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Abstract of the Dissertation

Classification Problems for MDPs and
Optimal Customer Admission to M/M/k/N

Queues

by

Fenghsu Yang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2010

My dissertation addresses the unichain classification problem for

any finite Markov decision process (MDP) with a recurrent or stop-

ping state and the optimal admission problem for an M/M/k/N

queue with holding costs. In the first chapter, we study the unichain

classification problem for MDPs. The unichain classification prob-

lem is to detect whether an MDP with finite states and actions

is unichain or not. This problem has been proven to be NP-hard.

We study this problem while an MDP contains a state which is

either recurrent under all deterministic policies or absorbing under
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some action. We introduce the definitions of avoidable and reach-

able sets and provide the corresponding polynomial algorithms that

finds the states from which a given set is avoidable or reachable.

We also provide a polynomial algorithm that detects whether a

state is recurrent and solves the unichain classification problem for

an MDP with a recurrent state and a polynomial algorithm for

finding all recurrent and stopping states and solving the unichain

classification problem with recurrent or stopping states. At the

end of the first chapter, we discuss detecting all transient states in

an MDP in polynomial time.

In the second chapter, we study optimal admission of arrivals to

an M/M/k/N queue. The arriving customers are classified into m

types, where m ≥ 1. The rewards and holding costs depend on

customer types. Upon admitting an arriving customer, the system

collects the reward from the admitted customer and pays the hold-

ing cost to the admitted customer. We study average reward per

unit time for the problem. We prove the existence of an optimal

trunk reservation policy and describe the structures of stationary

optimal, canonical, bias optimal, and Blackwell optimal policies.

If there exist two or more stationary optimal policies, we apply

more sensitive optimality criteria to detect the best policy among

all stationary optimal policies. We show that bias optimal and

Blackwell optimal policies are unique, coincide, and are the trunk

reservation policies with the largest optimal control level for each
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customer type.

Key Words : Unichain classification, Markov decision process, re-

current state, polynomial algorithm, queueing system, trunk reser-

vation policy, stationary optimal policy, canonical policy, bias op-

timal policy, Blackwell optimal policy.
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Chapter 1

Polynomial Classification

Algorithms for Markov Decision

Processes

1.1 Introduction

In the first chapter, we consider discrete-time Markov Decision Processes

(MDPs) with finite state and action sets. The probability structure of an

MDP is defined by a state space S = {1, . . . , N}, finite sets of actions A(i) for

all i ∈ S, and transition probabilities p(j|i, a), where i, j ∈ S and a ∈ A(i).

A deterministic policy ϕ is defined as a function from S to
⋃

i∈S A(i) which

assigns an action ϕ(i) ∈ A(i) to each state i ∈ S. Each deterministic policy

defines a stochastic matrix P (φ) = (p(j|i, ϕ(i))i,j=1,...,N . The stochastic matrix

defined by a deterministic policy is also known as a transition matrix of a

homogeneous Markov chain. A transition matrix determines which states of
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the Markov chain are recurrent, transient, or equivalent under a deterministic

policy.

A state i ∈ S is called transient (recurrent) if it is transient (recurrent)

under all deterministic policies. An MDP is called multichain if the transition

matrix corresponding to at least one deterministic policy ϕ contains two or

more recurrent classes. Otherwise, an MDP is called unichain. In other words,

under any deterministic policy, the state space of a unichain MDP consists of

only one recurrent class and a possible empty set of transient states.

The property of unichain is important for MDPs with average reward cri-

terion because stronger results on the existence of optimal policies hold and

better algorithms are available for unichain MDPs than for general MDPs;

see [15] for detail. Unichain MDPs have been treated separately from general

MDPs since Howard [12] introduced the policy iteration algorithms for MDPs;

see e.g. [5, 6, 15, 22]. Kallenberg [14] studied irreducibility, communicating,

weakly communicating, and unichain classification problems for MDPs. For

the first three problems, Kallenberg [14] constructed polynomial algorithms.

However, for the unichain classification problem, Kallenberg [14], [15, p. 41]

posted a question whether a polynomial algorithm exists. Tsitsiklis [25] an-

swered this question by showing that the unichain classification problem is

NP -hard.

Even though the unichain classification problem for MDPs is NP -hard,

many applications are modelled as unichain MDPs. Moreover, many appli-

cations of MDPs contain the states which are recurrent under all stationary

policies. For instance, for a queueing or inventory control problem, a recur-

rent state is typically either the state when the buffer is empty or the state
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when the buffer is full. In this chapter we show that the problem of detecting

whether an MDP has a recurrent state is polynomial. We also show that the

unichain classification problem for an MDP with at least one recurrent state

is polynomial. In this chapter, we call a state i ∈ S stopping if p(i|i, a) = 1 for

some a ∈ A(i). The problem of detecting stopping states is polynomial and we

also show that the unichain classification problem for an MDP with a stopping

state is polynomial. We provide the polynomial algorithms and complexities

to the corresponding problems.

Kallenberg [14] solved Some of classification problems in terms of graphs

G1 and G2 whose arcs respectively represent that there are one-step transitions

between two states under all actions and under some actions. According to

the definition in [14], these graphs contain no loops. We slightly modify the

definition of graph G2 by adding loops (i, i) if and only if i ∈ S is a stopping

state.

An MDP is called deterministic if p(j|i, a) ∈ {0, 1} for all i, j ∈ S and

for all a ∈ A(i). For deterministic MDPs, the unichain classification problem

is equivalent to the question whether the corresponding graphs G2 have two

node-disjoint cycles. This problem has been proven to be polynomial by Mc-

Cuaig [18] and, therefore, the unichain classification problem for deterministic

MDPs is polynomial.

The first chapter is organized in the following. In Section 1.2, we show that

the unichain classification problem cannot be solved in terms of the graphs G1

and G2. In Section 1.3, we introduce the definitions of avoidable and reachable

sets and provide the corresponding polynomial algorithms which find the states

from which a given set is avoidable and reachable. In section 1.4, we provide
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a polynomial algorithm that detects whether a state is recurrent and solves

the unichain classification problem for an MDP with a recurrent state and

a polynomial algorithm for detecting recurrent and stopping states and for

the unichain classification problem with either recurrent or stopping states.

Section 1.5 deals with detecting transient states in polynomial time and it

discusses the implications of this capability for alleviating the complexity of

the unichain classification problem. In Section 1.6, we conclude our results

and discuss possible future research for the unichain classification problem.

1.2 Insufficiency of Graphs G1 and G2

Following Kallenberg [14], we define a directed graph G1 to be a graph with the

set of nodes S, no loops, and arcs (i, j), i 6= j, if and only if min{p(j|i, a)| a ∈
A(i)} > 0. We also define a directed graph G2 to be a graph with the set of

nodes S such that:

i. an arc (i, j), i 6= j, belongs to G2 if and only if max{p(j|i, a)| a ∈ A(i)} >

0.

ii. a loop (i, i) belongs to G2 if and only if p(i|i, a) = 1 for some a ∈ A(i).

For a graph G, we also denote by G its incident matrix, i.e., G(i, j) = 1 if

the arc (i, j) belongs to the graph and G(i, j) = 0 otherwise. The reason why

we allow loops in graphs G2 is because, as the following example shows, in the

modified form the loops help us detect stopping states, while in the original

form they do not.
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Figure 1.1: Graphs G1 and G2 in Example 1.2.

Example 1.1 Let S = {1, 2, 3}, A(1) = {a, b}, A(2) = A(3) = {a}, p(2|1, a) =

p(3|1, b) = p(3|2, a) = p(2|3, a) = 1. Observe that state 1 is not stopping. If

we add an action c to A(1) with p(1|1, c) = 1 then state 1 becomes stopping.

The graph G1 does not change. If we follow the definition in [14] that G2(i, i)

is always 0, the graph G2 does not change either. According to the above def-

inition, G2(1, 1) becomes equal to 1 and this detects that state 1 is stopping,

if the action c is added.

The following example shows that a unichain MDP and a multichain MDP

have the same G1 and G2 graphs.

Example 1.2 Let S = {1, 2, 3, 4} and A(i) = {a, b, c}, i = 1, 2, 3, 4. The first

MDP is deterministic. Each action moves the process to a different state, and

there are no stopping states. For example, in state 1, the action a moves the

process to state 2, the action b moves the process to state 3, and the action c

moves the process to state 4. This MDP is multichain. Indeed, if from state

1 (3) the process moves to state 2 (4) and from state 2 (4) the process moves
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Figure 1.2: Graphs G1 and G2 in Example 1.3.

to state 1 (3), then there are two recurrent classes {1, 2} and {3, 4}.
The second MDP has the same state and action sets as the first one. How-

ever, all three actions define different transition probability vectors. For each

action, the probability to stay in the same state is 0 and the probability to

move to each of two of remaining three states is 0.5. So, for state 1, we have

p(2|1, a) = p(3|1, a) = p(2|1, b) = p(4|1, b) = p(3|1, c) = p(4|1, c) = 0.5. This

MDP is unichain because the minimal possible number of states in a recurrent

class is 3 and under all policies there are no absorbing states. For the both

graphs, we have that G1 = 0 and G2(i, j) = 1 if and only if i 6= j.

In the following example, we provide two MDPs with identical correspond-

ing graphs G1 and G2 such that one of these MDPs has no recurrent states

and the other one has a recurrent state. Therefore, the information provided

by graphs G1 and G2 is insufficient to detect whether a state is recurrent.

Example 1.3 Consider two MDPs with S = {1, 2, 3, 4} and A(i) = {a, b, c},
i = 1, 2, 3, and A(4) = {a}. For both MDPs p(1|4, a) = 1. In states 1,2, and
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3 the first MDP has the same transition probabilities as the first MDP in

Example 1.2 and the second MDP has the same transition probabilities as the

second MDP in Example 1.2. Since transition probabilities are the same at

state 4, the corresponding graphs G1 and G2 coincide for these MDPs.

The first MDP does not have a recurrent state. Indeed, if we select actions

in states 1,2, and 3 that move the process to state 4 then states 2 and 3 are

transient and {1, 4} is a recurrent class. If we select in states 1 and 2 the

actions that move the process to state 3 and in state 3 we select the action

that moves the process to state 2 then 1 and 4 are transient states and {2, 3}
is a recurrent class.

For the second MDP, state 1 is always recurrent. Indeed, for any deter-

ministic policy any recurrent class contains at least three states. However,

the process always moves from state 4 to state 1. Therefore, the set {2, 3, 4}
cannot be a recurrent class under any deterministic policy.

In the following example, we provide two MDPs with identical correspond-

ing graphs G1 and G2 such that one of these MDPs has no transient states

and the other one has transient states. Therefore, the information provided

by graphs G1 and G2 is insufficient to detect whether a state is transient.

Example 1.4 Consider two MDPs with S = {1, 2, 3, 4} and A(i) = {a, b, c},
i = 1, 2, and A(3) = A(4) = {a}. The first MDP is deterministic. From states

1 and 2 it is possible to move to any other state. States 3 and 4 are absorbing.

So, for the first MDP p(2|1, a) = p(3|1, b) = p(4|1, c) = p(1|2, a) = p(3|2, b) =

p(4|2, c) = p(3|3, a) = p(4|4, a) = 1. Consider a policy that always selects the

action a. Then the Markov chain has three recurrent classes: {1, 2}, {3}, and
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Figure 1.3: Graphs G1 and G2 in Example 1.4.

{4}. Thus, this MDP does not have a transient state.

The second MDP has the same state and action sets as the first one with

p(2|1, a) = p(3|1, a) = p(2|1, b) = p(4|1, b) = p(3|1, c) = p(4|1, c) = p(1|2, a) =

p(3|2, a) = p(1|2, b) = p(4|2, b) = p(3|2, c) = p(4|2, c) = 0.5 and p(3|3, a) =

p(4|4, a) = 1. This MDP has two transient states 1 and 2. In the both cases

G1 = 0. In the both cases: (a) G2(i, j) = 1 when i = 1, 2 and j 6= i, (b)

G2(3, 3) = G2(4, 4) = 1, and (c) G2(i, j) = 0 for other i and j.

1.3 Avoidable and Reachable Sets

In this section, we define the avoidable and reachable sets and provide the

polynomial algorithms that find the states from which a given set is avoidable

and reachable respectively.

Definition 1.1 Let i ∈ S and Y ⊂ S. The set Y is called avoidable from

i if there exists a deterministic policy ϕ such that Pϕ
i (xt ∈ Y ) = 0 for all

t = 0, 1, . . . .
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A subset Z ⊆ S is called closed under a deterministic policy ϕ if p(i|j, ϕ(j)) =

0 for any j ∈ Z and for any i ∈ S \Z. It is clear that a set Y is avoidable from

i if and only if there exists Z ⊆ S \ Y such that:

i. Z is closed under some deterministic policy and

ii. i ∈ Z.

For Y ⊆ S we let ZA(Y ) denote the set of states in S from which Y is

avoidable. Algorithm 1 below finds the set ZA(Y ) for Y ⊆ S. Its convergence

is based on the necessary and sufficient condition formulated in the previous

paragraph.

Algorithm 1 Finding ZA(Y ) for a given Y ⊆ S.

1. Set Z := Y, Z̃ := Y .

2. Do while Z̃ 6= ∅: for j ∈ S \ Z set

A(j) := A(j) \ {a ∈ A(j)|
∑

l∈Z̃

p(l|j, a) > 0}, (1.1)

set Z̃ := {j ∈ S \ Z : A(j) = ∅}, and set Z := Z ∪ Z̃; end do.

3. Set ZA(Y ) := S \ Z. Stop.

The complexity of Algorithm 1 is O(A ·N). Indeed, let Z̃t, t = 0, 1, . . . , m,

be the set Z̃ at the tth iteration of Step 2, where Z̃0 = Y, Z̃m = ∅, and

m ≤ N − |Y | + 1, where |E| denotes the number of elements in the finite set

E. Observe that Z̃t ∩ Z̃s = ∅ for t 6= s and ∪m−1
t=0 Z̃t ⊆ S \ Y. The complexity

9



of computations in (1.1) at tth iteration is O(A · |Z̃t|), t = 0, . . . , m− 1. This

implies that the complexity of Algorithm 1 is O(A ·N).

Note that there are some similarities between the definition of an avoidable

set above and the node that should be avoided in the Optimal Node Visitation

(ONV) problem in stochastic graphs studied by Bountourelis and Reveliotis [4].

In particular, Algorithm 1 uses the same node elimination procedure as the

independently formulated algorithm [4, Figure 3] for the reduction of the ONV

problem.

Definition 1.2 Let i ∈ S, Y ⊂ S, and i /∈ Y . The set Y is called reachable

from i if there exists a deterministic policy ϕ such that Pϕ
i (xt ∈ Y ) > 0 for

some t = 1, 2, . . . .

Note that the definition of a reachable set is slightly different than the

standard definition of an accessible set since the former requires i /∈ Y and

only considers t > 0.

For Y ⊂ S, we denote by ZR(Y ) the set of states in S from which Y is

reachable. Finding ZR(Y ) is equivalent to finding all the states from S \ Y

from which there is a path to Y in the graph G2. The following algorithm finds

the set ZR(Y ) based on this concept.

Algorithm 2 Finding ZR(Y ) for a given Y ⊆ S.

1. Construct the graph G2. If Y is a singleton, let Y = {y}. If Y is not a

singleton, reduce the set of nodes S by replacing the set Y with a single

node y ∈ Y . Set S∗ := {y} ∪ (S \ Y ).
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2. For all i ∈ S \ Y set

G2(i, y) :=





1 if G2(i, l) > 0 for some l ∈ Y ;

0 otherwise;

and reverse all the arcs in the reduced graph G2.

3. For the starting node y, apply the breadth-first search algorithm [1,

p.73-76]. ZR(Y ) is the set of nodes, except y, in the breadth-first search

tree.

The complexity of constructing the graph G2 is O(A · N); see Kallen-

berg [14]. The complexities of Steps 2 is O(N2) ≤ O(A ·N). The complexity

of the breadth-first search algorithm is O(N2) [1, p.73-76]. Thus, the com-

plexity of Algorithm 2 is O(A ·N).

1.4 The Polynomial Classification Algorithms

In this section, we use the concepts of avoidable and reachable sets to for-

mulate a polynomial algorithm that detects whether a particular state i is

recurrent. Moreover, if the state is recurrent, the polynomial algorithm also

detects whether the MDP is unichain. Example 1.3 indicates that finding a

recurrent state in an MDP cannot be done by using only matrices G1 and G2.

Later in this section, we show our main result of the polynomial algorithm

for detecting recurrent and stopping states and for the unichain classification

problem with either recurrent or stopping states. We provide the complexities

of both algorithms.
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If Y contains only one state, Y = {i}, we shall write ZA(i) and ZR(i) in-

stead of ZA(Y ) and ZR(Y ) respectively. We apply Algorithm 1 to state i and

find the set ZA(i). If ZA(i) = ∅, it is obvious that state i is a recurrent state

and the MDP is unichain. If ZA(i) 6= ∅, we apply Algorithm 2 to Y = ZA(i)

and find the set ZR(ZA(i)). If i ∈ ZR(ZA(i)) then ZA(i) is reachable from

state i and state i is avoidable from any j ∈ ZA(i). Therefore, state i is not

recurrent and we do not know whether the MDP is unichain or multichain. On

the other hand, if i /∈ ZR(ZA(i)), then, starting from state i, the process will

never reach ZA(i) and will travel only through the states from which state i is

not avoidable. In this case, we know state i is a recurrent state and the MDP is

multichain because there is a subset of ZA(i) which forms a recurrent class for

a Markov chain defined by some deterministic policy. The following algorithm

detects whether a state i is a recurrent state. If the state is a recurrent state,

the algorithm also detects whether an MDP is unichain.

Algorithm 3 Detecting whether a state i is recurrent and, if i is recurrent,

whether the MDP is unichain.

1. Apply Algorithm 1 to find ZA(i). If ZA(i) = ∅ then the state i is a

recurrent state and the MDP is unichain, and stop.

2. Apply Algorithm 2 to find ZR(ZA(i)). If i ∈ ZR(ZA(i)) then the state

i is not a recurrent state. Else, the state i is a recurrent state and the

MDP is multichain. Stop.

The complexity of Algorithm 3 is O(A · N) because Algorithms 1 and 2

have this complexity. We may have to apply Algorithm 3 to each state in
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order to detect if there exists a recurrent state in an MDP. This procedure

leads to construct the set of recurrent states and its complexity is O(A ·N2).

Repeating Algorithm 3 at most N times until a recurrent state is found also

leads to the solution of the unichain classification problem for an MDP with

a recurrent state. Thus, the complexity of this algorithm is O(A · N2) too.

In the following, we provide an algorithm for solving a unichain classification

problem for an MDP with either a recurrent or stopping state.

If a state i is either a recurrent or stopping state then the MDP is unichain if

and only if under all deterministic policies there is no recurrent class that does

not contain state i. Let a state i be either stopping or recurrent. If ZA(i) = ∅
then the state i is unavoidable from all other states. In this case, under any

deterministic policy any recurrent class contains i. Therefore, the MDP is

unichain. On the other hand, if ZA(i) 6= ∅ then under some deterministic

policy the corresponding Markov chain contains a recurrent class that does

not contain the state i. Obviously, the MDP is multichain.

If an MDP contains more than one stopping state, it is multichain obvi-

ously. Even though there may be two or more recurrent states in the MDP,

we only need to apply Algorithm 1 to one recurrent or stopping state in order

to know whether the MDP is unichain. Thus, we can formulate the following

algorithm.

Algorithm 4 Polynomial Algorithm to Detect whether an MDP has a stopping

or recurrent state and, if it does, whether an MDP is unichain.

1. For i = 1, . . . , N and for a ∈ A(i) check the condition p(i, i) = 1 until
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two stopping states are found.

2. If two stopping states are found, the MDP is multichain and stop.

3. If one stopping state i is found then apply Algorithm 1 with Y = {i}
and

(a) if ZA(i) 6= ∅, the MDP is multichain and stop;

(b) if ZA(i) = ∅, the MDP is unichain and stop.

4. For i = 1, . . . , N apply Algorithm 3 as long as a recurrent state is not

found. Stop after a recurrent state is found and the MDP is classified.

5. Conclude that the MDP contains neither stopping nor recurrent states

and stop.

The complexity of Algorithm 4 is O(A · N2) since it requires running Al-

gorithm 3 at most N times.

1.5 Finding Transient States and Remarks

Let T be the set of transient states. This set can be found by apply Bather’s

decomposition algorithm [2] This algorithm is formalized in [14, Algorithm

7] and its complexity is O(A · N2) [14]. In terms of [14, Algorithm 7], the

set of transient states T is the union of the sets T1, . . . , Tm computed by that

algorithm.

After the set of transient states T is found, we can delete T from the state
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space S and reduce the action sets A(j), j ∈ S \ T , to

A(j) := A(j) \ {a ∈ A(j) :
∑
i∈T

p(i|j, a) > 0}. (1.2)

Any deterministic policy ϕ in the original MDP defines a deterministic

policy in the reduced MDP as a function on S \T . Since the states in T are al-

ways transient in the original MDP, the recurrent classes for these two Markov

chains coincide. Thus, it is easy to see that the original MDP is unichain if

and only if the reduced MDP is unichain. Thus, if T 6= ∅, by removing the set

T and reducing the actions, we can reduce the unichan classification problem

to a smaller problem.

An MDP is called communicating if for each two states i, j ∈ S there

exists a deterministic policy ϕ, which may depend on i and j, such that j

accessible from i in the Markov chain defined by ϕ. An MDP is called weakly

communicating if, after the set T is deleted and the action sets in E := S \ T

are reduced following (1.2), the MDP with the state space E is communicating.

If an MDP is not weakly communicating, it is multichain. This follows from

Bather’s [2] decomposition.

Algorithm 4 in [14] detects whether an MDP is weakly communicating

and its complexity is O(A · N2). If an MDP is weakly communicating, it

can be reduced in polynomial O(A · N2) time to a communicating MDP; see

(1.2). Thus, the unichain classification problem for a weakly communicating

MDP can be reduced in polynomial (O(A ·N2)) time to an NP -hard unichain

classification problem for a communicating MDP.

Algorithm 4 solves the unichain classification problem for MDPs with re-
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current and stopping states. Algorithm 5 in Kallenberg [14] also solves the

unichain classification problem for some MDPs. Both algorithms have com-

plexity O(A · N2). [14, Algorithm 5] finds strongly connected components

(maximal connected subsets) of the graph G1. Then it compresses G1 by

replacing each strongly connected component in G1 with a single node. In

the compressed graph, there exists an arc (i∗, j∗) if in the strongly connected

component corresponding to i∗ there is a state i such that
∑

j∈X p(j|i, a) > 0

for all a ∈ A(i), where X is the strongly connected component compressed

into j∗. Then [14, Algorithm 5] conducts additional compressions by merging

nodes i∗ with the nodes j∗ if the arc (i∗, j∗) exists and i∗ is with outgoing

rank 1. These procedures are repeated recursively until the graph cannot be

compressed anymore. Let (G1)+ be the graph that is eventually obtained and

cannot be compressed and k+ be the number of strongly connected compo-

nents in (G1)+. If k+ = 1 then the MDP is unichain, if k+ = 2 then the MDP

is multiichain, and if k+ = 3 then the MDP is either unichain or multichain;

[14, Theorem 3.6].

At the end of this section, we give two examples to show that Algorithm 4

in this paper and [14, Algorithm 5] solve different classes of problems. Of

course, these two classes overlap. Algorithm 4 always classifies an MDP with

a recurrent state. It is clear that, if k+ = 1, [14, Algorithm 5] compresses the

graph around a recurrent state. Thus, if [14, Algorithm 5] detects that the

MDP is unichain, this MDP has a recurrent state. Example 1.5 provides a

unichain MDP with a recurrent states and this MDP cannot be classified by

[14, Algorithm 5]. Example 1.6 shows that [14, Algorithm 5] can classify some

MDPs without recurrent states.
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Example 1.5 Consider an MDP with the same state and action sets as in the

second MDP in Example 1.3. In states 1,2, and 3, the transition probabilities

are the same as in the second MDP in Example 1.3. In addition, p(1|4, a) =

p(2|4, a) = p(3|4, a) = 1
3
. In this MDP, states 1,2, and 3 are recurrent. For this

MDP, G1(4, j) = 1, j = 1, 2, 3, and G1(i, j) = 0 in all other cases. This graph

cannot be compressed and therefore k+ = 4.

Example 1.6 Let S = {1, 2, 3, 4}, A(1) = A(3) = {a}, and A(2) = A(4) =

{a, b}. In addition, p(2|1, a) = p(1|2, a) = p(4|3, a) = p(3|4, a) = 1 and

p(1|2, b) = p(3|2, b) = p(3|4, b) = p(1|4, b) = 1
2
. This MDP has no recur-

rent states. The graph G1 has two strongly connected components {1, 2} and

{3, 4} and they contract to a graph consisting of two isolated nodes. Thus

k+ = 2 and [14, Algorithm 5] detects that this MDP is multichain.

1.6 Conclusion

In this chapter, we studied the unichain classification problem for the MDPs

which contain recurrent or stopping states. We introduced the definitions of

avoidable and reachable sets and provided the polynomial algorithms to find

the avoidable and reachable sets for a given set. We applied the ideas of avoid-

able and reachable sets to detect whether a given state in an MDP is recurrent

or not and, if it is recurrent, whether the MDP is unichain. Since detecting

stopping states in an MDP is polynomial, we provided the polynomial algo-

rithm to solve the unichain classification problem for the MDPs with recurrent

or stopping states.

There are still many spacial cases of MDPs where the unichain classification

17



problem is polynomial. For example, it is interesting to look into the unichain

classification problem for the MDPs without recurrent and stopping states. In

the future, it is possible to construct the polynomial algorithm of solving the

unichain classification problem for more general MDPs.

18



Chapter 2

Optimal Trunk Reservation for

an M/M/k/N controlled queue

with holding costs

2.1 Introduction

In this chapter, we consider an M/M/k/N controlled queueing system with m

customer types, where m ≥ 1. Customers of type j arrive at the system ac-

cording to an independent Poisson process with rate λj, j = 1, 2, . . . , m, where

0 < λj < ∞. When a customer arrives at the system, its type becomes known.

There are k identical servers in the system, where k ≥ 1. The service times

are independent, do not depend on the customer types, and are exponentially

distributed with rate µ, where 0 < µ < ∞. When there are n customers

in the system, the total service rate of the system is µn, where µn = nµ for

n = 0, 1, . . . , k − 1, and µn = kµ for n = k, k + 1, . . . , N . Moreover, there is
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no preemption for customers. The queue follows the first-in-first-out (FIFO)

rule.

At the arrival epochs, the system manager decides whether an arrival can

enter the system or not. If a customer sees less than k customers in the system

and is admitted, the customer goes to a free server immediately. If a customer

sees at least k customers in the system and is admitted, the customer waits in

the queue for service. If there are N customers in the system, the system is

full and all the arrivals are rejected. Upon admitting a customer, the system

collects a positive reward which depends on the customer type and incurs a

nonnegative random holding cost which depends on the customer type and the

number of customers in the system the admitted customer sees. Let rj(n) be

the net reward collected by the system if a customer of type j sees n customers

in the system and is admitted. The net rewards rj(n) are positive constants

for n = 0, 1, . . . , k − 1, and are nonincreasing in n = k − 1, k, . . . , N − 1. The

dependence of rj(n) on n reflects the fact that net rewards depend on waiting

times. Furthermore, we assume that different customer types have different

reward functions . When an arrival is rejected, the system does not collect

any reward. The objective is to maximize the long-run average reward. We

call a policy, that maximizes the long-run average reward, an optimal policy.

In addition to average reward optimality, we also consider three more selective

policies: canonical, bias optimal, and Blackwell optimal policies. Below is the

definition of a trunk reservation policy.

Definition 2.1 A policy φ is called a trunk reservation policy (TRP) if there

are m control levels Mφ
j , j = 1, . . . , m, such that a type j arrival is admitted
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to the system if and only if the customer sees less than Mφ
j customers in

the system and a type j arrival is rejected if the customer sees at least Mφ
j

customers in the system.

This definition is weaker than the definition of a TRP in Feinberg and Reiman [9],

which was introduced in Miller [19] without using the term “trunk reservation.”

In [9, 19], it is required that Mφ
l = N if rl = maxj=1,2,...,m rj, where only the

case rj(n) = rj was considered. The stronger definition is possible when there

are no holding costs in [9, 17, 19].

Optimal admission control problem has been extensively studied in the lit-

eratures, but the results are limited to the models without holding costs or

with holding costs that do not depend on customer types. Miller [19] consid-

ered m types of customers for an M/M/k/loss queue without holding costs and

ordered rewards r1 > r2 > · · · > rm > 0. He proved the existence of an optimal

TRP f with k = M f
1 ≥ M f

2 ≥ · · · ≥ M f
m−1 ≥ M f

m. Feinberg and Reiman [9]

considered general birth and death processes and studied a problem with a

constraint. In particular, they extended Miller’s [19] result to an M/M/k/N

queue without holding costs. In addition, Feinberg and Reiman [9] showed

that any randomized stationary optimal policy for a problem without hold-

ing costs is a randomized TRP. Lewis et al. [17] provided a simpler proof of

this fact for (nonrandomized) stationary policies. Problems with more general

constraints than in [9] were studied by Fan-Orzechowski and Feinberg [7, 8].

Several optimal admission control problems with holding costs have been

studied. Naor [21] proved the existence of an optimal TRP for an M/M/1

queue with one customer type and linear holding costs. Knudsen [16] extended
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Naor’s result to an M/M/k queue. Yechiali [27, 28] extended Naor’s and

Knudsen’s results to GI/M/1 and GI/M/k queues with one customer type and

linear holding costs. Stidham [23] proved the existence of an optimal TRP for

a GI/M/1 queue with one customer type and convex nondecreasing holding

costs; see also [24]. Johansen [13] extended Stidham’s result to a GI/M/k

queue. Helm and Waldman [11] extended Stidham’s [23] and Johansen’s [13]

results to GI/M/k queues with batch arrivals, convex nondecreasing holding

costs, and changing environment.

For a Markov Decision Process (MDP) with finite state and action sets, the

optimal policies found by Howard’s policy iteration algorithm satisfy optimal-

ity equations and such policies are called canonical. Blackwell [3] proved the

existence of a stationary policy that optimizes the expected total discounted

reward for all discount factors β ∈ [β∗, 1) for some β∗ ∈ [0, 1). Such policies

are called Blackwell optimal. A policy is called bias optimal if the difference

of the expected total discounted rewards between this policy and a Blackwell

optimal policy tends to 0 as β → 1. Veinott [26] modified Howard’s [12] policy

iteration algorithm to find a bias optimal policy. For continuous time prob-

lems, the values of the discount factor β close to 1 correspond to the values of

the discount rate α close to 0, because essentially β = e−α.

For an M/M/1 queue with one customer type and convex increasing holding

costs, Haviv and Puterman [10] showed that there is either one optimal TRP

or two optimal TRPs. If there are two optimal TRPs, the difference between

their control levels is 1. Haviv and Puterman [10] also showed that the optimal

TRP with the larger optimal control level is the unique bias optimal policy

and, therefore, it is also Blackwell optimal. Lewis et al. [17] proved that a
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similar result holds for an M/M/k/N queue with several customer types and

without holding costs.

We organize this chapter as follows. In Section 2.2, we formulate the net

reward functions rj(n), for j = 1, . . . , m and n = 0, 1, . . . , N , and then we

follow Miller’s approach to formulate the Continuous-Time Markov Decision

Process (CMDP) for our problem. In Section 2.3, we prove the existence of an

optimal TRP for our problem. In addition, we provide complete descriptions

of the classes of stationary optimal policies, optimal TRPs, canonical policies.

In Section 2.4, we show that the bias optimal policy for our problem is unique

and it is also Blackwell optimal. Similar to the cases of one customer type [10]

and several customer types without holding costs [17], the bias optimal pol-

icy selects the largest optimal control level for each customer type. For all

customer types, except at most one, there exist at most two optimal control

levels. Under a certain condition, there is one customer type, for whom there

are more than two optimal control levels. For this customer type, the largest

optimal control level is N . In Section 2.5, we conclude our results and discuss

the possible future research for queueing systems.

2.2 Problem Formulation

Consider the M/M/k/N queue defined in the introduction. Following the def-

initions, we formulate rj(n) and the continuous-time Markov decision process

(CTMDP) for our problem. Let X(t) = 0, 1, . . . , N − k be the position of a

customer in the queue at time t after its arrival. In particular, if the customer

goes to a server, then X(t) = 0, and, if the customer is in the queue and there
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are n− 1 customers in front in the queue, then X(t) = n. Observe that X(t)

does not depend on future arrivals and decisions. Moreover, let Rj be the

reward an admitted type j customer pays for the service and hj(X(t), t) ≥ 0

be the rate the system incurs holding cost to the admitted type j customer

when the position of this customer is X(t) at time t.

Also, we let Dn, n = 0, 1, . . . , N−1, be the delay for an admitted customer

seeing n customers in the system at the arrival time, and Wn be the waiting

time for such a customer. In other words, if a customer is admitted when

there are n customers in the system, the admitted customer spends Wn units

of time in the system and Dn units of time in the queue waiting until the

service begins.

If type j arrival is admitted when there are n customers in the system, the

expected holding cost Hd
j (n) incurred during the time the customer waits for

service in the queue is

Hd
j (n) = E

∫ Dn

0

hj(X(t), t)dt,

and the expected holding cost Hs
j (n) incurred during the time the customer

spends in the system is

Hs
j (n) = E

∫ Wn

0

hj(X(t), t)dt.

In particular, Haviv and Puterman [10] and Stidham [23] considered that

the holding cost per unit time at time t depends only on the number of cus-

tomers in the system for M/M/1 and GI/M/1 systems respectively. Let cn
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be the holding cost per unit time if there are n customers in the system. We

define c−1 = 0 and 4cn = cn − cn−1. Then, by selecting hj(x, t) = 4cx, we

have that the holding cost per unit time for our problem is
∑n

i=0 hj(i, t) = cn.

The reward functions rj(n) = Rj−Hj(n), n = 0, 1, . . . , N−1, where either

Hj(n) = Hd
j (n) or Hj(n) = Hs

j (n) depending on a particular problem. In the

either case, the functions rj(n) possess some natural properties. For example,

rj(n) = rj(0) for n = 1, . . . , k − 1. If rj(n) = Rj −Hd
j (n), then rj(0) = Rj. If

rj(n) = Rj −Hs
j (n), then rj(0) = Rj −Hs

j (0). In either case, it is natural to

assume that rj(0) > 0. Otherwise, type j customers should be always rejected.

If hj(t) = 0 for all t ≥ 0, then rj(n) = rj(0) = Rj for all n. If hj are measurable

functions such that a ≤ hj(t) ≤ b for two finite positive constants a and b,

then a
kµ
≤ rj(n − 1) − rj(n) ≤ b

kµ
for n ≥ k. We assume the following broad

and natural condition throughout this paper.

Condition 2.1 For each j = 1, 2, . . . ,m, the reward function rj(n) satisfies

the following conditions: (a) rj(n) = rj(0) > 0 for all n = 0, 1, . . . , k − 1, (b)

either rj(n) = rj(0) for all n = k, k + 1, . . . , N − 1 or rj(n) < rj(n− 1) for all

n = k, k +1, . . . , N − 1, and (c) different customer types have different reward

functions, that is, if j 6= l, then rj(n) 6= rl(n) for some n = 0, 1, . . ., where

j, l = 1, . . . , m.

We formulate our problem as a CTMDP with the state space S = {0, 1, . . . N}.
State n means there are n customers in the system. A(n) is the set of actions

available at state n and A =
⋃N

n=0 A(n). An action a ∈ A(n) is the set of the

customer types to be admitted at state n and a = ∅ means no customer is

accepted. Thus, A(n), n = 0, 1, . . . , N − 1, contains 2m actions, which are all
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the possible subsets of {1, 2, . . . , m}, and A(N) = {∅}. Each action a ∈ A(n)

defines a transition intensity λa
n =

∑
j∈a λj and an expected reward per unit

time R(n, a) =
∑

j∈a λjrj(n). Since S and A are finite, there exists a (nonran-

domized) stationary optimal policy for our problem. Thus, in the rest of this

paper, we focus on the set of all stationary policies and let F be this set. For

any f ∈ F , we denote by fn the action that f chooses from A(n) at state n.

We also define f(n, j) as follows:

f(n, j) =





{accept}, if j ∈ fn;

{reject}, otherwise.

Moreover, the policy f defines a vector of expected reward per unit time R(f)

whose (n+1)-st component is R(n, fn) and an infinitesimal matrix Q(f) whose

(n, l) element is q(l|n, fn), where q(n + 1|n, fn) = λf
n for n = 0, 1, . . . , N − 1,

q(n − 1|n, fn) = µn for n = 1, 2, . . . , N , q(n|n, fn) = −µn − λf
n for n =

0, 1, . . . , N , and q(l|n, fn) = 0, otherwise. Furthermore, let Pnl(t, f) be the

probability that the process is at state l at time t, given that the process

started at state n at time 0 under policy f . We let P (t, f) be the corresponding

matrix. Then P (t, f) converges to the steady probability matrix P ∗(f) as

t → ∞. We denote vf
n the average reward per unit time, given that the

process starts at state n under f , and V f the vector whose (n + 1)-st element

is vf
n, n = 0, 1, . . . , N . Then

vf
n = lim inf

T→∞
T−1Ef

n

∫ T

0

R(xt, at)dt,
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where R(xt, at) is the expected reward per unit time collected when the process

is at state xt and action at is chosen at time t, and

V f = lim
T→∞

T−1

∫ T

0

P (t, f)R(f)dt = P ∗(f)R(f).

Our goal is to find an optimal policy that maximizes the vector V f . Note

that there is only one recurrent class under any policy from F . Such CTMDPs

are called unichain. Since the CTMDP is unichain, all rows of P ∗(f) are

equal to the unique steady state probability vector (π∗0(f), π∗1(f), . . . , π∗N(f)).

Thus, all elements of V f are equal and vf
n = vf =

∑N−1
s=0 π∗s(f)R(s, fs), n =

0, 1, . . . , N . A policy f ∈ F is optimal if vf ≥ vφ for all φ ∈ F . Let F ∗ be

the set of stationary optimal policies and v∗ be the average reward per unit

time under any policy from F ∗. For a unichain CTMDP, a policy f is called

canonical if and only if there exists a function yf
j such that

vf = R(i, fi) +
N∑

j=0

q(j|i, fi)y
f
j = max

a∈A(i)
{R(i, a) +

N∑
j=0

q(j|i, a)yf
j } (2.1)

for i = 0, 1, . . . , N . For a unichain CTMDP with finite states and action sets,

a canonical policy always exists, is optimal, and Howard’s policy iteration

algorithm computes it; see [29]. Similar to discrete-time MDPs, an optimal

policy may not be canonical.
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2.3 Average Reward Optimality

The results of Feinberg and Reiman [9, Theorem 3.1] imply that, for any

M/M/k/N queue with m customer types and without holding costs, any sta-

tionary optimal policy is a TRP; see also [17] for a simpler proof of this fact.

In addition, Feinberg and Reiman [9] showed that, under any optimal policy f ,

if Rl > Rk, then M f
l ≥ M f

k , and, if Ri = maxj=1,...,m Rj, then M f
i = N . In this

section, we prove the existence of an optimal TRP for the problem with hold-

ing costs and obtain the structure of the canonical policies. Contrary to the

results for problems without holding costs [9, 17], a stationary optimal policy

may not be a TRP; see Examples 2.1 and 2.2. However, under some condi-

tions, we show that every stationary optimal policy has a closely related form

which we call essential trunk reservation. Moreover, because rj(n) depend on

the customer types and the states, we show in Example 2.1 that ri(0) > rj(0)

does not imply M f
i ≥ M f

j under a stationary optimal TRP f .

In order to compute a stationary optimal policy for our problem, we con-

sider the following equations for a CTMDP [19]:

V f = P ∗(f)×R(f), (2.2)

R(f) + Q(f)× yf = V f , (2.3)

P ∗(f)× yf = 0, (2.4)

where yf is the bias vector and f ∈ F . According to [19],

yf =

∫ ∞

t=0

(P (t, f)− P ∗(f))R(f) dt.
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We denote by yf
n, n = 0, 1, . . . , N , the (n + 1)-st element of yf . Let ∇yf

n =

yf
n−yf

n+1 for n = 0, 1, . . . , N−1.In addition, for any f ∈ F and n = 0, 1, . . . , N ,

we define

Hf (n, z) =
∑

j∈fn

λj(rj(n)− z),

where Hf (n, z) = 0 if fn = ∅. In particular, Hf (N, z) = 0. Also, we let

∇yf
−1 = 0 for any f ∈ F .

Miller [19] presented a version of Howard’s policy iteration algorithm [12]

for the optimal admission problem for any M/M/k/loss queue with several

customer types. In that version, Miller [19] considered relative bias functions

∇yf
n instead of bias functions yf

n. In order to compute relative bias functions

∇yf
n, he transformed (2.3) to the following formula:

Hf (n,∇yf
n) + µn ×∇yf

n−1 = vf , (2.5)

, for n = 0, 1, . . . , N . The same transformation can be done for birth-and-death

processes and reward functions depending on the states. Below we present a

modification of Miller’s algorithm [19] for an M/M/k/N queue with reward

functions depending on states and customer types.

Algorithm 5 Policy Iteration Algorithm

1. Choose a policy f ∈ F .

2. For policy f , compute vf and ∇yf
n, n = 0, 1, . . . , N − 1, by solving linear
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equations

Hf (n,∇yf
n) + µn ×∇yf

n−1 = vf , n = 0, 1, 2, . . . , N.

3. a. If Hf (n,∇yf
n) = maxa∈A(n){

∑
j∈a λj(rj(n)−∇yf

n)} for n = 0, 1, . . . , N−
1, then f is an optimal policy. Stop.

b. For all n = 0, 1, . . . , N−1 such that Hf (n,∇yf
n) < maxa∈A(n){

∑
j∈a λj(rj(n)−

∇yf
n)}, change fn to an such that

∑
j∈an λj(rj(n)−∇yf

n) =

maxa∈A(n){
∑

j∈a λj(rj(n)−∇yf
n)}. Go to Step 2.

Since the state space and the action sets of the CTMDP for our problem

are finite, according to [29], a canonical policy always exists and the policy

iteration algorithm computes it. The following statements are the descriptions

for a canonical policy.

Proposition 2.1 A policy f is canonical if and only if one of the following

equivalent statements hold:

(a) Hf (n,∇yf
n) = maxa∈A(n){

∑
j∈a λj(rj(n)−∇yf

n)} for all n = 0, 1, . . . , N−
1;

(b) Hf (n,∇yf
n) =

∑m
j=1 λj(rj(n)−∇yf

n)+ for all n = 0, 1, . . . , N − 1;

(c) f(n, j) = {accept} if rj(n) > ∇yf
n and f(n, j) = {reject} if rj(n) < ∇yf

n.
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Proof (a)–(b) According to [19], (2.5) is the same as (2.3). Thus, from (2.1),

a policy f is canonical if and only if

v∗ = Hf (n,∇yf
n) + µn∇yf

n−1 = max
a∈A(n)

{
∑
j∈a

λj(rj(n)−∇yf
n) + µn∇yf

n−1}

= max
a∈A(n)

{
∑
j∈a

λj(rj(n)−∇yf
n)}+ µn∇yf

n−1 =
m∑

j=1

λj(rj(n)−∇yf
n)+ + µn∇yf

n−1.

Therefore, f is canonical if and only if Hf (n,∇yf
n) = maxa∈A(n){

∑
j∈a λj(rj(n)−

∇yf
n)} =

∑m
j=1 λj(rj(n)−∇yf

n)+ for n = 0, 1, . . . , N − 1.

(c) According to (b), if rj(n)−∇yf
n > 0, then f(n, j) = {accept}. On the

other hand, if rj(n) < ∇yf
n, then f(n, j) = {reject}. ¥

Let nf = min{n = 1, . . . , N : fn = ∅}, where f ∈ F . Then, under

policy f , the recurrent class Rf = {0, 1, . . . , nf} and the set of transient states

T f = {nf + 1, nf + 2, . . . , N}. This is true because of the following reasons:

(i) state 0 is accessible from any state n = 0, 1, . . . , N , and, therefore, it is

recurrent;

(ii) any two states in Rf communicate;

(iii) any state in T f is not accessible from state nf .

Note that T f = ∅ if and only if nf = N . For problems without holding costs,

nf = N if f is an optimal policy. [9, 17].

Theorem 2.1 Every f ∈ F ∗ always accepts type l customers with rl(0) =

maxj=1,2,...,m rj(0) when there are less than k customers in the system. Thus,

nf ≥ k for f ∈ F ∗.
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Proof Assume f ∈ F ∗ reject all customer types at state n, n < k. Then f

is also optimal for an M/M/k/loss queue. However, according to [9, 17, 19], f

always accepts type l customers with rl(0) = maxj=1,2,...,m rj(0) if there is at

least one empty server. This contradiction implies this theorem. ¥

For the problem without holding costs, all stationary optimal policies are

TRPs [9, 17] and, thus, all canonical policies are TRPs. In the case with

holding costs, rj(n) may decrease with respect to n for n ≥ k − 1, and it is

possible that all customer types shall be rejected, even if there is available space

in the system. Thus, the corresponding Markov chain may contain transient

states. If a stationary optimal TRP is changed at these states, then it remains

optimal, but it is not a TRP anymore. The following example illustrates this

possibility.

Example 2.1 Consider an M/M/1/4 queue with two customer types, where

λ1 = λ2 = µ = 1, r1(0) = 10, r1(1) = 6, r1(2) = 2, r1(3) = −2, r2(0) = 9,

r2(1) = 8, r2(2) = 6, and r2(3) = 3. Consider a policy d ∈ F with d0 = {1, 2},
d1 = {2}, d2 = ∅, d3 = {2}, and d4 = ∅. By applying (2.5) with policy d, we

have

(10−∇yd
0) + (9−∇yd

0) = vd;

(8−∇yd
1) +∇yd

0 = vd;

∇yd
1 = vd;

(3−∇yd
3) +∇yd

2 = vd;

∇yd
3 = vd.
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State 0 State 1 State 2 State 3 State 4
Policy d Type 1 A R R R R

Type 2 A A R A R
Policy f Type 1 A R R R R

Type 2 A A R R R

Table 2.1: Policies d and f for Example 2.1 are optimal. A=Accept; R=Reject.

After solving the linear equations above, we have vd = ∇yd
3 = ∇yd

1 = 7,

∇yd
2 = 11, and ∇yd

0 = 6. Since r2(3) = 3 < 7 = ∇yd
3 and d3 = {2}, after one

policy iteration, we have another policy f ∈ F , with f0 = {1, 2}, f1 = {2},
and f2 = f3 = f4 = ∅. By applying (2.5) with policy f , we have

(10−∇yf
0 ) + (9−∇yf

0 ) = vf ;

(8−∇yf
1 ) +∇yf

0 = vf ;

∇yf
1 = ∇yf

2 = ∇yf
3 = vf .

After solving the linear equations, we have vf = ∇yf
1 = ∇yf

2 = ∇yf
3 = 7 and

∇yf
0 = 6. Since Hf (n,∇yf

n) =
∑m

j=1 λj(rj(n) − ∇yf
n)+ for n = 0, 1, . . . , 4,

policy f is a canonical policy. Since vd = vf , both d and f are optimal.

However, f is a canonical policy and a TRP, but d is neither a canonical

policy nor a TRP. Note that, under policy f , the control levels M f
2 > M f

1 ,

even though r1(0) = 10 > 9 = r2(0).

The policies from Example 2.1 satisfy the properties described in the fol-

lowing lemma.

Lemma 2.1 Let f ∈ F ∗. Then the following statements hold for j = 1, 2, . . . , m

and n < N .
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(i) if rj(n) > ∇yf
n and n ∈ Rf , then f(n, j) = {accept};

(ii) if rj(n) < ∇yf
n and n ∈ Rf , then f(n, j) = {reject};

(iii) if g(n, j) = f(n, j) for all n = 0, 1, . . . , N − 1 such that rj(n) 6= ∇yf
n,

then ∇yg
n = ∇yf

n for all n = 0, 1, . . . , N − 1 and g ∈ F ∗;

(iv) Hf (n,∇yf
n) = maxa∈A(n){

∑
j∈a λj(rj(n)−∇yf

n)} ≥ 0 for all n ∈ Rf .

Proof For f, d ∈ F , let en = Hd(n,∇yf
n)−Hf (n,∇yf

n). Then en = Hd(n,∇yd
n)−

Hf (n,∇yf
n)+λd

n(∇yd
n−∇yf

n). Equations (2.5) imply vd−vf = en+µn(∇yd
n−1−

∇yf
n−1)−λd

n(∇yd
n−∇yf

n). By multiplying both sides with π∗n(d), summing them

in n and using the fact that λd
nπ∗n(d) = µn+1π

∗
n+1(d), we have

N∑
n=0

π∗n(d)(vd − vf ) = vd − vf =
N∑

n=0

π∗n(d)en. (2.6)

(2.6) is a particular form of formula (8.39) in [? ] and we use it to prove

(i)–(iii).

(i) Assume that rj(n) > ∇yf
n and f(n, j) = {reject} for some n ∈ Rf .

Then consider a policy g such that gs = fs for s 6= n, and gn = fn

⋃{j}.
Observe that n ∈ Rg and, therefore, π∗n(g) > 0. Then, from (2.6)

vg − vf = π∗n(g)λj(rj(n)−∇yf
n).

Since π∗n(g) > 0, λj > 0, and rj(n) − ∇yf
n > 0, we have vg − vf > 0. Thus,

f /∈ F ∗.

(ii) Assume that rj(n) < ∇yf
n and f(n, j) = {accept} for some n ∈ Rf .
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Then consider a policy g such that gs = fs for s 6= n, and gn = fn\{j}.
Observe that n ∈ Rg. Then, from (2.6)

vg − vf = −π∗n(g)λj(rj(n)−∇yf
n).

Since π∗n(g) > 0, λj > 0, and rj(n)−∇yf
n < 0, we have vg − vf > 0 and, thus,

f /∈ F ∗.

(iii) For n = 0, 1, . . . , N − 1, let Zn = {j = 1, 2, . . . ,m : rj(n) = ∇yf
n}.

Consider any policy g ∈ F such that gn\Zn = fn\Zn for all n = 0, 1, . . . , N−1.

Then Hg(n,∇yf
n)−Hf (n,∇yf

n) = 0 for all n = 0, 1, . . . , N−1, and (2.6) implies

vg − vf = 0. Thus, if f ∈ F ∗, then g ∈ F ∗. Since vg = vf = v∗, from (2.5),

∇yg
N−1 = ∇yf

N−1 = v∗
kµ

. Since g(n, j) = f(n, j) when rj(n) 6= ∇yf
n, by solving

(2.5) with g and f , we have that ∇yg
N−2 = ∇yf

N−2. By repeating this argument

N − 1 times, we have ∇yg
n = ∇yf

n for n = 0, 1, . . . , N − 1.

(iv) From (i)–(iii) of this lemma, maxa∈A(n){
∑

j∈a λj(rj(n) − ∇yf
n)} =

∑m
j=1 λj(rj(n) − ∇yf

n)+ =
∑

j∈fn
λj(rj(n) − ∇yf

n) = Hf (n,∇yf
n) ≥ 0 for

n = 0, 1, . . . , nf . ¥

Below are the definition of the restriction of a policy and the definition of

an essential trunk reservation policy.

Definition 2.2 We call fR ∈ F the restriction of policy f ∈ F if

fR
n =





fn, if n ∈ Rf ;

∅, if n ∈ T f .

A policy f ∈ F is called an essential trunk reservation policy (ETRP) if fR ∈
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F is a TRP.

The following lemma and theorem describe the relations between f and its

restriction fR.

Lemma 2.2 vf = vfR
for any f ∈ F , and, therefore, f ∈ F ∗ if and only if

fR ∈ F ∗.

Proof Since nfR
= nf , we have that RfR

= Rf = {0, 1, . . . , nf} and T fR
=

T f = {nf +1, . . . , N}. The policies f and fR coincide in {0, 1, . . . , nf}. Thus,

vf = vfR
. ¥

Let C∗ be the set of all canonical policies, E∗ be the set of all optimal

ETRPs, and T ∗ be the set of all optimal TRPs. Then the following theorem

links the sets of optimal policies F ∗, canonical policies C∗, optimal ETRPs

E∗, and optimal TRPs T ∗.

Theorem 2.2 A policy f ∈ F ∗ if and only if fR ∈ C∗. In addition, T ∗ ⊆
E∗ ⊆ F ∗. In the case with zero holding costs, T ∗ = C∗ = E∗ = F ∗.

Proof If fR ∈ C∗, then fR ∈ F ∗. From Lemma 2.2, f ∈ F ∗. If f ∈
F ∗, then, from Lemma 2.2, fR ∈ F ∗. Now let nf = N . Then Lemma

2.1(iv) implies that HfR
(n,∇yfR

n ) = maxa∈A(n){
∑

j∈a λj(rj(n) − ∇yfR

n )} for

n = 0, 1, . . . , N − 1. Proposition 2.1(a) implies fR ∈ C∗. If nf ≤ N − 1,

then Lemma 2.1 implies ∇yfR

nf ≥ maxj=1,2,...,m rj(n
f ). Since fR

n = ∅ for

n ≥ nf , formula (2.5) implies ∇yfR

nf−1
= ∇yfR

nf = · · · = ∇yfR

N−1 = v∗
kµ

≥
maxj=1,2,...,m rj(n

f ). Since rj(n) are nonincreasing in n = 0, 1, . . . , N − 1, we

have ∇yfR

n ≥ maxj=1,2,...,m rj(n) for n ∈ T f = {nf + 1, nf + 2, . . . , N} and
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State 0 State 1 State 2 State 3 State 4 State 5
Type 1 A A R R R R
Type 2 A R R R R R
Type 3 A A/R A/R A/R A/R R

Table 2.2: Canonical policies for Example 2.2. A=Accept; R=Reject.

HfR
(n,∇yfR

n ) = 0 = maxa∈A(n){
∑

j∈a λj(rj(n) −∇yfR

n )} for n ∈ T f . Lemma

2.1(iv) implies HfR
(n,∇yfR

n ) = maxa∈A(n){
∑

j∈a λj(rj(n)−∇yfR

n )} for n ∈ Rf .

From Proposition 2.1(a), fR ∈ C∗.

Definition 2.2 implies that T ∗ ⊆ E∗ ⊆ F ∗. In the case without holding

costs, the result of Feinberg and Reiman [9, Theorem 3.1] implies that T ∗ = F ∗.

Thus, in the case without holding costs, T ∗ = C∗ = E∗ = F ∗. ¥

The following example shows that there may exist a canonical policy which

is not an ETRP for our problem.

Example 2.2 Consider an M/M/1/5 queue with three customer types, where

λ1 = λ2 = λ3 = µ = 1, r1(0) = 10, r1(1) = 7, r1(2) = 4, r1(3) = 1, r1(4) = −2,

r2(0) = 8, r2(1) = 6, r2(2) = 4, r2(3) = 2, r2(4) = 0, and r3(0) = r3(1) =

r3(2) = r3(3) = r3(4) = 6.5. Consider a TRP d with d0 = {1, 2, 3}, d1 = {1, 3},
and d2 = d3 = d4 = d5 = ∅. Equations (2.5) imply that d is a canonical policy

with ∇yd
0 = 6 and ∇yd

1 = ∇yd
2 = ∇yd

3 = ∇yd
4 = vd = 6.5. Now consider

another policy f with f0 = {1, 2, 3}, f1 = {1}, f2 = {3}, and f3 = f4 = f5 = ∅.
Note that f = fR and fR is not an ETRP. Equations (2.5) also imply that f

is a canonical policy with ∇yf
0 = 6 and ∇yf

1 = ∇yf
2 = ∇yf

3 = ∇yf
4 = vf = 6.5.

The following formula describes an arbitrary canonical policy for Example
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2.2:

f(n, j) =





{accept}, if n = 0 or (n, j) = (1, 1);

{reject}, if either (n, j) = (1, 2) or n = 2, 3, 4 and j = 1, 2;

arbitrary, if n = 1, 2, 3, 4 and j = 3.

This description contrasts to the result without holding costs [17], where there

exist at most two optimal control levels for each customer type. We also

observe that, in Example 2.2, there is only one customer type with more than

two optimal control levels. In Theorem 2.4, we will show that, if, as stated

in Condition 2.1, different customer types have different net reward functions,

then there exists only one customer type with more than two optimal control

levels under an additional condition. This additional condition is Condition

2.2 which provides necessary and sufficient conditions when such customer

type exists. In order to formulate Condition 2.2, Definition 2.4, and Theorems

2.3 and 2.4, we need the following two lemmas.

Lemma 2.3 Let R̃ =
∑m

j=1 λj × rj(0). Then 0 < v∗ < R̃.

Proof Since R(n, fn) ≤ R̃, n = 0, 1, . . . , nf−1, R(nf , fnf ) = 0, and π∗
nf (f) >

0, we have vf =
∑nf−1

n=0 π∗n(f)R(n, fn) ≤ ∑nf−1
n=0 π∗n(f)R̃ < R̃. Furthermore,

let f accept all customer types if and only if the system is empty. Then

v∗ ≥ vf = π∗0(f)× R̃ > 0. ¥

Equations (2.5) and Theorem 2.1 imply ∇yf
nf−1

= v∗
kµ

when f ∈ F ∗. For

f ∈ F ∗, we define N f = min{n = 0, 1, . . . , nf − 1 : ∇yf
n = vf

kµ
}. This definition

yields N f ≤ nf − 1.
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Lemma 2.4 If f, g ∈ F ∗, then N f = N g and ∇yf
n = ∇yg

n for n = 0, 1, . . . , min{nf , ng}−
1.

Proof We prove this lemma by contradiction. Let nf = min{nf , ng}. Then

state nf is recurrent under both f and g. Assume that ∇yg
n 6= ∇yf

n for

some n = 0, 1 . . . , nf − 1. Since gn 6= ∅ and fn 6= ∅, Lemma 2.1 implies

Hg(n,∇yg
n) 6= Hf (n,∇yf

n). From (2.5), Hg(n,∇yg
n) + µn∇yg

n−1 = v∗ =

Hf (n,∇yf
n) + µn∇yf

n−1. Thus, ∇yg
n−1 6= ∇yf

n−1. By repeating this argu-

ment n times, we have ∇yg
0 6= ∇yf

0 . Since f, g ∈ F ∗, Lemma 2.3 implies

vf > 0 and vg > 0. However, since ∇yf
0 6= ∇yg

0 , Lemma 2.1 and (2.5) yield

vg = Hg(0,∇yg
0) 6= Hf (0,∇yf

0 ) = vf . Thus, either g or f is not optimal.

This contradicts our assumption that f, g ∈ F ∗. Thus, if f, g ∈ F ∗, then

∇yg
n = ∇yf

n for n = 0, 1, . . . , nf −1. Since N f ≤ nf −1 and nf = min{nf , ng},
we have N g = N f . ¥

From Lemma 2.4, we know that N f does not depend on f ∈ F ∗. We let

N∗ = N f for any optimal policy f . Lemma 2.4 implies

N∗ ≤ min{nf : f ∈ F ∗} − 1. (2.7)

Example 2.2 satisfies the following condition, which indicates the existence

of a special customer type i with more than two optimal control levels. As

shown later, this is a necessary and sufficient condition for the existence of a

canonical policy that is not a TRP.

Condition 2.2 N∗ < N − 1 and there exists a customer type i such that

ri(n) = v∗
kµ

for all n = 0, 1, . . . , N − 1.
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We need the following definitions before we describe the structures of

canonical policies and optimal TRPs for our problem.

Definition 2.3 An integer Mj is called an optimal control level for type j

customers if there exists a policy f ∈ T ∗ such that M f
j = Mj.

Definition 2.4 Let nf
i = min{n = N∗, N∗ + 1, . . . , N : f(n, i) = {reject}}.

Then a policy fR,i is called the restriction of f for customer type i if

fR,i(n, j) =





f(n, j), for j 6= i;

fR,i(n, i) = {accept}, for n < nf
i ;

fR,i(n, i) = {reject}, for n ≥ nf
i .

Theorems 2.3 and 2.4 and Corollary 2.1 below are the main results for our

problem under average reward criterion.

Theorem 2.3 If Condition 2.2 does not hold, then: (a) every stationary op-

timal policy is an ETRP; (b) T ∗ = C∗ ⊆ E∗ = F ∗; (c) for each customer type

j = 1, 2, . . . ,m, there exists two optimal control levels Mj,M
′
j = 0, 1, . . . , N

such that

(i) Ml ≥ k for customer type l with rl(0) = maxj=1,2,...,m rj(0);

(ii) maxj=1,2,...,m Mj > N∗ ≥ k − 1;

(iii) either M ′
j = Mj or M ′

j = Mj + 1;

(iv) a policy f belongs to T ∗ if and only if it is a TRP with M f
j ∈ {Mj,M

′
j}

for all j = 1, 2, . . . ,m.
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Figure 2.1: Condition 2.2 does not hold in Example 2.1

In particular, statement (c) in Theorem 2.3 means that, for each customer

type j, there exist at most two optimal control levels and, if there are two

different optimal control levels Mj and M ′
j, where M ′

j > Mj, then M ′
j =

Mj + 1. A policy is canonical if and only if it is a TRP that follows one of

these optimal control levels for each customer type. Theorem 2.3 implies the

following corollary.

Corollary 2.1 If either of the following conditions holds:

(i) rj(n) are decreasing in n = k − 1, k, . . . , N − 1;

(ii) rj(n) > rj+1(n) for j = 1, 2, . . . , m− 1 and n = 0, 1, . . . , N − 1;

then statements (a)–(c) of Theorem 2.3 hold.
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Theorem 2.4 If Condition 2.2 holds, then, for each customer type j ∈ J ,

where J = {1, 2, . . . , m}\{i} , there exist two optimal control levels Mj,M
′
j =

0, 1, . . . , N such that

(i) Ml ≥ k for customer type l with rl(0) = maxj=1,2,...,m rj(0) > ri(0);

(ii) maxj∈J Mj > N∗ ≥ k − 1;

(iii) either M ′
j = Mj or M ′

j = Mj + 1;

(iv) a policy f belongs to T ∗ if and only if it is a TRP with M f
j ∈ {Mj,M

′
j},

j ∈ J , and M f
i ∈ {N∗, N∗ + 1, . . . , N}.

In addition, a policy f belongs to C∗ if and only if fR,i belongs to T ∗.
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Figure 2.2: Condition 2.2 holds in Example 2.2, i = 3, and N∗ = 1

Statement (iii) in Theorem 2.4 means that, for each customer type j, j 6= i,

there exist at most two optimal control levels. If there are two different optimal
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control levels M ′
j and Mj, where M ′

j > Mj, then M ′
j = Mj + 1. Since N∗ <

N − 1, for customer type i, there exist more than two optimal control levels,

which are N∗, N∗ + 1, . . . , N . A TRP is optimal if and only if it follows these

optimal control levels. To prove Theorem 2.3, Theorem 2.4, and Corollary 2.1,

we need the following lemmas.

Lemma 2.5 If f ∈ C∗, then the following statements hold:

(i) Hf (n,∇yf
n) ≥ 0 for n = 0, 1, . . . , nf − 1 and Hf (n,∇yf

n) = 0 for n =

nf , nf + 1, . . . , N ;

(ii) if nf < N , then ∇yf
n = v∗

kµ
≥ maxj=1,2,...,m rj(n) for n = nf , nf +

1, . . . , N − 1.

Proof Since f ∈ C∗, Proposition 2.1(b) implies Hf (n,∇yf
n) ≥ 0 for all

n = 0, 1, . . . , N − 1. If nf = N , then Rf = {0, 1, . . . , N}. By defini-

tion, Hf (N,∇yf
N) = 0. Thus, statement (i) holds when nf = N . Now

let nf ≤ N − 1. Since f ∈ C∗ and fnf = ∅, Proposition 2.1(c) implies

∇yf
nf ≥ maxj=1,2,...,m rj(n

f ). Theorem 2.1 yields nf ≥ k and (2.5) implies

∇yf
N−1 = ∇yf

nf−1
= v∗

kµ
≥ maxj=1,2,...,m rj(n

f ) ≥ maxj=1,2,...,m rj(N − 1). Since

f ∈ C∗, Proposition 2.1(b) implies Hf (N − 1,∇yf
N−1) =

∑m
j=1 λj(rj(N −

1) − ∇yf
N−1)

+ = 0. From (2.5), kµ∇yf
N−2 = v∗ and, thus, ∇yf

N−2 = v∗
kµ

. By

repeating this argument N − 1− nf times, we have, for nf ≤ n ≤ N − 1,

∇yf
nf−1

= ∇yf
n =

v∗

kµ
≥ max

j=1,2,...,m
rj(n

f ) ≥ max
j=1,2,...,m

rj(n). (2.8)

Thus, ∇yf
n = v∗

kµ
≥ maxj=1,2,...,m rj(n) and Hf (n,∇yf

n) =
∑m

j=1 λj(rj(n) −
∇yf

n)+ = 0 for n = nf , nf + 1, . . . , N − 1. ¥
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Lemma 2.6 If f ∈ C∗, then maxj=1,2,...,m rj(0) > ∇yf
n, n = 0, 1, . . . , N − 1.

Proof We prove this lemma by contradiction. Assume that rl(0) = maxj=1,2,...,m rj(0) ≤
∇yf

n for some n = 0, 1, . . . , N − 1. Since f ∈ C∗, from Proposition 2.1(c),

Hf (n,∇yf
n) = 0. From Lemma 2.5(i), Hf (n + 1,∇yf

n+1) ≥ 0. From (2.5),

Hf (n + 1,∇yf
n+1) + µn+1∇yf

n = vf = v∗ ≥ Hf (n + 1,∇yf
n+1) + µn+1rl(0) ≥

µn+1rl(0) and µn∇yf
n−1 = v∗ because of Hf (n,∇yf

n) = 0. Since Hf (n +

1,∇yf
n+1) + µn+1∇yf

n = v∗ = µn∇yf
n−1 and Hf (n + 1,∇yf

n+1) ≥ 0, we have

µn∇yf
n−1 ≥ µn+1rl(0). Thus, ∇yf

n−1 ≥ µn+1

µn
rl(0) ≥ rl(0). By repeating this

argument n times, we obtain ∇yf
0 ≥ rl(0). Since ∇yf

0 ≥ rl(0), from Proposi-

tion 2.1(b) and (2.5), Hf (0,∇yf
0 ) =

∑m
j=1 λj(rj(0) − ∇yf

0 )+ = 0 = v∗. This

contradicts Lemma 2.3. Thus, rl(0) > ∇yf
n for n = 0, 1, . . . , N − 1. ¥

Lemma 2.7 The following statements hold:

(i) if f ∈ C∗, then k − 1 ≤ N∗ and 0 < ∇yf
0 < ∇yf

1 < · · · < ∇yf
N∗ =

∇yf
N∗+1 = · · · = ∇yf

N−1 = v∗
kµ

;

(ii) if f, g ∈ C∗, then ∇yf
n = ∇yg

n for n = 0, 1, . . . , N − 1.

Proof (i) If ∇yf
0 ≤ 0, then v∗ = Hf (0,∇yf

0 ) =
∑m

j=1 λj(rj(n) − ∇yf
0 ) ≥

∑m
j=1 λjrj(0), where the first equality follows from (2.5) and the second equal-

ity follows from Proposition 2.1(b). Therefore, v∗ ≥ ∑m
j=1 λjrj(0) and this

contradicts Lemma 2.3. Thus, ∇yf
0 > 0. Next we show that ∇yf

n < ∇yf
n+1 for

n = 0, 1, . . . , k− 2. From Theorem 2.1, fn 6= ∅ for n = 0, 1, . . . , k− 1. Assume

∇yf
n ≥ ∇yf

n+1 for some n, 0 ≤ n ≤ k−2. Since fn 6= ∅, fn+1 6= ∅,∇yf
n ≥ ∇yf

n+1,

and rj(n) = rj(n + 1) = rj(0) for j = 1, 2, . . . , m, from Proposition 2.1(b),
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we have Hf (n,∇yf
n) =

∑m
j=1 λj(rj(0)−∇yf

n)+ ≤ ∑m
j=1 λj(rj(0)−∇yf

n+1)
+ =

Hf (n + 1,∇yf
n+1). From (2.5), Hf (n + 1,∇yf

n+1) + (n + 1)µ∇yf
n = v∗ =

Hf (n,∇yf
n) + nµ∇yf

n−1. Since Hf (n,∇yf
n) ≤ Hf (n + 1,∇yf

n+1), we have

∇yf
n−1 ≥ n

n−1
∇yf

n > ∇yf
n. By repeating this argument n times, we have

a. ∇yf
n+1 ≤ ∇yf

n < · · · < ∇yf
1 < ∇yf

0 ;

b. Hf (0,∇yf
0 ) < Hf (1,∇yf

1 ) < · · · < Hf (n,∇yf
n) ≤ Hf (n + 1,∇yf

n+1).

From (2.5), Hf (0,∇yf
0 ) = v∗ = Hf (1,∇yf

1 ) + µ1∇yf
0 . Since Hf (0,∇yf

0 ) ≤
Hf (1,∇yf

1 ), we have ∇yf
0 ≤ 0. This contradicts the result that ∇yf

0 > 0.

Therefore, if f ∈ C∗, then

0 < ∇yf
0 < ∇yf

1 < · · · < ∇yf
k−1. (2.9)

From Theorem 2.1, nf ≥ k for any f ∈ C∗. If nf = k, then (2.8) implies that

∇yf
k−1 = ∇yf

k = · · · = ∇yf
N−1 = v∗

kµ
, N∗ = k − 1, and (i) is proven. Thus, in

the rest of the proof of (i), we consider nf > k.

Let n = k − 1, k, . . . , nf − 2. First we shall prove that ∇yf
n ≤ ∇yf

n+1.

Assume ∇yf
n > ∇yf

n+1 for some n = k − 1, k, . . . , nf − 2. From (2.5), Hf (n +

1,∇yf
n+1) + kµ∇yf

n = v∗ = Hf (n + 2,∇yf
n+2) + kµ∇yf

n+1. Thus, Hf (n +

1,∇yf
n+1) < Hf (n + 2,∇yf

n+2). Since Hf (n + 1,∇yf
n+1) < Hf (n + 2,∇yf

n+2),

Proposition 2.1(b) implies Hf (n+1,∇yf
n+1) =

∑m
j=1 λj(rj(n+1)−∇yf

n+1)
+ <

∑m
j=1 λj(rj(n + 2)−∇yf

n+2)
+ = Hf (n + 2,∇yf

n+2). Since rj(n + 1) ≥ rj(n + 2)

for j = 1, 2, . . . , m, we have ∇yf
n+1 > ∇yf

n+2. By repeating this argument

nf − 1− n times, we have

a. ∇yf
nf < ∇yf

nf−1
< · · · < ∇yf

n+1 < ∇yf
n;
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b. Hf (nf ,∇yf
nf ) > Hf (nf−1,∇yf

nf−1
) > · · · > Hf (n+2,∇yf

n+2) > Hf (n+

1,∇yf
n+1).

Since fnf = ∅, we have Hf (nf ,∇yf
nf ) = 0. Thus, 0 > Hf (nf − 1,∇yf

nf−1
).

Lemma 2.5(i) implies f /∈ C∗ and this contradicts f ∈ C∗. Therefore, if

f ∈ C∗, then

∇yf
k−1 ≤ ∇yf

k ≤ · · · ≤ ∇yf
nf−1

. (2.10)

From (2.8), (2.9), (2.10), ∇yf
k−2 < ∇yk−1 ≤ · · · ≤ ∇yf

nf−1
= ∇yf

nf = · · · =

∇yf
N−1 = v∗

kµ
. By definition, we obtain k − 1 ≤ N∗ ≤ nf − 1 and

∇yf
k−1 ≤ · · · ≤ ∇yf

N∗−1 < ∇yf
N∗ = ∇yf

N∗+1 = · · · = ∇yf
N−1 =

v∗

kµ
. (2.11)

Next we prove that ∇yn < ∇yn+1 for n = k − 1, k, . . . , N∗ − 2. Assume

that∇yf
n = ∇yf

n+1 for some k − 1 ≤ n ≤ N∗ − 2. Then (2.5) yields Hf (n +

1,∇yf
n+1) = Hf (n + 2,∇yf

n+2). If ∇yf
n+1 < ∇yf

n+2, then Proposition 2.1(b)

implies that the only possibility is that Hf (n+1,∇yf
n+1) = Hf (n+2,∇yf

n+2) =

0. From (2.5), Hf (n + 2,∇yf
n+2) + kµ∇yf

n+1 = Hf (n + 3,∇yf
n+3) + kµ∇yf

n+2.

Since∇yf
n+1 < ∇yf

n+2 and Hf (n+2,∇yf
n+2) = 0, we have Hf (n+3,∇yf

n+3) < 0

and this contradicts Proposition 2.1(b). Thus, ∇yf
n+1 = ∇yf

n+2. By repeating

this argument N∗ − n times, we have ∇yf
n = ∇yf

n+1 = · · · = ∇yf
N∗−1 =

∇yf
N∗ = v∗

kµ
and this contradicts (2.11). Therefore, ∇yf

n < ∇yf
n+1 for n =

k − 1, k, . . . , N∗ − 2 and, from (2.9) and (2.11), (i) is proven.

(ii) Lemma 2.4 implies that ∇yg
n = ∇yf

n for all n = 0, 1, . . . , N∗. From

Lemma 2.7(i), ∇yf
N∗ = ∇yf

N∗+1 = · · · = ∇yf
N−1 = v∗

kµ
for any f ∈ C∗. Thus, if

f, g ∈ C∗, then ∇yf
n = ∇yg

n for all n = 0, 1, . . . , N − 1. ¥
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In view of Lemma 2.7(ii), we set un = ∇yf
n for any f ∈ C∗. Lemma 2.7(i)

implies that

0 < u0 < u1 < · · · < uN∗ = uN∗+1 = · · · = uN−1 =
v∗

kµ
, (2.12)

and this lemma and (2.7) imply

k − 1 ≤ N∗ ≤ min{nf : f ∈ F ∗} − 1. (2.13)

For j = 1, 2, . . . , m, we define Mj and M ′
j as follows:

Mj =





min{n = 0, 1, . . . , N − 1 : rj(n) ≤ un}, if rj(N − 1) ≤ uN−1;

N, otherwise.

(2.14)

M ′
j =





min{n = 0, 1, . . . , N − 1 : rj(n) < un}, if rj(N − 1) < uN−1;

N, otherwise.

(2.15)

The lemma below shows a very important property of any policy f ∈ C∗.

Lemma 2.8 A policy f ∈ C∗ if and only if, for all j = 1, 2, . . . , m,

f(n, j) =





{accept}, if n < Mj;

{reject}, if n ≥ M ′
j.

(2.16)

Proof Condition 2.1 and (2.12) imply respectively that the functions rj(n),

j = 1, 2, . . . , m, are nonincreasing in n and the numbers un are nondecreasing
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in n. This implies that

{n = 0, 1, . . . , N − 1 : n < Mj} = {n = 0, 1, . . . , N − 1 : rj(n) > un},

{n = 0, 1, . . . , N − 1 : Mj ≤ n < M ′
j} = {n = 0, 1, . . . , N − 1 : rj(n) = un},

{n = 0, 1, . . . , N − 1 : M ′
j ≤ n ≤ N − 1} = {n = 0, 1, . . . , N − 1 : rj(n) < un}.

Let f ∈ C∗. Then un = ∇yf
n, n = 0, 1, . . . , N − 1, and Proposition 2.1(c)

implies (2.16). Now let f satisfy (2.16). Consider g ∈ C∗. Then, according

to the proven necessary part, g satisfies (2.16) too with f substituted with g

in (2.16). Observe that Hf (n, un) = Hg(n, un), n = 0, 1, . . . , N − 1. From

(2.12), ∇yg
n = un for all n. Equations (2.5) imply ∇yf

n = ∇yg
n = un for all n.

Proposition 2.1(c) yields f ∈ C∗. ¥

Lemma 2.9 Consider Mj and M ′
j, j = 1, 2, . . . , m, defined in (2.14) and

(2.15). If Condition 2.2 does not hold, then statements (i)–(iv) of Theorem

2.3 hold. If Condition 2.2 holds, then statements (i)–(iv) of Theorem 2.4 hold

and, in addition, Mi = N∗ and M ′
i = N .

Proof Statement (i) of Theorem 2.3 and the same inequality in statement (i)

of Theorem 2.4 follow from Theorem 2.1. If Condition 2.2 holds, then Lemma

2.6 and Lemma 2.7(i) imply that rl(0) = maxj=1,2,...,m rj(0) > uN−1 = v∗
kµ

=

ri(0). Statement (i) of Theorem 2.4 is proven.

For (ii), (2.5) implies that Hf (N∗+1, uN∗+1)+kµuN∗ = v∗ = Hf (N∗, uN∗)+

kµuN∗−1 for any f ∈ C∗. From (2.12), uN∗ = v∗
kµ

> uN∗−1. Therefore,

Hf (N∗ + 1, uN∗+1) > Hf (N∗, uN∗) ≥ 0, where the second inequality follows

48



from Proposition 2.1(b). Since Hf (N∗, uN∗) > 0, Proposition 2.1(b)(c) imply

there exists some customer type l, l 6= i, such that rl(N
∗) − uN∗ > 0 and

f(N∗, l) = {accept} for any f ∈ C∗. Lemma 2.8 implies Ml > N∗. For state-

ment (ii) of Theorem 2.3, maxj=1,2,...,m Mj ≥ Ml > N∗. For statement (ii)

of Theorem 2.4, since rl(N
∗) > uN∗ = v∗

kµ
= ri(N

∗), we have l 6= i. Thus,

we obtain maxj∈J Mj ≥ Ml > N∗. The first inequalities in statements (ii) of

both theorems are proven. The second inequalities in statements (ii) of both

theorems follow from (2.13).

For (iii), let either Condition 2.2 does not hold or j 6= i. If Mj = N or

Mj = N − 1, then the statement is obvious. Thus, let Mj < N − 1. From

(2.14), either rj(Mj) = uMj
or rj(Mj) < uMj

. If rj(Mj) < uMj
, then, from

(2.14) and (2.15), we have M ′
j = Mj. If rj(Mj) = uMj

, then we shall prove

that M ′
j = Mj + 1. Assume that M ′

j > Mj + 1. Since M ′
j ≤ N , we have

Mj ≤ N − 2. Since rj(Mj) = uMj
and M ′

j > Mj + 1, (2.14) and (2.15) imply

that rj(Mj + 1) = uMj+1. Since rj(Mj + 1) ≤ rj(Mj) and uMj
≤ uMj+1, we

have rj(Mj +1) = rj(Mj) and uMj
= uMj+1. Formula (2.12) yields uMj

= v∗
kµ

=

rj(Mj) = rj(Mj + 1) and N − 2 ≥ Mj ≥ N∗. From (2.13), Mj ≥ N∗ ≥ k − 1.

Since rj(Mj) = rj(Mj + 1) = v∗
kµ

and Mj ≥ k − 1, Condition 2.1 implies that

rj(n) = v∗
kµ

for all n = 0, 1, . . . , N − 1 and, thus, j = i. From (2.12) and (2.14),

we have N∗ = Mi ≤ N − 2. Since N∗ < N − 1 and there exists a customer

type i, Condition 2.2 holds. This contradicts our assumption that Condition

2.2 does not hold. Therefore, if either Condition 2.2 does not hold or j 6= i,
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then:

M ′
j =





Mj + 1, if and only if rj(Mj) = uMj
;

Mj, otherwise.

Statements (iii) of both theorems are proven.

For (iv), we prove statement (iv) of Theorem 2.3 first. Consider f ∈ T ∗.

Then, from Theorem 2.2, f = fR ∈ C∗. Since f ∈ C∗, statement (iii) of

Theorem 2.3 and Lemma 2.8 imply that M f
j ∈ {Mj,M

′
j} for all j = 1, 2, . . . , m.

Thus, f is a TRP with M f
j ∈ {Mj,M

′
j} for all j = 1, 2, . . . , m. Now let f be

a TRP with M f
j ∈ {Mj,M

′
j} for j = 1, 2, . . . , m. Lemma 2.8 implies f ∈ C∗.

Since C∗ ⊆ F ∗, we have f ∈ T ∗. Next we prove statement (iv) of Theorem

2.4. Consider f ∈ T ∗. Then, from Theorem 2.2, f = fR ∈ C∗. Statement

(iii) of Theorem 2.4 and Lemma 2.8 imply that M f
j ∈ {Mj,M

′
j}, j 6= i. In

addition, (2.12) and Condition 2.2 imply that

ri(n) = un =
v∗

kµ
, for n = N∗, N∗ + 1, . . . , N − 1, (2.17)

and (2.14) and (2.15) imply that Mi = N∗ and M ′
i = N . Lemma 2.8 implies

that M f
i ∈ {N∗, N∗ + 1, . . . , N}. Now let f be a TRP with M f

j ∈ {Mj,M
′
j},

j 6= i, and M f
i ∈ {N∗, N∗+1, . . . , N}. Then Lemma 2.8 implies f ∈ C∗. Since

f ∈ C∗ ⊆ F ∗, f ∈ T ∗. ¥

Proof of Theorem 2.3: (c) Statments (i)–(iv) follow from Lemma 2.9.

In the following, we prove statement (b) first and statement (a) follows

from (b).

(b) If f ∈ C∗, then statement (iii) of this theorem and Lemma 2.8 imply
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that M f
j ∈ {Mj,M

′
j} for all j = 1, 2, . . . , m and, thus, f ∈ T ∗. Now let f ∈ T ∗.

Then from Theorem 2.2, f = fR ∈ C∗. Thus, T ∗ = C∗. Now consider any

f ∈ F ∗. Then, from Theorem 2.2, fR ∈ C∗. Since C∗ = T ∗, fR ∈ T ∗ is a TRP.

From Definition 2.2, f is an ETRP and, thus, f ∈ E∗. Since any f ∈ F ∗ is an

ETRP, we obtain F ∗ = E∗. Since C∗ ⊆ F ∗, we obtain T ∗ = C∗ ⊆ E∗ = F ∗.

(a) From (b), E∗ = F ∗. Thus, every stationary optimal policy is an ETRP.

¥

Proof of Corollary 2.1: We show that Condition 2.2 does not hold in each

case.

(i) Since rj(n) are decreasing in n = k − 1, k, . . . , N − 1 for all j =

1, 2, . . . ,m, there does not exist a customer type i with ri(n) = v∗
kµ

for n =

0, 1, . . . , N − 1. Thus, Condition 2.2 does not hold in this case and statements

(a)–(c) of Theorem 2.3 hold.

(ii) If N = k, then Lemma 2.7(i) implies N∗ = k − 1 = N − 1. Thus,

Condition 2.2 does not hold. Now let N > k. If there does not exist a

customer type i with ri(n) = v∗
kµ

for n = 0, 1, . . . , N − 1, then Condition 2.2

does not hold. Thus, the remaining case is when N > k and there exists a

customer type i with ri(n) = v∗
kµ

for n = 0, 1, . . . , N − 1. In this case, we

shall prove that N∗ = N − 1. Lemma 2.6 states that there exists a customer

type l with rl(0) = maxj=1,2,...,m rj(0) > v∗
kµ

= ri(0). Since rj(n) > rj+1(n)

for all n = 0, 1, . . . , N − 1 and j = 1, 2, . . . ,m − 1 and rl(0) > ri(0) = v∗
kµ

,

we have that rl(n) > ri(n) = v∗
kµ

for all n = 0, 1, . . . , N − 1. Equations (2.5)

imply uN−1 = v∗
kµ

< rl(N − 1). Proposition 2.1 implies f(N − 1, l) = {accept}
and Hf (N − 1, uN−1) > 0. Again, from (2.5), Hf (N, uN) + kµuN−1 = v∗ =
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Hf (N−1, uN−1)+kµuN−2. Since Hf (N−1, uN−1) > Hf (N, uN) = 0, we have

uN−1 = v∗
kµ

> uN−2 and, from Lemma 2.7(i), N∗ = N − 1. Since N∗ = N − 1,

Condition 2.2 does not hold. Thus, statements (a)–(c) of Theorem 2.3 hold.¥

Proof of Theorem 2.4: Statements (i)–(iv) follow from Lemma 2.9. If

f ∈ C∗, then statement (iii) of this theorem and Lemma 2.8 imply that M f
j ∈

{Mj,M
′
j}, j ∈ J, and (2.17), (2.12), and Lemma 2.8 imply that Mi = N∗,

M ′
i = N , and, thus, nf

i ≥ N∗. Definition 2.4 implies M fR,i

j = M f
j ∈ {Mj,M

′
j},

j ∈ J , and M fR,i

i = nf
i ∈ {N∗, N∗ + 1, . . . , N}. Lemma 2.8 implies fR,i ∈ C∗.

Since fR,i ∈ C∗ is a TRP, we have fR,i ∈ T ∗. Now let fR,i ∈ T ∗. Then

fR,i = fR ∈ C∗. Statements (iii)–(iv) of this theorem and Lemma 2.8 imply

that M fR,i

j ∈ {Mj,M
′
j}, j ∈ J , and M fR,i

i ∈ {N∗, N∗ + 1, . . . , N}. Since

N∗ = Mi ≤ M fR,i

i , from Definition 2.4, M f
j = M fR,i

j ∈ {Mj,M
′
j}, j ∈ J , and

f(n, i) = {accept}, n = 0, 1, . . . ,Mi − 1. Again Lemma 2.8 implies f ∈ C∗.¥

Theorem 2.5 ∅ 6= T ∗ ⊆ C∗ ⊆ F ∗.

Proof Since S and A are finite, according to [29], C∗ 6= ∅. By definition,

C∗ ⊆ F ∗. If Condition 2.2 does not hold, then Theorem 2.3(b) implies T ∗ =

C∗ ⊆ F ∗ and T ∗ 6= ∅. If Condition 2.2 holds, then Theorem 2.4 implies

∅ 6= T ∗ ⊆ C∗. Thus, if Condition 2.2 holds, then T ∗ ⊆ C∗ ⊆ F ∗ and T ∗ 6= ∅.
¥

Note that Theorem 2.4(ii) states that maxj=1,2,...,m Mj > N∗. Consider

a policy f such that M f
j ∈ {Mj,M

′
j} for j 6= i, f(n, i) = {accept} for n =

0, 1, . . . , N∗ − 1, f(N∗, i) = {reject}, and f(n, i) = {accept} for n = N∗ +
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1, N∗ + 2, . . . , N − 1. Then f is a canonical policy, but it is not an ETRP.

Thus, if Condition 2.2 holds, then C∗ is not a subset of E∗.

Remark 2.1 If limn→∞ rj(n) < 0 for each j = 1, 2, . . . , m, then the control

admission problem for an infinite capacity queue can be reduced to the problem

for a finite capacity queue. Under this natural assumption, for each j =

1, 2, . . . ,m, there exists a finite number Nj such that rj(Nj) < 0 and it is

not optimal to admit customer type j at state n, where n ≥ Nj. Let U =

min{n = k, k + 1, . . . : rj(n) ≤ 0 for all j = 1, 2, . . . , m}. Then the set

C∗ for the M/M/k/∞ queue is the same as the set C∗ for the M/M/k/U

queue. In other words, if hj(t) > 0 for all j = 1, 2, . . . , m and t > 0, then the

control admission problem for M/M/k/∞ queues is the same as the problem

for M/M/k/U queues.

2.4 Bias Optimal Policy

If there exist two or more stationary optimal policies, bias optimality can be

applied to find the policy that maximizes the bias vector among all stationary

optimal policies. Haviv and Puterman [10] considered an M/M/k/N queue

with one customer type and convex increasing holding costs. They proved

that there exist at most two optimal control levels for the customers and, if

there are two different optimal control levels, the difference between them is

one. They also showed that the bias optimal policy is unique, is the policy

that selects the larger optimal control level for the customers, and is also

Blackwell optimal. Lewis et al. [17] extended these results to M/M/k/N queues

with multiple customer types and without holding costs. For the problem
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with several customer types and holding costs, we also show that the bias

optimal policy is unique, selects the largest optimal control level for each

customer type, and is also Blackwell optimal. Unlike the cases considered

in [10] and [17], Example 2.2 demonstrates the possibility that there are more

than two optimal control levels for one customer type. For this customer type,

the optimal control level under the bias optimal policy is N . Condition 2.2

provides the necessary and sufficient condition when there are more than two

optimal control levels for some customer type. This customer type exists if

and only if Condition 2.2 holds, this type is the type i described in Condition

2.2, and the number of optimal control levels for any other customer type j is

either one or two. Below are the definitions of bias optimality and Blackwell

optimality.

Definition 2.5 A policy g is bias optimal if g is optimal and yg
n ≥ yf

n for

n = 0, 1, . . . , N , and for every policy f ∈ F ∗.

Definition 2.6 A policy φ is Blackwell optimal if there exists a number α∗ > 0

such that vφ
α ≥ vf

α for all α ∈ (0, α∗] and all for f ∈ F , where vf
α is the total

discounted reward under policy f with discount rate α.

The following theorem describes the bias optimal policy g for our problem.

Theorem 2.6 There exists a unique bias optimal policy g and it is also Black-

well optimal. This policy is a TRP that assigns the largest optimal control level

for each customer type. In particular, if Condition 2.2 holds, then g is a TRP

with M g
j = M ′

j, j 6= i, and M g
i = N ; if Condition 2.2 does not hold, then g is

a TRP with M g
j = M ′

j for j = 1, 2, . . . , m.
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Since yf
n = yf

0−
∑n−1

z=0 ∇yf
z , n = 1, 2, . . . , N , equation (2.4) can be rewritten

as

π∗0(f)yf
0 +

N∑
z=1

π∗z(f)(yf
0 −

z−1∑
n=0

∇yf
n) = 0.

From
∑N

z=0 π∗z(f) = 1, we have

yf
0 =

N∑
z=1

π∗z(f)
z−1∑
n=0

∇yf
n. (2.18)

After we obtain the value of yf
0 , we can obtain the value of yf

n by using

that fact that yf
n = yf

0 −
∑n−1

z=0 ∇yf
z for n = 1, 2, . . . , N . Once all the bias

vectors of stationary optimal policies are computed, any stationary optimal

policy with the optimal bias vector is a bias optimal policy. The following

example illustrate this idea of finding a bias optimal policy.

Example 2.3 Consider an M/M/1/2 queue with two customer types, where

λ1 = λ2 = µ = 1, r1(0) = 10, r1(1) = 0, and r2(0) = r2(1) = 5. We

start with a policy d that accepts both customer types at state 0, and rejects

both at states 1 and 2. Then, by solving (2.5), we have that d ∈ C∗ and

r2(0) = r2(1) = ∇yd
0 = ∇yd

1 = 5. According to Lemma 2.1(iii), there exist

four stationary optimal policies for this problem, which are:

the policy f under which f0 = {1} and f1 = f2 = ∅.

the policy d under which d0 = {1, 2} and d1 = d2 = ∅.

the policy f ′ under which f ′0 = {1}, f ′1 = {2}, and f ′2 = ∅.

the policy d′ under which d′0 = {1, 2}, d′1 = {2}, and d′2 = ∅.
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Note that policies f, d, f ′ and d′ are also canonical policies, f ′(R) = f ′, and

the policy f ′(R) is not a trunk reservation policy. Since, under any stationary

policy π, P ∗(π) × Q(π) = 0, we can calculate the steady state probabilities

under each of four stationary optimal policies:

P ∗(f) = (0.5, 0.5, 0),

P ∗(d) = (1
3
, 2

3
, 0),

P ∗(f ′) = (1
3
, 1

3
, 1

3
),

P ∗(d′) = (0.2, 0.4, 0.4).

By solving (2.18), we have the bias vector under each policy as follows:

yf = (2.5, −2.5, −7.5),

yd = (10
3
, −5

3
, −20

3
),

yf ′ = (5, 0, −5),

yd′ = (6, 1, −4).

Since yd′ is the optimal bias vector, the policy d′ is the only bias optimal

policy.

In Example 2.3, the state space and action sets are small and there exist

only four stationary optimal policies. Thus, it is relatively easy to compute the

bias vectors for all four stationary optimal policies and find the bias optimal

policy. However, this method is not practical for the problems, in which there

exist a lot of stationary optimal policies. Thus, in the following, we find
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the properties of a bias optimal policy. Then we use the properties to prove

Theorem 2.6 and find the bias optimal policy for our problem more efficiently.

For discrete-time MDPs, Veinott [26] proved the existence of bias optimal

policies and provided an algorithm for their computation. It is also well-known

for discrete-time MDPs with finite state and action sets that bias optimal poli-

cies are canonical. In particular, one of the most popular versions of Howard’s

policy iteration algorithm generates a finite sequence of policies {fn} with

the property that the pairs (vfn
, yfn

) lexicographically increase, the algorithm

stops when the pair cannot be lexicographically improved by following the

rules of the algorithm, and the last generated policy is canonical [22, p.461].

Since a bias optimal policy cannot be improved by the algorithm, it is canon-

ical. This is also true for CTMDPs, because uniformization [22] preserves the

average rewards, biases, and canonical equations. Thus, we have an important

property of any bias optimal policy as the lemma below.

Lemma 2.10 If g is a bias optimal policy for our problem, then g ∈ C∗.

In Example 2.3, all four stationary optimal policies are canonical. Thus,

Lemma 2.10 does not help us find a bias optimal policy more efficiently. How-

ever, the bias optimal policy d′ in Example 2.3 satisfies the following lemma.

Lemma 2.11 If g is a bias optimal policy and rj(n) = un for some n =

0, 1, . . . , N − 1 and some j = 1, 2, . . . , m, then g(n, j) = {accept}.

Proof The proof is based on contradiction. Let g be a bias optimal policy

and g(n, j) = {reject} at a pair (n, j) such that n = 0, 1, . . . , N − 1, j =

1, 2, . . . ,m, and rj(n) = un. Consider two cases: (i) n ∈ Rg and (ii) n ∈ T g.
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(i) Let n ∈ Rg. This means π∗n(g) > 0. For any policy d, let X∞(d) ∼ π∗(d)

be the limiting number of customers in the queue. Consider the policy f

coinciding with g everywhere, except at (n, j). Of course, f(n, j) = {accept}.
Since g ∈ C∗, Lemma 2.8 implies that f ∈ C∗. Observe that λg

s = λf
s for s 6= n

and λf
n = λg

n + λj.

Since λf
s ≥ λg

s for all s = 0, . . . , N − 1, the well-known comparison re-

sults for birth-end-death processes, see, e.g., [20, Theorem 5.2.21], imply that

X∞(g) ≤st X∞(f), where ≤st is the usual stochastic order. In particular, for

any increasing numbers c0 < c1 < · · · < cN

N∑
s=0

π∗s(g)cn ≤
N∑

s=0

π∗s(f)cn, (2.19)

and the equality holds if and only if π∗(g) = π∗(f). Since λg
nπ∗n(g) = µn+1π

∗
n+1(g),

(λg
n + λj)π

∗
n(f) = µn+1π

∗
n+1(f), and π∗n(g) > 0, the equality π∗(g) = π∗(f) is

impossible. Thus, the strong inequality holds in (2.19). Apply this inequality

to c0 = 0 and cs =
∑s−1

z=0 uz, s = 1, 2, . . . , N , and recall that us = ∇yf
s = ∇yg

s

for all s = 0, 1, . . . , N − 1, since f, g ∈ C∗. Formula (2.18) implies

yg
0 =

N∑
z=1

π∗z(g)
z−1∑
s=0

us <

N∑
z=1

π∗z(f)
z−1∑
s=0

us = yf
0 .

Thus, g is not bias optimal. This contradiction implies that case (i) is impos-

sible.

(ii) Let n ∈ T g. Then ng < n ≤ N − 1. From (6) we have N∗ < ng − 1 <

N − 1. From Lemma 2.5(ii), us = v∗
kµ
≥ maxl=1,2,...,m rl(s) for s = ng, ng +

1, . . . , N − 1. Thus, rj(n
g) ≤ v∗

kµ
. By Condition 2.1, rj(n

g) ≥ rj(n) = un = v∗
kµ

.
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So, rj(n
g) = rj(n). Condition 2.1 implies that rj(s) is constant: rj(s) = v∗

kµ
for

all s = 0, . . . , N − 1. Thus, Condition 2.2 holds and j = i.

Observe that g(ng, j) = {reject} and ng ∈ Rg. According to case (i),

yg
0 < yf

0 for the policy f that coincides with g at all pairs (n′, j′) except the

pair (ng, j), where f(ng, j) = {accept}. Thus, g is not bias optimal. This

contradiction completes the proof of the lemma. ¥

Proof of Theorem 2.6: From Lemma 2.10, a bias optimal policy is canonical.

Then Lemmas 2.8 and 2.11 imply that a policy g is bias optimal if and only if

for all j = 1, 2, . . . ,m

f(n, j) =





{accept}, if n < M ′
j;

{reject}, if n ≥ M ′
j.

Since there exists only one canonical policy with the largest optimal control

level for each customer type, the bias optimal policy is unique. In addition,

because Blackwell optimal policies are bias optimal, the unique bias optimal

policy is also Blackwell optimal. For discrete-time MDPs, this fact is in [22,

Thm. 10.1.5], and for CTMDPs this follows from the discrete-time result and

uniformization. The remaining statements follow from Theorems 2.3 and 2.4.

¥

From Theorem 2.6, we know that the bias optimal policy g is the unique

policy that selects the largest optimal control level for each customer type.

Thus, after obtaining a canonical policy f from policy iteration algorithm, the
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bias optimal policy g can be found by the following formula:

gn = fn

⋃
{j = 1, 2, . . . ,m : rj(n) = un} for n = 0, 1, . . . , N − 1.

In other words, if we choose the canonical policy that always accepts the

customer type j such that rj(n) = un at state n, then this canonical policy is

the bias optimal policy.

2.5 Conclusion

In this chapter, we studied the optimal admission problem for an M/M/k/N

queue with several types of customers and holding costs. We described the

structures of stationary optimal, canonical, bias optimal, and Blacwell optimal

policies. Among all stationary optimal policies, we proved the existence of

an optimal TRP for our problem. Unlike the previous results, we provided

examples in which a canonical policy may not be an ETRP. Therefore, for our

problem, we formulated the necessary and sufficient conditions under which

any stationary optimal policy is an ETRP. When there exist two or more

canonical policies for our problem, we showed that the bias optimal policy is

unique, is the canonical policy that assigns the largest optimal control level

for each customer type, and is also Blackwell optimal.

In the future, it is interesting to look into similar problems with constraints

of blocking probabilities for customers. Furthermore, it is also interesting to

consider the optimal admission problem for a GI/M/k/N queue with sev-

eral types of customers and holding costs. If the information for solving the
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problem for a GI/M/k/N queue is not enough, we are planning to find the

conditions as weak as possible, under which we can obtain the similar results.
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