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Abstract of the Dissertation

Design and Optimization on Mobile Data Gathering
in Wireless Sensor Networks

by

Miao Zhao

Doctor of Philosophy
in
Electrical Engineering
Stony Brook University
2010

Wireless sensor networks (WSNs) have emerged as a new irtforma
gathering paradigm for taking spatial and temporal measengs of a
given set of real-word parameters. In these applicati@ss@s mon-
itor the environment and route their sensing data back tate stata
sink. As the routing task depends purely on sensors theesellie
sensors near the sink need to relay much more packets thaarikers
far away from the sink. As the result, it would incur subsi@rand
non-uniform energy consumption among sensors. Therefae,to
efficiently aggregate the information from scattered ses)sgenerally
referred to aglata gatheringis an important and challenging issue in
WSNs as it largely determines network lifetime. Recent stti@ve
shown that significant benefit can be achieved in WSNs by errgoy
mobile collectors for data gathering in WSNs via short-racg@mu-
nications. In such kind of mobile data gatherings, the neotxlllectors



roam over the sensing field with controlled mobility, perfoappropri-
ate actions to schedule data collection, and transportloath to the
data sink, while sensors are engaged in sensing task ancheedty/to
relay data for local aggregation if necessary. In this wagrgy can be
greatly saved at sensors as mobile collectors fully or airtiake the
burden of routing away from sensors.

This dissertation focuses on scheme design and perfornogiceiza-
tion of mobile data gathering in WSNs. We address several itapb
issues and propose a suite of algorithms to improve dat@gathper-
formance. First, we consider utilizing spatial-divisiomltiple access
(SDMA) to achieve concurrent data uploading from multipdesors
to the mobile collector. The moving tour of the mobile colteas de-
termined based on the tradeoff between the shortest mowtiggnd
full utilization of SDMA among sensors. This joint designnciead
to prolonged network lifetime as well as shortened dataegaty la-
tency. Second, we extend such joint design of mobility andM8D
technique to large sensor network with multiple mobile ectibrs. A
region division and tour planning algorithm is proposedatabce the
data gathering time among different regions. Third, we @bgln-
herent tradeoff between energy saving and data gatheriegcha by
proposing bounded relay hop mobile data gathering. In thewme,
multi-hop relay for local data aggregation is incorporait&d mobile
data gathering, while the relay hop count is constrained tergain
level to limit energy consumption at sensors. Fourth, weénupe the
mobile data gathering performance by characterizing thegkthering
strategies as a pricing mechanism, where sensors indepgnddjust
their payment for the data uploading opportunity to the reobollec-
tor based on the shadow prices set by the mobile collectdth, ke
study the problem of how to achieve optimal performance obiteo
data gathering based on a flow-level network model. We icin-
sider data rate control at sensors, multi-hop routing fda da@ansmis-
sions, and sojourn time allocation for the mobile collecWe propose
distributed algorithms to implement these strategies stw achieve
system-wide optimum. Finally, we propose joint design obiteen-



ergy replenishment and mobile data gathering in wirelesisaigeable
sensor networks. The mobile entity plays not only as a ddtaator

but also as an energy transporter to deliver energy to sengowire-

less energy transmissions. We present distributed afgositto pro-
vide timely energy recharge to maintain perpetual netwgdrations,
meanwhile achieving high-performance data gatherings.



To my beloved husband, Chao, my parents, my sister and mytpdnelaw for
their love and support.



Contents

List of Figures X
List of Tables Xiii
Acknowledgements Xiv
Publications XVi
1 Introduction 1
1.1 Motivation. . . . . . . . . . 1
1.2 Design Goals and Research Challenges . . . . . . ... .. .. 4
1.3 Contributions. . . . . . . . ... 6
1.4 DissertationOutline . . . . . . . .. .. ... .. ......... 10
2 Efficient Mobile Data Gathering with Space-Division Multiple Access
Technique in WSNs 11
2.1 Introductionand RelatedWork . . . . . . . ... ... ... ... 12
2.2 SDMA: Linear Decorrelator Strategy. . . . . . ... .. ... .. 14
2.3 Design Overview and MDG-SDMA Problem Formulation. . . . 17
2.3.1 DesignOverview . . . . . ... ... ... 17
2.3.2 MDG-SDMA Problem Formulation . . . .. ... .. .. 22
2.4 Algorithms for MDG-SDMA Problem. . . . . . .. .. ... ... 25
2.4.1 Maximum Compatible Pair (MCP) Algorithm. . . . . . . 25
2.4.2  Minimum Covering Spanning Tree (MCST) Algorithm . 28
2.4.3 Revenue-Based (RB) Algorithm. . . . . ... ... ... 30
2.5 Performance Evaluatian. . . . . ... .. .. .. ......... 33
2.5.1 Performance Comparison with Optimum Solutian. . . . 33
2.5.2 Performance Comparison with Other Data GatheringrBeb&5
26 Conclusions. . . . . . ... 38

Vil



3 ARegion Division and Tour Planning Algorithm for Mobile Dat a Gath-

ering with Multiple Mobile Collectors and SDMA Technique 40
3.1 DesignOverview. . . . . . . . . e e 41
3.2 MDG-MSProblem. . . ... ... ... . ... ... ... ... 42
3.3 Region-Division and Tour-Planning (RDTP) Algorithm. . . . . . 43
3.4 Performance Evaluatian. . . . . . ... ... .. ......... 49
3.5 Conclusions. . . . .. ... .. 52
4 Bounded Relay Hop Mobile Data Gathering in WSNs 53
4.1 Introduction. . . . . . . . ... 54
4.2 RelatedWork. . . . . . ... . 56
43 BRH-MDGProblem. . . ... ... ... ... .......... 58
431 OVeIrVIEW. . . . . . e e 58
4.3.2 BRH-MDG Problem Formulation . . . ... ... .. .. 59
4.4 Centralized Algorithm for BRH-MDG Problem . . . . . .. ... 63
4.5 Distributed Algorithm for BRH-MDG Problem. . . . . . . .. .. 67
4.6 Performance Evaluation. . . . . ... ... ... ... .. .. 70
4.6.1 Comparison with the Optimal Solution . . . . . . . . .. 70
4.6.2 Performance of SPT-DGAand PB-PSA . . . . ... .. 71
47 Conclusion . . . . . . .. 77
5 Pricing-based Network Cost Minimization Algorithm for Mobi le Data
Gathering in WSNs 82
5.1 Introduction. . . . . . . . ... 83
5.2 RelatedWork. . . . . ... ... .. ... 84
5.3 System Model and Problem Formulation . . . . ... ... ... 86
5.4 Problem Decomposition and Pricing-based Algorithm. . . . . . 89
5.5 Local Cost MinimizationatSensors . . . . .. ... ... .... 97
5.6 SimulationResults. . . . . . .. ... . L o 102
5.6.1 Convergence. . . . . . . ... 102
56.2 NetworkCost . . ... .. ... .. ... .. ....... 104
5.7 Conclusions. . . . . . ... 109
6 Distributed Network Utility Maximization Algorithms for Mo bile Data
Gathering in WSNs 110
6.1 Introduction. . . . . . . . .. .. 111
6.2 RelatedWork. . . . . . ... .. ... 112
6.3 System Model and Problem Formulations. . . . .. .. ... .. 114
6.3.1 SystemModel. . ... .... ... .. ... ..., 114

6.3.2 Formulation of Network Utility Maximization Problewith
Fixed Sojourn Time at Each Anchor Point (NUM-FT) . . 116

viii



6.3.3 Formulation of Network Utility Maximization Problewith
Variable Sojourn Time at Each Anchor Point (NUM-VT). 117

6.4 Distributed Algorithm for NUM-FT Problem. . . . .. ... ... 119
6.5 Distributed Algorithm for NUM-VT Problem. . . . . . ... ... 126
6.5.1 Lower-Level Optimization. . . . .. ... ... ... ... 127
6.5.2 Higher-Level Optimization . . . . . . ... ... ..... 130
6.6 NumericalResults. . . . . ... ... ... ... ... ..., 133
6.6.1 Convergence. . . . . . . . ... e 133
6.6.2 Performance Comparison between NUM-FT and NUM-\L86
6.6.3 Performance Comparison with Other Strategies. . . . . 137
6.7 Conclusions. . . . . . ... .. 139
Joint Mobile Energy Replenishment and Data Gathering in Wirdess
Rechargeable Sensor Networks 141
7.1 Introduction. . . . . . . ... 142
7.2 RelatedWork. . . . . . . ... 145
7.3 Design Overview of JMERDG . . . . . . ... ... ... .... 146
7.4 Joint Mobile Energy Replenishment and Data GatherindERDG)149
7.4.1 AnchorPointSelection. . . .. ... ........... 149
7.4.2 Optimal Mobile Data Gathering Scheme . . . . . . . .. 152
7.5 NumericalResults. . . . .. .. .. ... ... .. .. ... 160
7.5.1 Convergence of Proximal Approximation Based Algorithi61
7.5.2 Performance of JMERDG. . . . . ... ... ... ... 162
7.5.3 Comparison with Solar Harvesting Sensor System . . . 163
7.6 Conclusions. . . . .. ... 165
Conclusions 166
Bibliography 168



List of Figures

1.1 [lllustration of mobile data gathering.. . . . . ... ... ... .. 3
2.1 SDMA with linear decorrelator strategy.. . . . . . ... ... .. 15
2.2 lllustration of the joint design of mobility and SDMA teaique for

mobile data gatheringin WSNs. . . . .. ... ... ....... 19
2.3 A maximum matching in the compatibility graph.. . . . . . . .. 20
2.4 Two possible moving paths ofthe SenCar. . . . . . .. ... .. 20
2.5 Anexample of the MCP algorithm.. . . . . .. ... . ... ... 27
2.6 Anexample of the MCST algorithm.. . . . . .. ... ...... 30
2.7 Anexample of the RB algorithm.. . . . . .. ... .. ...... 32
2.8 The solutions of different algorithms.. . . . . . ... .. ... .. 34
2.9 Comparison between the optimum solution and the propaiged

rithmsinsmallnetworks. . . . . . ... ... ... ........ 36
2.10 Performance comparisons as the functions of the nuofilsensors

with different settings of; andv,,,. . . . . ... ... ... .... 37
2.11 Performance comparisons as the functions of the smighé) of

the distributed field.. . . . . . .. ... ... .. oL 38
3.1 Two SenCars are deployed in the sensing field and gatheeisdat

multaneously in differentregions.. . . . . . . .. ... ... ... 41
3.2 lllustration of the region-division and tour-planni(RDTP) algo-

rthm. . .. 45
3.3 Performance of the RDTP algorithm: Data gathering timéof

schemesasafunctionof,. . ... ... ... ... ........ 50
3.4 Performance of the RDTP algorithm: Data gathering tiniedTP

under different settings af,, andvg. . . . . . ... ..o 51
3.5 Performance of the RDTP algorithm: Data gathering tinieRTP

under different settingsa¥,. . . . .. ... ... ... .. .... 51
4.1 An example to illustrate the tradeoff between energynggand

data gathering latency in a sensor network.. . . . . .. ... .. 54



4.2

4.3
4.4
4.5

4.6
4.7

4.8

4.9

lllustration of polling-based mobile data gatheringhathe relay
hop count bounded within two hops, i.¢d = 2), for local data

aggregation.. . . . ... e 59
An example to illustrate the SPT-DGA algorithiM & 25,d = 2). . 65
An example to illustrate the PB-PSA algorithid & 20,d =2). . . 69
Different solutions for the BRH-MDG problem withset to2 in a
30-node network.. . . . . ... 71
Performance of SPT-DGA and PB-PSA as a functio.of. . . . . 72
Performance of SPT-DGA and PB-PSA as a functioR ofor the
casesofl=2andd =3. . .. ... . ... ... ... 73
Performance comparison for SPT-DGA, PB-PSA, SHDG and CME
asafunctionofV. .. ... ... ... ... L. 73
Performance comparison for SPT-DGA, PB-PSA, SHDG and CME
asafunctionofL.. . .. .. ... ... L L 74

4.10 Performance comparison for SPT-DGA, PB-PSA, SHDG and CME

5.1

5.2
5.3

5.4

5.5

5.6

5.7

6.1
6.2

6.3
6.4

asafunctionof?,. . . . ... ... ... ... .. 76

An example of anchor-based range traversing data gagrsstheme

in a WSN, where the positions of a subset of sensors are used as a
chorpoints. . . . . . . . . . . 87
An example network with 12 sensors and 3 anchor paints. . . . 102
The evolution of network cost, shadow prices of différ@amchor
points, recovered sojourn time for SenCar stopping at @iffean-

chor points, and uploading data from sensigiéand10 versus the
number of iterations in the pricing-based algorithm. . . . . . . . 105
The evolution of the payment from sendofor different anchor
points versus the number of iterations in the adaptatioordlgn. . 106
Network cost of the pricing-based algorithm as a fumcté the

bound of total sojourntimé’. . . . . ... ... ... ... .... 106
Network cost of the pricing-based algorithm as a fumctibmini-

mum data amount fromeachsenddy. . . ... ... ... .... 107
Network cost comparison between the pricing-baseditthgo and

the cluster-based algorithm.. . . . . .. ... ... ... ..... 108
lllustration of anchor-based mobile data gathering. . . . . . . . 112
An example to illustrate the search algorithm at senfmrthe rate
control subproblem in the scenario of two anchor points. . . . . 122

An example network with ten sensors and two anchor points. . 134
Numerical results of the algorithm for the NUM-FT praite(a)
Evolution of recovered flow rat f; vs. subgradient iterations; (b)
Evolution of Lagrangian multipliek? vs. subgradient iterations. . 134

Xi



6.5 Numerical results of the algorithm for the NUM-VT profiie (a)

6.6

6.7

7.1
7.2
7.3
7.4

7.5
7.6

Evolution of network utility vs. higher-level iterationg) Evolu-

tion of data split variable vs. higher-level iterations; (c) Evolu-

tion of total amount of datg; gathered from sensoin a data gath-

ering tour vs. higher-level iterations; (d) Evolution ofdrangian
multiplier A? vs. higher-level iterations.. . . . . . ... ... ... 135
Comparison between NUM-FT and NUM-VT: (a) Network uilit

vs. AT. (b) Optimal sojourn time allocation for the NUM-VT

problemvs AT. . . . .. . ... 138
Performance comparison among NUM-VT, NUM-FT, RaRdute,
andFixedRate. . .. ................ . ....... 138
Timing of joint mobile energy replenishment and datdngang (J-
MERDG). . . . . . . e 147
Architecture of joint mobile energy replenishment aathdyather-

ing (J-MERDG). . . . . . . . . 147
An example to illustrate the selection algorithm to skdor the
anchor pointsinatimeinterval.. . . . . ... ... .. ...... 152
Convergence of the proximal approximation based algorit . . . 162
Performance of -MERDG as the functiorifof. . . . . . ... .. 163

Performance comparisons between J-MERDG and MDG-SH.. 164

Xii



List of Tables

11

2.1
2.2
2.3
2.4
2.5

3.1

3.2

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

The tasks, design goals and contributions of this destsen. . . . . 9
Notations used in formulation of MDG-SDMA Problem.. . . . . 21
Maximum compatible pair (MCP) algorithm. . . . . . ... ... 29
Minimum covering spanning tree (MCST) algorithm.. . . . . . . 31
Revenue of anchor points in the example of RB algorithm. . . . 32
Revenue-based (RB) algorithm.. . . . . . ... ... ... .... 39
Procedure of dividing selected anchor points and tleso@ated
sensorsintdVy parts. . . . . ... 47
Region-division and tour-planning (RDTP) algorithm. . . . . . . 48
Notations used in formulation of BRH-MDG Problem.. . . . . . 60
Two round update of TENTAPP by each sensor in the example. 80
Performance comparison with optimal solutian. . . . . . . . .. 80
Comparisons among three mobile data gathering schemes. . . 81
List of notations used in problem formulation.. . . . . . . . . .. 88
Parametersettings. . . . . . ... ... ... ... .. 103
List of notations used in problem formulations.. . . . . . . . .. 115
Search algorithm for rate control subproblem. . . . . . . .. .. 124
Greedy algorithm for routing subproblem.. . . . . . . ... ... 125
Distributed algorithm for the NUM-FT problem.. . . . . .. ... 126
Distributed algorithm for the NUM-VT problem.. . . . . . .. .. 131
Anchor point selection algorithm for time interval . . . . . . .. 150
Listofnotations. . . . . . . . . . .. . ... ... 153
Distributed rate control algorithm atsensor. . . . . . ... ... 157
Distributed routing algorithm atsensor. . . . . . ... ... ... 159
Summary of proximal approximation based algorithm. . . . . . 160
Parametersettings. . . . . . ... .. .. ... ... ... 161

Xiii



Acknowledgements

| would like to show my gratitude to numerous people, who &dlpnd supported
me during my Ph.D. study.

First and foremost, | am heartily thankful to my supervidérpf. Yuanyuan
Yang, for her invaluable guidance and strong support througthe course of dis-
sertation. She aroused my interests and led me into the netgaesearch field.
Her enlightening vision, deep insight, creative thinkiagd extensive experience
are essential to make my networking research smooth angabigo We have
closely worked for more than five years. The high level of pssfonalism that she
demonstrates in her teaching and research will continuert@ss a role model for
me in my future career development.

I would also like to thank my defense committees, Prof. Sartdpng and Prof.
Dantong Yu in Department of Electrical and Computer Engimggrand Prof. Jie
Gao in Department of Computer Science. Thanks for their pusdime and useful
suggestions to improve my dissertation quality.

| am grateful to my colleagues Dr. Zhenghao Zhang, Dr. Ming Bla Chi Ma,
Dr. Deng Pan, Dr. Min Yang, Lin Liu, Xi Deng, Ji Li, Zhexi Panaivei Gong,
Zhiyang Guo, Zhemin Zhang, and Cong Wang in Mobile Computingoatory
for their friendship and all of their help over years.

| would also like to express my gratitude to many individualthe department
who have made my stay at Stony Brook pleasant and memorala#.ASsistant
for Department’s Chairman, Deborah Kloppenburg, and Gradeogram Coor-
dinator, Rachel Ingrassia, have been especially helpful.

Finally and specially, |1 would like to deeply thank my dearshand, Chao
Liang, who has always been a great source of strength to mes Blevays my
greatest love, my truest friend, and my closest companiam forever indebted to
my parents Yinglin Zhao and Jianhua Wang for their unyigjdove, endless pa-



tience and great encouragement. The achievements of ngrtdiisn are not possi-
ble without their tremendous support. | am grateful to myesjsny brother-in-law,

and my dear nephew, who always bring much happiness to meo lagipreciate
my parents-in-law for their love and encouragement in tlyeses.



Publications

Journal Publications

¢ M. Zhao and Y. Yang, “Optimization based distributed algoris for mobile
data gathering in wireless sensor networks,” under sulioniss

e M. Zhao, D. Gong and Y. Yang, “Cost minimization for mobileagathering
in wireless sensor networks,” under submission.

e M. Ma, Y. Yang and M. Zhao, “A single hop data gathering med$manwith
mobile collectors for wireless sensor networks,” undemsigkion.

e C. Liang, M. Zhao and Y. Liu, “Optimal bandwidth sharing in ringwarm
multi-party P2P video conferencing systems,” under subiais

e M. Zhao and Y. Yang, “Packet scheduling with joint design ofMMD and
network coding,” under submission.

e M. Zhao and Y. Yang, “Bounded relay hop mobile data gathemngireless
sensor networks,” to appearliBEE Transactions on Computei2010.

e M. Zhao, M. Ma and Y. Yang, “Efficient data gathering with mielollectors
and space-division multiple access technique in wireless& networks,” to
appear iNEEE Transactions on Computer2010.

e Z. Zhang, Y. Yang and M. Zhao, “Enhancing downlink performaim wire-
less networks by simultaneous multiple packet transmmssiBEE Transac-
tions on Computerssol. 58, no. 5, pp. 706-718, 2009.

e M. Zhao, M. Ma and Y. Yang, "Applying opportunistic mediumcass and
multiuser MIMO techniques in multi-channel multi-radio WN&,” ACM/Springer

XVi



Mobile Networks and Applications (MONENol. 14, no. 4, pp. 486-507,
August 2009.

e M. Zhao, Y. Yang, H. Zhu, W. Shao and V. O. K. Li, "Priority-he op-
portunistic medium access control in IEEE 802.11 WLANsfernational
Journal of Sensor Networks (IJSNpl. 3, no. 2, pp. 84-94, 2008.

Conference Publications

e M. Zhao, J. Li and Y. Yang, “Joint mobile energy replenishinand data
gathering in wireless rechargeable sensor networks,” uswdamission.

e M. Zhao and Y. Yang, “A framework for mobile data gatheringtwioad
balanced clustering and MIMO uploading,” acceptedTine 30th IEEE In-
ternational Conference on Computer Communications (INFOCONpyil
2011.

e M. Zhao and Y. Yang, “An optimization based distributed aitjon for mo-
bile data gathering in wireless sensor network$g 27th IEEE International
Conference on Computer Communications (INFOCOM) mini-conéeyémarch
2010.

e M. Zhao, D. Gong and Y. Yang, “A cost minimization algorithor imobile
data gathering in wireless sensor network$ye 7th IEEE International Con-
ference on Mobile Ad-hoc and Sensor Systems (IEEE MASS) 2010.

e D. Gong, M. Zhao and Y. Yang, “A multi-channel cooperativeNd MAC
protocol for wireless sensor network3he 7th IEEE International Confer-
ence on Mobile Ad-hoc and Sensor Systems (IEEE MA®S) 2010.

e M. Zhao and Y. Yang, “Data gathering in wireless sensor ngta/aith mul-
tiple mobile collectors and SDMA techniqud EEE Wireless Communica-
tions and Networking Conference (IEEE WCN&pril 2010.

e D. Gong, M. Zhao and Y. Yang, “Joint channel assignment aadeslivision
multiple access scheduling in wireless mesh netwotkEEE Wireless Com-
munications and Networking Conference (IEEE WCNQyil 2010.

Xvii



M. Zhao and Y. Yang, “Packet scheduling with joint design of\MD and
network coding,”The Sixth IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (IEEE MA&R). 2009.

M. Zhao and Y. Yang, “Bounded relay hop mobile data gathenngireless
sensor networks,The Sixth IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (IEEE MAER}X. 2009.

M. Zhao, M. Ma and Y. Yang, “Mobile data gathering with spatesion
multiple access in wireless sensor networkdje 27th IEEE International
Conference on Computer Communications (INFOCOMpril 2008.

M. Zhao, M. Ma and Y. Yang, “Mobile data gathering with muer MIMO
technique in wireless sensor network&EEE Global Communications Con-
ference (IEEE GLOBECOMNov. 2007.

M. Zhao, M. Ma and Y. Yang, “Applying opportunistic mediumcass and
multiuser MIMO techniques in multi-channel multi-radio WN&,” The 4th
IEEE International Conference on Broadband Communicatidfetworks,
and Systems (IEEE BroadNetSept. 2007.

M. Zhao, M. Ma and Y. Yang, “Opportunistic medium access canin
MIMO wireless mesh networksThe 20th International Tele-traffic Congress
(ITC-20), Ottawa, Canada, June 2007.

M. Zhao and Y. Yang, “A joint design of MIMO-OFDM transceivand
power-saving MAC WLANS,TEEE Wireless Communications and Network-
ing Conference (IEEE WCN(CHong Kong, March 2007.

M. Zhao, Z. Zhang and Y. Yang, “Medium access diversity withlink-
downlink duality and transmit beamforming in multiple-anba wireless net-
works,”IEEE Global Communications Conference (IEEE GLOBEC(W&V.
2006.

M. Zhao, H. Zhu, W. Shao, V. O. K. Li and Y. Yang, “Contentionsed
prioritized opportunistic medium access control in wissl€ ANs,” IEEE In-
ternational Conference on Communications (IC@)ne 2006.

XVili



e H. Zhu, V. O. K. Li, Z. Ma and M. Zhao, “Statistical connectiadmission
control framework based on achievable capacity estimAti®EE Interna-
tional Conference on Communications (ICQJne 2006.

e M. Zhao, H. Zhu, V. O. K. Liand Z. Ma, “A stability-based linkate updating
mechanism for QoS routinglEEE International Conference on Communi-
cations (ICC) May 2005.

XiX



Chapter 1
Introduction

This chapter explains the motivation, design goals, chgle, and contributions of
the dissertation.

1.1 Motivation

Wireless sensor networks (WSNs), composed of densely-gieghldow-cost, low-
power, multifunctional sensors, have emerged as a newnrdon-gathering par-
adigm for taking spatial and temporal measurements of angge¢ of parameters,
such as temperature, sound, atmospheric pressure, hyroidiollutants of a field
[1]. They can be used in a wide range of applications, includhdgstrial process
control, machine health monitoring, environment and falstirveillance, health-
care applications, home automation, and traffic conjp[ 8].

In a sensor network, sensors are usually randomly deployededield without
a pre-configured infrastructure. Each sensor has the ddjgsbof monitoring the
environment, collecting data and routing data back to a siata[l]. Since sen-
sors are typically battery-powered and has limited capaeitergy consumption
becomes a primary concern in a WSN, as it is crucial for the oitwo function-
ally operate for an expected period of time. Typically, mesergy of a sensor
is consumed on two major tasks: sensing the field and uplgathia to the data
sink. Energy consumption on sensing is relatively stabieesit only depends on
the sampling rate. However, the situation of energy consiompn data uploading
is much more complicated than that of sensing. Data uplgadusts significant



amount of energy at sensors for wireless transmissionshtenertergy expenditure

is typically non-uniform among sensors. It strongly depead the network topol-
ogy and the location of the destined data sink. As a resdtetiergy of the sensors
near the sink is depleted much sooner than others since skasers need to re-
lay much more packets from the sensors far away from the Sihlerefore, how

to efficiently aggregate the information from scatteredsses, generally referred
to asdata gatheringis an important and challenging issue in WSNs as it largely
determines network lifetime.

Due to tremendous practical interests, in recent yearshimesearch effort has
been devoted to efficient data gathering in WSNs and many sshbkave been pro-
posed. In early research, efficient relay routi@i[[14] or hierarchical infrastruc-
ture [L7]-[20] are employed to improve the routing efficiency. For theyetauting,
data packets are forwarded via multi-hop relays among senSome other factors,
such as load balance, schedule pattern and data redundaagyintly considered
with the routing scheme. The successful relay routing regusonnectivity among
sensors. And the common feature of these approaches ib&sgmsors on the crit-
ical pathes would deplete their energy faster than othdmgshwead to the limited
network lifetime. A WSN can also be organized into a hierarghinfrastructure
instead of flat topology, in which sensors are grouped inisteks and the cluster
heads take the responsibility of forwarding data to an detsiata sink 17]-[20].

It was shown that the hierarchical infrastructure is an ieffitway to handle the
scaling issue in WSNs. However, in such hierarchical netgjocluster heads in-
evitably consume more energy than other sensors. To aveoidsipots”, sensors
can become cluster heads rotationally][ Since every sensor may possibly be-
come a cluster head, each of them has to be “powerful” enaugardle incoming
and outgoing traffic, which increases the overall cost ofriigvork. Furthermore,
it may incur high overhead due to frequent information exggaamong sensors.
To overcome these problems in static networks, in more tegerk, mobile data
gathering R2]-[37] is introduced. In such schemes, a special type of mobilesod
(usually called mobile collectors) are used for facilitgtconnectivity among static
sensors. The typical scenario of mobile data gathering eatlelpicted as shown
in Fig. 1.1, where a mobile collector roams over the sensing field andesiolose
enough to the sensors for data collection. In this way, neotillector takes over
the burden of routing from sensors, which is particularlgiceble when sensors
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Figure 1.1: lllustration of mobile data gathering.

have limited energy and storage buffer. In general, thezdtaee advantages that
make mobility perfectly suitable to data gathering appiares in WSNs. First, it
alleviates the non-uniformity of energy consumption amsegsors since each sen-
sor sends data to the mobile collector via short-range camoation when it comes
close enough. Second, it works well not only in a connectéaarg, but also in a
disconnected network. The moving path of a mobile colleatds as virtual bridge
linking up the separated subnetworks, thus the networkregesand connectivity
would no longer be a serious problem in packet forwardingrdl'when the pos-
sible locations for the mobile collector to stay for dataledion are known, its
moving tour turns to be predictable, which provides an opputy to dynamically
find an optimal tour to actually achieve efficient data gatiger

Although existing mobile data gathering scheng 37] can greatly save the
energy at sensors, they typically result in an increased gathering latency. To
shorten the latency, most of the work mainly focuses on ntglabntrol to min-
imize the moving time and rarely takes the sensor behavidcs donsideration.
Moreover, little work can be found in the literature to prdpecharacterize and
model the performance of mobile data gathering. The impesbime system para-
meters on network performance is still unveiled at curreages. These observations
motivate us to propose novel scheme design and optimizatrategies to further
enhance the performance of mobile data gathering in WSNs.



1.2 Design Goals and Research Challenges

Compared with static data gathering via routing among sengwobile data gath-
ering has more service requirements and challenges as vdetoemnsider the
behaviors both of the mobile collector and the sensors, #saseoordinating the
communication between them.

We now introduce the systematic design goals of the mobiie giathering ap-
plications.

e Prolonged Network Lifetime: As mobile collectors effectively alleviate
the routing burden of sensors, it is extremely expected ¢dopg the net-
work lifetime as much as possible since sensor batteriesaiyp can not be
recharged or replaced after initial deployment. If the exgkable sensor net-
work available, besides extending network lifetime, itésdable to maintain
the perpetual operations of the network.

e Shortened Data Gathering Latency:The data gathering latency is referred
to as the time duration of a data gathering tour, which insulde mobile col-
lector departing from the static data sink, moving alongua,tsojourning at
specified locations to collect data, and finally returninghi data sink. Dif-
ferent data application may have different requirementertime sensitivity.
Generally speaking, it is expected to achieve short dataegag latency in
order to obtain and process the sensing data as fast aslpossib

e High Network Utility: Network utility is a properly defined function to
characterize the data gathering performance, which diesithe aggregated
“value” of the gathered data from different sensors in a dat#ering tour.
In practice, the “value” measure can be in terms of infororatntropy or
revenue, which provides the flexibility of modeling user lagadion needs, or
a level of “satisfaction” on a certain amount of data fromreaensor. Net-
work utility is a direct metric to evaluate the effectiveaes the mobile data
gathering. Clearly, higher network utility is always preést.

e Low Network Cost: Network cost is a properly defined function, which is
used to quantify the aggregated cost on gathering data feososs when the
mobile collector moves over different locations in a datdngeng tour. The



“cost” here physically implies the energy consumption ometary expense
on gathering a certain amount of data from a sensor at a plartilocation.
Network cost is a direct metric to evaluate the efficiencyhaf imobile data
gathering. It is expected to lower the network cost as mugboasible for
obtaining certain volume of data from the sensing field.

Given the unique characteristics, what we have to handlades, but not lim-
ited to, the following open technical challenges and issuése scheme design and
performance optimization for mobile data gathering in WSNSs.

e Limited Energy at Sensors Sensor batteries are generally with limited ca-
pacity, which can not be recharged or replaced after irdggloyment in the
conventional sensor networks. Even in the rechargeabkosaetworks, the
recharging rate is quite low and the renewable power sow@egot always
available for use. Therefore, how to save energy at sens@sstain func-
tional operations is one of the most critical issues in WSNSs.

e High Latency. As we have indicated, mobile data gathering commits itself
saving energy at sensors by making the mobile collector mtmse enough
to sensors for short-range communication. This would a#lgiprolong the
data gathering latency compared to pure routing among sen3tis pro-
longed time is due to two reasons, one is the low moving vslafimobile
collector, the other is because of the low efficiency of tnaission schedule
among the sensors. Therefore, how to lower the data gathktency and
balance the tradeoff between energy saving and latencyirgenesting and
open issue in mobile data gathering.

e Network Dynamics. As the mobile collector moves over different locations
in the sensing field, the network topology actually changes ftime to time.
Due to the mobility, each sensor has the options to use diffente and any
set of possible routes to reach the mobile collector at idiffelocations for
data uploading. Such versatility makes the settings of gathering strate-
gies much more complicated than that of static data gatipeHow to adjust
data rate, link schedule and routing path to achieve thesystide optimum
in terms of network utility or network cost is an interestiagd promising
research topic.



¢ Flexible Mobility and Multi-functionality of Mobile Collecto r. Since the
mobile collector has the freedom to move to different lawagiover the sens-
ing field. Different moving trajectory planning would makeegt impact on
the achievable data gathering performance. Moreover,pbssible for the
mobile collector to play multiple roles in the sensing fiekbr example, in
the rechargeable sensor networks, the mobile collectoatsanserve as an
energy transporter to deliver energy for the sensors whd tieerenewable
power supply. In this way, mobile energy replenish and neothélta gathering
can be executed simultaneously.

1.3 Contributions

In this dissertation, we would focus on the topic of mobiléadgathering in WSNs
and address several important issues in it. Our contribsti@n be summarized as
follows.

o Efficient Data Gathering with Mobile Collectors and Space-Divsion Mul-
tiple Access Technique in WSN$108-[110. We employ a mobile collec-
tor, which works like a mobile base station in the sensinglfeehd polls
each sensor for data collection while traversing theirdmaission range. We
also consider applying spatial-division multiple acceSBMA) technique
to data gathering by equipping the mobile collector with avdennas. By
employing SDMA, two distinct compatible sensors may susfidly make
concurrent data uploading to the mobile collector, whictsdhe data up-
loading time into half in the ideal situation. In this workeuind a tradeoff
between the shortest moving tour of the mobile collectortaedull utiliza-
tion of SDMA among sensors so as to minimize the total time ioxtuding
the moving time and data uploading time. Therefore, ourgiesan achieve
prolonged network time as well as shortened data gatheategdy.

e A Region Division and Tour Planning Algorithm for Mobile Data Gath-
ering with Multiple Mobile Collectors and SDMA Technique [111]. We
extend the joint design of mobility and SDMA technique to tase of em-
ploying multiple mobile collectors, in which the sensinddiés divided into
several non-overlapping regions, each having a mobilecwt. We focus



on minimizing the maximum time of a data gathering tour amdifigrent
regions over the sensing field. Our results show that ourqsegh algorithm
with two available mobile collectors can achieve at I€git time saving
with respect to the non-SMDAsingle mobile collector scheme.

Bounded Relay Hop Mobile Data Gathering in WSNg113[114]. In order
to explore the inherent tradeoff between the energy savidglata gathering
latency in mobile data gathering, we propose a mechanisneddmounded
relay hop mobile data gathering (BRH-MDG). In BRH-MDG, we inaorp
rate multi-hop relay into mobile data gathering, while tlieéay hop count
is constrained to a certain level to limit the energy constimnpat sensors.
Specifically, a subset of sensors will be selected as théenggtioints that
buffer the locally aggregated data and upload the data tontitgle collec-
tor when it arrives. In the meanwhile, when sensors area#ii with these
polling points, it is guaranteed that the local relayingof packet is bounded
within a given number of hops. We provide two efficient aljams to select
the polling points among the sensors. It is observed in auulsitions that
when the local relays are required to complete within twoshimp all sen-
sors, our proposed algorithms can result in at 188%t shorter tour length
on average compared to the single hop data gathering schéimehwertened
moving tour.

A Pricing-based Distributed Algorithm to Minimize Network C ost for
Mobile Data Gathering in WSNs[115][116. We study how to optimize the
performance of anchor-based range traversing data gaghscheme, where
a mobile collector roams over the sensing field and sojourseme loca-
tions, called anchor points, on its moving tour to directhfi@ct data from
each sensor in a single hop. We formulate the performanaiagation as a
cost minimization problem constrained by the channel cdépdlse minimum
amount of data gathered from each sensor, and the bounéb$ogdurn time
at all anchor points. This global problem can be decompasdtivo sub-
problems to be solved by each sensor and the mobile colleegpectively.
We show that such decomposition can be characterized asiagomech-
anism, in which each sensor independently adjusts its patyfoethe data
uploading opportunity to the mobile collector based on thedsw prices of



different anchor points.

Distributed Network Utility Maximization Algorithms for Mob ile Data
Gathering in WSNs [117][11§. We study the problem on how to achieve
the optimal performance of the anchor-based mobile dateegag, where
the mobile collector gathers data from nearby sensors viéi-hmp trans-
mission at each anchor point. We formalize the problem asar&tutility
maximization problem under the constraints of guarantegdark lifetime
and bounded data gathering latency. To achieve this obgeetie jointly ad-
dress the issues of data rate control, flow routing, and sojime allocation,
which critically affect the data gathering performance. e€fficiently solve
these issues, we correspondingly decompose the utilityrmzation prob-
lem into several subproblems and solve them in a distribotadner, which
facilitates the scalable implementation of the algorithigstensive numeri-
cal results demonstrate that the algorithms can achievedasergence with
the variables nearly reaching their optimal values aftdy @00 iterations.

Joint Mobile Energy Replenishment and Data Gathering in Wireless
Rechargeable Sensor Network$§119. In this work, we extend our study
to wireless rechargeable sensor networks. In order to geastieady and high
recharging rates, and achieve efficient data gatheringlsimaously, we pro-
pose to utilize mobility for the joint design of energy repihment and data
gathering. In particular, a multi-functional mobile ewtils employed, which
serves not only as a data collector that roams over the figjdtteer data via
short-range communication but also as an energy transpbatecharges sta-
tic sensors on its migration tour via wireless energy trassions p5|[ 66].
Our proposed design can guarantee the perpetual operafiting network
and achieve high-utility data gatherings.

We conclude the tasks, design goals and contributions sfdisisertation as
shown in Tablel.1. Our work combines algorithm design, mathematical modelin
performance optimization, analysis and simulation teghes to conduct compre-
hensive studies on the above issues. The proposed reseérchwe a significant
impact on fundamental design principles and infrastr@sudor the development
of future sensor networks. The outcome of these work can pkcaple to a wide



Tasks

Design Goals

Contributions

Mobile Data Gathering in Wireless Sensor Networks

Scheme Design

Performance Optimization

Design + Optimization

eagyperng

Task | I Task Il Task Il Task IV Task V Task VI
Mobile data Region Bounded relay Pricing-based network - Joint design of mobile
) . L . S Network utility .
gathering with division and hop mobile cost minimization for maximization for MDG energy replenishment
SDMA tour plannin MDG and data gatherin

Table 1.1: The tasks, design goals and contributions offissertation.




spectrum of applications, including environmental mamitg, field surveillance,
human-unattended exploration, industry control, andratbenmercial areas.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Chapmoposes three ef-
ficient algorithms with the joint design of mobility and SDMAchnique for mo-
bile data gathering. Chapt8rextends the joint design of mobility and SDMA to
the case of multiple mobile collectors. A region divisiordaour planning algo-
rithm is presented, in which data gathering time is balarem@dng different re-
gions. Chapted proposes bounded relay hop mobile data gathering scheme and
gives two efficient algorithms to implement the design. Caeptstudies the cost
minimization problem of mobile data gathering and corresjpagly proposes a
pricing-based distributed algorithm to achieve the mimmmetwork cost. Chapter
6 sets up a flow-level model to characterize the performanoeatiile data gather-
ing and presents distributed algorithms to achieve optmaédork utility. Chapter
7 proposes a joint design of mobile energy replenishment awlllendata gather-
ing in wireless rechargeable sensor networks, which ngtjpmvides system-wide
optimal data gathering performance but also achieves pebeperations of the
network. Finally, ChapteB concludes the dissertation.

The mobile collectors used for data gathering could be reablbots or vehicles
equipped with powerful transceivers and batteries. Fovenience of presentation,
we simply call thenSenCarsn the rest of this dissertation.
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Chapter 2

Efficient Mobile Data Gathering with
Space-Division Multiple Access
Technigue in WSNs

This chapter presents a joint design of mobility and spalinkion multiple access
(SDMA) technique for mobile data gathering in WSNs. The nigbive refer to
here is to deploy a mobile collector, i.e., a SenCar, in a sgrigeld, which works
like a mobile base station and collects data from sensorsingle hop transmis-
sions so as to achieve uniform energy consumption. We alssider applying
SDMA technique to data gathering by equipping the SenCar mithiple anten-
nas such that distinct compatible sensors may successhalke concurrent data
uploading to the SenCar. To investigate the utility of th@jalesign of controlled
mobility and SDMA technique, we formulate this design intdateger linear prob-
lem (ILP), namedmobile data gathering with SDMAr MDG-SDMAfor short,
which aims to minimize the total data gathering time inchgdihe moving time of
the SenCar and the data uploading time of sensors. Corresby)dive propose
three efficient algorithms to provide practically good simns to the problem. Ex-
tensive simulations demonstrate that our proposed atgositcan result in at least
35% savings on the data gathering time compared to the non-SDBXithm with
minimum additional overhead.

The rest of this chapter is organized as follows. Sec8dnsummarizes the
existing work in this area. Sectiad&?2 discusses the basic principles of SDMA

11



technique. SectioB.3provides the formulation of MDG-SDMA problem and Sec-
tion 2.4 presents three algorithms to solve it. Secahgives extensive simulation
results that reveal the impact of the joint design of cotgrbmobility and SDMA
technique on network performance. Finally, Seco®iconcludes the chapter.

2.1 Introduction and Related Work

Due to tremendous practical interests, in recent yearshmasearch effort has been
devoted to mobile data gathering in WSNs and some schemes$baweproposed
[22]-[37]. In such schemes, one or multiple mobile collectors am@¢hiced to take
over the routing burden from static sensors. Shah, e2d] eikploited a type of mo-
bile collectors, called data mules, with random mobilitysparse sensor networks.
Data mules pick up data from nearby sensors, buffer the detaheen drop them
off to a wired access point. This scheme substantially resltiee amount of energy
consumption at sensors, but its random moving trajectadiffisult to manage and
packet delay cannot be controlled. B4 and [25], public transportation vehicles
were adopted as mobile collectors. Rf], Jea, et al. further proposed a scheme
in which data mules move along parallel straight lines ari@codata from nearby
sensors with multi-hop transmissions. This scheme workisnveniformly distrib-
uted sensor networks. However, it may not be necessary sipp@$or data mules
to move only along straight lines. To obtain more flexibleadg@thering tours for
mobile collectors, Ma and Yan@7] proposed a moving path planning algorithm
by a divide and conquer method, which recursively detersiihe turning point for
load balancing and organizes each part of the network intkaster. More recently,
they further proposed a single-hop data gathering sch@8jeif which a mobile
collector pauses at certain locations to gather data framas in the proximity
via single-hop transmissions. Zhao, et &9|[considered mobility control and de-
veloped algorithms to generate ferry routes that meetdrdéfimand and minimize
weighted packet delay. Somasundara, et3f]] proposed an algorithm for schedul-
ing mobile elements to ensure no data loss due to buffer overlkici, et al. B1]
gave an offline heuristic algorithm, which computes pedthjectories of mobile
elements based on the knowledge of data generation ratesdrseand their loca-
tions to avoid data loss at low mobile speeds. Luo and Hubagxstudied how
routing can be fine-tuned to leverage the trajectory of theilaaollector, in par-
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ticular, how to better exploit transmission capabilitidstee nodes located at the
periphery of the network. Nakayama, et &3] presented a data gathering scheme,
where sensors are clustered and the migration route of thdersink is found by
an approximate solution to Traveling Salesman Problem Y B&#®ng cluster cen-
ters. Nesamony, et al3fl] studied the minimum distance route problem by letting
the transmission range of the calibrating mobile sink alisgraversal touch all
sensors and defining the determination of the mobile routepasblem belonging
to the class of TSP. Basagni, et &5] provided a Mixed Integer Linear Program-
ming (MILP) analytical model whose solution determinessghrk trajectories that
maximize network lifetime, and proposed a distributed rstiarscheme, in which
the mobile element moves towards the area where nodes havégtiest residual
energy. Xing, et al. 36] proposed a rendezvous design to minimize the distance
in multi-hop routing paths for local data aggregation uniher constraint that the
tour length of the mobile collector is no more than a threghélinally, Dantu, et
al. provided a hardware and software design of a mobile robegtbed in 87] and
experimentally validated some data gathering applicatiommobile environments.

Although the aforementioned mobile data gathering scherargreatly save
energy at sensors, they typically result in significantlyréased data gathering la-
tency. To overcome this problem, most existing work mainigused on minimiz-
ing the moving length of the mobile collector and did not takasors’ data upload-
ing time into account. In practice, the data uploading tiroel@d be a significant
part of total data gathering time, especially in a denselglayed WSN where the
time cost on data uploading from sensors to mobile colleatould be comparable
to or even more than the moving time. These observations/atetus to design a
scheme that can optimize the total data gathering time dnaduboth the moving
time of the mobile collector and the data uploading time ofkses.

Besides mobility, we also adopt an advanced physical lay#nigue in wire-
less communications, SDMA technique, for data gatherin@M& belongs to
the category of multiuser multiple-input and multiplejout (MIMO) technology,
specifically with multiple receive antenna®7]. By equipping multiple antennas
and specific filters at the receiver, SDMA makes it possibtenfialtiple senders
to simultaneously transmit data to a receiver. SDMA wasioailly used in wire-
less local area networks (WLANS) and cellular networ%g][[49], and sometime
was also combined with orthogonal-frequency division mpilédking (OFDM) to
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improve the channel capacity and tackle the difficultiesrofted available band-
width. In our study, we have observed that SDMA matches wih the commu-
nication pattern in sensor networks since the prominentifeaof data gathering
traffic in a WSN is many-to-one, where data need to be convei@edcollector
from multiple sensors. To elaborate, if each SenCar is egdippth two antennas
and each sensor still has a single antenna, two compatitd@secan make concur-
rent data uploading to the SenCar by utilizing SDMA technigidnen the SenCar
arrives at their proximity. The SenCar will separate the mpldked signal upon
receiving and successfully decode the distinct inforrmatrom different sensors.
As a result, the data uploading time would be cut into halfhie ideal situation.
Since data uploading time is part of the total data gathermg, applying SDMA
technique to data gathering would lead to dramaticallyteimed latency.

In this work, we focus on the joint design of mobility and SDN&chnique for
mobile data gathering with the purpose of minimizing daténgang time. In par-
ticular, we deploy a SenCar with controlled mobility for a ghmoving tour that al-
leviates and balances the energy consumption among seasdrat the same time,
utilize SDMA technique to efficiently schedule data trarssions so as to shorten
the data uploading time. The main contributions of this week be summarized
as follows. (1) Consider the data uploading time, which wegelly ignored in ex-
isting work, as part of the total data gathering time, andyaSpMA technique to
shorten it, while most existing workg, 36] was only concerned with minimizing
the moving time of the SenCar. (2) Introduce a joint designaritlled mobility
and SDMA technique for data gathering, and characterizeMRG-SDMA prob-
lem, respectively. (3) Formulate the MDG-SDMA problem im0 integer linear
program (ILP) and prove its NP-hardness. Propose threeithgs to solve this
problem. (4) Carry out extensive simulations to validatedffieiency of proposed
algorithms. The results demonstrate that the proposeditigs can reduce the
data gathering time by at lea3%% in a densely-deployed sensor network com-
pared with the non-SDMA algorithm.

2.2 SDMA: Linear Decorrelator Strategy

In this section, we briefly explain the principles of SDMA bedque. In the litera-
ture [87], the use of multiple receive antennas in the uplink is ofigiiled SDMA. In
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Figure 2.1: SDMA with linear decorrelator strategy.

the application of mobile data gathering in WSNs, a SenCakeisdbeiver equipped
with multiple antennas and sensors acting as the sourcesmodé¢he senders, each
having a single antenna to upload sensing data to its assdcsenCar. We will
mainly consider the case when the SenCar is equipped withitemaas, because
itis not hard to mount two antennas on a SenCar, while it viidliy become difficult
and even infeasible to mount more antennas due to the comisirathe distances
between antennas to ensure independent fading.

There are some transceiver architectures that can be usldMA strategies.
For example, each sensor’s signal can be demodulated by adinear decorre-
lator or a minimum mean square error (MMSE) receiver at theCae B7]. Lin-
ear decorrelator, known as interference nulling or zeroifg receiver with low-
complexity detection, is the linear filter that maximizes thutput signal-to-noise
ratio (SNR) subject to the constraint that the filter nulls th interference from
all other data streams. The MMSE receiver is the optimal comfse between
maximizing the signal strength from the sensor of interest suppressing the in-
terference from other sensors. For the simplicity of a Sen@awill use the linear
decorrelator as the SDMA strategy in our scheme.

To use the linear decorrelator, the SenCar makes the dateeédeom one
sensor appear as zero at the received data from other sehb@ s possible when
the SenCar applies different filters for each sensor on thevedt signals such that
the signals will add up constructively or destructively asided. To guarantee that
the decorrelator operation is successful, we need to Imeinumber of simultane-
ous data streams to no more than the number of receive asteimather words,
since the SenCar is equipped with two receive antennas, dttmosensors can
simultaneously send data to a SenCar at a time. Eigshows the transceiver ar-
chitecture of SDMA with the linear decorrelator. For sinefily, we will useh; to
denoteh;y, his]*, which represents the complex channel coefficient vectiovden
sensor and the two receive antennas of the SenGaandh, are the two columns
of the channel coefficient matrild. Suppose sensarwants to upload data; and
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sensor wants to upload data, to the SenCar. The received vector at the SenCar
can be written as
y = hyz + hoxy + n, (2.1)

wheren isi.i.d CN (0, 0°1,) channel noise. We can see from E2.]j that each data
stream faces an extra source of interference from the otitarsiream. A method
that can be used to remove this inter-stream interferemmee &n interested sensor

is to project the received signglonto the subspace orthogonal to the one spanned
by the other channel vector. That is, we choaseandu, as the filter vectors for
sensor and sensog, respectively, which satisfiagh, = 0 anduih; = 0. Hence,

the received signal can be decoded as

{ T =ujy = ujhyjz; +ujin 2.2)

To = ujy = ujhoxs + uin.

After processed this way, the inter-stream interferendnigucan be achieved, i.e.,
x1 andz, are separated from each othey.can be any vector that lies iR which
is the space orthogonal to,, however, to maximize the received signal strength,
u; should lie in the same direction as the projectiorhgfonto ;. u, should be
similarly chosen.u; andu, can be unit vectors as follows since increasing their
length will not increase the SNR.

u; = m (A3, —h3

u; = \/W [h12, =R,
From Eq. 2.2), we can see that the signal partigfandz, areujh;x; andujhsxs,
respectively. Sincarth;|* < ||h;||? and|uzh,|? < ||h,||?, the projection operation
always reduces the length bf unlessh; is already orthogonal to the channel vec-
tor of the other data stream. This is the overhead for nulhagthe interference.
Hence, the effective channel for would be in deep fading whenever the projection
of h; ontou, is small. A similar situation is also applicableg. Thus, for given
transmission power of each sensor, not any two sensors caesgiully transmit
data to the SenCar simultaneously. To ensure the SenCar ceessfidly decode

]T

S (2.3)
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the received signal, the following criteria should be Jesiis

(2.4)

Prl = Pt|u’{h1|2 Z 50, SNRl = Pt|ll>fh1|2/0'2 Z (51
Pr, = Pt|u§h2\2 > 50, SNR, = Pt]u§h2\2/02 > (51,

where Py, Pr,, SNR, and SNR are the received power and SNR of the data from
two sensors, respectively; denotes the transmission power of each sensory@nd
is the receive sensitivity whilé; is the SNR threshold for the SenCar to correctly
decode the received data. Any two sensors that satisfy théria can success-
fully make concurrent data uploading to a SenCar. Such twsmssrare said to be
compatible

We have explained how SDMA with the linear decorrelator vgorkhen ap-
plied to mobile data gathering in WSNs, SDMA has the followbenefits. First,
since SDMA technique enables the concurrent data uplodding any two com-
patible sensors to the SenCar, the data uploading time waukigmificantly re-
duced. Second, it is commercially appealing that no additibardware is needed
at sensors for performing SDMA. All intelligent operatidake place at the SenCar
and sensors will simply act as if the SDMA technique is not llygd. The Sen-
Car, on the other hand, will need more hardware, such as fittepsocess received
data. This fits into WSNs quite well because we want the senadrish are the
senders in SDMA, to be as simple as possible, and on the cdhnel; ft is feasible to
equip the SenCar with more complex and powerful transceivdrese advantages
motivate us to find an optimal solution to harvest the gainDM2\ in the mobile
data gathering, which is just the task of this work.

2.3 Design Overview and MDG-SDMA Problem For-
mulation

2.3.1 Design Overview

In this subsection, we outline the joint design of mobilitydaSSDMA technique.
We assume that the SenCar is equipped with two antennas whilg €ensor has a
single antenna and is statically scattered over the fieldoBefelving into details,
for a clear presentation, we define some terms that will bd unsne following and
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illustrate the joint design as shown in Figj2

While a SenCar is moving through the sensing field, it will stopeatain po-
sitions to poll nearby sensors. We define the positions HesenCar can stop for
polling asanchor points When the SenCar moves to a anchor point, it polls nearby
sensors with the same transmission power as sensors, si@etisors that receive
the polling messages can upload data to the SenCar withirgke $iop. Note that
since the SenCar always coordinates nearby sensors anctsol&ta locally, there
is no need for global synchronization. The disk-shaped eeatered at a anchor
point with the radius equal to the sensor transmission randefined as theover-
age areaof a anchor point. All sensors in the coverage area of a armbiat form
the neighbor sebf this anchor point. For generality, we do not make any agsum
tion on the distribution of sensors or the location-awarneatdity of nodes. The
SenCar obtains the neighbor set information of all ancharntpdiy visiting them at
the setup phase of the network. Any two sensors in the sargélvai set are con-
sidered to be compatible as defined in Secfighif they satisfy the criteria in Eq.
(2.4). Since each sensor needs to be polled only once during @dttaring tour,
it is associatedvith only one anchor point even though it may be located withi
the coverage areas of multiple anchor points. In other wahgsassociated sensors
of a anchor point are not necessarily to be all sensors ireitghbbor set. Different
association patterns correspond to different compadiihiélationship among sen-
sors because the channel state varies from the associatitenns. If two sensors
are compatible when associated with the same anchor pogytare qualified to be
acompatible pairto be scheduled to upload data simultaneously when the SenCar
arrives. A SenCar does not need to visit every anchor poirtarfield. However,
the anchor points on the tour of the SenCar should cover albssin the field. We
call these anchor pointelected anchor pointsThe SenCar arriving at a selected
anchor point collects data from all associated sensorstardroves straightly to
the next selected anchor point on the tour. Thus, the moengdf the SenCar con-
sists of a number of selected anchor points and the stramghgégments connecting
them. LetP’={py, p2, ..., p:} denote a set of selected anchor points &ftbe the
static data sink. Then, a possible moving tour of the SenGabeaepresented by
DS — p1 — ps — --+ — p, — DS. Thus, the problem of finding an optimal
solution for a data gathering tour can be considered adyaotving the following
tightly coupled sub-problems: finding compatible pairs ageensors, determin-
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Figure 2.2: lllustration of the joint design of mobility ar@DMA technique for
mobile data gathering in WSNSs.

ing sensor association pattern, and finding locations efcsedl anchor points and
the order for the SenCar to visit them.

To apply SDMA technique to WSNs and enjoy the benefit it wilhigriwe have
to solve a series of challenging problems. First, the SenGat be able to deter-
mine whether two sensors are compatible. If the possibkilmas of anchor points
are given, the SenCar can receive probe signals from sensarkynto detect the
channel vectors, then determine the compatibility amomegstnsors in the neigh-
borhood of each location. This information can be measutdteainitial setup
phase of the network and updated periodically. Second, ltectalata as fast as
possible, the SenCar should find the maximum number of cobipatairs among
sensors. This can be formalized as a matching problem in gaitility graph,
where each vertex represents a sensor, and two verticegjaceat to each other
if two sensors are compatible. For example, the graph in Biga) shows the
compatibility relationship of six sensors around a anctamn{y where the anchor
point is not shown in the figure. A group of compatible pairarespond to a set of
vertex-disjoint edges in the graph, which is defined as almajan graph theory
[90]. The largest group of compatible pairs corresponds to ammax matching
in the compatibility graph. Fig.2.3(b) gives three compatible pairs among the
sensors, represented by bold edges as a maximum matching aotresponding
compatibility graph. Maximum matching of a graph can be fbbg algorithms in
polynomial time. For example, the efficient implementatdthe Edmonds’ Blos-
som Algorithm take€)(N?3) time, whereN is the number of vertices in the graph
[90, 91, 92].

Note that since the SenCar is mobile, we actually have theldreeto choose
the anchor points, where the SenCar will pause for data gatheihe channel
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(a) Compatibility graph with 6 sensors. (b) A maximum matching.

Figure 2.3: A maximum matching in the compatibility graph.

a C e
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o > Path 2
b ‘V / \ f b
Anchor point 1 d Anchor point 2
(a) Path 1. (b) Path 2.

Figure 2.4: Two possible moving paths of the SenCar.

vectors could vary significantly when the pausing locatibthe SenCar changes.
Thus, intuitively, it is better to let the SenCar visit locats where more sensors
are compatible, such that the data can be collected in shornte. Fig. 2.4 shows
two possible moving paths of the SenCar for the example inZR).Path 1 in Fig.
2.4(a) is a straight line, therefore is the shortest path. Thepadibility relationship
of the six sensors is also shown in Fig.4(a) if the SenCar visits anchor poiint
traveling along this path. We can see that at most two coilpaigirs can be found
among the sensors (i.e., the size of the maximum matchingn@ihe six vertices
in the corresponding compatibility graphds In total, 4 time slots are needed for
every sensor to upload a packet. However, if the SenCar aisdather anchor point
along path2 as shown in Fig.2.4(b), the six sensors have different compatibility
relationship. In this case, there can be found three coblpgiairs and it requires
only 3 time slots for data uploading. Thus, to complete data gathexs fast as
possible, it may be better to take p&tthough it is not the shortest path.

We can see that after mobility and SDMA technique are intcedythe problem
of finding a good data gathering tour, which is referred toles MDG-SDMA
problem, becomes more complex. The main benefit of SDMA isffecively
shorten the data uploading time of sensors. However, asonexdtearlier, to better
enjoy this benefit, the SenCar may have to visit some specdatitns where more
sensors are compatible, which may adversely prolong thengdour. Since our
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Table 2.1: Notations used in formulation of MDG-SDMA Prafle
Indices:

S§=1{1,2,...,Ns} Asetofsensors.
P={1,2,...,N,} Asetofanchor points.

Constants:
fni=1{0,1} Location indicator. If sensat is in
VneS,VieP coverage area of anchor point
fni =1, otherwise f,, ; = 0.
cmni ={0,1} Indicator of compatibility relationship.

VYm,n € S,Vi € P If sensorsn andn are compatible
when they are both in coverage area of
anchor point, ¢,, »; = 1, otherwise,

Cmn,i = 0.
dij >0 Length of araa; 5, i.e., distance between
Vi,j € P anchor point and anchor poinj.
qg>0 Size of the sensing data of each sensor
vg >0 Effective data uploading rate of a sensor.
U >0 Moving velocity of the SenCar.

Variables:

I; ={0,1} Indicator of selected anchor point. If
Vie P anchor point is selected inté®’,

I, = 1, otherwise,[; = 0.
T, =1{0,1} Indicator of sensor association. If sensar
VneS,VieP n is associated with anchor poiint

Zn,; = 1, otherwisegx,, ; = 0.
Umni = {0,1} Indicator of compatible pair. If sensors

vYm,n € §,Vi € P m andn are selected as a compatible
pair when they are both associated with
anchor point, u, »; = 1, otherwise,

Um,ni = 0.
ei; =1{0,1} Indicator of selected line segment in
Vi,j € P moving tour. If moving tour contains
arca; j, e; j = 1, otherwiseg; ; = 0.
Yij >0 Flow from anchor point to anchor
Vi,j € P pointj on arca;;.
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objective is to have sensors turn on their radios for a slos,twe will focus on

minimizing the total data gathering time, which consistshaf moving time of the
SenCar and the data uploading time of sensors. Thus, théingspptimal solution

does not necessarily have the shortest moving tour or thenmayax number of

compatible pairs, instead, it is a tradeoff between thetesebmoving tour and the
full utilization of SDMA.

Note that to solve this problem optimally, we will need thengatibility rela-
tionship of sensors fagverylocation the SenCar can visit. However, this is impos-
sible in practice, because it is very hard to estimate thamélavectors of sensors
at all locations. Thus, we will only considerfiaite set of anchor points, at which
the compatibility relationship among sensors is known @hilgan be obtained by
the SenCar periodically). We denote such a set of anchorgpagR. The problem
will then be reduced to finding a subset®f denoted a$’, such that by visiting
anchor points ir?’ all data can be collected in minimum time. The anchor points
in P’ are called selected anchor points.

2.3.2 MDG-SDMA Problem Formulation

We are now in the position to formally formulate the MDG-SDMx#oblem in
WSNSs. Given a set of sensafs= {1,2,..., N} and a set of anchor poinf8 =
{1,2,...,N,}, find sensor association patterns and compatible paim;rdigte the
selected anchor points and the sequence to visit them, Batthe sensing data of
every sensor irf can be collected in minimum time. Without loss of generality
we assume that the position of anchor pding also the location of the static data
sink, which is the starting and ending points of a data gatgdour. For a clearer
presentation, the notations we use are summarized in Zable

] . Z;Dz;)di,jei,j

e . 1€P)€

Minimize o (\S| 3 > > E um,nﬂ) + o (2.5)
meSneSieP
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Subject to

T S fn,i : [l', Vn € S,VZ ep (26)
Y wpi=1Yn€S (2.7)
1EP
nesS
Lm,i + L .
Ui < <T) Cmnyi, Ym,n € §,Vi € P (2.9)
DY upni <L, VneS (2.10)
1€PmeS\{n}
> Y <1, VmeS (2.11)
i€PneS\{m}
Ui = Unmi, VM €S, ¥n € S, Vi € P (2.12)
Z €ij = Ij, VJ epP (213)
i€Pi#]
Y ey=1,VieP (2.14)
JEP.j#i
Yij < |P|-eij, Vi,j €P (2.15)
> ya= > L (2.16)
i€P\{1} i€P\{1}
ieP\{j} keP\{j}

Given notations in Tabl2.1, the MDG-SDMA problem in WSNs can be formu-
lated as an integer linear program labeled fr@)to (2.17). In the formulation,
objective function 2.5 minimizes the data gathering time, which consists of the
data uploading time of sensors and the moving time of the SenCanstraints
(2.6)-(2.8) ensure that a sensor should be associated with one andranbetected
anchor point within the coverage area the sensor is locatethat its sensing data
can be collected during the tour. Constraidi9 guarantees that any two sensors
that are qualified to be a compatible pair must be associaitdtiae same an-
chor point and be compatible in the coverage area of thisammtint. Constraints
(2.10-(2.12 enforce that each sensor belongs to at most one compaéiiblégon-
straints 2.13-(2.14) ensure the fact that each selected anchor point should have
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one arc pointing towards it and another arc pointing awamfito Constraint2.15
restricts that flow can take place only when the arc is on theimgotour of the
SenCar. Constrain2(16) specifies that the units of flow entering anchor pdint
are equal to the number of selected anchor points since apoht 1 is the ending
point of the tour. Constrain®(17) enforces that for each selected anchor point, the
units of outgoing flow are one unit more than that of the inaggrilow [93]. It
has been shown irB] that constraintsZ.195-(2.17) can exclude the solutions of
the moving tour with loops and can also prohibit the tour th@gs not include the
given starting and ending anchor points.

We have the following theorem concerning the NP-hardnetted?DG-SDMA
problem.

Theorem 1. The MDG-SDMA problem in WSNs is NP-hard.

Proof. The NP-hardness of MDG-SDMA problem can be shown by a polyalbm
time reduction from the well-knowmraveling Salesman Problem (TS#tpblem to

a special case of MDG-SDMA. Given a complete graphk- (V, E) as an instance
of TSP, we construct an instance of MDG-SDMA on gr&ph= (V' E'), which is
topologically identical ta&. The vertex set of?’ includes all anchor points and the
data sink, and each edgedti represents the distance between the two correspond-
ing anchor points. Then assume that no two sensors are cibepaith each other
and the sensors can only be covered by visiting all anchartgowhich can be
achieved by imposing some constraints on channel statesearsr transmission
power. This reduction is straightforward and can certabdydone in polynomial
time. Hence, in this case the SenCar has to visit all anchait$td collect data
from each sensor one by one. Since the data uploading timeanstant for a
given number of sensors, finding the optimal tour for datheyang is equivalent
to finding the shortest round trip that visits each anchonfponce. Thus, the TSP
in G will have a tour with minimum cost in distance if and only ietBame tour in
G' is the tour with the minimum length for MDG-SDMA. Hence, MD&BMA is
NP-hard. O
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2.4 Algorithms for MDG-SDMA Problem

We have shown that the MDG-SDMA problem is NP-hard. In thidise, we de-
velop three heuristic algorithms to give practically gootusons to the problem in
different situations, which are calladaximum compatible pair (MCP) algorithm,
minimum covering spanning tree (MCST) algorithemdrevenue-based (RB) al-
gorithm, respectively. We describe them one by one next. It is woothtpng out
that the solution exploration procedure for each algorithmy needs to be exe-
cuted when the channel state information is updated or fhadgy of the network
changes, thus does not need to be frequently repeated.

We model the sensing field as a gragh= (S,&, P, A). S andP are the sets
of sensors and anchor points, respectively, and each etem#e sets is a vertex
of the graph.£ is the set of edges among the verticesSinTwo vertices inS are
adjacent if the two sensors are compatible in the coveraggedra anchor point. In
order to keep the graph simple, there is at most one edge betave two vertices
in S even if the two sensors are compatible in the coverage afeasltiple anchor
points. A is the set of arcs between any two verticesPin The solution of the
MDG-SDMA problem finds a set of selected anchor poitswhich is a subset of
P, a matching ir€ that represents compatible pairs among sensors and a moving
tour of the SenCar with arcs id connecting the vertices iR’ in the graph such
that the data gathering can be done in minimum time. A passblution to the
MDG-SDMA problem is to break it into two subproblems. Thetfssbproblem is
to find a subset oP, P’, that meets certain requirements. This operation is drucia
to the solution since it determines the compatibility pattand the range of the
moving tour. The second subproblem is to find the shortestddrtip connecting
the selected anchor points #, which is exactly the well-known TSP problem.
As the second subproblem has been well studied before, Wéoalils on the first
subproblem.

2.4.1 Maximum Compatible Pair (MCP) Algorithm

Our first algorithm aims to find a set of selected anchor pdima$ can achieve
the maximum number of compatible pairs among sensors, shealed maximum
compatible pair (MCP) algorithm. Based on this objecti®éshould be chosen to
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satisfy the following three requirements.

e By visiting the selected anchor points/, every sensor can be covered, i.e.,
all sensors are in the neighbor sets of the selected ancinis oP’.

e Selected anchor points " will allow as many sensors to use SDMA tech-
nigue as possible, i.e., achieve the maximum number of cobip@airs.

e P’ has the minimum number of selected anchor points that gakiefabove
two requirements, which will likely result in a short movitayr.

Theorem 2. Finding the selected anchor points that satisfy the aboretlequire-
ment is NP-hard.

Proof. Assume that there is no compatible pair in the network. Theonly needs
to satisfy the first and third requirements. This restriatasge is simply to find the
minimum number of neighbor sets of the anchor pointB so that the selected sets
contain all sensors in the neighbor sets, which is a knowrcdiRplete problem,
Minimum Set CovefMSC) problem. Thus, it is clearly NP-hard. n

Fortunately, there are existing approximate algorithmsolge the MSC prob-
lem, which can be utilized in our algorithm. The basic ideshef MCP algorithm
is to find the minimum number of selected anchor points thatacdieve the max-
imum compatible pairs among sensors. It can be roughly eividto four steps.
Next, we explain how the MCP algorithm works by a simple examplFig. 2.5.
Assume that the network has a totall6fsensors ir§ (denoted a%,-S;, and plot-
ted as labeled dots ), andanchor points irfP (denoted ag”-P, and plotted as
small numbered circles). The disk-shaped area repredentoterage area of the
anchor point at the center. Specifically, thougghand S; are in the coverage areas
of both P, and P, they are compatible only i#;. On the contraryS; andSg are
compatible in the coverage areas of béthand P,. MCP finds the solution in fol-
lowing four steps. In the first step, we find the maximum contyg@fpairs among
all sensors, which is equivalent to finding a maximum maiglnthe correspond-
ing compatibility graph. Specifically, based on the coniphty relationship (not
shown in the figure) with all anchor points i, we find 5 compatible pairs as
shown by solid lines. In the second step, the neighbor setdf @nchor point
is updated based on the compatible pairs obtained in thesteptby deleting the
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Original Neighbor Set :

P1:{S1,52,53,54} P2:{S2,53,55,56}
P3:{S4,57,S8} P4 : {S5,56,58,59,510}
Updated Neighbor Set :

P1:{S1,52,53,54} P2:{S5S6}
P3:{S7,S8} P4 : {S5,56,59,510}
Selected Polling Point & Sensor Association :
P1:{S1,52,53,54} P3:{S7,S8}

P4 : {S5,56,59,510}

(a) The maximum matching is 5. (b) The neighbor set updating.

Figure 2.5: An example of the MCP algorithm.

sensors in following two case$l) Two sensors in a compatible pair are not com-
patible in the neighbor set of a anchor point. For examg@jeand S; are deleted
from the neighbor set of,, sinceS, andS; form a compatible pair but they are
incompatible in the coverage area®f. (2) Two sensors of a compatible pair are
in different neighbor sets. For examplg, is deleted from the neighbor set 6%
since its compatible peéf; is not in the neighbor set aP;. Similarly, Sy is also
deleted from the neighbor set 8f. The original neighbor sets and the updated sets
for the example are listed in Fi@.5b). The purpose of this updating procedure is
to group any two sensors in a compatible pair as a single efeimeach neighbor
set. In the third step, we can utilize the greedy algorithmMaimum Set Cover
problem to find minimum updated neighbor sets of the anchmto P that can
cover all sensors. In the example,, P; and P, are finally selected int®’. The
updated neighbor sets of the selected anchor points irtiplicticate the associa-
tion patten of sensors. In the last step, we can run an appat&ialgorithm for the
TSP problem to find the shortest moving tour of the SenCarimgsthe selected
anchor points ir?’. The details of the MCP algorithm are described in Tébg

The MCP algorithm results in maximum compatible pairs ama&mgsrs, which
leads to the minimum data uploading time. However, the ngptaur may not be
the shortest one, though the number of selected anchorspbiit the SenCar has
to visit has been minimized. Hence, it is suitable for themoeks with densely-
deployed sensors where the data uploading time is domifamta network with
a total of Ny sensors andV, anchor points, the maximum compatible pairs among
N, sensors can be found by the efficient implementation of thadfdis’ Blossom
Algorithm which takesD(N?) time, the updating on neighbor sets takgsV2N,)
time, the greedy algorithm finding the minimum neighbor #eds$ cover all sensors
takesO (N, N, min{N,, N,,}) time, and the approximate shortest tour on selected
anchor points can be found (h(NI?) time. Thus, the time complexity of the MCP
algorithm isO(N? + NZN, + N,N, min{N,, N,} + N?). In general, if we have
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N, > N, or N, =~ N,, the complexity of the algorithm becom@gN?).

2.4.2 Minimum Covering Spanning Tree (MCST) Algorithm

For a sparsely distributed sensor network, sensors arganiess likely to be
compatible with each other. Thus, under such circumstancese effort should be
focused on reducing the moving time of the SenCar. TiRishould be chosen to
satisfy the following requirements.

¢ By visiting the selected anchor points7, all sensors can be covered.

e Visiting the selected anchor points®i leads to the shortest moving tour of
the SenCar.

Clearly, it is NP-hard to find suct?’. Thus we propose a greedy algorithm
named minimum covering spanning tree (MCST) algorithm fofl lie idea of the
algorithm can be described as follows. At each stage of therihm, a anchor
point with the minimum average cost will be selected ifo The average cost
of an unselected anchor poif} is defined as the minimum distance between
and the elements iR’ divided by the number of uncovered sensors its neighbor set
contains. All sensors in the neighbor set of a selected armtiat are considered
covered. The algorithm terminates when all sensors areredve-ig. 2.6 gives
a simple example with0 sensors (denoted &5-5,o and plotted as labeled dots)
and4 anchor points (denoted @3- P, and plotted as small numbered circles). We
user to denote the average cost of a anchor point and/usedenote the distance
between two adjacent anchor points in horizontal and \@rtirections. We also
use superscripts to indicate the stages of the algorithrthdrfirst stage, since the
position of P; is also the position of the static data sink, the distancesngnthe
four anchor points and the static data sink @ye, d and+/2d, respectively, and
the number of uncovered sensors in each neighbor detljst and5, respectively.
Thus,7'(P) = 0, 7' (P,) = d/4, 7' (P3) = d/4, and7!'(P;) = v/2d/5. SinceP,
has the minimum average cost, it is selected fAt@and the sensors in its neighbor
set are considered covered. In the second stage, the nuaiharsovered sensors
in the neighbor sets of the unselected anchor pdt$; and P, have been reduced
to 2, 3 and5, respectively. The minimum distance between each unselecichor
point and the elements i is still d, d andv/2d, respectively. Thus;?(P,) = d/2,
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Table 2.2: Maximum compatible pair (MCP) algorithm.

Inputs:
A setS containing all sensors
A setP containing all anchor points
Neighbor family setF = {f;|i € P}, f; is the neighbor set
of anchor point
Distance matriXD = {d; ; }p|xp|, Whered; ; is the length of
arca; ; € A, which is the arc between anchor pointnd;
Compatibility relationship matri€ (P) = {cmn.i}|s|x|s|x|P|
Outputs:
A setP’ containing the selected anchor points and data sink
Compatible pairs among sensors
Moving tour of the SenCar
MCP Algorithm:
Construct the corresponding compatibility graph based (@);

Find maximum compatible pairs as finding a maximum matching

in the corresponding compatibility graph;
Record the compatible pairs in a set;
For all f; in 7 do
For all vin f; do
If vin M
If v's compatible pee¥ is not in f;
Removev from f;;
end if
If v's compatible peer is also inf; andv andv are
incompatible in the coverage area of anchor péint
Removev andv from f;;
end if
end if
end for
end for
Find the minimum set cover of by the greedy algorithm;

Add corresponding anchor point of selected neighbor setsAfito

Add the static data sink int@”’;
Find an approximate shortest tour on selected anchor poif5 i

=)
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(b) Stage 2. (c) Stage 3.

Figure 2.6: An example of the MCST algorithm.

72(Py) = d/3, and7?(P,) = v/2d/5. P, has the minimum average cost and is
selected. NowP’ = {DS, P, P,}. Again, the uncovered sensors in the neighbor
set of P, are considered covered. In the third stage, as there are cavened
sensors in the neighbor set Bf, we setr?(P,) = oo. Since the distance between
P; and Py is equal to that betweeR; and P, the minimum distance betweén
and the elements i®’ is still d. Also, there is only one uncovered sensor in the
neighbor set of?%;, thus,73(P;) = d. Finally, P; is selected inté®’ and all sensors
are covered.

After P’ is found, we can run an approximate algorithm for the TSP lprab
to find the shortest tour and use the Edmond Blossom algorithfimd the com-
patible pairs based on the compatibility pattern when ssnae associated with
the selected anchor points 7. Since?’ C P, the number of compatible pairs
obtained here is less than that obtained based on the assog@attern with all
anchor points irfP. The detailed MCST algorithm is given in Tali?e3. MCST
algorithm takes) (N, N, min{ N,, N, }) time to find a sub-family of neighbor sets
which covers all sensorQ(N]f) time to determine the approximate shortest tour
among selected anchor points, aBfV?) time to find compatible pairs. Thus, its
time complexity isO(N, N, min{N,, N, } + N} +N?). WhenN, > N, or N, = N,,
its time complexity become&(N?).

2.4.3 Revenue-Based (RB) Algorithm

In the MCP and MCST algorithms, compatible pairs and the motong are sep-
arately considered. Now, we propose an algorithm calledme®-based (RB) al-
gorithm, which chooses selected anchor points based on hicedhmetric of both
the number of compatible pairs and the length of moving tdime basic idea of
the RB algorithm is that a selected anchor point is chosendbasehe revenue
of each unselected anchor point and the algorithm termsnaken all sensors are
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Table 2.3: Minimum covering spanning tree (MCST) algorithm.

Inputs:
A setS containing all sensors
A setP containing all anchor points
Neighbor family setF = { f;|i € P}, f; is the neighbor set
of anchor point
Distance matrixD = {diyj}|p|><|7)‘, whered; ; is the length
of arca; j, which is the arc between anchor pointnd
Compatibility relationship matri€ (P) = {cmn.i }|s|x|s|x|P|
Outputs:
A setP’ containing the selected anchor points and data sink
Moving tour of the SenCar
Compatible pairs among sensors
MCST Algorithm:
Add the static data sink int®”’;
U — S; [IThe set/ is used to record uncovered sensors.
while Ud # ¢
Find cost(i), Vi € (P \ P’), wherecost(i) = min{d,;|j € P'};
Find the setf; (i € (P \ P’)) that minimizesr (i) = Co‘jf(lz)
Add the corresponding anchor poinnto P’;
Remove sensors ify from i
For each anchor point € (P \ P')
Remove sensors ify N f; from f;;
end For
end while
Find an approximate shortest tour on selected anchor poif§ i
Construct corresponding compatibility graph based (R') =
{em.n.i}|s|x|s|x P, Where the elements are obtained fr6(P);
Find compatible pairs as finding a maximum matching in the
corresponding compatibility graph.

-

covered. Specifically, the revenue of an unselected andot, gay,P;, is defined
asR(P;) = —aw(FP;) + O7(P;), wherea and § are positive coefficientsy(P;)
is the maximum number of compatible pairs among the uncadveeasors in the
neighbor set off;, andr(P;) is the average cost af; as defined in the MCST
algorithm. At each stage, the unselected anchor point Weghntinimum revenue
will be selected. If the selected anchor poinfisthe sensors i (P;) compatible
pairs will be marked as covered. Other isolated sensorseiméiighbor set of’;
are still considered uncovered, so that they could have riyppities to be paired
up in a compatible pair within the coverage areas of othehanpoints. When
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(b) Stage 2.

Figure 2.7: An example of the RB algorithm.

there is no more compatible pair that can be found for anylaots anchor point,
either all sensors are covered or the uncovered sensocstefio longer be paired
up as compatible pairs. In the former case, the algorithnplsinerminates since
all sensors are covered by existing selected anchor pdmtontrast, in the latter
case, if the uncovered sensors left are in the neighbor §etswe selected anchor
points, they can be randomly associated with one selectgtbampoint in the cur-
rent’?’ and are considered covered. Otherwise, follow the MCST dlgorto find
other anchor points to cover them until all sensors are eovellhe detailed RB
algorithm can be found in Tab5. Since the main complexity of the algorithm
is due to the work of finding the maximum compatible pairs agitre uncovered
sensors in the neighborhood of each unselected anchor gsititne complexity is
O(N2N?)whenN, > N, or O(N?) whenN, =~ N,,.

Table 2.4: Revenue of anchor points in the example of RB alguorit

L] Stagel \ Stage2 | Stage3 |
P1 —2« - -
P, —a+ (3d/4 —a+ (Bd/2 00
Py —a+ (Bd/4 —a+ (3d/3 —a+ (Bd/2
Py | —2a+ BvV2d/5 | —2a+ $v/2d/5 -

To better understand the RB algorithm, we give an examplegnZi7, where
the same network configuration as last two examples is uséé. compatibility
relationship among sensors is shown in solid lines. Note$handS; are only
compatible in the coverage area Bf while incompatible in the coverage area of
P,. S5 and Sg are compatible in the coverage area of béthand P;. The rev-
enue of the anchor points in each stage is summarized in Batleln the first
stage, the numbers of uncovered sensors in the neighbarfsetso P, are4, 4, 4
and5, respectively. The maximum number of compatible pairs agrtbe uncov-
ered sensors in each neighbor sevi$P) = 2, w'(P) = 1, w' () = 1, and
w!(P;) = 2. The superscripts still stand for the running stages of tgerhm.
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Since P, is also the position of the static data sink{P,) = 0 and accordingly,
R'(P)) = —2a. As P, has the minimum revenue in the first stage, it is selected
into P’. The sensors in its neighbor set that are also in the two ctibigpaairs
(i.e., 51-5,) are considered covered. No®, = {DS, P;}. In the second stage,
the number of uncovered sensors in each neighbor set ofaatsélanchor points
P, Py and P, has been reduced &) 3 and5, respectively. The maximum num-
ber of compatible pairs among the unselected sensors inugalztied neighbor set
changes ta?(P,) = 1, w?(P3) = 1 andw?(P,) = 2, accordingly. The minimum
distances betweeR,, P;, P, and the elements iR’ ared, d, andy/2d, respectively.
Among these three unselected anchor poifRtss chosen with the minimum rev-
enueR?*(P,) = —2a + $v/2d/5 and nowP’ = {DS, P;, P;}. The four sensors
in the two corresponding compatible paifs;, Sg, S9 and Sy, in its neighbor set
are considered coveredsy is left uncovered so that it still has the opportunity to
be paired up with other uncovered sensors. In the third stsigee there is no
uncovered sensor in the neighbor sef®fits revenue is set to infinite. As the dis-
tance betweet; and P, is equal to that betweeR; and P;, the minimum distance
between”; and the elements iR’ is still . Moreover, there are two uncovered sen-
sors left in its neighbor set, which also happen to form a cibfe pair. Hence,
w3(Ps) = 1 and73(P;) = d/2. Finally, P; is selected and all sensors are covered.
Now, the last step is to run an approximate algorithm for t&& problem to find
the shortest tour on the selected anchor poin8’in

2.5 Performance Evaluation

In this section, we study the performance of proposed dlyns with simulations.

2.5.1 Performance Comparison with Optimum Solution

In this subsection, we investigate the performance of the MGEPST and RB al-
gorithms by comparing their results with the optimum santbbtained by CPLEX
[94] based on our ILP formulation modeling in AMPL (A Mathemaii®rogram-
ming Language)95].

We first provide a numerical example to compare our propogdithms with
the optimum solution. The network configuration is as shawRig. 2.8, where a
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Figure 2.8: The solutions of different algorithms.

total of 30 sensors scattered ovet@n x 60m square area, areb anchor points
are located at the intersections of grids and each oiheisapart from its adjacent
neighbors in horizontal and vertical directions. We setrtmlius of the coverage
area of each anchor point 8)m, which is also the transmission range of each
sensor. Two sensors are connected by a link in Ei§a) if they are compatible in
the coverage area of a anchor point. Note that there is or@yliok between any
two compatible sensors even if they are compatible in therame areas of multiple
anchor points. We assume that the size of the sensing das@losensog = 1M,
the effective data uploading rate of each sengoe 80K bps, the moving velocity
of the SenCawv,, = 0.8m/sec anda/ = 5 in the RB algorithm. The solutions
of different algorithms are depicted in Fi@.8b)-(e), respectively. It is noticed
that the MCP algorithm results ith compatible pairs, which has the maximum
number of compatible pairs, thus achieves the minimum dpl@ading time of
188 seconds, while the MCST algorithm focuses on finding the skbtbur that
covers all sensors, thus results in the minimum moving tifnmé8d seconds. In
contrast, the RB algorithm pursues the tradeoff between tiremum compatible
pairs and the shortest moving tour of the SenCar, and it aghithe shortest total
data gathering time 0f26 seconds, which is onl$.9% longer than that of the
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optimum solution ind10 seconds.

Because of the NP-hardness of the MDG-SDMA problem, the bfatae
search method of the optimum solution becomes impossilla farge network.
We have managed to obtain optimum solutions for a few smaNeoris for com-
paring with the MCP, MCST and RB algorithms. In this set of sirtiatess, we
measure the length of the moving tour, the number of comiggtidirs and the data
gathering time of different algorithms when the number ofsegs/N, varies from
20 to 80. The sensors are randomly deployed over the sensing fieldlbatther pa-
rameter settings are the same as aforementioned. For eatftpe performance is
the average of the results obtaine@ i simulation experiments. The comparison
results are plotted in Fig2.9, from which we can draw some observations. First,
the length of the moving tours in all solutions first increaggth the number of sen-
sors and then tends to be stable with a slight increase Wwhdrecomes large. Itis
reasonable since more selected anchor points need to tezlwigien the number of
sensors initially increases and then these anchor poiatkiglly become sufficient
for the further increase of sensors. Second, the numbenabatbble pairs achieved
in different solutions follows the trend that MCIRB>Optimunt>MCST. Third, in
terms of data gathering time, the RB algorithm always reswitdose performance
to the optimum solution regardless of the number of sensbisalso noticed that
in a very sparsely deployed network (i.e., the cases withalsmamber of sensors),
the MCST algorithm outperforms the MCP algorithm and achiereeyg close per-
formance to the optimum solution. However, as the netwodobees denser with
more sensors, the MCP algorithm would adversely surpass th8Tvalgorithm
due to the saving on the data uploading time by the full atilan of SDMA for
concurrent data transmissions.

2.5.2 Performance Comparison with Other Data Gathering Schemes

We now evaluate the performance of the MCP, MCST and RB algositiyrcom-
paring their performance with other two non-SDMA data getigeschemes: (1)
Single hop data gathering (SHD&){): a mobile collector moves along a well-
planned moving tour, which is found in a similar way to the MC&8gorithm.
However, each sensor always uploads data to the mobilectmileith single-input
single-output (SISO) transmissions. (2) Data gatherint) welected sensor loca-
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Figure 2.9: Comparison between the optimum solution andriby@gsed algorithms
in small networks.

tions as the anchor points (SARBJ[36]: the locations of a subset of the sensors
serve as the anchor points, where the mobile collector wpailde to collect data
from the sensors nearby with SISO transmission pattern.aRair comparison,
the mobile collector would visit the minimum number of seniezations that can
cover all sensors and collect data from each sensor in aedogl. Assume thav,
sensors are randomly scattered iax D square area angb anchor points are
located at the intersections of grids with equal interv&lst each value ofV,, the
performance is the average of the results obtaindd(n simulation experiments.
Fig. 2.10plots the data gathering time and the number of compatibis ph-
tained by different schemes wheé# varies from5 to 200 under different settings
of effective data uploading ratg and the SenCar’s moving velocity,. D is set to
60m. It is shown that the MCP, MCST and RB algorithms always outparfthe
SHDG and SAP algorithms, and the improvement turns to be madent when
the network becomes denser with more sensors. This is rableobhecause the
denser distribution of the sensors makes the data uplogidieggradually become
dominant and provides more opportunities for the sensarslive SDMA for con-
current data uploading. For example, wh&h increases to abov&)0, the RB
algorithm can shorten data gathering time by at |18a%t compared to the SHDG
and SAP algorithms as shown in Fig.1Qa). We also notice that when the mov-
ing velocity is low, such as,, = 0.5m/sec as shown in Fig.2.1Qb), the MCST
algorithm performs better than the MCP algorithm with upl %% improvement
since the time cost on the moving tour becomes the main factbis scenario. On
the contrary, when the effective data uploading rate is kweh asv; = 50K bps
in Fig. 2.1Qc), the data uploading time overwhelms the moving timegesly
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Figure 2.10: Performance comparisons as the functionseohtimber of sensors
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with denser sensors. Thus, the MCP algorithm, which is mainlycerned with
the maximum compatible pairs, exhibits its advantagesighdise, achieving up to
22% improvement compared to the MCST algorithm. In both casesRiB algo-
rithm always performs best since it jointly considers theseameters in the metric
of choosing selected anchor points, thus exhibits a gresgitaaty to the variation
of these parameters.

Fig. 2.11plots the number of compatible pairs, the length of moving tf the
SenCar, and the data gathering time obtained by differer@nseb when the side
length of the distributed field varies from30m to 80m. NV, is set tab0. Itis shown
in Fig. 2.11(a) that the number of compatible pairs achieved in the MCPRi&d
algorithms decreases asincreases. This is intuitive since the compatible oppor-
tunities among sensors shrink as they become sparselipdtsti. In contrast, the
number of compatible pairs in the MCST algorithm fluctuatethwhe increase of
D. Thisis because thd? has a less immediate impact on the compatible pairs in the
MCST algorithm since the selection of anchor points tigh#pends on shortening
the moving tour of the SenCar rather than achieving the maxirnompatibility
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Figure 2.11: Performance comparisons as the functionsedditte lengthD of the
distributed field.

among sensors. Fi@.11(b) demonstrates that the moving tour is prolongedas
increases for all schemes under investigation. The MCST &taiGsresult in the
shortest moving tours while the SAP scheme ranks the seddr&reason for the
longer tour in SAP is because that the SenCar has to visit @et &cations of the
specified sensors while it only needs to traverse the traaséom range of the sen-
sors in MCST and SHDG. Finally, Fi@.11(c) indicates that the MCP, MCST and
RB algorithms can greatly shorten the data gathering timk wspect to SHDG
and SAP since they can cut down data uploading time by utgi8DMA. For ex-
ample, whenD = 50m, the RB algorithm outperforms SHDG and SAP b\
and36% on the data gathering time, respectively.

2.6 Conclusions

In this chapter, we introduce efficient mobile data gatlgesoheme with mobility
and SDMA technique. We formulate this problem into an ILRecBMDG-SDMA
problem, and prove its NP-hardness. Consequently, we pedpose algorithms,
named MCP, MCST, and RB algorithms, to provide practically gsolditions to
the problem. Extensive simulation results demonstratehiegoroposed algorithms
can achieve much shorter data gathering time than othera@dgchemes.

38



Table 2.5: Revenue-based (RB) algorithm.

Inputs:
A setS containing all sensors
A set’P containing all anchor points
Neighbor family setF = { f;|i € P}, f; is the neighbor set of
anchor point
Distance matrixD = {di7j}‘p|><|p|, whered; ; is the length of
arca; j € A, which is the arc between anchor pointsnd;
Compatibility relationship matri€ (P) = {cmn.i}|s|x|s|x|P|
Outputs:
A setP’ containing the selected anchor points and data sink
Compatible pairs among sensors
Moving tour of the SenCar
RB Algorithm:;
Add the static data sink int®”’;
U — S; [IThe set/ is used to record uncovered sensors.
while ()
For each anchor pointe (P \ P’)
Construct compatibility graph from(z) = {cinn,i}i 1% 7|
where the elements can be obtained filof®);
Find maximum compatible pairs among the sensors as
finding maximum matching in the compatibility graph;
Usew(:) to record the number of compatible pairs;
end For
If 3i e (P\P)thatw(i) # 0
For each anchor pointe (P \ P’)
Find cost(i) = min{d;;|j € P'};
Calculate the revenue of anchor pairty:
R(i) = —a-w(i) + 8- S
end for
Find the setf; (i € (P \ P’)) that minimizesR (i);
Add corresponding anchor poininto 7’;
Record corresponding(i) compatible pairs;
Remove the sensors (i) compatible pairs frony;
For each anchor point € P andj # i
Remove the sensors ini) compatible pairs frony;;
end for
elsebreak;
end if
end while
IfU # ¢
For each node € U
If v is in some neighbor sets of selected anchor poinf®'in
Randomly associatewith a selected anchor point P’
that can cover it, and updafe andi{, accordingly;
end If
end For
end if
If U # ¢
Follow MCST algorithm to #8d new selected anchor points t
cover the left sensors;
end If

hat

Find an approximate shortest tour on anchor poinf&’in




Chapter 3

A Region Division and Tour Planning
Algorithm for Mobile Data

Gathering with Multiple Mobile
Collectors and SDMA Technique

In this chapter, we extend the joint design of mobility and\&®technique to large-
scale sensor networks, where a certain number of multipl€&es are available for
use. In particular, the sensing field is divided into seveaal-overlapping regions,
each having a SenCar. Each SenCar gathers data from sendoesagion while
traversing their transmission ranges. We also considdoiixyg SDMA technique
by equipping each SenCar with two antennas. With the supp&DMA, two dis-
tinct compatible sensors in the same region can successfialkke concurrent data
uploading to their associated SenCar. We focus on the proti@mmimizing max-
imum data gathering time among different regions, whiclefenred to as mobile
data gathering problem with multiple mobile collectors &0MA, or MDG-MS
for short. Accordingly, we propose a region-division andrtplanning (RDTP)
algorithm, in which data gathering time is balanced amofffgr@int regions. Sim-
ulation results show that the RDTP algorithm with two avdga®enCars achieves
at leasth6% time saving compared to the non-SDM-Aingle SenCar scheme.
The rest of this chapter is organized as follows. Sec8dmoutlines the joint
design of mobility and SDMA technique when multiple SenCaesawailable. Sec-
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Figure 3.1: Two SenCars are deployed in the sensing field ahémgdata simulta-
neously in different regions.

tion 3.2 provides the definition and formulation of MDG-MS problemec8on
3.3 describes and illustrates the details of RDTP algorithm asstilution to the
MDG-MS problem. Sectio.4shows the performance results of RDTP algorithm.
Finally, Sectior3.5 concludes the chapter.

3.1 Design Overview

In the previous chapter, we have studied how to plan an efticigta gathering tour
when a single SenCar and SDMA technique are employed. Howevarlarge-
scale WSN, utilizing only a single SenCar may lead to a long dathering tour
and cause data buffer overflow at sensors. To effectivelywi#athese problems,
in this chapter, we consider deploying multiple SenCarswioak simultaneously in
a sensing field, each having the capability of exploiting S®tdchnique to collect
data from scattered sensors in its sub-area.

In the data gathering scheme with multiple SenCars and SDMAnique, the
sensing field is divided into several non-overlappiegions each having a SenCar.
We assume that each SenCar can forward the gathered data tf nmenearby
SenCars, such that all data can be forwarded to the SenCarithasit/the static
data sink. The data forwarding among the SenCars can be pexdiowhen they
complete data gathering in each region or even can be dore tiBy are moving
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on the paths except when the SenCars are communicating veithassociated
sensors. This ensures that such inter-SenCar forwardinggwot impact on data
gathering between sensors and their associated SenCaechmegion, a SenCar
takes the responsibility of collecting data from local sess similar to the case
of a single SenCar with SDMA technique that we have discussede previous
chapter. Fig.3.1gives an example, where two available SenCars are working on
non-overlapping regions and SenQawould visit the data sink on its tour. When
a SenCar arrives at a selected anchor point in its regions#iscéated sensors are
scheduled to communicate with the SenCar by utilizing SDMéhteque. Two
sensors in a compatible pair would upload data simultarigaua time slot, while
an isolated sensor (i.e., a sensor not in any compatibl¢ \wairld send data to the
SenCar separately.

3.2 MDG-MS Problem

We assume that sensors can turn to sleep mode when the dagairggin the re-
spective regions is completed. Thus, finding optimal dataagang strategies to
prolong entire network lifetime and shorten data gathelatgncy among differ-
ent regions is equivalent to minimizing the maximum datdgahg time among
different regions. This problem is referred to as data gatgevith multiple Sen-
Cars and SDMA technique (MDG-MS) problem. Besides pursuirgttadeoff
between the shortest moving tour and the full utilizatiof58&MA technique as in
the MDG-SDMA problem we have discussed in Cha@ehe focus of the MDG-
MS problem is to properly partition the selected anchor {soamd their associated
sensors so as to balance the data gathering time amongediffegions.

The MDG-MS problem can be formally described as follows. eéaia set of
sensorsS = {1,2,...,N,}, a set of anchor point® = {1,2,...,N,}, and a
set of SenCar& = {1,2,..., N}, find: (1) a set of subsets @, denoted by
P1, Py, ..., Py, Which represent the selected anchor points in differenore that
satisfyP{ Py Py, = PandPiUPyUJ---UPy, =P C P, (2) asetof
subsets of5, denoted by5;, Sy, . . ., Sy, , Which represent the sensors assigned in
different regions that satisty; (S (- -- Sy, = PandS;US,J---USy, =
S, (3) the compatible pairs among the sensor§iini = 1,2, --- , Ny, (4) the se-
quence by which each SenCar visits the selected anchor poits; = 1,2, --- | Ny,
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such that the maximum data gathering time among a tota).aegions can be min-
imized. The MDG-MS problem can be similarly formulated isto ILP problem
as the MDG-SDMA problem, since the latter is a special cagdeformer with
N, equal tol. It is known that the complexity of the ILP solution is gerira
high, which may not be suitable for large-scale sensor ndétsvoThus, next we
propose a heuristic region-division and tour-planningpetgm (RDTP) to solve
this problem.

3.3 Region-Division and Tour-Planning (RDTP) Al-
gorithm

The basic idea of RDTP algorithm is to first consider the sengeid as a whole,
find compatible pairs and selected anchor points that woesdlt in short data
gathering time as in the single SenCar case, then assign é&oh selected an-
chor points a weight and divide them into different regioasdx on their weight.
Specifically, the RDTP algorithm contains four steps: (1)dRime compatible pairs
among sensors that result in minimum data uploading timeD&ermine the se-
lected anchor points, which can achieve the compatibles pddtained in the first
step and meanwhile lead to a short moving tour; (3) Build theimum span-
ning tree among selected anchor points and assign a weigaaéh vertex on the
tree; (4) Decompose the minimum spanning tree into a setiifeses based on the
weight of each vertex and find the shortest moving tours atbagelected anchor
points on each subtree. We will describe the details in theviing with the help
of an example in Fig.3.2 In the example, there a®) sensors inS (plotted as
labeled dots) and@5 anchor points irP (plotted as small numbered circles). The
compatibility relationship among sensors is shown in Bga), where any two
compatible sensors are connected by a link. We have two Ssa@aitable. Thus,
the problem is to divide the sensing field into two regions pliath the moving tour
for each SenCar in order to balance their data gathering time.

Since the data uploading time of sensors may become dongoamgared to the
moving time of the SenCar as the number of sensors increaseseasonable to
consider the data uploading time as the main factor thattaftbe selection of the
anchor points. Thus, in the first and second steps of the RDJd?itim, we follow
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the principles of MCP algorithm for the single SenCar case terdene the com-
patible pairs and selected anchor points. That is, regesdi€the region division
pattern, we would first consider the sensing field as a whofatbthe maximum
compatible pairs among all sensors and the minimum numbseletted anchor
points that can achieve such maximum compatible pairs. isnvthy, the sensors
can achieve the full utilization of SDMA globally for the nimum data uploading
time and the SenCar would also move on a short tour by visitiagrtinimum num-
ber of selected anchor points. The details are similar teeio MCP algorithm in
Chapter2 and we will not repeat here. In the example, theredazempatible pairs
among the20 sensors to the maximum extent based on their compatibdiation-
ship, which are plotted as the bold lines in F&2(a). Without loss of generality,
we still assume that the data sink is located at the positi@nchor pointl. Fig.
3.2(b) indicates that anchor points4, 7, 8,12, 13, 15,16 and19 are chosen as the
selected anchor points, i.e., the element®inFig. 3.2(e)-(f) list the original and
updated neighbor sets of each anchor point and Eigg) shows the selected an-
chor points and their associated sensors, which are alsanshd=ig. 3.2(b) as the
sensors in the shadowed area around each selected anafior poi

After finding compatible pairs and selected anchor poimtghe third step of
the RDTP algorithm, we organize the selected anchor poitdsariree structure
and assign each of them a weight as the metric for partitigeciically, we find
the minimum spanning tréE(V, £') among the selected anchor pointsihrooted
at the static data sink, denoted by. For example, in Fig.3.2(c) the minimum
spanning tree among the nine selected anchor points is shevine bold lines
connecting them rooted at anchor paintetw(v) represent the weight for selected
anchor point. Next, we calculate the weight for each selected anchott jjoiR’
according to the following criteria.

ww)= > pllfl =M+ D A, veP (31
ueV (SUbT(w)) ccE(SUbT(w))

wherep and \ are constant coefficients, which represent the time for a®setio
upload its data and for a SenCar to move a unit distance, regggcsubTv)
denotes the subtree 6frooted atv, VV(-) and E(-) represent the vertices and edges
on the tree,f, denotes the set of associated sensors with selected armmhoup
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(a) Step 1: Find the maximum compatible (b) Step 2: Determine the selected anchor
pairs among sensors. points and association pattern of sensors.

Region 1 \'\ Region 2

@) @ 29
(c) Step 3: Find the minimum spanning tree (d) Step 4: Divide the selected anchor points
among the selected anchor points. into two parts based on their weights.
Original neighbor set of each anchor point:
1: {1} 6: {3,4} 11: {4,17,18} 16:{17,19,20}  21:{20}
2:{1,2,6} 7:{2,3,4,5,6} 12:{4,11,17,18} 17:{11,17,19,20} 22: {20}
3: {6} 8:{5,6,7,10} 13:{10,11,12}  18:{11,12} 23:{}
4:{89} 9:{7,8,10}  14:{10,12,14,15} 19:{12,14,15,16} 24: {16}
5:{8,9}  10:{9,13} 15: {13,14} 20: {14,16} 25: {16}

(e) Original neighbor set of each anchor point

Updated neighbor set of each anchor point: Selected anchor points and their
1: {1} 6:{} 11:{} 16: {19,20} 21:{} | |associated sensors: 1. 17 1gy
2:{1} 7:{2,3,45}  12:{17,18} 17:{} 22:{} 1: {1} 13:{10,11,12}
3:{} 8:{6,7} 13:{10,11,12}  18:{12} 23:{} 4:{8,9} 15: {13,14}
4:{8,9} 9:{} 14:{} 19: {15,16} 24:{} 7:{2,3,4,5} 16:{19,20 }
5{89)  10:{} 15:{13,14} 20: {} 25:{} 8:{6,7} 19: {15.16}
(f) Updated neighbor sets based on maximum compatible pairs. (9) Selected anchor points.

| @--@°® sensors (D -£5 : Anchor Points  (): Selected Anchor Points —>» : Moving Path @—@: Compatible @8 : Matched Compatible Pair

Figure 3.2: lllustration of the region-division and tolaspning (RDTP) algorithm.

45



M, denotes the compatible pairs among the sensors associdtestlgcted anchor
pointu, and L, is the length of edge. The first term ofw(v) represents the sum
of the data uploading time at the selected anchor points®subtree rooted at,
while the second term is the sum of the moving time along tigesdn the subtree.
Hence, the weight of verteximplicitly indicates the expected data gathering time
if a SenCar visits each of the selected anchor points on thieesubooted at it
and collects data from the associated sensors. Apparémlypot has the largest
weight compared to all other vertices ©h We consider it as the total weight &f
and denote it a8l’7. In the example, the weight for each selected anchor point is
labeled as shown in Fig.2(c), wherep and )\ are set td 2.5 and1.25, respectively
and the two adjacent anchor points abe: apart. Under these setting®- is equal

to 515.2, which is also the weight of the root @f (i.e., w(1)).

Now, the remaining problem is how to divide the selected angoints and
their associated sensors into different regions (for bffié SenCars), in order to
balance the data gathering time among these regions. lotinghfstep of the algo-
rithm, we focus on solving this problem. Suppose there actah of V. available
SenCars, which means that the selected anchor points argtrtii@®ned into/Vy,
parts. The basic idea is to decompose the minimum spanm@ed’tinto N, parts,
by iteratively finding a subtreebased on the weight of each vertex’Brand prun-
ing t from 7. To build a subtree in each iteration, first find the fartheaf vertexv
onT" with the minimum weight. Letn denote the number of remaining SenCars at
each iteration, thusp = Ny initially. If w(v) < Wr/m, find its parent vertex of,
denoted byPA(v) and letv = PA(v). Check its weight and repeat this up-tracing
process untitv(v) > Wr/m. Record this vertex and consider it as the root of the
subtreet. All vertices ont are removed fromT’, which means that the correspond-
ing selected anchor points @rwill be assigned to a region (or a SenCar). After
that, updatélr, m, andw(v) for each vertex on the updatédd and then repeat
the procedure to find another subtree. When there is only aiable SenCar left,
i.e.,m = 1, all remaining selected anchor points and their assocegadors are
simply assigned to this SenCar and the procedure terminbddsetter understand
it, let us take a look at the example in Bg(c). In the first iteration, anchor point
15, as the farthest leaf vertex dn has the minimum weight equal i@.5. Thus,

v is set tol5. Sincem = N, = 2 andWy = 515.2, w(15) < Wy /m = 257.6.
Next, check the weight of anchor poih®, which is the parent vertex of anchor
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Table 3.1: Procedure of dividing selected anchor pointslagid associated sensors
into IV, parts.

ProcedureDivision (T, N;)
For all v onT do
Calculatew(v) according to Eq.3.1);
end for
m < Ny;
While m > 1
Wr — w(ry);
v « the farthest leaf vertex dfi with minimumw(v);
While w(v) < Wr/m
v« PA(v);
end while
Build the subtree of 7" rooted at;
Add the vertices onto P, ;
Add the corresponding associated sensot$ 1p
Remove the subtreefrom T,
Updatew(v) for eachv on the remaining’;
m<+—m — 1;
end while
Assign the remaining selected anchor pointsoio P;;
Assign the corresponding associated senso;to
Find approximate shortest tours that visit selected angbmts in
P1, Py, ..., Py, respectively.

point15 onT. Sincew(19) is still less thariV;/m, the up-tracing continues until
anchor poin8 is found with the weight larger tha’ /m. Thus, anchor poir is
considered as the root of the subtreeAll vertices ont, which are anchor points
4,8,13,15 and19, are assigned t®, and their associated sensors are assigned to
S). This means that the sensors§h are considered belonging to regi@rand

the SenCar responsible for regipnvill gather the sensing data from these sensors
by visiting the selected anchor points7tj. After removing these selected anchor
points fromT’', updatew(v) for each vertex on the remainifig which is shown in
Fig. 3.2d). Also, W7 is recalculated with the result equal206.1 andm is up-
dated tol. Now, since only one available SenCar is left (ire.= 1), all remaining
selected anchor points and their associated sensors guly sissigned td?; and
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Table 3.2: Region-division and tour-planning (RDTP) aldonit

Inputs:
SetS containing/V, sensors
SetP containing/V,, anchor points
Set/C containingN, SenCars
Neighbor family setF = { f;|i € P}, wheref; is the neighbor set of
anchor point
Distance matrixD = {d, ; }p|«|p|, Whered, ; is the segment
length between anchor pointand;
Compatibility relationship matri€(P) = {cmn i }is|x|s|x|P|
Outputs:
A setP’ of selected anchor points with' = P (JP;UJ... U Py,

A set of subsets 0P, P, Py, . .., Py, , €ach representing selected
anchor points in a region
A set of subsets of, 51, S5, .. ., Sy, , each representing sensors

associated in a region
Compatible pairs in each region
Moving tour of each SenCar
RDTP algorithm:
1: Find maximum compatible pairst based or€(P);
2: UpdateF according toM;
Find minimum set cover af by the greedy algorithm;
Add corresponding anchor points of selected neighbor eg®;t
3: Find minimum spanning tréE among selected anchor pointsi;
Calculate the weight of each vertex @i
4: Divide P" into P{, P, ..., Py, and divideS into S, Sy, ..., Sy,
by iteratively finding a subtree af;
Find approximate shortest tours that visit selected angbimts in
P1, Py, ..., Py, respectively.
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Si, respectively. Finally, we determine the shortest moving for each SenCar to
visit the selected anchor points in its region by the appnae algorithm for the
TSP problem. As a result, the moving tours of the two SenCattseiexample are
as given in Fig.3.2(d): SenCar 28 — 13 — 19 — 15 — 4 — 8 and SenCar 1:
1(DS) — 7 — 12 — 16 — 1(DS). The details of the procedure in step 4 of the
RDTP algorithm are given in Tab&1

Finally, we summarize the RDTP algorithm in Tald&. Given a total of/V,
sensors andV, anchor points, the time complexity of the RDTP algorithm can
be analyzed as follows. The operations of the first two stepghe RDTP algo-
rithm, which are identical to those in the MCP algorithm, t&keV? + N:N, +
NyN, min(N;, N,)) time. In the third step, a simple implementation of Prim's al
gorithm [88] for finding the minimum spanning tree among the selectedhanc
points requires?(Nj) time. Assigning the weight for each vertex on the spanning
tree costs)(NN,) time. For the last step as shown in TaBlé4, given a total ofm
available SenCars, the outer while loop will be executed 1 rounds and the inner
while loop will be performed at mosV, times. Furthermore, finding the approxi-
mate shortest tours that visit the selected anchor poirdgferent regions can be
done inO(N;)) time. Thus, in the general case wheYg > N,, the overall time
complexity of the RDTP algorithm i©(N3).

3.4 Performance Evaluation

In this section, we evaluate the performance of the RDTP #lkgorfor the MDG-
MS problem and compare it with other three mobile data gatgesxchemes.

We still consider aD x D square sensing field, where a total /8f sensors
are randomly distributed, an,, anchor points are located at the intersections of
grids with each anchor point apart from its adjacent ancbortp in horizontal and
vertical directions with equal distance. A total 8f SenCars are available for use.
We assume that the radiuof the coverage area of each anchor poirstiis:, the
size of the sensing datain each sensor i$Mb, the effective data uploading rate
of each sensow, is equal to80 K bps, and the moving velocity of each SenGay
is set to0.8m/sec, if not stated otherwise.

Fig. 3.3 plots the data gathering time of different schemes whernvaries
from 10 to 150, whereN,, is equal to36 and D is set to100m. We compare four
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Figure 3.3: Performance of the RDTP algorithm: Data gatigetime of four
schemes as a function of,.

mobile data gathering schemes: without SDMA and with a sirfgnCar (non-
SDMA+single-SenCar), with SDMA and with a single SenCar (SDidikgle-
SenCar), without SDMA and with two SenCars (non-SDMA+two-Gars), and
with SDMA and with two SenCars (SDMA+two-SenCars, which is RBTP
scheme). When multiple SenCars are used, the data gatheriagédfers to the
maximum time of a data gathering tour among different regjiolt can be seen
that the data gathering time of all schemes increases,aacreases. However,
the RDTP always outperforms other schemes due to the contwse of multi-
ple SenCars and simultaneous data uploading among the sewitiothe support
of SDMA technique. For instance, it achieve®’ time saving compared to the
non-SDMA+single-SenCar scheme wh¥&nis set tol00. This trend of superiority
becomes even more remarkableNasincreases. Shorter data gathering time leads
to longer network lifetime since sensors can turn to pove@irg mode once the
data gathering in their region is done.

Fig. 3.4shows that data gathering time of RDTP varies withunder different
settings ofv,,, andv,, whereD is set tol00m. There are36 anchor points and two
available SenCars. We consider two configurationsugf (,), which are ¢,, =
Im/sec, vg = 50kbps) and @, = 0.6m/sec, vy = 110kbps), to represent two
different cases. The observations in the single SenCaritdgw are still applicable
here. It is noticed that whel, is small, the moving velocity of SenCay, has a
greater impact on the data gathering time thanHigher moving velocity, such as
v, = 1lm/sec in Case |, results in shorter data gathering time even withalem
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Figure 3.4: Performance of the RDTP algorithm: Data gatigetime of RDTP
under different settings af,, andv,.
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Figure 3.5: Performance of the RDTP algorithm: Data gatigetime of RDTP
under different settings a¥,.

vg than the other case. It is reasonable since the moving tineadh SenCar is
dominant when the sensors are sparsely scattered. On thrgprvhen/V; is
large, the effect of); on the data gathering time of a SenCar overwhelms that of
vn. FOr example, whe, increases to more thait), the data gathering time for
Case II, which has a higher effective data uploading ratg as110kbps, is shorter
than that of Case I. This is because that more sensors makatthemloading time
dominant in each region and they provide more opportunitiestract the benefit
of SDMA technique to the maximum extent.

Fig. 3.5 plots the data gathering time of RDTP varying withunder different
settings of N, whereN; is set to50 and N, is set to49. We can see that a8
increases, the data gathering time increases. The reasioa iocrease is two fold.
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First, the maximum number of compatible pairs among serdecseases as the
sensing area becomes larger since the sparser distrilmnéikes it less possible for
any two sensors to be compatible. Second, the distance &etarey two selected
anchor points becomes larger with the increas® ofApparently, the moving tour
of each SenCar may also become longer than that with a snmallelt is also
noticed that the data gathering time is shortened with meagladle SenCars as
data gathering load is shared and balanced among diffeem@&s. For example,
whenD is set to120m, the data gathering time is equalt©60sec if there is only
one available SenCar (i.eN, = 1). In contrast, the data gathering time drops to
753sec and576sec when there are two and three available SenCars, respectively
achieving35% and 51% improvement with respect to that with a single SenCar,
respectively.

3.5 Conclusions

In this chapter, we have considered mobile data gatheriny®MNs by applying
multiple mobile collectors and SDMA technique. We formatizthis problem as
MDG-MS problem and proposed a region-division and tounpiag algorithm to
provide a practically good solution to the problem. Simiolaresults demonstrate
that our proposed RDTP algorithm can effectively shortemtiia gathering latency
for large-scale sensor networks compared to other non-SMbDA8ingle mobile
collector schemes.
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Chapter 4

Bounded Relay Hop Mobile Data
Gathering in WSNs

In this chapter, we study the tradeoff between energy sauimdata gathering la-
tency in mobile data gathering by exploring a balance betvtiee relay hop count
of local data aggregation and the moving tour length of theCae. We first pro-
pose a polling-based mobile gathering approach and themufate it into an opti-
mization problem, namelbounded relay hop mobile data gathering (BRH-MDG)
Specifically, a subset of sensors will be selected as pgboigts that buffer locally
aggregated data and upload the data to the SenCar when d@sariiv the mean-
while, when other sensors are affiliated with these polliog{s, it is guaranteed
that any packet relay for local aggregation is bounded withigiven number of
hops. We give two efficient algorithms for selecting pollmgints among sensors.
The effectiveness of our approach is validated throughnsige simulations.

The rest of this chapter is organized as follows. Sedfidrprovides the back-
ground and introduction of this research work. Sectidireviews the related work
on some categories of mobile data gathering schemes. BetBmutlines the
polling-based approach and formulates the BRH-MDG probleecti&ns4.4 and
4.5 present two algorithms to solve the BRH-MDG problem, respelsti Section
4.6 evaluates the efficiency of the proposed algorithms thraaxgénsive simula-
tions. Finally, Sectiod.7 concludes the chapter.
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(a) 300 sensors deployed oveld Relay routing along shorte@t) Mobile data gathering by vis-
300m x 300m field. paths with minimum hop countsiting each sensor and static data
sink.

Figure 4.1. An example to illustrate the tradeoff betweeeargy saving and data
gathering latency in a sensor network.

4.1 Introduction

Recent studies2P]-[36] have shown that energy consumption at sensors can be
greatly reduced with mobile data gathering, since the ntglof the collector ef-
fectively dampens the relay hops of each packet. Intuitiviel pursue maximum
energy saving, a SenCar should traverse the transmissiga odeach sensor in the
field so that each packet can be transmitted to the SenCarmgla $iop. However,
due to the low velocity of the SenCar, it would incur long latgm data gathering,
which may not meet the delay requirement of time-sensity@ieations.

According to the empirical studie8§][38], the packet relay speed in a WSN is
about several hundred meters per second, which is muchrttigdrethe velocity at
which the SenCar moves. Hence, in general, the latency of-hmyitrelay routing
and its variants is much shorter than that of the mobile datlaeging. Whereas, as
aforementioned, mobile data gathering pursues energyngdwy simply reducing
the relay hops among sensors. From these observationg|diaisthat there is an
intrinsic tradeoff between the energy saving and the ddteegag latency. To better
understand this tradeoff, we illustrate it with an examplEig. 4.1 A network with
300 sensors is configured as shown in Hdl(a) with the static data sink located
at the center of a 300m by 300m field. When we adopt multi-hogirrgdor data
gathering and each packet is forwarded along its shortéstvagh the minimum
hop count to the data sink, the result is depicted in Big(b), where each packet
needs 5.3 hops on average to reach the data sink. On the atiggnihen a SenCar
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is employed, one of the extreme cases for energy savingtishth&enCar gathers
data packets by sequentially visiting each sensor, whielagiees that each sensor
can directly upload data to the SenCar without any relay. iswway, the number
of transmissions is greatly reduced, however, the SenCaohesvel along a tour
of 4012m in length as shown in Fig.1(c). Since the typical velocity of a practical
mobile system is about 0.1 - 2m/39], it will take the SenCar about 66.9 minutes
on the tour when it moves at an average speed of 1m/s.

Therefore, in order to shorten data gathering latency, lieisessary to incor-
porate multi-hop relay into mobile data gathering, howgtee relay hop count
should be constrained to a certain level to limit the eneysomption at sensors.
In this chapter, we would address this issue by proposindlagdased approach
that pursues a tradeoff between the energy saving and daexigg latency, which
achieves a balance between the relay hop count for localedgge@gation and the
moving tour length of the SenCar. Specifically, a subset od@ewill be selected
as thepolling points(PPs), each aggregating the local data from its affiliated se
sors within a certain number of relay hops. These PPs wilptaarily cache the
data and upload them to the SenCar when it arrives.

The main contributions of this work can be summarized a®del (1) We
characterize the polling-based mobile data gathering agpéimization problem,
namedbounded relay hop mobile data gatherirmg,BRH-MDGfor short. We then
formulate it into an integer linear program (ILP) and prageNP-hardness. (2) We
propose two efficient algorithms to find a set of PPs amongosen$he first algo-
rithm is a centralized algorithm that places the PPs on thees$t path trees rooted
at the sensors closest to the data sink, and takes into epas@h the constraints
on relay hops for local aggregation while shortening the tength of the SenCar.
The second algorithm is a distributed algorithm, where @ensompete to be a PP
based on their priorities in a distributed manner. (3) Wduata the performance
of the proposed algorithms by comparing them not only withaptimal solution
obtained by CPLEX94] based on our ILP formulation modeling in AMPY],
but also with other two existing mobile data gathering socegnSimulation results
demonstrate that the proposed algorithms achieve sugmrtormance.
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4.2 Related Work

In this section, we briefly review some recent work on mob#dtadyathering related
to the topic of this work. Based on the mobility pattern, we dasde mobile data
gathering schemes into two categories.

The first category has uncontrollable mobility, in which thebile collector ei-
ther moves randomly or along a fixed track, see, for examg;[B9]. In [22],
Shah, et al. proposed to use a special type of mobile nodesvaartiing agents to
facilitate connectivity among static sensors and trartsgeta with random mobil-
ity. Jain, et al. 12] enhanced the work in2P] by presenting an analytical model
to understand the key performance metrics of the systemgxpéoit the mobility
in data collection, such as data transfer, latency to therdeg®n, and power con-
sumptions. Jea, et alR§] restricted the mobile nodes to move along straight lines to
collect data in the vicinity of the lines. 14[][42], radio-tagged zebras and whales
were used as mobile nodes in a wild area. Finally, Batalin].ef3®, 40] set up
a system named NIMs, where mobile collectors can only mowegafixed cables
between trees to ensure that they can be recharged any ting the movement.
A common feature of these approaches is that they genewalytigh stability and
reliability, and the system maintenance is simple. Howeaway typically lack the
agility and cannot be adaptive to the sensor distributiahenvironmental dynam-
iCS.

The second category has controlled mobility, in which nelaibllectors can
freely move to any location in the field and its trajectory barplanned for specific
purposes, see, for exampl&Q[-[36]. Within this category, the schemes can be
further divided into three sub-classes. In the first sulscléee mobile collector is
controlled to visit each sensor or traverse the transmigsinge of each sensor and
gather the sensing data from them within single hop trarsons B0J[28]. So-
masundara, et al3[)] studied the scheduling of mobile elements to ensure no data
loss due to buffer overflow. While these approaches mininfizeshergy cost and
balance energy consumption among different sensors byletehpavoiding multi-
hop relays, they may result in long data gathering latenpg@ally in a large-scale
sensor network. In the second subclass, mobile collecadregdata from the sen-
sors in the vicinity via multi-hop transmissions along ii&jéctory. Ma and Yang
[27] gave a moving path planning algorithm by finding some tugrpoints, which
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is adaptive to the sensor distribution and can effectivetycdhobstacles on the path.
Along each moving line segment between the turning poihts,sensors forward
packets to the mobile collector in a multi-hop fashion. Kuyal. 3] proposed al-
gorithm for improving routing reliability by introducindhe mobility graph, which
encodes the knowledge of likely mobility patterns withie tietwork. The mobility
graph can be extracted from training data and is used togiriedure relay nodes
for the mobile node to maintain uninterrupted data stredms.and Hubaux32]
proposed that data packets should be gathered with mutrdiays while the mo-
bile collector moves along the perimeter of the sensing,fieldch is considered as
the optimal path for the mobile collector. Karenos and Kelagi [44] explored the
congestion and rate allocation problems in mobile dataeyaity. They provided
a new routing alternative that is adaptive to fast relispiliuctuations caused by
sink mobility. Xu, et al. 5] studied the event collection problem by leveraging the
mobility of the sink node and the spatial-temporal corielabf the event, in fa-
vor of maximizing the network lifetime at a guaranteed eamilection rate. They
modeled the problem as a sensor selection problem and adatlye design of a
feasible moving route for the mobile sink to minimize theogity requirements for
a practical system. Gatzianas and Georgiad® ¢ptimized data gathering per-
formance by presenting a distributed maximum lifetime irggllgorithm, where a
mobile collector sequentially visits a set of anchor poard each sensor transmits
data to the mobile collector at some anchor points via eneffigient multi-hop
paths. These approaches can effectively shorten or congig moving tour of
the mobile collector to a certain level, however, they doingiose any constraint
on the relay hop count. As a result, network lifetime (or aaiarlevel of energy
efficiency) cannot be guaranteed. The last subclass ingltideapproaches that
jointly consider data transmission patterns and moving ptanning. For instance,
Bote, et al. #7] considered utilizing ultra-wide band (UWB) communicatidos
data gathering in WSNs. Adopting a Voronoi diagram basedcgmpr, they pro-
posed an algorithm to determine the minimal set of data ciodle points and the
route taken by the mobile node. Xing, et @6] proposed a rendezvous design to
minimize the distance of multi-hop routing paths for locatalaggregation under
the constraint that the tour length of the mobile collecsana longer than a thresh-
old. Our work in this chapter falls into this subclass, wh&ms to minimize the
tour length of the mobile collector and guarantee the loath dhggregation within
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bounded relay hops.

4.3 BRH-MDG Problem

In this section, we first give an overview of the proposedipgtbased mobile data
gathering scheme and then formulate it into an optimizgti@ilem.

4.3.1 Overview

Since the mobile collector, i.e., SenCar, has the freedomawento any location
in the sensing field, it provides an opportunity to plan anral tour for it. Our
basic idea is to find a set of special nodes referred tpaditng points(PPs) in
the network and determine the tour of the SenCar by visitirody &P in a specific
sequence. With sensors properly affiliated with these PBsgtay routing for local
data aggregation can be constrained withimops, wherel is a system parameter
for the relay hop bound. Or, alternatively, we can say thaP & ®vers its affiliated
sensors withinl hops. The setting of is based the user-application needs, which
reflects how to balance the tradeoff between the energy gavid data gathering
latency. For example, when the energy supply of sensorg sufftccient or the data
gathering service is somewhat delay-tolerant, we typicsgitd to a small value.
The PPs can simply be a subset of sensors in the network or stiree special
devices, such as storage nod2$] [with larger memory and more battery power.
In the latter case, the storage nodes are not necessarillabedpat the positions
of sensors, which may bring more flexibility for the tour ptamg. However, such
special devices would incur a significant amount of extra.c@serefore, in this
chapter, we focus on selecting a subset of sensors as th&RErs PP temporarily
buffers the data originated from its affiliated sensors. WihenSenCar arrives, it
polls each PP to request data uploading. Upon receiving thimg message, a
PP uploads data packets to the SenCar in a single hop. The Ssta@arits tour
from the static data sink, which is located either insideuwsigle the sensing field,
collects data packets at the PPs and then returns the ddta tata sink. Since
the data sink is the starting and ending points of the datesegat tour, it can also
be considered as a special PP. We refer to this scheme psltimg-based mobile
data gathering schemdt is further illustrated in Fig4.2 where the sensors in the
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® Sensor —> Relay routing path —> Mobile collector tour
® Polling point A Static data sink

Figure 4.2: lllustration of polling-based mobile data gathg with the relay hop
count bounded within two hops, i.éd = 2), for local data aggregation.

shadowed area will locally aggregate data packets to tffdiated PP within two
hops (i.ed = 2). For generality, we do not make any assumption on the bigtan
of the sensors or node capability, such as location-awaserteach sensor is only
assumed to be able to communicate with its neighbors, thétéshodes within its
proximity.

In practice, there are several reasons that the relay hoy shauld be bounded.
First, a sensor network may be expected to achieve a ceeiadh of energy effi-
ciency system wide. For instance, if each transmissiorsaost unit of energy and
the energy efficiency of 0.33 energynit/packet is expected, each packet should be
forwarded from its originating sensor to the data sink in narerthan three hops
on average, i.e., each packet should be relayed to its Pihwitb hops. Second,
the bound is necessary due to buffer constraint on the senSorce the PPs need
to buffer the locally aggregated data before the SenCaresrivis not desirable to
associate too many sensors with a PP. Otherwise, the buffee @P may not be
able to accommodate all the data packets. For example dsrsisensor network
with an average node degree of 4. If a sensor is selected asaadPtRe local re-
laying is constrained within two hops, there will be up to #nsors affiliated with
this PP. Therefore, the buffer capacity of the PPs and theosetensity impose a
limit on relay hops.

4.3.2 BRH-MDG Problem Formulation

Having described the polling-based mobile data gathemhgse, in this subsec-
tion, we formulate it into an optimization problem, namsalinded relay hop mo-
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Table 4.1: Notations used in formulation of BRH-MDG Problem.

Indices:

T
Constants:
d>0

fij ={0,1}
lij >0
Variables:
I; ={0,1}
oy — {0, 1}

ol = {0,1}

ew = {0,1}

Yuvo > 0

S=1{1,....,N}

Vi,j €S
Vi,j €S
Vie SU{n}
Vi,u e S

Vi,j,u €S
h=1,2,....d

Vu,v € SU{r}

A set of sensors, which is also the set of
candidate PPs.
The static data sink.

The relay hop bound for local data aggregation.
If sensor; is one-hop neighbor of senspr

fij = 1, otherwise f;; = 0.

Distance between sensoand sensoj.

If sensori is selected as a PR, = 1, otherwise,

I; = 0. The static data sink is a special PP, ilg.= 1.

If sensori is on the routing tree rooted

at PP (= sensoj), a;; = 1, otherwiseq;; = 0.

A node(i, u, h) is associated with sensgyr

if the path from which to PP (= sensa) containsh arcs.
Ifarc {(i,u,h — 1), (j,u, h)} is contained in

the optimal solutiongs?ju =1, otherwisex?ju =0.
Wheni = j, 2%, represents whether sensas

on the layer of the routing tree rooted at PP (= sensfr
If the moving tour contains the line segment
betweeny andv, e,,, = 1, otherwiseg,, = 0.

Vu,v € SU{r} The flow from sensot to sensow.

bile data gatheringor BRH-MDG for short. Our objective is to find a subset of
sensors as the PPs and a set of routing paths that connecesesit in the field to
a PP withind hops, such that the tour length of the SenCar can be minimiesl.
problem is formally defined as follows.

Definition 1. Bounded Relay Hop Mobile Data Gathering (BRH-MDG) Problem.
Given a set of sensotS and a relay hop bound, find (1) A subset ofS, denoted
by P (P C S), which represents the PPs; (2) A set of geometric t{8ed/;, £;)}
that are rooted at each PP7handl J, V; = S. The depth of each geometric tree is
at mostd; (3) The data gathering todr by visiting each PP irP and the data sink

= exactly once, such that , ., [uv] is minimized, wherei, v € P U {r}, (u,v)

\U

is a line segment on the tour and| is its Euclidean distance.

Apparently, the BRH-MDG problem consists of several submotsl. The first
one is the affiliation pattern of the sensors, which can beedtas: by which PP a
sensor is covered within the relay hop bound. The secondsohew to construct
a routing tree rooted at a particular PP with depth at ma$tat connects all its
affiliated sensors. The third one is to find a shortest rouipdamong the PPs
and the static data sink, which is exactly the Traveling Sakn Problem (TSP).
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The challenge of the BRH-MDG problem is that these three sutbgnes should

be jointly considered in order to find optimal PPs among send®ased on these
subproblems and using the notations in Tahlke the BRH-MDG problem can be
formulated as the following integer linear program.

Minimize > lueu (4.1)
u,weSU{m},u#v
Subject to
iy < I, Vi,u e S (4.2)
Y aw=1VieS (4.3)
ueS
Y aw > L, VueS (4.4)
i€S
Quy = Iy, YVu € S (4.5)
oy, <=1,,Vi,jju€eS,h=12,....d (4.6)
zh =0 YueS,h=1,2,...,d (4.7)
1
2y < (i + aju) - fij, Vi ju € Si<jh=1,2,....d (4.8)
:czlm = xiw = aiy * fiu,Vi,u €S (4.9)
d
>N al,=1-1,VieS (4.10)
h=1ueS
o= Y i, ViueSi#uh=12...4d (4.11)
JES i#]
2, <05 <xg.;1 + xglju) Vi €St h=2 ... .d (4.12)
d
Z Z :L‘Zu = Z Qi, VU € S (4.13)
h=11,j€S,i#j i€S itu
Z ey = Iy, Vu € SU {7} (4.14)
veSU{r}
> ew=1I,YveSU{n} (4.15)
ueSU{r}
Yuv < (‘S|+1)’€uvuvuyv ESU{T(},U#U (4.16)
ueSU{r},u#m ueSU{r}
Z Yuv — Z Ywu = Iluvu eSU {7‘(‘} (418)
veSU{r},u#v weSU{r},w#u
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In the above formulation, objective functiod.l) minimizes the tour length of
the SenCar, which also implies the shortest latency for datiaeging. The con-
straints are explained as follows.

Constraints4.2)-(4.5) for subproblem 1: These constraints ensure that a sensor
should be affiliated with (or covered by) one and only one R $hat its sensing
data can be collected during the tour. A sensor selected &vailPbe affiliated
with itself.

Constraints 4.6)-(4.13 for subproblem 2: Since the relay hop bouhtimits
the number of hops between the root PP and its affiliated sgnsach geometric
tree can be considered as having at naddayers. Sensaris associated with a triple
(i,u, h) and variabler’, indicates whether sensoiis in layerh (1 < h < d) of
the tree rooted at sensor Variablex?ju (z # j) is associated with ar(i, u, h —

1), (4,u, h)}, which indicates whether ar@, 7) is on the geometric tree rooted at
sensoru with sensorsi and j in layersh — 1 and h, respectively. Constraints
(4.6)-(4.7) guarantee that each sensor can only be associated withetheobted
at a PP and exclude the sensors selected as the PPs sinceettsytanatically
the roots and will not be in any layer of a tree (or can be canred in layer)).
Constraints 4.8)-(4.9) address that only if two neighboring sensors, saand 7,
are simultaneously affiliated with the same ®Parc {(i,u,h — 1), (j,u,h)} IS
qualified to be on the tree in the optimal solution. For thecsdease that sensor
is the neighbor of its affiliated roet, sensor will be in layer1 of the tree rooted at
u, and arc{(u, u, 0), (i,u, 1)} is the edge connectedand: on the tree. Constraints
(4.10-(4.12 enforce that each sensor can only be in one layer of a tred ad
only one connection with the sensors in the immediate uppgarito ensure the
tree structure. Constraint4.(3 indicates that the number of edges on each tree is
equivalent to the number of affiliated sensors excludingRatself.

Constraints4.14)-(4.18 for subproblem 3: Constraintg.(L4) -(4.15 guarantee
that the SenCar enters and departs each PP as well as therdatankyi once.
Constraint 4.16) restricts that the network flow can take place only when tige a
is on the moving tour. Constraintd.(7)-(4.18 enforce that for each PP, the units
of outgoing flow are one unit more than that of the incoming flaWwe flow units
entering the data sink, which acts as the starting and ermitgs of the tour, are
equal to the number of PP2§]. It was shown in 89 that constraints4.16)-(4.18
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can effectively exclude the solution with subtours.
We have the following theorem concerning the BRH-MDG problem.

Theorem 3. The BRH-MDG problem is NP-hard.

Proof. The NP-hardness of the BRH-MDG problem can be shown by giving a
polynomial-time reduction from TSP problem to a speciabcadBRH-MDG prob-
lem. Given a complete graphi = (V, E) as an instance of TSP. We construct an
instance of BRH-MDG on grap&y’ = (V’, E’), which is topologically identical to
G. V'is the set of vertices that includes all the sensors and tiaest®, and2’ rep-
resents the edges between any two vertices. We assumedlsattbors are located
such that they are unreachable from each other via wirelassmissions, which
can be achieved by reducing the transmission range belowarckevel. This re-
duction is straightforward and can certainly be done in poiyial time. Now, in
this case it is infeasible for the data packets of a sensaz telayed by others. The
SenCar has to visit each sensor to gather data packets, whitles that all the
sensors and the data sink are the PPs. Hence, the tour Idigthdata gathering
in G’ corresponds to the total cost of the TSRAnThe TSP inGG will have a path
with minimum cost in distance if and only if the same patld-iris the tour with the
minimum length for BRH-MDG. Thus, the BRH-MDG problem is NP-hard []

4.4 Centralized Algorithm for BRH-MDG Problem

Due to the NP-hardness of the BRH-MDG problem, in this secti@jrst develop
a centralized heuristic algorithm for the BRH-MDG problemwill serve as a basis
for the distributed algorithm in the next section. It is wogointing out that the
solution exploration procedure for the algorithms onlydse® be executed when
the network topology updates or the relay hop bound charlges,does not need
to be frequently repeated.

As discussed earlier, in order to find optimal PP locationsr@grsensors, relay
routing paths and the tour of the SenCar should be jointlyidensd. On one hand,
when no SenCar is employed, for each sensor, the best wayaipdata packets
to the static data sink is along its shortest path with themmam hop count, under
the assumption that energy consumption is proportiondlgéamtimber of transmis-
sions. On the other hand, when a SenCar is available, the aldterong tour can be
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effectively shortened in two ways: First, the sensors seteas the PPs are com-
pactly distributed and close to the data sink. Second, thebeu of the PPs is the
smallest under the constraint of the relay hop bound. Bas¢kes® observations,
we propose an algorithm, namskortest path tree based data gathering algorithm
(SPT-DGA)with its pseudo code listed in Algorithth The basic idea of the al-
gorithm is to iteratively find a PP among the sensors on a esiopiath tree (SPT),
which is the nearest sensor to the root that can connect theteesensors on the
tree. Also, each PP strives to link as many as possible seitsman reach within
the relay hop bound in order to minimize the total number of.PP

The first task of SPT-DGA is to construct SPTs that cover aisees in the net-
work (see Algorithml, line 1). Since the network can be disconnected, there may
exist more than one SPTs when the sensors are sparselputistti Considering
this, when we find a root for the SPT to be constructed, we wmitlase the sensor
closest to the data sink from the sensors not on the exis#ig SWe call such a
sensorcentroid. The reason why we choose the centroid rather than a random sen
sor as the root is that we want the PPs to converge towardsatiedata sink. Each
SPT would link all the possible sensors under the connégtigstriction. This way,
our scheme can be applied to not only connected networksgloitdisconnected
networks, which is one of the main advantages of the mobila gathering over
the traditional relay routing.

The next task of SPT-DGA is to iteratively find a PP on SPTs. Wesier the
sensor network as a gragh(V, E'), wherel” = S represents all the sensors in the
network, andF is the set of edges connecting any two neighboring sensotbel
following discussion, for clarity and simplicity, we wilbtus on a single SPT. The
algorithm can be described as follows. We consider a SPTtddry 7" (V’, E’)
with V! C V andE’ C E. In each step, we first find the farthest leaf vertex
onT’. There are two possible cases fodepending on whether it is already a PP
or not. The first case is thathas not been selected as a PP yet (see Algorithm
lines5-15). In this case]” is traversed along the shortest path @dwards the root
to find its d-hop parent vertex. Let denote thel-hop parent ofy. Sincew is the
vertex with the farthest depth, all other child vertices.@an reach: within d hops.
Hence, we can let the corresponding sendoe the PP found in the current iteration
since it is the nearest one to the root that can connect treosem the periphery
of the network based on the SPT structure. Thérs updated by removing all the
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(c) lteration 3. (d) Final result.

Figure 4.3: An example to illustrate the SPT-DGA algorithih £ 25, d = 2).

child vertices ofu and their pertinent edges, which implies that the corregpan
sensors will be affiliated with for local data aggregation. It is worth pointing out
that we still keep: on the updated” in order to facilitate the possible affiliations
of other nearby sensors within future iterations. In the rare case that the root
of 7" was reached during the process of finding #Heop parent vertex of, the
algorithm terminates since all the vertices on curfErdre definitely withind hops

to the root. Correspondingly, the root will be selected adReThe second case is
that the farthest leaf vertexon current/” has already been selected as a PP (see
Algorithm 1, lines 16-28). In this case, we aim to affiliate more sensors witif
possible in order to reduce the number of PPs. Specificallgrder to find more
sensors in the vicinity of, we first findv's | |-hop parent vertexo. As v is the
farthest leaf vertex on currefit, all other child vertices ofv will be within | ¢ |
hops away fromv so that they are able to reachwithin d hops along the edges
onT’. Hence, besides the existing affiliated sensors tiie sensors on the subtree
rooted atw can also be affiliated with. Thus, all the affiliated sensors of a PP will
be found in these two steps. The inherited edges among teasers fromi” will

be used to determine their relay paths to the affiliated PR éal data aggregation.
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To better understand the algorithm, we give an example in #i§ where 25
sensors are scattered over a field with the static data stakdd in the center of the
area, and! is set to 2, which means that it is required for each sensarteafrd its
data to the affiliated PP within two hops. The constructed &Rdng the sensors
rooted at sensor 1, denoted BY, is depicted in Fig.4.3(a). In the first iteration,
sensor 8 is found as the farthest leaf vertexiébnwith 5 hops away from the root,
i.e., v = 8. Its 2-hop parent vertex on current?” is sensor 3 (i.e.u = 3.),
which will be marked as a PP. All the child verticesw«gfincluding sensors 8, 11
and 23, and their associated edges will be removed ffanThe result is depicted
in Fig. 4.3(@), where sensor 3 is still kept on the updated SPT, and theved
vertices highlighted by the shadowed area are its affiliseusors found in the
current iteration. In the second iteration, the fartheat \@rtex on the updatet!
turns to be sensor 5 with 4 hops away from the root. Simil&gy2-hop parent (i.e.,
sensor 15) is selected as another PP to cover the sensoesathér shadowed area
as shown in Fig4.3(b). In the third iteration, sensor 3 is chosen as the fartlea$
vertex on currenf” and it happens to be marked as a PP already. In this case, we
strive to search for more qualified sensors to affiliate with\e find that sensor 25
is its 1-hop parent, i.ep = 25. Sensor 25 and all its child vertices on curréht
can reach sensor 3 within two hops along the edgeg’o herefore, the subtree
rooted at sensor 25 will be pruned frafh All the sensors on the subtree, including
sensors 25, 12 and 3, will also be affiliated with sensor 3. #igc) indicates that
a total of 6 sensors will be covered by sensor 3, which aredamiiterations 1 and
3, respectively. In this way,” is decomposed into a set of subtrees, each of which
contains a selected PP and its affiliated sensors. &£&d) gives the final result,
where the data gathering tour is highlighted by the line ssgmlinking the PPs
and the static data sink.

We now analyze the time complexity of SPT-DGA. Assume thatdlare a to-
tal of V sensors distributed iX” disconnected subnetworks € K < N). For
subnetworkk (k = 1,2,..., K), it takesO(N?) time to find a SPT 88|, where
N, represents the number of sensors in subnetwiorkt takes O(N? + Nd)
time to iteratively find a PP and its affiliated sensors on tRd $1 subnetwork
k. Moreover, the work of finding an approximate shortest tauthee PPs and the
data sink can be done in at ma8{N?) time. Thus, the total time of SPT-DGA
is S8 [O(N2) + O(N? + Nid)] + O(N?). Hence, in the worst case, the time

66



complexity of SPT-DGA isO(N? + Nd).

4.5 Distributed Algorithm for BRH-MDG Problem

Given the complete knowledge of sensor distribution, theredized SPT-DGA al-
gorithm can work well in finding a good data gathering tourwdger, in practice,
such global information is difficult to obtain. In this sext] we propose a distrib-
uted algorithm searching for suitable sensors as the PR&ieva better scalability,
which follows the same basic idea as the centralized alguarit

As discussed in the previous section, two factors greatcathe suitability of
a sensor to be a PP. One is the number of sensors withidhtgp range and the
other is its distance to the data sink. A sensor that can aoweee sensors in its
d-hop neighborhood and is close to the data sink will be moveréble to be a
PP since it leads to a smaller total number of PPs and moreaastgdistribution
among the PPs. Considering these factors, we propose aittagoamedriority
based PP selection algorithnoy PB-PSAfor short. Two parameters are used to
prioritize each sensor in the network, which can be easitgiobd in a distributed
manner. The primary parameter is the numbet-tiop neighbors, which are the
sensors in itsl-hop range. The secondary parameter is the minimum hop count
to the data sink. The basic idea of PB-PSA is that each senssrthe primary
parameter to select an initial set of sensors as its prefétRs, and then uses the
secondary parameter to “break ties.” A tie in this contexangethat the preferred
PPs of a sensor have the same numbeklodp neighbors.

We now describe PB-PSA in more detail. The pseudo code for saasor is
given in Algorithm2. Before a sensor makes the decision on whether it becomes
a PP,d rounds of local information exchange are performed to ensluat each
sensor can gather the node information indiisop neighborhood. In each round,
each sensor locally maintains a structure, named TENPIA based on the informa-
tion exchange. TENTAPP is the selected sensor temporarily considered as a pre-
ferred PP in a particular round by the sensor. TENPR has three sub-domains:
TENTA_PPID, TENTA_PP.d_Nbrs and TENTA PPHop which denote the node
identification, the number of itg-hop neighbors and the minimum hop count of the
tentative PP to the data sink, respectively. Initially,leaensor treats itself as its
TENTA_PP and labels its status as “Tentative.” In a particular dp@ach sensor
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first broadcasts the information of its TENTRP to its1-hop neighbors. When
it has heard from all the neighbors, the sensor will updatd ENTA_PP accord-
ing to the following rule: among the pool of all the receiveNTA_PPs and its
own TENTA_PP, choose the one with maximum TENTRP.d_Nbrs to set it as its
updated TENTAPP. If there are more than one such TEN'FP®, choose the one
with minimum TENTA_PPHop. Such treatment implies that a sensor having the
ability to cover more other sensors and also being closestddlta sink has higher
chance to be a PP than others. Afterounds of iterations are completed, each
sensor is able to tell whether it is the one with the higheistrity among itsd-hop
neighbors. If a sensor finds that its TENTRP is still itself after/ rounds of infor-
mation exchange, it will declare to be a PP instantly by semdiut a declaration
message and change its status accordingly. This messddgbemilbe propagated
up tod hops. For other sensors still with “Tentative” status, thal/be delayed for
a period of time. The delay time for a sensor consists of a npgd proportional
to its hop count to the data sink plus a small random time durdb differentiate
the sensors with the same hop count. During the delay pexiselhsor keeps listen-
ing and receiving the declaration messages from otherse @xmown delay timer
expires, a sensor with “Tentative” status will check whethkas received any dec-
laration message. If yes, the sensor will affiliate itselfhithe nearest PP among
those whose declaration messages are received. Othethéssensor itself will
declare to be a PP since there is no PP iaik®p neighborhood for the moment.
This way, the sensors with “Tentative” status closer to theaaink will become a
PP ahead of others due to the shorter delay, which effegtieélains other sensors
with “Tentative” status from declaring to be the unwanted PP

To better understand the PB-PSA, we give an example as shoWwig.ird.4
where there is a total of 20 sensors and the data sink is assti® located at
the center of the area. The connectivity among the sensarshendata sink is
shown by the links between neighboring nodes in Big(a). We seti to 2, which
implies that each sensor needs to do two rounds of local dataaage. Every
sensor updates its TENTAP based on the received information, and the result in
each round is listed in Tabk.2 When the iterations are completed, sensors 2, 7
and 17 find that they are the TENTRPs for themselves and consequently send out
the declaration messages to claim to be the PPs. During tag period, all other
sensors can receive some declaration messages. Thuswildre no other PPs.
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(a) Network configuration. (b) Moving Tour along the PPs.

Figure 4.4: An example to illustrate the PB-PSA algorithkh£ 20, d = 2).

In the next step, each sensor with “Tentative” status witlase to be affiliated with
a PP among those it has heard from, which will not necessaeilgonstrained to
the current TENTA PP of the sensor. The final PPs, the sensors’ affiliation patte
and the data gathering tour are depicted in Big(b).

Finally, we give the following two properties concerning ttomplexity of the
PB-PSA algorithm.

Property 1. PB-PSA has the worst-case time complexit§ @V d) per node, where
N is the number of sensors.

Proof. Each sensor first experieneaésounds of iterations. In each iteration, it takes
at mostO(N) time for a sensor to gather the information of TENTRPs from its
one-hop neighbors. Except the sensors that declare thezsgel be the PPs once
the iterations complete, each of other sensors will delayafperiod time. Since
the delay time is proportional to the minimum hop count of asee to the data
sink, in the worst case, it tak€3(N x Ty) time for a sensor to finally determine
its status, wheré& is a pre-defined constant time slot length. Hence, the tiota! t
complexity of the PB-PSA i§)(Nd) per node. ]

Property 2. PB-PSA has the worst-case message exchange compleXityvof d)
per node.

Proof. During the execution of iterations in the PB-PSA, each segsoerates
d messages to broadcast its current TENP&RSs. Once a sensor reaches its final
status, either a PP or a regular sensor, it will generatelamddion message to claim
to be a PP or a joining message for affiliation. Since eachadstobn message or
joining message will be propagated upddops, in the worst case, a sensor may

69



forward up to2(N — 1) messages. Thus, the total number of messages a sensor
handles is at most+ 1 + 2(N — 1), i.e., the message exchange complexity of the
PB-PSA isO(N + d) per node. O

4.6 Performance Evaluation

In the previous sections, we have provided two efficient dtigms for the BRH-
MDG problem. To evaluate their performance, in this sectiva first implement
the ILP formulation given in SectioA.3 for a small network as an illustrative ex-
ample and compare the optimal solution with the proposedriifgns, and then
we conduct extensive simulations in large networks and @wenthe results of the
proposed algorithms with other two existing mobile datdngehg schemes.

4.6.1 Comparison with the Optimal Solution

We have solved the ILP formulation of BRH-MDG problem given iec8on4.3
for a sensor network with 30 nodes by using CPLEX][ We now compare this
optimal solution with the results of the proposed algorighm

As shown in Fig4.5a), a network with 30 sensors scattered over a X0ndm
square area. The connectivity is represented by solid lndte/een neighboring
sensors. The static data sink is located at the center ofélaeamd the connectivity
between the sink and the sensors is plotted by dashed linkset to 2. The results
of different solutions, each of which contains the seled@&, the relay routing
trees for local data aggregation rooted at PPs and the meésurgf the SenCar,
are shown in Fig4.5b)-(d), respectively. Moreover, the performance conguari
is summarized in Tablé.3.

From Fig.4.5and Table4.3, we can see that the optimal solution for the exam-
ple achieves the shortest tour length of 94.78m at the erpails27 relay hops on
average for local data aggregation. In contrast, SPT-DGPARBIPSA resultin %
and 24% longer tour length, however, 7/8and 114 less average relay hop count,
respectively. These observations further reveal thensitritradeoff between the
tour length and the relay hop count. Since the distributed”®B-algorithm com-
mits itself to dampen the number of PPs by prioritizing thesses with their/-hop
neighbors and overhearing the declaration messages @tepoiig thei-hop prox-
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(c) SPT-DGA. (d) PB-PSA.

Figure 4.5: Different solutions for the BRH-MDG problem withset to2 in a
30-node network.

imity, it results in the smallest number of PPs comparedherst Apparently, this
will also lead to the most average affiliated sensors for adPR fjiven number of
sensors. SPT-DGA achieves the same number of PPs as thabgatition, thus,

they have the same number of average affiliated sensors ferlddwever, due to
the structural restriction of the shortest path tree, tfiBadion pattern among sen-
sors in SPT-DGA is not as uniform as that of the optimal sohytivhich results in

55% more maximum number of affiliated sensors to a PP.

4.6.2 Performance of SPT-DGA and PB-PSA

We have also conducted a suite of simulations to evaluatpehifermance of our
proposed algorithms in large sensor networks. In this suiose we present the
simulation results and compare them with other two existidpile data gathering
schemes. The first scheme is the single-hop data gathetig@$[28], in which

a SenCar stops at some selected points among a set of prededimgidate posi-
tions to collect data from each sensor such that single-atgpuploading from each
sensor to the SenCar can be guaranteed. Another scheme @nthelled mobile
element scheme (CME26], where a SenCar traverses the sensing field along par-
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Figure 4.6: Performance of SPT-DGA and PB-PSA as a functiah of

allel straight tracks and collects data from the sensordogeaith multi-hop relays.
For clarity, we list the comparisons between the comparedkand our proposed
polling-based approach in Tabied.

In the simulation, we consider a generic sensor network witeensors ran-
domly distributed over aih. x L square area. The data sink is located at the center
of the area. The transmission range of a senséi;isEach packet is locally ag-
gregated to a PP within the relay hop bouhtiefore the SenCar arrives. If not
specified otherwiseg] is set to 2. We adopt the nearest neighbor (NN) algorithm
[88] in our simulation for the TSP problem to determine the mgviaur, which
lets the SenCar start from the data sink and choose the nesmésited PP for
the next visit, and finally return to the data sink. Considgthee randomness of the
network topology, each performance point in the figuresasatierage of the results
in 500 simulation experiments.

Fig. 4.6 plots the performance of SPT-DGA and PB-PSA as a functiafy of
terms of tour length and average relay hop count for local dggregation. When
d is set to zero, it means that the SenCar will visit the sensbneshy one for
data gathering.N and L are 200 and 200m, respectivelyz, is equal to 30m.
From the figure, we can see that@becomes larger, the tour length is evidently
shortened and the average relay hop count gradually iresea$oth algorithms.
Furthermore, in most cases in Fig.6(a), SPT-DGA always outperforms PB-PSA
with about 39¢ shorter tour length on average, and such superiority bes@wven
more noticeable ag increases. There are two reasons for this. First, sincesens
are densely deployed in the scenario under considerati@ne tare quite a few
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Figure 4.7: Performance of SPT-DGA and PB-PSA as a functidf, ér the cases
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Figure 4.8: Performance comparison for SPT-DGA, PB-PSA, GHidd CME as
a function of V.

sensors scattered around the sink. This provides a goodtapfy to build a SPT
rooted at a sensor close to the sink in the centralized SPA-BIGorithm. As a
result, with the increase aof, the selected PPs become convergent towards the data
sink and also get closer to each other. Another reason isirthiaie distributed
PB-PSA algorithm, though the number of total PPs dropd a@screases, some
sensors that are still in “Tentative” status afterounds of iterations tend to claim
themselves to be the PPs with higher probability. Some ahthmay be located far
from other PPs such that the tour length in PB-PSA is somevaingiel than that
of SPT-DGA. We can also observe in Fig.6(b) that PB-PSA results in a smaller
average relay hop count as compared to SPT-DGA since thenPPB-PSA are
distributed in a more relaxed pattern.

Fig. 4.7 shows the performance of SPT-DGA and PB-PSA as a functiai, of
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Figure 4.9: Performance comparison for SPT-DGA, PB-PSA, GHidd CME as
a function of L.

for the cases of = 2 andd = 3. R, varies from 10m to 50m to stand for different
transmission ranges of sensors. Clearly, more sensors &dbtirbe neighbors to
each other as, increases. As a result, the situation that most of the PPfaare
away from the sink can be avoided and the number of PPs carbalstiectively
reduced as each PP is able to link up more sensors. Therdfermur length will
be greatly shortened &8, becomes larger. For instance, as shown in Big(a),
for the case ofl = 2, whenR, is 20m, the tour length of SPT-DGA and PB-PSA is
1178m and 1334m, respectively. In contrast, wiignncreases to 45m, their tour
length drops to 591m and 634m, respectively. It is also edtihat the average
relay hop counts for both algorithms slightly increase withsince more sensors
will be affiliated with the same PP with a larger hop count urtle constraint of
the relay hop bound. Moreover, it is evident that no matteatw?) is, the case of

d = 3, which is with relatively looser relay hop bound, would reégumuch shorter
tour length compared to the casedof 2 at the expense of more average relay hop
counts.

Fig. 4.8depicts the performance of the proposed algorithms as aidunaf /V,
and compares it with SHDG and CME.is set to 200m anaV varies from 100
to 500 to represent different node densify, is still fixed to 30m. The relay hop
boundd is set to 2 for the proposed algorithms. For SHDG, we assuatestich
predefined position where the SenCar could stop for data igaghis on a grid,
which is apart from its adjacent positions in horizontal aadical directions with
the same distance of 20m. Also, in the CME scheme, we assurnthéparallel
straight tracks traversing the field are 100m apart from edoér. The track in the
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middle goes through the center of the field. The SenCar carogg #he area border
to change onto other tracks. Both SHDG and CME schemes arenmapted in a
centralized fashion. We can observe in F§8(a) that as/V increases, the tour
length of SPT-DGA and PB-PSA first gradually increases and s&bilizes when
N becomes sulfficiently large. This is because that when sermmome more
densely scattered, they will have higher probability to fidiated with a PP close
to the sink. Hence, any further increase on the number ofosendll have little
impact on the selection of the preferred PPs. In contrastiatr length of SHDG
continuously increases witN, which is around3% longer than that of SPT-DGA.
Since the SenCar travels along the fixed tracks in a given treaour length will
stay constant for CME. In addition, Fig.8b) shows the average relay hop counts
for SPT-DGA, PB-PSA and CME. Since a sensor always directlpags data to
the SenCar in SHDG, there is no local relay required. Thus,id/aat include it in
the figure. We can see that the average relay hop count §ligictleases for each
scheme asV becomes large. SPT-DGA and PB-PSA result in more relay haps fo
local data aggregation compared to CME, which is the costhi®ae a shorter data
gathering tour.

Fig. 4.9further plots the tour length and the average relay hop soointiained
for different schemes wheh varies from 100m to 500m. is set to 400 and?,
is 30m. We fix 5 parallel straight tracks with the same intedistance in CME
scheme, which traverse the field with the outermost two sackthe border of the
area. All other settings are kept unchanged as in the pre\getof simulations.
From Fig.4.9a), we can see that dsincreases, the tour length of all the schemes
becomes longer. This is reasonable since sensors becoraesparsely distributed
as L becomes larger. The SenCar needs to go further away fromrtk@sd visit
more positions to collect data from all the sensors. Alsahhe increase of the
field area, the fix track traversing the field in CME scheme alstomes longer
than the case with a smallér However, as can be seen, our proposed algorithms
always outperform others, with up 88% and80% shorter tour length compared
with SHDG and CME, respectively. This attributes to the &fforSPT-DGA and
PB-PSA algorithms on minimizing the tour length by fully wihg the available
relays for local data aggregation. Consequently, as thensepén Fig.4.9b) the
average relay hop counts for SPT-DGA and PB-PSA algorithebigher than that
of CME. However, such a gap in the relay hop count quickly #srass increases.
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Figure 4.10: Performance comparison for SPT-DGA, PB-PSA)GHNnd CME as
a function ofR;.

Fig. 4.10plots the performance of different schemes wiigrvaries from 10m
to 50m. N is set to 400 and. is fixed to 250m. The relay hop boundis set
to 2 for the proposed algorithms. For the SHDG scheme, wieasBume that the
candidate positions that the SenCar can stop for data gaghere on the grids and
each one is apart from its neighbors in the vertical and bat& directions with
the same distance of 124. For the CME scheme, we set the distance between any
two neighboring parallel straight tracks2&®, and there is a total #%W parallel
tracks in the field. Fig4.1Q@) shows that in all cases &, investigated, SPT-DGA
always achieves the shortest tour length with up% improvement compared to
SHDG and CME. It is also noticed that while the tour length oT$¥GA, PB-PSA
and SHDG gradually decreases with the increase,pCME results in a stair-case
decrease. This is because that the tour length of CME is mdigtigrmined by
the number of parallel tracks. Figl.1Qb) plots the average relay hop count for
SPT-DGA, PB-PSA and CME. As the parallel tracks in CME afg Apart from
each other, regardless of the valuefyf most sensors can directly upload data to
the SenCar when it moves along the nearest tracks and conseseriough to the
sensors. Thus, CME always results in small relay hops fot ttata aggregation. In
contrast, SPT-DGA and PB-PSA allow more local data aggregatith bounded
relay hops in order to shorten the tour length as much aslgesdt is shown in
the figure that the average relay hop counts achieved in SPA-Bnd PB-PSA
increase withR, initially. This is because that when the transmission raofye
sensors is small, the degree of sensors would evidentlgaser as?, increases.
This provides us much opportunity to shorten the moving tength by selecting
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a fewer number of PPs. As there are limited PPs, more remososeare likely

to be linked by the PPs with a larger number of hops under thstaint of relay

hop bound. Then wheR, becomes large, the average relay hop counts would not
increase further witlR, and tend to be relatively stable. This is reasonable because
when R, becomes large, it is much easier for sensors to reach eaehwithin a
fewer number of relay hops, which greatly counteracts thgarh of the decrease

of the number of PPs.

4.7 Conclusion

In this chapter, we have studied improving the efficiency obite data gathering
by exploring the tradeoff between the relay hop count of senfor local data ag-
gregation and the tour length of the SenCar. We have propogedliag-based
scheme and formulated it into the BRH-MDG problem. We thengre=s] two ef-
ficient algorithms for solving the BRH-MDG problem. Extenssieulations have
been carried out to validate the efficiency of the scheme. rékelts demonstrate
that the proposed algorithms can greatly shorten the détagiag tour length with
a small relay hop count, and achieve/d8nd 80% improvement on the tour length
compared to SHDG and CME schemes, respectively.
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Algorithm 1: Centralized algorithm: SPT-DGA

Input: A sensor networkz(V, E), the relay hop bound, and the static data sink
Output: A set of PPsP, a set of geometric treds,,|u € P}, and the toulJ visiting
the PPs and the data sink.
1 Construct SPTs fof that cover all the vertices i
2 for each SPT"(V', E’) do

3 while T” is not emptydo
4 Find the farthest leaf vertexon7”;
5 if v is not a PPthen
/l Findv’s d-hop parent vertex on7".
6 fori =1toddo
7 u «——parentv); v «— u;
if uis the root ofl” then Break;
9 Consideru as a PP and add corresponding sensorito
10 if u is not the root ofl” then
11 UpdateT” by removing all the child vertices af and the pertinent
edges.
12 Corresponding sensors of these removed vertices are affiliated with
| u onthe geometric treg,.
13 else
14 All the sensors off” are affiliated witht,,;
15 T’ is set to empty;
16 else
17 if d =1then
18 L Removev from currentZ” and it belongs ta,;
19 else
/I Findv's | 4]-hop parent vertexy onT".
20 fori =1to 4] do
21 w «—parenfv); v «— w;
22 if w is the root ofl” then Break;
23 if w is not the root of/” then
24 Remove the subtree rootedwafrom 7”;
25 Corresponding sensors on the removed subtree are affiliated
| with v on the geometric treg,.
26 else
27 All the sensors ofd” that are not selected as PPs are affiliated
with v on the geometric treg;
28 T’ is set to empty;

29 Find an approximate shortest tdurvisiting = and all the PPs i®;
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Algorithm 2 : Distributed Algorithm: PB-PSA

1
2
3
4
5
6

o N

10
11
12
13
14

15
16

17
18

19
20
21

My.TENTA_PP+— My; My .status— Tentative;
for i =1toddo
Send Msg (My.TENTA_PP);
if received packets from all miyhop neighborsghen
A «—— {al is areceived or own TENTAPP with maximum al_Nbrs};
L My. TENTA_PP+— arg min,c 4a.Hop;

f My. TENTA_PP.ID = My.NodelDthen
My .status— PP;
| Send. Declar Msg (My.NodelD, Mystatus();

else
Set my delay timet =My.Hopx Ts+rand);
while My delay timer is not expiredo
Record source node IDs of the received declaration messages;
Forward the received declaration messages if it has been propagatesisf
| thand hops;

f ever received a declaration messapen

My.PP+—— the nearest PP among all the PPs in the received declaration
messages;

My .status—— non_PP;

Send Join_Msg (NodelD, MyPP);

else
My .status— PP,
| Send DeclarMsg (My.NodelD, Mystatus();
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Table 4.2: Two round update of TENTAP by each sensor in the example.

\ 1] 2[3[4][5]6]7][8]9]10

TENTALPPID | 123|456 7]8]9]10
Initial | TENTA_PPd_Nbrs | 10| 12| 7 | 8 | 9 | 10| 12| 8 | 8 | 7
TENTA_PPHop | 1|1 |2 2|3 |2|1]|2]|2]2
TENTAPPID | 2 | 2|15 2 (12| 2| 7 |2 | 7|15

Round 1| TENTA_PPd_Nbrs | 12| 12| 11|12 | 10| 12| 12 | 12| 12| 11
TENTA.PPHop | 1| 1|1 /1|2|1|1]|1|1]1
TENTALPPID | 2|2 |2 |2 |7 2|7 |2]|7)]2

Round 2| TENTA_PPd_Nbrs | 12| 12| 12 [ 12 | 12| 12| 12 | 12 | 12| 12
TENTA.PPHop | 1| 1|1 /1|1]1|1]1|1]1

| [11][12]13[14[15] 16|17 18] 19] 20
TENTA_PPID | 11[12]13] 1415161718 19] 20

Initial | TENTA_PPd_Nbrs| 9 | 10| 7 |10|11| 5 |11 7 | 7 | 6
TENTA_PPHop | 2 | 2|2 |2|1[3|1|2|3]3
TENTA_PPID | 15| 7 | 17| 17| 2 | 13| 17|15 6 | 12

Round 1| TENTA_PPd_Nbrs | 11| 12| 11|11 | 12| 7 | 11| 11| 10| 10
TENTALPPHop | 1| 1|1 /1|1 |2 |1]|1|2]2
TENTA_PPID | 2 | 7 |17| 7 |2 |17|17] 2 |2 | 7

Round 2| TENTA_PPd_Nbrs | 12| 12| 11 |12 | 12| 11| 11 | 12| 12| 12
TENTA.PPHop | 1| 1|1 /1|1]1|1]|1|1]1

Table 4.3: Performance comparison with optimal solution.

[ Optimum | SPT-DGA | PB-PSA

Sensors Selected as PP$0,17,23,26 | 10,12,23,26 | 9,10, 26
Tour Length (m) 94.78 97.56 117.86
Ave. Relay Hop Count 1.27 1.17 1.13
Max Num of Affiliated

Sensorsto a PP ) 14 15
Ave. Num of Affiliated

Sensors to a PP w5 w5 10
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Table 4.4: Comparisons among three mobile data gatheriregrseh

Polling-Based Approach
(SPT-DGA and PB-PSA)

Single Hop Data Gathering
(SHDG)

Controlled Mobile Element Scheme
(CME)

Motion Pattern

Controllable
Free to go anywhere

Controllable
Free to go anywhere

Uncontrollable
With fixed moving tracks

Pausing Locations
of SenCar
for Data Gathering

SenCar pauses at locations
of selected sensors (i.e., PPs) an
gather buffered data from the PP

SenCar pauses at selected polling
d points, which are the locations chosen fron
sa set of candidate pausing locations, and ga
data from each nearby sensor in a single h

Exact pausing locations are not exp|
n citly specified. It is assumed that the
ther  SenCar can always gather
bp data while moving along the tracks

Moving Trajectory

Start from the data sink, visit eac
PP once and go back to data sin

h Start from the data sink, visit some location

sensors, and finally go back to the data sin

k that cover the transmission range of all the

s Start from the data sink, go along the
parallel straight tracks back and forth,
k and finally go back to the data sink

Relay for Local
Data Aggregation

Multi-hop relays in bounded hops

No local relay

Multi-hop relays without
hop bound

Data Uploading

The PPs buffer the local aggregat
packets and upload them to mobi
collector when it arrives at PPs

ed Each sensor directly uploads data to the
e SenCar in a single hop when

Some sensors close to the tracks
upload aggregated packets to the

it arrives within its transmission range

SenCar when it comes




Chapter 5

Pricing-based Network Cost
Minimization Algorithm for Mobile
Data Gathering in WSNs

In the previous chapters, we mainly focus on proposing aetaonf mobile data
gathering schemes. In the following two chapters, we shift @fort from the
scheme design to the performance optimization on somedalypatiemes, with the
purpose of obtaining in-depth investigation on the impdcame critical system
parameters on the entire data gathering performance.

In this chapter, we study the performance optimization ef #mchor-based
range traversing data gatherir&g][ 34], where a set of locations in the sensing field
is chosen aanchor pointsand the SenCar periodically carries out a data gathering
tour by visiting each anchor point such that it can travehgettansmission range
of all the sensors in the network. We characterize the padorce optimization
as a cost minimization problem constrained by the channgaty, the minimum
amount of data gathered from each sensor and the bound bstjtairn time at
all anchor points. We assume that the cost of a sensor fortigydar anchor point
is a function of the data amount a sensor uploads to the Sen@agdts sojourn
time at this anchor point. The network cost is the aggregiedé sensors for all an-
chor points, which is a direct metric to evaluate the efficieof the data gathering
strategies. In order to provide an efficient and distribuatgbrithm, we decom-
pose this global optimization problem into two subproblémbe solved by each
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sensor and the SenCar, respectively. We show that such desdiop can be char-
acterized as a pricing mechanism, in which each sensor emtlgmtly adjusts its
payment for the data uploading opportunity based on thestadces of different
anchor points set by the SenCar. Correspondingly, we givefiareet algorithm to
jointly solve the two subproblems. Our theoretical anayd@monstrates that the
proposed algorithm can achieve the optimal data controkémh sensor and the
optimal sojourn time allocation for the SenCar, which miraes the overall net-
work cost. Finally, extensive simulation results furthafidate that our algorithm
achieves lower cost than the compared data gatheringgtrate

The remainder of this chapter is organized as follows. Seé&il provides the
introduction of research issue. Sectibi2 reviews the related work. Sectidn3
introduces the system model and provides the formulatiometivork cost mini-
mization problem. Sectioh.4 decomposes the problem into two subproblems and
presents a pricing-based algorithm that jointly solvestihe subproblems. Sec-
tion 5.5addresses how to solve the subproblem at each sensoryFBedtion5.6
presents the simulation results of the proposed algorithairSectiorb.7 concludes
the chapter.

5.1 Introduction

In this chapter, we focus on anchor-based range traversitegghthering48]-[ 34]
and study how to achieve its optimal performance. In suchharse, the SenCar
directly collects data from each sensor in a single hop hyingsthe anchor points
in the field to traverse the transmission range of the sen¥gescharacterize data
gathering performance by introducimgtwork costwhich is a function quantify-
ing the aggregated cost on gathering data from sensorsfatesit anchor points.
The “cost” here physically implies the energy consumptioomonetary expense
on gathering a certain amount of data from a sensor at a plartianchor point. In
this way, optimizing data gathering performance is eqenato solving the corre-
sponding cost minimization problem. To find the optimal ol to this problem,
we consider regulating two tunable parameters under gigastraints. One para-
meter is the amount of data a sensor uploads to the mobilkectotlat a particular
anchor point. Since it is expected to collect a sufficient ami@f data during a
data gathering tour, we require that the aggregated datedgd from a sensor to
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the mobile collector at all anchor points should be no leas thspecified amount.
Another parameter is the sojourn time of the mobile colleateach anchor point.
We require that the total sojourn time at all anchor pointsusdh be constrained
within a limit so that the latency of a data gathering tourasihded.

Since the cost minimization problem essentially answeggjtlestions that where
and how sensors communicate with the SenCar, we can chaadteas a pricing
mechanism, where sensors independently adjust their pagmempeting for the
data uploading opportunity to the SenCar based on the shadoesf differ-
ent anchor points set by the SenCar. Using this feature, wentgese the cost
minimization problem into two simpler subproblems thatatdse the behaviors of
sensors and the SenCar, respectively. In this way, instedoleaitly resolving the
original global problem, alternatively we can jointly selthese two subproblems.
By iteratively adjusting the payment and the shadow priceveen each sensor and
the mobile collector, an equilibriun6g][ 104 that reconciliates the two subprob-
lems can be reached, where the overall network cost is nmaeimi

The contributions of this work can be summarized as follo¢t3:We charac-
terize data gathering performance by network cost and fat@uahe problem of
optimizing data gathering performance as a convex prob{m\e show that this
problem can be described as a pricing mechanism so that ecaarrespondingly
decomposed into two subproblems. (3) We provide a pricieged algorithm to
jointly solve these subproblems in a distributed mannej. Wé present a theo-
retical analysis and extensive simulation results to eaidhe convergence of the
proposed algorithm and demonstrate that our algorithm chieee lower network
cost than the compared data gathering strategy.

5.2 Related Work

There has been some work in the literature on optimizing dathering perfor-
mance in WSNs. Most of the work studied static data gathemthfacused on
optimal routing for maximum lifetime. For example, Madarddrall [50] pro-
posed distributed algorithms using a dual decompositignagzh to computing an
optimal routing that maximizes the time the first node in teénork depletes its
energy. In 105, Madan, et al. modeled the circuit energy consumption &ed t
traditional physical, MAC and routing layers. They consetkthe optimization
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of individual layers as well as cross-layer optimization dpmputing a strategy
that maximizes network lifetime. IrbB], Hua and Yum jointly considered optimal
data aggregation based on the correlation of sensors andnonaxlifetime rout-
ing, which aims to reduce the traffic across the network atahlioa traffic to avoid
overwhelming bottleneck nodes.

There has also been limited work in the literature on thenoigation of mobile
data gathering performance, where mobile sinks or mobllectors are employed.
Gatzianas and Georgiadisq studied network lifetime maximization problem by
formulating it into a linear problem. It assumed static dates of sensors and
focused on finding optimal routing from sensors to the mobifk at different
anchor points. Yun and Xiadp] proposed a framework for improving network
lifetime by developing several models under delay boundtramts, node energy
constraints, and flow conservation constraints. In cotyteas work is significantly
different from these work in the sense that we consider dati&ral on each sensor
and sojourn time allocation for the mobile collector, irgt®f the routing problem,
to minimize network cost. Moreover, in our model, we imposastraints on data
amount gathered from each sensor and total sojourn time atehor points in a
data gathering tour, which aims to obtain sufficient sendig within a bounded
data gathering latency. These considerations addresstampgractical issues in
mobile data gathering applications, which have not beesidened in the existing
work.

In the meanwhile, pricing mechanisn®0]-[ 63] have received much attention
in recent years. The mechanisms were especially proposeedsource allocation
problems, where a resource provider establishes resouieas o charge users,
in order to regulate the behavior of selfish users and aclsievml welfare maxi-
mization [LO4]. In particular, Kelly et al. $0][61] proposed a scheme in a wired
network for elastic traffic that a network provider chargles tisers based on the
traffic load on individual links and the users choose theinsmission rates as a
function of prices. Qiu and Marbacb3] extended Kelly’s work to the bandwidth
allocation problem in ad hoc networks, where users can ehatfter users a price
for relaying their data packets. In a more recent work, Hadi kamar 2] stud-
ied the utility maximization problem with delay-based Qtyabf-Service (QoS)
requirements in a wireless local area network. They charaetd the problem as
a bidding game, where clients bid for service time from theeas point, and the
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access point assigns delivery ratios to the clients acegtditheir bids. In contrast,
our work demands inelastic data traffic uploaded from sesteathe mobile collec-
tor at different anchor points at the lowest possible cost.aftempt to use pricing
as a means to regulate the communication between sensotiseamibbile collec-
tor, where the mobile collector sets the shadow prices fohanpoints and each
sensor learns link prices from itself to the neighboringremmgoints based on these
shadow prices, then determines its payment for the datadiplg opportunity to
the mobile collector at different anchor points.

5.3 System Model and Problem Formulation

Consider a sensor network which consists of a set of statisosgndenoted by
N, and a set of anchor points, denoted ly We study the anchor-based range
traversing data gathering scheme, where the mobile cotlaa., SenCar, gathers
data directly from sensors by visiting each anchor pointpeodic data gathering
tour. There are several ways to decide the locations of arphiots. One way is to
consider the sensing field as a grid and anchor points canifweraty distributed

on grid intersectionsl[10. An alternative way is to use the positions of a subset of
sensors as the locations of anchor poil&[[28]. In this work, we would follow
the latter option, which not only simplifies the setting ofthar points but also
can facilitate the distributed implementation of our altfon that will be presented
in subsequent sections. An example of this data gatherimgnse is illustrated in
Fig. 5.1, where the locations of seven sensors are chosen as anéhty gied the
SenCar starts its tour from the static data sink and seqligntisits each anchor
point for data gathering.

Since the SenCar moves over different anchor points, we néwedavo sets
that depict the relationship between the SenCar and semstita movement. One
setisN*“ (a € A), which represents the sensors in the coverage area of igoaintd
a. These sensors can directly upload data to the SenCar wheivésaat anchor
pointa. Another set is4; (: € N), which contains the anchor points senscan
reach in a single hop. To ensure that each sensor has thelwppoto upload data
to the SenCar, we assume théitis always non-empty. This can be guaranteed by
choosing the anchor points through finding a set of neighbts af sensors such
that the selected sets contain all the sensors in the naigkebm
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A Static sink
® Sensor
(O Anchor point

—> Wireless link between
sensor and anchor point

— Moving tour

Figure 5.1: An example of anchor-based range traversirggithering scheme in
a WSN, where the positions of a subset of sensors are usedtaw @aints.

We assume that each sensor has enough buffered sensingndasaresori
would upload an amount of datg to the SenCar when it stops at anchor point
a. In order to ensure that the SenCar can obtain a sufficient ahudwlata from
each sensor in a data gathering tour, we impose a minimumadasant for each
sensor,M;, which indicates the minimum aggregated data uploaded &®msor;
to the SenCar at all anchor points in a data gathering tour.

The SenCar would stay at anchor pairfbr a period of sojourn timeé* to gather
data from nearby sensors. In some time-sensitive appitstithe data gathering
task is expected to be completed in a bounded period, whiefusralent to con-
straining the total sojourn time at all anchor points withifimit. We denote such
a limit by 7" and call it the bound of total sojourn time. Moreover, coesiidg the
prevalence of unreliable channels in WSNS§|[ we assume that the data transmis-
sion between sensarand the SenCar at anchor poinexperiences a lossy link
with a successful delivery ratio @f. Thus, in order to ensure the SenCar receives
x¢ amount of data, sensoneeds to send oépt}_ii amount of packets.

In order to characterize the impact of data uploading frorareer to the Sen-
Car at a particular anchor point on the overall data gathgramfprmance, we intro-
duce acost functionC¢(-), as a strictly convex, increasing and twice-differengabl
function with respect to the amount of data uploaded fronssento the SenCar
at anchor point. (i.e., z¢). In practice, the “cost” can be evaluate in terms of en-
ergy consumption, monetary cost or other metrics modelsgy application needs.
Cost functionC¢(-) implicitly quantifies the suitability for senserto upload data
towards the SenCar at anchor paintCorrespondingly, thaetwork costs defined
as the sum of data gathering costs of all sensors at all apdhots. Our work in
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Table 5.1: List of notations used in problem formulation.
Notation | Definition
N Set of sensors
A Set of anchor points
Ne@ Set of sensors in the coverage of anchor pejot® C N
A; Set of neighboring anchor points of sensad; C A

t* Sojourn time of SenCar at anchor pint

T Bound of total sojourn time at all anchor points in a data
gathering tour

x Data amount sensetuploads to the SenCar at anchor paint
in a data gathering tour

Dy Stochastic successful delivery ratio of a link from sensor

1 to the SenCar at anchor point

B Channel bandwidth of the system

M; Minimum amount of data senséneeds to upload to the
SenCar in a data gathering tour

this chapter is to minimize the network cost by means of piggeheduling com-
munications between sensors and the SenCar and dynamidjibfiag the sojourn
time at different anchor points.

The network cost minimization problem can be formalizedddiss:

Definition 2. NCM: Network Cost Minimization Problem for Mobile Data Gather-
ing in WSNs.Given a set of sensorgy, a set of anchor points4, the minimum
data amount of sensaér(: € N), M;, and the bound of total sojourn time at all
anchor points7’, find: (1) the data amount’ uploaded from sensatto the SenCar
at anchor point; (2) the sojourn timé® of the SenCar at anchor poiat such that
network cost is minimized.

Using the notations listed in Tabk1, the NCM problem can be formulated
into the following convex optimization problem.
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NCM:

Minimize > > C#(x%) (5.1)
acAicNa

Subjectto > 2t > M;, VieN (5.2)
acA;

YU <Bte, YaeA (5.3)
ieNat

>t < T, (5.4)
acA

Over  z¢,t* >0, Vie N Vae A (5.5)

The constraints in the NCM problem can be explained as follows

e Data constraintq.2) shows that for each sensor, its aggregated uploaded data
at all anchor points should be no less than the specified mmi@mount.

e Link capacity constrainty.3) enforces that when the SenCar is located at an-
chor pointa, the total transmitted data amount from the sensors in tighne
borhood is restricted by the product of channel bandwigiind sojourn time
te.

e Total sojourn time constrain(4) ensures that the total sojourn time of the
SenCar at all anchor points is boundedhy

5.4 Problem Decomposition and Pricing-based Algo-
rithm

In the previous section, we provided the formulation of tHeNNproblem. Since
the problem has a strictly convex function with respecttola € A,i € N?)
and is over a convex feasible region, the NCM problem is mattieaily tractable.
However, there exist some difficulties to directly solvgit) Cost functionsC¢(-),
foralla € A,7 € N?, are typically the knowledge of sensors and are unlikely to
be known by the network provider or a central controller; D2 to the asymme-
try of wireless channels, the successful delivery rafighat indicates the uplink
channel quality from a sensor to the SenCar at an anchor p@ptnot be easily
obtained by sensors, which are the senders in the tranemsssT his information
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can be available at the SenCar by performing a receiving asbm (3) The ad-
justable variables¢ andt® in the formulation in fact reveal the behaviors of differ-
ent entities, where? reflects the schedule on data uploading at each sensor, and in
contrast;® characterizes the movement of the SenCar; (4) Finally, itevbe diffi-

cult to implement a solution in any centralized way in a WSNcifoumvent these
difficulties, next we decompose the NCM problem into two sienubproblems
[60][63].

Suppose sensorchooses to pay! for the data uploading opportunity when the
SenCar stops at anchor pomtin a data gathering tour, and in return is permitted
to uploadz¢ amount of data proportional tgf, i.e., ¢! = \?z¢, where\? can be
considered as the price for uploading a unit amount of dagattre link from sensor
i to the SenCar at anchor poiat In the following, we simply call\¢ link price.
Then, the local cost minimization problem for sensoan be expressed as follows.

SENSOR i:

Minimize > C¢ (i—) + >4

acA; . acA;
Subjectto Y 1= > M;, (5.6)
acA; "
Over ¢! >0, Va € A,

In the above we consider two parts of costs for sefsor, C¢ (i—) represents
a€A; ’
the sum of data uploading cost to all the neighboring anchontg of sensot, and

> ¢¢ is the total payment used in competing for the data uploaoipgrtunity. In
a€A;
SENSOR i problem, given link prices\¢’s, sensor independently minimizes its

overall cost under the constraint that its aggregated delddata is no less thayi;.
Note that to solve this problem, there is no need for sehtohave the knowledge
of link conditionp¢ for all a € A,.

On the other hand, given the payments from all sensors, th€&etries to

maximize functiond S > ¢%log(x¢%) under the constraints of channel capacity and
acAieNe
total sojourn time bound. In other words, the SenCar needslte she following

optimization problem.
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SENCAR:

Maximize > > ¢ log(zY)
acAieN®
Subjectto ) - < B-t"Vac A
ienNat (5.7)
> 1< T,
acA

Over z¢,t* >0, Vi e N Va € A

Clearly, the above maximization problem does not requireSem@Car to know the
cost functiongC4(-) for all « € A andi € N°.

The following theorem shows that by solving SENSGRNnd SENCAR prob-
lems, optimal data control and sojourn time allocation caadhieved as the global
cost minimization (i.e. NCM) problem.

Theorem 4. There exist non-negative matrices= {z¢la € A,i € N}, ¢ =
{¢la € Aji € N°} and X = {\a € A,i € N*}, and non-negative vector
t = {t*|a € A} with ¢* = \¢z¢,Vi € N, a € A; such that

(a) Fori e N, with ¢ > 0 for all a € A;, ¢; = {¢!|a € A;} is the solution to the
SENSOR: problem;

(b) Given that each sensor is charggtfor uploading data to the SenCar when it
is located at anchor poini, (z, ) is the solution to the SENCAR problem;

In addition, given such, A\, ¢ > 0, matrixx and vectort solve the NCM problem.

Proof. We first show the existence af ¢ and\ that satisfy(a) and(b), and then
prove that the correspondirtg, ¢) is the solution to the NCM problem.

We assume that with proper settings of parametérand?’, there always ex-
ist feasible variable matrices and ¢, and variable vectot that satisfy the con-
straints in NCM, SENSOR; and SENCAR problems with strict inequality, which
means that they are interior points in the feasible regiah@fespective problem.
Thus, the Slater’s condition for constraint qualificatisrsatisfied $8][50]. Since
SENSOR i, SENCAR and NCM problems are all convex problems, the solution
to each problem that satisfies the corresponding KarusmKuitker (KKT) con-
ditions is sufficient to be optimal for the respective probl©g].

For the global cost minimization problem (i.e., NCM), we adtuce non-negative
Lagrangian multipliers®, 1; and~ for the constraints ing.2)-(5.4), respectively.
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Then, the Lagrangian of NCM can be obtained as

LSYixa to,p, ’7) .
= 2 2 Caf)+ Yo' ( X o5 — Bt

acAieNa acA ieNa?
—>o (Do xd = M)+ (X0t =1T).
ieEN acA acA

Assumingz* = {z¢*ja € A,i € N°} andt* = {t**|a € A} are the optimal
solution to the NCM problem, we obtain the following KKT cotidns.

oL , ax
B o @)+ T - =0, (5.8)
Ox; p;
Va € A,i € N,
oL
= =0 B 47" =0Va € A (5.9)
o™(S_ T~ Bty = 0,Va € A, (5.10)
iene Pi
wi () = M) =0,¥i € N, (5.11)
aceA
vt -1T) =0, (5.12)
acA
i >0,t"" > 0,Va € A,i € N°, (5.13)
o u*, v >0,Vae Ai e N. (5.14)

Introducingy; as the Lagrangian multipliers for the data constraint of SEIR_,
its Lagrangian is given by

Lseni(q,v,¢)

- yor(f)+ Sa-uS - M),

a€A; a€A; a€A

By the KKT conditionsg = {¢/*|a € A;} is the optimal solution to SENSOR
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problem if and only if there existg that satisfies

OLsen i 1 o (g™ vF
e () 1o _gvaea, 5.15
O () +1- S moveea o1
(> L vy =, (5.16)
acA "t
¢" > 0,Ya € A, (5.17)
Vi > 0. (5.18)

Similarly, introducing multipliersx® and g for the constraints of SENCAR prob-
lem, the Lagrangian of SENCAR can be expressed as follows.

Lecarz,t,a, 3, p, )

= % Y gflogat + Yox( Y 4 - Bro)

acAieN @ acA ieNe
+0(2tr=T)
acA
For a givery, by the KKT conditions, we have that matrix and vectort* are the
optimal solutions to SENCAR problem if and only if there exi$t= {a“*|a € A}
and(* such that

ax*

OLcar 4«

- + =0,Vae A,i € N, (5.19)
L
aa;ar = —a"B+ " =0,Va € A, (5.20)
o™ (YT - B = 0,Va € A, (5.21)
iene Pi
O 1 =T) =0, (5.22)
aceA

x> 0,1 > 0,Va € A,i € N, (5.23)
a®™ > 0,0 >0,Va € A. (5.24)

Let (z*,t*) be the optimal solution to the NCM problem aatl ;.* and~* be the
corresponding multipliers that satisfy the KKT conditiong5.8)-(5.14). Letz! =

010 = 1, N = 20 andg? = 2 2%, Itis clear thatr?, t%, A\¢ andg? are all
p; p;

non-negative. By defining“ = ¢% andfg = ~*, we find thatz, ¢, « and 5 satisfy
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the KKT conditions for SENCAR problem ir6(19-(5.24). Thus, (x,t) solves
SENCAR, which implies that the solution satisfying KKT conaiits of NCM also
identifies a solution to SENCAR. Defining = pu,;* together With)\a = the
KKT conditions of SENSOR: problem are satisfied such thgt = “* IS the
solution to SENSOR:. This analysis establishes the existence,of andt

On the other hand, suppose we are givehand\ satisfying conditionga) and
(b) of the theorem. We show thét, t) is the solution to NCM. It is clear that by
(5.19 and the deflnltlon of\¢, we have\! = p . Lettingo® = a* andp; = v;,
we have that? = 2. and condition %.8) of NCM holds by 6 15. Furthermore,
lettingy = 3, condltlons in 6.9-(5.14 are equivalent t05.16-(5.18 and 6.20-
(5.29). Thus,z,t, o, n and~ satisfy the KKT conditions ing.8)-(5.14). Therefore,
we conclude thatz, t) solves NCM. O

Theorem4 implies that instead of directly solving the NCM problem gatta-
tively we can jointly solve the SENSQR and SENCAR subproblems, which have
less complexity and facilitate a distributed implemermtatior the solution. System
optimum can be achieved when sensors’ paymemd SenCar’s data controland
link price A reach equilibrium, i.eg? = X¢x¢ foralla € A,i € N°.

The SENCAR problem requires the payment information frontredlsensors.
It may incur high communication overhead if the SENCAR prabis solved in a
centralized way1]. Thus, we consider its dual problem to decompose it intd a se
of subproblems with respect to each anchor pdift][ 103. By taking advantage
of the fact that there is a sensor at each anchor point, theabllems can be solved
with the aid of these sensors. For clarity, we call thegtp nodesn the following.
This way, to announce paymet, sensor only needs to locally inform the help
node at anchor point.

We form the dual problem of SENCAR by introducing Lagrangiauitipliers
a®’s (a € A) for channel capacity constraints. This results in theigldragrangian
as

Lig(z,t,0) = =37 > qilogaf + > a%( ) _—Bta)

acAicNa acA ieNa Pi
=3 % (—arlogag +at) - Satbre,
acAieNa ¢ acA

wherea” is also referred to ashadow priceof anchor point.
Given price), the minimum ofL!_. occurs whenc¢ = ¢¢/A\¢. Thus, the dual
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function is defined as

o) = int { Lear($.t,0) | S < 7}
t acA
Correspondingly, the dual problem is to find a shadow pricéovec¢’ that maxi-
mizes dual functio(«).
Moreover, based on Lagrangidg g, We have

a

oL a a
ﬂ—_q_za+a :_)\?+Q_

ox¢ X DY pg -

7 7

For the optimum solution to the SENCAR problem, we hgsg&;&ﬂ =0,i.e,\ =
‘;— This can be interpreted as that link priggefrom sensot to anchor point is
actually determined by the shadow price of this anchor pamakthe quality of the
link between them.

From the above analysis, we can see that data matrix the optimal solution
to the NCM problem if and only if there exists shadow price weat* solving the
dual problem of SENCAR such that for eack A, i € N, we have that!* = i—
where)¢ = ”T andgq? is the solution to the SENSQOR problem for a givem%.
Based on this result, to find the optimal solution, we will grally vary shadow
price o of anchor points, derive link price accordingly and give data amount

as a function of link price\. When shadow price vectar iteratively converges to

its optimumca*, the optimal solution to the NCM problem can be achieved. Note

that the shadow price is associated with an anchor pointreftre, the task of

finding optimal vector* can be done by the help node at each anchor point in a

distributed manner. Next, we propose a pricing-based @lfgoito jointly solve the
dual problem of SENCAR and SENSOR

Pricing-based Algorithm:

For alla € A, the help node independently initializes the shadow pitéor
anchor point: to a positive value.

Repeat the following iteration until the shadow price vect@monverges ta*.

At iterationn,

e Foralla € A, the help node at anchor pointietermines link price¢(n) for
all 7 € N by setting
N (n) = 5,
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and then sends this information to sensors in its neighlmatho

For alli € N, after learning link price\¢(n) for all a € A;, sensor decides
its paymentg(n)’s for its neighboring anchor points by solving SENSOR
problem to minimize the local cost, i.e.,

() = arg i | zca(v L)+ T

20 LacA,; acA;

/\a > l},)ﬁ(n)>0,

a.AL

and then announces these payments to the correspondingdulp at neigh-
boring anchor points.

Help nodes exchange the information of shadow prices. Incses that
the help nodes are not connected, we assume that they cdighsg kigher
transmission power to ensure a minimum degree of conngcéimong them-
selves. Once obtaining the payment information from neasdsysors, the
help node at each anchor pointvould derive the possible data amount that
each nearby sensor can upload to the SenCar when arrivingsartbhor
point based on the respective link cost, i.e., for each A andi € V¢, the
help nodes set

i (n) = g (n) /X (n). (5.25)

In order to minimizeL¢gy, €ach help node sets the sojourn time for its located
anchor point by following rule

T, If a = argmaxa®(n)
1(n) = acA (5.26)

0, Otherwise.
Upon receiving the payment information from all sensorsameighborhood

and having identified the sojourn time, each help node updat shadow
price for its located anchor point according to

a’(n+1) = [aa(n) +6(n) < s Bta(n))} ' , (5.27)

ieNa P
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where[-]* denotes the projection onto the positive orthant @&nd is a pro-
perly chosen scalar stepsize for iteratienin our algorithm, we choose the
diminishing stepsize, i.ef(n) = d/(b + cn), Vn,c,d > 0,b > 0, whereb,

c andd are adjustable parameters that regulate the convergered.spphe
diminishing stepsize can guarantee the convergence tegardf the initial
value ofa® [98].

¢ Note that SENCAR problem is not strictly concave with resgeciojourn
time ¢, which implies that the values af in the optimal solution to the
Lagrangian dual cannot be directly applied to the primal SBR problem.
In view of this, we recover the solutions by applying the noetimtroduced
in [100. For iterationn, we compose a primal feasiblé(n) as follows.

{ (1) n=1 (5.28)

It was proved in 10Q that when the diminishing stepsize is used, any ac-
cumulation point of sequendg®(n)} generated by5.28) is feasible to the
primal problem and“(n)} can converge to a primal optimal solution.

Finally, the converged value of matrixn) = {z%(n)li € N,a € A} and
vectori(n) = {t%(n)|a € A} indicates the optimal data control for sensors and the
optimal sojourn time allocation for the SenCar, i(e.,?) is the optimal solution to
the NCM problem.

5.5 Local Cost Minimization at Sensors

In this section, we consider the second step of the pricaget algorithm: how
to solve SENSOR; problem by each sensor under given link price vector~
{\M]a € A;}. As aforementioned;'?(-) is @ monotonic increasing function. Thus,
the minimum of the objective function i) should be achieved when,_ ,. i—z =
M;. Considering this fact, the SENSQRproblem can be rewritten as follows.
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SENSOR :

Minimize " C¢ ( ) + > q
ac€A; a€A;
Subjectto Y i— = M;, (5.29)
acA; "
Over ¢* >0, Va € A;

Let f; denote the objective function of SENSOR Sincef; = > Cf(i—i) +
CLGAZ' !

Sigr = 3 Cr(E) + S AL, f; is afunction with respect to variable vector
acA; a€A; ¢ acA; ¢

x; = {xf =
data vector at senser

For each sensarleta; be the index of the minimum-marginal-cost anchor point
for sensotfi. That s,

- dfi(x;) . . o [ 4 a
a—arggrél%{ Ot }—arg(rlré%{q (>\—;z + A 7.

If there are multiple minimum-marginal-cost anchor pgjint® can randomly
choose one. Since SENSORis a convex problem, we can characterize solution
q; by the following optimality condition97][105.

; can be considered as the demand of uploading

Ofi(z] a a*
S D) (g — o)

a€A; dmi ! ’
= Z (@ (%) x) (55) =0

This optimality condition can be equivalently expressed as

*> 0, onlyif [8’;?)2 Ole) g EA}

That is, for each anchor poiat € A;, sensori only pays for the data uploading
opportunity to the SenCar at those anchor points that in@ntimimum marginal
cost. This intuitively suggests that sens@hould gradually shift the payment to
the minimum-marginal-cost anchor point from other neigitigpanchor points and
finally reach an equilibrium, where the aggregated marginat of anchor points
selected for data uploading is less than or equal to that £$lented anchor points
[104. In the following, we present an adaptation algorithm tsiatkes for such
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equilibrium.

Adaptation algorithm:
1. Case |: Ifl4;| = 1, theng! = \¢M;;
2. Case Il: If|A;| > 1, sensot first initializes its payment vectag (0) = {¢?(0) >
Ola € A;} that satisfies, . ‘15;;0) — M;. For example, we can lef (0) = Tt
where|.4;| represents the cardinality of sdt. Then, it iteratively updates vector
¢;(k) according to

g (k+1) = p(k)g' (k) + [1 — o(k)]g (k),Va € A; (5.30)
( @) of) )]
{Qf(k) — (k)N ( 183;? N aa:‘j )]
g (k) = if a € Ai,a # a; andgj (k) > 0, (5.31)
N M- Y EW ) ifa = a,,
\ a€A;,a#a; @

where[-]* denotes the projection onto the non-negative orthargtands for the
iteration indexy (k) is a small positive scalar stepsize, and) is a scalar offa, 1]

with 0 < a < 1. In other words, the new payment for each neighboring anchor
point is a weighted average of the amount in the previouatitar and currently
derived optimal value.

The adaptation algorithm can be explained as follows. Ihanpointa is not
chosen as the minimum-marginal-cost anchor point by sen@a., a # a;) and
there still exists positive payment for it, this paymentdiddbe reduced. On the
contrary, ifa is chosen as the minimum-marginal-cost anchor point @.e=, a;),
the payment for it should be increased and the increasedrarsoproportional to
the linear combination of the aggregated payment shiftad &l other neighboring
anchor points of senseiin order to ensurg _ . i—a = M;.

We have the following theorem regarding the convergencénefadaptation
algorithm.

Theorem 5. When stepsizé(k) is small enough, the adaptation algorithm con-
verges to a unique optimal solutigfi to the SENSOR: problem.

Proof. We first show that whe (k) is no more than a certain value, adjusting
payment vectoy; by the adaptation algorithm i (30-(5.31) always results in the
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decrease of local cost at sensare., f;(z;(k+ 1)) < f(x;(k)). Then we show that
such adaptation would finally reach an equilibrium to achithe unique optimal
solutiongf = {¢**|a € A;}.

From the adaptation algorithm, it is straightforward toifyer

7t (k)—q%
Z ql()\){z 9 _ 07 and (532)

acA; ¢

N 2
a; o A¢
< Ai > (aEAna#di ‘ ) (5.33)

< (Al-1)- X (B
a€A; a#a; v

It is clear thatf;(x;) is defined on the compact set= {z¢ € x;| > ¢ = M;, ¢ >
G,E.Ai

0}. As V2 f; is continuous ory, we assume that its norm is bounded by some scalar
L > 0[107. Denoting the cost difference between two consecutivatitens as
A,, and applying the mean value theored7][107], we have

Ay = filzi(k+1)) = fi(wi(k))
< < Vfilas(k), zlk + 1) — z4(k) > (5.34)
2|k + 1) — (k)

Based on§.34 andqf (k + 1) — ¢?(k) = ¢(k)(@}(k) — ¢?(k)) by (5.30, A,, can
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be rewritten as

Ofi(x;(k _g‘k—,?‘k
A, < 2;4 féw; ))90(/{) <q ( )/\?q ( ))
acA;

7% (k) —qo (k) \ 2
+%(,02(/€) Z (qz( )/\?qz( ))

a€A;

_ Ofi(zi(k))  Ofi(zi(k)) q; (k)—qf (k)
= Z( o T g )SO(’f) ()

acA; ¢

Ofi(x; q; (k)—qi (k
k) gy 3 (%)

Bz?’ acA; 9
a®(k)—aq%(k
—l—%(pQ(k‘) g, (q,( )/\?qz( ))
Bixik aixik _gk‘—?k‘ (5'35)
-z et _ ot ))) (k) <q )i >>

7% (k) —qo (k) \ 2
—i—%QDQ(k) Z <qz( )/\?qz( ))

a€A; 5
a q; (k)—q (k)
<- ¥ s (M) +
a€A;,a#a;

R N 2
g (k)—q’ (k) g (k) —q2 (k) \ *
[( N ) > < A ) ]

i acA;,a#a;
a0 a\ 2
a L 4 —9;
< 2. (=) (55)
a€A;,a#a;

where the first equality follows from adding and subtractthg same term of

Wg@(/{) > (W) the second equality holds by.82), the second in-
Zi a€A; i

equality follows from the fact that < ¢ < 1 and the observation by (31 that

formla7édhaﬂg§k”——aﬁgék”;2‘#fgg?“,andthethhdinequaMyruﬂdsby

(5.33. Therefore, when(k) < % the right side of%.35 is non-positive so that
filz;(k+1)) < fi(x;(k)) always holds. This implies that the updating{ori(k)}
by the adaptation algorithm always reduces the local costraor.

From the KKT conditions of the SENSQRproblem listed in%.15-(5.18, we

can obtairCf'(‘f;) + A\ = vf. SinceCY¢(-) is strictly convex, increasing and twice
differentiable, the inverse function 6*'(-), i.e.,C% ~1(.), exists and is continuous.

Thus, over the orthant'* > 0 for all a € A;, we have

Slle

>

- { 0, if v < CY(0) + X (5.36)

K NGO A8, i b > O (0) + AL
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129 _anchor Pwmor Point 2

Anchor Point 1

Figure 5.2: An example network with 12 sensors and 3 anchiotgo

In the adaptation algorithm, in order to obtain the optin@iiBon, we always in-

a,
7
4q;

a
7
)\i

crease the minimum marginal cost, i.€% ( ) + A%, by increasing the cor-

responding paymenj® for anchor pointa;, and decrease other marginal costs
C;l’ (i—) + A for all a € A; anda # a; by reducing the payments for them.
In thislway, we stipulate the marginal costs towards to timeesealuer; for all an-
chor points with positive*’s (a € A;). Therefore, at the equilibrium, the unique

1

optimal solution can be achieved y.36). O

5.6 Simulation Results

In this section, we provide simulation results to demonstthe usage and effi-
ciency of the proposed algorithm and compare its performawvith another data
gathering strategy.

5.6.1 Convergence

In this subsection, we illustrate the convergence of theimgibased algorithm via
a numerical case study. We consider a WSN with a totdl2o$ensors as shown
in Fig. 5.2 The locations of sensofs 4 and5 are chosen as anchor points and
each of these sensors would act as the helping node in carggatithe respective
anchor point. In the figure, there is a link between an ancbort@nd each of its
neighboring sensors. We define the cost functiodgs&r?) = wez$?, wherew?
is the weight of cost for sensarto upload data to the SenCar at anchor paint
Clearly, a larger weight would have more impact on the entire network cost. For
clarity, we list all the parameter settings in Tabl&

Fig. 5.3 shows the evolution of network cost, shadow pri¢e recovered so-

journ time variablet®, and data variable? versus the number of iterations in the
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Table 5.2: Parameter settings.

Notation | Value Notation | Value

w ranging from 0.01t0 0.08 T 42 seconds
B 250kbps 0(n) e

e ranging from 0.7 to 1 d(k) 0.03

M; 800Kb o(k) 0.8

pricing-based algorithm. It can be seen from FdXa) that network cost first drops
sharply in the first few iterations and then slightly decesasntil it reaches opti-
mum. It falls within2% of its optimum after onlyl0 iterations. Fig.5.3(b) shows
that the shadow prices of three anchor points converge &styaind they finally
reach almost the same value in the equilibrium. Since all@lgrices are much
larger than zero, it indicates that the communication ojypaty between sensors
and the SenCar at all anchor points is fully utilized. By theuatipent policy on
shadow prices in the pricing-based algorithm, wiiéis large enough to satisfy all
the data uploading demands from sensors to each anchor p@rdorresponding
shadow prices can be reduced to almost zero. 5-&fc) shows the convergence of
recovered sojourn time at different anchor points. It farthalidates that at any it-
eration step, the recovered sojourn time is feasible totinegh SENCAR problem,
i.e, satisfying the total sojourn time constraint, and wianinishing stepsize is
used, the recovery process guarantees its convergencértaop In Fig. 5.3(d)-
(f), we investigate the evolution of the data amount uploadem selected sensors
1, 6 and10 to their neighboring anchor points. We can see that theypali@ach the
stable state afte200 iterations. For a particular sensor, say, seris@s its weight
of the cost for anchor poiritis smaller than those of other two anchor points, more
data would destine to the SenCar at anchor pbis as to minimize the cost. In
Fig. 5.4, we plot two instances to demonstrate the convergence addhptation
algorithm for solving the SENSOR problem with stepsizé(k) = 0.03. We fo-
cus on sensot in two cases where link price vectors axe = {1.11,2,3} and
A = {124.6,112.3,111.97}, respectively. In both cases, we find that the payment
for each neighboring anchor point can be determined in ab@iit iterations. It
is clear that the smaller the stepsize is, the slower theaxgewnce is, however, the
smoother the adaptation towards optimum. In practice dessiising the constant
stepsize for the adaptation algorithm as in our simulatieash sensor can dynam-
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ically set its stepsize by first choosing a larger value taisngaster convergence,
and subsequently reducing the stepsize once there is dtatisgiaround some
values.

5.6.2 Network Cost

In this subsection, we conduct a suite of simulations touatal the network cost
achieved by the pricing-based algorithm and compare thétsasith another data
gathering strategy called cluster-based algorithm, whensors are virtually clus-
tered, i.e., each sensor is randomly associated with a lpefigly anchor point and
uploads all its data to the SenCar only when it arrives at thehar point. This
algorithm is commonly considered as a simple and effectnagegyy for the anchor-
based range traversing data gathering scheme in the gxXiséirature R8J[33]. We
consider a generic sensor network wjitti| sensors randomly distributed over the
sensing field andl4| anchor points that can cover all sensors. The cost functions
are defined ag’?(z¢) = wiz?? for all a € A, i € N and the weights of the
costw{’s are generated as discrete uniform random numbers raf@img0.01 to
0.10. We assume the minimum data amou} is equally set for all sensors and
its value equal800KDb if not specified otherwise. The channel bandwidkis set
to 250Kbps. Moreover, we introducg to denote the average successful delivery
ratio of all links and use it to characterize the physicaldibon of the network.
The successful delivery ratjg of each link between a sensor and an anchor point
would ranges fron2p — 1 to 1. Considering the randomness of the network topol-
ogy, each performance point in the figures below is the aeevhthe results in00
simulation experiments.

Fig. 5.5 plots the network cost of the pricing-based algorithm whenkiound
of total sojourn timel’ is varied from175 seconds t@25 seconds. The number
of sensord /| is set to50 and the number of anchor poinitd| is set to3. We
investigate network cost of four cases, whgexuals.8, 0.85, 0.9, 0.95 and1, re-
spectively. It can be seen from the figure that in most cas#sjank cost decreases
asT increases. This result is reasonable and can be explairielioag. Since cost
function C¢(-) is convex, it is expected that each sensor sends parts cditistol
the SenCar at different anchor points so as to minimize theeggted cost. When
the restriction on the total sojourn time becomes looseh saasor can send the
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Figure 5.3: The evolution of network cost, shadow pricesféent anchor points,
recovered sojourn time for SenCar stopping at different anphints, and upload-
ing data from sensor, 6 and 10 versus the number of iterations in the pricing-
based algorithm.
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Figure 5.5: Network cost of the pricing-based algorithm &sn&tion of the bound
of total sojourn timer".

preferred amount of data to the SenCar more freely at difterechor points, oth-
erwise, in order to ensure the bound of total sojourn timesaees are restricted to
send more data to the SenCar at some particular anchor poiotder to complete
the data uploading in a shorter time. We also notice that fgiven 7', the cases
with a largerp always achieve lower network cost than the cases with a small
For instance, whefi’ = 180s, the case gf = 0.95 results in around0% improve-
ment on the network cost with respect to the casg ef 0.8. WhenT becomes
large enough, such &8 > 220s, all the cases reach the same minimum network
cost, which implies thal’ no longer affects the network performance and the ben-
efit of data control that smartly schedules the communiondtigtween sensors and
the SenCar at different anchor points can be fully extracyeallicases.
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Figure 5.6: Network cost of the pricing-based algorithm &sn&tion of minimum
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Fig. 5.6 plots the network cost of the pricing-based algorithm whenrini-
mum amount of each senspf; is varied from600Kb to 800Kb. We consider the
network with100 sensors and all sensors holding the same minimum consirgint
for gathered data amount. We assume jhat equal t00.8 and the total sojourn
time bound?’ is set asy . M;/(p - B). We consider five cases, where the number
of anchor points, i.e,4], is varied from3 to 7. It is shown in the figure that the
network cost increases with/;. This is intuitive as the network cost is the ag-
gregation of the data cost and each data cost function is tooically increased
with the data mount transmitted from a sensor to an anchat.p@hen the total
data mount); becomes large, the data of a sensor destined to a particwdao&a
point may correspondingly increased, though the extensh@ease may be dif-
ferent from one anchor point to another. We also notice thaafgiveni/;, the
network cost would decrease with the increase of the nunfierahor points. For
example, whenV/; = 800Kb, the network cost of the case withl| = 7 is 30%
lower than that of the case wiltd| = 3. This is because that larged| implies
that each sensor would have more neighboring anchor paiiis. provides more
opportunities for each sensor to preferentially balanseeldta to different anchor
points, which would result in less network cost.

Fig. 5.7 shows the network cost comparison between the pricingebalggm-
rithm and the cluster-based algorithm when the number cdasns varied from
10 to 200 under different settings df4| and M;. We use PA and CA to denote
the pricing-based algorithm and the cluster-based alyarin the figure, respec-
tively. The total sojourn time bouridl is set to4.5|\/| seconds, which is sufficient
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Figure 5.7: Network cost comparison between the pricirgedalgorithm and the
cluster-based algorithm.

to accommodate the data uploading from all sensors. Frofigiines, we can draw
some observations. First, network cost increases in afiscatboth algorithms as
the number of sensors increases. This is intuitive. As eabB® needs to up-
load certain amount of data to the SenCar, more cost is irttiyehe increase of
sensors. Second, gived| and M, the pricing-based algorithm always achieves
lower network cost. For example, whél'| = 100, |.A] = 3, andM; = 800Kb,
the pricing-based algorithm results 32% less network cost with respect to the
cluster-based algorithm. The underlying reason for suglesority of the pricing-
based algorithm is that each sensor can adaptively spliaits and send the data to
the SenCar at different neighboring anchor points such teaaggregated cost is
minimized. Third, the increase afi| can effectively reduce the network cost for
pricing-based algorithm, however, it has little impact be performance of cluster-
based algorithm. This is because that no matter how manyapcints there are,
in the cluster-based algorithm, each sensor is associatiedmy one anchor point.
That means that there is no much chance to greatly alle\natddta cost at each
sensor since each sensor can not send its data disperséutySenCar at multiple
neighboring anchor points.
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5.7 Conclusions

In this chapter, we have studied performance optimizatioanchor-based range
traversing data gathering in WSNs. We formalized the probdsna cost mini-
mization problem constrained by channel capacity, the mumh amount of data
uploaded from each sensor and the bound of total sojourndtrak anchor points.
We characterized this problem as a pricing mechanism andnggased it into
two simpler subproblems, i.e., SENSORand SENCAR subproblems. We have
proved that network cost can be minimized by jointly solvihg two subprob-
lems. Correspondingly, we described a pricing-based dlgorthat iteratively
solves SENSOR: and the dual problem of SENCAR. In each iteration, the help
node sets the shadow price for its local anchor point andreetink prices be-
tween neighboring sensors and the anchor point. Each raigigbsensor then de-
termines the payments to minimize its local cost. The mimmmetwork cost can
be achieved when reaching the equilibrium that reconesisite two subproblems.
We also proposed an efficient adaptation algorithm for saglthe SENSOR: sub-
problem at each sensor. Finally, we gave extensive sinoulagsults to validate
the efficiency of the proposed algorithm and compare itsoperdnce with another
data gathering strategy.
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Chapter 6

Distributed Network Utility
Maximization Algorithms for Mobile
Data Gathering in WSNs

In this chapter, we study the performance optimization focher-based mobile
data gathering, where the SenCar roams over the sensingyieisiting the anchor
points and gathers data from nearby sensors via multi-laogtnissions. As routing
issue is also taken into consideration, the problem becewes more complicated
than the problem in the previous chapter. We characterigénformance opti-
mization as network utility maximization problems undee ttonstraints of guar-
anteed network lifetime and data gathering latency. Werasgihe data utility at
each sensor is a function with respect to the total amountatd dathered from
this sensor in a data gathering tour. Timetwork utilityis defined as the aggre-
gation of the data utility of all sensors. We use networkitytés a direct metric
to evaluate the effectiveness of data gathering strategvesconsider the network
utility maximization problem for two cases depending on thiee the SenCar has
fixed or variable sojourn time at each anchor point. To effityesolve these prob-
lems, we decompose each of them into several subproblemsddwel them in a
distributed manner, which facilitates the scalable im@atation of the optimiza-
tion algorithms. Finally, we provide extensive numericggults to demonstrate the
usage and efficiency of the proposed algorithms and compieme theoretical
analysis.
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The remainder of this chapter is organized as follows. 8ed@il provides
the introduction of research issue. Sect®fdiscusses the related work. Section
6.3 introduces our system model and formulates the two casescornvex opti-
mization problems. Sectiors4 and6.5 present the optimization based distributed
algorithms to solve these two problems, respectively. IFin8ection6.6 gives the
performance evaluation results and SecBonconcludes the chapter.

6.1 Introduction

In this work, we consider anchor based mobile data gathasrghown in Fig6.1,
where a SenCar periodically starts a data gathering tourjraedch tour it vis-
its some pre-defined positions calladchor pointsin the field and stays at each
anchor point for a period afojourn timeto collect data from nearby sensors via
multi-hop transmissions. To characterize the data gathegyerformance, we in-
troducenetwork utility, which is a function quantifying the aggregated “value” of
the gathered data from different sensors in a data gath&sung In practice, the
“value” measure can be in terms of information entropy oereie, which provides
the flexibility of modeling user application needs, or a leye‘satisfaction” on a
certain amount of data from each sensor. In general, go@dgddihering strategies
should ensure an expected network lifetime and have a bduhata gathering la-
tency as well. Therefore, our overall objective is to mazienthe network utility
under the constraints of guaranteed network lifetime ana gathering latency. To
achieve this objective, we will address following threauiss that critically affect
the data gathering performance. First, from a sensor’'s pbiwiew, since the Sen-
Car may stay at different anchor points to collect data, howhmlata should be
sent from the sensor to the SenCar at a particular anchorp&etond, in terms
of communication efficiency, how to route the data to eaclinanpoint taking into
account of energy and link capacity constraints? Thirdnftbe SenCar’s point of
view, to bound the data gathering latency is actually to tansthe total sojourn
time at all anchor points under a threshold. Under thesemistances, what is the
optimal sojourn time at each anchor point?

Based on these considerations, in this chapter, we developingtion based
distributed algorithms to find optimal solutions to the ab@roblems. The main
contribution of our work can be summarized as follows: (ljnkalize the prob-
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Anchor Point o

Figure 6.1: lllustration of anchor-based mobile data gatige

lem of finding optimal mobile data gathering strategies astavork utility maxi-
mization problem with guaranteed network lifetime and dgttnering latency. (2)
Propose solutions to this problem for two cases, where ti€€&espends fixed
and variable sojourn time at each anchor point, respegtivEhe former case is
essentially a joint problem of rate control and optimal nogit and the latter case
involves the integration of data control, routing and sajotime allocation. (3)
Present distributed algorithms for the two cases to fatdiscalable implementa-
tions, in which each sensor only needs to exchange limitearnmation with its
direct neighbors and the SenCar. (4) Provide extensive noahegsults to demon-
strate the usage and efficiency of the proposed distribug¢editnms.

6.2 Related Work

There has been some work in the literature on optimizatiGethalata gathering
algorithms for both relay routing and mobile data gathering

For relay routing, Madan and Lalb{] proposed distributed algorithms based
on a dual decomposition approach to computing an optimaingthat maximizes
network lifetime. Hou, et. alg2] studied the lexicographical max-min (LMM) rate
allocation problem and developed a polynomial-time athoni by exploiting the
parametric analysis. They also showed the existence ofegaed duality between
the LMM rate allocation problem and the LMM node lifetime plem so that it is
sufficient to solve only one of the two problems. 58], Hua and Yum considered
optimizing data aggregation and maximum lifetime routiogdther, which aims to
reduce the traffic across the network and balance the traffavdid overwhelm-
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ing bottleneck nodes. Zhang, et. 8H#] studied the joint problem of sensing rate
control, data routing and energy allocation to maximize shgtem utility. They
first mapped the combined sensing/routing problem into Aashrouting problem
and then used a penalty function approach to solving theinénggjoint routing
and energy allocation problem. Wu, et. &b] studied the construction of a data
gathering tree to maximize the network lifetime. They shdwe problem is NP-
complete and designed a provably near-optimal algorithmit fevhich first starts
from building an arbitrary tree and then iteratively reduitee load on bottleneck
nodes. Sadagopan and KrishnamacHhaj £xamined the problem of maximizing
data extraction from energy-limited sensor networks, Whigquires attention to
“data-awareness” in addition to “energy-awareness.” Tioesnulated this prob-
lem as a linear program and presented an iterative appraximalgorithm for it.
Chen, et. al$7] studied the max-min optimal rate assignment problem imse
network, where all possible forwarding paths are consutlefdey provided an it-
erative linear programming solution, which finds the optinate assignment and a
forwarding schedule that implements the assignment in arédessensor network.
Liu, et. al [58] addressed the maximal lifetime scheduling problem in serar-
veillance systems. They proposed an optimal solution totfiedtarget-watching
schedule for sensors, in which the workload matrix obtaibgdising the linear
programming technique is first decomposed into a sequensehefdule matrices,
and then the surveillance trees are determined based andblesdule matrices.

For mobile data gathering, Xing, et. &d] proposed approximate algorithms
to minimize the distance of local multi-hop routing undee ttonstraint that the
tour length of the mobile collector is no more than a threshoZhao, et. al
[11Q studied the data gathering latency minimization probleith #he joint design
of mobility control and space-division multiple access &8 technique. They
proposed algorithms for different scenarios by balancirggttadeoff between the
shortest moving tour of the mobile collector and the fullizéition of SDMA for
data transmissions. Gatzianas and Georgi&djgdresented a distributed algorithm
for maximum lifetime routing in a sensor network with a melsink by assuming
a constant data rate for each sensor and defining the netietitne as the total
sojourn time of the mobile collector.

Our work in this chapter focuses on the performance optitimzaof anchor
based mobile data gathering and differs from the earliekwothe following as-
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pects: (1) In contrast to the fixed data rate assumed in mssirexwork [50][53][ 59,
each sensor in our scheme may adopt a variable data rateitbcargestion. (2)
Different from the optimal routing with a static data sirB0[-[58], in our setting,
each sensor can use any set of possible routes to reach t@arSerhis implies
that on one hand, each sensor has options to send data tortGarSa different
anchor points; on the other hand, the routing path for eaehifsp sensor-anchor
point pair should be energy efficient. (3) In addition to themgy constraint that en-
sures network lifetimeJ0][52][ 53][ 36][59], we also impose the latency constraint
on mobile data gathering and jointly optimize the sojounmetiat each anchor point
with the rate control and routing problems. To the best ofkmawledge, this is the
first work that explores such optimization and systemdtigadovides solutions to
these problems.

6.3 System Model and Problem Formulations

6.3.1 System Model

Consider a network with a set of static sensors, denotetl’ bgind a set of anchor
points, denoted byl. In a periodic data gathering tour, the SenCar, denoted by
roams over the field and collects data by visiting each anpbort in a specified
sequence.

To capture the characteristics of the SenCar movements dieredt anchor
points, we model the sensor network with the SenCar locatad ahchor point
(a € A) by a directed grapliz*(V*, E*). V* = N'|J{s"} and it represents the
set of nodes, including all the sensors and the SenCar at mpoind « (denoted
by s*). E* = {(i,j)]i,7 € V*}, which is the set of directed links among the
sensors and the SenCar. Sens@r ¢ N) generates information for the SenCar
at a data rate of when the SenCar moves to anchor paintThe SenCar will
stay at anchor poini for a period of sojourn time® to gather the data routed to
it. To ensure that all the sensors can reach the SenCar in galtaring tour in a
multi-hop fashion, we assume that there exist routing pftm each sensor to at
least one anchor point in the network. This can be achievaatdyyerly placing the
anchor points, such as putting them within the transmissoiges of the sensors
that dominate the network connectivityg] or evenly distributed over the sensing
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Table 6.1: List of notations used in problem formulations.
Notation | Definition

N Set of sensors

A Set of anchor points

s® SenCar located at anchor point

t¢ Sojourn time of SenCar at anchor pint

AT Bound of data gathering latency, i.e., maximum total sojourn time
at all anchor points in a data gathering tour

E] Energy budget senséican use in a data gathering tour, which
guarantees specified network lifetiriie

q Data rate of sensarwhen SenCar is located at anchor paint
Qi Upper bound of the data rate of sensor

o Flow rate over link(i, j) when SenCar is at anchor point
F;; Capacity of link(z, )
eij Energy consumed for transmitting a unit flow over lifikj)
Ty Flow over link (4, ) when SenCar is located at anchor paint
Yi Total data gathered from sensdn a data gathering tour
Y; Upper bound of total data from sengan a data gathering tour
X Data split variable, i.e., fraction of the data of sensdestined to

SenCar at anchor point

field with sufficiently small intervals]1d.

Assume that sensarhas non-renewable battery enerfjy, which would be
gradually depleted as the sensor transmits its own dateegaybrdata for others. To
guarantee a specific network lifetifié we impose an energy expenditure budget
E! for sensori, which is the maximum energy the sensor can consume in a data
gathering tour. IfK data gathering tours would be performed within the network
lifetime, this budget can be approximatedigs= (E; — P;,T)/ K, whereP;, is the
sensing power of sensor Moreover, in some applications, it is expected that the
time cost of data gathering should be bounded. It is equivateconstraining the
total sojourn time at all anchor points to no more than a tiokek i.e.,) ", t* <
AT, whereAT is called the bound of data gathering latency.

To facilitate our studies, we uskata utilityto characterize the impact of the data
from a sensor on the overall data gathering performance. afleadthe data utility
function of sensot, U;(-), as a strictly concave, increasing and twice-differergiab
function with respect to the total amount of data gatherethfsensor in a data
gathering tour (i.e.y_ . , ¢/t?). There are several typical forms that can be used
for U;(-), such ad/; = w;log(1 + >°, 4 ¢t*) [10Z or U; = —w;(3_,c 4 ¢it*)~0?
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[54], wherew; is the utility weight of at sensar, reflecting the importance of its
data. In our discussions and formulations, we will simplg Us(-) as the general
form for the data utility function and adopt; = w;log(1 + _,. 4 ¢/t*) in the
simulations later. Accordingly, theetwork utilityis defined as the aggregation of
the data utility of all sensors.

In this work, we are interested in maximizing the networKitytiwhile guar-
anteeing a given network lifetime and data gathering latehcthe following, we
first consider the case where the SenCar spends fixed sojogratieach anchor
point and then extend our study to the case where the sojonenat each anchor
point can vary. Each of these cases corresponds to an ogtiarizoroblem. The
notations used in the problem formulations are given ing&tl

6.3.2 Formulation of Network Utility Maximization Problem with
Fixed Sojourn Time at Each Anchor Point (NUM-FT)

In this subsection, we consider the case that the SenCarsfigad sojourn time
at each anchor point, i.&/a € A, t* is given. Our objective aims to find the proper
data rate for each sensor and the flow rate for each link wieeBenCar moves over
different anchor points such that the network utility cannbaximized. Clearly,
this problem is essentially a joint rate control and rougmgblem, which can be
formally defined as follows. Since a longer sojourn time galtg corresponds to
more gathered data, without loss of generality, we assuatdith total sojourn time
at all anchor points reaches the data gathering latencydoun

Definition 3. Network Utility Maximization Problem with Fixed Sojourn Time a
Each Anchor point (NUM-FT)Given a set of sensoss’, a set of anchor pointd,
and the sojourn time at each anchor pefntc € Aand)_ _,t* = AT), find: (1)
data ratey; of sensori when the SenCar is at anchor point(2) flow rate f7; over
link (i, 7) € E* destined to the SenCar at anchor peinsuch that network utility
Yoien Ui(D e q @it?) is maximized.

The NUM-FT problem can be formulated as follows.

NUM-FT:  max S Ui( S ¢t9) (6.1)
ieEN aeA
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Y =g e Y fLVieNVae A 6.2)

J:(i,5)EE® J:(j,i)eEe

ST fhet < B, Vie N (6.3)
acAj:(i,j)eE

0< CLSFU, Vi GN,Vj:(i,j)EE“,VaGA (6.4)

The constraints in the NUM-FT problem can be explained devl.

e Flow conservation constraint: Eg6.2) shows that at each sensor node for
each anchor point, the aggregated outgoing link flow ratealéfe local data
rate plus the incoming link flow rates.

e Energy constraint: Eq.6(3) enforces that the total energy consumed by sen-
sori in a data gathering tour would not exceed energy budget

e Link capacity constraint: Eq.6(4) shows that link flow ratefy is restricted
by link capacityF;;.

Since constraints5(2)-(6.4) define a convex set and the objective function is con-
cave with respect tg?, NUM-FT is a convex optimization problem. We assume
that the Slater’s conditior®B] for constraint qualification is satisfied, i.e., there ex-
ist feasible solutions aof and f such that the constraints hold with strict inequality.
Under this assumption, the strong duality holds, which ieglhat the optimal val-
ues of the primal and dual problems are equal. Hence, thebditgd algorithm for
the NUM-FT problem can be obtained by formulating and sa\time correspond-
ing Lagrange dual problem, as will be seen in Sec@igh

6.3.3 Formulation of Network Utility Maximization Problem with
Variable Sojourn Time at Each Anchor Point (NUM-VT)

We now consider the case of maximizing network utility witiriable sojourn time

at each anchor point, i.eva € A, t* is a variable, and refer to it as the NUM-
VT problem. It can be similarly formulated to the NUM-FT pteln except that
the data gathering latency constraint is added on varigblee., Y, ,t* < AT.
However, since?, ¢i' and f: are all variables, the problem now contains coupling
variables in both objectlve function and constraints. Alg® objective function
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is no longer concave with respect ¢p and¢?, since its Hessian is not negative
semidefinite §6]. In order to make the NUM-VT problem solvable, we introduce
auxiliary variablesey;, y; and¢{ and define them as follows.

xg; = it vidf =qitt, ¢f 20, 3,08 =1

wherez;; represents the flow amount over lifk j) destined to the SenCar at an-
chor pointa, y; is the total amount of data generated by sensor data gathering
tour, andy{ is a data split variable with¢ > 0 and) __ ¢¢ = 1, which controls the
fraction of the data of senséthat routes to the SenCar at anchor painAs will be
described later, by multiplying the flow conservation amdk Icapacity constraints
by t* and using these auxiliary variables, we can reformulat®tbhs!-VT problem
into a convex optimization problem with respectitay, ¢ andt. Thus, according to
this formulation, the NUM-VT problem is essentially a joutta control, routing

and sojourn time allocation problem as follows.

Definition 4. Network Utility Maximization Problem with Variable Sojourmie
at Each Anchor Point (NUM-VT)Given a set of sensois§’, a set of anchor points
A, and the bound of data gathering latenty’, find: (1) sojourn time® at each
anchor point; (2) total amount of dagagenerated by sensoiin a data gathering
tour; (3) data split variabley; (4) flow amountz§; over link (i, j) € £ destined to
the SenCar at anchor poimtsuch that network utility ~,_ - U;(y;) is maximized.

The NUM-VT problem now can be expressed as

NUM-VT:  max > Ui(y:) (6.5)
ieN
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sty af, —y,¢“+ Z 2%, Vie N,Vae A (6.6)

j:(i,j)eEE® (ji)eE

Z Z rie < Ez{, Vie N (6.7)
acAj:(i,j)eE

0 <a% < Fyt®,Vi e N,Vj: (i,5) € E*,Va € A (6.8)
Ser=1, VieN (6.9)
acA

>0, Va € A (6.10)
S < AT (6.11)
acA

Clearly, since the objective function’, U;(y;) is strictly concave with respect to
yi, the NUM-VT problem now is a strictly convex optimizationgiem, however,
with non-linear constraints (see Ed6.§)). To decompose the coupling variables
y; and¢¢ in the flow conservation constraints, we will take a hierazahdecom-
position approach to separating the NUM-VT problem into peeted two-level
optimization problem103[ 106, which first maximizes the network utility over,

y andt while keepinge fixed, then maximizes the network utility by updating
The details of this approach will be discussed in Seddidn

6.4 Distributed Algorithm for NUM-FT Problem

Having formulated the NUM-FT problem as i6.(0)-(6.4), in this section, we give
a fully distributed algorithm to solve it. We utilize the griadient algorithm based
on the dual-decomposition methd@B], which is an efficient technique for convex
program and can naturally achieve the distributed impleatem.

We form the dual problem by introducing Lagrangian mulgpsix € RWVIxIAl
for the flow conservation constraints. This results in theiglaLagrangian as

L(g, f,\) = EU (ant“) - Za:;/\?(q;l + ; Ji— 2]: i)
SO ) - ¥ S
€N acA acAieN
(222 > (A= A)) ]

acAieNj:(i,j)eEe

Here, the Lagrangian multipliex! can be interpreted as the “congestion price”
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at sensot for the SenCar at anchor poiat Defining the dual functiorD(\) =
max,, s L(q, f, \) with constraints §.3)-(6.4), we obtain the dual problem as fol-
lows.

min D(A) = min maxL(g, f, )

One immediate observation is that the dual function can loerdposed into two
sets of subproblems (see the two terms in the Lagrangiare séXis the rate control
subproblems in terms of rate variablewhile another set contains the routing sub-
problems to find optimal flow variable& Each of them is independently solvable
by a sensor. We solve each set of the subproblems in the chwaida by subgradi-
ent algorithms and finally obtain the joint rate control aadtmg algorithm for the
primal NUM-FT problem.

We start with a set of initial non-negative Lagrangian npulikirs A\?(0) for all
i € N anda € A. During each iteratior of the subgradient algorithm, given the
current Lagrangian multipliers? (%), we solve the subproblems as follows.

Rate control subproblenifhe dual function containgV/| rate control subprob-
lems, one for each sensor. In the following, we describe marighm to solve the
subproblem in the context of sensorSince0 < ¢f < >, f% < >, I};, eachg;’
is within a closed domain. Thus, we define a loose upper béynir eachqy.
Accordingly, for sensof, the rate control subproblem is given by

max, Ui( > qft") — Y- Aiqf st.0<qf <Q;,Yaec A (6.12)
acA acA

This subproblem is a convex program. However, the objedsivet strictly con-
cave with respect tg? such that the solution may not be unique. This difficulty is
due to the linearity op __ ¢#¢*, with respect to which, functiot;(-) is in the primal
NUM-FT problem so that the dual function is not differentaht every point102].
One method to circumvent such difficulty of lack of strict cawity is to subtract
a small convex quadratic regularization term, esQ.;, >__(¢#)?, from the primal
objective function 101]. However, this more or less changes the original problem
and typically results in significant oscillation due to timead| value ofe. More so-
phisticated approaches, including proximal optimizatgorithm and augmented
Lagrangian method$®[], provide effective ways to conquer such a problem. How-
ever, they have much higher complexity. Thus, instead afguiese approaches,
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we propose an efficient search algorithm based on the Kd¢ubh-Tucker (KKT)

conditions P6] to find an optimal solution. Since the rate control subpeaflin

(6.12 is concave, the solutions that satisfy the KKT conditioressufficient to be
optimal for both itself and its dual problera§][ 98].

For clarity, we use(g;) to denote the objective function i6.02) and let¢!* =
{¢%*|la € A} be the optimal solution. Introducing Lagrangian multiplie, for
constrainty? < ; ando’, for constrainty? > 0, we obtain the KKT conditions as
follows for alla € A,

Ul (Caea g 1) t* = X" — o7 + 0, =0,

7

/*(ql — Qi) =0, (6.13)
o, ¢ =0

or>0,00" > 0.
For0 < ¢* < @Q;, we have the following three cases according to the KKT condi
tions in 6.13.
* a* __ * * a*xyqa\4+a a_ag(‘ﬁ)
1. Ifo; > 0,theng!” = Q;,0,” = 0,ando; = U (>_, qf " t")t* = \} = =52 >

q;

0;

2. If o = 0ando,” = 0, theng!* € [0,Q;], andU/(>_, ¢*t*)t* — A\ =
9(ai) _
q !

3. Ifo" > 0, theng/* = 0, 0 =0, and—o," = U/(D>_, ¢ t*)t* — \¢ =
ag(qz) < O

From the above cases, we find that the exact value or the rdngjé corresponds
to different values OM For brevity, we use variableto denotel; (> ¢7*t*).

Sincet® and\{ are conS|dered as constants h@%’— is a linear function ot. As

U is a strictly concave functiory, = U/(>_, ¢/*t*) decreases with the increase of
>, qte. Sinceqt*,t* > 0, z < U/(0). For a given value of z, eachag(% can
be determined such that we can correspondingly find the egaet or the range of
eachg?* by ascribing it to one of the above three cases. Moreqgy€s also satisfy
that>°, ¢2*t* = U!~'(%), which we call the linear combination (LC) condition.
Thus, finding the solutions for thg*’s is actually equivalent to searching for a
suitable valuez of z, by which the derived;!*’s satisfy both the KKT and LC
conditions.
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d9(q;) Anchor Point 1: 'z — /\}
dq
Anchoir Point 2: t2z — \?
: = Ui(Sq"t")
-\ Ui (0) ¢
A
(a) 8‘](‘1 ) and 294 ‘7 ) as the linear functions of.
Cases g by KKT | ¢&" by KKT Z, ¢t" by LC
I 2 < A2 0 0
1| ==X/ 0 [0,Qi]
1| NP <z <A\ 0 Qi )
w| == [0, Q1) Qi
V| A/t <2< U0) Qi Qi

(b) Five cases for.

Figure 6.2: An example to illustrate the search algorithrseatsor; for the rate
control subproblem in the scenario of two anchor points.

Next, we describe the basic idea of our search algorithmguia example
in Fig. 6.2 where there are two anchor points, denoted land 2, respectively.
Without loss of generallty, we assume that> A2, ¢! > ¢ andU/(0) > A\ /t* >
A7 /t*. Accordingly, = 99( ql andag %) as linear functions of can be plotted as shown
in Fig. 6.2(a). Based on theit- mtercepts, i.e.Al/tt and)\?/t%, we can divide the
domain ofz into three intervals and two intersection points, whichleted as five
cases in Fig.6.2(b). To find Z, we investigate each of these cases. For the cases
wherez is in an interval (e.g., Cases I, I, or V}a,a—qf and ag(qz are both non-
zeros. The exact values gf" and¢?" can be determined by the KKT conditions.
Thus, we only need to examine whether there is a vainghe current interval that
satisfies the LC condition. For instance, in Case | whete)\?/t?, since=$%* g(ql <0

and =29~ 69 q@ < 0, by the KKT conditionsg; " = 0 andg;” = 0. Thus,>",_, , q“*t“ =

0. However, sincer < A\2/t2 < U/(0), U'(2) > U/*(0) = 0 always holds.
This implies that there is no suchin this interval meeting the requirement that
D12 @ = U/7'(%). In other cases whereis at an intersection point (e.g.,
Cases Il or V), by the KKT conditions, one gf  and¢?" is a determined value,
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the other is in the domain @6, @;]. In such cases, sincehas a unique value, the
possible solution for the undetermingtf (¢ = 1 or 2) can be derived by the LC
condition. Based on the value afwe can estimate whether this solution would fall
into the valid domain of0, Q;]. Let us take Case Il where= )\?/t? as an example.
In this case, sincg%f) <0 and%q‘?) = 0, by the KKT conditionsg!” = 0 and
¢ €[0,Q]. 1f 0 < U (2) < Qyt?, the solution of?" that is set td /t2 - U/~ (2)
by the LC condition would fall into the valid domain @f, );]. This means that
is found, i.e.z = A\?/t2. Andq!" = 0 and¢?” = 1/t*- U/ (A\?/t?) would be the
optimal solutions to the rate control subproblem®nl@. Otherwise, there is no
valid solution forg?” and the subsequent caseszoshould be further examined in
a similar way untilz is found. For the rare case where= \!/t! = \?/t?, by the
KKT conditions,q! ", ¢2* € [0,Q;]. If 0 < U/ (2) < Q;(t* + t?) = Q;AT, there
would exist valid values fog! " and¢?*. However, the possible values @f  and
¢?" that are able to ensure the LC condition may not be unique. akleandomly
choose one of them. For clarity, we summarize the detaile@tearch algorithm
at sensot in Table6.2 It is apparent that to find the solutions fgt*’s, sensor
only needs to examine at most| + 1 intervals and.4| intersection points on.
Thus, the search algorithm is a linear algorithm witfj.A|) time complexity.
Routing subprobleniThe dual function also containd/| routing subproblems,
each for a sensor. Again, we consider the routing subprobtesensor as follows.

max, >, > (A=A

acAj:(i,j)eE®

S.t. Z Z i“jeijta < EZ,, (614)

acAj:(i,j)eEe
0<ff<FyVj:(i,j) € B Vae A

Clearly, this subproblem is a linear program. If we considér— A?) as the gain of
link (i,5) € E* (whenj = s, we can considek} = 0, Va € A), this subproblem
can be easily solved by a greedy algorithm as shown in TaBlél'he approach can
be intuitively interpreted as that each sensor always aféscthe maximum possi-
ble rate under the energy and link capacity constraints itoketthat has the largest
link gain among all its outgoing links to different anchoriqis. Apparently, as
each sensor needs to investigate the gains of all its owgdmiks for different an-
chor points, the time complexity of the greedy algorithmeaisor: for the routing
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Table 6.2: Search algorithm for rate control subproblem.
Divide the valid domain ot, i.e., (—oc, U/(0)], into cases
based on:-intercepts o%’s (i.e., A¢/t*, Va € A);

For each case of do l

Examine the value o% foralla € A;
If %‘g) #0,foralla e A

/I The case that z is in an interval

The exact value of eaajf* can be determined by the

KKT conditions;

If 2 =U/(>_,q¢¢"t*) that falls in the current interval
Current value of eacly* is optimal to 6.12);
Break;

end If

else
/I The case that z is at an intersection point

Find subseBB C A thatB = {b’%;g) =0,be A};

By the KKT conditions, the value af** (a € A\B)
can be determined and” € [0, Q;].Vb € B;
Calculated ", ;3 ¢ t" = U7 (2) = 3 e a 407"
If0<> s qf*tb < Qi) pen t
/| There exist valid values faf”, vb € B
SetZ by the current value of;
If |B| =1, forb e B,
@ = FUTE) = Deas €7,
else
qﬁ?*’s (b € B) are randomly set to ensure LC condition;
end If
Current value for eacl’* is optimal to 6.12);
Break;
end If
end If
end For

=
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Table 6.3: Greedy algorithm for routing subproblem.
Setf;; to zero,vj : (i,j) € E*Va € A;
Find X; = {(j,a) )Ag — X2 > 0,¥): (i, ) € B Va € A};
Initialize the remaining available energ¥f;, = E;
While (X; # @ & E,. > 0)
(j,a); = arg (jglégg(kg - A9);
A B oS
fz’,j = mln{eijta,Fzy}: i
UpdateX; by removing(j, a); from it;
UpdateFE, by settingFE, = E, — f%eﬁt&;

end While

subproblem i€}, , ded’ (i)), where degj(¢) is the outdegree of sensoin the
directed graptz*(V*, E%).

Lagrangian multiplier updateln each iteration of the subgradient algorithm,
sensor; solves the subproblems i16.02 and 6.14) with the current Lagrangian
multiplier A¢ (k). Then, sensoi updates the Lagrangian multipliers as follows and
sends them to its direct neighbors to facilitate the conmguif ¢ and f in the next
iteration.

Ak +1) = M (k) + 0k) (g (k) + D f5i (k) = 22 f5 (k)T (6.15)

where|-|* denotes the projection onto the non-negative orthantdéhyis a pro-
perly chosen scalar stepsize for subgradient iteratidn our algorithm, we choose
the diminishing stepsizes, i.6(k) = d/(b+ck), Vk,c,d > 0,b > 0, whereb, c and
d are adjustable parameters that regulate the convergered.sphe diminishing
stepsize can guarantee the convergence regardless oittalevedue of \ [99].
Recovery of primal solutionsNote that the subproblems i6.02 and 6.14)
are not strictly concave, which implies that the values endbtimal solution of the
Lagrangian dual cannot be directly applied to the primal NBMproblem. In view
of this, we apply the method introduced 0 to recover the primal solutions. For
the k;;, subgradient iteration, we compose a primal feasfgléc) as follows.

fa 1y _ 1= gy — ) (1) k=1
lj(k) N k’; U(h) N { % Ag(k —1) +% z](k) k>1 (6.16)

125



Table 6.4: Distributed algorithm for the NUM-FT problem.
For each sensare N do
Initialize Lagrangian multipliers\¢ (0) for all & € A to non-
negative values;
Repeat forall j : (i,j) € E*anda € A

Determineg! (k) by search algorithm in Tablg.2,

Determinef/; (k) by greedy algorithm in Tablé.3,

Update Lagrangian multipliets! (k + 1) by Eq. 6.15);

Compute primal feasiblég(k) by Eq. 6.16);

Send updated Lagrangian multipliers to its neighbors;
Until sequencé(k)} converges to* and sequencéf (k)}
converges tg'*;

Exchangefgj*’s with its neighbors and compute the optima
data rates by?* = Y. f4* — 32, f9, foralla € A;
end For

It was proved in 10Q that when the diminishing stepsize is used, any accunaumati
point of the sequencé ;‘3.} generated byg.16) is feasible to the primal problem
and{ f{} can converge to a primal optimal solution. Therefore, thenog flow
rate of each outgoing link of sensotan be obtained whefy2} converges tof;*.
Finally, sensor can recover the optimal data rates by plugging eﬁgg’n back to
the flow conservation constraint.

We summarize the distributed algorithm for the NUM-FT peohlin Table6.4,
from which we can see that each subproblem can be efficiealyed in a dis-
tributed manner, which only requires limited computativeach sensor and local
exchange of Lagrangian multipliers among the direct nesghb

6.5 Distributed Algorithm for NUM-VT Problem

In this section, we consider the NUM-VT problem. As aforetimred, we take a
hierarchical decomposition approach to separating the NldMproblem into two
levels of optimization 103[106 to decompose the coupling variablgsand ¢¢
in the flow conservation constraints. At the lower level, voagider the following
problem, denoted by NUM-VT(a), that maximizes the netwdilkty over variables
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x, y andt with a fixed¢.

NUM-VT(a): max » U () (6.17)
iEN

s.t. Z Tl = Y} + Z x%, Vie N,Vae A (6.18)
Z > afie; <E, VieN (6.19)

acAj:(i,j)eE
0 <af; < Fit",Vie N,Vj: (i,j) € B*Vac A (6.20)
>0, Va e A (6.21)
D T < AT (6.22)

acA
At the higher level, we consider the problem of updating dsuiét variables, de-
noted by NUM-VT(b), by solving

NUM-VT(b): max,-o U(¢)
s.t. Yowea Pt =1, VieN, (6.23)
¢ >0, Vie N,Va e A,

wherelU (¢) is the optimal objective value of problem NUM-VT(a) overy andt.

6.5.1 Lower-Level Optimization

Since the NUM-VT(a) problem is a strictly concave optimiaat we can use the
dual decomposition and subgradient algorithm to solve imgixter its partial La-
grangian with respect to constrain& 18 and 6.20.

L((b’ z,Y, tu )\7 /JJ) = ZUl(yl) - Zz)‘f(yﬁbg + Z‘r?z
—2_Ti) — ZZZMU( i Fzﬂf“)

a i J

- lZ Ui(yi) — 2 Z)\ggbgyi] LYY e Ee

ieN acAieN acAieNj:(i,j)eEe

2.0 > (A?—A?—N%)x%]

ac AieNj:(i,j)EE
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Define D(¢, A\, n) = max,,, L(¢, x,y,t, A, ;) with constraints §.19, (6.21) and
(6.22. By duality, we have the dual problem as

U(g) = Atr{]l}untOD(ab, A ) = Jnin max L(¢,z,y,t, A, ).

We observe that dual functioP(¢, A, ;1) can be evaluated separately in terms of
data variabley, flow variabler and time variablé. We decompose it into three sets
of subproblems, i.e., data control, routing and sojourrtathocation subproblems.

Data control subproblemThe dual function containg\| data control subprob-
lems, each for a sensor to determine the amount of data geddoa a data gath-
ering tour. Sincey; = > vy < >, >l < D0, > Figtt = AT Y Fij, v
has a closed domain. Thus, we set a loose upper bBuiod ;. Given Lagrangian
multiplier A\¢ for the current subgradient iteration, sensadjustsy; to achieve the
following optimization goal

maxXo<y,<v; Ui(¥i) = D _aca A7V

Since it is strictly concave, sensocan obtain the unique optima} as

0 it U/(0) < 32, Aot
yi=19 (U)(C A\ef) elseifUi(Vi) < 30, Mo (6.24)
Y; otherwise

Routing subproblemThe dual function containg\| routing subproblems, each
for a sensor to adjust the flow amount over its outgoing lirdstihed to each anchor
point. The routing subproblem at sensas

max-o ., >, (Af— /\? _M%)xz
a€Aj:(i,j)€ Ea (6.25)

S.t. > a:?jeij < E,
ac€Aj:(i,j)eE°
where(Af — Af — ug;) can be considered as the link gain for each anchor point
(whenj = s A? = 0). Itis clear that in the optimal solution t&.25, sensor
i should spend all its energy budggt on the traffic flows over the link with the
largest positive link gain. If we usganda to represent such a preferred outgoing
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neighbor and a destined anchor point, respectivgly;); = arg m%x[(/\g —A\j —
ui;)*. Mathematically speaking, the reason why we employjéucksa'rgment
strategy is because that the optimization of senswer {z{, } is a linear program
and we can always choose an extreme point solution such that

(6.26)

T €ij

. Eiif (j.a) = (J, a)i& (A} — Aj = ni) > 0
K 0 otherwise

Sojourn time allocation subproblenThe SenCar is responsible for allocating
the sojourn time for each anchor point to satisfy the optatian goal

maXxo Z Z Z [L%F;-jta s.t. Zta < AT.
acAieNj:(i,j)eEe acA
Similarly, since this is a linear program and eatlnas a non-negative coefficient
in the objective function, we can simply assigd¥’ to thet® with the maximum
coefficient.

AT ifa=argmax) . > . usl;,
ta:{ BmAxX ) 2 15 Fy (6.27)

0 otherwise

Note that for the SenCar to determine the sojourn time, theegabf Lagrangian
multipliers yf; need to be routed to the SenCar in each subgradient iterafon.
dampen the communication overhead, we can alternativelyadeh sensor deter-
mine the sojourn time at each anchor point. In particulageieach® is a global
variable for sensors, we need to introduce local varigbpléor each sensor and
impose additional constraint$ = t§,vi € N,Vj : (i,j) € E*,Va € Ato the
NUM-VT problem to enforce all thé*’s to be equal for each anchor pointThen,
we can relax these constraints in the Lagrangian for duadrdposition and solve
the subproblem orf’ by sensor. Such an approach only requires each sensor to
communicate with direct neighbors on exchanging the cporeding Lagrangian
multipliers. However, in our practice, we find that this apgoch results in slower
convergence than the approach witti} determined by the SenCar. Thus, this is
a tradeoff between the communication overhead and conveeggpeedd0]. In
practice, an application can choose to let each sensor @ghear determine the
values.

Lagrangian multiplier update Sensor; updates its Lagrangian multiplieps
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andy; according to

A (k4 1) = [N (k) + 0(k) (yi (k) o5 + daf; (k) — D_ai; (k)]
j j (6.28)

pig(k + 1) = [pgs (k) + 0(k) (5 (k) — Fit*(F))]™,

wherek represents the index of subgradient iterations, &gl is the diminishing
stepsize discussed in the NUM-FT problem. Sensall send updated Lagrangian
multipliers to its direct neighbors and royig (k + 1) to the SenCar if necessary.
Recovery of primal solutionsSince the subproblems of routing and sojourn

time allocation are linear, we need to recover the optimahak values for vari-
ablesz{; andt®. When data split variables; reach their optimun{¢f)* in the
higher-level optimization, during the subgradient itemas in the lower level, we
construct the prlmal feasible sequenées; ()} and {t.(k)} by using the method
in [100Q, i.e., 2%(k) = Zh L (h ) andi®(k) = ;thl t*(h). In this way, the
final optlmalx“ * and¢** can be obtained from the values sequencgs(k)} and
{t*(k)} converge to.

6.5.2 Higher-Level Optimization

The above algorithm for the lower-level optimization worksder the assumption
that eachy? is a constant. At the higher level, we now show how sensaljusts
¢¢ to achieve the optimum of the NUM-VT problem.

Note thatU(¢) is the optimal objective value of the lower-level optimipat
By using \* and i* to represent the Lagrangian multiplier values that minemiz

D(¢, \, ) for a giveng, U(¢) is given by

U(¢) = miny-o -0 D(¢, A, 1)

= ZUz(yl<>\*)) - ZZ)‘?*(%(A*)@& + Z‘/E?z()\*hu*) (629)
=2 wg (A ) — ZZZM “(afy (A7, i) — Figt® ().

Then, the marginal utility for¢ is a¢>a = —\?"y;(\*), which reflects the gain
of the data sent from sensbto anchor point. Intuitively, to maximize network
utility U(¢), sensor should always shift some of its data destined to other anchor
points to the one with the highest marginal utility untjlreaches an equilibrium.
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Table 6.5: Distributed algorithm for the NUM-VT problem.
For each sensare N do
Initialize data split variableg{ (0) for all a € A satisfying
2 97(0) =1,
Repeat
Initialize Lagrangian multipliers{ (0) andy;(0), for all
j:(i,7) € E*“anda € A, to non-negative values;
Repeat forall j : (i,j) € E*anda € A
Computey; (k) by Eq. 6.249);
Computezf; (k) by Eq. 6.26);
SenCar simultaneously computésk) by Eq. 6.27);
Update Lagrangian multipliers (k + 1) and
i (k + 1) according to Eq.&.28);
Send updated Lagrangian multipliers to its neighbors
and routeu; (k + 1) to the SenCar;
If {¢(n)} reaches* in the outer-loop iterations
Compute primal feasiblef; (k) by {; (k) =
% Zi:l z{;(h), and SenCar simultaneously computes
primal feasible’® (k) by (k) = L S5 _ t%(h);
end If
Until {\(k)} converges to* and{y(k)} converges ta/*;
Adjust data split variables? (n + 1) (Va € A) by Eq. 6.30);
Until reach the equilibrium, i.e{¢(n)} converges t@*;
end For

Let o* = {¢¢"} be the optimal data split matrix. We can characterize thanapbt
solution¢* to the problem in§.23 by the following optimality condition.
For each sensar we have

* ou(¢*) ~ 9U(¢") /
¢ >0= 297 < 367 , foralld’ € A.

That is, sensor sends its data to the SenCar only at those anchor points that ha
the maximum marginal utility. This is similar to the wardrequilibrium [99].
For sensot, let a; be the anchor point with the maximum marginal utility, i.e.,

i; = arg maxae 4 “i. Sensor updatesy? according to the following principles.

3

o (n+1) = ¢%(n) + 0% (n), with (6.30)
—min o). 42 (220) - %20 )}
0 (n) = it 0 + a,

- Za;ﬁ&i,aeA 5?(”) if a = dia

wheren stands for the iteration index for the higher-level optiatian andx(n) is
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a small positive scalar stepsize.

By using a similar approach to that ic(Q€, we can show that such updating
algorithm on¢ guarantees the convergence to the optimal solution of thNU
VT problem. It is straightforward to verify that the updagialgorithm in 6.30
satisfies that

>, 04(n) =0, and 3, % 8¢a 9 (n)o%(n) > 0,Vi € N

And for sensor, ), agw (n)d¢(n) = 0 only if 6#(n) = 0, which requires that

o (n )(a(;a‘f) Bgéf)) = 0 for all a € A. If we consider the continuous version, we
have that for each sensor,

Y.t =0andy, % ad,a 2 g > 0. (6.31)

The updating algorithm in6(30 can be considered as a specific discrete time im-
plementation of §.31). SincelU(¢) = min, , D(¢, A\, u) and D(¢, A, 1) are the
non-smooth functions with respectXandu based on the expression 6£29, the
differential of U(¢) can be written as

dU(¢) = ( lim —3D<¢=**a§hdw>) A+

h—0t

(I PR

h—0t

(6.32)

where (\*, ©*) = argminy , D(¢, A, 1). As X\* and p* minimize D(¢, A, i) for

a given ¢, h“ﬂw and lim+w cannot be in a deceasing
h—0 h—0
direction, i.e., the first two terms il6(32 are non-negative. Hence, we have

dU(¢) > 2P g = Zza;;f)dw (6.33)

Accordingly, by 6.3) and 6.33, U(¢) > 3,3, & ¢a 9da > 0, which means
that the updating o by (6.30 always improves the overall network utility. And
for each sensor, when all its positive marginal utility aygwhes the same valug,
would reach an equilibrium* such thaU(ng*) =0.

Finally, we summarize the distributed algorithm for the NWM problem in
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Table6.5.

6.6 Numerical Results

In this section, we provide some numerical results to dematesthe usage and
efficiency of the proposed distributed algorithms and campheir performance
with other data gathering strategies. We adopt the dat#éyuiiinction asU; =
w;log(1 + >, ¢#t*) or equivalentlylU; = w;log(1 + y;), indicating that the data
from a sensor with a larger weight would have more impact on the overall perfor-
mance. In the following simulations, since we focus on theveogence property
of the algorithms and their relative performance, we simydg the dimensionless
guantities in the figures for demonstration purpose onlys ivorth pointing out
that the solution exploration procedure for each distedutlgorithm only needs
to be executed when the energy budget is updated or the gppofahe network
changes, thus does not need to be frequently repeated lyrseRmally, note that
if a centralized execution is preferred, the proposed @lyos can also be exe-
cuted by a central controller in a multi-threading fashibar example, we can use
the Sencar to collect the necessary information on theeenétwork, execute the
proposed algorithm and distribute the solution to sensors.

6.6.1 Convergence

We first examine the convergence property of the algoritronghe NUM-FT and
NUM-VT problems. For illustration purpose, we use a smaheye network in
Fig. 6.3to show how the algorithms work. In fact, due to the distr#abiature, the
algorithms are readily applicable to large scale netwolks:ig. 6.3 there are ten
sensors and two anchor points distributed over the sengldy frhe links in the
network are assumed to be directed as indicated by arrows ifiiiure and all have
equal capacity. The energy consumption for transmittingieflow over link (i, 5),
eij, Is proportional to the square df;, whered;; is the physical distance between
sensorg andj. For clarity, we list all the parameter settings in Fég3(b).

Fig. 6.4 shows the evolution of the recovered flow rjfﬁand the Lagrangian
multiplier \¢ versus the number of iterations in the algorithm for the NBWI-
problem. We set! = t> = 25 as an example for the network with given fixed
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Figure 6.3: An example network with ten sensors and two angbimts.

300

NUM-FT

N
a
=]

Recovered Flow Rate
=
o
o

o
S

o

N
=]
S

=
13
S

\"2
f5,52 A

/ 13

\/%1
\ ’]}1

10,2

o

100 150 200 250
Number of Iterations

@)

50

300

a

Lagrangian Multiplier A:

NUM-FT
55 ! . : .
50
45 1 \ 1

A A

40 1 10
3 \ 1
30 )\9

2
25

/s

20
15
10 - : : : :
0 50 100 150 200 250

300

Number of Iterations

(b)

Figure 6.4: Numerical results of the algorithm for the NUNI-problem: (a) Evo-

lution of recovered flow ratg®

J

grangian multiplien\? vs. subgradient iterations.

vs. subgradient iterations; (b) Evolution of La-

sojourn time for each anchor point. In Fig.4(a), we examine the flow rates on
some selected links, linkg, 3), (9,8) and(10,2) destined to anchor poiritand

link (5, s*) destined to anchor poifit It can be seen that the recovered flow rates are
well within 5% of their optimal values after only00 iterations. This observation

is also applicable to the evolution of the Lagrangian muéms as shown in Fig.
6.4(b). Moreover, we also notice that as sensdras a larger utility weight, the
flow rate of its outgoing link destined to anchor poinis higher than those of
sensor® and10 to achieve higher network utility. Since sen&dnas a direct path

to the SenCar at anchor poidt the optimal flow rate over link5, s?) is able to

reach the

capacity bound.

We now consider the same network for the NUM-VT problem. Theq-
mance of the algorithm is shown in Fi§.5. For each sensor, we set the data split
variables for different anchor points with equal initialues, i.e..¢! = ¢? = 0.5.
We use a constant stepsize for the higher-level iteratiansi(n) = 0.005. In the
simulation, the lower-level optimization ruAas00 iterations before each run of the
higher-level updating on the data split variables. To damtpe number of lower-
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Figure 6.5: Numerical results of the algorithm for the NUM-Yroblem: (a) Evo-
lution of network utility vs. higher-level iterations; (Ilgvolution of data split vari-
able¢¢ vs. higher-level iterations; (c) Evolution of total amowhtdatay; gathered
from sensori in a data gathering tour vs. higher-level iterations; (dplEtion of

Lagrangian multiplien\¢ vs. higher-level iterations.
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level iterations, we can set the initial values of Lagrangraultipliers\{ andys; by
their final values in the previous run of higher-level optiation. Comparable per-
formance is observed when the number of lower-level itenatis as low as several
hundreds. In Fig6.5a), we notice that the network utility first increases sharp
during early iterations and then slowly increases untié&ahes the optimum after
about100 iterations. It effectively validates that the updatinggalways improves
the overall network utility and guarantees its convergdand@e optimum. In Fig.
6.5(b), we plot somey{’s versus the number of iterations, which clearly shows that
in the optimal solution, sensois3 and8-10 would only send data to the SenCar
when it arrives at anchor poimtand sensors-7 alternatively choose to upload data
to the SenCar when it is located at anchor p@infig. 6.5c) and (d) depict the
evolution of the total amount of datagenerated by sensoin a data gathering tour
and Lagrangian multipliek{ versus the number of iterations, respectively. We can
obtain similar observations to those for the NUM-FT prohlefAs senson has a
larger utility weight compared to other sensors, in a dathagang tour, the SenCar
preferentially gathers more data from it. In contrast, tee@Gar gathers the least
amount of data from sensaf since it has a small utility weight and its data have
to be relayed by sensarto reach the SenCar at anchor pointAs sensoe has a
larger weight than that of sensb, sensorl0 would refrain from generating more
data to avoid congesting the common link with serisofFurthermore, it is clear
that, to gather more data from the sensors with a largeyutiléight, the SenCar
would stay longer at anchor poititthan at anchor poir2. As the results of our
algorithm, the optimal sojourn times for the two anchor pe@aret! = 33.37 and

t? = 16.63.

6.6.2 Performance Comparison between NUM-FT and NUM-
VT

In this subsection, we compare the performance of the dfgos for the NUM-FT
and NUM-VT problems. We still use the same network and patansettings as in
Fig. 6.3. We consider three instances of the NUM-FT problem whkré? is fixed
tol:1,1:3andl : 4, respectively. In contrast, the algorithm for the NUM-VT
problem dynamically pursues the optimal sojourn time atmmn for each anchor
point. Fig.6.6(a) plots the network utility as the function &f7". From the results,
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we can draw some observations. First/dE increases, the network utility of all
the cases under investigation increases until it reachesmiximum value. This

is intuitive since the longer the SenCar stays at each andiot, phe more data it
would gather. OncAT becomes sufficiently large, some sensors would ultimately
deplete their energy budget for the current data gatheong tAs a result, the
network utility stays unchanged as no more data can be ¢sttdny the SenCar.
Second, for a givel\T', we find that the network utility achieved by NUM-VT

is always larger than that of NUM-FT. This is expected sirfoe ttility region

for the cases with fixed sojourn time is a subset of the utikyion with variable
sojourn time. Such superiority is especially notable f& thse with a smal\ T,
which implies that the proper sojourn time allocation istigaitarly critical to the
efficiency of data gathering with low latency requiremenirtRermore, we plot the
optimal sojourn time allocation obtained for the NUM-VT ptem in Fig. 6.6(b).
From the figure, we notice that the optimal value ‘ois larger than that of in the
initial phase, then the difference between them gradu&bplnes smaller with the
increase ofAT, and finallyt! andt? are set to the same value. The reasons for such
tendency can be explained as follows. Wh&h' is small, the sensors are mostly
energy-rich and the amount of gathered data from each spris@rily depends on
AT. However, as sensotsand2 have larger utility weights and would route data
only to anchor point, the SenCar is apt to stay longer at anchor pbihtan anchor
point2, i.e.,t! > t2. However, asAT gradually increases, some sensors around
anchor pointl become energy-constrained. Then the SenCar would shift some
sojourn time from anchor poiritto anchor poin2 so as to gather more data. And
finally, when AT becomes large enough, no more data can be obtained regardles
where the SenCar stays for more sojourn time. In our simulatidvent! > 120
andt? > 110, the gathered data from each sensor would no longer charges, T
whenAT > 240, there are multiple options for the optimal sojourn timeedition.
One option is to equally divid&T" for ' and#?, which is as shown in the figure.

6.6.3 Performance Comparison with Other Strategies

In this subsection, we investigate the network utility @sled by NUM-FT and
NUM-VT in large sensor networks, and compare the results wfiher two strate-
gies. The first strategy used for comparison employs optdatd rates and ran-
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dom routing, called RandRoute, in which each sensor randomly chooses a routing
path and transmits data to the SenCar at one of reachablergsmhts. Another
strategy for comparason is the fixed data rate and shortéstrpating, denoted
by Fixed Rate, where all sensors have a homogeneous data rate and ¢aeim o
preferentially chooses a shortest path to an anchor painefa transmissions. For
fair comparison, we assume that the data rate each sensanusged Rate is the
maximum possible rate that can avoid the traffic congestiaghe network.

The parameters used in the simulations are set as followstal\df 50 sensors
are randomly scattered in2800 x 200 field, and two anchor points are located at
(66.7,100) and(133.3,100), respectively. The transmission range of each sensor
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is set to40. One-fifth of sensors have larger utility weight with theualof 10
and all others have smaller utility weight with the valuesok 103. There are
100 directed links in the network with equal link capacity of 250hese links
are randomly distributed among the neighboring nodes atigeimeanwhile they
ensure that each sensor can reach at least one anchor p@rdssfdne that each
sensor holds an energy budgeBok 10* ande;; = 0.002d§j. Moreover, in NUM-
FT, Rand Route, and FixedRate, the sojourn time at two anchor points is fixed
and set to the same value, i€.; t* = 1: 1.

Fig. 6.7 plots the network utility of NUM-VT, NUM-FT, RandRoute, and
Fixed_Rate whenAT varies from20 to 600. Considering the topology random-
ness, each performance point shown in the figure is the avefay simulations.
The results demonstrate that NUM-VT always outperform®otitrategies. For
example, wher\T = 100, NUM-VT achievesl 0% and20% higher network util-
ity compared to RandRoute and FixedRate. Such superiority of NUM-VT over
others is ascribed to the joint design on rate control, ngytand sojourn time al-
location such that system-wide optimum can be achievedonitrast, RandRoute
may result in “hot” common links shared on many routing pathd this would
greatly limit the data rates of the sensors on the paths dtietlink capacity con-
straint. Similarly, Fixed Rate typically causes the sensors to use relatively low data
rate to ensure that all the links in the network are not calegesMoreover, as all
sensors have a homogeneous data rate in ERatk, it prevents the sensors with
larger utility weight from sending more data to the SenCahghat the network
utility is still far below the fully extracted value. It issb observed from the figure
that the network utility of all these strategies would re#obir respective stable
status whemAT becomes sufficiently large. This is because that when the sen
sors close to the anchor points deplete their energy, thE&earannot successfully
gather more data from the sensors far away from them such#étaiork utility
cannot be further increased.

6.7 Conclusions

In this chapter, we have considered finding optimal stratefpr anchor based mo-
bile data gathering in WSNs. We formalized this problem as tenvex opti-
mization problems, i.e., NUM-FT and NUM-VT, which considbe cases that the
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SenCar spends fixed and variable sojourn time at each anchuy Espectively.
Both NUM-FT and NUM-VT problems aim to maximize the overaltwerk util-
ity while guaranteeing the given network lifetime and daashgring latency. The
NUM-FT problem essentially involves the joint design oferabntrol and optimal
routing, and the NUM-VT problem is the integration of datantrol, routing and
sojourn time allocation problems. Based on their decompesaditure, we cor-
respondingly proposed two efficient distributed algorithim solve them. Finally,
we provided extensive numerical results to validate theieficy of the proposed
algorithms and complement our theoretical analysis.
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Chapter 7

Joint Mobile Energy Replenishment
and Data Gathering in Wireless
Rechargeable Sensor Networks

In previous chapters, we focus our study on the conventieaakor networks,
where sensor batteries can not be recharged or replacethafiaitial deployment.

However, recent advance in sensor technologies has madssibye for sensors to
obtain renewable energy supply to sustain their operatiorkis chapter, we con-
sider applying wireless energy transmission to sensorggn@plenishment and
extend our study on mobile data gathering to such rechalgsabsor networks.
Wireless energy transmission is generally referred toasr#imsfer of electrical en-
ergy from a power source to an electrical load without irdarecting wires, which

is carried out using resonant inductive coupling. We carsigsing the SenCar to
play as such power source to recharge the sensors in neeergf/em other words,

SenCar is employed to serve not only as a data collector thatsmver the field

to gather data via short-range communication but also as@nyy transporter that
charges static sensors on its migration tour via wirelessggrtransmissions. Tak-
ing advantages of the SenCar’s controlled mobility, we psepa joint design of
energy replenishment and data gathering, which aims toiggasteady and high
recharging rates, and achieve high-utility data gathesingiltaneously. In particu-
lar, we give a two-step approach to implement the joint dedig the first step, the
locations of a subset of sensors are periodically selestadahor pointswhere the
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SenCar will sequentially visit to charge the located senabtkese locations and
gather data from nearby sensors in a multi-hop fashion.deraio achieve a desir-
able balance between the energy replenishment amount éadathering latency,
we provide a selection algorithm to search for a maximum remobanchor points
where sensors hold the least battery energy, and meanwhilsibing them the tour
length of the SenCar is no more than a threshold. In the sedepdwe consider
data gathering performance when the SenCar migrates amesg dimchor points.
We formulate the problem into a network utility maximizatiproblem and propose
a distributed algorithm to adjust data rates, link scheduénd flow routing so as
to adapt to the up-to-date energy replenishing status &osen The effectiveness
of our approach is validated by extensive numerical restiteen compared with
solar harvesting networks, our solution can improve thevagk utility by 48% on
the average.

The remainder of this chapter is organized as follows. 8eatil introduces
the motivation and contribution of this research work. ®ec?.2 discusses the
related work. Sectior7.3 provides the design overview. Sectionsl gives the
design details by presenting a two-step approach. Settagves the performance
evaluation results and finally Secti@r6 concludes the chapter.

7.1 Introduction

Recent studies have shown that energy harvesting wireleserseetworks have the
potential to provide perpetual network operations by capgurenewable energy
from the external environment. A variety of ambient enespgch as mechanical,
thermal, photovoltaic, and electromagnetic energy carmobgerted into electrical
energy to drive sensors or recharge sensor batteries, satprblonged network
lifetime or perpetual operations can be achievég[[7/3]. However, as all these
energy sources are from external environment and theiradpamporal profiles

exhibit great variations, the strength of harvested energypically low [69], and

especially sensitive to the environment dynamics. For genm a solar harvesting
system, the output power of a sensor is determined by sal@atian arrives at the
equipped solar panel, which drastically varies with timel areather. Statistics
has shown that the difference can be up to three orders of itndgramong the
available solar power in shadowy, cloudy and sunny enviems[/9]. As there
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is generally lack of priori knowledge of the energy profilecls dynamics imposes
much difficulty on the design of protocols that must keep sexérom running
out of energy. This is, however, very critical for many apations, especially
environmental monitoring applications where the main tasé periodically collect
data from all sensors. In case that some sensors depletetieegy and cannot get
recharged in time, the network would ultimately become ritagted and the data
from some parts of the sensing field can no longer be extracted

In order to provide steady and high recharging rate for thegopsupplies of
sensors, and meanwhile effectively alleviate energy edipere on data gathering,
in this work, we alternatively propose a joint design of gyereplenishment and
data gathering by exploiting mobility, which is referreda® J-MERDG. In partic-
ular, a multi-functional SenCar, is employed, which is egeip with a powerful
transceiver and high capacity battery. The SenCar will pecadly choose a subset
of sensors to visit. While migrating among these sensorglivets energy to the
visited sensors by utilizing wireless energy transmissimd meanwhile it collects
data from nearby sensors via short-range multi-hop comeation. This way, the
SencCar, serving as both an energy transporter and a mokaleal&ctor, performs
the tasks of energy replenishment and data gathering sinedusly. In contrast to
the conventional energy harvesting networks, the molblitggs us many benefits.
First, since sensors receive energy supplement direcihy the SenCar, the replen-
ishment will no longer suffer from environmental variatsorsecond, as long as the
SenCar moves close enough to sensors, high charging efffctamcbe achieved
to ensure high-rate data services. Third, as the SenCar tlaessponsibility of
energy delivery, it is commercially appealing that no coempénergy harvesting
devices are needed at each sensor, which significantly eedbe cost of sensors.
Finally, by exploiting controlled mobility, the SenCar caffi@ently perform en-
ergy delivery and data gathering simultaneously. This iseexely desirable as
such combination makes double contribution to the energyag@ment of the net-
work. On one hand, the SenCar infuses steady and abundanatgeesnergy into
the network almost at no additional cost. On the other hamtbjlity alleviates the
routing burden at sensors for data uploading so that greaggrtan be saved to
further leverage the refilled energy.

The objective of our work is to design an adaptive solutiaat jbintly selects
the sensors to be charged and finds the optimal data gattstraiggies, such that
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network utility can be maximized while maintaining perpa@toperations of the

network. To that end, we propose a two-step approach foroihedgesign. In the

first step, we determine the mobility pattern of the SenCaeéwh time period, i.e.,
where the SenCar will move to charge the located sensors dinerghe data from

the neighborhood. For convenience, we still refer to thatioos that the SenCar
visits for energy delivery and data gatheringaahor points In the second step,
we study the strategies on how to achieve optimal data gathperformance when
the SenCar migrates among different anchor points, consglére up-to-date en-
ergy replenishing status of sensors. We formulate thislprolas an optimization
problem and adjust data rates, link scheduling and flow mguti® achieve maxi-

mum network utility.

The main contributions of our work can be summarized asvidlo

e We propose a joint design of energy replenishment and dateegag (J-
MERDG) by exploiting mobility. To the best of our knowledgkigis the first
work that explores such joint design and systematicallyidess solutions to
optimize its performance.

e We develop an algorithm for the SenCar to determine the angbiots in
each time period, which achieves a desirable balance betiliea=nergy re-
plenishing range and data gathering latency.

e We build a flow-level network utility maximization model tharacterize the
data gathering performance when the SenCar moves overetiffanchor
points. We propose a proximal approximation based algorith obtain the
system-wide optimum by adjusting data rates, link scheduind flow rout-
ing in a distributed manner.

e We provide extensive numerical results to validate thecéffeness of J-
MERDG, which not only guarantees perpetual operations ohéteork but
also significantly outperforms solar harvesting systemi®y in network
utility.
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7.2 Related Work

As we have already discussed the mobile data gathering sshi@mprevious chap-
ters, in this section, we mainly review some related work iwergy replenishment
in wireless networks.

Kar, et al. [74] considered a network with redundantly deployed rechdrigea
sensors, and addressed the problem of how sensors shoultiMageal dynamically
SO as to maximize a global coverage metric. They proposeteatbld activation
policy and demonstrated its performance for the cases lieatdverage areas of
sensors are completely or partially overlapped. Lin, etZd] developed a model to
characterize the performance of multihop radio networkbénpresence of energy
replenishment and designed an energy-aware routing #igothat is asymptoti-
cally optimal with respect to the network size. Liu, et al6|studied the resource
allocation problem for energy-harvesting sensors. They éxplored the optimal
sampling rates based on the average (long term) energyisipheent rate and then
designed a local algorithm for each sensor to adjust theaaterding to the in-
stantaneous battery state in order to cater to the rechgifigictuations. Sharma, et
al. [77] presented a model for a single energy harvesting senser avudiidentified
two energy management policies for it. One policy is thrqugkoptimal, which
ensures that the data queue stays stable for the highedblpatata rate, and the
other policy aims at minimizing the mean delay of the dataugué/igorito, et al.
[78] considered the variability of the harvested environmlee@rgy and designed
an adaptive duty-cycling mechanism that achieves energyraleoperation, per-
formance maximization and duty cycle stability. Rahimi, ket 79 studied the
feasibility of exploiting mobility to extend network lifehe, in which a small num-
ber of network nodes are autonomously mobile, allowing themove in search
of energy from the environment, recharge and deliver entergmmobile, energy-
depleted nodes. All the above works focus on energy hangesgtworks and try to
provide adaptive mechanisms to conquer the environmeraticars. Besidesq9],
other works did not consider exploiting mobility.

Based on these studies of exiting energy harvesting netwatéisaforemen-
tioned mobile data gathering schem@28g]{[59] in previous chapters, we find that
energy replenishment and data gathering are always selyacssigned. None
of existing work makes these two tasks in couple to balaneg& fferformance.
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This observation motivates us to provide novel scheme thatly considers these
two important issues in WSNs. By taking advantage of conwoffebility, our
work explores the data gathering performance gain whenargety is possible.
It computes the migration tour of the SenCar based on the gainsideration of
recharging demand and data gathering performance, andadgbs adjustable sys-
tem parameters to the up-to-date energy replenishingsstatoptimize the data
gathering scheme.

7.3 Design Overview of J-MERDG

In this section, we provide an overview on J-MERDG. The tinstrgicture and the
architecture of this joint design are illustrated in Figl and Fig.7.2 respectively.

As each sensor has different energy statuses at diffemaestiit is required
for the SenCar to properly arrange which sensor gets recthatgehat time. Due
to such time-varying nature of the energy replenishmentasteinto facilitate our
study, we divide the time into fixed time intervals of length At the beginning
of each time interval, the SenCar determines which sensdrs ttharged in this
interval. We assume that the possible candidate locatimnthé SenCar to visit
are the locations of all sensors, such that the SenCar can suffigently close
to charge sensors with high efficiency. Based on some specifietia (to be
discussed in a subsequent section), the locations of atsftsensors, i.e., anchor
points, are selected. In a time interval, the sensors |dcatehe anchor points
would be recharged. As shown in Fig.1, in each time interval, the SenCar will
migrate among the anchor points back and forth. We assurhthtra are a total of
g migration tours in each time interval. The same data gatbestrategy is used for
thesey migration tours. Along each tour, the SenCar would sojouesaah anchor
point to gather data from nearby sensors via multi-hop comaation. Without
loss of generality, we assume that the SenCar sojourns featine amount of time
at every anchor point in a tour. However, it should be poirgatithat as anchor
points in each time interval vary in quantity and positidhg, sojourn time may be
different from one time interval to another. During the la®ir in a time interval,
each sensor will report its up-to-date battery status t&#m@Car. This information
is transmitted piggyback with the data to the SenCar, whidhbei used for the
anchor point selection at the beginning of next time interva
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Figure 7.1: Timing of joint mobile energy replenishment atata gathering (J-
MERDG).
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While the SenCar arrives at an anchor point, it will quickly ieathe sensor
located there. The recharging structure is depicted in Fig. The SenCar, as the
energy transmitter, is equipped with a high-capacity regdwble battery, a DC/AC
converter and a resonant coil. For energy delivery, anlasiad) magnetic field is
first induced around the transmitter coil on the SenCar. The®senode, mounted
with a receiver coil, is then tuned to resonate at exacthgs#me frequency, and use
the AC/DC converter to generate DC current to recharge itefyatSuch a struc-
ture is feasible and of high efficiency, which is supporteddnent breakthroughs in
two areas. The first area is the technology of highly-efficieineless energy trans-
mission. Wireless energy transmission has already beeth toseecharge small
appliances, such as electric toothbrushes. Recent pregrakso show application
prospect of non-radiative energy transmission over migean The work in B5)]
and [66] has shown that through strongly coupled magnetic res@srtbe effi-
ciency of transferring0 watts of power over a distance in exces oheters is as
high as40%. Intel also demonstrated that it is possible to improvesfaming 60
watts of power over a distance of up to two to three feet witiciehcy of 75% p7).
At present, commercial products utilizing mid-range wess energy transmission
have been available on the market. The second area is theat@mimaterial for
ultra-fast charging. Ultra-fast charging was recentlyizea in LiFePQ by creat-
ing a fast ion-conducting surface phase through contrafédtoichiometry B6.

It inherits and combines the advantages of both convertidran batteries and
supercapacitors, which brings high energy density and eachlarged at the rate
as high as 400€. Thus, this can shorten the time to fully charge a batteretw f
seconds.

While the SenCar arrives at an anchor point, it will also act dsta collec-
tor to gather the data from nearby sensors. Since the lestteain be charged in
a very short time which can be almost neglected compare tedjoairn time, we
assume that sensor batteries can be instantly fully-cdogeise and the charging
operation does not affect data gathering. In a particutae interval, as the SenCar
moves over the anchor points in a tour, each sensor has tlee¢bsend its data to
the SenCar at any anchor point along low-cost routes. Morgoverder to max-

IMidrange refers to the distance between the transmittettanceceiver that is longer than the
size of the devices by a factor of at least 2 t@®5]|[

2C is determined by the nominal capacity of the battery. Fomtieby with the capacity of
1000mAh, C=1000mA.
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imize network utility while maintaining perpetual operats, each sensor employs
rate control to not only achieve high performance gain bst alvoid draining out
of energy before it can get recharged in a subsequent tiraevait Next, we will
present a carefully designed data gathering scheme tred tdkthese factors into
consideration.

7.4 Joint Mobile Energy Replenishment and Data Gath-
ering (J-MERDG)

Having outlined the basic idea of J-MERDG, in this section pn@vide a two-step
approach to efficiently implementing the design.

In the first step, the SenCar selects the anchor points foutterd time interval
by finding which sensors are to be recharged, where the SenlCsojaurn for data
gathering, and how the SenCar moves over the field. In the destep, based on
the information of SenCar’s sojourn locations and the eneeglenishing status,
each sensor self determines how to transmit data to the Sevi@arit arrives. The
details of the approach are given in the following two subieas. Since similar
methods are adopted in different time intervals, in theofeihg discussions, we
will focus on a typical time interval.

7.4.1 Anchor Point Selection

Since energy replenishment and data gathering are joiatigidered, the selection
of anchor points falls into following two aspects. Firstetbenors located at the
selected anchor points should be those with most urgentsnafegnergy supple-
ment. Second, as the SenCar moves over the anchor points ihdtrth for data
gatherings during a time interval, the length of each migratour, which implies
the data gathering latency, is expected to be short. Torleztjey the benefit of the
energy supply provided by the SenCar, more anchor pointdébelselected such
that more sensors can timely get recharged. However, thisddvaalversely prolong
the migration tour. Therefore, there is an inherent traldeetiveen the number of
sensors to be recharged and data gathering latency. Bashts aibservation, the
anchor point selection problem for a particular time in&#vcan be described as
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Table 7.1: Anchor point selection algorithm for time intairk.
/IS is the set of sensor8* ) is the set of energy states of sensors
at the end of time interva — 1, and L is the tour length bound
Input: S = {1,2,...,N}, B = (5 V)i € S}, andL
Output: Anchor point listA*) for time intervalk
Sort the battery states lﬁék_l) in an increasing order and record the
result in another sef’;
Map S to another sef’ by rearranging the sensors in the sequence
corresponding to their respective battery state§’jn
u <« 1;
v |S];
m « 0;
p—0;
while true do
if u>wv
p < v; break;
end if
m =3+ v);
Il We useS’(m) to represent then,;, element inS’
AR — (8(1),8(2),...,8'(m)};
Find an approximate shortest tour among the anchor points’in
and denoted the result by TER*));
case
TSRAW) < L u — m + 1;
TSRAW®) = L: p «— m; break;
TSRA®) > L v« m — 1;
end case
end while
AF) — 18'(1),8'(2),...,8(p)};
Find an approximate shortest tour among the anchor points’ih

follows. Given the up-to-date energy states of sensordraateby the SenCar at
the end of time intervalt — 1, find the maximum number of anchor points for time
interval £ such that the sensors located at these anchor points holdasiebat-
tery energy, and meanwhile by visiting these anchor pothtstour length of the
SenCar is no more than a threshold.

Considering that the possible candidate anchor points ardethations of all the
sensors, this problem is equivalent to finding a target sebgovisiting the loca-
tions of all the sensors with the battery energy less thagualdgo which, the length
of shortest migration tour among them is bounded by the tiolds Motivated by
this observation, we propose a selection algorithm to sefarcthe anchor points
with the pseudo code shown in Tablel Given the set of sensots, the set of
energy states of sensors at the end of the previous timeahts? ", and the tour
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length bound., the algorithm finds the anchor point ligt* for time intervalk as
follows.

As a pretreatment, the algorithm sorts the sensors with bagtery energy in
an increasing order. We record this sorted sensor lis$’bgnd useS’(7) to rep-
resent the,, element in the list. The problem is now converted to findingrget
sensorS’(p) such that by visiting the senors with the index no more thane.,
S§'(1),8(2),...,S(p), the tour length is no more thah. To this end, the al-
gorithm first finds the middle element &f, denoted byS’(m) and inspects the
shortest migration tour among the locations of the senS@is, S'(2), ...,S'(m).
The migration tour can be found by an approximate solutiofréweling Salesman
Problem (TSP). If the migration tour length equals the bolnthen the target sen-
sor has been found; otherwise, the upper half or the lowéoh#he list is chosen
to further search for the target sensor based on whethsrgreater than or less
than the migration tour among (1), S'(2), ...,S’(m). The algorithm reduces the
number of elements needed to be checked to half each timehughsimilar to the
binary search algorithn8B]. We us€/u, v] to indicate the search range for the target
sensor, where andv are the indices of boundary elements. When there is no valid
search range, i.eu, > v, itimplies that there is no way to find a tour with the length
exactly equal tal. Then,p is set byv andS’(p) is selected as the target sensor.
By visiting the locations of5’'(1), S’(2),...,S'(p), the tour length will be closest
to and less thard. It is clear that at mosflog(|S|)] rounds are needed to search
for the target sensor. In each round, we need to calculateraatoong at mostS|
sensors, which can be doned{|S|?) time. Therefore, the time complexity of the
selection algorithm i©)(|S|?1og(|S])).

An example of the selection algorithm is illustrated in Fig3. There areb0
sensors in the network and their battery energy followsammfdistribution over
[0,100]. The nearest neighbor algorithr@g] for the TSP problem is used in our
implementation to find the shortest tour among anchor poihite sensors on the
migration tour are those to be charged in the current timerwat. WWe can observe
that regardless of the value 6f a higher precedence of sensors with lower energy
are charged than other sensors. In addition, more sendbbewharged in the case
of a largerL. For example, whet, = 200m, 34% of the sensors, with the battery
energy lower than or equal &2, are charged and this results in a tour length of
193.2m. In contrast, wher. = 300m, 78% of the sensors, with the battery energy
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(8) L = 200m. (b) L = 300m.

Figure 7.3: An example to illustrate the selection alganitio search for the anchor
points in a time interval.

lower than or equal t@7, are charged, which leads to a tour lengtl2@3.4m.

7.4.2 Optimal Mobile Data Gathering Scheme

After the anchor points are determined, the remaining wsrkaw to gather the
data from sensors when the SenCar migrates among the anahts. p&/e study
such a mobile data gathering problem by formulating it intdibty maximization
problem based on a flow-level network model. In the followiwve first provide the
problem formulation and then propose an optimization-8akstributed algorithm
for it.

Problem Formulation

For time intervalk, consider a network with a set of static sensors, denoted by
S, and a set of anchor points, denoted AY). To capture the characteristics of
the SenCar movements over different anchor points in this interval, we model

the sensor network with the SenCar located at an anchor pdinte A®) by a
directed acyclic graph?ék)(vcfk), ES. vk = s U{A.} and represents the set of
nodes, including all the sensors and the SenCar at anchdrg(denoted by\,).

EP = {(4,4)|i,7 € Va(k)}, which is the set of directed links among the sensors and
the SenCar. Sensomgenerates data for the SenCar at a data raféf;bf/vhen the
SenCar moves to anchor pointThe SenCar stays at each anchor point for a period
of sojourn timer®) in each ofg tours in this time interval to collect data routed to
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Table 7.2: List of notations.
Notation | Definition

S Set of sensors, i.e§ = {1,2,..., N}

B*) Set of available battery energy of sensors for time
intervalk, i.e., B® = {p\¥))i € S}
ng) Set of battery energy states of sensors at the end pf

time intervalk, i.e., B {b |z € S}
Battery capacity of sensar

1
AF) Set of anchor points for time interval
Pi(fl) Set of parent nodes of sens’dor anchor point
in time intervalk, i.e. 73 = {jl(i,j) € E(k)}
CZ.(Z) Set of child nodes of sensofor anchor point
in time intervalk, i.e. Cl(a = {jl(j,7) € gtk )}
Ag SenCar located at anchor point
T Length of each time interval
q Number of migration tours in each time interval
L Maximum migration tour length for SenCar
()| Sojourn time of SenCar at each anchor point in a
migration tour during time intervai
r k) Data rate of sensarwhen SenCar sojourns at anchor

pointa during time intervak

fz(jkzl Flow rate over link(, j) when SenCar is located at
anchor point in time intervalk

Hff) Feasible region of link capacity variabfe f()l
o Portion parameter for the energy budget
€ij Energy consumed for transmitting a unit flow over
link (7, )
Vs Moving velocity of the SenCar

it in multiple hops.

In our model, we use utility functio/;(-) to characterize the impact of the
data from a sensor on the overall data gathering performakiée defineU;(-)
as a strictly concave, increasing and twice-differenédiinction with respect to
the total amount of data gathered from sensor the current time interval (i.e.,
Y acA®) rwqr k)). Accordingly, the network utility is defined as the aggréga
utility of all sensors. We are interested in maximizing thework utility while
maintaining the perpetual operation of the network. To ehithis objective, we
will address three critical issues: (1) what is the optinabd-ate of a sensor for the
SenCar sojourning at a particular anchor point; (2) how tedale the link trans-
missions based on the interference model; (3) how to rogteléta to the SenCar
at each anchor point taking into account of energy and lidacay constraints.

Now the mobile data gathering problem for time interkatan be formulated
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as follows. For clarity, all the notations used are sumnearin Table7.2

MDG: max ZU( > rqu ) (7.1)
r(0) ) es ac AF)
Subject to
e T = Y s vac A 2
jec® jer®)
DN ey <ab vies (7.3)
ac Ak) ‘673<k)
Je R eI vie 8,vj e PX va e AW (7.4)
where

T—qTSPRA®) /v,

andr(®) — ql AR

(7.5)

b(k) _ VBi’ if i e A(k
‘ B~ otherwise

The constraints can be explained as follows.

e Flow conservation constraint () states that at each sensor for each anchor
point, the aggregated outgoing link flow rates equal thelldesa rate plus
incoming link flow rates.

e Energy constraintq.3) enforces the energy cost at each sensor in a time in-
terval bounded by its energy budget, which is a portion oflalgke battery
energy.

e Capacity constraint/(4) specifies that the capacity allocated on a link for a
particular anchor point must fall in the feasible capacégionl‘[ff). Based on
the node exclusive interference model 19, 1% can be similarly defined

as the convex hull of all the rate vectors of the matchingG’ﬂH.

In the formulation,bgk) and7®) represent the available battery energy of sensor
1 for time intervalk and the sojourn time at each anchor point in a tour during
time intervalk, respectively. As the sensors located at anchor points eafagt
recharging, they are considered to have the full batteryggmer use, i.e.bgk) =
B;,ifi e AW,
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Distributed Algorithm for MDG Problem

It is observed that the objective function of MDG problem @ cave, however,
not strictly concave with respect ié'fl) Directly solving it with the dual approach
[98] may incur oscillation before the system enters the equilib, which is not
amenable for practical implementations. Therefore, wertds the proximal opti-
mization algorithm 97], which can be explained as follows.

Proximal Approximation Based Algorithm: A quadratic term— 4 |[r®) —

2
PIg = -3 ¥ (rglfl) - a;g';)) is added to the original objective function to
i€SqeAlk) N ’

make it strictly concave, when¢") = {rgz)}, x*) is an additional matrix andis a

positive scalar parameter. The proximal approximationlgm runs in iterations,

Which alternatively maximizes the updated network utittserr*) while keeping
k) fixed, then ovex®) while keepingr®) fixed, and repeats. In particular, the

iteration of the algorlthm performs the following two steps

Step 1: Fix x(k) = x H foralli € S anda € A% and solve the following

problem to obtaln the optlmaf ] andfw[ ].

rk) f(k)jes ac Ak

max > U; ( > Mgl )—;Cur“f)—x(’f)rr% (7.6)

subject to constraints?(Z), (7.3 and (7.4).
Step 2: Seta!")[t + 1] = r\")[] foralli € S anda € A®

Now, the remalnlng work is to solve problem.§). Since it is a strictly con-
cave problem with respect 16*), we apply the subgradient method based on dual
decomposition for it, which is an efficient technique for eex programs and can
naturally achieve the distributed implementation.

Dual Decomposition: We relax constraint4.2) by introducing Lagrangian
multiplier /\Z(IZ) Then, we can obtain the partial Lagrangian

L(x®) £k \k)
—zrf(mqf“f) zz< ri — m> zzm i +ij Zf,%*fb
[ZU <qu7 ) - 4 zz< *y2 zm’iﬁ f’ZHZZZ(A(’“ A )

i oa j

(7.7)
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By duality, the dual problem is therefore

in g(\) = mi L(x® £k Ak 7.8
Agg;rgog( ) min max, (et £ A0 (7.8)
Note that the dual problem has a good separable propertghvdain be decom-
posed into two subproblems. One is the rate control subgnolih terms of rate
variablesr®), and another is the joint scheduling and routing subprolitefind
optimal flow variableg*)

Rate Control Subproblem Given /\Z .«» €ach sensor solves a local optimization as
follows by adjusting its data rates for different anchomeiin time intervak.

, ®) _(k)y_ 1
pan () Y e A o

This local optimization can be solved by a similar approaxcthat in [L02 with
the complexity ofO(]A® | log(].A%®)])), which is explained as follows.

Let u, be the Lagrangian multiplier for constrabrffl) > 0. For eachu ¢ A®,
the Karush-Kuhn-Tucker condition8§] are given by

pa = 0, (7.10)

fa T =0, (7.11)

U ri) gr®)gr®) — L g Lom ko, (7.12)

Pl c v c v ’

Letm”) = La{*) — A" Then .12 can be rewritten a&7(>", %) qr®)qr® —

1 f? + mi’z) + 1o = 0. If we sort the rates in the order thm(’“ > m(f;) >

> m(k‘i\ wpr We have that for any < o’ < a < |AY)|, r.k) > M. This

result trivially holds When~ = 0. And whenr > 0, we havey, = 0 and
rﬁf} — TEZ) = c(mgi), — Ea)) + ier > 0. Therefore, zhao -energy by using this result

and the KKT conditions, there exists adnsuch that

(7.13)

ZCL

RO c [QT(’“)U{(RE’“)qT(’“)) + mika)} >0, a<A
07 a > A7

WhereR("”) Za 1 Tia *) denotes the sum of data rates for different anchor points.
This implies that to find the optimal value for everﬁf;, we only need to find
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optimal RE’“) and theA.

When A is given, R *) can be easily computed by solving the summation in
(7.1 foralla < A. Asr¥) > 0 for alla < A, we have thapa = 0 so thatR™"
is the solution ofdqr® - U’(R ) grk)y — lR(k + A m = 0. This way, all
the work now becomes f|nd|ng a prop&r As r )is decreasmg im and A is the
boundary to indicate whether the rate is greater than orléguaro, we search for
A from |A™| down to1, and when") = ¢ [¢r®U/(RPgr®) + mi*)| > 0, we
say A is found.

Finally, we summarize the rate control algorithm for sulippeen (7.9) in Table
7.3

Table 7.3: Distributed rate control algorithm at sensor
Sort anchor points itd*) such thaimgfl) is in the decreasing ordef;

A AW,
M — ZIA(k)I
While A > 1 do
I UseRl( ' to denotey"7 | Z'Z)

Solve Aqr® - U/(RMqr®)) — LR + M = 0 for optimal R{";
Computer") = ¢ [qT(k) U/(R®gr)) + m(% ;

If ") >0
éompute the data rate for each anchor point as
L) [QT(k)UiI(R(k)QT(k)) + m( )} a<A

e 0 a>A"

Break;

else
M — M —m");
A—A-—1; ,

end If

end While

Joint Scheduling and Routing Subproblem Given /\w, the how to schedule
the link activation and how to allocate the flow rate on eadtedaled link can be
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determined by solving the following subproblem.

max S (AR A8 p)

za]

s.t. zz ey <ob® vies (7.14)
fz(]()l Hff),w eS,Vje Pf ) Va e AK)

We first ignore the energy constraint when consider the lafiedule, i.e., for each
anchor point, choosef such that

ij,a

Fija € arg f;fffﬁw;;( — A i (7.15)
If we considerAEf“) )\(’“ as the weight of link(i, j) destined for the SenCar at
anchor pointa, this schedullng problem is equivalent to the maximum wigidgh
matching problem under the node exclusive interferenceaindtle can utilize the
heuristic distributed algorithms i1 and [16] to solve this problem irO(lEék)D
time.

Then problemT.14) is reduced to a routing problem that determines how much

flow rate on each link based on the schedule and energy comstr&ach sensor
only needs to solve the foIIowing local problem

max zz< — M
sit. qT<k zz ey < ob™ (7.16)

Vj € Pl(];),Va e Ak

fz]a — zga’

where eacb”” . can be considered as the link capacity based on a specified-sch
ule. This routing problem can be easily solved by an algorittescribed in Table
7.4. The basic idea of the algorithm can be intuitively expldias follows. Each
sensor always allocates a maximum flow rate under the en@dyirgk capacity
constraints to a scheduled link that has the largest link gaiong all its outgoing
links to different anchor points. Apparently, in the worase, each sensor needs to
consider the link gains of all its outgoing links for diffetteanchor points. Thus, the
time complexity of the routing algorithm at sensas O(} . 1) degl (1)), where

ded' (i) is the outdegree of sensoin the directed acyclic grapﬁa (V. a('“), Eﬁk)).

Lagrangian Multiplier Update In each iteration of the subgradient algorithm,
sensori solves the subproblems i7.0) and (.14 with the current Lagrangian
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Table 7.4: Distributed routing algorithm at sensor
Setf to zero, for allj € P( ) ae AW
Setw, — {)\(k) A > 0lvj € PE) Vo € AW } and sort it
in the decreasing order,
Initialize the battery energy for allocatioh, = abgk);
For iter = 1;iter <= ]PZ(];)] AW iter + +

If W, =®orb. =0

Break;
end If
(j.@); — argWiliter];
(4:a)
fz(j]?i = min { T(k>€ ’fm a

RemoveW,[iter] from W;;
k
end For

multiplier A(k)[ |. Then, sensorupdates the Lagrangian muItipIiers as follows and
sends them to its direct neighbors to facilitate the conmguaif ~*) and f*) in the
next iteration.

)\(k) n+1] =

i
[Aﬁ,’i? ] + 0[] (rﬁ,’? )+ 40 n] - 58 w)] 7
J J

where[-|" denotes the projection onto the non-negative orthantémldis a pro-
perly chosen scalar stepsize for subgradient iteratidn our algorithm, we choose
the diminishing stepsizes, i.6[n] = d/(b+ck), Vk,c,d > 0,b > 0, whereb, c and
d are adjustable parameters that regulate the convergered.sfphe diminishing
stepsize can guarantee the convergence regardless oitialevaiue of A [98].

Recovery of Primal Solutions Since the subproblem of joint scheduling and
routing is linear, which implies that the values in the ogtimolution of the La-
grangian dual cannot be directly applied to the primal problIn view of this, we
still apply the method introduced idQQ to recover the optimal primal values for
varlablesfw When the variablesl(.f“a) converge in the higher level optimization,

during the subgradient iterations in the lower level we tats the primal feasible
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sequence$fi(;fi [n]} as follows.

f z(jk()z [n] = %hzlf z(jk()z[h]
[ n=1 (7.18)
nd {9~ 1)+ L] 0> 1

Optimal flow rates can be obtained Wh{ef; } converges tcf” -

Finally, we summarize the proximal apprOX|mat|on basedmtigm in Table
7.5, which is described in the context of sensdor time intervalk. As it is per-
formed by each sensor and the information is only exchangeuhg direct neigh-
bors, the algorithm is in a fully distributed manner.

Table 7.5: Summary of proximal approximation based alporit

Initialize x\*) = {2{*)|a € A®)} to non-negative values;
/l iterations for prOX|maI approximation
Repeat
Initialize Lagrangian multlphers\ = {/\ |a c AM} to

non-negative values;
// iterations for subgradient and dual decomposition 6r6)

Repeat
Computer!"[n] = {r )[n]|a € A®)} by solving rate
control subproblemd. 9)
Computef ") [n] = {fwa[ n)|j € P m " a e A®)Y by solving

joint scheduling and routing subprobleifh14);
Update lagrangian multiplier and send them to direct neighhors;

If x( ) get converged in the high-level proximal iterations
Compute primal feaS|bI¢Z(] n] by (7.18);
end If
Until )\( )andrl(.k) converge;
Setx(k)[ t+1] = rgk) [t] in thet,, proximal iteration;
Until xz( ) converges and get the final optimé’f) andfi(k)

7.5 Numerical Results

In this section, we evaluate the effectiveness of -MERD@ esxtensive numerical
results, and compare it with the performance of the solardsting sensor system.
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Table 7.6: Parameter settings.
| Parameter  Value || Parametef  Value |

w; 100 €A, 0.02mJ/Kbit
9(n) T L 200m
Vs 1m/s o 0.9

In the evaluation, we use a network consistind @fvireless rechargeable sensors
distributed over a 100m100m area for demonstration purpose. In fact, due to
the SenCar’s capability of obtaining the sensor energy stateng its migration
tour and the distributed nature of the data gathering sfiede our design can be
readily applicable to large scale networks. The utilitydtion U;(-) is defined as
w;log(>, ré’?qr + 1), wherew; is the weight of utility at sensat If not specified
otherwise, the time interval lengfthis set to one hour and the number of migration
toursq in each time interval is equal t& For clarity, all other parameter settings

are summarized in Tablé®6.

7.5.1 Convergence of Proximal Approximation Based Algorithm

We first examine the convergence of the proximal approxwnabased algorithm.
For a particular time intervat, we assume that each sensor randomly h&lds-
100% of full battery capacity and the anchor points are set todhations of sensors
1, 2 and 3. Fig.7.4(a) shows the evolution of data rat/ez(éf versus the number of
proximal iterations. It can be seen that all data rates amprdo the stable status
after only10 iterations. Fig.7.4(b) shows the evolution of recovered flow rafé]él
on some selected links versus the number of subgradieatidas. It is noticed
that the recovered flow rates are well withi¥t of their optimal values after only
500 iterations. To further dampen the number of subgradierdtions, which is
the lower-level optimization of the proximal approximatibased algorithm, we
can set the initial values of Lagrangian muItipIietf,él) by their final values in the
previous run of higher-level proximal iterations. Compédegterformance can be
observed when the number of subgradient iterations is aasoavound 100.
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Figure 7.4: Convergence of the proximal approximation badgarithm.

7.5.2 Performance of -MERDG

We now study the performance of J-MERDG varying with the timterival length

T. Fig. 7.5@a) and7.5b) respectively demonstrate the evolution of cumulative
network utility and cumulative number of recharged sensotensecutive 24 hours
under different settings df. We assume that each sensor initially holds full battery
capacity and the number of migration toyrgh each time interval is proportional

to 7. From the figures, we can see that higher cumulative netwtlitycan be
obtained and there are more recharged sensors in the cdles smallerl’. This

is reasonable since a smallEdeads to shorter waiting time for the sensors to get
recharged. However, a smdllmay cause sensors to frequently calculate their data
rates, schedule and routing so as to achieve the optimabd#tarings. Therefore,

a proper setting fof” is actually to balance the tradeoff between the computation
overhead and achievable performance. Fig5c) and7.5d) depict the battery
states of sensor 1 and sensor 8 evolving with time, resghgtivt is shown that
sensors could timely get recharged to avoid energy deplstich that perpetual
operations of the network can be guaranteed. It is appdrahsénsors have more
chances for energy replenishment under a smdilerFor example, sensor 8 is
recharged for 9 times within 24 hours whé&h= 1 while it only gets recharged
twice whenT" = 6.
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Figure 7.5: Performance of J-MERDG as the functiofi'of

7.5.3 Comparison with Solar Harvesting Sensor System

In this subsection, we compare J-MERDG with the mobile datiaggang in the so-
lar harvesting sensor system, denoted by MDG-SH for shoIDG-SH scheme,
each sensor harvests solar irradiance to self-supporhésyg consumption and
a mobile collector visits each anchor point only for datahgaigs. In order to
sustain network operations, the energy consumption ragé@di sensor can not be
higher than the energy harvesting ra#®][ We build the recharging profiles of
sensors for MDG-SH by using real solar irradiation measergsicollected by the
Baseline Measurement System (Global 40-South PSP) at MhfRenewable En-
ergy Laboratory4]. In particular, we choose 30 days of year 2009 and categoriz
them into three sets based on the irradiance statistics S@/he average irradiance
of these three sets to represent the solar power on sunogycénd shadowy days,
respectively. Based on the irradiance, the recharging eatde derived as follows

T = IXnp X pex A, (7.19)
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Figure 7.6: Performance comparisons between J-MERDG and8BG

where! represents the solar irradiangg s the efficiency of the solar panel to con-
vert solar irradiance to electrical power, is the electrical regulating and charging
efficiency, andA is the size of solar panel. In our simulations, each sensas-is
sumed to have an equal recharging rate. And we,sgtp, to 0.06 and letA equal
37mmx37mm.

Fig. 7.6 compares J-MERDG with MDG-SH in consecutive 24 hours in terms
of network utility and the amount of gathered data. The anhotigathered data is
used as one of the metrics because it more evidently vigsatie difference among
different solutions than network utility, which is in logdamic scale and results in
a small slope at high data rate&]. It is apparent in Fig.7.6(a) that -MERDG
greatly outperforms MDG-SH all the time. On the average, ERDG achieves
48%, 59% and 66% higher network utility than MDG-SH in sunny, cloudy and
shadowy days, respectively. These observations are afgcape to the amount
of gathered data. It is shown in Fig.6(b) that, during the day time (8:00-18:00),
J-MERDG can collec1%, 48% and 54% more data than MDG-SH in sunny,
cloudy and shadowy days, respectively. Moreover, durightniime, MDG-SH
has no chance to harvest solar energy and thus cannot extractata, while J-
MERDG can still keep working and maintain the network utikiynost as high as
that of day time. This fact signifies the importance of our kyavhich provides a
recharging scheme immune to the environmental variatindsa&so achieves high-
performance data gathering.
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7.6 Conclusions

In this chapter, we have studied the joint design of energlereashment and data
gathering (J-MERDG) in wireless sensor networks by expigitnobility. Specif-
ically, a multi-functional SenCar is introduced to the warsd rechargeable sensor
networks, which migrates among selected anchor pointsgeldhe located sen-
sors via wireless energy transmissions, and collects data hearby sensors in
multi-hop routing. In J-MERDG, we first presented a selectdgorithm to de-
termine the anchor points, which achieves a desirable balbatween the energy
replenishing amount and data gathering latency. Then, \péoeed the optimal
data gathering performance when the SenCar moves overetiiffanchor points.
Each sensor self-tunes the data rate, scheduling, andgddsed on the up-to-date
energy replenishing status such that the system-wide metwdity can be max-
imized. Numerical results demonstrated that J-MERDG cagctdely maintain
perpetual network operations and outperform solar hangstystems byl8% in
network utility.
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Chapter 8
Conclusions

This dissertation focuses its study on mobile data gatgennvireless sensor net-
works. A suite of scheme design and performance optimizaigorithms have
been presented to identify and address some critical igautbss research field.
Specifically, first, a joint design of controlled mobility dspace-division multiple
access technique has been propo4€d|f[ 110 for mobile data gathering. It lever-
ages the mobility to alleviate the non-uniformity of enegynsumption among
sensors as well as utilizing the concurrent data transamgsi shorten data gath-
ering time. Second, a region division and tour planning @lym is presented
[11]1] to extend the joint design of mobility and SDMA techniquel&nge-scale
sensor network with multiple SenCars. The data gatherirenégt can be mini-
mized by balancing the data gathering time among differegions. Third, the
bounded relay hop mobile data gathering schefig[is introduced to explore
the tradeoff between energy saving and data gatheringchkaténincorporates the
multi-hop relays of local data aggregation into mobile dgtthering while keeping
the relay hop count constrained to a certain level to limat éimergy consumption
at sensors. Fourth, a pricing-based distributed algorithib®[116] is proposed
for performance optimization on the anchor-based rangeisang data gathering
scheme, which is modeled under cost minimization framewadike optimal per-
formance can be achieved at the equilibrium that reconedithe payment and the
shadow price between each sensor and the SenCar for commimmicpportuni-
ties. Fifth, two distributed algorithmd4.17[118 have been presented to effectively
adjust data rate, routing, and sojourn time allocation siw @shieve system-wide
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network utility maximization with fast convergence. Filyaimobile data gather-
ing is jointly considered with energy replenishment in Wess rechargeable sensor
networks. The SenCar plays as not only a data collector boteatsansporter for
energy delivery, which enable steady recharging rate agig-&nergy data gather-
ing to be achieved simultaneousf/l[d. A two-step approach is applied to imple-
ment the design, which computes the migration tour of theCaerbased on the
joint consideration of recharging demand and data gatyeenformance, and also
adapts adjustable data rate, link schedule, and flow rotditige up-to-date energy
replenishing status so as to optimize the data gatherifityuti

To summarize, in this dissertation, we have conducted cehgmsive studies
on mobile data gathering in wireless sensor networks. We pavposed efficient
solutions to improve data gathering performance from bgttesnatic and theo-
retical points of view, which combine algorithm design,ioptation, analysis and
simulation techniques. The outcome of this research carppkcable to a wide
spectrum of applications, including environmental mamitg, field surveillance,
home automation and other commercial areas. Thereforeeeaarch would have
a significant impact on fundamental design principles arichgtructures for the
development of future sensor networks.
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