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Abstract of the Dissertation 

Application of Double Sampling to Combine Measured and Imputed Genotype Data 

in Genetic Association Studies 

by 

Qilong Yuan 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2010 

Genotype imputation provides an essential technique for genome-wide association studies 

(GWAS) with hundreds of thousands of SNPs. Understanding the connection between 

imputation inconsistencies and the power to detect association at imputed markers or the disease 

genes close to them is important for the optimal design of imputation-based GWAS since 

genotype misclassification can significantly decrease statistical power to detect association. 

Double sampling of genotypes is a statistical procedure in which a portion of subjects receive a 

second and more precise genotyping. This paper applies the likelihood ratio test allowing for 

errors (LRT-AE), which incorporates double sample information for genotypes on a sub-sample 

of cases/controls, to correct for imputation inconsistencies. Parameters used to determine the log 

likelihoods are determined using the Expectation-Maximization (EM) algorithm. To compare the 

performance of the LRT-AE with the performance of the likelihood ratio test (LRT), which 

makes no adjustment for imputation inconsistencies, I perform simulation studies using a 

factorial design with high and low settings of: disease minor allele frequency (MAF), 

heterozygote relative risk, mode of inheritance (MOI), disease prevalence, and proportion of 

double sampled subjects. The LRT-AE method maintains correct type I error rates for all null 

simulations and all significance level thresholds (5%, 1%). Power improvement, however, is not 

significant unless more than 50% of subjects are in the double sampled group. Unbiased 

estimates of imputation inconsistency rates are also obtained from the LRT-AE method. 
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Chapter 1    Introduction 

Even though the human genome has approximately 3,000,000,000 base pairs (i.e., pairs 

of nucleotides on opposite complementary DNA or RNA strands that are connected via hydrogen 

bonds), the genetic sequences of different people are remarkably similar. According to the 

International HapMap Project (http://hapmap.ncbi.nlm.nih.gov), when the chromosomes of two 

humans are compared, their DNA sequences can be identical for hundreds of bases. But at about 

one in every 1,000 to 2,000 bases, on average, sequences differ (Sachidanandam, et al. 2001, 

Olivier 2003). For example, one person may have a C nucleotide at a given location, while 

another may have a T nucleotide. In addition, there can be copy number variation, where a 

person may have extra bases or miss a segment of DNA at a specific location resulting from 

insertions, duplications, deletions, or inversions. A change in the DNA sequences can have no 

effect or a beneficial effect, or it can prevent the gene from functioning properly or completely 

and cause a disease. Identifying these genetic variants, where they occur in our DNA, and how 

they are distributed among people within populations and among populations in different parts of 

the world may help to establish connections between particular genetic variants and diseases. 

Differences in individual bases account for a large fraction of the human genetic diversity 

and are by far the most common type of genetic variation. These genetic differences are known 

as single nucleotide polymorphisms (SNPs). A SNP is a DNA sequence variation occurring 

when a single nucleotide (i.e., A, T, C, or G) in the genome differs between members of a 

species (or between paired chromosomes in an individual). The alternative DNA sequences at the 

same physical locus are known as alleles. Most SNPs have only two alleles. For geneticists, 

SNPs act as markers to locate disease genes in DNA sequences. If researchers want to know 

where a disease gene is located, they can compare the genotype distribution of a SNP in people 

who have the disease to the distribution in people who do not. If the genotype distributions of a 

particular SNP are different in the cases and the controls, then that SNP may be close to the 

disease gene. 

Genome-wide association studies (GWAS) are a common approach to find genetic 

variations associated with the presence of a particular disease or a certain trait. To carry out a 

GWAS, researchers use two groups of participants: people with the disease being studied and 

similar people without the disease. Researchers obtain the complete set of DNA, or genome, 

from each participant. The genomes are then scanned by automated laboratory machines. The 

machines quickly survey each participant’s genome for strategically selected SNPs. If certain 

genetic variations are found to be significantly more frequent in people with the disease 

compared to people without disease, the SNP may be associated with the disease. Whole genome 

information, when combined with clinical and other phenotype data, offers the potential for 

increased understanding of basic biological processes affecting human health, improvement in 

the prediction of disease and patient care, and ultimately the realization of the promise of 

personalized medicine. In addition, rapid advances in understanding the patterns of human 

genetic variation and maturing high-throughput, cost-effective methods for genotyping are 

providing powerful research tools for identifying genetic variants that contribute to health and 

disease (http://grants.nih.gov/grants/gwas). 

http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html
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GWAS have successfully identified susceptibility genes for many common diseases. For 

example, GWAS have identified genetic variations that contribute to risk of age-related macular 

degeneration (AMD), type II diabetes, Parkinson’s disease, heart disorders, obesity, Crohn’s 

disease and prostate cancer, as well as genetic variations that influence response to anti-

depressant medications (http://www.genome.gov). Once a genetic association has been 

established, follow up re-sequencing is usually required to further identify the actual causal 

variants, since SNPs identified in GWAS are probably genetic markers that are close to the true 

disease genes rather than being the actual causal genes themselves. However, there are very few 

examples of the actual variants being identified from a GWAS. One explanation is that rare 

variants (less common than those routinely studied in GWAS) with large effects account for or 

contribute to many of the identified association signals reported in GWAS (Dickson, Wang, 

Krantz, Hakonarson and Goldstein 2010). 

Dense marker information has become available to researchers in recent years, making 

GWAS more powerful. Additionally, various genotype imputation methods have been employed 

to impute additional genotypes to supplement the available marker sets. Missing data imputation 

has been used to infer genotypes for known, but non-genotyped, variants. These variants can 

then be tested for association with the disease ("Genome-Wide Association Study of 14,000 

Cases of Seven Common Diseases and 3,000 Shared Controls"  2007, Scott, et al. 2007). There 

are several reasons for the incorporation of genotype imputation in GWAS: 

First, genotype imputation may potentially increase the power to detect disease 

associations with a given marker set. It is understood that sometimes GWAS are underpowered 

to detect causal genes because of insufficient marker data (i.e., the available marker set is not 

dense enough to detect possible association signals in some studies). As a result, there is a need 

for genotype imputation at non-genotyped markers to achieve greater power. For studies with 

limited sample size, denser marker panels than those currently available are especially needed. 

Even if the sample size is large, the incorporation of imputed genotypes can lead to a substantial 

power gain for both common disease variants (Becker, Flaquer, Brockschmidt, Herold and 

Steffens 2009) and rare disease variants with population frequency less than 5% (Browning and 

Browning 2008). Browning and Browning showed that combining imputed and measured 

genotype data in multi-locus association studies appears to facilitate the detection of rare 

causative variants that might have been overlooked if use the original genotypes alone 

(Browning, et al. 2008).  

Second, using imputed genotypes can reduce the cost of GWAS by using smaller, thus 

less expensive, arrays (such as the Illumina 300K rather than the Illumina 550K array), since 

genotype imputation generally costs less (both with respect to time and money) than actual 

genotyping. However, a larger sample size is needed to achieve comparable power when using a 

smaller array, as imputation is typically less accurate than genotyping (Anderson, et al. 2008). 

Third, imputation can be valuable in the fine mapping of known disease-associated 

regions. It may help to identify additional candidate SNPs worth including in more detailed 

follow-up studies, or it may help narrow the region being searched for a gene. 

Genotype imputation has several applications in the context of GWAS:  

http://www.genome.gov/20019523#gwas-4
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First, one can impute missing genotypes for markers that fail to pass quality control 

inspection. Standard quality control procedures remove all individuals and markers that have a 

large proportion of missing data, resulting in smaller sample size and lower marker density. One 

solution is to impute the missing genotypes using the almost complete data from the individuals 

and markers that have passed the quality control as the reference. Accuracy of imputed 

genotypes greater than 98% has been achieved in studies with 3,000+ individuals genotyped at 

the density of Affymetrix 500K array (Browning and Browning 2007).  

Second, imputation of SNP genotypes has been proposed as a powerful means to include 

genetic markers into large-scale disease association studies without actually genotyping the 

markers (Marchini, Howie, Myers, McVean and Donnelly 2007, Servin and Stephens 2007). One 

can impute genotypes for markers of interest which are not genotyped in the study using a 

reference panel. A reference panel is composed of a group of individuals in whom markers are 

genotyped at extremely high density so that the genotyped SNPs in the reference panel are likely 

to include most of the SNPs genotyped in any commercially available gene chip. Reference 

panels such as the HapMap from the International HapMap Project are publicly available. The 

strategy of imputing HapMap SNPs has been adopted in several GWAS ("Genome-Wide 

Association Study of 14,000 Cases of Seven Common Diseases and 3,000 Shared Controls"  

2007, Scott, et al. 2007, Chambers, et al. 2008, Willer, et al. 2008, Zeggini, et al. 2008). This 

strategy has been successful in finding associations that would not have been found using only 

the original genotype data. For example, Zeggini et al. imputed 2.2 million HapMap SNPs in 

three collections of type II diabetes cases and controls (Zeggini, et al. 2008). Two of the 

collections were genotyped on the Affymatrix 500K GeneChip, and the third was genotyped on 

the Illumina 317K chip. The imputation resulted in two significant results that would not have 

been found using only the original genotype data. 

Third, one can combine data from GWAS scans based on different genotyping platforms. 

Sometimes several datasets from different studies may be available to a researcher. If used 

individually, even the most significant association from an individual study may be neglected. 

Increased power can be obtained by combining all available datasets to get a larger sample with 

markers genotyped at higher density. This allows the detection of associations that are not among 

the top hits in any individual study, but that show a trend in each component study. The problem 

with combining data from different studies is that different studies may use different genotyping 

platforms, and the genotyped markers do not necessarily overlap. Thus, markers which are 

genotyped for individuals in some studies may not be genotyped in other studies. A powerful 

approach to assess markers genotyped in some component studies but not in others is through 

imputation (Pe'er, et al. 2006). Several groups have recently taken this approach, combining data 

from studies that used different genotyping platforms by using a reference panel to impute 

genotypes at non-genotyped markers for each individual study, and have found novel 

associations (Barrett, et al. 2008, Lettre, et al. 2008, Willer, et al. 2008). Here the reference panel 

is essential, unless the degree of overlapping among the genotyping platforms is very high 

(Browning 2008).  

Genotype imputation provides an essential technique for GWAS with millions of SNPs 

(Servin, et al. 2007). The connection between imputation inconsistencies and the power to detect 

association at imputed markers or the disease genes close to them is important for the optimal 



4 

 

design and interpretation of imputation based GWAS. A common assumption when analyzing 

data from GWAS is that genotypes obtained at each locus are correct for each individual. This 

assumption is reasonable because of maturing genotyping technologies and improved quality 

control procedures. Imputed genotypes, on the other hand, are generally less accurate than their 

measured counterparts (Anderson, et al. 2008). Non-differential genotyping errors (i.e., 

genotyping errors that occur with similar frequencies in the cases and the controls) can 

significantly decrease the statistical power to detect genetic association and thus inflate the 

sample size required to obtain comparative power and significance level (Gordon, Finch, 

Nothnagel and Ott 2002, Ahn, et al. 2007, Borchers, Brown, McLellan, Bekmetjev and Tintle 

2009, Tintle, et al. 2009). Not surprisingly, the impact of genotype imputation inconsistencies is 

similar to the impact of genotyping errors: a significant loss of power. Huang et al. (2009) 

demonstrated that each 1% increase in the imputation inconsistency rate leads to an increase of 

approximately 5%-13% in the sample size required to achieve power at an imputed marker equal 

to that obtained if the genotype distribution of the marker is known with certainty (Huang, Wang 

and Rosenberg 2009). Typical imputation inconsistency rates (approximately 2%-6%) can lead 

to a large increase (approximately 10%-60%) in the required sample size (Huang, et al. 2009). 

To address the issues raised by Huang and others, this paper applies the double sampling method, 

incorporated in the likelihood ratio test allowing for errors (LRT-AE) (Gordon, et al. 2004b), to 

merge imputed and measured genotype data in genetic association studies. I use simulation 

studies to compare the empirical power to detect association using the standard likelihood ratio 

test (LRT) approach and the LRT-AE approach at various combinations of genetic parameters, 

and calculate the analytical power to verify the findings. Estimated imputation inconsistency 

rates are also reported. 



5 

 

Chapter 2    Methodology 

2.1 Genotype Imputation 

2.1.1 Haplotypes and Genotype Imputation 

The term haplotype is a contraction of the term “haploid genotype” 

(http://en.wikipedia.org/wiki/Haplotype). For each chromosome, an individual gets one strand of 

DNA from his mother and the other from his father. During prophase I of meiosis, the eight 

available chromatids are in tight formation with one another and chromosomal crossover events 

may occur. Chromosomal crossover refers to recombination between the paired chromosomes 

inherited from each of one’s parents. The recombination frequency between two locations along 

a chromosome depends on their distance. For SNPs sufficiently distant on the same chromosome, 

the amount of crossover is high enough to destroy the correlation between the alleles, while 

SNPs that are near each other tend to be inherited together by offspring.  

 The SNPs within chromosomal regions that are always transferred to offspring as a 

whole are known as haplotypes (http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html). In other 

words, a haplotype is a set of SNPs on the same strand of a chromosome that is transmitted 

together to offspring. In reporting genetic sequences, the identical base pairs are not reported, 

leaving only SNPs to specify the haplotypes. A haplotype may refer to as few as one SNP or to  

sequences of thousands of nucleotides, depending on the recombination events that have 

occurred between a given set of loci.  

Over multiple successive generations, recombination and novel mutation events lead to a 

rearrangement of ancestral haplotypes. As a consequence, a SNP allele remains on the same 

portion of the ancestral haplotypes only with other SNP alleles that are in its close physical 

proximity. This non-random arrangement of adjacent loci, i.e., the maintenance of a small 

segment of the ancestral haplotypes, is called linkage disequilibrium (LD), or allelic association. 

One measure of LD is r
2
, where r

2
 is the correlation coefficient between pairs of loci. For 

haplotypes of two loci A and B with two alleles each, Table 2.1 contains the frequency of each 

combination.  

 

Table 2.1 

Frequencies of the Combinations of Loci A and B with Two Alleles Each  

 

Haplotype Frequency 

A1B1 x11 

A1B2 x12 

A2B1 x21 

A2B2 x22 

 

http://hapmap.ncbi.nlm.nih.gov/whatishapmap.html
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One can use the above frequencies to determine the frequency of each of the alleles: 

 

Table 2.2 

Frequency of Each of the Alleles 

 

Allele Frequency 

A1 p1= x 11 + x 12 

A2 P2= x 21 + x 22 

B1 q1= x 11 + x 21 

B2 q2= x 12 + x 22 

 

 

If the two loci are independent of each other (i.e., there is no LD between them), then x 11, 

the frequency of A1B1, is p1q1. One measurement of LD is the deviation of the observed 

frequency of a haplotype from the expected and is commonly denoted by capital D: 

1111 qpxD  . 

In genetics literatures “two alleles are in LD” means that D  0. The measure D is easy to 

calculate but has the disadvantage of depending on the frequencies of the alleles. Another 

measure of LD is r
 2

, which is the correlation coefficient between pairs of loci. It is defined as: 

2121

2
2

qqpp

D
r  .  

A value of r
 2
 close to one indicates that the two SNPs are in strong LD, and a value of r

 2
 close 

to zero indicates that the two SNPs are in weak LD. 

If SNPs are not in LD, the alleles of the SNPs occur in seemingly random combinations 

on individual chromosomes. Therefore, in the absence of LD among SNP alleles, the alleles can 

form a large number of different haplotypes. For example, there are 2
n
 sequences of indicator 

functions of base pair changes for n consecutive SNP positions. In contrast, for a region where 

neighboring SNPs are in significant LD, only a small number of resulting haplotypes will be 

observed.  

In fact, in many parts of our chromosomes, just a handful of haplotypes have been found. 

Patil et al. (2001) at Perlegen Sciences directly analyzed the haplotype patterns along the entire 

chromosome 21 (Patil, et al. 2001). They found that common haplotypes (with a frequency of 

greater than 10%) account for at least 80% of all haplotypes found in the entire sample. The 

resulting haplotypes contained between two and 114 SNPs, and the entire chromosome was 

covered by adjacent non-overlapping haplotypes.  
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Only a subset of SNPs is necessary to identify haplotypes uniquely. These SNPs are 

called tag SNPs. A set of tag SNPs contains non-redundant SNPs such that none of the SNPs 

included in this set would predict each other. The tag SNPs are representative of and capture the 

haplotype variation in the human genome. By genotyping an individual’s tag SNPs, researchers 

are able to identify the collection of haplotypes in a person’s DNA. The number of tag SNPs that 

contain most of the information about the patterns of genetic variations is estimated to be about 

300,000 to 600,000, which is far fewer than the 10 million common SNPs (Kruglyak and 

Nickerson 2001) or the 3,000,000,000 base pairs. In Patil et al., only 2,793 SNPs needed to be 

genotyped to differentiate all common haplotypes that contain at least three SNPs, less than 12% 

of the total number of common SNPs on chromosome 21. 

Figure 2.1 describes the relationship among SNPs, haplotypes, and tag SNPs. The same 

regions of a chromosome of four hypothetical individuals are presented as an example. Identical 

base pairs are printed in black, and SNPs are printed in color. The three adjacent SNPs in part a 

form a part of each individual’s haplotype (in part b). Part c shows the three tag SNPs that are 

enough to identify uniquely the haplotype present in each individual, since only limited patterns 

of haplotypes exist in a given population. 

 

 

Figure 2.1 

SNPs, Haplotypes, and Tag SNPs 
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The concepts of haplotypes and tag SNPs are used in genotype imputation. Genotype 

imputation is used to infer genotypes at non-genotyped markers based on known LD 

relationships. To do so, one needs to have a sample of individuals who are genotyped on a 

commercial array, which usually has 500,000 SNPs, as the basis of the imputation process. Then 

one needs another group of individuals who are genotyped at much higher density (i.e., the 

reference panel). The SNPs genotyped in the sampled individuals are only a small proportion of 

the SNPs genotyped in the individuals in the reference panel, but the genotyped SNPs in the 

reference panel do not have to include all of the SNPs genotyped in the sample. Genotype 

imputation programs impute genotypes for an individual by comparing the person’s available 

genotypes to the genotypes of the individuals in the reference panel. First the SNPs genotyped in 

both the sample and the reference panel are used to identify the collection of haplotypes in each 

individual. Once the sets of haplotypes in a subject are identified, the missing genotypes could 

then be “filled in” simply by copying the genotypes at the corresponding loci from the reference 

panel. There is no genotype information on SNPs that are not genotyped in the reference panel, 

and those SNPs cannot be imputed.  

Reference panels are publicly available. For example, the International HapMap Project 

("A Haplotype Map of the Human Genome"  2005, Frazer, et al. 2007) has several million well-

defined SNPs genotyped for 269 individuals: 30 trios of U.S. residents of northern and western 

European ancestry (CEU), 44 unrelated individuals from Tokyo (JPT), 45 unrelated Han Chinese 

from Beijing (CHB), and 30 trios from Ibadan, Nigeria (YRI). It is important to make sure that 

the reference panel selected is appropriate for the sample (i.e., the subjects in the reference panel 

should have similar haplotypes frequencies to the subjects in the sample), since haplotype 

frequencies differ widely between populations. When a reference panel from one ethnicity is 

used to impute variation in a sample taken from another ethnicity, the quality of imputation will 

be reduced somewhat. For samples where population stratification is likely to exist, using a 

pooled reference panel composed of all available ethnicities can give acceptable results 

(Chambers, et al. 2008). 



9 

 

2.1.2 Genotype Imputation 

The imputation program used in this paper is MACH 1.0 (Li, Willer, Sanna and Abecasis 

2009). MACH 1.0 was recommended by Pei et al. (2008) and Nothnagel et al. (2009) (Pei, Li, 

Zhang, Papasian and Deng 2008, Nothnagel, Ellinghaus, Schreiber, Krawczak and Franke 2009). 

They reported that MACH 1.0 has a relatively higher imputation consistency rate than other 

available imputation programs. It is also more user-friendly and generally requires less memory.  

As to choosing the SNPs to impute, genetic researchers have imputed both genome-wide 

and selected regions of SNP data using different genotype imputation programs. Nothnagel et al. 

imputed genome-wide SNP data for 449 healthy blood donors of German descent (Nothnagel, et 

al. 2009). The SNPs were genotyped on three different commercial arrays, and they used one 

chip as the imputation basis and imputed the non-overlapping SNPs on the other two more 

densely genotyped arrays. They compared the imputed genotypes with the measured genotypes 

and reported a consistently high imputation consistency rate (>93%) for the four most widely 

used genotype imputation programs, namely BEAGLE, IMPUTE, MACH, and PLINK. Pei et al. 

imputed both simulated and real SNP data in selected regions on certain chromosomes (Pei, et al. 

2008). Their findings about imputation consistency rates are consistent with Nothnagel et al.. 

They also pointed out that stronger LD, lower minor allele frequency (MAF) (i.e., the percentage 

of all living humans that have the rarer allele for this SNP, as opposed to the other more frequent 

nucleotide) for a non-genotyped marker, and higher marker genotyping density in the sample 

produce better imputation results.  

MACH 1.0 expects the measured genotype data from the sample to be stored in a 

pedigree file and a matching data file. The two files are in Merlin format (Abecasis, Cherny, 

Cookson and Cardon 2002). For genotype imputation, MACH 1.0 requires a set of reference 

haplotypes as input in addition to the sample information. Phased haplotype information is 

encoded in two files: the SNP file and the haplotype file. A brief description of the input files is 

presented below: 

1) The data file describes a variety of fields, including disease status information, 

quantitative traits and covariates, and marker genotypes. A simple MACH 1.0 data file 

simply lists names for a series of genetic markers in the sample. Each marker name 

appears on its own line prefaced by an “M” filed code. My data file looks like this: 

M Marker1  

M Marker2 

……  

M Marker80 

In the MACH 1.0 command line, the data file is indicated with either the –d option (in 

short hand form) or the --datfile option (in long form). 

2) The pedigree file stores the measured genotype data from the sample. It lists one 

individual per row. Each row starts with a family ID and an individual ID, followed by 

father and mother ID’s, and sex. Both father ID and mother ID should be zero since 

MACH 1.0 assumes individuals are unrelated. These initial columns are followed by a 

series of marker genotypes, each with two alleles. Alleles can be coded as either numbers 
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(1, 2, 3, and 4) or letters (A, G, C, and T). The pedigree file is indicated with either the –p 

option (in short hand form) or the --pedfile option (in long form). 

3) The SNP file lists the markers in the phased haplotype file. It simply lists one marker 

name per line. The SNP file is indicated with either the –s option (in short hand form) or 

the --snps option (in long form). 

4) The haplotype file lists the haplotypes from the reference panel. It lists one haplotype per 

line following the marker order indicated in the SNP file. The haplotypes can be prefaced 

by one or two optional labels followed by a series of single character alleles, one for each 

marker. Within each haplotype, spaces are ignored. The haplotype file is indicated with 

either the –h option (in short hand form) or the --haps option (in long form). 

The data I used was obtained from the Framingham Heart Study (FHS) provided by the 

Genetics Analysis Workshop 16, problem two. The FHS research was supported by NHLBI 

Contract: 2 N01-HC-25195-06 and its contract with Affymetrix, Inc. for genotyping services 

(Contract No. N02-HL-6-4278).  The FHS is a long-term, ongoing study of residents of the town 

of Framingham, Massachusetts. The study began in 1948 and is now on its third generation of 

participants. In the study, 6,476 individuals (in 942 pedigrees distributed among three 

generations and 188 singletons) from Framingham, Massachusetts were genotyped on both the 

GeneChip® Human Mapping 500K Array Set and the 50K Human Gene Focused Panel. MACH 

1.0 assumes all sampled individuals are unrelated. As a consequence, 1,599 unrelated individuals 

(founders and singletons) were extracted from the original data to form my sample. 

I selected three SNPs to impute. They are involved with nicotine dependence. 

Researchers have identified 51 SNPs as associated with nicotine dependence (Feng, et al. 2004, 

Bierut, et al. 2007, Saccone, et al. 2007, Voineskos, et al. 2007, Lou, et al. 2008, Schlaepfer, et al. 

2008, Sherva, et al. 2008, Thorgeirsson, et al. 2008, Weiss, et al. 2008, Agrawal, et al. 2009, 

Hoft, et al. 2009). To obtain the imputation inconsistency rates for these SNPs, measured 

genotypes must be known. Out of the 51 nicotine dependence SNPs, only three have genotype 

data in the FHS dataset. The rs numbers of the three SNPs are: rs514743, rs2304297, and 

rs16969968. SNP rs514743 and SNP rs16969968 are on chromosome 15 and SNP rs2304297 is 

on chromosome 8. SNP rs514743 and SNP rs2304297 were located on the GeneChip® Human 

Mapping 500K Array Set, and SNP rs16969968 was located on the 50K Human Gene Focused 

Panel. It is obvious that the 500K array set is much more densely genotyped than the 50K panel. 

The reference panel used was obtained from the International HapMap Project, available at 

http://hapmap.ncbi.nlm.nih.gov.  

To obtain the imputed genotypes for these three SNPs, I “masked” the measured 

genotypes of the SNPs and imputed their genotypes as if they were not available. Only SNPs in 

close physical proximity tend to be transferred together to offspring. In other words, SNPs that 

are far apart are more likely to have experienced recombination. As a consequence, the 

correlations between SNPs distant from the SNP to be imputed (i.e., the target SNP) are not large 

enough to justify including them in the imputation. Only a short region surrounding the target 

SNP needs to be considered in the imputation. For each individual nicotine dependence SNP, I 

selected 80 flanking markers as its imputation basis (40 on the left side and 40 on the right side). 

For the reference panel, I downloaded the phased haplotype data for each SNP only for the 
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chromosomal region covered by its 80 flanking markers and the target SNP itself. SNP 

rs16969968 was originally located on the 50K panel, which was genotyped much less densely 

than the 500K array set. To obtain more accurate imputation results, I identified 80 flanking 

markers for SNP rs16969968 on the 500K array set using its physical position obtained from the 

50K panel, and used them as the imputation basis instead. The population selected was CEU 

(U.S. residents with northern and western European ancestry, collected in 1980) to match our 

sample. The filter used was “Polymorphic in CEU” so that identical base pairs are excluded from 

the phased haplotype file. The physical distance (in kilo base pairs) of the chromosomal regions 

covered by the flanking markers of the three SNPs vary from 490,943 to 1,292,959, indicating 

different genotyping densities for different chromosomal regions. I ran MACH 1.0 with the 

default settings (mach1 –d sample.dat –p sample.ped –s ref.snps –h ref.haplos –r 50 --dosage --

quality --greedy --geno --prefix out_file) and 50 iterations of the Markov sampler. The output 

file contains imputed genotypes for all SNPs genotyped only in the reference panel.  

 Next I introduce the likelihood ratio test allowing for errors (LRT-AE). My research area 

is to incorporate double sample information on the genotype data of a subset of the sampled 

individuals in genetic association studies. The loss of power due to inconsistently imputed 

genotypes may be reduced in imputation based GWAS using double sampling. 
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2.2 Likelihood Ratio Test Allowing for Errors 

2.2.1 The Double Sampling Method  

Tenenbein proposed the double sampling method (Tenenbein 1970). Suppose a 

researcher has two measuring devices to assign N sampling units to one of two mutually 

exclusive categories. One is a relatively inexpensive procedure but misclassifies units with non-

zero error rate (fallible measuring device), and the other device is an expensive procedure but 

classifies units with perfect accuracy (infallible measuring device). Using only the fallible 

measuring device on all N sampling units results in classification errors and a biased estimate of 

the population parameter. A better estimate of p, the proportion of units which belong to one of 

the categories, can be obtained if the infallible device is used. However, the expense of using the 

infallible device on all N units in the sample may be high. Double sampling is presented as a 

compromise between the two extremes of using only fallible classification and using only 

infallible classification. To estimate p, first a random sample of N units is drawn from the 

population of interest. All N sampling units are classified using the fallible device. At the second 

stage, a subsample of n units is drawn from the main sample, and the true classifications for 

those n units are obtained using the infallible device. The unbiased maximum likelihood estimate 

(MLE) of p can be derived along with its asymptotic variance. 

The double sampling method was then extended to the multinomial case (Tenenbein 

1972), where more than two mutually exclusive categories that the sampling units are to be 

assigned to are present. Class frequencies for the units that are only classified by the fallible 

measuring device can be updated using the information provided by the double sampling units. 

Later in 1977, Dempster et al. introduced the Expectation-Maximization (EM) algorithm 

(Dempster, Laird, and Rubin 1977). Gordon et al. then applied the EM algorithm to the double 

sampling method and obtained more accurate class frequency estimates (Gordon, et al. 2004b). 

In the application of the double sampling method to a genetics study, a SNP, which is a 

gene with two alleles, has three genotype categories; namely, the more common homozygote, the 

heterozygote, and the less common homozygote. I will treat a measured genotype as the “gold 

standard” measurement with a negligible classification error rate. I will treat an imputed 

genotype as the fallible measurement. While imputation requires little expense, genotyping all 

individuals in the sample on a dense marker set is expensive. 

When the available marker set is considered not dense enough to be used in a GWAS, 

researchers usually choose one of two options: genotyping everyone for additional SNPs to be 

included in the study, which gives accurate results but with high expense; or imputing genotypes 

using a publicly available reference panel, which has higher classification error rates but at a 

much lower expense. I here suggest a method that at the first stage, impute genotypes for all N 

subjects in the sample. At the second stage, a subset of n subjects will be randomly chosen from 

the main sample and measured genotypes are obtained only for these n subjects. I merge the 

measured genotype data for the n subjects with the imputed genotype data for all N subjects in 

the main sample, and update the population genotype class frequencies. I hypothesize that tests 

incorporating double sample information have greater power to detect association, since the 

population genotype class frequency estimates are more accurate than the ones obtained using 

only imputation. The extra genotyping, however, does increase the cost. This extra cost should 
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be taken into consideration and estimated when n, the number of individuals that need to be 

genotyped is specified. 

The application of the double sampling method to imputation based genetic association 

studies can be particularly useful when a researcher has several studies in hand and the 

genotyped SNPs from different studies do not completely overlap. When a researcher wants to 

combine datasets generated in two different GWAS that use different genotyping platforms, 

there may be SNPs genotyped in one platform but not the other. A large amount of SNP data 

would be removed from the combined dataset if only SNPs genotyped in both platforms were 

used. To make the best use of the available data, researchers usually impute for each individual 

study the SNPs that are only genotyped in the other study. After imputing genotypes for non-

overlapping SNPs for both studies, one can combine the datasets so that there is complete 

genotype data for the union of the SNPs from both studies. Since imputation inconsistency rates 

may be relatively high, double sampling is valuable because one can use the double sample 

information on SNPs genotyped in both studies to adjust genotype class frequencies. 

Imputation inconsistencies, like genotyping errors, cause a decrease in statistical power to 

detect genetic association and produce biased estimates of population frequency parameters. 

Gordon and Ott considered the analysis of genetic data in the presence of genotyping errors 

(Gordon, et al. 2004a). They confirmed: (i) that there is no increase in type I error for certain 

tests of genetic association; (ii) that point estimates of SNP genotype frequencies are biased in 

the presence of genotyping errors; and (iii) that genotype errors lead to a loss of power to detect 

association between a disease allele and a marker. Recently, Gordon et al. produced a 

quantification of the loss in power for case/control studies of genetic association due to 

genotyping errors (Gordon, et al. 2002, Gordon, Haynes, Blumenfeld and Finch 2005). This 

quantification in different situations may be determined using the PAWE 3D web tool (available 

at http://linkage.rockefeller.edu/pawe3d/). 

Imputation inconsistencies in imputation based GWAS have the same impact as 

genotyping errors on the power to detect association. A critical question is how one can use 

information about imputation inconsistencies to improve the power for genetic tests of 

association using case/control data. The analogous question for genotyping errors has been 

answered by Gordon et al. (Gordon, et al. 2004b). They used power simulations to show that in 

the presence of genotyping errors, the LRT-AE method improved the median power by 0.01 at 

the 5% significance level with equal costs for the LRT-AE method and the standard LRT method. 

The LRT-AE method incorporates double sample information on genotypes for a subsample of 

the case and control subjects and adjusts for the misclassification of the most commonly reported 

risk allele. It also produces unbiased estimates of the population frequency parameters and MLEs 

of the misclassification probabilities. The purpose of this work is to develop a statistical method 

that increases power to detect association (as compared to the standard method that considers 

only fallible data) in the presence of imputation inconsistencies. Our method assumes that double 

sample genotype data is available on a subsample of the case and control individuals. This 

method has three major advantages over the standard method that only considers the fallible data: 

its power can be equal to or greater than the standard method with little or small increase in the 

total cost; it provides unbiased estimates of population frequency parameters; and it provides 

MLEs of the imputation inconsistency probabilities. 

http://linkage.rockefeller.edu/pawe3d/
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I provide all notation and definitions for the mathematics presented in this work in 

Section 2.2.2. For all terms, the index i represents the phenotype category of a subject and is 

either 0 (control) or 1 (case). Throughout this work, I use prime superscripts to distinguish 

imputed genotype categories from measured genotype categories. For example, the indices j and 

j represent the measured and the imputed genotype category of a subject, respectively, and range 

from one to three. Here I assume that I have SNP genotype data, but I note that our method can 

easily be applied to genes with three or more alleles and to haplotype data as well. I treat 

imputed genotype data as fallible and measured genotype data as infallible. I recognize that any 

classification technology has a non-zero error rate and that there is no such thing as a perfect 

classifier (Hochberg, 1977). Throughout this work, I use number superscripts (1, 2) to 

distinguish double sampled subjects (group I) from the subjects that only have imputed genotype 

data (group II). 
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2.2.2 Notation and Definitions for All Formulas Presented Throughout the Dissertation 

Log-likelihood of the observed data and the LRT statistics 

N: Sample size. 

 1

'ijjn : Number of subjects with phenotype category i, measured genotype category j and imputed 

genotype category j’. These subjects are double sampled and are in group I. 

 2

'ijn : Number of subjects with phenotype category i and imputed genotype category j’. These 

subjects have only imputed genotype data and are in group II. 

Note:     Nnn
i j

ij

i j j

ijj 
'

2

'

'

1

'
. 

'ijn : Number of subjects with phenotype category i and imputed genotype category j’ when 

double sampling is not available. 

Note: Nn
i j

ij 
'

' . 

Yi: Event that a subject has phenotype category i, i = 0, 1. 

Xj: Event that a subject has measured genotype category j, j = 1, 2, 3. 

Xj’: Event that a subject has imputed genotype category j’, j’= 1, 2, 3. 

qi = Pr (Yi): Sampling frequency of phenotype category i. 

Note: q0 + q1 = 1. 

 ijij YXp |Pr|  : Measured population frequency of genotype category j for individuals with 

phenotype category i. 

 ijij YXp |Pr '|'  : Imputed population frequency of genotype category j’ for individuals with 

phenotype category i. 

Note: For each i, 1|'
'

|  ij
j

ij
j

pp . 

 jj Xp Pr : Measured population frequency of genotype category j under the null hypothesis 

that jjj ppp  1|0| . 

 '' Pr jj Xp  : Imputed population frequency of genotype category j’ under the null hypothesis 

that '1|'0|' jjj ppp  . 

 jjjj XX |Pr '|'  . 
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Note: The parameter jj |'  is referred to as the misclassification parameter (Tenenbein 1972). 

Misclassification happens when j’  j.  

I make use of the double sampling data structure to determine the estimate of jj |' : 

 

 1

1

'

|'
ˆ

j

jj

jj
n

n
 , 

where 

   1

'

1
' ijj

i
jj

nn  : Number of group I subjects that have measured genotype category j and imputed 

genotype category j’. 

     1

'
'

1

'

1
' ijj

ji
jj

j
j nnn  : Number of group I subjects that have measured genotype category j. 

 

 aeL ,0log : Log-likelihood of the data under the null hypothesis, where genotype frequencies ijp |  

and ijp |'  are constrained to be equal among different phenotype classes. That is, jjj ppp  1|0|  

for all j’s and '1|'0|' jjj ppp   for all j’’s. 

 aeL ,1log : Log-likelihood of the data under the alternative hypothesis, where genotype 

frequencies ijp |  and ijp |'  are allowed to differ among different phenotype classes. That is, 0|jp  

is not necessarily equal to 1|jp  for every j and 0|'jp  is not necessarily equal to 1|'jp  for every j’. 

 stdL ,0log : Log-likelihood of the data using only imputed genotypes, where genotype 

frequencies ijp |'  are constrained to be equal among different phenotype classes. That is, 

'1|'0|' jjj ppp   for all j’’s. Double sampling genotypes are not used.  

 stdL ,1log : Log-likelihood of the data using only imputed genotypes, where genotype 

frequencies ijp |'  are allowed to differ among different phenotype classes. That is, 0|'jp  is not 

necessarily equal to 1|'jp  for every j’. Again, double sampling genotypes are not used.  

 

EM algorithm estimates of true parameters 

r

ijp | : thr  step estimate of the parameter ijp | . 

r

jp : thr  step estimate of the parameter jp . 
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These two genotype frequency parameters are estimated using the EM algorithm developed by 

Dempster et al. (Dempster, Laird, and Rubin 1977). 

 E : The expectation operator. 

 I : The indicator function. 
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2.2.3 Computation of the Log-likelihoods 

I compute the log-likelihood of the observed data under both the null and the alternative 

hypothesis, allowing for imputation misclassifications. The null hypothesis is: '1|'0|' jjj ppp   

for all j’’s and jjj ppp  1|0|  for all j’s. The alternative hypothesis is 1|'0|' jj pp   for at least one 

j’ and 1|0| jj pp   for at least one j. Under either hypothesis, by definition, the log-likelihood of 

the data is given by: 

    
i j

jiijjji

i j j

ijjae XYnXXYnL
'

'

2

''

'

1

' )),log(Pr()),,log(Pr()log( ,        (1a) 

where the notation  ...,,Pr BA  is the probability of observing event A and event B and so forth. 

In equation (1a), the subscript i runs over all phenotype classifications and the subscripts j and j’ 

run over all genotype classifications.  

When there is no double sampling data or when one assumes that there is no genotype 

misclassification in the data, equation (1a) reduces to: 


i j

jiijstd XYnL
'

'' )),log(Pr()log(  

  
i j

ijiij YXYn
'

'' ))|Pr()log(Pr(  

  
i j

ijiij pqn
'

|'' )log(              (1b) 

   
i j

ijiij pqn
'

|'' ))log()(log( . 

A key assumption in my work is that the imputation process (and hence imputation 

inconsistency rates) is independent of one’s disease status (i.e., phenotype category). This 

assumption is reasonable because imputation programs (specifically, MACH 1.0) do not require 

phenotype status as input. I confirm the validity of this assumption using simulation studies (see 

the Results section).  

From this assumption,  

)|(Pr),|(Pr '' jjjij XXXYX  . 

It follows that: 

),Pr(),|(Pr),,Pr( '' jijijjji XYXYXXXY   

)(Pr)|Pr()|(Pr ' iijjj YYXXX              (2) 

iijjj qp ||' . 
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Using equation (2) and the fact that 


j

jjiji XXYXY ),,(Pr),(Pr ''
,               (3)    

I may rewrite the log-likelihood (1a) as: 

    
i j

iiuuj
u

ijiijjj

i j j

ijjae qpnqpnL
'

||'

2

'||'

'

1

' )log()log()log(  ,           (4) 

where I have replaced the index j in equation (3) by the index u in equation (4) for clarity. The 

index u ranges from one to three.  

It follows from equation (4) that the log-likelihoods of the data under both the null and 

the alternative hypothesis are completely determined by the imputation misclassification 

parameters jj |' , the infallible genotype frequency parameters under the null and the alternative 

hypothesis jp  and ijp | , the sampling frequency of the phenotype category i iq , and the group 

counts 
 1

'ijjn  and 
 2

'ijn . The LRT-AE software uses the EM algorithm to determine the MLEs of the 

parameters. Parameter estimates are updated until the absolute difference between the sum of the 
thn  step and thn 1  step estimates is no greater than 910   (summed over all parameters). That is, 

the stopping condition for parameter estimation is 91 10   rr vv . The log-likelihood of the 

data under each of the hypotheses is then computed.  

The test of H0 versus H1 is a likelihood ratio test that is called LRT-AE in Gordon et al. 

(Gordon, et al. 2004b) and is given by: 

    aeaeae LLLRT ,0,1 loglog2  .             (5a) 

Asymptotically, the null distribution of the LRTae statistic is a chi-square distribution with K – 1 

degrees of freedom (DF), where the DF is K – 1 for a marker locus with K genotype categories 

(K = 3 for a SNP).  

 To compare the performance of the LRTae test statistic that corrects for imputation 

misclassifications with the standard LRT statistic, denoted by LRTstd, which does not make any 

correction, I compute log-likelihood solely from the observed data. That is, 

    stdstdstd LLLRT ,0,1 loglog2  ,             (5b) 

where the log-likelihoods under the null and the alternative hypothesis are computed using the 

estimates
i

ij

ij
n

n
p

'

|'
ˆ  , 

N

n
p

j

j

'

'
ˆ  , 

N

n
q i

i   that are then substituted into equation (1b).  

For small samples or in situations where the number of observations in a particular 

genotype category is small, the asymptotic null distribution may not be valid. In such a situation, 

the p-values for the LRT-AE statistic should be computed using a permutation distribution. 
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Gordon et al. advised that permutation p-values should be computed and used even for relatively 

large samples (Barral, Haynes, Stone and Gordon 2006). When double sampling information is 

available for a subsample, the phenotype status for all individuals are randomly permuted, 

keeping the total number of cases and controls fixed in each replicate. The permutation p-value is 

then the proportion of replicates for which the LRT-AE statistic exceeds the observed LRT-AE 

statistic. Exact confidence intervals for the permutation p-values are computed using the method 

implemented in the BINOM software. The same procedures for the standard LRT method are 

performed in the LRT-AE software. 

The LRT-AE software requires three input files: 

1) The phenotype and genotype description file: This file contains the information 

identifying the phenotypes and genotypes in the fallible and infallible data files (items 2 

and 3). The first column in this file indicates the nature of the categorical variable in the 

second column for the corresponding row (either phenotype or genotype). The second 

column is the name of the variable corresponding to the symbol in the first column. This 

variable name is also used in the first line of both the fallible and infallible data files to 

indicate the nature of the corresponding columns in those files. The third column, which 

is optional, indicates the symbol that is used to represent missing data in the fallible and 

infallible data files. The default values for missing phenotype and genotype data are “–1” 

and “0” respectively. 

My description file looks like this: 

P Disease 

A SNP2304297 

2) Fallible data file: This file contains the genotype classifications for all individuals as 

measured with the fallible method. The format for this file is as follows: 

Ind_ID Order_of_genotype_data 

There are two key formatting issues regarding this file and the infallible data file (item 3). 

They are: 

a) The first line of the file always consists of the order of the phenotype and 

genotype data. The order is determined by using the variable names provided in 

the description file (item 1). 

b) The first column of each row is always the individual ID (Ind_ID), which must be 

an alphanumeric string of characters. 

My fallible data file looks like this: 

Disease SNP2304297 

A1 1 2 1 

…… 

A1599 0 2 1 
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3) Infallible data file: This file contains genotype classifications for individuals as measured 

with the infallible method. Note that the list of individuals in this file is a subset of the list 

of individuals in the fallible data file. An individual is listed in this file only if the 

individual has an infallible measurement for at least one of the genotype data variables in 

the description file. 

I use simulation studies to examine how much the use of double sampling decreases the 

impact of inconsistently imputed genotypes on the power to detect association in imputation 

based GWAS. The simulation procedure is detailed in the next section. 
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2.3 Simulation Studies 

In GWAS, the SNP genotype distributions in cases are compared to the corresponding 

SNP genotype distributions in controls to see whether there is a significant difference. I use 

simulation studies to compare the power to detect association using the LRT-AE to the power of 

the standard LRT, which does not correct for imputation inconsistencies.  

I use a factorial design to assess the importance of the specified factors with regard to the 

relative effectiveness of the double sampling approach. The settings of the simulation parameters 

and inheritance models are presented in Table 2.3. There are a total of 12 simulation settings for 

my study of the null hypothesis. There are 24 settings for the study of the alternative hypothesis. 

I set the imputed SNPs as the disease susceptibility SNPs. 

 

Table 2.3 

Values of Parameters Used in the Creation of the Simulated Data 

 

Parameter Value 

R1 - Under the Null Hypothesis 1 

R1 - Under the Alternative Hypothesis
 

1.2 

Mode of Inheritance Dominant, Multiplicative 

Pd (Pm) 0.25, 0.36 

K 0.33, 0.50 

Proportion that is double sampled 0.25, 0.50, 0.75 

 

R1 = Heterozygote relative risk; R2 = Disease allele homozygote relative risk; Mode of 

Inheritance = Dominant (R2 = R1) and multiplicative (R2 = R1
2
); Pd = Pm = Disease (marker minor) 

allele frequency and K = Disease prevalence.  

 

The disease prevalence K is selected to be 0.33 and 0.50 so that there are a sufficient 

number of subjects assigned to the case group. These fractions are common in case/control 

studies (Glasser, et al. 1998, Dye, Scheele, Dolin, Pathania and Raviglione 1999, Mukadi, Maher 

and Harries 2001). Assuming the common allele and the disease susceptibility allele are in 

Hardy-Weinberg equilibrium (HWE), the disease prevalence (K) in the general population can be 

expressed in terms of the genotype penetrances fi’s and the disease susceptibility allele frequency 

Pd as: 

    2

2

10

2
121 fPfPPfPK dddd  , 

where fi = Pr (affection | i copies of the disease allele) for i = 0, 1, 2. 
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 The disease prevalence K may also be written in terms of the genotype relative risks Ri’s 

(i = 1, 2), where 
0f

f
R i

i   is obtained by dividing the genotype penetrances by the penetrance 

value in homozygotes for the common allele (the baseline disease penetrance): 

     ,121 20

2

100

2
RfPRfPPfPK dddd   

where R1 = heterozygote relative risk and R2 = disease allele homozygote relative risk. 

 Under the null hypothesis, both R1 and R2 are equal to one (i.e., all penetrances are equal). 

Under the alternative hypothesis, R1 can be determined as a function of R2 and the mode of 

inheritance (MOI): 

1) For a dominant model, R2 = R1 and R1 > 1. 

2) For a multiplicative model, R2 = R1
2
 and R1 > 1. 

The simulation program used in this research is FASTSLINK (Ott 1989, Cottingham, 

Idury and Schaffer 1993), which is similar to SLINK except that it can handle a larger number of 

pedigrees.  

FASTSLINK requires three input files: 

1) Simdata.dat: This is a standard LINKAGE data file (Lathrop and Lalouel 1984), which 

defines the locus systems. Values of the fi’s are estimated for different combinations of K, 

Ri, and Pd values: 

    2

2

1

20
121 RPRPPP

K
f

dddd 
  

101 Rff   

202 Rff  . 

Since the imputed SNPs are assumed to be the disease alleles, disease marker haplotype 

frequencies are also determined. In this file we provide the haplotype frequencies rather 

than disease and marker allele frequencies. A sample data file for study setting “dominant 

MOI, R1 = 1.2, Pd = 0.25, and K = 0.33” is presented in Table 2.4. 
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Table 2.4 

FASTSLINK Code for Simdata.dat 

 

2 0 0 5 << NO. OF LOCI, RISK LOCUS, SEXLINKED (IF 1), 

PROGRAM 

0 0.0 0.0 1 << MUT LOCUS, MUT MALE, MUT FEM, HAP FREQ 

(IF 1) 

1 2    

1 2 << AFFECTION, NO. OF ALLELES   

1 << N0. OF LIABILITY CLASSES   

0.364137931 0.364137931 0.303448276   

3 2  << ALLELE NUMBERS, NO. OF ALLELES   

0.25 0 0 0.75 << HAP FREQ 

0 0 << SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2)   

0 << RECOMBINATION FRACTION    

1 0.1 0.45 << REC VARIED, INCREMENT, FINISHING VALUE  

 

 

2) Slinkin.dat: This is a file identifying various parameter values required in the simulation, 

such as the number of replicates (rep) specified (rep = 1,000 in our case), and a seed for 

the random number generator which must be updated each time FASTSLINK runs. The 

seed should be an integer between 1 and 30,000, and larger numbers (>25,000) are 

recommended to produce better results. I updated the seed for each setting of the 

parameter values by selecting a random number between 25,000 and 30,000. 

3) Simped.dat: This is a standard LINKAGE pedigree file with an additional column 

inserted after the last phenotype column. This additional column contains the availability 

code, which controls what types of phenotypes are written to the output file.  

Since FASTSLINK requires pedigree data, dummy parents are created for each 

individual and are used in the simulations. That is, the pedigree structure is a trio where 

only the children have genotypes (availability code is 1, meaning that marker genotypes 

are available and phenotypes at each marker need to be assigned). Phenotypes for each 

child are generated conditional on their respective genotypes and the inheritance models 

provided in simdata.dat. The availability code for dummy parents is 0, meaning that 

marker genotypes are not available for parents, and phenotype “unknown” is assigned at 

each marker. 

A total of 1,599,000 (N  rep) trios are simulated for the 1,599 unrelated individuals for 

each study setting. FASTSLINK stores the simulated trios in the file pedfile.dat. Dummy parents 

are then removed from this file and only four columns of information are kept: individual ID, the 

simulated phenotype (disease status), and the measured genotypes (written in two columns). The 

simulated phenotypes in these modified pedfile.dat files are then used in the LRT-AE software. 
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In this research, each of the three nicotine dependence SNPs is treated as the causal 

disease SNP in turn. I calculate both the analytical power and the empirical power for both the 

LRT-AE method and the standard LRT method.  
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Chapter 3    Results  

3.1 Imputation Results 

The imputed genotypes for the three SNPs were extracted from the output files of 

FASTSLINK and compared to the measured genotypes in the FHS dataset. The imputation 

inconsistency rates for all three SNPs are reported in Table 3.1.  

 

Table 3.1 

Imputation Inconsistency Rates for All Three SNPS 

 

 

 

The imputed genotypes were relatively consistent with the measured genotypes, with 

imputation inconsistency rates for the three SNPs ranging from 1.6% to 4.1%. SNP rs2304297 

had a larger imputation inconsistency rate than the other two SNPs. To further investigate this, I 

compared the LD patterns for the chromosomal regions covered by the 80 flanking makers of 

SNP rs514743 and SNP rs2304297 and the two SNPs themselves using the program Graphical 

Overview of Linkage Disequilibrium (GOLD) (Abecasis and Cookson 2000), available at 

http://www.sph.umich.edu/csg/abecasis/GOLD. The plots shown in Figure 3.1 came from that 

program.  

  

Genotyping Imputation Genotyping Imputation Genotyping Imputation

CH 648 647 CH 873 899 CH 690 680

H 743 740 H 619 601 H 723 720

LCH 202 206 LCH 107 99 LCH 183 196

Inconsistently imputed total: 25 Inconsistently imputed total: 66 Inconsistently imputed total: 37

Imputation inconsistency rate: 1.6% Imputation inconsistency rate: 4.1% Imputation inconsistency rate: 2.3%

Note: CH is the more common homozygote

          H is the heterozygote

          LCH is the less common homozygote

rs514743 rs16969968rs2304297

http://www.sph.umich.edu/csg/abecasis/GOLD
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Figure 3.1 

LD Plots for SNP rs514743 and rs2304297 

 

       rs514743       rs2304297 

   

Leftmost 

marker  

76,498,858 (0) 42,235,549 (0) 

SNP 76,671,282 (172,424) 42,727,356 (491,807) 

Rightmost 

marker  

76,990,629 (491, 771) 43,528,508 (1,292,959) 

 

 

 

A value of r
 2

 close to one indicates strong LD among the SNPs within the region, and is 

printed in red. A value of r
 2

 equal to zero means that there is no LD among the SNPs, and is 

printed in blue. The left plot is for SNP rs514743 and the right plot is for SNP rs2304297. The 

physical positions of the leftmost flanking marker, the target SNP, and the rightmost flanking 

marker are listed above each plot, with their relative physical positions as in my sample enclosed 

in parentheses. For both SNPs, their physical positions were at about 1/3 of the total length of the 

imputation basis regions. When locating the target SNPs in the LD plots, SNP rs514743 is in a 

region marked in red, indicating that it is in very strong LD with the nearby flanking markers. 

SNP rs2304297, however, is in relatively weaker LD with the surrounding SNPs. This may 

explain why the imputation inconsistency rate of SNP rs2304297 was higher than that of SNP 

rs514743. Consistent with Pei et al., stronger LD results in higher imputation consistency rates 

(Pei, et al. 2008). 

Another question in genotype imputation is what conditions are associated with accurate 

imputation. Originally I located SNP rs16969968 on the 50K Human Gene Focused Panel. I 

extracted 80 flanking markers from the panel and got a 26% imputation inconsistency rate. The 

LD plot for SNP rs16969968 in the 50K panel is presented in Figure 3.2 along with the plot in 

the GeneChip® Human Mapping 500K Array Set. The physical distance covered by the same 
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number of flanking markers (i.e., 80) in the 50K panel is almost 8 times the length of the region 

covered in the 500K array set, and there is almost no LD among SNPs in the large region in the 

50K panel as shown in the right plot in Figure 3.2. Consistent with Pei et al., higher marker 

density results in higher imputation consistency rates. The 2.3% imputation inconsistency rate 

using the 500K array set, compared to 26% using the 50K panel for the same SNP, suggested 

that if one’s sample is genotyped at low density, no satisfactory imputation results may be 

obtained. 

 

Figure 3.2 

LD Plots for SNP rs16969968 in the 500K Array and 50K Panel 

 

      GeneChip® Human Mapping 500K 

Array Set 

      50K Human Gene Focused Panel 

 

 

 

Not only should one look at the overall imputation inconsistency rates, but also one 

should study the pattern of imputation inconsistency rates since some types of imputation 

inconsistencies are more costly than others. When the imputation misclassification matrices for 

individual SNPs are considered, there are six different types of imputation inconsistencies: 

classifying the more common homozygote as the heterozygote or the less common homozygote, 

classifying the heterozygote as the more common homozygote or the less common homozygote, 

and classifying the less common homozygote as the more common homozygote or the 

heterozygote. According to Kang et al., the increase in the sample size required resulting from 

either recording the more common homozygote as the less common homozygote or recording the 

more common homozygote as the heterozygote becomes indefinitely large as the MAF goes to 

zero (Kang, Gordon and Finch 2004). That makes these two types of imputation inconsistencies 

more costly than other types of inconsistencies. In order to have a specific picture of what the 

imputation inconsistency matrices for the three SNPs look like, and what are the percentages of 
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the more costly genotype imputation inconsistencies, I present the detailed imputation 

inconsistency matrices below in Table 3.2 to Table 3.4. The right two cells in the first row of 

each matrix are the more costly imputation inconsistencies. 

 

Table 3.2 

Imputation Misclassification Matrix for SNP rs514743 

 

 

 

 

Table 3.3 

Imputation Misclassification Matrix for SNP rs2304297 

 

 

 

 

Imputed

Recorded MCH Heter LCH Total

More common homozygotes 638 10 0 648

Heterozygotes 9 729 5 743

Less common homozygotes 0 1 201 202

Total 647 740 206 1593

Inconsistently imputed total 25 1.6%

HWE p-value 0.627

Physical length of the imputed region 491771

rs514743 (MAF 0.36)

Imputed

Recorded MCH Heter LCH Total

More common homozygotes 862 11 0 873

Heterozygotes 37 577 5 619

Less common homozygotes 0 13 94 107

Total 899 601 99 1599

Inconsistently imputed total 66 4.1%

HWE p-value 0.847

Physical length of the imputed region 1292959

rs2304297 (MAF 0.25)
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Table 3.4 

Imputation Misclassification Matrix for SNP rs16969968 

 

 

 

Note 1: The rows report the measured genotypes (the “infallible” measure), and the columns 

report the imputed genotypes (the “fallible” measure). MCH stands for the more common 

homozygote; that is, they are genotypes composed of two common alleles (population frequency 

greater than 50%). Heter stands for the heterozygote. LCH stands for the less common 

homozygote. HWE stands for the Hardy-Weinberg equilibrium test, and a p-value less than 5% 

rejects the null hypothesis that the SNP considered is in Hardy-Weinberg equilibrium. 

Note 2: There are six people missing genotype data for SNP rs514743, and three for SNP 

rs16969968, making the numbers of total individuals in the comparison tables smaller than 1,599 

in Table 3.2 and Table 3.4. 

  

Although there were no imputation inconsistencies such that the measured more common 

homozygote was imputed as the less common homozygote for the three SNPs, imputing the 

more common homozygote as the heterozygote accounted for a considerable percentage of the 

imputation inconsistencies. This would inflate the sample size required to detect association.  

In addition, even though small overall imputation inconsistency rates were observed, as I 

pointed out in the first chapter of this dissertation, a 2% imputation inconsistency rate could 

increase the sample size required by 10% to 26% to obtain comparative power and significance 

level. If researchers treat imputed genotypes as if they were true genotypes in imputation based 

GWAS, they would necessarily lose power. 

Next I compare the power of the standard LRT method with the power of the LRT-AE 

method using both empirical power and asymptotic analytic power.  

Imputed

Recorded MCH Heter LCH Total

More common homozygotes 675 15 0 690

Heterozygotes 5 703 15 723

Less common homozygotes 0 2 181 183

Total 680 720 196 1596

Inconsistently imputed total 37 2.3%

HWE p-value 0.758

Physical length of the imputed region 490943

rs16969968 (MAF 0.37)



31 

 

3.2 Simulation Results 

3.2.1 Level of Significance 

Non-differential genotyping errors/imputation inconsistencies do not have significant 

effect on type I error rates. I simulated 1,000 replicates for phenotypes for each combination of 

parameter settings under the null hypothesis that the SNP is not associated with the disease to 

check the empirical significance level in each situation. For each replicate, phenotypes were 

permuted 1,000 times. The permutation p-values of both the standard LRT and the LRT-AE were 

compared to 0.05 and 0.01. When the permutation p-value was less than 0.05/0.01, the 

hypothesis was rejected. The empirical type I error rates of both tests were estimated by the ratio 

of the number of significant replicates to the total number of replicates (i.e., 1,000). 

I present empirical type I error rates of both the standard LRT and the LRT-AE for all 12 

study settings under the null hypothesis and the 95% confidence intervals for type I error rates of 

the LRT-AE in Table 3.5. All 95% confidence intervals contain the nominal values of the type I 

error rates for each situation studied. 

 

Table 3.5 

Empirical Type I Error Rates 

 

 

 

Note: Heterozygote relative risk is one for all study settings under the null hypothesis that the 

SNP is not associated with the disease. 

Pd = Pm = Disease (marker minor) allele frequency; K = Disease prevalence; DS = Double 

sample proportion; α = Significance level; LRTstd = Standard LRT test where p-values are 

computed using permutation; LRTae = LRT-AE test where p-values are computed using 

Type I Error Rates

P d  (P m ) K DS LRTstd LRTae LLae ULae LRTstd LRTae LLae ULae

0.25 0.33 0.25 0.06 0.05 0.04 0.06 0.01 0.01 0.01 0.02

0.36 0.33 0.25 0.05 0.05 0.04 0.07 0.02 0.02 0.01 0.02

0.25 0.50 0.25 0.04 0.03 0.02 0.05 0.01 0.01 0.00 0.01

0.36 0.50 0.25 0.06 0.05 0.03 0.06 0.01 0.01 0.01 0.02

0.25 0.33 0.50 0.06 0.05 0.04 0.06 0.01 0.01 0.00 0.01

0.36 0.33 0.50 0.05 0.06 0.04 0.07 0.02 0.02 0.01 0.02

0.25 0.50 0.50 0.04 0.04 0.03 0.06 0.01 0.01 0.00 0.01

0.36 0.50 0.50 0.06 0.05 0.04 0.07 0.01 0.02 0.01 0.02

0.25 0.33 0.75 0.06 0.05 0.04 0.06 0.01 0.01 0.01 0.02

0.36 0.33 0.75 0.05 0.05 0.03 0.06 0.01 0.02 0.01 0.02

0.25 0.50 0.75 0.04 0.04 0.03 0.05 0.01 0.01 0.00 0.01

0.36 0.50 0.75 0.06 0.05 0.04 0.07 0.01 0.02 0.01 0.02

α=0.05 α=0.01
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permutation; LLae = Lower limit of the 95% confidence interval for the type I error rate of the 

LRT-AE where p-values are computed using permutation; ULae = Upper limit of the 95% 

confidence interval for the type I error rate of the LRT-AE where p-values are computed using 

permutation. 
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3.2.2 Empirical Power Calculation 

I simulated 1,000 replicates for the disease status for each combination of the parameter 

settings. For each replicate, phenotypes were permuted 1,000 times. The permutation p-values 

were compared to 0.05 and 0.01. When the permutation p-value was less than 0.05/0.01, the 

hypothesis was rejected. The power of both the standard LRT and the LRT-AE was estimated by 

the ratio of the number of significant replicates to the total number of replicates (i.e., 1,000).  

I report empirical power of the standard LRT and the LRT-AE for all 24 study settings 

under the alternative hypothesis and the 95% confidence intervals for the power of the LRT-AE 

in Table 3.6. 

 

Table 3.6 

Empirical Power of the Standard LRT and the LRT-AE 

 

 

 

Note: Heterozygote relative risk is 1.2 for all study settings. 

Power and 95% Confidence Intervals

P d  (P m ) K MOI DS LRTstd LRTae LLae ULae LRTstd LRTae LLae ULae

0.25 0.33 D 0.25 0.55 0.45 0.42 0.48 0.30 0.22 0.19 0.25

0.36 0.33 D 0.25 0.59 0.54 0.51 0.57 0.35 0.30 0.27 0.33

0.25 0.50 D 0.25 0.85 0.74 0.71 0.77 0.67 0.49 0.46 0.52

0.36 0.50 D 0.25 0.88 0.84 0.82 0.86 0.71 0.65 0.62 0.68

0.25 0.33 M 0.25 0.80 0.67 0.64 0.70 0.56 0.39 0.36 0.42

0.36 0.33 M 0.25 0.87 0.84 0.82 0.86 0.70 0.64 0.61 0.67

0.25 0.50 M 0.25 0.99 0.95 0.94 0.96 0.94 0.85 0.83 0.87

0.36 0.50 M 0.25 0.99 0.99 0.98 1.00 0.97 0.95 0.94 0.96

0.25 0.33 D 0.50 0.55 0.56 0.53 0.59 0.30 0.30 0.27 0.33

0.36 0.33 D 0.50 0.59 0.58 0.55 0.61 0.36 0.35 0.32 0.38

0.25 0.50 D 0.50 0.85 0.84 0.82 0.86 0.67 0.68 0.65 0.71

0.36 0.50 D 0.50 0.88 0.89 0.87 0.91 0.71 0.70 0.67 0.73

0.25 0.33 M 0.50 0.80 0.79 0.76 0.82 0.57 0.57 0.54 0.60

0.36 0.33 M 0.50 0.87 0.88 0.86 0.90 0.71 0.70 0.67 0.73

0.25 0.50 M 0.50 0.99 0.99 0.98 1.00 0.94 0.94 0.93 0.95

0.36 0.50 M 0.50 0.99 1.00 1.00 1.00 0.97 0.97 0.96 0.98

0.25 0.33 D 0.75 0.55 0.61 0.58 0.64 0.31 0.36 0.33 0.39

0.36 0.33 D 0.75 0.58 0.60 0.57 0.63 0.35 0.36 0.33 0.39

0.25 0.50 D 0.75 0.85 0.88 0.86 0.90 0.67 0.72 0.69 0.75

0.36 0.50 D 0.75 0.88 0.90 0.88 0.92 0.71 0.73 0.70 0.76

0.25 0.33 M 0.75 0.80 0.84 0.82 0.86 0.58 0.61 0.58 0.64

0.36 0.33 M 0.75 0.87 0.89 0.87 0.91 0.71 0.72 0.69 0.75

0.25 0.50 M 0.75 0.99 0.99 0.98 1.00 0.94 0.97 0.96 0.98

0.36 0.50 M 0.75 0.99 0.99 0.98 1.00 0.96 0.97 0.96 0.98

α=0.05 α=0.01
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Pd = Pm = Disease (marker minor) allele frequency; K = Disease prevalence; MOI = Mode of 

inheritance, D stands for dominant MOI and M stands for multiplicative MOI; DS = Double 

sample proportion; α = Significance level; LRTstd = Standard LRT test where p-values are 

computed using permutation; LRTae = LRT-AE test where p-values are computed using 

permutation; LLae = Lower limit of the 95% confidence interval for the power of LRT-AE where 

p-values are computed using permutation; ULae = Upper limit of the 95% confidence interval for 

the power of LRT-AE where p-values are computed using permutation. 

 

I compare the power of the standard LRT with the power of the LRT-AE for all study 

settings under the alternative hypothesis in Figure 3.3 to Figure 3.5. The power of the LRT-AE 

with 25% double sampling is less than the power of the standard LRT. The power of the LRT-

AE with 50% double sampling is roughly equal to the power of the standard LRT. Finally, the 

power of the LRT-AE with 75% double sampling is greater than the power of the standard LRT.  

 

 

Figure 3.3 

Power Comparison for 25% Double Sampling 
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Figure 3.4 

Power Comparison for 50% Double Sampling 

 

 

 

 

Figure 3.5 

Power Comparison for 75% Double Sampling 
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3.2.3 Check for Differential Imputation Inconsistency Rates 

Next I verify that there are non-differential genotype imputation inconsistency rates for 

cases and controls. Differential genotyping errors (i.e., genotyping errors that occur with 

different frequencies in the cases and the controls) can significantly increase type I error 

(Moskvina, Craddock, Holmans, Owen and O'Donovan 2006, Ahn, Gordon and Finch 2009). 

Since genotype imputation inconsistencies have the same effect as genotyping errors, problems 

may occur if we ignore differential misclassification if it does exist. I hypothesize that the 

imputation inconsistency rates for cases and controls are non-differential because major 

imputation programs do not take one’s disease status into consideration when imputing missing 

genotypes. I calculated the imputation inconsistency rates for cases and controls separately under 

both the null and the alternative hypothesis, and tested whether there were differential imputation 

inconsistency rates. 

Under the null hypothesis that the SNP is not associated with the disease, cases and 

controls have similar genotype frequencies. I analyzed one replicate of one study setting (disease 

allele frequency 0.36, disease prevalence 0.33) under the null hypothesis and imputed genotypes 

separately within the case and control groups. The overall imputation inconsistency rate for the 

1,599 unrelated subjects was 1.6%. The imputation inconsistency rate was 1% for cases and 1.7% 

for controls. The difference in the imputation inconsistency rates is not significant at the 5% 

significance level (
2
 = 1.2, p = 0.27). I performed the same procedure for the other five study 

settings under the null hypothesis. The differences in the imputation inconsistency rates between 

case and control groups were not significant at the 5% significance level (data not shown). 

Under the alternative hypothesis that the SNP is associated with the disease, cases and 

controls have different genotype frequencies. I analyzed one replicate of each study setting under 

the alternative hypothesis for non-differential imputation inconsistency rates. None of the study 

settings was significant at the 5% significance level (data not shown).  
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3.3 Estimation of Imputation Inconsistency Rates 

An important advantage of the LRT-AE procedure is that it also gives the MLEs of the 

imputation inconsistency rates. Since Kang et al. found that misclassification of the more 

common homozygote to the less common homozygote and misclassification of the more 

common homozygote to the heterozygote were the two errors that were the most 

disadvantageous, I focused on these imputation inconsistency rates. The estimate of the rate of 

misclassifying the more common homozygote to the less common homozygote is always zero. 

Table 3.8 reports the mean and standard deviation of the rate of misclassifying the more common 

homozygote to the heterozygote for each situation.  

 

Table 3.7 

Summary Statistics for the Rate of Misclassifying the More Common Homozygote to the 

Heterozygote 

 

 

 

P d  (P m ) K MOI DS Mean Std Mean Std

0.25 0.33 D 0.25 1.7% 1.4% 1.9% 0.6%

0.36 0.33 D 0.25 2.1% 1.8% 2.0% 0.7%

0.25 0.50 D 0.25 1.8% 1.0% 1.8% 0.8%

0.36 0.50 D 0.25 2.0% 1.3% 2.0% 1.1%

0.25 0.33 M 0.25 1.9% 1.4% 1.8% 0.6%

0.36 0.33 M 0.25 2.0% 1.8% 2.0% 0.7%

0.25 0.50 M 0.25 1.8% 1.0% 1.9% 0.9%

0.36 0.50 M 0.25 2.0% 1.3% 2.1% 1.0%

0.25 0.33 D 0.50 1.4% 0.9% 1.4% 0.4%

0.36 0.33 D 0.50 2.0% 1.2% 1.9% 0.5%

0.25 0.50 D 0.50 1.4% 0.6% 1.4% 0.5%

0.36 0.50 D 0.50 1.9% 0.9% 1.9% 0.7%

0.25 0.33 M 0.50 1.5% 0.9% 1.4% 0.4%

0.36 0.33 M 0.50 2.0% 1.2% 1.9% 0.5%

0.25 0.50 M 0.50 1.4% 0.7% 1.5% 0.5%

0.36 0.50 M 0.50 1.9% 0.9% 1.9% 0.7%

0.25 0.33 D 0.75 1.2% 0.7% 1.2% 0.3%

0.36 0.33 D 0.75 1.5% 0.9% 1.5% 0.4%

0.25 0.50 D 0.75 1.2% 0.5% 1.2% 0.4%

0.36 0.50 D 0.75 1.5% 0.6% 1.5% 0.5%

0.25 0.33 M 0.75 1.3% 0.7% 1.2% 0.3%

0.36 0.33 M 0.75 1.5% 0.9% 1.4% 0.4%

0.25 0.50 M 0.75 1.2% 0.5% 1.2% 0.4%

0.36 0.50 M 0.75 1.5% 0.6% 1.5% 0.5%

Case Control
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These imputation inconsistency rates correspond to the true imputation inconsistency 

rates (within the 95% confidence intervals of the corresponding true values). Better estimates are 

associated with higher double sampling proportion. 
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Chapter 4    Discussions and Future Directions 

My research questions were: 

1. What situations produce more accurate imputation results? 

2. Are there any indications of differential imputation inconsistency rates? 

3. Are type I error rates inflated by imputation inconsistencies? 

4a. Does the LRT-AE approach have greater power than the standard LRT approach that 

considers only fallible data?  

4b. If the answer to question 4a is yes, what situations are associated with better LRT-AE 

performance? 

4c. How big is the improvement? 

5. Can researchers get unbiased estimates of imputation inconsistency rates using the LRT-

AE approach? 

 My answers to these questions are: 

1. My results are consistent with the findings of Pei et al. that stronger LD, lower MAF for 

the non-genotyped marker, and higher marker genotyping density in the sample produce 

better imputation results. 

2. The imputation inconsistency rates appear to be non-differential under both the null and 

the alternative hypothesis. 

3. Non-differential imputation inconsistencies affect only the power to detect association. 

4a. There are circumstances in which the LRT-AE has greater power than the standard LRT.   

4b. Better power of the LRT-AE occurs when the MAF for the disease marker is lower and 

imputation inconsistency rates are higher. For example, the power of the LRT-AE when 

the MAF is 0.25 and the imputation inconsistency rate is 4% is an average of 0.04 greater 

than the standard LRT when there is 75% double sampling. 

4c. Both the average and the median power improvement is 0.02 for the 5% significance 

level and 0.03 for the 1% significance level using 75% double sampling. 

5. Unbiased estimates of the imputation inconsistency rates are reported in the LRT-AE 

result files. They correspond to the true imputation inconsistency rates. 
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 In summary, my dissertation compared the performance of the LRT-AE approach that 

incorporates double sample information for genotypes on a subsample to the standard LRT 

approach that only considers fallible data. I ran simulation studies under different combinations 

of various genetic parameters and calculated the empirical power. I also calculated the 

asymptotic power to verify the results.  

 Since my findings showed that a low MAF is associated with better performance of the 

LRT-AE approach, and Dickson et al. showed that rare variants create synthetic genome-wide 

associations, I plan to impute rare variants (MAF<0.05) and compare the performance of the 

LRT-AE approach with the performance of the standard LRT approach in the future. 
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