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Abstract of the Dissertation

Design and Optimization on Mobile Data Gathering
in Wireless Sensor Networks

by

Miao Zhao

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2010

Wireless sensor networks (WSNs) have emerged as a new information-

gathering paradigm for taking spatial and temporal measurements of a

given set of real-word parameters. In these applications, sensors mon-

itor the environment and route their sensing data back to a static data

sink. As the routing task depends purely on sensors themselves, the

sensors near the sink need to relay much more packets than thesensors

far away from the sink. As the result, it would incur substantial and

non-uniform energy consumption among sensors. Therefore,how to

efficiently aggregate the information from scattered sensors, generally

referred to asdata gathering, is an important and challenging issue in

WSNs as it largely determines network lifetime. Recent studies have

shown that significant benefit can be achieved in WSNs by employing

mobile collectors for data gathering in WSNs via short-rangecommu-

nications. In such kind of mobile data gatherings, the mobile collectors
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roam over the sensing field with controlled mobility, perform appropri-

ate actions to schedule data collection, and transport databack to the

data sink, while sensors are engaged in sensing task and onlyneed to

relay data for local aggregation if necessary. In this way, energy can be

greatly saved at sensors as mobile collectors fully or partially take the

burden of routing away from sensors.

This dissertation focuses on scheme design and performanceoptimiza-

tion of mobile data gathering in WSNs. We address several important

issues and propose a suite of algorithms to improve data gathering per-

formance. First, we consider utilizing spatial-division multiple access

(SDMA) to achieve concurrent data uploading from multiple sensors

to the mobile collector. The moving tour of the mobile collector is de-

termined based on the tradeoff between the shortest moving path and

full utilization of SDMA among sensors. This joint design can lead

to prolonged network lifetime as well as shortened data gathering la-

tency. Second, we extend such joint design of mobility and SDMA

technique to large sensor network with multiple mobile collectors. A

region division and tour planning algorithm is proposed to balance the

data gathering time among different regions. Third, we explore in-

herent tradeoff between energy saving and data gathering latency by

proposing bounded relay hop mobile data gathering. In this scheme,

multi-hop relay for local data aggregation is incorporatedinto mobile

data gathering, while the relay hop count is constrained to acertain

level to limit energy consumption at sensors. Fourth, we optimize the

mobile data gathering performance by characterizing the data gathering

strategies as a pricing mechanism, where sensors independently adjust

their payment for the data uploading opportunity to the mobile collec-

tor based on the shadow prices set by the mobile collector. Fifth, we

study the problem of how to achieve optimal performance of mobile

data gathering based on a flow-level network model. We jointly con-

sider data rate control at sensors, multi-hop routing for data transmis-

sions, and sojourn time allocation for the mobile collector. We propose

distributed algorithms to implement these strategies so asto achieve

system-wide optimum. Finally, we propose joint design of mobile en-
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ergy replenishment and mobile data gathering in wireless rechargeable

sensor networks. The mobile entity plays not only as a data collector

but also as an energy transporter to deliver energy to sensors via wire-

less energy transmissions. We present distributed algorithms to pro-

vide timely energy recharge to maintain perpetual network operations,

meanwhile achieving high-performance data gatherings.
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Chapter 1

Introduction

This chapter explains the motivation, design goals, challenges, and contributions of

the dissertation.

1.1 Motivation

Wireless sensor networks (WSNs), composed of densely-deployed, low-cost, low-

power, multifunctional sensors, have emerged as a new information-gathering par-

adigm for taking spatial and temporal measurements of a given set of parameters,

such as temperature, sound, atmospheric pressure, humidity, or pollutants of a field

[1]. They can be used in a wide range of applications, includingindustrial process

control, machine health monitoring, environment and habitat surveillance, health-

care applications, home automation, and traffic control [2]-[8].

In a sensor network, sensors are usually randomly deployed over a field without

a pre-configured infrastructure. Each sensor has the capabilities of monitoring the

environment, collecting data and routing data back to a datasink [1]. Since sen-

sors are typically battery-powered and has limited capacity, energy consumption

becomes a primary concern in a WSN, as it is crucial for the network to function-

ally operate for an expected period of time. Typically, mostenergy of a sensor

is consumed on two major tasks: sensing the field and uploading data to the data

sink. Energy consumption on sensing is relatively stable since it only depends on

the sampling rate. However, the situation of energy consumption on data uploading

is much more complicated than that of sensing. Data uploading costs significant
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amount of energy at sensors for wireless transmissions and the energy expenditure

is typically non-uniform among sensors. It strongly depends on the network topol-

ogy and the location of the destined data sink. As a result, the energy of the sensors

near the sink is depleted much sooner than others since thesesensors need to re-

lay much more packets from the sensors far away from the sink.Therefore, how

to efficiently aggregate the information from scattered sensors, generally referred

to asdata gathering, is an important and challenging issue in WSNs as it largely

determines network lifetime.

Due to tremendous practical interests, in recent years, much research effort has

been devoted to efficient data gathering in WSNs and many schemes have been pro-

posed. In early research, efficient relay routing [9]-[14] or hierarchical infrastruc-

ture [17]-[20] are employed to improve the routing efficiency. For the relay routing,

data packets are forwarded via multi-hop relays among sensors. Some other factors,

such as load balance, schedule pattern and data redundancy,are jointly considered

with the routing scheme. The successful relay routing requires connectivity among

sensors. And the common feature of these approaches is that the sensors on the crit-

ical pathes would deplete their energy faster than others, which lead to the limited

network lifetime. A WSN can also be organized into a hierarchical infrastructure

instead of flat topology, in which sensors are grouped into clusters and the cluster

heads take the responsibility of forwarding data to an outside data sink [17]-[20].

It was shown that the hierarchical infrastructure is an efficient way to handle the

scaling issue in WSNs. However, in such hierarchical networks, cluster heads in-

evitably consume more energy than other sensors. To avoid “hot spots”, sensors

can become cluster heads rotationally [17]. Since every sensor may possibly be-

come a cluster head, each of them has to be “powerful” enough to handle incoming

and outgoing traffic, which increases the overall cost of thenetwork. Furthermore,

it may incur high overhead due to frequent information exchange among sensors.

To overcome these problems in static networks, in more recent work, mobile data

gathering [22]-[37] is introduced. In such schemes, a special type of mobile nodes

(usually called mobile collectors) are used for facilitating connectivity among static

sensors. The typical scenario of mobile data gathering can be depicted as shown

in Fig. 1.1, where a mobile collector roams over the sensing field and moves close

enough to the sensors for data collection. In this way, mobile collector takes over

the burden of routing from sensors, which is particularly desirable when sensors
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Mobile collector


Figure 1.1: Illustration of mobile data gathering.

have limited energy and storage buffer. In general, there are three advantages that

make mobility perfectly suitable to data gathering applications in WSNs. First, it

alleviates the non-uniformity of energy consumption amongsensors since each sen-

sor sends data to the mobile collector via short-range communication when it comes

close enough. Second, it works well not only in a connected network, but also in a

disconnected network. The moving path of a mobile collectoracts as virtual bridge

linking up the separated subnetworks, thus the network coverage and connectivity

would no longer be a serious problem in packet forwarding. Third, when the pos-

sible locations for the mobile collector to stay for data collection are known, its

moving tour turns to be predictable, which provides an opportunity to dynamically

find an optimal tour to actually achieve efficient data gathering.

Although existing mobile data gathering schemes [22]-[37] can greatly save the

energy at sensors, they typically result in an increased data gathering latency. To

shorten the latency, most of the work mainly focuses on mobility control to min-

imize the moving time and rarely takes the sensor behaviors into consideration.

Moreover, little work can be found in the literature to properly characterize and

model the performance of mobile data gathering. The impact of some system para-

meters on network performance is still unveiled at current stage. These observations

motivate us to propose novel scheme design and optimizationstrategies to further

enhance the performance of mobile data gathering in WSNs.
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1.2 Design Goals and Research Challenges

Compared with static data gathering via routing among sensors, mobile data gath-

ering has more service requirements and challenges as we need to consider the

behaviors both of the mobile collector and the sensors, as well as coordinating the

communication between them.

We now introduce the systematic design goals of the mobile data gathering ap-

plications.

• Prolonged Network Lifetime: As mobile collectors effectively alleviate

the routing burden of sensors, it is extremely expected to prolong the net-

work lifetime as much as possible since sensor batteries typically can not be

recharged or replaced after initial deployment. If the rechargeable sensor net-

work available, besides extending network lifetime, it is desirable to maintain

the perpetual operations of the network.

• Shortened Data Gathering Latency:The data gathering latency is referred

to as the time duration of a data gathering tour, which incudes the mobile col-

lector departing from the static data sink, moving along a tour, sojourning at

specified locations to collect data, and finally returning tothe data sink. Dif-

ferent data application may have different requirement on the time sensitivity.

Generally speaking, it is expected to achieve short data gathering latency in

order to obtain and process the sensing data as fast as possible.

• High Network Utility: Network utility is a properly defined function to

characterize the data gathering performance, which quantifies the aggregated

“value” of the gathered data from different sensors in a datagathering tour.

In practice, the “value” measure can be in terms of information entropy or

revenue, which provides the flexibility of modeling user application needs, or

a level of “satisfaction” on a certain amount of data from each sensor. Net-

work utility is a direct metric to evaluate the effectiveness of the mobile data

gathering. Clearly, higher network utility is always preferred.

• Low Network Cost: Network cost is a properly defined function, which is

used to quantify the aggregated cost on gathering data from sensors when the

mobile collector moves over different locations in a data gathering tour. The
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“cost” here physically implies the energy consumption or monetary expense

on gathering a certain amount of data from a sensor at a particular location.

Network cost is a direct metric to evaluate the efficiency of the mobile data

gathering. It is expected to lower the network cost as much aspossible for

obtaining certain volume of data from the sensing field.

Given the unique characteristics, what we have to handle includes, but not lim-

ited to, the following open technical challenges and issuesin the scheme design and

performance optimization for mobile data gathering in WSNs.

• Limited Energy at Sensors. Sensor batteries are generally with limited ca-

pacity, which can not be recharged or replaced after initialdeployment in the

conventional sensor networks. Even in the rechargeable sensor networks, the

recharging rate is quite low and the renewable power sourcesare not always

available for use. Therefore, how to save energy at sensors to sustain func-

tional operations is one of the most critical issues in WSNs.

• High Latency. As we have indicated, mobile data gathering commits itselfto

saving energy at sensors by making the mobile collector moveclose enough

to sensors for short-range communication. This would adversely prolong the

data gathering latency compared to pure routing among sensors. This pro-

longed time is due to two reasons, one is the low moving velocity of mobile

collector, the other is because of the low efficiency of transmission schedule

among the sensors. Therefore, how to lower the data gathering latency and

balance the tradeoff between energy saving and latency is aninteresting and

open issue in mobile data gathering.

• Network Dynamics. As the mobile collector moves over different locations

in the sensing field, the network topology actually changes from time to time.

Due to the mobility, each sensor has the options to use different rate and any

set of possible routes to reach the mobile collector at different locations for

data uploading. Such versatility makes the settings of datagathering strate-

gies much more complicated than that of static data gathering. How to adjust

data rate, link schedule and routing path to achieve the system-wide optimum

in terms of network utility or network cost is an interestingand promising

research topic.
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• Flexible Mobility and Multi-functionality of Mobile Collecto r . Since the

mobile collector has the freedom to move to different locations over the sens-

ing field. Different moving trajectory planning would make great impact on

the achievable data gathering performance. Moreover, it ispossible for the

mobile collector to play multiple roles in the sensing field.For example, in

the rechargeable sensor networks, the mobile collector canalso serve as an

energy transporter to deliver energy for the sensors who need the renewable

power supply. In this way, mobile energy replenish and mobile data gathering

can be executed simultaneously.

1.3 Contributions

In this dissertation, we would focus on the topic of mobile data gathering in WSNs

and address several important issues in it. Our contributions can be summarized as

follows.

• Efficient Data Gathering with Mobile Collectors and Space-Division Mul-

tiple Access Technique in WSNs[108]-[110]. We employ a mobile collec-

tor, which works like a mobile base station in the sensing field and polls

each sensor for data collection while traversing their transmission range. We

also consider applying spatial-division multiple access (SDMA) technique

to data gathering by equipping the mobile collector with twoantennas. By

employing SDMA, two distinct compatible sensors may successfully make

concurrent data uploading to the mobile collector, which cuts the data up-

loading time into half in the ideal situation. In this work, we find a tradeoff

between the shortest moving tour of the mobile collector andthe full utiliza-

tion of SDMA among sensors so as to minimize the total time cost including

the moving time and data uploading time. Therefore, our design can achieve

prolonged network time as well as shortened data gathering latency.

• A Region Division and Tour Planning Algorithm for Mobile Data Gath-

ering with Multiple Mobile Collectors and SDMA Technique [111]. We

extend the joint design of mobility and SDMA technique to thecase of em-

ploying multiple mobile collectors, in which the sensing field is divided into

several non-overlapping regions, each having a mobile collector. We focus
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on minimizing the maximum time of a data gathering tour amongdifferent

regions over the sensing field. Our results show that our proposed algorithm

with two available mobile collectors can achieve at least56% time saving

with respect to the non-SMDA+single mobile collector scheme.

• Bounded Relay Hop Mobile Data Gathering in WSNs[113][114]. In order

to explore the inherent tradeoff between the energy saving and data gathering

latency in mobile data gathering, we propose a mechanism named bounded

relay hop mobile data gathering (BRH-MDG). In BRH-MDG, we incorpo-

rate multi-hop relay into mobile data gathering, while the relay hop count

is constrained to a certain level to limit the energy consumption at sensors.

Specifically, a subset of sensors will be selected as the polling points that

buffer the locally aggregated data and upload the data to themobile collec-

tor when it arrives. In the meanwhile, when sensors are affiliated with these

polling points, it is guaranteed that the local relaying of any packet is bounded

within a given number of hops. We provide two efficient algorithms to select

the polling points among the sensors. It is observed in our simulations that

when the local relays are required to complete within two hops for all sen-

sors, our proposed algorithms can result in at least38% shorter tour length

on average compared to the single hop data gathering scheme with shortened

moving tour.

• A Pricing-based Distributed Algorithm to Minimize Network C ost for

Mobile Data Gathering in WSNs [115][116]. We study how to optimize the

performance of anchor-based range traversing data gathering scheme, where

a mobile collector roams over the sensing field and sojourns at some loca-

tions, called anchor points, on its moving tour to directly collect data from

each sensor in a single hop. We formulate the performance optimization as a

cost minimization problem constrained by the channel capacity, the minimum

amount of data gathered from each sensor, and the bound of total sojourn time

at all anchor points. This global problem can be decomposed into two sub-

problems to be solved by each sensor and the mobile collector, respectively.

We show that such decomposition can be characterized as a pricing mech-

anism, in which each sensor independently adjusts its payment for the data

uploading opportunity to the mobile collector based on the shadow prices of
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different anchor points.

• Distributed Network Utility Maximization Algorithms for Mob ile Data

Gathering in WSNs [117][118]. We study the problem on how to achieve

the optimal performance of the anchor-based mobile data gathering, where

the mobile collector gathers data from nearby sensors via multi-hop trans-

mission at each anchor point. We formalize the problem as network utility

maximization problem under the constraints of guaranteed network lifetime

and bounded data gathering latency. To achieve this objective, we jointly ad-

dress the issues of data rate control, flow routing, and sojourn time allocation,

which critically affect the data gathering performance. Toefficiently solve

these issues, we correspondingly decompose the utility maximization prob-

lem into several subproblems and solve them in a distributedmanner, which

facilitates the scalable implementation of the algorithms. Extensive numeri-

cal results demonstrate that the algorithms can achieve fast convergence with

the variables nearly reaching their optimal values after only 100 iterations.

• Joint Mobile Energy Replenishment and Data Gathering in Wireless

Rechargeable Sensor Networks[119]. In this work, we extend our study

to wireless rechargeable sensor networks. In order to provide steady and high

recharging rates, and achieve efficient data gathering simultaneously, we pro-

pose to utilize mobility for the joint design of energy replenishment and data

gathering. In particular, a multi-functional mobile entity, is employed, which

serves not only as a data collector that roams over the field togather data via

short-range communication but also as an energy transporter that charges sta-

tic sensors on its migration tour via wireless energy transmissions [65][66].

Our proposed design can guarantee the perpetual operationsof the network

and achieve high-utility data gatherings.

We conclude the tasks, design goals and contributions of this dissertation as

shown in Table1.1. Our work combines algorithm design, mathematical modeling,

performance optimization, analysis and simulation techniques to conduct compre-

hensive studies on the above issues. The proposed research will have a significant

impact on fundamental design principles and infrastructures for the development

of future sensor networks. The outcome of these work can be applicable to a wide
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recharging sensors


Table 1.1: The tasks, design goals and contributions of thisdissertation.
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spectrum of applications, including environmental monitoring, field surveillance,

human-unattended exploration, industry control, and other commercial areas.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter2 proposes three ef-

ficient algorithms with the joint design of mobility and SDMAtechnique for mo-

bile data gathering. Chapter3 extends the joint design of mobility and SDMA to

the case of multiple mobile collectors. A region division and tour planning algo-

rithm is presented, in which data gathering time is balancedamong different re-

gions. Chapter4 proposes bounded relay hop mobile data gathering scheme and

gives two efficient algorithms to implement the design. Chapter 5 studies the cost

minimization problem of mobile data gathering and correspondingly proposes a

pricing-based distributed algorithm to achieve the minimum network cost. Chapter

6 sets up a flow-level model to characterize the performance ofmobile data gather-

ing and presents distributed algorithms to achieve optimalnetwork utility. Chapter

7 proposes a joint design of mobile energy replenishment and mobile data gather-

ing in wireless rechargeable sensor networks, which not only provides system-wide

optimal data gathering performance but also achieves perpetual operations of the

network. Finally, Chapter8 concludes the dissertation.

The mobile collectors used for data gathering could be mobile robots or vehicles

equipped with powerful transceivers and batteries. For convenience of presentation,

we simply call themSenCarsin the rest of this dissertation.
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Chapter 2

Efficient Mobile Data Gathering with

Space-Division Multiple Access

Technique in WSNs

This chapter presents a joint design of mobility and spatial-division multiple access

(SDMA) technique for mobile data gathering in WSNs. The mobility we refer to

here is to deploy a mobile collector, i.e., a SenCar, in a sensing field, which works

like a mobile base station and collects data from sensors viasingle hop transmis-

sions so as to achieve uniform energy consumption. We also consider applying

SDMA technique to data gathering by equipping the SenCar withmultiple anten-

nas such that distinct compatible sensors may successfullymake concurrent data

uploading to the SenCar. To investigate the utility of the joint design of controlled

mobility and SDMA technique, we formulate this design into an integer linear prob-

lem (ILP), namedmobile data gathering with SDMA, or MDG-SDMAfor short,

which aims to minimize the total data gathering time including the moving time of

the SenCar and the data uploading time of sensors. Correspondingly, we propose

three efficient algorithms to provide practically good solutions to the problem. Ex-

tensive simulations demonstrate that our proposed algorithms can result in at least

35% savings on the data gathering time compared to the non-SDMA algorithm with

minimum additional overhead.

The rest of this chapter is organized as follows. Section2.1 summarizes the

existing work in this area. Section2.2 discusses the basic principles of SDMA
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technique. Section2.3provides the formulation of MDG-SDMA problem and Sec-

tion 2.4presents three algorithms to solve it. Section2.5gives extensive simulation

results that reveal the impact of the joint design of controlled mobility and SDMA

technique on network performance. Finally, Section2.6concludes the chapter.

2.1 Introduction and Related Work

Due to tremendous practical interests, in recent years, much research effort has been

devoted to mobile data gathering in WSNs and some schemes havebeen proposed

[22]-[37]. In such schemes, one or multiple mobile collectors are introduced to take

over the routing burden from static sensors. Shah, et al. [22] exploited a type of mo-

bile collectors, called data mules, with random mobility insparse sensor networks.

Data mules pick up data from nearby sensors, buffer the data and then drop them

off to a wired access point. This scheme substantially reduces the amount of energy

consumption at sensors, but its random moving trajectory isdifficult to manage and

packet delay cannot be controlled. In [24] and [25], public transportation vehicles

were adopted as mobile collectors. In [26], Jea, et al. further proposed a scheme

in which data mules move along parallel straight lines and collect data from nearby

sensors with multi-hop transmissions. This scheme works well in uniformly distrib-

uted sensor networks. However, it may not be necessary or possible for data mules

to move only along straight lines. To obtain more flexible data gathering tours for

mobile collectors, Ma and Yang [27] proposed a moving path planning algorithm

by a divide and conquer method, which recursively determines the turning point for

load balancing and organizes each part of the network into a cluster. More recently,

they further proposed a single-hop data gathering scheme [28], in which a mobile

collector pauses at certain locations to gather data from sensors in the proximity

via single-hop transmissions. Zhao, et al. [29] considered mobility control and de-

veloped algorithms to generate ferry routes that meet traffic demand and minimize

weighted packet delay. Somasundara, et al. [30] proposed an algorithm for schedul-

ing mobile elements to ensure no data loss due to buffer overflow. Ekici, et al. [31]

gave an offline heuristic algorithm, which computes periodic trajectories of mobile

elements based on the knowledge of data generation rate of sensors and their loca-

tions to avoid data loss at low mobile speeds. Luo and Hubaux [32] studied how

routing can be fine-tuned to leverage the trajectory of the mobile collector, in par-
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ticular, how to better exploit transmission capabilities of the nodes located at the

periphery of the network. Nakayama, et al. [33] presented a data gathering scheme,

where sensors are clustered and the migration route of the mobile sink is found by

an approximate solution to Traveling Salesman Problem (TSP) among cluster cen-

ters. Nesamony, et al. [34] studied the minimum distance route problem by letting

the transmission range of the calibrating mobile sink alongits traversal touch all

sensors and defining the determination of the mobile route asa problem belonging

to the class of TSP. Basagni, et al. [35] provided a Mixed Integer Linear Program-

ming (MILP) analytical model whose solution determines thesink trajectories that

maximize network lifetime, and proposed a distributed heuristic scheme, in which

the mobile element moves towards the area where nodes have the highest residual

energy. Xing, et al. [36] proposed a rendezvous design to minimize the distance

in multi-hop routing paths for local data aggregation underthe constraint that the

tour length of the mobile collector is no more than a threshold. Finally, Dantu, et

al. provided a hardware and software design of a mobile robotic testbed in [37] and

experimentally validated some data gathering applications in mobile environments.

Although the aforementioned mobile data gathering schemescan greatly save

energy at sensors, they typically result in significantly increased data gathering la-

tency. To overcome this problem, most existing work mainly focused on minimiz-

ing the moving length of the mobile collector and did not takesensors’ data upload-

ing time into account. In practice, the data uploading time could be a significant

part of total data gathering time, especially in a densely-deployed WSN where the

time cost on data uploading from sensors to mobile collectors could be comparable

to or even more than the moving time. These observations motivate us to design a

scheme that can optimize the total data gathering time including both the moving

time of the mobile collector and the data uploading time of sensors.

Besides mobility, we also adopt an advanced physical layer technique in wire-

less communications, SDMA technique, for data gathering. SDMA belongs to

the category of multiuser multiple-input and multiple-output (MIMO) technology,

specifically with multiple receive antennas [87]. By equipping multiple antennas

and specific filters at the receiver, SDMA makes it possible for multiple senders

to simultaneously transmit data to a receiver. SDMA was originally used in wire-

less local area networks (WLANs) and cellular networks [48][49], and sometime

was also combined with orthogonal-frequency division multiplexing (OFDM) to
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improve the channel capacity and tackle the difficulties of limited available band-

width. In our study, we have observed that SDMA matches well with the commu-

nication pattern in sensor networks since the prominent feature of data gathering

traffic in a WSN is many-to-one, where data need to be convergedto a collector

from multiple sensors. To elaborate, if each SenCar is equipped with two antennas

and each sensor still has a single antenna, two compatible sensors can make concur-

rent data uploading to the SenCar by utilizing SDMA techniquewhen the SenCar

arrives at their proximity. The SenCar will separate the multiplexed signal upon

receiving and successfully decode the distinct information from different sensors.

As a result, the data uploading time would be cut into half in the ideal situation.

Since data uploading time is part of the total data gatheringtime, applying SDMA

technique to data gathering would lead to dramatically shortened latency.

In this work, we focus on the joint design of mobility and SDMAtechnique for

mobile data gathering with the purpose of minimizing data gathering time. In par-

ticular, we deploy a SenCar with controlled mobility for a short moving tour that al-

leviates and balances the energy consumption among sensors, and at the same time,

utilize SDMA technique to efficiently schedule data transmissions so as to shorten

the data uploading time. The main contributions of this workcan be summarized

as follows. (1) Consider the data uploading time, which was largely ignored in ex-

isting work, as part of the total data gathering time, and apply SDMA technique to

shorten it, while most existing work [28, 36] was only concerned with minimizing

the moving time of the SenCar. (2) Introduce a joint design of controlled mobility

and SDMA technique for data gathering, and characterize it as MDG-SDMA prob-

lem, respectively. (3) Formulate the MDG-SDMA problem intoan integer linear

program (ILP) and prove its NP-hardness. Propose three algorithms to solve this

problem. (4) Carry out extensive simulations to validate theefficiency of proposed

algorithms. The results demonstrate that the proposed algorithms can reduce the

data gathering time by at least35% in a densely-deployed sensor network com-

pared with the non-SDMA algorithm.

2.2 SDMA: Linear Decorrelator Strategy

In this section, we briefly explain the principles of SDMA technique. In the litera-

ture [87], the use of multiple receive antennas in the uplink is oftencalled SDMA. In
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Figure 2.1: SDMA with linear decorrelator strategy.

the application of mobile data gathering in WSNs, a SenCar is the receiver equipped

with multiple antennas and sensors acting as the source nodes are the senders, each

having a single antenna to upload sensing data to its associated SenCar. We will

mainly consider the case when the SenCar is equipped with two antennas, because

it is not hard to mount two antennas on a SenCar, while it will likely become difficult

and even infeasible to mount more antennas due to the constraint on the distances

between antennas to ensure independent fading.

There are some transceiver architectures that can be used asSDMA strategies.

For example, each sensor’s signal can be demodulated by using a linear decorre-

lator or a minimum mean square error (MMSE) receiver at the SenCar [87]. Lin-

ear decorrelator, known as interference nulling or zero-forcing receiver with low-

complexity detection, is the linear filter that maximizes the output signal-to-noise

ratio (SNR) subject to the constraint that the filter nulls outthe interference from

all other data streams. The MMSE receiver is the optimal compromise between

maximizing the signal strength from the sensor of interest and suppressing the in-

terference from other sensors. For the simplicity of a SenCar, we will use the linear

decorrelator as the SDMA strategy in our scheme.

To use the linear decorrelator, the SenCar makes the data received from one

sensor appear as zero at the received data from other sensors. This is possible when

the SenCar applies different filters for each sensor on the received signals such that

the signals will add up constructively or destructively as desired. To guarantee that

the decorrelator operation is successful, we need to limit the number of simultane-

ous data streams to no more than the number of receive antennas. In other words,

since the SenCar is equipped with two receive antennas, at most two sensors can

simultaneously send data to a SenCar at a time. Fig.2.1 shows the transceiver ar-

chitecture of SDMA with the linear decorrelator. For simplicity, we will usehi to

denote[hi1, hi2]
T , which represents the complex channel coefficient vector between

sensori and the two receive antennas of the SenCar.h1 andh2 are the two columns

of the channel coefficient matrixH. Suppose sensor1 wants to upload datax1 and
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sensor2 wants to upload datax2 to the SenCar. The received vector at the SenCar

can be written as

y = h1x1 + h2x2 + n, (2.1)

wheren is i.i.dCN (0, σ2I2) channel noise. We can see from Eq. (2.1) that each data

stream faces an extra source of interference from the other data stream. A method

that can be used to remove this inter-stream interference from an interested sensor

is to project the received signaly onto the subspace orthogonal to the one spanned

by the other channel vector. That is, we chooseu1 andu2 as the filter vectors for

sensor1 and sensor2, respectively, which satisfiesu∗
1h2 = 0 andu∗

2h1 = 0. Hence,

the received signal can be decoded as

{
x̂1 = u∗

1y = u∗
1h1x1 + u∗

1n

x̂2 = u∗
2y = u∗

2h2x2 + u∗
2n.

(2.2)

After processed this way, the inter-stream interference nulling can be achieved, i.e.,

x1 andx2 are separated from each other.u1 can be any vector that lies inV1 which

is the space orthogonal toh2, however, to maximize the received signal strength,

u1 should lie in the same direction as the projection ofh1 ontoV1. u2 should be

similarly chosen.u1 andu2 can be unit vectors as follows since increasing their

length will not increase the SNR.





u1 = 1√
|h22|2+|h21|2

[h∗
22,−h∗

21]
T

u2 = 1√
|h12|2+|h11|2

[h∗
12,−h∗

11]
T .

(2.3)

From Eq. (2.2), we can see that the signal part ofx̂1 andx̂2 areu∗
1h1x1 andu∗

2h2x2,

respectively. Since|u∗
1h1|2 ≤ ‖h1‖2 and|u∗

2h2|2 ≤ ‖h2‖2, the projection operation

always reduces the length ofhi unlesshi is already orthogonal to the channel vec-

tor of the other data stream. This is the overhead for nullingout the interference.

Hence, the effective channel forx1 would be in deep fading whenever the projection

of h1 ontou1 is small. A similar situation is also applicable tox2. Thus, for given

transmission power of each sensor, not any two sensors can successfully transmit

data to the SenCar simultaneously. To ensure the SenCar can successfully decode
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the received signal, the following criteria should be satisfied

{
Pr1 = Pt|u∗

1h1|2 ≥ δ0, SNR1 = Pt|u∗
1h1|2/σ2 ≥ δ1

Pr2 = Pt|u∗
2h2|2 ≥ δ0, SNR2 = Pt|u∗

2h2|2/σ2 ≥ δ1,
(2.4)

where Pr1, Pr2, SNR1 and SNR2 are the received power and SNR of the data from

two sensors, respectively,Pt denotes the transmission power of each sensor, andδ0

is the receive sensitivity whileδ1 is the SNR threshold for the SenCar to correctly

decode the received data. Any two sensors that satisfy this criteria can success-

fully make concurrent data uploading to a SenCar. Such two sensors are said to be

compatible.

We have explained how SDMA with the linear decorrelator works. When ap-

plied to mobile data gathering in WSNs, SDMA has the followingbenefits. First,

since SDMA technique enables the concurrent data uploadingfrom any two com-

patible sensors to the SenCar, the data uploading time would be significantly re-

duced. Second, it is commercially appealing that no additional hardware is needed

at sensors for performing SDMA. All intelligent operationstake place at the SenCar

and sensors will simply act as if the SDMA technique is not employed. The Sen-

Car, on the other hand, will need more hardware, such as filters, to process received

data. This fits into WSNs quite well because we want the sensors, which are the

senders in SDMA, to be as simple as possible, and on the other hand, it is feasible to

equip the SenCar with more complex and powerful transceivers. These advantages

motivate us to find an optimal solution to harvest the gain of SDMA in the mobile

data gathering, which is just the task of this work.

2.3 Design Overview and MDG-SDMA Problem For-

mulation

2.3.1 Design Overview

In this subsection, we outline the joint design of mobility and SDMA technique.

We assume that the SenCar is equipped with two antennas while every sensor has a

single antenna and is statically scattered over the field. Before delving into details,

for a clear presentation, we define some terms that will be used in the following and
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illustrate the joint design as shown in Fig.2.2.

While a SenCar is moving through the sensing field, it will stop at certain po-

sitions to poll nearby sensors. We define the positions that the SenCar can stop for

polling asanchor points. When the SenCar moves to a anchor point, it polls nearby

sensors with the same transmission power as sensors, such that sensors that receive

the polling messages can upload data to the SenCar within a single hop. Note that

since the SenCar always coordinates nearby sensors and collects data locally, there

is no need for global synchronization. The disk-shaped areacentered at a anchor

point with the radius equal to the sensor transmission rangeis defined as thecover-

age areaof a anchor point. All sensors in the coverage area of a anchorpoint form

theneighbor setof this anchor point. For generality, we do not make any assump-

tion on the distribution of sensors or the location-aware capability of nodes. The

SenCar obtains the neighbor set information of all anchor points by visiting them at

the setup phase of the network. Any two sensors in the same neighbor set are con-

sidered to be compatible as defined in Section2.2 if they satisfy the criteria in Eq.

(2.4). Since each sensor needs to be polled only once during a datagathering tour,

it is associatedwith only one anchor point even though it may be located within

the coverage areas of multiple anchor points. In other words, the associated sensors

of a anchor point are not necessarily to be all sensors in its neighbor set. Different

association patterns correspond to different compatibility relationship among sen-

sors because the channel state varies from the association patterns. If two sensors

are compatible when associated with the same anchor point, they are qualified to be

a compatible pairto be scheduled to upload data simultaneously when the SenCar

arrives. A SenCar does not need to visit every anchor point in the field. However,

the anchor points on the tour of the SenCar should cover all sensors in the field. We

call these anchor pointsselected anchor points. The SenCar arriving at a selected

anchor point collects data from all associated sensors and then moves straightly to

the next selected anchor point on the tour. Thus, the moving tour of the SenCar con-

sists of a number of selected anchor points and the straight line segments connecting

them. LetP ′={p1, p2, . . . , pt} denote a set of selected anchor points andDS be the

static data sink. Then, a possible moving tour of the SenCar can be represented by

DS → p1 → p2 → · · · → pt → DS. Thus, the problem of finding an optimal

solution for a data gathering tour can be considered as jointly solving the following

tightly coupled sub-problems: finding compatible pairs among sensors, determin-
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Figure 2.2: Illustration of the joint design of mobility andSDMA technique for
mobile data gathering in WSNs.

ing sensor association pattern, and finding locations of selected anchor points and

the order for the SenCar to visit them.

To apply SDMA technique to WSNs and enjoy the benefit it will bring, we have

to solve a series of challenging problems. First, the SenCar must be able to deter-

mine whether two sensors are compatible. If the possible locations of anchor points

are given, the SenCar can receive probe signals from sensors nearby to detect the

channel vectors, then determine the compatibility among the sensors in the neigh-

borhood of each location. This information can be measured at the initial setup

phase of the network and updated periodically. Second, to collect data as fast as

possible, the SenCar should find the maximum number of compatible pairs among

sensors. This can be formalized as a matching problem in a compatibility graph,

where each vertex represents a sensor, and two vertices are adjacent to each other

if two sensors are compatible. For example, the graph in Fig.2.3(a) shows the

compatibility relationship of six sensors around a anchor point, where the anchor

point is not shown in the figure. A group of compatible pairs correspond to a set of

vertex-disjoint edges in the graph, which is defined as a matching in graph theory

[90]. The largest group of compatible pairs corresponds to a maximum matching

in the compatibility graph. Fig.2.3(b) gives three compatible pairs among the

sensors, represented by bold edges as a maximum matching in the corresponding

compatibility graph. Maximum matching of a graph can be found by algorithms in

polynomial time. For example, the efficient implementationof the Edmonds’ Blos-

som Algorithm takesO(N3) time, whereN is the number of vertices in the graph

[90, 91, 92].

Note that since the SenCar is mobile, we actually have the freedom to choose

the anchor points, where the SenCar will pause for data gathering. The channel
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Figure 2.3: A maximum matching in the compatibility graph.
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Figure 2.4: Two possible moving paths of the SenCar.

vectors could vary significantly when the pausing location of the SenCar changes.

Thus, intuitively, it is better to let the SenCar visit locations where more sensors

are compatible, such that the data can be collected in shorter time. Fig. 2.4 shows

two possible moving paths of the SenCar for the example in Fig.2.3. Path 1 in Fig.

2.4(a) is a straight line, therefore is the shortest path. The compatibility relationship

of the six sensors is also shown in Fig.2.4(a) if the SenCar visits anchor point1

traveling along this path. We can see that at most two compatible pairs can be found

among the sensors (i.e., the size of the maximum matching among the six vertices

in the corresponding compatibility graph is2). In total,4 time slots are needed for

every sensor to upload a packet. However, if the SenCar visitsanother anchor point

along path2 as shown in Fig.2.4(b), the six sensors have different compatibility

relationship. In this case, there can be found three compatible pairs and it requires

only 3 time slots for data uploading. Thus, to complete data gathering as fast as

possible, it may be better to take path2 though it is not the shortest path.

We can see that after mobility and SDMA technique are introduced, the problem

of finding a good data gathering tour, which is referred to as the MDG-SDMA

problem, becomes more complex. The main benefit of SDMA is to effectively

shorten the data uploading time of sensors. However, as mentioned earlier, to better

enjoy this benefit, the SenCar may have to visit some specific locations where more

sensors are compatible, which may adversely prolong the moving tour. Since our
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Table 2.1: Notations used in formulation of MDG-SDMA Problem.
Indices:
S = {1, 2, . . . , Ns} A set of sensors.
P = {1, 2, . . . , Np} A set of anchor points.

Constants:
fn,i = {0, 1} Location indicator. If sensorn is in
∀n ∈ S, ∀i ∈ P coverage area of anchor pointi,

fn,i = 1, otherwise,fn,i = 0.
cm,n,i = {0, 1} Indicator of compatibility relationship.
∀m, n ∈ S, ∀i ∈ P If sensorsm andn are compatible

when they are both in coverage area of
anchor pointi, cm,n,i = 1, otherwise,
cm,n,i = 0.

di,j ≥ 0 Length of arcai,j , i.e., distance between
∀i, j ∈ P anchor pointi and anchor pointj.
q > 0 Size of the sensing data of each sensor.
vd > 0 Effective data uploading rate of a sensor.
vm > 0 Moving velocity of the SenCar.

Variables:
Ii = {0, 1} Indicator of selected anchor point. If
∀i ∈ P anchor pointi is selected intoP ′,

Ii = 1, otherwise,Ii = 0.
xn,i = {0, 1} Indicator of sensor association. If sensor
∀n ∈ S, ∀i ∈ P n is associated with anchor pointi,

xn,i = 1, otherwise,xn,i = 0.
um,n,i = {0, 1} Indicator of compatible pair. If sensors
∀m, n ∈ S, ∀i ∈ P m andn are selected as a compatible

pair when they are both associated with
anchor pointi, um,n,i = 1, otherwise,
um,n,i = 0.

ei,j = {0, 1} Indicator of selected line segment in
∀i, j ∈ P moving tour. If moving tour contains

arcai,j , ei,j = 1, otherwise,ei,j = 0.
yi,j ≥ 0 Flow from anchor pointi to anchor
∀i, j ∈ P point j on arcaij .
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objective is to have sensors turn on their radios for a short time, we will focus on

minimizing the total data gathering time, which consists ofthe moving time of the

SenCar and the data uploading time of sensors. Thus, the resulting optimal solution

does not necessarily have the shortest moving tour or the maximum number of

compatible pairs, instead, it is a tradeoff between the shortest moving tour and the

full utilization of SDMA.

Note that to solve this problem optimally, we will need the compatibility rela-

tionship of sensors foreverylocation the SenCar can visit. However, this is impos-

sible in practice, because it is very hard to estimate the channel vectors of sensors

at all locations. Thus, we will only consider afinite set of anchor points, at which

the compatibility relationship among sensors is known (which can be obtained by

the SenCar periodically). We denote such a set of anchor points asP. The problem

will then be reduced to finding a subset ofP, denoted asP ′, such that by visiting

anchor points inP ′ all data can be collected in minimum time. The anchor points

in P ′ are called selected anchor points.

2.3.2 MDG-SDMA Problem Formulation

We are now in the position to formally formulate the MDG-SDMAproblem in

WSNs. Given a set of sensorsS = {1, 2, . . . , Ns} and a set of anchor pointsP =

{1, 2, . . . , Np}, find sensor association patterns and compatible pairs, determine the

selected anchor points and the sequence to visit them, such that the sensing data of

every sensor inS can be collected in minimum time. Without loss of generality,

we assume that the position of anchor point1 is also the location of the static data

sink, which is the starting and ending points of a data gathering tour. For a clearer

presentation, the notations we use are summarized in Table2.1.

Minimize
q

vd

(
|S| − 1

2

∑

m∈S

∑

n∈S

∑

i∈P

um,n,i

)
+

∑
i∈P

∑
j∈P

di,jei,j

vm

(2.5)
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Subject to

xn,i ≤ fn,i · Ii, ∀n ∈ S,∀i ∈ P (2.6)
∑

i∈P

xn,i = 1,∀n ∈ S (2.7)

∑

n∈S

xn,i ≥ Ii,∀i ∈ P (2.8)

um,n,i ≤
(

xm,i + xn,i

2

)
cm,n,i,∀m,n ∈ S,∀i ∈ P (2.9)

∑

i∈P

∑

m∈S\{n}

um,n,i ≤ 1, ∀n ∈ S (2.10)

∑

i∈P

∑

n∈S\{m}

um,n,i ≤ 1, ∀m ∈ S (2.11)

um,n,i = un,m,i,∀m ∈ S, ∀n ∈ S,∀i ∈ P (2.12)
∑

i∈P,i6=j

ei,j = Ij, ∀j ∈ P (2.13)

∑

j∈P,j 6=i

ei,j = Ii, ∀i ∈ P (2.14)

yi,j ≤ |P| · ei,j, ∀i, j ∈ P (2.15)
∑

i∈P\{1}

yi,1 =
∑

i∈P\{1}

Ii (2.16)

∑

i∈P\{j}

yj,i −
∑

k∈P\{j}

yk,j = Ij, ∀j ∈ P \ {1} (2.17)

Given notations in Table2.1, the MDG-SDMA problem in WSNs can be formu-

lated as an integer linear program labeled from (2.5) to (2.17). In the formulation,

objective function (2.5) minimizes the data gathering time, which consists of the

data uploading time of sensors and the moving time of the SenCar. Constraints

(2.6)-(2.8) ensure that a sensor should be associated with one and only one selected

anchor point within the coverage area the sensor is located,so that its sensing data

can be collected during the tour. Constraint (2.9) guarantees that any two sensors

that are qualified to be a compatible pair must be associated with the same an-

chor point and be compatible in the coverage area of this anchor point. Constraints

(2.10)-(2.12) enforce that each sensor belongs to at most one compatible pair. Con-

straints (2.13)-(2.14) ensure the fact that each selected anchor point should have
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one arc pointing towards it and another arc pointing away from it. Constraint (2.15)

restricts that flow can take place only when the arc is on the moving tour of the

SenCar. Constraint (2.16) specifies that the units of flow entering anchor point1

are equal to the number of selected anchor points since anchor point1 is the ending

point of the tour. Constraint (2.17) enforces that for each selected anchor point, the

units of outgoing flow are one unit more than that of the incoming flow [93]. It

has been shown in [89] that constraints (2.15)-(2.17) can exclude the solutions of

the moving tour with loops and can also prohibit the tour thatdoes not include the

given starting and ending anchor points.

We have the following theorem concerning the NP-hardness ofthe MDG-SDMA

problem.

Theorem 1. The MDG-SDMA problem in WSNs is NP-hard.

Proof. The NP-hardness of MDG-SDMA problem can be shown by a polynomial-

time reduction from the well-knownTraveling Salesman Problem (TSP)problem to

a special case of MDG-SDMA. Given a complete graphG = (V,E) as an instance

of TSP, we construct an instance of MDG-SDMA on graphG′ = (V ′, E ′), which is

topologically identical toG. The vertex set ofG′ includes all anchor points and the

data sink, and each edge inG′ represents the distance between the two correspond-

ing anchor points. Then assume that no two sensors are compatible with each other

and the sensors can only be covered by visiting all anchor points, which can be

achieved by imposing some constraints on channel states andsensor transmission

power. This reduction is straightforward and can certainlybe done in polynomial

time. Hence, in this case the SenCar has to visit all anchor points to collect data

from each sensor one by one. Since the data uploading time is aconstant for a

given number of sensors, finding the optimal tour for data gathering is equivalent

to finding the shortest round trip that visits each anchor point once. Thus, the TSP

in G will have a tour with minimum cost in distance if and only if the same tour in

G′ is the tour with the minimum length for MDG-SDMA. Hence, MDG-SDMA is

NP-hard.
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2.4 Algorithms for MDG-SDMA Problem

We have shown that the MDG-SDMA problem is NP-hard. In this section, we de-

velop three heuristic algorithms to give practically good solutions to the problem in

different situations, which are calledmaximum compatible pair (MCP) algorithm,

minimum covering spanning tree (MCST) algorithm, andrevenue-based (RB) al-

gorithm, respectively. We describe them one by one next. It is worth pointing out

that the solution exploration procedure for each algorithmonly needs to be exe-

cuted when the channel state information is updated or the topology of the network

changes, thus does not need to be frequently repeated.

We model the sensing field as a graphG = (S, E ,P ,A). S andP are the sets

of sensors and anchor points, respectively, and each element in the sets is a vertex

of the graph.E is the set of edges among the vertices inS. Two vertices inS are

adjacent if the two sensors are compatible in the coverage area of a anchor point. In

order to keep the graph simple, there is at most one edge between any two vertices

in S even if the two sensors are compatible in the coverage areas of multiple anchor

points. A is the set of arcs between any two vertices inP. The solution of the

MDG-SDMA problem finds a set of selected anchor pointsP ′, which is a subset of

P, a matching inE that represents compatible pairs among sensors and a moving

tour of the SenCar with arcs inA connecting the vertices inP ′ in the graph such

that the data gathering can be done in minimum time. A possible solution to the

MDG-SDMA problem is to break it into two subproblems. The first subproblem is

to find a subset ofP, P ′, that meets certain requirements. This operation is crucial

to the solution since it determines the compatibility pattern and the range of the

moving tour. The second subproblem is to find the shortest round trip connecting

the selected anchor points inP ′, which is exactly the well-known TSP problem.

As the second subproblem has been well studied before, we will focus on the first

subproblem.

2.4.1 Maximum Compatible Pair (MCP) Algorithm

Our first algorithm aims to find a set of selected anchor pointsthat can achieve

the maximum number of compatible pairs among sensors, thus is called maximum

compatible pair (MCP) algorithm. Based on this objective,P ′ should be chosen to
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satisfy the following three requirements.

• By visiting the selected anchor points inP ′, every sensor can be covered, i.e.,

all sensors are in the neighbor sets of the selected anchor points inP ′.

• Selected anchor points inP ′ will allow as many sensors to use SDMA tech-

nique as possible, i.e., achieve the maximum number of compatible pairs.

• P ′ has the minimum number of selected anchor points that satisfy the above

two requirements, which will likely result in a short movingtour.

Theorem 2. Finding the selected anchor points that satisfy the above three require-

ment is NP-hard.

Proof. Assume that there is no compatible pair in the network. ThenP ′ only needs

to satisfy the first and third requirements. This restrictedcase is simply to find the

minimum number of neighbor sets of the anchor points inP so that the selected sets

contain all sensors in the neighbor sets, which is a known NP-complete problem,

Minimum Set Cover(MSC) problem. Thus, it is clearly NP-hard.

Fortunately, there are existing approximate algorithms tosolve the MSC prob-

lem, which can be utilized in our algorithm. The basic idea ofthe MCP algorithm

is to find the minimum number of selected anchor points that can achieve the max-

imum compatible pairs among sensors. It can be roughly divided into four steps.

Next, we explain how the MCP algorithm works by a simple example in Fig. 2.5.

Assume that the network has a total of10 sensors inS (denoted asS1-S10 and plot-

ted as labeled dots ), and4 anchor points inP (denoted asP1-P4 and plotted as

small numbered circles). The disk-shaped area represents the coverage area of the

anchor point at the center. Specifically, thoughS2 andS3 are in the coverage areas

of bothP1 andP2, they are compatible only inP1. On the contrary,S5 andS6 are

compatible in the coverage areas of bothP2 andP4. MCP finds the solution in fol-

lowing four steps. In the first step, we find the maximum compatible pairs among

all sensors, which is equivalent to finding a maximum matching in the correspond-

ing compatibility graph. Specifically, based on the compatibility relationship (not

shown in the figure) with all anchor points inP, we find 5 compatible pairs as

shown by solid lines. In the second step, the neighbor set of each anchor point

is updated based on the compatible pairs obtained in the firststep by deleting the
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(a) The maximum matching is 5.
 (b) The neighbor set updating.


Original Neighbor Set 
:

P1 
: {S1,S2,S3,S4}
 P2 
: {S2,S3,S5,S6}

P3 
: {S4,S7,S8}
 P4 
: {S5,S6,S8,S9,S10}


Updated Neighbor Set 
:


P1 
: {S1,S2,S3,S4}
 P2 
: {S5,S6}


P3 
: {S7,S8}
 P4 
: {S5,S6,S9,S10}


Selected Polling Point & Sensor Association :

P1 : {S1,S2,S3,S4}

P4 : {S5,S6,S9,S10}


P3 : {S7,S8}


Figure 2.5: An example of the MCP algorithm.

sensors in following two cases:(1) Two sensors in a compatible pair are not com-

patible in the neighbor set of a anchor point. For example,S2 andS3 are deleted

from the neighbor set ofP2, sinceS2 andS3 form a compatible pair but they are

incompatible in the coverage area ofP2. (2) Two sensors of a compatible pair are

in different neighbor sets. For example,S4 is deleted from the neighbor set ofP3

since its compatible peerS1 is not in the neighbor set ofP3. Similarly, S8 is also

deleted from the neighbor set ofP4. The original neighbor sets and the updated sets

for the example are listed in Fig.2.5(b). The purpose of this updating procedure is

to group any two sensors in a compatible pair as a single element in each neighbor

set. In the third step, we can utilize the greedy algorithm for Minimum Set Cover

problem to find minimum updated neighbor sets of the anchor points inP that can

cover all sensors. In the example,P1, P3 andP4 are finally selected intoP ′. The

updated neighbor sets of the selected anchor points implicitly indicate the associa-

tion patten of sensors. In the last step, we can run an approximate algorithm for the

TSP problem to find the shortest moving tour of the SenCar visiting the selected

anchor points inP ′. The details of the MCP algorithm are described in Table2.2.

The MCP algorithm results in maximum compatible pairs among sensors, which

leads to the minimum data uploading time. However, the moving tour may not be

the shortest one, though the number of selected anchor points that the SenCar has

to visit has been minimized. Hence, it is suitable for the networks with densely-

deployed sensors where the data uploading time is dominant.For a network with

a total ofNs sensors andNp anchor points, the maximum compatible pairs among

Ns sensors can be found by the efficient implementation of the Edmonds’ Blossom

Algorithm which takesO(N3
s ) time, the updating on neighbor sets takesO(N2

s Np)

time, the greedy algorithm finding the minimum neighbor setsthat cover all sensors

takesO(NsNp min{Ns, Np}) time, and the approximate shortest tour on selected

anchor points can be found inO(N2
p ) time. Thus, the time complexity of the MCP

algorithm isO(N3
s + N2

s Np + NsNp min{Ns, Np} + N2
p ). In general, if we have
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Ns > Np or Ns ≈ Np, the complexity of the algorithm becomesO(N3
s ).

2.4.2 Minimum Covering Spanning Tree (MCST) Algorithm

For a sparsely distributed sensor network, sensors are generally less likely to be

compatible with each other. Thus, under such circumstances, more effort should be

focused on reducing the moving time of the SenCar. Thus,P ′ should be chosen to

satisfy the following requirements.

• By visiting the selected anchor points inP ′, all sensors can be covered.

• Visiting the selected anchor points inP ′ leads to the shortest moving tour of

the SenCar.

Clearly, it is NP-hard to find suchP ′. Thus we propose a greedy algorithm

named minimum covering spanning tree (MCST) algorithm for it. The idea of the

algorithm can be described as follows. At each stage of the algorithm, a anchor

point with the minimum average cost will be selected intoP ′. The average cost

of an unselected anchor pointPi is defined as the minimum distance betweenPi

and the elements inP ′ divided by the number of uncovered sensors its neighbor set

contains. All sensors in the neighbor set of a selected anchor point are considered

covered. The algorithm terminates when all sensors are covered. Fig. 2.6 gives

a simple example with10 sensors (denoted asS1-S10 and plotted as labeled dots)

and4 anchor points (denoted asP1-P4 and plotted as small numbered circles). We

useτ to denote the average cost of a anchor point and used to denote the distance

between two adjacent anchor points in horizontal and vertical directions. We also

use superscripts to indicate the stages of the algorithm. Inthe first stage, since the

position ofP1 is also the position of the static data sink, the distances among the

four anchor points and the static data sink are0, d, d and
√

2d, respectively, and

the number of uncovered sensors in each neighbor set is4, 4, 4 and5, respectively.

Thus,τ 1(P1) = 0, τ 1(P2) = d/4, τ 1(P3) = d/4, andτ 1(P4) =
√

2d/5. SinceP1

has the minimum average cost, it is selected intoP ′ and the sensors in its neighbor

set are considered covered. In the second stage, the numbersof uncovered sensors

in the neighbor sets of the unselected anchor pointsP2, P3 andP4 have been reduced

to 2, 3 and5, respectively. The minimum distance between each unselected anchor

point and the elements inP ′ is still d, d and
√

2d, respectively. Thus,τ 2(P2) = d/2,
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Table 2.2: Maximum compatible pair (MCP) algorithm.

Inputs:
A setS containing all sensors
A setP containing all anchor points
Neighbor family setF = {fi|i ∈ P}, fi is the neighbor set
of anchor pointi
Distance matrixD = {di,j}|P|×|P|, wheredi,j is the length of
arcai,j ∈ A, which is the arc between anchor pointsi andj
Compatibility relationship matrixC(P) = {cm,n,i}|S|×|S|×|P|

Outputs:
A setP ′ containing the selected anchor points and data sink
Compatible pairs among sensors
Moving tour of the SenCar

MCP Algorithm:
Construct the corresponding compatibility graph based onC(P);
Find maximum compatible pairs as finding a maximum matching
in the corresponding compatibility graph;
Record the compatible pairs in a setM;
For all fi in F do

For all v in fi do
If v inM

If v′s compatible peer̃v is not infi

Removev from fi;
end if
If v′s compatible peer̃v is also infi andv andṽ are
incompatible in the coverage area of anchor pointi

Removev andṽ from fi;
end if

end if
end for

end for
Find the minimum set cover ofF by the greedy algorithm;
Add corresponding anchor point of selected neighbor sets intoP ′;
Add the static data sink intoP ′;
Find an approximate shortest tour on selected anchor points inP ′.
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Figure 2.6: An example of the MCST algorithm.

τ 2(P3) = d/3, andτ 2(P4) =
√

2d/5. P4 has the minimum average cost and is

selected. NowP ′ = {DS,P1, P4}. Again, the uncovered sensors in the neighbor

set of P4 are considered covered. In the third stage, as there are no uncovered

sensors in the neighbor set ofP2, we setτ 3(P2) = ∞. Since the distance between

P3 andP4 is equal to that betweenP3 andP1, the minimum distance betweenP3

and the elements inP ′ is still d. Also, there is only one uncovered sensor in the

neighbor set ofP3, thus,τ 3(P3) = d. Finally,P3 is selected intoP ′ and all sensors

are covered.

After P ′ is found, we can run an approximate algorithm for the TSP problem

to find the shortest tour and use the Edmond Blossom algorithm to find the com-

patible pairs based on the compatibility pattern when sensors are associated with

the selected anchor points inP ′. SinceP ′ ⊆ P, the number of compatible pairs

obtained here is less than that obtained based on the association pattern with all

anchor points inP. The detailed MCST algorithm is given in Table2.3. MCST

algorithm takesO(NsNp min{Ns, Np}) time to find a sub-family of neighbor sets

which covers all sensors,O(N2
p ) time to determine the approximate shortest tour

among selected anchor points, andO(N3
s ) time to find compatible pairs. Thus, its

time complexity isO(NsNp min{Ns, Np}+N2
p +N3

s ). WhenNs > Np orNs ≈ Np,

its time complexity becomesO(N3
s ).

2.4.3 Revenue-Based (RB) Algorithm

In the MCP and MCST algorithms, compatible pairs and the movingtour are sep-

arately considered. Now, we propose an algorithm called revenue-based (RB) al-

gorithm, which chooses selected anchor points based on a combined metric of both

the number of compatible pairs and the length of moving tour.The basic idea of

the RB algorithm is that a selected anchor point is chosen based on the revenue

of each unselected anchor point and the algorithm terminates when all sensors are
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Table 2.3: Minimum covering spanning tree (MCST) algorithm.

Inputs:
A setS containing all sensors
A setP containing all anchor points
Neighbor family setF = {fi|i ∈ P}, fi is the neighbor set
of anchor pointi
Distance matrixD = {di,j}|P|×|P|, wheredi,j is the length
of arcai,j , which is the arc between anchor pointsi andj
Compatibility relationship matrixC(P) = {cm,n,i}|S|×|S|×|P|

Outputs:
A setP ′ containing the selected anchor points and data sink
Moving tour of the SenCar
Compatible pairs among sensors

MCST Algorithm:
Add the static data sink intoP ′;
U ← S; //The setU is used to record uncovered sensors.
while U 6= φ

Find cost(i), ∀i ∈ (P \ P ′), wherecost(i) = min{dij |j ∈ P ′};
Find the setfi (i ∈ (P \ P ′)) that minimizesτ(i) = cost(i)

|fi|
;

Add the corresponding anchor pointi intoP ′;
Remove sensors infi from U ;
For each anchor pointj ∈ (P \ P ′)

Remove sensors infj ∩ fi from fj ;
end For

end while
Find an approximate shortest tour on selected anchor points inP ′;
Construct corresponding compatibility graph based onC(P ′) =
{cm,n,i}|S|×|S|×|P ′|, where the elements are obtained fromC(P);
Find compatible pairs as finding a maximum matching in the
corresponding compatibility graph.

covered. Specifically, the revenue of an unselected anchor point, say,Pi, is defined

asR(Pi) = −αω(Pi) + βτ(Pi), whereα andβ are positive coefficients,ω(Pi)

is the maximum number of compatible pairs among the uncovered sensors in the

neighbor set ofPi, andτ(Pi) is the average cost ofPi as defined in the MCST

algorithm. At each stage, the unselected anchor point with the minimum revenue

will be selected. If the selected anchor point isPi, the sensors inω(Pi) compatible

pairs will be marked as covered. Other isolated sensors in the neighbor set ofPi

are still considered uncovered, so that they could have opportunities to be paired

up in a compatible pair within the coverage areas of other anchor points. When
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Figure 2.7: An example of the RB algorithm.

there is no more compatible pair that can be found for any unselected anchor point,

either all sensors are covered or the uncovered sensors leftcan no longer be paired

up as compatible pairs. In the former case, the algorithm simply terminates since

all sensors are covered by existing selected anchor points.In contrast, in the latter

case, if the uncovered sensors left are in the neighbor sets of some selected anchor

points, they can be randomly associated with one selected anchor point in the cur-

rentP ′ and are considered covered. Otherwise, follow the MCST algorithm to find

other anchor points to cover them until all sensors are covered. The detailed RB

algorithm can be found in Table2.5. Since the main complexity of the algorithm

is due to the work of finding the maximum compatible pairs among the uncovered

sensors in the neighborhood of each unselected anchor point, its time complexity is

O(N2
p N3

s ) whenNs > Np or O(N5
s ) whenNs ≈ Np.

Table 2.4: Revenue of anchor points in the example of RB algorithm.
Stage1 Stage2 Stage3

P1 −2α - -
P2 −α + βd/4 −α + βd/2 ∞
P3 −α + βd/4 −α + βd/3 −α + βd/2

P4 −2α + β
√

2d/5 −2α + β
√

2d/5 -

To better understand the RB algorithm, we give an example in Fig. 2.7, where

the same network configuration as last two examples is used. The compatibility

relationship among sensors is shown in solid lines. Note that S2 andS3 are only

compatible in the coverage area ofP1 while incompatible in the coverage area of

P2. S5 andS6 are compatible in the coverage area of bothP2 andP4. The rev-

enue of the anchor points in each stage is summarized in Table2.4. In the first

stage, the numbers of uncovered sensors in the neighbor setsof P1 to P4 are4, 4, 4

and5, respectively. The maximum number of compatible pairs among the uncov-

ered sensors in each neighbor set isω1(P1) = 2, ω1(P2) = 1, ω1(P3) = 1, and

ω1(P4) = 2. The superscripts still stand for the running stages of the algorithm.
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SinceP1 is also the position of the static data sink,τ 1(P1) = 0 and accordingly,

R1(P1) = −2α. As P1 has the minimum revenue in the first stage, it is selected

into P ′. The sensors in its neighbor set that are also in the two compatible pairs

(i.e., S1-S4) are considered covered. Now,P ′ = {DS,P1}. In the second stage,

the number of uncovered sensors in each neighbor set of unselected anchor points

P2, P3 andP4 has been reduced to2, 3 and5, respectively. The maximum num-

ber of compatible pairs among the unselected sensors in eachupdated neighbor set

changes toω2(P2) = 1, ω2(P3) = 1 andω2(P4) = 2, accordingly. The minimum

distances betweenP2, P3, P4 and the elements inP ′ ared, d, and
√

2d, respectively.

Among these three unselected anchor points,P4 is chosen with the minimum rev-

enueR2(P4) = −2α + β
√

2d/5 and nowP ′ = {DS,P1, P4}. The four sensors

in the two corresponding compatible pairs,S5, S6, S9 andS10, in its neighbor set

are considered covered.S8 is left uncovered so that it still has the opportunity to

be paired up with other uncovered sensors. In the third stage, since there is no

uncovered sensor in the neighbor set ofP2, its revenue is set to infinite. As the dis-

tance betweenP3 andP4 is equal to that betweenP3 andP1, the minimum distance

betweenP3 and the elements inP ′ is still d. Moreover, there are two uncovered sen-

sors left in its neighbor set, which also happen to form a compatible pair. Hence,

ω3(P3) = 1 andτ 3(P3) = d/2. Finally, P3 is selected and all sensors are covered.

Now, the last step is to run an approximate algorithm for the TSP problem to find

the shortest tour on the selected anchor points inP ′.

2.5 Performance Evaluation

In this section, we study the performance of proposed algorithms with simulations.

2.5.1 Performance Comparison with Optimum Solution

In this subsection, we investigate the performance of the MCP, MCST and RB al-

gorithms by comparing their results with the optimum solution obtained by CPLEX

[94] based on our ILP formulation modeling in AMPL (A Mathematical Program-

ming Language) [95].

We first provide a numerical example to compare our proposed algorithms with

the optimum solution. The network configuration is as shown in Fig. 2.8, where a
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(a) Network Configura-
tion.
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(b) Optimum Solution.
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(c) MCP Algorithm.
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(d) MCST Algorithm.
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(e) RB Algorithm.
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Figure 2.8: The solutions of different algorithms.

total of 30 sensors scattered over a60m × 60m square area, and25 anchor points

are located at the intersections of grids and each one is15m apart from its adjacent

neighbors in horizontal and vertical directions. We set theradius of the coverage

area of each anchor point to30m, which is also the transmission range of each

sensor. Two sensors are connected by a link in Fig.2.8(a) if they are compatible in

the coverage area of a anchor point. Note that there is only one link between any

two compatible sensors even if they are compatible in the coverage areas of multiple

anchor points. We assume that the size of the sensing data of each sensorq = 1Mb,

the effective data uploading rate of each sensorvd = 80Kbps, the moving velocity

of the SenCarvm = 0.8m/sec andα/β = 5 in the RB algorithm. The solutions

of different algorithms are depicted in Fig.2.8(b)-(e), respectively. It is noticed

that the MCP algorithm results in15 compatible pairs, which has the maximum

number of compatible pairs, thus achieves the minimum data uploading time of

188 seconds, while the MCST algorithm focuses on finding the shortest tour that

covers all sensors, thus results in the minimum moving time of 184 seconds. In

contrast, the RB algorithm pursues the tradeoff between the maximum compatible

pairs and the shortest moving tour of the SenCar, and it achieves the shortest total

data gathering time of426 seconds, which is only3.9% longer than that of the
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optimum solution in410 seconds.

Because of the NP-hardness of the MDG-SDMA problem, the brutal force

search method of the optimum solution becomes impossible for a large network.

We have managed to obtain optimum solutions for a few small networks for com-

paring with the MCP, MCST and RB algorithms. In this set of simulations, we

measure the length of the moving tour, the number of compatible pairs and the data

gathering time of different algorithms when the number of sensorsNs varies from

20 to 80. The sensors are randomly deployed over the sensing field andall other pa-

rameter settings are the same as aforementioned. For each point, the performance is

the average of the results obtained in200 simulation experiments. The comparison

results are plotted in Fig.2.9, from which we can draw some observations. First,

the length of the moving tours in all solutions first increases with the number of sen-

sors and then tends to be stable with a slight increase whenNs becomes large. It is

reasonable since more selected anchor points need to be visited when the number of

sensors initially increases and then these anchor points gradually become sufficient

for the further increase of sensors. Second, the number of compatible pairs achieved

in different solutions follows the trend that MCP>RB>Optimum>MCST. Third, in

terms of data gathering time, the RB algorithm always resultsin close performance

to the optimum solution regardless of the number of sensors.It is also noticed that

in a very sparsely deployed network (i.e., the cases with a small number of sensors),

the MCST algorithm outperforms the MCP algorithm and achievesvery close per-

formance to the optimum solution. However, as the network becomes denser with

more sensors, the MCP algorithm would adversely surpass the MCST algorithm

due to the saving on the data uploading time by the full utilization of SDMA for

concurrent data transmissions.

2.5.2 Performance Comparison with Other Data Gathering Schemes

We now evaluate the performance of the MCP, MCST and RB algorithms by com-

paring their performance with other two non-SDMA data gathering schemes: (1)

Single hop data gathering (SHDG) [28]: a mobile collector moves along a well-

planned moving tour, which is found in a similar way to the MCSTalgorithm.

However, each sensor always uploads data to the mobile collector with single-input

single-output (SISO) transmissions. (2) Data gathering with selected sensor loca-
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Figure 2.9: Comparison between the optimum solution and the proposed algorithms
in small networks.

tions as the anchor points (SAP) [33][36]: the locations of a subset of the sensors

serve as the anchor points, where the mobile collector wouldpause to collect data

from the sensors nearby with SISO transmission pattern. Fora fair comparison,

the mobile collector would visit the minimum number of sensor locations that can

cover all sensors and collect data from each sensor in a single hop. Assume thatNs

sensors are randomly scattered in aD × D square area and25 anchor points are

located at the intersections of grids with equal intervals.For each value ofNs, the

performance is the average of the results obtained in1000 simulation experiments.

Fig. 2.10plots the data gathering time and the number of compatible pairs ob-

tained by different schemes whenNs varies from5 to 200 under different settings

of effective data uploading ratevd and the SenCar’s moving velocityvm. D is set to

60m. It is shown that the MCP, MCST and RB algorithms always outperform the

SHDG and SAP algorithms, and the improvement turns to be moreevident when

the network becomes denser with more sensors. This is reasonable because the

denser distribution of the sensors makes the data uploadingtime gradually become

dominant and provides more opportunities for the sensors toutilize SDMA for con-

current data uploading. For example, whenNs increases to above100, the RB

algorithm can shorten data gathering time by at least35% compared to the SHDG

and SAP algorithms as shown in Fig.2.10(a). We also notice that when the mov-

ing velocity is low, such asvm = 0.5m/sec as shown in Fig.2.10(b), the MCST

algorithm performs better than the MCP algorithm with up to17% improvement

since the time cost on the moving tour becomes the main factorin this scenario. On

the contrary, when the effective data uploading rate is low,such asvd = 50Kbps

in Fig. 2.10(c), the data uploading time overwhelms the moving time, especially
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Figure 2.10: Performance comparisons as the functions of the number of sensors
with different settings ofvd andvm.

with denser sensors. Thus, the MCP algorithm, which is mainlyconcerned with

the maximum compatible pairs, exhibits its advantages in this case, achieving up to

22% improvement compared to the MCST algorithm. In both cases, the RB algo-

rithm always performs best since it jointly considers theseparameters in the metric

of choosing selected anchor points, thus exhibits a great adaptivity to the variation

of these parameters.

Fig. 2.11plots the number of compatible pairs, the length of moving tour of the

SenCar, and the data gathering time obtained by different schemes when the side

length of the distributed fieldD varies from30m to 80m. Ns is set to50. It is shown

in Fig. 2.11(a) that the number of compatible pairs achieved in the MCP andRB

algorithms decreases asD increases. This is intuitive since the compatible oppor-

tunities among sensors shrink as they become sparsely distributed. In contrast, the

number of compatible pairs in the MCST algorithm fluctuates with the increase of

D. This is because thatD has a less immediate impact on the compatible pairs in the

MCST algorithm since the selection of anchor points tightly depends on shortening

the moving tour of the SenCar rather than achieving the maximum compatibility
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Figure 2.11: Performance comparisons as the functions of the side lengthD of the
distributed field.

among sensors. Fig.2.11(b) demonstrates that the moving tour is prolonged asD

increases for all schemes under investigation. The MCST and SHDG result in the

shortest moving tours while the SAP scheme ranks the second.The reason for the

longer tour in SAP is because that the SenCar has to visit the exact locations of the

specified sensors while it only needs to traverse the transmission range of the sen-

sors in MCST and SHDG. Finally, Fig.2.11(c) indicates that the MCP, MCST and

RB algorithms can greatly shorten the data gathering time with respect to SHDG

and SAP since they can cut down data uploading time by utilizing SDMA. For ex-

ample, whenD = 50m, the RB algorithm outperforms SHDG and SAP by31%

and36% on the data gathering time, respectively.

2.6 Conclusions

In this chapter, we introduce efficient mobile data gathering scheme with mobility

and SDMA technique. We formulate this problem into an ILP, called MDG-SDMA

problem, and prove its NP-hardness. Consequently, we propose three algorithms,

named MCP, MCST, and RB algorithms, to provide practically goodsolutions to

the problem. Extensive simulation results demonstrate that the proposed algorithms

can achieve much shorter data gathering time than other compared schemes.
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Table 2.5: Revenue-based (RB) algorithm.

Inputs:
A setS containing all sensors
A setP containing all anchor points
Neighbor family setF = {fi|i ∈ P}, fi is the neighbor set of
anchor pointi
Distance matrixD = {di,j}|P|×|P|, wheredi,j is the length of
arcai,j ∈ A, which is the arc between anchor pointsi andj
Compatibility relationship matrixC(P) = {cm,n,i}|S|×|S|×|P|

Outputs:
A setP ′ containing the selected anchor points and data sink
Compatible pairs among sensors
Moving tour of the SenCar

RB Algorithm:
Add the static data sink intoP ′;
U ← S; //The setU is used to record uncovered sensors.
while ( )

For each anchor pointi ∈ (P \ P ′)
Construct compatibility graph fromC(i) = {cm,n,i}|fi|×|fi|

where the elements can be obtained fromC(P);
Find maximum compatible pairs among the sensors infi as
finding maximum matching in the compatibility graph;
Useω(i) to record the number of compatible pairs;

end For
If ∃i ∈ (P \ P ′) thatω(i) 6= 0

For each anchor pointi ∈ (P \ P ′)
Find cost(i) = min{dij |j ∈ P ′};
Calculate the revenue of anchor pointi by:

R(i) = −α · ω(i) + β · cost(i)
|fi|

;

end for
Find the setfi (i ∈ (P \ P ′)) that minimizesR(i);
Add corresponding anchor pointi intoP ′;
Record correspondingω(i) compatible pairs;
Remove the sensors inω(i) compatible pairs fromU ;
For each anchor pointj ∈ P andj 6= i

Remove the sensors inω(i) compatible pairs fromfj ;
end for

elsebreak;
end if

end while
If U 6= φ

For each nodev ∈ U
If v is in some neighbor sets of selected anchor points inP ′

Randomly associatev with a selected anchor pointi ∈ P ′

that can cover it, and updateF andU , accordingly;
end If

end For
end if
If U 6= φ

Follow MCST algorithm to find new selected anchor points that
cover the left sensors;

end If
Find an approximate shortest tour on anchor points inP ′.
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Chapter 3

A Region Division and Tour Planning

Algorithm for Mobile Data

Gathering with Multiple Mobile

Collectors and SDMA Technique

In this chapter, we extend the joint design of mobility and SDMA technique to large-

scale sensor networks, where a certain number of multiple SenCars are available for

use. In particular, the sensing field is divided into severalnon-overlapping regions,

each having a SenCar. Each SenCar gathers data from sensors in the region while

traversing their transmission ranges. We also consider exploiting SDMA technique

by equipping each SenCar with two antennas. With the support of SDMA, two dis-

tinct compatible sensors in the same region can successfully make concurrent data

uploading to their associated SenCar. We focus on the problemof minimizing max-

imum data gathering time among different regions, which is referred to as mobile

data gathering problem with multiple mobile collectors andSDMA, or MDG-MS

for short. Accordingly, we propose a region-division and tour-planning (RDTP)

algorithm, in which data gathering time is balanced among different regions. Sim-

ulation results show that the RDTP algorithm with two available SenCars achieves

at least56% time saving compared to the non-SDMA+single SenCar scheme.

The rest of this chapter is organized as follows. Section3.1 outlines the joint

design of mobility and SDMA technique when multiple SenCars are available. Sec-
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Figure 3.1: Two SenCars are deployed in the sensing field and gather data simulta-
neously in different regions.

tion 3.2 provides the definition and formulation of MDG-MS problem. Section

3.3 describes and illustrates the details of RDTP algorithm as the solution to the

MDG-MS problem. Section3.4shows the performance results of RDTP algorithm.

Finally, Section3.5concludes the chapter.

3.1 Design Overview

In the previous chapter, we have studied how to plan an efficient data gathering tour

when a single SenCar and SDMA technique are employed. However, in a large-

scale WSN, utilizing only a single SenCar may lead to a long datagathering tour

and cause data buffer overflow at sensors. To effectively deal with these problems,

in this chapter, we consider deploying multiple SenCars thatwork simultaneously in

a sensing field, each having the capability of exploiting SDMA technique to collect

data from scattered sensors in its sub-area.

In the data gathering scheme with multiple SenCars and SDMA technique, the

sensing field is divided into several non-overlappingregions, each having a SenCar.

We assume that each SenCar can forward the gathered data to oneof its nearby

SenCars, such that all data can be forwarded to the SenCar that will visit the static

data sink. The data forwarding among the SenCars can be performed when they

complete data gathering in each region or even can be done while they are moving
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on the paths except when the SenCars are communicating with their associated

sensors. This ensures that such inter-SenCar forwarding would not impact on data

gathering between sensors and their associated SenCars. In each region, a SenCar

takes the responsibility of collecting data from local sensors, similar to the case

of a single SenCar with SDMA technique that we have discussed in the previous

chapter. Fig.3.1 gives an example, where two available SenCars are working on

non-overlapping regions and SenCar1 would visit the data sink on its tour. When

a SenCar arrives at a selected anchor point in its region, its associated sensors are

scheduled to communicate with the SenCar by utilizing SDMA technique. Two

sensors in a compatible pair would upload data simultaneously in a time slot, while

an isolated sensor (i.e., a sensor not in any compatible pair) would send data to the

SenCar separately.

3.2 MDG-MS Problem

We assume that sensors can turn to sleep mode when the data gathering in the re-

spective regions is completed. Thus, finding optimal data gathering strategies to

prolong entire network lifetime and shorten data gatheringlatency among differ-

ent regions is equivalent to minimizing the maximum data gathering time among

different regions. This problem is referred to as data gathering with multiple Sen-

Cars and SDMA technique (MDG-MS) problem. Besides pursuing the tradeoff

between the shortest moving tour and the full utilization ofSDMA technique as in

the MDG-SDMA problem we have discussed in Chapter2, the focus of the MDG-

MS problem is to properly partition the selected anchor points and their associated

sensors so as to balance the data gathering time among different regions.

The MDG-MS problem can be formally described as follows. Given a set of

sensorsS = {1, 2, . . . , Ns}, a set of anchor pointsP = {1, 2, . . . , Np}, and a

set of SenCarsK = {1, 2, . . . , Nk}, find: (1) a set of subsets ofP, denoted by

P ′
1,P ′

2, . . . ,P ′
Nk

, which represent the selected anchor points in different regions that

satisfyP ′
1

⋂P ′
2

⋂ · · ·⋂P ′
Nk

= Φ andP ′
1

⋃P ′
2

⋃ · · ·⋃P ′
Nk

= P ′ ⊆ P, (2) a set of

subsets ofS, denoted byS ′
1,S ′

2, . . . ,S ′
Nk

, which represent the sensors assigned in

different regions that satisfyS ′
1

⋂S ′
2

⋂ · · ·⋂S ′
Nk

= Φ andS ′
1

⋃S ′
2

⋃ · · ·⋃S ′
Nk

=

S, (3) the compatible pairs among the sensors inS ′
i, i = 1, 2, · · · , Nk, (4) the se-

quence by which each SenCar visits the selected anchor pointsinP ′
i, i = 1, 2, · · · , Nk,
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such that the maximum data gathering time among a total ofNk regions can be min-

imized. The MDG-MS problem can be similarly formulated intoan ILP problem

as the MDG-SDMA problem, since the latter is a special case ofthe former with

Nk equal to1. It is known that the complexity of the ILP solution is generally

high, which may not be suitable for large-scale sensor networks. Thus, next we

propose a heuristic region-division and tour-planning algorithm (RDTP) to solve

this problem.

3.3 Region-Division and Tour-Planning (RDTP) Al-

gorithm

The basic idea of RDTP algorithm is to first consider the sensing field as a whole,

find compatible pairs and selected anchor points that would result in short data

gathering time as in the single SenCar case, then assign each of the selected an-

chor points a weight and divide them into different regions based on their weight.

Specifically, the RDTP algorithm contains four steps: (1) Find the compatible pairs

among sensors that result in minimum data uploading time; (2) Determine the se-

lected anchor points, which can achieve the compatible pairs obtained in the first

step and meanwhile lead to a short moving tour; (3) Build the minimum span-

ning tree among selected anchor points and assign a weight for each vertex on the

tree; (4) Decompose the minimum spanning tree into a set of subtrees based on the

weight of each vertex and find the shortest moving tours alongthe selected anchor

points on each subtree. We will describe the details in the following with the help

of an example in Fig.3.2. In the example, there are20 sensors inS (plotted as

labeled dots) and25 anchor points inP (plotted as small numbered circles). The

compatibility relationship among sensors is shown in Fig.3.2(a), where any two

compatible sensors are connected by a link. We have two SenCars available. Thus,

the problem is to divide the sensing field into two regions andplan the moving tour

for each SenCar in order to balance their data gathering time.

Since the data uploading time of sensors may become dominantcompared to the

moving time of the SenCar as the number of sensors increases, it is reasonable to

consider the data uploading time as the main factor that affects the selection of the

anchor points. Thus, in the first and second steps of the RDTP algorithm, we follow
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the principles of MCP algorithm for the single SenCar case to determine the com-

patible pairs and selected anchor points. That is, regardless of the region division

pattern, we would first consider the sensing field as a whole tofind the maximum

compatible pairs among all sensors and the minimum number ofselected anchor

points that can achieve such maximum compatible pairs. In this way, the sensors

can achieve the full utilization of SDMA globally for the minimum data uploading

time and the SenCar would also move on a short tour by visiting the minimum num-

ber of selected anchor points. The details are similar to those in MCP algorithm in

Chapter2 and we will not repeat here. In the example, there are9 compatible pairs

among the20 sensors to the maximum extent based on their compatibility relation-

ship, which are plotted as the bold lines in Fig.3.2(a). Without loss of generality,

we still assume that the data sink is located at the position of anchor point1. Fig.

3.2(b) indicates that anchor points1, 4, 7, 8, 12, 13, 15, 16 and19 are chosen as the

selected anchor points, i.e., the elements inP ′. Fig. 3.2(e)-(f) list the original and

updated neighbor sets of each anchor point and Fig.3.2(g) shows the selected an-

chor points and their associated sensors, which are also shown in Fig. 3.2(b) as the

sensors in the shadowed area around each selected anchor point.

After finding compatible pairs and selected anchor points, in the third step of

the RDTP algorithm, we organize the selected anchor points into a tree structure

and assign each of them a weight as the metric for partition. Specifically, we find

the minimum spanning treeT (V,E) among the selected anchor points inP ′ rooted

at the static data sink, denoted byrT . For example, in Fig.3.2(c) the minimum

spanning tree among the nine selected anchor points is shownas the bold lines

connecting them rooted at anchor point1. Letw(v) represent the weight for selected

anchor pointv. Next, we calculate the weight for each selected anchor point in P ′

according to the following criteria.

w(v) =
∑

u∈V (subT(v))

ρ(|fu| − |Mu|) +
∑

e∈E(subT(v))

λLe, v ∈ P ′ (3.1)

whereρ andλ are constant coefficients, which represent the time for a sensor to

upload its data and for a SenCar to move a unit distance, respectively, subT(v)

denotes the subtree ofT rooted atv, V (·) andE(·) represent the vertices and edges

on the tree,fu denotes the set of associated sensors with selected anchor point u,
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(a) Step 1: Find the maximum compatible

pairs among sensors.


1

2


3


4


5


6


7


8

9


10


11

12


13


14

15


16


19


20


13


19


17


18


20


15


22
 25
23


10


2
 3
 4
 5


11


16


24


6


17


9


18


1


8


12
 14


7


(b) Step 2: Determine the selected anchor

points and association pattern of sensors.
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(c) Step 3: Find the minimum spanning tree

among the selected anchor points.
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(d) Step 4: Divide the selected anchor points

into two parts based on their weights.
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Original neighbor set of each anchor point:
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20: {14,16}


21: {20}

22: {20}
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24: {16}

25: {16}


(e) Original neighbor set of each anchor point


Updated neighbor set of each anchor point:

1: {1}

2: {1}

3: { }

4: {8,9}
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(f) Updated neighbor sets based on maximum compatible pairs.


Selected anchor points and their

associated sensors:


1: {1}
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(g) Selected anchor points.
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Figure 3.2: Illustration of the region-division and tour-planning (RDTP) algorithm.

45



Mu denotes the compatible pairs among the sensors associated with selected anchor

point u, andLe is the length of edgee. The first term ofw(v) represents the sum

of the data uploading time at the selected anchor points on the subtree rooted atv,

while the second term is the sum of the moving time along the edges on the subtree.

Hence, the weight of vertexv implicitly indicates the expected data gathering time

if a SenCar visits each of the selected anchor points on the subtree rooted at it

and collects data from the associated sensors. Apparently,the root has the largest

weight compared to all other vertices onT . We consider it as the total weight ofT

and denote it asWT . In the example, the weight for each selected anchor point is

labeled as shown in Fig.3.2(c), whereρ andλ are set to12.5 and1.25, respectively

and the two adjacent anchor points are30m apart. Under these settings,WT is equal

to 515.2, which is also the weight of the root ofT (i.e.,w(1)).

Now, the remaining problem is how to divide the selected anchor points and

their associated sensors into different regions (for different SenCars), in order to

balance the data gathering time among these regions. In the fourth step of the algo-

rithm, we focus on solving this problem. Suppose there are a total of Nk available

SenCars, which means that the selected anchor points are to bepartitioned intoNk

parts. The basic idea is to decompose the minimum spanning treeT into Nk parts,

by iteratively finding a subtreet based on the weight of each vertex onT and prun-

ing t from T . To build a subtree in each iteration, first find the farthest leaf vertexv

onT with the minimum weight. Letm denote the number of remaining SenCars at

each iteration, thus,m = Nk initially. If w(v) < WT /m, find its parent vertex onT ,

denoted byPA(v) and letv = PA(v). Check its weight and repeat this up-tracing

process untilw(v) ≥ WT /m. Record this vertexv and consider it as the root of the

subtreet. All vertices ont are removed fromT , which means that the correspond-

ing selected anchor points ont will be assigned to a region (or a SenCar). After

that, updateWT , m, andw(v) for each vertex on the updatedT , and then repeat

the procedure to find another subtree. When there is only one available SenCar left,

i.e., m = 1, all remaining selected anchor points and their associatedsensors are

simply assigned to this SenCar and the procedure terminates.To better understand

it, let us take a look at the example in Fig3.2(c). In the first iteration, anchor point

15, as the farthest leaf vertex onT , has the minimum weight equal to12.5. Thus,

v is set to15. Sincem = Nk = 2 andWT = 515.2, w(15) < WT /m = 257.6.

Next, check the weight of anchor point19, which is the parent vertex of anchor
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Table 3.1: Procedure of dividing selected anchor points andtheir associated sensors
into Nk parts.

ProcedureDivision (T , Nk)
For all v onT do

Calculatew(v) according to Eq. (3.1);
end for
m← Nk;
While m > 1
WT ← w(rT );
v ← the farthest leaf vertex onT with minimumw(v);
While w(v) < WT /m
v ← PA(v);

end while
Build the subtreet of T rooted atv;
Add the vertices ont toP ′

m;
Add the corresponding associated sensors toS ′

m;
Remove the subtreet from T ;
Updatew(v) for eachv on the remainingT ;
m← m− 1;

end while
Assign the remaining selected anchor points onT toP ′

1;
Assign the corresponding associated sensors toS ′

1;
Find approximate shortest tours that visit selected anchorpoints in
P ′

1,P ′
2, . . . ,P ′

Nk
, respectively.

point 15 on T . Sincew(19) is still less thanWT /m, the up-tracing continues until

anchor point8 is found with the weight larger thanWT /m. Thus, anchor point8 is

considered as the root of the subtreet. All vertices ont, which are anchor points

4, 8, 13, 15 and19, are assigned toP ′
2 and their associated sensors are assigned to

S ′
2. This means that the sensors inS ′

2 are considered belonging to region2 and

the SenCar responsible for region2 will gather the sensing data from these sensors

by visiting the selected anchor points inP ′
2. After removing these selected anchor

points fromT , updatew(v) for each vertex on the remainingT , which is shown in

Fig. 3.2(d). Also, WT is recalculated with the result equal to206.1 andm is up-

dated to1. Now, since only one available SenCar is left (i.e.,m = 1), all remaining

selected anchor points and their associated sensors are simply assigned toP ′
1 and
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Table 3.2: Region-division and tour-planning (RDTP) algorithm.

Inputs:
SetS containingNs sensors
SetP containingNp anchor points
SetK containingNk SenCars
Neighbor family setF = {fi|i ∈ P}, wherefi is the neighbor set of
anchor pointi
Distance matrixD = {di,j}|P|×|P|, wheredi,j is the segment
length between anchor pointsi andj
Compatibility relationship matrixC(P) = {cm,n,i}|S|×|S|×|P|

Outputs:
A setP ′ of selected anchor points withP ′ = P ′

1

⋃P ′
2

⋃
. . .
⋃P ′

Nk

A set of subsets ofP, P ′
1,P ′

2, . . . ,P ′
Nk

, each representing selected
anchor points in a region
A set of subsets ofS, S ′

1,S ′
2, . . . ,S ′

Nk
, each representing sensors

associated in a region
Compatible pairs in each region
Moving tour of each SenCar

RDTP algorithm:
1: Find maximum compatible pairsM based onC(P);
2: UpdateF according toM;

Find minimum set cover ofF by the greedy algorithm;
Add corresponding anchor points of selected neighbor sets toP ′;

3: Find minimum spanning treeT among selected anchor points inP ′;
Calculate the weight of each vertex onT ;

4: DivideP ′ intoP ′
1,P ′

2, . . . ,P ′
Nk

and divideS into S ′
1,S ′

2, . . . ,S ′
Nk

by iteratively finding a subtree ofT ;
Find approximate shortest tours that visit selected anchorpoints in
P ′

1,P ′
2, . . . ,P ′

Nk
, respectively.
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S ′
1, respectively. Finally, we determine the shortest moving tour for each SenCar to

visit the selected anchor points in its region by the approximate algorithm for the

TSP problem. As a result, the moving tours of the two SenCars inthe example are

as given in Fig.3.2(d): SenCar 2:8 → 13 → 19 → 15 → 4 → 8 and SenCar 1:

1(DS) → 7 → 12 → 16 → 1(DS). The details of the procedure in step 4 of the

RDTP algorithm are given in Table3.1.

Finally, we summarize the RDTP algorithm in Table3.2. Given a total ofNs

sensors andNp anchor points, the time complexity of the RDTP algorithm can

be analyzed as follows. The operations of the first two steps in the RDTP algo-

rithm, which are identical to those in the MCP algorithm, takeO(N3
s + N s

s Np +

NsNp min(Ns, Np)) time. In the third step, a simple implementation of Prim’s al-

gorithm [88] for finding the minimum spanning tree among the selected anchor

points requiresO(N2
p ) time. Assigning the weight for each vertex on the spanning

tree costsO(Np) time. For the last step as shown in Table3.1, given a total ofm

available SenCars, the outer while loop will be executedm−1 rounds and the inner

while loop will be performed at mostNp times. Furthermore, finding the approxi-

mate shortest tours that visit the selected anchor points indifferent regions can be

done inO(N2
p ) time. Thus, in the general case whereNs ≥ Np, the overall time

complexity of the RDTP algorithm isO(N3
s ).

3.4 Performance Evaluation

In this section, we evaluate the performance of the RDTP algorithm for the MDG-

MS problem and compare it with other three mobile data gathering schemes.

We still consider aD × D square sensing field, where a total ofNs sensors

are randomly distributed, andNp anchor points are located at the intersections of

grids with each anchor point apart from its adjacent anchor points in horizontal and

vertical directions with equal distance. A total ofNk SenCars are available for use.

We assume that the radiusr of the coverage area of each anchor point is30m, the

size of the sensing dataq in each sensor is1Mb, the effective data uploading rate

of each sensorvd is equal to80Kbps, and the moving velocity of each SenCarvm

is set to0.8m/sec, if not stated otherwise.

Fig. 3.3 plots the data gathering time of different schemes whenNs varies

from 10 to 150, whereNp is equal to36 andD is set to100m. We compare four
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Figure 3.3: Performance of the RDTP algorithm: Data gathering time of four
schemes as a function ofNs.

mobile data gathering schemes: without SDMA and with a single SenCar (non-

SDMA+single-SenCar), with SDMA and with a single SenCar (SDMA+single-

SenCar), without SDMA and with two SenCars (non-SDMA+two-SenCars), and

with SDMA and with two SenCars (SDMA+two-SenCars, which is theRDTP

scheme). When multiple SenCars are used, the data gathering time refers to the

maximum time of a data gathering tour among different regions. It can be seen

that the data gathering time of all schemes increases asNs increases. However,

the RDTP always outperforms other schemes due to the concurrent use of multi-

ple SenCars and simultaneous data uploading among the sensors with the support

of SDMA technique. For instance, it achieves56% time saving compared to the

non-SDMA+single-SenCar scheme whenNs is set to100. This trend of superiority

becomes even more remarkable asNs increases. Shorter data gathering time leads

to longer network lifetime since sensors can turn to power-saving mode once the

data gathering in their region is done.

Fig. 3.4shows that data gathering time of RDTP varies withNs under different

settings ofvm andvd, whereD is set to100m. There are36 anchor points and two

available SenCars. We consider two configurations of (vm, vd), which are (vm =

1m/sec, vd = 50kbps) and (vm = 0.6m/sec, vd = 110kbps), to represent two

different cases. The observations in the single SenCar algorithms are still applicable

here. It is noticed that whenNs is small, the moving velocity of SenCarvm has a

greater impact on the data gathering time thanvd. Higher moving velocity, such as

vm = 1m/sec in Case I, results in shorter data gathering time even with a smaller
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Figure 3.5: Performance of the RDTP algorithm: Data gathering time of RDTP
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vd than the other case. It is reasonable since the moving time ofeach SenCar is

dominant when the sensors are sparsely scattered. On the contrary, whenNs is

large, the effect ofvd on the data gathering time of a SenCar overwhelms that of

vm. For example, whenNs increases to more than60, the data gathering time for

Case II, which has a higher effective data uploading rate asvd = 110kbps, is shorter

than that of Case I. This is because that more sensors make the data uploading time

dominant in each region and they provide more opportunitiesto extract the benefit

of SDMA technique to the maximum extent.

Fig. 3.5plots the data gathering time of RDTP varying withD under different

settings ofNk, whereNs is set to50 andNp is set to49. We can see that asD

increases, the data gathering time increases. The reason ofthe increase is two fold.
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First, the maximum number of compatible pairs among sensorsdecreases as the

sensing area becomes larger since the sparser distributionmakes it less possible for

any two sensors to be compatible. Second, the distance between any two selected

anchor points becomes larger with the increase ofD. Apparently, the moving tour

of each SenCar may also become longer than that with a smallerD. It is also

noticed that the data gathering time is shortened with more available SenCars as

data gathering load is shared and balanced among different SenCars. For example,

whenD is set to120m, the data gathering time is equal to1160sec if there is only

one available SenCar (i.e.,Nk = 1). In contrast, the data gathering time drops to

753sec and576sec when there are two and three available SenCars, respectively,

achieving35% and51% improvement with respect to that with a single SenCar,

respectively.

3.5 Conclusions

In this chapter, we have considered mobile data gathering inWSNs by applying

multiple mobile collectors and SDMA technique. We formalized this problem as

MDG-MS problem and proposed a region-division and tour-planning algorithm to

provide a practically good solution to the problem. Simulation results demonstrate

that our proposed RDTP algorithm can effectively shorten thedata gathering latency

for large-scale sensor networks compared to other non-SMDAor single mobile

collector schemes.
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Chapter 4

Bounded Relay Hop Mobile Data

Gathering in WSNs

In this chapter, we study the tradeoff between energy savingand data gathering la-

tency in mobile data gathering by exploring a balance between the relay hop count

of local data aggregation and the moving tour length of the SenCar. We first pro-

pose a polling-based mobile gathering approach and then formulate it into an opti-

mization problem, namedbounded relay hop mobile data gathering (BRH-MDG).

Specifically, a subset of sensors will be selected as pollingpoints that buffer locally

aggregated data and upload the data to the SenCar when it arrives. In the mean-

while, when other sensors are affiliated with these polling points, it is guaranteed

that any packet relay for local aggregation is bounded within a given number of

hops. We give two efficient algorithms for selecting pollingpoints among sensors.

The effectiveness of our approach is validated through extensive simulations.

The rest of this chapter is organized as follows. Section4.1provides the back-

ground and introduction of this research work. Section4.2reviews the related work

on some categories of mobile data gathering schemes. Section 4.3 outlines the

polling-based approach and formulates the BRH-MDG problem. Sections4.4 and

4.5present two algorithms to solve the BRH-MDG problem, respectively. Section

4.6 evaluates the efficiency of the proposed algorithms throughextensive simula-

tions. Finally, Section4.7concludes the chapter.
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(c) Mobile data gathering by vis-
iting each sensor and static data
sink.

Figure 4.1: An example to illustrate the tradeoff between energy saving and data
gathering latency in a sensor network.

4.1 Introduction

Recent studies [22]-[36] have shown that energy consumption at sensors can be

greatly reduced with mobile data gathering, since the mobility of the collector ef-

fectively dampens the relay hops of each packet. Intuitively, to pursue maximum

energy saving, a SenCar should traverse the transmission range of each sensor in the

field so that each packet can be transmitted to the SenCar in a single hop. However,

due to the low velocity of the SenCar, it would incur long latency in data gathering,

which may not meet the delay requirement of time-sensitive applications.

According to the empirical studies [36][38], the packet relay speed in a WSN is

about several hundred meters per second, which is much higher than the velocity at

which the SenCar moves. Hence, in general, the latency of multi-hop relay routing

and its variants is much shorter than that of the mobile data gathering. Whereas, as

aforementioned, mobile data gathering pursues energy saving by simply reducing

the relay hops among sensors. From these observations, it isclear that there is an

intrinsic tradeoff between the energy saving and the data gathering latency. To better

understand this tradeoff, we illustrate it with an example in Fig. 4.1. A network with

300 sensors is configured as shown in Fig.4.1(a) with the static data sink located

at the center of a 300m by 300m field. When we adopt multi-hop routing for data

gathering and each packet is forwarded along its shortest path with the minimum

hop count to the data sink, the result is depicted in Fig.4.1(b), where each packet

needs 5.3 hops on average to reach the data sink. On the other hand, when a SenCar
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is employed, one of the extreme cases for energy saving is that the SenCar gathers

data packets by sequentially visiting each sensor, which guarantees that each sensor

can directly upload data to the SenCar without any relay. In this way, the number

of transmissions is greatly reduced, however, the SenCar hasto travel along a tour

of 4012m in length as shown in Fig.4.1(c). Since the typical velocity of a practical

mobile system is about 0.1 - 2m/s [39], it will take the SenCar about 66.9 minutes

on the tour when it moves at an average speed of 1m/s.

Therefore, in order to shorten data gathering latency, it isnecessary to incor-

porate multi-hop relay into mobile data gathering, however, the relay hop count

should be constrained to a certain level to limit the energy consumption at sensors.

In this chapter, we would address this issue by proposing a polling-based approach

that pursues a tradeoff between the energy saving and data gathering latency, which

achieves a balance between the relay hop count for local dataaggregation and the

moving tour length of the SenCar. Specifically, a subset of sensors will be selected

as thepolling points(PPs), each aggregating the local data from its affiliated sen-

sors within a certain number of relay hops. These PPs will temporarily cache the

data and upload them to the SenCar when it arrives.

The main contributions of this work can be summarized as follows. (1) We

characterize the polling-based mobile data gathering as anoptimization problem,

namedbounded relay hop mobile data gathering,or BRH-MDGfor short. We then

formulate it into an integer linear program (ILP) and prove its NP-hardness. (2) We

propose two efficient algorithms to find a set of PPs among sensors. The first algo-

rithm is a centralized algorithm that places the PPs on the shortest path trees rooted

at the sensors closest to the data sink, and takes into consideration the constraints

on relay hops for local aggregation while shortening the tour length of the SenCar.

The second algorithm is a distributed algorithm, where sensors compete to be a PP

based on their priorities in a distributed manner. (3) We evaluate the performance

of the proposed algorithms by comparing them not only with the optimal solution

obtained by CPLEX [94] based on our ILP formulation modeling in AMPL [95],

but also with other two existing mobile data gathering schemes. Simulation results

demonstrate that the proposed algorithms achieve superiorperformance.
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4.2 Related Work

In this section, we briefly review some recent work on mobile data gathering related

to the topic of this work. Based on the mobility pattern, we candivide mobile data

gathering schemes into two categories.

The first category has uncontrollable mobility, in which themobile collector ei-

ther moves randomly or along a fixed track, see, for example, [22]-[39]. In [22],

Shah, et al. proposed to use a special type of mobile nodes as forwarding agents to

facilitate connectivity among static sensors and transport data with random mobil-

ity. Jain, et al. [12] enhanced the work in [22] by presenting an analytical model

to understand the key performance metrics of the systems that exploit the mobility

in data collection, such as data transfer, latency to the destination, and power con-

sumptions. Jea, et al. [26] restricted the mobile nodes to move along straight lines to

collect data in the vicinity of the lines. In [41][42], radio-tagged zebras and whales

were used as mobile nodes in a wild area. Finally, Batalin, et al. [39, 40] set up

a system named NIMs, where mobile collectors can only move along fixed cables

between trees to ensure that they can be recharged any time during the movement.

A common feature of these approaches is that they generally have high stability and

reliability, and the system maintenance is simple. However, they typically lack the

agility and cannot be adaptive to the sensor distribution and environmental dynam-

ics.

The second category has controlled mobility, in which mobile collectors can

freely move to any location in the field and its trajectory canbe planned for specific

purposes, see, for example, [30]-[36]. Within this category, the schemes can be

further divided into three sub-classes. In the first subclass, the mobile collector is

controlled to visit each sensor or traverse the transmission range of each sensor and

gather the sensing data from them within single hop transmissions [30][28]. So-

masundara, et al. [30] studied the scheduling of mobile elements to ensure no data

loss due to buffer overflow. While these approaches minimize the energy cost and

balance energy consumption among different sensors by completely avoiding multi-

hop relays, they may result in long data gathering latency especially in a large-scale

sensor network. In the second subclass, mobile collectors gather data from the sen-

sors in the vicinity via multi-hop transmissions along its trajectory. Ma and Yang

[27] gave a moving path planning algorithm by finding some turning points, which
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is adaptive to the sensor distribution and can effectively avoid obstacles on the path.

Along each moving line segment between the turning points, the sensors forward

packets to the mobile collector in a multi-hop fashion. Kusy, et al. [43] proposed al-

gorithm for improving routing reliability by introducing the mobility graph, which

encodes the knowledge of likely mobility patterns within the network. The mobility

graph can be extracted from training data and is used to predict future relay nodes

for the mobile node to maintain uninterrupted data streams.Luo and Hubaux [32]

proposed that data packets should be gathered with multi-hop relays while the mo-

bile collector moves along the perimeter of the sensing field, which is considered as

the optimal path for the mobile collector. Karenos and Kalogeraki [44] explored the

congestion and rate allocation problems in mobile data gathering. They provided

a new routing alternative that is adaptive to fast reliability fluctuations caused by

sink mobility. Xu, et al. [45] studied the event collection problem by leveraging the

mobility of the sink node and the spatial-temporal correlation of the event, in fa-

vor of maximizing the network lifetime at a guaranteed eventcollection rate. They

modeled the problem as a sensor selection problem and analyzed the design of a

feasible moving route for the mobile sink to minimize the velocity requirements for

a practical system. Gatzianas and Georgiadis [59] optimized data gathering per-

formance by presenting a distributed maximum lifetime routing algorithm, where a

mobile collector sequentially visits a set of anchor pointsand each sensor transmits

data to the mobile collector at some anchor points via energy-efficient multi-hop

paths. These approaches can effectively shorten or constrain the moving tour of

the mobile collector to a certain level, however, they do notimpose any constraint

on the relay hop count. As a result, network lifetime (or a certain level of energy

efficiency) cannot be guaranteed. The last subclass includes the approaches that

jointly consider data transmission patterns and moving tour planning. For instance,

Bote, et al. [47] considered utilizing ultra-wide band (UWB) communicationsfor

data gathering in WSNs. Adopting a Voronoi diagram based approach, they pro-

posed an algorithm to determine the minimal set of data collection points and the

route taken by the mobile node. Xing, et al. [36] proposed a rendezvous design to

minimize the distance of multi-hop routing paths for local data aggregation under

the constraint that the tour length of the mobile collector is no longer than a thresh-

old. Our work in this chapter falls into this subclass, whichaims to minimize the

tour length of the mobile collector and guarantee the local data aggregation within
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bounded relay hops.

4.3 BRH-MDG Problem

In this section, we first give an overview of the proposed polling-based mobile data

gathering scheme and then formulate it into an optimizationproblem.

4.3.1 Overview

Since the mobile collector, i.e., SenCar, has the freedom to move to any location

in the sensing field, it provides an opportunity to plan an optimal tour for it. Our

basic idea is to find a set of special nodes referred to aspolling points(PPs) in

the network and determine the tour of the SenCar by visiting each PP in a specific

sequence. With sensors properly affiliated with these PPs, the relay routing for local

data aggregation can be constrained withind hops, whered is a system parameter

for the relay hop bound. Or, alternatively, we can say that a PP covers its affiliated

sensors withind hops. The setting ofd is based the user-application needs, which

reflects how to balance the tradeoff between the energy saving and data gathering

latency. For example, when the energy supply of sensors is not sufficient or the data

gathering service is somewhat delay-tolerant, we typically setd to a small value.

The PPs can simply be a subset of sensors in the network or someother special

devices, such as storage nodes [21] with larger memory and more battery power.

In the latter case, the storage nodes are not necessarily be placed at the positions

of sensors, which may bring more flexibility for the tour planning. However, such

special devices would incur a significant amount of extra cost. Therefore, in this

chapter, we focus on selecting a subset of sensors as the PPs.Each PP temporarily

buffers the data originated from its affiliated sensors. Whenthe SenCar arrives, it

polls each PP to request data uploading. Upon receiving the polling message, a

PP uploads data packets to the SenCar in a single hop. The SenCarstarts its tour

from the static data sink, which is located either inside or outside the sensing field,

collects data packets at the PPs and then returns the data to the data sink. Since

the data sink is the starting and ending points of the data gathering tour, it can also

be considered as a special PP. We refer to this scheme as thepolling-based mobile

data gathering scheme. It is further illustrated in Fig.4.2, where the sensors in the

58



Sensor
 Mobile collector tour
Relay routing path

Polling point
 Static data sink


Figure 4.2: Illustration of polling-based mobile data gathering with the relay hop
count bounded within two hops, i.e.,(d = 2), for local data aggregation.

shadowed area will locally aggregate data packets to their affiliated PP within two

hops (i.e,d = 2). For generality, we do not make any assumption on the distribution

of the sensors or node capability, such as location-awareness. Each sensor is only

assumed to be able to communicate with its neighbors, that is, the nodes within its

proximity.

In practice, there are several reasons that the relay hop count should be bounded.

First, a sensor network may be expected to achieve a certain level of energy effi-

ciency system wide. For instance, if each transmission costs one unit of energy and

the energy efficiency of 0.33 energy−unit/packet is expected, each packet should be

forwarded from its originating sensor to the data sink in no more than three hops

on average, i.e., each packet should be relayed to its PP within two hops. Second,

the bound is necessary due to buffer constraint on the sensors. Since the PPs need

to buffer the locally aggregated data before the SenCar arrives, it is not desirable to

associate too many sensors with a PP. Otherwise, the buffer of the PP may not be

able to accommodate all the data packets. For example, consider a sensor network

with an average node degree of 4. If a sensor is selected as a PPand the local re-

laying is constrained within two hops, there will be up to 17 sensors affiliated with

this PP. Therefore, the buffer capacity of the PPs and the sensor density impose a

limit on relay hops.

4.3.2 BRH-MDG Problem Formulation

Having described the polling-based mobile data gathering scheme, in this subsec-

tion, we formulate it into an optimization problem, namedbounded relay hop mo-
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Table 4.1: Notations used in formulation of BRH-MDG Problem.
Indices:
S = {1, . . . , N} A set of sensors, which is also the set of

candidate PPs.
π The static data sink.
Constants:
d > 0 The relay hop bound for local data aggregation.
fij = {0, 1} ∀i, j ∈ S If sensori is one-hop neighbor of sensorj,

fij = 1, otherwise,fij = 0.
lij > 0 ∀i, j ∈ S Distance between sensori and sensorj.
Variables:
Ii = {0, 1} ∀i ∈ S ∪ {π} If sensori is selected as a PP,Ii = 1, otherwise,

Ii = 0. The static data sink is a special PP, i.e.,Iπ = 1.
aiu = {0, 1} ∀i, u ∈ S If sensori is on the routing tree rooted

at PP (= sensorj), aij = 1, otherwise,aij = 0.
xh

iju = {0, 1} ∀i, j, u ∈ S A node(i, u, h) is associated with sensori,
h = 1, 2, . . . , d if the path from which to PP (= sensoru) containsh arcs.

If arc {(i, u, h− 1), (j, u, h)} is contained in
the optimal solution,xh

iju = 1, otherwise,xh
iju = 0.

Wheni = j, xh
iiu represents whether sensori is

on the layerh of the routing tree rooted at PP (= sensoru).
euv = {0, 1} ∀u, v ∈ S ∪ {π} If the moving tour contains the line segment

betweenu andv, euv = 1, otherwise,euv = 0.
yuv > 0 ∀u, v ∈ S ∪ {π} The flow from sensoru to sensorv.

bile data gathering,or BRH-MDG for short. Our objective is to find a subset of

sensors as the PPs and a set of routing paths that connect eachsensor in the field to

a PP withind hops, such that the tour length of the SenCar can be minimized.The

problem is formally defined as follows.

Definition 1. Bounded Relay Hop Mobile Data Gathering (BRH-MDG) Problem.

Given a set of sensorsS and a relay hop boundd, find (1) A subset ofS, denoted

byP (P ⊆ S), which represents the PPs; (2) A set of geometric trees{Ti(Vi, Ei)}
that are rooted at each PP inP and

⋃
i Vi = S. The depth of each geometric tree is

at mostd; (3) The data gathering tourU by visiting each PP inP and the data sink

π exactly once, such that
∑

(u,v)∈U |uv| is minimized, whereu, v ∈ P ∪ {π}, (u, v)

is a line segment on the tour and|uv| is its Euclidean distance.

Apparently, the BRH-MDG problem consists of several subproblems. The first

one is the affiliation pattern of the sensors, which can be stated as: by which PP a

sensor is covered within the relay hop bound. The second one is how to construct

a routing tree rooted at a particular PP with depth at mostd that connects all its

affiliated sensors. The third one is to find a shortest round trip among the PPs

and the static data sink, which is exactly the Traveling Salesman Problem (TSP).
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The challenge of the BRH-MDG problem is that these three subproblems should

be jointly considered in order to find optimal PPs among sensors. Based on these

subproblems and using the notations in Table4.1, the BRH-MDG problem can be

formulated as the following integer linear program.

Minimize
∑

u,v∈S∪{π},u 6=v

luveuv (4.1)

Subject to

aiu ≤ Iu,∀i, u ∈ S (4.2)
∑

u∈S

aiu = 1,∀i ∈ S (4.3)

∑

i∈S

aiu ≥ Iu,∀u ∈ S (4.4)

auu = Iu,∀u ∈ S (4.5)

xh
iju <= Iu,∀i, j, u ∈ S, h = 1, 2, . . . , d (4.6)

xh
uuu = 0,∀u ∈ S, h = 1, 2, . . . , d (4.7)

xh
iju ≤

1

2
(aiu + aju) · fij ,∀i, j, u ∈ S, i < j, h = 1, 2, . . . , d (4.8)

x1
iiu = x1

uiu = aiu · fiu,∀i, u ∈ S (4.9)
d∑

h=1

∑

u∈S

xh
iiu = 1− Iu,∀i ∈ S (4.10)

xh
iiu =

∑

j∈S,i6=j

xh
jiu,∀i, u ∈ S, i 6= u, h = 1, 2, . . . , d (4.11)

xh
iju ≤ 0.5 ·

(
xh−1

iiu + xh
jju

)
,∀i, j ∈ S, i 6= j, h = 2, . . . , d (4.12)

d∑

h=1

∑

i,j∈S,i6=j

xh
iju =

∑

i∈S,i6=u

aiu,∀u ∈ S (4.13)

∑

v∈S∪{π}

euv = Iu,∀u ∈ S ∪ {π} (4.14)

∑

u∈S∪{π}

euv = Iv,∀v ∈ S ∪ {π} (4.15)

yuv ≤ (|S|+ 1) · euv,∀u, v ∈ S ∪ {π}, u 6= v (4.16)
∑

u∈S∪{π},u 6=π

yuπ =
∑

u∈S∪{π}

Iu (4.17)

∑

v∈S∪{π},u 6=v

yuv −
∑

w∈S∪{π},w 6=u

ywu = Iu,∀u ∈ S ∪ {π} (4.18)
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In the above formulation, objective function (4.1) minimizes the tour length of

the SenCar, which also implies the shortest latency for data gathering. The con-

straints are explained as follows.

Constraints (4.2)-(4.5) for subproblem 1: These constraints ensure that a sensor

should be affiliated with (or covered by) one and only one PP such that its sensing

data can be collected during the tour. A sensor selected as a PP will be affiliated

with itself.

Constraints (4.6)-(4.13) for subproblem 2: Since the relay hop boundd limits

the number of hops between the root PP and its affiliated sensors, each geometric

tree can be considered as having at mostd layers. Sensori is associated with a triple

(i, u, h) and variablexh
iiu indicates whether sensori is in layerh (1 ≤ h ≤ d) of

the tree rooted at sensoru. Variablexh
iju (i 6= j) is associated with arc{(i, u, h −

1), (j, u, h)}, which indicates whether arc(i, j) is on the geometric tree rooted at

sensoru with sensorsi and j in layersh − 1 and h, respectively. Constraints

(4.6)-(4.7) guarantee that each sensor can only be associated with the tree rooted

at a PP and exclude the sensors selected as the PPs since they are automatically

the roots and will not be in any layer of a tree (or can be considered in layer0).

Constraints (4.8)-(4.9) address that only if two neighboring sensors, say,i andj,

are simultaneously affiliated with the same PPu, arc {(i, u, h − 1), (j, u, h)} is

qualified to be on the tree in the optimal solution. For the special case that sensori

is the neighbor of its affiliated rootu, sensori will be in layer1 of the tree rooted at

u, and arc{(u, u, 0), (i, u, 1)} is the edge connectedu andi on the tree. Constraints

(4.10)-(4.12) enforce that each sensor can only be in one layer of a tree andit has

only one connection with the sensors in the immediate upper layer to ensure the

tree structure. Constraints (4.13) indicates that the number of edges on each tree is

equivalent to the number of affiliated sensors excluding thePP itself.

Constraints (4.14)-(4.18) for subproblem 3: Constraints (4.14) -(4.15) guarantee

that the SenCar enters and departs each PP as well as the data sink only once.

Constraint (4.16) restricts that the network flow can take place only when the arc

is on the moving tour. Constraints (4.17)-(4.18) enforce that for each PP, the units

of outgoing flow are one unit more than that of the incoming flow. The flow units

entering the data sink, which acts as the starting and endingpoints of the tour, are

equal to the number of PPs [28]. It was shown in [89] that constraints (4.16)-(4.18)

62



can effectively exclude the solution with subtours.

We have the following theorem concerning the BRH-MDG problem.

Theorem 3. The BRH-MDG problem is NP-hard.

Proof. The NP-hardness of the BRH-MDG problem can be shown by giving a

polynomial-time reduction from TSP problem to a special case of BRH-MDG prob-

lem. Given a complete graphG = (V,E) as an instance of TSP. We construct an

instance of BRH-MDG on graphG′ = (V ′, E ′), which is topologically identical to

G. V ′ is the set of vertices that includes all the sensors and the data sink, andE ′ rep-

resents the edges between any two vertices. We assume that the sensors are located

such that they are unreachable from each other via wireless transmissions, which

can be achieved by reducing the transmission range below a certain level. This re-

duction is straightforward and can certainly be done in polynomial time. Now, in

this case it is infeasible for the data packets of a sensor to be relayed by others. The

SenCar has to visit each sensor to gather data packets, which implies that all the

sensors and the data sink are the PPs. Hence, the tour length of the data gathering

in G′ corresponds to the total cost of the TSP inG. The TSP inG will have a path

with minimum cost in distance if and only if the same path inG′ is the tour with the

minimum length for BRH-MDG. Thus, the BRH-MDG problem is NP-hard.

4.4 Centralized Algorithm for BRH-MDG Problem

Due to the NP-hardness of the BRH-MDG problem, in this section,we first develop

a centralized heuristic algorithm for the BRH-MDG problem. Itwill serve as a basis

for the distributed algorithm in the next section. It is worth pointing out that the

solution exploration procedure for the algorithms only needs to be executed when

the network topology updates or the relay hop bound changes,thus does not need

to be frequently repeated.

As discussed earlier, in order to find optimal PP locations among sensors, relay

routing paths and the tour of the SenCar should be jointly considered. On one hand,

when no SenCar is employed, for each sensor, the best way to relay data packets

to the static data sink is along its shortest path with the minimum hop count, under

the assumption that energy consumption is proportional to the number of transmis-

sions. On the other hand, when a SenCar is available, the data gathering tour can be
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effectively shortened in two ways: First, the sensors selected as the PPs are com-

pactly distributed and close to the data sink. Second, the number of the PPs is the

smallest under the constraint of the relay hop bound. Based onthese observations,

we propose an algorithm, namedshortest path tree based data gathering algorithm

(SPT-DGA)with its pseudo code listed in Algorithm1. The basic idea of the al-

gorithm is to iteratively find a PP among the sensors on a shortest path tree (SPT),

which is the nearest sensor to the root that can connect the remote sensors on the

tree. Also, each PP strives to link as many as possible sensors it can reach within

the relay hop bound in order to minimize the total number of PPs.

The first task of SPT-DGA is to construct SPTs that cover all sensors in the net-

work (see Algorithm1, line 1). Since the network can be disconnected, there may

exist more than one SPTs when the sensors are sparsely distributed. Considering

this, when we find a root for the SPT to be constructed, we will choose the sensor

closest to the data sink from the sensors not on the existing SPTs. We call such a

sensorcentroid.The reason why we choose the centroid rather than a random sen-

sor as the root is that we want the PPs to converge towards the static data sink. Each

SPT would link all the possible sensors under the connectivity restriction. This way,

our scheme can be applied to not only connected networks, butalso disconnected

networks, which is one of the main advantages of the mobile data gathering over

the traditional relay routing.

The next task of SPT-DGA is to iteratively find a PP on SPTs. We consider the

sensor network as a graphG(V,E), whereV = S represents all the sensors in the

network, andE is the set of edges connecting any two neighboring sensors. In the

following discussion, for clarity and simplicity, we will focus on a single SPT. The

algorithm can be described as follows. We consider a SPT denoted byT ′(V ′, E ′)

with V ′ ⊆ V andE ′ ⊆ E. In each step, we first find the farthest leaf vertexv

on T ′. There are two possible cases forv depending on whether it is already a PP

or not. The first case is thatv has not been selected as a PP yet (see Algorithm1,

lines5-15). In this case,T ′ is traversed along the shortest path ofv towards the root

to find itsd-hop parent vertex. Letu denote thed-hop parent ofv. Sincev is the

vertex with the farthest depth, all other child vertices ofu can reachu within d hops.

Hence, we can let the corresponding sensoru be the PP found in the current iteration

since it is the nearest one to the root that can connect the sensors in the periphery

of the network based on the SPT structure. ThenT ′ is updated by removing all the
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(a) Iteration 1.
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(b) Iteration 2.
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(c) Iteration 3.
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(d) Final result.

Figure 4.3: An example to illustrate the SPT-DGA algorithm (N = 25, d = 2).

child vertices ofu and their pertinent edges, which implies that the corresponding

sensors will be affiliated withu for local data aggregation. It is worth pointing out

that we still keepu on the updatedT ′ in order to facilitate the possible affiliations

of other nearby sensors withu in future iterations. In the rare case that the root

of T ′ was reached during the process of finding thed-hop parent vertex ofv, the

algorithm terminates since all the vertices on currentT ′ are definitely withind hops

to the root. Correspondingly, the root will be selected as thePP. The second case is

that the farthest leaf vertexv on currentT ′ has already been selected as a PP (see

Algorithm 1, lines16-28). In this case, we aim to affiliate more sensors withv if

possible in order to reduce the number of PPs. Specifically, in order to find more

sensors in the vicinity ofv, we first findv’s ⌊d
2
⌋-hop parent vertexw. As v is the

farthest leaf vertex on currentT ′, all other child vertices ofw will be within ⌊d
2
⌋

hops away fromw so that they are able to reachv within d hops along the edges

onT ′. Hence, besides the existing affiliated sensors ofv, the sensors on the subtree

rooted atw can also be affiliated withv. Thus, all the affiliated sensors of a PP will

be found in these two steps. The inherited edges among these sensors fromT ′ will

be used to determine their relay paths to the affiliated PP forlocal data aggregation.
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To better understand the algorithm, we give an example in Fig. 4.3, where 25

sensors are scattered over a field with the static data sink located in the center of the

area, andd is set to 2, which means that it is required for each sensor to forward its

data to the affiliated PP within two hops. The constructed SPTamong the sensors

rooted at sensor 1, denoted byT ′, is depicted in Fig.4.3(a). In the first iteration,

sensor 8 is found as the farthest leaf vertex onT ′ with 5 hops away from the root,

i.e., v = 8. Its 2-hop parent vertexu on currentT ′ is sensor 3 (i.e.,u = 3.),

which will be marked as a PP. All the child vertices ofu, including sensors 8, 11

and 23, and their associated edges will be removed fromT ′. The result is depicted

in Fig. 4.3(a), where sensor 3 is still kept on the updated SPT, and the removed

vertices highlighted by the shadowed area are its affiliatedsensors found in the

current iteration. In the second iteration, the farthest leaf vertex on the updatedT ′

turns to be sensor 5 with 4 hops away from the root. Similarly,its 2-hop parent (i.e.,

sensor 15) is selected as another PP to cover the sensors in the other shadowed area

as shown in Fig.4.3(b). In the third iteration, sensor 3 is chosen as the farthest leaf

vertex on currentT ′ and it happens to be marked as a PP already. In this case, we

strive to search for more qualified sensors to affiliate with it. We find that sensor 25

is its 1-hop parent, i.e.,w = 25. Sensor 25 and all its child vertices on currentT ′

can reach sensor 3 within two hops along the edges onT ′. Therefore, the subtree

rooted at sensor 25 will be pruned fromT ′. All the sensors on the subtree, including

sensors 25, 12 and 3, will also be affiliated with sensor 3. Fig. 4.3(c) indicates that

a total of 6 sensors will be covered by sensor 3, which are found in iterations 1 and

3, respectively. In this way,T ′ is decomposed into a set of subtrees, each of which

contains a selected PP and its affiliated sensors. Fig.4.3(d) gives the final result,

where the data gathering tour is highlighted by the line segments linking the PPs

and the static data sink.

We now analyze the time complexity of SPT-DGA. Assume that there are a to-

tal of N sensors distributed inK disconnected subnetworks (1 ≤ K ≤ N ). For

subnetworkk (k = 1, 2, . . . , K), it takesO(N2
k ) time to find a SPT [88], where

Nk represents the number of sensors in subnetworkk. It takesO(N2
k + Nkd)

time to iteratively find a PP and its affiliated sensors on the SPT in subnetwork

k. Moreover, the work of finding an approximate shortest tour on the PPs and the

data sink can be done in at mostO(N2) time. Thus, the total time of SPT-DGA

is
∑K

k=1 [O(N2
k ) +O(N2

k + Nkd)] + O(N2). Hence, in the worst case, the time
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complexity of SPT-DGA isO(N2 + Nd).

4.5 Distributed Algorithm for BRH-MDG Problem

Given the complete knowledge of sensor distribution, the centralized SPT-DGA al-

gorithm can work well in finding a good data gathering tour. However, in practice,

such global information is difficult to obtain. In this section, we propose a distrib-

uted algorithm searching for suitable sensors as the PPs to achieve better scalability,

which follows the same basic idea as the centralized algorithm.

As discussed in the previous section, two factors greatly affect the suitability of

a sensor to be a PP. One is the number of sensors within itsd-hop range and the

other is its distance to the data sink. A sensor that can covermore sensors in its

d-hop neighborhood and is close to the data sink will be more favorable to be a

PP since it leads to a smaller total number of PPs and more compacted distribution

among the PPs. Considering these factors, we propose an algorithm namedpriority

based PP selection algorithm,or PB-PSAfor short. Two parameters are used to

prioritize each sensor in the network, which can be easily obtained in a distributed

manner. The primary parameter is the number ofd-hop neighbors, which are the

sensors in itsd-hop range. The secondary parameter is the minimum hop count

to the data sink. The basic idea of PB-PSA is that each sensor uses the primary

parameter to select an initial set of sensors as its preferred PPs, and then uses the

secondary parameter to “break ties.” A tie in this context means that the preferred

PPs of a sensor have the same number ofd-hop neighbors.

We now describe PB-PSA in more detail. The pseudo code for eachsensor is

given in Algorithm2. Before a sensor makes the decision on whether it becomes

a PP,d rounds of local information exchange are performed to ensure that each

sensor can gather the node information in itsd-hop neighborhood. In each round,

each sensor locally maintains a structure, named TENTA−PP, based on the informa-

tion exchange. TENTA−PP is the selected sensor temporarily considered as a pre-

ferred PP in a particular round by the sensor. TENTA−PP has three sub-domains:

TENTA−PP.ID, TENTA−PP.d−Nbrs and TENTA−PP.Hop which denote the node

identification, the number of itsd-hop neighbors and the minimum hop count of the

tentative PP to the data sink, respectively. Initially, each sensor treats itself as its

TENTA−PP and labels its status as “Tentative.” In a particular round, each sensor
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first broadcasts the information of its TENTA−PP to its1-hop neighbors. When

it has heard from all the neighbors, the sensor will update its TENTA−PP accord-

ing to the following rule: among the pool of all the received TENTA−PPs and its

own TENTA−PP, choose the one with maximum TENTA−PP.d−Nbrs to set it as its

updated TENTA−PP. If there are more than one such TENTA−PP, choose the one

with minimum TENTA−PP.Hop. Such treatment implies that a sensor having the

ability to cover more other sensors and also being close to the data sink has higher

chance to be a PP than others. Afterd rounds of iterations are completed, each

sensor is able to tell whether it is the one with the highest priority among itsd-hop

neighbors. If a sensor finds that its TENTA−PP is still itself afterd rounds of infor-

mation exchange, it will declare to be a PP instantly by sending out a declaration

message and change its status accordingly. This message will then be propagated

up tod hops. For other sensors still with “Tentative” status, theywill be delayed for

a period of time. The delay time for a sensor consists of a major part proportional

to its hop count to the data sink plus a small random time duration to differentiate

the sensors with the same hop count. During the delay period,a sensor keeps listen-

ing and receiving the declaration messages from others. Once its own delay timer

expires, a sensor with “Tentative” status will check whether it has received any dec-

laration message. If yes, the sensor will affiliate itself with the nearest PP among

those whose declaration messages are received. Otherwise,the sensor itself will

declare to be a PP since there is no PP in itsd-hop neighborhood for the moment.

This way, the sensors with “Tentative” status closer to the data sink will become a

PP ahead of others due to the shorter delay, which effectively refrains other sensors

with “Tentative” status from declaring to be the unwanted PPs.

To better understand the PB-PSA, we give an example as shown inFig. 4.4

where there is a total of 20 sensors and the data sink is assumed to be located at

the center of the area. The connectivity among the sensors and the data sink is

shown by the links between neighboring nodes in Fig.4.4(a). We setd to 2, which

implies that each sensor needs to do two rounds of local data exchange. Every

sensor updates its TENTA−PP based on the received information, and the result in

each round is listed in Table4.2. When the iterations are completed, sensors 2, 7

and 17 find that they are the TENTA−PPs for themselves and consequently send out

the declaration messages to claim to be the PPs. During the delay period, all other

sensors can receive some declaration messages. Thus, therewill be no other PPs.
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(a) Network configuration.
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(b) Moving Tour along the PPs.

Figure 4.4: An example to illustrate the PB-PSA algorithm (N = 20, d = 2).

In the next step, each sensor with “Tentative” status will choose to be affiliated with

a PP among those it has heard from, which will not necessarilybe constrained to

the current TENTA−PP of the sensor. The final PPs, the sensors’ affiliation pattern

and the data gathering tour are depicted in Fig.4.4(b).

Finally, we give the following two properties concerning the complexity of the

PB-PSA algorithm.

Property 1. PB-PSA has the worst-case time complexity ofO(Nd) per node, where

N is the number of sensors.

Proof. Each sensor first experiencesd rounds of iterations. In each iteration, it takes

at mostO(N) time for a sensor to gather the information of TENTA−PPs from its

one-hop neighbors. Except the sensors that declare themselves to be the PPs once

the iterations complete, each of other sensors will delay for a period time. Since

the delay time is proportional to the minimum hop count of a sensor to the data

sink, in the worst case, it takesO(N × Ts) time for a sensor to finally determine

its status, whereTs is a pre-defined constant time slot length. Hence, the total time

complexity of the PB-PSA isO(Nd) per node.

Property 2. PB-PSA has the worst-case message exchange complexity ofO(N +d)

per node.

Proof. During the execution of iterations in the PB-PSA, each sensorgenerates

d messages to broadcast its current TENTA−PPs. Once a sensor reaches its final

status, either a PP or a regular sensor, it will generate a declaration message to claim

to be a PP or a joining message for affiliation. Since each declaration message or

joining message will be propagated up tod hops, in the worst case, a sensor may
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forward up to2(N − 1) messages. Thus, the total number of messages a sensor

handles is at mostd + 1 + 2(N − 1), i.e., the message exchange complexity of the

PB-PSA isO(N + d) per node.

4.6 Performance Evaluation

In the previous sections, we have provided two efficient algorithms for the BRH-

MDG problem. To evaluate their performance, in this section, we first implement

the ILP formulation given in Section4.3 for a small network as an illustrative ex-

ample and compare the optimal solution with the proposed algorithms, and then

we conduct extensive simulations in large networks and compare the results of the

proposed algorithms with other two existing mobile data gathering schemes.

4.6.1 Comparison with the Optimal Solution

We have solved the ILP formulation of BRH-MDG problem given in Section4.3

for a sensor network with 30 nodes by using CPLEX [94]. We now compare this

optimal solution with the results of the proposed algorithms.

As shown in Fig.4.5(a), a network with 30 sensors scattered over a 70m× 70m

square area. The connectivity is represented by solid linksbetween neighboring

sensors. The static data sink is located at the center of the area and the connectivity

between the sink and the sensors is plotted by dashed links.d is set to 2. The results

of different solutions, each of which contains the selectedPPs, the relay routing

trees for local data aggregation rooted at PPs and the movingtour of the SenCar,

are shown in Fig.4.5(b)-(d), respectively. Moreover, the performance comparison

is summarized in Table4.3.

From Fig.4.5and Table4.3, we can see that the optimal solution for the exam-

ple achieves the shortest tour length of 94.78m at the expense of 1.27 relay hops on

average for local data aggregation. In contrast, SPT-DGA and PB-PSA result in 3%

and 24% longer tour length, however, 7.8% and 11% less average relay hop count,

respectively. These observations further reveal the intrinsic tradeoff between the

tour length and the relay hop count. Since the distributed PB-PSA algorithm com-

mits itself to dampen the number of PPs by prioritizing the sensors with theird-hop

neighbors and overhearing the declaration messages propagated in thed-hop prox-
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(b) Optimal solution.
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(c) SPT-DGA.
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(d) PB-PSA.

Figure 4.5: Different solutions for the BRH-MDG problem withd set to2 in a
30-node network.

imity, it results in the smallest number of PPs compared to others. Apparently, this

will also lead to the most average affiliated sensors for a PP for a given number of

sensors. SPT-DGA achieves the same number of PPs as the optimal solution, thus,

they have the same number of average affiliated sensors for a PP. However, due to

the structural restriction of the shortest path tree, the affiliation pattern among sen-

sors in SPT-DGA is not as uniform as that of the optimal solution, which results in

55% more maximum number of affiliated sensors to a PP.

4.6.2 Performance of SPT-DGA and PB-PSA

We have also conducted a suite of simulations to evaluate theperformance of our

proposed algorithms in large sensor networks. In this subsection, we present the

simulation results and compare them with other two existingmobile data gathering

schemes. The first scheme is the single-hop data gathering (SHDG) [28], in which

a SenCar stops at some selected points among a set of predefinedcandidate posi-

tions to collect data from each sensor such that single-hop data uploading from each

sensor to the SenCar can be guaranteed. Another scheme is the controlled mobile

element scheme (CME) [26], where a SenCar traverses the sensing field along par-
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Figure 4.6: Performance of SPT-DGA and PB-PSA as a function ofd.

allel straight tracks and collects data from the sensors nearby with multi-hop relays.

For clarity, we list the comparisons between the compared work and our proposed

polling-based approach in Table4.4.

In the simulation, we consider a generic sensor network withN sensors ran-

domly distributed over anL× L square area. The data sink is located at the center

of the area. The transmission range of a sensor isRs. Each packet is locally ag-

gregated to a PP within the relay hop boundd before the SenCar arrives. If not

specified otherwise,d is set to 2. We adopt the nearest neighbor (NN) algorithm

[88] in our simulation for the TSP problem to determine the moving tour, which

lets the SenCar start from the data sink and choose the nearestunvisited PP for

the next visit, and finally return to the data sink. Considering the randomness of the

network topology, each performance point in the figures is the average of the results

in 500 simulation experiments.

Fig. 4.6plots the performance of SPT-DGA and PB-PSA as a function ofd, in

terms of tour length and average relay hop count for local data aggregation. When

d is set to zero, it means that the SenCar will visit the sensors one by one for

data gathering.N and L are 200 and 200m, respectively.Rs is equal to 30m.

From the figure, we can see that asd becomes larger, the tour length is evidently

shortened and the average relay hop count gradually increases in both algorithms.

Furthermore, in most cases in Fig.4.6(a), SPT-DGA always outperforms PB-PSA

with about 39% shorter tour length on average, and such superiority becomes even

more noticeable asd increases. There are two reasons for this. First, since sensors

are densely deployed in the scenario under consideration, there are quite a few
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Figure 4.7: Performance of SPT-DGA and PB-PSA as a function ofRs for the cases
of d = 2 andd = 3.
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Figure 4.8: Performance comparison for SPT-DGA, PB-PSA, SHDG and CME as
a function ofN .

sensors scattered around the sink. This provides a good opportunity to build a SPT

rooted at a sensor close to the sink in the centralized SPT-DGA algorithm. As a

result, with the increase ofd, the selected PPs become convergent towards the data

sink and also get closer to each other. Another reason is thatin the distributed

PB-PSA algorithm, though the number of total PPs drops asd increases, some

sensors that are still in “Tentative” status afterd rounds of iterations tend to claim

themselves to be the PPs with higher probability. Some of them may be located far

from other PPs such that the tour length in PB-PSA is somewhat longer than that

of SPT-DGA. We can also observe in Fig.4.6(b) that PB-PSA results in a smaller

average relay hop count as compared to SPT-DGA since the PPs in PB-PSA are

distributed in a more relaxed pattern.

Fig. 4.7shows the performance of SPT-DGA and PB-PSA as a function ofRs
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Figure 4.9: Performance comparison for SPT-DGA, PB-PSA, SHDG and CME as
a function ofL.

for the cases ofd = 2 andd = 3. Rs varies from 10m to 50m to stand for different

transmission ranges of sensors. Clearly, more sensors will become neighbors to

each other asRs increases. As a result, the situation that most of the PPs arefar

away from the sink can be avoided and the number of PPs can alsobe effectively

reduced as each PP is able to link up more sensors. Therefore,the tour length will

be greatly shortened asRs becomes larger. For instance, as shown in Fig.4.7(a),

for the case ofd = 2, whenRs is 20m, the tour length of SPT-DGA and PB-PSA is

1178m and 1334m, respectively. In contrast, whenRs increases to 45m, their tour

length drops to 591m and 634m, respectively. It is also noticed that the average

relay hop counts for both algorithms slightly increase withRs since more sensors

will be affiliated with the same PP with a larger hop count under the constraint of

the relay hop bound. Moreover, it is evident that no matter what Rs is, the case of

d = 3, which is with relatively looser relay hop bound, would result in much shorter

tour length compared to the case ofd = 2 at the expense of more average relay hop

counts.

Fig. 4.8depicts the performance of the proposed algorithms as a function of N ,

and compares it with SHDG and CME.L is set to 200m andN varies from 100

to 500 to represent different node density.Rs is still fixed to 30m. The relay hop

boundd is set to 2 for the proposed algorithms. For SHDG, we assume that each

predefined position where the SenCar could stop for data gathering is on a grid,

which is apart from its adjacent positions in horizontal andvertical directions with

the same distance of 20m. Also, in the CME scheme, we assume that the parallel

straight tracks traversing the field are 100m apart from eachother. The track in the
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middle goes through the center of the field. The SenCar can go along the area border

to change onto other tracks. Both SHDG and CME schemes are implemented in a

centralized fashion. We can observe in Fig.4.8(a) that asN increases, the tour

length of SPT-DGA and PB-PSA first gradually increases and then stabilizes when

N becomes sufficiently large. This is because that when sensors become more

densely scattered, they will have higher probability to be affiliated with a PP close

to the sink. Hence, any further increase on the number of sensors will have little

impact on the selection of the preferred PPs. In contrast, the tour length of SHDG

continuously increases withN , which is around33% longer than that of SPT-DGA.

Since the SenCar travels along the fixed tracks in a given area,the tour length will

stay constant for CME. In addition, Fig.4.8(b) shows the average relay hop counts

for SPT-DGA, PB-PSA and CME. Since a sensor always directly uploads data to

the SenCar in SHDG, there is no local relay required. Thus, we did not include it in

the figure. We can see that the average relay hop count slightly increases for each

scheme asN becomes large. SPT-DGA and PB-PSA result in more relay hops for

local data aggregation compared to CME, which is the cost to achieve a shorter data

gathering tour.

Fig. 4.9 further plots the tour length and the average relay hop counts obtained

for different schemes whenL varies from 100m to 500m.N is set to 400 andRs

is 30m. We fix 5 parallel straight tracks with the same interval distance in CME

scheme, which traverse the field with the outermost two tracks on the border of the

area. All other settings are kept unchanged as in the previous set of simulations.

From Fig.4.9(a), we can see that asL increases, the tour length of all the schemes

becomes longer. This is reasonable since sensors become more sparsely distributed

asL becomes larger. The SenCar needs to go further away from the sink and visit

more positions to collect data from all the sensors. Also, with the increase of the

field area, the fix track traversing the field in CME scheme also becomes longer

than the case with a smallerL. However, as can be seen, our proposed algorithms

always outperform others, with up to38% and80% shorter tour length compared

with SHDG and CME, respectively. This attributes to the effort in SPT-DGA and

PB-PSA algorithms on minimizing the tour length by fully utilizing the available

relays for local data aggregation. Consequently, as the expense, in Fig.4.9(b) the

average relay hop counts for SPT-DGA and PB-PSA algorithms are higher than that

of CME. However, such a gap in the relay hop count quickly shrinks asL increases.
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Figure 4.10: Performance comparison for SPT-DGA, PB-PSA, SHDG and CME as
a function ofRs.

Fig. 4.10plots the performance of different schemes whenRs varies from 10m

to 50m. N is set to 400 andL is fixed to 250m. The relay hop boundd is set

to 2 for the proposed algorithms. For the SHDG scheme, we still assume that the

candidate positions that the SenCar can stop for data gathering are on the grids and

each one is apart from its neighbors in the vertical and horizontal directions with

the same distance of 1.4Rs. For the CME scheme, we set the distance between any

two neighboring parallel straight tracks to2Rs and there is a total of
⌈

L
2Rs

⌉
parallel

tracks in the field. Fig.4.10(a) shows that in all cases ofRs investigated, SPT-DGA

always achieves the shortest tour length with up to45% improvement compared to

SHDG and CME. It is also noticed that while the tour length of SPT-DGA, PB-PSA

and SHDG gradually decreases with the increase ofRs, CME results in a stair-case

decrease. This is because that the tour length of CME is mainlydetermined by

the number of parallel tracks. Fig.4.10(b) plots the average relay hop count for

SPT-DGA, PB-PSA and CME. As the parallel tracks in CME are 2Rs apart from

each other, regardless of the value ofRs, most sensors can directly upload data to

the SenCar when it moves along the nearest tracks and comes close enough to the

sensors. Thus, CME always results in small relay hops for local data aggregation. In

contrast, SPT-DGA and PB-PSA allow more local data aggregation with bounded

relay hops in order to shorten the tour length as much as possible. It is shown in

the figure that the average relay hop counts achieved in SPT-DGA and PB-PSA

increase withRs initially. This is because that when the transmission rangeof

sensors is small, the degree of sensors would evidently increase asRs increases.

This provides us much opportunity to shorten the moving tourlength by selecting
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a fewer number of PPs. As there are limited PPs, more remote sensors are likely

to be linked by the PPs with a larger number of hops under the constraint of relay

hop bound. Then whenRs becomes large, the average relay hop counts would not

increase further withRs and tend to be relatively stable. This is reasonable because

whenRs becomes large, it is much easier for sensors to reach each other within a

fewer number of relay hops, which greatly counteracts the impact of the decrease

of the number of PPs.

4.7 Conclusion

In this chapter, we have studied improving the efficiency of mobile data gathering

by exploring the tradeoff between the relay hop count of sensors for local data ag-

gregation and the tour length of the SenCar. We have proposed apolling-based

scheme and formulated it into the BRH-MDG problem. We then presented two ef-

ficient algorithms for solving the BRH-MDG problem. Extensivesimulations have

been carried out to validate the efficiency of the scheme. Theresults demonstrate

that the proposed algorithms can greatly shorten the data gathering tour length with

a small relay hop count, and achieve 38% and 80% improvement on the tour length

compared to SHDG and CME schemes, respectively.
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Algorithm 1 : Centralized algorithm: SPT-DGA
Input : A sensor networkG(V, E), the relay hop boundd, and the static data sinkπ.
Output : A set of PPsP, a set of geometric trees{tu|u ∈ P}, and the tourU visiting

the PPs and the data sink.
Construct SPTs forG that cover all the vertices inV ;1

for each SPTT ′(V ′, E′) do2

while T ′ is not emptydo3

Find the farthest leaf vertexv onT ′;4

if v is not a PPthen5

// Findv’s d-hop parent vertexu onT ′.
for i = 1 to d do6

u←−parent(v); v ←− u;7

if u is the root ofT ′ then Break;8

Consideru as a PP and add corresponding sensor intoP;9

if u is not the root ofT ′ then10

UpdateT ′ by removing all the child vertices ofu and the pertinent11

edges.
Corresponding sensors of these removed vertices are affiliated with12

u on the geometric treetu.

else13

All the sensors onT ′ are affiliated withtu;14

T ′ is set to empty;15

else16

if d = 1 then17

Removev from currentT ′ and it belongs totv;18

else19

// Findv’s ⌊d
2⌋-hop parent vertexw onT ′.

for i = 1 to ⌊d
2⌋ do20

w ←−parent(v); v ←− w;21

if w is the root ofT ′ then Break;22

if w is not the root ofT ′ then23

Remove the subtree rooted atw from T ′;24

Corresponding sensors on the removed subtree are affiliated25

with v on the geometric treetv.

else26

All the sensors onT ′ that are not selected as PPs are affiliated27

with v on the geometric treetv;
T ′ is set to empty;28

Find an approximate shortest tourU visiting π and all the PPs inP;29
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Algorithm 2 : Distributed Algorithm: PB-PSA

My.TENTA−PP←− My; My .status←− Tentative;1

for i = 1 to d do2

Send−Msg (My.TENTA−PP);3

if received packets from all my1-hop neighborsthen4

A←− {a| is a received or own TENTA−PP with maximum a.d−Nbrs};5

My.TENTA−PP←− arg mina∈Aa.Hop;6

if My.TENTA−PP.ID = My .NodeIDthen7

My.status←− PP;8

Send−Declar−Msg (My.NodeID, My.status,0);9

else10

Set my delay timert =My.Hop×Ts±rand(△);11

while My delay timer is not expireddo12

Record source node IDs of the received declaration messages;13

Forward the received declaration messages if it has been propagated for less14

thand hops;

if ever received a declaration messagethen15

My.PP←− the nearest PP among all the PPs in the received declaration16

messages;
My.status←− non−PP;17

Send−Join−Msg (NodeID, My.PP);18

else19

My.status←− PP;20

Send−Declar−Msg (My.NodeID, My.status,0);21
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Table 4.2: Two round update of TENTA−PP by each sensor in the example.
1 2 3 4 5 6 7 8 9 10

Initial
TENTA−PP.ID 1 2 3 4 5 6 7 8 9 10

TENTA−PP.d−Nbrs 10 12 7 8 9 10 12 8 8 7
TENTA−PP.Hop 1 1 2 2 3 2 1 2 2 2

Round 1
TENTA−PP.ID 2 2 15 2 12 2 7 2 7 15

TENTA−PP.d−Nbrs 12 12 11 12 10 12 12 12 12 11
TENTA−PP.Hop 1 1 1 1 2 1 1 1 1 1

Round 2
TENTA−PP.ID 2 2 2 2 7 2 7 2 7 2

TENTA−PP.d−Nbrs 12 12 12 12 12 12 12 12 12 12
TENTA−PP.Hop 1 1 1 1 1 1 1 1 1 1

11 12 13 14 15 16 17 18 19 20

Initial
TENTA−PP.ID 11 12 13 14 15 16 17 18 19 20

TENTA−PP.d−Nbrs 9 10 7 10 11 5 11 7 7 6
TENTA−PP.Hop 2 2 2 2 1 3 1 2 3 3

Round 1
TENTA−PP.ID 15 7 17 17 2 13 17 15 6 12

TENTA−PP.d−Nbrs 11 12 11 11 12 7 11 11 10 10
TENTA−PP.Hop 1 1 1 1 1 2 1 1 2 2

Round 2
TENTA−PP.ID 2 7 17 7 2 17 17 2 2 7

TENTA−PP.d−Nbrs 12 12 11 12 12 11 11 12 12 12
TENTA−PP.Hop 1 1 1 1 1 1 1 1 1 1

Table 4.3: Performance comparison with optimal solution.
Optimum SPT-DGA PB-PSA

Sensors Selected as PPs10, 17, 23, 26 10, 12, 23, 26 9, 10, 26

Tour Length (m) 94.78 97.56 117.86

Ave. Relay Hop Count 1.27 1.17 1.13
Max Num of Affiliated

9 14 15
Sensors to a PP
Ave. Num of Affiliated

7.5 7.5 10
Sensors to a PP
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Table 4.4: Comparisons among three mobile data gathering schemes.
Polling-Based Approach Single Hop Data Gathering Controlled Mobile Element Scheme
(SPT-DGA and PB-PSA) (SHDG) (CME)

Motion Pattern
Controllable Controllable Uncontrollable

Free to go anywhere Free to go anywhere With fixed moving tracks
Pausing Locations SenCar pauses at locations SenCar pauses at selected polling Exact pausing locations are not expli-

of SenCar of selected sensors (i.e., PPs) and points, which are the locations chosen from citly specified. It is assumed that the
for Data Gathering gather buffered data from the PPsa set of candidate pausing locations, and gather SenCar can always gather

data from each nearby sensor in a single hop data while moving along the tracks

Moving Trajectory
Start from the data sink, visit each Start from the data sink, visit some locations Start from the data sink, go along the
PP once and go back to data sink that cover the transmission range of all the parallel straight tracks back and forth,

sensors, and finally go back to the data sink and finally go back to the data sink
Relay for Local

Multi-hop relays in bounded hops No local relay
Multi-hop relays without

Data Aggregation hop bound

Data Uploading
The PPs buffer the local aggregated Each sensor directly uploads data to the Some sensors close to the tracks
packets and upload them to mobile SenCar in a single hop when upload aggregated packets to the

collector when it arrives at PPs it arrives within its transmission range SenCar when it comes
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Chapter 5

Pricing-based Network Cost

Minimization Algorithm for Mobile

Data Gathering in WSNs

In the previous chapters, we mainly focus on proposing a variety of mobile data

gathering schemes. In the following two chapters, we shift our effort from the

scheme design to the performance optimization on some typical schemes, with the

purpose of obtaining in-depth investigation on the impact of some critical system

parameters on the entire data gathering performance.

In this chapter, we study the performance optimization of the anchor-based

range traversing data gathering [28][34], where a set of locations in the sensing field

is chosen asanchor pointsand the SenCar periodically carries out a data gathering

tour by visiting each anchor point such that it can traverse the transmission range

of all the sensors in the network. We characterize the performance optimization

as a cost minimization problem constrained by the channel capacity, the minimum

amount of data gathered from each sensor and the bound of total sojourn time at

all anchor points. We assume that the cost of a sensor for a particular anchor point

is a function of the data amount a sensor uploads to the SenCar during its sojourn

time at this anchor point. The network cost is the aggregate of all sensors for all an-

chor points, which is a direct metric to evaluate the efficiency of the data gathering

strategies. In order to provide an efficient and distributedalgorithm, we decom-

pose this global optimization problem into two subproblemsto be solved by each
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sensor and the SenCar, respectively. We show that such decomposition can be char-

acterized as a pricing mechanism, in which each sensor independently adjusts its

payment for the data uploading opportunity based on the shadow prices of different

anchor points set by the SenCar. Correspondingly, we give an efficient algorithm to

jointly solve the two subproblems. Our theoretical analysis demonstrates that the

proposed algorithm can achieve the optimal data control foreach sensor and the

optimal sojourn time allocation for the SenCar, which minimizes the overall net-

work cost. Finally, extensive simulation results further validate that our algorithm

achieves lower cost than the compared data gathering strategy.

The remainder of this chapter is organized as follows. Section 5.1provides the

introduction of research issue. Section5.2 reviews the related work. Section5.3

introduces the system model and provides the formulation ofnetwork cost mini-

mization problem. Section5.4decomposes the problem into two subproblems and

presents a pricing-based algorithm that jointly solves thetwo subproblems. Sec-

tion 5.5addresses how to solve the subproblem at each sensor. Finally, Section5.6

presents the simulation results of the proposed algorithm and Section5.7concludes

the chapter.

5.1 Introduction

In this chapter, we focus on anchor-based range traversing data gathering [28]-[34]

and study how to achieve its optimal performance. In such a scheme, the SenCar

directly collects data from each sensor in a single hop by visiting the anchor points

in the field to traverse the transmission range of the sensors. We characterize data

gathering performance by introducingnetwork cost, which is a function quantify-

ing the aggregated cost on gathering data from sensors at different anchor points.

The “cost” here physically implies the energy consumption or monetary expense

on gathering a certain amount of data from a sensor at a particular anchor point. In

this way, optimizing data gathering performance is equivalent to solving the corre-

sponding cost minimization problem. To find the optimal solution to this problem,

we consider regulating two tunable parameters under given constraints. One para-

meter is the amount of data a sensor uploads to the mobile collector at a particular

anchor point. Since it is expected to collect a sufficient amount of data during a

data gathering tour, we require that the aggregated data uploaded from a sensor to
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the mobile collector at all anchor points should be no less than a specified amount.

Another parameter is the sojourn time of the mobile collector at each anchor point.

We require that the total sojourn time at all anchor points should be constrained

within a limit so that the latency of a data gathering tour is bounded.

Since the cost minimization problem essentially answers the questions that where

and how sensors communicate with the SenCar, we can characterize it as a pricing

mechanism, where sensors independently adjust their payments competing for the

data uploading opportunity to the SenCar based on the shadow prices of differ-

ent anchor points set by the SenCar. Using this feature, we decompose the cost

minimization problem into two simpler subproblems that describe the behaviors of

sensors and the SenCar, respectively. In this way, instead ofdirectly resolving the

original global problem, alternatively we can jointly solve these two subproblems.

By iteratively adjusting the payment and the shadow price between each sensor and

the mobile collector, an equilibrium [62][104] that reconciliates the two subprob-

lems can be reached, where the overall network cost is minimized.

The contributions of this work can be summarized as follows:(1) We charac-

terize data gathering performance by network cost and formulate the problem of

optimizing data gathering performance as a convex problem.(2) We show that this

problem can be described as a pricing mechanism so that it canbe correspondingly

decomposed into two subproblems. (3) We provide a pricing-based algorithm to

jointly solve these subproblems in a distributed manner. (4) We present a theo-

retical analysis and extensive simulation results to validate the convergence of the

proposed algorithm and demonstrate that our algorithm can achieve lower network

cost than the compared data gathering strategy.

5.2 Related Work

There has been some work in the literature on optimizing datagathering perfor-

mance in WSNs. Most of the work studied static data gathering and focused on

optimal routing for maximum lifetime. For example, Madan and Lall [50] pro-

posed distributed algorithms using a dual decomposition approach to computing an

optimal routing that maximizes the time the first node in the network depletes its

energy. In [105], Madan, et al. modeled the circuit energy consumption and the

traditional physical, MAC and routing layers. They considered the optimization
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of individual layers as well as cross-layer optimization bycomputing a strategy

that maximizes network lifetime. In [53], Hua and Yum jointly considered optimal

data aggregation based on the correlation of sensors and maximum lifetime rout-

ing, which aims to reduce the traffic across the network and balance traffic to avoid

overwhelming bottleneck nodes.

There has also been limited work in the literature on the optimization of mobile

data gathering performance, where mobile sinks or mobile collectors are employed.

Gatzianas and Georgiadis [59] studied network lifetime maximization problem by

formulating it into a linear problem. It assumed static datarates of sensors and

focused on finding optimal routing from sensors to the mobilesink at different

anchor points. Yun and Xia [46] proposed a framework for improving network

lifetime by developing several models under delay bound constraints, node energy

constraints, and flow conservation constraints. In contrast, our work is significantly

different from these work in the sense that we consider data control on each sensor

and sojourn time allocation for the mobile collector, instead of the routing problem,

to minimize network cost. Moreover, in our model, we impose constraints on data

amount gathered from each sensor and total sojourn time at all anchor points in a

data gathering tour, which aims to obtain sufficient sensingdata within a bounded

data gathering latency. These considerations address important practical issues in

mobile data gathering applications, which have not been considered in the existing

work.

In the meanwhile, pricing mechanisms [60]-[63] have received much attention

in recent years. The mechanisms were especially proposed for resource allocation

problems, where a resource provider establishes resource prices to charge users,

in order to regulate the behavior of selfish users and achievesocial welfare maxi-

mization [104]. In particular, Kelly et al. [60][61] proposed a scheme in a wired

network for elastic traffic that a network provider charges the users based on the

traffic load on individual links and the users choose their transmission rates as a

function of prices. Qiu and Marbach [63] extended Kelly’s work to the bandwidth

allocation problem in ad hoc networks, where users can charge other users a price

for relaying their data packets. In a more recent work, Hou and Kumar [62] stud-

ied the utility maximization problem with delay-based Quality-of-Service (QoS)

requirements in a wireless local area network. They characterized the problem as

a bidding game, where clients bid for service time from the access point, and the

85



access point assigns delivery ratios to the clients according to their bids. In contrast,

our work demands inelastic data traffic uploaded from sensors to the mobile collec-

tor at different anchor points at the lowest possible cost. We attempt to use pricing

as a means to regulate the communication between sensors andthe mobile collec-

tor, where the mobile collector sets the shadow prices for anchor points and each

sensor learns link prices from itself to the neighboring anchor points based on these

shadow prices, then determines its payment for the data uploading opportunity to

the mobile collector at different anchor points.

5.3 System Model and Problem Formulation

Consider a sensor network which consists of a set of static sensors, denoted by

N , and a set of anchor points, denoted byA. We study the anchor-based range

traversing data gathering scheme, where the mobile collector, i.e., SenCar, gathers

data directly from sensors by visiting each anchor point in aperiodic data gathering

tour. There are several ways to decide the locations of anchor points. One way is to

consider the sensing field as a grid and anchor points can be uniformly distributed

on grid intersections [110]. An alternative way is to use the positions of a subset of

sensors as the locations of anchor points [36][28]. In this work, we would follow

the latter option, which not only simplifies the setting of anchor points but also

can facilitate the distributed implementation of our algorithm that will be presented

in subsequent sections. An example of this data gathering scheme is illustrated in

Fig. 5.1, where the locations of seven sensors are chosen as anchor points and the

SenCar starts its tour from the static data sink and sequentially visits each anchor

point for data gathering.

Since the SenCar moves over different anchor points, we now define two sets

that depict the relationship between the SenCar and sensors in the movement. One

set isN a (a ∈ A), which represents the sensors in the coverage area of anchor point

a. These sensors can directly upload data to the SenCar when it arrives at anchor

point a. Another set isAi (i ∈ N ), which contains the anchor points sensori can

reach in a single hop. To ensure that each sensor has the opportunity to upload data

to the SenCar, we assume thatAi is always non-empty. This can be guaranteed by

choosing the anchor points through finding a set of neighbor sets of sensors such

that the selected sets contain all the sensors in the neighbor sets.
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Figure 5.1: An example of anchor-based range traversing data gathering scheme in
a WSN, where the positions of a subset of sensors are used as anchor points.

We assume that each sensor has enough buffered sensing data and sensori

would upload an amount of dataxa
i to the SenCar when it stops at anchor point

a. In order to ensure that the SenCar can obtain a sufficient amount of data from

each sensor in a data gathering tour, we impose a minimum dataamount for each

sensor,Mi, which indicates the minimum aggregated data uploaded fromsensori

to the SenCar at all anchor points in a data gathering tour.

The SenCar would stay at anchor pointa for a period of sojourn timeta to gather

data from nearby sensors. In some time-sensitive applications, the data gathering

task is expected to be completed in a bounded period, which isequivalent to con-

straining the total sojourn time at all anchor points withina limit. We denote such

a limit by T and call it the bound of total sojourn time. Moreover, considering the

prevalence of unreliable channels in WSNs [15], we assume that the data transmis-

sion between sensori and the SenCar at anchor pointa experiences a lossy link

with a successful delivery ratio ofpa
i . Thus, in order to ensure the SenCar receives

xa
i amount of data, sensori needs to send outx

a
i

pa
i

amount of packets.

In order to characterize the impact of data uploading from a sensor to the Sen-

Car at a particular anchor point on the overall data gatheringperformance, we intro-

duce acost function, Ca
i (·), as a strictly convex, increasing and twice-differentiable

function with respect to the amount of data uploaded from sensor i to the SenCar

at anchor pointa (i.e., xa
i ). In practice, the “cost” can be evaluate in terms of en-

ergy consumption, monetary cost or other metrics modeling user application needs.

Cost functionCa
i (·) implicitly quantifies the suitability for sensori to upload data

towards the SenCar at anchor pointa. Correspondingly, thenetwork costis defined

as the sum of data gathering costs of all sensors at all anchorpoints. Our work in
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Table 5.1: List of notations used in problem formulation.
Notation Definition
N Set of sensors
A Set of anchor points
N a Set of sensors in the coverage of anchor pointa,N a ⊆ N
Ai Set of neighboring anchor points of sensori,Ai ⊆ A
ta Sojourn time of SenCar at anchor pinta
T Bound of total sojourn time at all anchor points in a data

gathering tour
xa

i Data amount sensori uploads to the SenCar at anchor pointa
in a data gathering tour

pa
i Stochastic successful delivery ratio of a link from sensor

i to the SenCar at anchor pointa
B Channel bandwidth of the system
Mi Minimum amount of data sensori needs to upload to the

SenCar in a data gathering tour

this chapter is to minimize the network cost by means of properly scheduling com-

munications between sensors and the SenCar and dynamically adjusting the sojourn

time at different anchor points.

The network cost minimization problem can be formalized as follows:

Definition 2. NCM: Network Cost Minimization Problem for Mobile Data Gather-

ing in WSNs.Given a set of sensors,N , a set of anchor points,A, the minimum

data amount of sensori (i ∈ N ), Mi, and the bound of total sojourn time at all

anchor points,T , find: (1) the data amountxa
i uploaded from sensori to the SenCar

at anchor pointa; (2) the sojourn timeta of the SenCar at anchor pointa, such that

network cost is minimized.

Using the notations listed in Table5.1, the NCM problem can be formulated

into the following convex optimization problem.

88



NCM:

Minimize
∑
a∈A

∑
i∈Na

Ca
i (xa

i ) (5.1)

Subject to
∑

a∈Ai

xa
i ≥Mi, ∀i ∈ N (5.2)

∑
i∈Na

xa
i

pa
i

≤ B · ta, ∀a ∈ A (5.3)
∑
a∈A

ta ≤ T, (5.4)

Over xa
i , t

a ≥ 0, ∀i ∈ N a,∀a ∈ A (5.5)

The constraints in the NCM problem can be explained as follows.

• Data constraint (5.2) shows that for each sensor, its aggregated uploaded data

at all anchor points should be no less than the specified minimum amount.

• Link capacity constraint (5.3) enforces that when the SenCar is located at an-

chor pointa, the total transmitted data amount from the sensors in the neigh-

borhood is restricted by the product of channel bandwidthB and sojourn time

ta.

• Total sojourn time constraint (5.4) ensures that the total sojourn time of the

SenCar at all anchor points is bounded byT .

5.4 Problem Decomposition and Pricing-based Algo-

rithm

In the previous section, we provided the formulation of the NCM problem. Since

the problem has a strictly convex function with respect toxa
i (a ∈ A, i ∈ N a)

and is over a convex feasible region, the NCM problem is mathematically tractable.

However, there exist some difficulties to directly solve it:(1) Cost functions,Ca
i (·),

for all a ∈ A, i ∈ N a, are typically the knowledge of sensors and are unlikely to

be known by the network provider or a central controller; (2)Due to the asymme-

try of wireless channels, the successful delivery ratiopa
i that indicates the uplink

channel quality from a sensor to the SenCar at an anchor point may not be easily

obtained by sensors, which are the senders in the transmissions. This information
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can be available at the SenCar by performing a receiving estimation; (3) The ad-

justable variablesxa
i andta in the formulation in fact reveal the behaviors of differ-

ent entities, wherexa
i reflects the schedule on data uploading at each sensor, and in

contrast,ta characterizes the movement of the SenCar; (4) Finally, it would be diffi-

cult to implement a solution in any centralized way in a WSN. Tocircumvent these

difficulties, next we decompose the NCM problem into two simpler subproblems

[60][63].

Suppose sensori chooses to payqa
i for the data uploading opportunity when the

SenCar stops at anchor pointa in a data gathering tour, and in return is permitted

to uploadxa
i amount of data proportional toqa

i , i.e., qa
i = λa

i x
a
i , whereλa

i can be

considered as the price for uploading a unit amount of data over the link from sensor

i to the SenCar at anchor pointa. In the following, we simply callλa
i link price.

Then, the local cost minimization problem for sensori can be expressed as follows.

SENSOR−i:

Minimize
∑

a∈Ai

Ca
i

(
qa
i

λa
i

)
+
∑

a∈Ai

qa
i

Subject to
∑

a∈Ai

qa
i

λa
i

≥Mi,

Over qa
i ≥ 0, ∀a ∈ Ai

(5.6)

In the above we consider two parts of costs for sensori:
∑

a∈Ai

Ca
i

(
qa
i

λa
i

)
represents

the sum of data uploading cost to all the neighboring anchor points of sensori, and∑
a∈Ai

qa
i is the total payment used in competing for the data uploadingopportunity. In

SENSOR−i problem, given link pricesλa
i ’s, sensori independently minimizes its

overall cost under the constraint that its aggregated uploaded data is no less thanMi.

Note that to solve this problem, there is no need for sensori to have the knowledge

of link conditionpa
i for all a ∈ Ai.

On the other hand, given the payments from all sensors, the SenCar tries to

maximize function
∑
a∈A

∑
i∈Na

qa
i log(xa

i ) under the constraints of channel capacity and

total sojourn time bound. In other words, the SenCar needs to solve the following

optimization problem.

90



SENCAR:

Maximize
∑
a∈A

∑
i∈Na

qa
i log(xa

i )

Subject to
∑

i∈Na

xa
i

pa
i

≤ B · ta,∀a ∈ A
∑
a∈A

ta ≤ T,

Over xa
i , t

a ≥ 0, ∀i ∈ N a,∀a ∈ A

(5.7)

Clearly, the above maximization problem does not require theSenCar to know the

cost functionsCa
i (·) for all a ∈ A andi ∈ N a.

The following theorem shows that by solving SENSOR−i and SENCAR prob-

lems, optimal data control and sojourn time allocation can be achieved as the global

cost minimization (i.e. NCM) problem.

Theorem 4. There exist non-negative matricesx = {xa
i |a ∈ A, i ∈ N a}, q =

{qa
i |a ∈ A, i ∈ N a} and λ = {λa

i |a ∈ A, i ∈ N a}, and non-negative vector

t = {ta|a ∈ A} with qa
i = λa

i x
a
i , ∀i ∈ N , a ∈ Ai such that

(a) For i ∈ N , with λa
i > 0 for all a ∈ Ai, qi = {qa

i |a ∈ Ai} is the solution to the

SENSOR−i problem;

(b) Given that each sensor is chargedqa
i for uploading data to the SenCar when it

is located at anchor pointa, (x, t) is the solution to the SENCAR problem;

In addition, given suchx, λ, t ≻ 0, matrixx and vectort solve the NCM problem.

Proof. We first show the existence ofx, q andλ that satisfy(a) and(b), and then

prove that the corresponding(x, t) is the solution to the NCM problem.

We assume that with proper settings of parametersMi andT , there always ex-

ist feasible variable matricesx and q, and variable vectort that satisfy the con-

straints in NCM, SENSOR−i and SENCAR problems with strict inequality, which

means that they are interior points in the feasible region ofthe respective problem.

Thus, the Slater’s condition for constraint qualification is satisfied [98][50]. Since

SENSOR−i, SENCAR and NCM problems are all convex problems, the solution

to each problem that satisfies the corresponding Karush-Kuhn-Tucker (KKT) con-

ditions is sufficient to be optimal for the respective problem [98].

For the global cost minimization problem (i.e., NCM), we introduce non-negative

Lagrangian multipliersσa, µi andγ for the constraints in (5.2)-(5.4), respectively.
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Then, the Lagrangian of NCM can be obtained as

Lsys(x, t, σ, µ, γ)

=
∑
a∈A

∑
i∈Na

Ca
i (xa

i ) +
∑
a∈A

σa(
∑

i∈Na

xa
i

pa
i

−Bta)

−∑
i∈N

µi(
∑
a∈A

xa
i −Mi) + γ(

∑
a∈A

ta − T ).

Assumingx∗ = {xa
i
∗|a ∈ A, i ∈ N a} and t∗ = {ta∗|a ∈ A} are the optimal

solution to the NCM problem, we obtain the following KKT conditions.

∂Lsys
∂xa

i

= Ca
i

′

(xa
i
∗) +

σa∗

pa
i

− µ∗
i = 0, (5.8)

∀a ∈ A, i ∈ N a,
∂Lsys
∂ta

= −σa∗B + γ∗ = 0,∀a ∈ A, (5.9)

σa∗(
∑

i∈Na

xa
i
∗

pa
i

−Bta∗) = 0,∀a ∈ A, (5.10)

µ∗
i (
∑

a∈A

xa
i
∗ −Mi) = 0,∀i ∈ N , (5.11)

γ∗(
∑

a∈A

ta∗ − T ) = 0, (5.12)

xa
i
∗ ≥ 0, ta∗ ≥ 0,∀a ∈ A, i ∈ N a, (5.13)

σa∗, µi
∗, γ∗ ≥ 0,∀a ∈ A, i ∈ N . (5.14)

Introducingνi as the Lagrangian multipliers for the data constraint of SENSOR−i,

its Lagrangian is given by

Lsen−i(q, ν, ε)

=
∑

a∈Ai

Ca
i

(
qa
i

λa
i

)
+
∑

a∈Ai

qa
i − νi(

∑
a∈A

qa
i

λa
i

−Mi).

By the KKT conditions,q∗i = {qa
i
∗|a ∈ Ai} is the optimal solution to SENSOR−i
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problem if and only if there existsν∗
i that satisfies

∂Lsen−i

∂qa
i

=
1

λa
i

· Ca
i

′

(
qa
i
∗

λa
i

)
+ 1− ν∗

i

λa
i

= 0,∀a ∈ Ai, (5.15)

ν∗
i (
∑

a∈A

qa
i
∗

λa
i

−Mi) = 0, (5.16)

qa
i
∗ ≥ 0,∀a ∈ Ai, (5.17)

ν∗
i ≥ 0. (5.18)

Similarly, introducing multipliersαa andβ for the constraints of SENCAR prob-

lem, the Lagrangian of SENCAR can be expressed as follows.

Lcar(x, t, α, β, ρ, η)

= −∑
a∈A

∑
i∈Na

qa
i log xa

i +
∑
a∈A

αa(
∑

i∈Na

xa
i

pa
i

−Bta)

+β(
∑
a∈A

ta − T )

For a givenq, by the KKT conditions, we have that matrixx∗ and vectort∗ are the

optimal solutions to SENCAR problem if and only if there existα∗ = {αa∗|a ∈ A}
andβ∗ such that

∂Lcar
∂xa

i

= − qa
i

xa
i
∗ +

αa∗

pa
i

= 0,∀a ∈ A, i ∈ N a, (5.19)

∂Lcar
∂ta

= −αa∗B + β∗ = 0,∀a ∈ A, (5.20)

αa∗(
∑

i∈Na

xa
i
∗

pa
i

−Bta∗) = 0,∀a ∈ A, (5.21)

β∗(
∑

a∈A

ta∗ − T ) = 0, (5.22)

xa
i
∗ ≥ 0, ta∗ ≥ 0,∀a ∈ A, i ∈ N a, (5.23)

αa∗ ≥ 0, β∗ ≥ 0,∀a ∈ A. (5.24)

Let (x∗, t∗) be the optimal solution to the NCM problem andσ∗, µ∗ andγ∗ be the

corresponding multipliers that satisfy the KKT conditionsin (5.8)-(5.14). Let xa
i =

xa
i
∗, ta = ta∗, λa

i = σa∗

pa
i

andqa
i = σa∗

pa
i

xa
i
∗. It is clear thatxa

i , ta, λa
i andqa

i are all

non-negative. By definingαa = σa∗ andβ = γ∗, we find thatx, t, α andβ satisfy
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the KKT conditions for SENCAR problem in (5.19)-(5.24). Thus, (x, t) solves

SENCAR, which implies that the solution satisfying KKT conditions of NCM also

identifies a solution to SENCAR. Definingνi = µi
∗ together withλa

i = σa∗

pa
i

, the

KKT conditions of SENSOR−i problem are satisfied such thatqa
i = σa∗

pa
i

xa
i
∗ is the

solution to SENSOR−i. This analysis establishes the existence ofx, λ andt.

On the other hand, suppose we are givenx, t andλ satisfying conditions(a) and

(b) of the theorem. We show that(x, t) is the solution to NCM. It is clear that by

(5.19) and the definition ofλa
i , we haveλa

i = αa

pa
i

. Letting σa = αa andµi = νi,

we have thatλa
i = σa

pa
i

and condition (5.8) of NCM holds by (5.15). Furthermore,

letting γ = β, conditions in (5.9)-(5.14) are equivalent to (5.16)-(5.18) and (5.20)-

(5.24). Thus,x, t, σ, µ andγ satisfy the KKT conditions in (5.8)-(5.14). Therefore,

we conclude that(x, t) solves NCM.

Theorem4 implies that instead of directly solving the NCM problem, alterna-

tively we can jointly solve the SENSOR−i and SENCAR subproblems, which have

less complexity and facilitate a distributed implementation for the solution. System

optimum can be achieved when sensors’ paymentq and SenCar’s data controlx and

link priceλ reach equilibrium, i.e.,qa
i = λa

i x
a
i for all a ∈ A, i ∈ N a.

The SENCAR problem requires the payment information from allthe sensors.

It may incur high communication overhead if the SENCAR problem is solved in a

centralized way [61]. Thus, we consider its dual problem to decompose it into a set

of subproblems with respect to each anchor point [101][103]. By taking advantage

of the fact that there is a sensor at each anchor point, the subproblems can be solved

with the aid of these sensors. For clarity, we call themhelp nodesin the following.

This way, to announce paymentqa
i , sensori only needs to locally inform the help

node at anchor pointa.

We form the dual problem of SENCAR by introducing Lagrangian multipliers

αa’s (a ∈ A) for channel capacity constraints. This results in the partial Lagrangian

as
L′

car(x, t, α) = −∑
a∈A

∑
i∈Na

qa
i log xa

i +
∑
a∈A

αa(
∑

i∈Na

xa
i

pa
i

−Bta)

=
∑
a∈A

∑
i∈Na

(
−qa

i log xa
i + αa xa

i

pa
i

)
− ∑

a∈A

αaBta,

whereαa is also referred to asshadow priceof anchor pointa.

Given priceλ, the minimum ofL′
car occurs whenxa

i = qa
i /λ

a
i . Thus, the dual
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function is defined as

g(α) = inf
t

{
L′

car
(

q
λ
, t, α

) ∣∣∣∣
∑
a∈A

ta ≤ T

}
.

Correspondingly, the dual problem is to find a shadow price vector α∗ that maxi-

mizes dual functiong(α).

Moreover, based on LagrangianL′
car, we have

∂L′

car
∂xa

i

= − qa
i

xa
i

+ αa

pa
i

= −λa
i + αa

pa
i

.

For the optimum solution to the SENCAR problem, we have
∂L′

car
∂xa

i

= 0, i.e.,λa
i =

αa

pa
i

. This can be interpreted as that link priceλa
i from sensori to anchor pointa is

actually determined by the shadow price of this anchor pointand the quality of the

link between them.

From the above analysis, we can see that data matrixx∗ is the optimal solution

to the NCM problem if and only if there exists shadow price vector α∗ solving the

dual problem of SENCAR such that for eacha ∈ A, i ∈ N a, we have thatxa
i
∗ =

qa
i

λa
i

,

whereλa
i = αa∗

pa
i

andqa
i is the solution to the SENSOR−i problem for a givenλa

i .

Based on this result, to find the optimal solution, we will gradually vary shadow

price α of anchor points, derive link priceλ accordingly and give data amountx

as a function of link priceλ. When shadow price vectorα iteratively converges to

its optimumα∗, the optimal solution to the NCM problem can be achieved. Note

that the shadow price is associated with an anchor point. Therefore, the task of

finding optimal vectorα∗ can be done by the help node at each anchor point in a

distributed manner. Next, we propose a pricing-based algorithm to jointly solve the

dual problem of SENCAR and SENSOR−i.

Pricing-based Algorithm:

For all a ∈ A, the help node independently initializes the shadow priceαa for

anchor pointa to a positive value.

Repeat the following iteration until the shadow price vectorα converges toα∗.

At iterationn,

• For alla ∈ A, the help node at anchor pointa determines link priceλa
i (n) for

all i ∈ N a by setting

λa
i (n) = αa(n)

pa
i

,
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and then sends this information to sensors in its neighborhood.

• For all i ∈ N , after learning link priceλa
i (n) for all a ∈ Ai, sensori decides

its paymentsqa
i (n)’s for its neighboring anchor points by solving SENSOR−i

problem to minimize the local cost, i.e.,

qa
i (n) = arg min

qa
i ≥0

{ ∑
a∈Ai

Ca
i

(
qa
i

λa
i (n)

)
+
∑

a∈Ai

qa
i

∣∣∣∣
∑

a∈Ai

qa
i

λa
i (n)
≥Mi

}
, λa

i (n) > 0,

and then announces these payments to the corresponding helpnodes at neigh-

boring anchor points.

• Help nodes exchange the information of shadow prices. In thecases that

the help nodes are not connected, we assume that they can use slightly higher

transmission power to ensure a minimum degree of connectivity among them-

selves. Once obtaining the payment information from nearbysensors, the

help node at each anchor pointa would derive the possible data amount that

each nearby sensor can upload to the SenCar when arriving at this anchor

point based on the respective link cost, i.e., for eacha ∈ A andi ∈ N a, the

help nodes set

xa
i (n) = qa

i (n)/λa
i (n). (5.25)

In order to minimizeL′
car, each help node sets the sojourn time for its located

anchor point by following rule

ta(n) =

{
T, If a = arg max

a∈A
αa(n)

0, Otherwise.
(5.26)

• Upon receiving the payment information from all sensors in its neighborhood

and having identified the sojourn time, each help node updates the shadow

price for its located anchor point according to

αa(n + 1) =

[
αa(n) + θ(n)

( ∑
i∈Na

xa
i (n)

pa
i

−Bta(n)

)]+

, (5.27)
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where[·]+ denotes the projection onto the positive orthant andθ(n) is a pro-

perly chosen scalar stepsize for iterationn. In our algorithm, we choose the

diminishing stepsize, i.e.,θ(n) = d/(b + cn), ∀n, c, d > 0, b ≥ 0, whereb,

c andd are adjustable parameters that regulate the convergence speed. The

diminishing stepsize can guarantee the convergence regardless of the initial

value ofαa [98].

• Note that SENCAR problem is not strictly concave with respectto sojourn

time ta, which implies that the values ofta in the optimal solution to the

Lagrangian dual cannot be directly applied to the primal SENCAR problem.

In view of this, we recover the solutions by applying the method introduced

in [100]. For iterationn, we compose a primal feasiblêta(n) as follows.

t̂a(n) = 1
n

n∑
h=1

ta(h)

=

{
ta(1) n = 1
n−1

n
t̂a(n− 1) + 1

n
ta(n) n > 1

(5.28)

It was proved in [100] that when the diminishing stepsize is used, any ac-

cumulation point of sequence{t̂a(n)} generated by (5.28) is feasible to the

primal problem and{t̂a(n)} can converge to a primal optimal solution.

Finally, the converged value of matrixx(n) = {xa
i (n)|i ∈ N , a ∈ A} and

vectort̂(n) = {t̂a(n)|a ∈ A} indicates the optimal data control for sensors and the

optimal sojourn time allocation for the SenCar, i.e.,(x, t̂) is the optimal solution to

the NCM problem.

5.5 Local Cost Minimization at Sensors

In this section, we consider the second step of the pricing-based algorithm: how

to solve SENSOR−i problem by each sensor under given link price vectorλi =

{λa
i |a ∈ Ai}. As aforementioned,Ca

i (·) is a monotonic increasing function. Thus,

the minimum of the objective function in (5.6) should be achieved when
∑

a∈Ai

qa
i

λa
i

=

Mi. Considering this fact, the SENSOR−i problem can be rewritten as follows.
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SENSOR−i:

Minimize
∑

a∈Ai

Ca
i

(
qa
i

λa
i

)
+
∑

a∈Ai

qa
i

Subject to
∑

a∈Ai

qa
i

λa
i

= Mi,

Over qa
i ≥ 0, ∀a ∈ Ai

(5.29)

Let fi denote the objective function of SENSOR−i. Sincefi =
∑

a∈Ai

Ca
i (

qa
i

λa
i

) +

∑
a∈Ai

qa
i =

∑
a∈Ai

Ca
i (

qa
i

λa
i

) +
∑

a∈Ai

λa
i (

qa
i

λa
i

), fi is a function with respect to variable vector

xi = {xa
i =

qa
i

λa
i

|a ∈ Ai}, wherexi can be considered as the demand of uploading

data vector at sensori.

For each sensori, let âi be the index of the minimum-marginal-cost anchor point

for sensori. That is,

âi = arg min
a∈Ai

{
∂fi(xi)

∂xa
i

}
= arg min

a∈Ai

{
Ca

i

′

(
qa
i

λa
i

)
+ λa

i

}
.

If there are multiple minimum-marginal-cost anchor points, we can randomly

choose one. Since SENSOR−i is a convex problem, we can characterize solution

q∗i by the following optimality condition [97][105].

∑
a∈Ai

∂fi(x
∗

i )

∂xa
i

(xa
i − xa

i
∗)

=
∑

a∈Ai

(
Ca

i

′

(
qa
i
∗

λa
i

)
+ λa

i

)(
qa
i −qa

i
∗

λa
i

)
≥ 0.

This optimality condition can be equivalently expressed as

qa
i
∗ > 0, only if

[
∂fi(xi

∗)

∂xa′

i

≥ ∂fi(xi
∗)

∂xa
i

,∀a′ ∈ Ai

]
.

That is, for each anchor pointa ∈ Ai, sensori only pays for the data uploading

opportunity to the SenCar at those anchor points that incur the minimum marginal

cost. This intuitively suggests that sensori should gradually shift the payment to

the minimum-marginal-cost anchor point from other neighboring anchor points and

finally reach an equilibrium, where the aggregated marginalcost of anchor points

selected for data uploading is less than or equal to that of unselected anchor points

[106]. In the following, we present an adaptation algorithm thatstrikes for such
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equilibrium.

Adaptation algorithm:

1. Case I: If|Ai| = 1, thenqa
i = λa

i Mi;

2. Case II: If|Ai| > 1, sensori first initializes its payment vectorqi(0) = {qa
i (0) ≥

0|a ∈ Ai} that satisfies
∑

a∈Ai

qa
i (0)

λa
i

= Mi. For example, we can letqa
i (0) =

Miλ
a
i

|Ai|
,

where|Ai| represents the cardinality of setAi. Then, it iteratively updates vector

qi(k) according to

qa
i (k + 1) = ϕ(k)q̄a

i (k) + [1− ϕ(k)]qa
i (k),∀a ∈ Ai (5.30)

q̄a
i (k) =





[
qa
i (k)− δ(k)λa

i

(
∂fi(xi(k))

∂xa
i

− ∂fi(xi(k))

∂x
âi
i

)]+

if a ∈ Ai, a 6= âi andqa
i (k) ≥ 0,

λâi

i ·
(

Mi −
∑

a∈Ai,a 6=âi

q̄a
i (k)

λa
i

)
, if a = âi,

(5.31)

where[·]+ denotes the projection onto the non-negative orthant,k stands for the

iteration index,δ(k) is a small positive scalar stepsize, andϕ(k) is a scalar on[a, 1]

with 0 < a ≤ 1. In other words, the new payment for each neighboring anchor

point is a weighted average of the amount in the previous iteration and currently

derived optimal value.

The adaptation algorithm can be explained as follows. If anchor pointa is not

chosen as the minimum-marginal-cost anchor point by sensori (i.e., a 6= âi) and

there still exists positive payment for it, this payment should be reduced. On the

contrary, ifa is chosen as the minimum-marginal-cost anchor point (i.e.,a = âi),

the payment for it should be increased and the increased amount is proportional to

the linear combination of the aggregated payment shifted from all other neighboring

anchor points of sensori in order to ensure
∑

a∈Ai

qa
i

λa
i

= Mi.

We have the following theorem regarding the convergence of the adaptation

algorithm.

Theorem 5. When stepsizeδ(k) is small enough, the adaptation algorithm con-

verges to a unique optimal solutionq∗i to the SENSOR−i problem.

Proof. We first show that whenδ(k) is no more than a certain value, adjusting

payment vectorqi by the adaptation algorithm in (5.30)-(5.31) always results in the
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decrease of local cost at sensori, i.e.,fi(xi(k +1)) ≤ f(xi(k)). Then we show that

such adaptation would finally reach an equilibrium to achieve the unique optimal

solutionq∗i = {qa
i
∗|a ∈ Ai}.

From the adaptation algorithm, it is straightforward to verify

∑
a∈Ai

q̄a
i (k)−qa

i

λa
i

= 0, and (5.32)

(
q̄

âi
i −q

âi
i

λ
âi
i

)2

=

(
∑

a∈Ai,a 6=âi

qa
i −q̄a

i

λa
i

)2

≤ (|Ai| − 1) · ∑
a∈Ai,a 6=âi

(
qa
i −q̄a

i

λa
i

)2.

(5.33)

It is clear thatfi(xi) is defined on the compact setχ = {xa
i ∈ xi|

∑
a∈Ai

xa
i = Mi, x

a
i ≥

0}. As∇2fi is continuous onχ, we assume that its norm is bounded by some scalar

L > 0 [107]. Denoting the cost difference between two consecutive iterations as

∆xi
and applying the mean value theorem [97][107], we have

∆xi
= fi(xi(k + 1))− fi(xi(k))

≤ < ∇fi(xi(k), xi(k + 1)− xi(k) >

+L
2
|xi(k + 1)− xi(k)|2

(5.34)

Based on (5.34) andqa
i (k + 1) − qa

i (k) = ϕ(k)(q̄a
i (k) − qa

i (k)) by (5.30), ∆xi
can
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be rewritten as

∆xi
≤ ∑

a∈Ai

∂fi(xi(k))
∂xa

i

ϕ(k)
(

q̄a
i (k)−qa

i (k)

λa
i

)

+L
2
ϕ2(k)

∑
a∈Ai

(
q̄a
i (k)−qa

i (k)

λa
i

)2

=
∑

a∈Ai

(
∂fi(xi(k))

∂xa
i

− ∂fi(xi(k))

∂x
âi
i

)
ϕ(k)

(
q̄a
i (k)−qa

i (k)

λa
i

)

+∂fi(xi(k))

∂x
âi
i

ϕ(k)
∑

a∈Ai

(
q̄a
i (k)−qa

i (k)

λa
i

)

+L
2
ϕ2(k)

∑
a∈Ai

(
q̄a
i (k)−qa

i (k)

λa
i

)2

=
∑

a∈Ai,a 6=âi

(
∂fi(xi(k))

∂xa
i

− ∂fi(xi(k))

∂x
âi
i

)
ϕ(k)

(
q̄a
i (k)−qa

i (k)

λa
i

)

+L
2
ϕ2(k)

∑
a∈Ai

(
q̄a
i (k)−qa

i (k)

λa
i

)2

≤ − ∑
a∈Ai,a 6=âi

a
δ(k)

(
q̄a
i (k)−qa

i (k)

λa
i

)2

+ L
2
·

[(
q̄

âi
i (k)−q

âi
i (k)

λ
âi
i

)2

+
∑

a∈Ai,a 6=âi

(
q̄a
i (k)−qa

i (k)

λa
i

)2
]

≤ ∑
a∈Ai,a 6=âi

−
(

a
δ(k)
− L

2
|Ai|

)(
q̄a
i −qa

i

λa
i

)2

,

(5.35)

where the first equality follows from adding and subtractingthe same term of
∂fi(xi(k))

∂x
âi
i

ϕ(k)
∑

a∈Ai

(
q̄a
i (k)−qa

i (k)

λa
i

)
, the second equality holds by (5.32), the second in-

equality follows from the fact thata ≤ ϕ ≤ 1 and the observation by (5.31) that

for all a 6= âi,
∂fi(xi(k))

∂xa
i

− ∂fi(xi(k))

∂x
âi
i

≥ qa
i (k)−q̄a

i (k)

δ(k)λa
i

, and the third inequality holds by

(5.33). Therefore, whenδ(k) ≤ 2a
L|Ai|

, the right side of (5.35) is non-positive so that

fi(xi(k + 1)) ≤ fi(xi(k)) always holds. This implies that the updating on{qa
i (k)}

by the adaptation algorithm always reduces the local cost atsensori.

From the KKT conditions of the SENSOR−i problem listed in (5.15)-(5.18), we

can obtainCa
i

′

(
qa
i
∗

λa
i

) + λa
i = ν∗

i . SinceCa
i (·) is strictly convex, increasing and twice

differentiable, the inverse function ofCa
i

′

(·), i.e.,Ca
i

′−1(·), exists and is continuous.

Thus, over the orthantqa
i
∗ ≥ 0 for all a ∈ Ai, we have

qa
i
∗ =

{
0, if ν∗

i < Ca
i

′

(0) + λa
i

λa
i · Ca

i

′−1(ν∗
i − λa

i ), if ν∗
i ≥ Ca

i

′

(0) + λa
i .

(5.36)
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Figure 5.2: An example network with 12 sensors and 3 anchor points.

In the adaptation algorithm, in order to obtain the optimal solution, we always in-

crease the minimum marginal cost, i.e.,C âi

i

′

(
q

âi
i

λ
âi
i

)
+ λâi

i , by increasing the cor-

responding paymentqâi

i for anchor pointâi, and decrease other marginal costs

Ca
i

′

(
qa
i

λa
i

)
+ λa

i for all a ∈ Ai anda 6= âi by reducing the payments for them.

In this way, we stipulate the marginal costs towards to the same valueν∗
i for all an-

chor points with positiveqa
i
∗’s (a ∈ Ai). Therefore, at the equilibrium, the unique

optimal solution can be achieved by (5.36).

5.6 Simulation Results

In this section, we provide simulation results to demonstrate the usage and effi-

ciency of the proposed algorithm and compare its performance with another data

gathering strategy.

5.6.1 Convergence

In this subsection, we illustrate the convergence of the pricing-based algorithm via

a numerical case study. We consider a WSN with a total of12 sensors as shown

in Fig. 5.2. The locations of sensors3, 4 and5 are chosen as anchor points and

each of these sensors would act as the helping node in computing for the respective

anchor point. In the figure, there is a link between an anchor point and each of its

neighboring sensors. We define the cost function asCa
i (xa

i ) = ωa
i x

a
i
2, whereωa

i

is the weight of cost for sensori to upload data to the SenCar at anchor pointa.

Clearly, a larger weightωa
i would have more impact on the entire network cost. For

clarity, we list all the parameter settings in Table5.2.

Fig. 5.3 shows the evolution of network cost, shadow priceαa, recovered so-

journ time variablêta, and data variablexa
i versus the number of iterations in the

102



Table 5.2: Parameter settings.
Notation Value Notation Value
ωa

i ranging from 0.01 to 0.08 T 42 seconds
B 250kbps θ(n) 1

1+20n

pa
i ranging from 0.7 to 1 δ(k) 0.03

Mi 800Kb ϕ(k) 0.8

pricing-based algorithm. It can be seen from Fig.5.3(a) that network cost first drops

sharply in the first few iterations and then slightly decreases until it reaches opti-

mum. It falls within2% of its optimum after only40 iterations. Fig.5.3(b) shows

that the shadow prices of three anchor points converge very fast and they finally

reach almost the same value in the equilibrium. Since all shadow prices are much

larger than zero, it indicates that the communication opportunity between sensors

and the SenCar at all anchor points is fully utilized. By the adjustment policy on

shadow prices in the pricing-based algorithm, whenT is large enough to satisfy all

the data uploading demands from sensors to each anchor point, the corresponding

shadow prices can be reduced to almost zero. Fig.5.3(c) shows the convergence of

recovered sojourn time at different anchor points. It further validates that at any it-

eration step, the recovered sojourn time is feasible to the primal SENCAR problem,

i.e, satisfying the total sojourn time constraint, and whendiminishing stepsize is

used, the recovery process guarantees its convergence to optimum. In Fig. 5.3(d)-

(f), we investigate the evolution of the data amount uploaded from selected sensors

1, 6 and10 to their neighboring anchor points. We can see that they all approach the

stable state after200 iterations. For a particular sensor, say, sensor1, as its weight

of the cost for anchor point1 is smaller than those of other two anchor points, more

data would destine to the SenCar at anchor point1 so as to minimize the cost. In

Fig. 5.4, we plot two instances to demonstrate the convergence of theadaptation

algorithm for solving the SENSOR−i problem with stepsizeδ(k) = 0.03. We fo-

cus on sensor1 in two cases where link price vectors areλ1 = {1.11, 2, 3} and

λ1 = {124.6, 112.3, 111.97}, respectively. In both cases, we find that the payment

for each neighboring anchor point can be determined in about1000 iterations. It

is clear that the smaller the stepsize is, the slower the convergence is, however, the

smoother the adaptation towards optimum. In practice, besides using the constant

stepsize for the adaptation algorithm as in our simulations, each sensor can dynam-
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ically set its stepsize by first choosing a larger value to ensure faster convergence,

and subsequently reducing the stepsize once there is an oscillating around some

values.

5.6.2 Network Cost

In this subsection, we conduct a suite of simulations to evaluate the network cost

achieved by the pricing-based algorithm and compare the results with another data

gathering strategy called cluster-based algorithm, wheresensors are virtually clus-

tered, i.e., each sensor is randomly associated with a neighboring anchor point and

uploads all its data to the SenCar only when it arrives at this anchor point. This

algorithm is commonly considered as a simple and effective strategy for the anchor-

based range traversing data gathering scheme in the existing literature [28][33]. We

consider a generic sensor network with|N | sensors randomly distributed over the

sensing field and|A| anchor points that can cover all sensors. The cost functions

are defined asCa
i (xa

i ) = ωa
i x

a
i
2 for all a ∈ A, i ∈ N a and the weights of the

costωa
i ’s are generated as discrete uniform random numbers rangingfrom 0.01 to

0.10. We assume the minimum data amountMi is equally set for all sensors and

its value equals800Kb if not specified otherwise. The channel bandwidthB is set

to 250Kbps. Moreover, we introducēp to denote the average successful delivery

ratio of all links and use it to characterize the physical condition of the network.

The successful delivery ratiopa
i of each link between a sensor and an anchor point

would ranges from2p̄− 1 to 1. Considering the randomness of the network topol-

ogy, each performance point in the figures below is the average of the results in100

simulation experiments.

Fig. 5.5 plots the network cost of the pricing-based algorithm when the bound

of total sojourn timeT is varied from175 seconds to225 seconds. The number

of sensors|N | is set to50 and the number of anchor points|A| is set to3. We

investigate network cost of four cases, wherep̄ equals0.8, 0.85, 0.9, 0.95 and1, re-

spectively. It can be seen from the figure that in most cases, network cost decreases

asT increases. This result is reasonable and can be explained asfollows. Since cost

functionCa
i (·) is convex, it is expected that each sensor sends parts of its data to

the SenCar at different anchor points so as to minimize the aggregated cost. When

the restriction on the total sojourn time becomes loose, each sensor can send the
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Figure 5.3: The evolution of network cost, shadow prices of different anchor points,
recovered sojourn time for SenCar stopping at different anchor points, and upload-
ing data from sensors1, 6 and10 versus the number of iterations in the pricing-
based algorithm.
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Figure 5.4: The evolution of the payment from sensor1 for different anchor points
versus the number of iterations in the adaptation algorithm.
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Figure 5.5: Network cost of the pricing-based algorithm as afunction of the bound
of total sojourn timeT .

preferred amount of data to the SenCar more freely at different anchor points, oth-

erwise, in order to ensure the bound of total sojourn time, sensors are restricted to

send more data to the SenCar at some particular anchor points in order to complete

the data uploading in a shorter time. We also notice that for agivenT , the cases

with a largerp̄ always achieve lower network cost than the cases with a smaller p̄.

For instance, whenT = 180s, the case of̄p = 0.95 results in around30% improve-

ment on the network cost with respect to the case ofp̄ = 0.8. WhenT becomes

large enough, such asT > 220s, all the cases reach the same minimum network

cost, which implies thatT no longer affects the network performance and the ben-

efit of data control that smartly schedules the communication between sensors and

the SenCar at different anchor points can be fully extracted by all cases.
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Figure 5.6: Network cost of the pricing-based algorithm as afunction of minimum
data amount from each sensorMi.

Fig. 5.6 plots the network cost of the pricing-based algorithm when the mini-

mum amount of each sensorMi is varied from600Kb to 800Kb. We consider the

network with100 sensors and all sensors holding the same minimum constraintMi

for gathered data amount. We assume thatp̄ is equal to0.8 and the total sojourn

time boundT is set as
∑

i Mi/(p̄ · B). We consider five cases, where the number

of anchor points, i.e.,|A|, is varied from3 to 7. It is shown in the figure that the

network cost increases withMi. This is intuitive as the network cost is the ag-

gregation of the data cost and each data cost function is monotonically increased

with the data mount transmitted from a sensor to an anchor point. When the total

data mountMi becomes large, the data of a sensor destined to a particular anchor

point may correspondingly increased, though the extend of increase may be dif-

ferent from one anchor point to another. We also notice that for a givenMi, the

network cost would decrease with the increase of the number of anchor points. For

example, whenMi = 800Kb, the network cost of the case with|A| = 7 is 30%

lower than that of the case with|A| = 3. This is because that larger|A| implies

that each sensor would have more neighboring anchor points.This provides more

opportunities for each sensor to preferentially balance its data to different anchor

points, which would result in less network cost.

Fig. 5.7 shows the network cost comparison between the pricing-based algo-

rithm and the cluster-based algorithm when the number of sensors is varied from

10 to 200 under different settings of|A| andMi. We use PA and CA to denote

the pricing-based algorithm and the cluster-based algorithm in the figure, respec-

tively. The total sojourn time boundT is set to4.5|N | seconds, which is sufficient
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Figure 5.7: Network cost comparison between the pricing-based algorithm and the
cluster-based algorithm.

to accommodate the data uploading from all sensors. From thefigure, we can draw

some observations. First, network cost increases in all cases of both algorithms as

the number of sensors increases. This is intuitive. As each sensor needs to up-

load certain amount of data to the SenCar, more cost is incurred by the increase of

sensors. Second, given|A| andMi, the pricing-based algorithm always achieves

lower network cost. For example, when|N | = 100, |A| = 3, andMi = 800Kb,

the pricing-based algorithm results in32% less network cost with respect to the

cluster-based algorithm. The underlying reason for such superiority of the pricing-

based algorithm is that each sensor can adaptively split itsdata and send the data to

the SenCar at different neighboring anchor points such that the aggregated cost is

minimized. Third, the increase of|A| can effectively reduce the network cost for

pricing-based algorithm, however, it has little impact on the performance of cluster-

based algorithm. This is because that no matter how many anchor points there are,

in the cluster-based algorithm, each sensor is associated with only one anchor point.

That means that there is no much chance to greatly alleviate the data cost at each

sensor since each sensor can not send its data dispersedly tothe SenCar at multiple

neighboring anchor points.
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5.7 Conclusions

In this chapter, we have studied performance optimization of anchor-based range

traversing data gathering in WSNs. We formalized the problemas a cost mini-

mization problem constrained by channel capacity, the minimum amount of data

uploaded from each sensor and the bound of total sojourn timeat all anchor points.

We characterized this problem as a pricing mechanism and decomposed it into

two simpler subproblems, i.e., SENSOR−i and SENCAR subproblems. We have

proved that network cost can be minimized by jointly solvingthe two subprob-

lems. Correspondingly, we described a pricing-based algorithm that iteratively

solves SENSOR−i and the dual problem of SENCAR. In each iteration, the help

node sets the shadow price for its local anchor point and derives link prices be-

tween neighboring sensors and the anchor point. Each neighboring sensor then de-

termines the payments to minimize its local cost. The minimum network cost can

be achieved when reaching the equilibrium that reconciliates the two subproblems.

We also proposed an efficient adaptation algorithm for solving the SENSOR−i sub-

problem at each sensor. Finally, we gave extensive simulation results to validate

the efficiency of the proposed algorithm and compare its performance with another

data gathering strategy.
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Chapter 6

Distributed Network Utility

Maximization Algorithms for Mobile

Data Gathering in WSNs

In this chapter, we study the performance optimization for anchor-based mobile

data gathering, where the SenCar roams over the sensing field by visiting the anchor

points and gathers data from nearby sensors via multi-hop transmissions. As routing

issue is also taken into consideration, the problem becomeseven more complicated

than the problem in the previous chapter. We characterize the performance opti-

mization as network utility maximization problems under the constraints of guar-

anteed network lifetime and data gathering latency. We assume the data utility at

each sensor is a function with respect to the total amount of data gathered from

this sensor in a data gathering tour. Thenetwork utility is defined as the aggre-

gation of the data utility of all sensors. We use network utility as a direct metric

to evaluate the effectiveness of data gathering strategies. We consider the network

utility maximization problem for two cases depending on whether the SenCar has

fixed or variable sojourn time at each anchor point. To efficiently solve these prob-

lems, we decompose each of them into several subproblems andsolve them in a

distributed manner, which facilitates the scalable implementation of the optimiza-

tion algorithms. Finally, we provide extensive numerical results to demonstrate the

usage and efficiency of the proposed algorithms and complement our theoretical

analysis.
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The remainder of this chapter is organized as follows. Section 6.1 provides

the introduction of research issue. Section6.2 discusses the related work. Section

6.3 introduces our system model and formulates the two cases into convex opti-

mization problems. Sections6.4and6.5present the optimization based distributed

algorithms to solve these two problems, respectively. Finally, Section6.6gives the

performance evaluation results and Section6.7concludes the chapter.

6.1 Introduction

In this work, we consider anchor based mobile data gatheringas shown in Fig.6.1,

where a SenCar periodically starts a data gathering tour, andin each tour it vis-

its some pre-defined positions calledanchor pointsin the field and stays at each

anchor point for a period ofsojourn timeto collect data from nearby sensors via

multi-hop transmissions. To characterize the data gathering performance, we in-

troducenetwork utility, which is a function quantifying the aggregated “value” of

the gathered data from different sensors in a data gatheringtour. In practice, the

“value” measure can be in terms of information entropy or revenue, which provides

the flexibility of modeling user application needs, or a level of “satisfaction” on a

certain amount of data from each sensor. In general, good data gathering strategies

should ensure an expected network lifetime and have a bounded data gathering la-

tency as well. Therefore, our overall objective is to maximize the network utility

under the constraints of guaranteed network lifetime and data gathering latency. To

achieve this objective, we will address following three issues that critically affect

the data gathering performance. First, from a sensor’s point of view, since the Sen-

Car may stay at different anchor points to collect data, how much data should be

sent from the sensor to the SenCar at a particular anchor point? Second, in terms

of communication efficiency, how to route the data to each anchor point taking into

account of energy and link capacity constraints? Third, from the SenCar’s point of

view, to bound the data gathering latency is actually to constrain the total sojourn

time at all anchor points under a threshold. Under these circumstances, what is the

optimal sojourn time at each anchor point?

Based on these considerations, in this chapter, we develop optimization based

distributed algorithms to find optimal solutions to the above problems. The main

contribution of our work can be summarized as follows: (1) Formalize the prob-
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Figure 6.1: Illustration of anchor-based mobile data gathering.

lem of finding optimal mobile data gathering strategies as a network utility maxi-

mization problem with guaranteed network lifetime and datagathering latency. (2)

Propose solutions to this problem for two cases, where the SenCar spends fixed

and variable sojourn time at each anchor point, respectively. The former case is

essentially a joint problem of rate control and optimal routing, and the latter case

involves the integration of data control, routing and sojourn time allocation. (3)

Present distributed algorithms for the two cases to facilitate scalable implementa-

tions, in which each sensor only needs to exchange limited information with its

direct neighbors and the SenCar. (4) Provide extensive numerical results to demon-

strate the usage and efficiency of the proposed distributed algorithms.

6.2 Related Work

There has been some work in the literature on optimization based data gathering

algorithms for both relay routing and mobile data gathering.

For relay routing, Madan and Lall [50] proposed distributed algorithms based

on a dual decomposition approach to computing an optimal routing that maximizes

network lifetime. Hou, et. al [52] studied the lexicographical max-min (LMM) rate

allocation problem and developed a polynomial-time algorithm by exploiting the

parametric analysis. They also showed the existence of an elegant duality between

the LMM rate allocation problem and the LMM node lifetime problem so that it is

sufficient to solve only one of the two problems. In [53], Hua and Yum considered

optimizing data aggregation and maximum lifetime routing together, which aims to

reduce the traffic across the network and balance the traffic to avoid overwhelm-
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ing bottleneck nodes. Zhang, et. al [54] studied the joint problem of sensing rate

control, data routing and energy allocation to maximize thesystem utility. They

first mapped the combined sensing/routing problem into a unified routing problem

and then used a penalty function approach to solving the remaining joint routing

and energy allocation problem. Wu, et. al [55] studied the construction of a data

gathering tree to maximize the network lifetime. They showed the problem is NP-

complete and designed a provably near-optimal algorithm for it, which first starts

from building an arbitrary tree and then iteratively reduces the load on bottleneck

nodes. Sadagopan and Krishnamachari [56] examined the problem of maximizing

data extraction from energy-limited sensor networks, which requires attention to

“data-awareness” in addition to “energy-awareness.” Theyformulated this prob-

lem as a linear program and presented an iterative approximation algorithm for it.

Chen, et. al [57] studied the max-min optimal rate assignment problem in a sensor

network, where all possible forwarding paths are considered. They provided an it-

erative linear programming solution, which finds the optimal rate assignment and a

forwarding schedule that implements the assignment in a low-rate sensor network.

Liu, et. al [58] addressed the maximal lifetime scheduling problem in sensor sur-

veillance systems. They proposed an optimal solution to findthe target-watching

schedule for sensors, in which the workload matrix obtainedby using the linear

programming technique is first decomposed into a sequence ofschedule matrices,

and then the surveillance trees are determined based on these schedule matrices.

For mobile data gathering, Xing, et. al [36] proposed approximate algorithms

to minimize the distance of local multi-hop routing under the constraint that the

tour length of the mobile collector is no more than a threshold. Zhao, et. al

[110] studied the data gathering latency minimization problem with the joint design

of mobility control and space-division multiple access (SDMA) technique. They

proposed algorithms for different scenarios by balancing the tradeoff between the

shortest moving tour of the mobile collector and the full utilization of SDMA for

data transmissions. Gatzianas and Georgiadis [59] presented a distributed algorithm

for maximum lifetime routing in a sensor network with a mobile sink by assuming

a constant data rate for each sensor and defining the network lifetime as the total

sojourn time of the mobile collector.

Our work in this chapter focuses on the performance optimization of anchor

based mobile data gathering and differs from the earlier work in the following as-
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pects: (1) In contrast to the fixed data rate assumed in most existing work [50][53][59],

each sensor in our scheme may adopt a variable data rate to avoid congestion. (2)

Different from the optimal routing with a static data sink [50]-[58], in our setting,

each sensor can use any set of possible routes to reach the SenCar. This implies

that on one hand, each sensor has options to send data to the SenCar at different

anchor points; on the other hand, the routing path for each specific sensor-anchor

point pair should be energy efficient. (3) In addition to the energy constraint that en-

sures network lifetime [50][52][53][36][59], we also impose the latency constraint

on mobile data gathering and jointly optimize the sojourn time at each anchor point

with the rate control and routing problems. To the best of ourknowledge, this is the

first work that explores such optimization and systematically provides solutions to

these problems.

6.3 System Model and Problem Formulations

6.3.1 System Model

Consider a network with a set of static sensors, denoted byN , and a set of anchor

points, denoted byA. In a periodic data gathering tour, the SenCar, denoted bys,

roams over the field and collects data by visiting each anchorpoint in a specified

sequence.

To capture the characteristics of the SenCar movements over different anchor

points, we model the sensor network with the SenCar located atan anchor pointa

(a ∈ A) by a directed graphGa(V a, Ea). V a = N ⋃{sa} and it represents the

set of nodes, including all the sensors and the SenCar at anchor point a (denoted

by sa). Ea = {(i, j)|i, j ∈ V a}, which is the set of directed links among the

sensors and the SenCar. Sensori (i ∈ N ) generates information for the SenCar

at a data rate ofqa
i when the SenCar moves to anchor pointa. The SenCar will

stay at anchor pointa for a period of sojourn timeta to gather the data routed to

it. To ensure that all the sensors can reach the SenCar in a datagathering tour in a

multi-hop fashion, we assume that there exist routing pathsfrom each sensor to at

least one anchor point in the network. This can be achieved byproperly placing the

anchor points, such as putting them within the transmissionranges of the sensors

that dominate the network connectivity [36] or evenly distributed over the sensing
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Table 6.1: List of notations used in problem formulations.
Notation Definition
N Set of sensors
A Set of anchor points
sa SenCar located at anchor pointa
ta Sojourn time of SenCar at anchor pinta

∆T Bound of data gathering latency, i.e., maximum total sojourn time
at all anchor points in a data gathering tour

E′
i Energy budget sensori can use in a data gathering tour, which

guarantees specified network lifetimeT
qa
i Data rate of sensori when SenCar is located at anchor pointa

Qi Upper bound of the data rate of sensori
fa

ij Flow rate over link(i, j) when SenCar is at anchor pointa

Fij Capacity of link(i, j)
eij Energy consumed for transmitting a unit flow over link(i, j)
xa

ij Flow over link(i, j) when SenCar is located at anchor pointa

yi Total data gathered from sensori in a data gathering tour
Yi Upper bound of total data from sensori in a data gathering tour
φa

i Data split variable, i.e., fraction of the data of sensori destined to
SenCar at anchor pointa

field with sufficiently small intervals [110].

Assume that sensori has non-renewable battery energyEi, which would be

gradually depleted as the sensor transmits its own data and relays data for others. To

guarantee a specific network lifetimeT , we impose an energy expenditure budget

E ′
i for sensori, which is the maximum energy the sensor can consume in a data

gathering tour. IfK data gathering tours would be performed within the network

lifetime, this budget can be approximated asE ′
i = (Ei−Psi

T )/K, wherePsi
is the

sensing power of sensori. Moreover, in some applications, it is expected that the

time cost of data gathering should be bounded. It is equivalent to constraining the

total sojourn time at all anchor points to no more than a threshold, i.e.,
∑

a∈A ta ≤
∆T , where∆T is called the bound of data gathering latency.

To facilitate our studies, we usedata utility to characterize the impact of the data

from a sensor on the overall data gathering performance. We define the data utility

function of sensori, Ui(·), as a strictly concave, increasing and twice-differentiable

function with respect to the total amount of data gathered from sensori in a data

gathering tour (i.e.,
∑

a∈A qa
i t

a). There are several typical forms that can be used

for Ui(·), such asUi = wi log(1 +
∑

a∈A qa
i t

a) [102] or Ui = −wi(
∑

a∈A qa
i t

a)−0.5
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[54], wherewi is the utility weight of at sensori, reflecting the importance of its

data. In our discussions and formulations, we will simply use Ui(·) as the general

form for the data utility function and adoptUi = wi log(1 +
∑

a∈A qa
i t

a) in the

simulations later. Accordingly, thenetwork utility is defined as the aggregation of

the data utility of all sensors.

In this work, we are interested in maximizing the network utility while guar-

anteeing a given network lifetime and data gathering latency. In the following, we

first consider the case where the SenCar spends fixed sojourn time at each anchor

point and then extend our study to the case where the sojourn time at each anchor

point can vary. Each of these cases corresponds to an optimization problem. The

notations used in the problem formulations are given in Table6.1.

6.3.2 Formulation of Network Utility Maximization Problem with

Fixed Sojourn Time at Each Anchor Point (NUM-FT)

In this subsection, we consider the case that the SenCar spends fixed sojourn time

at each anchor point, i.e.,∀a ∈ A, ta is given. Our objective aims to find the proper

data rate for each sensor and the flow rate for each link when the SenCar moves over

different anchor points such that the network utility can bemaximized. Clearly,

this problem is essentially a joint rate control and routingproblem, which can be

formally defined as follows. Since a longer sojourn time generally corresponds to

more gathered data, without loss of generality, we assume that the total sojourn time

at all anchor points reaches the data gathering latency bound.

Definition 3. Network Utility Maximization Problem with Fixed Sojourn Time at

Each Anchor point (NUM-FT).Given a set of sensorsN , a set of anchor pointsA,

and the sojourn time at each anchor pointta (a ∈ A and
∑

a∈A ta = ∆T ), find: (1)

data rateqa
i of sensori when the SenCar is at anchor pointa; (2) flow ratefa

ij over

link (i, j) ∈ Ea destined to the SenCar at anchor pointa, such that network utility∑
i∈N Ui(

∑
a∈A qa

i t
a) is maximized.

The NUM-FT problem can be formulated as follows.

NUM-FT: max
∑
i∈N

Ui(
∑
a∈A

qa
i t

a) (6.1)

116



s.t.
∑

j:(i,j)∈Ea

fa
ij = qa

i +
∑

j:(j,i)∈Ea

fa
ji, ∀i ∈ N ,∀a ∈ A (6.2)

∑

a∈A

∑

j:(i,j)∈Ea

fa
ijeijt

a ≤ E ′
i, ∀i ∈ N (6.3)

0 ≤ fa
ij ≤ Fij, ∀i ∈ N ,∀j : (i, j) ∈ Ea,∀a ∈ A (6.4)

The constraints in the NUM-FT problem can be explained as follows.

• Flow conservation constraint: Eq. (6.2) shows that at each sensor node for

each anchor point, the aggregated outgoing link flow rates equal the local data

rate plus the incoming link flow rates.

• Energy constraint: Eq. (6.3) enforces that the total energy consumed by sen-

sori in a data gathering tour would not exceed energy budgetE ′
i.

• Link capacity constraint: Eq. (6.4) shows that link flow ratefa
ij is restricted

by link capacityFij.

Since constraints (6.2)-(6.4) define a convex set and the objective function is con-

cave with respect toqa
i , NUM-FT is a convex optimization problem. We assume

that the Slater’s condition [98] for constraint qualification is satisfied, i.e., there ex-

ist feasible solutions ofq andf such that the constraints hold with strict inequality.

Under this assumption, the strong duality holds, which implies that the optimal val-

ues of the primal and dual problems are equal. Hence, the distributed algorithm for

the NUM-FT problem can be obtained by formulating and solving the correspond-

ing Lagrange dual problem, as will be seen in Section6.4.

6.3.3 Formulation of Network Utility Maximization Problem with

Variable Sojourn Time at Each Anchor Point (NUM-VT)

We now consider the case of maximizing network utility with variable sojourn time

at each anchor point, i.e.,∀a ∈ A, ta is a variable, and refer to it as the NUM-

VT problem. It can be similarly formulated to the NUM-FT problem except that

the data gathering latency constraint is added on variableta, i.e.,
∑

a∈A ta ≤ ∆T .

However, sinceta, qa
i andfa

ij are all variables, the problem now contains coupling

variables in both objective function and constraints. Also, the objective function
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is no longer concave with respect toqa
i and ta, since its Hessian is not negative

semidefinite [96]. In order to make the NUM-VT problem solvable, we introduce

auxiliary variablesxa
ij, yi andφa

i and define them as follows.

xa
ij = fa

ijt
a, yiφ

a
i = qa

i t
a, φa

i ≥ 0,
∑

a φa
i = 1

wherexa
ij represents the flow amount over link(i, j) destined to the SenCar at an-

chor pointa, yi is the total amount of data generated by sensori in a data gathering

tour, andφa
i is a data split variable withφa

i ≥ 0 and
∑

a φa
i = 1, which controls the

fraction of the data of sensori that routes to the SenCar at anchor pointa. As will be

described later, by multiplying the flow conservation and link capacity constraints

by ta and using these auxiliary variables, we can reformulate theNUM-VT problem

into a convex optimization problem with respect tox, y, φ andt. Thus, according to

this formulation, the NUM-VT problem is essentially a jointdata control, routing

and sojourn time allocation problem as follows.

Definition 4. Network Utility Maximization Problem with Variable Sojourn Time

at Each Anchor Point (NUM-VT).Given a set of sensorsN , a set of anchor points

A, and the bound of data gathering latency∆T , find: (1) sojourn timeta at each

anchor point; (2) total amount of datayi generated by sensori in a data gathering

tour; (3) data split variableφa
i ; (4) flow amountxa

ij over link (i, j) ∈ Ea destined to

the SenCar at anchor pointa, such that network utility
∑

i∈N Ui(yi) is maximized.

The NUM-VT problem now can be expressed as

NUM-VT: max
∑
i∈N

Ui(yi)
(6.5)
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s.t.
∑

j:(i,j)∈Ea

xa
ij = yiφ

a
i +

∑

j:(j,i)∈Ea

xa
ji, ∀i ∈ N ,∀a ∈ A (6.6)

∑

a∈A

∑

j:(i,j)∈Ea

xa
ijeij ≤ E ′

i, ∀i ∈ N (6.7)

0 ≤ xa
ij ≤ Fijt

a,∀i ∈ N ,∀j : (i, j) ∈ Ea,∀a ∈ A (6.8)
∑

a∈A

φa
i = 1, ∀i ∈ N (6.9)

ta ≥ 0, ∀a ∈ A (6.10)
∑

a∈A

ta ≤ ∆T. (6.11)

Clearly, since the objective function
∑

i Ui(yi) is strictly concave with respect to

yi, the NUM-VT problem now is a strictly convex optimization problem, however,

with non-linear constraints (see Eq. (6.6)). To decompose the coupling variables

yi andφa
i in the flow conservation constraints, we will take a hierarchical decom-

position approach to separating the NUM-VT problem into a repeated two-level

optimization problem [103][106], which first maximizes the network utility overx,

y andt while keepingφ fixed, then maximizes the network utility by updatingφ.

The details of this approach will be discussed in Section6.5.

6.4 Distributed Algorithm for NUM-FT Problem

Having formulated the NUM-FT problem as in (6.1)-(6.4), in this section, we give

a fully distributed algorithm to solve it. We utilize the subgradient algorithm based

on the dual-decomposition method [98], which is an efficient technique for convex

program and can naturally achieve the distributed implementation.

We form the dual problem by introducing Lagrangian multipliersλ ∈ R|N |×|A|

for the flow conservation constraints. This results in the partial Lagrangian as

L(q, f, λ) =
∑
i

Ui(
∑
a

qa
i t

a)−∑
a

∑
i

λa
i (q

a
i +

∑
j

fa
ji −

∑
j

fa
ij)

= [
∑
i∈N

Ui(
∑
a∈A

qa
i t

a)− ∑
a∈A

∑
i∈N

λa
i q

a
i ]+

[
∑
a∈A

∑
i∈N

∑
j:(i,j)∈Ea

(λa
i − λa

j )f
a
ij]

Here, the Lagrangian multiplierλa
i can be interpreted as the “congestion price”
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at sensori for the SenCar at anchor pointa. Defining the dual functionD(λ) =

maxq,f L(q, f, λ) with constraints (6.3)-(6.4), we obtain the dual problem as fol-

lows.

min
λ�0

D(λ) = min
λ�0

max
q,f

L(q, f, λ)

One immediate observation is that the dual function can be decomposed into two

sets of subproblems (see the two terms in the Lagrangian). One set is the rate control

subproblems in terms of rate variablesq while another set contains the routing sub-

problems to find optimal flow variablesf . Each of them is independently solvable

by a sensor. We solve each set of the subproblems in the dual function by subgradi-

ent algorithms and finally obtain the joint rate control and routing algorithm for the

primal NUM-FT problem.

We start with a set of initial non-negative Lagrangian multipliersλa
i (0) for all

i ∈ N anda ∈ A. During each iterationk of the subgradient algorithm, given the

current Lagrangian multipliersλa
i (k), we solve the subproblems as follows.

Rate control subproblem:The dual function contains|N | rate control subprob-

lems, one for each sensor. In the following, we describe our algorithm to solve the

subproblem in the context of sensori. Since0 ≤ qa
i ≤

∑
j fa

ij ≤
∑

j Fij, eachqa
i

is within a closed domain. Thus, we define a loose upper boundQi for eachqa
i .

Accordingly, for sensori, the rate control subproblem is given by

maxq Ui(
∑
a∈A

qa
i t

a)− ∑
a∈A

λa
i q

a
i s.t.0 ≤ qa

i ≤ Qi,∀a ∈ A (6.12)

This subproblem is a convex program. However, the objectiveis not strictly con-

cave with respect toqa
i such that the solution may not be unique. This difficulty is

due to the linearity of
∑

a qa
i t

a, with respect to which, functionUi(·) is in the primal

NUM-FT problem so that the dual function is not differentiable at every point [102].

One method to circumvent such difficulty of lack of strict concavity is to subtract

a small convex quadratic regularization term, e.g.,ǫ
∑

i

∑
a(q

a
i )

2, from the primal

objective function [101]. However, this more or less changes the original problem

and typically results in significant oscillation due to the small value ofǫ. More so-

phisticated approaches, including proximal optimizationalgorithm and augmented

Lagrangian methods [97], provide effective ways to conquer such a problem. How-

ever, they have much higher complexity. Thus, instead of using these approaches,
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we propose an efficient search algorithm based on the Karush-Kuhn-Tucker (KKT)

conditions [96] to find an optimal solution. Since the rate control subproblem in

(6.12) is concave, the solutions that satisfy the KKT conditions are sufficient to be

optimal for both itself and its dual problem [96][98].

For clarity, we useg(qi) to denote the objective function in (6.12) and letqa
i
∗ =

{qa
i
∗|a ∈ A} be the optimal solution. Introducing Lagrangian multiplier σa for

constraintqa
i ≤ Qi andσ′

a for constraintqa
i ≥ 0, we obtain the KKT conditions as

follows for all a ∈ A,

U ′
i

(∑
a∈A qa

i
∗ta
)
ta − λa

i
∗ − σ∗

a + σ′
a
∗ = 0,

σ∗
a (qa

i
∗ −Qi) = 0,

σ′
a
∗qa

i
∗ = 0,

σ∗
a ≥ 0, σ′

a
∗ ≥ 0.

(6.13)

For 0 ≤ qa
i
∗ ≤ Qi, we have the following three cases according to the KKT condi-

tions in (6.13).

1. If σ∗
a > 0, thenqa

i
∗ = Qi, σ′

a
∗ = 0, andσ∗

a = U ′
i(
∑

a qa
i
∗ta)ta−λa

i =
∂g(q∗i )

∂qa
i

>

0;

2. If σ∗
a = 0 andσ′

a
∗ = 0, thenqa

i
∗ ∈ [0, Qi], andU ′

i(
∑

a qa
i
∗ta)ta − λa

i =
∂g(q∗i )

∂qa
i

= 0;

3. If σ′
a
∗ > 0, thenqa

i
∗ = 0, σ∗

a = 0, and−σ′
a
∗ = U ′

i(
∑

a qa
i
∗ta)ta − λa

i =
∂g(q∗i )

∂qa
i

< 0.

From the above cases, we find that the exact value or the range of qa
i
∗ corresponds

to different values of∂g(q∗i )

∂qa
i

. For brevity, we use variablez to denoteU ′
i(
∑

a qa
i
∗ta).

Sinceta andλa
i are considered as constants here,∂g(q∗i )

∂qa
i

is a linear function ofz. As

Ui is a strictly concave function,z = U ′
i(
∑

a qa
i
∗ta) decreases with the increase of∑

a qa
i
∗ta. Sinceqa

i
∗, ta ≥ 0, z ≤ U ′

i(0). For a given valuẽz of z, each∂g(q∗i )

∂qa
i

can

be determined such that we can correspondingly find the exactvalue or the range of

eachqa
i
∗ by ascribing it to one of the above three cases. Moreover,qa

i
∗’s also satisfy

that
∑

a qa
i
∗ta = U ′−1

i (z̃), which we call the linear combination (LC) condition.

Thus, finding the solutions for theqa
i
∗’s is actually equivalent to searching for a

suitable valuẽz of z, by which the derivedqa
i
∗’s satisfy both the KKT and LC

conditions.
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z = U ′i(
∑

a
qa
i
∗
ta)

−λ1
i

−λ2
i

∂g(q∗i )

∂qa
i

U ′i(0)

Anchor Point 1: t1z − λ1
i

Anchor Point 2: t2z − λ2
i

λ1
i

t1
λ2

i

t2

(a) ∂g(q∗

i
)

∂q1

i

and g(∂q∗

i
)

∂q2

i

as the linear functions ofz.

z < λ2
i/t

2

z = λ2
i/t

2

λ2
i/t

2 < z < λ1
i/t

1

z = λ1
i/t

1

λ1
i/t

1 < z ≤ U ′(0)

∑

a=1,2
qa
i
∗
ta by LC

U ′−1
i (z̃)

Cases q1
i

∗
by KKT q2

i

∗
by KKT

0 0

0 [0, Qi]

[0, Qi]

Qi

Qi

Qi Qi

0

I

II

III

IV

V

(b) Five cases forz.

Figure 6.2: An example to illustrate the search algorithm atsensori for the rate
control subproblem in the scenario of two anchor points.

Next, we describe the basic idea of our search algorithm using the example

in Fig. 6.2, where there are two anchor points, denoted by1 and2, respectively.

Without loss of generality, we assume thatλ1
i > λ2

i , t1 > t2 andU ′
i(0) > λ1

i /t
1 >

λ2
i /t

2. Accordingly,∂g(q∗i )

∂q1
i

and∂g(q∗i )

∂q2
i

as linear functions ofz can be plotted as shown

in Fig. 6.2(a). Based on theirz-intercepts, i.e.,λ1
i /t

1 andλ2
i /t

2, we can divide the

domain ofz into three intervals and two intersection points, which arelisted as five

cases in Fig.6.2(b). To find z̃, we investigate each of these cases. For the cases

wherez is in an interval (e.g., Cases I, III, or V),∂g(q∗i )

∂q1
i

and ∂g(q∗i )

∂q2
i

are both non-

zeros. The exact values ofq1
i
∗ andq2

i
∗ can be determined by the KKT conditions.

Thus, we only need to examine whether there is a valuez̃ in the current interval that

satisfies the LC condition. For instance, in Case I wherez < λ2
i /t

2, since∂g(q∗i )

∂q1
i

< 0

and∂g(q∗i )

∂q2
i

< 0, by the KKT conditions,q1
i
∗

= 0 andq2
i
∗

= 0. Thus,
∑

a=1,2 qa
i
∗ta =

0. However, sincez < λ2
i /t

2 < U ′
i(0), U ′−1

i (z) > U ′−1
i (0) = 0 always holds.

This implies that there is no such̃z in this interval meeting the requirement that∑
a=1,2 qa

i
∗ta = U ′−1

i (z̃). In other cases wherez is at an intersection point (e.g.,

Cases II or IV), by the KKT conditions, one ofq1
i
∗ andq2

i
∗ is a determined value,
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the other is in the domain of[0, Qi]. In such cases, sincez has a unique value, the

possible solution for the undeterminedqa
i
∗ (a = 1 or 2) can be derived by the LC

condition. Based on the value ofz, we can estimate whether this solution would fall

into the valid domain of[0, Qi]. Let us take Case II wherez = λ2
i /t

2 as an example.

In this case, since∂g(q∗i )

∂q1
i

< 0 and ∂g(q∗i )

∂q2
i

= 0, by the KKT conditions,q1
i
∗

= 0 and

q2
i
∗ ∈ [0, Qi]. If 0 ≤ U ′−1

i (z) ≤ Qit
2, the solution ofq2

i
∗ that is set to1/t2 ·U ′−1

i (z)

by the LC condition would fall into the valid domain of[0, Qi]. This means that̃z

is found, i.e.,̃z = λ2
i /t

2. And q1
i
∗

= 0 andq2
i
∗

= 1/t2 · U ′−1
i (λ2

i /t
2) would be the

optimal solutions to the rate control subproblem in (6.12). Otherwise, there is no

valid solution forq2
i
∗ and the subsequent cases onz should be further examined in

a similar way untilz̃ is found. For the rare case wherez = λ1
i /t

1 = λ2
i /t

2, by the

KKT conditions,q1
i
∗
, q2

i
∗ ∈ [0, Qi]. If 0 ≤ U ′−1

i (z) ≤ Qi(t
1 + t2) = Qi∆T , there

would exist valid values forq1
i
∗ andq2

i
∗. However, the possible values ofq1

i
∗ and

q2
i
∗ that are able to ensure the LC condition may not be unique. We can randomly

choose one of them. For clarity, we summarize the details of the search algorithm

at sensori in Table6.2. It is apparent that to find the solutions forqa
i
∗’s, sensori

only needs to examine at most|A| + 1 intervals and|A| intersection points onz.

Thus, the search algorithm is a linear algorithm withO(|A|) time complexity.

Routing subproblem:The dual function also contains|N | routing subproblems,

each for a sensor. Again, we consider the routing subproblemat sensori as follows.

maxf
∑
a∈A

∑
j:(i,j)∈Ea

(λa
i − λa

j )f
a
ij

s.t.
∑
a∈A

∑
j:(i,j)∈Ea

fa
ijeijt

a ≤ E ′
i,

0 ≤ fa
ij ≤ Fij,∀j : (i, j) ∈ Ea,∀a ∈ A

(6.14)

Clearly, this subproblem is a linear program. If we consider(λa
i −λa

j ) as the gain of

link (i, j) ∈ Ea (whenj = sa, we can considerλa
j = 0, ∀a ∈ A), this subproblem

can be easily solved by a greedy algorithm as shown in Table6.3. The approach can

be intuitively interpreted as that each sensor always allocates the maximum possi-

ble rate under the energy and link capacity constraints to a link that has the largest

link gain among all its outgoing links to different anchor points. Apparently, as

each sensor needs to investigate the gains of all its outgoing links for different an-

chor points, the time complexity of the greedy algorithm at sensori for the routing
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Table 6.2: Search algorithm for rate control subproblem.
Divide the valid domain ofz, i.e.,(−∞, U ′

i(0)], into cases

based onz-intercepts of∂g(q∗i )
∂qa

i
’s (i.e.,λa

i /ta, ∀a ∈ A);

For each case ofz do

Examine the value of∂g(q∗i )
∂qa

i
for all a ∈ A;

If ∂g(q∗i )
∂qa

i
6= 0, for all a ∈ A

// The case that z is in an interval
The exact value of eachqa

i
∗ can be determined by the

KKT conditions;
If z̃ = U ′

i(
∑

a qa
i
∗ta) that falls in the current interval

Current value of eachqa
i
∗ is optimal to (6.12);

Break;
end If

else
// The case that z is at an intersection point

Find subsetB ⊆ A thatB =
{

b
∣∣∣∂g(q∗i )

∂qb
i

= 0, b ∈ A
}

;

By the KKT conditions, the value ofqa
i
∗ (a ∈ A\B)

can be determined andqb
i
∗ ∈ [0, Qi],∀b ∈ B;

Calculate
∑

b∈B qb
i
∗
tb = U ′−1

i (z)−∑a∈A\B qa
i
∗ta;

If 0 ≤∑b∈B qb
i
∗
tb ≤ Qi

∑
b∈B tb

// There exist valid values forqb
i
∗
,∀b ∈ B

Setz̃ by the current value ofz;
If |B| = 1, for b ∈ B,
qb
i
∗

= 1
tb

(U ′−1
i (z̃)−∑a∈A\B qa

i
∗ta),

else
qb
i
∗
’s (b ∈ B) are randomly set to ensure LC condition;

end If
Current value for eachqa

i
∗ is optimal to (6.12);

Break;
end If

end If
end For
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Table 6.3: Greedy algorithm for routing subproblem.
Setfa

ij to zero,∀j : (i, j) ∈ Ea,∀a ∈ A;

FindXi =
{

(j, a)
∣∣∣λa

i − λa
j > 0,∀j : (i, j) ∈ Ea,∀a ∈ A

}
;

Initialize the remaining available energy:Er = E′
i;

While (Xi 6= Φ & Er > 0)
(j̃, ã)i = arg max

(j,a)∈Xi

(λa
i − λa

j );

f ã
i,j̃

= min
{

Er

eij̃tã
, Fij

}
;

UpdateXi by removing(j̃, ã)i from it;
UpdateEr by settingEr = Er − f ã

ij̃
eij̃t

ã;

end While

subproblem isO(
∑

a∈A deg+a (i)), where deg+a (i) is the outdegree of sensori in the

directed graphGa(V a, Ea).

Lagrangian multiplier update:In each iteration of the subgradient algorithm,

sensori solves the subproblems in (6.12) and (6.14) with the current Lagrangian

multiplier λa
i (k). Then, sensori updates the Lagrangian multipliers as follows and

sends them to its direct neighbors to facilitate the computing of q andf in the next

iteration.

λa
i (k + 1) = [λa

i (k) + θ(k)(qa
i (k) +

∑
j

fa
ji(k)−∑

j

fa
ij(k))]+ (6.15)

where[·]+ denotes the projection onto the non-negative orthant andθ(k) is a pro-

perly chosen scalar stepsize for subgradient iterationk. In our algorithm, we choose

the diminishing stepsizes, i.e.,θ(k) = d/(b+ck), ∀k, c, d > 0, b ≥ 0, whereb, c and

d are adjustable parameters that regulate the convergence speed. The diminishing

stepsize can guarantee the convergence regardless of the initial value ofλ [98].

Recovery of primal solutions:Note that the subproblems in (6.12) and (6.14)

are not strictly concave, which implies that the values in the optimal solution of the

Lagrangian dual cannot be directly applied to the primal NUM-FT problem. In view

of this, we apply the method introduced in [100] to recover the primal solutions. For

thekth subgradient iteration, we compose a primal feasiblef̂a
ij(k) as follows.

f̂a
ij(k) = 1

k

k∑
h=1

fa
ij(h) =

{
fa

ij(1) k = 1
k−1

k
f̂a

ij(k − 1) + 1
k
fa

ij(k) k > 1
(6.16)
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Table 6.4: Distributed algorithm for the NUM-FT problem.
For each sensori ∈ N do

Initialize Lagrangian multipliersλa
i (0) for all a ∈ A to non-

negative values;
Repeat: for all j : (i, j) ∈ Ea anda ∈ A

Determineqa
i (k) by search algorithm in Table6.2;

Determinefa
ij(k) by greedy algorithm in Table6.3;

Update Lagrangian multipliersλa
i (k + 1) by Eq. (6.15);

Compute primal feasiblêfa
ij(k) by Eq. (6.16);

Send updated Lagrangian multipliers to its neighbors;
Until sequence{λ(k)} converges toλ∗ and sequence{f̂(k)}
converges tôf∗;
Exchangef̂a

ij
∗’s with its neighbors and compute the optimal

data rates byqa
i
∗ =

∑
j f̂a

ij
∗ −∑j f̂a

ji
∗ for all a ∈ A;

end For

It was proved in [100] that when the diminishing stepsize is used, any accumulation

point of the sequence{f̂a
ij} generated by (6.16) is feasible to the primal problem

and{f̂a
ij} can converge to a primal optimal solution. Therefore, the optimal flow

rate of each outgoing link of sensori can be obtained when{f̂a
ij} converges tôfa

ij
∗.

Finally, sensori can recover the optimal data rates by plugging eachf̂a
ij
∗ back to

the flow conservation constraint.

We summarize the distributed algorithm for the NUM-FT problem in Table6.4,

from which we can see that each subproblem can be efficiently solved in a dis-

tributed manner, which only requires limited computation at each sensor and local

exchange of Lagrangian multipliers among the direct neighbors.

6.5 Distributed Algorithm for NUM-VT Problem

In this section, we consider the NUM-VT problem. As aforementioned, we take a

hierarchical decomposition approach to separating the NUM-VT problem into two

levels of optimization [103][106] to decompose the coupling variablesyi andφa
i

in the flow conservation constraints. At the lower level, we consider the following

problem, denoted by NUM-VT(a), that maximizes the network utility over variables
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x, y andt with a fixedφ.

NUM-VT(a): max
∑

i∈N

Ui (yi) (6.17)

s.t.
∑

j

xa
ij = yiφ

a
i +

∑

j

xa
ji, ∀i ∈ N ,∀a ∈ A (6.18)

∑

a∈A

∑

j:(i,j)∈Ea

xa
ijeij ≤ E ′

i, ∀i ∈ N (6.19)

0 ≤ xa
ij ≤ Fijt

a,∀i ∈ N ,∀j : (i, j) ∈ Ea,∀a ∈ A (6.20)

ta ≥ 0, ∀a ∈ A (6.21)
∑

a∈A

ta ≤ ∆T. (6.22)

At the higher level, we consider the problem of updating datasplit variables, de-

noted by NUM-VT(b), by solving

NUM-VT(b): maxφ�0 U(φ)

s.t.
∑

a∈A φa
i = 1, ∀i ∈ N ,

φa
i ≥ 0, ∀i ∈ N ,∀a ∈ A,

(6.23)

whereU(φ) is the optimal objective value of problem NUM-VT(a) overx, y andt.

6.5.1 Lower-Level Optimization

Since the NUM-VT(a) problem is a strictly concave optimization, we can use the

dual decomposition and subgradient algorithm to solve it. Consider its partial La-

grangian with respect to constraints (6.18) and (6.20).

L(φ, x, y, t, λ, µ) =
∑
i

Ui(yi)−
∑
a

∑
i

λa
i (yiφ

a
i +

∑
j

xa
ji

−∑
j

xa
ij)−

∑
a

∑
i

∑
j

µa
ij(x

a
ij − Fijt

a)

=

[∑
i∈N

Ui(yi)−
∑
a∈A

∑
i∈N

λa
i φ

a
i yi

]
+
∑
a∈A

∑
i∈N

∑
j:(i,j)∈Ea

µa
ijFijt

a

+

[
∑
a∈A

∑
i∈N

∑
j:(i,j)∈Ea

(λa
i − λa

j − µa
ij)x

a
ij

]
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DefineD(φ, λ, µ) = maxx,y,t L(φ, x, y, t, λ, µ) with constraints (6.19), (6.21) and

(6.22). By duality, we have the dual problem as

U(φ) = min
λ�0,µ�0

D(φ, λ, µ) = min
λ�0,µ�0

max
x,y,t

L(φ, x, y, t, λ, µ).

We observe that dual functionD(φ, λ, µ) can be evaluated separately in terms of

data variabley, flow variablex and time variablet. We decompose it into three sets

of subproblems, i.e., data control, routing and sojourn time allocation subproblems.

Data control subproblem:The dual function contains|N | data control subprob-

lems, each for a sensor to determine the amount of data generated for a data gath-

ering tour. Sinceyi =
∑

a yiφ
a
i ≤

∑
a

∑
j xa

ij ≤
∑

a

∑
j Fijt

a = ∆T
∑

j Fij, yi

has a closed domain. Thus, we set a loose upper boundYi for yi. Given Lagrangian

multiplier λa
i for the current subgradient iteration, sensori adjustsyi to achieve the

following optimization goal

max0≤yi≤Yi
Ui(yi)−

∑
a∈A λa

i φ
a
i yi

Since it is strictly concave, sensori can obtain the unique optimalyi as

yi =





0 if U ′
i(0) <

∑
a λa

i φ
a
i

(U ′
i)

−1(
∑

a λa
i φ

a
i ) else ifU ′

i(Yi) ≤
∑

a λa
i φ

a
i

Yi otherwise.

(6.24)

Routing subproblem:The dual function contains|N | routing subproblems, each

for a sensor to adjust the flow amount over its outgoing links destined to each anchor

point. The routing subproblem at sensori is

maxx�0

∑
a∈A

∑
j:(i,j)∈Ea

(λa
i − λa

j − µa
ij)x

a
ij

s.t.
∑
a∈A

∑
j:(i,j)∈Ea

xa
ijeij ≤ E ′

i,
(6.25)

where(λa
i − λa

j − µa
ij) can be considered as the link gain for each anchor pointa

(whenj = sa, λa
j = 0). It is clear that in the optimal solution to (6.25), sensor

i should spend all its energy budgetE ′
i on the traffic flows over the link with the

largest positive link gain. If we usẽj andã to represent such a preferred outgoing
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neighbor and a destined anchor point, respectively,(j̃, ã)i = arg max
j,a

[(λa
i − λa

j −
µa

ij)]
+. Mathematically speaking, the reason why we employ such an assignment

strategy is because that the optimization of sensori over{xa
ij} is a linear program

and we can always choose an extreme point solution such that

xa
ij =

{
E′

i

eij
if (j, a) = (j̃, ã)i&(λa

i − λa
j − µa

ij) > 0

0 otherwise.
(6.26)

Sojourn time allocation subproblem:The SenCar is responsible for allocating

the sojourn time for each anchor point to satisfy the optimization goal

maxt�0

∑
a∈A

∑
i∈N

∑
j:(i,j)∈Ea

µa
ijFijt

a s.t.
∑
a∈A

ta ≤ ∆T.

Similarly, since this is a linear program and eachta has a non-negative coefficient

in the objective function, we can simply assign∆T to the ta with the maximum

coefficient.

ta =

{
∆T if a = arg max

a

∑
i

∑
j µa

ijFij

0 otherwise.
(6.27)

Note that for the SenCar to determine the sojourn time, the values of Lagrangian

multipliers µa
ij need to be routed to the SenCar in each subgradient iteration.To

dampen the communication overhead, we can alternatively let each sensor deter-

mine the sojourn time at each anchor point. In particular, since eachta is a global

variable for sensors, we need to introduce local variabletai for each sensor and

impose additional constraintstai = taj ,∀i ∈ N ,∀j : (i, j) ∈ Ea,∀a ∈ A to the

NUM-VT problem to enforce all thetai ’s to be equal for each anchor pointa. Then,

we can relax these constraints in the Lagrangian for dual decomposition and solve

the subproblem ontai by sensori. Such an approach only requires each sensor to

communicate with direct neighbors on exchanging the corresponding Lagrangian

multipliers. However, in our practice, we find that this approach results in slower

convergence than the approach with{ta} determined by the SenCar. Thus, this is

a tradeoff between the communication overhead and convergence speed [50]. In

practice, an application can choose to let each sensor or theSencar determine the

values.

Lagrangian multiplier update:Sensori updates its Lagrangian multipliersλa
i
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andµa
ij according to

λa
i (k + 1) = [λa

i (k) + θ(k)(yi(k)φa
i +

∑
j

xa
ji(k)−∑

j

xa
ij(k))]+,

µa
ij(k + 1) = [µa

ij(k) + θ(k)(xa
ij(k)− Fijt

a(k))]+,
(6.28)

wherek represents the index of subgradient iterations, andθ(k) is the diminishing

stepsize discussed in the NUM-FT problem. Sensori will send updated Lagrangian

multipliers to its direct neighbors and routeµa
ij(k + 1) to the SenCar if necessary.

Recovery of primal solutions:Since the subproblems of routing and sojourn

time allocation are linear, we need to recover the optimal primal values for vari-

ablesxa
ij and ta. When data split variablesφa

i reach their optimum(φa
i )

∗ in the

higher-level optimization, during the subgradient iterations in the lower level, we

construct the primal feasible sequences{x̂a
ij(k)} and{t̂a(k)} by using the method

in [100], i.e., x̂a
ij(k) = 1

k

∑k
h=1 xa

ij(h) and t̂a(k) = 1
k

∑k
h=1 ta(h). In this way, the

final optimalxa
ij
∗ andta∗ can be obtained from the values sequences{x̂a

ij(k)} and

{t̂a(k)} converge to.

6.5.2 Higher-Level Optimization

The above algorithm for the lower-level optimization worksunder the assumption

that eachφa
i is a constant. At the higher level, we now show how sensori adjusts

φa
i to achieve the optimum of the NUM-VT problem.

Note thatU(φ) is the optimal objective value of the lower-level optimization.

By usingλ∗ andµ∗ to represent the Lagrangian multiplier values that minimize

D(φ, λ, µ) for a givenφ, U(φ) is given by

U(φ) = minλ�0,µ�0 D(φ, λ, µ)

=
∑
i

Ui(yi(λ
∗))−∑

a

∑
i

λa
i
∗(yi(λ

∗)φa
i +

∑
j

xa
ji(λ

∗, µ∗)

−∑
j

xa
ij(λ

∗, µ∗))−∑
a

∑
i

∑
j

µa
ij
∗(xa

ij(λ
∗, µ∗)− Fijt

a(µ∗)).

(6.29)

Then, the marginal utility forφa
i is ∂U(φ)

∂φa
i

= −λa
i
∗yi(λ

∗), which reflects the gain

of the data sent from sensori to anchor pointa. Intuitively, to maximize network

utility U(φ), sensori should always shift some of its data destined to other anchor

points to the one with the highest marginal utility untilφi reaches an equilibrium.
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Table 6.5: Distributed algorithm for the NUM-VT problem.
For each sensori ∈ N do

Initialize data split variablesφa
i (0) for all a ∈ A satisfying∑

a φa
i (0) = 1;

Repeat
Initialize Lagrangian multipliersλa

i (0) andµa
ij(0), for all

j : (i, j) ∈ Ea anda ∈ A, to non-negative values;
Repeat: for all j : (i, j) ∈ Ea anda ∈ A

Computeyi(k) by Eq. (6.24);
Computexa

ij(k) by Eq. (6.26);
SenCar simultaneously computesta(k) by Eq. (6.27);
Update Lagrangian multipliersλa

i (k + 1) and
µa

ij(k + 1) according to Eq. (6.28);
Send updated Lagrangian multipliers to its neighbors
and routeµa

ij(k + 1) to the SenCar;
If {φ(n)} reachesφ∗ in the outer-loop iterations

Compute primal feasiblêxa
ij(k) by x̂a

ij(k) =
1
k

∑k
h=1 xa

ij(h), and SenCar simultaneously computes
primal feasiblêta(k) by t̂a(k) = 1

k

∑k
h=1 ta(h);

end If
Until {λ(k)} converges toλ∗ and{y(k)} converges toy∗;
Adjust data split variablesφa

i (n + 1) (∀a ∈ A) by Eq. (6.30);
Until reach the equilibrium, i.e.,{φ(n)} converges toφ∗;

end For

Let φ∗ = {φa
i
∗} be the optimal data split matrix. We can characterize the optimal

solutionφ∗ to the problem in (6.23) by the following optimality condition.

For each sensori, we have

φa
i
∗ > 0⇒ ∂U(φ∗)

∂φa′

i

≤ ∂U(φ∗)
∂φa

i

, for all a′ ∈ A.

That is, sensori sends its data to the SenCar only at those anchor points that have

the maximum marginal utility. This is similar to the wardropequilibrium [99].

For sensori, let ãi be the anchor point with the maximum marginal utility, i.e.,

ãi = arg maxa∈A
∂U(φ)
∂φa

i

. Sensori updatesφa
i according to the following principles.

φa
i (n + 1) = φa

i (n) + δa
i (n), with (6.30)

δa
i (n) =





−min

{
φa

i (n), κ(n)
yi

(
∂U(φ)

∂φ
ãi
i

(n)− ∂U(φ)
∂φa

i

(n)

)}

if a 6= ãi

−∑a 6=ãi,a∈A
δa
i (n) if a = ãi,

wheren stands for the iteration index for the higher-level optimization andκ(n) is
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a small positive scalar stepsize.

By using a similar approach to that in [106], we can show that such updating

algorithm onφ guarantees the convergence to the optimal solution of the NUM-

VT problem. It is straightforward to verify that the updating algorithm in (6.30)

satisfies that

∑
a δa

i (n) = 0, and
∑

a
∂U(φ)
∂φa

i

(n)δa
i (n) ≥ 0,∀i ∈ N .

And for sensori,
∑

a
∂U(φ)
∂φa

i

(n)δa
i (n) = 0 only if δa

i (n) = 0, which requires that

φa
i (n)(∂U(φ)

∂φ
ãi
i

− ∂U(φ)
∂φa

i

) = 0 for all a ∈ A. If we consider the continuous version, we

have that for each sensor,

∑
a φ̇a

i = 0 and
∑

a
∂U(φ)
∂φa

i

φ̇a
i ≥ 0. (6.31)

The updating algorithm in (6.30) can be considered as a specific discrete time im-

plementation of (6.31). SinceU(φ) = minλ,µ D(φ, λ, µ) andD(φ, λ, µ) are the

non-smooth functions with respect toλ andµ based on the expression of (6.29), the

differential ofU(φ) can be written as

dU(φ) =

(
lim

h→0+

∂D(φ,λ∗+hdλ,µ∗)
∂λ

)
dλ+

(
lim

h→0+

∂D(φ,λ∗,µ∗+hdµ)
∂µ

)
dµ + ∂D(φ,λ∗,µ∗)

∂φ
dφ,

(6.32)

where(λ∗, µ∗) = arg minλ,µ D(φ, λ, µ). As λ∗ andµ∗ minimize D(φ, λ, µ) for

a givenφ, lim
h→0+

∂D(φ,λ∗+hdλ,µ∗)
∂λ

and lim
h→0+

∂D(φ,λ∗,µ∗+hdµ)
∂µ

cannot be in a deceasing

direction, i.e., the first two terms in (6.32) are non-negative. Hence, we have

dU(φ) ≥ ∂D(φ,λ∗,µ∗)
∂φ

dφ =
∑
i

∑
a

∂U(φ)
∂φa

i

dφa
i . (6.33)

Accordingly, by (6.31) and (6.33), U̇(φ) ≥ ∑
i

∑
a

∂U(φ)
∂φa

i

φ̇a
i ≥ 0, which means

that the updating onφ by (6.30) always improves the overall network utility. And

for each sensor, when all its positive marginal utility approaches the same value,φ

would reach an equilibriumφ∗ such thatU̇(φ∗) = 0.

Finally, we summarize the distributed algorithm for the NUM-VT problem in
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Table6.5.

6.6 Numerical Results

In this section, we provide some numerical results to demonstrate the usage and

efficiency of the proposed distributed algorithms and compare their performance

with other data gathering strategies. We adopt the data utility function asUi =

wi log(1 +
∑

a qa
i t

a) or equivalentlyUi = wi log(1 + yi), indicating that the data

from a sensor with a larger weightwi would have more impact on the overall perfor-

mance. In the following simulations, since we focus on the convergence property

of the algorithms and their relative performance, we simplyuse the dimensionless

quantities in the figures for demonstration purpose only. Itis worth pointing out

that the solution exploration procedure for each distributed algorithm only needs

to be executed when the energy budget is updated or the topology of the network

changes, thus does not need to be frequently repeated by sensors. Finally, note that

if a centralized execution is preferred, the proposed algorithms can also be exe-

cuted by a central controller in a multi-threading fashion.For example, we can use

the Sencar to collect the necessary information on the entire network, execute the

proposed algorithm and distribute the solution to sensors.

6.6.1 Convergence

We first examine the convergence property of the algorithms for the NUM-FT and

NUM-VT problems. For illustration purpose, we use a small generic network in

Fig. 6.3to show how the algorithms work. In fact, due to the distributed nature, the

algorithms are readily applicable to large scale networks.In Fig. 6.3, there are ten

sensors and two anchor points distributed over the sensing field. The links in the

network are assumed to be directed as indicated by arrows in the figure and all have

equal capacity. The energy consumption for transmitting a unit flow over link(i, j),

eij, is proportional to the square ofdij, wheredij is the physical distance between

sensorsi andj. For clarity, we list all the parameter settings in Fig.6.3(b).

Fig. 6.4 shows the evolution of the recovered flow ratef̂a
ij and the Lagrangian

multiplier λa
i versus the number of iterations in the algorithm for the NUM-FT

problem. We sett1 = t2 = 25 as an example for the network with given fixed
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(a) Network Configuration.

Notation Value Notation Value

eij

Fij

E ′i

Qi

w = {wi}

∆T

θ(k)
250

1.25× 104

750

50

103 × {10, 10, 5

5, 5, 5, 5, 5, 5, 5}
1

1 + 10k

0.007d2
ij∀(i, j)

∀(i, j)

∀i

∀i

Yi ∀i 2× 105

θ(k) 1

1 + 20k

(NUM-FT)

(NUM-VT)

(NUM-VT)

κ(n)
0.005

(b) Parameter Settings.

Figure 6.3: An example network with ten sensors and two anchor points.
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Figure 6.4: Numerical results of the algorithm for the NUM-FT problem: (a) Evo-
lution of recovered flow ratêfa

ij vs. subgradient iterations; (b) Evolution of La-
grangian multiplierλa

i vs. subgradient iterations.

sojourn time for each anchor point. In Fig.6.4(a), we examine the flow rates on

some selected links, links(1, 3), (9, 8) and(10, 2) destined to anchor point1 and

link (5, s2) destined to anchor point2. It can be seen that the recovered flow rates are

well within 5% of their optimal values after only100 iterations. This observation

is also applicable to the evolution of the Lagrangian multipliers as shown in Fig.

6.4(b). Moreover, we also notice that as sensor1 has a larger utility weight, the

flow rate of its outgoing link destined to anchor point1 is higher than those of

sensors9 and10 to achieve higher network utility. Since sensor5 has a direct path

to the SenCar at anchor point2, the optimal flow rate over link(5, s2) is able to

reach the capacity bound.

We now consider the same network for the NUM-VT problem. The perfor-

mance of the algorithm is shown in Fig.6.5. For each sensor, we set the data split

variables for different anchor points with equal initial values, i.e.,φ1
i = φ2

i = 0.5.

We use a constant stepsize for the higher-level iterations,i.e.,κ(n) = 0.005. In the

simulation, the lower-level optimization runs5000 iterations before each run of the

higher-level updating on the data split variables. To dampen the number of lower-
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Figure 6.5: Numerical results of the algorithm for the NUM-VT problem: (a) Evo-
lution of network utility vs. higher-level iterations; (b)Evolution of data split vari-
ableφa

i vs. higher-level iterations; (c) Evolution of total amountof datayi gathered
from sensori in a data gathering tour vs. higher-level iterations; (d) Evolution of
Lagrangian multiplierλa

i vs. higher-level iterations.

135



level iterations, we can set the initial values of Lagrangian multipliersλa
i andµa

ij by

their final values in the previous run of higher-level optimization. Comparable per-

formance is observed when the number of lower-level iterations is as low as several

hundreds. In Fig.6.5(a), we notice that the network utility first increases sharply

during early iterations and then slowly increases until it reaches the optimum after

about100 iterations. It effectively validates that the updating onφ always improves

the overall network utility and guarantees its convergenceto the optimum. In Fig.

6.5(b), we plot someφa
i ’s versus the number of iterations, which clearly shows that

in the optimal solution, sensors1-3 and8-10 would only send data to the SenCar

when it arrives at anchor point1 and sensors5-7 alternatively choose to upload data

to the SenCar when it is located at anchor point2. Fig. 6.5(c) and (d) depict the

evolution of the total amount of datayi generated by sensori in a data gathering tour

and Lagrangian multiplierλa
i versus the number of iterations, respectively. We can

obtain similar observations to those for the NUM-FT problem. As sensor1 has a

larger utility weight compared to other sensors, in a data gathering tour, the SenCar

preferentially gathers more data from it. In contrast, the SenCar gathers the least

amount of data from sensor10 since it has a small utility weight and its data have

to be relayed by sensor2 to reach the SenCar at anchor point1. As sensor2 has a

larger weight than that of sensor10, sensor10 would refrain from generating more

data to avoid congesting the common link with sensor2. Furthermore, it is clear

that, to gather more data from the sensors with a large utility weight, the SenCar

would stay longer at anchor point1 than at anchor point2. As the results of our

algorithm, the optimal sojourn times for the two anchor points aret1 = 33.37 and

t2 = 16.63.

6.6.2 Performance Comparison between NUM-FT and NUM-

VT

In this subsection, we compare the performance of the algorithms for the NUM-FT

and NUM-VT problems. We still use the same network and parameter settings as in

Fig. 6.3. We consider three instances of the NUM-FT problem wheret1 : t2 is fixed

to 1 : 1, 1 : 3 and1 : 4, respectively. In contrast, the algorithm for the NUM-VT

problem dynamically pursues the optimal sojourn time allocation for each anchor

point. Fig.6.6(a) plots the network utility as the function of∆T . From the results,
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we can draw some observations. First, as∆T increases, the network utility of all

the cases under investigation increases until it reaches the maximum value. This

is intuitive since the longer the SenCar stays at each anchor point, the more data it

would gather. Once∆T becomes sufficiently large, some sensors would ultimately

deplete their energy budget for the current data gathering tour. As a result, the

network utility stays unchanged as no more data can be extracted by the SenCar.

Second, for a given∆T , we find that the network utility achieved by NUM-VT

is always larger than that of NUM-FT. This is expected since the utility region

for the cases with fixed sojourn time is a subset of the utilityregion with variable

sojourn time. Such superiority is especially notable for the case with a small∆T ,

which implies that the proper sojourn time allocation is particularly critical to the

efficiency of data gathering with low latency requirement. Furthermore, we plot the

optimal sojourn time allocation obtained for the NUM-VT problem in Fig. 6.6(b).

From the figure, we notice that the optimal value oft1 is larger than that oft2 in the

initial phase, then the difference between them gradually becomes smaller with the

increase of∆T , and finallyt1 andt2 are set to the same value. The reasons for such

tendency can be explained as follows. When∆T is small, the sensors are mostly

energy-rich and the amount of gathered data from each sensorprimarily depends on

∆T . However, as sensors1 and2 have larger utility weights and would route data

only to anchor point1, the SenCar is apt to stay longer at anchor point1 than anchor

point 2, i.e., t1 > t2. However, as∆T gradually increases, some sensors around

anchor point1 become energy-constrained. Then the SenCar would shift some

sojourn time from anchor point1 to anchor point2 so as to gather more data. And

finally, when∆T becomes large enough, no more data can be obtained regardless

where the SenCar stays for more sojourn time. In our simulation, whent1 > 120

andt2 > 110, the gathered data from each sensor would no longer change. Thus,

when∆T ≥ 240, there are multiple options for the optimal sojourn time allocation.

One option is to equally divide∆T for t1 andt2, which is as shown in the figure.

6.6.3 Performance Comparison with Other Strategies

In this subsection, we investigate the network utility achieved by NUM-FT and

NUM-VT in large sensor networks, and compare the results with other two strate-

gies. The first strategy used for comparison employs optimaldata rates and ran-
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dom routing, called Rand−Route, in which each sensor randomly chooses a routing

path and transmits data to the SenCar at one of reachable anchor points. Another

strategy for comparason is the fixed data rate and shortest path routing, denoted

by Fixed−Rate, where all sensors have a homogeneous data rate and each of them

preferentially chooses a shortest path to an anchor point for data transmissions. For

fair comparison, we assume that the data rate each sensor uses in Fixed−Rate is the

maximum possible rate that can avoid the traffic congestion in the network.

The parameters used in the simulations are set as follows. A total of50 sensors

are randomly scattered in a200 × 200 field, and two anchor points are located at

(66.7, 100) and(133.3, 100), respectively. The transmission range of each sensor

138



is set to40. One-fifth of sensors have larger utility weight with the value of 104

and all others have smaller utility weight with the value of5 × 103. There are

100 directed links in the network with equal link capacity of 250. These links

are randomly distributed among the neighboring nodes and inthe meanwhile they

ensure that each sensor can reach at least one anchor point. We assume that each

sensor holds an energy budget of3 × 104 andeij = 0.002d2
ij. Moreover, in NUM-

FT, Rand−Route, and Fixed−Rate, the sojourn time at two anchor points is fixed

and set to the same value, i.e.,t1 : t2 = 1 : 1.

Fig. 6.7 plots the network utility of NUM-VT, NUM-FT, Rand−Route, and

Fixed−Rate when∆T varies from20 to 600. Considering the topology random-

ness, each performance point shown in the figure is the average of 20 simulations.

The results demonstrate that NUM-VT always outperforms other strategies. For

example, when∆T = 100, NUM-VT achieves10% and20% higher network util-

ity compared to Rand−Route and Fixed−Rate. Such superiority of NUM-VT over

others is ascribed to the joint design on rate control, routing, and sojourn time al-

location such that system-wide optimum can be achieved. In contrast, Rand−Route

may result in “hot” common links shared on many routing pathsand this would

greatly limit the data rates of the sensors on the paths due tothe link capacity con-

straint. Similarly, Fixed−Rate typically causes the sensors to use relatively low data

rate to ensure that all the links in the network are not congested. Moreover, as all

sensors have a homogeneous data rate in Fixed−Rate, it prevents the sensors with

larger utility weight from sending more data to the SenCar such that the network

utility is still far below the fully extracted value. It is also observed from the figure

that the network utility of all these strategies would reachtheir respective stable

status when∆T becomes sufficiently large. This is because that when the sen-

sors close to the anchor points deplete their energy, the SenCar cannot successfully

gather more data from the sensors far away from them such thatnetwork utility

cannot be further increased.

6.7 Conclusions

In this chapter, we have considered finding optimal strategies for anchor based mo-

bile data gathering in WSNs. We formalized this problem as twoconvex opti-

mization problems, i.e., NUM-FT and NUM-VT, which considerthe cases that the
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SenCar spends fixed and variable sojourn time at each anchor point, respectively.

Both NUM-FT and NUM-VT problems aim to maximize the overall network util-

ity while guaranteeing the given network lifetime and data gathering latency. The

NUM-FT problem essentially involves the joint design of rate control and optimal

routing, and the NUM-VT problem is the integration of data control, routing and

sojourn time allocation problems. Based on their decomposable nature, we cor-

respondingly proposed two efficient distributed algorithms to solve them. Finally,

we provided extensive numerical results to validate the efficiency of the proposed

algorithms and complement our theoretical analysis.

140



Chapter 7

Joint Mobile Energy Replenishment

and Data Gathering in Wireless

Rechargeable Sensor Networks

In previous chapters, we focus our study on the conventionalsensor networks,

where sensor batteries can not be recharged or replaced after the initial deployment.

However, recent advance in sensor technologies has made it possible for sensors to

obtain renewable energy supply to sustain their operations. In this chapter, we con-

sider applying wireless energy transmission to sensor energy replenishment and

extend our study on mobile data gathering to such rechargeable sensor networks.

Wireless energy transmission is generally referred to as the transfer of electrical en-

ergy from a power source to an electrical load without interconnecting wires, which

is carried out using resonant inductive coupling. We consider using the SenCar to

play as such power source to recharge the sensors in need of energy. In other words,

SenCar is employed to serve not only as a data collector that roams over the field

to gather data via short-range communication but also as an energy transporter that

charges static sensors on its migration tour via wireless energy transmissions. Tak-

ing advantages of the SenCar’s controlled mobility, we propose a joint design of

energy replenishment and data gathering, which aims to provide steady and high

recharging rates, and achieve high-utility data gatheringsimultaneously. In particu-

lar, we give a two-step approach to implement the joint design. In the first step, the

locations of a subset of sensors are periodically selected asanchor points, where the
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SenCar will sequentially visit to charge the located sensorsat these locations and

gather data from nearby sensors in a multi-hop fashion. In order to achieve a desir-

able balance between the energy replenishment amount and data gathering latency,

we provide a selection algorithm to search for a maximum number of anchor points

where sensors hold the least battery energy, and meanwhile by visiting them the tour

length of the SenCar is no more than a threshold. In the second step, we consider

data gathering performance when the SenCar migrates among these anchor points.

We formulate the problem into a network utility maximization problem and propose

a distributed algorithm to adjust data rates, link scheduling and flow routing so as

to adapt to the up-to-date energy replenishing status of sensors. The effectiveness

of our approach is validated by extensive numerical results. When compared with

solar harvesting networks, our solution can improve the network utility by 48% on

the average.

The remainder of this chapter is organized as follows. Section 7.1 introduces

the motivation and contribution of this research work. Section 7.2 discusses the

related work. Section7.3 provides the design overview. Sections7.4 gives the

design details by presenting a two-step approach. Section7.5gives the performance

evaluation results and finally Section7.6concludes the chapter.

7.1 Introduction

Recent studies have shown that energy harvesting wireless sensor networks have the

potential to provide perpetual network operations by capturing renewable energy

from the external environment. A variety of ambient energy,such as mechanical,

thermal, photovoltaic, and electromagnetic energy can be converted into electrical

energy to drive sensors or recharge sensor batteries, such that prolonged network

lifetime or perpetual operations can be achieved [72][73]. However, as all these

energy sources are from external environment and their spatial-temporal profiles

exhibit great variations, the strength of harvested energyis typically low [69], and

especially sensitive to the environment dynamics. For example, in a solar harvesting

system, the output power of a sensor is determined by solar radiation arrives at the

equipped solar panel, which drastically varies with time and weather. Statistics

has shown that the difference can be up to three orders of magnitude among the

available solar power in shadowy, cloudy and sunny environments [79]. As there
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is generally lack of priori knowledge of the energy profile, such dynamics imposes

much difficulty on the design of protocols that must keep sensors from running

out of energy. This is, however, very critical for many applications, especially

environmental monitoring applications where the main taskis to periodically collect

data from all sensors. In case that some sensors deplete their energy and cannot get

recharged in time, the network would ultimately become fragmented and the data

from some parts of the sensing field can no longer be extracted.

In order to provide steady and high recharging rate for the power supplies of

sensors, and meanwhile effectively alleviate energy expenditure on data gathering,

in this work, we alternatively propose a joint design of energy replenishment and

data gathering by exploiting mobility, which is referred toas J-MERDG. In partic-

ular, a multi-functional SenCar, is employed, which is equipped with a powerful

transceiver and high capacity battery. The SenCar will periodically choose a subset

of sensors to visit. While migrating among these sensors, it delivers energy to the

visited sensors by utilizing wireless energy transmissions and meanwhile it collects

data from nearby sensors via short-range multi-hop communication. This way, the

SenCar, serving as both an energy transporter and a mobile data collector, performs

the tasks of energy replenishment and data gathering simultaneously. In contrast to

the conventional energy harvesting networks, the mobilitybrings us many benefits.

First, since sensors receive energy supplement directly from the SenCar, the replen-

ishment will no longer suffer from environmental variations. Second, as long as the

SenCar moves close enough to sensors, high charging efficiency can be achieved

to ensure high-rate data services. Third, as the SenCar takesthe responsibility of

energy delivery, it is commercially appealing that no complex energy harvesting

devices are needed at each sensor, which significantly reduces the cost of sensors.

Finally, by exploiting controlled mobility, the SenCar can efficiently perform en-

ergy delivery and data gathering simultaneously. This is extremely desirable as

such combination makes double contribution to the energy management of the net-

work. On one hand, the SenCar infuses steady and abundant renewable energy into

the network almost at no additional cost. On the other hand, mobility alleviates the

routing burden at sensors for data uploading so that great energy can be saved to

further leverage the refilled energy.

The objective of our work is to design an adaptive solution that jointly selects

the sensors to be charged and finds the optimal data gatheringstrategies, such that
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network utility can be maximized while maintaining perpetual operations of the

network. To that end, we propose a two-step approach for the joint design. In the

first step, we determine the mobility pattern of the SenCar foreach time period, i.e.,

where the SenCar will move to charge the located sensors and gather the data from

the neighborhood. For convenience, we still refer to the locations that the SenCar

visits for energy delivery and data gathering asanchor points. In the second step,

we study the strategies on how to achieve optimal data gathering performance when

the SenCar migrates among different anchor points, considering the up-to-date en-

ergy replenishing status of sensors. We formulate this problem as an optimization

problem and adjust data rates, link scheduling and flow routing to achieve maxi-

mum network utility.

The main contributions of our work can be summarized as follows.

• We propose a joint design of energy replenishment and data gathering (J-

MERDG) by exploiting mobility. To the best of our knowledge, this is the first

work that explores such joint design and systematically provides solutions to

optimize its performance.

• We develop an algorithm for the SenCar to determine the anchorpoints in

each time period, which achieves a desirable balance between the energy re-

plenishing range and data gathering latency.

• We build a flow-level network utility maximization model to characterize the

data gathering performance when the SenCar moves over different anchor

points. We propose a proximal approximation based algorithm to obtain the

system-wide optimum by adjusting data rates, link scheduling and flow rout-

ing in a distributed manner.

• We provide extensive numerical results to validate the effectiveness of J-

MERDG, which not only guarantees perpetual operations of thenetwork but

also significantly outperforms solar harvesting system by48% in network

utility.
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7.2 Related Work

As we have already discussed the mobile data gathering schemes in previous chap-

ters, in this section, we mainly review some related work on energy replenishment

in wireless networks.

Kar, et al. [74] considered a network with redundantly deployed rechargeable

sensors, and addressed the problem of how sensors should be activated dynamically

so as to maximize a global coverage metric. They proposed a threshold activation

policy and demonstrated its performance for the cases that the coverage areas of

sensors are completely or partially overlapped. Lin, et al.[75] developed a model to

characterize the performance of multihop radio networks inthe presence of energy

replenishment and designed an energy-aware routing algorithm that is asymptoti-

cally optimal with respect to the network size. Liu, et al. [76] studied the resource

allocation problem for energy-harvesting sensors. They first explored the optimal

sampling rates based on the average (long term) energy replenishment rate and then

designed a local algorithm for each sensor to adjust the rateaccording to the in-

stantaneous battery state in order to cater to the recharging fluctuations. Sharma, et

al. [77] presented a model for a single energy harvesting sensor node and identified

two energy management policies for it. One policy is throughput-optimal, which

ensures that the data queue stays stable for the highest possible data rate, and the

other policy aims at minimizing the mean delay of the data queue. Vigorito, et al.

[78] considered the variability of the harvested environmental energy and designed

an adaptive duty-cycling mechanism that achieves energy neutral operation, per-

formance maximization and duty cycle stability. Rahimi, et al. [79] studied the

feasibility of exploiting mobility to extend network lifetime, in which a small num-

ber of network nodes are autonomously mobile, allowing themto move in search

of energy from the environment, recharge and deliver energyto immobile, energy-

depleted nodes. All the above works focus on energy harvesting networks and try to

provide adaptive mechanisms to conquer the environment variations. Besides [79],

other works did not consider exploiting mobility.

Based on these studies of exiting energy harvesting networksand aforemen-

tioned mobile data gathering schemes [22]-[59] in previous chapters, we find that

energy replenishment and data gathering are always separately designed. None

of existing work makes these two tasks in couple to balance their performance.
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This observation motivates us to provide novel scheme that jointly considers these

two important issues in WSNs. By taking advantage of controlled mobility, our

work explores the data gathering performance gain when recharging is possible.

It computes the migration tour of the SenCar based on the jointconsideration of

recharging demand and data gathering performance, and alsoadapts adjustable sys-

tem parameters to the up-to-date energy replenishing status to optimize the data

gathering scheme.

7.3 Design Overview of J-MERDG

In this section, we provide an overview on J-MERDG. The timingstructure and the

architecture of this joint design are illustrated in Fig.7.1and Fig.7.2, respectively.

As each sensor has different energy statuses at different times, it is required

for the SenCar to properly arrange which sensor gets recharged at what time. Due

to such time-varying nature of the energy replenishment demand, to facilitate our

study, we divide the time into fixed time intervals of lengthT . At the beginning

of each time interval, the SenCar determines which sensors tobe charged in this

interval. We assume that the possible candidate locations for the SenCar to visit

are the locations of all sensors, such that the SenCar can movesufficiently close

to charge sensors with high efficiency. Based on some specifiedcriteria (to be

discussed in a subsequent section), the locations of a subset of sensors, i.e., anchor

points, are selected. In a time interval, the sensors located at the anchor points

would be recharged. As shown in Fig.7.1, in each time interval, the SenCar will

migrate among the anchor points back and forth. We assume that there are a total of

q migration tours in each time interval. The same data gathering strategy is used for

theseq migration tours. Along each tour, the SenCar would sojourn ateach anchor

point to gather data from nearby sensors via multi-hop communication. Without

loss of generality, we assume that the SenCar sojourns for thesame amount of time

at every anchor point in a tour. However, it should be pointedout that as anchor

points in each time interval vary in quantity and positions,the sojourn time may be

different from one time interval to another. During the lasttour in a time interval,

each sensor will report its up-to-date battery status to theSenCar. This information

is transmitted piggyback with the data to the SenCar, which will be used for the

anchor point selection at the beginning of next time interval.
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While the SenCar arrives at an anchor point, it will quickly charge the sensor

located there. The recharging structure is depicted in Fig.7.2. The SenCar, as the

energy transmitter, is equipped with a high-capacity rechargeable battery, a DC/AC

converter and a resonant coil. For energy delivery, an oscillating magnetic field is

first induced around the transmitter coil on the SenCar. The sensor node, mounted

with a receiver coil, is then tuned to resonate at exactly thesame frequency, and use

the AC/DC converter to generate DC current to recharge its battery. Such a struc-

ture is feasible and of high efficiency, which is supported byrecent breakthroughs in

two areas. The first area is the technology of highly-efficient wireless energy trans-

mission. Wireless energy transmission has already been used to recharge small

appliances, such as electric toothbrushes. Recent progresses also show application

prospect of non-radiative energy transmission over midrange 1. The work in [65]

and [66] has shown that through strongly coupled magnetic resonances, the effi-

ciency of transferring60 watts of power over a distance in excess of2 meters is as

high as40%. Intel also demonstrated that it is possible to improve transferring 60

watts of power over a distance of up to two to three feet with efficiency of 75% [67].

At present, commercial products utilizing mid-range wireless energy transmission

have been available on the market. The second area is the new battery material for

ultra-fast charging. Ultra-fast charging was recently realized in LiFePO4 by creat-

ing a fast ion-conducting surface phase through controlledoff-stoichiometry [86].

It inherits and combines the advantages of both conventional Li-ion batteries and

supercapacitors, which brings high energy density and can be charged at the rate

as high as 400C2. Thus, this can shorten the time to fully charge a battery to few

seconds.

While the SenCar arrives at an anchor point, it will also act as adata collec-

tor to gather the data from nearby sensors. Since the batteries can be charged in

a very short time which can be almost neglected compare to thesojourn time, we

assume that sensor batteries can be instantly fully-charged for use and the charging

operation does not affect data gathering. In a particular time interval, as the SenCar

moves over the anchor points in a tour, each sensor has the choice to send its data to

the SenCar at any anchor point along low-cost routes. Moreover, in order to max-

1Midrange refers to the distance between the transmitter andthe receiver that is longer than the
size of the devices by a factor of at least 2 to 3 [65].

2C is determined by the nominal capacity of the battery. For a battery with the capacity of
1000mAh, C=1000mA.
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imize network utility while maintaining perpetual operations, each sensor employs

rate control to not only achieve high performance gain but also avoid draining out

of energy before it can get recharged in a subsequent time interval. Next, we will

present a carefully designed data gathering scheme that takes all these factors into

consideration.

7.4 Joint Mobile Energy Replenishment and Data Gath-

ering (J-MERDG)

Having outlined the basic idea of J-MERDG, in this section, weprovide a two-step

approach to efficiently implementing the design.

In the first step, the SenCar selects the anchor points for the current time interval

by finding which sensors are to be recharged, where the SenCar will sojourn for data

gathering, and how the SenCar moves over the field. In the second step, based on

the information of SenCar’s sojourn locations and the energyreplenishing status,

each sensor self determines how to transmit data to the SenCarwhen it arrives. The

details of the approach are given in the following two subsections. Since similar

methods are adopted in different time intervals, in the following discussions, we

will focus on a typical time interval.

7.4.1 Anchor Point Selection

Since energy replenishment and data gathering are jointly considered, the selection

of anchor points falls into following two aspects. First, the senors located at the

selected anchor points should be those with most urgent needs of energy supple-

ment. Second, as the SenCar moves over the anchor points back and forth for data

gatherings during a time interval, the length of each migration tour, which implies

the data gathering latency, is expected to be short. To better enjoy the benefit of the

energy supply provided by the SenCar, more anchor points should be selected such

that more sensors can timely get recharged. However, this would adversely prolong

the migration tour. Therefore, there is an inherent tradeoff between the number of

sensors to be recharged and data gathering latency. Based on this observation, the

anchor point selection problem for a particular time interval k can be described as
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Table 7.1: Anchor point selection algorithm for time interval k.
//S is the set of sensors,B(k−1)

e is the set of energy states of sensors
at the end of time intervalk − 1, andL is the tour length bound

Input : S = {1, 2, . . . , N}, B(k−1)
e = {b̌(k−1)

i |i ∈ S}, andL

Output : Anchor point listA(k) for time intervalk

Sort the battery states inB(k−1)
e in an increasing order and record the

result in another setB′;
MapS to another setS ′ by rearranging the sensors in the sequence
corresponding to their respective battery states inB′;
u← 1;
v ← |S ′|;
m← 0;
p← 0;
while truedo

if u > v
p← v; break;

end if
m =

⌊
1
2(u + v)

⌋
;

// We useS ′(m) to represent themth element inS ′
A(k) ← {S ′(1),S ′(2), . . . ,S ′(m)};
Find an approximate shortest tour among the anchor points inA(k)

and denoted the result by TSP(A(k));
case

TSP(A(k)) < L: u← m + 1;
TSP(A(k)) = L: p← m; break;
TSP(A(k)) > L: v ← m− 1;

end case
end while
A(k) ← {S ′(1),S ′(2), . . . ,S ′(p)};
Find an approximate shortest tour among the anchor points inA(k);

follows. Given the up-to-date energy states of sensors obtained by the SenCar at

the end of time intervalk − 1, find the maximum number of anchor points for time

interval k such that the sensors located at these anchor points hold theleast bat-

tery energy, and meanwhile by visiting these anchor points,the tour length of the

SenCar is no more than a threshold.

Considering that the possible candidate anchor points are the locations of all the

sensors, this problem is equivalent to finding a target sensor, by visiting the loca-

tions of all the sensors with the battery energy less than or equal to which, the length

of shortest migration tour among them is bounded by the threshold. Motivated by

this observation, we propose a selection algorithm to search for the anchor points

with the pseudo code shown in Table7.1. Given the set of sensorsS, the set of

energy states of sensors at the end of the previous time intervalB(k−1)
e , and the tour
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length boundL, the algorithm finds the anchor point listA(k) for time intervalk as

follows.

As a pretreatment, the algorithm sorts the sensors with their battery energy in

an increasing order. We record this sorted sensor list byS ′ and useS ′(i) to rep-

resent theith element in the list. The problem is now converted to finding a target

sensorS ′(p) such that by visiting the senors with the index no more thanp, i.e.,

S ′(1),S ′(2), . . . ,S ′(p), the tour length is no more thanL. To this end, the al-

gorithm first finds the middle element ofS ′, denoted byS ′(m) and inspects the

shortest migration tour among the locations of the sensorsS ′(1),S ′(2), . . . ,S ′(m).

The migration tour can be found by an approximate solution toTraveling Salesman

Problem (TSP). If the migration tour length equals the boundL, then the target sen-

sor has been found; otherwise, the upper half or the lower half of the list is chosen

to further search for the target sensor based on whetherL is greater than or less

than the migration tour amongS ′(1),S ′(2), . . . ,S ′(m). The algorithm reduces the

number of elements needed to be checked to half each time, which is similar to the

binary search algorithm [88]. We use[u, v] to indicate the search range for the target

sensor, whereu andv are the indices of boundary elements. When there is no valid

search range, i.e.,u > v, it implies that there is no way to find a tour with the length

exactly equal toL. Then,p is set byv andS ′(p) is selected as the target sensor.

By visiting the locations ofS ′(1),S ′(2), . . . ,S ′(p), the tour length will be closest

to and less thanL. It is clear that at most⌈log(|S|)⌉ rounds are needed to search

for the target sensor. In each round, we need to calculate a tour among at most|S|
sensors, which can be done inO(|S|2) time. Therefore, the time complexity of the

selection algorithm isO(|S|2 log(|S|)).
An example of the selection algorithm is illustrated in Fig.7.3. There are50

sensors in the network and their battery energy follows uniform distribution over

[0, 100]. The nearest neighbor algorithm [88] for the TSP problem is used in our

implementation to find the shortest tour among anchor points. The sensors on the

migration tour are those to be charged in the current time interval. We can observe

that regardless of the value ofL, a higher precedence of sensors with lower energy

are charged than other sensors. In addition, more sensors will be charged in the case

of a largerL. For example, whenL = 200m, 34% of the sensors, with the battery

energy lower than or equal to32, are charged and this results in a tour length of

193.2m. In contrast, whenL = 300m, 78% of the sensors, with the battery energy
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(a) L = 200m.
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(b) L = 300m.

Figure 7.3: An example to illustrate the selection algorithm to search for the anchor
points in a time interval.

lower than or equal to77, are charged, which leads to a tour length of295.4m.

7.4.2 Optimal Mobile Data Gathering Scheme

After the anchor points are determined, the remaining work is how to gather the

data from sensors when the SenCar migrates among the anchor points. We study

such a mobile data gathering problem by formulating it into autility maximization

problem based on a flow-level network model. In the following, we first provide the

problem formulation and then propose an optimization-based distributed algorithm

for it.

Problem Formulation

For time intervalk, consider a network with a set of static sensors, denoted by

S, and a set of anchor points, denoted byA(k). To capture the characteristics of

the SenCar movements over different anchor points in this time interval, we model

the sensor network with the SenCar located at an anchor pointa (a ∈ A(k)) by a

directed acyclic graphG(k)
a (V

(k)
a , E

(k)
a ). V

(k)
a = S⋃{Λa} and represents the set of

nodes, including all the sensors and the SenCar at anchor point a (denoted byΛa).

E
(k)
a = {(i, j)|i, j ∈ V

(k)
a }, which is the set of directed links among the sensors and

the SenCar. Sensori generates data for the SenCar at a data rate ofr
(k)
i,a when the

SenCar moves to anchor pointa. The SenCar stays at each anchor point for a period

of sojourn timeτ (k) in each ofq tours in this time interval to collect data routed to
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Table 7.2: List of notations.
Notation Definition
S Set of sensors, i.e.,S = {1, 2, . . . , N}
B(k) Set of available battery energy of sensors for time

intervalk, i.e.,B(k) = {b(k)
i |i ∈ S}

B(k)
e Set of battery energy states of sensors at the end of

time intervalk, i.e.,B(k)
e = {b̌(k)

i |i ∈ S}
Bi Battery capacity of sensori
A(k) Set of anchor points for time intervalk

P(k)
i,a Set of parent nodes of sensori for anchor pointa

in time intervalk, i.e.,P(k)
i,a = {j|(i, j) ∈ E

(k)
a }

C(k)
i,a Set of child nodes of sensori for anchor pointa

in time intervalk, i.e.,C(k)
i,a = {j|(j, i) ∈ E

(k)
a }

Λa SenCar located at anchor pointa
T Length of each time interval
q Number of migration tours in each time interval
L Maximum migration tour length for SenCar

τ (k) Sojourn time of SenCar at each anchor point in a
migration tour during time intervalk

r
(k)
i,a Data rate of sensori when SenCar sojourns at anchor

pointa during time intervalk

f
(k)
ij,a Flow rate over link(i, j) when SenCar is located at

anchor pointa in time intervalk

Π
(k)
a Feasible region of link capacity variablef (k)

ij,a

σ Portion parameter for the energy budget
eij Energy consumed for transmitting a unit flow over

link (i, j)
vs Moving velocity of the SenCar

it in multiple hops.

In our model, we use utility functionUi(·) to characterize the impact of the

data from a sensor on the overall data gathering performance. We defineUi(·)
as a strictly concave, increasing and twice-differentiable function with respect to

the total amount of data gathered from sensori in the current time interval (i.e.,∑
a∈A(k) r

(k)
i,a qτ (k)). Accordingly, the network utility is defined as the aggregation

utility of all sensors. We are interested in maximizing the network utility while

maintaining the perpetual operation of the network. To achieve this objective, we

will address three critical issues: (1) what is the optimal data rate of a sensor for the

SenCar sojourning at a particular anchor point; (2) how to schedule the link trans-

missions based on the interference model; (3) how to route the data to the SenCar

at each anchor point taking into account of energy and link capacity constraints.

Now the mobile data gathering problem for time intervalk can be formulated
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as follows. For clarity, all the notations used are summarized in Table7.2.

MDG: max
r(k),f (k)

∑
i∈S

Ui

(
∑

a∈A(k)

r
(k)
i,a qτ (k)

)
(7.1)

Subject to

r
(k)
i,a +

∑

j∈C
(k)
i,a

f
(k)
ji,a =

∑

j∈P
(k)
i,a

f
(k)
ij,a,∀i ∈ S,∀a ∈ A(k) (7.2)

qτ (k)
∑

a∈A(k)

∑

j∈P
(k)
i,a

f
(k)
ij,aeij < σb

(k)
i ,∀i ∈ S (7.3)

r
(k)
i,a ∈ R+, f

(k)
ij,a ∈ Π(k)

a ,∀i ∈ S,∀j ∈ P(k)
i,a ,∀a ∈ A(k) (7.4)

where

b
(k)
i =

{
Bi, if i ∈ A(k)

b̌
(k−1)
i otherwise

andτ (k) =
T−qTSP(A(k))/vs

q|A(k)|
(7.5)

The constraints can be explained as follows.

• Flow conservation constraint (7.2) states that at each sensor for each anchor

point, the aggregated outgoing link flow rates equal the local data rate plus

incoming link flow rates.

• Energy constraint (7.3) enforces the energy cost at each sensor in a time in-

terval bounded by its energy budget, which is a portion of available battery

energy.

• Capacity constraint (7.4) specifies that the capacity allocated on a link for a

particular anchor point must fall in the feasible capacity regionΠ
(k)
a . Based on

the node exclusive interference model in [106], Π
(k)
a can be similarly defined

as the convex hull of all the rate vectors of the matchings inG
(k)
a .

In the formulation,b(k)
i and τ (k) represent the available battery energy of sensor

i for time intervalk and the sojourn time at each anchor point in a tour during

time intervalk, respectively. As the sensors located at anchor points can get fast

recharging, they are considered to have the full battery energy for use, i.e.,b(k)
i =

Bi, if i ∈ A(k).
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Distributed Algorithm for MDG Problem

It is observed that the objective function of MDG problem is concave, however,

not strictly concave with respect tor(k)
i,a . Directly solving it with the dual approach

[98] may incur oscillation before the system enters the equilibrium, which is not

amenable for practical implementations. Therefore, we resort to the proximal opti-

mization algorithm [97], which can be explained as follows.

Proximal Approximation Based Algorithm: A quadratic term− 1
2c‖r(k) −

x
(k)‖22 = − 1

2c

∑
i∈S

∑
a∈A(k)

(
r
(k)
i,a − x

(k)
i,a

)2
is added to the original objective function to

make it strictly concave, wherer(k) = {r(k)
i,a }, x(k) is an additional matrix andc is a

positive scalar parameter. The proximal approximation algorithm runs in iterations,

which alternatively maximizes the updated network utilityoverr(k) while keeping

x(k) fixed, then overx(k) while keepingr(k) fixed, and repeats. In particular, thetth

iteration of the algorithm performs the following two steps.
Step 1: Fix x

(k)
i,a = x

(k)
i,a [t] for all i ∈ S anda ∈ A(k) and solve the following

problem to obtain the optimalr(k)
i,a [t] andf

(k)
ij,a[t].

max
r(k),f (k)

∑
i∈S

Ui

(
∑

a∈A(k)

r
(k)
i,a qτ (k)

)
− 1

2c‖r(k) − x
(k)‖22 (7.6)

subject to constraints (7.2), (7.3) and (7.4).

Step 2: Setx(k)
i,a [t + 1] = r

(k)
i,a [t] for all i ∈ S anda ∈ A(k).

Now, the remaining work is to solve problem (7.6). Since it is a strictly con-

cave problem with respect tor(k), we apply the subgradient method based on dual

decomposition for it, which is an efficient technique for convex programs and can

naturally achieve the distributed implementation.
Dual Decomposition: We relax constraint (7.2) by introducing Lagrangian

multiplier λ
(k)
i,a . Then, we can obtain the partial Lagrangian

L(r(k), f (k), λ(k))

=
∑
i
Ui(
∑
a

r
(k)
i,a qτ (k))− 1

2c ·
∑
i

∑
a

(r
(k)
i,a − x

(k)
i,a )2 −∑

i

∑
a

λ
(k)
i,a (r

(k)
i,a +

∑
j

f
(k)
ji,a −

∑
j

f
(k)
ij,a)

= [
∑
i
Ui(
∑
a

r
(k)
i,a qτ (k))− 1

2c

∑
i

∑
a

(r
(k)
i,a − x

(k)
i,a )2 −∑

i

∑
a

λ
(k)
i,a r

(k)
i,a ] +

∑
i

∑
a

∑
j

(λ
(k)
i,a − λ

(k)
j,a )f

(k)
ij,a

(7.7)
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By duality, the dual problem is therefore

min
λ(k)�0

g(λ) = min
λ(k)

max
r(k),f (k)

L(r(k), f (k), λ(k)) (7.8)

Note that the dual problem has a good separable property, which can be decom-

posed into two subproblems. One is the rate control subproblem in terms of rate

variablesr(k), and another is the joint scheduling and routing subproblemto find

optimal flow variablesf (k).

Rate Control Subproblem Givenλ
(k)
i,a , each sensor solves a local optimization as

follows by adjusting its data rates for different anchor points in time intervalk.

max
r
(k)
i,a ≥0

Ui(
∑

a

r
(k)
i,a qτ (k))− 1

2c

∑

a

(r
(k)
i,a − x

(k)
i,a )2 −

∑

a

λ
(k)
i,a r

(k)
i,a (7.9)

This local optimization can be solved by a similar approach to that in [102] with

the complexity ofO(|A(k)| log(|A(k)|)), which is explained as follows.
Let µa be the Lagrangian multiplier for constraintr

(k)
i,a ≥ 0. For eacha ∈ A(k),

the Karush-Kuhn-Tucker conditions [98] are given by

µa ≥ 0, (7.10)

µa · r(k)
i,a = 0, (7.11)

U ′
i(
∑

a

r
(k)
i,a qτ (k))qτ (k) − 1

c
r
(k)
i,a +

1

c
x

(k)
i,a − λ

(k)
i,a + µa = 0. (7.12)

Let m(k)
i,a = 1

c
x

(k)
i,a − λ

(k)
i,a . Then (7.12) can be rewritten asU ′

i(
∑

a r
(k)
i,a qτ (k))qτ (k) −

1
c
r
(k)
i,a + m

(k)
i,a + µa = 0. If we sort the rates in the order thatm

(k)
i,1 ≥ m

(k)
i,2 ≥

· · · ≥ m
(k)

i,|A
(k)
i |

, we have that for any1 ≤ a′ ≤ a ≤ |A(k)
i |, r

(k)
i,a′ ≥ r

(k)
i,a . This

result trivially holds whenr(k)
i,a = 0. And whenr

(k)
i,a > 0, we haveµa = 0 and

r
(k)
i,a′ − r

(k)
i,a = c(m

(k)
i,a′ −m

(k)
i,a ) + µa′ ≥ 0. Therefore,zhao-energy by using this result

and the KKT conditions, there exists anA such that

r
(k)
i,a =

{
c
[
qτ (k)U ′

i(R
(k)
i qτ (k)) + m

(k)
i,a

]
> 0, a ≤ A

0, a > A,
(7.13)

whereR
(k)
i =

∑A
a=1 r

(k)
i,a denotes the sum of data rates for different anchor points.

This implies that to find the optimal value for everyr(k)
i,a , we only need to find
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optimalR(k)
i and theA.

WhenA is given,R(k)
i can be easily computed by solving the summation in

(7.12) for all a ≤ A. As r
(k)
i,a > 0 for all a ≤ A, we have thatµa = 0 so thatR(k)

i

is the solution ofAqτ (k) · U ′
i(R

(k)
i qτ (k)) − 1

c
R

(k)
i +

∑A
a=1 m

(k)
i,a = 0. This way, all

the work now becomes finding a properA. As r
(k)
i,a is decreasing ina andA is the

boundary to indicate whether the rate is greater than or equal to zero, we search for

A from |A(k)
i | down to1, and whenr(k)

i,A = c
[
qτ (k)U ′

i(R
(k)
i qτ (k)) + m

(k)
i,A

]
≥ 0, we

sayA is found.

Finally, we summarize the rate control algorithm for subproblem (7.9) in Table

7.3.

Table 7.3: Distributed rate control algorithm at sensori.
Sort anchor points inA(k) such thatm(k)

i,a is in the decreasing order;
A← |A(k)|;
M ←∑|A(k)|

a=1 m
(k)
i,a ;

While A ≥ 1 do

// UseR
(k)
i to denote

∑A
a=1 r

(k)
i,a

SolveAqτ (k) · U ′
i(R

(k)
i qτ (k))− 1

cR + M = 0 for optimalR(k)
i ;

Computer(k)
i,A = c

[
qτ (k)U ′

i(R
(k)
i qτ (k)) + m

(k)
i,A

]
;

If r
(k)
i,A ≥ 0

Compute the data rate for each anchor point as

r
(k)
i,a =

{
c
[
qτ (k)U ′

i(R
(k)
i qτ (k)) + m

(k)
i,a

]
a ≤ A

0 a > A
;

Break;
else

M ←M −m
(k)
i,A;

A← A− 1;
end If

end While

Joint Scheduling and Routing Subproblem Given λ
(k)
i,a , the how to schedule

the link activation and how to allocate the flow rate on each scheduled link can be
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determined by solving the following subproblem.

max
∑
i

∑
a

∑
j

(λ
(k)
i,a − λ

(k)
j,a )f

(k)
ij,a

s.t. qτ (k) ·∑
a

∑
j

f
(k)
ij,aeij < σb

(k)
i ,∀i ∈ S

f
(k)
ij,a ∈ Π

(k)
a ,∀i ∈ S,∀j ∈ P(k)

i,a ,∀a ∈ A(k)

(7.14)

We first ignore the energy constraint when consider the link schedule, i.e., for each

anchor pointa, choosef̃ (k)
ij,a such that

f̃
(k)
ij,a ∈ arg max

f
(k)
ij,a∈Π

(k)
a

∑
i

∑
j

(λ
(k)
i,a − λ

(k)
j,a )f

(k)
ij,a (7.15)

If we considerλ(k)
i,a − λ

(k)
j,a as the weight of link(i, j) destined for the SenCar at

anchor pointa, this scheduling problem is equivalent to the maximum weighted

matching problem under the node exclusive interference model. We can utilize the

heuristic distributed algorithms in [106] and [16] to solve this problem inO(|E(k)
a |)

time.

Then problem (7.14) is reduced to a routing problem that determines how much

flow rate on each link based on the schedule and energy constraints. Each sensor

only needs to solve the following local problem

max
∑
a

∑
j

(λ
(k)
i,a − λ

(k)
j,a )f

(k)
ij,a

s.t. qτ (k) ·∑
a

∑
j

f
(k)
ij,aeij < σb

(k)
i

f
(k)
ij,a ≤ f̃

(k)
ij,a,∀j ∈ P

(k)
i,a ,∀a ∈ A(k),

(7.16)

where each̃f (k)
ij,a can be considered as the link capacity based on a specified sched-

ule. This routing problem can be easily solved by an algorithm described in Table

7.4. The basic idea of the algorithm can be intuitively explained as follows. Each

sensor always allocates a maximum flow rate under the energy and link capacity

constraints to a scheduled link that has the largest link gain among all its outgoing

links to different anchor points. Apparently, in the worst case, each sensor needs to

consider the link gains of all its outgoing links for different anchor points. Thus, the

time complexity of the routing algorithm at sensori is O(
∑

a∈A(k) deg+a (i)), where

deg+a (i) is the outdegree of sensori in the directed acyclic graphG(k)
a (V

(k)
a , E

(k)
a ).

Lagrangian Multiplier Update In each iteration of the subgradient algorithm,

sensori solves the subproblems in (7.9) and (7.14) with the current Lagrangian
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Table 7.4: Distributed routing algorithm at sensori.
Setf (k)

ij,a to zero, for allj ∈ P
(k)
i,a , a ∈ A(k);

SetWi =
{

λ
(k)
i,a − λ

(k)
j,a > 0

∣∣∣∀j ∈ P
(k)
i,a ,∀a ∈ A(k)

}
and sort it

in the decreasing order;

Initialize the battery energy for allocation:br = σb
(k)
i ;

For iter = 1; iter <= |P (k)
i,a | · |A(k)|; iter + +

If Wi = Φ or br = 0
Break;

end If
(j̃, ã)i ← arg

(j,a)
Wi[iter];

f
(k)

ij̃,ã
= min

{
br

qτ (k)eij̃

, f̃
(k)

ij̃,ã

}
;

RemoveWi[iter] from Wi;

br ← br − qτ (k)f
(k)

ij̃,ã
eij̃ ;

end For

multiplier λ
(k)
i,a [n]. Then, sensori updates the Lagrangian multipliers as follows and

sends them to its direct neighbors to facilitate the computing of r(k) andf (k) in the

next iteration.

λ
(k)
i,a [n + 1] =[
λ

(k)
i,a [n] + θ[n]

(
r
(k)
i,a [n] +

∑
j

f
(k)
ji,a[n]−∑

j
f

(k)
ij,a[n]

)]+
(7.17)

where[·]+ denotes the projection onto the non-negative orthant andθ[n] is a pro-

perly chosen scalar stepsize for subgradient iterationn. In our algorithm, we choose

the diminishing stepsizes, i.e.,θ[n] = d/(b+ck), ∀k, c, d > 0, b ≥ 0, whereb, c and

d are adjustable parameters that regulate the convergence speed. The diminishing

stepsize can guarantee the convergence regardless of the initial value ofλ [98].

Recovery of Primal Solutions Since the subproblem of joint scheduling and

routing is linear, which implies that the values in the optimal solution of the La-

grangian dual cannot be directly applied to the primal problem. In view of this, we

still apply the method introduced in [100] to recover the optimal primal values for

variablesf (k)
ij,a. When the variablesx(k)

i,a converge in the higher level optimization,

during the subgradient iterations in the lower level we construct the primal feasible
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sequences{f̂ (k)
ij,a[n]} as follows.

f̂
(k)
ij,a[n] = 1

n

n∑
h=1

f
(k)
ij,a[h]

=

{
f

(k)
ij,a[1] n = 1

n−1
n f̂

(k)
ij,a[n− 1] + 1

nf
(k)
ij,a[n] n > 1

(7.18)

Optimal flow rates can be obtained when{f̂ (k)
ij,a} converges tôf (k)

ij,a

∗
.

Finally, we summarize the proximal approximation based algorithm in Table

7.5, which is described in the context of sensori for time intervalk. As it is per-

formed by each sensor and the information is only exchanged among direct neigh-

bors, the algorithm is in a fully distributed manner.

Table 7.5: Summary of proximal approximation based algorithm.
Initialize x

(k)
i = {x(k)

i,a |a ∈ A(k)} to non-negative values;
// iterations for proximal approximation
Repeat

Initialize Lagrangian multipliersλ(k)
i = {λ(k)

i,a |a ∈ A(k)} to
non-negative values;
// iterations for subgradient and dual decomposition for(7.6)
Repeat

Computer(k)
i [n] = {r(k)

i,a [n]|a ∈ A(k)} by solving rate
control subproblem (7.9);

Computef (k)
i [n] = {f (k)

ij,a[n]|j ∈ P(k)
i,a , a ∈ A(k)} by solving

joint scheduling and routing subproblem (7.14);
Update lagrangian multiplier and send them to direct neighbors;

If x
(k)
i get converged in the high-level proximal iterations

Compute primal feasiblêf (k)
ij,a[n] by (7.18);

end If

Until λ
(k)
i andr

(k)
i converge;

Setx(k)
i [t + 1] = r

(k)
i [t] in thetth proximal iteration;

Until x
(k)
i converges and get the final optimalr

(k)
i andf

(k)
i

7.5 Numerical Results

In this section, we evaluate the effectiveness of J-MERDG with extensive numerical

results, and compare it with the performance of the solar harvesting sensor system.
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Table 7.6: Parameter settings.
Parameter Value Parameter Value

Bi 2100mAh eij 0.3mJ/Kbit
wi 100 eiΛi

0.02mJ/Kbit
θ(n) 1

1+10n L 200m
vs 1m/s σ 0.9

In the evaluation, we use a network consisting of10 wireless rechargeable sensors

distributed over a 100m×100m area for demonstration purpose. In fact, due to

the SenCar’s capability of obtaining the sensor energy states along its migration

tour and the distributed nature of the data gathering strategies, our design can be

readily applicable to large scale networks. The utility function Ui(·) is defined as

wi log(
∑

a r
(k)
i,a qτ + 1), wherewi is the weight of utility at sensori. If not specified

otherwise, the time interval lengthT is set to one hour and the number of migration

toursq in each time interval is equal to5. For clarity, all other parameter settings

are summarized in Table7.6.

7.5.1 Convergence of Proximal Approximation Based Algorithm

We first examine the convergence of the proximal approximation based algorithm.

For a particular time intervalk, we assume that each sensor randomly holds80%-

100% of full battery capacity and the anchor points are set to the locations of sensors

1, 2 and 3. Fig.7.4(a) shows the evolution of data ratesr
(k)
i,a versus the number of

proximal iterations. It can be seen that all data rates approach to the stable status

after only10 iterations. Fig.7.4(b) shows the evolution of recovered flow ratesf̂
(k)
ij,a

on some selected links versus the number of subgradient iterations. It is noticed

that the recovered flow rates are well within5% of their optimal values after only

500 iterations. To further dampen the number of subgradientiterations, which is

the lower-level optimization of the proximal approximation based algorithm, we

can set the initial values of Lagrangian multipliersλ
(k)
i,a by their final values in the

previous run of higher-level proximal iterations. Comparable performance can be

observed when the number of subgradient iterations is as lowas around 100.
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Figure 7.4: Convergence of the proximal approximation basedalgorithm.

7.5.2 Performance of J-MERDG

We now study the performance of J-MERDG varying with the time interval length

T . Fig. 7.5(a) and7.5(b) respectively demonstrate the evolution of cumulative

network utility and cumulative number of recharged sensorsin consecutive 24 hours

under different settings ofT . We assume that each sensor initially holds full battery

capacity and the number of migration toursq in each time interval is proportional

to T . From the figures, we can see that higher cumulative network utility can be

obtained and there are more recharged sensors in the cases with a smallerT . This

is reasonable since a smallerT leads to shorter waiting time for the sensors to get

recharged. However, a smallT may cause sensors to frequently calculate their data

rates, schedule and routing so as to achieve the optimal datagatherings. Therefore,

a proper setting forT is actually to balance the tradeoff between the computation

overhead and achievable performance. Fig.7.5(c) and7.5(d) depict the battery

states of sensor 1 and sensor 8 evolving with time, respectively. It is shown that

sensors could timely get recharged to avoid energy depletion such that perpetual

operations of the network can be guaranteed. It is apparent that sensors have more

chances for energy replenishment under a smallerT . For example, sensor 8 is

recharged for 9 times within 24 hours whenT = 1 while it only gets recharged

twice whenT = 6.
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Figure 7.5: Performance of J-MERDG as the function ofT .

7.5.3 Comparison with Solar Harvesting Sensor System

In this subsection, we compare J-MERDG with the mobile data gathering in the so-

lar harvesting sensor system, denoted by MDG-SH for short. In MDG-SH scheme,

each sensor harvests solar irradiance to self-support its energy consumption and

a mobile collector visits each anchor point only for data gatherings. In order to

sustain network operations, the energy consumption rate ofeach sensor can not be

higher than the energy harvesting rate [76]. We build the recharging profiles of

sensors for MDG-SH by using real solar irradiation measurements collected by the

Baseline Measurement System (Global 40-South PSP) at National Renewable En-

ergy Laboratory [84]. In particular, we choose 30 days of year 2009 and categorize

them into three sets based on the irradiance statistics. We use the average irradiance

of these three sets to represent the solar power on sunny, cloudy and shadowy days,

respectively. Based on the irradiance, the recharging rate can be derived as follows

πr = I×ηp×ρe×A, (7.19)

163



6:00 12:00 18:00 24:00
0

0.5

1

1.5

2
x 10

4

Time

N
et

w
or

k 
U

til
ity

T = 1hour, L = 200m, q = 5

 

 

MDG−SH sunny
MDG−SH cloudy
MDG−SH shadowy
J−MERDG

(a) Network utility.

6:00 12:00 18:00 24:00
0

0.5

1

1.5

2

x 10
6

Time

G
at

he
re

d 
D

at
a 

(K
b)

T = 1hour, L = 200m, q = 5

 

 

MDG−SH sunny
MDG−SH cloudy
MDG−SH shadowy
J−MERDG

(b) Amount of gathered data in a tour.

Figure 7.6: Performance comparisons between J-MERDG and MDG-SH.

whereI represents the solar irradiance,ηp is the efficiency of the solar panel to con-

vert solar irradiance to electrical power,ρe is the electrical regulating and charging

efficiency, andA is the size of solar panel. In our simulations, each sensor isas-

sumed to have an equal recharging rate. And we setηp × ρe to 0.06 and letA equal

37mm×37mm.

Fig. 7.6 compares J-MERDG with MDG-SH in consecutive 24 hours in terms

of network utility and the amount of gathered data. The amount of gathered data is

used as one of the metrics because it more evidently visualizes the difference among

different solutions than network utility, which is in logarithmic scale and results in

a small slope at high data rates [76]. It is apparent in Fig.7.6(a) that J-MERDG

greatly outperforms MDG-SH all the time. On the average, J-MERDG achieves

48%, 59% and 66% higher network utility than MDG-SH in sunny, cloudy and

shadowy days, respectively. These observations are also applicable to the amount

of gathered data. It is shown in Fig.7.6(b) that, during the day time (8:00-18:00),

J-MERDG can collect21%, 48% and 54% more data than MDG-SH in sunny,

cloudy and shadowy days, respectively. Moreover, during night time, MDG-SH

has no chance to harvest solar energy and thus cannot extractany data, while J-

MERDG can still keep working and maintain the network utilityalmost as high as

that of day time. This fact signifies the importance of our work, which provides a

recharging scheme immune to the environmental variations and also achieves high-

performance data gathering.
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7.6 Conclusions

In this chapter, we have studied the joint design of energy replenishment and data

gathering (J-MERDG) in wireless sensor networks by exploiting mobility. Specif-

ically, a multi-functional SenCar is introduced to the wireless rechargeable sensor

networks, which migrates among selected anchor points, charges the located sen-

sors via wireless energy transmissions, and collects data from nearby sensors in

multi-hop routing. In J-MERDG, we first presented a selectionalgorithm to de-

termine the anchor points, which achieves a desirable balance between the energy

replenishing amount and data gathering latency. Then, we explored the optimal

data gathering performance when the SenCar moves over different anchor points.

Each sensor self-tunes the data rate, scheduling, and routing based on the up-to-date

energy replenishing status such that the system-wide network utility can be max-

imized. Numerical results demonstrated that J-MERDG can effectively maintain

perpetual network operations and outperform solar harvesting systems by48% in

network utility.
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Chapter 8

Conclusions

This dissertation focuses its study on mobile data gathering in wireless sensor net-

works. A suite of scheme design and performance optimization algorithms have

been presented to identify and address some critical issuesin this research field.

Specifically, first, a joint design of controlled mobility and space-division multiple

access technique has been proposed [108]-[110] for mobile data gathering. It lever-

ages the mobility to alleviate the non-uniformity of energyconsumption among

sensors as well as utilizing the concurrent data transmission to shorten data gath-

ering time. Second, a region division and tour planning algorithm is presented

[111] to extend the joint design of mobility and SDMA technique tolarge-scale

sensor network with multiple SenCars. The data gathering latency can be mini-

mized by balancing the data gathering time among different regions. Third, the

bounded relay hop mobile data gathering scheme [113] is introduced to explore

the tradeoff between energy saving and data gathering latency. It incorporates the

multi-hop relays of local data aggregation into mobile datagathering while keeping

the relay hop count constrained to a certain level to limit the energy consumption

at sensors. Fourth, a pricing-based distributed algorithm[115][116] is proposed

for performance optimization on the anchor-based range traversing data gathering

scheme, which is modeled under cost minimization framework. The optimal per-

formance can be achieved at the equilibrium that reconciliates the payment and the

shadow price between each sensor and the SenCar for communication opportuni-

ties. Fifth, two distributed algorithms [117][118] have been presented to effectively

adjust data rate, routing, and sojourn time allocation so asto achieve system-wide
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network utility maximization with fast convergence. Finally, mobile data gather-

ing is jointly considered with energy replenishment in wireless rechargeable sensor

networks. The SenCar plays as not only a data collector but also a transporter for

energy delivery, which enable steady recharging rate and high-energy data gather-

ing to be achieved simultaneously [119]. A two-step approach is applied to imple-

ment the design, which computes the migration tour of the SenCar based on the

joint consideration of recharging demand and data gathering performance, and also

adapts adjustable data rate, link schedule, and flow routingto the up-to-date energy

replenishing status so as to optimize the data gathering utility.

To summarize, in this dissertation, we have conducted comprehensive studies

on mobile data gathering in wireless sensor networks. We have proposed efficient

solutions to improve data gathering performance from both systematic and theo-

retical points of view, which combine algorithm design, optimization, analysis and

simulation techniques. The outcome of this research can be applicable to a wide

spectrum of applications, including environmental monitoring, field surveillance,

home automation and other commercial areas. Therefore, ourresearch would have

a significant impact on fundamental design principles and infrastructures for the

development of future sensor networks.
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