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Péter Petreczky
Scientist, Brookhaven National Laboratory

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Charmonium in strongly-coupled quark-gluon
plasma

by

Clint Young

Doctor of Philosophy

in

Physics

Stony Brook University

2010

The heavy quark diffusion coefficient is the subject of a great deal
of theoretical interest, with both phenomenology and AdS/CFT re-
sults pointing towards this transport coefficient being small in com-
parison to leading-order perturbative results. The heavy quark-
antiquark bound state has been modeled with a Langevin equation
that takes into account this small diffusion coefficient, as well as
the interaction between the quarks in this pair. It was found that
both the survival of J/ψ particles in the most central collisions
at the RHIC, and the thermalization of the relative abundances
of charmonium states, can be explained with this model, where
the destruction of quarkonium due to diffusion remains incomplete
over the relevant timescales. Finally, this classical approach is re-
placed with a path integral which describes quarkonium as an open
quantum system, so that comparisons can be made between this
model and the results from lattice QCD simulations for certain
quarkonium correlation functions.
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Chapter 1

Introduction

It has been known for almost 40 years that quantum chromodynamics de-
scribes strong interactions. SU(N) gauge theories are conformally invariant
classically, but this symmetry is broken quantum-mechanically. Unlike quan-
tum electrodynamics, the degrees of freedom of the QCD Lagrangian (quark
and gluon fields) do not match up with the physical spectrum of the theory
at zero temperature (hadrons). Even the naive “perturbative” vacuum, the
Fock state with gluon and quark numbers equal to zero, is unstable due to
the self-interaction of the gluon field, making this state a poor approxima-
tion of the physical vacuum, which counter-intuitively, has both lower energy
and significantly more complicated structure. The physical vacuum consists
of objects which cannot be described perturbatively in the coupling constant:
solutions which spontaneously break chiral symmetry (instantons) [1] and per-
haps also objects which carry magnetic charge [2]. The gluonic sector of the
theory, which is just the field strength for an SU(3) gauge field squared, has an
additional parameter quantum-mechanically, ΛQCD, a mass scale below which
many perturbative approaches are doomed.

The situation is simplified for hadrons consisting of heavy quarks. In the
Standard Model, some quarks are unnaturally heavier than others. The charm
quark has a mass of approximately 1.3 GeV, making it significantly heav-
ier than the next highest mass quark, the strange quark (70-130 MeV) [3].
This high mass makes the charm quark essentially a static probe of QCD,
and describable with first-quantized techniques such as potential models [4–
6]. The Cornell potential has both perturbative behavior at short distances
(a Coulomb term) and confining behavior at long distances (a linear term),
capturing the physics of running coupling in a simple way. These potential
models are remarkably successful at describing the spectrum of charmonium
at zero temperature, better than one might even initially suspect considering
the relatively small separation of the charm quark mass from ΛQCD.
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The heavy-ion program at the Relativistic Heavy-Ion Collider (RHIC) dif-
fers from particle physics accelerator experiments in that the goal is not to
examine any theory’s matrix elements at some new energy range, but instead
to examine the well-known theory of QCD at new, high temperatures, where
changes in the behavior of the underlying quark and gluonic degrees of freedom
for timescales on the order of 10 fm/c are expected. One must ask: how will
changing the energy density, however significantly, over such a short period of
time lead to any observable difference in the final states detected in such colli-
sions? The charged particle multiplicities scale with the center of mass energy
s like s1/4, from proton-proton collisions up to the most central collisions at
the RHIC, making this observable a poor candidate for discovering any new
behavior. Also, radial flow shifts the differential yields in transverse momen-
tum of light hadrons from a thermal distribution back to the distribution one
should expect, again, from proton-proton collisions.

The best candidates for detecting a change in behavior over these timescales
are radial flow, elliptic flow [7], the thermalization of strangeness [8], jet-
quenching [9], and J/ψ suppression [10]. Focusing on the last observable:
one might expect that the total yield of J/ψ particles in a heavy-ion collision
can be determined by estimating the number of nucleon-nucleon collisions in
the heavy-ion collision and multiplying the average yield of J/ψ particles in
proton-proton collisions by this estimated number of “binary collisions.” This
does not turn out to be so: there is a depletion in this yield. This behavior was
observed by the NA50 collaboration in lead-lead collisions at

√
s = 158AGeV:

at low centralities, the suppression is consistent with that caused by nuclear
absorption in proton-nucleus collisions but past a threshold, there is anomalous
suppression which increases with centrality.

Edward Shuryak described how charmonium might undergo disassociation
due to the “photo-electric effect” [11]. This early prediction of J/ψ suppression
had the strength of being a dynamical treatment of the phenomenon. The ear-
liest estimate anticipated a fairly weak supression of quarkonium. Matsui and
Satz [12] examined how the free energy of an infinitely heavy quark-antiquark
pair changes with temperature, and stated that above the determined tem-
perature where no bound states should continue to exist, all charmonia would
be destroyed. This treatment assumes that changes in the yield are not due
to dynamics, but rather are due to changes in the spectrum of charmonium
at various temperatures, and the only medium effect considered is the change
of a (real) potential describing charmonium due to Debye screening. in this
approach, the yield of J/ψ may be predicted by drawing the transverse plane
of a heavy-ion collision, determining a contour of this plane on which the
temperature is some constant Tc above which charmonium does not form, and
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assuming that inside this contour, no J/ψ particles may form, and outside this
contour, the J/ψ particle are unaffected. The NA50 experiments, within the
context of this model, can be thought of as an experimental measurement of
this critical temperature. However, the results from PHENIX cannot be made
consistent with this model and with the results of NA50: there is significantly
less suppression in gold-gold collisions than had previously been anticipated.

The understanding of the state of matter produced in heavy-ion collisions
has shifted from being quarks and gluons in a perturbative vacuum to being
strongly interacting matter which is actually best described with the hydro-
dynamical energy-momentum tensor and an equation of state. With this shift
in understanding, the understanding of quarkonium in this medium has also
changed. We need to return to the methodology of Shuryak’s earlier estimate,
where the process of suppression occurs dynamically during the plasma phase
of the collision.

Outlining how charmonium dynamics can be made consistent with there
being a hydrodynamical phase of QCD is the purpose of this dissertation. The
outline for this work is as follows:

Chapter 2 will examine the quarkonium spectrum and dynamics, at both
zero and finite temperature. The methods of lattice gauge theory will be
summarized, as well as the correlation functions calculated with this technique
that are relevant to quarkonium. This will lead to a comparison with potential
models, which will demonstrate their success. Next, the real-time behavior of
heavy quarks at finite temperature, specifically the the heavy quark diffusion
coefficient, will be examined from the thermal field theoretic point of view.
From here, the Maldacena conjecture will be summarized and applied both
to heavy quark and quarkonium dynamics. This section will conclude with
discussion of how these results can be used to describe charm at temperatures
above deconfinement.

In Chapter 3, these results will be used in a conjectured model for charmo-
nium above deconfinement, where the dynamics is described with Langevin
equations with a potential term describing the quark-antiquark dynamics.
Stochastic processes will be summarized, and the case will be made for describ-
ing charmonium stochastically. This model will be applied to the evolution of
an ensemble of charm quark-antiquark pairs, and it will be shown that for val-
ues of the parameters relevant for the RHIC, the final yields of J/ψ evolves on
a timescale on the same order as the lifetime of the quark-gluon plasma phase
at the RHIC, making the yields determined by the dynamics of charmonium
and not merely whether or not bound states exist at these temperatures.

In Chapter 4, this model will be applied to a simulation of the evolution
of a large ensemble of charm quark and antiquark pairs, whose momenta are
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determined with PYTHIA event generation and whose evolution is integrated
with a 2+1-dimensional hydrodynamical simulation of the quark-gluon plasma
phase of gold-gold collisions at the RHIC. Heavy-ion collisions will be reviewed;
specifically, the evidence for the hydrodynamical description at the RHIC will
be discussed, as well as some basics of hydrodynamical simulation. Recom-
binant production of J/ψ particles in heavy-ion collisions will contribute also
to the overall yields. The plot of the anomalous suppression versus number
of participants in this model will finally be shown, compared with the results
from PHENIX, and discussed.

Chapter 5 will show how stochastic dynamics can be achieved in a system
where a few heavy degrees of freedom interact with a large number of light
degrees of freedom (an “open system”). The calculations involving this system
will be done with path integrals, in the same way as was done by Caldeira
and Leggett in 1983 except that the focus here will be on propagators in
imaginary time. The purpose of this will be to move in a direction where the
Langevin model can be compared with quarkonium correlation functions now
being calculated using lattice QCD.

Finally in the Conclusions, some final arguments will be made for treating
the evolution of charm and charmonium in heavy-ion collisions dynamically,
without resorting to any kind of analysis of the spectrum. I will suggest
how progress might be made in understanding charmonium above deconfine-
ment; specifically, how models for charmonium in heavy-ion collisions could be
compared with the results from a better-controlled tool: correlation functions
calculated using lattice QCD.
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Chapter 2

Heavy quark and quarkonium
dynamics

This chapter discusses the dynamics of heavy quarks above deconfinement, as
well as static and dynamical quantities related to quarkonium. In Section 2.1,
heavy quark diffusion is examined using thermal field-theoretic techniques, the
AdS/CFT correspondence, lattice QCD, and the phenomenology of charmed
mesons at the RHIC. In Section 2.2, results from lattice QCD for the corre-
lation function of two Wilson lines are presented, as well as the relationship
between these results and the best potential for describing charmonium phe-
nomenologically. Finally, in Section 2.3, the results of an AdS/CFT calculation
modeling quarkonium are shown, and how best to model charm quark pairs is
discussed.

2.1 The heavy quark diffusion coefficient

The momentum diffusion coefficient is simply the scattering rate averaged with
the momentum transferred squared:

3κ =

∫
d3q|q|2d3Γ(q, T )

dq3
(2.1)

One might ask: the fundamental theory behind the strong interaction is known,
so why not simply calculate this rate to a very high order in perturbation
theory, use it to calculate the momentum diffusion coefficient, and then move
on? Besides the fact that QCD has many properties which are not analytic in
the coupling constant and are therefore inaccessible from perturbation theory,
the additional problem is that real-time correlation functions in QCD, even
at temperatures above deconfinement, are sensitive to the difficult physics
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on the soft “electric scale” q ∼ gT . Hard thermal loops modify the gluon
propagators at all orders, and whenever one wishes to improve the calculation
to the next highest order, one must include not only higher order diagrams with
the same number of external legs, but also diagrams with a greater number of
scatters (representing the interference of multiple scatterings in a short amount
of time), as well as the corrections to the previous diagrams due to Debye
screening’s effect at the next order. This makes even the NLO calculation
difficult, and resummation nothing but a faint hope at this point in time.

2.1.1 NLO calculation of 3κ

The NLO calculation of the momentum diffusion by Simon-Carot and Moore
[13] is an impressive accomplishment. Any transport coefficient, because of its
dependence on the correlation functions of products of operators at unequal
times, will be sensitive to the “soft” scale, and also in the case of QCD, over-
lapping scatterings, leading to great difficulty in reaching higher orders of gs.
Using HTL effective theory, these authors found the NLO result to be

3κ = 16πα2
sT

3 (− ln gs + 0.07428 + 1.9026gs) . (2.2)

It is instructive at this point to examine a plot of this result as a function
of gs, shown in Figure 2.1. As can be seen, the convergence from leading-order
to next-to-leading order is quite poor for all but the smallest values of gs.

2.1.2 Diffusion in strongly-coupled N = 4 Super Yang-
Mills theory

Some time ago now, Maldacena considered a stack of many D3-branes and
considered the low energy limit of this system’s Hilbert space, and found a
duality between N = 4 supersymmetric gauge theory in four dimensions and
Type IIB supergravity in an AdS5 background [14]. Subsequently, Witten
elaborated this correspondence; specifically, he noted how correlation func-
tions in the conformal field theory relate to the supergravity action, and how
the finite-temperature theory relates to the AdS5 black hole background [15].
This gauge/gravity duality is important in that it relates easy string theory
calculations to difficult quantum field theory calculations, independent from
any assertions of the validity of string theory as a theory of nature.

This correspondence can be used to calculate the analogue of heavy quark
diffusion in N = 4 SYM theory. A very heavy probe of the conformal field
theory is dual to an open string with one endpoint terminating on a “probe
brane” far from the black brane and the other end of the string passing through
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Figure 2.1: The result from [13], compared with the LO result
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the horizon and terminating on the black brane. The drag force is related to
the energy loss of a moving string: Gubser’s calculation of the drag force
involved determining the trailing string solution where the endpoint on the
probe brane moved at some constant velocity, and then determining the rate of
energy transfer from the string to the black brane [16]. Casalderrey-Solana and
Teaney determined the diffusion coefficient for a static quark by examining how
the string vibrates in AdS5 and using the fluctuation-dissipation theorem [17].
These results are related through the Einstein relation between momentum
diffusion and drag, which will be discussed in Chapter 3.

The result for the momentum diffusion coefficient is

3κ = π
√

λT 3, (2.3)

λ = g2
sNc. First of all, this is clearly inaccessible with conventional pertur-

bative methods at small values of λ, since the function is not analytic there.
Second of all, for gs ≤ 1, this result is significantly larger than the result for
momentum diffusion at NLO.

2.1.3 Heavy quark diffusion and RHIC phenomenology

The spectrum of D and D̄ mesons from gold-gold collisions at the RHIC has
been measured with statistics higher by about 2 orders of magnitude than the
statistics of charmonium measurements [18]. If diffusive effects are significant
to charmonium, then surely they are significant for these charmed mesons, and
would have an effect on this spectrum. Moore and Teaney simulated charm
in a hydrodynamical simulation as being described by a Langevin equation,
sensitive to the flow and temperature of the underlying medium [19]. In this
way, the diffusion coefficient might be determined phenomenologically.

Theoretical and experimental results are shown in Figure 2.2. Notice
specifically how the results of Moore and Teaney from [19] compare with the
PHENIX analysis. None of the various values of the diffusion coefficient lead
to convincing agreement with the data for RAA, especially for the lower val-
ues of pT . This is likely due to cold nuclear matter effects, which cause the
initial distribution of charm from nucleus-nucleus collisions (before any evo-
lution of these distributions in the medium) to differ substantially from the
distributions in proton-proton collisions. Because this RAA is a ratio where
the denominator, NcolldNinit/pT dpT , is not well-known, the quality of the the-
oretical result suffers. However, the elliptic flow (which is an effect entirely
absent from proton-proton collisions, due to nearly perfect azimuthal symme-
try) is not such a ratio, and only depends on the final distributions of the
charm quarks in momentum space. One should expect the results of Moore
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Figure 2.2: Theoretical and experimental results for charm RAA(pT ) and
v2(pT ) compared, from [18].
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and Teaney to have greater success here, and indeed, for 2πTDc = 3.0, there
is excellent agreement with the PHENIX results here.

Phenomenology also suggests a very small estimate for the spatial diffusion
coefficient, or conversely, a very large momentum diffusion coefficient. The
estimate argued here is the smallest estimate for spatial diffusion yet.

2.1.4 Heavy quark diffusion and lattice QCD correla-
tion functions

Using lattice QCD [20], various correlation functions relevant to heavy quarks
and quarkonium can be calculated in imaginary time. While it remains difficult
work to extract real-time spectral functions from these Euclidean correlation
functions, it might not be so difficult to “meet the lattice gauge theorist on the
lattice”, rather than having the lattice gauge theorists attempt to meet the
nuclear theorists in real time. In other words, the effect of various dynamical
quantities on imaginary-time correlation functions should be calculated and
compared with lattice results, with attention paid to precision and also to
which quantities have little effect.

Petreczky and Teaney worked with this philosophy when they examined
the effect of diffusion on the Euclidean density-density and current-current
correlation functions for single heavy quarks [21]. These Euclidean correlators
were found to have a dependence on the spectral function for these currents at
small frequencies, and by examining how small fluctuations in density propa-
gate when the heavy quarks obey a Langevin equation, these low-energy con-
tributions can be determined up to a dependence on the diffusion coefficient.
They suggested taking the difference between Euclidean correlators calculated
on the lattice for two small values of the chemical potential, which should re-
move the dependence on anything other than the diffusive contribution, which
is shown for different temperatures in Figure 2.3.

Lattice QCD remains the most controlled setting for examining QCD.
There has been focus lately on taking lattice results and attempting to ex-
tract real-time dynamics using Bayesian methods, often with limited results.
It may make more sense of the makers of various models instead to make pre-
dictions for the Euclidean correlators and compare directly with lattice results.
Chapter 4 will focus on how diffusion might affect quarkonium correlators, and
how models might be compared with these lattice quarkonium correlators.
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Figure 2.3: The difference between the Euclidean correlators at different
chemical potentials, from [21].
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2.2 The heavy quark-antiquark potential in the
singlet channel

In the case of the heavy quark diffusion coefficient, the best insights came from
effective theories, phenomenology, and gauge-gravity duality. Lattice QCD,
while being closest to calculations using the original QCD Lagrangian, fails
in providing much help in determining the diffusion coefficient, or any other
transport coefficient, up until now. However, for the heavy quark-antiquark
free energy, which is related to correlation functions of operators at equal
times, simulations in Euclidean time offer the hope of precise measurement.
In fact, lattice QCD is not only the best tool for measuring this potential, it
is the only one of any phenomenological use; effective theories are only useful
at short length scales far below the typical radii of quarkonium states, and
N = 4 super Yang-Mills theory lacks the conformal symmetry breaking which
exists in these potentials.

From the earliest days of research in lattice QCD, effort has been placed
in determining the heavy quark-antiquark potential. For the purpose of this
work, let us focus on the work of Kaczmarek et al. [22], which concentrates
on the potential in temperature ranges of our current interest. The quantity
calculated is Z =

〈
trLxtrL†

y

〉
, which is related to the free energy by F (|x −

y|) = − lnZ/β. The results of these simulations, as well as an attempt at
fitting these results, are shown in Figure 2.4.

Note how difficult it is to fit the results from the lattice to some func-
tional form. Some previous authors fitted the results for each temperature
independently to some functional form, then fitted each parameter across all
temperatures to another form, quoting the result for this final fit, but only
displaying in their plots the results of the independent fits. If they showed
instead the result of their best fit for these functions across all temperatures,
there would be far poorer agreement between the lattice results and the fit.
Here, the lattice results were fitted, simultaneously across all temperatures and
quark separations, to the functional form

V (r, T ) = −α
e−µ(T )r2

r
+ σre−µ(T )r2

+ C(T )(1− e−µ(T )r2
). (2.4)

It would be interesting to find a function which truly fits the lattice results,
across all temperatures and quark separations, to a statistically reasonable
value for χ2. This function might provide insight into the structure of the
QCD vacuum.

The classical Boltzmann factor exp(−U(r)/T ) for a Coulomb potential
leads to a spatial distribution where the probability for small separations is
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Figure 2.4: The color singlet heavy quark-antiquark potential as determined
in [22], calculated at temperatures (from top to bottom) T/Tc=1.02, 1.07,
1.13, 1.18, and 1.64

divergent. This would doom any classical simulation of particles interact-
ing according to this potential. In [24], the diagonal terms of the quantum-
mechanical density matrix are calculated, and using the definition

ρ(r, r, β) ∝ exp(−βUeff(r), (2.5)

and effective potential is defined and determined for the lattice potential. This
effective potential is necessary for classical simulations of a dilute gas of heavy
quasiparticles that form a fundamental representation of the gauge group.

At zero temperature, the heavy quark-antiquark potential, when substi-
tuted into the Schrödinger equation, yields an energy spectrum which agrees
well with the observed spectrum of charmonium. However, at finite tempera-
ture, there are several thermodynamic potentials, with each appropriate only
for a specific situation. The potential discussed above, the Helmholtz free en-
ergy F , describes the energy of two static quarks in thermal equilibrium with
its environment; it is the energy required to create this pair assuming the heat
available from the surrounding environment is used. The other potential, the
internal energy U , describes the amount of energy required to create the sys-

13



tem assuming no heat is exchanged with the environment. These potentials
are related through a Legendre transformation:

F = U − S
dU

dS
= U − TS. (2.6)

The earliest considerations of J/ψ particles above deconfinement worked with
the Helmholtz free energy as the potential describing the spectrum. Shuryak
and Zahed argued that the timescales relevant to charmonium are short com-
pared with the relaxation time to thermal equilibrium, making the internal
energy the relevant potential [25].

2.2.1 Which potential works best? Comparing poten-
tial models to quarkonium correlators

The quarkonium correlation function in the vector channel,

G(τ) =

∫
d3x 〈Jµ(x, τ)Jµ(0, 0)〉 , (2.7)

where Jµ(x, τ) = ψ̄(x, τ)γµψ(x, τ), has been calculated on the lattice above
deconfinement [26]. These correlation functions have also been calculated in
the scalar, pseudovector, and pseudoscalar channels. Potential models for
quarkonium can then be compared with these numerical results, and it was
found that the quarkonium correlators can be described with a potential which
is screened to the point where not even the J/ψ state exists in the spectrum
[27].

In some sense, these lattice quarkonium correlation functions are the best-
controlled setting for examining quarkonium starting with the first principles
of QCD, and any comparison with these results needs to be taken seriously.
However, as was argued in the previous section, the interaction of heavy quarks
with light degrees of freedom, parameterized by the momentum diffusion co-
efficient, cannot yet be ruled out in terms of having a significant effect on
quarkonium correlation functions. This effect might render the conclusions of
potential models more ambiguous than previously thought. For the remain-
der of this dissertation, two extremes will be considered when discussing the
dynamics of quarkonium: the extreme where the tight-binding internal energy
is used as the potential, and the extreme where the potential is set to zero.
Also in Chapter 4, the effect of momentum diffusion on Euclidean correlation
functions will be considered.
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2.3 A grain of salt: dipoles in strongly-coupled
N = 4 Super Yang-Mills theory

At this point, single heavy quarks were shown to interact significantly with
the medium at finite temperature, and, lattice QCD results for the heavy
quark-antiquark potential were found to be modified with temperature and
to persist allowing bound states past Tc. The next step is clearly to attempt
modeling charmonium dynamics above deconfinement as involving both this
diffusive interaction and this potential. Indeed, the remainder of this dis-
sertation will focus on a Langevin-with-interaction model for charmonium in
heavy-ion collisions. However, it is important here to note that quarkonium
does not necessarily equal two heavy quarks!

In fact, the earliest AdS/CFT calculation examining quarkonium yielded a
result quite different from the results for single heavy quarks. In [28], quarko-
nium is dual to a string in black hole AdS5 with both endpoints terminating
on the probe D3 brane at the boundary. In this model, the only effect of
the medium is to cause there to be no solution for a string connecting these
endpoints above a critical velocity for the quarkonium, leading to this being
called “hot wind” disassociation of quarkonium.

This limit of infinite mass for quarkonium is of course problematic, and
in fact, no such speed limit for J/ψ in heavy-ion collisions has ever been ob-
served. However, even after relaxing this infinite binding energy limit, quarko-
nium dynamics can be quite different from what might be expected. In [29],
quarkonium is described with a dipole Langrangian coupled to N = 4 super
Yang-MIlls, which is dual to the lowest energy fluctuations on a D7 brane
imbedded in black hole AdS5. The coupling constants are related to changes
in the mass shift of these fluctuations with temperature, and various field
strengths in the field theory can easily be calculated by examining the dilaton
and graviton fields. The result is that the momentum diffusion for such a dipole
is suppressed by a factor of 4 compared with the weak coupling expectation.

The difference between these two previous results, and the model for quarko-
nium that the previous sections suggest, has an analogy from electrodynamics.
When visible light scatters off of water in the atmosphere, it “sees” a gas of
dipoles, which leads to the familiar Rayleigh scattering and also to the sky
being blue. However if an X-ray were to scatter off of the water molecules, it
would see individual electrons, due to the X-ray having a wavelength short in
comparison to the Bohr radius. An X-ray could disassociate a water molecule
while visible light never would. Similarly, the last two results for quarko-
nium in AdS5 work in the “Rayleigh scattering” limit, while in the limit of
the “photoelectric effect”, the heavy quarks forming quarkonium can be mod-
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eled as undergoing independent random kicks from the medium as well as an
interaction between the quarks in the pair.

How the binding energy of the quarkonium state compares with the tem-
perature determines which limit is appropriate to use. For the Υ particle, the
binding energy is significantly larger than the temperature, meaning that the
average thermal quasiparticle, having energy on the order of the temperature,
will interact with the Υ as if it were a dipole. The Rayleigh scattering limit
may be the most appropriate limit here. However for the J/ψ, the binding
energy is actually slightly smaller than the typical temperatures reached in
heavy-ion collisions. Perhaps the photoelectric limit is most appropriate here,
however the J/ψ is not clearly within one limit or the other.

2.4 Summary

With lattice QCD, the heavy quark-antiquark potential, and Euclidean quarko-
nium correlation functions, are known quite well at finite temperature. How-
ever, the real-time dynamics of quarkonium above deconfinement is not so
easily determined. Even which (if any) thermodynamic potential is most ap-
propriate for charmonium spectroscopy is not clear, and what value for the
diffusion coefficient is appropriate depends on unequal real-time correlation
functions, about which lattice simulation still has little to say.

I have made the case, however, for large momentum diffusion and persisting
interaction between heavy quark-antiquark pairs in the color singlet state. In
the next chapter, I will show how these considerations can lead to a model for
quarkonium above deconfinement, and I will show the implications this model
has on heavy-ion collisions.
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Chapter 3

Langevin-with-interaction
dynamics for quarkonium

Inspired by the separation of scales p ∼
√

MT >> T for charm quarks in
heavy-ion collisions, and by what was learned about quarkonium dynam-
ics from the previous chapter, one should attempt to model charmonium
in strongly-coupled quark-gluon plasma as undergoing Brownian motion. In
Section 3.1, the Langevin equation is introduced, and some general results
concerning this equation in particular and stochastic differential equations in
general are reviewed. In Section 3.3, ensembles of c̄c pairs are simulated nu-
merically as undergoing Langevin dynamics, with the parameters based on
estimates from analysis of heavy-ion collisions. These results are summarized,
and the implications for J/ψ-yields in gold-gold collisions at the RHIC are
considered.

3.1 The Langevin equation

The non-relativistic Langevin equation approximates dynamics in the the limit
M >> T . The particle receives many random kicks over the time it takes for
the position of the heavy particle to change significantly, making it a good
approximation to model these kicks as uncorrelated:

dpi

dt
= −ηpi + ξi(t), (3.1)

where η is the drag coefficient and the random force ξi(t) is “white noise”:〈
ξi(t)ξj(t

′〉
= κδijδ(t − t

′
). The index in the equation can label both the

particle and the spatial dimension.
This equation is called a stochastic differential equation because it is de-
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pendent on a random function ξi(t). As such, the motion of a single particle
according to this equation is not very meaningful and one would be more in-
terested in the evolution of ensembles of particles described by this equation or
in functional integrals over ξi(t); later sections will describe when and how this
can be done. However, it is not too early to calculate an important expectation
value: for a heavy particle starting at rest,

〈pi(t)pj(t)〉 =

∫ t

−∞
dt

′
∫ t

−∞
dt

′′
e−η(2t−t

′−t
′′
)
〈
ξi(t

′
ξj(t

′′
)
〉

=
κ

2η
(1− e−2ηt)δij.

Requiring the expectation value to approach the thermal expectation value
MTδij yields the Einstein relation between drag and the white noise:

η =
κ

2MT
. (3.2)

Another important expectation value relates the more familiar concept of spa-
tial diffusion to the coefficients here:

〈
x2(t)

〉
=

∫ t

0

dt
′
dt

′′
〈
v(t

′
)v(t

′′
)
〉

=
κ

2ηM2

∫ t

0

dt
′
∫ t

0

dt
′′
exp(−η|t′ − t

′′|)

=
2T

ηM
(t− e−ηt/η),

(3.3)

where the Einstein relation was used to simplify the last line. Since the usual
picture of diffusion as a “random walk” gives the result 〈x2(t)〉 = 2Dt, the
spatial diffusion coefficient is best described as D = 2T/ηM in the Langevin
model for Brownian motion. This answers an important question of intuition.
Some people, when they think of increasing the drag coefficient for a particle,
imagine the particle getting “stuck” in the fluid and experiencing less spatial
diffusion, while other people realize that stronger drag, by the Einstein rela-
tion, requires stronger momentum diffusion, and imagine the particles getting
stronger kicks and experiencing greater spatial diffusion. The relation between
spatial diffusion and the drag coefficient provides an unequivocal answer: drag
wins, stronger drag means smaller spatial diffusion.
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3.1.1 Evolution of an ensemble in phase space: the Fokker-
Planck equation

Consider how the phase space distribution P (x,p, t) evolves in time. Elements
of the ensemble leave the phase space volume d3xd3p with velocity v, and enter
and leave the phase space volume due to drag and diffusion in momentum
space. Expanding into a Taylor series in changes in velocity, determining the
expectation values 〈(∆v(t))n〉, and neglecting these expectation values past
n = 2, yields the Fokker-Planck equation [30]:

∂P

∂t
= − p

M
· ∇xP + MTη∇p · (f0∇p

P

f0
) +

2T

Mη
∇2

xP , (3.4)

where f0 = exp(− p2

2MT ). In this way, an ensemble of particles, each evolving
according to a stochastic, ordinary differential equation, has a dual descrip-
tion in a six-dimensional phase space, where a probability distribution evolves
according to a deterministic, partial differential equation.

3.1.2 Numerical integration of stochastic differential equa-
tions

We want a procedure for numerical integration of the Langevin equation.
Whenever one integrates a deterministic equation of motion, the usual proce-
dure is to start with some initial x0 and p0, and, moving forward in timesteps
∆t, determine the variables from step n + 1 from step n using the discretized
equations of motion. The precision of the numerical integration is determined
by the size of the timestep, with a great deal of work going into more sophis-
ticated versions of the equations of motion so that smaller timesteps can be
used in the some situations. However, we not only need to integrate over the
real variable t, but also over the functional variable ξ(t), the noise term in the
Langevin equations. To perform such an integral numerically, the only practi-
cal approach is the Monte Carlo technique, where large ensembles of particles
are simulated and the noise term is sampled with the help of random num-
ber generation. Any expectation value can be averaged over this ensemble,
however, the precision is not only determined by the size of ∆t, but also the
number of elements in the simulated ensemble.

So far, only expectation values for particles undergoing Langevin dynamics
have been calculated. Given a noise term ξi(t), how would the trajectory of a
single particle be determined? In the definition of Langevin dynamics, there
are no conditions on differentiability for this noise term, only a condition on
its auto-correlation function. This poses a problem of mathematics: how can
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the integral for such a function be defined?
We know that over a time scale δt, which is long compared with the correla-

tion time of the random force but short compared with the change of position
of the particle, 〈(∆p)2〉 = κδt. Over a timescale ∆t much larger than δt but
still small enough to obtain a reasonable approximation to the differential
equation, the particle receives very many uncorrelated kicks. Here, the cen-
tral limit theorem applies: the probability for the sum of very many random
variables to have a given value is determined by a Gaussian distribution. This
is the fact behind the ubiquitousness of the normal distribution: for example,
a physics student’s final exam grade depends on many random variables (how
much that student studied on each day of the semester, etc.), so if the grading
of all the students is performed fairly, a “bell curve” should be no surprise.

In order to simulate numerically a large ensemble of particles undergo-
ing Langevin dynamics, the particle’s path should be discretized to intervals
of length ∆t and each particle’s path should be integrated with the Euler
method, with each particle having a kick randomly selected from a Gaussian
distribution with variance κ/∆t.

The mathematical considerations necessary for proper definition of stochas-
tic integrals (Ito’s calculus for adapted stochastic processes) will not be dis-
cussed here: for a sufficiently fine resolution of a physical observable, the
observable is not only adapted but also continuous, making the Ito integral
unnecessary and the usual Riemann-Stieljes integral sufficient. For all the
considerations necessary for defining the Ito integral for adapted stochastic
processes, see [31].

3.2 Relativistic Langevin dynamics: multiplica-
tive noise

The Langevin equation has a simple relativistic generalization, where the equa-
tions of motion are simply written in the rest frame of the medium [19]:

dpL

dt
= −η(p)pL + ξL,

dpi
T

dt
= ξi

T ,

(3.5)

where η(p) is, in general, a function of momentum, and the noise terms
have correlation functions

〈
ξi
L(t)ξj

L(t
′
)
〉

= κL(p)p̂ip̂jδ(t − t
′
),

〈
ξi
T (t)ξj

T (t
′
)
〉

=
κT (p)(δij − p̂ip̂j)δ(t − t

′
), and no nonzero cross-correlations between the lon-
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gitudinal and transverse noise terms.
The noise terms are now functions of the coordinates pL and pi

T , which
leads to an ambiguity in the discretization of the equations. The noise term
is dependent on the momentum, which jumps due to the random kicks on
which it depends. As outlined in the previous section, our procedure will be
to simulate a large ensemble of these particles, discretize in time, and sample
the noise terms for each particle from a Gaussian distribution, giving us Monte
Carlo integration over a functional variable. When integrating the equations
one timestep into the future, what value for the momentum should be used?
The Ito discretization uses the current value of the momentum (the value at
timestep n):

(pn+1)i − (pn)i =
(
ai

Ito(p
n) + ξi(pn)

)
∆t. (3.6)

The Ito integral is appropriate for stochastic processes known as “càdlàg”,
which is a French acronym for “right-continuous, left-limited.” In such a situ-
ation, it makes sense to make the right-hand side only depend on the previous
timestep. This integral makes the most sense in determining the profits of a
stocks-trading strategy: you should determine your profits from your current
holdings, not the stocks you are going to have at the next moment you trade!
The Stratanovich integral represents a numerical discretization much like the
Ito discretization except that the next timestep depends on the mean value of
the momentum over the time between steps n and n + 1.

For physical stochastic processes, it is not always clear which discretization
makes more sense, and because different discretizations can lead to different
results, this may lead to ambiguities. This ambiguity was clarified in [32]. It is
far more illuminating to describe the steps in his work than to go through them
all: the Fokker-Planck equations for both discretizations were determined, and
then, these Fokker-Planck equations were both required to have the thermal
equilibrium distribution as a stationary solution. This gave a relationship
between the second derivative terms of the Fokker-Planck equation, which
made the two discretization schemes equivalent.

The relativistic generalization of these equations is what is used in the
remainder of this work; the subscripts L and T were supressed, making the
non-relativistic and the relativistic equations look identical without knowing
the Gaussian distributions from which the noise terms are drawn. However, the
drag term (and consequently, κ) are assumed to be momentum-independent.
This is reasonable for the c̄c pairs which actually contribute to the yields of
charmonium.
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3.3 Langevin dynamics for charmonium

Charmonium can be described, classically, with “Langevin-with-interaction”
dynamics:

dpi

dt
= −ηpi + ξi(t),−

∂U

∂xi
, (3.7)

where xi is simply the coordinate conjugate to pi and U is the potential energy
describing the interaction of two charm quarks. Each element of the ensemble
will be a single c̄c pair. The initial distribution of pairs is determined using
PYTHIA, an event generator for simulations of particle physics experiments
which works at leading order in perturbation theory [33]. The event generator
is set for proton-proton collisions at

√
s = 200 GeV, meant to approximate

a single nucleon-nucleon collision within a larger heavy-ion collision at the
RHIC. Two spatial diffusion coefficients, both relatively small, are considered,
as well as a potential energy fitted to lattice results for the internal energy of a
color singlet. The temperature is kept at a constant T = 1.1Tc, about average
for a central gold-gold collision, and the ensemble is evolved.

3.3.1 Evolution of the probability to be bound: The
“slowly dissolving lump”

The evolution of the probability for a c̄c pair in this ensemble to be bound is
shown in Figure 3.3.1. Discussion of the determination of whether or not a
pair in the ensemble is bound can be found in the Appendix, as well as some
interesting discussion of Wigner quasi-probability distributions.

In every case plotted, the probability for the pair to be bounded approaches
zero. This makes sense: for any single pair in an infinite volume, the expec-
tation value for the separation of the pair increases without bound. Another
interesting feature is the small increase in the probabilities at very short times.
This is due to the rapid thermalization of the pairs in momentum space; when
the diffusion coefficient is relatively small, drag and momentum diffusion co-
efficient are correspondingly very large, and the distribution in momentum
space rapidly changes from being relatively hard to being thermal, leading to
an enhancement in the probabilities.

Now, compare the various curves. Clearly, changing the spatial diffusion
coefficient has a significant effect. During most of the evolution of the pairs, the
ensemble can be characterized as a “slowly dissolving lump”, and increasing
the spatial diffusion coefficient naturally increases the rate of diffusion. Also
important during this stage is the potential energy term. When the ensemble
evolves without an attraction between the constituent quarks in the pairs,
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Figure 3.1: (Color online) The probability for a cc̄ pair to be bound, where
T = 1.1Tc is held fixed. The dotted (blue) curve shows a simulation without a
pair interaction and 2πTDc = 1.5, the solid (red) curve 2πTDc = 1.5 with pair
interaction, and the dot-dashed (green) curve 2πTDc = 3.0 with interaction.

23



the rate of diffusion is greatly enhanced. Clearly in this setup, the potential
energy of the pair has a significant effect on the final probability for a pair to
be bound.

Finally, note simply how Dc, the mass of the charm quark m, and the
temperature T set the timescales of this process to be on the order of 1 fm/c,
the same order of magnitude of the deconfined phase created in heavy-ion
collisions. This suggests a radically different approach for understanding J/ψ
suppression: the suppression is due to an incomplete, dynamical process and
not due only to changes in the spectrum of charmonium above deconfinement.

3.3.2 The density of states: “Quasi-equilibrium”

Figure 3.3.2 shows the formation of “quasi-equilibrium” in the classical en-
semble of c̄c pairs undergoing Langevin-with-interaction dynamics 1. While
the true equilibrium of course corresponds to complete dissolution of a single
c̄c pair, it turns out that leakage to large distances affects the distributions
of separation and energy in normalization only. Figure 3.3.2 shows the en-
ergy distribution for the ensemble of pairs at τ = 9 fm/c after evolving under
Langevin dynamics at a fixed temperature 1.05Tc, and it is shown to be the
same distribution, up to normalization and statistical uncertainty, as the dis-
tribution reached by the pairs in a full heavy-ion simulation of the most central
collisions.

The energy distribution in this region is related to a very important is-
sue of exicted charmonium production, namely production of ψ

′
, χ states and

subsequent feeddown into the J/ψ. When a quasi-equilibrium distribution is
reached, the production ratios of charmonium states are stabilized at thermal
(statistical) model values, in spite of the fact that the overall normalization
continues to shrink due to leakage into infinitely large phase space at large
distances.

(The energy distribution itself contains a Boltzmann factor but also the
density of states. A model case of purely Coulomb interaction allows one to
calculate it in a simple way: as shown in the Appendix, the absolute shape of
the quasi-equilibrium distribution is reproduced as well.)

The existence of quasi-equilibrium is in good correspondence to observa-
tions. It was noticed already a decade ago [34] that in the SPS data on
centrality dependence, the Nψ′/NJ/ψ ratio approached the equilibrium value

1This situation should not be confused with stationary nonequilibrium solutions of the
Fokker-Planck equation, in which there is a constant flow through the distribution because
of matching source and sink.
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Figure 3.2: Energy distribution of the cc̄ pairs (in the center of mass frame
of the pair) after Langevin evolution at a fixed temperature T = 1.05Tc for a
time t = 9 fm/c long enough for quasiequilibrium to be reached.
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(for chemical freezout)

Nψ′

NJ/ψ
= exp(−∆M/Tch) (3.8)

with the chemical freezout at Tch = 170 MeV, as is observed for ratios of other
hadronic species.

One possible explanation of it can be charmonium recombination (from
independent charm quarks) at chemical freezout, advocated by [35] and others.
However the same ratio naturally appears even for a single c̄c pair dissolving in
a thermal medium. Especially at SPS, when statistical recombination requires
a charm density which is too large, this is an attractive possibility.

3.4 Summary

The description of Brownian motion with a Langevin dynamics is of fundamen-
tal importance when it comes to describing the dynamics of heavy particles
in a sufficiently lighter medium. This description is natural for charm quarks
at temperatures just above deconfinement. The Langevin equation includes a
stochastic term, making the trajectory of any single particle somewhat unen-
lightening and requiring functional integrals over the observables in question.

When this description is applied to both of the charm quarks in a charmo-
nium bound state, and temperature and drag are estimated according to what
we know about QCD, two important phenomena are present: the evolution
of the overall yield of bound charmonium states changes on timescales of the
same order as those of heavy-ion collisions at the RHIC, and the relative abun-
dances of the various charmonium states quickly approach a state of “quasi-
equilibrium”, where the relative yields are the same as would be predicted
by Boltzmann factors while the overall yield continuously decays. These two
properties are in qualitative agreement with the results from PHENIX. The
next chapter will discuss a simulation of an ensemble of charm quark pairs that
models the gold-gold collisions at the RHIC at various impact parameters, and
the results of these simulations will be compared with the PHENIX analysis.
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Chapter 4

The Langevin-with-interaction
model and charmonium in
heavy ion collisions

This model for the dynamics of quarkonium during the hydrodynamical phase
should now be applied to gold-gold collisions at the RHIC, and the results
compared with observables utilizing the excellent momentum resolution of the
PHENIX detector. In Section 4.1, heavy-ion collisions in general are reviewed,
with some attention paid to the hydrodynamical description of the quark-gluon
plasma phase. The following sections focus on the results of this model, found
in [37, 39], with Section 4.2 discussing the initial distribution of charm quark
pairs generated, Section 4.3 discussing how these pairs are evolved in a hydro-
dynamical simulation of the plasma phase, and Section 4.4 how recombinant
production should be taken into account.

4.1 Heavy ion collisions: a brief review

4.1.1 The hydrodynamical approach to high-energy col-
lisions

Fermi first suggested using statistical methods in the study of high-energy cos-
mic ray events [40]. However, Landau’s work made the use of hydrodynamics a
truly viable option [41]. He noticed several important points: first of all, that
in relativistic collisions, it is not the total number of particles produced that is
conserved but instead, the macroscopic energy-momentum tensor T µν . In the
limit of vanishing mean-free path for the “quasi-particles” of the system, this
tensor has a form related to the average flow velocity of a small space-time
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volume:
T µν = (e + p)uµuν − pgµν , (4.1)

where p is the pressure and e is the energy density, related to each other
through an equation of state. The viscous corrections determined by a small
but non-vanishing mean free path, while extremely important in their own
right for RHIC phenomenology, are not covered here, for coverage of these
terms see [42]. Landau also noticed that, in the absence of shock waves and
of large viscous terms, the expansion of the hydrodynamical system in high-
energy collisions is nearly adiabatic with the total entropy conserved. In this
way, the total entropy scales with the total energy deposited in the collision
region: in the earliest estimates, this was assumed to scale with the total
energy like s1/4 where s = (P µ

tot)
2. This proportionality, known as “Landau

scaling”, seems to predict the total multiplicities in high energy collisions, both
in e+e− collisions where thermalization surely does not occur and in heavy-ion
collisions, where many have argued thermalization does occur.

4.1.2 QCD, heavy-ion collisions, and achieving temper-
atures above deconfinement

It is interesting to note here how in the history of science, physicists have to
be not only clever and creative, but also brave. In 1954 Yang and Mills [43]
developed theories with non-Abelian gauge-invariance, where the gauge group
is SU(N) and the action is simply the generalization of the field strength
squared:

L = −1

4
F a

µνF
µνa,

[Dµ, Dν ] = −igT aF a
µν ,

Dµ = ∂µ − igT aAa
µ,

where T a are simply the generators of the Lie group, defined by these gen-
erators’ Lie algebra [T a, T b] = ifabcT c. Written in this way, the geometric
simplicity and beauty of their generalization can easily be seen; in the lan-
guage of fiber bundles, the fibers are now SU(N) instead of U(1), and all the
other changes propagate through the usual definitions of connections, covari-
ant derivatives, field strengths, and finally, the action. However, Yang and
Mills were trying to describe the strong interaction by promoting isospin to
being a local gauge invariance, which is incompatible with what was known
even then about the nucleon-nucleon interaction. Yang and Mills had to en-
dure harsh criticism from Pauli and some of the other conservative voices in
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physics.
Work on the experimental side of particle physics continued concurrently.

For a long time after Landau, particle physicists were more interested in dis-
covering the many new particles than they were with describing collective
phenomena in collisions yielding high multiplicities. The quark model made
sense of the many mesons and baryons discovered; mesons and baryons are
composite particles and members of multiplets that are representations of ap-
proximate “flavor” symmetries [44]. This led to the hypothesis that the mesons
and baryons must consist of quarks that have spin 1/2 and therefore, if they
are to have the proper fermionic statistics, must have an additional degree of
freedom. If the quark “color” corresponded to the quarks forming fundamental
representations of SU(3) gauge symmetry, antisymmetric statistics could be
satisfied.

Around the same time, Yang-Mills gauge theories were found to have a
notable quality. The renormalization group equation for SU(N) gauge the-
ory (coupled to Nf flavors of massless fermions that are fundamental repre-
sentations of the gauge group, simply by replacing ∂µ with Dµ in the Dirac
Lagrangian) has the beta function [45, 46]

β(g) =
g4

16π3
(−11

6
N +

1

3
Nf ). (4.2)

Integrating this equation gives a coupling constant which depends on mass
scale in such a way that at very high energy scales, the coupling constant
that represents QCD at all orders best is very small. These gauge theories
are therefore asymptotically free, just like the constituent partons in deep
inelastic scattering experiments. Lattice simulations also demonstrate that
these gauges theories also have the property of confinement, explaining why
color dynamics cannot be seen on a macroscopic scale [47]. In this way, strong
interactions gained a comprehensive, and simplifying, explanation in terms of
quantum field theory.

My advisor Edward Shuryak rediscovered the work of Landau, and used it
to describe the dynamics of quark-gluon plasma [11]. He also anticipated the
plasma’s effects on the observables still considered today: dilepton production,
the yields of mesons, and of course, the effects of plasma on quarkonium.
Shuryak estimated the effect of “photo-disassociation” of quarkonium states
to be small, which has proven to be incorrect; however, he is also the first
to have considered J/ψ suppression with a dynamical approach. Shuryak’s
work helped spark interest in a new experimental program, whose goal is to
use high-energy collisions to create a medium that thermalizes at temperatures
above deconfinement, so that the non-trivial phase structure of the QCD fields
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can be better understood.

4.1.3 Initial conditions: the Glauber model

Despite the ultimate success of quantum field theory in providing a fundamen-
tal theory for strong interactions, as well as the robust lattice QCD approach
for calculating time-independent correlation functions, there remains a great
deal not understood. As noted in Chapter 2, time-dependent correlation func-
tions which depend on soft scales are difficult to determine starting with first
principles. Also, large systems – for example the original problem of strong
physics, the nucleus – present difficulties. Heavy-ion collisions both are time-
dependent and yield large systems. We, like many others before, approximate
the evolution of the collision after some initial thermalization time with hy-
drodynamics; however, what happens before this initial time remains poorly
understood.

One approach to the problem is to use the Glauber model to determine an
inital entropy distribution in the transverse plane [48]. The major assump-
tion is that the interaction of each nucleon in the “projectile” nucleus A with
the nucleons in the “target” nucleus B can be treated as an independent, bi-
nary collision (at the RHIC, where both beams are accelerated to the same
momentum, “projectile” and “target” are merely labels that aid in the dis-
cussion). Typically, to find the entropy density in the transverse plane for a
collision determined by an impact parameter b, the entropy density scales with
the density of “wounded” nucleons according to some proportionality factor
dS/dNdy, which also typically scales with the Mandelstam variables like s1/4,
as in Landau’s initial work with “stopped” colliding particles and with the
results from gauge/gravity duality [50].

An entirely different approach, correct in the limit of very high energy col-
lisions, is the approximation of the colliding nuclei with a “color glass conden-
sate” [51]. This approach is of course important for probing the “small-x” scale
of parton distribution functions, where of course, the density of gluons should
not diverge but instead saturate at some momentum scale. In this way, the
evolution of the heavy-ion collision, at the earliest times, can be approximated
with the classical Yang-Mills equations. In any event, the entropy densities
predicted with the color glass condensate approach can be approximated with
the Glauber model [49].

4.1.4 The Bjorken solution

Landau’s paper on high-multiplicity collisions included a discussion of the
hydrodynamics of a very hot “pancake.” For ultra-relativistic heavy-ion colli-
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sions, Bjorken first explained the best geometry to consider [52]. He noticed
two things: first, that in very high-energy collisions, the expansion should be
roughly longitudinal Lorentz-boost invariant, and second, that the transverse
extent of the collision region can be approximated as very large, with the
system nearly isotropic in the transverse direction.

In this setup, there is a natural choice of space-time coordinates: (τ, x1, x2, y),
where

τ =
√

t2 − z2,

y =
1

2
log

(
t + z

t− z

)
.

(4.3)

In this (1+1)-dimensional, boost-invariant expansion, the 4-velocity in the
usual Minkowski coordinates, at a given rapidity coordinate y, is given by uµ =
(cosh(y), 0, 0, sinh(y)). The divergence is determined by ∂µuµ = ∂

∂t cosh(y) +
∂
∂z sinh(y) = 1

τ .
Now, for ideal hydrodynamics, the inner product of the conservation law

∂µT µν = 0 with uν yields

(uµ∂µ)e + (p + e)(∂µ)uµ = 0. (4.4)

The time derivative in the rest frame of the medium uµ∂µ = ∂
∂τ , finally making

the hydrodynamical equations of motion into an ordinary differential equation
for the Bjorken geometry:

de

e + p
= −dτ

τ
. (4.5)

Using
ds

s
=

de

e + p
, (4.6)

and defining the initial condition s(τ0) = s0 (where τ0 is usually, and always in
this work, an approximate time for thermalization of the medium), the Bjorken
solution describes the scaling of entropy with proper time of fluid elements in
the medium:

s(τ) = s0
τ0

τ
. (4.7)

For the remainder of this work, the hydrodynamics will be determined
with (2+1)-dimensional equations of motion, where longitudinal Lorentz boost
invariance is assumed to hold approximately in the geometry of the collision
and therefore eliminates the dependence on the rapidity coordinate y. The
relativistic equations are solved using finite element methods as in [53]. As
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always, I am in a great deal of debt to the work in [38]; the hydrodynamical
code is theirs.

4.1.5 The equation of state for QCD at finite tempera-
ture

A great deal of work has gone into understanding the equation of state of
strongly-interacting matter at finite temperatures and chemical potentials. For
finite temperature yet vanishingly small chemical potential, lattice QCD sim-
ulations are very well suited for studying the equation of state; it depends
only on static quantities that can interchangeably be calculated in real-time
or imaginary-time formalisms. The greatest difficulty with the lattice QCD
approach is dealing with fermions on the lattice; the latest work with 2+1
flavors of staggered quarks can be found in [54]. The equation of state with
fermions has the feature of a “crossover” transition: no discontinuities in any
measured derivatives of thermodynamical quantities but a short temperature
range, near Tc, where the matter is extremely soft and the entropy density
rapidly changes.

This equation of state can be approximated with the equation of state for
a system with a “mixed phase”:

c2
s =






c2
1 e < e1

c2
2 e1 < e < e2

c2
3 e2 < e

(4.8)

where c2
s is the squared speed of sound in the medium. To illustrate the

thermodynamical relations needed to simulate hydrodynamics in heavy-ion
collisions, we will consider this type of phase transition as in [38].

When the baryonic density is held fixed, manipulating the thermodynamic
identities yields the relationship between pressure, energy, and entropy ds

s =
de

e+p(e) . Also using dp
de = c2

s, the definition of the squared sound speed, entropy
density can be determined as a function of energy density:

s(e) =






s0(
e
e0

)1/(c21+1) e < e1

s(e1)(
(c22+1)e+(c21−c22)e1

(c11+1)e1
)1/(c22+1) e1 < e < e2

s(e2)(
(c23+1)e+(c22−c23)e2+(c21−c22)e1

(c22+1)e2+(c21−c22)e1)
)1/(c23+1) e2 < e

(4.9)

Finally, the relationship between energy and temperature can be determined
using the definition of temperature, T ≡ (ds

de)
−1. Knowing the entropy density
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at some (usually very high) temperature determines fully the relationships
between energy density, pressure, entropy density, and temperature.

In fact, for most of the remainder of this work, the equation of state is
assumed simply to be that of an ultrarelativistic gas, where the temperature
is the only mass scale of the problem and therefore the proportionalities in
the various thermodynamical identities are simply determined by dimensional
analysis. This did not change the results significantly yet greatly simplified
simulation. The equation of state, using the relations determined above, and
the conservation law for the energy-momentum tensor, form a complete set
of equations, and the equation of state can be used to determine energy and
pressure distributions from any initial entropy distribution in the transverse
plane.

4.1.6 Experimental observables and a brief introduction
to the RHIC detectors

All heavy-ion physicists, including theorists, need to have some understanding
of the capabilities of the detectors at the three major experiments (the SPS,
the RHIC, and the LHC). The RHIC, at one time, was the largest machine
in the world, and it is definitely inappropriate here to describe the important
technical achievements which made possible the acceleration of highly lumi-
nous beam of gold nuclei to factors of γ ∼ 100. Here is a brief review of the
capabilities of the RHIC detectors, as summarized in Letessier and Rafelski
[8]:

The PHOBOS detector focused on examining global properties of heavy-ion
collisions. It is a relatively small arrangement of silicon-based detectors that
covers a pseudo-rapidity range of −5.4 < η < 5.4. It has published results on
the multiplicity of low-momentum particles. Its results are significant due to its
broad rapidity coverage: it demonstrates the flatness of the yield in multiplicity
with rapidity and shows how Bjorken’s solution can work for describing the
hydrodynamics near mid-rapidity.

The BRAHMS detector also covers a large rapidity range (0 < η < 4) but
also a larger transverse momentum range, up to 30 GeV.

The STAR collaboration operates a larger detector consisting of an in-
ner silicon-vertex detector, surrounding the interaction region between 5 and
15 cm, which is also surrounded by a time-of-flight array about 2.5 meters
from the the initial interaction vertex. The entire volume has a constant 0.5
T magnetic field, which allows identification of the various charged particles
which, combined with the vertex detection, allows excellent measurement of
strangeness production. The detector operates with a relatively large rapidity
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coverage (−2 < η < 2) with a low-momentum cutoff of 60 MeV.
Finally, the PHENIX collaboration provides results that inform my work

the most, because of both its excellent mass resolution of dielectron pairs in the
invariant mass range of charmonium, and because of the detector’s relatively
rapid data collection, providing very high statistics for the collaboration’s re-
sults. The two arms of the detector actually cover a small rapidity range
(−0.35 < η < 0.35); also, each arm only covers about π/2 of the azimuthal
range. However, the PHENIX detector combines inner tracking detectors with
calorimetry to both leptons, photons, and pions with excellent momentum res-
olution. The detector is optimized for the measurement of leptons and pho-
tons. About 5% of J/ψ particles decay into dielectron pairs and contribute to
the yields measured in the PHENIX. An upgrade of the detector will include
vertex tracking near the interaction region and allow another measurement
important for my work: b-tagging.

To conclude this section: for the study of charmonium, momentum res-
olution and rapid data acquisition are more important than broad rapidity
coverage, making PHENIX the detector most important for my work. Vertex
detection at the PHENIX make the study of bottom, bottomonium, and bc̄
states an exciting possibility for future runs.

4.2 Production of the initial c̄c pairs

Here begins a detailed description of my work in using Langevin-with-interaction
simulations, where flow and temperature are determined with a (2+1)-dimensional
“Bjorken-like” hydrodynamical simulation, to determine changes in the yields
of charmonium states during the plasma phase. It begins with determining
an initial distribution for the ensemble. This first step is unfortunately also
the hardest, since there is not way to measure experimentally these initial dis-
tributions in a heavy-ion collision and there are many changes expected from
proton-proton collisions to nuclear collisions due to “cold-nuclear matter” ef-
fects, for example, shadowing and anti-shadowing of the parton distribution
functions [55], absorption and breakup of charmonium due to the many nucle-
ons present [56], and possibly also the gluon saturation that affects heavy-ion
collisions [57] 1. We will not go into the details of any of this here: we simply
use leading-order event generation as something of a “place-holder”, and model
the effect of the plasma phase on yields and determine the relative change.

1While Tuchin’s work concerning the effects of gluon saturation makes clearly important
points, I cannot agree that it explains all J/ψ suppression; his only source of charmonium is
the yield of states with quantum numbers identical to the corresponding final states, which
cannot explain the overall yields even in proton-proton collisions.
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The initial distribution of c̄c pairs are generated with PYTHIA, a parti-
cle physics event generator [33]. PYTHIA yields c̄c pairs through a set of
perturbative QCD events: through Monte-Carlo it will selectinitial partons
from the parton distribution function of one’s choosing and proceed through
leading-order QCD differential cross sections to a random final state.

By using PYTHIA we do not however imply that it solved many open is-
sues related with charmonium production, such as color octet versus singlet
state. It also leaves open the very important issue of feeddown from charmo-
nium excited states, as will be seen in Section 4.3.2. One more open question
– needed to start our simulations – is how to sample the distribution in posi-
tion space. Indeed, each pQCD event generated in PYTHIA is a momentum
eigenstate without any width, so by Heisenberg’s uncertainty relation they are
spatially delocalized, which is unrealistic.

We proceed assuming the form for the initial phase-space distribution to
be

Pinit(x,p) ∝ PPYTH(p) exp(−x2/2σ2) (4.10)

By setting σ = 0.3 fm one can tune the energy distribution to give a reasonable
probability for the formation of J/ψ state in proton-proton events.

However this does not yield correct formation probabilities of χ, ψ
′
. It is

hardly surprising, since for example the ψ
′
wavefunction has a sign change at

certain distances, so because the exact production amplitude is required for
a projection, an order-of-magnitude size estimate is not good enough. Since
feeddown from those states contributes about 40% of the observed J/ψ, we
simply refrain from any quantitative statements about proton-proton (and very
peripheral AA) collisions, focusing only on distributions after some amount
of time spent in QGP, which is when simply statistical hadronization has some
predictive power [58].

4.3 Langevin motion of c̄c pair in an expand-
ing fireball

The motion of a charm quark pairs is simulated in a hydrodynamical simu-
lation of the quark-gluon plasma phase of gold-gold collisions [38]. The same
framework and programs used in [19] used to examine motion of a single charm
quark has been used for the simulation of an interacting pair.

We start with large number of c̄c produced with PYTHIA pQCD event
generation, and randomly place them in position space throughout the fireball,
using a Monte-Carlo Glauber calculation.

Then, the pairs are evolved in time according to the Langevin equation
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with a force term:
dp

dt
= −ηp + ξ −∇U, (4.11)

dx

dt
=

p

mc
. (4.12)

where ξ is a random force and η the drag coefficient. We proceed here with
our diffusion constant set to be ηD = 2πT 2

1.5M and half of this value, which are
large values relative to other works, in the spirit of Chapter 2.

Now we examine the evolution of the quark pairs as discussed before, exam-
ining pairs at mid-rapidity in a boost-invariant, 2-dimensional ultra-relativistic
gas simulation, the same hydrodynamical simulation used in [19]. We stop the
Langevin-with-interaction evolution when T < Tc. The distribution over en-
ergy at different moments of the time is shown in Fig.4.3.

4.3.1 Shadowing and “normal” absorption

Experimental data include not only the “QGP suppression” we study in this
work, but also (i) the initial-state effects (modified parton distributions in
“cold nuclear matter”) plus (ii) the so called “normal nuclear absorption.” For
a long time, all of these effects were parametrized with a single parameter, a
“disassociation cross section” [64]:

RpA = exp(−σabs〈L〉n0), (4.13)

where 〈L〉 is the mean path length of the J/ψ through nuclear matter, n0 is the
nuclear density, and σabs is the nuclear absorption cross-section (parametrized
from [64] to be 0.1fm2 for rapidity y = 0). For rapidity y = 0, this can be
rewritten as (RpA(y = 0))2 = exp(−σabs 〈Npart〉, where 〈Npart〉 is the density
per unit area of participants in the collision plane. Glauber model calculations
[65] determine 〈Npart〉 for a given Npart at PHENIX. Each Au+Au data point
from PHENIX is divided by this quantity and called Ranomalous

AA (y = 0), plotted
in Figure 4.3.2.

4.3.2 ψ
′
production and feeddown

The ratio Nψ′/NJ/ψ is calculated in the simulations, for different centralities.
There are well known NA38/50/60 measurements of this ratio at the SPS, but
at RHIC it has been measured so far only in proton-proton collisions by the
PHENIX detector [68] to be 0.14 ± 0.04, which makes the ratio of direct ψ

′
to

J/ψ particles 0.24 as in [67]. Hopefully higher luminosity at RHIC will make
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possible a future measurement of this ratio in Au+Au collisions of various
centralities.

Nψ′/NJ/ψ is determined as follows: (i) first we run our simulation and de-
termine the distributions f(E) over the c̄c pair energy E = ECM−2Mc (in the
pair center of mass frame); (ii) these are compared with the quasi-equilibrium
distributions from simulations at fixed temperature (slightly above Tc) f0(E).
This complicated procedure is the result of the simple fact that all along, we
have never claimed to be able to determine well the initial yields of the various
charmonium states; we have no interest in making claims in this area, and we
simply wish to determine changes in these yields due to dynamics during the
deconfined phase, of which we do claim to have some understanding. This is
possible for us simply due to the fact that in f(E)/f0(E), the density of states
is divided out. This ratio determines how different the actual distribution is
from that in quasi-equilibrium. Next (iii), the double ratios are determined,
at two relative energies corresponding to ψ

′
and J/ψ masses (minus 2mcharm)

Rψ′/Jψ =
f(.8 GeV)

f0(.8 GeV)
/

f(.3 GeV)

f0(.3 GeV)
. (4.14)

This now includes nonequilibrium effects. Finally (iv), the particle ratio is a
combination of nonequilibrium and equilibrium factors

Nψ′

NJ/ψ
= Rψ′/ψ exp(−∆m/T ) (4.15)

The double ratio (or exp(∆M/T )Nψ′/NJ/ψ) is plotted versus centrality in Fig.
4.3.2, for two values of the diffusion coefficient.

As one can see, it goes to unity for the most central collisions: so quasi-
equilibrium is actually reached in this case. One can also see that this quasi-
equilibrium is reached quicker for a smaller diffusion coefficient, as it should.
For mid-central bins the ψ

′
production is about twice larger because of insuf-

ficient time for thermalization. This is to be compared to the experimental
proton-proton value for the ratio, which is about 5.

Finally, this result should be used to estimate the effect of feeddown from
higher states. The final number of J/ψ particles observed is the number of
directly produced J/ψ particles plus the number of J/ψ particles produced
from feeddown from higher charmonium states:

N final
J/ψ = Ndirect

J/ψ

[
1 + Rψ′/ψ

∑

i

(
gi

3
) exp(−∆Mi

T
)Bi

]
(4.16)
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where i is summed over the χ1, χ2, and ψ
′
particles which contribute signifi-

cantly to feeddown, Bi represents their branching ratio into J/ψ + ..., and gi

is the degeneracy of the state (divided by 3, the degeneracy of the J/ψ), ∆mi

is the mass difference between the i-th state and the J/ψ. The Rψ′/ψ is the
non-equilibrium factor discussed above: it is factored outside the sum because
it is very similar for all these states.

Now consider centrality dependence of the J/ψ production including the
feeddown. Define for each centrality direct Ndirect

J/ψ (b) as the total number
of cc̄ pairs in our ensemble with energy (in its rest frame) less than E <
2Mcharm +0.33 GeV. Feedown gets its dependence on centrality from Rψ′/ψ(b)
determined from simulation.

Finally, RAA as a function of the number of participants is determined
by normalizing the final yields of J/ψ with initial yield from PYTHIA (with
feeddown included) for a very peripheral collision, shown in Figure 4.3.2 for
various parameters for the Langevin dynamics. Also shown, for the case of
2πTDc = 1.5 with the potential on, are various levels of sophistication for
determining RAA in the same simulation: one where we simply assume RAA =
Sbound, one where RAA is determined with only direct J/ψ states, and one
where proper feeddown probabilities are included. Although the results are
less dramatic than what Figure 3.3.1 would suggest, we plainly see that the
predictions of our model are sensitive to the value of the diffusion coefficient,
and a small diffusion coefficient with the charm and anti-charm quarks in a
pair interacting can help explain why the suppression observed at the RHIC
is on the order of the suppression observed at SPS.

4.3.3 Including the “mixed phase”

So far, only the evolution of the cc̄ pairs during the QGP phase has been
simulated, stopping the evolution wherever the fluid’s temperature reached Tc.
The heavy-ion collisions at RHIC seem to proceed through a “mixed phase”
for central and semi-central collisions, where the medium spends a significant
amount of time near Tc, as described in [38]. For our determination of RAA

versus Npart, the mixed phase is insignificant: the percentage of J/ψ particles
does not change significantly after the initial as Figure 3.3.1 suggests. Since
we do not pretend to know the dynamics of charmonium in the mixed phase,
we are satisfied that even the extreme limit of unchanged Langevin evolution
through the mixed phase does not significantly change our results in Figure
4.3.2. However, for describing the development of momentum anisotropy of
charmonium in a semi-central collision (v2(pt)), the mixed phase is of great
importance and we are forced to model it for a typical collision in the minimum
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bias data set.
In various hydrodynamic models which describe heavy ion collisions, the

region of roughly T = 0.9 − 1.1 Tc is treated as a separate “mixed phase”
distinct from QGP and hadronic phases. Indeed, it has a very different equa-
tion of state: while the temperature and pressure remain nearly constant, the
energy and entropy densities jump by a large factor 2.

What is very important for the present paper is that the near-Tc region
occupies a significant fraction of the hydrodynamical evolution, in spite of
being a very narrow interval in terms of T . Indeed, one should rather focus
not on T but on the entropy density s, which shows a simple monotonous
decrease with time s ∼ 1/τ for all three phases.

For a quantitative description of the mixed phase we used hydrodynamical
calculations, known to describe radial and elliptic flow well, such as the work by
Shuryak and Teaney [38]. It follows from their solution that the “mixed phase”
persists for about 5 fm/c after the deconfined phase, which is comparable to
the lifetime of the deconfined phase at the very center of the transverse plane.
Thus it is by no means a small effect, and should be included in any realistic
treatment of a heavy-ion collision.

The flow during this time was found to be well approximated by Hubble-like
expansion with radial velocity v = Hr and time-independent H ≈ 0.075 fm−1

for central collisions. For a collision with a nonzero impact parameter (below
we will consider b = 6.5 fm), the anisotropy of this expansion can be parame-
terized similarly:

vi = Hixi, (4.17)

with i = 1, 2 and Hx = 0.078 fm−1, Hy = 0.058 fm−1: thus anisotropy is
only about 80% by this late stage. It is fair to say that we have a fairly
reasonable understanding of how the medium flows for these later stages: thus
in our simulations we have used those parameterizations instead of numerical
solutions to hydrodynamics, which were necessary for the QGP phase.

Let us start with two extreme scenarios for the dynamics of the charm
quarks during this phase of the collision:
1.) the charm quarks are completely “stopped” in the medium, so that they
experience the same Hubble-like flow as matter;

2Although the exact nature of matter in the near-Tc region is not yet understood, let
us mention that the original “mixed phase” description, originating from the notion of
the first-order phase transition, cannot be true, as “supercooling” and bubble formation
expected in this case are not observed experimentally. Lattice gauge theory suggests a
smooth crossover-type transition, with a high but finite peak in the specific heat. Recently
there has been renewed interest in this region, after the so-called “magnetic scenario” for
it has been proposed [69, 70], describing it as a plasma containing a significant fraction of
magnetic monopoles.
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2.) c̄c pairs do not interact at all with the medium near-Tc, moving ballistically
with constant velocity for the corresponding time in the collision.

If the first scenario were true, the effect of Hubble flow would be to in-
crease all momenta of particles by the same multiplicative factors pi(t) =
pi(0) exp(Hit). With sufficiently high drag, Langevin dynamics would bring
the charm quarks rapidly to a thermal distribution, and since M >> T it is
a good approximation in this case to say that the heavy quarks have been
”stopped”. However, we will show below that at the “realistic” value used
for the drag ηc this does not happen during the time allocated to the mixed
phase, there is instead ongoing “stopping” of the charm quarks relative to
fluid elements. (This also will be important for the evolution of the azimuthal
anisotropy v2(pt) for single charm and for charmonium). The second scenario
predicts v2(pt) for single charm quarks which is far smaller than what is mea-
sured. We do not consider this scenario further even though something might
be said for modelling charmonium in the mixed phase as interacting far less
than single charm.

Several single charm pt-distributions are shown in Figure 4.5 (normalized
for simplicity to unity). The initial distribution after hard production pre-
dicted by PYTHIA is the largest at high pt: this is compared to the Langevin
evolution before (squares) and after (triangles) the mixed phase, for a semi-
central RHIC collision (b = 7 fm). In order to see that radial flow still is im-
portant, we have also shown what happens if Langevin evolution takes place
in an unmoving fixed-T plasma (circles).

This comparison demonstrates once again the main point on which the
Langevin-with-interaction model for charmonium is based: for charm quarks
and charmonium in a heavy-ion collision equilibration is never complete,even in
momentum space, making the specific timescales of different phases of matter
of fundamental importance.

Unfortunately, in the near-Tc region it is much less clear how to describe the
c− c̄ interaction. As we have learned from lattice data, the difference between
free-energy and potential-energy potentials are very drastic in this case: in
the former case the tension (the force from the linear potential) disappears
while in the latter it becomes about 5 times stronger than it is in vacuum. As
discussed in refs[71, 72], the latter is presumably due to a metastable electric
flux tube.

Which potential to use depends on timescales of the c− c̄ dynamics, which
are not well understood at this point. Therefore we took for now a conservative
approach, assuming that at the near-Tc stage charm pairs interact according
to the simple Coulomb interaction V = −αs/r. Additionally, in our model for
this phase we assume the interaction of the charm quarks with the medium
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can be modelled with the same Langevin dynamics with the temperature ap-
proximated as a fixed T = Tc and the flow given as above. We found that with
the simple Coulomb potential used in the mixed phase, the survival proba-
bility dropped slightly but not significantly: and although we do not discuss
other possibilities in this work further, in principle this can be changed if the
potential to be used has significant tension.

One final interesting observable would be a measurement of charmonium el-
liptic flow, characterized by the azimuthal anisotropy parameter v2 = 〈cos(2φ)〉,
induced by ellipticity of the flow on charm quarks. A measurement with low
statistics has been already made at PHENIX [73]: both PHENIX and STAR
are working on higher statistics data previously recorded. The result of our
calculation of v2(pt), both for single charm quarks and for the J/ψ, is shown
in Figure 4.6.

Greco, Ko, and Rapp also made predictions for the v2 for J/ψ [74], with a
model where all of the final J/ψ-states coalesced from the single charm quark
”thermal+flow” distribution one would get from a typical minimum bias RHIC
collision. We have in common strong interaction of charm with the medium,
and coalescence from these charm quarks of the observed J/ψ particles. As
it turns out, our predictions are similar: v2 of J/ψ should be less than the v2

of single charm for low pt, but then increase past the v2 of single charm at
pt > 3 GeV.

4.4 Recombinant production of charmonium
in gold-gold collisions

In the previous section, a possibly important source of charmonium at RHIC
was not considered: the “recombinant” contribution of J/ψ particles whose
constituent quarks originate from different hard processes. At very high col-
lision energies, as the number of charm pairs per event grows, recombinant
charmonia could potentially lead to an enhancement of the final J/ψ yields
in a heavy-ion collision, reversing the current suppression trend. Using the
grand canonical ensemble approach, Braun-Munzinger and collaborators [58]
determine the fugacity of charm by the number of c̄c pairs produced initially.
The “statistical hadronization” approach to charmonium assumes complete
thermal equilibration of charmonium. Greco, Ko, and Rapp [74] studied how
coalescence models, when applied to the single charm momentum distributions
predicted both by perturbative QCD and by thermodynamics and flow at the
RHIC, can be used to examine this possible recombinant yield. A somewhat
different approach has been taken by Grandchamp and Rapp [75], who treat
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the J/ψ yields from heavy-ion collisions as coming from two sources: the direct
component, which decays exponentially with some lifetime τd, and the coales-
cent component, which is determined by the same mechanism in [58], with
the additional consideration that spatial equilibration of charm does not hap-
pen. To account for enhanced local charm density, by small spatial diffusion,
they had introduced another factor - the “correlation volume” Vcorr - which
was estimated. The present work can be viewed as a quantitative dynamical
calculation of this parameter.

To gain insight, let us compare these models with our model in [37]. The
Langevin-with-interaction model for c̄c pairs in medium makes no assump-
tions about complete thermalization, and shows how even in central Au+Au
collisions at the RHIC, the majority of the J/ψ yields may survive the QGP
phase. However, the model predicts rapid thermalization in the momentum
distributions of charmonium, as well as equilibration in the relative yields of
the various charmonium states due to the formation of “quasi-equilibrium”
in phase space. This requires no fine-tuning of the rates for charmonium in
plasma; it is just a natural consequence of the strongly coupled nature of the
media, detailed by the Langevin dynamics. However, recombinant production
of charmonium may still be an important effect in our model, due to the fact
that in central collisions, the densities of unbound charm quarks can be quite
high in some regions of the transverse plane.

4.4.1 Recombination in Langevin-with-interaction sim-
ulations

As before, we start with a large ensemble of c̄c pairs whose momenta are de-
termined with PYTHIA event generation [33]. The positions of the initial
hard collisions in the transverse plane at mid-rapidity are determined by sam-
pling the distribution in Ncoll determined from the Glauber model. In this
way, our local densities of c̄c pairs vary as one would expect from the Glauber
model, which gives an enhancement for recombination towards the center of
the transverse plane. Each element of the ensemble now contains N c̄c pairs.
The number of pairs N depends on the impact parameter of the collision and
needs to be determined.

The average number of c̄c pairs for a Au+Au collision at RHIC varies with
impact parameter and has been investigated by the PHENIX collaboration
at mid-rapidity [76]. The measured cross sections for charm production vary
somewhat with the centrality of the collision and achieves a maximum of about
800 µb for semi-central collisions. The nuclear overlap function TAA(b) can be
calculated with the Glauber model. We used a convenient program by Dariusz
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Miskowiec [77] to evaluate this function. With a centrality dependent cross-
section σc̄c, we can easily calculate the average number of c̄c pairs in a collision:
Nc̄c = TAAσc̄c. The number of c̄c pairs reaches a maximum in central collisions,
with an average of 19 pairs per collision.

In order to determine the probability for two charm quarks from different
hard processes to form recombinant charmonium, we must average over the
different possible pairings of all of the unbound quarks in each element of our
ensemble. This is discussed in the Appendix in generality. Since the number of
c̄c pairs approaches 20 for central Au+Au collisions at RHIC, we are faced with
another issue: there are 20! possible pairings and it has become impractical
to calculate the probability of each individual pairing this way. In general, we
would be forced to perform permutation sampling of this partition function,
preferably with some Metropolis algorithm. How to sample over permutations
with a Metropolis algorithm is discussed thoroughly in the literature, for an
excellent review of this see Ceperley [90]. However, for RHIC, the situation
simplifies due to the relatively low densities of c̄c pairs involved. We ran our
simulation for the most central Au+Au collisions at RHIC and examined how
many “neighbors” each charm quark had. A “neighbor” is defined as a charm
anti-quark, originating from a different pQCD event yielding the given charm
quark, which is close enough to the charm quark that it could potentially form
a bound state, in other words r is such that VCornell(r) < 0.88 GeV. The
number of charm quarks expected to have one and only one neighbor in the
most central Au+Au collisions was found to be 5.5%, while only 0.2% of the
charm quarks are expected to have more than one neighbor. Therefore, even
at the most central collisions at RHIC, we can be spared possibly complicated
permutation samplings. Of course, this situation is not true in general, and
for the numbers of pairs produced in a typical heavy-ion collision at the LHC
one should modify these combinatorics.

4.4.2 Analysis of the data including improved dAu sam-
ple

The data with which we now compare our results is different from that which
we used for comparison in our previous work. New data analysis of Au+Au and
d+Au described in [78] account for the (anti-)shadowing and the breakup of
charmonium due to the cold nuclear matter effects (parameterized by σabs) in
the framework of a Glauber model for the collision. The calculations at forward
and mid-rapidity are now done independently, since shadowing and breakup
could be considerably different at different rapidities. This new analysis is
a significant success, demonstrating the high suppression at forward rapidity
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(previously very puzzling) as being due to cold nuclear matter effects. New
ratios of observed suppression due to cold nuclear matter RAA/RCNM

AA , plotted
versus the energy density times time ετ , show common trends for RHIC and
SPS data, which was not the case previously. We use this new analysis as a
measure of survival probability in our calculation.

4.4.3 The results

Before we show the results, let us remind the reader that our calculation is
intended to be a dynamical one, with no free parameters. We use a hydrody-
namical simulation developed in [38] which is known to describe accurately the
radial and elliptic collective flows observed in heavy-ion collisions. Our drag
and random force terms for the Langevin dynamics has one input – the diffu-
sion coefficient for charm – constrained by two independent measurements (pT

distributions and v2(pT ) measurements for single lepton – charm – performed
in Ref. [19]. The interaction of these charm quarks are determined by the
correlators for two Polyakov lines in lQCD [63].

Having said that, we still are aware of certain uncertainties in all the input
parameters, which affect the results. In order to show by how much the results
change if we vary some of them, we have used the uncertainty in the value for
the critical temperature Tc. For these reasons, we show the results for two
values Tc = 165, 190 MeV, in Fig.4.7.

As can be seen, a higher Tc value improves the agreement of our simula-
tion with the latest analysis of the data, because in this case the QGP phase is
shorter in duration and the survival probablity is larger. However the recom-
binant contribution (shown by filled squares) is in this case relatively smaller,
making less than 1/3 of the yield even in the most central collisions at RHIC.

Zhao and Rapp used the “two-component model” for J/ψ production at the
RHIC and also achieved some agreement with the anomalous nuclear modifica-
tion of J/ψ yields[79]. We would like to point out that the two components in
their model (“surviving” and “regenerative” production) are not exactly the
same as the two components plotted here (“diagonal” and “non-diagonal”).
This by itself is not a criticism of either calculation: it is simply a difference
in how the total yield has been separated into two components and modeled,
in these two different calculations.

4.4.4 Recombinant J/ψ and pt-distributions

So far, we have only considered the effect of the recombinant production on
the overall yields of J/ψ particles at the RHIC. We should test our model by
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considering whether or not adding the recombinant contribution can change
the shape of any differential J/ψ yields.

One differential yield where we may expect the surviving and recombinant
component to have different behaviors is in the pT -distributions for central
Au+Au collisions. The surviving J/ψ states tend to originate in the periphery
of the collision region, since the J/ψ states produced here endure the sQGP
phase for the shortest times. However, the recombinant contribution should
form toward the center of the collision region, since this is where the density of
initial c̄c pairs is highest, and as we have been showing for some time, spatial
diffusion is incomplete in the sQGP. Therefore, since the effect due to flow
on the pT -distributions has Hubble-like behavior, with the radial velocity of
the medium scaling with distance from the center of the transverse plane, we
would expect the recombinant contribution to exist, on average, in regions of
the medium with significantly smaller flow velocities.

Figure 4.8 demonstrates this behavior existing in our simulation.
We should now determine whether or not this difference of the yield versus

r can be observed in the J/ψ yield versus pt. As we have shown in our previous
paper, during the phase transition from QGP to the hadronic phase in heavy-
ion collisions, our model predicts a small change in the total J/ψ yield but
relatively large changes in the J/ψ pt distributions, with these changes strongly
dependent on the drag coefficient for quarkonium during this time, and Tc.
We can easily run our code with the lattice equation of state, which properly
describes the hydrodynamics during this important “mixed phase”, and make
different predictions for the two components’ pt distributions, depending on
various choices for the drag coefficient appropriate in this phase. However, for
reasons which will become apparent, we are only interested in the upper limit
of the effect of flow on pt in Au+Au collisions at the RHIC. Therefore, we ran
our simulation where we assumed a phase transition which lasts 5 fm/c, during
which the J/ψ particles equilibrate rapidly with the medium (in other words,
have a relaxation time of zero and mean free path of zero), in a Hubble-like
expansion.

The pt distributions after this expansion are shown in Figure 4.9. It is vis-
ible from this plot that the recombinant contribution will observably increase
the total yield at low pt (where the total yield is significantly higher than the
surviving component alone) and have little effect at higher pt (where the total
and the surviving component alone are nearly the same). However, we have
found that even in this extreme limit, there is no clear signal in the differential
pt yields for there being two components for J/ψ production at the RHIC.

This test, however, should not be abandoned for measurements of the dif-
ferential yields at higher collision energies. Since the recombinant contribu-
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tion grows substantially as charm densities are increased, it should be checked
whether or not the recombinant contribution is more strongly peaked in the
center of the transverse plane of LHC collisions, and whether or not two com-
ponents to the differential yields should become observable there. We will
follow up on this issue in a work we have in progress.
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Figure 4.1: (Color online.) A diagram of the PHENIX detector, showing:
the zero-degree calorimeters (ZDC), the beam-beam counters (BBC), the drift
chambers (DC), the ring-imaging Cherenkov detectors (RICH), and at the
ends of the arms, the calorimeters. Courtesy of the PHENIX collaboration.
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Figure 4.2: (Color online.) Evolving energy distribution for an ensemble of
c̄c pairs at time moments t = 2, 3, 10 fm/c (circles,squares and triangles,
respectively).
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Figure 4.3: (Color online) The ratio exp(∆m/Tc)Nψ′/NJ/ψ, the open box
(blue) represents the measured ratio in pp collisions at the RHIC, the open
circles (green) represent the results of our simulation for different Npart with
2πTDc = 3.0, and the solid boxes (red) represent the results of our simulation
with 2πTDc = 1.5.
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Figure 4.4: (Color online) The RHIC data for RAA vs. Npart for J/ψ (with
nuclear effects “factored out”) with the results of our simulation. From top
to bottom: the open triangles (black) represent Sbound for 2πTDc = 1.5 and
the potential on, the open boxes (red) represent RAA for just the J/ψ with
feeddown in the same simulations, the solid boxes (green) represent RAA for
just the J/ψ without feeddown, the open circles (blue) represent RAA with
2πTDc = 1.5 and the potential off, and the solid circles (yellow) represent
RAA with 2πTDc = 3.0 and the potential on.
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Figure 4.5: (Color online.) The charm pt-distribution after the mixed phase
compared with the distribution without flow, the distribution originating from
PYTHIA, and the distribution before the mixed phase
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Figure 4.6: (Color online.) The azimuthal anisotropy versus transverse mo-
mentum for both single charm and for J/ψ.
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Figure 4.7: (Color online.) Ranomalous
AA = RAA/RCNM

AA for J/ψ versus centrality
of the AuAu collisions at RHIC. The data points with error bars show the
PHENIX Au+Au measurements with cold nuclear matter effects factored out
as in [78]. Other points, connected by lines, are our calculations for the two
values of the QCD phase transition temperature Tc = 165 MeV (upper) and
Tc = 190 MeV (lower). From bottom to top: the (green) filled squares show
our new results, the recombinant J/ψ , the open (red) squares show the RAA

for surviving diagonal J/ψ , the open (blue) circles show the total.
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Figure 4.8: (Color online.) The surviving and recombinant J/ψ yields, plotted
versus the radial distance from the center of the transverse plane.
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Figure 4.9: (Color online.) The surviving and recombinant J/ψ yields versus
pt.
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Chapter 5

Path integrals for quantum
Brownian motion and
quarkonium

We will outline how the imaginary-time propagator with periodicity β = 1/T
can be determined for quarkonium systems interacting with a heat bath. In
Section 5.1, we review the reduced density matrix, apply the model of Caldeira
and Leggett for quantum Brownian motion to imaginary time, and then de-
scribe briefly path-integral Monte Carlo techniques for calculating this reduced
density matrix. In Section 5.2, we show how the imaginary-time propagator
for charmonium may be calculated to high accuracy with these techniques, for
any potential or drag coefficient, and we show the results for G(τ, T ) for the
vector channel at temperatures just above the deconfinement transition.

Not many before have considered the effect of the medium on heavy quark
and quarkonium Euclidean correlators calculated on the lattice. Current work
by Beraudo et al. [82] does consider the medium effect on heavy quark correla-
tors. Starting from the QCD Lagrangian, they make the HTL approximation
for the heavy quark’s interaction with the light degrees of freedom at finite
temperature, and then they integrate these degrees of freedom out. The focus
of our work is on a heavy particle interacting quite strongly with the medium,
as suggested by calculations taking advantage of gauge-gravity duality [17].
We show how the Lagrangian for a particle interacting strongly with a heat
bath can be renormalized so that functional integration is well-defined, and
where analytic results are possible.
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5.1 The path integral form for the reduced
density matrix of a dissipative system

For an excellent review of the functional integral approach to quantum Brown-
ian motion, in both imaginary and real time, see [83]. For a briefer discussion
of these ideas and how they apply to quarkonium, see [84]. These results
are discussed in generality, and shown to arise from the Schwinger-Keldysh
contour integral for a heavy quark’s real-time partition function, by Son and
Teaney [85]. These systems can be studied with approaches besides the path-
integral formulation, and the study of quantum Brownian motion, in terms of
a partial differential equation for the density matrix, has been studied by Hu,
Paz, and Zhang [86, 87].

5.1.1 The reduced density matrix

Without loss of generality, consider a system consisting of a heavy particle
of mass M which we will call the system, minimally coupled to a harmonic
oscillator of mass m.

L = LS + LI ;

LS =
1

2
Mẋ2 − V (x),

LI =
1

2
mṙ2 − 1

2
mω2r2 − Cxr. (5.1)

We analytically continue this Lagrangian to τ = it.

SE
S [x] =

∫ β

0

[
1

2
Mẋ2 + V (x)

]
,

SE
I [x, r] =

∫ β

0

[
1

2
mṙ2 +

1

2
mω2r2 + Cxr

]
dτ (5.2)

We can simplify this Lagrangian by making a change of variables. We subtract
the particular solution to the classical equations of motion as determined by
Eq. 5.2.

r(τ) ≡ r′(τ) +
C

mω

∫ τ

0

dτ ′x(τ ′) sinh [ω(τ − τ ′)]

≡ r′(τ) + A[x, τ ] (5.3)
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In terms of the shifted coordinate r′ the Euclidean action becomes that of a
simple harmonic oscillator:

SE
I [x, r] =

∫ β

0

[
1

2
mṙ′2 +

1

2
mω2r′2 +

1

2
Cx(τ)A[x, τ ]

]
dτ

+mȦ[x, β]

(
r′(β) +

1

2
A[x, β]

)

≡ S ′EI [x, r′]. (5.4)

As always, the propagator of a system for imaginary time β = −i/T gives
matrix elements of the thermal density operator. In our example, the density
matrix has 4 indices, 2 for each degree of freedom of the system. In the example
given above the density matrix is given as

ρ(xi, ri; xf , rf ; β) =

∫ x(β)=xf

x(0)=xi

Dx

∫ r(β)=rf

r(0)=ri

Dr exp
(
−SE

S [x]− SE
I [x, r]

)
. (5.5)

If we were never interested in measurements of the degree of freedom r, we
could take the trace over the indices corresponding to this degree of freedom,
and work with a density operator with only two indices. With this in mind,
we define the reduced density matrix:

ρred(xi, xf , β) ≡
∫

drρ(xi, r; xf , r; β). (5.6)

In the next section it will be the only operator practical for calculating thermal
averages.

For the system defined by Eq. 5.1, we can now write a path-integral de-
scription of the reduced density matrix,

ρred(xi, xf , β) =

∫
dr

∫
Dx Dr′ exp

(
−SE

S [x]− SE
I [x, r′]

)

=

∫
Dx exp

(
−SE

x [x]
) ∫

dr

∫
Dr′ exp

(
−S

′E
I [x, r′]

)
,(5.7)

where we integrate over paths with endpoints x(0) = xi, x(β) = xf , r′(0) = r,
and r′(β) = r−A[x, β]. The final step in 5.7 allows the integral over the paths
r′(τ) to be performed independently of the integral over x(τ). Using Eq. 5.4,
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a simple Gaussian integral yields

ρred(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx exp

{
− SE

S [x]

+
∑

i

C2
i

2mωi sinh(ωiβ
2 )

×
∫ β

0

dτ

∫ τ

0

ds x(τ)x(s) cosh [ωi (τ − s− β/2)]

}
, (5.8)

where the summation is introduced because we have generalized this to a
system where a heavy particle interacts with a bath of simple harmonic os-
cillators. This is now the path integral form for the reduced density matrix.
This is analogous to the idea of influence functionals, worked out for real-time
propagators many years ago [88].

5.1.2 Making a dissipative system

Any finite quantum-mechanical system is reversible and therefore inappropri-
ate for describing Brownian motion. One might find it intuitive that if the
bath of harmonic oscillators were taken to an infinite limit, it would be “large
enough” so that energy from the heavy particle could dissipate into the system
and never return. This intuition was proven to be true by the authors of [89],
who considered the real-time evolution of the density matrix for our system
and showed that when the bath of harmonic oscillators is determined by the
continuous density of states

C2(ω)ρD(ω) =

{
2mηω2

π if ω < Ω

0 if ω > Ω
(5.9)

the force autocorrelator for the heavy particle is proportional to δ(t − t
′
) at

high temperatures. In this “white noise” limit, the density matrix describes
an ensemble of particles interacting according to the Langevin equation, which
has been used to describe Brownian motion for a long time. It is a stochastic
differential equation, is irreversible, and evolves any ensemble towards the
thermal phase space distribution.
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We now take this density of states and substitute it into Eq. 5.8

ρred(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx exp

{
− SE

S [x]

+
η

π

∫ Ω

0

dω

∫ β

0

dτ

∫ τ

0

ds

× x(τ)x(s)
ω cosh [ω(τ − s− β/2)]

sinh(ωβ
2 )

}
. (5.10)

The divergences of this action can be isolated by integrating by parts twice

∫ Ω

0

dω

∫ β

0

dτ

∫ τ

0

ds x(τ)x(s)
ω cosh [ω(τ − s− β/2)]

sinh(ωβ
2 )

= Ω

∫ β

0

dτ (x(τ))2 − 1

2
(xi − xf )

2 ln(MΩ/η)
cosh(Ωβ/2)− 1

sinh(Ωβ/2)

−1

2
(xi − xf )

2

[
γE + ln

(
ηβ

πM

)]

+ (xi − xf )

∫ β

0

dτ ẋ(τ) lnsin

(
πτ

β

)

+

∫ β

0

dτ

∫ τ

0

ds ẋ(τ)ẋ(s) lnsin

(
π(τ − s)

β

)
, (5.11)

where lnsin(x) ≡ ln [sin (x)] and γE is the Euler-Mascheroni constant. The
first two terms on the right-hand side correspond to a renormalization of the
potential for the heavy particle, always necessary when considering the inter-
action of a particle with infinitely many additional degrees of freedom. They
are temperature-independent in the limit of large Ω, and may be introduced
as temperature-independent modifications of the Lagrangian for the particle.
The final three terms are finite and well-behaved, and have been evaluated in
the limit Ω →∞. The final form for the reduced density matrix becomes

ρred(xi, xf , β) =

∫ x(β)=xf

x(0)=xi

Dx exp

{
− SE

S [x]− η

2π
(xi − xf )

2

[
γE + ln

(
ηβ

πM

)]

+
η

π
(xi − xf )

∫ β

0

dτ ẋ(τ) lnsin

(
πτ

β

)

+
η

π

∫ β

0

dτ

∫ τ

0

ds ẋ(τ)ẋ(s) lnsin

(
π(τ − s)

β

) }
. (5.12)
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In summary, we have determined an expression for the reduced density
matrix of a system (consisting of a massive particle in a potential) interacting
with a bath of oscillators. The coupling to the bath has been chosen in order
to reproduce the results of classical Brownian motion in the high temperature
limit. We have taken care to make the term in the exponential finite, by
isolating the divergences through integration by parts. This is important for
path integral Monte Carlo simulation to be possible for this functional integral.

5.1.3 Example: The otherwise free particle

The reduced density matrix for a particle interacting with such a bath can
be determined analytically for the otherwise free particle (VR(x) = 0). First,
write an arbitrary path as an expansion around the classical solution

x(τ) = xcl(τ) + ξ(τ);

xcl(τ) ≡ xi + (xf − xi)τ/β,

ξ(τ) ≡
∞∑

n=1

cn sin

(
nπτ

β

)
. (5.13)

One can find an analytic solution by substituting this into Eq. 5.12 . We skip
the details: after evaluating numerous integrals using contour integration, and
then changing variables for the integration over the even Fourier coefficients,
we find the reduced density matrix

ρred(xi, xf , β) =

√
M

2πβ
+

η

2π2

[
log(2) + γE + Ψ

(
1 +

ηβ

2πM

)]

× exp

{
−

[
M

2β
+

η

2π

[
log

(
ηβ

2πM

)
−Ψ

(
1 +

ηβ

2πM

)]]

× (xi − xf )
2

}
, (5.14)

where Ψ(x) is the digamma function and the overall normalization is deter-
mined by analytic continuation of β and requiring the propagator to conserve
probability for purely imaginary β. One interesting physical result is easily
obtained from the Fourier transform of the reduced density matrix

〈
p2

〉
=

Meff

β
, Meff = M +

ηβ

π

[
log

(
ηβ

2πM

)
−Ψ

(
1 +

ηβ

2πM

)]
. (5.15)
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5.1.4 The path-integral Monte Carlo algorithm for the
reduced density matrix

Obtaining the analytic result for our reduced density matrix was reasonable
for the otherwise free particle. For the simple harmonic oscillator, the analytic
result exists but has a rather complicated expression. For the potentials which
describe quarkonium spectroscopy with some precision, analytic work becomes
entirely impractical. We would like to use numerical simulation to obtain
reliable estimates of reduced density matrices and Euclidean correlators.

The most natural numerical approach for the formalism we adopted is
path-integral Monte Carlo (PIMC). For an excellent review of the technique,
see the review of D. M. Ceperley [90]. Paths are either sampled according
to a Metropolis algorithm determined by the action of interest, or sampled
from some convenient distribution which samples the entire space of paths
with some weight. For our work with a single degree of freedom, we found
that sampling a convenient distribution (in our case, the distribution of paths
determined by exp(−Sfree[x])) to be sufficient, which is easily sampled for any
discretization of the path with a bisection method. When sampling the space
of paths, the next step is to determine an estimate for the action of each path.
For our case, the primitive action with the simplest integration of the new
dissipative terms is sufficient. Once this is determined, any correlator can be
calculated by sampling paths and making weighted averages.

5.2 Quarkonium as an open quantum system

We should now apply this functional integral to the problem of quarkonium at
temperatures above deconfinement. To this end, let us rework the Euclidean
correlators calculated on the lattice to a form with which we can calculate.

For a given channel, the two-point Euclidean correlator for a composite
mesonic operator is given by

G(τ, T ) =

∫
d3x 〈JΩ(x, τ)JΩ(0, 0)〉β ,

JΩ(x, τ) = ψ̄(x, τ)Ωψ(x, τ), (5.16)

where Ω = 1, γ0, γµ, γ0γµ determine the mesonic channel to be scalar, pseudo-
scalar, vector, or pseudo-vector, respectively.

For now, consider only the vector channel (the following arguments must
be modified for the scalar and pseudo-vector channels). In order to switch to a
first-quantization approach for the energy range where a potential model would
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be appropriate, think of this correlator as being the sum of the expectation
values of an operator over all of the states in the Fock space of N -particle
mesonic systems, with each expectation value entering the sum weighted by
the state’s Boltzmann factor. One term in this sum, of course, is the “vacuum”
expectation value

〈0|Jµ(x, τ)Jµ(0, 0)|0〉 = 〈µ,x; τ |µ,0; 0〉light , (5.17)

where the subscript represents that the trace is still taken over all of the light
degrees of freedom in QCD.

The right-hand side of Equation 5.17 represents an important step: by de-
composing the mesonic operators into products of creation and annihilation
operators, the vacuum expectation value can be related to the overlap of two
one-particle states. Also, note here that since expectation values of the higher
states enter into the thermal average multiplied by factors which are roughly
powers of exp(−2MQ/T ), the vacuum expectation value dominates the ther-
mal average in the limit M . T . Therefore, we have identified the leading
contribution to the correlator in the vector channel.

The trace over the light degrees of freedom is of course the central problem
of QCD, and no analytic result exists. However, in the infinite mass limit, this
has been computed on the lattice as the expectation value of two Polyakov
loops [22]. The dissipative effects on this propagator have been studied, as
we noted previously, by gauge-gravity duality. Our ansatz here is that these
results describe well the dynamics of sufficiently heavy quarks.

The path integral we wish to evaluate can be written in terms of relative
and absolute coordinates as

〈x,x; τ |0,0; 0〉 =

∫
DX exp

{
−

∫ β

0

dτMẊ2

+
2η

π

∫ β

0

dτ

∫ τ

0

ds Ẋ(τ)Ẋ(s) lnsin

(
π

β
(τ − s)

) }

×
∫
Dxrel exp

{
−

∫ β

0

dτ

[
1

4
M ẋ2

rel + V (xrel)

]

+
η

2π

∫ β

0

dτ

∫ τ

0

ds ẋrel(τ)ẋrel(s) lnsin

(
π

β
(τ − s)

)}
, (5.18)

where the functional integration are over all paths satisfying X(0) = 0, X(τ) =
x, X(β) = 0, xrel(0) = 0, xrel(τ) = 0, and xrel(β) = 0.

The right-hand side of Equation 5.18 can now be calculated, for any poten-
tial, with a PIMC simulation. We use the Cornell potential for the interaction
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Figure 5.1: G(τ)/Gη=0 evaluated for η = 0.1 GeV−2 at T = 1.2Tc.

between the heavy quarks.
To obtain G(τ), the first term on the right-hand side of Eq. 5.18 is in-

tegrated with respect to X, yielding the diagonal value for the free-particle
reduced density matrix which is independent of τ . In Figure 5.1 we show the
mesonic correlator as a function of τ at T = 1.2Tc. We have chosen a repre-
sentative value of η = 0.1 GeV−2 and show results for fixed bare and effective
charm mass.

Clearly, dissipative effects due to the medium change the mesonic cor-
relators measured in lattice simulations. Also, these effects are not trivial:
holding the effective charm mass fixed but varying η still leads to changes
in the mesonic correlators. The next step is to perform spectral analysis of
these correlators to examine how dissipation affects the spectral function for
this correlator. From here, the dissipative effects can be included in heavy-ion
phenomenology.
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Chapter 6

Conclusions and future work

Typically in particle physics, the rate for the scattering of an N -particle state
into another is determined from the square of the matrix element whose in-
dices are the initial and final states, where these states are in the momentum
basis. This makes perfect sense in high-energy experiments, where the incom-
ing and outgoing states are basically each 2-particle momentum eigenstates
and the matrix element can be expanded in terms of a small coupling. Such
an approach, however, seems entirely inappropriate for quarkonium formed in
a heavy-ion collision, whose constituent quarks are localized in position rela-
tive to the surrounding medium and are strongly coupled both to the medium
and each other. Non-perturbative techniques and experiment both suggest
that quarkonium rapidly thermalizes and interacts strongly with the medium.
The most reasonable approach for explaining the observables is to describe
quarkonium with a reduced density matrix, whose evolution is determined by a
potential and a drag coefficient which are both determined non-perturbatively.

To put it another way: as far back as Fermi, physicists understood the util-
ity of describing collisions yielding very high multiplicities with hydrodynam-
ics. The full utility of this approach is realized in ultrarelativistic heavy-ion
collisions, where nearly ideal flow agrees quite well with most observables. If
one wanted to understand the dynamics of particles that are heavy compared
to the surrounding medium, during the time when the whole medium is de-
scribed with hydrodynamics, then one should look no further than Einstein’s
description of Brownian motion for an appropriate model. This is exactly how
Moore and Teaney described single charm quarks during the hydrodynamical
phase. My work simply extended theirs to charmonium, making the simplest
assumption for the white noise: that the white noises experienced by each
constituent quark be uncorrelated. In this way, my work has been extremely
conservative, and yet, it explains both thermalization in relative yields and
the suppression pattern with no fine-tuning, besides a great deal of sensitivity
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to the freeze-out temperature Tc.
A great deal of work remains to be done, and I break up my description

into three parts: phenomenology, comparing the model with lattice results,
and better determination of quarkonium dynamics.

Concerning phenomenology: while my model explains well the RAA for the
yield of J/ψ as a function of number of participants, so do various other models.
I will write here, however, that my model has only one “crank”: the value
chosen for the critical temperature below which the transport of the heavy
quarks ceases, while many other models have many cranks whose sensitivity are
not well-advertised. Of course, it is problematic when many competing models
with, in some cases, contradicting physical processes can all explain data.
One important observable which may change this situation is the formation
of bc̄ “atomic” mesons in heavy-ion collisions. These mesons, extremely rare
in proton-proton collisions, might be greatly enhanced during a deconfined
phase [92]. The Langevin-with-interaction model predicts that most of the
yield of J/ψ, even in central gold-gold collisions at the RHIC, comes from
the “surviving” component, not the “recombinant” component. Similarly,
the bc̄ states at the RHIC, which predicted to be produced almost entirely
recombinantly, might have a smaller yield at the RHIC than currently expected
in models where recombinant production is significant, if the Langevin-with-
interaction approach is to be believed. A quantitative prediction concerning
this yield is within reach and will be determined soon.

Also important is the phenomenology of heavy-ion collisions at the LHC.
Here, high densities of c̄c pairs start to make averaging over the possible
pairings of quarks and anti-quarks into quarkonium difficult. Simulation of
c̄c pairs at the LHC will have to be coupled with sampling of pairings using
the Metropolis algorithm in order to predict the (possibly large) recombinant
contribution to the final yields of charmonium at the LHC.

More work must also be done in making contact between the Langevin-
with-interaction model and the important results from lattice QCD. As shown
in Chapter 5, imaginary-time propagators calculated using path-integral Monte
Carlo can be related to quarkonium correlation functions calculated using the
lattice. However, these imaginary-time propagators need to be spectrally an-
alyzed, most likely using Bayesian statistics, to obtain the Fourier transform
of the real-time quarkonium correlation functions. In this way, the spectral
function obtained can be used in the proper, non-relativistic range, with the
perturbative QCD result for the spectral density replacing our result at large
ω and with the low-frequency component due to heavy-quark diffusion added
as well. This “processed” spectral density will yield the imaginary-time corre-
lation functions that can finally be compared with lattice data. This difficult
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process is necessary to make real comparisons between lattice data and the
results of our model with different diffusion coefficients and heavy-quark po-
tentials, so that quantitative statements may be made about the behavior of
quarkonium at temperatures above deconfinement.

Bayesian analysis of lattice correlation functions has perhaps been slightly
undersold. Whenever some data set X depends on a spectral density ρi, usu-
ally discretized over some continuous variable (in this case, ω), the maximal
entropy method finds a solution for ρi, which is usually under-determined, by
minimizing a function with a χ2 term and the Shannon entropy term:

f [X, ρi] = χ2[X, ρi] + λ
∑

i

ρi ln ρi, (6.1)

where λ is also varied to achieve a realistic value for χ2. Often times, this
function has justified using the principle of maximal entropy, which basically
states that if you know nothing about a coin, you should assume that the
coin is equally weighted for any resulting outcome. Many people find this
assumption unpalatable, perhaps rightly so. However, what people should also
notice is that the Shannon entropy term is an assumption on the smoothness of
the spectral density, a perfectly reasonable assumption considering that every
input to the action for this system is a continuous function.

Another interesting route here would be to calculate the evolution of the
reduced density matrix of Caldeira and Leggett [89](and corrected by Grabert,
Schramm, and Ingold [83]) using path-integral Monte Carlo. The conventional
wisdom that nuclear theorists develop from our experience with lattice QCD is
that it is impossible to calculate sums over all paths numerically in real-time,
due to the fact that exp(iS) is rapidly oscillating and nowhere decaying. How-
ever, while it is definitely true that these oscillating integrals are impossible
numerically with the many degrees of freedom for a field, this is actually not
true for systems with only a few degrees of freedom. In chemical physics, a
common technique is to split real-time path integrals into short-time propaga-
tors and to use approximations to these propagators, see for example [93]. It
would be of some general interest to develop numerical codes which calculate
the real-time evolution of these reduced density matrices in this way.

Finally, the dynamics of quarkonium above deconfinement needs to be in-
vestigated starting from the first principles of QCD. One part of this will surely
be using lattice QCD to calculate different quarkonium correlation functions,
as well as some of the ones discussed here to higher precision. Also, there
exists a great deal of work in the “AdS/QCD” model, which leads to correla-
tion functions which have some of the same behavior as those in QCD, and a
great deal of work has been done examining quarkonium using these models
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[94]. While the lattice remains the best source for quantitative first-principle
results, perhaps gauge/gravity duality will finally provide intuitive pictures
for the dynamics of quarkonium and with it, a better understanding of the
emergent properties of QCD.
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Appendices

Coalescence Probability

After all distributions at the end of the QGP era are determined, the next step
is to calculate the probabilities of it materializing as a particular charmonium
state.

One approach is based on the Wigner probability distribution. For any
wavefunction ψ(x),

Wψ(x,p) =
1

π3

∫
d3yψ∗(x +

y

2
)ψ(x− y

2
)eip·y. (2)

The wave function for J/ψ was easily calculated numerically and then fitted

to a Gaussian ψi(x) ∝ e−3.8r2/fm2

. This leads immediately to the following
parametrization of the J/ψ’s Wigner distribution’s (here the constant is in
fm−2) :

WJ/ψ(x, p) =
1

π3
exp(−7.6r2 − p2/7.6) (3)

Many properties for the Wigner transform so defined may be discussed but
for our purposes here we should note that

∫
Wψ(x, p)dp = |ψ(x)|2 (4)

and for another wavefunction χ(x)’s Wigner transform Wχ(x, p)

∫
Wψ(x, p)Wχ(x, p)dxdy = 1

(2π)3 |〈ψ|χ〉|
2, (5)

because this is what we need to properly normalize our distributions and to
compute overlaps.

So, for our phase-space distribution at any given time f(x, p, τ), we model
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our probability of pair being measured in the J/ψ-state as

PJ/ψ(τ) = (2π)3

∫
f(x,p, τ)WJ/ψ(x,p)d3xd3p. (6)

We project the pairs onto the J/ψ-state not only at the onset of the calculation,
but also throughout the time evolution, monitoring in this way the probability
of J/ψ production.

Later on we switched to the “energy projection method”, which is ulti-
mately used for projection into χ, ψ

′
states as well as into J/ψ . It is based

on the distribution over c̄c energy, in the pair rest frame, calculated with the
(zero temperature) Cornell potential. One projection, used in Figure 9, is to
all bound states, defined by

ECM = VCornell(r) +
p2

rel

Mc
< 0.88 GeV. (7)

Later on, we differentiate between various charmonium states again by
examining the c̄c pair’s energy in its rest frame, and comparing it with the
energies of solutions to Schrödinger’s equation using the Cornell potential. For
example, the lowest s-state solution, using the charm quark mass, has energy
E = 0.33 GeV, therefore we count all c̄c pairs in our simulation with energy
below 0.33 GeV as existing in the J/ψ state.

Classical vs. Quantum Dynamics

In this work, the phase-space distributions of c̄c pairs were evolved in time
according to the Fokker-Planck/Langevin equations, which describe nonequi-
librium evolution of phase-space distributions during the QGP era. After it is
finished and the medium returns to the hadronic phase, our classical distribu-
tion f(x, p, t) has to be projected into charmonium quantum states.

He we examine how classical and quantum dynamics correspond to each
other in equilibrium, when both are easily available. We simplify by examining
the thermal distributions for a Coulombic system, with V ∼ 1/r. One can
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calculate the density of states for the classical system:

Z =

∫
drdp(4π)2r2p2 exp(−(p2/2µ− e2/r)/T )

=

∫
dE

∫
drdp(4π)2r2p2 exp(−E/T )δ(E − p2/2µ + 1/r)

=

∫
dE exp(−E/T )

∫ ∞

max(0,
√

2µE

dp
e2p2

(p2/2µ− E)4

As one can see, this integral is divergent for E > 0. This means that this dis-
tribution is not normalizable and in thermal equilibrium all pairs are ionized.
For E < 0, we see from examining the partition function

ρ(E) ∝ (−E)−5/2 (8)

Now we calculate the quantum mechanical density of states for E < 0,

ρ(E) = Σ∞
n=1n

2δ(E +
C

n2
) (9)

which can be approximated by considering an integral:

∫ E

−∞
dE

′
ρ(E

′
) = Σ∞

i=1i
2θ(E +

C

i2
)

∼ E−3/2 for large enough E

Thus, ρ(E) ∼ E−5/2 for E close to zero: therefore for highly excited states the
correspondence principle holds and the classical thermal distribution is recov-
ered. However, classical density of states is not so good of an approximation
to the quantum-mechanical density of states for the lowest bound state.

We also tested whether Langevin simulations leads to the correct classical
density of states, after some relaxation time. The result of evolving an ensem-
ble of c̄c pairs at a fixed temperature according to classical Langevin dynamics
shown in Fig.1 shows that equilibrium is indeed obtained.

Canonical ensembles for N c̄c -pair systems

In this section we will determine a partition function for a canonical ensemble
of N charm pair systems (that is, an ensemble of very many systems, where
each system contains N c̄c pairs) which correctly averages over different possi-
ble pairings of charm and anticharm quarks and can therefore describe recom-
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Figure 1: The points show the density of states for an ensemble of c̄c pairs
at a fixed temperature T = 1.5Tc obtained by long-time Langevin evolution,
compared to a fit with power 2.1 (curve), close to classical nonrelativistic
thermal distribution.
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bination in heavy-ion collisions. This averaging is possible computationally
but is non-trivial, and for RHIC collisions we will take a binary approximation
which makes this averaging much easier. We argue, however, that the un-
simplified approach is necessary for describing collisions at the Large Hadron
Collider, and for this reason we include this discussion here.

Our simulation could be thought of as a canonical ensemble description
of charmonium in plasma: we can think of our large set of c̄c pairs as a
set of systems, each system containing N pairs, with each system’s dynamics
modeled as a stochastic interaction with the medium, with a deterministic
interaction of each heavy quark with the other quark in the pair. Each system
in this set samples the distribution of c̄c pairs in the initial collision, the
geometry of the collision, and also samples the stochastic forces on the heavy
quarks. Up to this point, we have only thought of each system of this set as
consisting of a single c̄c pair. The interaction of charm quarks from different
hard events is negligible compared with the stochastic interaction and the
interaction within the pair, partly because near Tc, the dynamics of charm
pairs seems best described with some generalization of the Lund string model,
which allows no interaction between unpaired charm quarks [33]. Therefore,
it is simple bookkeeping to think now of the systems as each consisting of N
c̄c pairs.

However, even though the dynamics of the system is not changed when
considering many c̄c pairs per collision, the hadronization (“pairing”) of these
2N charm quarks is now a non-trivial issue. For simplicity, assume that the
quarks all reach the freezeout temperature Tc at the same proper time. There
are N ! different possible pairings of the quarks and anti-quarks into charmo-
nium states (each pairing is an element of the permutation group SN). Call a
given pairing σ (which is an element of SN). Near Tc, the relative energetics
of a pairing σ is given by

Ei =
∑

i

V (|ri − r
′

σ(i)|), (10)

where V (r) is the zero-temperature Cornell potential (with some maximum
value at large r, corresponding to the string splitting), ri the position of the
i-th charm quark, r

′
the position of the i-th charm antiquark, and σ(i) the

integer in the i-th term of the permutation.
One way to proceed is to average over these pairings according to their

Boltzmann factors. In this way, the probability of a given pairing would be
given by

P (i) =
1

Z exp(−Ei/Tc), Z =
N !∑

i=1

exp(−Ei/Tc). (11)
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However, this averaging ignores the possibility of survival of bound c̄c states
from the start to the finish of the simulation, in that pairings which artificially
“break up” bound states are included in the average. This goes against the
main point of our last paper: that it is actually the incomplete thermalization
of c̄c pairs which explains the survival of charmonium states.

For this reason, the averaging we perform rejects permutations which break
up pairs that would otherwise be bound: we average over a subgroup S

′
N of

SN , and determine the probability based on this modified partition function:

P (i) =
1

Z exp(−Ei/Tc), Z =
∑

σ∈S
′
N

exp(−Ei/Tc), (12)

where Ei specifies the energy of a pairing we permit. We will average over the
permutations in this way.

By doing this, we will use a fully canonical ensemble description for charm
in plasma, which holds for any value for N , large or small. Previous work in
statistical hadronization used the grand canonical approach to explain relative
abundances of open and hidden charm [58], which can only be applied where
thermalization may be assumed to be complete.
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