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Abstract of the Dissertation
Geometric Algorithms for Capacity

Estimation and Routing in Air Traffic Management
by

Jingyu Zou

Doctor of Philosophy
in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University
2010

We study various problems that arise from two inter-related fundamen-
tal computational problems in Air Traffic Management (ATM): that of esti-
mating the capacity of an airspace that is cluttered with hazardous weather
constraints, and that of routing aircraft on trajectories in space-time to avoid
hazardous weather constraints and to achieve maximum efficiency while main-
taining safe separation distances between all pairs of aircraft at all times.

We model the problem of capacity estimation as a geometric problem of
finding the maximum number of pairwise disjoint “thick” paths in a polyg-
onal domain with holes. For the case where all thick paths are of the same
width, we give a 1/2-approximation algorithm using geometric spanners. We
also show experimentally that using a spanner (e.g., Delaunay graph) yields
approximation ratios very close to one. For the case where thick paths are
of two or more different widths, we show that the problem becomes strongly
NP-hard; we also give polynomial-time algorithm for the special case where
the order of the widths of the paths as they appear on the polygonal boundary
is given.

We also study the capacity estimation problem for any airspace under dif-
ferent dominant demand (flow) directions and see how the directional capacity
changes as a function of the demand direction. We lay out grids on the whole
National Airspace System (NAS), put square or circular kernels of appropri-
ate sizes on each grid point, and apply the directional capacity analysis for
each kernel; this way we get an idea on the directional capacity for the whole
NAS. Further, we describe how the grid-based analysis can be used in ATM
applications.

We investigate methods of computing flexible trees of arrival and departure
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routes for the transition airspace. We model the problem of routing flows of
arrival aircraft on a merge tree with constraints imposed by hazardous weather,
special use airspace, and operational constraints on merge points. We have
proved that this problem is in general NP-hard; an polynomial-time algorithm
is presented to compute an optimal merge tree if the number of “layers” in
the search graph is constant. The algorithm applies both to the case of fixed
(constant) Required Navigation Performance (RNP) and the case of a mixture
of different RNP values. We show experimental results demonstrating the
application of the algorithm to problem instances that are based on actual
weather data.
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1 Introduction

This thesis addresses two fundamental computational problems in Air Traf-
fic Management (ATM): that of estimating the capacity of an airspace that
is cluttered with hazardous weather constraints, and that of routing aircraft
on trajectories in space-time to avoid hazardous weather constraints and to
achieve maximum efficiency while maintaining safe separation distances be-
tween all pairs of aircraft at all times. These two problems are inter-related:
we need to estimate the capacity of an airspace ahead of time in order to plan
for future traffic to be routed up to but not exceeding the estimated capacity,
while throughput analysis from an optimal routing of aircraft along trajectories
can result in a better understanding of the actual airspace capacity.

Capacity Estimation

The “capacity” of an airspace is informally defined as the maximum number of
aircraft per unit time that can utilize the airspace, given the various airspace
constraints, which include restricted “no-fly” airspaces, such as Special Use
Airspace (SUA), and regions of hazardous convective weather, turbulence,
icing potential, etc.

Our investigations are done under operational assumptions considered to be
in line with the Next Generation Air Transportation System (NextGen) [21],
with a time frame of applicability of roughly 2020 to 2025, depending on the
rapidness of implementation of certain technological advances in navigation
and communication. We consider the estimation of capacity in a future ATM
system where aircraft are not required to follow jet routes, as they generally
are today (with the exception of a limited number of “free flight” aircraft at
restricted altitudes). Rather, we consider operational rules for “en route” (be-
tween major airports) and “transition airspace” (in the local vicinity of major
airports) where traffic finds routes through the gaps in airspace constraints.
We generally assume that all aircraft have the same speed and follow the same
Miles-In-Trail (MIT) standard, i.e., that aircraft abide by a common required
separation along a “flow” of aircraft traveling single file on a common route.
Under these assumptions, the maximum number of aircraft per unit time that
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enter an airspace, on their way across it, is proportional to the maximum
number of non-interfering air lanes that can be packed in the airspace, while
avoiding constraints and satisfying lateral separation standards between air-
craft on different lanes. This is, generally, the definition of airspace capacity
used throughout this thesis.

Capacity estimation plays an important role in aircraft route planning and
scheduling. If the demand for an airspace, which is typically a sector in en
route airspace or a transition airspace centered on a major airport, exceeds
its estimated capacity, a Traffic Flow Management (TFM) strategy must be
implemented. A TFM strategy employs a Ground Delay Program (GDP) to
delay aircraft that are still on the ground, uses speed control and holding
patterns to delay aircraft that are already airborne, and reroutes aircraft to
a different, less obstructed, route, as feasible, given the constraints. Much
research has been done with the purpose of minimizing the delay and rerouting
costs of a TFM strategy, often using mathematical programming techniques;
see, e.g., [4, 5].

Related Work Early work by Schmidt [43] investigated the traffic variables,
routes, sector geometry, and control procedures that contribute to a control
“difficulty index” that empirically quantifies the workload required on the part
of the air traffic control team to manage a sector; the sector capacity can then
be limited in such a way that the total workload, as measured by the control
difficulty index, stays below a specified threshold. Wanke et al. [53] and Song
et al. [45] studied the problem of predicting sector capacity by identifying a
capacity value for each primary traffic flow pattern and predicting capacity
under future flow patterns by matching the pattern with the most similar
primary flow pattern; they defined “capacity” empirically as the number of
aircraft simultaneously in the sector such that a sector performance index
transitions from route structure to congestion at that point.

One problem central to our model of airspace capacity estimation is maxi-
mum flows in polygonal domains. This problem is a continuous and geometric
analog of the celebrated max-flow/min-cut theorem from network analysis [1].
Strang [49] first studied this problem and proved the max-flow/min-cut the-
orem in the geometric setting. Mitchell [34] studied this problem from an
algorithmic point of view and gave efficient algorithms to compute maximum
flows. Krozel et al. [28, 29] were the first to apply the continous max-flow/min-
cut theory to the ATM domain; they defined the theoretical upper bound on
airspace capacity as the maximum number of air lanes that can be packed
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amidst obstacles and uses the aforementioned theory to compute capacity es-
timations under different flow organizations. The justification for this metric
of capacity is that, assuming constant and common speeds and fixed separa-
tion (Miles in Trail) along a flow, the maximum number of aircraft per unit
time that can travel through a sector, entering through the “source” portion of
the boundary and exiting through the “sink” portion of the boundary is pro-
portional to the number of air lanes that can be routed, as given by the max-
flow/min-cut computation. Song et al. [46, 47] also used the max-flow/min-cut
theory to compute an “available capacity ratio” for sectors.

Routing Aircraft Flows

In today’s ATM system, aircraft usually follow fixed routes and do not have
much flexibility in adjusting to changes in weather conditions and other con-
straints. The impact of hazardous weather on air traffic operations in transit
and terminal airspace is significantly greater than it is on en route airspace and
is a major cause of flight delays and cancellations in airspace around airports.
Thus, effective route planning algorithms are needed in order to optimize the
utilization and efficiency of airspace in the face of weather hazard constraints.

In the current air transportation system, the airspace around major air-
ports is typically partitioned between arrival and departure traffic flows, or-
ganized in ways to allow for the safe and efficient flow of traffic to and from
the terminal area. Today, traffic obeying Instrument Flight Rules (IFR) follow
tree-like structures used for Standard Instrument Departures (SIDs) as well as
Standard Terminal Arrival Routes (STARs). SIDs and STARs are based on
fixed airway structures, defined by fixed navaids (fixed in location for all time)
and fixed routes connecting navaids. Pilots, air traffic controllers, and their
decision support systems use these well-defined SIDs and STARs as a basis
for the safe and efficient routing of traffic on departures and on arrival routes.
Arrival routes have a tree-like structure, typically with at most two routes
coming together at a merge node, for ease of control. The use of SIDs and
STARs adds to the predictability (and thus helps to lower controller workload),
in that the SIDs and STARs are reused day after day and by most aircraft in
a flow during the day.

One major drawback to using such a fixed routing structure in transition
airspace ATM is that when disturbances due to hazardous weather appear,
the routing structures are not easily adaptable to such constraints and, as a
result, their benefits diminish. At times when hazardous weather crosses over
the SIDs and STARs, pilots request deviations around the hazardous weather
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cells, passing to the left or right as the pilot prefers. The deviation from the
structured routing disrupts the traffic flow organization, thereby deteriorating
the predictability needed for safe oversight by air traffic controllers. For smaller
weather hazards, this results in increased MIT between aircraft along a flow;
such MIT restrictions are imposed by air traffic controllers in order to add
to the “wiggle room” needed between aircraft in the flow and to increase
flexibility in those cases in which hazardous weather constraints become large
enough that portions of the structured routing become unusable, temporarily
closing the air lanes. As a result, each of these circumstances reduces the
traffic flow rate, often back-propagating into other ATM problems elsewhere
in the National Airspace System (NAS).

In this thesis, we consider an alternative approach to transition airspace
routing, based on a flexible routing structure suitable for NextGen. We retain
the basic traffic flow structure organized in terms of an arrival (or departure)
tree, however, we allow the fundamental navaids defining the tree to move
around in space and time in order to adjust the tree structure so that it does
not ever overlap hazardous weather constraints (if possible).

In the modeling of the problem, we consider a key parameter to be the
Required Navigation Performance (RNP) for aircraft on the tree for a given
period of time; the RNP is a distance that specifies how closely an aircraft is
able to follow a specified lane centerline. (Aircraft with small RNP capabil-
ity have better navigational and control equipment, allowing them to follow
a prescribed route much more precisely than an aircraft with a large RNP
performance parameter.) Another parameter in our model specifies the mini-
mum allowed distance between two consecutive merge points along an arrival
path in the merge tree. For control purposes, merge points where two flows
come together must be separated by at least some specified distance; other-
wise, multiple (three or more) flows effectively come together in the vicinity
of a single point.

Advanced datalink communications and Area Navigation (RNAV) capabil-
ities, such as low RNP parameters, are expected to be available in NextGen
and will allow for flexible routing structures to be designed and coordinated
“on the fly” while aircraft are en route. Network Centric Operations (NCO)
will simultaneously communicate the tree structures to pilots, controllers, and
dispatchers in the NAS. With a more flexible transition airspace routing solu-
tion, we expect that MIT restrictions will be reduced or eliminated, routes will
maintain their tree-like structure even in the presence of weather constraints,
and routes will remain open while weather constraints pass through the tran-
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sition airspace. Thus, we expect that such flexible routing structures will be
an enabling feature for uninterrupted Super Dense Operations in the terminal
area, a goal for NextGen.

Related Work In general, the fundamental problem of weather avoidance
routing for individual aircraft has been studied by many researchers. Optimal
path planning algorithms are often based on grid search methods [11, 27, 31,
32, 33]. An alternative problem formulation is in terms of the weighted region
problem, which has been studied in computational geometry and applied to
air traffic routing [31, 35, 41]. A fundamental observation is that the local
optimality criterion for an optimal route is that it obeys Snell’s Law of Re-
fraction as it passes between two neighboring regions of distinct weights (cost
per unit distance). A further enhancement to the model for the ATM environ-
ment specifies a maximum number, k, of turns allowed for a polygonal path
through a weather forecast map [27]; the premise of this model is that realistic
routes should have a small number of turns (waypoints), in order to bound the
workload of the pilot and controller required to track the solution. In general,
these approaches mostly address the routing of a single aircraft rather than
designing routes for multiple flows of aircraft, as addressed in this thesis.

Transition airspace routing essentially requires a systematic way to “dis-
perse” departure traffic away from airport departure fixes or “funnel” arrival
traffic into airport metering fixes. Historically, this has been achieved through
SIDs for departures and STARs for arrivals (as discussed above). For the sake
of discussion in this thesis, we concentrate on the arrival traffic funneling in
to the airport, from an outer range ring into a “metering fix”, which is a point
located close to the airport, on the boundary of what is known as the termi-
nal airspace. (The case of departure trees can be handled analogously, using
the same methods.) The outer range ring, defining the outer boundary of the
transition airspace, is modeled as a circle centered on a point near the airport;
we can consider the circle to be, approximately, at the position where aircraft
make the transition from level en route flight to their descent into the airport.

In the Free Flight approach, each aircraft is routed as it arrives, on its
most favorable route, taking into account the constraints and the flights that
have arrived before it. This can be implemented via a greedy algorithm that
considers flights on a first come first serve basis, as is done in the simulation of
Free Flight in the Flow-Based Route Planner (FBRP) [39, 40] system. FBRP
greedily routes flights by searching space-time for optimal (shortest) routes
for each aircraft in succession. This heuristic approach excels in its simplic-
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ity but the flow patterns that result are unstructured and thus have a high
routing complexity (see [28] for the definition of a suitable “complexity” met-
ric). Another possible approach is to establish disjoint “tubes” in space-time
and then pack aircraft “head to tail” into each tube; the FBRP algorithm
computes such trajectories of aircraft that are clustered into “flows” along a
common route for a certain window of time (the duration of the flow). Usu-
ally the inner range ring becomes the bottleneck for either greedily established
routes or globally planned tubes and this potentially decreases the capacity of
the transition airspace. Our approach explicitly constructs merge trees using
optimization, via a dynamic programming algorithm, and thereby avoids the
bottleneck by planning the placement and connections among merge points of
the arrival tree.
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2 Preliminaries

In this chapter we briefly review some known results on thick paths and max-
imum flows on polygonal domains; see Mitchell [34] and Polishchuk [38] for
complete treatments on these topics.

Continuous Max-flow Min-cut Let Ω be a compact and connected 2-
dimensional domain, consisting of an outer (simple) polygonal boundary Γ
and a set H = {H1, H2, . . . , Hh} of polygonal holes. Let n be the total of
vertices on the boundaries of Ω, including the outer boundary Γ and the inner
boundaries (the holes H). A flow in Ω is a divergence-free vector field σ (div
σ = 0) with support in Ω. Flows enter Ω at Γs and exit at Γt. The value of
any flow σ is the integral of σ across s or t, i.e.,∫

Γs

σ · n ds,

where n is the unit outward normal vector to Γ and s is the natural parameter
of Γ. The objective is to find a convergence-free vector field with the maximum
flow value.

An s− t cut of Ω is the partition of Ω into two sets S and T , P = S ∪ T ,
S∩T = ∅, such that Γs ∈ S,Γt ∈ T . The capacity of the cut is the length of the
boundary between S and T , measured according to the weighted 0/1 metric,
which assigns cost 1 for traveling through P and cost 0 for traveling through its
holes. The minimum cut, or mincut, through P is a cut of minimum capacity.

Strang [49] has proved the continous max-flow/min-cut theorem: the value
of the maximum flow is equal to the capacity of a minimum cut. Mitchell [34]
gave an O(nh+n log n) algorithm to find a maximum flow using a “continuous-
Dijkstra” paradigm.

Another important concept is the critical graph [19, 34] associated with
domain Ω, which is intimately related to the mincut. Let B (resp., T ) be the
portion of Γ counterclockwise between Γs and Γt (resp., between Γt and Γs);
we sometimes refer to B as the “top” and T and the “bottom”. We define a
graph G that has a vertex for every hole in H and one vertex for T and one
vertex for B, i.e, G = (V,E) where V = H ∪ {T,B}. For any two holes Hi
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Figure 1: A critical graph of a polygonal domain with holes. The mincut is
shown in magenta.

and Hj, there is an edge between their corresponding vertices, (i, j), whose
weight is the minimum Euclidean distance between Hi and Hj; there is also
an edge between any Hi and the “top” chain T (resp., B) whose weight is the
minimum Euclidean distance between Hi and T (resp., B). (Essentially, it is
sufficient to connect only those holes between which the shortest segment does
not intersect other holes.) This weighted (combinatorial) graph G is called the
critical graph associated with domain Ω; see Figure 1. Mitchell [34] showed
that G must contain the mincut and in fact the mincut is (represented by) the
shortest path between T and B in G.

A critical graph G can be constructed in O(nh) time by using the linear
time algorithm by Amato [2] to find the minimum distances (separations)
between polygonal holes and between polygonal holes and T or B. The value
of the maximum flow can then be determined by searching for the shortest
T −B path in G.

Discrete Continuous Max-flow Min-cut (Thick Paths) This result is
an extension of the continuous max-flow/min-cut theorem and was studied
in [38]; here “Discrete” refers to the fact that the flowlines are not allowed
to be arbitrarily thin and must decompose into a finite set of thick paths. A
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Figure 2: The maximum number of thick paths that correspond to the length
of the mincut.

w-thick path, or lane of width w, is the Minkowski sum of a usual (“thin”)
source-to-sink path and a disk of radius w/2 centered at the origin (refer to
[36] for more definitions and background). We consider the parameter w to be
fixed and refer to a w-thick path simply as a thick path. Instead of finding a
continuous vector field, the goal here is to compute the maximum number of
pairwise-disjoint thick paths within Ω from Γs to Γt.

The thresholded critical graph [38], Gbc, of domain Ω is defined the same
way as with the critical graph G except that the length of every edge is that
of G divided by w and rounded down to the nearest integer. The discrete
continuous max-flow/min-cut theorem [3, Thm. 2.3] states that the maximum
number of thick non-crossing paths in Ω is equal to the shortest T − B path
length inGbc; an exemplification is shown in Figure 2. Polishchuk [3, Thm. 2.2]
also showed that the maximum number of thick non-crossing paths, together
with a representation of the paths, can be found in O(nh + n log n) time by
simulating wavefront propagation from the top (or the bottom); this algorithm
is sometimes called the “uppermost paths” algorithm as it tries to route paths
one by one as close to the current “top” as possible.

9



3 Approximating Maximum
Flows

This chapter represents joint work with Joondong Kim and Joseph S. B.
Mitchell, used with their permissions, and it originally appeared in a con-
ference proceedings [23]. In this chapter we consider the discrete continuous
max-flow problem described in chapter 2 and use the technique of geometric
spanners to derive an approximation algorithm to compute the value of the
maximum flow that runs in sub-quadratic time.

3.1 Introduction

We consider the problem of routing multiple disjoint “thick” paths through
a polygonal domain in the plane. The problem arises in various application
domains, including VLSI wiring, robotics, sensor networks, and ATM. Our
motivation comes from an ATM application in which the goal is to com-
pute the “capacity” of an airspace: find the maximum number of disjoint “air
lanes” avoiding hazardous weather and other “constraints” (obstacles) within
an airspace of interest (e.g., a “flow-constrained area”) [29, 30]. The goal is to
provide computer-automated decision support tools for the Next Generation
Air Transportation System [50], specifically, to perform “capacity estimation”
on an airspace to determine its maximum throughput, which measures how
constrained the airspace is. We have further applied the capacity estimation
algorithm for automated “flow constrained areas” (FCA) determination [55],
which can then be used to facilitate strategic path planning for flights.

Problem Formulation The input to our problem is a polygonal domain
Ω, consisting of an outer polygon Γ and a set H = {H1, H2, . . . , Hh} of h
holes. Let n denote the total number of vertices of Ω. In this chapter we
focus on the special case in which H consists of a set of point holes ; thus Γ
is a simple polygon with n − h vertices. This is the special case that arises
in our ATM application, since the weather data is typically given as a set of
points (pixels) at which there is hazardous weather predicted, with each point
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having an intensity value representing the severity of weather at that point;
see Figure 3.

Figure 3: One snapshot of weather around West Virginia, with pixels shown
as colored squares.

A w-thick path, or lane of width w, is the Minkowski sum of a usual (“thin”)
source-to-sink path and a disk of radius w/2 centered at the origin. We con-
sider the parameter w to be fixed and refer to a w-thick path simply as a thick
path. Two edges, Γs and Γt, of Γ are designated as the source and the sink ;
flows, or thick paths, enter Ω at Γs and exit at Γt. Our goal is to compute,
approximately, the maximum number of pairwise-disjoint thick paths within
Ω from Γs to Γt.

Geometric Spanners Given a set of n points S = {p1, p2, . . . , pn} in the Eu-
clidean plane, a geometric spanner is a spanning subgraph, G, of the complete
graph on S such that the shortest path distance between any pair of points
pi and pj in G, dG(pi, pj), approximates the Euclidean distance, d(pi, pj), be-
tween the two points. If there exists a real number t > 0 such that for any
pair of points pi and pj, dG(pi, pj) ≤ t · d(pi, pj), we say that G is a t-spanner
for S. The maximum dilation for all pairs of points, maxi,j dG(pi, pj)/d(pi, pj),
is defined as the stretch factor of G with respect to S. It is obvious that, for
a t-spanner, t is an upper bound on its stretch factor.

Analogous to the above definitions on geometric spanners, we can also
define spanner for general weighted graphs, or networks, by replacing the Eu-
clidean metric by the shortest path metric in the original graph, and we refer
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to this type of spanners as graph spanners. It is worth noting that the spanner
results we will prove in Section 3.2 are actually in the sense of graph spanners,
because we are approximating the rounded-down Euclidean metric, although
the techniques we are using to derive the results are for geometric spanners.

It is known that a constant stretch factor geometric spanner exists [12], and
that the Delaunay graph (Delaunay triangulation) on S is one such spanner
with stretch factor known to be between 1.581 (> π/2) [6] and 4π

3
√

3
(≈ 2.42)

[22]. It remains an open problem what is the true stretch factor gap for
Delaunay graph.

It is also known how to construct geometric spanners with stretch factors
arbitrarily close to 1, which we refer to as (1 + ε)-spanners. The Yao graph
in [54] and the θ-graph in [22] are examples of (1 + ε)-spanners. Specifically,
(1 + ε)-spanner is a family, G, of geometric spanners for S such that for any
real number ε > 0 there is a graph Gε ∈ G that is a (1 + ε)-spanner for S, can
be constructed in O(n log n) time and is of size O(n); note that both the time
and size complexity bounds have a hidden constant that depends on 1/ε.

Related Work Algorithms for computing maximum flows and minimum
cuts in the continuum (2D geometric domains) were first studied by Mitchell
[34]. Recent results have examined the problems of minimizing path lengths
for multiple thick paths (minimum-cost flow) [36] and routing thick paths in
dynamic environments (e.g., moving weather systems) [3]. Polishchuk’s thesis
[38] is a good reference for results in thick paths and maximum flows. The
application of max-flow techniques in ATM is addressed, e.g., in [29, 30].

Related to our experiment where we study the stretch factor of Delaunay
graph under the “rounded” Euclidean metric, [17, Sec. 6] studied the average
and maximum stretch factor, among other spanner properties, of several well-
known geometric spanners for random point sets.

Summary of Results Using the propagation algorithm of [34], appropri-
ately modified to handle discrete thick paths (versus continuous flow fields),
our optimization problem can be solved exactly in time O(nh + n log n) (see
[3, Thm. 2.2] ), for a polygonal domain with h polygonal holes, having a
total of n vertices. In this work we propose a simple 1/2-approximation al-
gorithm for the case that Ω is a polygonal domain with point holes. Our
algorithm searches a Euclidean spanner graph for an approximate min-cut, in
time O(n+ h log(nh)). We show that this results in an approximation for the
problem of maximizing the number of disjoint thick paths.
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Experimentally, we use the Delaunay diagram as the Euclidean spanner
and we show that the stretch factor of our search graph constructed using the
Delaunay diagram tends to be bounded by 2 in practice, on both real weather
data and randomly generated data; this suggests that Delaunay diagram could
also be a good candidate for spanner to get 1/2-approximation. We investigate
how the stretch factor changes as the number of points in the random data
increases, and also as the average density of the points changes.

3.2 An Approximation Bound

We consider the thresholded critical graph G of Ω as described in chapter 2,
i.e., G = (V,E) where V = H∪{T,B}, E = {(i, j)|i, j ∈ V, i 6= j}. The weight
of edge (i, j) is c(i, j) = bd(i, j)/wc, where d(i, j) is the minimum Euclidean
distance between the corresponding holes (or between a hole and a “top” chain
T or a “bottom” chain B), and w is the path width. Let GH be the subgraph
of G induced by vertices in H. Finally, we select any geometric (1+ε)-spanner
and let Gε

H denote the subgraph of GH whose edge set consists of the union
of the edges of the spanner and the set of Delaunay edges of H, with edge
weights remain as in G (the rounded-down distance). We will first show that
Gε
H is a 2-spanner for GH in Lemma 3.1. By augmenting Gε

H to a new graph
Gε by adding connections from each point hole Hi to both the top and the
bottom, Gε becomes a 2-spanner for the thresholded critical graph G while
maintaining O(h) in size. We then just need to search for the shortest T −B
path in Gε to get an approximation to the maximum flow value.

Lemma 3.1. For ε ≤ 0.5, Gε
H is a 2-spanner for GH.

Proof. It suffices to show that for any edge (u, v) in GH, there is a path from
u to v in Gε

H of length at most 2 · c(u, v). There are two cases to consider,
Case 1: c(u, v) = bd(u, v)/wc = 0. Since Gε

H includes Delaunay edges,
we know from [7, 12] that there exists a path π1 in Gε

H with vertices u =
v1, v2, . . . , vk = v such that ∀i, d(vi, vi+1) ≤ d(u, v). Since c(u, v) = 0 implies
that d(u, v) < w, we have that ∀i, c(vi, vi+1) = 0, so the path π1 has zero
length in Gε

H and the claimed stretch factor automatically holds.
Case 2: c(u, v) > 0. Since Gε

H contains an Euclidean (1 + ε)-spanner, there
exists a path π2 in Gε

H such that
∑k−1

i=1 d(vi, vi+1) ≤ (1 + ε)d(u, v). Thus, the

13



stretch factor of Gε
H is at most∑k−1

i=1 c(vi, vi+1)

c(u, v)
=

∑k−1
i=1 bd(vi, vi+1)/wc
bd(u, v)/wc

≤ b
∑k−1

i=1 d(vi, vi+1)/wc
bd(u, v)/wc

≤ b(1 + ε)d(u, v)/wc
bd(u, v)/wc .

We show in the following proposition (Proposition 3.2) that if f(x) = b(1+ε)xc
bxc

and ε ≤ 0.5, then f(x) ≤ 2, for x > 0. �

Proposition 3.2. The function f(x) = b(1+ε)xc
bxc , x > 0 is bounded above by 2

when ε ≤ 0.5.

Proof. Note that 1 + ε ≤ 3/2 and that f(x) is a step function whose value
changes only when x = n or x = n

1+ε
, for n ∈ Z+.

When x = n, n ∈ Z+, f(x) ≤ (1+ε)n
n

= 1 + ε ≤ 3/2.

When x = n
1+ε

, n ∈ Z+, f(x) = bnc
bn/(1+ε)c ≤

bnc
b2n/3c . Let g(n) = bnc

b2n/3c . If

n = 3k, g(n) = 3
2
. If n = 3k − 1, g(n) = 3k−1

2k−1
and it achieves its maximum of

2 at k = 1. If n = 3k + 1, g(n) = 3k+1
2k

which also achieves its maximum of 2
at k = 1. Thus f(x) ≤ 2 in this case. �

With the above lemma in place, we are able to derive the following theorem,

Theorem 3.3. The maximum number of disjoint w-thick paths in a polygonal
domain with n vertices and h point holes can be 1

2
-approximated in time O(n+

h log(nh))

Proof. Gε
H is constructed in time O(h log h), the time needed to build the

Delaunay graph or a (1 + ε)-spanner (with ε = 0.5 and O(h) edges) for h
points. We then construct a graph Gε from Gε

H by adding nodes for B and T ,
and linking these nodes to each point of H. In order to compute the distances
from each point of H to the polygonal chains T and B, we spend time O(n)
to construct the Voronoi diagram of T (resp. B) [10] with sites being open
segments and vertices from T (resp. B), and preprocess the Voronoi diagram
into a point location data structure. Since the Voronoi bisectors are algebraic
curves with degrees at most 2, we can partition the Voronoi diagram into a
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monotone subdivision using at most O(n) vertical tangents, and then build
the point location data structure in O(n) time [13], allowing us the compute
the distances from each point of H to B and to T in time O(log n) per point
of H. This augmented graph Gε has O(h) edges and is a 2-spanner for the
critical graph G.

By the continuous max-flow/min-cut theorem [3, 34, 34], we know that the
maximum number, OPT , of thick paths from source to sink is equal to the
length, |πG|, of a shortest path from B to T in G. Since Gε is a 2-spanner for
G, we know that the length, |πGε |, of a shortest B-to-T path in Gε is at most
2|πG|: OPT ≤ |πGε| ≤ 2 ·OPT , i.e., (1/2) ·OPT ≤ (1/2)|πGε| ≤ OPT . Thus,
(1/2)|πGε| is a 1

2
-approximation to the maximum number of source-to-sink

thick paths.
Our algorithm takes time O(h log h) to build Gε

H, O(n+h log n) to build Gε

from Gε
H, and another O(h log h) to search for a shortest path in Gε. Adding

things up, the total running time is O(n+ h log(nh)). �

3.2.1 Using Delaunay Graph

If instead of using a (1+ε)-spanner with ε ≤ 0.5 we use the Delaunay graph as
a 2.42-spanner, the resulting spanner graphs Gε

H and Gε become 4-spanners,
which we denote by GDel

H and GDel, respectively. (In fact, GDel
H is just the

Delaunay graph on H endowed with rounded-down edge weights.)

Corollary 3.4. Using the Delaunay graph as a 2.42-spanner, GDel
H is a 4-

spanner for GH and GDel is a 4-spanner for G.

Proof. Everything follows directly from the proof of Lemma 3.1, only with
ε ≤ 0.5 replaced by 1 + ε = 2.42. Because the function f(x) = b2.42xc

bxc , x > 0

retains its maximum value 4 at x = 4/2.42, GDel
H is a 4-spanner for GH and

thus GDel is a 4-spanner for G. �

We now know that GDel
H ’s stretch factor is bounded by 4, and we also have

the following example, Figure 4, showing that it can be at bad as 2. In this
figure, the Delaunay graph for the eight points is structured as two copies of
the same diamond (rhombus) connected by three parallel chords; the longer
diagonal in the diamond measures

√
3. The shortest path between s and t is

2 in GH by taking the blue dotted path, and it is 4 in GDel
H by going around

the diamonds. This clearly shows the stretch factor of GDel
H in Figure 4 is 2.
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Figure 4: Example showing GDel
H can have stretch factor 2. Bold lines plot the

Delaunay graph and the numbers are the original Euclidean distances. The
shortest path distance between s and t is 2 (blue dotted lines) in GH, and 4
in GDel

H .

3.3 Experiments

We did experiments based on computing a specific spanner, GDel, using the
Delaunay graph of the points H. Theorem 3.3 tells us that if we use a spanner
with stretch factor bounded by 1.5 (ε = 0.5), then our approach gives a 1

2
-

approximation. Since the Delaunay graph is only known to be a 4π
3
√

3
≈ 2.42-

spanner (as of the date of writing), we only have a theoretical guarantee from
Corollary 3.4 that GDel is a 4-spanner and thus the Delaunay-based approach
gives a 1

4
-approximation. However, we will see that, in practice, the Delaunay

performs very well and the stretch factors of GDel for the point samples we
generated is never more than 2.

In our experiments, we use VRONI [20] to compute the Delaunay graph of
the point set H, augment it to a spanner of the thresholded critical graph as
described in Theorem 3.3, compute its shortest T −B path length, calculates
the ratio of it over the actual length of the mincut and record this value as
the stretch factor of our search graph Gdel constructed using Delaunay graph.
(Although this is not the true stretch factor of Gdel as we are ignoring the
stretch factors for other pair of vertices, this is the only stretch factor that
matters to the approximation ratio in Theorem 3.3.) We use a unit square
box as the outer boundary of the polygonal domain Ω, and use two types
of input data for the point holes H: (1) uniformly generated points, and (2)
real weather data, scaled to the unit square. For both sets of input data,
we examine the relationship between the stretch factor as a function of the
“average density” of the point set H. We use the average edge length in the
nearest neighbor graph of H to measure the average density of the points H;
the smaller this average nearest neighbor distance is, the denser the point set
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is.

3.3.1 Random Point Sets

In the experiments with random point sets, we vary the number, h, of points
and the lane width, w.

Figure 5: Average and maximum stretch factor and length of min-cut as a
function of lane width w for random points.

Varying Lane Width For the experiments with varying lane width w, we
fix the number, h = 500, of random points and vary w from 0 to 0.4. As the
total number of points is fixed at 500, the average nearest neighbor distance
is always around 0.0228 for all instances. For each w, we generated 100 ran-
dom instances and compiled simple statistics – the average and the maximum
stretch factor. Figure 5 shows that the average stretch factor is usually very
close to 1. For maximum stretch factor, it tends to go up as the lane width w
increases. Intuitively, when w is much smaller than the average nearest neigh-
bor distance, the rounded-down Euclidean metric behaves more or less like
the original Euclidean metric and stretch factors of Gdel tend to be good; it is
only when w is of comparable scale with the average nearest neighbor distance
that the rounding-down starts to take effect (and it could be more likely that
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there are points of distance slightly less than 2w which gets rounded down to
1 while the approximate path between them in the spanner has two edges of
length slightly bigger than w thus creating a stretch factor of 2 between the
two points).

Figure 6: Average and maximum stretch factor and the average nearest neigh-
bor distance as a function of the number of random points.

Varying the Number of Points For the experiments with varying number
h of points, we fix the width, w = 0.01, and vary h from 0 to 1000 in increments
of 10. For each h, we generated 100 random instances and recorded the average
and maximum stretch factors, and we have also computed the average nearest
neighbor distance for the 100 instances. We plot the average and maximum
stretch factor and the average nearest neighbor distance against the number
of random points in Figure 6. We also plot, for the same data, the average
and maximum stretch factor against the average nearest neighbor distance in
Figure 7.

The results show that both the maximum and the average stretch factor is
close 1 in all cases. Figure 6 shows that the maximum stretch factor goes up
initially as the number of points increases and the average nearest neighbor

18



Figure 7: Average and maximum stretch factor as a function of the average
nearest neighbor distance.

distance decreases accordingly; this is because when the average nearest neigh-
bor distance is much smaller than w, most of the edge weights get rounded
down to 0 and thus the shortest T −B path in both GDel and G are very likely
to be the same. Only when the average nearest neighbor distance becomes
comparable to w does the maximum stretch factor start to increase; and it
stays almost put when the average nearest neighbor distance drops to and
stays close to 0.02. The above observations are further confirmed in Figure 7
when we plot the stretch factors directly against the average nearest neighbor
distance.

3.3.2 Real Weather Data

Table 1 shows the stretch factor data for real weather data. Since real weather
tends to have clusters of weather points (pixels), the average nearest neighbor
distance is much smaller than for random point sets; accordingly, we set the
lane width to be very small, w = 0.005. (For w = 0.05, we found that the
stretch factor is always 1.) The results show that the stretch factor is very
close to 1, even if the average nearest neighbor distance is comparable to w.
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h min-cut avg nearest neighbor distance stretch factor
Set1 576 179 0.0039 1.0056
Set2 502 182 0.0039 1.0110
Set3 430 184 0.0048 1.0163
Set4 752 177 0.0038 1.0113
Set5 820 180 0.0028 1.0000

Table 1: Results for real weather data with w = 0.005. Here h is the number
of point obstacles.

3.4 Conclusion

Our goal has been to explore the use of spanners in computing approximations
for maximizing the number of pairwise disjoint thick paths that can be routed
through a polygonal domain in the plane. The advantage of using a spanner
(e.g., Delaunay graph) for computing minimum cut values approximately is
that it gives a linear space and near-linear time simple algorithm in place of
the far more complex exact O(nh + n log n)) algorithm, or the naive O(n2)
algorithm that is easiest to implement. We have seen experimentally that the
Delaunay graph does very well in most cases; thus, the Delaunay-based approx-
imation is likely an effective and practical means of doing capacity estimation
for ATM.

The exact min-cut problem is a shortest path problem in the plane that
may be solvable in O(n log n) exactly, e.g., by a variant of the continuous
Dijkstra paradigm that solves obstacle-avoiding shortest paths in O(n log n)
time. Also, we are examining possible improved approximations possible using
spanner techniques, and we are now developing algorithms to produce a set
of disjoint thick paths that achieve the capacity determined by our approxi-
mation algorithms. Finally, we are doing further experimentation with other
Euclidean spanner graphs, with stretch factors approaching 1.

20



4 Thick Paths with Different
Widths

This chapter represents joint work with Joondong Kim, Joseph S. B. Mitchell,
Valentin Polishchuk, and Shang Yang, used with their permissions, and it
originally appeared in part in a technical report [24]. In this chapter we con-
sider a variant of the discrete continuous max-flow problem, or the thick paths
problem, in which thick paths can be of different widths. Specifically, for a
given polygonal domain Ω with a set of holes H = {H1, H2, . . . , Hh} and K
different path widths (or lane widths), w1, w2, . . . , wK , we want to determine
if it is possible to route, for each k, Nk width-wk paths from source to sink
such that each path avoids the holes H and that no two paths overlap. We
show that this problem is NP-hard, even when there are only two distinct path
widths, w1 = 2 and w2 = 3. We also give a Dijkstra-type algorithm to solve
the problem in polynomial time when a “width sequence” along the source is
given.

4.1 Introduction

Motivation The problem we are considering here arises from the need to
do capacity estimation for aircraft of different performance capabilities and
thus with different Required Navigation Performances (RNPs). In our model,
RNP and required lateral separation distance, δ, together determine the lane
width; a RNP-n lane corresponds to a lane width of 4n+ δ where δ is usually
a constant. An aircraft can utilize an air lane only if its RNP is at or below
the RNP associated with that lane; an aircraft of low performance capability,
meaning large RNP, is not permitted on an air lane of small lane width. Good
capacity estimation and route planning algorithms must take the difference in
RNPs into account by possibly fitting aircraft of small RNPs into smaller gaps
in the airspace, which would not be pass-able by aircraft of large RNPs. See
Figure 8.
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Figure 8: Within a quadrant, some width permutation sequences yield capacity
for all widths values, some do not.

Related Work While we know of no prior results on the multi-class geo-
metric flow routing problem studied here, multicommodity flows in discrete
networks have been a subject of extensive research [9]. There is also an abun-
dance of related work on computing multiple (single-class) paths and flows in
geometric domains. A classification of existing approaches to multiple paths
planning is given by van den Berg and Overmars in [51]. In prioritized plan-
ning the paths are found one-by-one; all routed paths are declared as ob-
stacles for a new path. The algorithms that do not use prioritized planning
range from centralized to roadmap-based to decoupled (see [51] for details). A
polynomial-time algorithm for finding a maximum number of thick paths (of
the same width) in a polygonal domain is presented in [3].

Problem Formulation The input to our problem is a polygonal domain Ω
consisting of an outer polygonal boundary and a set of holesH = {H1, . . . , Hh}.
A w-thick path is the Minkowski sum of a usual (thin) source-sink path and
disk of radius w/2 centered at the origin. The paths sought are of one of
K widths, w1, . . . , wK . Our goal is to determine, given a set of numbers
N1, N2, . . . , NK , if it is possible to route Nk width-wk paths from source to
sink, so that each path avoids the holes H and that no two paths overlap.

The source and sink edges split the boundary of the outer polygon of
the domain into two parts — the “top” T and the “bottom” B. We will

22



assume that in any collection of paths, the paths are numbered in the order
as they are encountered when going along the source or sink from T to B. Let
τ = (w1, . . . , wM), wm ∈ {1, . . . , K} be a sequence of path widths. We say
that τ is the width sequence of a collection of M paths if the m-th path in the
collection is of width wm.

4.2 Hardness Result

For the mixed-width paths problem, we consider the special case that K = 2.
Specifically, we consider only two kinds of widths, 2 and 3, and the decision
question is whether there exist c2 2-thick paths and c3 3-thick paths. We will
prove that the problem is NP-hard in the following theorem:

Theorem 4.1. Given two numbers w1 and w2 and two integers cw1 and cw2,
it is NP-hard to decide whether it is possible to route cw1 w1-thick paths and
cw2 w2-thick paths.

The proof idea is based on the hardness proof idea used in [24] . We reduce
from the INDEPENDENT SET. Let G be a graph with n vertices and m edges.
In the independent set problem, the question is: Given an integer k, do there
exist k vertices of G no two of which are connected by an edge? Starting from
G, we construct an instance of the mixed-width paths problem as follows.

For each vertex of G we create a vertex gadget (Fig. 9(a)). We stack
the n vertex gadgets one on top of another, forming the vertex part of the
construction (Fig. 9(b), left part).

For each edge of G we create an edge gadget. To build the gadget, we
first create an 6n-by-6n square with top and bottom sides being obstacles
(Fig. 9(b), right part). If edge e is incident to a vertex i, we put a pair of point
obstacles (a “gate”) with distance 2 apart (thus allowing 2-thick path to pass
but blocking 3-thick path) along the right side of the square. Finally, the top
and the bottom boundary of each edge gadget are shifted by 2 from both up
and down (Fig. 9(c)).

We finish the whole construction by putting the vertex part of the m edge
gadgets side by side from left to right; we align the center of the “gate” with
the center of the corresponding vertex gadget (Figure 9(c)). We claim that
there exists an independent set of size k in G if and only if 3(n−k) 2-thick and
2k 3-thick paths can be routed all the way from the left of the construction to
the right.
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(a) Top: The
vertex gadget is
a 6-by-6 square
with top and
bottom sides
being obstacles.
Middle and bot-
tom: if the paths,
going through
the gadget are of
the same width,
they are either
(at most) three
2-thick path or
(at most) two
3-thick paths.
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(b) n vertex gadgets
stacked, with an edge
gadget connected to it
from right. Each edge
gadget is built from an
6n-by-6n square with
top and bottom sides
being obstacles.
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(c) In the gadget for an
edge (i, j), we put a pair
of point obstacles with dis-
tance 2 apart in front of
both vertex gadget i and j;
also the top and the bot-
tom sides of each edge gad-
get are shifted by 2 up and
down.

Figure 9: Vertex and edge gadgets for the mixed-width paths problem
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Figure 10: This example shows the construction for the graph on the left. The
edge gadgets are not to scale. If there exists an independent set of size k in
graph G, then we can route 3(n− k) 2-thick and 2k 3-thick paths.

Lemma 4.2. If, for an arbitrary k, there exists 3(n− k) 2-thick paths and 2k
3-thick paths, then no vertex gadget has both 2-thick and 3-thick paths going
through.

Proof. Trivial from the construction of the gadgets; see Figure 9. �

Now suppose that G has an independent set of size k. We route two 3-
thick paths through each of the vertex gadgets corresponding to vertices in the
independent set. Route three 2-thick paths through each of the other vertex
gadgets. We claim these paths may pass through all edge gadgets. Consider
one edge gadget. If the gadget does not contain any “gate”, the paths could
pass through in the same as they come out from the vertex gadgets. If the
gadget does contain a pair of “gates” corresponding to an edge (b, d) (refer to
Fig. 10), at most one of the b, d vertex gadgets has two 3-thick paths going
through it. WLOG, assume that vertex gadget b is above gadget d, and only
gadget b is filled with two 3-thick paths. Since no “gate” can accommodate
3-thick path, we split the two 3-thick paths and route them above and below,
“gate” b, respectively. The one above is shifted up by 1, causing all paths above
it shifted by 1. The one below is shifted down by 1, causing paths below it but
above those from vertex gadget d shifted down by 1 (refer to Fig. 10). For the
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Figure 11: If there does not exist an independent set of size k in graph G,
then we can not find 3(n− k) 2-thick and 2k 3-thick paths.

three 2-thick paths from gadget d, the top one can no longer be routed above
“gate” d because there is only a height 1 channel there because of the shift.
It has to go through “gate” d, and subsequently all paths below it are shifted
down by 2. But because of the extra space of height 2 on both the top and
the bottom of this edge gadget, the shifted paths can all be accommodated.

Then we suppose that there exist 3(n−k) 2-thick and 2k 3-thick paths. By
Lemma 4.2, there are n−k gadgets filled with 2-thick paths and k gadgets filled
with 3-thick paths. Suppose that two gadgets, corresponding to endpoints of
an edge (b, d) are both filled with two 3-thick paths (refer to Fig. 11). We
claim that the 3(n − k) 2-thick and 2k 3-thick paths would not fit into the
edge gadget (b, d). The two 3-thick paths from gadget b cannot be both routed
above “gate” i because that would cause a up-shift of 4 of all paths above which
is beyond the extra space of height 2 on the top. Thus one of them can be
routed above and the other has to be routed below the “gate” which causes a
down-shift of 1 towards “gate” d. Neither of the two 3-thick paths from gadget
d can be routed above “gate” d because the previous down-shift. And they
can not both be routed below as well that would cause another down-shift of
4 (refer to Fig. 11). This shows for any two vertex gadgets b, d corresponding
to an edge, at most one of them can be filled with two 3-thick paths and thus
all the vertex gadgets that batches of two 3-thick paths go through correspond
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to an independent set of G of size k. This establishes Theorem 4.1.

4.3 Given Width Sequence

Theorem 4.1 shows that the problem does not admit any polynomial time
algorithm unless P=NP. However, if a width sequence τ is given, we can ap-
ply a variant of the “uppermost paths” algorithm, which we will describe in
the next paragraph, used by Mitchell [34] and Polishchuk [38] to solve it op-
timally. When the number of path widths, K, and the Ni’s are small, it is
readily tractable to apply our methods to (possibly) every ordering and thereby
determine exactly the solution to our problem.

Suppose that we are given a width sequence τ = (w1, w2, . . . , wM). Up-
permost paths are thick paths routed “as close as possible” to the top T .
Specifically, imagine that the free space of Ω is grass, over which fire travels
at speed 1. Image also that the holes in Ω are composed of highly flammable
material so that as soon as the fire reaches a hole, the entire hole is ignited
instantaneously. We ignite T at time 0, and let Ω′ be the part of the domain
burnt by time w1. The first uppermost path is a w1-thick path routed within
Ω′ (refer to [38, Thm. 6.19], where the details of simulating the fire — handling
events, attaching Riemann flaps, etc. — are given). The second uppermost
path is the thick path routed iteratively by treating the lower boundary of
the already routed w1-thick path as the new T ; the other uppermost paths
are defined recursively in a similar manner. In [38] it was shown how to find
the uppermost path in polynomial time by simulating wave (fire) propagation
from T .

Note that the number of paths that exist in a domain may be exponential
in the input size; e.g., there may exist Ω(M) width-1 paths in a 2 ×M rect-
angle, specified with O(logM) bits. By the Continuous Flow Decomposition
Theorem [36], thick paths can be encoded succinctly by representing a “bun-
dle” of paths of total thickness W by one W -thick path. Our positive results
should be understood in the sense that the paths can be found in pseudopoly-
nomial time, or that the representations of the paths can be found in strongly
polynomial time.

The correctness of the above uppermost path algorithm is guaranteed by
the following proposition:

Theorem 4.3. If there exist a collection of thick paths in the domain Ω with
width sequence τ , then there exist a collection of τ -uppermost paths. (A rep-
resentation of) the τ -uppermost can be found in time polynomial in Ω, by
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propagating a wave from the top of the outer boundary polygon of Ω.

Proof. This proof is identical to [38, Thm. 6.19]. Let (Π1,Π2, . . . ,ΠM) be a
sequence of paths in Ω with width sequence τ = (w1, w2, . . . , wM), i.e., each
Πi is a wi-thick path. Start the fire propagation from T . Let Ω′ be the part
of Ω burnt by time w1. Clearly Π2 does not intersect Ω′ because otherwise Π1

would not fit within Ω′. So we route a uppermost w1-thick path within Ω′, and
there exist a sequence of paths (Π2, . . . ,ΠM) with width sequence (w2, . . . , wM)
within domain Ω \ Ω′. The proof follows by induction on the total number of
the thick paths. �

We also have a “query” version of Theorem 4.3. In contrast with Theo-
rem 4.3, the algorithm for Theorem 4.4 does not produce the paths; it just
tests whether the routing is possible.

Theorem 4.4. Given a type sequence τ , a graph can be built in time O(nh)
such that , it can be tested in O(M + h2 logM) time whether it is possible to
route the M paths with type sequence τ , by solving a variation of the shortest
path problem in the graph.

Proof. The critical graph of the domain [19, 34, 3] has a vertex for each hole,
for T , and for B; the length of an edge between two vertices is equal to the
Euclidean distance between the corresponding holes (Fig. 12). The graph can
be built in O(nh) time by using the linear time algorithm in [2] to compute
the Euclidean distance between every pair of holes. The length of a shortest
T -B path in the graph is equal to the value of the maximum flow [34]. In
the “thresholded” version of the graph the length of each edge is thresholded
down to the nearest integer; the length of a shortest T -B path in the graph
is equal to the maximum number of width-1 paths that can be routed though
P . See [19, 34, 3] for details.

We use a Dijkstra-like algorithm to find a “shortest” T -B path in the
critical graph, “conforming” to the sequence τ . We label the vertices of the
graph by positions in τ . We keep the following invariant: The label `(v)
assigned to a vertex v is the largest index such that the paths 1, . . . , `(v) can
be routed between T and the hole corresponding to v.

We start with assigning labels `(T ) = 0 and `(·) = ∞ for the other ver-
tices. Next, we propagate the labels, Dijkstra-style from the vertex v with
the smallest label. For each edge (v, u) out of v, we see how far along τ it is
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possible to go by that edge, and update the label of u:

`(u) ← min

 `(u) , arg max
m

m∑
i=`(v)+1

wti ≤ d(u, v)


where d(u, v) is the length of the edge (u, v) in the critical graph, and wti is the
width of the path of type ti. The propagation along an edge takes O(logM)
time, after storing an array of τ ’s partial sums.
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Figure 12: The edges of the critical graph are dashed. The numbers are labels
of holes, corresponding to a sequence of widths τ = (3, 2, 1, 1). For another
sequence, say, τ ′ = (3, 2, 4), the label of B would have been 2 since there would
not be room for the third path.

Just like in Dijkstra’s algorithm, the induction on the label shows that the
invariant holds after each step of the algorithm. In particular, the final label
of B is the length of the longest subsequence of τ (starting from t1) that can
be routed through the domain.

Similar to the run-time analysis of Dijkstra’s algorithm (using Fibonacci
heap), our algorithm stated above takes time O(M) to compute the partial
sums of τ , O(h2 logM) to relax all the edges in the critical graph and O(h log h)
time to find the smallest labels in all rounds; these together sum up to O(M +
h2 logM).

�
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4.4 Conclusion

We considered the problem of routing paths of multiple widths in a polygonal
domain, which is motivated by capacity estimation for aircraft with different
RNPs. The very basic decision version of the problem turns out to be NP-hard.
We presented efficient algorithms for the special case when a width sequence
is given.

We have left open the problem whether constant factor approximation
exists for optimization versions of our problem, e.g., finding the maximum
number of width-w1 thick paths while guaranteeing at least N width-w2 paths.
For our hardness result on the two widths, we were not able to show hardness
in the case when the width of the thinner path divides perfectly the width of
the thicker ones; say, if w1 = 1, w2 = 2. For our Dijkstra-like algorithm to
test the feasibility of a given type sequence, we are also investigating if we can
construct the paths in the same framework (without invoking the “uppermost
path” algorithm).
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5 Directional Capacity
Estimation

This chapter represents joint work with Joondong Kim, Joseph W. Krozel,
Jimmy Krozel, and Joseph S. B. Mitchell, used with their permissions, and
it originally appeared in a conference proceedings [55]. In this chapter we
study two methods of computing directional capacity for en route airspaces
with hazardous weather constraints. Within a constant flight level, we analyze
the dominant demand direction and then study two methods of measuring the
directional capacity of the airspace. The first method, a grid-based method,
considers eight fundamental directions for directional capacity, according to
the standard directions of travel. The second method considers an arbitrary
direction of flow and determines the directional capacity in that particular
flow direction. We compare the directional demand to the available capacity
in that direction to determine if demand exceeds capacity in that particular
direction. Further, we describe how to use directional capacity analysis to
derive capacity reduction maps that can be applied to Flow Constrained Areas
(FCA) determination and other ATM applications.

5.1 Introduction

Estimating the capacity of an airspace is fundamental to ATM. If the demand
for an airspace exceeds the capacity, then a TFM strategy must be imple-
mented. Demand for an airspace is determined by the number and type of
aircraft that desire to fly through the airspace during a given period of time.
However, the demand may arrive at and pass through an airspace in a va-
riety of directions; thus, we quantify in this work the dominant direction of
travel for the demand — essentially, the direction for which the majority of
aircraft in a flow are traveling. The capacity of an airspace is loosely defined
as the maximum number of aircraft per unit time that can be safely accommo-
dated by the airspace given controller and pilot workload constraints as well
as airspace constraints. The primary concern of this chapter is the effect of
convective weather constraints on directional airspace capacity, with capacity
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determined by the geometric constraints induced by hazardous weather (rather
than by controller workload constraints).

The weather has a huge influence on the performance of the NAS. The
number of weather-related delays in the NAS is (approximately) twice the
number of non-weather delays [26, 25]. The Aviation Capacity Enhancement
Plan [16] lists weather as the leading cause (65% to 75%) of delays greater than
15 minutes, with terminal volume as the second leading cause (12% to 22% of
delays). Thunderstorms account for approximately 50% of the weather-related
delays, low visibility 35%, and heavy fog the remainder [15]. Because weather
is such a major factor limiting capacity, we focus on the relationship between
capacity, direction of demand, and weather severity.

The operational conditions considered in this work are motivated by the
NextGen [21]. We consider the estimation of capacity in a future ATM sys-
tem where aircraft are not required to follow jet routes. Rather, we consider
operational rules for en route airspace where traffic finds routes through the
gaps in weather constraints as we have previously described in the literature
[28]. As described in chapter 1, the capacity of an airspace is defined as the
maximum number of non-interfering air lanes that can be safely packed amidst
constraints.

5.2 Motivation

From previous research [28], we have determined that airspace capacity is
dependent on the ATM flow structure, which may specify that flow is in a
particular direction, e.g., East to West, or that it is in all directions, e.g.,
in Free Flight [42]. Directional capacity is derived using a geometric and
continuous version analogous to the standard max-flow/min-cut theory from
network analysis [1]. As described in chapter 2, the (discrete) continuous max-
flow/min-cut theorem states that the maximum number of pairwise-disjoint
thick paths is equal to the shortest T−B path length in the thresholded critical
graph of the domain, and we refer to this T − B shortest path as the mincut
of the domain.

The mincut can be applied to different ATM flow structures [28] as shown
in Figure 13. If the flow is unidirectional, for instance, from West to East,
then the mincut is determined by allowing the source to be line segment AD
and the sink to be line segment BC. If the flow is monotonic to the East,
then the mincut is applied from point A to point D. If the mincut is applied
to a Free Flight traffic flow, in which aircraft may fly in any direction, then
the maximum flow computation involves computing mincuts for various com-
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binations of sources and sinks defined by pairs of corners A,B,C, and D [28].
Each one of these mincut computations returns the theoretical bottleneck to
the flow (the mincut) under the different ATM flow structures (uniform flow,
monotonic flow, or Free Flight) [28].

(a) East-West Flow (b) Monotonic to East

(c) Free Flight (All Directions)

Figure 13: The mincut algorithm determines the maximum permeability of an
airspace under three different ATM flow structures. The boundary segments
and inner polygons colored in red are obstacles.

Capacity is a function of the direction of travel of the flow; this is easy to
see based on analyzing a squall line convective weather system, as illustrated
in Figure 14. In this example, the mincut for a flow from West to East is
compared to a mincut from North-South, each case with the same required
air lane width. The mincut reveals that two lanes of traffic are the maximum
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that can pass from West to East, but five lanes of traffic is the maximum
that can pass from North to South. Thus, the directional capacity (sometimes
referred to as the directional permeability) of the airspace is maximized if the
flow is allowed to pass from North to South, or from South to North (or some
combination of both). From this we see that it is important to study the
directional permeability, and to compare it to the direction of the dominant
flow as determined by the demand profile for a given period of time that
corresponds to the forecast time. If the dominant flow in this example were
from East to West, then even though greater capacity may be achieve by a
North to South flow, this may not service the demand.

(a) West-East Flow (Maximum of 2
air lanes)

(b) North-South Flow (Maximum of 5 air lanes)

Figure 14: The permeability of a squall line with respect to two directions of
flow.

5.3 Approach

There are two aspects to this problem that we pursue:

• Direction of Dominant Demand

• Directional Permeability

Next, we describe our approach to each of these.
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5.3.1 Direction of Dominant Demand

We consider two types of demand: filed flight plans for todays NAS (e.g., based
on Enhanced Traffic Management System (ETMS) data), and 4D Trajectories
(4DTs) for the NextGen. In either case, the dominant demand transforms the
trajectory data into a set of waypoints, with time stamps at each waypoint, and
projects those data points onto the boundary of the directional capacity kernel
(square and circular kernels, as described in the next section). The intent of
this analysis is to characterize the magnitude and direction of demand. We
are particularly interested in understanding how aircraft approach a capacity-
constrained airspace, since, as we presented above, the capacity of an airspace
depends on the dominant approach direction. We refer to this as demand-
driven capacity.

The reference direction d (a unit vector) is established over a look-ahead
time period consistent with the look-ahead weather forecast time period used
in the directional permeability analysis (described later). We look at a look-
ahead time Tforecast to Tforecast + ∆T . For now, we simply say that d will
be defined by one of 8 standard directions, North (N), East (E), South (S),
West (W), NE, NW, SE, and SW. Examples are given below for several cases
of the dominant direction of flow. Later, these flow directions are compared
to the directional permeability. When comparing the directional demand to
the directional capacity; we quantify the total directional demand in a given
direction from the equation:

D =
1

N

N∑
i=0

max(0, di · d)

for N trajectories passing through the airspace, with di representing the unit
tangent direction of travel for the ith trajectory, and d representing the unit
vector airspace reference direction. In this definition, the max( ) function
ensures that only positive components are incorporated. The negative com-
ponents from each flight translate into positive demand contributions in some
other direction, so a full accounting is made without the implied redundancy.
The metric applies to traffic crossing an arbitrary polygon boundary defined
at a flight level, as illustrated in Figure 15.

We quantify the directional demand primarily on square and circular ker-
nels (described later); however, the metric applies to any polygon boundary
(e.g., sectors). The directional demand will be compared to the directional ca-
pacity, so both are evaluated for the same time period of interest from Tforecast

to Tforecast + ∆T .
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Figure 15: A dominant flow direction defined by filed flight plans and a polygon
boundary.

A variant of the above dataset can be generated for the NAS using cur-
rent time data, and making near-time projections based upon the position and
velocity of each flight. Hence, if flight plans change because of weather con-
ditions, tracking continues with updated data. In our effort, we do not build
a trajectory prediction algorithm to estimate the aircraft that are expected
to fly into a given square kernel, circular kernel, sector, or center boundary;
rather, we assume some other algorithm or system will provide us these data.

Several examples (Figure 16 through Figure 18) of the dominant demand
function demonstrate how in NextGen, traffic flows may result in dominant
flow directions. If there is no dominant flow, for instance in the case of Free
Flight from all directions of travel, then the dominant demand is low, as illus-
trated in Figure 17. If weather forces traffic to flow in a particular direction,
as illustrated in Figure 18, then the dominant demand will be maximized at
that particular direction.

Note that we also quantify the net demand, which is simply the dominant
direction parameter multiplied by the total number of flights N . In ATM
applications, strategies will be developed for distributing this demand into
other directions when certain other directions have already reached capacity.
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Figure 16: A dominant southern flow direction defined by filed flight plans
and a square boundary.

Figure 17: A weak uniform dominant demand defined by filed flight plans and
a square boundary.
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Figure 18: Two dominant flow directions defined by filed flight plans and a
square boundary.

5.3.2 Two Methods for Directional Permeability

There are two types of kernels that we investigated:

• Square Kernels

• Circular Kernels

First, we discuss square kernels, then circular kernels. In general, further
application of the mincut applied to other boundaries (e.g., sector boundaries)
is found in the literature [28, 37, 45, 46, 47]. An ATM application also may
be applied to ensemble forecasts in the form of the square kernel [48].

The square kernels are as follows. These mincut filters are either bounded
by points (red circles) or impenetrable walls (red line segments) which artifi-
cially constrain the flow (arrows) across the grid as shown in Figure 19. The
directions of the filters are along eight fundamental directions of travel: N, S,
E, W, NW, NE, SW, SE, and all directions (we call this Free Flight) [28].

The computation of the mincut and mincut properties for assessing through-
put within the kernel are as follows. In Figure 20, the mincut is from a North-
ern bounding surface to a Southern bounding surface as shown. This figure
shows some of the segments (dashed blue) used in constructing that mincut;
these segments are a part of the critical graph, and the mincut is a particular
part of the critical graph that connects the boundary conditions. Note that
all lines connecting either the upper or lower surface are perpendicular to that
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Figure 19: A set of 9 grid-based mincut filters.

boundary condition (the shortest distance between the boundary condition
and the weather hazard). Also note how only the red polygons are relevant
as they represent weather that exceeds some threshold value (which the green
polygons do not). Numbers labeled on the mincut (colored in blue) indicate
the total number of lanes of traffic that can pass through the mincut, assuming
that each lane of traffic has a RNP requirement that is specified as an input
to the algorithm.

Figure 20: The mincut identifies the bottleneck to the flow, and is constructed
by searching for the critical graph (dashed blue lines) and identifying the
minimum distance path from one boundary condition to the other boundary
condition.
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Figure 21: The mincut identifies the bottleneck to the flow using a circular
boundary condition for the kernel.

A second mathematical model that we are investigating is based on a cir-
cular kernel. In this model, the key parameters are the radius R of the circular
filter and the orientation θ. The mincut properties for assessing throughput
are as follows. In Figure 21, the mincut (blue) is from a top bounding point
(red circle) to a bottom bounding point (red circle). The line from the top
point to bottom point is at any arbitrary angle θ. For a point p, the directional
capacity in the flow direction Θ (flow direction Θ is orthogonal to the filter
direction of θ) is given by computing the discrete mincut (number of air lanes)
between the goal posts positioned at distance R from p with orientation θ.
The dashed blue segments used in constructing that mincut are the critical
graph, and the mincut is a particular part of the critical graph that connects
the boundary conditions. Numbers labeled on the mincut indicate the total
number of lanes of traffic that can pass through the mincut, assuming that
each lane of traffic has a RNP requirement. The circular kernel is applied at
each of several discrete choices of direction θ, for any specified radius R. This
yields a directional capacity, capacity(p,R, θ), which can be computed for each
point p of the domain of interest.

Finally, whether a square kernel is used or a circular kernel, there is the
issue of the size of the kernel (length of a square kernel side L or radius R of
the circular kernel) and the step size of how you analyze weather constraints in
the latitude and longitude (or any other) direction. We studied two extremes:

• Pixel-by-Pixel step sizes here the center of the kernel (square or circular)
is applied pixel-by-pixel; that is, the ∆x and ∆y step size for locating
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where the kernel center is applied is the same size as a pixel of weather
data independent of the kernel size (radius R or square side length L);
or

• Kernel-by-Kernel step sizes here the center of the kernel (square or
circular) is applied such that each kernel is adjacent to the previous
kernel; that is, the ∆x and ∆y step size for locating where the kernel
center is applied is the radius R or square side length L of the kernel.

The modeling of small Pixel-by-Pixel step sizes vs large Kernel-by-Kernel
step sizes is depicted in Figure 22.

∆x(pixel)

L

(a) Small step size relative to
kernel size L

L

∆x = L

(b) Step size is same as kernel size L

Figure 22: Small Pixel-by-Pixel vs large Kernel-by-Kernel step size increments
(square side length L).

5.4 Examples

In this section, we present a series of examples to demonstrate the concepts of
directional capacity.

5.4.1 Mincut Capacity vs Dominant Demand Direction

In Figure 23 and Figure 24, a slow-moving squall line is considered. North-
South flow is virtually undeflected because the weather is so slow relative to
the flow velocity. The mincut for the hazardous weather is shown on the left.
The flow from an algorithmic solution to the route planning problem is shown
on the right. In Figure 23, one flight takes advantage of the slight weather
movement with a zigzag designed to consume time while an additional lane of
traffic opens. This mincut applies for a single instance in time, so the number
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of flight paths passing through the weather may not equal the number shown
in these figures.

(a) A mincut of 15, shown in solid blue (b) Weather-avoidance routes

Figure 23: The mincut throughput for North-South flow and an algorithmic
approximation to a set of routes that approach the mincut capacity.

In Figure 24, the same slow-moving squall line is analyzed with a kernel
that measures the capacity for East-West flow. East-West flow allows just
three paths to pass through the weather. Again, this is a dynamic situation,
and even though the instantaneous mincut on the left indicates two breaks in
the squall line at the south, these gaps close up and do not allow continuous
flow to pass through. Analyzing the mincut over a given period of time is
needed to establish the capacity, not just the mincut at a given time, since the
weather hazard is continuously changing is shape and size.

The point of this simple squall line example is to demonstrate the fact
that a squall line can have a significant difference in throughput in the two
fundamental directions: in line with the squall line vs orthogonal to the squall
line. This is not surprising, and is clearly what is indicated by the mincut
result and the flow planning algorithm.

5.4.2 Square Kernel Examples

In Figure 25 we process convective weather data using several different di-
rectional permeability kernels for different directions and for different kernel
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(a) A mincut of 5, shown in solid blue (b) Weather-avoidance routes

Figure 24: The mincut throughput for East-West flow and an algorithmic
approximation to a set of routes that approach the mincut capacity.

size, using the same weather data for all filters. Figure 26 through Figure 27
demonstrate the results.

In Figure 26 we note that the directional permeability results are quite
different in comparing the mincut throughput for each direction. However,
we need to note that in order to compare these results to one another, the
results for East-West and North-South flow are comparable, and the results
for diagonal flows are comparable, but we must divide the results for diagonal
flows by

√
2 in order to compare diagonal flows to East-West and North-South

flows. It is thus useful instead to represent results in terms of reduced capacity
relative to the clear weather capacity in the particular direction of interest.

5.4.3 Circular Kernel Example

Our results demonstrate how the mincut throughput for a specific center point
p is a function of the angle of the circular kernel flow direction. In contrast to
the grid-based kernel, where there were eight fundamental directions for the
kernel, in the circular kernel, we can run the kernel for any angle Θ of flow.

In this example based on real weather data, we demonstrate the results for
a constant RNP-2 and kernel radius 150 nmi, with the direction of flow varying
in 1◦ increments from Θ = 0◦ to Θ = 180◦ (angles are defined according to
the Polar coordinate system, where 0◦ direction is to the East, 90◦ is to the
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Figure 25: Convective weather data used for analysis (6/28/05, 13:00Zulu).
Convective Weather is thresholded at NWS Level 3 or above to identify
weather hazards.

North, 180◦ is to the West, etc). For any angle of flow direction Θ, we place
two boundary conditions (the red disks in Figure 28) as obstacles at two ends
of the Θ + 90◦ diameter of the circular kernel. We demonstrate in Figure 28
that if the direction of flow of traffic is to pass across these weather hazards,
how the mincut and the capacity (expressed in terms of the total number of air
lanes that can cross between the boundary conditions) change as we vary the
direction of flow Θ; we only show angles at which there is major “structural
change” (defined as change in the topology of the mincut in the critical graph
except for the two edges adjacent to the two boundary conditions) in the
mincut and refer to those angles as the critical angles.

We plot our directional capacity data as a function of the angle of flow
direction in 1◦ increments, as illustrated in Figure 29. The directional capacity
plot exhibits a bimodal pattern, suggesting that the flow direction is favored at
Θ = 162◦ and Θ = 15◦, both approximately aligned with West-East direction;
the directional capacity is minimized at Θ = 107◦, suggesting that North-
South flow direction has substantial capacity reduction and should be avoided
if possible. This set of scenarios and the resulting directional capacity as a
function of dominant flow demand indicates a need for a capacity analysis
capability for NextGen that considers directional capacity.

These results indicate that there may be an application for the circular
kernel in determining a gate for traffic passing through a weather constrained
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(a) 5 Air Lanes Throughput (b) 12 Air Lanes Throughput

(c) 20 Air Lanes Throughput (d) 24 Air Lanes Throughput

Figure 26: Mincut results as a function of flow direction (6/28/05). 240 nmi
Grid; Minimum Gap Size of 10 nmi Required.
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(a) (b)

(c) (d)

Figure 27: Mincut results as a function of flow direction with large kernel size
(6/28/05). 120 nmi Grid; Minimum Gap Size of 10 nmi Required.
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(a) Θ = 44◦, Capacity 14 air lanes (b) Θ = 80◦, Capacity 10 air lanes

(c) Θ = 159◦, Capacity 17 air lanes (d) Θ = 166◦, Capacity 16 air lanes

Figure 28: The mincut and the capacity are plotted at critical angles. Flow
directions are perpendicular to the diameter connecting the two goal posts.
Convective weather is thresholded at NWS level 3 or above (colored as yellow
or more severe) to identify weather hazards.
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Figure 29: The directional permeability is a function of the flow direction.

region. In many cases today, a Flow Evaluation Area (FEA) is placed along
center or sector borders, and it is possible to place the two boundary conditions
of the circular filter (the red points) at points at the two extremes of an FEA.
The mincut then estimates the capacity for flow crossing between the two
points, allowing controllers to use this technique as a quick measure of capacity
reduction. If the capacity reduction is substantial, this is indicative of the need
for a TFM strategy.

5.5 ATM Applications

Capacity Reduction Maps The results from the eight fundamental direc-
tions of flow from the grid-based kernel or from the angular flow directions of
the circular kernel can be used to define a capacity reduction map. Capacity
reduction maps are relevant with respect to all forms of weather hazards, in-
cluding convection, turbulence, and icing. Capacity reduction maps may be
used to inform Air Traffic Service Provider (ATSP) or airline users of poten-
tial areas to be avoided in strategic planning of flights (used for informational
purposes), or they may be used to set up the analytic determination of TFM
plans, for instance, where to locate Flow Constrained Areas (FCA).

A capacity reduction map, for instance as shown in Figure 30, gives for
each point p of the map the percent reduction (compared to clear weather)
in capacity (in terms of number of air lanes), in a given direction Θ and for
a given kernel (and kernel radius R) centered on the point p. A black pixel
indicates 100% capacity reduction; levels of gray indicate percentage reduction
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(a) NWS Reflectivity Weather (b) Capacity Reduction Map

Figure 30: Circular kernel results for capacity reduction (North-South Flow,
RNP 1, kernel radius R= 20 nmi, and grid spacing of 10.77 nmi).

of capacity.
In Figure 31, the capacity reduction map is shown for two flow directions,

North-South and East-West, under two different RNP values (RNP-1 and
RNP-5). In general, as the RNP value goes up and one requires that the gaps
between the weather constraints is larger, there is a more pronounced effect in
the capacity reduction map. This occurs in both directions studied.

TFM Optimization Another ATM application of directional capacity is
for NextGen TFM optimization. Researchers studying how to optimize TFM
for NextGen need to experiment with techniques for TFM that optimize per-
formance of the NAS. An example is where optimal TFM strategies [4] are
planned on a grid lattice spanning the CONUS.

In such a formulation of TFM optimization, the local directional perme-
ability must be established for the capacity of one grid cell with respect to
traffic arriving into it from adjacent grid cells (Figure 32). The capacity is a
function of the direction of the grid cell, in the eight fundamental directions:
N, S, E, W, NW, NE, SW, and SE. Furthermore, if an alternating altitude
rule is used, then the acceptable direction of flow is also a function of altitude.
The grid-based capacity reduction described by the mincut for the applicable
optimization grid size (e.g., 30, 40, or 50 nmi grid sizes) and in the direction
of flow that links grid cells together would be used in the grid-based solution.
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(a) North-South (RNP-1) (b) West-East (RNP-1)

(c) North-South (RNP-5) (d) North-South (RNP-5)

Figure 31: Circular kernel results for capacity reduction (East-West Flow vs.
North-South flow, RNP 1 and 5, kernel radius R=20 nmi, and grid spacing
10.77 nmi).
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Figure 32: Concept of directional capacity reductions used in TFM optimiza-
tion.
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5.6 Conclusion

This study clearly demonstrates that demand may be characterized as a direc-
tional demand, and capacity may be characterized as a directional capacity.
Weather hazard maps may be transformed into capacity reduction maps, based
on a formal mathematical transformation that is referred to as the Mincut, a
concept from computational geometry with associated parameters (RNP size,
grid or circular kernel size, and flow direction). The mincut can be applied to
a square kernel or a circular kernel in order to identify the capacity reduction
in the vicinity of a point (in the center of the square or circular kernel) for a
given direction of flow. Capacity reduction kernels may be designed for fun-
damental directions (N, S, E, W, NW, NE, SW, SE) for square kernels, or for
an arbitrary angle (Θ) for circular kernels. Capacity reduction kernels may
be convolved with weather hazard maps in order to arrive at the total capac-
ity reduction map for the NAS. TFM solutions must consider how to direct
the traffic flow to conform with the limits of the capacity in the direction of
the flow the directional demand is limited by the directional capacity, and
if the demand exceeds the capacity in a given direction, the flow upstream
must be diverted to some other location where there is excess capacity. Future
NextGen TFM optimization algorithms may thus automate this process when
formulating “outer loop” TFM optimized solutions that can reason about the
amount of flow to pass in the particular directions that maximize capacity for
the NAS as a system.

In the future, we plan to investigate, algorithmically, how to compute all
the critical angles in a circular kernel without discretizing the 360◦ angle. For
any goal post locations, pi, pj, if they are directly connected to the mincut via
obstacles Hi and Hj, respectively, the mincut length is d(pi, Hi) + d(pj, Hj) +
Constant where the constant is the shortest path distance between Hi and Hj

in the critical graph and can be pre-computed. A distance function of this
form might suggest the use of some kind of second order additively weighted
Voronoi diagram for the obstacles H to compute the critical angles.
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6 Flexible Tree Routing

This chapter represents joint work with Joondong Kim, Joseph S. B. Mitchell,
and Jimmy Krozel, used with their permissions. In this chapter we consider the
problem of routing aircraft in the transition airspace. Within the transition
airspace, today’s traffic obeying Instrument Flight Rules (IFR) follow tree-
like structures used for Standard Instrument Departures (SIDs) as well as
Standard Terminal Arrival Routes (STARs). The SIDs and STARs are based
on fixed airway structures, defined by fixed navaids and fixed routes connecting
navaids, and this current system does not adapt well to changes in hazardous
convective weather and other constraints. We consider an alternative approach
to transition airspace routing, in which we have the freedom to choose where
to put flexible merge points instead of fixed navaids, and to choose how to
connect the merge points to an optimized tree structure for routing.

We have shown that the flexible tree routing problem is in general NP-hard.
However, when the number of “layers” (defined later in this chapter) in the
search graph is small and can be treated as a constant, we have a polynomial
time algorithm to solve the problem exactly, based on dynamic programming.
We have implemented the algorithm in a system which we call Tree-based Route
Planner (TBRP), and we demonstrate results of experiments performed using
TBRP in section 6.4.

6.1 Introduction

6.1.1 Modeling

In this section we describe our model of airspace geometry, aircraft navigation
performance requirements, and the specifications to the routing problem we
are solving.

Airspace Geometry and Geometric Constraints In our ATM applica-
tions, the transition airspace is modeled as an annulus usually centered at an
airport; typical radii of the inner and outer range rings of the annulus are 40
nmi and 150 nmi, respectively. We consider the airspace to have hazardous
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weather constraints (severe convective weather, severe icing, and severe tur-
bulence) and Special Use Airspace (SUA) constraints where aircraft are not
permitted to fly. The annulus is subdivided, typically into four quadrants in
four directions (Northwest, Northeast, Southwest, and Southeast), with each
quadrant designated for either arrival or departure traffic. In contrast to to-
days system where there would be one metering fix per arrival quadrant, in
NextGen, for each quadrant, there are up to three metering fixes on its inner
range ring whose locations are either fixed or dynamically determined by our
algorithms, and any arrival flight may be metered by any of the metering fixes
available. Figure 33 gives an illustration of the airspace geometry. In general,
our weather avoidance routing solutions are defined for aircraft traveling from
the transition airspace outer range ring to the metering fixes, or from depar-
ture fixes (not shown) to the outer transition airspace boundary. In this study,
we are mostly concerned with designing routing solutions for arrival flights,
but it should be noted that this particular case is algorithmically equivalent
to the problem of designing routing solutions for departing flights.

Figure 33: Transition airspace geometry with weather and SUA constraints.

RNP Requirements RNP-n specifies that the RNAV system is certified to
stay within n nmi of the intended lateral (vertical) routing at least 95% of the
time, including the time during turns. RNP requires that turns are executed at
Trajectory Change Points (TCPs), and that the containment area is defined by
a horizontal distance RNPH (e.g., RNPH = 1 nmi) from the centerline between
TCPs (Figure 34). The vertical RNPV requires that the aircraft is within a
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vertical distance (e.g., RNPV= 500 ft) away from the flight leg defined by two
TCPs 95% of the time (Figure 34).

Figure 34: RNP requirements define a horizontal and vertical containment
area.

For design purposes in the NextGen system, we double the RNP value
to plan routes for which we expect the aircraft to be contained 99% of the
time. Furthermore, we establish a required lateral separation distance, δ, (a
safety margin, as illustrated in Figure 35) between any two non-intersecting
RNAV routes, except at points where two route segments merge or branch, as
in fan-in and fan-out trees. (Fan-in trees will be defined later in this chapter.)
Thus, a RNP-n route ought to be considered as a weather avoidance route of
width 4n, with the additional constraint that any two such routes stay laterally
separated by distance at least δ. However, for the simplicity of handling the
additional routing requirement on lateral separation, we incorporate it into
the requirement on route width, and we consider a RNP-n route as a weather
avoidance route of total width 4n + δ without any requirement on lateral
separation.

Demand Profile In order to address the issue of having a continuum of
possible entry point locations into the outer range ring, we subdivide the outer
range ring of the quadrant into small arcs of equal length (usually around 10◦)
and treat each arc as a single entry point. In order to encode the demand
profile, a tuple of all possible RNP values will be given (e.g., (RNP-1, RNP-2,
RNP-3)). For each entry arc, there is a time series of tuples, with each tuple
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Figure 35: Required minimum lateral separation between RNAV routes.

representing, within the corresponding time interval, the number of incoming
flights for different RNP values that want to enter the quadrant using this arc
(e.g., (0, 5, 10) represents 0 flights with RNP-1, 5 flights with RNP-2, and 10
with RNP-3 wanting to use the arc); the time series data for all entry arcs
constitute the demand profile.

Fan-in Tree We model the fan-in tree as a “fat graph embedding” of a
tree (in the graph-theoretical sense), T = (V,E), in the transition airspace,
connecting entry arcs to the metering fixes. For each internal vertex of T , we
require that its embedding stays at least distance r (e.g., r = 5 nmi) away from
any hazardous weather or any other geometric constraints, and we call each
such vertex as a merge point. For each edge e, its embedding is actually the
centerline of a RNAV route and we require it to have certain weather clearance
depending on the RNP value of the aircraft that fly along it; More precisely,
for each edge e, we pre-compute its maximum clearance value, we, and allows
a RNP-n aircraft to use it only if we >= (4n+ δ)/2. We also require that the
edges dont intersect in the embedding, and that any path intersects only the
embeddings of its endpoints.

We also impose operational constraints on the fan-in tree. There is a maxi-
mum in-degree bound, ∆, for the tree; we typically assume ∆ = 2 which means
that at most two lanes of traffic can merge at any merge point, although our
algorithms apply for any fixed value of ∆. We also impose a lower bound, L,
on the length of any tree edge. The lower bound L models the minimum sepa-
ration requirement between merge points so that traffic flows can be properly
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≥ L

Figure 36: An example binary arrival tree with different thickness on different
sub-paths.

organized; refer to Figure 36. Note that if there were not any lower bound
on the length of edges, the maximum in-degree constraint would become ir-
relevant, since we can simulate a merge point of high degree by having many
low-degree merge points arbitrarily close to each other.

Objective Function The objective function could be only depending on the
number of flights accommodated at each entry arc, in which case we usually
want to maximize the total number of arrival flights accommodated, or on
both the number of flights and the total flight distance for the flights, in which
case we want to first maximize the number of accommodated flights and then
minimize the total flight distance. In fact, as long as the objective function
can be computed recursively in our dynamic programming algorithms (shown
later), the same algorithms could be applied to it.

6.1.2 Problem Formulation

Search Graph We only consider a quadrant of the annulus which models the
transition airspace, and assume it is designated for arrival traffic. This arrival
quadrant is our search space, which is essentially a 2-dimensional domain,
and the merge points of the tree we are seeking could lie anywhere in the 2D
continuum. However, we do not want to search for merge points in the whole
continuum; we want to be able to discretize the 2D domain in a reasonable
way so that there is only a finite number of candidate locations where merge
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points could be, and that the solution obtained from searching in the finite
search space (more specifically, a search graph) approximates the solution from
searching the whole continuum.

Figure 37: An example of a layered DAG computed using TBRP. Thickness
of any edge is its maximum weather clearance value and is assigned to be the
edge weight.

We consider there are n equally spaced (in the radial direction) 90◦ con-
centric arcs in the quadrant, any two of which are at least distance L apart
along the radial direction. On each circular arc, we place k equally spaced
points (vertices) and mark them as candidate merge point locations. We refer
to each circular arc together with the candidate merge point locations on it
as a layer, and denote all n layers using L1 to Ln from the outer range ring
to the inner range ring. (In fact, given a weather snapshot, or equivalently
a set of obstacles, we only need to consider those candidate locations which
are at least distance r away from any obstacle.) The small gray disks in Fig-
ure 37 represent candidate merge points; note that only available merge point
locations are shown. The vertices on the outermost layer, L1, serve as entry
points for incoming traffic, and the vertices on the innermost layer, Ln, are the
metering fixes. We connect edges only between vertices on adjacent layers, but
we do not connect all pairs of vertices from two adjacent layers because we do
not want the tree paths to deviate too much from the radial direction, which
is the desired the flight direction. So from any vertex v in layer Li, we connect
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a directed edge from v to any vertex u on Li+1 such that edge (u, v) is within
a constant angular range from the radial direction; we then assign weights we
to each edge e as described in the previous section. We also put an imaginary
sink vertex t at the center of the annulus and connect all vertices on Ln to
it with weights set to +∞. The resulting search graph is a layered Directed
Acyclic Graph (DAG) with weights, and it has k source vertices s1, . . . , sk,
si ∈ L1, and one sink vertex t. See Figure 37 for an example of the layered
DAG computed using our TBRP system.

Problem Statement After obtaining a search DAG computed from a quad-
rant and hazardous weather as input, our problem is, given a demand profile
of arrival flows, how to find a fan-in tree as a subgraph of the DAG that
connect arrival entry points, L1 = {s1, . . . , sk}, to the sink t while satisfy-
ing the maximum in-degree constraint ∆ and RNP constraints, such that the
tree accommodates as many demand as possible (or optimizes other objective
functions).

6.2 Hardness Results

In this section, we consider the tree routing problem as a pure combinatorial
optimization problem and give hardness results for two versions of the problem.
Here we simplify the demand profile to one flight per entry point and ignore the
RNP constraint, as the full specification of demand profile plus RNP constraint
are essential to the complexity of the problem. The basic form of the problem
we study in this section are thus, given a DAG with sources L1 = {s1, . . . , sk}
and one sink t, to determine if there exists a in-degree bounded tree connecting
L1 to t.

Related Work While we know of no prior work on finding bounded degree
trees in directed acyclic graphs (DAG), there are abundant literature on finding
vertex/edge-disjoint paths in DAGs. Vygen [52] showed that the directed
edge-disjoint paths problem is NP-complete (the author actually proved more
specialized cases to be NP-complete). Perl and Shiloach [44] studied the special
case of finding pairs of disjoint paths in a DAG, G = (V,A), connecting two
given pairs of terminals, and they gave an algorithm in time O(|V | · |A|) for the
vertex-disjoint case. Eppstein [14] also studied this problem of finding pairs of
disjoint paths in a DAG and some other extensions.

59



Degree-bounded Tree in a DAG The input to our problem is a di-
rected acyclic graph (DAG), G(V,A), with one single sink t and multiple
sources s1, s2, . . . , sk. One decision question is to determine if there is in-
degree bounded tree servicing all the source vertices; we show this problem is
NP-hard as stated in the following theorem:

Theorem 6.1. Given a DAG G = (V,A) with source vertices L1 = {s1, . . . , sk}
and sink vertex t, it is NP-hard to decide if G contains a tree, T = (VT , AT ),
as a subgraph such that L1 ∪ {t} ⊂ VT , and the maximum in-degree of T is
bounded by a pre-specified number ∆.

Proof. We reduce from 3-SATISFIABILITY (3SAT) [18]. For any 3SAT in-
stance, let U = {u1, u2, . . . , un} be a set of variables and C = {c1, c2, . . . , cm}
be the set of clauses. We shall construct a geometric DAG, G, such that
C is satisfiable if and only if G contains a subgraph satisfying all the three
conditions.

TT TT F F FF

c2c1 c3 c4

t

u2u1 u3 u4

Figure 38: The graph G corresponding to a 3SAT instance of (u1 + ū2 +
ū3)(ū2 + ū1 + u4)(u2 + u3 + ū2)(ū2 + ū3 + ū4) with ∆ = 2

We create an internal vertex for each variable ui. The sink vertex t uses
an arbitrary in-degree ∆ tree connecting to all the variables vertices. Each
variable vertex ui has ∆−1 designated source vertices that are only connected
to it, so that it can only have one more incoming vertex due to the in-degree
constraint. Directly connected to ui are also two internal vertices designated
as its truth literal and false literal, and only one of them may be connected
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to ui in any feasible solution (refer to figure 38). We create a source vertex
for each clause ci. Each literal vertex builds an arbitrary in-degree ∆ tree
connecting to all the clauses vertices that it participates in. In this way, we
have created a DAG G with (∆− 1)n+m source vertices, and it is easy to see
that the 3SAT instance, C, is satisfiable if and only if the decision problem for
G returns yes.

�

Adding Simplicity Constraint We add one more constraint to the version
of the problem considered above by requiring that the tree sought have a simple
planar drawing, in order to better model the full tree routing problem we are
solving; we show that this problem is also NP-hard as stated in the following
theorem:

Theorem 6.2. Given a drawing of a DAG G = (V,A) with source vertices
L1 = {s1, s2, . . . , sk} and sink vertex t, it is NP-hard to decide if G contains
a tree, T = (VT , AT ), as a subgraph such that S ∪ {t} ⊂ VT , the maximum
in-degree of T is bounded by a pre-specified number ∆, and T does not have
crossing edges (within the drawing of G).

Proof. We use a reduction from INDEPENDENT SET [18]. For any given
graph G = (V,E) with |V | = n and |E| = m and any given integer k ≤ n, we
construct a DAG G′, shown in Figure 39, such that there exists an independent
set of size k in G if and only if our tree routing problem for G′ returns yes.

We layout G′ in a layered graph drawing [8]. G′ has a total of 2m + 2
vertical layers plus a sink vertex t, with vertices of each layer aligned on the
same (invisible) vertical line. Vertices on each layer (except for L1) gets a
label from {1, . . . , n}, which correspond to vertices in G, and edges are drawn
between vertices from adjacent layers only if they share the same label. Our
construction will have the property that the only tree that connecting all the
L1 to t consisting of k non-crossing paths, each corresponding to a vertex in
the desired independent set, that join each other only at the sink t; we will
refer to the path corresponding to any vertex i as path πi, etc.

We draw k vertices on the first layer, L1, to serve as the source vertices,
L1, in the DAG. On the second layer, L2, we draw one vertex for each vertex
v ∈ G, and they are labeled from 1 to n from top to bottom. we connect any
vertex on L1 to any vertex on L2 to form a complete bipartite graph. These
two layers form the vertex gadgets of our construction.

Each edge gadget takes up two layers and they are put next to each other
in an arbitrary order as shown in Figure 39. For each edge (i, j) (i < j) in

61



1 2

3 4
(a) An instance of IN-
DEPENDENT SET

1

2

3

4

(1, 2) (1, 3) (1, 4) (2, 4)

t

1

2

3

4

1 1 1

2

2 2

3 3 3

4 4 4

2

1

3

4

1

3

2

2

4

2

2

1

4

3

3

1

2

4

3

3

(b) The blue paths form a tree that corresponds to independent set {2, 3}.

Figure 39: Hardness gadgets for a 4-vertex graph.
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E, the second layer of its edge gadget has n vertices labeled from 1 to n from
top to bottom; its first layer is labeled as 1, 2, . . . , i− 1, i+ 1, . . . , j− 1, j, i, i+
1, . . . , j− 1, j+ 1, . . . , n such that it only creates a crossing for path πi and πj,
while allowing all the other paths to pass this gadget without crossing.

From our construction, it is easy to see that k non-crossing paths exist if
only if they pass all the edge gadgets without incurring any crossing, i.e., no two
of their corresponding vertices are adjacent in G. Therefore G′ contains a tree
connecting L1 to t without crossing edges if and only if G has an independent
set of size k. �

6.3 Algorithm

In this section we consider the full tree routing problem as formulated in 6.1.2
and we follow the notations introduced in that section as well. We devise a
dynamic programming algorithm to solve the tree routing problem exactly,
in time exponential only to the number of layers n. For the convenience of
presentation, here we focus on the description of the algorithm with respect to
a specific objective function: that of maximizing the total number of arrival
flights accommodated, although the algorithm is applicable to a wide range of
other objective functions.

Again for simplicity of the presentation, we assume that the demand profile
is encoded as a n-tuple, (d1, . . . , dk), di ≥ 0, meaning that, for each i, there
are di flights coming into entry point si along L1. We assume that once any
entry point si is used by a tree, all the di flights can be accommodated by the
tree using this entry point. Note that we have intentionally ignored the RNP
constraint for each flight in the demand as we feel they are technical details
only relevant to the implementation; in the implementation what we do is to
consider the maximum RNP of all the flights coming into si as the uniform
RNP for all of them, and the RNP requirements are always been checked
against the edge weights of the paths we are searching. We also assume the in-
degree bound, ∆, is equal to 2. Now our objective is, given a DAG, G = (V,E),
embedded in a quadrant, with sources L1 = {s1, . . . , sk} and sink t, and given
a demand (d1, . . . , dk), find an in-degree 2 tree T = (VT , ET ) in G such that
t ∈ VT , there are no crossing edges, and the following objective function is
optimized: ∑

s∈VT∩L1

ds.

An example of the optimal tree computed from the DAG in Figure 37 using
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all RNP-1 demand on all entry points is given in Figure 40.

Figure 40: An example of an optimal tree computed using TBRP. Thickness
of any edge correspond to the RNP values of the demand flights; they are all
of RNP-1 in this example.

State of the Dynamic Algorithm Suppose T is a solution to our problem.
Note that T are not allowed to have any crossing edges. Consider an arbitrary
path π connecting any source vertex si to the sink R. Imagine if we delete π
from T , the parts left on both sides of π are collections of subtrees of T , with
each subtree attached to the “backbone” π in T ; refer to Figure 41. Following
this observation, our dynamic programming basically works from one side of
the DAG to the other, connecting new path to the current tree into a new
tree, and recursing into the sub-problem defined as the part of the DAG to
the “left” of the new path.

We assume there is an orientation along the circular direction (one that
is orthogonal to the radial direction) so that we can speak of the “left” and
the “right” of any path that goes all the way to t. We assume the algorithm
works from right to left in the DAG. For any entry point si that has a positive
demand on it, we say it has been “serviced” by the tree if the current tree has
included si, we say it has been ignored if the current tree decides not to include
it and proceeds to the left of it, and we refer to all the other ones as entry
points that still “need service”. A sub-problem of the dynamic programming
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Figure 41: T is one solution to our problem servicing entry points s1, . . . , s7.
After removal of a tree-path π, T is decomposed into three subtrees T1, T2, T3,
each servicing a consecutive range of entry points. The black dots are showing
attachment vertices of T1, T2, T3 to π.

then consists of a entry point si indicating all entry points to the left of it
still need service, a source to sink path π separating the “done” and “undone”
parts of the dynamic programming so that the part of G to the left of π are
available, and an available in-degree sequence, ∆π = (∆1, . . . ,∆n), ∆i ≤ ∆, of
π, indicating for each point on π, the number of new incoming edges it can have
so as not to violate the overall in-degree constraint ∆. For any sub-problem
defined by (si, π,∆π), the state of the dynamic programming, f(si, π,∆π), is
thus defined as the maximum number of flights that can be accommodated by
any collection trees within the subproblem such that each tree is connected to
π and there are no crossing edges.

State Transition For any state f(si, π,∆π), we will first try to service si by
considering all possible paths from si to t either directly or via π, trying each
new path π′, and solving the new sub-problem (sj, π

′,∆π′) where sj is the next
entry point along the “leftward direction” that wants to be serviced, and ∆π′

is the updated available in-degree sequence for π′; we then consider the option
of the ignoring sj and compute the sub-problem, (sj, π,∆π). We will pick from
the states of all the sub-problems the one that is the maximum and record it
as the “contributing state” of state f(si, π,∆π); we will use this information
to construct an optimal tree when we finish computing all the states. If we
denote by Gπ the part of the DAG G to the left of π and including π but with
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the in-degree constraints ∆π, the state transition equation can be written as

f(si, π,∆π) = max

{
dsi + max

π′∈Gπ
f(sj, π

′,∆π′), f(sj, π,∆π)

}

6.4 Experiments

We have implemented the dynamic algorithm in a software system called Tree-
based Route Planner (TBRP). We design several experiments using TBRP in
order to demonstrate our capability to find optimal trees under different objec-
tive functions, to handle both static and dynamic metering fix requirements,
with different weather systems, and considering both constant and mixed RNP
requirements.

Experiment Setup We carried out several experiments comparing the re-
sults of our software (TBRP) running under different parameters. The set of
parameters that is common to all experiments are:

Weather timestamp: 2005/06/28 21:48:00 Zulu unless specified otherwise

Quadrant: centered at latitude 39.98◦ N, longitude 84.50◦ W, with inner and
outer radii of 40 and 150 nmi

Demand Profile: one RNP-2 flight per arrival entry arc, unless specified
otherwise

NWS Threshold: level 3 and above (colored as yellow or more severe) is
considered as obstacle

Metering Fixes: dynamic metering fix and 3X, unless specified otherwise

Entry Arcs: seven segments on each 90◦ quadrant

Layers: four layers for merge points (plus one layer for metering fixes)

Objective Functions For any tree T = (VT , ET ) in the given DAG G and
any of its entry point s ∈ L1, we let πs be the unique path from s to the
sink t within T and call it a tree path. An objective function, f , is a function
that maps the set of such trees to a totally ordered set. We want to find, for
some reasonable choice of objective function f , a tree T ∗ such that f(T ∗) is
optimized. Algorithmically, our dynamic programming algorithm is capable of
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finding optimal trees for any objective function that can be constructed recur-
sively on the set of tree paths. For simplicity of implementation, our current
code optimizes two objective functions. For any given tree T = (VT , ET ), we
define two metrics on T :

f(T ) =
∑

s∈VT∩L1

ds

measuring the total demand that can be accommodated by T , and

g(T ) =
∑

s∈VT∩L1

ds · L(πs)

where L(πs) is the arc length of tree path πv, measuring the total flight distance
from entry point to metering fix by all the demand accommodated.

Our first objective function is simply f(T ). Our second objective function
is h(T ) = (f(T ),−g(T )), and we maximize it under lexicographical order, that
is, we want to first maximize the total demand, f(T ), and for all trees achieving
the same maximum demand, we then minimize the total flight distance, g(T ).
Unless specified otherwise, all of our experiments were run under the more
optimized objective h(T ).

Demand-maximized versus Demand-length-optimized Trees Any op-
timal tree found for the objective f(T ) is called a demand-maximized tree, and
any optimal tree for the objective function h(T ) a called a demand-length-
optimized tree. We run experiments on the same input instance with the two
objective functions, and for each optimal tree found, we record both the metric
f(T ) and g(T ). We see in Figure 42 that f(T ) = 18 in both cases, which is
exactly the number of tree branches. And the demand-length-optimized tree
has about 4% less total flight distance than the demand-maximized tree.

Static versus Dynamic Metering Fixes For a quadrant centered at lat-
itude 40.58◦ N, longitude 83.90◦ W, we run the experiment under both static
and dynamic metering fix options, as illustrated in Figure 43. For static me-
tering fixes, the locations of the metering fixes are fixed so if any metering fix
is blocked by weather, it is considered infeasible. The location for the center
fix is at the angular center of the quadrant, 40 nmi from the center of the
metroplex. The locations for the other two are exactly distance d away (d is a
parameter equal to 7.5 nmi in all the experiments here).

67



(a) f(T) = 18 flights, g(T) = 3045.13 nmi (b) f(T) = 18 flights, g(T) =2923 nmi

Figure 42: Demand-maximized versus demand-length-optimized trees.

(a) (b)

Figure 43: Trees with static and dynamic metering fixes.
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For dynamic metering fixes, we optimize the locations of three metering
fixes so that the number of metering fixes possible is maximized and stay as
close as possible to the default locations for the static option. We use the
following algorithms to determine the locations of metering fixes:

Dynamic Metering Fix Generation We developed an algorithm for dy-
namically generating weather-free metering fixes in order to permit us to model
the dynamic metering fix case.

Metering fixes are modeled as points along a circular arc of 40 nmi radius
around the center of the metroplex. We use a minimum separation require-
ment, δ, between any two metering fixes, that is RNP-independent; every
metering fix location must be clear of hazardous weather and other metering
fixes to a distance of δ nmi, effectively creating a circle of exclusion in which
the airspace must be clear. (Another metering fix may be located immediately
outside of this circle.) For NextGen, we want to find, ideally, three metering
fixes in each quadrant satisfying the above constraints, and are located as close
as possible to the original, default location of the metering fixes. (The default
locations are inputs to the algorithm.)

For purposes of our experiments, we assumed default locations for the
metering fixes as follows. The center metering fix is at the angular center of
each quadrant, 40 nmi from the center of the metroplex. For example, in the
northeast quadrant, the center metering fix is at the 45◦ compass heading. The
other two default metering fixes are exactly distance δ away from the center
fix on either side. These default metering fixes were used as the fixed metering
fix locations for all experiments, and used as the default metering fix locations
for the dynamic metering fix generation algorithm and experiments.

In order to calculate dynamic metering fixes, we first determine a location
for the center fix as close to its corresponding default location as possible.
We start from the default position and iterate through other possible center
fix points according to their heading, such that each new point represents a
change of heading of ε degrees. We start from the smallest possible change
and search the points in order of increasing change. For example, in the
northwest quadrant, we would check points at different headings in this order:
(45, 45+ε, 45−ε, 45+2ε, 45−2ε, etc.). The first point that is a feasible location
is chosen as the center fix. From this center fix location, we pick headings that
are exactly δ distance away on both sides. From there, we move further and
further away in increments of ε degrees of heading until we find suitable points
on both sides.
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If we do not find the maximum possible number of metering fixes because
our choice of the center fix makes it impossible, then this is because we only
found one or two fixes. If we found two, then we move our choice of center fix
to the other fix, and attempt to search for fixes once again. If we only found
one, then we stop; there is only one fix available under the current level of
discretization (controlled by ε).

Light versus Moderate Weather In this experiment, we compare light
and moderate weather conditions. The light weather is taken at timestamp
2005/06/28 14:01:00 Zulu and the moderate one is again at 2005/06/28 21:48:00
Zulu. The demand profile to both cases is pure RNP-2 as specified in the ex-
periment setup section. We see that, as illustrated in Figure 44 under the
same demand profile, we can accommodate about 39% more incoming traffic
in the light weather than in the moderate weather.

(a) f(T ) = 25 flights (b) f(T ) = 18 flights

Figure 44: Trees under light and moderate weather.

Constant versus Mixed RNP This experiment considers two different
demand profiles: one is the constant RNP-2 profile, and the other one is
similar in the sense that there is only one incoming flight at each arrival arc
but they come with different RNP requirements (ranging from RNP-1, RNP-2,
to RNP-3), hand-picked in order to better utilize the airspace. (If the order
of the RNPs is not given, this problem becomes NP-Hard, as shown in [24]
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The results shown in Figure 45 demonstrate that, with our programs mixed
RNP capability, we can accommodate more flights with wider range of RNP
capabilities.

(a) 18 RNP-2 flights (b) 22 flights (5 RNP-1, 15 RNP-2, and
2 RNP-3)

Figure 45: Constant RNP-2 tree versus Mixed RNP tree

6.5 Conclusion

This work presents a theoretical method and experimental results for flexible
tree-based planning in transitional airspace. The basic version of the problem,
deciding the existence of a non-crossing tree in a given DAG, turns out to be
NP-hard. We presented an algorithm to solve the problem exactly based on
dynamic programming and implemented the algorithm in our TBRP system.
We demonstrated in the experiments our system’s ability to optimize over dif-
ferent objective functions, to handle mixed RNP requirement, and to compute
dynamic metering fixes.

The algorithm we presented takes a snapshot of weather as input and com-
putes the best weather avoidance tree; this is in a sense a “static” algorithm.
However when we consider dynamic weather, we hope to be able to avoid re-
computing an entirely new solution whenever weather moves or changes, and
to re-use as much of the existing solution as possible when accommodating
presumably small changes in weather from every time stamp to the next.

71



References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] N. Amato. Determining the separation of simple polygons. Interna-
tional Journal of Computational Geometry and Applications, 4(4):457–
474, 1994.

[3] E. M. Arkin, J. S. B. Mitchell, and V. Polishchuk. Maximum thick paths
in static and dynamic environments. In Proceedings 24th ACM Symposium
on Computational Geometry, pages 20–27, 2008.

[4] D. Bertsimas and S. Patterson. The air traffic flow management problem
with en route capacities. Operations Research, 46:406–422, May–June
1998.

[5] D. Bertsimas and S. Patterson. The traffic flow management rerouting
problem in air traffic control: A dynamic network flow approach. Trans-
portation Science, 34(3):239–255, 2000.
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