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Abstract of the Dissertation

Switching On and Off the Full Capacity of an M/M/∞
Queue & Dynamic Pricing and Power Generation

Risk Management in Smart Grids

by

Xiaoxuan Zhang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2010

Part 1. We study a problem of optimal switching on and off the M/M/∞

queue with holding, running and switching costs. We show that an op-
timal policy either always runs the system, or is defined by two thresh-
olds M and N such that the system is switched on upon an arrival epoch
if the system size accumulates to N and is switches off upon a departure
epoch if the system size decreases to M.

Part 2. We design an optimal incentive mechanism offered to energy
customers at multiple network levels, such as distribution and feeder
networks, with the aim of determining the lowest cost aggregate en-
ergy demand reduction. Our model minimizes a utility’s total cost
for this mode of virtual demand generation, i.e., demand reduction, to
achieve improvements in both its total systemic costs and load reduc-
tion over existing mechanisms. Our scheme assumes that the utility can
predict with rebates by observing and learning from their past behav-
ior. Within a single period formulation, we further propose a heuristic
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policy that segments the customers according to their likelihood of re-
ducing load. Within a multi-period formulation, we observe that cus-
tomers who are more willing to reduce their aggregate demand over
the entire horizon, rather than simply shifting their load to off-peak
periods, tend to receive higher incentives, and vice versa. We further
consider integrating the demand response and renewable resources into
traditional thermal power generation management. A single-period op-
timal dispatching problem is considered for a network of energy util-
ities connected via multiple transmission lines, where we seek to find
the lowest operational-cost dispatching of various energy sources to
satisfy demand. Our model includes traditional thermal resources and
renewable energy resources , together with corresponding power trans-
mission constraints, as available generation capabilities within the grid.
A key novel addition is the consideration of demand reduction as a vir-

tual generation source that can be dispatched quickly to hedge against
the risk of unforeseen shortfall in supply. Demand reduction is dis-
patched in response to incentive signals sent to consumers. The control
options of our optimization model consist of the dispatching order and
dispatching amount of the thermal generators together with the rebate
signals sent to end-users at each node of the network under a simple
demand response policy. Numerical experiments based on our analy-
sis of representative data are presented to illustrate the effectiveness of
demand response as a hedging option.
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Chapter 1

Switching On and Off of the Full
Capacity of an M/M/∞ Queue

1.1 Introduction

We study an M/M/∞ queue with the controls that turn off the running system or
turn on the system to full capacity. System costs include linear holding cost and
constant serving cost, as well as switching costs each time the system is switched
on or off. The system process is reviewed at either a customer arrival epoch or a
departure epoch. The objective is to find a stationary optimal policy to minimize
the total discounted cost over an infinite horizon and average cost. We prove that a
Blackwell optimal policy is either a full service policy or an (M,N)-policy, where
a full service policy is such that never turns off the running server; and an (M,N)-
policy is such that there exist two integers M and N, with 0 ≤ M < N < ∞ and for
any state x = (i, δ) ∈ S , a stationary optimal policy is such that

ϕ(x) =


0, if i ≤ M,

1, if i ≥ N,

δ, if M < i < N.

When M = 0, the (M,N)-policy is the classic N-policy studied by [5, 16, 33, 55, 48].
Another type of optimal policies for queues with a removable server is called D-
policy [29, 28].

The paper is organized as follows. In Section 1.2, we present our model for-
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mulation, notations and definitions. Some properties of M/M/∞ are presented in
Section 1.3. In Section 1.4, we show the structure of discount-optimal polices when
the continuous discount factors are small. The average optimality is shown in Sec-
tion 1.5. Computation results and numerical experiments are given in section 1.6.

1.2 Problem Formulation

Consider an M/M/∞ queue. Customers arrive according to a Poisson with parame-
ter λ. Service times are exponential with parameter µ and independent. The number
of servers is unlimited. The system can be switched on and off. All busy servers
operate when the system is on, and all the servers are off when the system is off.

The controller can switch the system from on to off and vice versa any time.
The costs include the linear holding cost of h for a unit of time a customer spends in
the system, the start-up cost s1, the shut-down cost s0, and the running costs c1 per
unit time when the system is on and c0 per unit time when the server is off, where
c1 > c0 ≥ 0. Let c = c1 − c0. It is clear that without loss of generality we may
assume that c1 = c and c0 = 0. So, throughout the paper we consider the system
running time equal to c and the zero idling costs. We also assume that h > 0, s0 and
s1 are nonnegative, but at least one of them is positive.

To simplify the initial analysis, we assume that the server can be turned on
and off only at time 0, customer arrival times, and customer departure times. These
times are jump epochs for the process X(t) of the number of customers in the system
at time t. Let t0, t1, . . . be the sequence of jump epochs. We initially consider the
servers can be switched on and off only at jump epochs. Switching takes place only
at these times is not restrictive, and the optimal policies described in the paper are
also optimal when the system can be turned on and off any time.

Now we define a Continuous-Time Markov Decision Process (CTMDP) for our
problem. For this process, decision are chosen only at jump epochs. The state space
is S = N × {0, 1}, where N = {0, 1, . . .}. If the state of the system at the decision
epoch n is xn = (Xn, δn) ∈ S , this means that the number of customers in the system
is Xn and the state of the system is δn, with δn = 1 if the system is on and δn = 0
if the system is off. The action set is A = {0, 1}. If the action an is selected at
a decision epoch tn, when the system is at a state (Xn, δn), the system is switched
immediately if an , δn and its status (on or off) remains unchanged, if an = δn. In
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particular, if the system is off, that is δn = 0, the decision an = 1 turns the system
on, and, if the system is on, that is δn = 1, the decision an = 0 turns it off.

If the system is off or Xn = 0, the time until the next jump epoch, which is an
arrival, has an exponential distribution with the intensity λ. If Xn = i > 0 and the
system is on, the time until the next jump epoch has an exponential distribution with
the intensity Λi = λ + iµ, and this jump is an arrival with the probability λ/Λi and a
departure with the probability iµ/Λi.

A history of the process up to nth jump, n = 0, 1, . . ., is the sequence t0, x0, a0,
. . ., tn−1, xn−1, an−1, tn, xn. Let Hn be the set of all histories up to nth decision epoch.
Then H = ∪0≤n<∞Hn is the set of all histories that contain a finite number of decision
epochs. A (possibly randomized) policy π is defined as a transition probability from
H to A such that π(A|hn) = 1 for each hn ∈ H, n = 0, 1, . . .. A stationary policy is
defined by a mapping π : S → A such that π(x) ∈ A, x ∈ S .

For each initial state of the system x0 = (i, δ), and for any policy π, the policy
π defines a stochastic sequence {xn, an, tn, n = 0, 1, . . .}, where t0 = 0 and tn+1 ≥ tn.
We denote by Eπ

x0
the expectation of this process.

Now we define the cost function. If xn = {i, δ}, and an action a is selected then
the cumulative cost during the interval [tn, tn+1], where 0 ≤ tn ≤ tn+1 is

c(i, δ, a, tn, tn+1) =

ˆ tn+1

tn
hidt + cI{δ = 1}dt + saI{δ = a},

where I is the indicator function. The cumulative cost over the interval t is

C(t) =

N(t)∑
n=0

c(Xn, δn, an, tn, tn+1) + c(XN(t), δN(t), aN(t), tN(t), t),

where N(t)+1 is the number of jump epochs up to time t. Thus, N(t) does not count
the jump at t0 = 0.

Let N1(t) be the number of arrivals and N2(t) be the number of departures by
time t. Since N1(t) is a Poisson process then with probability 1 N1(t) < ∞ for t < ∞

and N1(t) → ∞ as t → ∞. Since N(t) = N1(t) + N2(t) and N2(t) ≤ N1(t) + X0, we
have that N1(t) ≤ N(t) ≤ 2N1(t)+ X0. This implies that with probability 1 N1(t) < ∞
for t < ∞ and N1(t) → ∞ as t → ∞. Thus with probability 1 all the epochs tn are
finite and tn → ∞ as n→ ∞.

We observe that C(t) = ∞ with probability 1 when N(t) = ∞. Now we define
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the state of the server at time t as δ(t) = δn for tn ≤ t ≤ tn+1, and the number of
customers at time t as X(t) = Xn for tn ≤ t ≤ tn+1. Using these notations, we can
rewrite

C(t) =

ˆ t

0
(hX(t) + cδ(t))dt +

N(t)∑
n=0

san |an − δn|, (1.1)

where we use that |a − δ| = 0, if a = δ, and |a − δ| = 1, if a , δ. Observe that C(t) is
a nondecreasing nonnegative function.

For any initial state of the system x0 = (i, δ), and for any policy π, the expected
total discounted cost over the infinite horizon is

Vπ
α(i, δ) = Eπ

(i,δ)

ˆ ∞
0

e−αtdC(t)

=Eπ
(i,δ)[
ˆ ∞

0
e−αt(hX(t) + δ(t)c)dt +

∞∑
n=0

e−αtn |an − δn|san]. (1.2)

The average cost per unit time is defined as

vπ(i, δ) = lim sup
t→∞

t−1Eπ
x0

C(t). (1.3)

Let

Vα(i, δ) = inf
π

Vπ
α(i, δ), (1.4)

v = inf
π

vπ(i, δ). (1.5)

A policy ϕ is called discount-optimal if Vϕ
α (i, δ) = Vα(i, δ) for any policy π and

for any x0 = (i, δ). A policy ϕ is called average optimal if vϕ(i, δ) = v for any policy
π and for any x0 = (i, δ).

1.3 Properties of M/M/∞ Queues

In this section, let Λi = λ + iµ, βi =
Λi

α + Λi
, pi = λ/Λi, and qi = iµ/Λi, i = 0, 1, . . ..

Let Ti be the time until the first departure when the system is on at time 0. Let
Ni(t) represent the number of arrivals during time t starting with i customers in the
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system, thus

E[Ti] = E [E [Ti|Ni(t)]] =qi
1
Λi

+

∞∑
k=1

pi . . . pi+k−1qi+k

k∑
j=0

1
Λi+ j

(1.6)

By rearranging the order of summation in (1.6),

E[Ti] =
qi

Λi
+

∞∑
j=1

1
Λi+ j

∞∑
k= j

pi . . . pi+k−1qi+k

=λ−1

 λΛi
qi +

∞∑
j=1

λ

Λi+ j
pi . . . pi+ j−1

∞∑
k=0

pi+ j . . . pi+ j+k−1qi+k


=λ−1

piqi +

∞∑
j=1

pi . . . pi+ j

∞∑
k=1

P
(
Ni+ j(t) = k

)
=λ−1

∞∑
j=0

pi . . . pi+ j

∞∑
k=0

P
(
Ni+ j(t) = k

)
=λ−1

∞∑
j=0

pi . . . pi+ j, (1.7)

where the last equality is by the fact
∑∞

k=0 P
(
Ni+ j(t) = k

)
= 1 for all i, j. It is obvious

from (1.7) that E[Ti] is decreasing in i. Let Bi,α be the expected discount factor for
Ti, we have

Bi,α = E
[
e−αTi

]
= E

[
E

[
e−αTi |Ni(t)

]]
=

∞∑
k=0

P (Ni(t) = k) βNi(t)=k, (1.8)

where βNi(t)=k = E
[
e−αTi |Ni(t) = k

]
= βi . . . βi+k. Let Bk

i,α = P(Ni(t) = k)βNi(t)=k =

pi . . . pi+k−1qi+kβNi(t)=k, where βi =
Λi

α + Λi
, and we have Bi,α =

∑∞
k=0 Bk

i,α. It is ob-

vious that Bi,α is decreasing in α and increasing in i. Define the total discounted
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serving cost and holding cost during Ti as Ci,α and Hi,α respectively. Thus

E
[
Ci,α

]
=E

[ˆ Ti

0
e−αtcdt

]
= c

[ˆ Ti

0
e−αtdt

]
=

c
α

(
1 − E

[
e−αTi

])
=

c
α

(1 − Bi,α), (1.9)

E
[
Hi,α

]
=E

[ˆ Ti

0
e−αth(i + N(t))dt

]
= E

[
E

[ˆ Ti

0
e−αth(i + k)dt|Ni(t) = k

]]
=

∞∑
k=0

P (Ni(t) = k)
k∑

j=0

βNi(t)= j
h(i + j)

Λi+ j
=

h
µ

∞∑
j=0

βNi(t)= jqi+ j

∞∑
k= j

P (Ni(t) = k)

=
h
µ

βNi(t)=0qi +

∞∑
j=1

βNi(t)= jqi+ j

1 − j−1∑
k=0

P (Ni(t) = k)




=
h
µ

βNi(t)=0qi +

∞∑
j=1

βNi(t)= jqi+ j

(
pi . . . pi+ j−1

)
=

h
µ

∞∑
j=0

βNi(t)= jP (Ni(t) = j) =
h
µ

Bi,α. (1.10)

From (1.9), E
[
Ci,α

]
is decreasing in i; from (1.10), E

[
Hi,α

]
is increasing in i.

Lemma 3.1 When α <
cµ
h

, E
[
Hi,α

]
+ E[Ci,α] is decreasing in i.

Proof By (1.9) and (1.10), we have

E
[
Ci,α + Hi,α

]
=

c
α

(1 − Bi,α) +
h
µ

Bi,α = (
h
µ
−

c
α

)Bi,α +
c
α
.

Since Bi,α = E
[
e−αTi

]
is increasing in i, thus when

h
µ
−

c
α
< 0, i.e., α <

cµ
h

,

E
[
Ci,α + Hi,α

]
is decreasing in i. 2

1.4 Discounted Cost Criterion

In this section we study the expected total cost criterion.
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1.4.1 Reduction to Discrete Time and Existence of Stationary
Discount-Optimal Policies

In this subsection, we formulate the optimality equation, prove the existence of
stationary discount-optimality equations. This is done by reduction of our problem
to discrete time.

When the system is on and there are i customers in it, the time until the next
jump has an exponential distributions with intensity Λi → ∞ as i → ∞. Since the
jump rates are unlimited, it is impossible to present the problem as a discounted
MDP with the discount rate smaller than 1. Thus, we shall present our problem as
a negative MDP.

A discrete time MDP is called negative [51, 6, 43, 27], if the costs are nonnega-
tive and the goal is to minimize the expected total rewards. Similarly to discounted
MDPs, the value function for a negative MDP satisfies the optimality equation. In
addition, if the action sets are finite, there exists a stationary optimal policy. Further-
more, a stationary policy is optimal if and only if it satisfies an optimality equation.
This means that for an MDP with a countable state set X, action sets A(x), transi-
tion probabilities p(y|x, a) , and nonnegative one-step rewards c(x, a), a stationary a
stationary policy φ is optimal if and only if for all x ∈ X it satisfies

V(x) = c(x, φ(x)) +
∑
y∈X

p(y|x, φ(x))V(y), (1.11)

where V(x) is the infimum of the expected total costs starting from state x. In addi-
tion, the value function V(x) satisfies the optimality equation

V(x) = min
a∈A(x)
{c(x, a) +

∑
y∈X

p(y|x, a)V(y)}, x ∈ X. (1.12)

For our queueing control problem, define the following values:

β(i, a) =


λ

λ + α
, if a = 0,

Λi

Λi + α
, if a = 1,

(1.13)
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p( j|i, a) =



1, if a = 0, j = i + 1,
λ

Λi
, if a = 1, j = i + 1,

iµ
Λi
, if i > 0, a = 1 j = i − 1,

0, otherwise,

(1.14)

and c((i, 0), 0) =
hi

λ + α
, c((i, 1), 0) = s0 + c((i, 0), 0), c((i, 1), 1) =

hi + c
Λi + α

, and

c((i, 0), 1) = s1 + c((i, 1), 1). Let

pα( j|i, a) = β(i, a)p( j|i, a)).

We follow the conventions that pα(−1|i, a) = 0, Vα(−1, δ) = 0,
∑
∅

= 0, and
∏
∅

= 1.

The following theorem is the main result of this subsection.

Theorem 1 For any α > 0 the following statements hold:

(i) For all i = 0, 1, . . .

Vα(i, δ) ≤ (1 − δ)s1 +
hi

µ + α
+

hλ
α(µ + α)

+
c
α
< ∞; (1.15)

(ii) For all i = 0, 1, . . . and all δ = 0, 1 the value function Vα(i, δ) satisfies the

optimality equation

Vα(i, δ)

= min
a∈{0,1}

{c((i, δ), a) + pα(i − 1|i, a)Vα(i − 1, a) + pα(i + 1|i, a)Vα(i + 1, a)}

= min
{

(1 − δ)s1 +
hi + c
α + Λi

+
λ

α + Λi
Vα(i + 1, 1) +

iµ
α + Λi

Vα(i − 1, 1),

δs0 +
hi

α + λ
+

λ

α + λ
Vα(i + 1, 0)

}
; (1.16)

(iii) There exists a stationary discount-optimal policy, and a stationary policy φ is

8



discount-optimal if and only if for all i = 0, 1, . . . and for all δ = 0, 1

Vα(i, δ) = min
φ(i,δ)∈[0,1]

{c((i, δ), φ(i, δ)) + pα(i − 1|i, φ(i, δ))Vα(i − 1, φ(i, δ))

+pα(i + 1|i, φ(i, δ))Vα(i + 1, φ(i, δ))} . (1.17)

Proof (i) By definition, Vα(i, δ) ≤ Vπ
α(i, δ) for any policy π. Consider the policy

π that never turns the servers off and immediately turns them on at time 0 if the
system is off at time 0. Then Vπ

α(i, 0) = s1 + Vπ
α(i, 1) or, equivalently, Vπ

α(i, δ) =

(1 − δ)s1 + Vπ
α(i, δ). Observe that

Vπ
α(0, 1) = E

[ˆ ∞
0

e−αt (hX0(t) + c) dt
]

= hE
[ˆ ∞

0
e−αtX0(t)dt

]
+

c
α

=
hλ

α(µ + α)
+

c
α
,

(1.18)

where X0(t) is the number of busy servers at time t if at time 0 the system is empty.
The last equality in (1.18) holds because, according to [46, Page 70], X0(t) has a

Poisson distribution with the mean λ
´ t

0 e−µtdt =
λ

µ

(
1 − e−µt). Thus,

E
[ˆ ∞

0
e−αtX0(t)dt

]
=

ˆ ∞
0

e−αtλ

µ

(
1 − e−µt) dt =

λ

α(µ + α)
. (1.19)

Also observe that

Vπ
α(i, 1) = Hα(i) + Vπ

α(0, 1) = iHα(1) + Vπ
α(0, 1),

where Hα(i) is the expected total discounted holding cost to serve i customers that
are in the system at time 0. Since the service times are exponential, Hα(1) =

E
[´ ξ

0 e−αthdt
]

=
1

µ + α
, where ξ ∼ exp(µ). Thus,

Vπ
α(i, δ) = (1 − δ)s1 +

hi
µ + α

+
hλ

α(µ + α)
+

c
α
. (1.20)

(ii)We rewrite the objective function Vπ
α in (1.2) to exclude the values of tn and

replace X(t) and δ(t) with Xn and δn respectively. Define ξn = tn+1− tn, n = 0, 1, . . . .
Conditioning on any sequence h̃ = X0, δ0, a0, X1, δ1, a1, . . ., the random variables
ξ0, ξ1, . . . are independent and either ξn ∼ exp(λ) when an = 0 or ξn ∼ exp(ΛXn)
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when an = 1. In the either case,

E[e−αξn |h̃] = β(Xn, an) (a.s.). (1.21)

In addition, E
[ˆ ξn

0
e−αtdt|h̃

]
= E

[
1 − e−αξn

α
|h̃
]

=
1 − β(Xn, an)

α
(a.s.). This implies

E
[
|an − δn|san +

ˆ ξn

0
(e−αthXn + anc)dt|h̃

]
= c((Xn, δn)an) (a.s.). (1.22)

Since tn =
∑n−1

i=0 ξi, tn → ∞ as n→ ∞, and ξi are independent given the sequence
x0, a0, x1, a1, . . ., we have

Vπ
α(i, δ) = Eπ

(i,δ)

 ∞∑
n=0

ˆ tn+1

tn
e−αt (hX(t) + δ(t)c) dt +

∞∑
n=0

e−αtn |an − δn|san


= Eπ

(i,δ)

 ∞∑
n=0

(
e−α

∑n−1
k=0 ξk

ˆ ξn

0
(hXn + anc)dt + |an − δn|san

)
= Eπ

(i,δ)

 ∞∑
n=0

 n−1∏
i=0

β(Xi, ai)

 c((Xn, δn), an)

 , (1.23)

where the first equality is (1.2), and the last one follows from (1.21) and (1.22).
Since neither the objective function (1.23) nor the transition probabilities de-

pend on times tn, we have reduced our model to the discrete-time MDP with the
same state and action sets as in the original model, the one-step costs c(x, a) and
transition probabilities p∗α(X′|x, a) = |a − δ′|pα(X′|X, a), where x = (X, δ) and
x′ = (X′, δ′). The objective criterion is the expected total discounted reward with
the discount factor β(x, a) that depends on the state and actions. By repacing the
transition probability p∗α with the transition probability p̃α(x′|x, a) = β(x, a)p∗α we
reduce this MDP to the standard total-reward MDP with nonnegative costs C. Such
MDPs are called negative and their values satisfy the optimality equation (1.11)
with p = p̃α and c = C, that can be rewritten for our problem as (1.16).

(iii) For a negative MDP with finite action sets, an optimal stationary policy
always exists [51, 6, 43, 27]. In particular, a stationary policy is optimal if and only
if it satisfies (1.12). This implies statement (iii). 2 Because of (iii) of

Theorem 1, we consider only stationary policies in the remaining part of the paper.
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Define V1
α(i, δ) and V0

α(i, δ) as follows,
V1
α(i, δ) = (1 − δ)s1 +

hi + c
α + Λi

+
λ

α + Λi
Vα(i + 1, 1) +

iµ
α + Λi

Vα(i − 1, 1),

V0
α(i, δ) = δs0 +

hi
α + λ

+
λ

α + λ
Vα(i + 1, 0).

The following lemma follows from optimality equation (1.16).

Lemma 4.2 The following properties hold for the function Vα(i, δ).

(a) If Vα(i, 0) = V1
α(i, 0), then Vα(i, 1) = V1

α(i, 1).

(b) If Vα(i, 1) = V0
α(i, 1), then Vα(i, 0) = V0

α(i, 0).

(c) −s1 ≤ Vα(i, 1) − Vα(i, 0) ≤ s0.

Proof

(a) If Vα(i, 0) = V1
α(i, 0), then V1

α(i, 0) ≤ V0
α(i, 0). Hence V1

α(i, 1) = V1
α(i, 0) − s1 ≤

V0
α(i, 0) + s0 = V0

α(i, 1)⇒ Vα(i, 1) = V1
α(i, 1).

(b) If Vα(i, 1) = V0
α(i, 1), then V0

α(i, 1) ≤ V1
α(i, 1), hence V0

α(i, 0) = V0
α(i, 1) − s0 ≤

V1
α(i, 1) + s1 = V1

α(i, 0)⇒ Vα(i, 0) = V0
α(i, 0).

(c) From (a), we have Vα(i, 0) = min
{
s1 + Vα(i, 1),V0

α(i, 0)
}
≤ s1 + Vα(i, 1) ⇒

Vα(i, 0) ≤ s1 + Vα(i, 1). Similarly from (b), we have

Vα(i, 1) = min
{
V1
α(i, 1), s0 + Vα(i, 0)

}
≤ s0 + Vα(i, 0)

⇒Vα(i, 1) ≤ s0 + Vα(i, 0).

2

1.4.2 Full Service Policy

In subsection 1.4.1, we defined the MDP with X, A, A(i, δ) = A. The class of the
policies that never turns the running server off is the class of all policies in the MDP
with X, A, A(i, 0) = A and A(i, 1) = {1}. This is a sub-model of our original model.
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Define by (1.4) Uα(i, δ) as the optimal total discount cost for this new MDP. From
(1.15) we have

Vα(i, δ) ≤ Uα(i, δ) ≤ (1 − δ)s1 +
hi

µ + α
+

hλ
α(µ + α)

+
c
α
. (1.24)

Theorem 2 For any α > 0 the following statements hold:

(i) For all i = 0, 1, . . .

Uα(i, 1) =
hi

µ + α
+

hλ
α(µ + α)

+
c
α
. (1.25)

(ii) For all i = 0, 1, . . ., the value function Uα(i, 0) satisfies the optimality equation

Uα(i, 0) = min
{

s1 +
hi + c
α + Λi

+
λ

α + Λi
Uα(i + 1, 1) +

iµ
α + Λi

Uα(i − 1, 1),

hi
α + λ

+
λ

α + λ
Uα(i + 1, 0)

}
. (1.26)

Proof

(i) Let π be the policy that never turns the running system off. Uα(i, 1) = Vπ
α(i, 1) =

hi
µ + α

+
hλ

α(µ + α)
+

c
α

, where the second equality is from (1.20).

(ii) Since Uα(i, 0) is the optimal discount cost for the sub-model of the original
MDP, it satisfies the optimality equation of the original MDP. Thus, (1.26)
follows from (1.16). 2

Definition 1 For an integer n ≥ 0, a policy is called n-full service if it never turns

the running sever off and turns the inactive server on if and only if there are n or

more customers in the system. In particular, the 0-full service policy turns on the

server at time 0, if it is off, and always keeps it on. A policy is called full service if

and only if it is n-full service for some n ≥ 0.

The following theorem implies that an n-full service policy is discount-optimal
within the class of policies that never turn the running system off.
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Theorem 3 A policy φ is discount optimal within the class of the policies that never

turns off the server if and only if for all i = 0, 1, . . .,

φ(i, 0) =

1, if i > A(α),

0, if i < A(α),

where

A(α) =
(µ + α)(c + αs1)

hµ
. (1.27)

Before proving Theorem 3, we introduce the definition of passive policies and
some lemmas.

Definition 2 The policy ϕ with ϕ(i, δ) = δ for all i = 0, 1, . . . and δ is called passive.

Lemma 4.3 For any α > 0, the passive policy ϕ is not optimal within the class of

policies that never turn off the running system. Furthermore, Vϕ
α (i, 0) > Uα(i, 0) for

all i = 0, 1, . . ..

Proof For the passive policy ϕ

Vϕ
α (i, 0) =

∞∑
k=0

(
λ

λ + α

)k h(i + k)
λ + α

=
hi
α

+
hλ
α2 . (1.28)

For the policy φ that always runs the server

Vφ
α(i, 0) = s1 +

hN
µ + α

+
hλ

α(λ + α)
+

c
α

Thus,

Vϕ
α (i, 0) − Vφ

α(i, 0) =

(
hi
α

+
hλ
α2

)
−

(
s1 +

hi
µ + α

+
hλ

α(λ + α)
+

c
α

)
=

hiµ
α(λ + α)

+
hλµ

α2(µ + α)
− s1 −

c
α
> 0,

when i ≥ i∗, where the value of i∗ can be easily computed. Let the initial state
be (i, 0) when i < i∗. Consider a policy π that keeps the server off in states ( j, 0),
j < i∗ and switches to an optimal policy when the number of customers in the
system reaches i∗. Then Vϕ

α (i, 0) > Vπ
α(i, 0) ≥ Uα(i, 0), where the first inequality
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holds because the process hits the state (i∗, 0) with a positive probability. In fact,
the process hits this state with probability 1. 2

Lemma 4.4 Let ψ be the policy that turns the system on at time 0 and keeps it on

forever, and π be the policy that waits for one arrival and then turns the system on

and keeps it on forever. Then
Vπ
α(i, 0) > Vψ

α (i, 0), if i > A(α),
Vπ
α(i, 0) < Vψ

α (i, 0), if i < A(α),
Vπ
α(i, 0) = Vψ

α (i, 0), if i = A(α);

where A(α) is as in (1.27).

Proof

Vπ
α(i, 0) − Vψ

α (i, 0)

=

(
hi

λ + α
+

λ

λ + α
(s1 + Uα(i + 1, 1))

)
− (s1 + Uα(i, 1))

=

[
hi

λ + α
+

λ

λ + α

(
s1 +

h(i + 1)
µ + α

+
hλ

α(µ + α)
+

c
α

)]
−

[
s1 +

hi
µ + α

+
hλ

α(µ + α)
+

c
α

]
=

hi
λ + α

µ

µ + α
−

α

λ + α

(
s1 +

c
α

)
=

hµ
(λ + α)(µ + α)

(i − A(α)) , (1.29)

where the first equality holds by (1.26), the second equality holds by (1.25). 2

Proof Let φ be a stationary optimal policy within the class of the policies that
never turn off the running system. Let ψ be the policy that turns the system on at
time 0 and keeps it on forever, and π be the policy that waits for one arrival and then
turns the system on and keeps it on forever. By (1.26),

Vφ
α(i, 0) = min

{
s1 + Uα(i, 1),

hi
λ + α

+
λ

λ + α
Uα(i + 1, 0)

}
. (1.30)

We show that if i > A(α), then φ(i, 0) = 1. Indeed, let φ(i, 0) = 0 for some i > A(α).
By Lemma 4.3, φ( j, 0) = 1 for some j > i. Thus, there exists an i∗ ≥ i such that
φ(i∗, 0) = 0 and φ(i∗ + 1, 0) = 1. This implies that Vψ

α (i∗, 0) ≥ Vπ
α(i∗, 0), where

i∗ > A(α). By Lemma 4.4, this is a contradiction. Thus φ(i, 0) = 1 for all i > A(α).
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If i < A(α), then Lemma 4.4 implies Vπ
α(i, 0) < Vψ

α (i, 0). Thus φ(i, 0) = 0 for all
i < A(α).

Let A(α) be an integer and i = A(α). In this case, Lemma 4.4 implies Vψ
α (i, 0) =

Vπ
α(i, 0). From (1.26), Vψ

α (i, 0) = Vπ
α(i, 0) = Uα(i, 0) = min

{
Uψ
α (i, 0),Uπ

α(i, 1)
}
. Thus

φ(i, 0) = 1 or φ(i, 0) = 0. 2

Corollary 1 Let

nα = dA(α)e, (1.31)

where A(α) is as in (1.27). Then

Uα(i, 0)

=


nα−i−1∑

k=0

(
λ

λ + α

)k h(i + k)
λ + α

+

(
λ

λ + α

)nα−i (
s1 +

hnα
µ + α

+
hλ

α(µ + α)
+

c
α

)
, if i < nα,

s1 +
hi

µ + α
+

hλ
α(µ + α)

+
c
α
, if i ≥ nα,

(1.32)

Proof Theorem 3 implies that nα-full service policy is discount-optimal within
the class of policies that never turn off the running system, where nα is as in (1.31).
2

1.4.3 Reduction to Finite State Space and Existence of Blackwell
Optimal Policies

In this section, we explore the existence of Blackwell optimal [36, Chapter 8, Page
233] policy. Define

N∗α = min{i ≥ 0 : V1
α( j, 0) ≤ V0

α( j, 0), for all j ≥ i}. (1.33)

The following lemma implies that N∗α is well defined.

Lemma 4.5 N∗α ≤ nα for all α > 0.
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Proof Let ϕ be the policy that turns on the system at time 0 and keeps it run
forever. Then,

Vϕ
α (nα, 0) = s1 + Vϕ

α (nα, 1) ≤ s1 + Uα(nα, 1).

Let π be a stationary optimal policy and τ be the time that the system first hits state
(nα, 1) under policy π, given the initial state is (nα, 0). Then,

Vπ
α(nα, 0) = Rπ + E[eατ]Vπ

α(nα, 1),

where Rπ is the total expected cost during [0, τ]. We have

s1 + Uα(nα, 1) ≤ Rπ + E[eατ]Uα(nα, 1)⇒ (1 − E[eατ]) Uα(nα, 1) ≤ Rπ − s1.

Since Vπ
α(nα, 1) ≤ Uα(nα, 1), we have

(1 − E[eατ]) Vπ
α(nα, 1) ≤ Rπ − s1 ⇒ s1 + Vπ

α(nα, 1) ≤ Rπ + E[eατ]Vπ
α(nα, 1)

⇒V1
α(nα, 0) = s1 + Vπ

α(nα, 1) ≤ Vπ
α(nα, 0).

Since we also have Vπ
α(nα, 0) = min

{
V0
α(nα, 0),V1

α(nα, 0)
}
, thus

V1
α(nα, 0) ≤ V0

α(nα, 0)⇒ N∗α ≤ nα.

2

From Lemma 4.5, N∗α is bounded from above by nα for each α. Define an SMDP
with finite state space S ′ = {0, 1, . . . , nα} × {0, 1}.The state of this SMDP at the
decision epoch n is xn = (Xn, δn) ∈ S ′. The action set A = {0, 1} is the same as the
original CTMDP. The time until the next decision epoch is the same as the original
CTMDP for Xn = 0, 1, . . . , nα − 1 and δn = 0, 1. When at state (nα, 1), let τ a
random variable that represents the first time the system returns to (nα, 1) before
transition to (nα − 1, 1). The transition probabilities p̃( j|i, a) = p( j|i, a) from (1.14)
for i, j = 0, 1, . . . , nα − 1 and a = 0, 1 , except that p̃(nα|nα, a) = 1. The one step
cost c̃((i, δ), a) = c((i, δ), a) for i = 0, 1, . . . , nα − 1, δ = 0, 1 and a = 0, 1, except
c̃((nα, 1), 1) = E

[´ τ
0 (c + hX(t))dt

]
, and c̃((nα, 0), 1) = s1 + c̃((nα, 1), 1), where X(t)

is the system size at time t. Denote by Ṽα(i, δ) as the optimal total discounted cost
for this SMDP. Define T ′i as the time for the number of customers in the system
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becomes i − 1 if at time 0 it is i = 1, 2, . . . if the system is running all the time. Let
C′i,α be the total holding and serving costs during T ′i , i.e.

C′i,α =

ˆ T ′i

0
(c + hX(t))dt. (1.34)

We show next that this SMDP is equivalent to the original CTMDP, i.e., Ṽα(i, δ) =

Vα(i, δ) for all i = 0, 1, . . . and δ = 0, 1.

Lemma 4.6 If Vϕ
α (i, δ) = Vα(i, δ) for i = 0, 1, . . . , nα and ϕ(i, δ) = 1 for all i > nα,

then Vϕ
α (i, δ) = Vα(i, δ) for i = nα + 1, nα + 2, . . ..

Proof For an α∗ > 0, let ϕ be an optimal stationary policy for the SMDP defined
above. Define ϕ∗ for the original CTMPD as

ϕ∗ =

ϕ(i, δ), if i ≤ nα∗ ,

1, otherwise.
(1.35)

We show that for α ∈ (0, α∗], Ṽα(i, δ) = Vα(i, δ), for all i = 0, 1, . . . and δ = 0, 1.
Indeed,

Ṽα(i, δ) = Ṽϕ
α (i, δ) = Vϕ∗

α (i, δ) ≤ Vα(i, δ).

On the other hand, since Vα(i, δ) = V1
α(i, δ) for all i ≥ Nα, then

Vα(i, δ) ≤ Vϕ∗

α (i, δ) = Ṽϕ
α (i, δ) = Ṽα(i, δ).

Thus each optimal stationary policy for the reduced SMDP is also optimal for the
original CTMDP. 2

Theorem 4 There exist a Blackwell optimal policy for the original model.

Proof Consider the SMDP defined before Lemma 4.6. Since Ṽφ
α(i, δ) > 0 for all

α > 0 and any for any policy π, then α = 0 is the isolated singularity of every
function αṼπ

α(i, δ), α > 0. According to [17, Theorem 3], this implies that the
reduced SMDP has a Blackwell optimal policy ϕ. Because of Lemma 4.6, the
policy ϕ∗ defined in (1.35) is Blackwell optimal for the original problem. 2
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1.4.4 Structure of Blackwell Optimal Policies

Definition 3 A policy is called (M,N)-policy if there exists two integers M and N,

with 0 ≤ M < N < ∞, such that at state (i, 0), leave the system off if i < N and turn

on the system if i ≥ N; at state (i, 1), leave the system on if i > M and turn off the

system if i ≤ M.

The main result of this section is Theorem 5.

Theorem 5 Let n = lim
α→0

nα = bc/h + 1c, where nα is as in (1.31).

(i) When c <
λ

n
(s0 + s1)+

h(n − 1)
2

, the n-full service policy is Blackwell optimal;

(ii) When c >
λ

n
(s0 + s1) +

h(n − 1)
2

, there exist two integers M and N, with

0 ≤ M < N < ∞, such that the (M,N)-policy is Blackwell optimal.

Consider an α∗ > 0 such that a Blackwell optimal policy is discount optimal for
all α ∈ (0, α∗]. By Definition 3, M is the threshold that we switch off the system
upon a departure, i.e.

M = max{i ≥ 0 : V0
α(i, 1) ≤ V1

α(i, 1)}, α ∈ (0, α∗]. (1.36)

In view of Theorem 5 (ii), M is well defined. Let N be the threshold that we turn
on the system upon an arrival,, i.e.

N = min{i ≥ 0 : V1
α(i, 0) < V0

α(i, 0)}, α ∈ (0, α∗]. (1.37)

0 ≤ N ≤ N∗α for α ∈ (0, α∗], where N does not depend on α. We first provide some
lemmas before proving Theorem 5.

Lemma 4.7 There exists an α∗ > 0 such that for all α ∈ (0, α∗], E[C′i,α] =
h

µ + α
+

vE[T ′i ] + O(α),

where v is as in (1.5).

Proof Let π be the policy that always run the system. Thus

Vπ
α(i, 1) = E[C′i,α] + E[e−αT ′i ]Vπ

α(i − 1, 1).
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By (1.25) and α ∈ (0, α∗],

E[C′i,α] =Vπ
α(i, 1) − Vπ

α(i − 1, 1) +
(
1 − E[e−αT ′i ]

)
Vπ
α(i − 1, 1)

=Uα(i, 1) − Uα(i − 1, 1) +
(
1 − (1 − αE[T ′i ] + o(α))

)
Vπ
α(i − 1, 1)

=
h

µ + α
+ vE[T ′i ] + O(α),

where the second equality holds because Vπ
α(i, 1) = Uα(i, 1) for all i = 0, 1, . . ., and

E[e−αT ′i ] = 1 − αE[T ′i ] + o(α2) by Taylor expansion, and the last equality holds
because the average cost αVπ

α(i − 1, 1) = v + O(α) for α ∈ (0, α∗] by Tauberian
Theorem [53], where v is the optimal average cost as in (1.5). 2

The next lemma implies the monotonicity property of E[T ′i ]. The stochastic
monotonicity for stationary recurrence times in queueing control model with a re-
movable server is considered in [18].

Lemma 4.8 E[T ′i ] − E[T ′i+1] > 0 and is decreasing in i for i = 1, 2, . . ..

Proof Since E[T ′i ] =
1

iµ − λ
for M/M/i queue [52, Page 292], thus for M/M/∞,

1
(i + 1)µ − λ

< E[T ′i ] <
1

iµ − λ
, thus E[T ′i ]−E[T ′i+1] is getting smaller as i increases.

2

Lemma 4.9 There exists some α∗ > 0 such that for α ∈ (0, α∗], if Vα(i, 1) = V1
α(i, 1),

then Vα(i + 1, 1) = V1
α(i + 1, 1).

Proof Let i be the smallest integer such that Vα(i, 1) = V1
α(i, 1). Let ϕ be a station-

ary optimal policy with ϕ(i, 1) = 1. Assume ϕ(i + 1, 1) = 0. By Lemma 4.5, there
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exists a z ≥ i + 2 such that ϕ(y, 1) = 1 for all y ≥ z and ϕ(z − 1, 1) = 0. We have

Vα(z − 1, 1) = s0 +
h(z − 1)
λ + α

+
λ

λ + α

(
s1 + E[C′z,α] + E[e−αT ′z ]Vα(z − 1, 1)

)
=s0 +

λ

λ + α
s1 +

h(z − 1)
λ + α

+
λ

λ + α
E[C′z,α]

+ E[e−αT ′z ]
(

λ

λ + α
s0 +

λ

λ + α
Vα(z − 1, 0)

)
≥s0 +

λ

λ + α

(
s1 + E[e−αT ′z ]s0

)
+

h(z − 1)
λ + α

+
λ

λ + α
E[C′z,α]

+ E[e−αT ′z ]
(
Vα(z − 2, 0) −

h(z − 2)
λ + α

)
≥s0 +

λ

λ + α

(
s1 + E[e−αT ′z ]s0

)
+

h(z − 1)
λ + α

+
λ

λ + α
E[C′z,α]

+ E[e−αT ′z ]
(
Vα(z − 2, 1) − s0 −

h(z − 2)
λ + α

)
=

[
E[C′z−1,α] + E[e−αT ′z ]Vα(z − 2, 1)

]
+

[
h(z − 1)
λ + α

+
λ

λ + α
(E[C′z,α])

+

(
1 −

α

λ + α
E[e−αT ′z ]

)
s0 +

λ

λ + α
s1

]
−

[
E[C′z−1,α] + E[e−αT ′z ]

h(z − 2)
λ + α

]
>V1

α(z − 1, 1),

where the first equality holds because ϕ(z − 1, 1) = 0 and ϕ(z, 1) = 1, the second
equality holds because of Vα(z − 1, 1) = s0 + Vα(z − 1, 0), the fist inequality holds
because

Vα(z − 2, 0) ≤
h(z − 2)
λ + α

+
λ

λ + α
Vα(z − 1, 0)

⇒
λ

λ + α
Vα(z − 1, 0) ≥ Vα(z − 2, 0) −

h(z − 2)
λ + α

,

the second inequality holds by Lemma 2.11 (c), the third equality holds by rearrang-
ing the terms such that the first parenthesis equals V1

α(z − 1, 1), the last inequality
holds because

h(z − 1)
λ + α

+
λ

λ + α
(E[C′z,α]) +

(
1 −

α

λ + α
E[e−αT ′z ]

)
s0 +

λ

λ + α
s1

>E[C′z−1,α] + E[e−αT ′z ]
h(z − 2)
λ + α

. (1.38)
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Inequality (1.38) holds because ϕ(i, 1) = 1 and ϕ(i− 1, 1) = ϕ(i− 1, 0) = 1, we have

Vα(i, 1) = V1
α(i, 1) = E[C′i,α] + E[e−αT ′i ]Vα(i − 1, 1)

=E[C′i,α] + E[e−αT ′i ]
(
s0 +

h(i − 1)
λ + α

+
λ

λ + α
Vα(i, 0)

)
≤V0

α(i, 1) = s0 +
hi

λ + α
+

λ

λ + α
Vα(i + 1, 0)

≤s0 +
hi

λ + α
+

λ

λ + α

(
s1 + E[C′i+1,α] + E[e−αT ′i+1] (s0 + Vα(i, 0))

)
,

⇒
hi

λ + α
+

λ

λ + α
E[C′i+1,α] + s0

(
1 −

α

λ + α
E[eT ′i+1]

)
+

λ

λ + α
s1

≥E[C′i,α] + E[e−αT ′i ]
h(i − 1)
λ + α

⇒
hi

λ + α
+

h
µ + α

+ vE[T ′i+1] + s0 + s1 + O(α) ≥
h

µ + α
+ vE[T ′i ] +

h(i − 1)
λ + α

+ O(α)

⇒
h

λ + α
+ s0 + s1 + O(α) ≥ v

(
E[T ′i ] − E[T ′i+1]

)
.

Since E[T ′i ] − E[T ′i+1] > 0 and is decreasing in i by Lemma 4.8,

h
λ + α

+ s0 + s1 + O(α) > v
(
E[T ′z−1] − E[T ′z]

)
,

and hence (1.38) holds. Thus this is a contradiction that Vα(z − 1, 1) > V1
α(z − 1, 1).

2

Corollary 2 Vα(i, 1) = V1
α(i, 1) for all i > M and Vα(i, 1) = V0

α(i, 1) for all i ≤ M,

where M is as in (1.36).

Proof By definition of M, Vα(M, 1) = V0
α(M, 1) and Vα(i, 1) = V1

α(i, 0) for all
i > M. Assume that there exists an 0 ≤ i ≤ M such that Vα(i, 1) = V1

α(i, 1). By
Lemma 4.9, Vα(i+1, 1) = V1

α(i+1, 1) and by induction we have Vα(M, 1) = V1
α(M, 1).

This is a contradiction. 2

Lemma 4.10 There exists some α∗ > 0 such that for α ∈ (0, α∗], if Vα(i, 0) =

V1
α(i, 0), then Vα(i + 1, 0) = V1

α(i + 1, 0).

Proof Let ϕ be a stationary optimal policy with ϕ(i, 0) = 1. From Lemma 2.11
(a), ϕ(i, 1) = 1. Assume ϕ(i + 1, 0) = 0. By Lemma 4.5, there exists a z ≥ i + 2 such
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that ϕ(y, 0) = 1 for all y ≥ z and ϕ(z − 1, 0) = 0. By Lemma 2.11 (a) and Lemma
4.9, ϕ( j, 1) = 1 for all j ≥ i. We have

Vα(z − 1, 0) = V0
α(z − 1, 0) =

h(z − 1)
λ + α

+
λ

λ + α

(
s1 + E[C′z,α] + E[e−αT ′z ]Vα(z − 1, 1)

)
=

h(z − 1)
λ + α

+
λ

λ + α

[
s1 + E[C′z,α] + E[e−αT ′z ]

(
E[C′z−1,α] + E[e−αT ′z−1]Vα(z − 2, 1)

)]
=

(
s1 + E[C′z−1,α] + E[e−αT ′z−1]Vα(z − 2, 1)

)
+

h(z − 1)
λ + α

+
λ

λ + α
E[C′z,α]

−
α

λ + α
s1 − (E[e−αT ′z−1] −

λ

λ + α
E[e−α(T ′z−1+T ′z )])Vα(z − 2, 1) (1.39)

>V1
α(z − 1, 0),

where the second equality holds because ϕ(z − 1, 0) = 0 and ϕ(z, 0) = 1, the second
equality holds by rearranging the terms such that the first parenthesis equals V1

α(z −
1, 0), the last inequality holds because at (i, 0), we have V0

α(i, 0) ≥ V1
α(i, 0), thus the

policy π that turn on the system at (i, 0) and keeps it running forever is superior
than the policy φ that waits for one more arrival and turns it on at (i + 1, 0) and
keeps it running forever. Thus by similar expansion of V0

α(z − 1, 0) as in (1.39) and
Vφ
α(i, 0) ≥ Vπ

α(i, 0), we have

hi
λ + α

+
λ

λ + α
E[C′i+1,α] −

α

λ + α
s1 − (E[e−αT ′z−1]

−
λ

λ + α
E[e−α(T ′i +T ′i+1)])Vα(i − 1, 1) ≥ 0. (1.40)

By Lemma 4.7 and Taylor expansion for E[e−αT ′i ] and E[e−αT ′i+1] at α, (1.40) implies

hi
λ + α

+ (1 −
α

λ + α
)
(

h
µ + α

+ vE[T ′i+1] + O(α)
)

−
(
1 − αE[T ′i ] + o(α)

) (
1 −

λ

λ + α

(
1 − αE[T ′i+1] + o(α)

))
Vα(i − 1, 1)

=
hi

λ + α
+ (1 − O(α))

(
h

µ + α
+ vE[T ′i+1] + O(α)

)
−

(
1 − αE[T ′i ] + o(α)

) (1 + λE[T ′i+1]
λ + α

)
(v + O(α))

=
hi − v
λ + α

+
h

µ + α
+ O(α) ≥ 0.
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Since z − 1 > i, thus

h(z − 1)
λ + α

+
λ

λ + α
E[C′z,α] −

α

λ + α
s1 − (E[e−αT ′z−1] −

λ

λ + α
E[e−α(T ′z−1+T ′z )])Vα(z − 2, 1)

=
h(z − 1) − v
λ + α

+
h

µ + α
+ O(α) > 0.

This is a contradiction that Vα(z − 1, 0) > V1
α(z − 1, 0). 2

Corollary 3 There exists some α∗ > 0 such that for α ∈ (0, α∗], Vα(i, 0) = V0
α(i, 0)

for all i < N, and Vα(i, 0) = V1
α(i, 0) for all i ≥ N, where N is as in (1.37).

Proof By definition of N, Vα(N, 0) = V1
α(N, 0) and Vα(i, 0) = V0

α(i, 0) for all i < N.
From Lemma 4.10, Vα(i, 0) = V1

α(i, 0) for all i > N. 2

Corollary 4 There exists α∗ > 0 such that for all α ∈ (0, α∗], N = N∗α,where N∗α is

as in (1.33).

Proof By Corollary 3, Vα(i, 0) = V1
α(i, 0) for all i ≥ N, thus N ≥ N∗. On the other

hand, Vα(N∗, 0) = V1
α(N∗, 0), thus N∗ ≥ N. 2

Corollary 5 There exists some α∗, such that for all α ∈ (0, α∗], M < N

Proof Assume that N ≤ M. Let i be such that N ≤ i ≤ M. By Corollary 3,
Vα(i, 1) = V1

α(i, 1). However, by Corollary 2, Vα(i, 1) = V0
α(i, 1). This is a contradic-

tion. 2

Now we give the proof for Theorem 5.

Proof

(i) We use β0 to denote
λ

λ + α
throughout the proof. Let φ be the nα-full service

policy, where nα is as in (1.31). Let ψ be the policy that switch off the server at
time 0 and then always run the server after the system size accumulated to nα.
φ is non-optimal if there exists some i = 0, 1, . . . , nα − 1, such that Vψ

α (i, 1) −
Vφ
α(i, 1) < 0. First we prove that Vψ

α (i, 1) − Vφ
α(i, 1) is increasing in i, thus
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the necessary and sufficient condition such that (M,N)-policy is Blackwell
optimal can be found when Vψ

α (0, 1) − Vφ
α(0, 1) < 0. By the definition of ψ

and Vφ
α(i, 0) = Uα(i, 0) as in (1.32),

Vψ
α (i, 1) = s0 + Vφ

α(i, 0)

=s0 +

nα−i−1∑
k=0

βk
0
h(i + k)
λ + α

+ βnα−i
0 (s1 +

hnα
µ + α

+
hλ

α(µ + α)
+

c
α

).

Since Vφ
α(i, 1) = Uα(i, 1) as in (1.25), thus,(

Vψ
α (i + 1, 1) − Vφ

α(i + 1, 1)
)
−

(
Vψ
α (i, 1) − Vφ

α(i, 1)
)

=
h
α
−

h
µ + α

− βnα−i
0

h(nα + 1)
λ + α

+ βnα−i
0

(
hβ0

µ + α
+

c + αs1

λ + α
+

αhnα
(λ + α)(µ + α)

)
>

h
α
−

h
µ + α

− βnα−i
0

α2s1 + cα + hµ
µ(λ + α)

> 0,

where the first inequality is by substituting nα from (1.31), and the last in-
equality is for α ∈ (0, α∗]. To compare Vψ

α (0, 1) and Vφ
α(0, 1), we have

Vψ
α (0, 1) = s0 +

nα−1∑
k=0

βk
0

hk
λ + α

+ βnα
0

(
s1 +

hnα
µ + α

+
hλ

α(µ + α)
+

c
α

)

= s0 +
h
α

β − nαβ
nα
0 + (nα − 1)βnα+1

0

1 − β0
+ βnα

0

(
s1 +

hnα
µ + α

+
hλ

α(µ + α)
+

c
α

)
= s0 +

hλ
α2 (1 − βnα

0 ) + βnα
0

(
−

hnα
α

+ s1 +
hnα
µ + α

)
+ βnα

0

(
hλ

α(µ + α)
+

c
α

)
= s0 +

hλ
α2 + βnα

0

(
s1 +

c
α
−

hλµ
α2(µ + α)

−
hnαµ

α(µ + α)

)
.

On the other hand, from (1.25) we have

Vφ
α(0, 1) =

hλ
α(µ + α)

+
c
α
.
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Thus

Vψ
α (0, 1) − Vφ

α(0, 1)

=s0 + βnα
0 s1 + (

hλ
α2 −

hλ
α(µ + α)

) + βnα
0

(
−

hλµ
α2(µ + α)

−
hnαµ

α(µ + α)

)
=s0 + βnα

0 s1 + h
1 − βnα

0

α

µ

µ + α

(
λ

α
−

nαβ
nα
0

1 − βnα
0

)
−

c(1 − βnα
0 )

α
. (1.41)

Let n = n = lim
α→0

nα = bc/h + 1c, then

lim
α→0

(
Vψ
α (0, 1) − Vφ

α(0, 1)
)

= s0 + s1 +
hn(n − 1)

2λ
−

cn
λ
, (1.42)

which holds because lim
α→0

βn
0 = 1, and

lim
α→0

1 − βn
0

α
= lim

β0→1

(1 − β0)
∑n−1

i=0 β
i
0

λ
1 − β0

β0

= lim
β0→1

∑n−1
i=0 β

i
0

λ/β0
=

n
λ
,

and by L’Hôpital’s Rule,

lim
α→0

λ

α
−

nβn
0

1 − βn
0

= lim
β0→1

 β0

1 − β0
−

nβn
0

(1 − β0)
∑n−1

i=0 β
i
0

 = lim
β0→1

β0 −
nβn

0∑n−1
i=0 β

i
0

1 − β0

= lim
β0→1

1 −
n2βn−1

0
∑n−1

i=0 β
i
0 − nβn

0
∑n−1

i=1 iβi−1
0

(
∑n−1

i=0 β
i
0)2

−1
=

n3 − n
n(n − 1)

2
n2 − 1 =

n − 1
2

.

Thus when c <
λ

n
(s0 + s1) +

h(n − 1)
2

, (1.42)≥ 0 ⇒ Vφ
α < Vψ

α for all α ∈
(0, α∗], and the n-full service policy is Blackwell optimal for the reduced
finite SMDP, thus is optimal for the original CTMDP by Theorem 4.

(ii) When c >
λ

n
(s0 + s1) +

h(n − 1)
2

, (1.42)< 0 ⇒ Vψ
α < Vφ

α for all α ∈ (0, α∗].
Thus the policy that turn off the running server is Blackwell optimal, i.e.
M ≥ 0. In addition, from Corollary 4 and Corollary 5, we know that N < ∞

exists and M < N. It suffices to show that Vα(i, 1) = V1
α(i, 1) when i > M,

and Vα(i, 0) = V1
α(i, 0) when i ≥ N, which are followed from Corollary 3 and

Corollary 2. This completes the proof.
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2

1.5 Average Cost Criterion

The following corollary following directly from Theorem 5 provides the average
optimal policy structure.

Corollary 6 For average costs per unit time, let n = bc/h + 1c. Then

(i) When c ≤
λ

n
(s0 + s1) +

h(n − 1)
2

, any i-full service policy is average-optimal,

where i = 0, 1, . . ..

(ii) When c >
λ

n
(s0 + s1) +

h(n − 1)
2

, there exist two integers M and N, with

0 ≤ M < N < ∞, such that the (M,N)-policy is average-optimal.

Proof Because a Blackwell optimal policy is average optimal, thus the claims

follows from Theorem 5 except the case c =
λ

n
(s0 + s1) +

h(n − 1)
2

. Let the equality
holds, and let π be any stationary policy. Let ψi be any i-full service policy, where

i = 0, 1, . . . , n. Let s = s0 + s1. We have
c
h
≤
λ

n
(1 + ε)(s0 + s1) +

h(n − 1)
2

=

λ

n
s +

h(n − 1)
2

. Since
c
h

keeps the same, thus n-full service policy is optimal. Let Lπ

denote the average queue length under any stationary policy π. Since the average
system size under any full service policy is the same, we have vψi = c + hLψi =

c + hLψn = vψn = c + hλ/µ. Thus any i-full service policy is optimal. We use v[s] to
denote v with total switching cost s. Then,

vψi[s] ≤ vψi[(1 + ε)s] ≤ vπ[(1 + ε)s] ≤ (1 + ε)vπ[s]⇒ vψi[s] ≤ vπ[s], for any ε,

where the second inequality holds because of the optimality of ψi, and the third
inequality holds because (1 + ε)vπ[s] is the average cost with holding rate (1 + ε)h,
serving rate (1 + ε)c and switching costs (1 + ε)s. Thus ψi is average optimal when

c =
λ

n
(s0 + s1) +

h(n − 1)
2

. 2
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1.6 Numerical Results and A Sufficient Condition for
M > 0

We analyze the underlying Markov chain induced by (M,N)-policy. The states (i, δ)
where i < M, if exists, are transient and the states (i, δ) where i ≥ M are recurrent.
Let Pi,δ be the stationary probability for state (i, δ). Since PM,1 = 0, we use PM

instead of PM,0 without confusion. Pi,δ satisfies the following equations:

λPM = (M + 1)µPM+1,1,

λPM+i,0 = λPM+1+i,0, i = 0, 1, . . . ,N − M − 2,

(λ + (M + 1)µ)PM+1,1 = (M + 2)µPM+2,1,

(λ + (M + i)µ)PM+i,1 = λPM−1+i,1 + (M + 1 + i)µPM+1+i,1, i = 2, . . . ,N − M − 1

(λ + Nµ)PN = λ(PN−1,0 + PN−1,1) + (N + 1)µPN+1,

(λ + (N + i)µ)PN+i = λPN−1+i + (N + 1 + i)µPN+1+i, i = 1, 2, . . . .

⇒PM = PM+1,0 = PM+2,0 = . . . = PN−1,0

PM+i,1 =

i∑
j=1

Γ(M + i − j)ρ j

Γ(M + i)
PM, for i = 1, . . . ,N − M,

PN+i,1 =
Γ(N)ρi

Γ(N + i)
PN,1 =

N−M∑
j=1

Γ(N − j)ρi+ j

Γ(N + i)
PM, for i = 1, 2, . . . .

Since
∑∞

i=1(Pi,1 + Pi,0) = 1, we have

(N − M)PM +

N−M∑
i=1

i∑
j=1

Γ(M + i − j)ρ j

Γ(M + i)
PM +

∞∑
i=1

N−M∑
j=1

Γ(N − j)ρi+ j

Γ(N + i)
PM = 1. (1.43)

Remember that M + 1 is the smallest queue length that the server is kept on when it
has been on, and N is the smallest queue length that the server is switched on when
it has been off. We can see that when N = M + 1, the above equation becomes

∞∑
i=0

Γ(N − 1)ρi

Γ(N − 1 + i)
PM = 1,
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where ρ = λ/µ. This is the equation for the birth-and-death process truncated at M.
Let L be the average queue length under (M,N)-policy, thus

L = PM

N−1∑
i=M

i +

∞∑
i=0

PM+i,1(M + i). (1.44)

The busy period starting with i customers in the system for M/M/∞ [31] is

ti =
1
λ

(eρ − 1)(1 +
1
ρ

+
2!
ρ2 + . . . +

(i − 1)!
ρi−1 ) −

1
1!λ

(1 +
2!
ρ

+ . . . +
(i − 1)!
ρi−2 )

−
1

2!λ
(2! +

3!
ρ

+ . . . +
(i − 1)!
ρi−3 ) − . . . −

1
(i − 1)!λ

(i − 1)!, (1.45)

which can be further reduced to

ti =
1
λ

(eρ − 1 +

i−1∑
k=1

∞∑
j=k+1

ρ j−k

(k + 1)(k + 2) . . . j
). (1.46)

Since for M/M/∞ queue, Lφ = ρ, thus the long-run average cost per unit time under
full service policy φ is

vφ = c + hLφ = c + hρ. (1.47)

This is consistent with our result that vφ = lim
α→0

αVφ
α = lim

α→0
αUα = c + hρ. The

long-run average cost per unit time under (0,N)-policy πN can be calculated as

vπN =
ctN + s0 + s1

N/λ + tN
+ hLπN , (1.48)

where LπN indicates the dependence of L on πN . To calculate the average cost for
(M,N)-policy when M > 0, we first need to derive the busy period denoted by
tMN . Recall that tMN starts with N customers in the system and ends with leaving M

customers behind. Applying the memoryless property of exponential distribution,

tN = tMN + tM ⇒ tMN = tN − tM. (1.49)

The average cost under (M,N)-policy πN is

vπN =
ctNM + s0 + s1

(N − M)/λ + tNM
+ hLπN . (1.50)
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Figure 1.1: Comparing System Size and Server Utilization

We compare tN and tNM in Figure 1.2. The policy with shorter busy period, which in
our case is (M,N∗)-policy, is superior when the serving cost is comparatively large.

The statistics collected from simulation are consistent with theoretical results.
From Figure (1.3), we can see that the average system size is larger under (M,N∗)-
policy when M > 0, while the server utilization is smaller, comparing with (0,N∗)-
policy. The extra holding cost is traded off by the savings in service cost because of
shorter busy period when M > 0.

To find the average optimal policy, we need to compare vφ with vπN . One suffi-
cient condition such that M > 0 is superior than M = 0 is when

vπMN < vπN < vφ. (1.51)

Note that vπN is convex in N, so a sufficient condition for (1.51) is vπ1 < vπN . We
can calculate from (1.43) and (1.45) that t1 = eρ − 1, thus

vπ1 =
ct1 + s0 + s1

1/λ + t1
+ hρ = c(1 − e−ρ) + e−ρλ(s0 + s1) + hρ < vφ = c + hρ

⇒c > λ(s0 + s1). (1.52)
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Figure 1.2: Comparing Busy Period and Average Cost

A sufficient condition for M > 0 is

ctNM + s0 + s1

(N − M)/λ + tNM
+ hLπN <

ctN + s0 + s1

N/λ + tN
+ hLπN

⇐h (LπN − LπN ) <
ctN

N/λ + tN
−

c(tN − tM)
(N − M)/λ + tN − tM

⇐h (PM − P0)
N∑

i=M

i <
ctN

N/λ + tN
−

c(tN − tM)
(N − M)/λ + tN − tM

⇐
1
2

h (PM − P0) (N + M)(N − M + 1) <
cλ (NtM − MtN)

(N + λtN) (N + λtN − M − λM)

⇐
h
c
<

2λ (NtM − MtN)

(PM − P0)
[
(N + λtN)2

− (N + λtN) (M + λtM)
]

[(N + M) (N − M + 1)]

⇐
h
c
<

2 [(Neρ − 1) − λtN]

N(N + 1) (P1 − P0)
[
(N + λtN)2

− eρ (N + λtN)
] , (1.53)

where the second inequality is because (N − M)/λ + tNM < N/λ + tN , the third
inequality is because (N − M)PM is increasing in M so that

LπN − LπN < h

PM

N∑
i=M

i − P0

N∑
i=0

i

 < h (PM − P0)
N∑

i=M

i,

the last inequality is by applying (1.45),and substitution with M = 1, which requires
tightest condition for all M > 0. Condition (1.53) is consistent with the intuition
that the lower the linear holding rate and the higher the constant serving cost, the
more likely that the system shut down and leave positive queue size behind due to
the increasing service time and cost. As for the numerical example above, the right
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Figure 1.3: Average Cost vs N/M

hand side of (1.53) gives threshold value 0.039, and h/c = 0.01 < 0.039 satisfies
this condition.
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Chapter 2

Incentive Design for Lowest Cost
Aggregate Energy Demand
Reduction

2.1 Introduction

The advent of Smart Grid technologies such as digital communication devices and
advanced metering infrastructures (AMI) has facilitated a better environment for
sharing information and data more readily between customers and utilities in a
timely fashion. This has focused attention on distributed customer demand response
mechanisms, such as dynamic pricing or incentive schemes, as an effective control
signal that improves the efficiency of energy usage.

Energy markets exhibit several key characteristics: demand is highly variable
over both the time-axis and the price-axis, while supply/generation capacity is rel-
atively inflexible over short horizons. Energy retailing utilities or generating com-
panies may suffer a shortfall in committed supply during peak periods of usage,
and this imbalance currently leads to high operating costs due to procurement from
secondary spot market sources. In such situations, Smart Grids are envisioned to
have the ability to utilize the demand flexibility of customers as a source of virtual

generation. In effect, customers such as large commercial users, retail operations
or consumer homes would be influenced to shift their demand in response to incen-
tive signals. This method of virtual-demand generation, or demand reduction, is
emerging as a key advantage for utilities on the Smart Grid: With new technology
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introduced in the Smart Grid, this option can be instantly initiated via smart me-
tering signals during peak periods at almost zero start-up cost. It can also serve to
hedge the utility’s financial risk exposures by allowing fine control on the utility’s
demand-side flexibility.

Dynamic pricing offers customers time-varying electricity prices on a day-ahead
or real-time basis, including critical peak pricing (CPP) programs, real-time pricing
(RTP) programs, and peak time rebates (PTR) [44]. Dynamic pricing is a mature
research field: According to [15], peak-load pricing dates back to Boiteux [7, 8, 9],
Houthakker [37], Steiner [50], and Hirshleifer [34]. Dynamic pricing research has
been extended in all three areas (CPP, RTP, PTR) in recent years. For instance,
the Pacific Northwest National Laboratory conducted an extensive field demonstra-
tion in 2006 [12] on the Olympic Peninsula to show the merits of this approach
in managing transmission and distribution congestion. Faruqui and Alvarado [23]
explores the economic benefits of dynamic pricing compared to traditional time-of-
use (TOU) rating mechanisms. In [24], they focus on California’s Statewide Pricing
Pilot, while Faruqui, Hledik and Tsoukalis [25] show the benefits of reducing peak
load through CPP programs. Holland [35] analyzes the short-run efficiency, distri-
butional and environmental impact of RTP, while Borenstein [10] focuses on the
long-run efficiency gains from adopting RTP in a competitive electricity market.
Barbose [4] reviews the revolution of RTP and provides many case studies of exist-
ing RTP programs; Smith [47] considers a linear programming model to determine
RTP that minimizes the sum of supply costs and customer curtailment costs. A
review of recent dynamic pricing models can be found in [26].

The incentive design problem determines rebates provided to end-users over a
fixed tariff to induce a reduction in energy usage. Demand response is modeled as a
version of utility or benefit functions, and aggregate demand reduction results from
each customer maximizing their utility function. Faruqui and Alvarado [21, 22] ap-
ply a quadratic benefit function to design a group of incentive contracts from which
customers can voluntarily choose. In this paper, we design an optimal rebate plan
for the utility to realize load reduction when the need arises. Rather than provid-
ing all customers with the same group of rebate/price contracts, we design a cus-
tomized, time-varying rebate plan for each customer. The energy utility aggregates
the negative demand from these virtual generators and dispatches them based on
their unique characteristics. This rebate rate mechanism is optimal in the sense that
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the utility can achieve the minimal total operating cost, which includes both rebates
paid to all the customers and the cost paid on the spot market in case of shortfalls.
We contrast the benefits of our model vis-a-vis the equal-rebate mechanism.

The ability of each customer to shift or reduce demand is governed by vari-
ous factors such as price-demand elasticity, demand variability and flexibility over
time. Aalami [1] proposes demand reduction programs for Independent System
Operators (ISOs) based on a customer’s price elasticity of demand and a quadratic
benefit function, and also models a penalty imposed on customers who do not com-
mit to their obligation. Instead of using a quadratic benefit function, we utilize a
load reduction function that maps a customer’s load reduction amount as a (noisy)
function of the rebate rate offered. Both linear and nonlinear load reduction func-
tions are considered. We model the case where end-users have been customers
of the utility long enough for the utility to possess a reasonable forecast of each
end-user’s elasticity. Our model further assumes customer responses are mutually
independent.

We formulate the corresponding dynamic pricing problem as a stochastic opti-
mization problem whose solution minimizes the total virtual generation cost to an
energy utility. Assuming individual customer demands are independent and nor-
mally distributed, we formulate both single-period and multi-period problem in-
stances. This normal distributional assumption is motivated by typical market con-
ditions under which the utility operates. Firstly, some customers may represent a
conglomeration of multiple real users, e.g., large apartment buildings or commercial
offices. Secondly, the utility’s user group may consist of a large pool of customers
with similar usage profiles, e.g., large neighbourhoods of individual households.
In either case, the Central Limit Theorem implies that even if the individual users
follow a non-normal energy usage distribution, the aggregate demand from such
large sets of end-users approximates the form of the normal distribution. In prac-
tice, we expect the trends observed from our results to hold under more general
distributional assumptions.

A gradient descent algorithm is derived to solve different formulations of the
stochastic optimization problem. We derive various structural results on the opti-
mal rebate scheme and identify a threshold that segments customers for whom no
dynamic pricing adjustments should be given. These results motivate a heuristic
policy for the single-period problem that segments the customers according to their
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willingness and likelihood to reduce load. In a multi-period instance of the prob-
lem, our results show that customers with higher load flexibility over time receive
the larger dynamic pricing adjustments, and vice versa. Moreover, for the same
supply shortfall, incentives offered after peak periods are higher than those before
peak periods. The smart-grid demand response framework considered in this study
can provide significant benefits to energy customers and utilities as well as to higher
levels of the energy distribution hierarchy. In addition, the results of our demand re-
sponse optimization can be used as input to or in conjunction with other smart-grid
applications.

The remainder of the paper is organized as follows. Section 2.2 presents our
formulation, numerical experiments and theoretical results for the single-period
problem; Section 2.3 presents the same for our multi-period problem. Section 2.4
provides concluding remarks.

2.2 Single Period Problem

2.2.1 Problem Formulation

Our single-period formulation variables include (with subscripts i = 1, . . . ,K rep-
resenting various end-users):

K Total number of end-users;

G Total generation capacity;

di Demand level for user i before rebate;

D Total demand before rebate, where

D =

K∑
i=1

di; (2.1)

d̃i Forecast demand level before rebate (represents level below which user i’s usage
qualifies for the rebate);

d∗i Demand level after rebate;

ri Rebate per unit of demand reduction;
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fi(ai, ri) General demand reduction function;

ai Dimensionless quantity measuring end-user’s rebate-demand elasticity;

c Spot market price.

We seek to optimize the following objective:

min E

 K∑
i=1

ri(d̃i − d∗i )+ + c[D −G −
K∑

i=1

(di − d∗i )]+

 (2.2)

subject to
d∗i = di − fi(ai, ri), i = 1, . . . ,K. (2.3)

The first term in (3.17) sums up the total rebate amount that the utility pays to
each end-user for load reduction from the (pre-announced) forecast level d̃i, and the
second part of (3.17) is the total purchasing cost from the spot market in case of
load shortage. Let Ob j denote the objective function (3.17).

2.2.2 Algorithm

Assume {di} has a normal distribution N(µi, σi), where µi and σi are known to the
utility from historical data. In practice, the standard deviation σi is a small frac-
tion of the mean demand µi. Moreover, the rebate design problem is usually solved
under conditions where the value of the mean demands µi are high. Thus, the like-
lihood of customer demand being negative as a result of this normal-distribution
assumption is negligible. We solve the formulation (3.17) using a steepest descent
method. For general fi, the derivative has the form

∂Ob j
∂ri

=Φ(αi)[ fi + ri
∂ fi

∂ri
+ d̃i − µi] + φ(αi)σi − cΦ(β)

∂ fi

∂ri
, (2.4)

where

αi =
d̃i + fi − µi

σi
, β =

∑K
i=1 µi −

∑K
i=1 fi −G√∑K

i=1 σ
2
i

,

φ(x) =
1
√

2π
e−

x2
2 , Φ(x) = Prob[X ≤ x], X ∼ N(0, 1).
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We shall require that the load reduction functions fi satisfy the condition

∂ fi(ai, ri)
∂ri

|ri=0 = aiµi, i = 1, . . . ,K. (2.5)

Two cases of fi(ai, ri) are considered where condition (2.5) is satisfied. In one, the
load reduction linearly increases in the rebate rate ri until it reaches an upper bound
dmax, e.g.,

fi(ai, ri) = min{ aiµi ri, dmax}, i = 1, . . . ,K. (2.6)

The other case is where fi(ai, ri) is nonlinear and converges to dmax as

fi(ai, ri) = dmaxi

1 −
1

riai
µi

dmaxi

+ 1

 , (2.7)

for i = 1, . . . ,K. In practical applications, we expect the load reduction to always
have an increasing marginal cost, and this is why we consider concave load reduc-
tion functions in our model. Due to this increasing marginal cost structure for both
of the fi(ai, ri) functions considered, the total cost for the utility should be convex.
This justifies the use of a gradient-descent based algorithm to obtain solutions to the
optimization problem (3.17). We use the steepest descent method with the gradient
updated by (2.4).

2.2.3 Numerical Examples

Numerical experiments were performed for a wide variety of parameter settings.
Tables 3.1 and 3.2 provide a representative sample of the various parameter combi-
nations for (G, σ, c, dmax) in our experiments. Symbol G represents the generation
capacity, which was varied from 90%D (or a 10% shortfall in generation), 100%D

and 110%D (or a 10% surplus in generation). All end-users’ demand reduction
elasticity were sampled from the same distribution U[0, 1], and thus all end-users
statistically exhibit the same mean demand reduction behaviour. The symbol σ1

indicates that the volatilities σ have been generated from a unimodal distribution,
while σ2 indicates the use of a bi-modal distribution for σ. A spot market cost mul-
tiplier c of 20 was chosen, which seems to be fairly typical of peak load conditions
especially during summer months. Finally, the following two cases for dmax are
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Table 2.1: Linear Bounded Load Reduction Function
G, σ, c, dmax Ob j Ob jeq LR LReq

90%D,σ1,20,unif 48.919 56.502 78.844 71.007
100%D,σ1,20,unif 15.751 16.808 41.820 41.365
110%D,σ1,20,unif 1.753 2.278 8.287 6.680

90%D,σ1,20,half 46.244 47.131 80.359 80.400
100%D,σ1,20,half 15.675 16.635 41.966 41.967
110%D,σ1,20,half 1.753 2.278 8.287 6.680

90%D,σ2,20,unif 43.773 49.734 76.376 69.133
100%D,σ2,20,unif 13.103 13.446 38.779 38.609
110%D,σ2,20,unif 0.956 1.239 6.112 4.762

90%D,σ2,20,half 41.769 41.820 77.580 77.602
100%D,σ2,20,half 13.057 13.338 38.875 39.045
110%D,σ2,20,half 0.956 1.239 6.112 4.762

considered:

dmaxi =
µi

2
, i = 1, . . . ,K, (2.8)

dmaxi = U[0.1, 0.6]µi, i = 1, . . . ,K. (2.9)

We use hal f and uni f to indicate whether the dmax is generated by (2.8) or (2.9),
respectively.

Numerical experiments are conducted for both cases of fi(ai, ri) functions. The
value Ob j denotes the optimal objective value under the discriminatory rebate plan
proposed in this paper, while Ob jeq denotes the optimal value obtained for the
equal-rebate plan. A quick perusal of Tables 3.1 and 3.2 shows that in all cases
using an incentive scheme to drive demand reduction is by itself very valuable in
comparison to paying spot market prices to close any generation shortfalls (e.g.,
the G = 90%D cases). In addition, the discriminatory rebate scheme is able to
wring out about 15 − 20% more cost reduction under this shortfall condition. Re-
call that these results are under the assumption that all end-users are statistically
similar. The benefits of discriminatory incentives are even more significant under
conditions where there are statistically distinct classes of customers, as one might
expect in practice; such results are omitted due to space limitations.
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Table 2.2: Nonlinear Load Reduction Function
G, σ, c, dmax Ob j Ob jeq LR LReq

90%D,σ1,20,unif 89.968 92.156 68.813 68.359
100%D,σ1,20,unif 21.975 22.744 36.860 36.867
110%D,σ1,20,unif 1.861 2.347 7.339 5.952

90%D,σ1,20,half 74.351 75.191 72.067 71.967
100%D,σ1,20,half 19.727 20.495 38.448 38.509
110%D,σ1,20,half 1.824 2.321 7.654 6.213

90%D,σ2,20,unif 79.052 80.970 67.501 67.010
100%D,σ2,20,unif 17.714 17.865 34.842 34.839
110%D,σ2,20,unif 0.990 1.263 5.588 4.357

90%D,σ2,20,half 65.670 66.200 70.415 70.215
100%D,σ2,20,half 16.068 16.211 36.084 36.196
110%D,σ2,20,half 0.977 1.254 5.778 4.503

2.2.4 Theoretical Analysis & Observations
σ

aµ
-Truncation Policy

Fig. 2.1 plots the provided rebates r versus σ/(aµ) for linear f in (2.6), where we
can see that r = 0 when

σ

aµ
is large, and vice versa. This observation suggests that

there exists a threshold for
σ

aµ
to “truncate” those end-users who exceed this thresh-

old from being paid. Note that the quantity σ/µ is the (dimensionless) coefficient of
variation of the end-user’s demand. We call such a policy the

σ

aµ
-truncation policy.

Before showing how to calculate a good threshold value under this policy, we first
consider some properties of the objective function.

Lemma 2.11 If the load reduction function f is concave, then the objective func-

tion (2.4) is convex.

Lemma 2.11 follows from the fact that both our chosen forms for f are concave,
together with the form of the objective function Ob j and its derivative in (2.4). We
now provide a result on the threshold value for

σ

aµ
such that ri = 0.

Theorem 6 After the algorithm converges, ri = 0 iff
σi

aiµi
> c
√

2πΦ(β).
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Proof Notice that when the algorithm converges, either
∂Ob j
∂ri

= 0 and ri > 0, or

∂Ob j
∂ri

> 0 and ri = 0. Thus, on one hand when ri = 0, then
∂Ob j
∂ri

> 0. By (2.4), we

have

∂Ob j
∂ri

= ( fi + ri
∂ fi

∂ri
)Φ(

fi

σi
) + φ(

fi

σi
)σi − cΦ(β)

∂ fi

∂ri
> 0

⇐⇒ φ(0)σi − cΦ(β)aiµi > 0

⇐⇒
σi

aiµi
> c
√

2πΦ(β),

where the second to last inequality follows from fi = 0 when ri = 0 and defini-

tion (2.5) which yields
∂ fi

∂ri
|ri=0 = aiµi.

On the other hand, when
σi

aiµi
> c
√

2πΦ(β), assume for contradiction that ri > 0

at convergence. Since from Lemma 2.11 the objective function is convex, then

∂Ob j
∂ri
|ri>0 >

∂Ob j
∂ri
|ri=0 > 0,

which is a contradiction to the assumption that ri is at convergence. Hence,
σi

ai
>

c
√

2πΦ(β) is also a sufficient condition for ri to be 0. 2

Remark 1 We can use the value of
σi

aiµi
, i = 1, . . . ,K, to segment end-users, and

then pay no rebates to those whose
σi

aiµi
value exceeds the threshold c

√
2πΦ(β).

Thus the utility can exclude those end-users that are of no interest from the per-

spective of helping to reduce the load.

Remark 2 From Tables 3.1 and 3.2, we can observe that load reduction for dmax

uniformly distributed between [0.10.6]µ is usually smaller than that when dmax =

0.5µ. The reason for this is that smaller dmax is a tighter bound when dmax is uni-

formly distributed than the fixed half-µ case, and thus the utility has has less total

reduced load and a higher probability (Φ(β)) of buying from the spot market.

Equal-Rebate Plan Vs. Optimal-Rebate Plan

Numerical results show that our gradient based Optimal-Rebate Plan (ORP) per-
forms better than the Equal Rebate Plan (ERP) when the maximum amount of load
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(a) dmax half

(b) dmax unif

Figure 2.1: Rebate as function of σ/(aµ) for linear f , K = 100, c = 20.

reduction allowable dmax is uniformly distributed rather than dmax equaling half of
the mean. This is because the uniform-dmax case produces a more heterogenous user
population, which in turn implies that the utility has a higher opportunity under the
ORP.

ORP also performs better than ERP when there is a larger load shortage to
cover. This is due to the fact that ORP can find and induce more total load reduction,
resulting in smaller penalty costs. When the spot market price is more expensive,
ORP again performs better than ERP. When the penalty cost is cheaper, the utility
has a better choice to buy the load elsewhere rather than paying up through the
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maximum rebate level to obtain dmax from each end-user. As previously noted,
ORP provides even greater benefits over ERP when there are statistically distinct
classes of customers, which may often arise in practice.

Linear Vs. Nonlinear Load Reduction Function

The case of the linear load reduction function always has a larger improvement
in total reduced load and total cost improvement than the case of the nonlinear
function. This is because for the same amount of rebate, the linear case always
induces more load reduction than the nonlinear case. However, the two cases behave
almost the same when the demand for load reduction is not significant. This is
because the nonlinear load reduction is approximately equal to the linear one when
the rebate amount is small. We believe that the strictly concave non-linear load
reduction function is of more practical interest.

2.3 Multi-Period Problem

2.3.1 Multi-Period Problem Formulation

The variables and parameters of the multi-period formulation are essentially the
same as those defined for our single-period formulation, together with an addi-
tional time (or period) index and the following important additions. Recall that
i = 1, . . . ,K indexes end-users, and let the new index t = 1, . . . ,T represent various
time-periods.

T Time horizon, e.g., 24 (hours);

K Total number of end-users;

Gt Total generation capacity at time t;

di,t Demand level before rebate at time t if no load reduction occurs at times 1, . . . , t−
1;

d′i,t Actual demand level before rebate at time t with positive load reduction at time
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1, . . . , t − 1, where

d′i,t = di,t +

t−1∑
j=0

δν j fi,t(ai,t−1− j, ri,t−1− j) (2.10)

(demand reduction function fi,t is defined below);

δ, ν Factors that determine the amount of load shifted from one period to subse-
quent periods, satisfying the stability condition:

δ

1 − ν
< 1;

Dt Total actual demand before rebate at time t, where

Dt =

K∑
i=1

d′i,t; (2.11)

d̃i,t Forecast for d′i,t, the demand level before rebate;

d∗i,t Demand level after rebate (where we assume that d∗i,t are independent over i, t);

dre f
i,t Reference demand level below which load reduction by i qualifies for rebate

at time t;

ri,t Rebate per unit of demand reduction at time t;

ai,t End-user’s “rebate elasticity”, or willingness to reduce load at time t;

fi,t(ai,t, ri,t) Demand reduction function for the user with rebate elasticity ai,t

and offered rebate rate ri,t;

ct Spot market price at time t.

This formulation defines an additional set of variables d′i,t to capture the flexibility of
end-users towards sustaining their demand reduction over time, and used to model
the shifting of load from one period to subsequent periods in an effort towards
responding positively to the utility’s rebate signals. The objective of the multi-
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period formulations is given by

min E

 1
T

[ T∑
t=1

K∑
i=1

ri,t(d
re f
i,t − d∗i,t)

+

+

T∑
t=1

ct[Dt −Gt −

K∑
i=1

(d′i,t − d∗i,t)]
+
] , (2.12)

subject to

d∗i,t = d′i,t − fi,t(ai,t, ri,t), i = 1, . . . ,K, t = 1, . . . ,T. (2.13)

The first term of the objective function (2.12) represents the total rebate amount
that the utility pays to all the customers during the period of time [0,T ] for the
amount of load reduced from their reference levels. Note that the utility accounts
for a customer shifting load to available rebates in previous periods by setting the
reference level appropriately, so that the rebate pricing is a reasonable indication
of whether the load reduction by an end-user during peak hours is valuable. The
second part of (2.12) is the utility’s total cost in the spot market when there is still
a shortage of load after rebates are offered.

2.3.2 Algorithm for Multi-Period Problem

Let OBJ denote the objective function (2.12). Assume {di,t} follows a normal distri-
bution N(µi,t, σi,t), where µi,t and σi,t are inferred by the utility from historical data.
With this assumption OBJ can be further reduced, like the single period problem,

44



to

OBJ =
1
T

 T∑
t=1

K∑
i=1

ri,t[d
re f
i,t − µi,t

−

t−2∑
j=0

δν j fi,t(ai,t−1− j, ri,t−1− j)

+ fi,t(ai,t, ri,t)]Φ(αi,t) +

T∑
t=1

K∑
i=1

ri,tσi,tφ(αi,t)

+

T∑
t=1

ct[
K∑

i=1

(µi,t +

t−2∑
j=0

δν j fi,t(ai,t−1− j, ri,t−1− j)

− fi,t(ai,t, ri,t)) −Gt]Φ(βt) +

T∑
t=1

ct

√√
K∑

i=1

σ2
i,tφ(βt)

 (2.14)

where

αi,t =σ−1
i,t (dre f

i,t − µi,t −

t−2∑
j=0

δν j fi,t(ai,t−1− j, ri,t−1− j)

+ fi,t(ai,t, ri,t)), (2.15)

βt =(
K∑

i=1

σ2
i,t)
− 1

2 (
K∑

i=1

(µi,t +

t−2∑
j=0

δν j fi,t(ai,t−1− j, ri,t−1− j)

− fi,t(ai,t, ri,t)) −Gt), (2.16)

Let OBJs be the objective value from period s with OBJ = 1
T

∑T
s=1 OBJs. Thus,

if we choose dre f
i,t = d̃i,t, we have

∂OBJ
∂ri,t

=
1
T

(
[αi,tσi,t + ri,t

∂ fi,t(ai,t, ri,t)
∂ri,t

]Φ(αi,t)

+σi,tφ(αi,t) − ct
∂ fi,t(ai,t, ri,t)

∂ri,t
Φβt

)
+

1
T

T∑
s=t+1

{
− ri,sδν

s−t−1∂ fi,t(ai,t, ri,t)
∂ri,t

Φ(αi,s)

+ csδν
s−t−1∂ fi,t(ai,t, ri,t)

∂ri,t
Φ(βs)

}
. (2.17)
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Figure 2.2: Original demand, after-rebate demand and load reduction as functions
of time for T = 24 hours, K = 200, c = 1.

With a choice of dre f
i,t = d′i,t, this renders

∂OBJ
∂ri,t

=
1
T

(
[αi,tσi,t + ri,t

∂ fi,t(ai,t, ri,t)
∂ri,t

]Φ(αi,t)

+σi,tφ(αi,t) − ct
∂ fi,t(ai,t, ri,t)

∂ri,t
Φβt

)
+

1
T

T∑
s=t+1

csδν
s−t−1∂ fi,t(ai,t, ri,t)

∂ri,t
Φ(βs). (2.18)

Making the same assumptions for the functional form of the load reduction function
fi,t(ai,t, ri,t) as in the single-period formulation, we obtain a convex optimization
problem in (2.12). Steepest descent is then employed with the gradient update
obtained from the appropriate form of (2.17) or (2.18).

2.3.3 Numerical Experiments & Analysis

Fig. 2.2 plots the original demand versus after-rebate demand level as well as the
load reduction amount under both the optimal rebate plan (ORP) and equal-rebate
plan (ERP). We observe from these results that customers with smaller load shift-
ing factors (δ and ν) receive higher rebates, and vice versa. In addition, for the
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same supply shortfall, rebates after peak periods are higher than those before peak
periods, in order to reduce load shifting into peak periods.

2.4 Conclusion

We proposed a method for determining lowest cost aggregate demand reduction at
multiple network levels such as distribution companies and feeder networks. This
is a method of virtual-demand generation (or demand reduction) that is emerging as
an option of choice for utilities on the Smart Grid. This method provides several key
advantages to the utility: With the new technology in the Smart Grid, this option
can be instantly initiated via smart metering signals during peak periods at almost
zero start-up cost. It can also serve to hedge the utility’s financial risk exposures by
allowing fine control on the utility’s demand-side flexibility.

We modeled the problem for both single- and multiple-period formulations,
each with the objective of minimizing a utility’s total operating costs. This in-
cludes incentive compensation to end-users for load reduction as well as spot mar-
ket prices paid to purchase additional units to cover any remaining load shortage.
Numerical experiments showed that for each single period, customers with higher
rebate-demand elasticity and lower variance should be provided with higher incen-
tive rates; and along multiple periods, customers with smaller likelihood of shifting
their load and greater inclination to consume less over the entire horizon should be
given higher rebates.
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Chapter 3

Integration of Demand Response and
Renewable Resources for Power
Generation Management

3.1 Introduction

With the advent of the Smart Grid, the infrastructure for energy supply generation
and transmission is experiencing a transition from the current centralized system to
a decentralized one. The ability to access real-time information on supply availabil-
ity and prices supported by the demand, as well as the new capability of using dy-
namic incentive signals to influence demand, offers unique opportunities to improve
the overall efficiency of the grid in terms of both long-term supply-demand man-
agement as well as near-term dispatching of diverse generation facilities to meet
current demand. The responsiveness and flexibility envisioned for the Smart Grid
provides additional advantages in facing the significant new challenges [14, 40] of
integrating distributed and intermittent generation capability, such as small gener-
ators and renewable energy sources (wind, solar, etc.), at a scale that current grid
technology is finding hard to achieve. This is becoming more critical as renewable
energy technologies are playing an increasingly important role in the portfolio mix
of electricity generation.

We consider a single-period optimal dispatching problem of balancing energy
transmission for a network of energy utilities across multiple buses interconnected
via transmission lines. The grid’s generation capability consists of traditional ther-
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mal and hydro generators that have been scheduled by the longer horizon (e.g. day-
ahead) unit-commitment decision process, augmented by additional smaller capac-
ity “peaker” thermal generators connected to a subset of the buss-es, and the goal
is to find the lowest operational-cost dispatching of the peakers to satisfy demand
shortfalls in the near-term, in the order of 30 minutes to an hour, subject to power
transmission constraints between all pairs of connected buses. This will be familiar
to the reader as a version of the well-studied Optimal Power Flow (OPF) problem
(see e.g. [20] for a review) adapted for covering short-term generation shortfalls. In
addition, we introduce a renewable resource of energy to the grid. We shall consider
wind generation as the main renewable resource in this paper. Wind generation has
negligible operational costs (in the hourly time-scale) and thus should be the first
generator to be dispatched. Indeed, regulations in multiple US states require the use
of wind power if it is being generated. However, the intermittent nature of output
from wind turbines due to weather conditions is often seen as a potential obstacle to
dispatching wind power in the classical sense. Hence, we consider the wind power
as a non-dispatchable, variable generation source that is connected in an always-on
state to the nearest bus.

Forecasting near-term wind availability and velocity is an imperfect science
with significant variability between the forecast and the realized generation. In [19],
the authors consider integrating wind power production into existing dispatch mod-
els, and analyze the uncertainty of forecast errors for wind power production and
its impact on incremental reserve requirements and imbalance costs. The agency
charged with controlling the smooth operation of the grid will require that this un-
certainty associated with utilizing non-renewable sources be hedged against. This
problem is often addressed by balancing energy provided by non-dispatchable sources
(such as wind and photovoltaic units) with quickly dispatchable sources (such as
small hydro and micro turbine units). [54, 39, 38, 56, 13] study this problem in
differing levels of sophistication starting from individual end-users up to local util-
ities. In particular, a balancing approach to achieve overall dispatchability in a
distributed generation network is presented in [54], which consequently converts a
group of small distributed generations into a large logical generation station.

Another stream of research focuses on hedging the uncertainty in setting or ad-
justing transmission parameters by introducing a set of constraints that have the
effect of dispatching additional capacity to hedge against the risk of a large un-
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foreseen shortfall in total supply. The study in [11] considers an economic envi-
ronmental dispatching model where wind and solar energy are both included but
constrained to be no more than 30% of the total dispatched capacity. This is rec-
ognized in [32] where the authors propose a stochastic programming framework to
determine the optimal procurement of interruptible load in order to minimize the
risk of a shortfall over multiple periods. In [30], a set of risk constraints, in the
form of chance-constraints, is imposed to balance risk of shortfalls due to uncer-
tain generation against cost of provisioning corrective generation sources such a
peakers. Risk-constrained OPF models often assume Normal distributions as repre-
sentative of the generation uncertainty as this allows a two-parameter control on the
model. (The Normal distribution is fully specified with the first two moments.) [41]
generalize this with a point-estimate scheme to solve stochastic OPF problems.

Our model is broadly a “security-constrained” OPF where we consider an al-
ternate approach of accessing the intermittent generator. Our approach differs from
standard techniques in two aspects: first, the a risk constraint we impose is based
on the conditional value-at-risk (CVaR) function, which has certain advantageous
properties (refer Section 3.2). Second, in our model an alternative strategy to man-
age generation shortfall is by incentivizing end-users to reduce their demand in
accordance with the shortfall. In [49], we provide a detailed analysis of such de-

mand response techniques, and illustrate how a local utility operating at any sin-
gle bus/node of the network can extract “virtual supply” (i.e., reduce demand) by
providing incentives customized to the observed behaviour of each end-user in re-
sponse to such incentives. Demand response enjoys the advantage of suffering from
very little lag in being accessed. In the present article, we shall utilize a simpler de-
mand response policy of providing a single rebate value for every unit of demand
reduced by an end-user. The expected (stochastic) response of the end-user is mod-
eled using functional assumptions in common with [49].

The complete set of control options modeled in our optimization problem con-
sists of the dispatching order and the dispatching amount of thermal generators as
well as the non-discriminate (equal) rebate signals sent to energy end-users at each
node of the network. Further, the transmission limitations of the grid network ne-
cessitates additional decisions that maximize the utilization of the flexibility of the
network. Any unmatched shortfall must be ultimately fulfilled from the spot market
at a high premium (i.e., penalty). On the other hand, any excessive supply over the
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local demand is assumed to be sold into the spot market, thus acting as an incen-
tive to the grid management entity to access demand response by providing in turn
incentives to the end-users.

The remainder of the paper is organized as follows. Section 3.2 introduces both
our model notation and formulation. Section 3.3 presents numerical experiments
and analysis, followed by some concluding remarks.

3.2 Model Formulation

3.2.1 Model

An electric utility controls the dispatching of committed (regular and peaker) gener-
ation units (thermal sources) over a network of multiple local buses interconnected
via transmission lines. Define:

Ng number of traditional generator buses;

Nd number of load buses;

N total number of buses.

We assume that power demand Pd
i at each bus is normally distributed, Pd

i ∼

N(µi, σ
2
i ). This assumption is commonly used in stochastic OPF models, and in

particular fits in well with the demand response model we use (refer [49] for further
details). The Ng generators are peak generators, namely active generators that are
currently unused but spinning and thus can be activated within a short time span.
Let Pgmin

i and Pgmax
i represent the lower and upper bounds on the power outputs

from generators i, i = 1, . . . ,Ng. Let θmin
i and θmax

i represent the lower and upper
bounds on the voltage phase angles of bus i, i = 1, . . . ,N.

We assume renewable generation is connected to a single bus such that the
total power generated lies within Pmin

RN and Pmax
RN , where the forecasts are PRN ∼

(truncated) N(µRN , σ
2
RN). Other renewable resources share similar intermittent and

volatile properties with wind and can be modeled in this manner. We assume that
the utility also integrates a demand-response policy as a source of virtual generation,
where M of the buses offer rebates to customers for reduced energy load. This can
be implemented by allowing the utility to interact with different household electric
appliances (laundry, temperature control, etc.) through price signals sent to smart
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meters. The customer response to these incentives is a reduced demand PDR j(r) with
a mean and variance depending on the rebate value r, PDR j(r) ∼ N(µDR j(r), σ2

DR j
(r)),

j = 1, . . . ,M. In our numerical experiments we shall assume the mean value of the
demand response to be linear in the rebate value:

µDR j = b1 jr, j = 1, . . . ,M. (3.1)

Finally, any excess (shortfall) of supply is sold to (bought from) the spot market at
a unit price c.

In what follows, we shall use the subscripts RN and DR to indicate connections
with wind generation resource and demand response, respectively. We also assume
that the total demand, demand response and wind power generation are mutually
independent random processes.

3.2.2 Decision variables

The optimization problem is formulated with the following decision variables:

zi 0/1 indicator of whether traditional generator i is on or off, i = 1, . . . ,Ng;

Pg
i total real power output extracted from generator bus i, i = 1, . . . ,Ng;

θi voltage phase angle for each bus i, i = 1, . . . ,N;

r non-discriminate unit rebate price offered to all customers on the M partici-
pating buses.

Note that {zi} are discrete control variables, while all the other decision variables are
continuous. As for the continuous control variable r, the utility is assumed to have
the forecasting profiles of each type of load reduction. We formulate the problem
as a single-period nonlinear mixed integer program.

3.2.3 Constraints

Bounding Constraints

The real power generation Pg
i of each generator bus, the load demand Pd

i of each
load bus, and the voltage phase angles θi of each bus should lie within their mini-
mum and maximum limits. In addition, the total generation load plus the reduced
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load should balance the total demand. We therefore have the bounding constraints:

ziPgmin
i ≤ Pg

i ≤ ziPgmax
i , i = 1, . . . ,Ng; (3.2)

θmin
i ≤ θi ≤ θ

max
i , i = 1, . . . ,N; (3.3)

0 ≤ r < c; (3.4)

0 ≤ PDR ≤ Pd
DR; (3.5)

where the last constraint restricts the total demand-response load to be no more than
the load of the hosting bus.

Network Balance Constraints

The formulation has to impose power flow balance constraints on the decision
variables. For this economic dispatching problem, we use the DC power flow
constraints, commonly used in optimal power flow and economic dispatch prob-
lems [42],

Pi(θ) = Pg
i − Pd

i =

N∑
j=1

1
xi j

(θi − θ j), (3.6)

where xi j is the reactance of the transmission line between bus i and bus j. The
generator bus injected with wind power has a real load output of Pg

i + PRN . The
generator bus with demand response options has a real load output of Pg

i +PDR, and
the generator bus with access to the spot market has a real load output of Pg

i plus
(minus) the amount of load bought from (sold to) the market.

Power balance also has to be achieved at the system level:

Ng∑
i=1

Pg
i + PRN + PDR + S =

N∑
i=1

Pd
i, (3.7)

where S represents the load position in the spot market. Thus, we have S =∑N
i=1 Pd

i −
∑Ng

i=1 Pg
i − PRN − PDR, which, if positive, represents a shortfall in sup-

ply and, if negative, represents an excess of supply sold to the spot market.

Risk Control

For a loss value l(u; v), which is a cost function of decision variables u and random
variables v, the β-Value-at-Risk is the β-quantile of the distribution induced on the
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loss function. The risk measure β- Conditional Value-at-Risk with confidence level
β is defined as the expected value of the cost-based loss function l(u; v) conditional
on loss being beyond the β−th quantile. We denote the β-VaR and β-CVaR values
as αβ(u) and φβ(u), where

αβ(u) ≡ min{L0 ∈ R : Prob{l(u; v) ≤ L0} ≥ β}, (3.8)

φβ(u) ≡ E[l(u; v) | l(u; v) ≥ αβ(u)]. (3.9)

It has been noted that CVaR is a coherent risk measure [3]; moreover, it is a
convex function of the decision variables. In our model, we consider CVaR as the
risk measure for the power generation portfolio. Let L be a pre-specified risk (loss)
level. Then the risk control constraint is formulated as φβ(u) ≤ L, which can be
transformed to the following equivalent formulation under the assumption that v is
normally distributed [45]:

µ(u) + (
√

2π(1 − β)e[er f −1(2β−1)]2
)−1σ(u) ≤ L, (3.10)

µ(u) = E[l(u; v)], σ(u) = Var(l(u; v)),

er f (z) =
2
√
π

ˆ z

0
e−t2dt. (3.11)

When v has a general distribution, the CVaR constraint can be approximated by
sampling a collection of K paths, with v1, . . . , vK generated from the probability
distribution of v:

L0 +
1

J(1 − β)

K∑
k=1

(l(u; v) − L0)+ ≤ L. (3.12)

Define the cost function l(z, Pg, r, θ; Pd, PDR(r), PRN) as a function of decision
variables z ∈ RNg , Pg ∈ RNg and r, and random variables Pd ∈ R, PDR(r) ∈ RM

and PRN ∈ R. In our model, the loss function (total cost) equals the sum of all the
generation costs minus the total revenue from the load position exposed to the spot
market (positive when selling to the market and negative when purchasing from the
market). We assume the production cost fi, i = 1, . . . ,Ng, for those operating units
to be a quadratic function of the amount dispatched [2], namely

fi = a2iPg
i
2 + a1iPg

i + a0i. (3.13)

54



In addition, suppose the start-up cost for load reduction is zero and that this virtual
generator only incurs a “generation” cost linear in the rebate r. In general there is
no operational cost for wind renewables. Thus, we have the following form for the
loss function in terms of the utility’s total cost:

l(z, Pg, r, θ; Pd, PDR(r), PRN)

=

Ng∑
i=1

zi(a2iPg2
i + a1iPg

i + a0i) + r
M∑
j=1

PDR j(r)

− c(
Ng∑
i=1

ziPg
i +

M∑
j=1

PDR j(r) + PRN −

N∑
i=1

Pdi). (3.14)

The mean and variance of the loss induced by the random variables Pd, PDR(r)
and PRN are functions of z, Pg and r. More precisely, we have

E[l(z, Pg, r, θ; Pd, PDR(r), PRN)] = µ(z, Pg, r, θ)

=

Ng∑
i=1

zi(a2iPg2
i + a1iPg

i + a0i) + r
M∑
j=1

µDR j(r)

−c(
Ng∑
i=1

ziPg
i +

M∑
j=1

µDR j(r) + µRN −

N∑
i=1

µi); (3.15)

Var[l(z, Pg, r, θ; Pd, PDR(r), PRN)] = σ2(z, Pg, r, θ)

=(r2 + c2)
M∑
j=1

σ2
DR j

(r) + c2(
N∑

i=1

σ2
i + σ2

RN). (3.16)

3.2.4 Complete Model Formulation

The objective is to minimize the total cost (loss function), which yields our final
formulation:

min
z,Pg,r,θ

E[l(z, Pg, r, θ; Pd, PDR(r), PRN)], (3.17)

s.t. (3.2) − (3.7) and (3.10),

zi = 0 or 1, i = 1, . . . ,Ng. (3.18)
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3.2.5 Algorithm

Our primary goal in this article is to illustrate the impact that the unpredictable
nature of renewable generation has on the network dispatching problem, and to fur-
ther show that demand response is an effective means to control this stochasticity.
Towards this end, we propose to solve instances of the above nonlinear mixed inte-
ger program through a two-stage procedure: the outer stage is a listing of possible
joint values of the binary variables zi (z ∈ R2Ng×Ng) that indicate whether generator
i is dispatched, and the inner stage where each zi has been fixed and the formu-
lation simplifies to a non-linear formulation that can be efficiently solved using a
customized gradient descent algorithm given the expressions for the non-linear con-
straint (3.10).

3.3 Numerical Example & Analysis

We next consider a representative set of our numerical experiments based on the
foregoing analysis, which includes the IEEE 30-bus 6-generator system topology
depicted in Fig. 3.1. The parameters for the quadratic cost function a0, a1, a2 and
the upper/lower bounds for generator buses are provided in Table 3.1. Voltage phase
bounds θmin and θmax for all load buses are 0◦ and 30◦, respectively.

Figure 3.1: IEEE 30-Bus 6-Generator System

Fig. 3.2 shows that the total expected cost when allowing demand response
(DR) is lower than the total expected cost without DR for varying spot market price
assumptions. In addition, under relatively high spot market prices, the utility can
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Table 3.1: Generator Unit Parameters for IEEE 30-Bus System
Bus a0 a1 a2 Pgmax Pgmin

1 0 2.00 0.00375 200 50
2 0 1.75 0.00175 80 20
5 0 1.00 0.00625 50 15
8 0 3.25 0.0083 35 10

11 0 3.00 0.025 30 10
13 0 3.00 0.025 40 12

Figure 3.2: Compare Mean Loss vs. Wind with/without DR

even realize additional profits through the use of DR, which in turn can lead to more
efficient overall management of the energy grid. Table 3.2 compares the optimal
dispatching policy, rebate price and spot market load position S (positive to buy and
negative to sell), for different spot market price and wind generation assumptions,
both with and without DR. From Table 3.2 we can see that when the market price is
relatively low, wind injection into the system will not change the dispatching load
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nor the rebate price, and will only reduce the amount of load bought from the spot
market. The optimal rebate price seems to be around c/2. When the spot market
price is relatively high, the utility dispatches more generation to realize a profit
from this excess load. Interestingly, more wind injection under such conditions will
reduce the dispatched thermal power and rebate price, which seems to result from
the power flow constraints limiting the ability of the utility to transfer the excess
generated load to the spot-market entry node. The optimal rebate price in this case
will be less than c/2. Under every condition, the total dispatched thermal generation
is lower when DR is allowed, as expected.

Table 3.2: Optimal Dispatching Without CVaR Constraint
c Wind Pg

1 Pg
2 Pg

3 Pg
4 Pg

5 Pg
6 r S Cost

3 15 133.3 35.7 16.0 0 0 0 off 83.4 700.2

3 15 133.3 35.7 16.0 0 0 0 1.5 68.4 677.7

3 45 133.3 35.7 16.0 0 0 0 off 53.3 610.2

3 45 133.3 35.7 16.0 0 0 0 1.5 38.4 587.7

5 15 200 58.9 23.4 35 17.8 19.4 off -86.1 593.8

5 15 196.4 53.5 22 33.4 14.3 16.2 1.81 -85.5 559.7

5 45 188.3 51.9 21.6 30.6 13.3 15.2 off -82.5 488.7

5 45 178.9 50.1 21.1 27.2 12.1 14.1 1.75 -82.8 457.5

5 80 167.6 47.9 20.6 23.2 10.7 12.8 off -82.5 372.0

5 80 158.2 46.1 20.1 19.9 10 12 1.68 -79.7 343.2

10 80 126.4 53.9 25.8 35 21.4 30.0 off -88.9 -52.5

10 80 115.0 51.7 25.2 35 19.9 28.6 1.78 -89.8 -84.8

Fig. 3.3 plots the mean cost, rebate price and load profiles as the tolerated risk
levels vary and the spot market price is kept relatively low. The dispatching pol-
icy and total dispatch load remains low for different CVaR constraints, due to the
relatively low spot market price. Furthermore, the utility prefers to increase load re-
duction incentive prices to purchase less from the spot market instead of dispatching
more generation load due to the higher cost for this extra dispatching.

Fig. 3.3 shows the optimal rebate and the minimum cost as the tolerated risk
levels vary, thus providing the efficient frontier for the cost-based loss function.
Fig. 3.4 plots the optimal total dispatching amount and demand response load re-
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(a) Cost and Rebate against Risk Level

(b) Load Profile vs Risk Level

Figure 3.3: At Market Price=3 Wind=45

duction with respect to these risk tolerances. We see that with relatively high spot
market prices, the utility generates (either directly from thermal sources or virtually
via load reduction) and sells extra load to the market to make more profit. With a
relatively loose CVaR constraint, the utility tends to pay more load reduction incen-
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Figure 3.4: Load Profiles vs. Risk Level

tives rather than generate more energy from thermal sources.
Figs. 3.5 and 3.6 show that as the coefficient of variation (CV) for wind gener-

ation increases, the mean loss increases while the rebate price decreases under the
same risk constraint. This is because with the same risk constraint but a higher pro-
portion of risk being due to wind generation, the most efficient way to keep CVaR
within its prescribed limit is to reduce the risk from demand response, which in turn
is achieved with a decreasing rebate. Moreover, the changes in cost and rebate are
more significant with a tighter risk constraint, which follows from the risk measure
in our model being quadratic in r.

Fig. 3.7 describes the optimal cost under changing market price relations with
respect to different choices for the buses that interconnect wind, DR or spot market
load injections. The optimal costs tend to increase with the spot market price at first,
upon reaching a peak, and then tend to decrease because the utility can realize more
profits by selling load to the market when the marginal generation cost is lower than
the spot market price. In addition, a lower cost is incurred when the phase angle
constraints are not active for the bus accessing the spot market or demand reduc-
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Figure 3.5: Loss vs. Wind’s Coefficient of Variation

tion. Fig. 3.8 compares the optimal cost versus risk relations under different wind
generation injection bus locations. Lower costs are incurred when the power flow
constraints are not active, or when the bus that has wind injection is also attached
to a lower marginal cost generator. These results serve to illustrate and quantify the
influence that the bus connections for renewable generation and spot market access
can have on the resulting optimal dispatch.

We implemented our model with a IEEE 300 bus system. The expected be-
haviour of the optimal policy dispatching the generation capacity according the
increasing order of marginal cost is observed in this case too, as is the fact that the
total expected cost is lower when integrated with the demand response program. In
addition, the advantage of demand response as a virtual generation source over tra-
ditional peakers becomes more stark for this 300 bus case, where the quadratic cost
of the thermal generators has a higher penalizing effect while the cost of demand re-
sponse does not increase with the size of the system load. This independence from

61



Figure 3.6: Rebate vs. Wind’s Coefficient of Variation

system size as well as the almost instantaneous start-up provides strong evidence of
the efficacy of demand response as an alternate shortfall reduction method.

Finally, there is an important issue regarding the feasibility of our optimiza-
tion problem given the various important constraints described in Section 3.2. To
elucidate the exposition, our previously described solution approach assumes the
existence of a feasible solution, which was easily addressed as part of the above
numerical experiments. More generally, however, our approach ensures feasibility
by first considering a version of the model in Section 3.2 within the context of a
robust optimization framework. Upon solving this problem, the corresponding ro-
bust optimal solution provides a lower bound on the potential benefits achievable
by the utility. Of course, the utility can decide to directly employ this solution. On
the other hand, we can instead exploit this solution to properly define a feasibility
region for our original optimization problem and then apply a variant of our original
solution approach described above taken over this feasible region. By employing
this solution, the utility can further improve upon the benefits realized under our
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Figure 3.7: Comparing Cost Under Different Bus Connection Settings

optimal solution. These technical details and other more efficient refinements of
our optimal solution approach are omitted due to space restrictions.

3.4 Conclusion

We demonstrate the importance of properly capturing in the dispatching problem
the effects of any renewable generation sources introduced at various nodes in the
distribution network. Although they generate energy at essentially no operational
cost, renewable sources can create issues arising from supply forecast uncertainty,
where a mismatch in the planned supply and actual demand due to lower than ex-
pected renewable generation results in the utility having to purchase expensive units
from the spot market. Our approach hedges this uncertainty by imposing a risk con-
straint on the objective function (total cost of meeting demand) of the dispatching
problem, where a risk metric based on the Conditional Value-at-Risk of the cost
function was considered. This risk constraint has the effect of slightly increasing
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Figure 3.8: Comparing Cost Under Different Wind Connection Settings

the total dispatched generation capacity to hedge the renewable generation uncer-
tainty. An alternative strategy is to incentivize end-users to reduce their load, which
can be effectuated almost instantly (as compared to increasing thermal generation)
but at the expense of such incentives. Our formulation also considers this strategy.

Results from numerical experiments show that the introduction of renewable
sources can have a significant impact on the dispatching policy, as can the loca-
tion of this introduction within the transmission network. Additionally, demand
response load reduction can be an effective tool in controlling shortfalls created by
renewable generation forecast mismatches.

Ongoing extensions of the present work include a variant of our formulation
based on the AC power flow equations, which yields a highly non-linear stochastic
optimization problem. Another important extension we are actively pursuing is to
look at a multi-period formulation for the demand response enhanced OPF model.
As we point out in [49], demand reduction via incentivization is not a memory-
less process, in that reductions in demand in one time period can have the effect of
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increasing demand in subsequent periods as customers adjust by shifting load rather
than reducing their overall consumption.
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