (1) for each subdivided convex hull unless the stopping condition has

been reached, which can be either a preset number of subdivisions or a user-

defined bound on the relative reduction of distance in successive iterations.

In Fig. 4.4, we show a degree six planar Bézier motion M(t) of a gripper and

an obstacle P . We implement our subdivision based algorithm for determining the

most likely place of collision on the trajectory of the moving object. The results

are shown in Fig. 4.5. It can be seen that only after four levels of subdivision, the

convex hull approximates the swept volume very closely and the nearest possible

colliding location is indistinguishable from the moving object occupying that posi-

tion at that instant. Once the potential colliding location is found, it is possible to

apply geometry-based algorithms to exactly determine the interference points for

the given geometric models of moving and stationary object.

4.5 Conclusions

In this chapter, we presented the concept of kinematic convexity for a set of planar

displacements. We have shown that planar quaternions for planar displacements

can be handled in much the same way as quaternions for spherical displacements.

As an application, we presented a novel, simple, and efficient subdivision based

algorithm for kinematic separation problem.
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Figure 4.5: Convex hull of the motion M(t)(Fig. 4.4) and the nearest colliding
location G (a) in the beginning (b) after one subdivision (c) after two subdivisions
(d) after three subdivisions
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Chapter 5

Interactive Dimensional Synthesis
and Motion Design of Planar 6R
Single-Loop Closed Chains via
Constraint Manifold Modification
Typical task-driven problems, also known as motion synthesis problems, seek to

synthesize the mechanisms that guide a rigid body to navigate through, or as close

as possible to a prescribed motion, which is usually specified as either a set of

finite or a continuous time variant sequence of displacements. The problem that

we solve here is as follows: given a prescribed planar rational motion, what are

the dimensions of the links of a planar 6R closed chain that accomplishes the given

task?

Theory of mechanisms synthesis is well-developed (see Sandor and Erdman [7],

Suh and Radcliffe [45], and McCarthy [9]), and there have been a lot of academic

research efforts in the development of software systems for the synthesis of planar,

spherical, and spatial mechanisms (see KINSYN III from Rubel and Kaufamn [22],

LINCAGES from Erdman and colleagues [23, 24], Kihonge et al. [25], Spades

from Larochelle [26], Sphinx from Larochelle et al. [27], Sphinxpc from Ruth and
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McCarthy [28], Osiris from Tse and Larochelle [29], Perez and McCarthy [30],

Su and McCarthy [31], Synthetica from Su et al. [32]). In the commercial do-

main, SyMech [33] and WATT [34] are two well-known software systems for planar

mechanisms design. Despite the availability of design packages, their implementa-

tion and interface for design of rigid body linkages mostly utilize a black-box like

approach, which involves inputting the desired motion, hiding the design theories

and algorithms, and outputting a mechanism, which makes the design procedures

less intuitive. In this work, we have attempted to give rise to an intuitive design

environment wherein the designer is not only able to synthesize a mechanism in-

teractively by simple geometric manipulations in a higher dimensional space, but

also learns to understand the relationship between the modifiable geometry and its

apparent effect on the dimensions of the links.

In this chapter, we use planar quaternions to represent displacements; see Bot-

tema and Roth [46] and McCarthy [8] for details on quaternion representation. Us-

ing the well-known kinematic mapping approach (Ravani and Roth [83, 53]), the

given rational motion is transformed into a rational curve in the space of quaternions

(also known as the image space of displacements). For details on rational motions,

see Ge and Ravani [69, 70], Jüttler and Wagner [74], Wagner [84], Röschel [85],

Purwar et.al. [86], and Purwar and Ge [71].

The general approach of the work presented in this paper is closely related to

the kinematic mapping approach for dimensional synthesis of planar and spherical

mechanisms pioneered by Ravani and Roth [83, 53]. Their work was followed by

Bodduluri and McCarthy [87], Bodduluri [88], and Larochelle [89]. Burmester [90]
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showed that a four-bar linkage can interpolate at most five given displacements ex-

actly. For more than five displacements, usually approximation is required. Ravani

and Roth’s approach involved minimizing the distance error between the given dis-

placements and the image curve of the chain. This resulted in approximate motion

synthesis. Brunnthaler et.al. [91] used kinematic mapping to solve the problem of

designing a spherical four-bar mechanism that interpolates a coupler through five

given orientations. Venkataramanujam and Larochelle [92] used a parameterized

constraint manifold and employed nonlinear optimization to give numerical meth-

ods for approximate motion synthesis of spherical open and closed chains. Here,

we are employing the kinematic mapping for designing planar 6R closed chains

that do not have a restriction on the number of interpolating displacements. This is

feasible since the planar 6R closed chains have three degrees of freedom, and thus

admit an infinite number of solutions.

This chapter seeks to study the dimensional synthesis problem from the per-

spective of constrained motion interpolation. Jin and Ge [47, 48] and Purwar et

al. [49, 50, 51] have studied the problem of motion interpolation under kinematic

constraints for planar and spherical 2R, 3R open, and 6R closed chains as well

as spatial SS chains. By using quaternions and kinematic mapping approach they

transformed the problem of constrained motion interpolation into designing a ra-

tional curve constrained to fit the constraint manifold of the chain. Starting with

an initial unconstrained curve, they modify the curve using an iterative numerical

method until it fits inside the constraint manifold. The current paper investigates

the inverse problem, that is, to change the constraint manifold while keeping the
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given rational curve fixed for the dimensional synthesis of planar 6R closed chains.

Our design method treats the 6R closed chains as mechanisms assembled using

two open chains connected together at the ends. Each open chain imposes kine-

matic constraints that limit the positions and orientations of the object connected

to the end link. In this paper, we use the algebraic form of the constraint manifold

(McCarthy [8] and Ge [93]) for the planar 6R closed chains. Thus, the kinematic

constraints are transformed into geometric constraints, and the given rational mo-

tion is transformed into a rational curve in the image space. This way, our problem

reduces to finding the constraint manifold that accommodates the given rational

curve. Algebraically, the kinematic constraints are derived in the inequality form,

where the limits of the inequalities are functions of link lengths, while the constraint

functions themselves incorporate parameters that describe the location of fixed and

moving pivots and the location and orientation of the moving frame. However,

instead of dealing with the mechanism parameters directly, we formulate our ap-

proach in terms of the geometric parameters of the constraint manifold. This, and

the decoupled nature of the relationship between various geometric parameters and

the mechanism parameters lends intuitiveness to our approach. We provide a design

tool with a user-friendly interface (see Figs. 5.3, 5.4), using which the designer can

interactively change parameters that govern the size, orientation, and the position

of the constraint manifold in the 4D image space (we visualize the 4D space by

projecting on a hyperplane) such that the manifold contains the input image curve.

This tool also provides a way to change the image curve in case the design require-

ments can be relaxed. In the end, we design two open chains that simultaneously
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satisfy the kinematic constraints and the motion requirements. A visual interpre-

tation of this approach is that we try to find a close fit constraint manifold that

will contain the given image curve entirely. The process of designing is fast, intu-

itive, and especially useful when a numerical optimization based approach would be

computationally demanding, and mathematically difficult to formulate. We do not

attempt to find an optimal solution, but a good solution that satisfies the input mo-

tion requirements. Our simple approach also provides a basis for students and early

designers to learn and understand designing of mechanisms by simple geometric

manipulations.

The organization of the chapter is as follows. Section 5.1 reviews the kinematic

constraints of planar 6R closed chains using quaternions. Section 5.2 presents a

method for the interactive dimensional synthesis of planar 6R closed chains, and

establishes relationships between mechanism parameters and the manifold size,

orientation, and position. Finally, we present an example and visualizations that

demonstrate the method before giving concluding remarks.

5.1 Constraint Manifold for Planar Chains

In this section, we review the constraint manifold associated with the kinematic

constraints of planar 6R closed chains (see (McCarthy [8] and Ge [93] for details).

The kinematic constraints specify the positions and orientations obtainable by a

certain link of the chain. Consider a planar 6R closed chain as shown in Fig. 5.1.

In the figure, F and M mark the fixed and the moving frames, respectively. The

fixed pivots A1 and A2 are located at (x1, y1) and (x2, y2), respectively, while the
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Figure 5.1: A planar 6R closed chain

moving frame is located at a distance of h1 and h2 from the two end pivots C1 and C2

respectively. The moving frame is assumed to be tilted by angles of α1 from the line

joining the end pivot C1 and the origin of the moving frame, and α2 from the line

joining the end pivot C2 and the origin of the moving frame. The length of the links

is given by a1, b1, a2, and b2. A planar 6R closed chain can be seen as two 3R open

chains (henceforth called left and right open chains) joined together at the ends.

Then, the constraint manifold for the planar 6R closed chain is the intersection of

constraint manifold of the two 3R open chains. If the displacement of the moving

object attached to the moving frame is represented by a planar quaternion Z =

(Z1, Z2, Z3, Z4), then after eliminating the joint angles from the forward kinematics

of each open chain, the algebraic equations for the two manifolds are given by:

Left 3R open chain:

(a1 − b1)
2

4
≤ F1(Z1, Z2, Z3, Z4) ≤ (a1 + b1)

2

4
, (5.1)
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where

F1(Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, (5.2)

and
σ1 = (y1 + h1 sin α1)/2, τ1 = (x1 + h1 cos α1)/2,
σ2 = (−x1 + h1 cos α1)/2, τ2 = (y1 − h1 sin α1)/2.

(5.3)

Right 3R open chain:

(a2 − b2)
2

4
≤ F2(Z1, Z2, Z3, Z4) ≤ (a2 + b2)

2

4
, (5.4)

where

F2(Z1, Z2, Z3, Z4) =
(Z1 − ζ1Z3 − η1Z4)

2 + (Z2 − ζ2Z3 − η2Z4)
2

Z2
3 + Z2

4

, (5.5)

and
ζ1 = (y2 + h2 sin α2)/2, η1 = (x2 + h2 cos α2)/2,
ζ2 = (−x2 + h2 cos α2)/2, η2 = (y2 − h2 sin α2)/2.

(5.6)

Equations (5.1) and (5.4) characterize the kinematic constraints of a planar 6R

closed chain, and define the constraint manifold for the chain.

To visualize the hypergeometric shape described by Eq.(5.1) or (5.4), we project

it on the hyperplane Z4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, F1(Z1, Z2, Z3, Z4) on

Z4 = 1 is given by

F1(z1, z2, z3, 1) =
(z1 − σ1z3 − τ1)

2 + (z2 − σ2z3 − τ2)
2

z2
3 + 1

. (5.7)

The volume described by Eq.(5.7) along with the limits of its inequalities creates

implicit surfaces of (z1, z2, z3). Setting F1(z1, z2, z3, 1) = c, where c is a constant,
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Figure 5.2: Visualization of the constraint manifold of a 3-R open chain as a pair
of concentric, co-oriented, and sheared hyperboloid in the hyperplane Z4 = 1; two
surfaces indicate the limits of the inequality in Eq. (5.1)

and lies in the range [ (a1−b1)2

4
, (a1+b1)2

4
], we reorganize Eq. (5.1) to obtain:

(z1 − σ1z3 − τ1)
2

c
+

(z2 − σ2z3 − τ2)
2

c
− z2

3 = 1 (5.8)

This is a sheared circular hyperboloid in the space parameterized by (z1, z2, z3); see

Fig. 5.2. This hyperboloid has its center at (τ1, τ2, 0), and the central axis is given

by z1−τ1
σ1

= z2−τ2
σ2

= z3

1
. Thus, the hyperboloid orients along the vector (σ1, σ2, 1).

It is evident that the center and the orientation are dependent on the location of the

fixed pivot, the dimensions of the floating link, and the relative orientation of M

from the floating link. The hyperboloid intersects plane z3 = 0 in a circle, which

has a radius, r, equal to
√

c. Thus, c determines the size of the hyperboloid. When

the value of F1(z1, z2, z3, 1) varies from its minimum to maximum, the size of the

manifold increases correspondingly, but the center point and the orientation remain

unchanged. Table 5.1 summarizes the relationship between geometric features of

the hyperboloid and the mechanism parameters. A similar set of relationship exists

for the other 3R open chain.
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Geometric Features Constraint Parameters
Center (τ1, τ2, 0)

Orientation (σ1, σ2, 1)

Size ‖(a1−b1)‖
2

≤ r =
√

c ≤ (a1+b1)
2

Table 5.1: Parameters for the Projective Sheared Hyperboloid

Thus, the constraint manifold of the planar 6R closed chains is given by two

pairs of concentric and co-oriented sheared hyperboloid, and for a mechanism to

pass through a given motion, the image curve would have to be contained within

the constraint manifold.

5.2 Interactive Dimensional Synthesis

Our design method treats a 6R closed chain as a mechanism assembled using two

independent open chains. The constraint manifolds of both the chains are geometric

objects in the image space; the size, shape, and position of which are a function of

mechanism parameters. A given rational motion maps to an image curve that needs

to be contained inside these manifolds. In this section, we describe the procedure

for designing planar mechanisms using our tool. We also describe the user interface

with which the designer needs to be familiar. The basic idea is that the designers are

provided a set of controls via the graphical user interface (GUI) of the tool that will

allow them to interactively manipulate the constraint manifold with the objective to

contain the image curve in the manifold. Upon being satisfied visually, the designer

will be allowed to instruct the program to check if there are any violations of the
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Figure 5.3: A screenshot of the panels and the window space

kinematic constraints. A windows binary of the tool for x86 architecture can be

downloaded at http://cadcam.eng.sunysb.edu/software.html. We

first present the functionalities of the user interface.

User Interface Functionalities

The GUI has four main parts, as shown in Figs. 5.3 and 5.4:

1. The Cartesian Space Window (CSW): This window is used to display the

given positions and the animation of the open chains in the Cartesian space.

2. The Image Space Window (ISW): In this window, the constraint manifold as

well as the image curve projected on the hyperplane Z4 = 1 are shown.
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Figure 5.4: A screenshot of the Mechanism and Motion design panels
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3. Motion Design Panel (MoDP): This panel supports operations like position

insertion, deletion and modification, and comprises functions to animate the

motion and to test for constraint violation. The constraint violation test is

done using the Eqs.(5.1) and (5.4), and the test results are visualized through

the user interface. This operation updates both the Cartesian Space Window

and the Image space Window.

4. Mechanism Design Panel (MeDP): There are two ways to edit the mecha-

nism: 1) directly manipulate mechanism parameters in the Cartesian space,

like the location, the link lengthes and the relative angle, and as a conse-

quence, constraint manifolds change in the image space, or 2) edit the geo-

metric parameters that change the size, position, and the orientation of the

manifolds. Designers may find the latter approach more intuitive. For ei-

ther approach, there are six design variables. Equations (5.1) – (5.6), and

Table 5.1 together describe the relationship between mechanism parameters

and constraint manifold parameters. We summarize the relationships for one

open chain as follows:

x1 = −σ2 + τ1,
y1 = σ1 + τ2,

h1 =
√

σ2
1 + σ2

2 + τ 2
1 + τ 2

2 ,

sin α1 = (σ1 − τ2)/
√

σ2
1 + σ2

2 + τ 2
1 + τ 2

2 ,

cos α1 = (σ2 + τ1)/
√

σ2
1 + σ2

2 + τ 2
1 + τ 2

2 ,
{a1, b1} = {(rmax + rmin), (rmax − rmin)},

(5.9)

where rmax, and rmin describe the outermost and the innermost radius, respectively

of the constraint manifold associated with an open 3R chain. A similar set of rela-

tionships exists for the other open chain.
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Design Procedure

Now, we present the design procedure:

1. Use the Motion Design panel to input given positions, associated time param-

eters, and interpolate them using a NURBS motion.

The given planar positions can be input with the time parameter t, using ei-

ther planar quaternion coordinates (Z1, Z2, Z3, Z4), or Cartesian coordinates

(x, y, θ). Once all the given positions are input, a cubic C2 B-Spline mo-

tion (Eq. (2.14)) that interpolates the given positions is generated. Here, the

time parameters are input to guarantee the smoothness of the motion. Con-

sequently, the ISW shows the image points of the prescribed positions, and

renders a smooth NURBS curve which passes through all the image points;

while the CSW shows the given positions and the rational motion.

2. Switch to the Mechanism Design panel. Dimensional synthesis starts with

two default 3R open chains. We describe the procedure for one open chain:

In the CSW, initially, the fixed pivots are located at (x1, y1) = (0, 0); the

three links have unit length a1 = b1 = h1 = 1, and the relative angle of M

to the floating link is α1 = 0. With these initial choices and according to

Eq. (5.3) and Table 5.1, the default hyperboloid pair is centered at (0.5, 0, 0),

its direction is parallel to vector (0, 0.5, 1), and the inner boundary circle is of

radius rmin = 0, while the outer one has a radius rmax = 1. Thus, in the ISW,

a degenerate inner hyperboloid and a finite sized outer hyperboloid appear.

At this point, the image curve may not be completely contained between the
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two hyperboloids, which means that the constraints are being violated. We

note that in general, initial parameters are difficult to select for body guid-

ance problem solved using optimization approach; however, in our case this

is not an issue because our approach relies on the interactive geometric ma-

nipulation of the constraint manifold. Changing the geometric parameters

appropriately grows the inner hyperboloid, while shrinks the outer one. This

approach provides the designer visual clues for the next step of parametric

changes.

3. Modify the constraint manifold visually using the spinner controls (up and

down arrows next to parameters) provided in the MeDP until the curve seems

completely contained with a close fit between the pair of hyperboloids. Drag-

ging the slider in either ISW or CSW verifies if the constraints are actually

satisfied or not. Using the current value of the mechanism parameters, the

program automatically checks the constraint equations as given by (5.1) and

(5.4) to see if they are satisfied. When they are satisfied, the program out-

puts links’ length, fixed and moving pivot locations, and the orientation of

the moving frame.

4. Repeat steps 2, 3 and 4, and synthesize the other open chain.

5.3 Example

In this section, we present an example that demonstrates how our method inter-

actively completes dimensional synthesis of a planar 6R closed chain using the

53



constraint manifold modification for a given degree 6 rational motion.

i x y θ(◦) ui

1 2.0448 -0.1940 0 0.0
2 1.9067 1.5029 30 0.2
3 -0.8894 3.4852 -15 0.5
4 -0.7851 3.2652 15 0.5
5 -2.3005 3.1448 31 1.0

Table 5.2: Cartesian Coordinates of Five Prescribed Positions along with Time Pa-
rameter Values

In this example, we use five positions as given in Table 5.2 and shown in the

Cartesian Space Window in Fig. 5.3. The positions are given in Cartesian coordi-

nates (x, y, θ), which specify the location and the orientation of the moving frame

M relative to the fixed frame. Also given are the time parameter values (ui) asso-

ciated with each position. We note that time parameters are not required for rigid

body guidance problem; we specify them here merely to construct an input B-spline

motion. Our method of designing linkage is independent of time parameter values

associated with the given positions.

First, the given positions are converted to planar quaternion representation (Z1, Z2, Z3, Z4)

using Eq. (2.1), and then they are interpolated using a cubic B-spline formulation

(Eq.(2.14)). This gives a degree 6 B-spline rational motion in the Cartesian space.

The corresponding image curve is shown in the image space window of Fig 5.3. The

image curve is visualized using Rodrigues parameters (see Bottema and Roth [46])

given by (Z1/Z4, Z2/Z4, Z3/Z4). Hereafter, left and right 3R open chains, and their

constraint manifolds are initialized, one at a time. However, navigating through the

motion, it is found that the constraints are violated – this shows up as the image
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Figure 5.5: Constraint manifold of the left 3R Open Chain and the image curve;
in this figure, the image curve is not completely contained inside the manifold. A
point of violation is shown.

curve being outside the manifold; see Figs. 5.5 and 5.6. The designer next modifies

the constraint manifolds interactively by varying its various geometric parameters,

such as the size, position, and orientation with the objective to contain the image

curve inside the manifolds. The process is intuitive and fast. Once the synthesis of

two individual open chains is completed (see Figs. 5.7, 5.8), the assembly of them

yields a 6R closed chain that interpolates the given five positions with a smooth

motion. Table 5.3 and 5.4 list the design results, and the final mechanism is shown

in Fig. 5.9.

5.4 Conclusions

In this chapter, we presented a simple and intuitive approach to dimensional synthe-

sis of planar 6R closed chains. The approach is based on interactive manipulation
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Figure 5.6: Constraint manifold of the right 3R Open Chain and the image curve;
in this figure, the image curve is not completely contained inside the manifold. A
point of violation is shown.

x1 y1 a1 b1 h1 α1(
◦)

Left Chain -1.6 1.7 5.5 0.3 2.9682 122.6
x2 y2 a2 b2 h2 α2(

◦)
Right Chain -0.8 -0.22 3.7 0.7 0.8297 164.6

Table 5.3: Synthesis Parameters of the 6R Planar Closed Chain

of constraint manifold associated with the mechanisms in a 3D environment. The

approach is general, and can be extended to other spherical and spatial mechanisms

for which constraint manifold are characterized by algebraic equations.
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σ1 σ2 τ1 τ2 (a1 − b1) (a1 + b1)
Left Chain 1.6 0 -1.6 -0.9 2.6 2.9

ζ1 ζ2 η1 η2 (a2 − b2) (a2 + b2)
Right Chain 0 0 -0.8 -0.22 1.5 2.2

Table 5.4: Synthesis Parameters of the Constraint Manifolds

Figure 5.7: Constraint manifold of the left 3R Open Chain and the image curve;
in this figure, the image curve is completely contained inside the manifold, thus
implying that the constraints are not violated.
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Figure 5.8: Constraint manifold of the right 3R Open Chain and the image curve;
in this figure, the image curve is completely contained inside the manifold, thus
implying that the constraints are not violated.

Figure 5.9: The final assembled mechanism
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Chapter 6

A Fourier Descriptor Based Method
for Four-Bar Linkage Synthesis for
Generation of Open and Closed
Paths
This chapter studies the problem of dimensional synthesis of planar four-bar link-

ages for path generation using Fourier series. Central to this problem is the formu-

lation of an error function that captures the deviation of the generated path from the

desired path in terms of nine independent variables associated with the design of a

four-bar linkage. When an error function attempts to use all nine variables simulta-

neously and to compare the shape, size, location, and orientation of the two curves

all at once, as is the case for the so-called Structural Error Function, it makes the

resulting optimization routine far less efficient and sometimes even intractable [94].

In the field of Computational Shape Analysis [52], it is routine to process and

simplify shapes before comparisons are made. The simplified representation of

shapes is called shape descriptor or shape signature. The use of shape descriptors

often simplifies the process of not only shape comparison but also shape storage

and classification. There are many shape descriptors proposed for various appli-
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cation domains. They include boundary scalar transform such as the centroid-to-

boundary distance function, global scalar transform such as moment-based meth-

ods, and global space domain methods such as the media axis transform. Hoeltzel

and Chieng [95] was one of the early adopters of computational shape analysis tech-

niques for comparing the coupler curves for the dimensional synthesis of four-bar

linkages. They used moment invariants to represent and compare coupler curves.

Of our interest is a Fourier transform based method for characterizing the shape

function. Freudenstein [96] was the first to explore the use of Fourier transform for

four-bar linkage analysis and synthesis. This work was followed by Funabashi [97],

Farhang et al. [98, 99], Chu and Cao [100, 101, 102, 103], McGarva [104, 105], and

Nie and Krovi [106]. As shown by Ullah and Kota [94], when reformulated using

the Fourier descriptors, the error function that captures the deviation between the

synthesized and desired path, leads naturally to a reduced search space that decou-

ples the comparison of shapes from their size, location, and orientation. In addition,

they observed that, for the case of four-bar coupler curves, the use of a small set of

Fourier coefficients associated with the low-harmonic components is sufficient for

shape comparison. This has been independently observed by cognitive scientists

for human judgement of perceptual shape similarity[107]. The combined effect of

decoupled search space with small set of Fourier coefficients leads to drastic im-

provement in optimization routine for four-bar linkage synthesis.

Recently, we found that when the path can be approximated by the first and

second harmonics of Fourier series, the search space can be reduced even further

and thus leads to an even more efficient method for four-bar linkage synthesis [108].
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The Fourier descriptor based approach in its current form, however, is not without

limitations. The representation is global in nature and requires a period function,

which means a closed curve. In many applications for the path synthesis problem,

however, only a segment of the specified path needs to be followed either by a

non-Grashof or Grashof linkage. The purpose of the current paper is to extend the

Fourier descriptor based method for four-bar linkage synthesis from closed curve

to open curves and from Grashof linkage to non-Grashof four-bar linkages.

This work is motivated not only by the desire to extend and refine the Fourier

based method for synthesizing four-bar linkages but also, more importantly, by

the need to provide efficient tools for generating mechanically realizable geomet-

ric constraints. These tools will play an important role in a new constraint based

paradigm for task centered design of mechanisms that bridges the gap between type

synthesis and dimensional synthesis [109].

The organization of this chapter is as follows.Section 10.1 converts the loop clo-

sure equations of a four-bar linkage into a periodic function in complex form and

then study the Fourier series approximation of the loop-closure equation in a form

that is readily applicable to Fourier series based dimensional synthesis. Section 6.2

presents a general method for kinematic approximation of a curve segment using

the coupler curve of a four-bar linkage. Both the curve segment and the loop closure

equations are approximated using finite Fourier series. Section 6.3 presents numer-

ical examples to demonstrate the validity of the proposed method and the developed

algorithm.
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Figure 6.1: A crank-rocker mechanism

6.1 Fourier Approximation of Loop Closure Equa-
tion

Consider a planar four-bar mechanism shown in Figure 8.1 with XOY being the

fixed coordinate frame. The fixed pivot A0 is located at point (x0, y0). A0B0 is the

ground link, and A0A is the input link. The ith link has a length li and a position

angle θi measured from the X axis of the fixed frame. Let φ, λ and ψ be the angles

of link A0A, AB, B0B as measured from the ground link A0B0, respectively. In

particular, let φ0 denote the initial value of φ, which is the initial input angle. A

point P on the coupler link AB is defined by the distance r and the angle α. Let

the angular velocity of the input link be ω, then we have

φ = ωt + φ0. (6.1)

The loop closure equation for the linkage in complex number form is given by

l2e
jφ + l3e

jλ − l1 = l4e
jψ, (6.2)
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where φ, λ, and ψ are the input angle, coupler angle, and output angle relative to

the fixed link A0B0. Here we seek to eliminate ψ and solve for ejλ as a function

of the input angle φ. It is clear from (6.2) that its solution depends on link ratios

l2/l1, l3/l1, l4/l1. The conjugate of (6.2) is given by

l2e
−jφ + l3e

−jλ − l1 = l4e
−jψ. (6.3)

Multiplying both sides of Eqs. (6.2) and (6.3) to eliminate ψ and then multiplying

both sides of the resulting equation with ejλ, we obtain, after some algebra:

A(φ)e2jλ + B(φ)ejλ + C(φ) = 0 (6.4)

where

A(φ) = l3(l2e
−jφ − l1), (6.5)

B(φ) = l21 + l22 + l23 − l24 − 2l1l2 cos φ, (6.6)

C(φ) = l3(l2e
jφ − l1). (6.7)

The solution to the quadric equation (6.4) can be obtained as

ejλ =
−B(φ)±

√
∆1(φ)∆2(φ)

2A(φ)
, (6.8)

where

∆1(φ) = l21 + l22 + (l3 + l4)
2 − 2l1l2 cos φ, (6.9)

∆2(φ) = l21 + l22 + (l3 − l4)
2 − 2l1l2 cos φ. (6.10)

and the sign ± correspond to the two configurations of the four-bar linkage.
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Eq.(6.8) yields a meaningful solution for λ when the input angle φ satisfies the

following well-known feasibility condition:

∆1(φ)∆2(φ) ≤ 0 (6.11)

If the above inequality is true for all φ in the range [0, 2π], then the input link is a

crank; otherwise, it is a rocker.

From a purely mathematical point of view, ejλ as defined by (6.8) is always a

periodic function if we disregard the constraint (6.11) so that φ can take the full

range of [0, 2π]. This allows us to obtain the Fourier series representation of ejλ as

ejλ =
∞∑

k=−∞
Cke

jkφ (6.12)

where Ck are the proper Fourier coefficients and they depend not on the absolute

size of the linkage but only on their relative ratios: l2
l1
, l3

l1
, l4

l1
. For the sake of effi-

ciency, only a small group of Ck associated with low harmonics components will

be used for approximating ejλ. When the input link is not a crank, or the path to

be approximated is only a portion of the complete coupler curve, the corresponding

input angle φ rocks in a range that is less than 2π. In this case, better approximation

can be achieved if Ck is obtained from the least squares method for open curves as

discussed in Section 3.3.

Now, we seek to obtain the Fourier representation of the coupler curve of the

four bar mechanism. Let A0 = x0+jy0 be the complex number specifying the fixed

pivot A0 and let z = rejα represent the position of P with respect to the coupler

link AB. The position of the coupler point P can be represented as

P = A0 + l2e
jθ2 + zejθ3 = A0 + l2e

jθ1ejφ + zejθ1ejλ. (6.13)
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Substituting Eq. (6.12) into (6.13) and in view of Eq. (6.1), we obtain

P =
∞∑

k=−∞
Pke

jkωt, (6.14)

where 



P0 = zejθ1C0 + A0

P1 = zejθ1C1e
jφ0 + l2e

j(θ1+φ0)

Pk = zejθ1Cke
jkφ0|k 6=0,1

(6.15)

By inspecting Eq.(6.15), it can be concluded that A0, l2 and zeiθ1 contribute to

the harmonic components of the coupler curve P in different ways. First, A0 defines

the position of the coupler curve. The variation of the position of A0 = x0 + jy0

results in a translation of the entire coupler curve. Secondly, l2 is associated with the

first harmonic term. The complex number term zejθ1 = rej(α+θ) acts as a constant

multiple of the coefficients, Ck, associated with the loop closure equation as given

by (6.12).

6.2 Fourier Based Synthesis Method

The interest of synthesize a crank-rocker linkage remains in finding the ten vari-

ables {l1, l2, l3, l4, x0, y0, θ1, r, α, φ0} to satisfy Eq (6.15). In this section, we seek

to match or approximate as closely as possible a task trajectory with the coupler

curve of a four-bar linkage. The task curve is time-prescribed, i.e., it is defined as

a function of the input angle, φ − φ0 = ωt, with φ0 as its initial angle. The task

curves can be either closed or open. We approximate both the given task curve and

the coupler curve using truncated Fourier series in a least squares formulation. The

objective is to find the optimal values of the relevant parameters such that the curve
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and the path match closely in the spectrum domain and at the same time consider

the loop closure constraint. This Fourier representation allows the decoupling of

the design variables and thus greatly reduces the dimensions of the search space.

6.2.1 Decoupling of Design Variables

Because both the task curve and the coupler curve are parameterized in term of the

input angle, they share the same fundamental frequency and can be approximated

with the same group of basis functions {e−jpωt, · · · , ejpωt}. The finite Fourier series

that approximates the task curve T is given by

T ≈
+p∑

k=−p

Tke
jkωt (6.16)

For either the closed or the open task curve, Tk can be computed by the least squares

curve fitting procedure as outlined from Eq.(3.10) to (3.20). In addition, the coupler

path P is also approximated by a finite Fourier series:

P ≈
+p∑

k=−p

Pke
jkωt, (6.17)

where Pk are given by Eq. (6.15).

The task curve T and the coupler curve P matches perfectly if

Tk = Pk (6.18)

for all k ∈ [−p, p]. In view of Eq. (6.15), this leads to

for k = 0, T0 = C0re
j(α+θ1) + x0 + jy0, (6.19)

for k = 1, T1 = C1re
j(α+θ1)ejφ0 + l2e

jθ1ejφ0 , (6.20)

for k 6= 0, 1, Tk = Ckre
j(α+θ1)ejkφ0 . (6.21)
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In general, the problem of path synthesis for a four-bar mechanism involves

nine design variables {l1, l2, l3, l4, x0, y0, θ1, r, α} as well as the initial angle φ0 of

the input link. In this paper, we use the following set of ten parameters

S = {l2, l2
l1

,
l3
l1

,
l4
l1

, x0, y0, θ1,C, S, φ0} (6.22)

where

C = r cos(α + θ1), S = r sin(α + θ1), (6.23)

for developing the synthesis procedure. Furthermore, we can separate the set S into

two subsets of design variables:

S1 = { l2
l1

,
l3
l1

,
l4
l1

, φ0,C, S}, S2 = {l2, x0, y0, θ1}. (6.24)

This is because Eq. (6.21) includes exclusively the design variables contained in

S1. In addition, it is straightforward to express the four design variables in S2 in

terms of the six design variables in S1 by solving Eq. (6.19) and (6.20), i.e.,

x0 + iy0 = T0 − C0(C+ iS), (6.25)

l2e
iθ1 = T1e

−iφ0 − C1(C+ iS). (6.26)

Note that C0, C1 depend only on link ratios and the initial angle φ0. Thus, the

problem of path synthesis is simplified to that of seeking the optimal values for S1

such that Eq. (6.21) is satisfied to the extent possible for all k ∈ [−p,−1]
⋃

[2, p].

To find a least squares solution to Eq. (6.21), we define the following error
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function:

I =
∑

k 6=0,1

|Ckre
i(α+θ1+kφ0) − Tk|2

=
∑

k 6=0,1

[(Ak · C−Bk · S− T x
k )2!‘!‘ + (Ak · S+ Bk · C− T y

k )2] (6.27)

where Tk = T x
k + iT y

k and Cke
ikφ0 = Ak + iBk.

The variables, C and S, can be used in replacement of α + θ1 and r and they

appear explicitly in Eq.(6.27). To minimize the error function I , they must satisfy

∂I

∂C
= 0,

∂I

∂S
= 0, (6.28)

which leads to

C+ jS =

∑
k 6=0,1 TkC

∗
ke
−jkφ0

∑
k 6=0,1 |Ck|2 (6.29)

where C∗
k is the conjugate of Ck and depends only on the ratios l2/l1, l3/l1, l4/l1 and

the initial angle φ0. Thus the least squares solution to Eq. (6.21) may be obtained

by minimizing the error function I involving the following four design variables:

S1 = { l2
l1

,
l3
l1

,
l4
l1

, φ0}. (6.30)

In summary, the use of Fourier representation enables the decoupling of design

variables for the problem of path synthesis and this leads the reduction of search

space from ten design variables to four design variables.

6.2.2 Feasibility Test

In section 10.1, the loop closure equation (6.2) has been reduced to (6.8), which

yields eiλ, as well as the feasibility condition (6.11), which indicates whether a
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four-bar linkage can be assembled for a given input angle φ. Thus, in addition to

(6.8), it is required that the feasibility condition (6.11) be satisfied during the path

synthesis process. Let the given range of ωt of the target path be ∆φ and φ0 be

the initial angle. It follows from (6.9), (6.10), and (6.11) that the set of four design

parameters S1 must satisfy

[1 +
l22
l21

+
(l3 + l4)

2

l21
− 2l2

l1
cos φ][1 +

l22
l21

+
(l3 + l4)

2

l21
− 2l2

l1
cos φ] ≤ 0 (6.31)

for all φ = [φ0, φ0 + ∆φ].

6.2.3 Numerical Algorithm

Now we present a numerical algorithm for path synthesis based on the aforemen-

tioned formulation using finite Fourier series. The task curve is specified as a func-

tion of the input angle φ−φ0. As alluded to earlier, the goal is to find a set of design

variables ( l2
l1
, l3

l1
, l4

l1
, φ0,C, S, l2, x0, y0, θ1) such that the error between the task curve

and the coupler curve of a four-bar linkage as defined by (6.27) is minimized. The

numerical algorithm outlined below is based on the reduction of the search space

from ten design variables to four design variables, S1 = ( l2
l1
, l3

l1
, l4

l1
, φ0).

a) The task curve T is approximated with a user selected finite Fourier series us-

ing (6.16), which include the basis functions to the pth order. Typically, for

a smooth curve, a low harmonic curve is sufficient to encode its shape infor-

mation, and thus p can be small [67, 68]. After that, the least squares curve

fitting procedure is applied to T to obtain its coefficients.

b) In this paper, we carry out a numerical search for S1 within a reasonable range
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as described below. The range of φ0 is allowed to be [0, 2π]. In practical

design, the ratio between any two links is not expected to be extremely large

or small. So it is reasonable to predefine a max link ratio in the design process,

say Kmax. Correspondingly, the minimum link ratio is 1
Kmax

. Therefore, we

search l2
l1
, l3

l1
, l4

l1
in [ 1

Kmax
, Kmax], and we are only interested in the mechanisms

that satisfy the link conditions for link ratios:

lm
ln
∈ [

1

Kmax

, Kmax], for all m,n ∈ {1, 2, 3, 4}. (6.32)

c) Examine the feasibility constraint for current value of S1 using (6.31). If the

feasibility condition is satisfied, the subsequent steps (d) and (e) will be pro-

cessed; otherwise, they will be skipped.

d) For each set of values for S1, use Eq.(6.8), to obtain ejλ as a function of φ,

and then use the least squares procedure outlined in Chapter 3 to obtain the

Fourier coefficients, Ck.

e) Compute C + jS using Eq. (6.29) and S2 using (6.25) and (6.26). Evaluate the

error function I using (6.27) and store the value of I .

f) Search for the minimum value of the error function I . The corresponding values

of the design variables S yield the optimal design for a four-bar linkage such

that its coupler curve best approximates a given task curve T.

The Pseudo Code
• Specify the basis functions {e−jpωt, · · · , ejpωt};
• Fit the task path T with a finite Fourier series;
• Specify the maximum link ratio Kmax;
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For each φ0 ∈ [0, 2π], and each l2
l1

, l3
l1

, l4
l1
∈ [ 1

Kmax
,Kmax] do

If the link ratio condition is satisfied do
If feasibility constraint is satisfied do

For each + or − configuration do
• Reconstruct ejλ;
• Compute the Fourier coefficients , Ck’s, of ejλ;
• Compute C+ jS and S2;
• Evaluate the error function I

If the value of I is the minimum, do
• Update S with current values;

End if
End for

End if
End if

End for
• Recover {l1, l2, l3, l4, x0, y0, θ1, r, α, φ0}¡¡from S;

Essential to the algorithm is the search for the optimal value of S1 in a four-

dimensional space. For the sake of simplicity, one may adopt the direct search

method to obtain the best S1. This is of course not efficient but an optimal solution

can always be found. The efficiency of the algorithm will be improved if a more

intelligent search method such as the simulated annealing search [110, 111] is used

in replacement of the direct search method.

6.3 Examples

In this section, we present four examples for four-bar linkage synthesis using the

Fourier descriptor based algorithm. In the first two examples, the given paths are

coupler curves generated from known four-bar linkages. The goal is to verify the

validity of the algorithm presented in this paper. In the last two examples, the

paths are defined using finite Fourier series whose coefficients are selected without
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connection to a four-bar linkage. All length units are in inches. All these examples

are implemented in MATLAB on a Dell laptop running Window XP with Intel Core

Duo CPU T2250 at 1.73GHz and 1 GB of RAM.
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(a) (b)

Figure 6.2: Closed path generation. (a) The small red circles trace the given closed
path and the solid curve in blue is the synthesized one. (b) The synthesized four-bar
linkage.

6.3.1 Generation of a Closed Path

First presented is an example of synthesizing a crank-rocker mechanism for the

generation of a closed path. In order to illustrate the validity of the proposed al-

gorithm, we use the known dimensions of a crank-rocker mechanism to generate a

closed coupler curve as shown in Figure 6.2(a) as a red dotted curve. We then use

the generated closed curve as the input to our algorithm to see if we can recover

the original link dimensions. To find a global optimum for all choices of the initial

angle φ0, we evenly sample φ0 over [0, 2π], apply the direct search method to ob-

tain the best choice for { l2
l1
, l3

l1
, l4

l1
}, and store the resulting minimum structural error.

The results show excellent match as indicated in Table 6.1-6.2 and Figure 6.2. The
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error I vs initial angle φ0 as shown in Figure 6.3 are obtained using the simulated

annealing algorithm.
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Figure 6.3: The distribution of structural errors I over initial input angle φ0, com-
puted by the simulated annealing method on { l2

l1
, l3

l1
, l4

l1
}.

Task Path δ1 = 0.01 δ2 = 0.02
C−2 −0.7574 + 0.0774i −0.7574 + 0.0770i −0.7762 + 0.0809i
C−1 −2.3581 + 0.9571i −2.3585 + 0.9557i −2.3545 + 0.9514i
C0 8.5305 + 19.6441i 8.5296 + 19.6417i 8.5289 + 19.6412i
C1 4.6530− 1.3332i 4.6516− 1.3359i 4.6507− 1.3361i
C2 0.5513− 0.4648i 0.5516− 0.4645i 0.5470− 0.4667i
I 1.5868× 10−5 4.0411× 10−4

Table 6.1: Fourier Coefficients of the given path and two synthesized coupler curves
with stepsize δ1 = 0.01 and δ2 = 0.02

6.3.2 Generation of an Open Path

Presented next is an example of synthesizing a four-bar mechanism that follows an

open path. In order to demonstrate the validity of our algorithm, the open path, see

Figure 6.4(a), is generated from a known four-bar mechanism; the input angle φ,

evenly sampled for interval 0.01 from its whole range that preserves the loop closure
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Task Path δ1 = 0.01 δ2 = 0.02
x0 10 10.0022 10.0334
y0 14 13.9988 14.0131
θ1 0.1745 0.1743 0.1802
l1 11 10.9943 10.8390
l2 6 5.9969 5.9716
l3 8 7.9958 7.9621
l4 10 9.9996 9.9527
r 7 6.9996 7.0004
α 0.6981 0.6990 0.6867
φ0 0.2991 0.3991

Table 6.2: The design parameters of the given four-bar linkage and those of two
synthesized for two stepsizes. All angles are in rad.

condition and the associated coupler points are used as input to test our algorithm.

Again, the results indicate excellent match between the original mechanism and

those that have been synthesized. Please refer to Table 6.3-6.4 and Figure 6.4(a, b)

for details. Similar to the former example, the structural error I versus the initial

angle φ0 is plotted in Figure 6.5.
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Figure 6.4: Open path generation. (a) The small red circles trace the given open
path and the solid curve in blue is the synthesized one. (b) The synthesized four-bar
linkage.
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Figure 6.5: The distribution of structural errors I over initial input angle φ0, com-
puted using the simulated annealing method on { l2

l1
, l3

l1
, l4

l1
}.

Task Path δ1 = 0.01 δ2 = 0.02
C−2 0.0061 + 0.0137i 0.0178− 0.0118i 0.0211− 0.0134i
C−1 −0.0590 + 0.1365i −0.0762 + 0.1721i −0.0798 + 0.1757i
C0 −1.6911− 2.6475i −1.6716− 2.6864i −1.6676− 2.6910i
C1 0.8290 + 0.2092i 0.8113 + 0.2432i 0.8082 + 0.2476i
C2 0.0202− 0.0364i 0.0326− 0.0600i 0.0350− 0.0631i
I 1.2340× 10−7 9.6908× 10−7

Table 6.3: Fourier Coefficients of the given open path and two synthesized coupler
curves with stepsize δ1 = 0.01 and δ2 = 0.02

6.3.3 Generation of Low Harmonic Curve Segments

Now consider the problem of synthesizing a four-bar linkage for generating an ar-

bitrarily selected open path using the proposed algorithm that includes the use of

the simulated annealing algorithm instead of direct search on { l2
l1
, l3

l1
, l4

l1
}.

Simulated annealing is a probabilistic search algorithm for global optimization.

Instead of the best solution, it seeks an acceptable approximation to the optimal

result with satisfactory efficiency. The results inherit a degree of randomness. This

fact is demonstrated by the following two examples. The first one, as shown in
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Task Path δ1 = 0.01 δ2 = 0.02
x0 −2 −1.9982 −1.9977
y0 −3 −2.9971 −2.9990
θ1 0.2 0.1997 0.2015
l1 3 2.9856 2.9581
l2 1 0.9998 1.0006
l3 2 1.9853 1.9868
l4 1.6 1.6011 1.5705
r 0.5 0.4970 0.4976
α 0.3 0.2963 0.3042
φ0 0 0.0030

Table 6.4: The design parameters of the given four-bar linkage and those of two
synthesized for two stepsizes. All angles are in rad.

Figure 6.6(a), is a 2-harmonic curve segment given by the equation below:

T = (10.0 + 2.0i) + (2.0 + 1.4i)e−iωt + (6.0− 3.0i)eiωt

+(0.2 + 0.4i)e−2iωt + (0.9− 0.5i)e2iωt (6.33)

where ωt varies in the range [−0.5π, 0.5π]. We use the simulated annealing algo-

rithm to search on { l2
l1
, l3

l1
, l4

l1
, φ0} with the maximum link ratio being 5. We obtain

satisfactory results when the simulated annealing algorithm runs up to 20 times,

and the average running time for each search is 24.9375 second. Figure 6.7 shows

several design instances of small structural error based on our search.
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Figure 6.6: (a) A 2-harmonic curve segment. (b) A low-harmonic straight-line path.
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The second one, as shown in Figure 6.6(b), is a straight-line path from (0.5, 0)

to (0.93, 0.25) and the corresponding input angle φ varies from φ0 to φ0 + 0.75π.

Simulated annealing search is also used with the maximum link ratio Kmax = 5.

The straight-line path is approximated by a 3-harmonic curve, a 4-harmonic curve,

and a 5-harmonic curve, respectively, and the resulting three optimal mechanisms

as illustrated in Figure 6.8-(a), (b) and (c), respectively.

6.4 Conclusions

In this chapter, we have extended the Fourier descriptor based method for kine-

matic approximation using a least squares formulation. This leads to a general

method for the dimensional synthesis of four-bar linkage for generating not only de-

sired closed curves but also desired open curve segments. The method applies not

only to Grashof linkages but also non-Grashof linkages. In addition, the method

can be used for approximating a curve segment using only a portion of the cou-

pler curve instead of the complete coupler curve as required in the original Fourier

based method. The proposed algorithm can be used for generating mechanically

realizable constraints in a constraint based paradigm for task centered mechanism

design.
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(b)
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Figure 6.7: The synthesized mechanisms for the generation of the low-harmonic
curve segment: The red bubbles represent the given path, and the solid curves in
blue are the synthesized curves. The highest frequency employed in approximation
is 2ω. The simulated annealing algorithm leads to multiple solutions with various
structural errors.
(a): The structural error I is 0.0677. The running time is 22.0938 sec.
(b): The structural error I is 0.0049. The running time is 21.8281 sec.
(c): The structural error I is 0.0016. The running time is 28.5000 sec.
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Figure 6.8: The synthesized mechanisms for the generation of a low-harmonic
straight-line path. The red bubbles represent the given path, and the solid curves
in blue are the synthesized curves.
(a): The highest frequency used for approximation is 3ω, the structural error I is
0.0017, and the running time is 52.7813 sec.
(b): The highest frequency used for approximation is 4ω, the structural error I is
0.0016, and the running time is 58.2656 sec.
(c): The highest frequency used for approximation is 5ω, the structural error I is
0.0015, and the running time is 178.75 sec.
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Chapter 7

Kinematic Acquisition of Geometric
Constraints for Task Centered
Mechanism Design: Point
Constraints
Since the early days of Industrial Revolution, machine theorists and kinematicians

have sought to develop a theory to analyze and synthesize mechanisms so that en-

gineers could approach the problem of mechanism design in a rational way. Franz

Reuleaux, the author of “ Theoretische Kinematik” [1], laid the foundation for mod-

ern kinematics by determining the basic mechanical building blocks and developing

a system for classifying mechanism types. There is an excellent digital library at

Cornell University that documents the work done by Reuleaux called Kinematic

Models for Design Digital Library. Another giant in mechanism classification is

Ivan Artobolevsky who published in 1975 an encyclopedia of known mechanisms

titled “Mechanisms in Modern Engineering Design” [2]. More recent comprehen-

sive treatment of kinematics in English language include Hunt [112], Phillips [4],

Bottema and Roth [113], Erdman and Sandor [114], McCarthy [8, 9]. Erdman and

Sadler [10] summarizes the development of modern kinematics in the forty years
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preceding 1992.

Much of the existing theories for mechanism design follow the paradigm of

solving the problem in two major steps, type synthesis and dimensional synthesis.

Type synthesis is also known as number synthesis, structural synthesis, systematics,

classification and enumeration, and census of linkages. The goal is to come up with

the most appropriate mechanism type for the specified motion requirement. Once

a mechanism type is determined, the next step is to determine the dimensions of

the mechanism such as the lengths of the links so that the output motion of the

mechanism best matches the specified motion. As type synthesis constitutes the

genesis of innovation and creativity in the design of mechanism-based products

and systems, it is the most critical part of the mechanism design process. A recent

review of the existing methods for type synthesis of can be found in Mruthyunjaya

[21]. Inspite of all the advances in this area, type synthesis remains to be the most

elusive part of the mechanism design process.

The two-step based paradigm for mechanism design, which has been around for

over a century, is derived from the classical viewpoint that a kinematic mechanism

is a collection of kinematic links connected with kinematic pairs (or joints). Links,

joints and the pattern of their interconnections are viewed as a natural descriptor

for the characteristics of a mechanism and provide an effective means for mech-

anism classification and enumeration. However, these basic mechanical elements

are in general not natural descriptor for the characteristics of the output motion of

a mechanism. Detailed kinematic analysis is in general required in order to under-

stand the motion or functional characteristics of a mechanism. Since the important
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work by Freudenstein and Maki [35], there have been numerous attempt to separate

structural and functional (or task) considerations in mechanism design. For exam-

ple, Chiou and Kota [36] identified a finite set of kinematic building blocks that

provide simple kinematic functions and devised a matrix representation scheme for

automatic generation of conceptual designs. Yan [37] presented a comprehensive

approach to creative design of mechanisms. Inspite of all the advances in this area,

including the application of artificial intelligence (Hoeltzel and Chieng [38], Yang

et al. [39]), this “mechanism-centric” approach to mechanism design makes type

synthesis a very challenging task, even for those who have been well trained with

mechanism theory.

This chapter advocates a task-centered approach to mechanism design using a

constraint based paradigm (Figures 7.1). In contrast to the prevailing mechanism-

centric approach, a designer would focus on the analysis of point (or line) trajec-

tories associated with a given motion task. The goal of the trajectory analysis is

obtain a trajectory that can be construed as a geometric condition or constraint that

best constrains the given motion. Typically this is done in a constraint identification

and acquisition process, i.e., by comparing various trajectories of a specified motion

with known constraints from a library of mechanically realizable constraints. The

resulting constraints are feasible constraints that best approximate the given motion

in some measure, say, in a least squares sense.

A motion task can be given in various ways. It can be defined parametrically or

discretely in terms of an ordered sequence of displacements or in geometric means.

The resulting feasible constraints can be used directly for the simultaneous type and
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dimensional synthesis of a physical device such as mechanical linkage that gener-

ates the specified motion task. This effectively reduces the problem of mechanism

synthesis to that of constraint identification and acquisition and thus bridges the gap

between type and dimensional synthesis. Furthermore, as a mechanism is defined

by a combination of geometric constraints, this constraint based approach reduces

the complexity in type synthesis significantly. Only combinations of the feasible

constraints are considered for type synthesis.

The focus of this chapter is on the introducing the framework of this constraint

based approach and proposes one simple solution to the constraint identification and

acquisition problem by directly comparing corresponding points associated with a

point trajectory and a given constraint. More sophisticated and indirect methods

may be developed for the solution to the problem. In the field of Computational

Shape Analysis [52], it is routine to process and simplify shapes before compar-

isons are made. The simplified representation of shapes is called shape descriptor

or shape signature. The use of shape descriptors often simplifies the process of

not only shape comparison but also shape storage and classification. We will ex-

plore these methods in the future for better solutions to the problem of constraint

identification.

The organization of the chapter is as follows. Section 7.1 provides a review of

kinematics of planar motion from the viewpoint of motion task specification and

recast representations of planar motions in explicit and implicit forms. Section 7.2

discusses how effectively a motion task is captured by an explicit or implicit form of

a motion and highlights the need for conversion from one motion form to another.
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(a) Mechanism-centric design process.

(b) Task-centered design process.

Figure 7.1: Mechanism-centric vs. task-centered design.

Section 7.3 deals with how to represent a geometric constraint so that it is invari-

ant with respect to coordinate transformation and scaling. Section 9.5 provides a

list of simple geometric constraints that can be readily realized mechanically and

how they may be used for task-centered mechanism design. Section 7.5 presents a

least-square method for identifying a geometric constraint from an explicitly given

motion. Section 7.6 presents several examples to illustrate the effectiveness of the

advocated approach.
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7.1 Explicit and Implicit Forms of Motion

Consider the planar displacement of a rigid body as shown in Figure 7.2. Attach

a moving frame M to the moving body with d = (dx, dy) being its origin; attach

a fixed frame F to the fixed plane with O being the origin of the fixed frame. Let

α denote the angle of rotation of M relative to F. Instead of Cartesian coordinates

(vx, vy), homogeneous coordinates (v1, v2, v3) are used to represent a moving point

v, where vx = v1/v3 and vy = v2/v3. The homogeneous coordinates for the same

point, when measured with respect to F, are denoted by (V1, V2, V3). The corre-

sponding Cartesian coordinates are (Vx, Vy), where Vx = V1/V3 and Vy = V2/V3.

Note that we use the boldface letter v (or V) to represent a point as well as its vector

representations in terms of Cartesian or homogeneous coordinates. In this way, a

planar displacement can be represented by homogeneous transform:

V = [H(dx, dy, α)]v =




cos α − sin α dx

sin α cos α dy

0 0 1


v (7.1)

where V = (V1, V2, V3) and v = (v1, v2, v3).

A planar displacement as described by three parameters (dx, dy, α) has three de-

grees of freedom. When these parameters are given as explicit functions of a single

parameter t, such as the time, we obtain a continuous set of planar displacements be-

longing to a parametrically defined planar motion of one degree of freedom; when

these parameters are given discretely at a knot sequence t = [t0, t1, . . . , tn−1] (with

ti−1 < ti and i = 1, . . . , n − 1), we obtain a discrete set of planar displacements

that can be used to define a planar motion discretely. In both cases, we consider the

motion is explicitly defined, as one can easily generate discrete displacements from
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a parametric motion or interpolate/approximate a discrete set of displacements to

obtain a parametric motion that best approximates the given set of displacements.

Figure 7.2: A planar displacement.

Alternatively, a planar motion can be defined in geometric means, which re-

sults in a geometrically defined motion. A planar motion is specified if all planar

displacements satisfy two geometric conditions called geometric constraints. As

points and lines are the basic elements of plane geometry [?], one can impose the

geometric constraints on a planar motion in terms of geometric constraints on a pair

of points, or a pair of lines, or a combination of a point and a line. When a specific

point v of the moving plane M is required to stay on a given curve, f(V) = 0, of F,

a point constraint, f([H(dx, dy, α)]v) = 0, is imposed. The imposition of one such

constraint removes one degree of freedom and results in a two-degrees-of-freedom

motion; the imposition of two such constraints removes two degrees of freedom

and results in a one-degree-of-freedom motion. In this paper, we consider such a

geometrically defined motion as the implicit representation of a motion. For exam-
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ple, when f(V) = 0 defines an algebraic curve, the resulting motion is an algebraic

motion, for any of its points traces out an algebraic curve [113]. In the special

case when two of its moving points are required to stay on two separate circles, the

moving plane M follows the motion of the coupler link of a four-bar linkage.

7.2 What Captures a Motion Task?

In specifying a motion task, it is common to use either a discretely specified motion

such as finite displacements or a continuous motion in parametric form such as

a rational motion in Bézier or B-spline form [69, 115, 71]. Figure 7.3 shows an

example of a discrete set of planar displacements that are given explicitly. Thus

from the perspective of the end users, the explicit form of a motion captures the

task requirements.

Figure 7.3: A discrete set of planar displacements.

The goal of mechanism synthesis is to come up with a mechanism type as well

as the associated dimensions so that the output motion of the end-effector of the
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mechanism best approximates the given set of displacements. The main function of

the mechanism is to impose appropriate geometric constraints to the end-effector

so that it will follow the explicitly given motion path. Thus, from the perspective

of the mechanism designer, it is the constraints associated with the motion that is

supposed to capture a specific motion task. Existing works on mechanism synthesis,

however, focus mostly on the mechanisms themselves, either on the classification

and enumeration of various types of mechanisms or on the kinematic geometry of

known types of mechanisms. It is this mechanism-centric approach that makes the

process of type synthesis very challenging and often elusive, even for those who are

well trained in mechanism theory.

In this chapter we propose a new paradigm for mechanism synthesis that is cen-

tered on the motion task itself. Instead of trying to search and match directly a

mechanism to a given motion task, we seek to uncover the hidden geometric con-

straints associated with a specified motion task and then use the resulting geometric

constraints as a basis for mechanism synthesis. Central to this paper is the devel-

opment of a general method for converting motions from their explicit form to the

implicit form by recognizing and identifying the underlying geometric constraints.

This problem is here referred to as kinematic acquisition of geometric constraints:

Given: a motion in explicit form

Find: a set of “simple geometric constraints” that best fit the given motion.

Here in this paper, “simple geometric constraints” are defined as those that can

be readily generated by simple kinematic chains. In general, the notion of “simple
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constraints” can be defined in the context of specific applications to be considered,

with or without regard to those that can be mechanically realized.

The inverse to the constraint acquisition problem is to find an explicit repre-

sentation of a motion from a set of constraints that a motion has to satisfy. When

the constraints are directly generated by a mechanism, this reduces to the classical

problem of mechanism analysis.

Figure 7.4: The solid curve in blue is the standard geometric constraint g, the solid
curve in blue G is transformed from g, and the dash curve in black V is the trajec-
tory of moving point v.

7.3 Description of Geometric Constraints

In this paper, we restrict ourselves to point-geometric constraints, i.e., a specific

point on the moving body is required to stay on a given curve. In order to focus

on the shape of the curve, we seek to develop a representation of a curve that is

invariant with respect to rigid-body transformation in the plane as well as scaling.

A linear transformation in the plane that preserves the shape but not the scale
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of a curve is called an equiform displacement [113]. Let g = (gx, gy, 1) and G =

(Gx, Gy, 1) denote a specified curve and its new configuration after an equiform

displacement (in Figure 7.2):

G = [E]g =




a −b cx

b a cy

0 0 1


g (7.2)

where a = λ cos ξ and b = λ sin ξ with ξ being the angle of rotation and λ being

the scaling factor. Thus, an equiform displacement has four degrees of freedom and

are defined by the parameters (a, b, cx, cy).

The main task in kinematic acquisition is to identify a point v in the moving

body such that its trajectory V best approximates one of the constraint curves in a

library of “standard constraint curves”. Another factor that affects this constraint

matching process is the parameterizations of the constraint curve and the trajectory

V. Ideally, an arc-length parametrization for each of the curve can be carried out

to remove the influence of parametrization in the shape matching process. In this

paper, we take a computationally less expensive approach of normalizing the pa-

rameterizations of these closed curves so that they are in the range of [0, 1]. Since

the periods of these curves are made equal to one, we have

g(t) = g(t− 1), G(t) = G(t− 1), V(t) = V(t− 1) (7.3)

where t ∈ [0, 1]. Another factor that affects the constraint matching process is the

choice of initial point on each of these curves. To address this issue, we provide

a shift factor t∆ so that the initial point on the constraint curve can vary in order

to find a better match. Incorporating the shift factor, we can define the normalized
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parameters, tG and tV , for the constraint curve G(tG) and a point trajectory of the

given motion, V(tV ) as

tV = t, tG = t + t∆ (7.4)

wherein t ∈ [0, 1] and the shift parameter t∆ indicates how much the motion-shape

correspondence has to be shifted. V(tV ) on [0, 1] match G(tG) on [t∆, 1 + t∆].

7.4 Simple Geometric Constraints

This section presents a set of simple geometric constraints that can be readily pro-

vided using simple mechanisms. As mentioned in the proceeding section, all pa-

rameters are normalized to the range [0, 1]. All constraints are represented by closed

curves and special attention has been paid to their orientations as they play a signif-

icant role in shape matching process. Specifically, the same set of points are viewed

as two distinct constraints if they are traced in two opposite orientations, clockwise

and counterclockwise.

A circular constraint is represented by a unit circle centered at the origin of the

coordinate system and with the initial point locating at (1, 0), Figure 7.5.

Figure 7.5: The circular constraint traced in counterclockwise direction.
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A circular-arc constraint is a segment of the circumference of a unit circle. It

starts from point (1, 0) and extends counterclockwise, so that the central angle is

always positive. The central angle remains a variable in the process of constraint

identification. To make the circular arc closed, we represent it as a forward-and-

backward plotted curve as shown in Figure 7.6.

Figure 7.6: The counterclockwise traced circular arc with center angle θ.

A line segment along the x-axis starts at (1, 0) and ends at (−1, 0). It is also

represented as double-traced closed curve, Figure 7.7.

Figure 7.7: A line-segment is represented as a closed curve traced in counterclock-
wise direction.

An ellipse is located at (0, 0). Its major axis lies on x-axis, and minor axis on
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y-axis. The length of semi-major axis is 1. The length of semi-minor axis is freely

adjustable and ranges from 0 to 1, Figure 9.6.

Figure 7.8: An counterclockwise traced ellipse with semi-minor axis of ρ.

In addition to the aforementioned simple curves, the coupler curve of a four-bar

linkage can also be considered as defining a geometric constraint.

7.5 Least-Square Approximation for Constraint Iden-
tification

This section presents an algorithm for identifying a given constraint from point

trajectories of a specified motion task. This work may be considered as an extension

of an earlier work on kinematic approximation of circles and lines [116].

We assume that the motion task has been given explicitly as an ordered sequence

of N discrete positions and a set of N ordered points belong to a given constraint

curve has also been given. Consequently, instead of using continuous parameter tV

and tG as given by Eq. (10.14), we use indexes i (i = 1, · · · , N ) to represent the

sequence of points and positions, where the shift parameter t∆ becomes an integer

n, which means that the starting point on the geometric constraint point set is shifted
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by n points. Thus the squared distance between the ith point on the trajectory V

and the (i + n)th point on the geometric constraint is given by

δ2
i,n = (Vi −Gi+n)T (Vi −Gi+n) (7.5)

where | · | denotes the magnitude of a vector.

In viewof Eq. (7.1) and (7.2), we have

Vi = [Hi]v, Gi+n = [E]gi+n (7.6)

where [Hi] is obtained from the 3 × 3 matrix in (7.1) by replacing α, dx, dy with

αi, dx,i, dy,i.

Substituting (10.16) into (10.15), after some algebra, we obtain

δ2
i,n = (AT

i,nX− dx,i)
2 + (BT

i,nX− dy,i)
2 (7.7)

where

AT
i,n = [ gx,i+n, −gy,i+n, − cos αi, sin αi, 1, 0 ]

BT
i,n = [ gy,i+n, gx,i+n, − sin αi, − cos αi, 0, 1 ]

(7.8)

are determined from the specified motion and the given geometric constraint, and

X = [a, b, vx, vy, cx, cy]
T (7.9)

are the design variables associated with the equiform displacement and choice of

the point v = (xv, yv) on the moving body. The sum of squares of the deviations is

thus given by (Eq. (7.7)):

S =
1

N

N∑
i=1

δ2
i,n =

1

N

N∑
i=1

{(AT
i,nX− dx,i)

2 + (BT
i,nX− dy,i)

2}. (7.10)
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The goal for constraint acquisition is to find a point v = (vx, vy) on the moving

body such that the trajectory of v best approximates the given constraint curve after

an appropriate equiform displacement, (a, b, cx, cy).

The least squares solution to (10.20) can be symbolic given by the following

[
N∑

i=1

{Ai,nA
T
i,n + Bi,nB

T
i,n}

]
X =

N∑
i=1

{Ai,ndx,i + Bi,ndy,i}. (7.11)

This system of six linear equations can either be solved using the Grammer’s rule

or a Gaussian elimination based method such as the LU decomposition [?, ?].

Alternatively, we may rewrite (7.11) as a system of three linear equations in

complex numbers:





N∑
i=1



Gi+ni+n −Gi+nEi Gi+n

−EiGi+n 1 −Ei

Gi+n −Ei 1










a + jb
vx + jvy

cx + jcy


=

N∑
i=1




Gi+nDi

−Ei+nDi

Di


 (7.12)

where i+n = gx,i+n + jgy,i+n, Ei = cos αi + j sin αi, Di = dx,i + jdy,i with j being

the imaginary unit. In the above equation, we have used the symbol G to denote the

conjugate of a complex number G.

Up to this point, it has been assumed that the shift parameter n is known, and

the least squares solution can be obtained by solving a linear system of equations.

However, in general, the desired value of n is unknown, and as aforementioned,

the order of the positions sampled from the motion and that of the points on the

constraint curve are not automatically and optimally correlated. We now introduce a

numerical algorithm for shape matching which combines least squares optimization

with a direct search dealing with the shift parameter n, as stated below:
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Objective: Given a discrete motion M with N sampled positions and a geometric con-
straint curve g of N sampled points, find a point on the moving body v = (vx, vy),
such that after the constraint curve g is transformed into to a new configuration G
via an equiform displacement, (a, b, cx, cy), the error between the trajectory V and
the constraint curve G as defined by Eq. (10.20) is at minimum.

Algorithm

For each n ∈ [1, · · · , N ] do

For each i ∈ [1, · · · , N ] do

• Initialize values of Gi+n, Ri and Ti;

• Substitute Gi+n, Ri and Ti into Eq. (7.12);

End for

• Solve Eq. (7.12) for a, b, cx, cy, vx, and vy;

• Compute the error using Eq. (10.20);

If the total error is currently at minimum do

• Update final solution to {a, b, cx, cy, vx, vy, n};

End if

End for

7.6 From Geometric Constraints to Mechanisms

We now consider how to mechanically realize the geometric constraints using sim-

ple kinematic chains. Figure 7.9 enumerates some 1-dof mechanisms and classify

them based on the geometric constraints they provide. For example, while a circle

or a circular arc can be easily realized with a revolute joint, one can also generate

a circle or a circular arc using a special four-bar linkage. A comprehensive treatise

on the generation of planar algebraic curves using planar mechanisms can be found

in [117].
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Figure 7.9: The column on the left lists the simple geometric constraints including
circle, arc, line, ellipse and a four-bar coupler curve. The column in the middle lists
the corresponding 1-dof mechanisms that provide the constraints. As one constraint
may be generated by multiple mechanisms, the column on the right list additional
mechanisms for the same constraint.
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Figure 7.10: A given four-bar mechanism with A0B0 = 3.8, A0A1 = 2.4,
A1B1 = 5 and B0B1 = 4.6. As crank A0A1 rotates for 360◦, the coupler link
A1B1 undergoes a periodic closed motion.

In what follows we first present an example to illustrate the effectiveness of the

constraint recognition scheme. We then show that the result leads naturally to task-

centered design of mechanisms for the specified task. In this example, we specify

100 positions that approximate the coupler motion of a known crank-rocker mech-

anism as shown in Figure 7.10. The goal is to investigate if we can retrieve the

original constraints associated with the crank-rocker mechanism and if we can find

alternative constraints for the same motion. To this end, four geometric constraints

are used for constraint recognition and retrieval: (I) a circle, (II) an arc, (III) an

ellipse and (IV) the coupler curve of a four-bar motion. All these curves are param-

eterized in term of the input angle of the crank A0A1. These geometric constraints

are supposed to match, approximately, some paths on the specified motion. As pre-

sented in Table 7.1 and Figure 7.11, the circular constraint (I) has the least error and

thus achieves the best fit.
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Figure 7.11: The rigid body in blue follows the motion of the coupler of a four-bar
mechanism approximately. The trajectories (dash curves) of four points A, B, C
and D on this rigid body are identified to optimally match the geometric constraints
circle, arc, ellipse and a four-bar coupler curve (solid curves), respectively.

If all errors in Table 7.1 are within acceptable range, then any two of the four

constraints from I through IV may be used to constrain the specified motion and

thus lead to different mechanisms for the same specified motion. For example, a

circle and a circular arc may be used to constrain the motion and this leads naturally

to a crank-rocker mechanism. However, we may use one revolute-jointed link as

shown in the middle column of Figure 7.9 and replace the other link with a special

four-bar shown in the left column in Figure 7.9. In this case, we obtain a six-bar

linkage with two sliding joints for the generation of the same set of two constraints,

i.e., a circle and a circular arc. If one replaces the circle constraint with a four-bar

coupler curve D and keeps the circular arc constraint, we obtain another six-bar

linkage with six revolute joints for the same motion.

If a motion task is arbitrarily given, then it may not be possible to constrain it

fully with simple geometric constraints as shown in Figure 7.9. To illustrate this
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I II III IV
λ 2.3971 4.5837 2.4068 0.9948

ξ(◦) -53.9353 28.1608 171.3758 0.1315
cx -1.5146 1.8172 -0.6827 -0.3484
cy -1.2352 -3.0513 -1.3393 2.5372
vx -1.1421 2.8075 -0.1947 -0.5480
vy -1.6271 1.4162 -1.5914 2.7983
n 7 91 44 0
s 0.0028 0.0201 0.0283 0.0172

Table 7.1: Results of Constraint Identification

point, we now consider a set of 16 positions shown in Figure 7.3, which are gen-

erated such that one of its moving points lies on a circle. To obtain more positions

for the constraint identification scheme, we interpolate these positions with a uni-

form rational cubic C2 B-spline motion[115, 71]. We then use all five constraints

as shown in Figure 7.9 for constraint identification. The results are shown in Fig-

ure 7.12 and 7.13. Clearly, with the exception of the circle constraint, all other

constraints are poorly matched. In this case, only the circle constraint can be used

to constrain the motion. In order to obtain another constraint for the motion, a

more complex kinematic chain than those listed in Figure 7.9 is needed. This task,

however, is left for future research.

7.7 Conclusions

In this chapter, we have studied a new type of motion analysis problem that seeks to

extract geometric constraints from a specified motion task. The resulting constraints

are then used to identify and synthesize simple mechanisms for constraint genera-
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Figure 7.12: A, B, C, D and E are the five points whose trajectories are identified
to match the geometric constraints.

Figure 7.13: The trajectories and the geometric constraints for point A, B, C, D
and E are illustrated.
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tion. This task-centered and constraint based paradigm to mechanism design greatly

reduces the complexity of the type synthesis problem. The current and following

two chapters focus on kinematic acquisition of point-geometric constraints using a

direct comparison of corresponding points in a least squares procedure. Chapter 10

will employ more sophisticated methods from computational shape analysis and

extend the results to line-geometric constraints in planar mechanism design.
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Figure 7.14: 8 synthesized mechanisms
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Figure 7.15: 8 synthesized mechanisms
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Figure 7.16: 8 synthesized mechanisms
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Figure 7.17: 8 synthesized mechanisms
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Chapter 8

On Representation and Identification
of Geometric Constraints Using
Fourier Descriptors
This chapter seeks to apply the concept of Fourier Descriptors (FD) to the problem

of estimating or extracting geometric constraints from a given planar motion task.

The problem, referred to as kinematic acquisition of geometric constraints, was

recently introduced in the framework of task centered mechanism design [118].

Two representations of a motion are discussed in [118], one is explicit and the

other implicit. A motion that is given directly in terms of the displacements belong-

ing to it is said to be in explicit form, and a motion that is defined indirectly in terms

of geometric constraints is said to be in implicit form. The former can be prescribed

either as a continuous motion in parametric form or as a discrete motion via an or-

dered sequence of displacements; the latter can be imposed either geometrically or

algebraically. For an example, as shown in Figure 8.1 the motion of the coupler link

AB of a planar four-bar linkage is constrained geometrically such that two of the

points on the coupler link stay on two separate circles. Alternatively, in algebraic

form, one may express that the coordinates of each of the two points satisfy the
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Figure 8.1: A crank-rocker mechanism

algebraic equation of each of the two circles. The coupler motion defined in this

way is said to be in its implicit form. On the other hand, the motion of the same

coupler can also be represented directly as a parameterized set of displacements of

the coupler link relative to a fixed reference frame, i.e., in terms of the coordinates

of the point A as well as the angle θ3 that the coupler link makes from the horizontal

axis.

When geometric constraints of a planar motion are completely specified, the

objective for converting the motion from the implicit form to its explicit form, called

explicitation, is to determine a set of displacements, velocities and accelerations,

that satisfy the specified constraints. In addition, when the given constraints happen

to define a kinematic mechanism, the conversion problem can be made equivalent to

kinematic analysis of the resulting mechanism. When a motion is explicitly given,

the objective for converting the motion from the explicit form to its implicit form,

called implicitation, is to determine the geometric constraints that define the motion

indirectly. When the resulting geometric constraints can be generated mechanically
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with a mechanism, the conversion problem can be made equivalent to mechanism

synthesis. The analysis and synthesis of planar mechanisms are highly developed

subjects, especially when it comes to the analysis and synthesis of four-bar linkages.

This chapter studies the problem of representing simple geometric constraints

that can be generated mechanically using Fourier descriptors and demonstrate how

they can be used for estimating geometric constraints from an explicitly given mo-

tion. The focus is on how a motion can be constrained geometrically with various

constraints instead of matching a given motion to a particular mechanism directly.

8.1 Fourier Descriptors of Closed Curves

The problem of computing the Fourier descriptors directly from the point coordi-

nates of a closed curve has been studied in [119, 120]. A planar curve C in complex

form is given by

z(t) = x(t) + iy(t) (8.1)

where x(t), y(t) are the Cartesian coordinates of a point of C for the parameter

value t. When t varies in [0, T ], where T is the period, the function z(t) traces out a

closed curve. Fourier coefficients associated with z(t) can be obtained from either

(3.2) or (3.9).

Freudenstein [96] was the first to explore the use of Fourier transform for four-

bar linkage analysis and synthesis. This work was followed by Funabashi [97],

Farhang et al. [98, 99], Chu and Cao [100], and McGarva [104, 105]. Instead of

applying Fourier transform directly to a closed curve, Ullah and Kota [94] obtained

Fourier descriptors from the angular function resulting from the tangents of a closed
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coupler curve of a four-bar linkage. They went on to show that this leads naturally

to a Fourier representation of the coupler curve that is invariant with respect to

scaling, rotation and translation. In addition, they observed that, for the case of

four-bar coupler curves, the use of a small set of Fourier coefficients associated

with the low-harmonic components is sufficient for shape comparison. Recently,

Wu et al. [108] showed that the search space can be reduced even further and thus

leads to an even more efficient method for four-bar linkage synthesis for closed

path generation. This work has been further refined and extended to both open and

closed path generation [121].

8.2 Fourier Representations of Low-Harmonic
Geometric Constraints

As alluded to earlier, the Fourier representation of a closed curve allows for the

level-of-detail interpretation in the frequency domain. Low frequency descriptors

represent general features of a shape, while higher frequency descriptors add the

finer details. We now consider simple geometric shapes such as an ellipse, a circle

and a line-segment and see how they can be represented by one- or two-harmonic

components, i.e., a low-harmonic Fourier series consisting of {v−2, v−1, v0, v1, v2}
associated with frequencies {−2ω,−ω, 0, ω, 2ω}.

8.2.1 Ellipse

Consider an ellipse shown in Figure 2 centering at (x0, y0), whose major axis makes

an angle γ from the X-axis. Let v0 = x0 + iy0 denote the complex number rep-
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Figure 8.2: An ellipse and its Fourier representation in terms of its 1-harmonic
components v−1 and v1.

Figure 8.3: The amplitude spectrum of an ellipse: amplitudes of higher harmonics
are zero.

resentation of the center of the ellipse. A point on the ellipse with the parametric

angle θ = ωt + θ0, where ω is the fundamental frequency and θ0 is the initial angle,

is given by

z(θ) = v0 + (a cos θ + ib sin θ)eiγ (8.2)

where a, b are the major and minor semi-axes of the ellipse. This leads to the 1-

harmonic representation of the ellipse:

z(t) = v0 + v1e
iωt + v−1e

−iωt (8.3)
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where v1 = r1e
iφ1 and v−1 = r−1e

iφ−1 and

r1 =
a + b

2
, r−1 =

a− b

2
, (8.4)

φ1 = θ0 + γ, φ−1 = −θ0 + γ. (8.5)

It is clear from the above that v0 represents the translation that leaves the shape, size,

and orientation of the ellipse unchanged. The amplitudes of v1, v−1, i.e., the Fourier

descriptors r1, r−1, determine a, b and thereby the shape and size of the ellipse. In

particular, we have
r−1

r1

=
s− 1

s + 1
< 1, s =

a

b
, (8.6)

i.e., the ratio of the Fourier descriptors is related to the aspect ratio of the ellipse.

The phases of v1, v−1 determine the orientation of the ellipse as well as the starting

point. So if we are only concerned with the shape and size of the ellipse, all we

need are the Fourier descriptors r1 and r−1 (Figure 3).

Note 1: It can be seen that as t increases from 0, Eq. (8.2) generates points on the

ellipse in counterclockwise sequence starting from the point f(0) = v0 +aeiγ

(see Figure 2).

Note 2 If θ = −ωt+ θ0 is used instead in (8.2), i.e., when the points are generated

in clockwise direction, then the roles of v1 and v−1 are switched. In this case,

we have r−1/r1 > 1.
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8.2.2 Circle

When a = b, the ellipse becomes a circle (see Figure 4). It follows that r1 = a and

r−1 = 0 and that

z(t) = v0 + v1e
iωt. (8.7)

Figure 5 and 6 show the amplitude spectrums of a circle.

Figure 8.4: A circle whose points are ordered in counterclockwise direction.

8.2.3 Curves Defined By Two- or More Harmonic Components

It is easy to show that the following Fourier components associated with the second-

order harmonics e±i2ωt:

z2(t) = v2e
i2ωt + v−2e

−i2ωt (8.8)

represents an ellipse in the same way as the first-order harmonics (8.3) does but

with doubled frequency. In other words, as t varies in [0, T ], z2(t) traces out an

ellipse twice. It follows that the Fourier transform of a periodic complex function

z(t) as given by (3.1) results in a sum of ellipses of increasing frequency. While
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(a)

(b)

Figure 8.5: (a) The amplitude spectrum of a counterclockwise oriented circle:
v−1 = 0; (b) The amplitude spectrum of a clockwise oriented circle: v1 = 0

the low frequency components defines the rough shape of the curve for the entire

period, the high frequency components provide finer details.

8.3 Straight Line Segments

Here we consider a straight line segment as a degenerated form of a closed curve,

that shrinks to overlap. A straight line-segment can be represented by a collapsed

ellipse when b = 0 in equations from (8.2) to (8.5). In this case, the equation of a

line-segment with length 2a is given by

z(θ) = v0 + a cos θeiγ (8.9)
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which is exactly the projection of the ellipse (8.2) onto its major axis. Alternatively,

we have r1 = r−1 = a/2 when b = 0, i.e., the two Fourier descriptors associated

with the first-order harmonics are of equal value.

It is possible to define a line-segment using more than one-harmonic compo-

nents. Consider the following 2-harmonic curve:

z(t) = v0 + v1e
iωt + v−1e

−iωt + v2e
i2ωt + v−2e

−i2ωt. (8.10)

where vj = rje
iφj with j = −2,−1, 0, 1, 2. The ellipse associated with the first

order harmonic term collapses into a line-segment when r1 = r−1. The angle that

the resulting first-order line-segment makes with the horizontal axis is γ which can

be obtained from (8.5) as

γ =
φ1 + φ−1

2
. (8.11)

Similarly, the ellipse associated with the second order harmonic term represents a

line-segment when r2 = r−2. In order to align the two line-segments, we must have

γ =
φ2 + φ−2

2
. (8.12)

Thus we have the following conditions for a 2-harmonic line-segment (see Figure

6, 7, 8): {
r−1 = r1, r−2 = r2, and
1
2
(φ−1 + φ1) = 1

2
(φ−2 + φ2) = γ

(8.13)

8.4 Geometrically Constrained Motions

A planar motion of a rigid body has three degrees of freedom. If a point (Bx, By) on

the moving body is required to stay on a curve f1(x, y) = 0, then we obtain a two-

degrees-of-freedom (dof) motion; if another point (Dx, Dy) of the moving body is
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Figure 8.6: This figures shows how a line segment is constructed using one- and
two-harmonic components.

Figure 8.7: The amplitude spectrum of a overlapped line segment.

also required to stay on a different curve f2(x, y) = 0, then we obtain an one-dof

motion. Each of these curves can be a straight line-segment, a circle, an ellipse or

a more complex curve such as the coupler curve of a four-bar linkage. Consider a

slider-crank mechanism shown in Figure 9. The moving body is constrained such

that the point B lies on a circle and the point D lies on a line-segment. The point,

C, is a general point on the coupler and it traces out a more complex curve.

In this paper, we are interested in geometric constraints that can be generated

mechanically. Table 8.1 lists the geometric constraints and their corresponding 1-

dof generators.
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Figure 8.8: The phase spectrum of a line segment: φi is the phase of the ithe har-
monic component.

A

B

C

D

Figure 8.9: A slider-crank mechanism

8.5 Trajectory Analysis and Constraint Identification

For an explicitly given motion, whether continuously as a function of time or dis-

cretely as an ordered sequence of displacements, the goal is to identify a point on

the moving body such that its trajectory best matches with one of the predefined

low-harmonic geometric constraints such as a line-segment, a circle, an ellipse or

even a four-bar coupler curve. This done by analyzing the trajectory of all points

within a feasible zone using Fourier transform and then search in the frequency do-

main to see if any of the trajectory matches a specified low-harmonic constraint.

In this paper, a direct search method is used to compute the error between a given
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Geometric Constraints Mechanism Linkages
Ellipse Geared-2R, · · ·
Circle 1R, · · ·

Straight Line 1P, · · ·
Complex Shape Crank-Rocker, · · ·

Table 8.1: Linkage Classification by Geometric Constraints

constraint and a selected trajectory. The error is defined in terms of squares of their

respective Fourier descriptors. All errors can be plotted into a colored map. To

set up an error map, we select an designer interested region from the moving rigid

body. Secondly, we generate a grid of points on that region. Thirdly, we generate a

trajectory of every sampled point. Thereafter, we compute the shape errors between

each of the trajectory and the given constraint curve. In the end, a linear color inter-

polation is applied to the designer interested region in order to visualize the scaled

relative shape errors. This color map is called the error map for one give motion

and one type of constraint curve.

Synthesis Procedures

1. The closed task motion is explicitly represented in any format, like rational

B-Spline motion, or matrix expressed motion, or any other designer favorite

way.

2. The designer specifies an interested observing region, where is the desirable

area to amount the mechanical linkage to.

3. Sample the designer interested region, and compute their trajectory. Dense
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sampling is recommended for large area but should not exceed the computa-

tional capability.

4. Query every type of geometric constraints, and set up the their error maps.

These error maps depend on the input motion, so they are built dynamically,

and serve as evaluation guidance to match trajectories and geometric con-

straints.

5. The designer looks up the error maps, navigates points of the rigid body, and

examines the shape, the amplitude and the phase spectrums of the trajectories.

With the comprehensive references, the designer picks the desired trajectory,

the trace to constrain one dyad.

6. Hereafter, it is moved to the step of synthesis. The geometric constraint query

is requested. The mechanism database delivers the dyad types that are com-

patible with the selected trajectory, under the criterion of the geometric con-

straint.

7. Finally, the designer select the dyad type, and continues the dimensional syn-

thesis using the existing methods.

8. Repeat the steps 5-7 till the terminal of the design.

8.6 EXAMPLES

In this section, we present one simple example that demonstrates how our method

provides multiple synthesis solutions for a given B-Spline motion.
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For geometric constraints, this example concentrates on four types of shapes,

including ellipse, circle and straight line, and exclusively assuming the rest shapes

belong be the complex group. Concisely, we assign only one representative mech-

anism linkage to each geometric constraint, as shown in Table 8.1.

The motion of the coupler link is presented as a uniform ratiopnal cubic C2 B-

spline motion. Table 8.2 gives the Cartesian parameters for the 16 control positions.

Without loss of generality, the interval of the knot sequence is set to be equal. The

motion is shown in Figure 10. We select the rectangular observing region, the

i X Y α
1 3.4788 0.7772 0
2 1.7164 2.5350 1.2258
3 -0.2225 2.1049 2.4045
4 -0.6083 0.8492 -2.7924
5 -0.0166 0.4004 -1.8403
6 0.3063 0.7591 -1.0589
7 0.0508 1.1131 -0.4783
8 -0.3638 0.9936 -0.1207
9 -0.5035 0.4008 0

10 -0.2198 -0.5303 -0.1207
11 0.3170 -1.7028 -0.4783
12 0.6541 -2.9200 -1.0589
13 0.3599 -3.5819 -1.8403
14 -0.2605 -2.8299 -2.7924
15 0.0437 -0.7110 2.4045
16 1.8604 1.0111 1.2258

Table 8.2: 16 Control Positions

shaded rectangle in Figure 10, identified by the diagonal ending at points (−6,−3)

and (6, 3). 100 by 100 Points are sampled and their trajectories are calculated.
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Figure 8.10: The given motion: The black frame is fixed, and the shaded frame is
the moving frame. The dark square is selected for observation. Point A, B, C, D
and E are the positions to attach mechanism.

We seek to extract from sampled trajectories to obtain a simple geometric con-

straint such as an ellipse, a circle, or a straight line or low-harmonic coupler curve

of a four-bar linkage, respectively, and thereafter, render the corresponding error

maps. As shown in Figure 11 through 14, the error maps provides a visualization

for the quality of the constraint matching. The color bar, existing along with every

error map, is the reference of error scale. The area of the error maps all corresponds

to the shaded region in Figigure 10. The number next to the color bar is the greatest

error of that map. Obviously, the smaller the error is, the more precisely the ge-

ometric constraint matches the trace of that point, and more reliable the synthesis

will be. Moreover, the error maps intrinsically appear to be the gradient fields of er-

rors, and it is the prominent aspect of the error maps that they also imply the better

searching area, if the currently selected region dose not cover any reasonable candi-

date geometric constraints. For example, if we initially observe only the right-upper
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area instead of the entire current region, then there is no pleasant point satisfying

a circle, but fortunately, the colorful gradient field clearly advises the search of the

left-lower area for a better circular point constraint. Simultaneously, the plots

Figure 8.11: The error map for the point constraint of an ellipse: Yellow points have
smaller error than the pink ones for approximation of an ellipse.

Figure 8.12: The error map for the point constraint of a circle: yellow points have
smaller error than the pink ones for approximation of a circle.

of amplitude and phase spectrum expose the designers to more information of the

trajectories, although this requires the designers to possess basic knowledge about

the spectral characteristics of the geometric constraints. The observation of both

the error maps and the spectrums of point trajectories suggests that 1, the point A is

more suitable for a straight line segment, 2, the point B creates satisfactory circles
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Figure 8.13: The error map for the point constraint of a line segment: yellow points
have smaller error than the pink ones for approximation of a a line segment.

Figure 8.14: The error map for the point constraint of a general curve dominated by
the five lowest harmonics: for this map, the trajectory of each point is approximated
using the five lowest-frequency harmonics. Yellow means a better approximation.

3, the point C generates an ellipse-alike trace, and 4, both points D and E plot the

body shape of a dolphin.

In view of the geometric constraints, a prismatic joint is attached to A, a crank

is recommended for B, a geared 2-R matches C , and the design experience assigns

the crank-rocker mechanisms for the body shape of a dolphin by D and E. Ulti-

mately, traditional methods of dimensional synthesis are implemented to figure out

the best size for each dyad. As what immediately precedes, diverse design solutions

yield by the combination of different dyads comprise, for examples, a crank-slider,
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a geared 4R-1P, a Stephenson III six-bar, a geared seven-bar, and a eight-bar mech-

anism.

Conclusion

In this chapter, we studied the problem of how to represent and identify simple

constraint curves using Fourier descriptors. This is used to analyze and identify

geometric constraints from an explicitly given motion. A direct search method is

presented for the constraint identification process. The results provide a basis for

task centered design of mechanisms.

Figure 8.15: This mechanism is combined by a slider and a crank.
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Figure 8.16: This mechanism is combined by a slider and a geared 2R.

Figure 8.17: This mechanism is combined by a slider and a crank-rocker mecha-
nism.
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Figure 8.18: This mechanism is combined by a crank and a geared 2R.

Figure 8.19: This mechanism is combined by a crank and a crank-rocker mecha-
nism.
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Figure 8.20: This mechanism is combined by a geared 2R and a crank-rocker mech-
anism

Figure 8.21: This mechanism is combined by two crank-rocker mechanisms.
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Chapter 9

Fourier Descriptors with Different
Shape Signatures: a Comparative
Study for Shape Based Retrieval of
Kinematic Constraints
This chapter deals with the problem of analyzing geometric constraints associated

with a given motion from the perspective of computational shape analysis. The

goal is to develop computational methods for retrieving or extracting geometric

constraints from a specified motion. This problem is studied as a shape retrieval

problem, which involves three main issues: shape representation, shape similarity

measure and shape indexing. Among them, shape representation is the most impor-

tant issue.

The use of shape descriptors often simplifies the process of not only shape com-

parison but also shape storage and classification. There are many shape descriptors

proposed for various application domains. They include boundary scalar transform

such as the centroid-to-boundary distance function, global scalar transform such as

moment-based methods, and global space domain methods such as the media axis

transform. Hoeltzel and Chieng [95] was one of the early adopters of computational
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shape analysis techniques for comparing the coupler curves for the dimensional syn-

thesis of four-bar linkages. They used moment invariants to represent and compare

coupler curves.

Of our interest is a Fourier transform based method for characterizing the shape

function. Freudenstein [96] was the first to explore the use of Fourier transform

for four-bar linkage analysis and synthesis. This work was followed by Funabashi

[97], Farhang et al. [98, 99], Chu and Cao [100], and McGarva [104, 105]. As

shown by Ullah and Kota [94], when reformulated using the Fourier descriptors,

the error function that captures the deviation between the synthesized and desired

path, leads naturally to a reduced search space that decouples the comparison of

shapes from their size, location, and orientation. In addition, they observed that,

for the case of four-bar coupler curves, the use of a small set of Fourier coefficients

associated with the low-harmonic components is sufficient for shape comparison.

This has been independently observed by cognitive scientists for human judgement

of perceptual shape similarity[107]. The combined effect of decoupled search space

with small set of Fourier coefficients leads to drastic improvement in optimization

routine for four-bar linkage synthesis.

In this chapter, we focus on a comparative study of Fourier descriptors derived

from various shape signatures of planar closed curves. We will conduct the com-

parison not only using commonly used criteria for shape representation and identi-

fication but also in the context of shape based retrieval of kinematic constraints for

task centered mechanism design.
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9.1 Shape signatures

In general, a shape signature is any 1-D function representing 2-D areas or bound-

aries. Four shape signatures are considered in this paper, these are central distance,

complex coordinates (position function), curvature and cumulative angular func-

tion. The reason for choosing these four shape signatures for test and comparison is

because they are mostly used in recent FD implementations and have been shown

practical for general shape representation. In the following, we assume the shape

boundary coordinates (x(t), y(t)), t = 0, 1, · · · , L − 1, have been extracted in the

preprocessing stage.

9.2 Explicit Representations of Closed Curves

In numerical implementation, a continuous closed curve, see Fig 9.1, is typically

extracted as a polygon consisting of a sequence of sample points Pi coordinated at

(xi, yi), i = 0, 1, · · · , N − 1, and the arc length si between two adjacent points Pi

and Pi+1 is approximated by their distance.

si =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (9.1)

As the number of sample points increase, the polygon and the arc length converge

to the continuous curve and the actual arc length, respectively.

Various representations of a curve exist in the literature. However, representa-

tions based on different curve features have significantly distinct impact on the re-

sult of shape comparison. For the purpose to develop this paper, we briefly review

four types of shape signatures that are mostly used to derive Fourier descriptors, in-
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Figure 9.1: The continuous curve in dash is numerically approximated by a polygon
in solid which connects a set of sample points of the continuous curve.

cluding complex coordinate, centroid distance, curvature signature and cumulative

angle.

9.2.1 Complex Coordinates

Complex coordinates also known as position function represent a point as a complex

number on the complex plane. In order to make this representation invariant to

translation, the position function is defined as a displacement of the sample points

from centroid, such that

zi = (xi − xc) + j(yi − yc) (9.2)

where the definition of centroid (xc, yc) is given by the following equation

xc =

∑N−1
i=0 xisi∑N−1
i=0 si

, yc =

∑N−1
i=0 yisi∑N−1
i=0 si

. (9.3)

by considering the account of the nonuniform sampling interval.
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9.2.2 Centroid Distance

The centroid distance denotes the distance of a sample point to the centroid, which

is eventually the magnitude of position function defined in Eq. (9.2).

ri =
√

(xi − xc)2 + (yi − yc)2 (9.4)

Centroid distance is also invariant to translation.

9.2.3 Cumulative Angle

A curve can be represented by using its tangent angle at each point. Denotes the

tangent angle at Pi with respect to horizontal axis as θi. To remove the effect of

orientation, the cumulative angle at Pi is defined as the net angular bend of the

starting point from the initial.

ϕi = θi − θ0 (9.5)

The cumulative angle is discontinuous at 2π, since as tracing a closed curve from

the initial point to the end counterclockwise, it increase from 0 to 2π. To deal with

this discontinuity, a linear increasing angle is subtracted from the cumulative angle.

ψi = ϕi − 2π ·∑i−1
k=0 sk∑N−1

k=0 sk

(9.6)

This angular function is periodic and invariant to both translation and rotation.

9.2.4 Curvature Signature

Curvature, an intrinsic property of a curve, measures the degree by which a curve

deviates from being straight. In differential geometry, curvature is defined as the
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first derivative of the curve tangent with respect to arc length. The curvature at Pi

can be approximated as

ki =
θi+1 − θi

si

(9.7)

which means the change of tangent angle normalized by the associated arc length

as a point moves from P to Pi+1. Curvature is invariant to both translation and

rotation.

9.3 Shape Comparison with Fourier Descriptors

The concept of Fourier Descriptors (FD) has been widely used in the field of Com-

putational Shape Analysis [52]. It is an extension of the concept of Fourier trans-

form and uses the Fourier coefficients in the frequency domain for shape represen-

tation. The great advantage of the Fourier representation is the level-of-detail in-

terpretation in the frequency domain. Low frequency descriptors (coefficients) rep-

resent general features of a shape, while higher frequency descriptors add the finer

details. As the result, the dimensions of the Fourier descriptors used for indexing

shapes are significantly reduced. In addition, FD features can be made normalized

to translation, rotation and scale. Another interesting feature of the Fourier descrip-

tor is that it has been shown to be consistent with human judgement of perceptual

shape similarity [122, 107].
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9.3.1 Fourier Transform on Curve Signatures

Fourier transform on different curve signatures gives the rise to different FDs. By

replacing z(t) in Eq. (3.7) with the signature function of a curve,

z(t) ∈ {zi, ri, ψi, ki} (9.8)

the corresponding |αn| are usually called Fourier Descriptors of that curve, denoted

as FDn, n = 0, 1, · · · , N − 1.

The FDs of a curve derived based on curve signatures are subjective to the

parametrization, the size and the initial point of the curve.

Fourier transform is an operation involving the parametrization of the periodic

function. FDs on the same set of samples of the same curve yet associated with

different parametrization are not identical. Intrinsic parametrization is referred to

handle the issue of parametrization. In this paper, we adopt the cumulative arc

length to be the parameter. Therefore, one curve has unique FDs. In this case, ti

stands for the length of the curve starting from point P0 and ending at Pi, and ∆ti

denotes that of the curve connecting Pi and Pi+1, and T is the perimeter:

ti =
i−1∑

k=0

sk, ∆ti = si, T =
N−1∑

k=0

sk (9.9)

Except cumulative angle, {ψi}, the other three curve signatures, {zi, ri, ki}, are

proportional to the curve size. So the FDs derived based on the curve signatures are

also scaled by the size of the curve, simply because Fourier transform is a linear

operation on signature function z(t). To compare two curves, one must be resized

so as to attain the closest matching with the other one.
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Now we consider the impact of initial point on different FDs. FDs derived from

the position function, the centroid distance or the curvature signature are invari-

ant to the choice of initial point. For the same samples of a given curve, if these

three signature functions are constructed by starting from different initial points,

their parametrization undergoes a constant shift. The constant parametrization shift

changes the phase spectrum of the Fourier transform but not amplitude spectrum,

and thus, has no impact on the derived FDs. However, the cumulative angle is

exception. If the construction of the cumulative angle starts from different initial

points, constant shift exists not only in parametrization but also in the signature

value, simply because the cumulative angle is a relative value of the observation an-

gle to the initial angle θ0, starting and ending with value 0. While the parametriza-

tion shift does not triggers the change of FDs, the constant shift of the signature

value brings FD0 to a different value. In general, except that FD0 for the cumula-

tive angle depends on the choice of initial point, FDs derived based on any signa-

ture function are invariant to the choice of initial point. To label a curve with FDs,

{FDn, n = 0, 1, · · · , N − 1} can be used for the position function, the centroid

distance, and the curvature signature, yet {FDn, n = 1, · · · , N−1} for cumulative

angular function.

Freudenstein [96] was the first to explore the use of Fourier transform for four-

bar linkage analysis and synthesis. This work was followed by Funabashi [97],

Farhang et al. [98, 99], Chu and Cao [100], and McGarva [104, 105]. Instead of

applying Fourier transform directly to a closed curve, Ullah and Kota [94] obtained

Fourier descriptors from the angular function resulting from the tangents of a closed
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coupler curve of a four-bar linkage. They went on to show that this leads naturally

to a Fourier representation of the coupler curve that is invariant with respect to

scaling, rotation and translation. In addition, they observed that, for the case of

four-bar coupler curves, the use of a small set of Fourier coefficients associated

with the low-harmonic components is sufficient for shape comparison. Recently,

Wu et al. [108] showed that the search space can be reduced even further and thus

leads to an even more efficient method for four-bar linkage synthesis for closed

path generation. This work has been further refined and extended to both open and

closed path generation [109].

9.3.2 Shape Similarity

To measure the similarity of two curves, curve Ca and curve Cb in spectrum do-

main of one specific signature function, we resort to the closeness of their FDs. As

aforementioned, we scale one curve to eliminate the impact of their size difference.

If Ca is the standard shape we are interested, and Cb is one candidate curve to be

considered whether it is similar to Ca, we resize curve Cb and preserve the size of

curve Ca as we compare them. By fixing the size of the standard shape, it is allowed

to sort the similarity of the candidate curves with respect to the standard curve by

relying on their FD differences.

Let FDa
i denote the ith component of the FDs of curve Ca, FDb

i label that of

curve Cb, and Cb be scaled by λ times for the purpose to eliminate the impact of size

on shape comparison. Then the structure error defined as the Euclidean distance of
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their FDs is given as below

δa,b =

√∑
i

(FDa
i − λ · FDb

i )
2 (9.10)

FDs derived based on the position function, the centroid distance or the curva-

ture signature are invariant the choice of initial point, so that we take all FD terms

into account and we have i = 0, 1, · · · , N − 1. λ for these FDs are determined

based on the criterion to minimize the structural error δa,b, and as a result, when

two curves are of exactly the same shape but two sizes, the computed structural

error after resizing goes to zero. In this way, we have

λ =

∑
i FDa

i · FDb
i∑

i(FDb
i )

2
(9.11)

The choice of the initial point affect the constant term of the FDs derived based

on cumulative angle, so that the constant component is not considered and we have

i = 1, · · · , N − 1. However, the cumulative angle is invariant to the size of the

curves, and hence, resizing is not needed, λ = 1 for FDs derived based on cumula-

tive angle.

Since Fourier transform essentially project a vector onto a set of orthonormal

basis, FDs of a curve are the projections of that curve. When two curves have

similar shapes and they are represented with the same type of signature, they are

expected to possess close FDs as projected onto the same basis. Henceforth, the

small structure error indicated the reasonable similarity between the two curves.
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9.4 Geometrically Constrained Motion

A planar motion of a rigid body has three degrees of freedom. If a point (Bx, By) on

the moving body is required to stay on a curve f1(x, y) = 0, then we obtain a two-

degrees-of-freedom (dof) motion; if another point (Dx, Dy) of the moving body is

also required to stay on a different curve f2(x, y) = 0, then we obtain an one-dof

motion. Each of these curves can be a straight line-segment, a circle, an ellipse or

a more complex curve such as the coupler curve of a four-bar linkage. Consider a

slider-crank mechanism shown in Figure 9.2. The moving body is constrained such

that the point B lies on a circle and the point D lies on a line-segment. The point,

C, is a general point on the coupler and it traces out a more complex curve.

A

B

C

D

Figure 9.2: A slider-crank mechanism.

In this paper, we are interested in the primitive geometric constraints that can

be generated mechanically.
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9.5 Simple Geometric Constraints

This section presents a set of simple geometric constraints that can be readily pro-

vided using simple mechanisms. As mentioned in the proceeding section, all pa-

rameters are normalized on [0, 1]. All constraints are represented by closed curves

and special attention has been paid to their orientations as they play a significant

role in shape matching process. Specifically, the same set of points are viewed as

two distinct constraints if they are traced in two opposite orientations, clockwise

and counterclockwise.

A circular constraint is represented by a unit circle centered at the origin of the

coordinate system and with the initial point locating at (1, 0), Figure 7.5.

Figure 9.3: The circular constraint traced in counterclockwise direction.

A circular-arc constraint is a segment of the circumference of a unit circle. It

starts from point (1, 0) and extends counterclockwise, so that the central angle is

always positive. The central angle remains a variable in the process of constraint

identification. To make the circular arc closed, we represent it as a forward-and-

backward plotted curve as shown in Figure 7.6.
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Figure 9.4: The counterclockwise traced circular arc with center angle θ.

A line segment along the x-axis starts at (1, 0) and ends at (−1, 0). It is also

represented as double-traced closed curve, Figure 7.7.

Figure 9.5: A line-segment is represented as a closed curve traced in counterclock-
wise direction.

An ellipse is located at (0, 0). Its major axis lies on x-axis, and minor axis on

y-axis. The length of semi-major axis is 1. The length of semi-minor axis is freely

adjustable and ranges from 0 to 1, Figure 9.6.

In addition to the aforementioned simple curves, the coupler curve of a four-bar

linkage can also be considered as defining a geometric constraint.
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Figure 9.6: An counterclockwise traced ellipse with semi-minor axis of ρ.

9.6 Trajectory Analysis and Constraint Identification

For an explicitly given motion, whether continuously as a function of time or dis-

cretely as an ordered sequence of displacements, the goal is to identify a point on

the moving body such that its trajectory best matches with one of the predefined

geometric constraints such as a circle, a circular arc, a line-segment, an ellipse or

even a four-bar coupler curve. This done by analyzing the trajectory of all points

within a feasible zone using Fourier transform derived from different curve signa-

tures, and then search in the frequency domain to see if any of the trajectory matches

a specified geometric constraint registered by the same type of Fourier descriptor.

In this paper, a direct search method is used to compute the error between a given

constraint and a selected trajectory. The error is defined in terms of squares of their

respective Fourier descriptors, as shown in Eq. (9.10). All errors can be plotted

into a colored map. To set up an error map, we select an designer interested region

from the moving rigid body. Secondly, we generate a grid of points on that region.

Thirdly, we generate a trajectory of every sampled point. Thereafter, we compute
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the shape errors between each of the trajectory and the given constraint curve. In

the end, a linear color interpolation is applied to the designer interested region in

order to visualize the scaled relative shape errors. This color map is called the error

map for one give motion and one type of constraint curve.

The structural error of two curves are subjective to the choice of the Fourier

descriptor. It is interesting to compare the effect of different Fourier descriptors

on results of the geometric constraint retrieval for the same given motion. The

contour line on the error map that joints points of equal structural error shows the

distribution of the structural errors or the similarity between the trajectories to the

desired geometric constraint. In this paper, we compare the four types of Fourier

descriptors by applying them to identify the four geometric constraints described in

Section 9.5.

Constraint Retrieval Procedures

1. The closed task motion is explicitly represented in any format, like rational

B-Spline motion, or matrix expressed motion, or any other designer favorite

way.

2. Specify an interested observing region, where is the desirable area to impose

the geometric constraints.

3. Select the type of Fourier descriptor. Different FDs lead to various retrieval

results.

4. Sample the designer interested region, and compute their trajectory. Dense
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sampling is recommended for large area but should not exceed the computa-

tional capability.

5. Query every type of geometric constraints, and set up the their error maps.

These error maps depend on the input motion, so they are built dynamically,

and serve as evaluation guidance to match trajectories and geometric con-

straints.

6. The designer looks up the error maps and error contour, navigates points of

the rigid body, and examines the shape, the signature plotting of the trajec-

tories. With the comprehensive references, the designer picks the desired

trajectory, the trace to impose the geometric constraint.

7. Repeat the steps 3 to 6 to identify more constraints and compare the effect of

using different Fourier descriptors.

9.7 Case Study

In this section, we present a simple example to illustrate and compare the effect of

using different Fourier Descriptors to identify geometric constraints for a B-Spline

motion.

The example rigid-body motion is presented as a uniform ratiopnal cubic C2

B-spline periodic motion. Table 9.1 gives the Cartesian parameters for the 16 posi-

tions to interpolate. Without loss of generality, the interval of the knot sequence is

set to be equal. The motion is show in Figure 9.7. We select the rectangular observ-

ing region, the shaded rectangle in Figure 9.7, identified by the diagonal ending at
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points (−6,−3) and (−6,−3), 100 by 100 Points are sampled and their trajectories

are calculated. All sample traces are closed continuous curves due to the form of

the given motion, which allows their representations in terms of signature functions

as well as the corresponding Fourier descriptors.

Figure 9.7: The given motion

In this example, we seek to extract four geometric constraints, in the terms of

the shape, including circle, circular arc, ellipse and line-segment as introduced in

Section 9.5. Especially, the center angle of the circular arc is 2rad and the minor

semi-axis of the ellipse is of 0.6. For each shape and every FD representation, we

render the corresponding error maps. As shown in Figure 9.9 through 10.1, the

error map provides a visualization for the quality of the constraint matching indi-

cated by a specific type of FD. For each error map, the error scales are interpolated

from minimum through maximum with the color bar as shown in Figure 9.8, where

yellow (left) side corresponds to minimum error of that map while the pink (right)

side stands for a large shape distinction.
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i X Y α
1 3.4788 0.7772 0
2 2.9193 2.0464 0.3902
3 1.9396 2.9964 0.7654
4 0.7202 3.5061 1.1111
5 -0.5380 3.5524 1.4142
6 -1.6592 3.1947 1.6629
7 -2.5144 2.5447 1.8478
8 -3.0228 1.7392 1.9616
9 -3.1458 0.9194 2

10 -2.8788 0.2153 1.9616
11 -2.2482 -0.2711 1.8478
12 -1.3115 -0.4844 1.6629
13 -0.1616 -0.4298 1.4142
14 1.0680 -0.1730 1.1111
15 2.2057 0.1805 0.7654
16 3.0634 0.5225 0.3902

Table 9.1: 16 Control Positions

min max

Figure 9.8: Error reference bar

Obviously, the smaller the error is, the more precisely the geometric constraint

matches the trace of that point. Moreover, the error maps intrinsically appear to be

the gradient fields of errors, and it is the prominent aspect of the error maps that

they also imply the better searching area, if the currently selected region dose not

cover any reasonable candidate geometric constraints. For example, if we initially

observe only the left-lower area instead of the entire current region, then there is

no pleasant point satisfying a circle, see Figure 9.9-(a) to (d), but fortunately, the

colorful gradient field clearly advises the search of the right-upper area for a bet-
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ter circular point constraint. In addition to error map, signature plot provides an

alternative indicator to dynamically observe the matching between the signature of

the selected trial trajectory and that of the constraint curve. When two shapes are

similar, their signature plots reasonably match.

For the interest of this paper, four types of Fourier descriptors are compared for

constraint retrieval. Experiments show all of them lead to consistent results. How-

ever, the complex coordinate function and the centroid distance function are more

sensitive to the shape difference compared to the curvature function and the cumu-

lative angle. As illustrated by Figure 9.9 through 10.1, the former two FDs always

generate error maps of more contrast, while the retrieval results recommended by

the later two FDs are quite ambiguous which label a great portion of points with

yellow and view their trace as similar shapes.
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(a) (b)

(c) (d)

Figure 9.9:
The error map for the point constraint of a circle: Yellow points have smaller error
than the pink ones for approximation of a circle. for this map, the trajectory of each
point is approximated using the three lowest-frequency FDs.
(a): FD derived based on position function
(b): FD derived based on centroid distance
(c): FD derived based on curvature signature
(d): FD derived based on cumulative angle
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(a) (b)

(c) (d)

Figure 9.10:
The error map for the point constraint of a circular arc with center angle of 2rad:
Yellow points have smaller error than the pink ones for approximation of an arc.
for this map, the trajectory of each point is approximated using the three lowest-
frequency FDs.
(a): FD derived based on position function
(b): FD derived based on centroid distance
(c): FD derived based on curvature signature
(d): FD derived based on cumulative angle
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(a) (b)

(c) (d)

Figure 9.11:
The error map for the point constraint of an ellipse with minor semi-axis of 0.6:
Yellow points have smaller error than the pink ones for approximation of an ellipse.
for this map, the trajectory of each point is approximated using the three lowest-
frequency FDs.
(a): FD derived based on position function
(b): FD derived based on centroid distance
(c): FD derived based on curvature signature
(d): FD derived based on cumulative angle
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(a) (b)

(c) (d)

Figure 9.12:
The error map for the point constraint of a line-segment: Yellow points have smaller
error than the pink ones for approximation of a line-segment. for this map, the
trajectory of each point is approximated using the three lowest-frequency FDs.
(a): FD derived based on position function
(b): FD derived based on centroid distance
(c): FD derived based on curvature signature
(d): FD derived based on cumulative angle
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Chapter 10

Kinematic Acquisition of Geometric
Constraints for Task Centered
Mechanism Design: Line Constraints

Points and lines are the two primitive categories of planar geometry. Both pla-

nar point geometry and line geometry share similar properties due to their duality.

In chapter 7, we have discussed the kinematic acquisition for point geometric con-

straints, and this chapter will extend the kinematic acquisition to line geometry by

taking advantage of the point-and-line duality.

10.1 Moving Line Trajectory

Similar to the representation of a planar displacement (dx, dy, α) of a rigid body

by a homogeneous transform of the points thereon as shown in Eq. (7.1), such a

displacement can be alternatively reflected by the homogeneous transform of the

lines amounted on that rigid body. A line in the moving plane M can be repre-

sented by l = (l1, l2, l3), where ( l1√
l21+l22

, l2√
l21+l22

) is the unit vector perpendicular

to the line and pointing from the origin to the line, and l3√
l21+l22

is the perpendicu-

lar distance from the origin to the line; it is favorable to represent the normalized

line coordinate as (cos β, sin β,−l), where β is the angle between the horizontal
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axis and the perpendicular unit vector and l gives the distance. When a specific

line l of M is required to stay on a line construct f(L) = 0 in F, a line constraint,

f([H̄(dx, dy, α)]l) = 0 is imposed, where (see [113])

L = [H̄(dx, dy, α)]l =




cos α − sin α 0
sin α cos α 0

d̄x d̄y 1


 l (10.1)

with d̄x = −dx cos α − dy sin α, d̄y = dx sin α − dy cos α. For example, a line

may be required to pass through a fixed point, to make a certain angle with a given

line, or to be tangent to a given curve such as a circle. The homogeneous transform

matrix of line, [H̄(dx, dy, α)], is inverse-transpose to the homogeneous transform

matrix of point, [H(dx, dy, α)] in Eq. (7.1):

[H̄(dx, dy, α)] = [H(dx, dy, α)]−T (10.2)

Now consider the following linear equation:

V1L1 + V2L2 + V3L3 = 0. (10.3)

This equation can either interpreted either as constraining a point V on a line L or

as constraining a line L such that it passes through a point V. The role of point coor-

dinates V and line coordinates L are completely symmetric. This leads to a general

principle, known as duality, in projective plane geometry, i.e., geometric transfor-

mations that replace points by lines and lines by points while preserving incidence

properties among the transformed objects. This means that any theorem about in-

cidences between points and lines in the projective plane may be transformed into

another theorem about lines and points, by a substitution of the appropriate words
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[80]. Because of this, in this paper, we restrict our study to point-geometric con-

straints only.

The planar motion of a straight line can be described as a one-parameter family

of lines given implicitly by:

F (t, (V1, V2, V3)) = V1L1(t) + V2L2(t) + V3L3(t) = 0. (10.4)

where (L1(t), L2(t), L3(t)) give the homogeneous coordinates of the moving line

at time t and (V1, V2, V3) are the points on the line at that moment. The trajectory

generated by the line family is a curve, referred as the envelope of this line family,

that touches every member tangentially and the moving line is so called as the gen-

erator of the envelope curve. Hence, a continuous curve can be view as generated

by the tangent lines, and vice verse, this continuous curve is the envelope of these

tangents.

It is straightforward to recover the motion of the tangent line from a continuous

curve in the form of line homogenous coordinate. Say V(t) is a point on the curve

ε at time t and L is the tangent line at this moment to determine. The tangent line

satisfies two conditions: (a) V(t) is on L as introduced by Eq. (10.4). (b) in the

homogenous coordinates the tangent line, (L1, L2) is a vector perpendicular to the

tangent vector, (V ′
x(t), V

′
y(t)), of the curve at time t. Hence we have

(
V1(t)

V3(t)
)′L1 + (

V2(t)

V3(t)
)′L2 = 0 (10.5)

which is equivalent to

dV1(t)

dt
L1 +

dV2(t)

dt
L2 +

dV3(t)

dt
L3 = 0 (10.6)
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after some algebra and with the consideration of Eq. (10.4). Hereafter, the motion

of the line can be explicitly represented as

F = {L(t)|V(t) · L = 0&V′(t) · L = 0} (10.7)

Up till now, we can conclude that the line motion constrained by a continuous curve

is unique.

Now we consider the envelope traced by the line motion. In this case, we com-

pute the tangent point V based on the line motion L(t). The line envelope can be

interpreted as the collection of the intersections of nearby lines F (t, (V1, V2, V3)) at

all time t. The intersection at time t is the point at which the tangent line contacts

the envelope at that moment. This point on the envelope is obtainable by simulta-

neously solving Eq. (10.4), which indicates L(t) passes the point V, together with

the following constraint

∂F

∂t
= V1

dL1(t)

dt
+ V2

dL2(t)

dt
+ V3

dL3(t)

dt
= 0 (10.8)

To sum up, based on the motion of its straight line, the line trajectory can be

uniquely determined as its envelope ε as described below.

ε = {V(t)|V · L(t) = 0&V · L′(t) = 0} (10.9)

Readers please refer to [???] for the derivation of Eq. (10.8) as well as the details

of the general theory of envelopes from the perspective of differential geometry.

In this chapter, we explain connection between be the line motion and the en-

velope curve from the viewpoint of duality transformation. Consider a curve CV
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traced by point V(t) and ruled by the associated tangent L(t). After duality trans-

form, V(t) becomes a moving line denoted by Ṽ(t), while the L(t) turns to be a

point L̃(t) to trace the curve, say CL. V(t) and Ṽ(t) share the same homogeneous

coordinates but are dual geometric elements: one is a line, and the other is a point.

The same to L(t) and L̃(t). It can be proved that after duality transformation, the

line Ṽ(t) is tangent to curve CL at point L̃(t). Simply speaking, the pair of a tan-

gent line and a tangent point of one curve swaps to the pair of a tangent point and a

tangent line of another curve by the duality transformation between point and line.

Therefore, the problem to find the envelope V(t) for the line motion L(t) can be

converted to seek for the tangent line Ṽ(t) of the curve L̃(t). The straightforward

answer Eq. (10.7) to the later problem explain Eq. (10.9) in a comprehensive way:

(a) the tangent line Ṽ(t) passes the point L̃(t),

L̃(t) · Ṽ = 0 (10.10)

This gives rise to the first condition in Eq. (10.9). (b) in the homogenous coordinates

of the line Ṽ, (V1, V2) is a vector perpendicular to the tangent vector of at point L̃(t),

((L1/L3)
′, (L2/L3)

′)

L̃′(t) · Ṽ = 0 (10.11)

which is Eq. (10.8) and the section condition of Eq. (10.9). Essentially, the enve-

lope conditions in Eq. (10.9) are the dual form of the tangent motion conditions in

Eq. (10.7).

In view of Eq. (10.7) and (10.9), the mutual generation between the line motion

and the envelope curve is bijective and unambiguous, in the sense that one line mo-

tion results a unique envelope curve and this curve recovers the same lime motion.
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The converse statement is also true: a curve can set up a unique line motion and this

motion duplicates the same curve as its envelope. Consequentially, the line motion

and the envelope curve is equivalent; the representation of a line motion can be re-

placed by the envelope curve, and vise verse, the continuous curve can be expressed

by a line motion.

10.2 Explicit Description of Geometric Constraints

In this paper, we restrict ourselves to line-geometric constraints, i.e., a specific line

on the moving body is required to roll on a given curve. In order to focus on

trajectory of the line or, in the other words, the shape of the curve, we seek to

develop a representation of a line trajectory who generates the curve that is invariant

with respect to rigid-body transformation in the plane as well as scaling.

Recall the linear transformation, see Eq.(7.2), in the plane that preserves the

shape but not the scale of a curve which sequentially undergoes a rotation for an-

gle ξ, a scaling for factor λ and a translation (cx, cy). There exists the associated

transform for the line trajectory. Let g = (cos η, sin η, g) and G = (G1, G2, G3)

denote the line trajectory and its new configuration after an equiform displacement

(in Figure 7.2):

G = [Ē]g =




cos ξ − sin ξ 0
sin ξ cos ξ 0
D̄x D̄y κ


g (10.12)

where D̄x = −cx cos ξ − cy sin ξ, D̄y = cx sin ξ − cy cos ξ and κ = 1/λ. Thus, an

equiform displacement has four degrees of freedom and are defined by the parame-

ters (ξ, κ, D̄x, D̄y).
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The main task in kinematic acquisition for line constraints is to identify a line l

(cos β, sin β, l) in the moving body such that its trajectory L best approximates one

of the constraint curves in a library of “standard constraint line motion”. Another

factor that affects this constraint matching process is the parameterizations of the

constraint curve and the trajectory L. Ideally, an intrinsic parametrization for each

of the line can be carried out to remove the influence of parametrization in the shape

matching process. For example, One might like to convert the line trajectories to the

envelope curves, hence the arc length for each of the envelopes can be carried out to

remove the influence of parametrization in the shape matching process, and there-

after, computational comparison of either the envelopes or the envelope arc-length

parameterized line trajectory leads a solution to the constraint retrieval. However,

in this chapter, we take a computationally less expensive approach of normalizing

the parameterizations of these closed line trajectories so that they are in the range

of [0, 1]. Since the periods of these trajectories are made equal to one, we have

g(t) = g(t− 1), G(t) = G(t− 1), L(t) = L(t− 1) (10.13)

where t =∈ [0, 1]. Another factor that affects the constraint matching process is

the choice of initial line on each of these trajectories. To address this issue, we

provide a shift factor t∆ so that the initial line on the constraint line trajectory can

vary in order to find a better match. Incorporating the shift factor, we can define

the normalized parameters, tG and tL, for the constraint curve G(tG) and a point

trajectory of the given motion, L(tL) as

tL = t, tG = t + t∆ (10.14)
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wherein t ∈ [0, 1] and the shift parameter t∆ indicates how much the motion-shape

correspondence has to be shifted. As a result, L(tL) on [0, 1] match G(tG) on

[t∆, 1 + t∆].

10.3 Least-Square Approximation for Constraint Iden-
tification

This section presents an algorithm for identifying a given constraint from line tra-

jectories of a specified motion task. This work may be considered as an extension

of an earlier work on kinematic acquisition of point trajectories introduced in chap-

ter 7.

We assume that the motion task has been given explicitly as an ordered sequence

of N discrete positions and a set of N ordered lines belong to a given constraint

curve has also been given. Consequently, instead of using continuous parameter tV

and tG as given by Eq. (10.14), we use indexes i (i = 1, · · · , N ) to represent the

sequence of lines and positions, where the shift parameter t∆ becomes an integer n,

which means that the starting line on the geometric constraint line set is shifted by

n lines. Thus the squared distance between the ith line on the trajectory L and the

(i + n)th line on the geometric constraint is given by

δ2
i,n = (Li −Gi+n)T (Li −Gi+n) (10.15)

where | · | denotes the magnitude of a vector.

In view of Eq. (7.1) and (7.2), we have

Li = [H̄i]l, Gi+n = [Ē]gi+n (10.16)
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where [H̄i] is obtained from the 3 × 3 matrix in (7.1) by replacing α, dx, dy with

αi, dx,i, dy,i.

Substituting (10.16) into (10.15), after some algebra, we obtain

δ2
i,n = (AT

i,nX− [dx,i, dy,i][cos β, sin β]T )2 +2− 2 cos(β +αi− ξ− ηi+n) (10.17)

where

AT
i,n = [ cos ηi+n, sin ηi+n, gi+n, −1 ] (10.18)

are determined from the specified motion and the given geometric constraint, and

X = [D̄x, D̄y, κ, l]T (10.19)

are the design variables associated with the equiform displacement and choice of the

line l = (cos β, sin β, l) on the moving body. The sum of squares of the deviations

is thus given by (Eq. (7.7)):

S =
1

N

N∑
i=1

δ2
i,n =

1

N

N∑
i=1

{(AT
i,nX−[dx,i, dy,i][cos β, sin β]T )2+2−2 cos(β+αi−ξ−ηi+n)}.

(10.20)

The goal for constraint acquisition is to find a line l = (cos β, cos β, l) on the mov-

ing body such that the trajectory of l best approximates the given line trajectory

constraint after an appropriate equiform displacement, (ξ, κ, D̄x, D̄y). Totally, we

have six variables, (β, l, ξ, κ, D̄x, D̄y), to determine.

The least square solution to (10.20) satisfies the following conditions:

∂S

∂D̄x

= 0,
∂S

∂D̄y

= 0,
∂S

∂κ
= 0,

∂S

∂l
= 0,

∂S

∂ξ
= 0,

∂S

∂β
= 0 (10.21)
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The first four conditions give
[

N∑
i=1

{Ai,nA
T
i,n}

]
X =

[
N∑

i=1

{Ai,n[dx,i, dy,i]}
][

cos β
sin β

]
. (10.22)

which allows X to be expressed in terms of α.

The fifth condition leads to

N∑
i=1

sin(β + αi − ξ − ηi+n) = 0 (10.23)

which exclusively contains only β and ξ.

The last condition yields

[cos β, sin β](

[
N∑

i=1

{
[

dy,i

−dx,i

]
AT

i,n}
]
X−

[
N∑

i=1

{
[

dy,i

−dx,i

]
[dx,i, dy,i]}

][
cos β
sin β

]
)

+
N∑

i=1

sin(β + αi − ξ − ηi+n) = 0 (10.24)

The above equation can be simplified by substituting (10.22) and (10.23) into it.

Finally it is reduced to an equation including solely α:

[cos β, sin β]M [cos β, sin β]T = 0 (10.25)

where

M =

[
N∑

i=1

{
[

dy,i

−dx,i

]
AT

i,n}
][

N∑
i=1

{Ai,nA
T
i,n}

]T [
N∑

i=1

{Ai,n[dx,i, dy,i]}
]

−
[

N∑
i=1

{
[

dy,i

−dx,i

]
[dx,i, dy,i]}

]
(10.26)

Therefore, β is obtained by solving Eq (10.25), then ξ and X become available

by solving Eq (10.22) and (10.23), respectively, with the known value of β.
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Up to this point, it has been assumed that the shift parameter n is known, and

the least squares solution can be obtained by solving a set of equations. However, in

general, the desired value of n is unknown, and as aforementioned, the order of the

positions sampled from the motion and that of the lines on the constraint trajectory

are not automatically and optimally correlated. We now introduce a numerical algo-

rithm for shape matching which combines least squares optimization with a direct

search dealing with the shift parameter n, as stated below:

Objective: Given a discrete motion M with N sampled positions and a geometric con-
straint line trajectory g of N sampled points, find a point on the moving body
l = (cos β, sinβ), such that after the constraint line trajectory g is transformed into
to a new configuration G via an equiform displacement, (ξ, κ, D̄x, D̄y), the error be-
tween the trajectory L and the constraint line trajectory G as defined by Eq. (10.20)
is at minimum.

Algorithm

For each n ∈ [1, · · · , N ] do

For each i ∈ [1, · · · , N ] do

• Initialize values of Ai,n, dx,i, dy,i;

• Substitute Ai,n, dx,i, dy,i into Eq. (10.22), (10.23) and (10.25);

End for

• Solve Eq. (10.25) for β;

• Substitute β into Eq. (10.23) and solve for ξ;

• Substitute β and ξ into Eq. (10.22) and solve for X;

If the total error is currently at minimum do

• Update final solution to {β, l, ξ, κ, D̄x, D̄y, n};

End if

End for
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10.4 Tangent Lines to Conics

The intersecting curves of a circular cone with a plane are referred as conics. On

cartesian plane, a conic curve can be implicitly described by the quadric algebraic

equation:

aV 2
x + bVxVy + cV 2

y + dVx + eVx + f = 0 (10.27)

Bashelor provided a comprehensive enumeration of the conics by using the moduli

space[??]. Basically conics can be classified into two groups: nondegenerate and

degenerate conics. As the polynomial defining the conic is irreducible, the conic

is said to be nondegenerate. Such conics include circles, ellipses, hyperbolas, and

parabolas. If the polynomial defining the conic factors into a product of linear

polynomials, then the conic is just the union of two lines and said to be degenerate.

The conic curve can also expressed in homogenous matrix form

VT CV = 0 with C =




a b/2 d/2
b/2 c e/2
d/2 e/2 f


 (10.28)

where C is called the matrix of the conic section. The matrix C is nonsingular for

the nondegenerate conics. A conic section is homogenously described by the six

coefficients (a, b, c, d, e, f), or in the other words, (αa, αb, αc, αd, αe, αf) depict

the same conic when α 6= 0. Thus, C is also homogeneous, since αC represents the

same conic when α 6= 0.

The tangent line to the conic at point V can be explicitly represented by

L = CV (10.29)
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It is easy to verify that the above line coordinates satisfy the conditions Eq (10.7)

for such a line motion that is tangentially constrained by the conic curve. The line

L tangent to the conic C necessarily satisfies the following condition:

LT C∗L = 0 (10.30)

For nondegenerate conics, C∗ = C−1. C∗ is symmetric, and the conic described by

C∗ is said to be the dual conic of C. Apparently, Eq (10.30) indicates the tangent

line L is on the dual conic C∗. The tangent line conic is dual to the envelop conic,

and conversely the conic is dual to the conic of its tangent generator.

10.5 Implicit Description and Retrieval of Geometric
Constraints

Alternatively by taking advantage of duality between conics and tangent conics, the

representation of the line motion constrained by conics and invariant to rigid-body

transformation in the plane as well as scaling can also be expressed in implicit form.

If the given curve is a conic C and the equiform transform is E(ξ, λ, cx, cy). After

the equaifrom transform, the conic becomes

C′ = E−T CE−1 (10.31)

and the dual conic for the tangent lines is

C′∗ = EC∗ET (10.32)

All the tangent lines of new configuration satisfy

LT C′∗L = 0 (10.33)
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In kinematic acquisition to identify a line l(cos β, sin β, l) on the moving body

whose trajectory L best approximate the line trajectory constrained by C, it is es-

sential to find the l and E that equalize Eq. (10.33). Because the line constraint g

and its configuration G after the equiform transform are implicit represented by C∗

and C′∗ respectively, neither the parametrization nor the initial line is not involved

in the matching process.

When the motion task is given explicitly as an ordered sequence of N discrete

positions, let the N lines be index by i (i = 1, 2, · · · , N). The structural error for

the implicit conic constraint is given by

S =
N∑

i=1

(LT
i C′∗Li)

2 (10.34)

Substitute Li = [H̄i]l and Eq. (10.32) into the above equation, and we have

S =
N∑

i=1

(lT [H̄i]
T [EC∗ET ][H̄i]l)

2 (10.35)

To identify the line constraint for the given motion to to find β, l, ξ, λ, cx, cy to

minimize the structural error. However, the structural error function is a quadric

polynomial of cos β, sin β, l, cos ξ, sin ξ, cx, cy and λ. To handle this optimization,

we can resort to the search on β, l, ξ, λ, cx, cy. Since this search is conducted in

six-dimensional space, a more intelligent search method such as the simulated an-

nealing search is recommended.
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10.6 From Geometric Constraints to Mechanisms

To design a mechanical device to generate the motion featured by line geomet-

ric constraints, we follow the same principle that applied to point geometric con-

strained motion to realize the geometric constraints using kinematic chains.

Figure?? enumerates some 1-dof mechanisms and classify them based on the

geometric constraints they provide. A comprehensive treatise on the generation of

the tangents to planar algebraic curves using planar mechanisms can be found in

[117].

In what follows we present an example to illustrate the effectiveness of the con-

straint recognition scheme. We then show that the result leads naturally to task-

centered design of mechanisms for the specified task. In this example, the given

motion task is artificially designed such that the moving frame carries out two lines:

one is tangent to an ellipse and the other is tangent to a circle, see Figure ??. The

ellipse has a major axis of length 5 and a minor axis of length 3, and is centralized

at point (−1.5, 1.0). The angle between the major axis of the ellipse and the hori-

zontal axis of the reference frame is 30◦. The center of the circle is (2,−3) and its

radium is 1.5. The rigid body motion is artificially designed such that the x-axis (or

line Le(0, 1, 0) ) on the moving frame is required to tangentially touch the ellipse

at point P e
1 , P e

2 , · · ·P e
n and meanwhile, another line Lc(−0.8090, 0.5878, 0) on the

moving frame is tangent to the circle at points P c
1 , P c

2 , · · ·P c
n. In our example we

sampled n = 63 tangent points and lines. Since Le and Lc have to satisfy rigid body

condition, once the two constraint curves and P e
i are determined, and then the P c

i is

accordingly known.
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(a) (b)

(c) (d)

Figure 10.1:
(a): 1-dof mechanism that generates tangent lines of a circle
(b): 1-dof mechanism that generates tangent lines of an ellipse
(c): 1-dof mechanism that generates tangent lines of a hyperbola
(d): 1-dof mechanism that generates tangent lines of a parabola

In the first part of this example, we test our identification algorithm for the

explicitly represented constraints. We use the green ellipse in Figure 10.2 as our

desired shape. For explicit constraint, the ellipse are given as a sequence of sample

points. For the purpose to test the algorithm, sample points on the constraint are

identical to those on the ellipse used to construct the example motion. Hence, we

expect the line (0, 1, 0) to be identified as tangent moving line to the ellipse. By
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Figure 10.2: The rigid body motion with two lines tangent to one ellipse and one
circle, respectively. The red-blue frames are some sample positions of the motion.
The origin of the moving frame traces the dash line in black.

run simulated annealing algorithm for 20 times. The we retrieve more than one

constraint of the same shape yet of different sizes and locations. Figure 10.3 de-

picts exactly the same constraint and Figure 10.4 shows another identification result

which also preserve the elliptical shape quite well.

In the second part of the example, we examine our identification algorithm for

the implicitly represented constraint. Also the ellipse are used for test. Herein, the

constraint is given by the matrix of the conic section,

C =




1
2.52 0 0
0 1

1.52 0
0 0 −1


 (10.36)

Pleasingly, not only the original constraint is identified, but also by running simu-

lated annealing algorithm for multiple times, we obtain multiple solutions of good

quality, see Figure.
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Figure 10.3: The ellipse in green is the constraint identified from the motion, such
that it is tangentially touched by the moving line (0, 1, 0). The solid lines in black
are some samples of the line motion that is tangent to the identified ellipse.

10.7 Conclusions

In this chapter, we have successfully extend the methods to extract point geometric

constraints from a specified motion task to line geometric constraint by resorting

to the duality of point and lines. The resulting constraints are then used to identify

and synthesize simple mechanisms for constraint generation. This task-centered

and constraint based paradigm to mechanism design greatly reduces the complexity

of the type synthesis problem.
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Figure 10.4: The ellipse in green is the constraint identified from the motion, such
that it is tangentially touched by the moving line (−0.4160, 0.9094, 0.7641). The
solid lines in black are some samples of the line motion that is tangent to the iden-
tified ellipse.

Figure 10.5: The ellipse in green is the constraint identified from the motion, such
that it is tangentially touched by the moving line (−0.4688, 0.8833, 1.1235). The
solid lines in black are some samples of the line motion that is tangent to the iden-
tified ellipse.
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Figure 10.6: The ellipse in green is the constraint identified from the motion, such
that it is tangentially touched by the moving line (0.8385, 0.5449, 0.3279). The solid
lines in black are some samples of the line motion that is tangent to the identified
ellipse.
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Chapter 11

Conclusion
This dissertation focuses on the task-centric design problem, and advocates a new

geometric constraint based design paradigm, namely “variational kinematic geom-

etry”. For the purpose to identify the merits of geometric constraint approach,

we conduct a comparative research on both the classical mechanical-centric (see

chapter 4 to 6) and new geometric-centric (see chapter 7 to 10) methods. For the

mechanical-centric method, we study the synthesis methods for planar 6R closed

chain and four-bar mechanism, both of which follow the same design pattern that

the type of the mechanism is required to know first and the optimization is used to

revise the dimension. In the other words, there is a clear boundary between type

synthesis and dimensional synthesis if mechanical-centric approach is applied for

mechanism design. We propose the variational kinematic geometry method to deal

with the task-centric design from the perspective of geometry. Our method is able to

simultaneously synthesize a mechanism both topologically and dimensionally. As

shown in chapter 7 to 10), our design approach emphasizes on the geometric fea-

ture of the task motion and follows such a procedure that geometric constraints are

firstly identified by using shape analysis method, and then multiple design solutions

are yielded by choosing diverse feasible mechanisms to generate the geometric con-
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straints individually. Our design approach has similarity to ATLAS method in view

of both of them are using the geometric information of the task. ATLAS method

works in this way: the curves generated by different mechanisms are preprocessed

and stored in a library, and to design a mechanism is to look up a curve to match the

desired curve and choose the according mechanism. Our method is different from

ATLAS method from three ways. Firstly, up to our literature review, existing AT-

LAS method works for the synthesis of gear 2R chain, gear 5R closed chain, cam

and four-bar linkage. Obviously, ATLAS method requires to type of the mechanism

to be known. However, our method has no boundary between type and dimension

synthesis, and we can with more types than existing ATLAS method can do. Sec-

ondly, ATLAS method can be only applied to trajectory tasks, but the geometric

method works for motion generation, and we use ATLAS as part of our geometric

constraint library to build more complex mechanisms that are not available from

ATLAS methods. Thirdly, we use the FD based shape comparison algorithms to

retrieve the geometric features. This kind of constraint identification methods are

compatible with human vision according to the study by cognitive scientists[107].
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