
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

 

 

The role of working memory in visual search guidance for multiple targets 

A Dissertation Presented 

by 

Hyejin Yang 

to 

The Graduate School 

in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy  

in 

Experimental Psychology 

Stony Brook University 

August 2010



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Hyejin Yang 

August 2010



ii 

 

Stony Brook University 

The Graduate School 

 

 

 

Hyejin Yang 

 

 

 

We, the dissertation committee for the above candidate for the 

doctor of Philosophy degree, hereby recommend 

acceptance of this dissertation. 

 

 

 

Gregory Zelinsky, Ph.D. – Dissertation Advisor 

Associate Professor, Department of Psychology 

 

 

Nancy Franklin, Ph.D.  - Chairperson of Defense 

Associate Professor, Department of Psychology 

 

 

Hoi-Chung Leung, Ph.D. 

Associate Professor, Department of Psychology 

 

 

Lester Loschky, Ph.D. 

Assistant Professor, Department of Psychology, Kansas State University 

 

 

 

 

 

 

This dissertation is accepted by the Graduate School 

 

 

 

 

Lawrence Martin 

                                        Dean of the Graduate School 



iii 

 

Abstract of the Dissertation 

The role of working memory in visual search guidance for multiple targets 

by 

Hyejin Yang 

Doctor of Philosophy 

in 

Experimental Psychology 

Stony Brook University 

2010 

 

It is an open question whether the search for multiple targets is less efficient than the 

search for a single target.  Here we explored visual search guidance for multiple targets 

by tracking subjects‘ eye movements, with the broad goal being to better understand the 

close relationship between visual search and working memory.  One series of 

experiments showed that the search for multiple targets is less efficient and less guided 

than the search for a single target.  Using a retro-cue paradigm we were able to 

distinguish between two potential causes of this load effect; one related to capacity 

limitations on visual working memory during encoding, and the other due to a mismatch 

between the features of multiple targets in working memory and the single target in the 

search display.  We found that the proportion of initial fixations on the target, a 

conservative measure of search guidance, was influenced by feature mismatch but not by 

a memory encoding limitation; guidance was affected by the targets indicated by the retro 

cue (feature mismatch) and not the number of targets shown at preview (memory 

encoding).  We therefore conclude that multiple target search is less guided than single 

target search due to too many features in visual working memory (from multiple targets) 

weakening the guidance to the actual target appearing in the search display.  A second 

series of experiments explored how multiple targets are represented, in terms of feature 

shared by two targets (common features) or features unique to two targets (distinctive 

features), and how this representation changes with the conceptual relationship between 

the search targets.  We found that two dissimilar targets are represented by distinctive 

features, whereas two similar targets are represented by common features, although in 

both cases search guidance improves with the use of distinctive features. 
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1. Overview 

We search for a book from a book shelf.  We search for quarters to pay meters.  

Like these examples, visual search is a task where you try to find a given target item.  It 

may be performed efficiently regardless of the number of items in a search display when 

the target can be distinguished from distractors easily.  However, it may be performed 

inefficiently when the target looks similar to distractors.  In this case, attention needs to 

be allocated to the location of each item in a serial manner (Treisman & Gelade, 1980).  

Allocation of attention is not random.  It has been shown that attention is guided to the 

items that share visual features with a target (Wolfe, 1994).  For example, if you search 

for a red square, a red circle might attract your attention because they have the color red 

in common.  This topic of guidance in visual search was studied widely, and it is this 

potential for guidance that creates a relationship between visual search and working 

memory (WM). 

During visual search, target representations are maintained online so as to 

efficiently guide search to the target and to recognize the target once it is found.  This is 

especially true when there is a delay between the target preview and the search display.  

Both of these functions require the involvement of memory in search.  Target 

representations are likely to be held and maintained in WM during search, as WM is 

responsible for storing goal-relevant information.  Not surprisingly, most visual search 

theories assume the involvement of WM during visual search.  These theories suggest 

that target representation in WM guides the allocation of attention to items that have 

target features (Wolfe, 1994; Desimone & Duncan, 1995).   
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In line with those theories, many visual search studies have shown that attention is 

biased to search items having target features.  Importantly, this bias has been quantified 

using eye movement measures of search guidance.   For example, distractors sharing 

target features are fixated more than distractors that do not (Williams, 1967; Luria & 

Strauss, 1975; Scialfa & Joffe, 1998; Williams & Reingold, 2001).  Distractors having 

target features are also preferentially fixated by initial saccades (Findlay, 1997).  Other 

studies have shown that search guidance improves with the level of target specification 

(Chen & Zelinsky, 2006; Malcolm & Henderson, 2009; Schmidt & Zelinsky, 2009); 

when subjects have more information about what a target will look like, they are more 

efficient in shifting their gaze to the target.  Collectively, these findings suggest a role for 

WM in search; target features are held in WM and compared to the search display, with 

search being preferentially directed to those items best matching these target features.     

Several studies have directly focused on the relationship between WM and visual 

search.  Woodman, Luck, and Schall (2007) examined if target templates are maintained 

in WM during visual search, as assumed by visual search theories.  They compared 

search efficiency when subjects were engaged in dual visual search and WM tasks to 

search efficiency when subjects were only engaged in a visual search task.  Targets in the 

visual search tasks were either held constant throughout the whole experiment or varied 

on every trial.  They found that search efficiency in the dual task condition was degraded 

compared to search efficiency in the single task condition only when the target changed 

on every trial.  They concluded that targets are held in WM, and need to be encoded anew 

when the target identities change from trial to trial.   
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Other studies have focused on whether visual search and WM share the same 

mechanism (Oh & Kim, 2004; Woodman & Luck, 2004; Woodman, Vogel, & Luck, 

2001).  Participants in these studies performed either a dual WM and visual search task, 

or just a visual search task.  Two different types of WM tasks were used; a spatial WM 

task and an object WM task.  For the spatial WM task, several dots were presented and 

subjects had to remember the locations of the dots while performing visual search.  For 

the object WM task, subjects were presented with colored squares or boxes with gaps and 

had to remember the colors of the squares or shapes of the boxes while performing visual 

search.  They found that visual search efficiency decreased when participants performed 

visual search and spatial WM tasks together compared to when participants performed 

only visual search.  However, search efficiency did not decrease when participants 

performed the dual visual search and object WM task.  These results suggest that visual 

search and visual working memory share a spatial attentional mechanism, but perhaps use 

different features.   

A related study asked whether visual search uses the same executive functions 

used by WM (Han & Kim, 2004).  Again, subjects performed either a dual WM and 

visual search task, or visual search alone.  The WM tasks either required an executive 

function (backward counting or alphabet reordering) or simple storage (remembering 

digits or letters).  Visual search efficiency in the dual task condition was degraded 

compared to the search alone condition only when the WM task required an executive 

function.   This finding suggests that executive functions are also shared by WM and 

visual search tasks. 
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Other studies provided evidence that the representation in WM affects the 

allocation of attention during visual search (e.g., Soto, Heinke, Humphreys, & Blanco, 

2005; Woodman & Luck, 2007).  The task in these studies required holding an object in 

WM while performing visual search.  A target or a distractor in the search display could 

match the object in WM.  When targets matched the WM representation, visual search 

efficiency increased (Soto, Heinke, Humphreys, & Blanco; Woodman & Luck).  When 

distractors matched the WM representation, different studies reported different findings.  

Some studies found that search efficiency decreased when distractors were inside 

geometric shapes that matched the WM representation (Soto, Heinke, Humphreys, & 

Blanco).  Other studies found that search efficiency remained the same regardless of the 

presence of distractors matching the WM representation (Downing & Dodds, 2004; 

Houtkamp & Roelfsema, 2006).  Still other studies found that search efficiency actually 

increased when only the distractors, not the targets, always matched the WM 

representation (Woodman & Luck, 2007).   

Most recently, Hollingworth and Luck (2009) directly investigated how WM 

contents affected the control of eye movements during visual search.  In their study, 

subjects were holding a color in WM for a later discrimination task.  As subjects made a 

saccade to a target, the search display was rotated so that the saccade landed on a location 

between a target and another object.  When this object had the same color as the color for 

the later discrimination task, the proportion of the next saccades to the target decreased 

compared to when the object had a different color.  The authors concluded from this 

finding that eye movements during visual search are controlled by visual WM.  In sum, 

there is reasonable consensus that WM representations affect search guidance by 
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orienting attention to items matching the contents of WM, with the strength of this effect 

depending on the nature of the search item.   

This involvement of WM during visual search gets more obvious when we search 

for several things at the same time, which is the focus of this study.  When we search 

simultaneously for multiple targets, for example a note and a pen, we need to hold 

multiple target representations in WM.  Holding multiple things for a later test is a typical 

way to manipulate WM load in the WM literature.  In this study, we addressed search 

guidance for multiple targets using this standard WM manipulation.   

Chapter 2 examines the interaction between search guidance and WM load: is 

search guidance different between single target search and multiple target search?  

Experiment 1 shows that subjects holding multiple targets in WM were able to guide their 

search less efficiently compared to when they were holding only a single target in WM.  

Following this initial demonstration, Experiment 2 asked why search guidance decreased 

with multiple targets.  Specifically, was this decreased guidance for multiple targets due 

to subjects picking only one of the targets to guide their search (a working memory 

limitation), thereby producing no guidance for an incorrectly chosen target, or was this 

reduced guidance due to subjects holding both targets in WM, but having an imperfect 

feature match between the single object appearing in the search display and the features 

from both target objects in WM.  We found that subjects were holding both target objects 

in WM, and that decreased guidance was due to too many target features guiding search; 

given that only one target appeared in the search display, the mismatching target in WM 

was essentially guiding search away from the actual target.   
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Chapter 3 asks how people use WM representations to guide their search.  

Specifically, we wanted to see if multiple targets were represented by features common to 

both targets or by features distinctive to each of the targets.  In experiment 1, we tested 

this question using two targets that were from different categories and found that people 

used distinctive features to guide multiple target search.  In experiment 2, we asked the 

same question using two targets from the same category and found that people used 

common features for two targets when the targets were very similar to each other. 

Chapter 4 summarizes these findings, discusses their implications, and points to 

potential directions for future work. 
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2. Too many features spoil the guidance: Multiple target search is inefficient due to 

feature mismatch 

2.1. Introduction 

We search for a pen and a piece of paper.  We search for a fork and a knife.  As 

these examples illustrate, visual search in our everyday lives very often involves 

searching for more than one thing at the same time.  This topic of multiple target search 

has been addressed in the visual search literature for several decades.  The main question 

is if the search for multiple targets is less efficient than search for a single target, and 

there have been mixed results.  In some studies, search for multiple targets was as 

efficient as single target search (e. g., D‘Zmura, 1991; Quinlan & Humphreys, 1987).  

Other studies have found that the efficiency of multiple target search could be improved 

after practice (Neisser, Novick, & Lazar, 1963; Schneider & Shiffrin, 1977; but see 

Menneer, Cave, & Donnelly, 2009 for a different finding), or after a decrease of the 

number of possible targets from all 26 English letters to five letters (Metlay, Sokoloff, & 

Kaplan, 1970).  In still other studies, however, multiple target search was found to be less 

efficient than the search for a single target; subjects needed more time to detect multiple 

targets than to detect a single target (Kaplan & Carvellas, 1965; Menneer, Barrett, 

Phillips, Donnelly, & Cave, 2007; Moore & Osman, 1993).   

Interestingly, one study showed that search for multiple targets could be efficient 

or inefficient depending on the feature dimensions that defined the targets (Treisman, 

1988).  Subjects did not need more time to search for three different colored bars than to 

search for a single colored bar.  However, they did need more time to search for a blue 

bar, a horizontal bar, and a large bar, in the presence of small green vertical distractor 
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bars, than to search for a single bar.  A recent study also showed that the cost for multiple 

target search depends on the featural similarity between the targets (Menneer, Cave, & 

Donnelly, 2009).  When subjects searched for x-ray images of a knife and a gun, both of 

which looked blue, the accuracy for multiple target search was similar to that for single 

target knife search, which showed lower accuracy than a single target gun search.  When 

subjects searched for x-ray images of a metal threat weapon (blue) and an improvised 

explosive device (multiple colors), the accuracy for multiple target search was lower than 

that for single target search.  Based on these findings, they suggested that multiple target 

search could be efficient when the targets share common features between them.  So it 

seems that the search for multiple things at the same time requires more time than search 

for one thing unless you are searching for a red pen and a blue pen or for a red pen and a 

red apple at the same time.
1
 

The primary goal of this experiment is to determine if there is a cost associated 

with the search for multiple targets (relative to single target search performance) when 

these targets are visually complex real-world objects.  Most of the previous work on this 

question used simple stimuli, such as letters or geometric shapes.  The search for multiple 

letters might be as efficient as the search for a single letter (e.g., Neisser et al., 1963; 

Schneider & Shiffrin, 1977) because of perceptual grouping caused by the small number 

of features shared by letters.  It is therefore unclear whether the previous findings, which 

have all been obtained using simple stimuli, will generalize to multiple target search in 

more naturalistic contexts.  Also, given that familiarization with stimuli can increase 

                                                 
1
 It is unclear whether a common feature search, searching for just a pen or a red thing, should not be 

considered a multiple target search, as this single common feature (or set of features) might constitute a 

new single search target.  We will return to this question in Chapter 3.   
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search efficiency (e.g., Wang, Cavanagh, & Green, 1994), the fact that previous studies 

used stimuli repeatedly might be another reason why multiple target search was found to 

be as efficient as single target search.  To address these concerns and to mimic multiple 

target search in our everyday lives more closely, we investigated whether there was a cost 

in searching for multiple real-world objects compared to searching for a single real-world 

object, while avoiding potential effects of stimulus familiarity on search efficiency by 

never repeating stimuli.    

If multiple target search is less efficient than single target search, why is it less 

efficient?  Answering this question is the second major goal of this experiment.  We will 

consider two factors that might plausibly affect the efficiency of multiple target search.  

First, a limit on WM capacity might in turn limit the number of targets that can be held in 

memory for the purpose of visual search.  The visual search task requires finding a 

designated target item among distractors, and the efficient performance of this task 

requires holding the target representation in WM so that it can be actively compared to 

patterns in the search display.  It is this process of ongoing comparison between a WM 

target representation and a search display that is believed to result in the efficient 

guidance of search to a target (Desimone & Duncan, 1995; Duncan & Humphreys, 1989; 

Wolfe, 1994).  Although there have been several studies exploring the relationship 

between WM and visual search, the focus of these studies has been on determining how 

the contents of WM affects search, such as the guidance of attention to search items 

matching the WM representation (e.g., Soto, Heinke, Humphreys, & Blanco, 2005; 

Woodman & Luck, 2007) and the maintenance of targets in WM only when their 

identities change on every trial (Woodman, Luck, &Schall, 2007).  Despite the close 
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relationship between WM and visual search, no study of multiple target search has 

spotlighted the role of WM.   

Multiple target search has obvious implications for WM, as there are multiple 

target templates that must be held in WM in order to guide search.  The distinction 

between a single representation and multiple representations is referred to as a load 

manipulation in the WM community, and there are ongoing debates on the capacity of 

visual WM to accommodate such loads.  Some studies concluded that visual WM could 

hold up to four objects regardless of their complexity by showing that change detection 

performance for both single-feature and multiple-feature objects degraded dramatically 

when a test array had more than four objects (Luck & Vogel, 1997; Vogel, Woodman, & 

Luck, 2001).  Others have argued that visual WM capacity depends on stimulus 

complexity; we can hold fewer visually complex objects compared to simple objects 

(Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005).  These studies used stimuli that 

varied in visual complexity (colored squares, letters, Chinese characters, and shaded 

cubes) and found that change detection performance decreased as object complexity 

increased.  This suggestion was challenged by a later study that found evidence for a 

fixed WM capacity regardless of object complexity, arguing that the previous evidence 

for a reduced capacity with complex objects resulted from comparison error that was due 

to high sample-test array similarity rather than a capacity limit (Awh, Barton, & Vogel, 

2007).   

Rather than assuming that visual WM capacity is determined by the number of 

objects or the number of features, other studies have suggested that visual WM is 

constrained both by the number of objects and number of features so its capacity could be 
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both fixed and variable (Wheeler & Treisman, 2002; Xu & Chun, 2006).  Wheeler and 

Treisman (2002) suggested that visual WM has separate stores for features and objects 

with bounded features.  They also suggested that there is a limit on the numbers of 

features that can be stored in each feature dimension, but that there is no limit on the 

numbers of features that can be stored across different feature dimensions.  A recent 

fMRI study would seem to support this position by showing that different brain areas 

hold different numbers of objects in visual WM (Xu & Chun, 2006).  Inferior intra-

parietal sulcus (IPS) seems to represent up to four objects regardless of complexity, while 

superior IPS and lateral occipital complex (LOC) seem to represent variable numbers of 

objects depending on complexity.  Representations in inferior IPS do not have detailed 

feature information about the objects, while representations in superior IPS and LOC 

have detailed feature information, which is why these areas show differences regarding 

visual WM capacity (Xu, 2009). 

Related to the above studies, other recent efforts have tried to characterize WM in 

terms of the resolution of its representations rather than capacity limits on the number of 

objects or features.  For example, Zhang & Luck (2008) showed that six items could be 

represented as accurately as three items, but that the probability for six items to be 

represented in visual WM was about half of that for three items.  This suggests that when 

the number of items to be encoded exceeds visual WM capacity limits, we selectively 

represent a subset of items with high precision.  Bays and Husain (2008) posited a 

different view.  While adopt the concept of ‗slots‘ when explaining visual WM capacity 

limits (e.g., Luck & Vogel, 1997; Alvarez & Cavanagh, 2004), they explained visual WM 

capacity in terms of more graded limited resources.  They found that the precision of 
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representations gradually decreased as the number of items increased from one to six.  

Given this finding, they concluded that multiple objects compete for limited resources, 

but that there is no a priori limit on the number of objects that can be represented in 

visual WM; as the number of objects increase, their resolution simply decreases.   

The suggestion that visual WM is capacity limited, either in terms of the number 

of objects in WM or in terms of the precision of the representations, provides one 

explanation for why multiple target search might be less efficient than single target 

search.  For example, suppose that a subject is shown a vase with flowers and a lamp as 

target previews in a multiple target search task.  Because either of these objects might 

appear in the search display, the subject will need to encode detailed feature information 

from both, thereby involving both the superior IPS and LOC regions.  And because the 

vase with flowers and the lamp consist of a potentially large number of features, with 

perhaps many features (e.g., red, green, blue, etc.) existing on each feature dimension 

(e.g., color), one might expect the capacity limit on visual WM to limit the encoding 

these objects.  If the number of features of multiple targets normally exceeds visual WM 

capacity, then not all of these target features will be encoded, resulting in poorer search 

guidance and reduced efficiency for multiple target search.  Similarly, if graded resources 

are the source of limitations, then the representation of the lamp and vase with flowers 

will both be less precise compared to a representation of each individually.  Regardless of 

whether the limitation is coming from slots or graded resources, the ultimate result is that 

information about complex objects is lost at encoding when the task requires that 

multiple objects be represented in visual WM, and that these impoverished 
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representations are responsible for the degraded guidance observed in multiple target 

visual search. We will refer to this as the capacity-limitation hypothesis.   

An alternative reason for why multiple target search might be less efficient than 

single target search has to do with of the comparison operation underlying search 

guidance.  Visual search theories have suggested that a target definition or template is 

stored in WM and that search is guided by this WM representation of the target 

(Desimone & Duncan, 1995; Duncan & Humphreys, 1989; Wolfe, 1994; Zelinsky, 2008).  

For example, the guided search model proposed that targets are analyzed in terms of 

basic features such as color and orientation, with the specific features on each of these 

dimensions (e.g., red or vertical) being stored in visual WM.  These WM representations 

are then assumed to guide attention to the locations of the objects that have the target 

features in the search scene; the more features the search target has in common with the 

WM target representation, the greater this item‘s priority is in the selection of objects to 

inspect with focal attention (Wolfe, 1994; Zelinsky, 2008).  This relationship between 

search guidance and the target features held in visual WM has implications for the current 

discussion of multiple target search.  To the extent that the features from multiple targets 

are represented in visual WM, and to the extent that the features in visual WM are used to 

guide search (Wolfe, 2004; Zelinsky, 2008), then some discrepancy or mismatch is 

inevitable between the features from the multiple targets held in WM and the features of 

the single target appearing in the search display.  We will refer to this feature mismatch, 

and the consequent reduction in search guidance that it will inevitably bring, as the 

feature-mismatch hypothesis.  For example, if the features of a vase with flowers and the 

features of a lamp are all encoded into visual WM as a result of having these objects 
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designated as targets, but it is only the lamp that appears in the search display, then 

poorer guidance is expected (relative to a single target search for only the lamp) due to 

the features of the vase and flowers not matching the features of the lamp in the search 

display.  Decreased search guidance for multiple target search is therefore a necessary 

consequence of having two (or more) targets in WM, but only one of these targets in the 

search display.   

It is also important to note that this effect of mismatching features is independent 

of any effect of visual WM capacity limits on guidance in a multiple target search task.  If 

you are searching for a red vertical bar and a green horizontal bar, which are well within 

visual WM capacity limits, and if a red vertical bar appears as a target in search display, 

there is still a mismatch between target features in WM and target features in the search 

display, and this mismatch would be expected to worsen guidance relative to a single 

target search for a red vertical bar.  The efficiency of multiple target search can therefore 

be affected by either capacity limitations on visual WM, mismatches between target 

features in visual WM and the search display, or both.  

The remainder of this chapter describes two experiments that explore more fully 

the relationship between visual WM load and search guidance.  In Experiment 1 we set 

out to answer two questions.  First we ask whether the search for multiple targets is less 

efficient and less guided than the search for a single target using real-world objects.  

Second, to the extent that multiple target search is less guided than single target search, 

we seek to determine whether this load effect is due to limitations on WM capacity or 

feature mismatch.  To answer this second question we adopted a retro cue paradigm.  

These were cues presented after the target previews but before the search display.  By 
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combining these cues with a manipulation of the number of target previews presented to 

subjects, we can independently assess the effects of WM limits and feature mismatch on 

search efficiency and guidance.  Guidance costs arising from WM capacity limitations 

would be revealed by varying the number of target previews appearing before the retro 

cue, whereas costs attributable to feature mismatch would be revealed by using the cue to 

manipulate the number of the previewed targets that subjects could expect to appear in 

the search display.  In Experiment 2, we adopt a dual-target paradigm (having multiple 

targets appear in the actual search display) to independently assess whether load effects 

on search guidance are due to mismatching features, or subjects using only a subset of the 

previewed targets to guide their search.   

2.2. Experiment 1 

2.2.1. Introduction  

 Discussion of WM load effects in the context of search are complicated by the 

fact that there are at least two components, capacity limits on WM and feature mismatch, 

that might affect search performance.  Previous studies directly comparing single target 

to multiple target search failed to distinguish between these components, thereby leaving 

ambiguous the cause of any observed load effect.   In this experiment we attempt to 

resolve this ambiguity.   

We will introduce a retro cue to tease apart these WM and search guidance 

components to see how each affects efficiency and guidance for multiple search targets.  

A retro cue will be used to manipulate the number of target preview representations that 

are held in WM, thereby directly manipulating WM load and indirectly manipulating the 

number of targets subjects will search for at the same time (i.e., the number of target 
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templates that might be used to guide search).  The retro cue is presented after the target 

preview(s) to inform subjects as to which of the previewed targets (one of them, some of 

them, or all of them) they should search for.  For example, after seeing four target objects 

during preview, the retro cue inserted before the onset of the search display will indicate 

to subjects whether they could search for only one of the previewed objects, two of them, 

or all of them.  Using this retro cue paradigm, we can untangle the contributions of WM 

capacity limits and feature mismatch on search guidance, enabling us to see how each of 

these components might contribute to any observed costs associated with searching for 

multiple real-world objects. 

According to the capacity-limitation hypothesis, search guidance should degrade 

with the number of target previews (WM load) regardless of how many of these previews 

are designated by the retro cue to be relevant to search.  This is because the subject would 

be forced to encode all of the multiple target previews into visual WM, as at this point in 

the trial the cue would not yet have indicated which of these targets might appear in the 

actual search display.  If a limitation on WM capacity prevents the complete encoding of 

all of these targets, these incomplete or partially-encoded target representations would be 

expected to lessen search guidance and efficiency and produce a load effect.
2
  Finding a 

main effect of the number of target previews would therefore provide evidence for 

encoding limitation as being the cause of load effects, and support for the capacity-

limitation hypothesis.
3
   

                                                 
2
 Note that we don‘t distinguish here between cases in which all of the target previews are partially encoded, 

or some subsets of the target previews are fully encoded.  For the purpose of this study we consider these 

both to be expressions of an encoding limitation on visual WM.   
3
 Note that this definition of a load effect limits the role of WM on search specifically to a capacity 

limitation expressed at encoding.  We do not consider any forgetting from WM that might occur between 

preview offset and search display onset, or any effect of a maintenance process in offsetting this forgetting 
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The feature-mismatch hypothesis makes a very different prediction.  If search 

guidance is degraded purely as a result of feature mismatch, then the number of target 

previews (one, two, etc.) designated at the start of each trial should not affect search 

guidance, as the assumption is that visual WM capacity is sufficient to encode all of the 

target previews.  Rather, this hypothesis predicts an effect of the retro cue, which 

determines the number of targets that will actually be compared to the search display and 

used to guide search.  When the retro cue is non-specific, then multiple targets will be 

compared to the search display, resulting in a relatively high degree of feature mismatch 

and poor search guidance.  As the retro cue becomes more specific, fewer extraneous 

targets will be compared to the search display, resulting in less feature mismatch and 

better search guidance.  Finding a main effect of retro cue would therefore support the 

feature-mismatch explanation for a load effect.  Of course it might also be the case that 

WM constraints and feature mismatch might both affect search, or potentially interact.  

These patterns, too, would be revealed using our retro cue paradigm.  

2.2.2. Method 

Participants 

Forty-five students from Stony Brook University participated in the experiment 

for course credit.  All had normal or corrected to normal visual acuity and were naive 

with regard to the experimental hypotheses. 

Stimuli and Apparatus 

Targets were images of teddy bears, butterflies, cars, and fish.  Teddy bear 

images were obtained from Cockrill (2001) and modified for this experiment.  All 

                                                                                                                                                 
(e.g., Woodman & Vogel, 2005), when evaluating the relationship between WM load and search guidance 

in this study. 
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butterfly images and most of the car and fish images were selected from the Hemera 

Photo Objects Collection (Gatineau, Quebec, Canada).  Other car and fish images were 

obtained from random web sites and modified for this experiment.  The distractors were 

images of real-world objects randomly selected from the Hemera Photo Objects 

Collection.  None of the distractors belonged to the four target categories.  We resized all 

of the objects such that the smallest bounding box enclosing each consisted of exactly 

5000 pixels.  Although this manipulation allowed the heights and widths of the objects to 

vary, the widest object was about 4° and the tallest object was about 3.6°.  All objects 

were presented in color, and no object, target or distractor, was presented more than once.  

This was done in order to have a relatively pure representation in WM without the 

potential for contamination from long-term memory (LTM). 

The experiment was designed and controlled using the Experiment Builder 

software package (SR Research Ltd, version 1.5.1.).  Eye movements were recorded 

using an EyeLink II eye tracking system (SR Research Ltd).  This video-based eye 

tracker sampled eye position at 500 Hz and had a spatial resolution of about 0.2°.  We 

used a chinrest to prevent head movement and to keep a fixed viewing distance between 

the monitor and subjects.  Manual responses were collected using a Game Pad controller 

interfaced through the computer‘s USB port.  Stimuli were displayed using a ViewSonic 

19‖ flat-screen CRT monitor at a refresh rate of 100 Hz.   The viewing angle of the 

display was 26° horizontally and 20° vertically. 

Procedure   

The experiment started with an initial calibration procedure, needed to map 

screen coordinates to eye position.  This was followed by a short block of practice trials, 
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and another calibration procedure immediately preceding the main experiment.  A trial 

began when the subject looked at a dot in the center of the screen and pressed a button on 

a game pad with their right thumb.  Three different groups of subjects participated in 

three preview conditions (Figure 1).  In the 1 Preview (1P) condition, one image from the 

sets of teddy bears, butterflies, cars, and fish was presented in the center of the screen for 

1.5 seconds.  In the 2 Preview (2P) condition, two images out of the four categories (for 

example, one car and one butterfly) were presented for 3 seconds, one on the left side of 

the display and the other on the right.  In the 4 Preview (4P) condition, a teddy bear, a 

butterfly, a car, and a fish, were presented for 6 seconds, with one object appearing in 

each quadrant of the display.  Target previews in the 2P and 4P conditions were randomly 

placed at each location, with the constraint that each preview category appeared equally 

often at each location.  Given that we are interested in capacity limitations on WM, and 

not encoding limitations per se, we increased the preview duration with the number of 

 

or

or or

1 Preview

2 Preview

4 Preview

1 Target 2 Target 4 Target

Figure 1. Examples of trials in each condition. Note that stimuli are not drawn to 

scale.   
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target previews so as to make sure that there was sufficient opportunity for subjects to 

encode all of the previews, to the extent that their WM capacity enabled such encoding.   

After a 500 msec delay, again with a fixation dot appearing at the center of the 

screen, a retro cue was displayed for 2 seconds indicating to subjects the specific targets 

from the preview that they should look for in the search display.  This was to manipulate 

the number of actual target(s) to be used to guide search.  Specifically, the retro cue 

consisted of three levels: In the 1 Target search condition (1T), the subjects searched for 

only a single target; in the 2 Target search condition (2T), the subjects had to search for 

two targets; and in the 4 Target search condition (4T), the subjects searched for four 

targets at the same time.  Using this cue, we can therefore dissociate the number of 

targets actually used to guide search (1T, 2T, 4T) from the number of target previews 

presented initially to subjects (1P, 2P, 4P).   

In the 1P condition, there was only one target preview, and subjects searched for 

this one previewed target in the search display.  All the trials in the 1P condition, 

therefore, were 1 Target search trials, and a retro cue in this 1P-1T condition was a letter 

standing for the target preview; a ‗T‘ for teddy bears, a ‗B‘ for butterflies, a ‗C‘ for cars, 

and an ‗F‘ for fish.  For example, a ‗T‘ was presented if subjects saw a teddy bear 

preview.   

In the 2P condition, there were two target previews, and subjects searched for 

one of them (1T) or both of them (2T) depending on the retro cue.  The retro cue in the 

2P-1T conditions was either a T, B, C, or F, meaning that one of the two target previews 

designated by the cue would appear in the search display.  For example, if a fish and a 

butterfly were followed by a ‗B‘ retro cue, this indicated to subjects that only the 



 

21 

 

butterfly would appear in the search display.  The retro cue in the 2P-2T conditions was 

an ‗A‘, meaning that any one of the two target previews could appear in the search 

display.  Subjects would therefore have to search for both targets, as the search display 

would be equally likely to contain either of the previewed objects.   

In the 4P condition, there were four target previews, and subjects searched for 

one of them (1T), two of them (2T), or all of them (4T) depending on the retro cue.  Cues 

in the 4P-1T conditions, again, were either a T, B, C, or F, meaning that only the one 

target preview designated by the cue would appear in the search display.  The retro cues 

in the 4P-2T conditions were two letters standing for two of the four target preview types, 

meaning that one of the two target previews designated by the retro cue would appear in 

the search display.  For example, if the cues ‗F C‘ were presented following the four 

target previews, this indicated to subjects that they should look for both a fish and a car as 

either might appear in the search display.  The retro cue in the 4P-4T conditions was an 

‗A‘, again indicating that the search display might contain any one of the four target 

previews.  This condition therefore represented the most difficult of our multiple target 

search tasks.   

Following the retro cue, there was another 500 msec delay, again with a central 

fixation dot, followed by the presentation of the search display.  The search display 

depicted nine objects, one target and eight distractors.  These objects were arranged on an 

imagery circle with a radius of 8.9°.  Each object was equally distant from its nearest 

neighbor (about 6°, center to center).  Inserted near the target was a small (0.14°) ‗+‘ or 

an ‗×‘ character, placed at some arbitrary location within 2 pixels of the target‘s edge.  

The subject‘s task was to find the target and to report whether this character was a ‗+‘ or 
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an ‗×‘.  This discrimination task had been used successfully in previous work (Chen & 

Zelinsky, 2006; Schmidt & Zelinsky, 2009), and its adoption enabled us to exclusively 

use target present trials, which are of primary interest to search guidance.  Subjects 

indicated a ‗+‘ by pressing the left trigger of the Game Pad with their left index finger, 

and an ‗×‘ by pressing the right trigger of the Game Pad with their right index finger.  

After their response, there was a feedback display indicating whether the judgment was 

correct or incorrect. There were 96 1T trials, which were evenly distributed over the four 

target categories in the 1P condition.  In the 2P condition there were also 96 1T trials, but 

now an additional 24 2T trials.  In the 4P condition there were 96 1T trials, 24 2T trials, 

and 24 4T trials. 

2.2.3. Results and Discussion 

Error rates were less than 3% in all conditions, and error trials were excluded 

from all subsequent analyses.  These low error rates indicate that subjects were able to 

perform the +/× discrimination task successfully.   

We introduced retro cues to independently assess the contributions of the 

capacity-limited WM component and the feature mismatch component on search 

guidance.  Before the presentation of the retro cue subjects would have to hold all the 

target previews in WM.  For example, in the 4P condition, all four target previews must 

be encoded and held in WM until the retro cue.  However, depending on the retro cue, 

subjects in the 4P conditions could restrict their search to one, two, or four targets.  

Before the retro cue the 4P conditions therefore held constant the WM load at four 

objects, meaning that these conditions did not differ with respect to their WM demands, 

but after the cue the number of templates that would be used for search guidance varied 
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from one to four.  Any difference among the 4P 1T, 2T, and 4T conditions could 

therefore be attributed to imprecise guidance resulting from mismatch between features 

in WM and features in the search display.  Contrast this scenario with a comparison 

between the 1P-1T, 2P-1T, and 4P-1T conditions.  Here, only the WM load was 

manipulated, not the number of guiding templates, which in each case was only a single 

target.  Any difference among these conditions could therefore be attributed to a 

limitation on WM capacity.   

The mean times taken by subjects to make their button press responses (RTs) are 

shown in Table 1.  Note, however, that these measures reflect the time needed for 

subjects to not only find the target, but also to locate the + or × adjacent to this object and 

to discriminate between these characters.  Because they lump together guidance with 

various delays specific to the discrimination judgment, overall RTs in our task cannot be 

directly compared to the RT measures of search efficiency more commonly reported in  

target present/absent search tasks.  To properly analyze our data we divided the overall 

RTs into separate search guidance and discrimination components.  Search guidance, the 

primary focus of this study, is indicated in this measure by the time between the onset of 

the search display and the subject‘s first fixation on the target, what we refer to as RT-to- 

target (or RTT).  These data are shown in Figure 2a.  The second discrimination  

component reflects the time between the first fixation on the target and the button press  

Table 1 

Mean manual RTs in Experiment 1. Numbers in parentheses indicate standard error. 

  1 Target 2 Target 4 Target 

1 Preview 1529.04 (70.41)   

2 Preview 1600.20 (70.38) 1771.76 (94.39)  

4 Preview 1677.18 (80.36) 2041.33 (93.84) 2034.21 (86.78) 
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response.  These data are shown in Figure 2b for completeness, but are largely 

uninterpretable and not central to the questions of this study.   

To determine whether subjects needed more time to search for multiple targets, 

we compared RTT in the 1P-1T, 2P-2T, and 4P-4T conditions (Figure 2a).  This analysis 

revealed a significant difference between conditions, F(2,42)=24.1, p<.01, which we then 

clarified using LSD post-hoc tests.  Consistent with a standard demonstration of a 

multiple target effect, we found that RTTs were longer in the 2P-2T condition compared  

to the 1P-1T condition (p<.05).  We also found a further increase in RTT in the 4P-4T 

condition compared to the 2P-2T condition (p<.001).  This indicates that the load effect is 

not limited to a difference between one and multiple targets; as the number of previewed 

targets increase, subjects require more time to find the target.   

To better understand the nature of this load effect, we conducted separate 

ANOVAs to test the capacity-limitation and feature-mismatch hypotheses.  The capacity-

limitation hypothesis predicts that an increase in the number of previews should result in 

worse guidance, and therefore longer RTTs.  Consistent with this prediction, the main 
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effect of preview number was significant in the 1T conditions, F(2,42)=3.6, p<.05.  Post-

hoc tests revealed faster RTTs in 1P-1T compared to 4P-1T (p<.05).  However, RTT in 

2P-1T was only marginally faster than 4P-1T (p<.1), and did not differ from 1P-1T (p>.3).  

The main effect of preview number was significant in the 2T conditions, F(1,28)=7.6, 

p<.05, meaning faster RTT in 2P-2T than in 4P-2T.   

In contrast to this mixed evidence for an effect number of previews on search, we 

found a robust effect of the number of cue-specified targets.  As predicted by the feature-

mismatch hypothesis, the main effect of number of targets was highly significant in 2P 

condition, F(1,14)=9.5, p<.01, showing faster RTT in 2P-1T than in 2P-2T.  The main 

effect of number of targets was also highly significant in the 4P condition, F(2,28)=34.1, 

p<.001.  Through post-hoc testing we found faster RTT in 4P-1T than in 4P-2T (p<.001), 

which was faster than 4P-4T (p<.05).  Together, this preliminary analysis indicates some 

support for effects of both a WM capacity limitation and feature mismatch on search 

guidance, with the contribution of mismatching features being the clearer effect. 

As expected, analysis of the discrimination times failed to reveal meaningful 

differences between conditions (Figure 2b).  There were no significant main effects of 

number of previews in 1T, F(2,42)=.09, p>.92, and in 2T conditions, F(1,28)=.85, p>.36, 

nor was there a significant main effect of number of cue-specified targets in the 2P 

conditions, F(1,14)=2.5, p>.14.  However, there was a significant main effect of number 

of cue-specified targets in the 4P conditions, F(2,28)=9.6, p<.01.  Post-hoc analysis 

showed that this effect was due to longer discrimination times in the 4P-2T condition 

than in the 4P-1T (p<.01) and in the 4P-4T conditions (p<.01).  We speculate that this 

difference was due to subjects needing extra time to confirm that the target was one of the 
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two cued target previews.  There was no difference between the 4P-1T and 4P-4T 

conditions (p>.67).  Except for the 4P-2T condition, we did not find any effect of the 

number of previews and the number of targets on discrimination time.  This means that 

the effects of multiple targets on search are limited largely to effects on search guidance, 

at least for the discrimination task used in the present study.   

Although RTT is an accepted measure of search guidance (e.g., Castelhano & 

Henderson, 2007; Yang & Zelinsky, 2009), it is by no means the best measure.  First, it 

includes the time needed to reject all of the distractors fixated before the target.  Given 

that each of these distractor rejections require verifying that the fixated object is indeed a 

distractor, the accumulation of these individual decisions adds to the measure a 

potentially large amount of variability that is unrelated to the actual guidance process.  

Second, RTT has no clear baseline against which a chance level of guidance can be 

compared.  This requires the limitation of conclusions to only relative guidance 

differences between conditions.  To address these concerns we analyzed our data using a 

more conservative measure of search guidance, one that defines guidance in terms of the 

percentage of trials in which the target was the first object fixated during search.    

Figure 3 shows the percentage of immediate target fixations for the preview and 

target conditions.  If search was unguided and randomly directed to objects, the target 

should be fixated initially on only 11% of the trials.  Analyses revealed immediate target 

fixation rates that were clearly above chance in all conditions, ts(14)>=2.8, ps<.05.  This 

suggests that search was guided even when subjects searched for four objects at the same 

time.   
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However, it is also clear from Figure 3 that search guidance varied between 

conditions.  As in the case of RTT, we compared immediate target fixation rates in the 

1P-1T, 2P-2T, and 4P-4T conditions to determine that guidance decreased with the 

addition of multiple search targets.  We found a significant difference between conditions, 

F(2,42)=15.8, p<.001.  Post-hoc tests again confirmed that this difference was significant 

between both the 1P-1T and 2P-2T conditions (p<.01) as well as between the 2P-2T and 

4P-4T conditions (p=.05).  Increasing the WM and search load from one to two to four 

targets not only increases the time needed to fixate the target, it also reduces the degree of 

immediate search guidance.   

So as to better understand the nature of this load effect, we again subjected our 

data to separate ANOVAs to test the capacity-limitation and feature-mismatch 

hypotheses.  The capacity-limitation hypothesis predicts that an increase in the number of 

previews should result in worse guidance, and therefore fewer immediate fixations of the 

target.  Contrary to this prediction, and to our analysis of the RTT data, we found no main 
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effects of preview on initial target fixations in either the 1T, F(2,42)=1.2, p>.3, or 2T 

conditions, F(1,28)=.18, p>.7.  In contrast, there was a highly significant main effect of 

target in both the 2P condition, F(1,14)=17.0, p<.01, and the 4P condition, F(2,28)=13.7, 

p<.001, a pattern consistent with the feature-mismatch hypothesis.  Subsequent analyses 

confirmed that guidance decreased between the 4P-1T and 4P-2T conditions (p<.001) and 

also between the 4P-2T and 4P-4T conditions (p<.07).  This analysis helps to clarify the 

slightly unstable patterns found in the RTT data; it is the feature mismatch created by 

holding multiple target representations held in visual WM that reduces search guidance, 

not an encoding constraint imposed by a limited WM capacity.   

Perhaps the absence of an effect of previews in the above analysis is due in part to 

subjects differentially coding these objects, thereby causing some to be more heavily 

weighted than others.  For example, if subjects spend a longer time viewing one object, or 

have a bias for the most recently viewed object, then this single object might be used to 

guide search in those cases when the retro cue fails to narrow the selection of guiding 

target representations.  To explore this possibility we analyzed the oculomotor scanning 

behavior of subjects as they viewed the two and four target preview displays.   

Figure 4 breaks down the target preview viewing behavior in three ways: cases in 

which the object that would appear as the target in the search display was the first object 

fixated during preview viewing (to look for a preview primacy effect), cases in which the 

search target was the last object fixated during preview viewing (to look for a preview 

recency effect), and cases in which the search target was the object fixated longest during 

preview viewing (to look for a duration-related encoding bias). 
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Separate analyses were conducted for the 2P and 4P conditions.  In the 2P 

condition, there were no guidance benefit associated with the first object fixated during 

preview, F(1,14)=1.0, p>.3, the last previewed object fixated, F(1,14)=1.0, p>.3, nor the 

previewed object fixated the longest, F(1,14)=.005, p>.9.  For all three measures there 

was only a general decrease in guidance with an increase in the number of cue-specified 

targets, F (1,14)=15.9, p<.01 for the first previewed object, F (1,14)=18.9, p<.01 for the 

last previewed object, and F (1,14)=19.1, p<.01 for the previewed object fixated longest.  

Similarly, in the 4P conditions there were no guidance benefits associated with the first 

fixated preview, F(1,14)=.07, p>.7, with the last fixated preview, F(1,14)=1.6, p>.2, or 

with the longest fixated preview, F(1,14)=.03, p>.8.  Planned comparison showed that 

there was a guidance difference only for the last fixated preview in the 1T condition, 
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t(14)=2.5, p<.05.  There were no other significant differences.  Again, there was a general 

decrease in guidance with an increase in the number of cue-specified targets in all three 

measures, F (2,28)=9.1, p<.01 for the first previewed object, F (2,28)=19.8, p<.001 for 

the last previewed object, and F (2,28)=11.4, p<.001 for the previewed object fixated 

longest.  These analyses therefore provide no reason to believe that differential encoding 

of targets during preview viewing resulted in the absence of preview-specific guidance in 

this experiment.   

In summary, our goals in this experiment were to determine if multiple target 

search is less efficient and less guided than single target search, and if so, is this load 

effect better explained as an encoding limitation on visual WM or in terms of 

mismatching features between the search target and the guiding target representations.  

Using both RT-to-target and immediate target fixation measures of guidance, we found 

that search guidance indeed does decrease with the addition of multiple targets.  Our 

findings extend previous work on this topic by demonstrating that this load effect is 

reflected in actual search guidance (rather than non-guidance related decisional factors), 

appears in the context of real-world objects, and is not specific to the search for one 

versus two targets; guidance decreases out to the maximum of four targets tested in this 

experiment.  However, as discussed this load effect is ambiguous as to its cause.  By 

adopting a retro cue paradigm, we were able to partially disambiguate the cause of this 

load effect.  Although the RTT measure suggested some evidence for the contribution of 

both an encoding limitation and feature mismatch, analysis of immediate target fixations, 

the more conservative guidance measure, clearly suggested that mismatching features 

were responsible for the effect of target load on search guidance.  The fact that this 

A 
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evidence appeared most clearly in the immediate fixation measure may suggest that 

mismatching features play their greatest role very early in search, with WM factors 

exerting more of an influence on guidance as the search decision starts to converge on the 

target.   

2.3. Experiment 2 

2.3.1. Introduction 

In experiment 1 we showed that multiple target search is less guided than single 

target search.  We also showed that this load effect was not due to capacity limitations on 

visual WM, arguing instead that mismatching features were the cause of this reduced 

guidance.  Because there was only one target in the search display yet multiple target 

representations in visual WM, the features from these target representations that did not 

match the actual search target would not only weaken the target guidance signal, but also 

potentially match distractor objects, thereby guiding search away from the target.  

However, there is an alternative explanation for the reduced guidance that we found with 

multiple targets.  It may be that these multiple target representations were indeed 

available to guide search (i.e., no WM capacity limitations), but that subjects were simply 

choosing not to use all of these representations, instead perhaps picking only one to guide 

their search.  When subjects happen by chance to pick the right target representation (the 

one actually matching the search target), there will be good guidance.  When they happen 

to guess the wrong target, there will be no guidance.  Guidance should therefore decrease 

with the addition of each new target representation to visual WM, as the probability of 

correctly guessing the search target becomes smaller.     
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In experiment 2 we directly tested whether people search for multiple targets 

simultaneously or whether they pick one of these possible target representations to guide 

their search.  Two target previews were shown on each trial, one a teddy bear and the 

other a car; search displays were manipulated using three conditions.  In the ‗both T‘ 

condition, both of the two previewed targets appeared in search display.  In the ‗same T‘ 

condition, one of two previewed targets appeared twice in search display; that is, either 

two instances of the previewed teddy bear or the previewed car.  In the ‗one T‘ condition, 

only one of the previewed targets appeared in search display.   

If both target previews are held in WM and used to guide search, guidance should 

be same regardless whether the search display depicts both targets or two instances of the 

same target.  For example, if you are holding a teddy bear and a car in visual WM, it 

would not be matter whether there are a teddy bear and a car in search display or two 

instances of the teddy bear (car) - search should be guided equally well in these two cases.  

We would therefore predict no difference in guidance between both T and same T 

conditions.  Guidance, however, should be better in the both T and same T conditions 

compared to the one T condition for purely probabilistic reasons; because there are two 

targets and six distractors in the two-target conditions (both T and same T conditions) 

while there is only one target among seven distractors in the one T condition, the 

probability of finding the target simply by chance is higher when there are two targets.     

In contrast, if only one target is used to guide search, better guidance is expected 

in the both T condition than in same T condition, because there should be no guidance in 

the same T condition when the subject picks the wrong target representation to guide 

their search.  In the Both T condition, regardless of which object the subject picks, 
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guidance should still be good because both targets are present in the search display.  For 

example, if the car was selected to guide search, guidance to the car target in the search 

display should be strong.  On average, guidance should only be half as strong in the Same 

T condition because, on half of the trials, the wrong target will be selected.  If the car is 

selected, there will be no guidance on trials when the search display depicts two teddy 

bears.  Again, should subjects correctly guess the target, better guidance would be 

expected in the same T condition than in one T condition as a result of the increased 

probability of finding one of the two targets.     

2.3.2. Method 

Participants 

Seventy-two students from Stony Brook University participated in the 

experiment for course credit.  All had normal or corrected to normal visual acuity and 

were naive with regard to the experimental hypotheses. 

Stimuli and Apparatus 

Teddy bears from Cockrill (2001) and cars from the Hemera Photo Objects 

Collection and random web sites were modified and used as targets.  Distractors were 

real-world objects randomly selected from the Hemera Collection.  The apparatus were 

identical to what was described for experiment 1.  None of the distractors belonged to the 

two target categories.  All objects were presented in color and resized such that each 

would just fit into a 5,000 pixel bounding box.  None of the stimuli were used more than 

once. 

Procedure 
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 The experiment began with an initial calibration procedure, followed by practice 

trials and another calibration.  Each trial began with a button press after fixation on a 

central dot.  Target previews consisting of a teddy bear and a car were presented for 3 

seconds, one 4.5° to the left of central fixation and the other 4.5° to the right of central 

fixation.  Each category of object was equally likely to be presented on either side of the 

display.  After a 1 second delay with a central fixation dot, an 8-object search array was 

presented, with these objects arranged into a ring with a radius of 8.9° surrounding 

central fixation.  There were three different search display conditions, manipulated 

between subjects.  In the both T condition, both previewed targets appeared in the search 

display, along with six distractors.  In the same T condition, two identical teddy bears or 

two identical cars from the preview appeared with six distractors in the search display.  In 

the one T condition, one of the previewed targets and seven distractors appeared in the 

search display.  In order to determine whether search behavior would be affected by the 

separation between the two targets in the both T and same T conditions, in one quarter of 

the trials the two targets appeared next to each other (no distractors between them), and in 

the remaining three quarters of the trials the two targets would have either one, two or 

three distractors between them, with equal probability.  Targets in one T condition were 

randomly assigned to one of the eight possible display positions, with the constraint that a 

target appeared equally often in each location.  The target in the one T condition and one 

of the two targets in the both T and same T conditions were accompanied by a ‗+‘ or an 

‗×‘, and the insertion of this character was evenly divided between teddy bears and cars.  

The task was to report whether this character was a ‗+‘ or an ‗×‘.  Subjects pressed the 

left trigger of the Game Pad with their left index finger when the target was accompanied 
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by a ‗+‘, and they pressed the right trigger with their right index finger to indicate an ‗×‘.  

Accuracy feedback followed the response.  Each condition had 128 trials.   

2.3.3. Results and Discussion 

 Error rates were less than 3% in all conditions, and error trials were excluded 

from all subsequent analyses.   

Analysis of RTs revealed significant differences among the three conditions 

(Figure 5), F(2,69)=6.4, p<.01.  Through LSD post-hoc tests we found that RTs in the 

both T condition were longer than those in the same T and one T conditions (both p<.01).  

RTs did not differ between the same T and one T conditions (p>1.0).  These differences 

were not due to differential times needed to execute the initial saccades.  Initial saccade 

latencies were 198 ms, 195 ms, and 187 ms for the both T, same T and one T conditions, 

respectively, with these latencies failing to reliably differ F(2,69)=1.2, p>.3.
4
  We 

                                                 
4
 We think it is interesting that the latencies of initial saccades directed to targets did not differ between the 

one T condition and the two-target conditions (both T or same T).  Although recent studies have shown that 

initial saccade latencies are largely immune from Hick‘s Law (Kveraga, Boucher, & Hughes, 2002; 

Lawrence, St. John, Abrams, & Snyder, 2008), meaning that increases would not be expected due strictly to 

an increase in the number of alternatives, it is also fairly well established that initial saccade latencies 

increase with target-distractor similarity (e.g., Ludwig & Gilchrist, 2002).  We therefore expected latencies 

to increase in the two-target conditions simply due to the competition created by two target similar patterns 
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Figure 5.  Mean manual RTs in Experiment 2. Error 

bars indicate standard error. 
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therefore attribute the longer RTs found in the both T condition to later decision 

processes associated with the manual response, and not to search guidance.  We also 

failed to find any effect of distance between the two targets on initial saccade latencies in 

either the both T condition, F(3,69)=1.7, p>.2, or the same T condition, F(3,69)=.16, p>.9.  

There was also no effect of target distance on immediate target fixations in the both T 

condition, F(3,69)=2.2, p>.1.  Although there was a small effect of target separation on 

immediate target fixation in the same T condition, F(3,69)=3.5, p<.05, the effect 

appeared for only one level of target separation.  Rather than showing a linear decrease in 

guidance with increasing distance between the two targets, post-hoc tests revealed less 

guidance to targets separated by two distractors compared to targets in the other 

conditions (p<.05 for all comparisons; mean immediate target fixations were 62.7, 61.6, 

55.7, and 62.6 in the 0-3 separation conditions, respectively).  Regardless of whether the 

two targets were the same or different objects, search behavior was largely unaffected by 

their separation in the search display.  For all subsequent analyses we therefore collapse 

across the target separation condition.   

To determine whether there were differences in guidance among the three 

conditions, we again compared the percentages of first object fixations on targets.  These 

results are shown in Figure 6a.  Immediate target fixations occurred far more frequently 

than what would be expected based on their respective chance baselines, t(23)≥10.2, 

p<.001, indicating that search guidance was quite pronounced in this task.  We also found 

a significant difference in guidance among the three conditions, F(2,69)=12.4, p<.001.  

                                                                                                                                                 
(indeed, actual targets) appearing in the search display, with each ostensibly vying for attention.  The fact 

that we did not observe this increase raises the intriguing possibility that the process of selecting a target 

from a target-similar distractor may require competition, but deciding which of two targets to look at 

(essentially selecting one of two targets) does not. 
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However, post-hoc analyses revealed that there were no differences in immediate target 

fixations between the both T and same T conditions, p>.3.  Indeed, contrary to the 

prediction of better guidance in the both T condition, there was a numerical trend towards 

worse guidance in this condition compared to same T.  As expected, we did find that the 

percentage of immediate target fixations was significantly lower in the one T condition 

than in the other two conditions, ps<.001, which we can attribute to the different chance 

baselines in these conditions; the one T chance baseline was 12.5% (=1/8*100) whereas 

the both T and two T chance baseline was 25% (=2/8*100).  However, after correcting 

for these different chance levels by subtracting each condition‘s baseline from the 

observed guidance level, we found no differences in guidance between any of the three 

conditions, F(2,69)=.98, p>.3 (Figure 6b).   

These findings suggest that multiple target representations are held in visual WM 

and used to guide search.  Had subjects simply picked one of the two target preview 

representations to guide their search, guidance should have been stronger in the both T 
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Figure 6. Percentage of trials where the target was the first fixated object.  Error 
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condition, because regardless of which guiding representation was chosen it would have 

matched a search target.  This would not be the case for the same T condition, in which 

half of the time the chosen representation would not have matched the search target.  The 

fact that guidance did not differ between these conditions, and indeed was numerically 

stronger in the same T condition, allows us to rule out this target selection possibility.  

We are therefore left with our original formulation of the feature-mismatch hypothesis; 

multiple target search is less guided than single target search due to the inevitable feature 

mismatch that results from having multiple target representations guiding search, but only 

having a single target appearing in the search display.   

2.4. General Discussion 

Previous studies provided mixed results on whether multiple target search is less 

efficient than single target search.  Most of them used simple stimuli such as letters or 

colored bars.  However, searching for two letters or two bars at the same time is far from 

what we do in our everyday lives.  We typically search for more complex objects that 

consist of many different colors, shapes, and textures.  Also, there is no limit on the 

number and kinds of other objects that might serve as distractors in real-world contexts.  

These distractors can also be very different from each other, and at the same time they 

could be very similar to targets.  All of these factors could affect search performance, 

thereby making it hard to generalize from simple stimuli to our everyday search.   

In this study we wanted to see if the search for multiple real-world targets is less 

guided and less efficient than the search for a single real-world object.  We found that 

this is indeed the case, and in fact further increasing the task load by adding more targets 

further decreased search efficiency and guidance.  Additionally, we wanted to explore the 
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causes of this load effect; why is multiple target search less guided?  We considered two 

hypotheses, one in terms of a capacity limitation on visual WM encoding, and the other 

in terms of mismatching features during guidance.  Although our RTT data partially 

supported both explanation, analysis of the first fixated objects, a conservative measure 

of search guidance, strongly supported only the feature-mismatch hypothesis.  Having 

more previews, and thus increasing the potential for WM capacity limitations, did not 

affect search guidance; decreased guidance resulted from too many target features (from 

multiple targets) weakening the guidance signal to the single target in the search display 

and generating spurious matches to the distractors.  Although we cannot rule out any 

factor influencing WM after the retro cue, this is nevertheless a new and important 

finding, as most previous work had just assumed that load effects on search were due to 

capacity limitations on WM (e.g., Menneer, Cave, & Donnelly, 2009).   

Might our conclusions be different had we presented more than four objects in the 

preview?  Certainly, if 6, 8, 12 or more objects appeared in the preview we would have 

observed more pronounced effects of WM encoding limitations on search.  However, this 

would not be terribly interesting.  There is now quite a large literature suggesting that 

when WM is taxed beyond about four things, regardless of whether these things are 

features or objects, or whether the reason for the limitation is slots or graded resources, 

performance will suffer.  The goal of our study was not to speak directly to the reason for 

this WM limitation, but rather to explore whether such a WM limitation is responsible for 

load effects commonly observed in the context of search.  Despite having a WM load 

clearly within most accepted limits of WM capacity (2-4 objects), we nevertheless 

observed a pronounced load effect in our task.  Moreover, given the visually complex 
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objects used in this study it was possible that this was due to a WM encoding limitation. 

As already summarized, this was not the case.  The clarity of this conclusion for feature-

mismatch would not have been possible had we imposed a WM constraint, as we would 

not have been able to separate WM effects from feature-mismatch effects as cleanly. 

In experiment 2 we clarified the effect of feature mismatch on search that we 

found in experiment 1.  Although experiment 1 ruled out a WM encoding limitation as a 

source of the load effect, it did not provide conclusive proof for the feature mismatch 

hypothesis; subjects may have been simply choosing not to use all of the target 

representations to guide their search.  To test for this possibility we presented two targets 

in the search displays.  We found that guidance was the same regardless of whether 

subjects were searching for two different targets or two instances of the same target.  This 

pattern would only be expected if subjects were holding representations of both targets in 

visual WM, and using both to guide their search.  When combined with experiment 1, we 

can therefore definitively conclude that effects of target load on search guidance in our 

task were due to mismatching features between the target representations in WM and the 

target appearing in the search display.   

In some sense, our decisive failure to find evidence for an effect of WM capacity 

limitations on search guidance is counterintuitive.  Given our use of visually complex 

real-world objects, one might think that resource limitations on visual WM (e.g., Bays & 

Husain, 2008) would prevent the additional targets in the 2P and 4P conditions to be less 

precisely represented than the single target in the 1P condition.  This would be 

particularly true if features, and not objects, were the determining factor in visual WM 

capacity, as has been suggested (Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005).  
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However, it may be possible to reconcile a capacity-limited encoding process with the 

fact that we found no evidence for such a limitation on search guidance.  A WM capacity 

limitation at encoding should only affect search guidance to the extent that the excluded 

features are important to the guidance process.  If the process of creating a target 

representation is intelligent enough to select only those features that best discriminate 

between the target and expected distractors, then only these features would need be 

encoded into visual WM, allowing the rest to be discarded.  Assuming that the total 

number of these discriminative target features does not exceed visual WM capacity, it 

may be that efficient guiding representations can therefore be formed for multiple targets 

even with a limited WM capacity.  This possibility will be considered more fully in 

Chapter 3, where we attempt to distinguish between the use of discriminative features and 

common features to guide multiple target search. 
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3. Is multiple target search guided by distinctive features or by common features? 

3.1. Introduction 

In the previous experiments, we showed that multiple target search for real-world 

objects is less efficient and less guided than single target search.  To determine what 

factors affected efficiency and guidance for multiple target search, we used retro cues to 

separately explore the effect of WM capacity limits during preview encoding and the 

effect of feature mismatch during actual search.  We found that only mismatching 

features, and not an encoding limitation on visual WM, was responsible for the reduced 

search guidance.  We also argued that this decreased guidance for multiple targets was 

indeed due to mismatching features from multiple targets rather than the hit-or-miss 

selection of only one of the viable targets to guide search.  The features of targets held in 

visual WM but not appearing in the search display would create mismatch signals that 

weaken guidance and reduce search efficiency.     

The present series of experiments were motivated by two goals.  First, our 

evidence against the use of a ―pick one target and discard the other‖ guidance strategy 

was based on a task in which guidance was compared between a condition in which both 

targets appeared in the search display and a condition in which two instances of the same 

target appeared in the search display.  Although we believe that this experiment produced 

compelling evidence against this strategy, we acknowledge the fact that having two 

identical targets appearing in a search display is an unorthodox manipulation that may 

have affected search behavior in some unknown way.  For this reason we sought to test 

this same possibility using a completely different method, thereby providing converging 

evidence for our conclusion in favor of the feature-mismatch hypothesis.  Second, given 
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our finding that the features from multiple targets are held in memory and used to guide 

search, one logical next question asks how the targets in multiple target search are 

represented.  Specifically, are they represented by the common features shared by all the 

targets or by distinctive features unique to each of the targets?  As a simple example of 

this distinction (focusing just on color), suppose subjects were searching for a brown 

teddy bear with a red bow and a yellow race car with a red rear foil.  Do subjects extract 

the common feature of red and guide their search using this unitized target representation, 

or do they extract the distinctive features of brown and yellow and guide their search 

using these object-specific representations?  Either method of target representation would 

be expected to produce worse guidance relative to single target search, but for very 

different reasons.  In the case of common features, the target would be defined too 

imprecisely to generate strong guidance (Schmidt & Zelinsky, 2009); in the case of 

distinctive features, reduced guidance would again be expected due to the feature 

mismatch problem.  The following series of experiments were designed to address the 

nature of the target representation underlying multiple target search, and how this 

representation might change with the similarity of the previewed targets.     

3.2. Experiment 1 

3.2.1. Introduction 

To address both of our research goals, we devised an estimate of multi-target 

search guidance that we refer to as the guidance index (GI).  Stately simply, the GI is the 

proportion of two target search guidance to single target search guidance, where guidance 

is corrected for chance.  Stated more formally: 

GI = (G2P - c) / (G1P - c), 
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where G2P and G1P are the levels of guidance observed in two-preview and one-preview 

search conditions, respectively, and c is the level of guidance expected by chance, which 

was a constant 11.1% in the following experiments given a set size of 9.   

A simple example will help to illustrate how the GI can be used to tease apart 

representational issues important to understanding multiple target search.  Let us assume 

that a person picks only one of two possible targets to guide their search (the ―pick one 

and discard the other‖ hypothesis).  If this chosen target then actually appears in the 

search display, guidance to this target should be as strong as when only this single target 

was presented at preview, given our previous evidence for the absence of encoding 

limitations on visual WM.  However, if this person picks the wrong target (the one that 

does not appear in the search display), guidance should be at chance.  Assuming that 

these two scenarios occur equally often, half of the trials should show relatively strong 

guidance (as good as single target search), while the other half of the trials should show 

no guidance.  The overall guidance level in two target search, assuming a ―pick one and 

discard the other‖ target representation, should therefore be half of the guidance level 

found in single target search, yielding a proportion of two-target to one-target guidance 

(GI) of .5.     

One of our goals in formulating the GI is to define a theoretical upper bound on 

the level of guidance in a multiple target search task that might exist if only one of the 

designated targets was actually used to guide search.  In the above formulation, our 

intension was to have this upper bound be .5, with any GI above .5 indicating proof 

positive for the use of features from both targets to guide search.  However, there is one 

scenario that might produce a GI exceeding .5 even when a person is using only one 
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target to guide their search.  Let us assume that a yellow teddy bear and a yellow car were 

designated as targets during preview.  If a subject decided to represent only the yellow 

teddy bear in their visual WM (and not the yellow car), but the yellow car appeared as the 

target in the search display, there might be some above-chance level of guidance to the 

yellow car due to the fact that both targets had in common the yellow feature.   

Consequently, the GI would be greater than .5 even though the subject would have picked 

only one target to guide their search.  Formulating a theoretical upper bound on the 

guidance contribution from one target in multi-target search task therefore requires 

factoring out the guidance expected due to the targets having common features.     

To estimate the level of guidance due to common features we conducted two 

single target control experiments, one for each of the two target sets used in the multiple 

target experiment.  For example, if a trial in the multiple target experiment designated a 

yellow teddy bear and a yellow car as targets, then the corresponding trial in the teddy 

bear control experiment would show only the yellow teddy bear target at preview, but 

would have the yellow car appear as a lure in the target absent search display.  Likewise, 

the corresponding trial in the car control experiment would have only the yellow car 

appear at preview, and the yellow teddy bear appear as the search lure.  By doing this, we 

can determine the degree of guidance to the yellow car that results from searching for 

only the yellow teddy bear, and conversely, the degree of guidance to the yellow teddy 

bear that results from searching for only the yellow car.  These levels of guidance can 

then be subtracted from the two-target level of guidance for that trial, thereby correcting 

the common feature confound and reinstating a GI of .5 as a theoretical upper bound.  Of 
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course this correction for common feature guidance requires amending the GI, which 

now becomes:  

GI = {(G2P - c) – (GL / 2)} / (G1P - c), 

where, GL is the level of guidance to the lures obtained from the control experiments.  

Note that we divide by two this lure-related guidance because it should arise on only half 

of the trials, specifically those in which subjects picked the wrong target preview to 

represent and guide their search.   

By including a control for common features in the GI, this measure also allows us 

to address our second goal, determining whether the guiding representation for multiple 

targets consists of common or distinctive features.  Because we explicitly estimate and 

subtract the contribution of common features from the two-target level of guidance, a GI 

> .5 would specifically indicate guidance due to distinctive features from both targets.  

Similarly, if subjects were consistently choosing to represent the targets in terms of 

common features, this would be expressed by a GI < .5.  Although the GI does not rule 

out the possibility that both distinctive and common features are used to guide search, it 

does allow us to identify the dominant contributing factor; a GI greater than .5 indicates a 

net guidance contribution by distinctive features, a GI less than .5 indicates a net 

guidance contribution by common features.  A GI of .5 would be less informative with 

respect to multiple target search, indicating either the roughly equivalent use of both 

common and distinctive features, or perhaps the use of only one of the two targets to 

guide search (i.e., the ―pick one and discard the other‖ strategy). 

3.2.2. Method 

Participants 
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Forty students from Stony Brook University participated in the experiment for 

course credit.  Twenty four of these students participated in the main experiment, and 

sixteen participated in the control experiments.  All had normal or corrected to normal 

visual acuity, by self report, and were naive with regard to the experimental hypotheses. 

Stimuli and Apparatus 

The targets were images of teddy bears and cars.  Teddy bears were obtained 

from Cockrill (2001), and the cars were selected from the Hemera Photo Objects 

Collection (Gatineau, Quebec, Canada) and random web sites and were modified for use 

in this experiment.  The distractors were again images of real-world objects selected from 

the Hemera Photo Objects Collection, and none were members of the teddy bear or car 

categories.  All of the objects were resized such that the smallest bounding box enclosing 

each consisted of exactly 5000 pixels.  This manipulation resulted in the widest object 

subtending ~4° and the tallest object subtending ~3.6°.  All objects were presented in 

color, and no object, target or distractor, was presented more than once. 

The experiment was designed and controlled using Experiment Builder (SR 

Research Ltd, version 1.5.1), and eye movements were recorded using an EyeLink II eye 

tracking system (SR Research Ltd).   Eye position was sampled at 500 Hz, and a 

calibration was not accepted unless the maximum spatial error was less than 1.0°.  We 

used a chinrest to prevent head movement and to keep a fixed viewing distance between 

the monitor and subjects (72cm).  Stimuli were displayed using a ViewSonic 19‖ flat-

screen CRT monitor at a refresh rate of 100 Hz.  The viewing angle of the display was 

26° horizontally and 20° vertically.  Manual responses were collected using a Game Pad 

controller interfaced through the computer‘s USB port.   
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Procedure  

Main experiment. Following calibration and practice each experimental trial began with a 

button press after fixation on a central dot.  A teddy bear, a car, or both objects were then 

presented as previews, depending on the condition.  In the 1P-teddy bear condition, an 

image of a teddy bear was presented in the center of the screen for 1.5 seconds, and in the 

1P-car condition, an image of a car was presented in the center of the screen for 1.5 

seconds.  In the 2P condition, a teddy bear and a car, one 4.5° to the left of center and the 

other 4.5° to the right of center, were presented for 3 seconds.  After a 1 second delay, 

during which the subject was fixating a dot at the center of the screen, a search display 

with one target and eight distractors was presented.  The target was the previewed teddy 

bear in the 1P-teddy bear condition, the previewed car in the 1P-car condition, and either 

the previewed teddy bear or car in the 2P condition.  In the case of the 2P condition, half 

of the trials had a teddy bear target in the search display, and half had a car target in the 

search display.  The target had a ‗+‘ or an ‗×‘ character inserted near it, and the subject‘s 

task was to find the target and to report if this character was a ‗+‘ or an ‗×‘.  Subjects 

pressed the left trigger of the Game Pad with their left index finger to indicate a ‗+‘ and 

they pressed the right trigger with their right index fingers to indicate an ‗×‘.  Accuracy 

feedback was provided following this response.  Conditions were blocked, and block 

order was counterbalanced.  Each block had 64 trials, for a total of 192 experimental 

trials per subject.   

Control experiment.  A separate group of subjects participated in two control experiments.  

Their task was target present-absent search for only a single target category.  Half of the 

subjects searched for a teddy bear (bear control condition); the other half searched for a 



 

49 

 

car (car control condition).  The 32 target-present trials of the bear control condition were 

randomly selected from the 1P-teddy bear trials from the main experiment.  In these trials, 

one bear was presented as a preview for 1.5 seconds.  After a 1 second delay, again with 

a central dot, a search display with one target and eight distractors was presented.  The 

target was the previewed teddy bear as in the 1P-teddy bear condition.  The only change 

relative to the corresponding 1P teddy bear condition trial was the appearance of a car in 

the search display.  Because these subjects would only be searching for a teddy bear, and 

never a car, the car would be just another distractor appearing in the search display.  The 

32 target-absent trials of the teddy bear control condition were the 32 trials from the 2P 

condition of the main experiment where the actual target in search display was a car.  

This car was the car presented at preview in the corresponding 2P condition of the main 

experiment.  By having this car now appear as a distractor in the search display, we can 

quantify the degree of guidance to this car due to its similarity to the teddy bear target, 

and we do this using the actual car and teddy bear objects designated as targets in the 2P 

condition from the main experiment.     

 The procedures for the car control condition were the same as those for the teddy 

bear control condition, with the predictable exceptions.  The 32 target-present trials of the 

car control condition were randomly chosen from the 1P-car condition from the main 

experiment.  In the search display, this car was presented as the target along with eight 

distractors.  One of the distractors would now be a teddy bear.  The target-absent trials of 

the car control condition were the 32 trials from the 2P condition in the main experiment 

where the actual target in search display was a teddy bear, meaning that this was the same 

teddy bear presented at preview in the corresponding 2P condition of the main 
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experiment.  Again, by having this teddy bear appear as a distractor, we can quantify the 

degree of guidance to this object due to its similarity to the car target.    

Using these control experiments, for each bear-car pair from the 2P condition of 

the main experiment, we can quantify whether search is preferentially guided to the car 

(relative to the other distractors) when subjects were searching for the teddy bear target, 

and whether search is preferentially guided to the teddy bear (relative to the other 

distractors) when subjects are searching for the car.  We then subtract this level of 

guidance due to any feature overlap between the specific bear and car objects from the 2P 

level of guidance on the corresponding trial from the main experiment.  As formally 

captured by the GI, this adjustment gives us a pure estimate of guidance by features 

distinctive to the two targets in a multiple target search task.  Note also that our method 

of creating these control conditions from the corresponding 2P trials means that the other 

distractors in the search scene would be identical between the 2P and control conditions 

on a trial-by-trial basis.  This is important, as these distractors would be expected to 

influence the degree of guidance to the car and bear lures.  

3.2.3. Results and Discussion 

Errors were less than 2% in all conditions and were excluded from all analyses.  

Table 2 shows the RT data (Experiment 1).  As in the case of the experiments reported in  

Table 2 

Mean manual RTs in Experiment 1 and 2. Numbers in parentheses indicate standard error. 

    Teddy Bear Car 

Experiment 1 
1P 1369.2 (57.1) 1433.5 (80.1) 

2P 1592.6 (84.8)   1821.2 (114.6) 

Experiment 2 
1P 1310.6 (42.1) 1298.3 (33.6) 

2P 1399.2 (45.6) 1503.3 (59.2) 
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Chapter 2, these manual RT data include the time needed to find the small + or × 

character and to make this discrimination judgment, in addition to the delays involved in 

actually searching for the target.  However, for completeness, we analyzed these data and 

found that RTs in the 1P condition were shorter than those in the 2P condition, 

F(1,23)=34.9, p<.001, and RTs for teddy bear targets were shorter than those for car 

targets, F(1,23)=11.1, p<.01.  The interaction between target type and number of targets 

was also significant, F(1,23)=5.1, p<.05.   

To quantify guidance in our multiple target search task we again analyzed the 

percentage of trials in which the target was the first object fixated after search display 

onset.  These results are shown in Figure 7.  The observed levels of guidance were far 

more pronounced than the 11.1% level expected by chance, ts(23)≥8.2, ps<.001.  

Guidance was also better in the 1P condition than in the 2P condition, F(1,23)=76.1, 

p<.001, and was stronger for teddy bears targets than car targets, F(1,23)=4.9, p<.05.  

However, we found no significant interaction between target type and number of targets, 
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F(1,23)=.59, p>.4.  Given this absence of an interaction, we therefore collapsed across 

target type in our following calculation and analysis of the guidance index.    

We calculated the GI using the equation: GI = {(G2P - c) – (GL / 2)} / (G1P - c).  

The terms G2P and G1P were obtained by averaging the percentages of immediate target 

fixations over the two target categories, giving us 2P and 1P guidance values of 40.3% 

and 56.5%, respectively (from Figure 7).  To calculate the value for GL, we first obtained 

the percentages of immediate fixations to the critical lures in the control experiments, 

which were 9.4% for cars (when subjects were searching for teddy bears) and 7.1% for 

teddy bears (when subjects were searching for cars).  The guidance differences between 

each critical distractor and the averaged guidance level from all the non-critical 

distractors were -1.9 and -4.5 for cars and bears, respectively, and the estimated guidance 

due to visual similarity (common features) between the two target categories (GL) was -

3.2, obtained by averaging these two differences.  The final term from the GI equation is 

a constant, c, which is determined by the set size and indicates the percentage of 

immediate target fixations expected by chance.  This was 11.1% in the current 

experiment.   

Plugging in these values from the main and control experiments, we obtained a GI 

of .65 (Figure 8).  Recall that a GI > .5 would represent true multiple object search 

guidance; that is, guidance due to the representation in visual WM of features distinct to 

both of the targets.  A GI < .5 would indicate a guiding representation based on the 

features common to both of the previewed targets.  Our obtained value of .65 was 

significantly greater than .5, t(23)=3.4, p<.01, which was the theoretical upper bound on 

the use of only one target to guide two-target search.   
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Our analysis so far indicates that features distinctive to the two targets in a 

multiple target search task are extracted and used to guide search, with the obtained GI 

being our evidence for the existence of these guiding features.  To the extent that the GI 

is a valid estimate of these distinctive target features, we would expect that subjects who 

tended to use distinctive features should show better guidance during multiple target 

search than subjects who did not (those who either picked one of the two targets to guide 

their search, or who used common features), and subjects who relied more on distinctive 

features to guide their search would show stronger guidance than subjects who relied less 

on distinctive features for search guidance.  To assess both of these patterns, we 

correlated the GI for each subject with their level of two-target guidance obtained from 

the main search experiment (Figure 9).  This analysis revealed a very strong relationship 

between a subject‘s GI and the percentage of immediate fixations that they make on a 

target during two-target search, r
2
 = .72, t(23)=7.4, p<.001.  Subjects who are able to 

extract and use distinctive features from both targets to guide their search are far more 

successful in looking directly to the target in a multiple target search task than subjects 
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who may be simply picking one of the two targets to guide their search.  Moreover, 

guidance improves with the recruitment of these distinctive features, with the GI 

accounting for up to 72% of guidance variability in our task.  However, while validating 

the GI as a measure of useful features, this analysis also highlights the fact that not all of 

our subjects used distinctive features to guide their search.  Based on a confidence 

interval of .95, 8 out of the 24 subjects from our multiple target experiment exhibited GI 

values falling outside the lower bound of this interval, indicating the potential use of 

common features to guide search.  This variability begs the question of what factors 

might contribute to the differential use of common and distinctive features in multiple 

target search guidance, and it is this question that we attempt to answer in the following 

experiment.   

3.3. Experiment 2 

3.3.1. Introduction 

 In experiment 1 we determined that distinctive features can be extracted from 

multiple targets and used to guide search, but we also found that subjects varied 

0

20

40

60

80

0 0.5 1 1.5
2
P

 G
u

id
a
n

c
e
 (

%
)

GI

Figure 9. Individual subject‘s guidance level 

in 2P condition as a function of GI. 

 



 

55 

 

considerably in their reliance on these features.  In the present experiment we ask how the 

practice of using distinctive features depends on the similarity between the two targets in 

a multiple target search task.  The classes of target images used in experiment 1 were 

highly dissimilar.  In general, cars look nothing like teddy bears, and perhaps this high 

degree of visual dissimilarity is what caused the majority of our subjects to use distinctive 

features to guide their search.  Would distinctive features still be used if the two targets 

were more similar, as would be the case if they both came from the same category?   

Our working hypothesis is that the types of features used in the representation of 

multiple search targets may depend on the feature similarity between these targets, and 

the degree to which they differ from the distractors.  When two targets are very dissimilar, 

it may not be possible to find features that are common to both objects while still being 

different from random distractors.  In the absence of these common features, search may 

be forced to use features that are (relatively) unique to each target, even though this 

increases the potential of feature mismatch to the distractors.  Feature selection may be 

very different for objects from the same category.  Although two teddy bears may differ 

with respect to their specific color or shape, with some brown and tall and others 

yellowish and thin, these differences are likely to be small compared to the differences 

between teddy bears and cars, or between either target class and random objects.  A 

similar argument might be made for cars.  These smaller within-category differences may 

make it easier to find features that are common to the two targets (e.g., both have fur, or 

both are metallic), yet still relatively distinct from the distractor set.  This representation 

in terms of common features may be desirable, as both targets could be coded with 

minimal feature variability; as the feature variability increases, so does the opportunity 



 

56 

 

for feature mismatch.  We will test this hypothesis using the same GI measure from 

experiment 1.  If the selection of common features is the preferred method of 

representing multiple targets, then the search for multiple targets from the same category 

should produce a GI well below the .5 level indicating pure single target search.  

However, if multiple search targets are represented in terms of discriminative features, 

irrespective of the feature overlap between the targets, then we may again find a GI 

above .5, as we did in experiment 1.   

3.3.2. Method 

Participants 

Forty students from Stony Brook University participated in this experiment for 

course credit.  Twenty four of these students participated in the main experiment, and 

sixteen participated in the control experiments.  All had normal or corrected to normal 

visual acuity, by self report, and were naive with regard to the experimental hypotheses. 

Stimuli and Apparatus 

 The stimuli and apparatus were identical to those used in experiment 1. 

 Procedure 

Main experiment. The 1P-teddy bear and 1P-car conditions were the same as those 

described for experiment 1. The 2P condition, however, differed in one important respect; 

the two targets presented at preview were either both teddy bears or both cars. On 2P-

teddy bear trials, two different teddy bears were presented as previews, with one of the 

two teddy bears appearing as the target in the search display. On 2P-car trials, two 

different cars were presented as previews, with the target in the search display now being 
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a car.  The two 1P conditions and the two 2P conditions (bear or car trials) were blocked 

(32 trials per block), and block order was counterbalanced across subjects.  

Control experiment. The control experiments used a similar procedure, and followed the 

same logic, as was described for experiment 1.  As before, a new group of subjects 

participated in two control experiments; half of these subjects searched for a bear (teddy 

bear control), and the other half searched for a car (car control).  The one salient 

difference from the previous description is that the 32 target-absent search displays now 

contained a categorically similar lure as the previewed target.  With respect to the 

corresponding 2P-teddy bear trials from the main experiment, one of these bears would 

be presented at preview, and the other bear would be presented as a lure in the target-

absent search display.  The same contingencies existed for the car trials.  From these 

control experiments, we will be able to determine the degree of guidance to a lure when a 

subject is searching for a categorically related specific target.     

3.3.3. Results and Discussion 

Errors were less than 3.5 % in all the conditions and were excluded from all 

analyses.  Manual RTs in this task, provided in Table 2, were again of marginal interest 

in this task due to their inclusion of non-search delays related to finding the +/× character 

and making this discrimination judgment.  More informative are percentages of the first 

fixations on the target (Figure 10).  As in experiment 1, Figure 10 shows above chance 

levels of guidance in all the conditions, ts(23)>=12.4, ps<.001.  As expected we also 

found stronger guidance in the 1P condition than in the 2P condition, F(1,23)=32.5, 

p<.001, but guidance did not differ between the teddy bear and car conditions, 
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F(1,23)=.12, p>.7.  We therefore collapsed across teddy bear and car trials in the GI 

calculation.    

We calculated the GI using the same equation that we used for experiment 1: GI = 

{(G2P - c) – (GL / 2)} / (G1P - c).  The terms G2P and G1P, again obtained by averaging the 

percentages of immediate target fixations over the two target categories, yielded 2P and 

1P guidance values of 47.82% and 57.34%, respectively (from Figure 10).  To calculate 

GL, we obtained the percentages of immediate fixations to the critical lures in the control 

experiments, which were 61.0% for teddy bears (when subjects were searching for a 

different teddy bear) and 32.9% for cars (when subjects were searching for a different 

car).  The guidance differences between each critical distractor and the averaged 

guidance level from all the non-critical distractors were 56.2 and 24.5 for bears and cars, 

respectively, and the estimated guidance due to common features between the two target 

categories (GL) was 40.3, obtained by averaging these two differences.  Chance guidance, 

c, was again 11.1%.   
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Inserting these values into the equation produces a GI of .33, an estimate that is 

significantly lower than the .5 value expected if subjects were just using one of the two 

targets to guide their search (Figure 8), t(23)=-3.7, p<.01.  This swing in the direction of 

the GI, from significantly above .5 to significantly below, indicates the predicted shift in 

the use of common features when multiple search targets come from the same category.  

This movement towards the representation of common features is a reasonable alternative 

search strategy in this task, as punctuated by the very strong level of guidance found in 

immediate target fixations.  This is intuitive, if one is able to extract the common features 

of the multiple targets, for example the distinctive pose of the teddy bears or the metallic 

texture of the cars, such a compact representation should be efficient in guiding search, at 

least insofar as the distractors are not metallic or shaped like teddy bears. 

But does this use of common features to guide multiple target search mean that 

distinctive features are unimportant in the case of categorically similar targets?  Figure 11 

answers this question by again plotting the GI as a function of 2P guidance.  The GI is a 

measure of the proportion of 2P guidance that can be attributed to the use of distinctive 
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features; as the GI increases, so does the reliance on these features to guide search.  What 

is clear from this figure is that there is a very strong positive correlation between multiple 

target guidance and distinctive features, r
2
 = .89, t(23)=13.1, p<.001.  Although 

distinctive features may be difficult to find when targets are from the same category, to 

the extent that they are isolated, their use can dramatically improve search guidance.  In a 

sense, a subject searching for multiple targets from the same category has more 

representational choices available; they can choose to represent the targets in terms of 

either common or distinctive features, with perhaps the best guidance resulting from a 

combination of the two.  Indeed, when only common features were used, as represented 

in Figure 11 by the subject with the negative GI, we see that 2P guidance was relatively 

poor.  This too is intuitive, and perfectly consistent with previous work on categorically 

guided search (Schmidt & Zelinsky, 2009; Yang, Chen & Zelinsky, 2009; Yang & 

Zelinsky, 2009).  When the GI is very low, the subject may essentially be searching for 

the target category (the features common to any teddy bear or any car), and not the 

specific targets themselves.  Such a categorical search would be expected to yield low, 

but still above chance levels of guidance.   

3.4. General Discussion 

 The present series of experiments investigated the target representation 

underlying multiple target search, and how this representation changes with the similarity 

of the previewed targets.  Our first goal was to provide independent and converging 

evidence in support of our earlier claim that feature mismatch, and not a ―pick one target 

and discard the other‖ strategy, was responsible for our observed load effects.  We did 

this by developing a measure, the guidance index, which shows the proportion of two-
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target search that can be accounted for by one-target search, after appropriate correction 

for chance and feature similarity between the two targets.  This measure provides a 

theoretical upper bound, a GI of .5, on the level of guidance that would be expected under 

a ―pick one and discard the other‖ multiple target search strategy.  We found a mean GI 

of .65, significantly higher than this upper bound, and can therefore conclude that 

subjects were indeed basing their guiding representation on information from both of the 

previewed targets, not just one.  When considered together with the findings from 

Chapter 2, we now have considerable evidence suggesting that feature mismatch is 

responsible for the worse search guidance found for multiple target search.  Given that 

only one target appears in the search display, guiding search based on two targets will 

inevitably create a feature mismatch that will degrade guidance relative to single target 

search.   

Using the GI, our second goal was to determine whether this multiple target 

representation was dominated by common features or distinctive features.  Given that 

either type of representation might result in decreased guidance due to a mismatch 

between the features in WM and the actual target features from the search display, 

distinguishing between these two representational schemes is essential to the 

understanding of multiple target search.  We were able to make this distinction using the 

same GI measure.  By using control experiments to determine the level of guidance to a 

target lure, and subtracting this level from the GI, the GI provides a pure estimate of 

multiple target search guidance arising from the use of distinctive features.  GIs in 

experiment 1 were found to be consistently greater than .5, suggesting not only that both 

previewed targets were represented and used to guidance search, but that this guidance 



 

62 

 

was accomplished using features that were largely distinct to both targets.  We also found 

a very strong linear relationship between GI and two-target search guidance; the greater 

the GI the better the guidance.  To the extent that subjects are successful in extracting 

features that are unique to the two targets, they are better able to guide their search to 

these targets.  This benefit linked to the use of distinctive features makes intuitive sense, 

and is consistent with current machine learning methods that also rely on discriminative 

features for object detection (e.g., Zhang, Yang, Samaras, & Zelinsky, 2006).  Given that 

the two targets in experiment 1 were random objects, the features that are unique to these 

targets (i.e., discriminative) will tend also to be those features that best enable these 

targets to be discriminated from random object distractors, thereby improving search 

guidance.       

 In experiment 2 we asked whether the reliance on distinctive features to guide 

two-target search depends on the similarity between the two targets.  We did this by 

having subjects search for objects from the same target category, either two teddy bears 

or two cars.  If search under these conditions remained dominated by distinctive features, 

we would have expected to find GIs greater than .5, as we did in experiment 1.  However, 

if this within-category multiple target search caused features common to the two targets 

to be used for guidance, then GIs should have been consistently lower than .5.  We found 

a decisive shift in GIs to values less than .5, suggesting guidance from common features.  

However, we again also found a strong linear relationship between GI and two-target 

search guidance; guidance improved with larger GIs.  This relationship suggests that the 

recruitment of distinctive features helps guidance even when the two search targets come 

from the same category.     
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If search guidance always benefits from the use of distinctive features, why then 

did our experiment 2 subjects often elect to use common features to guide their search?  

There are at least two possible explanations.  One reason may be simply that it is difficult 

to find features that distinguish between categorically similar targets.  Whereas finding a 

set of guiding features unique to a given teddy bear and car may be straightforward (the 

car may be rectilinear, the teddy bear may be curvy), there are likely far fewer features 

that are unique to two teddy bears or two cars, potentially resulting in an insufficient 

number of features to guide search.  Another reason may be that we are used to relying on 

common features for search guidance, as exemplified each time we look for a 

categorically defined target.  In previous work we demonstrated that categorical search is 

guided (Yang & Zelinsky, 2009), meaning that subjects were able to use the features 

common to a target category to preferentially fixate never before seen exemplars.  It may 

be that some of our subjects treated the experiment 2 multiple target task as categorical 

search, deciding to search for the category of teddy bears or cars despite being shown the 

two specific exemplars (the previews) from which the actual target would be selected.  

The problem with this strategy, however, is that although categorical search yields an 

above chance level of guidance, this guidance is not as strong as when one knows the 

specific appearance of a target (Schmidt & Zelinsky, 2009; Vickery, King, & Jiang, 

2005; Wolfe, Horowitz, Kenner, Hyle, & Vasan, 2004; Yang & Zelinsky, 2009).  It may 

therefore be possible to perform the experiment 2 task using common features, but this 

strategy, by ignoring information about the targets‘ actual appearance, would tend not to 

be as efficient as one relying on distinctive features.   
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One final question might be raised here regarding multiple target search and its 

relationship to common and distinctive features; if common features are used to guide the 

search for two targets, is this multiple target search or single target search?  In one sense, 

common features are, by definition, indeed representative of both targets.  In another 

sense, the fact that they are common means that these features might be aligned with one 

target or the other, but not necessarily both.  Following this reasoning, a common feature 

search, because it is representationally equivalent to the search for a subset of a single 

target‘s features, might therefore not be considered a multiple target search task at all.  

Consistent with this suggestion, Menneer et al. (2009) found that subjects searching for a 

knife and a gun, both of which appeared blue in an x-ray image, showed a level of 

accuracy comparable to that of a search for the knife target alone.  This suggests that 

subjects may have redefined this gun-knife multiple target task as a single search task—

one in which the target was simply a blue thing.   

We believe that this potential for target redefinition, stemming largely from the 

extraction and use of common features, is one reason for the discrepant findings in the 

literature regarding the efficiency of multiple target search.  Future work will attempt to 

clarify target redefinition behavior by better specifying the conditions under which 

common feature search might be, and might not be, useful.  For example, a common 

feature search might be beneficial in that it compresses the target representation, thereby 

reducing the feature variability that might result in extraneous matches to distractors; 

however, it might also be detrimental to the extent that this representation becomes too 

compressed, thereby degrading the task into a form of categorical search.  We hope to 

exploit methods from the machine learning community to help find this delicate balance, 
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and to estimate the optimal mixture of common and distinctive features in a multiple 

target representation.  We will also attempt to specify whether search guidance depends 

on the guiding target representation consisting of features from a single object (as in the 

case of a redefined target using common features) versus a true multiple target search 

task in which the guiding features are aligned with different targets.  Does the number of 

objects over which these features are spread affect search guidance, and if so, does a 

common feature search behave more like a single target search or a multiple target 

search?  Addressing this question in the context of real-world objects will be another 

important direction for future work.   
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4. Conclusion 

 This study ascertained how the representation of multiple targets in visual WM 

affects the efficiency and guidance of visual search.  Using images of real-world objects, 

the first part of this study asked the most basic question regarding the relationship 

between visual search and WM; does searching for multiple targets degrade search 

efficiency?  We found clear evidence for such a load effect; search time increased with 

the number of targets.  We then ask why this load effect appeared.  Two possibilities were 

considered; one appealing to a capacity limitation on WM encoding, and the other 

appealing to feature mismatch between the multiple targets in WM and the single target 

in the search display.  We used a retro cue paradigm to tease apart the effects of these two 

factors, and found that both played a part in lengthening the time needed for subjects to 

first fixation the target (RTT).  However, the percentage of initial fixations on targets, a 

conservative measurement of search guidance, decreased only with an increase of guiding 

features.  We therefore conclude that feature mismatch is primarily responsible for the 

decreased guidance observed to search targets when there is a WM load.  To the extent 

that capacity limitations on WM contribute to the load effect, this contribution seems 

limited largely to the decision stage of search and not actual search guidance.  In a final 

experiment we showed that subjects hold and use all the designated targets to guide their 

search; they don‘t just pick one and search for it.   

 The second part of this study sought to obtain converging evidence for the 

previous conclusions, as well as to determine whether multiple targets are represented in 

terms of common features or distinctive features.  We satisfied both of these goals by 

analyzing the chance-corrected and feature-overlap-corrected proportion of two-target to 
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one-target guidance, a measure that we referred to as the guidance index.  Not only did 

this analysis support our previous claims that multiple search targets are being 

represented in visual WM (subjects aren‘t simply picking one or the other to guide their 

search), it also suggested the nature of these representations; subjects searching for teddy 

bear and car targets overwhelmingly chose to represent these target classes using 

distinctive features.  However, in a follow-up experiment we showed that this 

representation depended on the categorical similarity of the targets; when the targets were 

from the same category (two teddy bears or two cars), subjects now choose to represent 

these targets using common features.  Still, despite this similarity-dependent shift in 

representation, we found that search guidance improves to the extent that subjects code 

multiple targets using distinctive features.  These results, combined with those from the 

first series of experiments, support our claim that the search for multiple targets degrades 

guidance by introducing too many guiding features; the target features in WM that don‘t 

match the target in the search display weaken the guidance signal and ultimately reduce 

search efficiency.   

Our finding that load effects impair search guidance due to mismatching features 

is new, and the suggestion and confirmation of this alternative explanation is the primary 

contribution of this study.  However, some may be equally surprised that we found little 

evidence for a WM capacity limitation degrading search guidance for multiple targets.  

This finding is broadly consistent with the findings that the units of WM that determine 

its capacity are features rather than objects (e.g., Alvarez & Cavanagh, 2004; Eng, Chen, 

& Jiang, 2005); it may simply be the case that the number of features selected in our 

multiple target conditions were still within the limits of this feature WM capacity.  
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However, this observation in itself is interesting in that it means that the features used to 

code up to four objects for search, the maximum number of previews used in this study, 

is still within this capacity limit.  This further implies that this feature capacity may be 

somewhat larger in a search task than what had been found using a change detection task, 

or that the number of features needed to code search targets is smaller than what had been 

assumed.  It may also be the case that all (or most) of the target features are initially 

represented (as assumed by search theories), but that only a subset of critical features are 

selected and maintained in WM (Ko & Seiffert, 2009; Woodman & Vogel, 2008), and 

ultimately used to guide search.  Answering these questions will be important directions 

for future work.  Another difference between our study and the WM literature is that 

subjects in WM studies are typically instructed to selectively focus on a specific feature 

of an object (e.g., Ko & Seiffert, 2009; Woodman & Vogel, 2008), while subjects in the 

current study were not.  Our results therefore extend previous work by showing that the 

features of an object can be selectively encoded in visual WM without explicit effort to 

do so.  One intriguing possibility is that it is this intentionality that is responsible for the 

previously observed evidence for WM limitations in the context of non-search tasks.  

Future work will also explore this possibility. 
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