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Background: Genome-wide associations have been studied for years to infer relationships
between biological traits and their underlying genetic causes, known as quantitative traits loci
(QTL), in a process known as QTL mapping. Single nucleotide polymorphisms (SNPs), which
are commonly used genetic markers, are usually in linkage disequilibrium (LD) with each other
within a small genetic region. Both single- and double-marker-based LD mapping methods have

been developed by taking advantage of LD structure.

Method: In this thesis, a more general LD mapping framework with an arbitrary number of
markers has been developed in order to improve LD mapping and its detection power. This
method is referred to as multi-marker linkage disequilibrium mapping (mmLD). For the mmLD
model estimation, novel two-phase estimation procedures were implemented. In the first phase,
haplotype frequencies were estimated for known markers. In the second phase, haplotype

frequencies, including the unknown QTL, were updated based on estimates from the first step.



To test hypotheses, we used the likelihood ratio test (LRT). We propose a sequential LRT
method that compares likelihood values of a reduced and an alternative model, and determines

the optimal degree of freedom for testing.

Results: To compare our method with other existing mapping methods, such as the single-marker
LD mapping and the SKAT_C, we performed intensive simulations studies. These studies
showed that our proposed mmLD method performed higher powers or equal powers to than
existing mapping methods under various simulation scenarios while maintaining the correct
type-1 errors. The mmLD method also showed good performance for QTL mapping of the
GAWL17 public dataset. We conclude that the mmLD method will be useful for future association

analyses.
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Chapter 1 Introduction

1.1. Background

The human body consists of 22 pairs of autosomal chromosomes and one pair of sex
chromosomes. Chromosomes contain hereditary information encoded in double-strands
of deoxyribonucleic acid (DNA). Genetic regulation of development, organismal
function, and reproduction is programmed into these DNA sequences. DNA sequences
are usually a combination of four nucleotides, guanine (G), adenine (A), thymine (T), and
cytosine (C) [1]. For diploid species, such as humans, the DNA sequences are bi-allelic.
Identical bi-alleles are known as homozygous; non-identical bi-alleles are known as
heterozygous. Genomic DNA sequences are nearly identical between different people
except for some minor genetic variation (< 1%). This genetic variation can cause
different physical traits or specific diseases. A study that examines how genetic variants
are related to biological traits across complete sets of genomes is called a genome-wide

association study (GWAS).

A GWAS usually investigates many genetic variants simultaneously [1-3] to infer the
relationship to biological traits. For example, case-control studies, a comparison of
genotypic distributions between two groups of participants (case vs. control), have been
used to detect genetic variants are significantly associated with each group [2, 3]. Most

GWAS analyses have focused on the single-marker association, i.e., testing genetic



markers one at a time, mainly due to easy implementation. However, analyses based on

multiple markers can be more powerful and will be the focus of this study.

In this thesis, 1 will first briefly introduce genetic background that serves as the basis
for the development of my model. Next, I will review existing models of the GWAS.
Finally, I will propose and describe a novel model, mmLD, for detecting the association
between DNA variants and phenotypes by considering multiple markers. Detailed
simulations and real data application will be presented to demonstrate the applicability of

this new method.

1.2. Chromosomes, Single Nucleotide Polymorphisms (SNPs) and Quantitative

Traits

Figure 1 illustrates the structures of chromosomes and DNA sequences. Within a
population, members of the same biological species might differ at a single nucleotide.
These differences represent a common and important type of genetic variation, single
nucleotide polymorphisms (SNPs). SNPs are typically used as genomic markers in
genetic studies [2]. Most SNPs in humans are bi-allelic and contain a major (M) allele
and a minor (m) allele, determined by relative frequency. The frequency of the less
common allele is usually referred as the minor allele frequency (MAF). Based on a

combination of two alleles, a SNP usually has three genotypes; MM, Mm, and mm.



Many SNPs have been found by the International HapMap Project [4], which aimed
to develop a haplotype map of the human genome to describe common patterns of genetic
variation. The International HapMap Project used a variety of sequencing techniques to
search for and catalog SNPs across the world. Thus far, the project includes 11 human
populations with genotypes for 16 million SNPs. Through the HapMap project, the
linkage disequilibrium can be examined with genotype data [2]. The genetic variants
identified thus far have roles in human health, specific diseases or responses to drugs and
environmental factors [2]. SNPs with a MAFs of 5% or greater were targeted by the
HapMap project and have been used in GWAS analyses [4]. It is plausible that for these
types of SNPs existing in a large population are inheritable and might explain biological

variations that are known to have a genetic basis.

If a SNP is involved in a physical quantitative trait, it is called a quantitative trait
locus (QTL) [3]. QTLs usually consist of dichotomous alleles and have three genotypes,
denoted as QQ, Qq, and qq. In practice, QTLs are not always observable. Therefore, it is
very difficult to identify which SNP is the QTL for a specific quantitative trait. The

process of identifying QTLs associated with a phenotype is called QTL mapping.



chromosome

Figure 1 Chromosome and DNA sequences: Image from

http://www.conservapedia.com/File:763.jpg

1.3. Haplotype under Linkage Disequilibrium

For humans, each genetic marker usually has two alleles, one inherited from the
mother and the other from the father. A haplotype is a group of markers inherited from
one parent that is physically located on the same chromosome. Therefore, genetic

markers that are close to each other tend to be inherited together, except in case of



chromosomal crossover. Consequently, SNPs correlate with each other in a particular

genetic region. This phenomenon is called linkage disequilibrium (LD).

More formally, LD describes the degree to which an allele of one SNP is inherited or
correlated with an allele of another SNP in a natural population [2]. The non-random
association between alleles of the adjacent markers, measured by LD, is usually caused
by several factors, such as the selection, mutation, genetic drift, system of mating, and
population structure [5]. LD in a population usually decays over time. The rate of decay
is dependent on multiple factors, such as the population size, number of founding
chromosomes in the population, and number of generations. Different sub-populations
might have different degrees and patterns of LD. Although LD was first introduced as a
concept in the population genetics, it has recently been employed in QTL mapping
methods. These LD-based mapping methods are particularly suitable for natural

populations, such as humans, where controlled mating is implausible.

To illustrate the concept of LD, consider two bi-allelic markers, A and B. The major
and minor alleles of marker A are denoted as A and a, and those of marker B as B and b.
The frequencies of the two major alleles are denoted as p, and pg, respectively. The
possible haplotypes of the two markers are AB, Ab, aB, and ab (Figure 2). The
frequencies of these haplotypes are expressed as pag, Pap, Pag, aNd pgp. If two markers
are independent of each other, i.e., they are not linked, each haplotype frequency should
simply be a product of the two corresponding allele frequencies. However, if the two

markers are correlated, as most adjacent markers are, the haplotype frequencies will



differ from the product of the allele frequencies. In Table 1, the D value denotes the
deviation from the product of the corresponding allele frequencies and quantifies the
degrees of the linkage disequilibrium genetically. The D value in Table 1 represents the
two-way LD between two markers. For three or more markers, there might be three-way
or multi-way LDs. In these cases, representations and estimations are not simple as with
two markers. Figure 3 illustrates an example of the structure of LDs with multiple
markers. The data was generated by Forsim software [6], a simulator used for generating

gene sequences.

Table 1 Haplotype frequencies and allele probabilities of two markers

A a Total
B Pap = Dabp + D PaB = PaPp — D Pp
b Pab = Pabp — D Pab = PaPp + D qs =1- pp
TOta| pA qA - 1 - pA 1
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Figure 3 Example of linkage disequilibrium block generated by ForSim[6] software

Figure 2 Possible haplotypes and genotypes for two markers



1.4. Hardy-Weinberg Equilibrium, genotypic and haplotypic probabilities

In a natural population, allelic and genotypic probabilities usually remain constant
through generations unless there are impacted by evolutionary influences such as mate
choice, mutation, selection, genetic drift, gene flow, or meiotic drive. The Hardy-
Weinberg Equilibrium (HWE) describes an ideal condition without these influences [3, 7,
8]. Under HWE, genotypic probabilities are simply the products of corresponding allele

frequencies.

The allelic probabilities of major and minor allele for one marker can be denoted as
po and p; = 1 — p,, respectively. The genotypic probabilities are the binomial expansion
of the square of the sum of p, and p, as shown in Table 2. With two markers, there are
four haplotype frequencies, pgo, Po1: P10, @and p14, and nine possible genotypes. Based on
Figure 2, the joint genotypic probabilities and their relationships to the haplotypic
probabilities are summarized in Table 3. Table 4 shows the genotypic and haplotypic
probabilities of three markers with 27 possible genotypes. In general, for k markers, the

number of genotypes is set to 3%, while the number of haplotypes is 2*.

As shown above, the relationship between genotypic and haplotypic probabilities can
become very complicated when the number of markers is large. However, this calculation
is essential for extending LD mapping to an arbitrary number of markers. In Chapter 3, |
will propose an algorithm that can efficiently derive genotypic probabilities from

haplotypic frequencies.



Table 2 Genotypic probabilities of one marker under Hardy-Weinberg Equilibrium

AA Aa aa
Genotypic 5 2pop; = , ,
probabilities Po 2po(1 — py) p:? = (1= po)

Table 3 Genotypic probabilities of two markers under Hardy-Weinberg Equilibrium and
numbers n denote probabilities of each genotype

Genotypic
probabilities BB Bb bb

AA Poo’ 2pooPo1 Po1’
(ng0) (no1) (no2)

Aa 2PgoP10 2pgoP11 + 2Po1P10 2po1P11
(n10) (n11) (n12)

aa P1o” 2p10P11 pP11°
(n20) (n21) (n22)

Table 4 Genotypic probabilities of three markers under Hardy-Weinberg Equilibrium[3]

+ 2p110Po11

Genotypic
_y p CcC Cc cc
probabilities
AABB pooo2 2PoooPoo1 130012
2PoooPo11
AABDb 2 2
PoooPo1o + 2Po10Poo1 Poo1Po11
AADbb po102 2Po10Po11 po112
2PoooP101
AaBB 2 2
PoooP1oo + 2P100Doo1 Poo1P101
2PoooP111
AaBb 2PoooP110 + 2po10P101 2Poo1P111
+ 2po10P100 + 2p110Poo1 + 2po11P101
+ 2p100Po11
2po10P
Aabb 2Po10P110 O10F1L 2pPo11P111




aaBB p1002 2P100P101 p1012

2P100P111

2
+ 2P110D101 P101P111

aaBb 2P100P110

aabb p11o2 2P110P111 p1112

1.5. Estimating haplotypic frequency

Although many SNPs have been found by International HapMap projects [9], their
genotypes cannot fully reveal the genetic structure of each individual because one
genotypic pattern can arise from several possible haplotypic combinations. For example,
the genotype AaBb, which is heterozygous at two markers, might come from two
different sets of haplotypes, AB|ab or Ab|aB (Figure 2) [3, 10]. Therefore, haplotypes
can be unknown even when genotypes are fully known. To address this issue, haplotypes

are usually inferred by haplotype-estimation methods [11, 12].

Estimating haplotypic probabilities from genotypes has been studied for many years
and several representative methods have been proposed, such as the expectation-
maximization algorithm [11] and the Bayesian approach [12]. When heterozygous
genotypes exist at more than one locus, it is difficult to estimate correct haplotype
frequencies [11]. I will introduce the haplotype frequency estimation method with EM
algorithm proposed by Excoffier and Slatkin (1995) [11], which will also be used in my

model to be proposed in Chapter3.
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Suppose there are m genotypes with corresponding frequencies P;, i = 1, ..., m. For a
sample of n subjects, their probabilities can be expressed as a multinomial probability

function:
n! m n;
P(samplelpl, P, ---;Pm) =~ Tn 1_[ bi L
i= ! L Li=a

where n;, i = 1, ..., m denotes the observed count for the m genotypes.

As previously discussed, haplotypes from samples with heterozygotes cannot be directly
phased out and are referred to unphased genotypes. The number of unphased genotypes

(¢;) is a function of the number of heterozygous loci s;,

— i—1 — —
Cj—ZS] ) Sj>0and Cj—l, SJ—O

Under the assumption of HWE and random mating, the probability P; of the j-th
unphased genotype is given by the sum of probabilities of each of the possible ¢;

genotypes,

¢j ¢j
P = Z P(genotype i) = z P(hih;)
i=1 i=1

p? when k =1

Plhchy) = {Zpkpl when k # [

where P(h;h;) is the probability of the i-th genotype made up of haplotypes k and | and
p; denotes the frequency of the i-th haplotype. The likelihood of the haplotype

frequencies is then given as follows:
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m €j "
L(p1, 2 0R) = a4 1_[ P(hychy)

j=1 \i=1
where p,, =1 —p; — p, — - — pp—1 and a, is a constant incorporating the multinomial
coefficient. To obtain the maximum likelihood estimates for haplotypic probabilities, this

likelihood can be solved by the EM algorithm, which is given in detail below.

E-step:
m, P(hih)'?
@ =_J__- " J
P(hkhl) m P(‘g)
]
(9)2
when k = [
P(hkhl)(g) = pk( ). (9)
Zpkg plg when k # [
where p,((g) and pl(g) are the g-th iteration of frequencies of haplotype k and I.
M-step:

Cj Cj

5(9) — 2 P(genotype N9 = Z P(hkhl)(g)
i=1 i=1

n; P(hyh)@
(@ =k
P(hkhl) - n P(g)
J
1 m Cj
za\t(g+1) — Ez Z 5itpj(hkhl)(g)
j=1i=1
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where §;; is an indicator variable equal to the number of times haplotype t is present in
genotype i. EM algorithm iterates E and M steps until the difference of previous and

current likelihoods converges into a small quantity.

This algorithm can be explained by an example with two markers, as shown in
Figure 2 and Table3. For two markers, the likelihood of haplotypic frequency is given as

follows:

L(p1, 02, -, Prlgenotypes)
& 2n90log(poo) + N91108(2pgoPo1) + 2n02108(Po1) + ny0log(2poop10)
+ 111 108(2pgoP11 + 2P01P10) + N12108(2D01011) + 2n20l0g(P10)

+ ny110g(2p1op11) + 2nzzl0g(p11)
Then, the corresponding EM algorithm can be explicitly written as:
E-step:

_ PooP11
PooP11 T+ Po1P1o

where ¢ denotes the probability that the genotype AaBb comes from haplotype AB|ab,

and 1 — ¢ denotes the probability from haplotype Ab|Ab.

M-step:

1
Poo = %(znoo + ¢pnyq +npqy +nyp)
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A

1
P10 = %(ano + 110 + (1 — P)nyg +nyq)
) 1
Po1 = %(znoz + o1 + (1 — P)nyy +nyq3)

1
P11 = %(anz + ¢nyq +nyp +ny4)

1.6. Heritability value

In genetics, heritability refers to how much of the variation in a trait is caused by
genetic variants in a natural population. Other causes of the variation could be
environmental factors or genetic drift [13]. Statistically, heritability indicates the
proportion of phenotypic variance that is attributable to genetic variance. Therefore, it
can be measured by estimating the relative contributions of genetic and non-genetic
differences to the total phenotypic variation. The model of heritability can be defined as

follows:
Phenotype (P) = Genotype (G) + Environment (E)

The variance of phenotype can be shown as Var(P) = Var(G) + Var(E) + 2Cov(G,E). In a
designed experiment, Cov(G,E) can be controlled. If it is defined as 0O, then the

heritability is shown as follows:
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_ Var(G)
~ Var(P)

2

Therefore, the range of H? is from 0 to 1. If H? is 0, the genetic variant does not have
any contribution to the phenotype. If H2 = 1, the variation of the phenotype is caused

only by the genetic variant.

In this study, the heritability value will be used to design various simulations for the

null and alternative hypothesis.
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Chapter 2 Review of previous GWAS methods

In this chapter | will review some GWAS methods, later used for model comparison.
First, I will introduce single-marker based tests—single-marker LD mapping and
adjusted and minimum p-value single- marker LD mapping. Second, I will introduce
multi-marker based tests—two-marker LD mapping, the Sequence Kernel Association

Test, and the Smoothed Minimax Concave Penalty.

2.1. Genome-wide Association Study

Methods used in GWAS analyses can be broadly classified by phenotypic features.
There are two major types of phenotypic traits, quantitative (continuous) and qualitative
(dichotomous case-control). Quantitative traits are measurable phenotypes, such as
weight, height, and blood pressure, which are usually assumed normally distributed.
Qualitative traits are typically binary (case vs. control) in nature, such as with or without
a specific disease. Different GWAS methods can be applied to detect interesting

associations according to phenotypic feature.

GWAS methods can also be grouped by the number of markers considered in each
model, such as single-marker or multi-marker based test. As the aim of this thesis is to
develop a novel method based on multiple markers, I will review some important single-

and multi-marker based methods that are most relevant to this study.
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2.2. Single-marker based tests

A single-marker test is used to examine the association between phenotypes and a
single marker using statistical methods. Quantitative traits are commonly analyzed with
ANOVA or linear regression based approaches [2, 14]. ANOVA compares three means
of phenotype independently by the genotypes of a single-marker. Linear regression
assumes linearity for three means of phenotype. In both methods, the null hypothesis is
that there is no difference between the three mean values of phenotype. Both methods
also assume that quantitative phenotypes are normally distributed and that the variance of
the phenotypes within each group is constant [2]. For dichotomous case-control
phenotypes, a 2 by 3 contingent table is formed, and independence can be tested with the
Pearson y? test or Fisher exact test [14]. The null hypothesis is that no association exists

between the binary phenotype and three genotypes of each marker.

LD mapping, another approach that has recently emerged for QTL mapping, uses LD
information to link phenotype to genotypes [15]. The idea of LD mapping is that a
phenotype-related QTL is linked to a small group of genetic sequences that can be
directly incorporated into the mapping model. Most LD mapping has focused on a single-
marker association [15]. As our new method is also based on LD mapping, I will

introduce the single-marker LD mapping method in detail in what follows [15-17].
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2.2.1. Single-marker Linkage Disequilibrium (smLD) mapping

Suppose n samples with the quantitative phenotype and corresponding one
dichotomous marker. The null hypothesis is that there is no linkage disequilibrium
between one marker and the QTL (Hy: Dyr,o = 0) and the alternative hypothesis is the
opposite. Assume that the phenotype is normally distributed with three different means
and a common variance by three genotypes. In addition, there are six parameters to be
estimated under the null hypothesis; pa, pg, 1, 0%,j = 0, 1, 2, and one more parameter of
the linkage disequilibrium (D, ) is added under the alternative hypothesis. The likelihood

function can be written as:

L(pQJD]V[,QJ Hos U1, MZJGZ |y1M) = ?=1 Z?=0 nf|ifi(yi|:u0' U1, U2, 02)

In order to obtain the maximum likelihood estimates (MLES) of the parameters, the
EM algorithm can be applied. The deviance of likelihoods between null and alternative
hypothesis approximately follows y2-distribution with 1 degree of freedom because one
parameter of the LD value is added under the alternative hypothesis. Therefore, when the

deviance is rejected, it means the marker is linked with the QTL significantly.

2.2.2. Adjusted and minimum p-value smLD

Although the smLD is an efficient method to map a QTL based on one SNP, the
multiple-testing issue may occur when multiple markers are considered in a GWAS.

Therefore, to address this issue, Bonferroni correction can be applied, and it is called the
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adjusted smLD. Bonferroni correction is a conservative adjustment for multiple-testing

by controlling family-wise type I error.

As an alternative to the adjusted smLD, the minimum p-value smLD can also be
applied, which rejects the null hypothesis when at least one of multiple testings is
rejected. The minimum p-value smLD is likely to reject the null hypothesis too easily.
Due to this, we expect arise of a high power, while it leads to an inflated type | error as
well. Although the minimum p-value smLD cannot be used as the reliable method for the
multiple-testing, it might be useful for the power comparison. In this study, the minimum
p-value smLD is applied for the power comparison to verify the efficiency of our newly

proposed mmLD method.

2.3. Multi-marker based tests

Although these single-marker methods are straightforward, they usually suffer from
limited powers. Recently, more and more researches have shifted the focus to the
association test with multiple markers. However, the multiple-marker association is
usually not a simple extension from the single-marker association test [2], and is
statistically and computationally more challenging. In the following, I will introduce

some recent development on association methods using multiple markers.
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2.3.1. Two-marker LD mapping

The two-marker LD mapping (tmLD) is built on the smLD and was first proposed by
Yang et al (2014) [18]. In the two-marker LD mapping framework, it assumes a
dichotomous QTL of alleles major Q and minor q, which is causal but unobserved. Also,
it considers two neighboring markers M; and M, and assumes that the phenotype
affected by the QTL follows a mixture Gaussian distribution with three different means

and the same variance by the genotypes of the QTL.

Because the tmLD examines the association of two known markers and an
unobserved QTL, there are four LDs as follows; D;,, D1q, Dyq, and D;q. The first LD
D;, can be estimated directly by the two markers which are already observed. However,
the other three LDs (D;q, D,q, D12¢) between two markers and the QTL should be tested
for whether they have zero quantities or not. Therefore, the null hypothesis is that the
QTL is not associated with two adjacent SNP markers (Hy: D1g = D¢ = D19 = 0) and

the alternative is the opposite. The likelihood function can be written as:
L(02,, 24 |y, My, M) = T, Yiso i f: (vilg)

where Q,, denotes the parameters of haplotype frequencies of two known markers and the

QTL and Q, does the phenotypic parameters; u;,02,j =0, 1, 2.

The tmLD uses the EM algorithm to obtain MLEs for the parameters. The

computational algorithms are given in what follows:
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Step 1: Give initial values to the unknown parameters (Q,, Q)

Step 2: E-Step — Calculate the posterior probabilities for each subject i carrying a

1 (vilQq)

particular QTL genotype j using the equation IT;; = m .

Step 3: M step — Solve the log-likelihood equations for each parameter based on
the observed data and II;; to obtain its estimate. To estimate the quantitative
genetic parameters (£,), their expressions in closed forms can be derived
based on the estimation equations. For the estimates of the population genetic

parameters (£,), another inner layer of EM algorithm can be employed.

Step 4: Repeat the E and M steps until the estimates converge to stable values. The

estimates at convergence are the MLEs of parameters.

The tmLD uses the likelihood ratio test with 3 degree of freedom. If the deviance

of likelihoods between the null and alternative hypothesis is rejected, it means that the

QTL is located on two adjacent markers and linked with them. The tmLD shows better

power performances than those of single-marker association test [18]. Therefore, it is

reasonable to assume that the LD mapping including more than two-markers is likely to

have the better powers for mapping QTL than the smLD.

However, in order to use multiple markers, some limitations of the tmLD must be

solved first. The first is to derive genotypic probabilities from estimated haplotype

frequencies under Hardy-Weinberg Equilibrium for three or more markers because its

calculation becomes complicated. The second issue is how to determine the degree of
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freedom of LRT for the multiple-markers. Therefore, these challenges are the motivation

of my research.

2.3.2. Sequence Kernel Association Test

The sequence kernel association test (SKAT) is another multi-marker based
methods proposed by Wu (2011) and Lee (2012) [19, 20]. It is a regression approach that
tests for the association between SNPs in a small panel and either case-control or
continuous phenotypes [19]. The SKAT uses a multiple regression model to directly
regress the phenotype on genetic variants (SNPS) in a region and on covariates. It
assumes that n individuals are sampled with observed K SNPs. Covariates such as the
demographic variables and top principal components of genetic variation are allowed for
controlling population stratification. For i-th subject, y; denotes the phenotype and X; =
Xiv, Ximy o Xi) @and G; = (Gyq, Gip, -+, Gig) do the covariates and genotypes,

respectively. The model for the continuous phenotypes is as follows:

Vi = (X0+ (X’Xi+ ﬂ’(GJi + &

where «a, is an intercept term and a = [a;, ..., @,,,]" is the vector of regression coefficient
for the m covariates and, B = [B, ..., Bx]’ is the vector of regression coefficients for the
K observed SNPs, &; is an error term with zero mean and ¢2 variance. The null

hypothesis is that the coefficients of variants (SNPs) are zero; H,: f = 0. However, since

the standard likelihood ratio test has little power, the SKAT tests assume that each £,
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follows an arbitrary distribution with zero mean and w; t variance, where t is a variance
component and wy, is a pre-specified weight for variant k. Therefore, it uses a variance-

component score test in the corresponding mixed model.

Q= - D'Ky—- M

where K = GWG', G is an n X k matrix with the (i, k)-th element being the genotype of
variant k of subject i, W = diag(w, ..., wg) contains the weights of the K SNPs, ji =

a, + Xa is the predicted mean of y and @, and @ are estimates of covariates X under
the null hypothesis. The power of the SKAT depends on choices of weights (w;). Under
H,, Q follows a mixture of y2-distributions. The SKAT is computationally efficient and it
yields p-value easily with simple analytic formulae, and the features of the SKAT are
exploration of local correlation structure, incorporation of flexible weights to boost power

and allowance for epistatic variant effects.

This SKAT for continuous phenotypes without covariates is applicable for the
power comparison with the mmLD method because it is able to deal with multiple

markers to detect their relationships with continuous phenotypes.

2.3.3. Smoothed Minimax Concave Penalty

The smoothed minimax concave penalty (SMCP) method was proposed by Liu
(2013) [21]. The SMCP is a penalized regression method for identifying important SNPs

in GWAS. It is a combination of the minimax concave penalty (MCP) proposed by
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Zhang [22] and a penalty, consisting of the squared differences of the absolute effects of
adjacent markers. The MCP promotes sparsity in the model and selects significant SNPs
and the penalty for the squared differences of absolute effects which take into account the
natural ordering of SNPs and adaptively incorporates the LD structure between adjacent

SNPs [21]. The MCP is defined as

p(t A ) = 4y f)° (1 B %)Jr ax

where A, is a penalty parameter, and y is a regularization parameter that minimizes the
maximum concavity.

The SMCP assumes that K SNPs and 3, are the effects of the k-th SNP in the
model which describes the relationship between phenotype and markers, and the SNPs
are ordered by their physical locations on a chromosome. Neighboring SNPs in high LD
are expected to have similar strength of association with the phenotype. The penalty

encourages smoothness in |S|s at adjacent markers.

A _
72 Ik(=11 Sk (Br| — |,3k+1|)2

where the weight ¢, is a measure of LD between the k-th and k+1-th SNPs and it
promotes |8, | and | B to be similar to an extent inversely proportional to the LD
strength between the corresponding SNPs. Neighboring SNPs in weak LD are allowed to

have the larger difference in smoothness in |S|s than if they are in stronger LD.

The SMCP is applicable for scanning a dense set of SNPs by incorporating the

LD information. Although it is an efficient tool to deal with a large number of SNPs, it is
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not comparable with the mmLD because it does not give the overall p-value but the p-
value of each SNP. Meanwhile, the mmLD gives only the overall p-value for the multiple

markers. Therefore, it was not plausible to compare their powers in this study.
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Chapter 3 Multiple-marker LD mapping

In this chapter, I will propose a novel method in details. It is organized as follows: |
will introduce a novel model mmLD and explain how it works for the QTL mapping. In
addition, 1 will show the results of various simulations to verify the applicability of the

mmLD.

3.1. Method
3.1.1. Setting multi-marker LD (mmLD) mapping

In the mmLD mapping framework, we assume a dichotomous quantitative trait locus
(QTL, Q) of alleles Q and q that is causal and is unobserved, and the allele frequencies of
Q and q are expressed as p, and p; = 1 — pq. Suppose that the QTL is genetically linked
to a group of genotyped SNP markers, M; (i = 1, ...,k k > 2) that are from a LD block,
and each marker M; has two alleles M; and m; with corresponding frequencies of p; and
1 — p;. Then, the k markers may form 2% possible haplotypes, and form 2%** possible
joint haplotypes together with the unknown QTL. Let pyy, ...r, denotes the frequency of
haplotypes formed by k markers, and py, ...ar, o the frequency of the joint haplotype
formed by the k markers and the QTL. The LD between the QTL and the group of

markers can be described by the following equation:

Py, = Py Po + DM1"'Mk:Q Eqn 1
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In general, there are 2% — 1, Dg,...ae,,0 Values, one for each marker haplotype. If all
Do, ..a,0S are zeros, it indicates that the QTL and the marker group are independent;

otherwise, the QTL and the marker group are in LD.

3.1.2. Mixture Gaussian Model of mmLD

Suppose that there is a random sample of size n, For subjecti (i = 1, ...,n), k
markers (M;; -+ M, ) have been genotyped and a continuous phenotypic trait (y;) has
also been obtained. Assume these samples are drawn from a natural population under
HWE, and the continuous trait is directly affected by the QTL. Then, the relationship
between the observed phenotypes and their expected means, which are determined by the

genotypes of the QTL, can be described as follows:
Vi =Yio&mujte, i=1..,n Eqn2

where §;; is an indicator variable defined as 1 if subject i has a QTL genotype j (2 for
QQ, 1 for Qq, and 0 for qq), u; is the expected phenotypic mean for a QTL genotype j,
and e; is the error term that is assumed to follow a Gaussian normal distribution with
zero mean and variance 2. Based on the conditional probability of subject i carrying a
certain QTL genotype j given its markers, m;; = P(Q = j| M, --- M) or P(Eij = 1), the
likelihood of the phenotype and multiple markers can be constructed by the following

mixture model:
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2
2 n 2 . — .
L(®p’®q;y’M1"“’Mk): { ”ilifi(yi;e)q):|:H Z”ni—l €Xp _—(y, ﬂj)

2
i=1 | j=0 i=1 | j=0 %27[0'2 20

Eqgn 3

where @, is a vector of the population genetic parameters that describe haplotype
frequencies including the k& known markers and one putative QTL, ©4 = {10, 11, 2, 0%}
is a vector of parameters of the phenotypic traits. We assume that these phenotypic values

are normally distributed. The calculation ;; becomes complicated as k, the number of

known markers, increases. This issue will be addressed in the next section.

3.1.3. Calculation of joint and conditional genotypic probabilities with k markers

For small k (2 or 3), the conditional genotypic probabilities can be easily
expressed and calculated by the haplotype frequencies in Table 2 and Table 3 [7, 8].
However, since the numbers of haplotypes (2%) and genotypes (3%) increase
exponentially with the arbitrary number of genetic loci, the calculation of genotypic
probabilities becomes difficult for large k. In general, genotypes are classified into
homozygote or heterozygote [24]. The homozygote denotes the identical bi-alleles at
each locus and the heterozygote does bi-alleles with different alleles at a specific locus
[25]. If a subject has homozygotes at all genetic loci, its joint genotypic probabilities can
be simply calculated with the square of a haplotype frequencies. However, if at least one

of loci contains the heterozygote, the calculation of joint genotypic probabilities becomes

28



complicated as one genotype may come from combinations of different haplotypes as

shown in Figure 4.

\ J 9 J

2-P(ABQ) - P(aBq) = 2pgooP101 2-P(ABq) - P(aBQ) = 2pgp1P100

Figure 4 Example of genotypic probabilities of heterozygote

For the purpose of the simplicity, for a specific locus, its two alleles are denoted
as 0 and 1 and correspondingly, its three genotypes can be denoted as 0, 1, and 2, as
simply the summation of the two alleles. Below we describe a general algorithm for the
calculation of joint genotypic probabilities for the combinations of genotypes at k

markers. Here, G, denotes the genotype of the k markers.

Step 1. Determine zygotic status (homozygote vs heterozygote) for genotypes at all loci.

Step 2. If a subject has homozygote genotypes at all k markers like Gooooo and G22222, its

genotype frequency is the square of the corresponding haplotype frequency. For example,
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if there are five markers (k = 5) and its genotypes are given like Gooz02 and Gozooz, then
their genotypic probabilities can be calculated to P(Goo202) = Pgo1012, and P(Gozoo2) =

Po1001>, respectively.
Step 3. If at least one of loci has the heterozygote,

Sub-step 3.1. Consider the haplotypic frequencies which have the correct major or

minor allele correspond to the homozygote loci.

Sub-step 3.2. Combine the haplotypic frequencies of which one has major allele

and the other has minor allele at the heterozygote loci.

Sub-step 3.4. Genotype probability is the sum of two times the combination of
haplotypic frequencies. For example, if there are five loci and its

genotype is given like Gi1202, then its genotypic probability is P(G11202)

=2Poo101P11101 T 2P10101P01101-

Table 5 Joint genotypic probabilities of k marker

Genotypic probabilities MkMk Mimg MkMk
MiM1 M2Ma... Mi-1Mk poo...o2 2Poo..0P00..1 poo...12

2
MiM1 MaMa... Mk-1Mi-1 2Poo..0Po..10 Poo..oPo..11 2Poo..1Po0..11

+ 2po..10P00..1

M1iM1 MaoMa... mk-1Mk-1 Po..10° 2po..10P0..11 Po.11°
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2 2
mima M2mz...7mk-1Mk-1 P11..0 2p11..0P11.1 P11..1

With this algorithm, Table 5 shows the example of joint genotypic probabilities
for k genetic markers. If one is QTL (the column variables), the conditional probabilities

of QTL given markers (r;;) can then be derived, correspondingly.

3.1.4. Conditional joint genotypic probabilities

In the mmLD procedure, the mmLD conducts two-phase estimations, separately. The
first-phase is to estimate haplotype frequencies with k known markers and the second-
phase is to update haplotype frequencies with both k& known markers and the QTL. Here,
estimations of the second phase depend on the estimates of haplotype frequencies from
the first phase. In other words, the 2%*1 number of haplotype frequencies in the second-
phase are derived from the 2% number of estimates of haplotype frequencies from the
first-phase. Thus, this dependence of haplotype frequencies corresponds to the

dependence of genotype probabilities.

Each posterior probability (m;; = P(Q = j|Mjy - Mjy) of the QTL is expressed as
the conditional joint genotypic probabilities in Eqn 3; the genotypic probability of the
second phase over the genotypic probability of the first phase. Also, the summation of

three posterior probabilities should be 1 for each subjecti = 1,2, ..., n.
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Table 6 shows the example of the conditional joint probabilities of one known marker

and one QTL.

;=1

j=0,1,2

Table 6 Table of conditional probabilities of 1 SNP and 1 QTL for several subjects

Genoty | Genotypic Conditional probabilities () for unknown QTL
Sub | pesof | probabilit eNnotves
ject | one y of one : g _yp :
SNP marker QQ(=0) Qu(=1) qq (=2)
2 2 2
1 AA Py Poo2 p00}2:)01 po12
Po Po Po
2 2 +2 2
2 Aa 2PeDy PooP1o PooP11 Po1P1o Po1P11
2pop1 2pop1 2pops
2 2 +2 2
3 Aa 2PeDy PooP1o PooP11 Po1P1o Po1P11
2pop1 2pop1 2pops
2 2 2
4 aa D2 p1o2 p10£’11 p112
P1 P1 P1
2 2 2
n aa D2 p1o2 p10§11 p112
P1 P1 P1

3.1.5. Expectation-Maximization (EM) algorithm

Maximum likelihood estimates (MLES) of parameters can be obtained by maximizing

the log-likelihood function (Eqn 3). The EM algorithm can be very efficient for

parameter estimations in the mixture model. In this study, | propose a two-phase EM
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algorithm. The first phase is to estimate haplotype frequencies based on known genotypes
of k markers and the second phase is to update haplotype frequencies with unknown QTL
and phenotypic parameters. Therefore, two-phase estimations are performed, separately

in the mmLD procedure.

Since the mmLD assumes that the QTL is unknown, estimating haplotype frequencies
for k known markers and the QTL in the second phase entirely depends on the estimates
of haplotype frequencies for k known markers from the first phase. For the first phase,
estimating haplotype frequencies for known genotypic probabilities has been studied with
various methods as explained in Chapter 1. Thus, in this study, the EM algorithm, which
is one of popular methods proposed by Excoffier and Slatkin (1995) [11], is implemented
in the first phase estimation[26-28] . The “haplo-stat” is one of well-known software for
the estimation of haplotype frequencies based on EM algorithm [26]. The detailed

algorithmic working flow is described as follows:

Step 1: Estimate the 2% haplotype frequencies for k known markers from given

genotype data (1%-phase EM). The R-package “haplo.stat” is applied [26].

Step 2: Initialize parameters (0(©) of 2¥*1 haplotype frequencies (@1(90)) which include k

known markers and one QTL, and phenotypic parameters (G)go)).

Step 3: Derive the 3**1 joint conditional genotypic probabilities based on initialized or

updated haplotype frequencies of k known markers and one QTL.
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Step 4: E-step Calculate posterior probabilities for each subject i carrying the

particular QTL genotypes j.

For each iteration (r =1, 2, ...), log-likelihood function is

2

2
n 1 Yi — K
IOgL:g:Z; 0 Z; Iog(;z”i)+zij Iog[\/ﬁJﬂij __( 21) Egn 4
i=1l j=

20

(r-1) (r-1)
a fj(yi|®q ) Eqn 5

Posterior probabilities: E(Zij)=nj\i(r) =5
Z;,”ju(ril) fj (yi | ®q(ril))
j=

,wherei=1,2,...,n, j=0,10r2and nj(lri"l)is the prior probabilities.

i=1 j=

E(()=E ZZ(;ZH log(7;; )+ Iog( 2i02J+zij[%J

Step 5: M-step Solve the log-likelihood equations for each parameter based on observed
data and IT;;; to obtain its estimate. The expectation of log-likelihood equations

can be divided into two parts—phenotypic and haplotypic parameters in (6).
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Therefore, both parts must be maximized, separately. To estimate the phenotypic
parameters (£, ), their expressions in closed forms can be derived based on the
estimation equations. For the estimates for the haplotypic parameters (£2,),

another inner layer of EM algorithm can be employed.

2
ML. to maximize E, (e((aq);y,®p<r),®q(’))=Zn122:1‘[j"<”1) Iog( ! ]—(yi _A:j)
i i x/27r0'2

1) Estimates of means

or . (yi —H;j )
_ = 2H”(I‘+l) —] :0

ZHJ—“(Hl) yi
= 4= forj=0,10r2 Eqn 7
ZH _‘i(r+l)
i=1 .
2) Estimates of variance
n (r+1) _ 2
60_2 g 20_2 J 2(0_2 )2

Eqn 8
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M2. to maximize

E., (E(G)p); y’®p(r)’®q(r) ) = ZH:ZZ:HJH(HI) IOg(”Ju ) Egn9

i=1 j=0

Table 7 Example of maximization of haplotype frequencies including the QTL

Genotypes Unknown QTL
of known
markers QQ (O) Qq (1) qq (2)
0000 1 Nygo.o =271/ 000..0 |7, | Nogg., = z{ooo...o Zis | Ngo.o =21 [ooo...o}zi2
k+1 i=1 Kk k+1 i=1 k K-+l i=1 Kk

k
000...1 | N =>1000.1|7, | Ny, = |(ooo...1 7, | Ny oy = |£ooo...1}q2
k — - — i—1 — i—1

000...2 | N, o =3111000.2 |7y | Ngp oy = |[ooo...2 7y NOO._.22=ZI(OOO...2j7zi2

222....2 Nwzzl[zzz..z}ﬁm N%=ZI(222...2}@1 NM=ZI(222---ZJ%
- k i

k+1 i=1

The sum of posterior probabilities of each subject is the expectation of genotypic
probabilities with k known markers and the QTL. Table 7 shows the example of the sums
of posterior probabilities. Based on this sums, the second-phase estimation is performed
for the 2%+ haplotypic probabilities. In this step, EH (Estimating Haplotype) software

[10] is applied for another inner layer of EM algorithm.

Step 6: Iterate E and M-steps while the log-likelihood converges to the maximum.
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3.1.6. Hypothesis Testing

The goal of this study is to test that the unknown QTL is in linkage disequilibrium
with a group of k known markers. Significant LDs infer that k known markers and the
unknown QTL are physically close, which could provide the guidance for subsequent
biological validations. The hypothesis for the mmLD mapping can be formulated as

follows:
Ho: A QTL and known markers are independent, i.e. all Dy, .57, 0 =0
H1: At least one of equality of Ho is not true.

Under the null hypothesis (Ho), the conditional genotypic probabilities of the QTL are
constant throughout subjects regardless of the marker genotypes they carry. So the

parameter set under Ho is

G)HO = {pll ---:pk’Dlz’ ---:D1___k: le.MOI Uy, U, 0-2}

where p4, ..., py indicate the allelic frequencies of k known markers, D,,, ..., D; ; denote
LDs between k known markers, uo, i, o, % denote three means and the variance of
phenotypic parameters, and p,, represents the allelic frequency of the QTL. Under the
alternative hypothesis, the parameters of LDs (D, ..., D1 ko) between k known markers
and the QTL are added. The EM algorithm to maximize the likelihood under Ho is similar
to that under Hy in the previous section. Then, a likelihood ratio test statistics (LRT) can

be constructed as follows:
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LRT = _Z‘BHO + 2‘€H1 Eqn 10

Under Ho, the LRT asymptotically follows a }{2 - distribution with degrees of freedom

to be the difference in numbers of parameters between null (Ho) and alternative

hypothesis (H1).

3.1.7. Estimating degree of freedom

Let’s recall the parameters under null and alternative hypothesis;
G)Ho = {pl' s Do D121 L) Dl...k} in Ho, U1, U2, 02}

®H1 = {plr "'rpkﬂD12' ey Dl...ki pQJ Ho, U1, U, O-Z'DlQ' ""Dl...kQ}

In the likelihood ratio test, the degree of freedom represents the difference of
parameters between the null and alternative hypothesis, and thus, the number of parameters
of LDs (Dyq, ..., D1_ko) between k known markers and the QTL is set up as degrees of

freedom for LRT.

The number of LDs of between k known markers and the QTL is equal to the number
of combinations of k elements; ¥, (¥) = 2% — 1. Thus, the expected degree of freedom
should be 2% — 1 in a common situation. For example, when the numbers of known

markers are two (k = 2) or three (k = 3), the expected degrees of freedom are 3 or 7,

respectively. However, things may become more complicated when the number of markers
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are large (k > 3). For example, some haplotypic frequencies may not be estimated from
the data, or with frequency of zeros. In these cases, the degree of freedom of 2% — 1 will
be inaccurate. Below | will provide a more systematic way of determining the degrees of

freedom for our proposed test.

3.1.7.1. Correlation among markers is important but not directly related to the

degree of freedom

Initially, we thought the correlations among markers may play important roles in
determining the degree of freedom, which is best illustrated by a thought experiment.
Suppose that there are two known markers and their correlation is exactly one, which
means that they have identical genotypes, and the genetic information of two markers is
essentially that of one marker. In this case, although there are two markers, the degree of
freedom should not be three but one. Thus, it would be reasonable to hypothesize that the
degree of freedom depends on the level of correlation between known markers. Several
simulations have been conducted to check this hypothesis. However, the results of
simulations did not reveal any relationship between the level of correlation and the
reduction of degree of freedom. More simulated settings will be shown in the next

section.

Although these trials did not give us what we expected, it did confirm that degree of
freedom drops from 3 to 1 when the correlation changes from less than 1 to 1. Based on

this fact, we further examined the reason of the reduction of degrees of freedom and
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explored the hypothesis that the number of non-zero haplotypes is related to the test

degree of freedom, which will be described in the section below.

3.1.7.2. Haplotypes with zero frequency

Table 8 shows the example of haplotype frequencies of two identical markers. There
are four haplotype frequencies for these two markers, but among them, two haplotypes
(poo, P11) have non-zero and the other two has zero frequencies. As described above, the
haplotype frequencies of k known markers are estimated from the first phase, and then
the estimation of haplotype frequencies in the second phase depends on the estimates of
the first phase. In other words, the frequency of each haplotype from the first phase is
divided into two frequencies by considering the bi-allelic QTL in the second phase.
Therefore, the zero haplotype frequency of the first phase leads to two zero haplotype
frequencies of the second phase. Thus, it means that zero frequency is not a parameter
any more. Therefore, the degree of freedom of Table 8 becomes 1 (= 22 — 2 — 1) from 3

(=22 —1).

In summary, if the number of known markers is two (k = 2) or three (k = 3), then
degree of freedom has maximum 3 or 7 (=2% — 1), respectively. However, if there are
haplotypes with zero frequencies (say a of them), then the effective degree of freedom
would become 2¥ — 1 — 1, which is less than 2% — 1. The next section shows how the

reduction of degree of freedom is related to the number of haplotypes with zero
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frequencies, in the example of two known markers. The evaluation of type | error with

the reduced degree of freedom will be shown later in the next section.

Table 8 Example of haplotype frequencies of identical two known markers

Haplotype frequencies of Marker 1
identical two known markers A a Total
B 0.5 0 0.5
(Poo) (Po1) (pB)
0 0.5 0.5
Marker 2 b
(P10) (P11) (gg =1 —pp)
0.5 0
Total 1
(Da) (qa =1 —pa)

41



Example of Reduced degree of freedom for haplotypes with zero frequency

Let’s look at how to determine the degree of freedom with two known markers
and one QTL. Haplotype frequencies of two known markers and a QTL are set up using
the equations below. The red font denotes the parameters estimated in the second phase

estimation.

Haplotype frequencies of Two known markers (M, & M,) and one QTL(M%)

Pooo = P1P2pP3 + P1D23 + p2D13 + p3Di2 + D123
Po11 = P102Q3 + P1D23 - g2D13 - q3D12 + D123

P1o1 = Q1Pp203 - QiD23 + p2D13 - zD12 + D123
P110 = Q102P3 - QiD23 - g2D13 + p3D12 + D123
Poor = P1Pp203 - P1D23 - P2D13 + 3D12 - D123
Poio = P1Q2P3 - P1D23 + g2D13 - p3D12 - D123
P1oo = Q1p2p3 + qiD23 - P2D13 - p3D12 - D123

P111 = 010203 + qiD23 + Q2D13 + 3D12 - D123

Example 1 M; = M,

= p1=pz, G =02, D12 =poo— p1pz = p1 — P1* = Pz & Poo = Po1 = P1oo =
P1o1 =0

= Po10 = P1G2Ps - P1D2s + G2D1s - psD12 - Dizs
= p1gip3 - p1D1z + qiD13 - p3p1g: - D123 (D23 = D13, s0, D23 is known)

=-p1D13 + D13 - p1D13 - D123 =0
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= D12z = (1-2p1): D13 (D123 is known)

= Finally, two parameters (p3 & D13) are left.

Example 2 One haplotypic frequency of two known markers is zero. (e.g., pio = 0)

= pP1oo = P1o1 = 0 & D12 = p1p2
= P1oo = g1p2Pp3 + qiD23 - p2D13 - p3D12 - D123 =0
= D12z = qup2ps + qiD23 - p2D13 - psD12 (S0, D123 is known)

= Finally, three parameters (ps, D13 & D23) are left.

To summarize, we can determine degree of freedom as follows:

1) All haplotypes of known markers have effective non-zero frequencies.

Degree of freedom = 2X— 1

2) If A number of haplotypes have zero frequencies and the other have effective non-
zero frequencies.

Degree of freedom =2¢—-A—1
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3.1.7.3. Small haplotype frequency

In practice, we found that for large k, the genotypic data are fragmented very quickly
and a few haplotypes may have very small frequencies (e.g. 1e-6). These small
frequencies should be handled carefully as we do not know whether they are true zero or
non-zero due to poor estimations. As the empirical experience, we found that the
haplotype frequency that is larger than 1 divided by the number of subjects may serve as

a useful practical cutoff for non-zero frequency.

Table 9 is the example of the differences between parameters and estimated
haplotype frequencies from the first phase. 2,000 subjects were sampled in this simulated
setting. Among parameters of haplotype frequencies of three known markers, there are
three small haplotype frequencies (pyo0, Po10, @and p191) Which are less or equal to 1 over
2000 subjects (= 0.0005). The estimate of the haplotype pyo, is very small but it is not
zero even though the true parameter is zero. In a natural population, the genotypes of k
markers are known but their haplotype frequencies are unknown. Therefore, the smallest
value (3e-09), which emerges in the first phase estimation, should be determined for
whether it is zero or not. If all three small frequencies are determined as non-zero values,
then the deviance would follow y2-distribution with the full degree of freedom 7 (=23 —
1). On the other hand, if all three small frequencies are regarded as zero values, then it

would follow y2-distribution with the reduced degree of freedom 4 (=23 — 3 — 1).
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Table 9 The difference between parameters and estimates of haplotype frequencies from
the first phase in a simulated sample

Pooo Poo1 Po1o Po11 P1oo P1o1 P110 P111
Parameter
0 0.2905 | 0.0003 | 0.0988 | 0.182 | 0.0005 | 0.1038 | 0.3243
Estimates
from the 3e-09 | 0.2930 | 0.0004 | 0.0961 | 0.1794 | 0.0006 | 0.1063 | 0.3243
first phase
df=4 df=5
0?0 0?2 0?4 0!6 0?8 1?0 O4I0 0!2 Of4 0?6 04I8 1!0
pchisq(Deviance, df = 4, lower.tail = F) pchisg(Deviance, df = 5, lower.tail = F)
df=6 df=7
OfO 0?2 Of4 OfG 0f8 lfO O.IO 0f2 Of4 Ofﬁ 0.I8 1f0

pchisq(Deviance, df = 6, lower.tail = F)

pchisq(Deviance, df = 7, lower.tail = F)

Figure 5 Type I error evaluation of the different degrees of freedom
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Figure 5 shows the histograms of p-value under the null hypothesis for different
degrees of freedom from 4 to 7. When they were treated as zero quantities and removed
from degree of freedom, the type | error was inflated; on the other hand, when they were

treated as non-zero quantities, the test was too conservative.

In order to determine the effectiveness of small haplotype frequencies, several ideas
were tried such as the arithmetic or weighted average of smallest and largest degree of
freedom. These simulations will be shown in the next simulation section. However, some
of these trials did work well and others did not control type | error. Therefore, these ideas
cannot provide stable outputs for the proper degree of freedom and they all lack some

theoretical foundations.

3.1.7.4. Sequential Likelihood Ratio Test

To solve the issue with small haplotype frequencies, | propose a novel sequential
likelihood ratio test procedure for the control of type | errors. The idea is analogous to the
backward model selection strategy, i.e. haplotypes with small frequencies will be tested
sequentially to examine if they are significantly different from zero or not, one at a time.
Specifically, let Lrun be the likelihood under alternative hypothesis by including all non-
zero haplotype frequencies, and Lreduced be the likelihood of setting the smallest haplotype
frequency to be zero. If the LRT between Lrun and Lreduced IS NOt significantly different
under a y2-distribution with 1 degree of freedom, that is -2Lreduced + 2LFull < ¥4 5,1, then

it means there is no evidence that the smallest haplotype frequency is effective and thus it
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should be removed from degree of freedom calculation. The procedure will be repeated
until frequency of any haplotype cannot be set to zero. Once it stops, we can find the
proper degrees of freedom with the control of type | error. Again, it will be tested by

various settings of simulations and be discussed in the next section.
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3.2. Simulations

Extensive Monte Carlo simulation experiments have been performed to examine the

statistical properties of the proposed mmLD mapping method.

3.2.1. Simulated settings

Let’s consider a sample of n subjects randomly chosen from a human population that
is under Hardy-Weinberg Equilibrium. For the i-th subject, suppose its phenotypic value
y; is controlled by an underlying QTL, which is located at a LD block and is in linkage
with a group of k markers (k > 2). The marker and QTL genotypes were first simulated
based on pre-specified haplotype frequencies, and then the phenotypic values were
generated based on QTL genotypes according to Eqn 2. The variances in phenotypic
values were determined by different heritability values (H?)[29], which quantifies the
genetic contribution from the QTL to the overall trait. Specifically, H? = 0 implies that
the three means of QTL genotype groups are the same, implying no QTL effect. QTL
information has been removed from mmLD mapping to mimic the real scenario that QTL
may be ungenotyped. Each simulated setting was performed 200, 500 or 1000 times for

the evaluation of type I error and power.
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3.2.2. Type | error Evaluation

In the hypothesis testing, type I error means the probability of incorrectly rejecting

the null hypothesis (H,) when the null hypothesis is true.

3.2.2.1. Relationship between degree of freedom and correlation of known markers

In this section, outputs of simulations for the trials, which were to examine the

relationship between degrees of freedom and correlations of known markers, are shown.

Figure 6 and Table 10 show the one of outputs for simulated setting that has high
correlations (r = 0.5, 0.9, 0.95, and 1) between two known markers. 1,000 subjects were
sampled from a natural population. The major allele probabilities of both two known
markers were set to be 0.5 and the linkage disequilibrium between known two markers
(D) varied from 0 to 0.25. If D, is zero, then their correlation is zero. Meanwhile, if
D;, i1s 0.25, then their correlation is one. The phenotypic values follow the mixture
Gaussian normal distributions with different three means and the same variance; u, =

20,4, = 40, 1, = 60 and 62 = 49.

As shown in Table 10, the proper degree of freedom of each simulation is 22 — 1 =
3, except the last setting (D, = 0.25, r = 1), in which the proper degree of freedom was 1.
Particularly, in the fourth simulation, even though it had high correlation (D;,=0.2375,

r=0.95), its proper degree of freedom was still around 3.
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Therefore, the results of simulations did not reveal any relationship between the level

of correlation and the reduction of degree of freedom. More simulated settings are shown

below (Table 11 — Table 13, Figure 6 - Figure 9).

Table 10 Mean and Variance of Deviance for the evaluation of the proper degree of

freedom
0%=49 D,,=0/r | D;,=0.125 | D;, =0.225 | D;,=0.2375 | D;, =0.25/
=0 /r=05 /r=09 /r=0.95 r=1
Mean 3.1 2.9 3.4 3.3 0.9
Variance 6.5 5.1 7.2 7.4 15

Table 11 Mean and Variance of Deviance for the evaluation of the proper degree of
freedom with 62 = 9

0%?=9 D,,=0/r | D;,=0.125 | D,, =0.225 | D;, =0.2375 | D;,=0.25
=0 /r=05 /r=0.9 /r=0.95 lr=1
Mean 3.1 3.2 3.0 3.0 1.2
Variance 6.9 7.6 5.8 5.9 2.3

Table 12 Mean and Variance of Deviance for the evaluation of the proper degree of
freedom with o2 = 144

0% =144 D,,=0/r | D,,=0.125 | D,, =0.225 | D,, =0.2375 | D;, =0.25
=0 /r=05 /r=09 /r=0.95 lr=1
Mean 3.2 3.2 3.1 3.3 11
Variance 6.0 6.3 6.7 6.5 2.4

Table 13 Mean and Variance of Deviance for the evaluation of the proper degree of
freedom with a2 = 400

52 = 400 D,,=0/r | D;,=0.125 | D, =0.225 | D,, =0.2375 | D;, =0.25
=0 /r=05 /r=09 /r=0.95 lr=1
Mean 35 3.3 35 35 1.3
Variance 7.8 7.5 8.4 7.9 3.6
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3.2.2.2. Evaluating degrees of freedom in the presence of haplotypes with zero

frequencies

Based on the extensive Monte Carlo simulation, 100, 500, 1000 and 2000 subjects
were selected from a natural population. Suppose that their continuous phenotypes follow
a mixture Gaussian distribution with the variance of 5 (62 = 5) and three different
means; p, = 20, u; = 40, and p, = 60. For type | error evaluation, the null hypothesis is
set to be true. In other words, there is no linkage disequilibrium between two or three
known markers and the QTL. Four different scenarios were conducted and their
parameters of haplotype frequencies for two or three known markers are shown in Table
14 and Table 15. Because the estimated haplotypes for two markers have two zero
frequencies in Table 14, 2 degrees of freedom were applied to evaluate type | error.
Meanwhile, in the Table 15, the 3" and 4™ scenarios of three markers have two and one
zero frequencies respectively, 6 and 5 degrees of freedom were applied. Figure 10 shows
that the mmLD controls type | error (0.05) with the reduced degree of freedom and

Figure 11 shows the histogram of type | error evaluation.

Table 14 Parameters of haplotype frequencies of two known markers

Simulated Applied

Haplotype Poo Po1 P10 P11 Degree of

frequencies freedom
Two markers 1 0.26 0.24 0 0.50 2
Two markers 2 0 0.19 0.42 0.39 2
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Table 15 Parameters of haplotype frequencies of three known markers

Simulated Applied
Haplotype Pooo | Poo1 | Poio | Poi1 | Pioo | P1o1 | Pi1o | P111 | Degree of
frequencies freedom
Three markers 1 0 0 0.124 | 0.08 | 0.207 | 0.18 | 0.169 | 0.222 5
Three markers 2 | 0.144 | 0.159 | 0.124 | 0.149 0 0.08 | 0.025 | 0.319 6
Type 1 error (H2 =0)
3
P =
8 - — Two markers 1
2 e --- Two markers 2
;/) IS - Three markers1
= Three markers 2
© —
3
2, 9 |
o] °
- o
Q —
= | | | |
100 500 1000 2000
Number of subjects

Figure 10 Type | error evaluation for reduced degree of freedom based on zero haplotype

frequencies
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Figure 11 Histogram of Type | error evaluation for reduced degree of freedom with zero

haplotype frequencies (2000 subjects)

3.2.2.3. Small haplotype frequencies

When the number of markers, k, is large, in practice, a few very small haplotype

frequencies (e.g. 1e-6) may emerge. To account for these values, we initially tried to

calculate an average or weighted average to find out a proper degree of freedom. As
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shown in the following histograms of type I errors under various simulated settings, the

ad hoc method of average did not perform well. The outputs of the arithmetic and

weighted average of degree of freedom are shown from Simulation 1 to Simulation 3

below.

Nevertheless, these results are provided as our attempt to solve the problem and

motivated us to come up with more powerful sequential LRT method, which was

introduced in the section 3.1.7.4.

Simulation 1—Average or weighted average of degree of freedom

Table 16 Discrepancies of haplotype frequencies between parameters and estimates

(Simulation 1)

Poooo Pooo1 Poo1o Poo11 Po1oo Po1o1 Po110 Po111

0.0003 0.055 0.1753 0 0.0713 | 0.1363 | 0.0963 0
Parameter

P1ooo P1oo1 P1o10 P1o11 P1100 P1101 P1110 P1111

0.2058 | 0.0573 0 0 0.0005 0.008 0.1913 0.003

Poooo Pooo1 Poo1o Poo11 Po1oo Po1o1 Po110 Po111

) 0.0005 | 0.0556 | 0.1753 | 2.1e-09 | 0.0716 | 0.1371 | 0.0941 | 2.8e-10

Estimates

P1ooo P1oo1 P1o10 P1o11 P1100 P1101 Pi110 P1111

0.2054 | 0.0567 0 0 0.0005 | 0.0069 | 0.1931 | 0.0032
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Table 17 Comparison of Type | error with arithmetic and weighed average of degree of

freedom (Simulation 1)

K-S statistics
p(hap) : Haplotype frequency ; C =1 Type | ] _
] ) d.f. with uniform P-value
/ # of subject ; J = 1/C = # of subject error )
dist.
I(p(hap) > C) 9 0.106 0.21 <0.0001
Averageof 1 & 4 10 0.068 0.11 <0.0001
I(p(hap) > C) + Y I(p(hap) <
pLaap pLap 109 | 0.048 0.03 0.58
C) xp(hap) x]J
I(p(haplotype) > 1/,) 11 | 0.048 0.03 0.59
df=9 df =10
070 072 074 076 0!8 1!0 O‘IO 072 074 076 078 170
KS=0.21, p<0.001 KS=0.11, p<0.001
df=10.9 df =11
070 072 074 076 O!S 1!0 O.IO 072 074 076 078 170
KS=0.03, p=0.58 KS=0.03, p=0.59

Figure 12 Distributions of Type | error of arithmetic and weighed average of degree of
freedom (Simulation 1)
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Simulation 2—Average or weighted average of degree of freedom

Table 18 Discrepancies of haplotype frequencies between parameters and estimates

(Simulation 2)

Pooo Poo1 Po1o Po11 P1o0 P1o1 P110 P111
Parameters
0 0.2905 | 0.0003 | 0.0988 0.182 0.0005 | 0.1038 | 0.3243
. Pooo Poo1 Po1o Po11 P1o0 P1o1 P110 P111
Estimates
2.6e-09 | 0.2930 | 0.0004 | 0.0961 | 0.1794 | 0.0006 | 0.1063 | 0.3243

Table 19 Comparison of Type | error with arithmetic and weighed average of degree of

freedom (Simulation 2)

Type | K-S statistics
p(hap) : Haplotype frequency ; C=1 | d.f. with uniform P-value
/ # of subject ; J = 1/C = # of subject et dist.
I(p(hap) > C) 5 0.088 0.15 <0.0001
Averageof 1 & 4 55 0.062 0.09 0.0005
{p(hap) > €)+ L1 (pthap) < 58 | 0.052 0.06 0.06
C) xp(hap) x]J
I(p(haplotype) > 1/,) 6 0.05 0.04 0.39
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Figure 13 Distributions of Type I error of arithmetic and weighed average of degree of

freedom (Simulation 2)

Simulation 3—Average or weighted average of degrees of freedom

Table 20 Discrepancies of haplotype frequencies between parameters and estimates

(Simulation 3)

Pooo Poo1 Po1o Po11 P1oo P1o1 P110 P111
Parameters
0.0005 | 0.0005 | 0.001 | 0.2675 | 0.184 | 0.0845 | 0.1015 | 0.3605
) Pooo Poo1 Po1o Po11 P1oo P1o1 P110 P111
Estimates
0.0007 0 0.0001 | 0.273 | 0.1868 | 0.0853 | 0.0985 | 0.3557
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Table 21 Comparison of Type | error with arithmetic and weighed average of degree of

freedom (Simulation 3)

K-S statistics
p(hap) : Haplotype frequency ; C =1 Type | ) )
) ) d.f. with uniform P-value
/ # of subject ; J = 1/C = # of subject error )
dist.
I(p(hap) > C) 5 0.046 0.028 0.82
Average of 1 & 4 55 0.024 0.09 0.0007
I(p(hap) > C) + Y I(p(hap) <
(p(hap) (p(hap 5.14 | 0.038 0.04 0.29
C) xp(hap) x]J
I(p(haplotype) > 1/,) 6 0.016 0.15 <0.0001
df=5 df =55
df =5.14 df=6

Figure 14 Distributions of Type I error of arithmetic and weighed average of degree of

freedom (Simulation 3)
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3.2.2.4. Sequential LRT for small haplotype frequencies

Although the idea of calculating the degrees of freedom with weighted averages did
not work, the results motivated us to come up with more powerful sequential LRT
method. Four different simulations were conducted to evaluate the applicability of the
sequential LRT. Results show that under various scenarios, the sequential LRT procedure

can control type | error well.

Simulation 1—Sequential LRT

The parameters for this simulation are given in Table 22, in which the frequency of
one haplotype, pyoo iS Set to be zero, and the frequencies of another two haplotypes (pg10
and p,1) are set to be small, 0.0005 and 0.0003, respectively. The estimates for pygo,
Po1o, and p;qo are 0, 0.0003 and 1.3e-7, respectively. It is clear that py,, is NOt estimable
and therefore it does not account for any degree of freedom. However, if py10 and p;1o
are ineffective, i.e., they are treated as zero frequencies, the degree of freedom would be

4, whereas maximum degree of freedom is 6 if they are treated as non-zero frequencies.

Table 23 and Figure 15 show type I error evaluation and the goodness of fit test
(Kolmogorov-Smirnov statistics) of p-value under null hypothesis. When the degree of
freedom is fixed at either 4, 5 or 6, the distributions of the p values were skewed. On the
other hand, sequential LRT adaptively selects degrees of freedom based on data, which
varies between 4 and 5 for the 1000 simulations. The sequential LRT procedure shows

not only appropriate type | error evaluation but also uniform distribution of p-value.
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Therefore, we can see that sequential LRT performs well in practical simulations, too.

The reason lies in the fact that if the frequency of one haplotype is small in the general

population, subjects carrying such haplotype might not be picked by sampling, in which

the effective haplotype frequency in a specific sample might be truly zero. Therefore, the

degrees of freedom should vary from simulation to simulation.

Table 22 Discrepancies of haplotype frequencies between parameters and estimates for

the simulation 1- Sequential LRT

Haplotype frequencies for known markers

Pooo Poo1 Po1o Po11 P1oo P1o1 P110 P111
Parameters 0 0.3192 | 0.0005 0.12 0.18 0.15 0.0003 0.23
Estimates 0 0.3242 | 0.0003 | 0.1075 | 0.1895 | 0.1496 | 1.3e-07 | 0.2289

* Estimated by one simulation of the 1% phase EM algorithm

Table 23 Comparison of Type | error between fixed degree of freedom and sequential

LRT for the simulation 1- Sequential LRT

Goodness of fit for uniform distribution
d.f. Type | error __

K-S statistics p-value

4 0.063 0.1158 <.0001

Fixed d.f. 5 0.035 0.0652 0.0004

6 0.016 0.1926 <.0001

. Data-
Sequential LRT | 2@ 0.051 0.0318 0.265
adapted
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Figure 15 Distributions of Type | error of fixed degree of freedom and sequential LRT for

the simulation 1- Sequential LRT

Simulation 2—Sequential LRT

The second simulation was also performed with two known markers. The values of

true parameters and the estimates of haplotype frequency from the first phase are given in

Table 24. As shown in Table 25 and Figure 16, test with fixed degree of freedom of 6 can

control type | error well this time. More importantly, the sequential LRT procedure can
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also show good control of type | error, demonstrating its consistent performance under a

different setting.

Table 24 Discrepancies of haplotype frequencies between parameters and estimates for

the simulation 2- Sequential LRT

Haplotype frequencies for known markers

Pooo Poo1 Po1o Po11 P1oo P1o1 P110 P111

Parameters 0 0.2905 | 0.00025 | 0.09875 | 0.182 0.0005 | 0.10375 | 0.32425

Estimates * | 2.6e-09 | 0.29301 | 0.00039 | 0.0961 | 0.17936 | 0.00063 | 0.10625 | 0.32426

* Estimated by one simulation of the 1% phase EM algorithm

Table 25 Comparison of Type I error between fixed degree of freedom and sequential
LRT for the simulation 2- Sequential LRT

Goodness of fit for uniform distribution
d.f. Type | error _
K-S statistics p-value
5 0.088 0.1505 <.0001
Fixed d.f. 6 0.05 0.0404 0.3874
7 0.024 0.1333 <.0001
Sequential LRT | D% 0.05 0.0325 0.6656
adapted
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Figure 16 Distributions of Type | error of fixed degree of freedom and sequential LRT for

the simulation 2- Sequential LRT

Simulation 3—Sequential LRT

In this simulation, the sequential LRT procedure is examined for three known
markers. In true parameters, 4 out of 16 haplotype frequencies are set to be zero
frequencies and another two are given small values (Table 26). Similar to previous

simulations, some estimate for thesis parameters are zeros and some are very small
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quantities. As shown in Table 27 and Figure 17, both sequential LRT and the fixed 11
degree of freedom show good controls of type | error. Therefore, the sequential LRT

works well for the three known markers, too.

Table 26 Discrepancies of haplotype frequencies between parameters and estimates for

the simulation 3- Sequential LRT

Haplotype frequencies for known markers

Poooo Pooo1 Poo1o Poo11 Po1oo Po1o1 Po110 Po111

0.00025 | 0.055 | 0.17525 0 0.07125 | 0.13625 | 0.09625 0

Parameters
P1000 P1oo01 P1o10 P1o11 P1100 P1101 P1110 P1111
0.20575 | 0.05725 0 0 0.0005 0.008 0.19125 0.003
Poooo Pooo1 Poo1o Poo11 Po1oo Po1o1 Po110 Po111
0.00049 | 0.05561 | 0.1753 2.1e-09 | 0.07161 | 0.1371 | 0.09414 | 2.8e-10
Estimates "
P1000 P1oo1 P1o10 P1o11 P1100 P1101 P1110 P1111
0.20538 | 0.05671 0 0 0.00046 | 0.00688 | 0.19311 | 0.00319

* Estimated by one simulation of the 1% phase EM algorithm
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Table 27 Comparison of Type | error between fixed degree of freedom and sequential
LRT for the simulation 3- Sequential LRT

Goodness of fit for uniform distribution

d.f. Type I error I
K-S statistics p-value
9 0.106 0.2066 <.0001
Fixed d.f. 10 0.068 0.1114 <.0001
11 0.048 0.0344 0.5939
12 0.038 0.1042 <.0001
Sequential LRT | D@ 0.048 0.0425 0.3284
adapted
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Figure 17 Distributions of Type | error of fixed degree of freedom and sequential LRT for

the simulation 3- Sequential LRT
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3.2.2.5. Multiple-testing issue of the sequential LRT

The sequential LRT iterates until the difference of maximum likelihoods between the
full and reduced model is rejected. Since several tests will be conducted during this
procedure, the multiple-testing issue may occur. To adjust this issue, we applied the
conservative method that considers the maximum times of the iterations which is
determined by the number of haplotype frequencies less than 1 divided by the number of

subjects (Bonferroni correction).

The comparison of normal sequential LRT and multiple-adjusted sequential LRT with
Bonferroni correction has been conducted. The simulated setting here is set the same as
that in Table 22. As shown in Table 28 and Figure 18, the result of adjusted sequential
LRT by Bonferroni correction is similar to that of normal sequential LRT. Therefore,
although multiple-testing issue is a theoretical concern, in practice it does not seem to

pose problems for our proposed LRT procedure.

Table 28 Comparison of Type | error between original sequential LRT and Adjusted

sequential LRT for the simulation 1

Goodness of fit for uniform distribution
Type I error -
K-S statistics p-value
Normal
Sequential LRT 0.051 0.0313 0.265
Adjusted
Sequential LRT 0.051 0.0384 0.104
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3.2.3. Power comparison between smLD, minimum p-value smLD, SKAT_C and

mmLD

Next, we would like to check the power of the mmLD mapping method, which is
the probability of correctly detecting the existence of a QTL when there is indeed the
QTL effect. Two scenarios will be checked here: (1) The QTL is assumed to be located
between adjacent k markers (QTL is not genotyped); or (2) already genotyped as one of
the known markers (Figure 19). Powers were examined separately for these two
scenarios. Additionally, the mmLD will be compared with other methods that can handle

multiple markers, such as the adjusted single marker LD test (smLD), and SKAT_C [19,

20, 30].
QTL QTL
| | |
SNP 1 SNP 2 SNP k-1 SNP k
\ )
|
k markers (SNPs)

Figure 19 Example of simulated setting of k markers and one QTL

In this case, the phenotypes caused by three QTL genotypes were simulated based

on Eqgn 2, with u, =10, u; =5, and u, = 0. Again, the variances in phenotypic values
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were calculated based on different heritability values (H?) [29]. Based on these
parameters and designs, the power performances were conducted by different sample size
(n =100, 500, 1000, and 2000) and different heritability values (H? = 0.05, 0.1, and 0.2).

Each simulated setting was performed 200 or 500 times for the power performance.

Scenario 1: QTL is not genotyped

Scenario 1-1. Two known markers

The two-marker LD mapping (tmLD) has already been studied [18]. Prior to
extending to multiple markers (> 2), we conducted simulations to verify that the
sequential LRT procedure indeed works for two markers, serving as a validation for our
new framework. The LD between the two known markers is set to be 0.04 (D,, = 0.04).

The other simulated settings are the same as the simulations for type I error.

Table 29 and Figure 20 show the power comparison between the tmLD and
smLD. As expected, the tmLD has higher powers under small heritability values (H? =

0.05, 0.1, and 0.2).
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Table 29 Power comparison of tmLD and smLD for Scenario (1); 2 known markers

Number H?=0.05 H?=0.1 H?=0.2

100 0.215 0.245 0.375 0.260 0.480 0.320
500 0.495 0.315 0.735 0.455 0.935 0.570
1000 0.695 0.420 0.955 0.620 1 0.885
2000 0.955 0.570 1 0.870 1 1

Scenario 1-2. Three known markers

In this simulation, three known markers are considered here and the parameters
are given in Table 30. As shown in Figure 21 and Table 31, power comparison of
different models with a sequence of sample sizes has been conducted. The black solid
line indicates the power of the mmLD and the pink dot, blue dot, and red dot lines
indicate the powers of the smLD, minimum p-value smLD, and SKAT _C, respectively.
The mmLD demonstrated much higher power than those of the SKAT_C, smLD or
minimum p-value smLD. Table 32 shows the estimates for the true values. It indicates the
mean and standard errors of the estimates. As shown in Table 32, estimates become close

to true values as the larger sample size and higher heritability value are applied.

Table 30 Parameters of haplotype frequencies for Scenario (1) with 3 known markers.

Pooog Poooq Poo1g Poo1q Po10g Po1og Po119 Po11q
0 0.16 0.13 0.04 0 0 0.1 0

P100g@ P1oog P1o1Q P1o1q P1100 P110q P1110 P111q
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Table 31 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for

Scenario (1); 3 known markers

Number of H'=005
subjects mmLD Adjusted | Minimum p- SKAT C
smLD value smLD
100 0.335 0.325 0.525 0.105
500 0.675 0.420 0.695 0.285
1000 0.925 0.610 0.775 0.525
2000 0.995 0.850 0.940 0.835
H?=0.1
100 0.400 0.305 0.520 0.130
500 0.940 0.605 0.755 0.515
1000 0.995 0.855 0.935 0.805
2000 1 0.980 1 0.980
H?=0.2
100 0.550 0.425 0.645 0.210
500 0.995 0.805 0.910 0.765
1000 1 0.965 0.985 0.965
2000 1 1 1 1

Table 32 Means and standard errors of parameters for Scenario (1); 3 known markers

N=100 N=500
True value
H?=0.05 | H?=0.1 H?=0.2 | H?=0.05 | H?*=0.1 H?=0.2
0 0.052 0.037 0.025 0.038 0.032 0.022
Po00o (0.0007) (0.0005) (0.0003) (0.0002) (0.0001) (0.0001)
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016 | 0109 0.123 0.137 0.121 0.127 0.138
Poooq | (0.0008) | (0.0006) | (0.0004) | (0.0002) | (0.0001) | (0.0001)
013 | 0412 0.112 0.128 0.114 0.117 0.124
Pooro| (0.0008) | (0.0007) | (0.0004) | (0.0002) | (0.0002) | (0.0001)
004 | 0056 0.054 0.043 0.055 0.054 0.047
Poorq | (0.0008) | (0.0006) | (0.0004) | (0.0002) | (0.0002) | (0.0001)
powo| ° 0(0) 0(0) 0 (0) 0(0) 0 (0) 0(0)
poro | O 0(0) 0(0) 0 (0) 0(0) 0 (0) 0(0)
q
01 0.081 0.074 0.087 0.077 0.083 0.091
Porio| (0.0005) | (0.0004) | (0.0003) | (0.0002) | (0.0001) | (0.0001)
0 0.025 0.024 0.013 0.024 0.017 0.01
Poria (0.0005) | (0.0004) | (0.0002) | (0.0002) | (0.0001) | (0.0001)
013 | 0153 0.139 0.143 0.148 0.151 0.146
Prova| (0.0013) | (0.0009) | (0.0006) | (0.0004) | (0.0002) | (0.0002)
0 0.172 0.194 0.182 0.184 0.18 0.184
Proog | (0.0013) | (0.001) | (0.0006) | (0.0004) | (0.0002) | (0.0002)
Proto 0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
b | O 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
q
008 | 0067 0.091 0.085 0.08 0.08 0.083
Prioa| (0.0007) | (0.0006) | (0.0004) | (0.0002) | (0.0001) | (0.0001)
008 | 0092 0.069 0.075 0.078 0.079 0.076
Priog | (0.0008) | (0.0006) | (0.0004) | (0.0002) | (0.0001) | (0.0001)
0 0.023 0.026 0.017 0.021 0.018 0.011
Piito (0.0004) | (0.0004) | (0.0002) | (0.0001) | (0.0001) | (0.0001)
008 | 0057 0.057 0.064 0.06 0.062 0.068
Prizg| (0.0005) | (0.0004) | (0.0003) | (0.0001) | (0.0001) | (0.0001)
10 18.2 15.3 124 155 12.9 115
Ho (0135 | (0092 | (0033) | (0.041) | (0.018) | (0.009)
" 4.2(0.111) | 4.7 (0.063) | 4.1(0.029) | 4.4 (0.032) | 4.7 (0.014) | 4.5 (0.008)
82 52 24 35
H 0159) | (0.085) | (0036 | *20Q0) | g7 | 15001
N=1000 N=2000
True value
H?=0.05 H?=0.1 H?=0.2 H?=0.05 H?=0.1 H?=0.2
0 0.038 0.031 0.021 0.039 0.028 0.017
Poooo (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
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016 | 0122 0.128 0.139 0.121 0.132 0.142
Poooq | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
013 | 0114 0.122 0.127 0.115 0.119 0.127
Pooro| (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
004 | 0056 0.049 0.043 0.055 0.051 0.043
Poorq | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0 0(0) 0(0) 0 (0) 0(0) 0 (0) 0(0)
Po10g
0 0(0) 0(0) 0 (0) 0(0) 0 (0) 0(0)
Po1og
0.079 0.084 0.091 0.08 0.085
Poro| O% | (@ooon) | (00001 | (0.0001) | (0.oooy) | (0oooy | %093 ()
0.021 0.015 0.02 0.014
porzg| O | (ooon) | @ooon) | %% (oo001) | 0000y | *008 ()
013 | 0154 0.151 0.146 0.153 0.147 0.142
Prova| (0.0002) | (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0 0.177 0.179 0.183 0.177 0.184 0.188
Proog | (0.0002) | (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
P1o10
0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
P1o1q
008 | 0081 0.084 0.086 0.084 0.083 0.085
Prioa| (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
008 | 0078 0.077 0.075 0.076 0.077 0.075
Priog | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0.02 0.017
- 0 | ooy | ooy | 0000© | 0020 | 00130 | 0.008(0)
0.06 0.063 0.071 0.06
Piiig 008 | (0ooo1) | (00001) | (00001) | (0.0001) | ©067(@ | 0071(0)
10 146 12.2 111 13.9 12.3 10.9
Ho 0022 | (0012) | (0007) | (0.016) | (0.009) | (0.005)
" 4.6 (0.016) | 4.5(0.009) | 45 (0.007) | 45 (0.012) | 4.6 (0.008) | 4.6 (0.004)
-4.8 -1.5 -4.4 -2.4 -1.2
H ©0023 | 2O 1 hoony | ©o017) | (0008) | (0.004)
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Scenario 1-3. Four known markers

In this simulation, four markers are considered here and the parameters in Table
33. Similar to the result of three markers, the mmLD shows higher power performance
compared to the SKAT_C, smLD and minimum p-value smLD in Figure 22 and Table
34. Through these results, it is clear that the mmLD shows stable performance compared
to other existing methods for the non-genotyped QTL. Table 35 shows the estimates for

the true values.

Table 33 Parameters of haplotype frequencies for Scenario (1) with 4 known markers.

Poooog | Poooog | Poooig | Poooig | Pooiog | Pooiog | Pooi1g | Pooiig

0.025 0.12 0.03 0.015 0 0 0 0
Po1oog | Poioog | Poroig | Poioig | Poriog | Poiiog | Poii1g | Poiiig
0.05 0.1 0.09 0 0.02 0.04 0 0.01
P1o0o0@ | P1ooog | P1o0o1Q | Piooiq | Pio10Q | Pioiog | Pio11o | Pioiig

0.11 0 0 0.02 0 0.1 0.07 0
P1100Q | Pi11ooqg | P1101Q | Piioiqg | Pi1110¢@ | Pi11oq | P1i11¢ | Pii11igq
0 0 0 0.02 0.07 0.04 0 0.07
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Figure 22 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for
Scenario (1); 4 known markers
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Table 34 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for

Scenario (1); 4 known markers

Number of H'=005
subjects mmLD Adjusted Minimum p- SKAT_C
smLD value smLD
100 0.105 0.270 0.545 0.050
500 0.470 0.305 0.555 0.125
1000 0.830 0.340 0.650 0.220
2000 0.990 0.450 0.740 0.345
H?=0.1
100 0.190 0.255 0.545 0.055
500 0.790 0.340 0.595 0.185
1000 0.990 0.480 0.780 0.315
2000 1 0.740 0.915 0.720
H?=0.2
100 0.200 0.255 0.545 0.065
500 0.985 0.340 0.595 0.405
1000 1 0.480 0.780 0.740
2000 1 0.740 0.915 0.975

Table 35 Means and standard errors of parameters for Scenario (1); 4 known markers

N=100 N=500

True value
H?=0.05 | H?=0.1 H?=0.2 | H?=0.05 | H?=0.1 H?=0.2
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posao| 0.025 | 0059 0.048 0.045 0.053 0.047 0.041
o| ¥ (0.0003) | (0.00025) | (0.00022) | (0.00014) | (0.00011) | (0.00009)
poooa| 012 | 00% 0.094 0105 0.091 0.098 0.104
al O (0.0003) | (0.00028) | (0.00025) | (0.00014) | (0.00011) | (0.0001)
poooia| 003 | 0026 0023 0025 0.027 0027 0027
o| 93 | (000015 | (0.00014) | (0.00014) | (0.00008) | (0.00007) | (0.00006)
poose| 0.015 | , 0023 0023 0018 0.02 0019 0018
al O (0.00015) | (0.00015) | (0.00012) | (0.00008) | (0.00006) | (0.00006)
Dooiog| O | 0(0.00002) | 0(0.00001) | 0(0.00001) | O(NA) | O(NA) | 0(NA)
Pootog| O | 0(000003) | til, | 0(000002) | O(NA) | O(NA) | O(NA)
Pooizg| O | 0(0.00001) | 0(0.00001) | 0(0.00001) | O(NA) | O(NA) | 0(NA)
Pooizg| O | 0(0.00001) | 0(0.00002) | 0(0.00001) | O(NA) | O(NA) | 0(NA)
) 005 | 0066 0.069 0.064 0.066 0.062 0.06
or00| 0-05 | (5.00032) | (0.00029) | (0.00027) | (0.00013) | (0.00012) | (0.0001)
) 01 | 0088 0.081 0.084 0.083 0.088 0.091
o100g| O-1 | (5.00033) | (0.00028) | (0.00028) | (0.00013) | (0.00012) | (0.00011)
o | 009 | , 005 0.062 0.067 0.065 0.069 0.076
0| 909 | (000023) | (0.00023) | (0.00021) | (0.00011) | (0.00008) | (0.00007)
0 0.036 0.028 0.024 0.024 0.019 0013
Poto1g (0.00022) | (0.00021) | (0.00017) | (0.0001) | (0.00008) | (0.00007)
o | 002 | 0022 0022 0023 0.026 0.024 0.021
e| 992 | (000015 | (0.00015) | (0.00014) | (0.00007) | (0.00006) | (0.00005)
poiie| 0.04 | 003 0.036 0035 0.035 0037 0.039
a] 90% 1 (000013) | (0.00015) | (0.00015) | (0.00008) | (0.00007) | (0.00006)
0 0.003 0.003 0.004 0.003 0.004 0.003
Po111¢ (0.00005) | (0.00004) | (0.00005) | (0.00002) | (0.00002) | (0.00002)
o | 001 |, 0008 0.009 0.007 0.007 0.006 0007
a| 901 (000007) | (0.00007) | (0.00006) | (0.00003) | (0.00003) | (0.00003)
oo oa1 | 007 0075 0.083 0.079 0.084 0.096
o| %11 | (0o0022) | (0.00024) | (0.0002) | (0.00011) | (0.00009) | (0.00008)
0 0.038 0035 0023 0.031 0.026 0014
P1000g (0.00021) | (0.00022) | (0.00016) | (0.0001) | (0.00009) | (0.00007)
0 0.009 0.007 0.007 0.008 0.006 0.005
P10010 (0.00008) | (0.00008) | (0.00008) | (0.00004) | (0.00004) | (0.00003)
Prooig| 002 | O(NA) | 0(000001) | (U0fc | ONA) | O(NA) | 0(NA)
0 0.034 0032 0.025 0032 0022 0018
P10100 (0.00022) | (0.0002) | (0.00017) | (0.00011) | (0.00007) | (0.00007)
) 01 | 0067 0.068 0075 0.069 0078 0.083
110g| O-1 | (0.00024) | (0.00023) | (0.00022) | (0.00012) | (0.00009) | (0.0000)
) 007 | 004 0.048 0.049 0.048 0.054 0.059
1o110| 9071 0.00018) | (0.00019) | (0.00017) | (0.00009) | (0.00008) | (0.00006)
) 0 0.029 0021 0019 0.021 0016 0.01
10114 (0.00018) | (0.00016) | (0.00014) | (0.00009) | (0.00007) | (0.00005)
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P1100g| O 0(NA) | 0(0.00001) | 0(0.00001) | 0 (NA) 0 (NA) 0 (NA)
0.001
Piioog| O 0 (NA) ONAY | ooz | ONA) 0 (NA) 0 (NA)
0 0.007 0.007 0.005 0.007 0.005 0.005
P1101¢ (0.00006) | (0.00007) | (0.00005) | (0.00004) | (0.00003) | (0.00003)
0.02 0.012 0.013 0.015 0.013 0.014 0.015
: 0.00009 0.00008) | (0.00008) | (0.00004) | (0.00003) | (0.00004
P1101q ( ) | ( ) | ( ) | ( ) | ( ) | ( )
0.07 0.06 0.061 0.061 0.06 0.066 0.066
- 0.00027 0.00024) | (0.00023) | (0.00013 0.0001 0.00009
P11100 ( ) |« ) |« ) |« ) | (0.0001) | ¢ )
0.04 0.048 0.051 0.048 0.05 0.044 0.044
: 0.00023 0.00025) | (0.00023) | (0.00013 0.0001 0.0001
P1110q ( ) | ( ) | ( ) | ( ) ( ) ( )
0 0.027 0.024 0.017 0.022 0.016 0.011
0.00018 0.00016) | (0.00015) | (0.00009) | (0.00007) | (0.00005
P11110 ( ) |« ) |« ) |« ) |« ) |« )
0.07 0.041 0.043 0.055 0.048 0.054 0.059
Pi111q| Y (0.00019) | (0.0002) | (0.00017) | (0.0001) | (0.00008) | (0.00007)
201 155 16.1 137 11.6
o | 10| o ©0.038) | 126002 | 4 0on (0.013) (0.008)
i 4.6 (0.039) | 4.4(0.03) | 44(0.019) | 41(0.021) | 4.6(0.01) | 4.6 (0.007)
46 22 5.8 33 17
Ko 84005 | hoze) | 02) | 0032) | (0013 | (0.009)
N=1000 N=2000
True value
H?%=0.05 H?=0.1 H?=0.2 H?%=0.05 H?=0.1 H?=0.2
0025 | 0052 0.046 0.039 0.051 0.045 0.037
Poooog| Y- (0.00009) | (0.00009) | (0.00007) | (0.00006) | (0.00006) | (0.00005)
0.12 0.094 0.099 0.107 0.094 0.101 0.108
Pooooq | Y- (0.0001) | (0.00009) | (0.00007) | (0.00007) | (0.00006) | (0.00005)
0.03 0.026 0.027 0.028 0.025 0.027 0.029
Pooo1g| Y- (0.00005) | (0.00005) | (0.00004) | (0.00005) | (0.00004) | (0.00004)
0015 | 0019 0.018 0.016 0.019 0.018 0.016
Pooo1q | Y- (0.00005) | (0.00005) | (0.00004) | (0.00005) | (0.00004) | (0.00003)
U 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
Poorog| O 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
Pooriel O 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
Poorsa] O 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
0.05 0.064 0.063 0.058 0.064 0.06 0.059
Po1oog| Y- (0.00009) | (0.00008) | (0.00007) | (0.00007) | (0.00006) | (0.00005)
01 0.085 0.088 0.092 0.086 0.09 0.091
Poiooq| Y- (0.0001) | (0.00008) | (0.00008) | (0.00008) | (0.00007) | (0.00005)
0.00 0.067 0.072 0.078 0.069 0.074 0.081
Poioig| Y (0.00007) | (0.00007) | (0.00006) | (0.00006) | (0.00005) | (0.00005)
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0 0.022 0.018 0.013 0.021 0.016 0.01
Po1o1q (0.00007) | (0.00006) | (0.00005) | (0.00005) | (0.00005) | (0.00004)
002 | 002 0.024 0.023 0.025 0.024 0.022
Poi1oe| 0 (0.00006) | (0.00004) | (0.00005) | (0.00004) | (0.00004) | (0.00003)
00a | 003 0.036 0.037 0.035 0.037 0.038
Poi1oq| 0 (0.00006) | (0.00005) | (0.00005) | (0.00004) | (0.00004) | (0.00003)
0 0.004 0.003 0.002 0.003 0.003 0.002
Poi110 (0.00002) | (0.00002) | (0.00001) | (0.00002) | (0.00001) | (0.00001)
0oL | 0007 0.007 0.008 0.007 0.007 0.008
Poi11q| O (0.00002) | (0.00002) | (0.00002) | (0.00002) | (0.00002) | (0.00001)
011 | 0083 0.088 0.097 0.084 0.091 0.098
P1oooe| 0 (0.00007) | (0.00007) | (0.00006) | (0.00006) | (0.00006) | (0.00005)
0 0.027 0.022 0.014 0.026 0.02 0.012
P1000q (0.00007) | (0.00006) | (0.00005) | (0.00006) | (0.00005) | (0.00004)
0 0.007 0.005 0.004 0.005 0.005 0.004
P10010 (0.00003) | (0.00003) | (0.00002) | (0.00002) | (0.00002) | (0.00002)
prooe| 002 | ONA [ OMNA [TONA [ OmA) [ oM | o)
0 0.027 0.022 0.015 0.026 0.02 0.014
P10100 (0.00008) | (0.00006) | (0.00004) | (0.00006) | (0.00004) | (0.00003)
01 | 0073 0.078 0.084 0.074 0.079 0.086
Protog| O-1 | (000008) | (0.00007) | (0.00006) | (0.00006) | (0.00005) | (0.00004)
007 | 0053 0.056 0.061 0.054 0.057 0.062
Pio110| O (0.00007) | (0.00005) | (0.00005) | (0.00005) | (0.00004) | (0.00004)
0 0.016 0.015 0.009 0.017 0.012 0.008
P1o11q (0.00006) | (0.00006) | (0.00004) | (0.00005) | (0.00004) | (0.00003)
prional 0 O(NA) | O(NA) | O(NA) | O(NA) | O(NA) | O(NA)
. O(NA) | ONA) | O(NA) | O(NA) | O(NA) | O0(NA)
0 0.006 0.005 0.003 0.006 0.004 0.003
P11010 (0.00003) | (0.00002) | (0.00002) | (0.00002) | (0.00002) | (0.00001)
002 | 0014 0.016 0.017 0.014 0.015 0.017
P1101q | 0. (0.00003) | (0.00003) | (0.00002) | (0.00002) | (0.00002) | (0.00002)
007 | 0063 0.064 0.066 0.063 0.066 0.068
P11100| 0 (0.00008) | (0.00008) | (0.00007) | (0.00006) | (0.00006) | (0.00004)
00a | 0046 0.045 0.043 0.047 0.044 0.042
P1110q| O (0.00009) | (0.00008) | (0.00006) | (0.00006) | (0.00006) | (0.00005)
0 0.019 0.016 0.011 0.018 0.014 0.01
P11110 (0.00006) | (0.00005) | (0.00004) | (0.00005) | (0.00004) | (0.00003)
007 | 0052 0.054 0.059 0.051 0.057 0.06
P1111q| 0. (0.00006) | (0.00006) | (0.00005) | (0.00005) | (0.00004) | (0.00004)
15.2 115 14.9 12.7 11.2
po | 101 o015y | BB | 5006 | 0014) | (0008) | (0.004)
0, 4.1 (0.014) | 4.7 (0.008) | 4.7 (0.005) | 4.7 (0.01) | 4.7 (0.006) | 4.8 (0.003)
5.1 -1.7 -2.8 -1.5
Ko ©o18) | 3OO g5y | SO0 1 65007y | (0.003)
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Scenario 2: QTL is genotyped as a marker

In this scenario, one marker is assumed to be a QTL. The simulated setting is
given in Table 36, in which three markers are included and the third marker is set to be

the QTL.

It is expected that the smLD would work the best in this case since QTL is indeed
genotyped. Therefore, considering each marker should have better power than
considering the linkage disequilibrium of several markers. Table 37 and Figure 23
display the power comparisons of four methods. Although the power of the mmLD is
slightly less than that of the smLD, it still shows comparable power to the smLD. This
suggests that the mmLD can be expected to provide the robust result of power even when

QTL is genotyped.

Table 36 Parameters of haplotype frequencies for Scenario (2); 3 known markers

Poooq Poooq Poo1g Poo1q Po10g Po1ogq Po119 Po11q
0.09 0 0 0.12 0.08 0 0 0.12
P1ooo P1oog P1o19 P1o1q P1100 P110q P1110 P1114
0.2 0 0 0 0.15 0 0 0.24
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Scenario (2); 3 known markers
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Table 37 Power comparison of mmLD, smLD, minimum p-value smLD and SKAT_C for
Scenario (2); 3 known markers

Number of H=005
subjects mmLD Adjusted | Minimum p- SKAT C
smLD value smLD
100 0.535 0.700 0.835 0.545
300 0.905 0.960 0.980 0.895
500 0.995 0.995 1 1
1000 1 1 1 1
H?=0.1
100 0.775 0.825 0.945 0.770
300 0.995 1 1 1
500 1 1 1 1
1000 1 1 1 1
H?=0.2
100 0.975 0.990 0.995 0.990
300 1 1 1 1
500 1 1 1 1
1000 1 1 1 1

Table 38 Means and standard errors of parameters for Scenario (2); 3 known markers

N=100 N=300
True value
H?=0.05 H?=0.1 H?=0.2 H?=0.05 H?=0.1 H?=0.2
oos | 002 0.027 0.029 0.029 0.031 0.031
Poooo| (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0.012 0.012 0.01 0.011 0.01
Poooq | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | %007(0)
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025 0.07 0.061 0.053 0.082 0.063 0.039
Povia| (0.0005) | (0.0003) | (0.0002) | (0.0002) | (0.0002) | (0.0002)
. 0.182 0.188 0.203 0.166 0.185 0.21
Poorq (0.0005) | (0.0003) | (0.0002) | (0.0003) | (0.0002) | (0.0002)
0.001 0.001 0.002
powoo|  C | (00008 | (000062) | (060002) |° (0.00001) | 0 (0.00001) | 0 (0.00001)
0.001 0.001 0.001 0
Porog| | (0.00004) | (0.00002) | (0.00001) | ° (0.00001) | 0(0.00001) | 5y0003)
012 0.04 0.037 0.028 0.038 0.03 0.021
Porio| (0.0003) | (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
) 0.08 0.082 0.091 0.081 0.088 0.099
Pori (0.0004) | (0.0002) | (0.0002) | (0.0002) | (0.0001) | (0.0001)
0ps | 0187 0.188 0.204 0.178 0.19 0.203
Provo| (0.0005) | (0.0003) | (0.0002) | (0.0002) | (0.0002) | (0.0001)
) 0.044 0.04 0.027 0.054 0.042 0.026
D100 (0.0004) | (0.0003) | (0.0002) | (0.0002) | (0.0002) | (0.0001)
0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
P1o10
0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
P1o1q
oos | 0043 0.042 0.045 0.045 0.046 0.052
Proo| (0.0002) | (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
) 0.019 0.017 0.012 0.015 0014 | (06 o)
D110 (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001) |
03 0.086 0.082 0.063 0.098 0.073 0.045
o] (0.0005) | (0.0004) | (0.0002) | (0.0003) | (0.0002) | (0.0002)
) 0.211 0.22 0.233 0.204 0.227 0.257
Piiig (0.0005) | (0.0004) | (0.0003) | (0.0003) | (0.0002) | (0.0002)
0 179 142 122 156 133 116
Ho (0.068) (0.033) (0.016) (0.032) (0.017) (0.008)
p 5 | 47(0.056) | 4.3(0.027) | 45 (0.011) | 3.6 (0.026) | 4.4 (0.013) | 4.8 (0.008)
46 32 6.7 44 21
Ha 0 | 900058) | (02 (0.014) (0.031) (0.014) (0.008)
N=500 N=1000
True value
H?=0.05 H?=0.1 H?=0.2 H?=0.05 H?=0.1 H?=0.2
oou | 0029 0.03 0.033 0.031 0.033 0.035
Poooo| (0.0001) | (0.00005) | (0.00004) | (0.00004) | (00.00004) | (0.00003)
) 0.011 0.009 0.006 0.009 0.006 0.005
Poooa (0.0001) | (0.00004) | (0.00003) | (00.00004) | (0.00003) | (0.00002)
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ops | 0077 0.059 0.035 0.07 0.053 0.027
Pooio| (0.0002) | (0.0002) | (0.0001) | (0.0002) | (0.0001) | (0.0001)
. 0.175 0.191 0.216 0.179 0.197 0.223
Poota (0.0002) | (0.0002) | (0.0001) | (0.0002) | (0.0001) | (0.0001)
0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
Po10g
0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
Po1og
01, | 0036 0.029 0.017 0.033 0.026 0.013
Porio| (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
) 0.084 0.091 0.103 0.087 0.095 0.106
Pori (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
023 0.18 0.192 0.208 0.184 0.199 0.21
Provo| (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
. 0.05 0.039 0.023 0.046 0.032 0.019
D100 (0.0002) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
P1o10
0 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA) 0 (NA)
P1o1q
ooe | 0044 0.05 0.052 0.046 0.051 0.054
Prioa| (0.0001) | (0.0001) | (0.00005) | (0.0001) | (0.00005) | (0.00004)
. 0.015 0.01 0.008 0.014 0.01 0.006
Pi10g (0.0001) | (0.00005) | (0.00004) | (00.00005) | (0.00004) | (0.00003)
0 0.088 0.066 0.042 0.085 0.063 0.031
priro| (0.0002) | (0.0002) | (0.0001) | (0.0002) | (0.0002) | (0.0001)
. 0.211 0.234 0.259 0.215 0.236 0.27
Piiig (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0001)
152 128 11.4 144 121
Ho | 10 (0.024) (0.013) (0.007) (0.016) ©.00s) | 110005
" 5 | 4.1(0.018) | 4.5(0.011) | 4.8 (0.006) | 4.2 (0.013) | 4.4 (0.007) | 4.9 (0.004)
6.6 38 1.9 5.3 14
[z 0 ©0021) | (0012 | oory | o1e) | 22QOD | 6005
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3.2.4. Power change with the number of known markers

Logically, it is expected that power would be increased as more markers are
included in the LD mapping framework, although computationally it would be much
harder for more markers. However, it is also expected that the marginal gain of each
additional markers would decrease if markers are correlated. So a question of interest is

how many markers we should include in the LD mapping framework.

In order to investigate this, we tracked the power change by the number of known
markers involved. In this simulation, we considered seven known markers and one QTL.
The phenotype is assumed to follow a mixture Gaussian distribution with p, = 20, 4 =
40, u, = 60 and the heritability value (H?) was set up 0.05. The sample size was 2,000
and each simulation was conducted 200 times. Details of simulated haplotype frequencies
are given in Table 39. Figure 24 shows the power change of the mmLD, SKAT_C,
smLD, and minimum p-value smLD. When three known markers were applied, the
power of mmLD reaches 1 and stays there. Also, the powers of the other methods reach
almost 1 when four or five markers are considered. The overall power of mmLD is
consistently higher than those of SKAT_C, smLD or minimum p-value smLD. This

suggests that in practice, we probably need to consider only 4 or 5- marker LD mapping.
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Table 39 Haplotype frequencies of seven known markers and one QTL

SNP1

SNP2

SNP3

SNP4

SNPS

SNP6

SNP7

QTL

Simulated
haplotype
frequencies

0.009

0.03

0.01

0.05

0.02

0.1

0.004

0.01

0.08

0.04

0.02

0.1

0.04

0.2

0.08

0.05

0.007

0.05

0.07

Pl |lo|lo|lo|o|o|o|o|o|o|o|o

RPlIRP|IP|P|IO|IOCO|OCO|OC|IOCO|FR,|FP|IFP|IFP|IP|IP|IO|O|OC|O|O

RPlRP|IP|IO|IRP|IRP|IP|IO|IO|FR,|FRL,|O|OC|OC|O|(R|O|O|O|O

oO|lr|Fr|Oo|r|Oo|lO|kR|O|O|O0|(FR|O|FRP|IFP|IO|RP|P,|O|O

Rlr|lo|lo|lo|lr|olo|lo|r|o|lr|r|r|kRr|rRr]|rR|[R]|~]|o

Rlr|lo|lr|kr|r|lolr|r|lo|lr|kRr|r|Rr|lo|lo|r|olr]|o

o|lr|lo|r|r|lo|lo|lo|lo|lo|kr|r|r|r|rRr|lo|lr|r|~r|o

SN = = = G E R R E E = R R

0.03
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Power change by the number of known markers
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Figure 24 Power change by the number of known markers

94



3.3. Real data application

In order to further evaluate the applicability of the mmLD mapping with real
genomic structure, it was applied to a real dataset, the “GAW17”. The data is provided by
Texas Biomedical Research Institute at Genetic Analysis Workshop [31]. The GAW17 is
a “mini-exome” scan, using real sequence data for several hundred genes from the 1000

Genomes Project [31, 32].

Since the original phenotypic data provided by the GAW17 is simulated based on
a few rare variants with minor allele frequencies (MAF < 5%), it is not directly applicable
to our mmLD model. Thus, although the real genomic sequences were used here, we re-
generated the phenotypic data with a specified QTL, and some rare variants (MAF < 5%)
were removed in this analysis. The QTL is set to be the SNP “C3S784", located on the 3
chromosome and indicated by the blue solid line in Figure 24. We assume that the
phenotype follows a mixture Gaussian normal distribution with three means and the same
variance by three genotypes of the QTL, with u, =20, u; =40, and u, = 60 and its
heritability value (H?) was 0.1. The mmLD was then applied to scan the whole

chromosome with a sliding window searching for five markers.

Figure 25 shows the scatter plot of negative logarithm of p-values for the 3"
chromosome. Since there are 113 SNPs considered here, the significance cut-off of
negative logarithmic p-value was set to be 3.35, which is calculated based on the
Bonferroni correction. The upper plot is the output of the mmLD and the lower is the

output of the SKAT_C.
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As shown in Figure 25, it is clear that the several p-values corresponding to the
nearby true regions of the QTL pass the significance level in the both methods. Although
both detected the true region of the QTL, the degrees of significant p-values of the
mmLD are less than those of the SKAT_C. However, SKAT_C shows false signal near

30" loci while the mmLD detected only true regions of the QTL.
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Figure 25 Scatter plot of negative logarithmic p-value for chromosome 3 of GAW17
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Chapter 4 Conclusion and Discussion

The purpose of this study is to extend the two-marker LD mapping of QTL (tmLD)
method proposed by Yang et al [18] to a multi-marker case. The tmLD is a novel
statistical method that intends to identify QTL with adjacent two markers; however, it has
some limitations to handle multiple markers simultaneously: The first is how to
efficiently estimate haplotypic and genotypic frequencies, given their complicated
relationship; and the second is how to find proper degrees of freedom for the likelihood

ratio test.

Although there are a few open software tools for estimating haplotype frequencies
from genetic data, none of them can be directly incorporated into the QTL mapping
framework. We have investigated the regularity of calculation of genotypic probabilities
from haplotype frequencies and suggested an algorithm for the joint genotypic

probabilities.

To address the issue of the degrees of freedom in the likelihood ratio test, we found
that it should be determined by the number of haplotypes with non-zero frequencies. This
is because haplotypes with zero frequencies are not estimated from the data and therefore
do not contribute to the number of parameters. In addition, we proposed a sequential
likelihood ratio test procedure to determine the degrees of freedom from haplotypes with

small frequencies. In this process, multiple testing issues may occur due to the iterative
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testing scheme. We further used the Bonferroni correction method to control the family-
wise type | error, which showed minimal difference from the proposed sequential LRT
alone. Thus, we expect that multiple-testing issue should not be a big concern in

sequential LRT procedure.

For method comparison, the mmLD showed either higher or almost equal power
performance compared to SKAT_C [19, 20] and adjusted single-marker association test
(smLD, minimum p-value smLD), in both scenarios when QTL is either genotyped or

non-genotyped. We expect that the mmLD can be a useful tool for future GWAS.

One important assumption in the mmLD is that the QTL is in linkage disequilibrium
with its adjacent markers. Hence, it is best applicable for the QTL detection of inheritable
traits. For newly occurring somatic mutations that are not strongly related to genetic

markers, we expect the mmLD would not perform very well.
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Chapter 5 Further Study

In this dissertation, | suggested a novel model to detect the existence of the unknown
QTL with multiple adjacent markers. However, there are still several issues to be studied.

Below are several directions for future studies.

(1) In this study, we mainly focus on the continuous phenotypic traits. However the
idea of mmLD can also be extended to other important trait types, such as binary data for
case-control studies, or longitudinal traits for development. Extension to other biological

traits will greatly enhance the applicability of the mmLD.

(2) The current mmLD framework assumes only one QTL in a LD block, which may
not be true in real data. For example, mutations of the same gene at different location
may have the same biological consequences. So if there are indeed two or more QTL in
one LD block, how to efficiently and effectively detecting them is also a question of

interest.

(3) It is well known that genes form a network to function together. In the current
mmLD mapping, only the marginal effect of each QTL is considered. It would be very
interesting to extend this framework to incorporate the gene-gene interaction, or epistasis

effects into the mmLD framework.
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