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Abstract of the Dissertation 
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by 
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in 
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2015 

 

Background: Genome-wide associations have been studied for years to infer relationships 

between biological traits and their underlying genetic causes, known as quantitative traits loci 

(QTL), in a process known as QTL mapping. Single nucleotide polymorphisms (SNPs), which 

are commonly used genetic markers, are usually in linkage disequilibrium (LD) with each other 

within a small genetic region. Both single- and double-marker-based LD mapping methods have 

been developed by taking advantage of LD structure. 

Method: In this thesis, a more general LD mapping framework with an arbitrary number of 

markers has been developed in order to improve LD mapping and its detection power. This 

method is referred to as multi-marker linkage disequilibrium mapping (mmLD).   For the mmLD 

model estimation, novel two-phase estimation procedures were implemented. In the first phase, 

haplotype frequencies were estimated for known markers. In the second phase, haplotype 

frequencies, including the unknown QTL, were updated based on estimates from the first step. 
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To test hypotheses, we used the likelihood ratio test (LRT). We propose a sequential LRT 

method that compares likelihood values of a reduced and an alternative model, and determines 

the optimal degree of freedom for testing. 

Results: To compare our method with other existing mapping methods, such as the single-marker 

LD mapping and the SKAT_C, we performed intensive simulations studies. These studies 

showed that our proposed mmLD method performed higher powers or equal powers to than 

existing mapping methods under various simulation scenarios while maintaining the correct 

type-I errors. The mmLD method also showed good performance for QTL mapping of the 

GAW17 public dataset. We conclude that the mmLD method will be useful for future association 

analyses. 
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Chapter 1 Introduction 
 

 

1.1. Background 

The human body consists of 22 pairs of autosomal chromosomes and one pair of sex 

chromosomes. Chromosomes contain hereditary information encoded in double-strands 

of deoxyribonucleic acid (DNA). Genetic regulation of development, organismal 

function, and reproduction is programmed into these DNA sequences. DNA sequences 

are usually a combination of four nucleotides, guanine (G), adenine (A), thymine (T), and 

cytosine (C) [1]. For diploid species, such as humans, the DNA sequences are bi-allelic. 

Identical bi-alleles are known as homozygous; non-identical bi-alleles are known as 

heterozygous. Genomic DNA sequences are nearly identical between different people 

except for some minor genetic variation (< 1%). This genetic variation can cause 

different physical traits or specific diseases. A study that examines how genetic variants 

are related to biological traits across complete sets of genomes is called a genome-wide 

association study (GWAS). 

A GWAS usually investigates many genetic variants simultaneously [1-3] to infer the 

relationship to biological traits. For example, case-control studies, a comparison of 

genotypic distributions between two groups of participants (case vs. control), have been 

used to detect genetic variants are significantly associated with each group [2, 3]. Most 

GWAS analyses have focused on the single-marker association, i.e., testing genetic 
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markers one at a time, mainly due to easy implementation. However, analyses based on 

multiple markers can be more powerful and will be the focus of this study. 

In this thesis, I will first briefly introduce genetic background that serves as the basis 

for the development of my model. Next, I will review existing models of the GWAS. 

Finally, I will propose and describe a novel model, mmLD, for detecting the association 

between DNA variants and phenotypes by considering multiple markers. Detailed 

simulations and real data application will be presented to demonstrate the applicability of 

this new method. 

 

1.2. Chromosomes, Single Nucleotide Polymorphisms (SNPs) and Quantitative 

Traits  

Figure 1 illustrates the structures of chromosomes and DNA sequences. Within a 

population, members of the same biological species might differ at a single nucleotide. 

These differences represent a common and important type of genetic variation, single 

nucleotide polymorphisms (SNPs). SNPs are typically used as genomic markers in 

genetic studies [2]. Most SNPs in humans are bi-allelic and contain a major (M) allele 

and a minor (m) allele, determined by relative frequency. The frequency of the less 

common allele is usually referred as the minor allele frequency (MAF). Based on a 

combination of two alleles, a SNP usually has three genotypes; 𝑀𝑀, 𝑀𝑚, and 𝑚𝑚.  
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Many SNPs have been found by the International HapMap Project [4], which aimed 

to develop a haplotype map of the human genome to describe common patterns of genetic 

variation. The International HapMap Project used a variety of sequencing techniques to 

search for and catalog SNPs across the world. Thus far, the project includes 11 human 

populations with genotypes for 16 million SNPs. Through the HapMap project, the 

linkage disequilibrium can be examined with genotype data [2]. The genetic variants 

identified thus far have roles in human health, specific diseases or responses to drugs and 

environmental factors [2].  SNPs with a MAFs of 5% or greater were targeted by the 

HapMap project and have been used in GWAS analyses [4]. It is plausible that for these 

types of SNPs existing in a large population are inheritable and might explain biological 

variations that are known to have a genetic basis.  

If a SNP is involved in a physical quantitative trait, it is called a quantitative trait 

locus (QTL) [3]. QTLs usually consist of dichotomous alleles and have three genotypes, 

denoted as 𝑄𝑄, 𝑄𝑞, and 𝑞𝑞. In practice, QTLs are not always observable. Therefore, it is 

very difficult to identify which SNP is the QTL for a specific quantitative trait. The 

process of identifying QTLs associated with a phenotype is called QTL mapping.  
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Figure 1 Chromosome and DNA sequences: Image from 

http://www.conservapedia.com/File:763.jpg 

 

 

1.3. Haplotype under Linkage Disequilibrium 

For humans, each genetic marker usually has two alleles, one inherited from the 

mother and the other from the father. A haplotype is a group of markers inherited from 

one parent that is physically located on the same chromosome. Therefore, genetic 

markers that are close to each other tend to be inherited together, except in case of 
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chromosomal crossover. Consequently, SNPs correlate with each other in a particular 

genetic region. This phenomenon is called linkage disequilibrium (LD).   

More formally, LD describes the degree to which an allele of one SNP is inherited or 

correlated with an allele of another SNP in a natural population [2]. The non-random 

association between alleles of the adjacent markers, measured by LD, is usually caused 

by several factors, such as the selection, mutation, genetic drift, system of mating, and 

population structure [5]. LD in a population usually decays over time. The rate of decay 

is dependent on multiple factors, such as the population size, number of founding 

chromosomes in the population, and number of generations. Different sub-populations 

might have different degrees and patterns of LD. Although LD was first introduced as a 

concept in the population genetics, it has recently been employed in QTL mapping 

methods. These LD-based mapping methods are particularly suitable for natural 

populations, such as humans, where controlled mating is implausible. 

To illustrate the concept of LD, consider two bi-allelic markers, A and B. The major 

and minor alleles of marker A are denoted as A and a, and those of marker B as B and b. 

The frequencies of the two major alleles are denoted as 𝑝𝐴 and 𝑝𝐵, respectively. The 

possible haplotypes of the two markers are AB, Ab, aB, and ab (Figure 2). The 

frequencies of these haplotypes are expressed as 𝑝𝐴𝐵, 𝑝𝐴𝑏, 𝑝𝑎𝐵, and 𝑝𝑎𝑏. If two markers 

are independent of each other, i.e., they are not linked, each haplotype frequency should 

simply be a product of the two corresponding allele frequencies. However, if the two 

markers are correlated, as most adjacent markers are, the haplotype frequencies will 



 

6 

 

differ from the product of the allele frequencies. In Table 1, the 𝐷 value denotes the 

deviation from the product of the corresponding allele frequencies and quantifies the 

degrees of the linkage disequilibrium genetically. The 𝐷 value in Table 1 represents the 

two-way LD between two markers. For three or more markers, there might be three-way 

or multi-way LDs. In these cases, representations and estimations are not simple as with 

two markers. Figure 3 illustrates an example of the structure of LDs with multiple 

markers. The data was generated by Forsim software [6], a simulator used for generating 

gene sequences.   

 

Table 1 Haplotype frequencies and allele probabilities of two markers 

 A a Total 

B 𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵 + 𝐷 𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵 − 𝐷 𝑝𝐵 

b 𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏 − 𝐷 𝑝𝑎𝑏 = 𝑝𝑎𝑝𝑏 + 𝐷 𝑞𝐵 = 1 −  𝑝𝐵 

Total 𝑝𝐴 𝑞𝐴 = 1 −  𝑝𝐴 1 
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Figure 2 Possible haplotypes and genotypes for two markers 

 

 

Figure 3 Example of linkage disequilibrium block generated by ForSim[6] software 
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1.4. Hardy-Weinberg Equilibrium, genotypic and haplotypic probabilities 

In a natural population, allelic and genotypic probabilities usually remain constant 

through generations unless there are impacted by evolutionary influences such as mate 

choice, mutation, selection, genetic drift, gene flow, or meiotic drive. The Hardy-

Weinberg Equilibrium (HWE) describes an ideal condition without these influences [3, 7, 

8]. Under HWE, genotypic probabilities are simply the products of corresponding allele 

frequencies.  

The allelic probabilities of major and minor allele for one marker can be denoted as 

p0 and p1 = 1 − p0 respectively. The genotypic probabilities are the binomial expansion 

of the square of the sum of p0 and p1 as shown in Table 2. With two markers, there are 

four haplotype frequencies, p00, p01, p10, and p11, and nine possible genotypes. Based on 

Figure 2, the joint genotypic probabilities and their relationships to the haplotypic 

probabilities are summarized in Table 3. Table 4 shows the genotypic and haplotypic 

probabilities of three markers with 27 possible genotypes. In general, for 𝑘 markers, the 

number of genotypes is set to 3𝑘, while the number of haplotypes is 2𝑘. 

 As shown above, the relationship between genotypic and haplotypic probabilities can 

become very complicated when the number of markers is large. However, this calculation 

is essential for extending LD mapping to an arbitrary number of markers. In Chapter 3, I 

will propose an algorithm that can efficiently derive genotypic probabilities from 

haplotypic frequencies. 
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Table 2 Genotypic probabilities of one marker under Hardy-Weinberg Equilibrium 

 AA Aa aa 

Genotypic 

probabilities 
p0

2 
2p0p1 = 

2p0(1 − p0) 
p1

2 = (1 − p0)2 

 

Table 3 Genotypic probabilities of two markers under Hardy-Weinberg Equilibrium and 

numbers n denote probabilities of each genotype 

Genotypic 

probabilities 
BB Bb bb 

AA 
p00

2 

(𝑛00) 

2p00p01 

(𝑛01) 

p01
2 

(𝑛02) 

Aa 
2p00p10 

(𝑛10) 

2p00p11 + 2p01p10 

(𝑛11) 

2p01p11 

(𝑛12) 

aa 
p10

2 

(𝑛20) 

2p10p11 

(𝑛21) 

p11
2 

(𝑛22) 

 

Table 4 Genotypic probabilities of three markers under Hardy-Weinberg Equilibrium[3] 

Genotypic 

probabilities 
CC Cc cc 

AABB p000
2 2p000p001 p001

2 

AABb 2p000p010 
2p000p011

+ 2p010p001 
2p001p011 

AAbb p010
2 2p010p011 p011

2 

AaBB 2p000p100 
2p000p101

+ 2p100p001 
2p001p101 

AaBb 
2p000p110

+ 2p010p100 

2p000p111

+ 2p010p101

+ 2p110p001

+ 2p100p011 

2p001p111

+ 2p011p101 

Aabb 2p010p110 
2p010p111

+ 2p110p011 
2p011p111 
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aaBB p100
2 2p100p101 p101

2 

aaBb 2p100p110 
2p100p111

+ 2p110p101 
2p101p111 

aabb p110
2 2p110p111 p111

2 

 

 

1.5. Estimating haplotypic frequency 

Although many SNPs have been found by International HapMap projects [9], their 

genotypes cannot fully reveal the genetic structure of each individual because one 

genotypic pattern can arise from several possible haplotypic combinations. For example, 

the genotype AaBb, which is heterozygous at two markers, might come from two 

different sets of haplotypes, 𝐴𝐵|𝑎𝑏 or 𝐴𝑏|𝑎𝐵 (Figure 2) [3, 10]. Therefore, haplotypes 

can be unknown even when genotypes are fully known. To address this issue, haplotypes 

are usually inferred by haplotype-estimation methods [11, 12].  

Estimating haplotypic probabilities from genotypes has been studied for many years 

and several representative methods have been proposed, such as the expectation-

maximization algorithm [11] and the Bayesian approach [12]. When heterozygous 

genotypes exist at more than one locus, it is difficult to estimate correct haplotype 

frequencies [11]. I will introduce the haplotype frequency estimation method with EM 

algorithm proposed by Excoffier and Slatkin (1995) [11], which will also be used in my 

model to be proposed in Chapter3. 
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Suppose there are 𝑚 genotypes with corresponding frequencies 𝑃𝑖, 𝑖 = 1, … , 𝑚. For a 

sample of 𝑛 subjects, their probabilities can be expressed as a multinomial probability 

function:  

P(sample|𝑃1, 𝑃2, … , 𝑃𝑚) =  
𝑛!

∏ 𝑛𝑖!𝑛
𝑖=1

∏ 𝑝𝑖
𝑛𝑖

𝑚

𝑖=1
 

where 𝑛𝑖, 𝑖 = 1, … , 𝑚 denotes the observed count for the 𝑚 genotypes. 

As previously discussed, haplotypes from samples with heterozygotes cannot be directly 

phased out and are referred to unphased genotypes. The number of unphased genotypes 

(𝑐𝑗) is a function of the number of heterozygous loci 𝑠𝑗, 

𝑐𝑗 = 2𝑠𝑗−1, 𝑠𝑗 > 0 and  𝑐𝑗 = 1 , 𝑠𝑗 = 0 

Under the assumption of HWE and random mating, the probability 𝑃𝑗 of the 𝑗-th 

unphased genotype is given by the sum of probabilities of each of the possible 𝑐𝑗 

genotypes, 

𝑃𝑗 = ∑ 𝑃(genotype 𝑖)

𝑐𝑗

𝑖=1

=  ∑ 𝑃(ℎ𝑘ℎ𝑙)

𝑐𝑗

𝑖=1

 

𝑃(ℎ𝑘ℎ𝑙) =  {
𝑝𝑘

2                     when 𝑘 = 𝑙
2𝑝𝑘𝑝𝑙               when 𝑘 ≠ 𝑙

 

where 𝑃(ℎ𝑘ℎ𝑙) is the probability of the 𝑖-th genotype made up of haplotypes 𝑘 and l and 

𝑝𝑖 denotes the frequency of the 𝑖-th haplotype. The likelihood of the haplotype 

frequencies is then given as follows: 
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L(𝑝1, 𝑝2, … , 𝑝ℎ) = 𝑎1 ∏ (∑ 𝑃(ℎ𝑖𝑘ℎ𝑖𝑙)

𝑐𝑗

𝑖=1

)

𝑛𝑗𝑚

𝑗=1

 

where 𝑝ℎ = 1 − 𝑝1 − 𝑝2 − ⋯ − 𝑝ℎ−1 and 𝑎1 is a constant incorporating the multinomial 

coefficient. To obtain the maximum likelihood estimates for haplotypic probabilities, this 

likelihood can be solved by the EM algorithm, which is given in detail below. 

E-step: 

𝑃(ℎ𝑘ℎ𝑙)(𝑔) =
𝑚𝑗

𝑚

𝑃(ℎ𝑘ℎ𝑙)
𝑗
(𝑔)

𝑃𝑗
(𝑔)

 

 𝑃(ℎ𝑘ℎ𝑙)(𝑔) =  {
𝑝𝑘

(𝑔)2
                     when 𝑘 = 𝑙

2𝑝𝑘
(𝑔)

𝑝𝑙
(𝑔)

              when 𝑘 ≠ 𝑙
 

where 𝑝𝑘
(𝑔)

 and 𝑝𝑙
(𝑔)

 are the 𝑔-th iteration of frequencies of haplotype 𝑘 and l.  

M-step: 

 𝑃𝑗
(𝑔)

= ∑ 𝑃(genotype 𝑖)(𝑔)

𝑐𝑗

𝑖=1

= ∑ 𝑃(ℎ𝑘ℎ𝑙)(𝑔)

𝑐𝑗

𝑖=1

 

𝑃(ℎ𝑘ℎ𝑙)(𝑔) =
𝑛𝑗

𝑛

𝑃(ℎ𝑘ℎ𝑙)(𝑔)

𝑃𝑗
(𝑔)

 

𝑝�̂�
(𝑔+1)

=
1

2
∑ ∑ 𝛿𝑖𝑡𝑃𝑗(ℎ𝑘ℎ𝑙)(𝑔)

𝑐𝑗

𝑖=1

𝑚

𝑗=1
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where 𝛿𝑖𝑡 is an indicator variable equal to the number of times haplotype 𝑡 is present in 

genotype 𝑖. EM algorithm iterates E and M steps until the difference of previous and 

current likelihoods converges into a small quantity. 

 This algorithm can be explained by an example with two markers, as shown in 

Figure 2 and Table3. For two markers, the likelihood of haplotypic frequency is given as 

follows:  

L(𝑝1, 𝑝2, … , 𝑝ℎ|genotypes)

∝ 2𝑛00log(𝑝00) +  𝑛01log(2𝑝00𝑝01) + 2𝑛02log(𝑝01) + 𝑛10log(2𝑝00𝑝10)

+ 𝑛11 log(2𝑝00𝑝11 + 2𝑝01𝑝10) + 𝑛12log(2𝑝01𝑝11) + 2𝑛20log(𝑝10)

+ 𝑛21log(2𝑝10𝑝11) + 2𝑛22log(𝑝11) 

Then, the corresponding EM algorithm can be explicitly written as: 

E-step: 

𝜙 =  
𝑝00𝑝11

𝑝00𝑝11 + 𝑝01𝑝10
 

where 𝜙 denotes the probability that the genotype 𝐴𝑎𝐵𝑏 comes from haplotype 𝐴𝐵|𝑎𝑏, 

and 1 − 𝜙 denotes the probability from haplotype 𝐴𝑏|𝐴𝑏. 

M-step: 

�̂�00 =
1

2𝑛
(2𝑛00 + 𝜙𝑛11 + 𝑛01 + 𝑛10) 
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�̂�10 =
1

2𝑛
(2𝑛20 + 𝑛10 + (1 − 𝜙)𝑛11 + 𝑛21) 

�̂�01 =
1

2𝑛
(2𝑛02 + 𝑛01 + (1 − 𝜙)𝑛11 + 𝑛12) 

�̂�11 =
1

2𝑛
(2𝑛22 + 𝜙𝑛11 + 𝑛12 + 𝑛21) 

 

 

1.6. Heritability value 

In genetics, heritability refers to how much of the variation in a trait is caused by 

genetic variants in a natural population. Other causes of the variation could be 

environmental factors or genetic drift [13]. Statistically, heritability indicates the 

proportion of phenotypic variance that is attributable to genetic variance. Therefore, it 

can be measured by estimating the relative contributions of genetic and non-genetic 

differences to the total phenotypic variation. The model of heritability can be defined as 

follows: 

Phenotype (P) = Genotype (G) + Environment (E) 

The variance of phenotype can be shown as Var(P) = Var(G) + Var(E) + 2Cov(G,E). In a 

designed experiment, Cov(G,E) can be controlled. If it is defined as 0, then the 

heritability is shown as follows: 
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𝐻2 =
Var(𝐺)

Var(𝑃)
 

Therefore, the range of 𝐻2 is from 0 to 1. If 𝐻2 is 0, the genetic variant does not have 

any contribution to the phenotype. If 𝐻2 = 1, the variation of the phenotype is caused 

only by the genetic variant.  

In this study, the heritability value will be used to design various simulations for the 

null and alternative hypothesis. 
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Chapter 2 Review of previous GWAS methods 
 

In this chapter I will review some GWAS methods, later used for model comparison. 

First, I will introduce single-marker based tests—single-marker LD mapping and 

adjusted and minimum p-value single- marker LD mapping. Second, I will introduce 

multi-marker based tests—two-marker LD mapping, the Sequence Kernel Association 

Test, and the Smoothed Minimax Concave Penalty. 

  

2.1. Genome-wide Association Study 

Methods used in GWAS analyses can be broadly classified by phenotypic features. 

There are two major types of phenotypic traits, quantitative (continuous) and qualitative 

(dichotomous case-control). Quantitative traits are measurable phenotypes, such as 

weight, height, and blood pressure, which are usually assumed normally distributed.  

Qualitative traits are typically binary (case vs. control) in nature, such as with or without 

a specific disease. Different GWAS methods can be applied to detect interesting 

associations according to phenotypic feature. 

GWAS methods can also be grouped by the number of markers considered in each 

model, such as single-marker or multi-marker based test. As the aim of this thesis is to 

develop a novel method based on multiple markers, I will review some important single- 

and multi-marker based methods that are most relevant to this study. 
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2.2. Single-marker based tests  

A single-marker test is used to examine the association between phenotypes and a 

single marker using statistical methods. Quantitative traits are commonly analyzed with 

ANOVA or linear regression based approaches [2, 14]. ANOVA compares three means 

of phenotype independently by the genotypes of a single-marker. Linear regression 

assumes linearity for three means of phenotype. In both methods, the null hypothesis is 

that there is no difference between the three mean values of phenotype. Both methods 

also assume that quantitative phenotypes are normally distributed and that the variance of 

the phenotypes within each group is constant [2]. For dichotomous case-control 

phenotypes, a 2 by 3 contingent table is formed, and independence can be tested with the 

Pearson 𝜒2 test or Fisher exact test [14]. The null hypothesis is that no association exists 

between the binary phenotype and three genotypes of each marker.  

LD mapping, another approach that has recently emerged for QTL mapping, uses LD 

information to link phenotype to genotypes [15]. The idea of LD mapping is that a 

phenotype-related QTL is linked to a small group of genetic sequences that can be 

directly incorporated into the mapping model. Most LD mapping has focused on a single-

marker association [15]. As our new method is also based on LD mapping, I will 

introduce the single-marker LD mapping method in detail in what follows [15-17]. 
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2.2.1. Single-marker Linkage Disequilibrium (smLD) mapping 

Suppose n samples with the quantitative phenotype and corresponding one 

dichotomous marker. The null hypothesis is that there is no linkage disequilibrium 

between one marker and the QTL (𝐻0: 𝐷ℳ,𝑄 = 0) and the alternative hypothesis is the 

opposite. Assume that the phenotype is normally distributed with three different means 

and a common variance by three genotypes. In addition, there are six parameters to be 

estimated under the null hypothesis; 𝑝ℳ , 𝑝𝑄 , 𝜇𝑗 , 𝜎2, 𝑗 = 0, 1, 2, and one more parameter of 

the linkage disequilibrium (𝐷1𝑄) is added under the alternative hypothesis. The likelihood 

function can be written as:  

𝐿(𝑝𝑄 , 𝐷ℳ,𝑄 , 𝜇0, 𝜇1, 𝜇2, 𝜎2 | 𝑦, ℳ) =  ∏ ∑ 𝜋𝑗|𝑖𝑓𝑖(𝑦𝑖|𝜇0, 𝜇1, 𝜇2, 𝜎2)2
𝑗=0

𝑛
𝑖=1    

In order to obtain the maximum likelihood estimates (MLEs) of the parameters, the 

EM algorithm can be applied. The deviance of likelihoods between null and alternative 

hypothesis approximately follows 𝜒2-distribution with 1 degree of freedom because one 

parameter of the LD value is added under the alternative hypothesis. Therefore, when the 

deviance is rejected, it means the marker is linked with the QTL significantly.  

 

2.2.2. Adjusted and minimum p-value smLD  

Although the smLD is an efficient method to map a QTL based on one SNP, the 

multiple-testing issue may occur when multiple markers are considered in a GWAS. 

Therefore, to address this issue, Bonferroni correction can be applied, and it is called the 
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adjusted smLD. Bonferroni correction is a conservative adjustment for multiple-testing 

by controlling family-wise type I error. 

As an alternative to the adjusted smLD, the minimum p-value smLD can also be 

applied, which rejects the null hypothesis when at least one of multiple testings is 

rejected. The minimum p-value smLD is likely to reject the null hypothesis too easily. 

Due to this, we expect arise of a high power, while it leads to an inflated type I error as 

well. Although the minimum p-value smLD cannot be used as the reliable method for the 

multiple-testing, it might be useful for the power comparison. In this study, the minimum 

p-value smLD is applied for the power comparison to verify the efficiency of our newly 

proposed mmLD method. 

 

2.3. Multi-marker based tests  

Although these single-marker methods are straightforward, they usually suffer from 

limited powers. Recently, more and more researches have shifted the focus to the 

association test with multiple markers. However, the multiple-marker association is 

usually not a simple extension from the single-marker association test [2], and is 

statistically and computationally more challenging. In the following, I will introduce 

some recent development on association methods using multiple markers.   

 



 

20 

 

2.3.1. Two-marker LD mapping 

The two-marker LD mapping (tmLD) is built on the smLD and was first proposed by 

Yang et al (2014) [18]. In the two-marker LD mapping framework, it assumes a 

dichotomous QTL of alleles major Q and minor q, which is causal but unobserved. Also, 

it considers two neighboring markers ℳ1 and ℳ2, and assumes that the phenotype 

affected by the QTL follows a mixture Gaussian distribution with three different means 

and the same variance by the genotypes of the QTL.  

Because the tmLD examines the association of two known markers and an 

unobserved QTL, there are four LDs as follows; 𝐷12, 𝐷1𝑄, 𝐷2𝑄, and 𝐷12𝑄. The first LD 

𝐷12 can be estimated directly by the two markers which are already observed. However, 

the other three LDs (𝐷1𝑄, 𝐷2𝑄, 𝐷12𝑄) between two markers and the QTL should be tested 

for whether they have zero quantities or not. Therefore, the null hypothesis is that the 

QTL is not associated with two adjacent SNP markers (𝐻0: 𝐷1𝑄 = 𝐷2𝑄 = 𝐷12𝑄 = 0) and 

the alternative is the opposite. The likelihood function can be written as: 

𝐿(𝛺𝑝, 𝛺𝑞 | 𝑦, ℳ1, ℳ2) =  ∏ ∑ 𝜋𝑗|𝑖𝑓𝑖(𝑦𝑖|𝛺𝑞)2
𝑗=0

𝑛
𝑖=1        

where Ω𝑝 denotes the parameters of haplotype frequencies of two known markers and the 

QTL and Ω𝑞 does the phenotypic parameters; 𝜇𝑗, 𝜎2, 𝑗 = 0, 1, 2.  

The tmLD uses the EM algorithm to obtain MLEs for the parameters. The 

computational algorithms are given in what follows: 
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Step 1: Give initial values to the unknown parameters (Ω𝑝, Ω𝑞) 

Step 2: E-Step – Calculate the posterior probabilities for each subject 𝑖 carrying a 

particular QTL genotype 𝑗 using the equation Π𝑗|𝑖 =
π𝑗|𝑖𝑓(𝑦𝑖|Ω𝑞)

∑ π𝑗|𝑖𝑓(𝑦𝑖|Ω𝑞)2
𝑗=0

 . 

Step 3: M step – Solve the log-likelihood equations for each parameter based on 

the observed data and Π𝑗|𝑖 to obtain its estimate. To estimate the quantitative 

genetic parameters (Ω𝑞), their expressions in closed forms can be derived 

based on the estimation equations. For the estimates of the population genetic 

parameters (Ω𝑝), another inner layer of EM algorithm can be employed. 

Step 4: Repeat the E and M steps until the estimates converge to stable values. The 

estimates at convergence are the MLEs of parameters. 

The tmLD uses the likelihood ratio test with 3 degree of freedom. If the deviance 

of likelihoods between the null and alternative hypothesis is rejected, it means that the 

QTL is located on two adjacent markers and linked with them. The tmLD shows better 

power performances than those of single-marker association test [18]. Therefore, it is 

reasonable to assume that the LD mapping including more than two-markers is likely to 

have the better powers for mapping QTL than the smLD.  

However, in order to use multiple markers, some limitations of the tmLD must be 

solved first. The first is to derive genotypic probabilities from estimated haplotype 

frequencies under Hardy-Weinberg Equilibrium for three or more markers because its 

calculation becomes complicated. The second issue is how to determine the degree of 
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freedom of LRT for the multiple-markers. Therefore, these challenges are the motivation 

of my research.  

 

2.3.2. Sequence Kernel Association Test 

The sequence kernel association test (SKAT) is another multi-marker based 

methods proposed by Wu (2011) and Lee (2012) [19, 20]. It is a regression approach that 

tests for the association between SNPs in a small panel and either case-control or 

continuous phenotypes [19]. The SKAT uses a multiple regression model to directly 

regress the phenotype on genetic variants (SNPs) in a region and on covariates. It 

assumes that 𝑛 individuals are sampled with observed 𝐾 SNPs. Covariates such as the 

demographic variables and top principal components of genetic variation are allowed for 

controlling population stratification. For 𝑖-th subject, 𝑦𝑖 denotes the phenotype and 𝕏i =

 (𝑋𝑖1, 𝑋𝑖𝑚, … , 𝑋𝑖𝑚) and 𝔾𝑖 =  (𝐺𝑖1, 𝐺𝑖𝑚, … , 𝐺𝑖𝐾) do the covariates and genotypes, 

respectively. The model for the continuous phenotypes is as follows: 

𝑦𝑖 =  𝛼0 +  𝛼′𝕏𝑖 +  𝛽′𝔾𝑖 + 휀𝑖            

where 𝛼0 is an intercept term and α =  [𝛼1, … , 𝛼𝑚]′ is the vector of regression coefficient 

for the  𝑚 covariates and, β =  [𝛽1, … , 𝛽𝐾]′ is the vector of regression coefficients for the 

𝐾 observed SNPs, 휀𝑖 is an error term with zero mean and 𝜎2 variance. The null 

hypothesis is that the coefficients of variants (SNPs) are zero; 𝐻0: 𝛽 = 0. However, since 

the standard likelihood ratio test has little power, the SKAT tests assume that each 𝛽𝑘 
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follows an arbitrary distribution with zero mean and 𝑤𝑘𝜏 variance, where 𝜏 is a variance 

component and 𝑤𝑘 is a pre-specified weight for variant 𝑘. Therefore, it uses a variance-

component score test in the corresponding mixed model. 

Q =  (y −  �̂�)′𝕂(y −  �̂�)        

where  𝕂 = 𝔾𝕎𝔾′, 𝔾 is an 𝑛 × 𝑘 matrix with the (𝑖, 𝑘)-th element being the genotype of 

variant 𝑘 of subject 𝑖,  𝕎 = diag(𝑤, … , 𝑤𝐾) contains the weights of the 𝐾 SNPs,  �̂� =

 𝛼0̂ + Xα̂  is the predicted mean of y and  𝛼0̂ and α̂  are estimates of covariates 𝕏 under 

the null hypothesis. The power of the SKAT depends on choices of weights (𝑤𝑘). Under 

𝐻0, Q follows a mixture of 𝜒2-distributions. The SKAT is computationally efficient and it 

yields p-value easily with simple analytic formulae, and the features of the SKAT are 

exploration of local correlation structure, incorporation of flexible weights to boost power 

and allowance for epistatic variant effects.  

This SKAT for continuous phenotypes without covariates is applicable for the 

power comparison with the mmLD method because it is able to deal with multiple 

markers to detect their relationships with continuous phenotypes. 

 

2.3.3. Smoothed Minimax Concave Penalty  

The smoothed minimax concave penalty (SMCP) method was proposed by Liu 

(2013) [21]. The SMCP is a penalized regression method for identifying important SNPs 

in GWAS. It is a combination of the minimax concave penalty (MCP) proposed by 
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Zhang [22] and a penalty, consisting of the squared differences of the absolute effects of 

adjacent markers. The MCP promotes sparsity in the model and selects significant SNPs 

and the penalty for the squared differences of absolute effects which take into account the 

natural ordering of SNPs and adaptively incorporates the LD structure between adjacent 

SNPs [21]. The MCP is defined as 

𝜌(𝑡;  𝜆1, 𝛾) =  𝜆1 ∫ (1 −
𝑥

𝛾𝜆1
)

+
𝑑𝑥

|𝑡|

0
.                    

where 𝜆1 is a penalty parameter, and 𝛾 is a regularization parameter that minimizes the 

maximum concavity. 

 The SMCP assumes that 𝐾 SNPs and 𝛽𝑘 are the effects of the 𝑘-th SNP in the 

model which describes the relationship between phenotype and markers, and the SNPs 

are ordered by their physical locations on a chromosome. Neighboring SNPs in high LD 

are expected to have similar strength of association with the phenotype. The penalty 

encourages smoothness in |𝛽|s at adjacent markers. 

𝜆2

2
∑ 𝜍𝑘(|𝛽𝑘| − |𝛽𝑘+1|)2𝐾−1

𝑘=1         

where the weight 𝜍𝑘 is a measure of LD between the 𝑘-th and 𝑘+1-th SNPs and it 

promotes |𝛽𝑘| and |𝛽𝑘+1| to be similar to an extent inversely proportional to the LD 

strength between the corresponding SNPs. Neighboring SNPs in weak LD are allowed to 

have the larger difference in smoothness in |𝛽|s than if they are in stronger LD. 

The SMCP is applicable for scanning a dense set of SNPs by incorporating the 

LD information. Although it is an efficient tool to deal with a large number of SNPs, it is 
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not comparable with the mmLD because it does not give the overall p-value but the p-

value of each SNP. Meanwhile, the mmLD gives only the overall p-value for the multiple 

markers. Therefore, it was not plausible to compare their powers in this study.  
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Chapter 3 Multiple-marker LD mapping 

 

In this chapter, I will propose a novel method in details. It is organized as follows: I 

will introduce a novel model mmLD and explain how it works for the QTL mapping. In 

addition, I will show the results of various simulations to verify the applicability of the 

mmLD.  

 

3.1. Method 

3.1.1. Setting multi-marker LD (mmLD) mapping 

In the mmLD mapping framework, we assume a dichotomous quantitative trait locus 

(QTL, 𝒬) of alleles Q and q that is causal and is unobserved, and the allele frequencies of 

Q and q are expressed as 𝑝𝑄 and 𝑝𝑞 = 1 − 𝑝𝑄. Suppose that the QTL is genetically linked 

to a group of genotyped SNP markers, ℳi (i = 1, … , k, k > 2) that are from a LD block, 

and each marker ℳi has two alleles Mi and mi with corresponding frequencies of  𝑝𝑖 and 

1 − 𝑝𝑖. Then, the k markers may form 2𝑘 possible haplotypes, and form 2𝑘+1 possible 

joint haplotypes together with the unknown QTL. Let pℳ1⋯ℳk
 denotes the frequency of 

haplotypes formed by k markers, and pℳ1⋯ℳk,𝒬 the frequency of the joint haplotype 

formed by the k markers and the QTL.  The LD between the QTL and the group of 

markers can be described by the following equation: 

𝑝ℳ1⋯ℳ𝑘,𝒬  =  𝑝ℳ1⋯ℳ𝑘
𝑝𝒬 +  𝐷ℳ1⋯ℳ𝑘,𝒬       Eqn 1 
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In general, there are 2𝑘 − 1, Dℳ1⋯ℳk,𝒬 values, one for each marker haplotype. If all 

Dℳ1⋯ℳk,𝒬s are zeros, it indicates that the QTL and the marker group are independent; 

otherwise, the QTL and the marker group are in LD.  

 

3.1.2. Mixture Gaussian Model of mmLD 

Suppose that there is a random sample of size 𝑛, For subject 𝑖 (𝑖 = 1, … , 𝑛), 𝑘 

markers (ℳi1 ⋯ ℳik) have been genotyped and a continuous phenotypic trait (yi) has 

also been obtained. Assume these samples are drawn from a natural population under 

HWE, and the continuous trait is directly affected by the QTL. Then, the relationship 

between the observed phenotypes and their expected means, which are determined by the 

genotypes of the QTL, can be described as follows:  

𝑦𝑖 = ∑ 𝜉𝑖𝑗𝜇𝑗
2
𝑗=0 + 𝑒𝑖,    𝑖 = 1, … , 𝑛      Eqn 2 

where ξij is an indicator variable defined as 1 if subject 𝑖 has a QTL genotype 𝑗 (2 for 

QQ, 1 for Qq, and 0 for qq), 𝜇𝑗 is the expected phenotypic mean for a QTL genotype 𝑗, 

and  ei is the error term that is assumed to follow a Gaussian normal distribution with 

zero mean and variance σ2. Based on the conditional probability of subject 𝑖 carrying a 

certain QTL genotype 𝑗 given its markers, πj|i = P(𝒬 = j|ℳi1 ⋯ ℳik) or P(ξij = 1), the 

likelihood of the phenotype and multiple markers can be constructed by the following 

mixture model: 
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Eqn 3 

where Θp is a vector of the population genetic parameters that describe haplotype 

frequencies including the 𝑘 known markers and one putative QTL, Θq = {𝜇0, 𝜇1, 𝜇2, 𝜎2} 

is a vector of parameters of the phenotypic traits. We assume that these phenotypic values 

are normally distributed. The calculation πj|i becomes complicated as 𝑘, the number of 

known markers, increases. This issue will be addressed in the next section. 

 

3.1.3. Calculation of joint and conditional genotypic probabilities with 𝒌 markers 

For small 𝑘 (2 or 3), the conditional genotypic probabilities can be easily 

expressed and calculated by the haplotype frequencies in Table 2 and Table 3 [7, 8]. 

However, since the numbers of haplotypes (2𝑘) and genotypes (3𝑘) increase 

exponentially with the arbitrary number of genetic loci, the calculation of genotypic 

probabilities becomes difficult for large 𝑘. In general, genotypes are classified into 

homozygote or heterozygote [24]. The homozygote denotes the identical bi-alleles at 

each locus and the heterozygote does bi-alleles with different alleles at a specific locus 

[25].  If a subject has homozygotes at all genetic loci, its joint genotypic probabilities can 

be simply calculated with the square of a haplotype frequencies. However, if at least one 

of loci contains the heterozygote, the calculation of joint genotypic probabilities becomes 
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complicated as one genotype may come from combinations of different haplotypes as 

shown in Figure 4.  

 

Figure 4 Example of genotypic probabilities of heterozygote 

 

For the purpose of the simplicity, for a specific locus, its two alleles are denoted 

as 0 and 1 and correspondingly, its three genotypes can be denoted as 0, 1, and 2, as 

simply the summation of the two alleles. Below we describe a general algorithm for the 

calculation of joint genotypic probabilities for the combinations of genotypes at 𝑘 

markers. Here, 𝐺𝑘 denotes the genotype of the 𝑘 markers. 

Step 1. Determine zygotic status (homozygote vs heterozygote) for genotypes at all loci. 

Step 2. If a subject has homozygote genotypes at all 𝑘 markers like G00000 and G22222, its 

genotype frequency is the square of the corresponding haplotype frequency. For example, 
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if there are five markers (𝑘 = 5) and its genotypes are given like G00202 and G02002, then 

their genotypic probabilities can be calculated to P(G00202) = p00101
2, and  P(G02002) = 

p01001
2, respectively.  

Step 3. If at least one of loci has the heterozygote, 

Sub-step 3.1. Consider the haplotypic frequencies which have the correct major or 

minor allele correspond to the homozygote loci. 

Sub-step 3.2. Combine the haplotypic frequencies of which one has major allele 

and the other has minor allele at the heterozygote loci.  

Sub-step 3.4. Genotype probability is the sum of two times the combination of 

haplotypic frequencies. For example, if there are five loci and its 

genotype is given like G11202, then its genotypic probability is P(G11202) 

= 2p00101p11101 +  2p10101p01101. 

 

Table 5 Joint genotypic probabilities of k marker 

Genotypic probabilities MkMk Mkmk mkmk 

M1M1 M2M2…Mk-1Mk-1 p00…0
2 2p00…0p00…1 p00…1

2 

M1M1 M2M2…Mk-1mk-1 2p00…0p0…10 
2p00…0p0…11

+  2p0…10p00…1 
2p00…1p0…11 

M1M1 M2M2…mk-1mk-1 p0…10
2 2p0…10p0…11 p0…11

2 

… … … … 
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m1m1 m2m2…mk-1mk-1 p11…0
2 2p11…0p11…1 p11…1

2 

 

With this algorithm, Table 5 shows the example of joint genotypic probabilities 

for 𝑘 genetic markers. If one is QTL (the column variables), the conditional probabilities 

of QTL given markers (𝜋𝑗|𝑖) can then be derived, correspondingly.  

 

3.1.4. Conditional joint genotypic probabilities 

In the mmLD procedure, the mmLD conducts two-phase estimations, separately. The 

first-phase is to estimate haplotype frequencies with 𝑘 known markers and the second-

phase is to update haplotype frequencies with both 𝑘 known markers and the QTL. Here, 

estimations of the second phase depend on the estimates of haplotype frequencies from 

the first phase. In other words, the 2𝑘+1 number of haplotype frequencies in the second-

phase are derived from the 2𝑘 number of estimates of haplotype frequencies from the 

first-phase. Thus, this dependence of haplotype frequencies corresponds to the 

dependence of genotype probabilities.  

Each posterior probability (πj|i = P(𝒬 = j|ℳi1 ⋯ ℳik) of the QTL is expressed as 

the conditional joint genotypic probabilities in Eqn 3; the genotypic probability of the 

second phase over the genotypic probability of the first phase. Also, the summation of 

three posterior probabilities should be 1 for each subject 𝑖 = 1, 2, … , 𝑛.  
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∑ πj|i

𝑗=0,1,2

= 1 

Table 6 shows the example of the conditional joint probabilities of one known marker 

and one QTL.   

Table 6 Table of conditional probabilities of 1 SNP and 1 QTL for several subjects 

Sub

ject 

Genoty

pes of 

one 

SNP 

Genotypic 

probabilit

y of one 

marker  

Conditional probabilities  |j i  for unknown QTL 

genotypes 

QQ (j = 0) Qq (j = 1) qq (j = 2) 

1 AA p0
2 

p00
2

p0
2

 
2p00p01

p0
2

 
p01

2

p0
2

 

2 Aa 2p0p1 
2p00p10

2p0p1
 

2p00p11 + 2p01p10

2p0p1
 

2p01p11

2p0p1
 

3 Aa 2p0p1 
2p00p10

2p0p1
 

2p00p11 + 2p01p10

2p0p1
 

2p01p11

2p0p1
 

4 aa p1
2 

p10
2

p1
2

 
2p10p11

p1
2

 
p11

2

p1
2

 

… …. … … … … 

n aa p1
2 

p10
2

p1
2

 
2p10p11

p1
2

 
p11

2

p1
2

 

 

 

3.1.5. Expectation-Maximization (EM) algorithm 

Maximum likelihood estimates (MLEs) of parameters can be obtained by maximizing 

the log-likelihood function (Eqn 3). The EM algorithm can be very efficient for 

parameter estimations in the mixture model. In this study, I propose a two-phase EM 
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algorithm. The first phase is to estimate haplotype frequencies based on known genotypes 

of 𝑘 markers and the second phase is to update haplotype frequencies with unknown QTL 

and phenotypic parameters. Therefore, two-phase estimations are performed, separately 

in the mmLD procedure. 

Since the mmLD assumes that the QTL is unknown, estimating haplotype frequencies 

for 𝑘 known markers and the QTL in the second phase entirely depends on the estimates 

of haplotype frequencies for 𝑘 known markers from the first phase. For the first phase, 

estimating haplotype frequencies for known genotypic probabilities has been studied with 

various methods as explained in Chapter 1. Thus, in this study, the EM algorithm, which 

is one of popular methods proposed by Excoffier and Slatkin (1995) [11], is implemented 

in the first phase estimation[26-28] . The “haplo-stat” is one of well-known software for 

the estimation of haplotype frequencies based on EM algorithm [26]. The detailed 

algorithmic working flow is described as follows: 

Step 1: Estimate the 2𝑘  haplotype frequencies for 𝑘 known markers from given 

genotype data (1st-phase EM). The R-package “haplo.stat” is applied [26]. 

Step 2: Initialize parameters (Θ(0)) of 2𝑘+1  haplotype frequencies (Θ𝑝
(0)

) which include 𝑘 

known markers and one QTL, and phenotypic parameters (Θ𝑞
(0)

). 

Step 3: Derive the 3𝑘+1 joint conditional genotypic probabilities based on initialized or 

updated haplotype frequencies of  𝑘 known markers and one QTL.  
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Step 4:  E-step Calculate posterior probabilities for each subject 𝑖 carrying the 

particular QTL genotypes 𝑗. 

For each iteration (𝑟 = 1, 2, …), log-likelihood function is  
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, where 𝑖 = 1, 2, …, 𝑛,  𝑗 = 0, 1 or 2 and 𝜋𝑗|𝑖
(𝑟−1)

is the prior probabilities. 
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Step 5: M-step Solve the log-likelihood equations for each parameter based on observed 

data and Π𝑗|𝑖 to obtain its estimate. The expectation of log-likelihood equations 

can be divided into two parts—phenotypic and haplotypic parameters in (6). 



 

35 

 

Therefore, both parts must be maximized, separately. To estimate the phenotypic 

parameters (Ω𝑞), their expressions in closed forms can be derived based on the 

estimation equations. For the estimates for the haplotypic parameters (Ω𝑝), 

another inner layer of EM algorithm can be employed. 

M1. to maximize           
2

2
1

| 22
1 0

1
; , , log

22
ij

n
i jr r r

z q p q j i

i j

y
E y







 

  
       
   

  

1) Estimates of means 
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2) Estimates of variance 
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M2. to maximize 

           
2

1

| |

1 0

; , , log
ij

n
r r r

z p p q j i j i

i j

E y 


 

            Eqn 9           

Table 7 Example of maximization of haplotype frequencies including the QTL 

Genotypes 

of known 

markers 

Unknown QTL 

QQ (0) Qq (1) qq (2) 

000....0
k

 

1

000...0 0

1

I 000...0
k

n

i

i k

N 
 

 
  

 
  

1

000...1 1

1

I 000...0
k

n

i

i k

N 
 

 
  

 
  

1

000...2 2

1

I 000...0
k

n

i

i k

N 
 

 
  

 
  

000....1
k

 

1

00...10 0

1

I 000...1
k

n

i

i k

N 
 

 
  

 
  

1

00...11 1

1

I 000...1
k

n

i

i k

N 
 

 
  

 
  

1

00...12 2

1

I 000...1
k

n

i

i k

N 
 

 
  

 
  

000....2
k

 

1

00...20 0

1

I 000...2
k

n

i

i k

N 
 

 
  

 
  

1

00...21 1

1

I 000...2
k

n

i

i k

N 
 

 
  

 
  

1

00...22 2

1

I 000...2
k

n

i

i k

N 
 

 
  

 
  

…. …. …. …. 

222....2
k

 

1

22...20 0

1

I 222...2
k

n

i

i k

N 
 

 
  

 
  

1

22...21 1

1

I 222...2
k

n

i

i k

N 
 

 
  

 
  

1

22...22 2

1

I 222...2
k

n

i

i k

N 
 

 
  

 
  

 

The sum of posterior probabilities of each subject is the expectation of genotypic 

probabilities with 𝑘 known markers and the QTL. Table 7 shows the example of the sums 

of posterior probabilities. Based on this sums, the second-phase estimation is performed 

for the 2𝑘+1 haplotypic probabilities. In this step, EH (Estimating Haplotype) software 

[10] is applied for another inner layer of EM algorithm. 

Step 6: Iterate E and M-steps while the log-likelihood converges to the maximum.  
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3.1.6. Hypothesis Testing 

The goal of this study is to test that the unknown QTL is in linkage disequilibrium 

with a group of 𝑘 known markers. Significant LDs infer that 𝑘 known markers and the 

unknown QTL are physically close, which could provide the guidance for subsequent 

biological validations. The hypothesis for the mmLD mapping can be formulated as 

follows: 

H0: A QTL and known markers are independent, i.e. all 𝐷ℳ1⋯ℳ𝑘,𝒬 = 0  

H1: At least one of equality of H0 is not true. 

Under the null hypothesis (H0), the conditional genotypic probabilities of the QTL are 

constant throughout subjects regardless of the marker genotypes they carry. So the 

parameter set under H0 is 

 Θ𝐻0
= {𝑝1, … , 𝑝𝑘, 𝐷12, … , 𝐷1…𝑘, 𝑝𝑄 , 𝜇0, 𝜇1, 𝜇2, 𝜎2} 

where 𝑝1, … , 𝑝𝑘 indicate the allelic frequencies of k known markers,  𝐷12, … , 𝐷1…𝑘 denote 

LDs between k known markers,  𝜇0, 𝜇1, 𝜇2, 𝜎2 denote three means and the variance of 

phenotypic parameters, and 𝑝𝑄 represents the allelic frequency of the QTL. Under the 

alternative hypothesis, the parameters of LDs (𝐷1𝑄 , … , 𝐷1…𝑘𝑄) between k known markers 

and the QTL are added. The EM algorithm to maximize the likelihood under H0 is similar 

to that under H1 in the previous section. Then, a likelihood ratio test statistics (LRT) can 

be constructed as follows:  
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𝐿𝑅𝑇 = −2ℓ𝐻0
+ 2ℓ𝐻1

     Eqn 10 

Under H0, the LRT asymptotically follows a 
2 - distribution with degrees of freedom 

to be the difference in numbers of parameters between null (H0) and alternative 

hypothesis (H1). 

 

3.1.7. Estimating degree of freedom 

Let’s recall the parameters under null and alternative hypothesis; 

Θ𝐻0
= {𝑝1, … , 𝑝𝑘, 𝐷12, … , 𝐷1…𝑘, 𝑝𝑄 , 𝜇0, 𝜇1, 𝜇2, 𝜎2} 

  Θ𝐻1
= {𝑝1, … , 𝑝𝑘, 𝐷12, … , 𝐷1…𝑘, 𝑝𝑄 , 𝜇0, 𝜇1, 𝜇2, 𝜎2, 𝐷1𝑄 , … , 𝐷1…𝑘𝑄} 

In the likelihood ratio test, the degree of freedom represents the difference of 

parameters between the null and alternative hypothesis, and thus, the number of parameters 

of LDs (𝐷1𝑄 , … , 𝐷1…𝑘𝑄) between k known markers and the QTL is set up as degrees of 

freedom for LRT.  

The number of LDs of between k known markers and the QTL is equal to the number 

of combinations of k elements; ∑ (𝑘
𝑖
)𝑘

𝑖=1 = 2𝑘 − 1. Thus, the expected degree of freedom 

should be 2𝑘 − 1  in a common situation. For example, when the numbers of known 

markers are two (𝑘 = 2) or three (𝑘 = 3), the expected degrees of freedom are 3 or 7, 

respectively. However, things may become more complicated when the number of markers 
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are large (𝑘 > 3). For example, some haplotypic frequencies may not be estimated from 

the data, or with frequency of zeros. In these cases, the degree of freedom of 2𝑘 − 1 will 

be inaccurate. Below I will provide a more systematic way of determining the degrees of 

freedom for our proposed test. 

 

3.1.7.1. Correlation among markers is important but not directly related to the 

degree of freedom  

Initially, we thought the correlations among markers may play important roles in 

determining the degree of freedom, which is best illustrated by a thought experiment. 

Suppose that there are two known markers and their correlation is exactly one, which 

means that they have identical genotypes, and the genetic information of two markers is 

essentially that of one marker. In this case, although there are two markers, the degree of 

freedom should not be three but one. Thus, it would be reasonable to hypothesize that the 

degree of freedom depends on the level of correlation between known markers. Several 

simulations have been conducted to check this hypothesis. However, the results of 

simulations did not reveal any relationship between the level of correlation and the 

reduction of degree of freedom. More simulated settings will be shown in the next 

section.  

Although these trials did not give us what we expected, it did confirm that degree of 

freedom drops from 3 to 1 when the correlation changes from less than 1 to 1. Based on 

this fact, we further examined the reason of the reduction of degrees of freedom and 



 

40 

 

explored the hypothesis that the number of non-zero haplotypes is related to the test 

degree of freedom, which will be described in the section below. 

 

3.1.7.2. Haplotypes with zero frequency 

Table 8 shows the example of haplotype frequencies of two identical markers. There 

are four haplotype frequencies for these two markers, but among them, two haplotypes 

(𝑝00, 𝑝11) have non-zero and the other two has zero frequencies. As described above, the 

haplotype frequencies of 𝑘 known markers are estimated from the first phase, and then 

the estimation of haplotype frequencies in the second phase depends on the estimates of 

the first phase. In other words, the frequency of each haplotype from the first phase is 

divided into two frequencies by considering the bi-allelic QTL in the second phase. 

Therefore, the zero haplotype frequency of the first phase leads to two zero haplotype 

frequencies of the second phase. Thus, it means that zero frequency is not a parameter 

any more. Therefore, the degree of freedom of Table 8 becomes 1 (= 22 − 2 − 1) from  3 

(= 22 − 1). 

In summary, if the number of known markers is two (𝑘 = 2) or three (𝑘 = 3), then 

degree of freedom has maximum 3 or 7 (=2𝑘 − 1), respectively. However, if there are 

haplotypes with zero frequencies (say 𝛼 of them), then the effective degree of freedom 

would become 2𝑘 − 𝜆 − 1, which is less than 2𝑘 − 1. The next section shows how the 

reduction of degree of freedom is related to the number of haplotypes with zero 
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frequencies, in the example of two known markers. The evaluation of type I error with 

the reduced degree of freedom will be shown later in the next section. 

Table 8 Example of haplotype frequencies of identical two known markers 

Haplotype frequencies of 

identical two known markers 

Marker 1 

A a  Total 

Marker 2 

B  
0.5 

(𝑝00) 

0 

(𝑝01) 

0.5 

(𝑝𝐵) 

b  
0 

(𝑝10) 

0.5 

(𝑝11) 

0.5 

(𝑞𝐵 = 1 − 𝑝𝐵) 

Total 
0.5 

(𝑝𝐴) 

0 

(𝑞𝐴 = 1 − 𝑝𝐴) 
1 
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Example of Reduced degree of freedom for haplotypes with zero frequency 

Let’s look at how to determine the degree of freedom with two known markers 

and one QTL. Haplotype frequencies of two known markers and a QTL are set up using 

the equations below. The red font denotes the parameters estimated in the second phase 

estimation. 

Haplotype frequencies of Two known markers (ℳ1 & ℳ2) and one QTL(ℳ3) 

p000 = p1p2p3 + p1D23 + p2D13 + p3D12 + D123 

p011 = p1q2q3 + p1D23 - q2D13 - q3D12 + D123 

p101 = q1p2q3  - q1D23 + p2D13  - q3D12 + D123 

p110 = q1q2p3  - q1D23  - q2D13 + p3D12 + D123 

p001 = p1p2q3  - p1D23  - p2D13 + q3D12  - D123 

p010 = p1q2p3  - p1D23 + q2D13  - p3D12  - D123 

p100 = q1p2p3 + q1D23  - p2D13  - p3D12  - D123 

p111 = q1q2q3 + q1D23 + q2D13 + q3D12 - D123 

 

Example 1 ℳ1 = ℳ2 

 p1 = p2 ,  q1 = q2 ,  D12 = p00 – p1p2 = p1 – p1
2 = p1q1 & p010 = p011 = p100 = 

p101 = 0 

 p010 = p1q2p3  - p1D23 + q2D13  - p3D12  - D123 

= p1q1p3  - p1D13 + q1D13  - p3p1q1  - D123  (D23 = D13, so, D23 is known) 

= - p1D13 + D13  - p1D13  - D123 = 0 
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 D123 = (1 - 2p1)∙ D13   (D123 is known) 

 Finally, two parameters (p3 & D13) are left. 

 

Example 2 One haplotypic frequency of two known markers is zero. (e.g., p10 = 0) 

 p100 = p101 = 0 & D12 = p1p2 

 p100 = q1p2p3 + q1D23  - p2D13  - p3D12  - D123 = 0 

 D123 = q1p2p3 + q1D23  - p2D13  - p3D12   (so, D123 is known) 

 Finally, three parameters (p3, D13 & D23) are left. 

To summarize, we can determine degree of freedom as follows: 

1) All haplotypes of known markers have effective non-zero frequencies. 

Degree of freedom = 2k – 1 

2) If λ number of haplotypes have zero frequencies and the other have effective non-

zero frequencies. 

Degree of freedom = 2k – λ – 1 
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3.1.7.3. Small haplotype frequency 

In practice, we found that for large 𝑘, the genotypic data are fragmented very quickly 

and a few haplotypes may have very small frequencies (e.g. 1e-6). These small 

frequencies should be handled carefully as we do not know whether they are true zero or 

non-zero due to poor estimations. As the empirical experience, we found that the 

haplotype frequency that is larger than 1 divided by the number of subjects may serve as 

a useful practical cutoff for non-zero frequency.  

 Table 9 is the example of the differences between parameters and estimated 

haplotype frequencies from the first phase. 2,000 subjects were sampled in this simulated 

setting. Among parameters of haplotype frequencies of three known markers, there are 

three small haplotype frequencies (𝑝000, 𝑝010, and 𝑝101) which are less or equal to 1 over 

2000 subjects (= 0.0005). The estimate of the haplotype 𝑝000 is very small but it is not 

zero even though the true parameter is zero. In a natural population, the genotypes of 𝑘 

markers are known but their haplotype frequencies are unknown. Therefore, the smallest 

value (3e-09), which emerges in the first phase estimation, should be determined for 

whether it is zero or not. If all three small frequencies are determined as non-zero values, 

then the deviance would follow 𝜒2-distribution with the full degree of freedom 7 (=23 −

1). On the other hand, if all three small frequencies are regarded as zero values, then it 

would follow 𝜒2-distribution with the reduced degree of freedom 4 (=23 − 3 − 1).  
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Table 9 The difference between parameters and estimates of haplotype frequencies from 

the first phase in a simulated sample 

Parameter 

𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 

0 0.2905 0.0003 0.0988 0.182 0.0005 0.1038 0.3243 

Estimates 

from the 

first phase 

3e-09 0.2930 0.0004 0.0961 0.1794 0.0006 0.1063 0.3243 

  

 

Figure 5 Type I error evaluation of the different degrees of freedom 
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Figure 5 shows the histograms of p-value under the null hypothesis for different 

degrees of freedom from 4 to 7. When they were treated as zero quantities and removed 

from degree of freedom, the type I error was inflated; on the other hand, when they were 

treated as non-zero quantities, the test was too conservative. 

In order to determine the effectiveness of small haplotype frequencies, several ideas 

were tried such as the arithmetic or weighted average of smallest and largest degree of 

freedom. These simulations will be shown in the next simulation section. However, some 

of these trials did work well and others did not control type I error. Therefore, these ideas 

cannot provide stable outputs for the proper degree of freedom and they all lack some 

theoretical foundations.  

 

3.1.7.4. Sequential Likelihood Ratio Test 

To solve the issue with small haplotype frequencies, I propose a novel sequential 

likelihood ratio test procedure for the control of type I errors. The idea is analogous to the 

backward model selection strategy, i.e. haplotypes with small frequencies will be tested 

sequentially to examine if they are significantly different from zero or not, one at a time. 

Specifically, let LFull be the likelihood under alternative hypothesis by including all non-

zero haplotype frequencies, and LReduced be the likelihood of setting the smallest haplotype 

frequency to be zero. If the LRT between LFull and LReduced is not significantly different 

under a 𝜒2-distribution with 1 degree of freedom, that is -2LReduced + 2LFull < 𝜒0.95,1
2 , then 

it means there is no evidence that the smallest haplotype frequency is effective and thus it 



 

47 

 

should be removed from degree of freedom calculation. The procedure will be repeated 

until frequency of any haplotype cannot be set to zero. Once it stops, we can find the 

proper degrees of freedom with the control of type I error. Again, it will be tested by 

various settings of simulations and be discussed in the next section.  
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3.2. Simulations 

Extensive Monte Carlo simulation experiments have been performed to examine the 

statistical properties of the proposed mmLD mapping method. 

 

3.2.1. Simulated settings 

Let’s consider a sample of 𝑛 subjects randomly chosen from a human population that 

is under Hardy-Weinberg Equilibrium. For the 𝑖-th subject, suppose its phenotypic value 

𝑦𝑖 is controlled by an underlying QTL, which is located at a LD block and is in linkage 

with a group of 𝑘 markers (𝑘 ≥ 2). The marker and QTL genotypes were first simulated 

based on pre-specified haplotype frequencies, and then the phenotypic values were 

generated based on QTL genotypes according to Eqn 2. The variances in phenotypic 

values were determined by different heritability values (𝐻2)[29], which quantifies the 

genetic contribution from the QTL to the overall trait. Specifically, 𝐻2 = 0 implies that 

the three means of QTL genotype groups are the same, implying no QTL effect. QTL 

information has been removed from mmLD mapping to mimic the real scenario that QTL 

may be ungenotyped. Each simulated setting was performed 200, 500 or 1000 times for 

the evaluation of type I error and power.  
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3.2.2. Type I error Evaluation 

In the hypothesis testing, type I error means the probability of incorrectly rejecting 

the null hypothesis (𝐻0) when the null hypothesis is true.  

 

3.2.2.1. Relationship between degree of freedom and correlation of known markers 

In this section, outputs of simulations for the trials, which were to examine the 

relationship between degrees of freedom and correlations of known markers, are shown. 

 Figure 6 and Table 10 show the one of outputs for simulated setting that has high 

correlations (r = 0.5, 0.9, 0.95, and 1) between two known markers. 1,000 subjects were 

sampled from a natural population. The major allele probabilities of both two known 

markers were set to be 0.5 and the linkage disequilibrium between known two markers 

(𝐷12) varied from 0 to 0.25. If 𝐷12 is zero, then their correlation is zero. Meanwhile, if 

𝐷12 is 0.25, then their correlation is one. The phenotypic values follow the mixture 

Gaussian normal distributions with different three means and the same variance; 𝜇0 =

20, 𝜇1 = 40, 𝜇2 = 60 and σ2 = 49.  

As shown in Table 10, the proper degree of freedom of each simulation is 22 − 1 = 

3, except the last setting (𝐷12 = 0.25, r = 1), in which the proper degree of freedom was 1. 

Particularly, in the fourth simulation, even though it had high correlation (𝐷12=0.2375, 

r=0.95), its proper degree of freedom was still around 3.  
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Therefore, the results of simulations did not reveal any relationship between the level 

of correlation and the reduction of degree of freedom. More simulated settings are shown 

below (Table 11 – Table 13, Figure 6 - Figure 9).  

Table 10 Mean and Variance of Deviance for the evaluation of the proper degree of 

freedom  

𝜎2=49 𝐷12 = 0 / r 

= 0 

𝐷12 = 0.125 

/ r = 0.5 

𝐷12 = 0.225 

/ r = 0.9 

𝐷12 = 0.2375 

/ r = 0.95 

𝐷12 = 0.25 / 

r = 1 

Mean 3.1 2.9 3.4 3.3 0.9 

Variance 6.5 5.1 7.2 7.4 1.5 

 

Table 11 Mean and Variance of Deviance for the evaluation of the proper degree of 

freedom with 𝜎2 = 9 

𝜎2 = 9 𝐷12 = 0 / r 

= 0 

𝐷12 = 0.125 

/ r = 0.5 

𝐷12 = 0.225 

/ r = 0.9 

𝐷12 = 0.2375 

/ r = 0.95 

𝐷12 = 0.25 

/ r = 1 

Mean 3.1 3.2 3.0 3.0 1.2 

Variance 6.9 7.6 5.8 5.9 2.3 

 

Table 12 Mean and Variance of Deviance for the evaluation of the proper degree of 

freedom with 𝜎2 = 144 

𝜎2 = 144 𝐷12 = 0 / r 

= 0 

𝐷12 = 0.125 

/ r = 0.5 

𝐷12 = 0.225 

/ r = 0.9 

𝐷12 = 0.2375 

/ r = 0.95 

𝐷12 = 0.25 

/ r = 1 

Mean 3.2 3.2 3.1 3.3 1.1 

Variance 6.0 6.3 6.7 6.5 2.4 

 

Table 13 Mean and Variance of Deviance for the evaluation of the proper degree of 

freedom with 𝜎2 = 400 

𝜎2 = 400 
𝐷12 = 0 / r 

= 0 

𝐷12 = 0.125 

/ r = 0.5 

𝐷12 = 0.225 

/ r = 0.9 

𝐷12 = 0.2375 

/ r = 0.95 

𝐷12 = 0.25 

/ r = 1 

Mean 3.5 3.3 3.5 3.5 1.3 

Variance 7.8 7.5 8.4 7.9 3.6 
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Figure 6 Output of type I error for the high correlation between known two markers with 

𝜎2 = 49 
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Figure 7 Output of type I error for the high correlation between known markers with 

𝜎2 = 9 
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Figure 8 Output of type I error for the high correlation between known markers with 

𝜎2 = 144 
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Figure 9 Output of type I error for the high correlation between known markers with 

𝜎2 = 400  
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3.2.2.2. Evaluating degrees of freedom in the presence of haplotypes with zero 

frequencies 

Based on the extensive Monte Carlo simulation, 100, 500, 1000 and 2000 subjects 

were selected from a natural population. Suppose that their continuous phenotypes follow 

a mixture Gaussian distribution with the variance of 5 (σ2 = 5) and three different 

means; μ0 = 20, μ1 = 40, and μ2 = 60. For type I error evaluation, the null hypothesis is 

set to be true. In other words, there is no linkage disequilibrium between two or three 

known markers and the QTL. Four different scenarios were conducted and their 

parameters of haplotype frequencies for two or three known markers are shown in Table 

14 and Table 15. Because the estimated haplotypes for two markers have two zero 

frequencies in Table 14, 2 degrees of freedom were applied to evaluate type I error. 

Meanwhile, in the Table 15, the 3rd and 4th scenarios of three markers have two and one 

zero frequencies respectively, 6 and 5 degrees of freedom were applied. Figure 10 shows 

that the mmLD controls type I error (0.05) with the reduced degree of freedom and 

Figure 11 shows the histogram of type I error evaluation.  

Table 14 Parameters of haplotype frequencies of two known markers 

Simulated 

Haplotype 

frequencies  

𝑝00 𝑝01 𝑝10 𝑝11 

Applied 

Degree of 

freedom 

Two markers 1 0.26 0.24 0 0.50 2 

Two markers 2 0 0.19 0.42 0.39 2 
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Table 15 Parameters of haplotype frequencies of three known markers 

Simulated 

Haplotype 

frequencies 

𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 
Applied 

Degree of 

freedom 

Three markers 1 0 0 0.124 0.08 0.207 0.18 0.169 0.222 5 

Three markers 2 0.144 0.159 0.124 0.149 0 0.08 0.025 0.319 6 

 

 
Figure 10 Type I error evaluation for reduced degree of freedom based on zero haplotype 

frequencies 
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Figure 11 Histogram of Type I error evaluation for reduced degree of freedom with zero 

haplotype frequencies (2000 subjects) 

 

3.2.2.3. Small haplotype frequencies  
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shown in the following histograms of type I errors under various simulated settings, the 

ad hoc method of average did not perform well. The outputs of the arithmetic and 

weighted average of degree of freedom are shown from Simulation 1 to Simulation 3 

below. 

 Nevertheless, these results are provided as our attempt to solve the problem and 

motivated us to come up with more powerful sequential LRT method, which was 

introduced in the section 3.1.7.4. 

  

Simulation 1—Average or weighted average of degree of freedom 

Table 16 Discrepancies of haplotype frequencies between parameters and estimates 

(Simulation 1) 

Parameter 

𝑝0000 𝑝0001 𝑝0010 𝑝0011 𝑝0100 𝑝0101 𝑝0110 𝑝0111 

0.0003 0.055 0.1753 0 0.0713 0.1363 0.0963 0 

𝑝1000 𝑝1001 𝑝1010 𝑝1011 𝑝1100 𝑝1101 𝑝1110 𝑝1111 

0.2058 0.0573 0 0 0.0005 0.008 0.1913 0.003 

Estimates 

𝑝0000 𝑝0001 𝑝0010 𝑝0011 𝑝0100 𝑝0101 𝑝0110 𝑝0111 

0.0005 0.0556 0.1753 2.1e-09 0.0716 0.1371 0.0941 2.8e-10 

𝑝1000 𝑝1001 𝑝1010 𝑝1011 𝑝1100 𝑝1101 𝑝1110 𝑝1111 

0.2054 0.0567 0 0 0.0005 0.0069 0.1931 0.0032 
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Table 17 Comparison of Type I error with arithmetic and weighed average of degree of 

freedom (Simulation 1) 

p(hap) : Haplotype frequency ; C = 1 

/ # of subject ; J = 1/C = # of subject 
d.f. 

Type I 

error 

K-S statistics 

with uniform 

dist. 

P-value 

𝑰(𝑝(hap) > 𝑪) 9 0.106 0.21 < 0.0001 

Average of 1 & 4 10 0.068 0.11 < 0.0001 

𝑰(𝑝(hap) >  𝑪) + ∑ 𝐼(𝑝(hap)  <

 𝑪)  × 𝑝(ℎ𝑎𝑝) × 𝑱  
10.9 0.048 0.03 0.58 

𝑰(𝑝(haplotype) > 1
𝑪⁄ ) 11 0.048 0.03 0.59 

 

 
 

Figure 12 Distributions of Type I error of arithmetic and weighed average of degree of 

freedom (Simulation 1) 
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Simulation 2—Average or weighted average of degree of freedom 

Table 18 Discrepancies of haplotype frequencies between parameters and estimates 

(Simulation 2) 

Parameters 
𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 

0 0.2905 0.0003 0.0988 0.182 0.0005 0.1038 0.3243 

Estimates 
𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 

2.6e-09 0.2930 0.0004 0.0961 0.1794 0.0006 0.1063 0.3243 

 

Table 19 Comparison of Type I error with arithmetic and weighed average of degree of 

freedom (Simulation 2) 

 

p(hap) : Haplotype frequency ; C = 1 

/ # of subject ; J = 1/C = # of subject 

d.f. 
Type I 

error 

K-S statistics 

with uniform 

dist. 

P-value 

𝑰(𝑝(hap) > 𝑪) 5 0.088 0.15 < 0.0001 

Average of 1 & 4 5.5 0.062 0.09 0.0005 

𝑰(𝑝(hap) >  𝑪) + ∑ 𝐼(𝑝(hap)  <

 𝑪)  × 𝑝(ℎ𝑎𝑝) × 𝑱  
5.8 0.052 0.06 0.06 

𝑰(𝑝(haplotype) > 1
𝑪⁄ ) 6 0.05 0.04 0.39 
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Figure 13 Distributions of Type I error of arithmetic and weighed average of degree of 

freedom (Simulation 2) 

 

 

Simulation 3—Average or weighted average of degrees of freedom 

Table 20 Discrepancies of haplotype frequencies between parameters and estimates 
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0.0005 0.0005 0.001 0.2675 0.184 0.0845 0.1015 0.3605 

Estimates 
𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 

0.0007 0 0.0001 0.273 0.1868 0.0853 0.0985 0.3557 
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Table 21 Comparison of Type I error with arithmetic and weighed average of degree of 

freedom (Simulation 3) 

p(hap) : Haplotype frequency ; C = 1 

/ # of subject ; J = 1/C = # of subject 
d.f. 

Type I 

error 

K-S statistics 

with uniform 

dist. 

P-value 

𝑰(𝑝(hap) > 𝑪) 5 0.046 0.028 0.82 

Average of 1 & 4 5.5 0.024 0.09 0.0007 

𝑰(𝑝(hap) >  𝑪) + ∑ 𝐼(𝑝(hap)  <

 𝑪)  × 𝑝(ℎ𝑎𝑝) × 𝑱  
5.14 0.038 0.04 0.29 

𝑰(𝑝(haplotype) > 1
𝑪⁄ ) 6 0.016 0.15 < 0.0001 

 

 

Figure 14 Distributions of Type I error of arithmetic and weighed average of degree of 

freedom (Simulation 3) 
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3.2.2.4. Sequential LRT for small haplotype frequencies 

Although the idea of calculating the degrees of freedom with weighted averages did 

not work, the results motivated us to come up with more powerful sequential LRT 

method. Four different simulations were conducted to evaluate the applicability of the 

sequential LRT. Results show that under various scenarios, the sequential LRT procedure 

can control type I error well. 

 

Simulation 1—Sequential LRT 

The parameters for this simulation are given in Table 22, in which the frequency of 

one haplotype, 𝑝000 is set to be zero, and the frequencies of another two haplotypes (𝑝010 

and 𝑝110) are set to be small, 0.0005 and 0.0003, respectively. The estimates for 𝑝000, 

𝑝010,  and 𝑝110 are 0, 0.0003 and 1.3e-7, respectively. It is clear that 𝑝000 is not estimable 

and therefore it does not account for any degree of freedom. However, if  𝑝010 and 𝑝110 

are ineffective, i.e., they are treated as zero frequencies, the degree of freedom would be 

4, whereas maximum degree of freedom is 6 if they are treated as non-zero frequencies.  

Table 23 and Figure 15 show type I error evaluation and the goodness of fit test 

(Kolmogorov-Smirnov statistics) of p-value under null hypothesis. When the degree of 

freedom is fixed at either 4, 5 or 6, the distributions of the p values were skewed. On the 

other hand, sequential LRT adaptively selects degrees of freedom based on data, which 

varies between 4 and 5 for the 1000 simulations. The sequential LRT procedure shows 

not only appropriate type I error evaluation but also uniform distribution of p-value. 
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Therefore, we can see that sequential LRT performs well in practical simulations, too. 

The reason lies in the fact that if the frequency of one haplotype is small in the general 

population, subjects carrying such haplotype might not be picked by sampling, in which 

the effective haplotype frequency in a specific sample might be truly zero. Therefore, the 

degrees of freedom should vary from simulation to simulation. 

 

Table 22 Discrepancies of haplotype frequencies between parameters and estimates for 

the simulation 1- Sequential LRT 

 
Haplotype frequencies for known markers 

𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 

Parameters 0 0.3192 0.0005 0.12 0.18 0.15 0.0003 0.23 

Estimates * 0 0.3242 0.0003 0.1075 0.1895 0.1496 1.3e-07 0.2289 

* Estimated by one simulation of the 1st phase EM algorithm 

 

Table 23 Comparison of Type I error between fixed degree of freedom and sequential 

LRT for the simulation 1- Sequential LRT 

 d.f. Type I error 
Goodness of fit for uniform distribution 

K-S statistics p-value 

Fixed d.f. 

4 0.063 0.1158 < .0001 

5 0.035 0.0652 0.0004 

6 0.016 0.1926 < .0001 

Sequential LRT 
Data-

adapted 
0.051 0.0318 0.265 
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Figure 15 Distributions of Type I error of fixed degree of freedom and sequential LRT for 

the simulation 1- Sequential LRT 

 

Simulation 2—Sequential LRT 

The second simulation was also performed with two known markers. The values of 

true parameters and the estimates of haplotype frequency from the first phase are given in 

Table 24. As shown in Table 25 and Figure 16, test with fixed degree of freedom of 6 can 

control type I error well this time. More importantly, the sequential LRT procedure can 
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also show good control of type I error, demonstrating its consistent performance under a 

different setting. 

 

Table 24 Discrepancies of haplotype frequencies between parameters and estimates for 

the simulation 2- Sequential LRT 

 
Haplotype frequencies for known markers 

𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111 

Parameters 0 0.2905 0.00025 0.09875 0.182 0.0005 0.10375 0.32425 

Estimates * 2.6e-09 0.29301 0.00039 0.0961 0.17936 0.00063 0.10625 0.32426 

* Estimated by one simulation of the 1st phase EM algorithm 

 

Table 25 Comparison of Type I error between fixed degree of freedom and sequential 

LRT for the simulation 2- Sequential LRT 

 d.f. Type I error 
Goodness of fit for uniform distribution 

K-S statistics p-value 

Fixed d.f. 

5 0.088 0.1505 < .0001 

6 0.05 0.0404 0.3874 

7 0.024 0.1333 < .0001 

Sequential LRT 
Data-

adapted 
0.05 0.0325 0.6656 
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Figure 16 Distributions of Type I error of fixed degree of freedom and sequential LRT for 

the simulation 2- Sequential LRT 

 

 

Simulation 3—Sequential LRT 

In this simulation, the sequential LRT procedure is examined for three known 

markers. In true parameters, 4 out of 16 haplotype frequencies are set to be zero 

frequencies and another two are given small values (Table 26). Similar to previous 

simulations, some estimate for thesis parameters are zeros and some are very small 
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quantities. As shown in Table 27 and Figure 17, both sequential LRT and the fixed 11 

degree of freedom show good controls of type I error.  Therefore, the sequential LRT 

works well for the three known markers, too. 

 

Table 26 Discrepancies of haplotype frequencies between parameters and estimates for 

the simulation 3- Sequential LRT 

 Haplotype frequencies for known markers 

Parameters 

𝑝0000 𝑝0001 𝑝0010 𝑝0011 𝑝0100 𝑝0101 𝑝0110 𝑝0111 

0.00025 0.055 0.17525 0 0.07125 0.13625 0.09625 0 

𝑝1000 𝑝1001 𝑝1010 𝑝1011 𝑝1100 𝑝1101 𝑝1110 𝑝1111 

0.20575 0.05725 0 0 0.0005 0.008 0.19125 0.003 

Estimates * 

𝑝0000 𝑝0001 𝑝0010 𝑝0011 𝑝0100 𝑝0101 𝑝0110 𝑝0111 

0.00049 0.05561 0.1753 2.1e-09 0.07161 0.1371 0.09414 2.8e-10 

𝑝1000 𝑝1001 𝑝1010 𝑝1011 𝑝1100 𝑝1101 𝑝1110 𝑝1111 

0.20538 0.05671 0 0 0.00046 0.00688 0.19311 0.00319 

* Estimated by one simulation of the 1st phase EM algorithm 
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Table 27 Comparison of Type I error between fixed degree of freedom and sequential 

LRT for the simulation 3- Sequential LRT 

 d.f. Type I error 
Goodness of fit for uniform distribution 

K-S statistics p-value 

Fixed d.f. 

9 0.106 0.2066 < .0001 

10 0.068 0.1114 < .0001 

11 0.048 0.0344 0.5939 

 12 0.038 0.1042 < .0001 

Sequential LRT 
Data-

adapted 
0.048 0.0425 0.3284 
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Figure 17 Distributions of Type I error of fixed degree of freedom and sequential LRT for 

the simulation 3- Sequential LRT 
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3.2.2.5. Multiple-testing issue of the sequential LRT 

The sequential LRT iterates until the difference of maximum likelihoods between the 

full and reduced model is rejected. Since several tests will be conducted during this 

procedure, the multiple-testing issue may occur. To adjust this issue, we applied the 

conservative method that considers the maximum times of the iterations which is 

determined by the number of haplotype frequencies less than 1 divided by the number of 

subjects (Bonferroni correction).  

The comparison of normal sequential LRT and multiple-adjusted sequential LRT with 

Bonferroni correction has been conducted. The simulated setting here is set the same as 

that in Table 22.  As shown in Table 28 and Figure 18, the result of adjusted sequential 

LRT by Bonferroni correction is similar to that of normal sequential LRT. Therefore, 

although multiple-testing issue is a theoretical concern, in practice it does not seem to 

pose problems for our proposed LRT procedure. 

 

Table 28 Comparison of Type I error between original sequential LRT and Adjusted 

sequential LRT for the simulation 1 

 Type I error 
Goodness of fit for uniform distribution 

K-S statistics p-value 

Normal 

Sequential LRT 
0.051 0.0318 0.265 

Adjusted  

Sequential LRT 
0.051 0.0384 0.104 

 



 

72 

 

 

Figure 18 Distributions of Type I error of normal sequential LRT and Adjusted 

sequential LRT for the simulation 1 
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3.2.3. Power comparison between smLD, minimum p-value smLD, SKAT_C and 

mmLD 

Next, we would like to check the power of the mmLD mapping method, which is 

the probability of correctly detecting the existence of a QTL when there is indeed the 

QTL effect. Two scenarios will be checked here: (1) The QTL is assumed to be located 

between adjacent 𝑘 markers (QTL is not genotyped); or (2) already genotyped as one of 

the known markers (Figure 19). Powers were examined separately for these two 

scenarios. Additionally, the mmLD will be compared with other methods that can handle 

multiple markers, such as the adjusted single marker LD test (smLD), and SKAT_C [19, 

20, 30]. 

 

Figure 19 Example of simulated setting of k markers and one QTL 

 

In this case, the phenotypes caused by three QTL genotypes were simulated based 

on Eqn 2, with 𝜇0  = 10, 𝜇1 = 5, and 𝜇2 = 0. Again, the variances in phenotypic values 

k markers (SNPs)

SNP 1 SNP 2 SNP kSNP k-1

QTL QTL

…

1 2

…
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were calculated based on different heritability values (𝐻2) [29]. Based on these 

parameters and designs, the power performances were conducted by different sample size 

(𝑛 = 100, 500, 1000, and 2000) and different heritability values (𝐻2 = 0.05, 0.1, and 0.2). 

Each simulated setting was performed 200 or 500 times for the power performance. 

 

Scenario 1: QTL is not genotyped 

Scenario 1-1. Two known markers 

The two-marker LD mapping (tmLD) has already been studied [18]. Prior to 

extending to multiple markers (> 2), we conducted simulations to verify that the 

sequential LRT procedure indeed works for two markers, serving as a validation for our 

new framework. The LD between the two known markers is set to be 0.04 (𝐷12 = 0.04). 

The other simulated settings are the same as the simulations for type I error. 

Table 29 and Figure 20 show the power comparison between the tmLD and 

smLD. As expected, the tmLD has higher powers under small heritability values (𝐻2 = 

0.05, 0.1, and 0.2).  
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Figure 20 Power comparison of tmLD and smLD for Scenario (1); 2 known markers  
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Table 29 Power comparison of tmLD and smLD for Scenario (1); 2 known markers  

Number 

of 

subjects 

𝐻2= 0.05 𝐻2= 0.1 𝐻2= 0.2 

tmLD 
Adjusted 

smLD 
tmLD 

Adjusted 

smLD 
tmLD 

Adjusted 

smLD 

100 0.215 0.245 0.375 0.260 0.480 0.320 

500 0.495 0.315 0.735 0.455 0.935 0.570 

1000 0.695 0.420 0.955 0.620 1 0.885 

2000 0.955 0.570 1 0.870 1 1 

 

 

Scenario 1-2. Three known markers 

In this simulation, three known markers are considered here and the parameters 

are given in Table 30. As shown in Figure 21 and Table 31, power comparison of 

different models with a sequence of sample sizes has been conducted. The black solid 

line indicates the power of the mmLD and the pink dot, blue dot, and red dot lines 

indicate the powers of the smLD, minimum p-value smLD, and SKAT_C, respectively. 

The mmLD demonstrated much higher power than those of the SKAT_C, smLD or 

minimum p-value smLD. Table 32 shows the estimates for the true values. It indicates the 

mean and standard errors of the estimates. As shown in Table 32, estimates become close 

to true values as the larger sample size and higher heritability value are applied. 

Table 30 Parameters of haplotype frequencies for Scenario (1) with 3 known markers. 

𝑝000𝑄 𝑝000𝑞 𝑝001𝑄 𝑝001𝑞 𝑝010𝑄 𝑝010𝑞 𝑝011𝑄 𝑝011𝑞 

0 0.16 0.13 0.04 0 0 0.1 0 

𝑝100𝑄 𝑝100𝑞 𝑝101𝑄 𝑝101𝑞 𝑝110𝑄 𝑝110𝑞 𝑝111𝑄 𝑝111𝑞 
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0.13 0.2 0 0 0.08 0.08 0 0.08 

 

Figure 21 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for 

Scenario (1); 3 known markers   
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Table 31 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for 

Scenario (1); 3 known markers 

Number of 

subjects 

𝐻2= 0.05 

mmLD 
Adjusted 

smLD 

Minimum p-

value smLD 
SKAT_C 

100 0.335 0.325 0.525 0.105 

500 0.675 0.420 0.695 0.285 

1000 0.925 0.610 0.775 0.525 

2000 0.995 0.850 0.940 0.835 

 𝐻2= 0.1 

100 0.400 0.305 0.520 0.130 

500 0.940 0.605 0.755 0.515 

1000 0.995 0.855 0.935 0.805 

2000 1 0.980 1 0.980 

 𝐻2= 0.2 

100 0.550 0.425 0.645 0.210 

500 0.995 0.805 0.910 0.765 

1000 1 0.965 0.985 0.965 

2000 1 1 1 1 

 

 

 

Table 32 Means and standard errors of parameters for Scenario (1); 3 known markers 

True value 

N=100 N=500 

𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 

 
𝑝000𝑄 

0 
0.052 

(0.0007) 

0.037 

(0.0005) 

0.025 

(0.0003) 

0.038 

(0.0002) 

0.032 

(0.0001) 

0.022 

(0.0001) 
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𝑝000𝑞 

0.16 
0.109 

(0.0008) 

0.123 

(0.0006) 

0.137 

(0.0004) 

0.121 

(0.0002) 

0.127 

(0.0001) 

0.138 

(0.0001) 

 
𝑝001𝑄 

0.13 
0.112 

(0.0008) 

0.112 

(0.0007) 

0.128 

(0.0004) 

0.114 

(0.0002) 

0.117 

(0.0002) 

0.124 

(0.0001) 

 
𝑝001𝑞 

0.04 
0.056 

(0.0008) 

0.054 

(0.0006) 

0.043 

(0.0004) 

0.055 

(0.0002) 

0.054 

(0.0002) 

0.047 

(0.0001) 

 
𝑝010𝑄 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝010𝑞 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝011𝑄 

0.1 
0.081 

(0.0005) 

0.074 

(0.0004) 

0.087 

(0.0003) 

0.077 

(0.0002) 

0.083 

(0.0001) 

0.091 

(0.0001) 

 
𝑝011𝑞 

0 
0.025 

(0.0005) 

0.024 

(0.0004) 

0.013 

(0.0002) 

0.024 

(0.0002) 

0.017 

(0.0001) 

0.01 

(0.0001) 

 
𝑝100𝑄 

0.13 
0.153 

(0.0013) 

0.139 

(0.0009) 

0.143 

(0.0006) 

0.148 

(0.0004) 

0.151 

(0.0002) 

0.146 

(0.0002) 

 
𝑝100𝑞 

0.2 
0.172 

(0.0013) 

0.194 

(0.001) 

0.182 

(0.0006) 

0.184 

(0.0004) 

0.18 

(0.0002) 

0.184 

(0.0002) 

 
𝑝101𝑄 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝101𝑞 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝110𝑄 

0.08 
0.067 

(0.0007) 

0.091 

(0.0006) 

0.085 

(0.0004) 

0.08 

(0.0002) 

0.08 

(0.0001) 

0.083 

(0.0001) 

 
𝑝110𝑞 

0.08 
0.092 

(0.0008) 

0.069 

(0.0006) 

0.075 

(0.0004) 

0.078 

(0.0002) 

0.079 

(0.0001) 

0.076 

(0.0001) 

 
𝑝111𝑄 

0 
0.023 

(0.0004) 

0.026 

(0.0004) 

0.017 

(0.0002) 

0.021 

(0.0001) 

0.018 

(0.0001) 

0.011 

(0.0001) 

 
𝑝111𝑞 

0.08 
0.057 

(0.0005) 

0.057 

(0.0004) 

0.064 

(0.0003) 

0.06 

(0.0001) 

0.062 

(0.0001) 

0.068 

(0.0001) 

𝜇0 10 
18.2 

(0.135) 

15.3 

(0.092) 

12.4 

(0.033) 

15.5 

(0.041) 

12.9 

(0.018) 

11.5 

(0.009) 

𝜇1 5 4.2 (0.111) 4.7 (0.063) 4.1 (0.029) 4.4 (0.032) 4.7 (0.014) 4.5 (0.008) 

𝜇2 0 
-8.2 

(0.159) 

-5.2 

(0.085) 

-2.4 

(0.036) 
-4.9 (0.04) 

-3.5 

(0.017) 
-1.5 (0.01) 

True value 
N=1000 N=2000 

𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 

 
𝑝000𝑄 

0 
0.038 

(0.0001) 

0.031 

(0.0001) 

0.021 

(0.0001) 

0.039 

(0.0001) 

0.028 

(0.0001) 

0.017 

(0.0001) 
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𝑝000𝑞 

0.16 
0.122 

(0.0001) 

0.128 

(0.0001) 

0.139 

(0.0001) 

0.121 

(0.0001) 

0.132 

(0.0001) 

0.142 

(0.0001) 

 
𝑝001𝑄 

0.13 
0.114 

(0.0001) 

0.122 

(0.0001) 

0.127 

(0.0001) 

0.115 

(0.0001) 

0.119 

(0.0001) 

0.127 

(0.0001) 

 
𝑝001𝑞 

0.04 
0.056 

(0.0001) 

0.049 

(0.0001) 

0.043 

(0.0001) 

0.055 

(0.0001) 

0.051 

(0.0001) 

0.043 

(0.0001) 

 
𝑝010𝑄 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝010𝑞 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝011𝑄 

0.1 
0.079 

(0.0001) 

0.084 

(0.0001) 

0.091 

(0.0001) 

0.08 

(0.0001) 

0.085 

(0.0001) 
0.093 (0) 

 
𝑝011𝑞 

0 
0.021 

(0.0001) 

0.015 

(0.0001) 
0.009 (0) 

0.02 

(0.0001) 

0.014 

(0.0001) 
0.008 (0) 

 
𝑝100𝑄 

0.13 
0.154 

(0.0002) 

0.151 

(0.0002) 

0.146 

(0.0001) 

0.153 

(0.0001) 

0.147 

(0.0001) 

0.142 

(0.0001) 

 
𝑝100𝑞 

0.2 
0.177 

(0.0002) 

0.179 

(0.0002) 

0.183 

(0.0001) 

0.177 

(0.0001) 

0.184 

(0.0001) 

0.188 

(0.0001) 

 
𝑝101𝑄 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝101𝑞 

0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
𝑝110𝑄 

0.08 
0.081 

(0.0001) 

0.084 

(0.0001) 

0.086 

(0.0001) 

0.084 

(0.0001) 

0.083 

(0.0001) 

0.085 

(0.0001) 

 
𝑝110𝑞 

0.08 
0.078 

(0.0001) 

0.077 

(0.0001) 

0.075 

(0.0001) 

0.076 

(0.0001) 

0.077 

(0.0001) 

0.075 

(0.0001) 

 
𝑝111𝑄 

0 
0.02 

(0.0001) 

0.017 

(0.0001) 
0.009 (0) 0.02 (0) 0.013 (0) 0.009 (0) 

 
𝑝111𝑞 

0.08 
0.06 

(0.0001) 

0.063 

(0.0001) 

0.071 

(0.0001) 

0.06 

(0.0001) 
0.067 (0) 0.071 (0) 

𝜇0 10 
14.6 

(0.022) 

12.2 

(0.012) 

11.1 

(0.007) 

13.9 

(0.016) 

12.3 

(0.009) 

10.9 

(0.005) 

𝜇1 5 4.6 (0.016) 4.5 (0.009) 4.5 (0.007) 4.5 (0.012) 4.6 (0.008) 4.6 (0.004) 

𝜇2 0 
-4.8 

(0.023) 
-3 (0.011) 

-1.5 

(0.007) 

-4.4 

(0.017) 

-2.4 

(0.008) 

-1.2 

(0.004) 
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Scenario 1-3. Four known markers 

In this simulation, four markers are considered here and the parameters in Table 

33. Similar to the result of three markers, the mmLD shows higher power performance 

compared to the SKAT_C, smLD and minimum p-value smLD in Figure 22 and Table 

34. Through these results, it is clear that the mmLD shows stable performance compared 

to other existing methods for the non-genotyped QTL. Table 35 shows the estimates for 

the true values.  

Table 33 Parameters of haplotype frequencies for Scenario (1) with 4 known markers. 

𝑝0000𝑄 𝑝0000𝑞 𝑝0001𝑄 𝑝0001𝑞 𝑝0010𝑄 𝑝0010𝑞 𝑝0011𝑄 𝑝0011𝑞 

0.025 0.12 0.03 0.015 0 0 0 0 

𝑝0100𝑄 𝑝0100𝑞 𝑝0101𝑄 𝑝0101𝑞 𝑝0110𝑄 𝑝0110𝑞 𝑝0111𝑄 𝑝0111𝑞 

0.05 0.1 0.09 0 0.02 0.04 0 0.01 

𝑝1000𝑄 𝑝1000𝑞 𝑝1001𝑄 𝑝1001𝑞 𝑝1010𝑄 𝑝1010𝑞 𝑝1011𝑄 𝑝1011𝑞 

0.11 0 0 0.02 0 0.1 0.07 0 

𝑝1100𝑄 𝑝1100𝑞 𝑝1101𝑄 𝑝1101𝑞 𝑝1110𝑄 𝑝1110𝑞 𝑝1111𝑄 𝑝1111𝑞 

0 0 0 0.02 0.07 0.04 0 0.07 
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Figure 22 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for 

Scenario (1); 4 known markers 
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Table 34 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for 

Scenario (1); 4 known markers 

Number of 

subjects 

𝐻2= 0.05 

mmLD 
Adjusted 

smLD 

Minimum p-

value smLD 
SKAT_C 

100 0.105 0.270 0.545 0.050 

500 0.470 0.305 0.555 0.125 

1000 0.830 0.340 0.650 0.220 

2000 0.990 0.450 0.740 0.345 

 𝐻2= 0.1 

100 0.190 0.255 0.545 0.055 

500 0.790 0.340 0.595 0.185 

1000 0.990 0.480 0.780 0.315 

2000 1 0.740 0.915 0.720 

 𝐻2= 0.2 

100 0.200 0.255 0.545 0.065 

500 0.985 0.340 0.595 0.405 

1000 1 0.480 0.780 0.740 

2000 1 0.740 0.915 0.975 

 

 

 

Table 35 Means and standard errors of parameters for Scenario (1); 4 known markers 

True value 

N=100 N=500 

𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 



 

84 

 

𝑝0000𝑄 0.025 
0.059 

(0.0003) 

0.048 

(0.00025) 

0.045 

(0.00022) 

0.053 

(0.00014) 

0.047 

(0.00011) 

0.041 

(0.00009) 

𝑝0000𝑞 0.12 
0.088 

(0.0003) 

0.094 

(0.00028) 

0.105 

(0.00025) 

0.091 

(0.00014) 

0.098 

(0.00011) 

0.104 

(0.0001) 

𝑝0001𝑄 0.03 
0.024 

(0.00015) 

0.023 

(0.00014) 

0.025 

(0.00014) 

0.027 

(0.00008) 

0.027 

(0.00007) 

0.027 

(0.00006) 

𝑝0001𝑞 0.015 
0.023 

(0.00015) 

0.023 

(0.00015) 

0.018 

(0.00012) 

0.02 

(0.00008) 

0.019 

(0.00006) 

0.018 

(0.00006) 

𝑝0010𝑄 0 0 (0.00002) 0 (0.00001) 0 (0.00001) 0 (NA) 0 (NA) 0 (NA) 

𝑝0010𝑞 0 0 (0.00003) 
0.001 

(0.00002) 
0 (0.00002) 0 (NA) 0 (NA) 0 (NA) 

𝑝0011𝑄 0 0 (0.00001) 0 (0.00001) 0 (0.00001) 0 (NA) 0 (NA) 0 (NA) 

𝑝0011𝑞 0 0 (0.00001) 0 (0.00002) 0 (0.00001) 0 (NA) 0 (NA) 0 (NA) 

𝑝0100𝑄 0.05 
0.066 

(0.00032) 

0.069 

(0.00029) 

0.064 

(0.00027) 

0.066 

(0.00013) 

0.062 

(0.00012) 

0.06 

(0.0001) 

𝑝0100𝑞 0.1 
0.088 

(0.00033) 

0.081 

(0.00028) 

0.084 

(0.00028) 

0.083 

(0.00013) 

0.088 

(0.00012) 

0.091 

(0.00011) 

𝑝0101𝑄 0.09 
0.054 

(0.00023) 

0.062 

(0.00023) 

0.067 

(0.00021) 

0.065 

(0.00011) 

0.069 

(0.00008) 

0.076 

(0.00007) 

𝑝0101𝑞 0 
0.036 

(0.00022) 

0.028 

(0.00021) 

0.024 

(0.00017) 

0.024 

(0.0001) 

0.019 

(0.00008) 

0.013 

(0.00007) 

𝑝0110𝑄 0.02 
0.022 

(0.00015) 

0.022 

(0.00015) 

0.023 

(0.00014) 

0.026 

(0.00007) 

0.024 

(0.00006) 

0.021 

(0.00005) 

𝑝0110𝑞 0.04 
0.034 

(0.00013) 

0.036 

(0.00015) 

0.035 

(0.00015) 

0.035 

(0.00008) 

0.037 

(0.00007) 

0.039 

(0.00006) 

𝑝0111𝑄 0 
0.003 

(0.00005) 

0.003 

(0.00004) 

0.004 

(0.00005) 

0.003 

(0.00002) 

0.004 

(0.00002) 

0.003 

(0.00002) 

𝑝0111𝑞 0.01 
0.006 

(0.00007) 

0.009 

(0.00007) 

0.007 

(0.00006) 

0.007 

(0.00003) 

0.006 

(0.00003) 

0.007 

(0.00003) 

𝑝1000𝑄 0.11 
0.074 

(0.00022) 

0.075 

(0.00024) 

0.083 

(0.0002) 

0.079 

(0.00011) 

0.084 

(0.00009) 

0.096 

(0.00008) 

𝑝1000𝑞 0 
0.038 

(0.00021) 

0.035 

(0.00022) 

0.023 

(0.00016) 

0.031 

(0.0001) 

0.026 

(0.00009) 

0.014 

(0.00007) 

𝑝1001𝑄 0 
0.009 

(0.00008) 

0.007 

(0.00008) 

0.007 

(0.00008) 

0.008 

(0.00004) 

0.006 

(0.00004) 

0.005 

(0.00003) 

𝑝1001𝑞 0.02 0 (NA) 0 (0.00001) 
0.001 

(0.00001) 
0 (NA) 0 (NA) 0 (NA) 

𝑝1010𝑄 0 
0.034 

(0.00022) 

0.032 

(0.0002) 

0.025 

(0.00017) 

0.032 

(0.00011) 

0.022 

(0.00007) 

0.018 

(0.00007) 

𝑝1010𝑞 0.1 
0.067 

(0.00024) 

0.068 

(0.00023) 

0.075 

(0.00022) 

0.069 

(0.00012) 

0.078 

(0.00009) 

0.083 

(0.00009) 

𝑝1011𝑄 0.07 
0.041 

(0.00018) 

0.048 

(0.00019) 

0.049 

(0.00017) 

0.048 

(0.00009) 

0.054 

(0.00008) 

0.059 

(0.00006) 

𝑝1011𝑞 0 
0.029 

(0.00018) 

0.021 

(0.00016) 

0.019 

(0.00014) 

0.021 

(0.00009) 

0.016 

(0.00007) 

0.01 

(0.00005) 
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𝑝1100𝑄 0 0 (NA) 0 (0.00001) 0 (0.00001) 0 (NA) 0 (NA) 0 (NA) 

𝑝1100𝑞 0 0 (NA) 0 (NA) 0.001 

(0.00002) 
0 (NA) 0 (NA) 0 (NA) 

𝑝1101𝑄 0 
0.007 

(0.00006) 

0.007 

(0.00007) 

0.005 

(0.00005) 

0.007 

(0.00004) 

0.005 

(0.00003) 

0.005 

(0.00003) 

𝑝1101𝑞 0.02 
0.012 

(0.00009) 

0.013 

(0.00008) 

0.015 

(0.00008) 

0.013 

(0.00004) 

0.014 

(0.00003) 

0.015 

(0.00004) 

𝑝1110𝑄 0.07 
0.06 

(0.00027) 

0.061 

(0.00024) 

0.061 

(0.00023) 

0.06 

(0.00013) 

0.066 

(0.0001) 

0.066 

(0.00009) 

𝑝1110𝑞 0.04 
0.048 

(0.00023) 

0.051 

(0.00025) 

0.048 

(0.00023) 

0.05 

(0.00013) 

0.044 

(0.0001) 

0.044 

(0.0001) 

𝑝1111𝑄 0 
0.027 

(0.00018) 

0.024 

(0.00016) 

0.017 

(0.00015) 

0.022 

(0.00009) 

0.016 

(0.00007) 

0.011 

(0.00005) 

𝑝1111𝑞 0.07 
0.041 

(0.00019) 

0.043 

(0.0002) 

0.055 

(0.00017) 

0.048 

(0.0001) 

0.054 

(0.00008) 

0.059 

(0.00007) 

𝜇0 10 
20.1 

(0.047) 

15.5 

(0.038) 
12.6 (0.02) 

16.1 

(0.025) 

13.7 

(0.013) 

11.6 

(0.008) 

𝜇1 5 4.6 (0.039) 4.4 (0.03) 4.4 (0.019) 4.1 (0.021) 4.6 (0.01) 4.6 (0.007) 

𝜇2 0 -8.4 (0.05) 
-4.6 

(0.036) 

-2.2 

(0.023) 

-5.8 

(0.032) 

-3.3 

(0.013) 

-1.7 

(0.009) 

True value 

N=1000 N=2000 

𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 

𝑝0000𝑄 0.025 
0.052 

(0.00009) 

0.046 

(0.00009) 

0.039 

(0.00007) 

0.051 

(0.00006) 

0.045 

(0.00006) 

0.037 

(0.00005) 

𝑝0000𝑞 0.12 
0.094 

(0.0001) 

0.099 

(0.00009) 

0.107 

(0.00007) 

0.094 

(0.00007) 

0.101 

(0.00006) 

0.108 

(0.00005) 

𝑝0001𝑄 0.03 
0.026 

(0.00005) 

0.027 

(0.00005) 

0.028 

(0.00004) 

0.025 

(0.00005) 

0.027 

(0.00004) 

0.029 

(0.00004) 

𝑝0001𝑞 0.015 
0.019 

(0.00005) 

0.018 

(0.00005) 

0.016 

(0.00004) 

0.019 

(0.00005) 

0.018 

(0.00004) 

0.016 

(0.00003) 

𝑝0010𝑄 0 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝0010𝑞 0 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝0011𝑄 0 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝0011𝑞 0 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝0100𝑄 0.05 
0.064 

(0.00009) 

0.063 

(0.00008) 

0.058 

(0.00007) 

0.064 

(0.00007) 

0.06 

(0.00006) 

0.059 

(0.00005) 

𝑝0100𝑞 0.1 
0.085 

(0.0001) 

0.088 

(0.00008) 

0.092 

(0.00008) 

0.086 

(0.00008) 

0.09 

(0.00007) 

0.091 

(0.00005) 

𝑝0101𝑄 0.09 
0.067 

(0.00007) 

0.072 

(0.00007) 

0.078 

(0.00006) 

0.069 

(0.00006) 

0.074 

(0.00005) 

0.081 

(0.00005) 
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𝑝0101𝑞 0 
0.022 

(0.00007) 

0.018 

(0.00006) 

0.013 

(0.00005) 

0.021 

(0.00005) 

0.016 

(0.00005) 

0.01 

(0.00004) 

𝑝0110𝑄 0.02 
0.026 

(0.00006) 

0.024 

(0.00004) 

0.023 

(0.00005) 

0.025 

(0.00004) 

0.024 

(0.00004) 

0.022 

(0.00003) 

𝑝0110𝑞 0.04 
0.034 

(0.00006) 

0.036 

(0.00005) 

0.037 

(0.00005) 

0.035 

(0.00004) 

0.037 

(0.00004) 

0.038 

(0.00003) 

𝑝0111𝑄 0 
0.004 

(0.00002) 

0.003 

(0.00002) 

0.002 

(0.00001) 

0.003 

(0.00002) 

0.003 

(0.00001) 

0.002 

(0.00001) 

𝑝0111𝑞 0.01 
0.007 

(0.00002) 

0.007 

(0.00002) 

0.008 

(0.00002) 

0.007 

(0.00002) 

0.007 

(0.00002) 

0.008 

(0.00001) 

𝑝1000𝑄 0.11 
0.083 

(0.00007) 

0.088 

(0.00007) 

0.097 

(0.00006) 

0.084 

(0.00006) 

0.091 

(0.00006) 

0.098 

(0.00005) 

𝑝1000𝑞 0 
0.027 

(0.00007) 

0.022 

(0.00006) 

0.014 

(0.00005) 

0.026 

(0.00006) 

0.02 

(0.00005) 

0.012 

(0.00004) 

𝑝1001𝑄 0 
0.007 

(0.00003) 

0.005 

(0.00003) 

0.004 

(0.00002) 

0.005 

(0.00002) 

0.005 

(0.00002) 

0.004 

(0.00002) 

𝑝1001𝑞 0.02 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝1010𝑄 0 
0.027 

(0.00008) 

0.022 

(0.00006) 

0.015 

(0.00004) 

0.026 

(0.00006) 

0.02 

(0.00004) 

0.014 

(0.00003) 

𝑝1010𝑞 0.1 
0.073 

(0.00008) 

0.078 

(0.00007) 

0.084 

(0.00006) 

0.074 

(0.00006) 

0.079 

(0.00005) 

0.086 

(0.00004) 

𝑝1011𝑄 0.07 
0.053 

(0.00007) 

0.056 

(0.00005) 

0.061 

(0.00005) 

0.054 

(0.00005) 

0.057 

(0.00004) 

0.062 

(0.00004) 

𝑝1011𝑞 0 
0.016 

(0.00006) 

0.015 

(0.00006) 

0.009 

(0.00004) 

0.017 

(0.00005) 

0.012 

(0.00004) 

0.008 

(0.00003) 

𝑝1100𝑄 0 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝1100𝑞 0 
0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

𝑝1101𝑄 0 
0.006 

(0.00003) 

0.005 

(0.00002) 

0.003 

(0.00002) 

0.006 

(0.00002) 

0.004 

(0.00002) 

0.003 

(0.00001) 

𝑝1101𝑞 0.02 
0.014 

(0.00003) 

0.016 

(0.00003) 

0.017 

(0.00002) 

0.014 

(0.00002) 

0.015 

(0.00002) 

0.017 

(0.00002) 

𝑝1110𝑄 0.07 
0.063 

(0.00008) 

0.064 

(0.00008) 

0.066 

(0.00007) 

0.063 

(0.00006) 

0.066 

(0.00006) 

0.068 

(0.00004) 

𝑝1110𝑞 0.04 
0.046 

(0.00009) 

0.045 

(0.00008) 

0.043 

(0.00006) 

0.047 

(0.00006) 

0.044 

(0.00006) 

0.042 

(0.00005) 

𝑝1111𝑄 0 
0.019 

(0.00006) 

0.016 

(0.00005) 

0.011 

(0.00004) 

0.018 

(0.00005) 

0.014 

(0.00004) 

0.01 

(0.00003) 

𝑝1111𝑞 0.07 
0.052 

(0.00006) 

0.054 

(0.00006) 

0.059 

(0.00005) 

0.051 

(0.00005) 

0.057 

(0.00004) 

0.06 

(0.00004) 

𝜇0 10 
15.2 

(0.015) 
13 (0.01) 

11.5 

(0.006) 

14.9 

(0.014) 

12.7 

(0.008) 

11.2 

(0.004) 

𝜇1 5 4.1 (0.014) 4.7 (0.008) 4.7 (0.005) 4.7 (0.01) 4.7 (0.006) 4.8 (0.003) 

𝜇2 0 
-5.1 

(0.018) 
-3.1 (0.01) 

-1.7 

(0.005) 
-5 (0.012) 

-2.8 

(0.007) 

-1.5 

(0.003) 
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Scenario 2: QTL is genotyped as a marker 

In this scenario, one marker is assumed to be a QTL. The simulated setting is 

given in Table 36, in which three markers are included and the third marker is set to be 

the QTL.   

It is expected that the smLD would work the best in this case since QTL is indeed 

genotyped. Therefore, considering each marker should have better power than 

considering the linkage disequilibrium of several markers. Table 37 and Figure 23 

display the power comparisons of four methods. Although the power of the mmLD is 

slightly less than that of the smLD, it still shows comparable power to the smLD. This 

suggests that the mmLD can be expected to provide the robust result of power even when 

QTL is genotyped.  

 

Table 36 Parameters of haplotype frequencies for Scenario (2); 3 known markers 

𝑝000𝑄 𝑝000𝑞 𝑝001𝑄 𝑝001𝑞 𝑝010𝑄 𝑝010𝑞 𝑝011𝑄 𝑝011𝑞 

0.09 0 0 0.12 0.08 0 0 0.12 

𝑝100𝑄 𝑝100𝑞 𝑝101𝑄 𝑝101𝑞 𝑝110𝑄 𝑝110𝑞 𝑝111𝑄 𝑝111𝑞 

0.2 0 0 0 0.15 0 0 0.24 
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Figure 23 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for 

Scenario (2); 3 known markers 
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Table 37 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for 

Scenario (2); 3 known markers 

Number of 

subjects 

𝐻2= 0.05 

mmLD 
Adjusted 

smLD 

Minimum p-

value smLD 
SKAT_C 

100 0.535 0.700 0.835 0.545 

300 0.905 0.960 0.980 0.895 

500 0.995 0.995 1 1 

1000 1 1 1 1 

 𝐻2= 0.1 

100 0.775 0.825 0.945 0.770 

300 0.995 1 1 1 

500 1 1 1 1 

1000 1 1 1 1 

 𝐻2= 0.2 

100 0.975 0.990 0.995 0.990 

300 1 1 1 1 

500 1 1 1 1 

1000 1 1 1 1 

 

 

Table 38 Means and standard errors of parameters for Scenario (2); 3 known markers 

True value 

N=100 N=300 

𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 

 
𝑝000𝑄 

0.04 
0.024 

(0.0002) 

0.027 

(0.0001) 

0.029 

(0.0001) 

0.029 

(0.0001) 

0.031 

(0.0001) 

0.031 

(0.0001) 

 
𝑝000𝑞 

0 
0.012 

(0.0001) 

0.012 

(0.0001) 

0.01 

(0.0001) 

0.011 

(0.0001) 

0.01 

(0.0001) 
0.007 (0) 
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𝑝001𝑄 

0.25 
0.07 

(0.0005) 

0.061 

(0.0003) 

0.053 

(0.0002) 

0.082 

(0.0002) 

0.063 

(0.0002) 

0.039 

(0.0002) 

 
𝑝001𝑞 

0 
0.182 

(0.0005) 

0.188 

(0.0003) 

0.203 

(0.0002) 

0.166 

(0.0003) 

0.185 

(0.0002) 

0.21 

(0.0002) 

 
𝑝010𝑄 

0 
0.001 

(0.00004) 

0.001 

(0.00002) 

0.002 

(0.00002) 
0 (0.00001) 0 (0.00001) 0 (0.00001) 

 
𝑝010𝑞 

0 
0.001 

(0.00004) 

0.001 

(0.00002) 

0.001 

(0.00001) 
0 (0.00001) 0 (0.00001) 

0 

(0.000003) 

 
𝑝011𝑄 

0.12 
0.04 

(0.0003) 

0.037 

(0.0002) 

0.028 

(0.0001) 

0.038 

(0.0001) 

0.03 

(0.0001) 

0.021 

(0.0001) 

 
𝑝011𝑞 

0 
0.08 

(0.0004) 

0.082 

(0.0002) 

0.091 

(0.0002) 

0.081 

(0.0002) 

0.088 

(0.0001) 

0.099 

(0.0001) 

 
𝑝100𝑄 

0.23 
0.187 

(0.0005) 

0.188 

(0.0003) 

0.204 

(0.0002) 

0.178 

(0.0002) 

0.19 

(0.0002) 

0.203 

(0.0001) 

 
𝑝100𝑞 

0 
0.044 

(0.0004) 

0.04 

(0.0003) 

0.027 

(0.0002) 

0.054 

(0.0002) 

0.042 

(0.0002) 

0.026 

(0.0001) 

 
𝑝101𝑄 

0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

 
𝑝101𝑞 

0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

 
𝑝110𝑄 

0.06 
0.043 

(0.0002) 

0.042 

(0.0002) 

0.045 

(0.0001) 

0.045 

(0.0001) 

0.046 

(0.0001) 

0.052 

(0.0001) 

 
𝑝110𝑞 

0 
0.019 

(0.0002) 

0.017 

(0.0001) 

0.012 

(0.0001) 

0.015 

(0.0001) 

0.014 

(0.0001) 
0.008 (0) 

 
𝑝111𝑄 

0.3 
0.086 

(0.0005) 

0.082 

(0.0004) 

0.063 

(0.0002) 

0.098 

(0.0003) 

0.073 

(0.0002) 

0.045 

(0.0002) 

 
𝑝111𝑞 

0 
0.211 

(0.0005) 

0.22 

(0.0004) 

0.233 

(0.0003) 

0.204 

(0.0003) 

0.227 

(0.0002) 

0.257 

(0.0002) 

𝜇0 10 
17.9 

(0.068) 

14.2 

(0.033) 

12.2 

(0.016) 

15.6 

(0.032) 

13.3 

(0.017) 

11.6 

(0.008) 

𝜇1 5 4.7 (0.056) 4.3 (0.027) 4.5 (0.011) 3.6 (0.026) 4.4 (0.013) 4.8 (0.008) 

𝜇2 0 -9 (0.058) 
-4.6 

(0.026) 

-3.2 

(0.014) 

-6.7 

(0.031) 

-4.4 

(0.014) 

-2.1 

(0.008) 

True value 
N=500 N=1000 

𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 𝐻2=0.05 𝐻2=0.1 𝐻2=0.2 

 
𝑝000𝑄 

0.04 
0.029 

(0.0001) 

0.03 

(0.00005) 

0.033 

(0.00004) 

0.031 

(0.00004) 

0.033 

(00.00004) 

0.035 

(0.00003) 

 
𝑝000𝑞 

0 
0.011 

(0.0001) 

0.009 

(0.00004) 

0.006 

(0.00003) 

0.009 

(00.00004) 

0.006 

(0.00003) 

0.005 

(0.00002) 
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𝑝001𝑄 

0.25 
0.077 

(0.0002) 

0.059 

(0.0002) 

0.035 

(0.0001) 

0.07 

(0.0002) 

0.053 

(0.0001) 

0.027 

(0.0001) 

 
𝑝001𝑞 

0 
0.175 

(0.0002) 

0.191 

(0.0002) 

0.216 

(0.0001) 

0.179 

(0.0002) 

0.197 

(0.0001) 

0.223 

(0.0001) 

 
𝑝010𝑄 

0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

 
𝑝010𝑞 

0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

 
𝑝011𝑄 

0.12 
0.036 

(0.0001) 

0.029 

(0.0001) 

0.017 

(0.0001) 

0.033 

(0.0001) 

0.026 

(0.0001) 

0.013 

(0.0001) 

 
𝑝011𝑞 

0 
0.084 

(0.0001) 

0.091 

(0.0001) 

0.103 

(0.0001) 

0.087 

(0.0001) 

0.095 

(0.0001) 

0.106 

(0.0001) 

 
𝑝100𝑄 

0.23 
0.18 

(0.0002) 

0.192 

(0.0001) 

0.208 

(0.0001) 

0.184 

(0.0001) 

0.199 

(0.0001) 

0.21 

(0.0001) 

 
𝑝100𝑞 

0 
0.05 

(0.0002) 

0.039 

(0.0001) 

0.023 

(0.0001) 

0.046 

(0.0001) 

0.032 

(0.0001) 

0.019 

(0.0001) 

 
𝑝101𝑄 

0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

 
𝑝101𝑞 

0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 

 
𝑝110𝑄 

0.06 
0.044 

(0.0001) 

0.05 

(0.0001) 

0.052 

(0.00005) 

0.046 

(0.0001) 

0.051 

(0.00005) 

0.054 

(0.00004) 

 
𝑝110𝑞 

0 
0.015 

(0.0001) 

0.01 

(0.00005) 

0.008 

(0.00004) 

0.014 

(00.00005) 

0.01 

(0.00004) 

0.006 

(0.00003) 

 
𝑝111𝑄 

0.3 
0.088 

(0.0002) 

0.066 

(0.0002) 

0.042 

(0.0001) 

0.085 

(0.0002) 

0.063 

(0.0002) 

0.031 

(0.0001) 

 
𝑝111𝑞 

0 
0.211 

(0.0002) 

0.234 

(0.0002) 

0.259 

(0.0002) 

0.215 

(0.0002) 

0.236 

(0.0002) 

0.27 

(0.0001) 

𝜇0 10 
15.2 

(0.024) 

12.8 

(0.013) 

11.4 

(0.007) 

14.4 

(0.016) 

12.1 

(0.008) 
11 (0.005) 

𝜇1 5 4.1 (0.018) 4.5 (0.011) 4.8 (0.006) 4.2 (0.013) 4.4 (0.007) 4.9 (0.004) 

𝜇2 0 
-6.6 

(0.021) 

-3.8 

(0.012) 

-1.9 

(0.007) 

-5.8 

(0.016) 
-3.3 (0.01) 

-1.4 

(0.005) 
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3.2.4. Power change with the number of known markers 

Logically, it is expected that power would be increased as more markers are 

included in the LD mapping framework, although computationally it would be much 

harder for more markers. However, it is also expected that the marginal gain of each 

additional markers would decrease if markers are correlated. So a question of interest is 

how many markers we should include in the LD mapping framework. 

In order to investigate this, we tracked the power change by the number of known 

markers involved. In this simulation, we considered seven known markers and one QTL. 

The phenotype is assumed to follow a mixture Gaussian distribution with 𝜇0 = 20, 𝜇1 = 

40, 𝜇2 = 60 and the heritability value (𝐻2) was set up 0.05. The sample size was 2,000 

and each simulation was conducted 200 times. Details of simulated haplotype frequencies 

are given in Table 39. Figure 24 shows the power change of the mmLD, SKAT_C, 

smLD, and minimum p-value smLD. When three known markers were applied, the 

power of mmLD reaches 1 and stays there. Also, the powers of the other methods reach 

almost 1 when four or five markers are considered. The overall power of mmLD is 

consistently higher than those of SKAT_C, smLD or minimum p-value smLD. This 

suggests that in practice, we probably need to consider only 4 or 5- marker LD mapping. 
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Table 39 Haplotype frequencies of seven known markers and one QTL 

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 QTL 

Simulated 

haplotype 

frequencies 

0 0 0 0 0 0 0 1 0.009 

0 0 0 0 1 1 1 1 0.03 

0 0 0 1 1 0 1 1 0.01 

0 0 0 1 1 1 1 1 0.05 

0 0 1 0 1 0 0 0 0.02 

0 1 0 1 1 0 1 0 0.1 

0 1 0 1 1 1 1 0 0.004 

0 1 0 0 1 1 1 1 0.01 

0 1 0 1 1 1 1 1 0.08 

0 1 1 0 0 1 1 1 0.04 

0 1 1 0 1 0 0 1 0.02 

1 0 0 0 0 1 0 0 0.1 

1 0 0 1 0 1 0 1 0.04 

1 0 1 0 0 0 0 1 0.2 

1 0 1 0 1 1 0 1 0.08 

1 0 1 1 0 1 1 1 0.05 

1 1 0 0 0 1 1 0 0.007 

1 1 1 1 0 0 0 0 0.05 

1 1 1 1 1 1 1 0 0.07 

1 1 1 0 1 1 0 1 0.03 
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Figure 24 Power change by the number of known markers 
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3.3. Real data application 

In order to further evaluate the applicability of the mmLD mapping with real 

genomic structure, it was applied to a real dataset, the “GAW17”. The data is provided by 

Texas Biomedical Research Institute at Genetic Analysis Workshop [31]. The GAW17 is 

a “mini-exome” scan, using real sequence data for several hundred genes from the 1000 

Genomes Project [31, 32].  

Since the original phenotypic data provided by the GAW17 is simulated based on 

a few rare variants with minor allele frequencies (MAF < 5%), it is not directly applicable 

to our mmLD model. Thus, although the real genomic sequences were used here, we re-

generated the phenotypic data with a specified QTL, and some rare variants (MAF < 5%) 

were removed in this analysis. The QTL is set to be the SNP “C3S784", located on the 3rd 

chromosome and indicated by the blue solid line in Figure 24. We assume that the 

phenotype follows a mixture Gaussian normal distribution with three means and the same 

variance by three genotypes of the QTL, with 𝜇0  = 20, 𝜇1 = 40, and 𝜇2 = 60 and its 

heritability value (𝐻2) was 0.1. The mmLD was then applied to scan the whole 

chromosome with a sliding window searching for five markers. 

Figure 25 shows the scatter plot of negative logarithm of p-values for the 3rd 

chromosome. Since there are 113 SNPs considered here, the significance cut-off of 

negative logarithmic p-value was set to be 3.35, which is calculated based on the 

Bonferroni correction. The upper plot is the output of the mmLD and the lower is the 

output of the SKAT_C.  
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As shown in Figure 25, it is clear that the several p-values corresponding to the 

nearby true regions of the QTL pass the significance level in the both methods. Although 

both detected the true region of the QTL, the degrees of significant p-values of the 

mmLD are less than those of the SKAT_C. However, SKAT_C shows false signal near 

30th loci while the mmLD detected only true regions of the QTL.  
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Figure 25 Scatter plot of negative logarithmic p-value for chromosome 3 of GAW17  
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Chapter 4 Conclusion and Discussion 

 

 

The purpose of this study is to extend the two-marker LD mapping of QTL (tmLD) 

method proposed by Yang et al [18] to a multi-marker case. The tmLD is a novel 

statistical method that intends to identify QTL with adjacent two markers; however, it has 

some limitations to handle multiple markers simultaneously: The first is how to 

efficiently estimate haplotypic and genotypic frequencies, given their complicated 

relationship; and the second is how to find proper degrees of freedom for the likelihood 

ratio test. 

Although there are a few open software tools for estimating haplotype frequencies 

from genetic data, none of them can be directly incorporated into the QTL mapping 

framework. We have investigated the regularity of calculation of genotypic probabilities 

from haplotype frequencies and suggested an algorithm for the joint genotypic 

probabilities. 

To address the issue of the degrees of freedom in the likelihood ratio test, we found 

that it should be determined by the number of haplotypes with non-zero frequencies. This 

is because haplotypes with zero frequencies are not estimated from the data and therefore 

do not contribute to the number of parameters. In addition, we proposed a sequential 

likelihood ratio test procedure to determine the degrees of freedom from haplotypes with 

small frequencies. In this process, multiple testing issues may occur due to the iterative 
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testing scheme. We further used the Bonferroni correction method to control the family-

wise type I  error, which showed minimal difference from the proposed sequential LRT 

alone. Thus, we expect that multiple-testing issue should not be a big concern in 

sequential LRT procedure. 

For method comparison, the mmLD showed either higher or almost equal power 

performance compared to SKAT_C [19, 20]  and adjusted single-marker association test 

(smLD, minimum p-value smLD), in both scenarios when QTL is either genotyped or 

non-genotyped. We expect that the mmLD can be a useful tool for future GWAS. 

One important assumption in the mmLD is that the QTL is in linkage disequilibrium 

with its adjacent markers. Hence, it is best applicable for the QTL detection of inheritable 

traits. For newly occurring somatic mutations that are not strongly related to genetic 

markers, we expect the mmLD would not perform very well.  
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Chapter 5 Further Study 

 

 

In this dissertation, I suggested a novel model to detect the existence of the unknown 

QTL with multiple adjacent markers. However, there are still several issues to be studied. 

Below are several directions for future studies. 

(1) In this study, we mainly focus on the continuous phenotypic traits. However the 

idea of mmLD can also be extended to other important trait types, such as binary data for 

case-control studies, or longitudinal traits for development. Extension to other biological 

traits will greatly enhance the applicability of the mmLD. 

(2) The current mmLD framework assumes only one QTL in a LD block, which may 

not be true in real data. For example, mutations of the same gene at different location 

may have the same biological consequences. So if there are indeed two or more QTL in 

one LD block, how to efficiently and effectively detecting them is also a question of 

interest.  

(3) It is well known that genes form a network to function together. In the current 

mmLD mapping, only the marginal effect of each QTL is considered. It would be very 

interesting to extend this framework to incorporate the gene-gene interaction, or epistasis 

effects into the mmLD framework. 
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