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Nanocrystalline metals have useful mechanical properties such as high strength, improved wear 

resistance, and longer fatigue life; however, they are relatively unstable – grain boundary doping 

is a viable method towards stabilization [1-3].  After comparing the work of Murdoch and Schuh, 

that used a thermodynamic model to estimate grain boundary segregation enthalpy to the 

experimental work of Umbrajkar et al., it was realized that mechanical alloying is a processing 

route for grain boundary stabilization [10,11]. Whether or not chemical mixing has occurred is a 

good indicator of a powder system’s potential for grain boundary doping. 99Al1Si, 99Al1Mg, 

99Al1Zr, and 99Al11Zn were mechanically alloyed with a Retch 100 Planetary Bal Mill.  The 

samples were then analyzed with a Rigaku Ultima III X-ray Diffractometer to determine whether 

or not these powder systems have chemically mixed. It was found that the 99Al1Mg powder 

system chemically mixed during the 8Hr, 8mL run and during the 16Hr, 16.5mL run, and the 

99Al1Zr powder system chemically mixed during the 4Hr, 16.5mL run.  The enthalpy of 

segregation values for each binary powder system correlated to the degree of mixing shown in 

these results.       
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Chapter 1:  Introduction 

 Nanocrystalline metals have useful mechanical properties such as high strength, 

improved wear resistance, and longer fatigue life [1-3].  The high strength property of 

nanocrystalline metals is due to the increase in the overall number of grain boundaries – this 

direct result of reducing a material’s grain size hinders dislocation movement [4].  When grain 

sizes are around 15 – 100nm, dislocations being emitted from grain boundary sources is what 

dominates plasticity [5].  These dislocations travel across the grain until they are momentarily 

pinned at the ends of grain boundary sites where they are absorbed into the opposite grain 

boundary [5].   

 Naturally, the potential that nanocrystalline materials have in terms of producing these 

useful mechanical properties is limited by the high volume fraction of grain boundaries which 

also cause structural instability.  Alloying has been used to limit grain growth by two different 

mechanisms:  one being to treat grain boundary motion with second phase pinning or solute drag, 

the other being to remove the excess free energy stored within the grain boundaries by solute 

segregation [6-8].  When comparing these two mechanisms, the kinetic nature of the solute drag 

mechanism oftentimes causes nanocrystalline grains to coarsen, which may be sufficient for 

some applications, but not all [6].  Additionally, solute drag is heavily dependent upon 

temperature for mobility, so it is only effective at relatively low, homologous temperatures [6].  

On the other hand, if the excess free energy within the grain boundary is removed via solute 

segregation to limit the driving force for grain growth, then nanocrystalline alloys can be 

developed reliably while maintaining their structures at higher temperatures, and this opens up a 

wider range of applications and processing routes [6].  Solute segregation, or solute doping, not 
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only reduces the grain boundary energy, but it has also been shown to enhance the strength of the 

nanocrystalline metal [9].   

 This thesis is partially based upon the work of Murdoch and Schuh, which uses a 

thermodynamic model to estimate grain boundary segregation enthalpy [10].  Their work 

suggests that magnesium has a positive enthalpy of segregation in aluminum and that if they 

were to be alloyed, magnesium would prefer to be at the grain boundaries [10].  Al0.7Mg0.3 was 

successfully synthesized via mechanical alloying in a planetary mill experimentally; the resulting 

X-ray Powder Diffraction peaks showed chemical mixing of magnesium into aluminum after 

milling for six hours [11].  This proves that: 1) mechanical alloying is a processing route for the 

solute segregation mechanism for stabilizing nanocrystalline metals, as mentioned previously; 

and 2) when a binary system does undergo chemical mixing according to the X-ray Powder 

Diffraction results, there is a chance that one element is stabilizing the ultrafine grain size of the 

other by residing within the ultrafine grained material’s grain boundaries. 

 During mechanical alloying, extensive straining forces the chemical mixing between the 

powder constituents via co-deformation.  Overall, this process is a function of the powder 

constituents’ mechanical properties (most importantly, strength), microstructures, and chemical 

mixing [12].  By changing all three of these variables, two distinct behaviors of the powder 

system are noticed:  they either become chemically homogenized, or they remain in dual phase – 

and this depends upon the base element’s relative strength [12].  Currently, there is no “general 

quantitative heuristic” by which mixable, powder systems can be predicted (or definite 

conditions in which these powder systems can become mixable) [12]. However, it has been 

suggested that chemical mixing can be “encouraged” by either ensuring the co-deformation is 

between powders with relatively similar mechanical properties, and/or making sure the 
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microstructures of the powder constituents agree (in terms of volume fraction and geometry) 

[12].  For instance, when considering the impact of volume fraction, if there is a relatively hard 

element present, the softer element present can easily flow around the harder element without 

deforming the harder element [13].  However, that becomes more difficult if the volume fraction 

of the harder element increases.  Therefore, the relative hardness of the constituent elements 

compared to the base-alloying element is important as to whether or not it chemically mixes and 

inevitably, if solute segregation within the grain boundaries occurs.   

 In order to determine whether or not a grain boundary can be doped with a certain 

element, it must be determined whether or not the solute and solvent can be chemically mixed.  

Within this thesis work, 99 atomic % aluminum 1 atomic % silicon, 99 atomic % aluminum 1 

atomic % zinc, 99 atomic % aluminum 1 atomic % magnesium, and 99 atomic % aluminum 1 

atomic % zirconium were ball milled with a Retsch Planetary Ball Mill under an argon 

atmosphere.  As mentioned before, the work of Murdoch and Schuh suggests that magnesium 

has a positive enthalpy of segregation in aluminum and that if they were to be alloyed, 

magnesium would prefer to be at the grain boundaries, and this was proven experimentally by 

S.M. Umbraikar et al. [10,11].  So the chosen solvent was aluminum and the rest of the 

secondary/solute elements (silicon, zinc, and zirconium) were chosen based upon their Moh’s 

hardness compared to that of aluminum, as seen in Table 1.  X-ray Powder Diffraction was used 

to determine average crystallite size, strain within the powder particulates, and to determine 

whether or not each of the binary systems underwent chemical mixing.   
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Table 1:  Moh’s hardness values for each of the elemental powders used [14].   

Element: Moh’s Hardness Value 

(MPa): 

Aluminum 2.75 

Magnesium 2.5 

Silicon 6.5 

Zinc 2.5 

Zirconium 5 

 

1.1.  Materials Science Fundamentals  

 There are four fundamental concepts within materials science which apply to mechanical 

alloying and behind this thesis work:  hardness, severe plastic deformation, cold welding and 

fracturing.  Each of the secondary elements were chosen based upon their harnesses relative to 

aluminum (described in 1.1.1.), and within mechanical alloying, powder particles undergo severe 

plastic deformation (described in 1.1.2.), cold welding (1.1.3.), and fracturing (1.1.4.).   

1.1.1.  Hardness  

Hardness is a measure of a material’s ability to resist localized plastic deformation [15].  

It is dependent upon the material’s ductility, elastic stiffness, toughness, strain, strength, and 

viscoelasticity [15].  Hardness contains several different materials properties, and it is important 

because the degree to which the binary powders mix will be compared to each element’s 

hardness value.  As mentioned previously, chemical mixing can be “encouraged” by either 

ensuring the co-deformation is between powders with relatively similar mechanical properties, 

and/or making sure the microstructures of the powders agree.  If the volume fraction of a 
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relatively soft metal compared to that of a relatively hard metal is low, then the likelihood of 

chemical mixing is higher.  If, either, the relative hard metal’s hardness is too high and/or the 

volume fraction is higher, the likelihood of mixing is therefore lower.  Therefore, the relative 

hardness of the constituent elements compared to the base-alloying element (or the solvent 

element) is important as to whether or not it chemically mixes and inevitably, if solute 

segregation within the grain boundaries occurs.   

1.1.2.  Severe Plastic Deformation 

Severe plastic deformation describes goes on during a metallic processing technique that 

involves very large strains undergoing very large shear stresses which results in a very high 

density of defects and ultrafine grained materials.  This is the type of deformation which occurs 

during mechanical alloying; it creates the large amount of defects within the metallic powders:  

the vacancy concentration drastically increases, the amount of dislocations drastically increases, 

and new high angle grain boundaries are formed [16].  The creation of these new defects, along 

with internal stress from this plastic deformation, can promote phase transformations such as 

solid state amorphization, disordering, or dissolution of precipitates [16].   

1.1.3.  Cold Welding  

Occurs during the first stages of mechanical alloying, cold welding is a solid-state 

welding process which joining of particles takes place without heat or a fusion interface [1].  It 

does not require the powder particles to be in a liquid state or in a molten phase – it does, 

however, require very large pressures[1].  It is what causes an increase in the diameter of the 

powder particles, which is reduced during fracturing.   
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1.1.4.  Fracturing  

Fracturing occurs when a material is separated into two or more parts undergoing stress 

and/or pressure.  It is what reduces the effect of cold welding that occurs during mechanical 

alloying; it occurs due to crack propagation that slowly moves across the material and is usually 

followed by a large amount of plastic deformation [1,15].   

1.2.  Synthesis – Mechanical Alloying (MA) 

 The aluminum-silicon, aluminum-zirconium, aluminum-magnesium, and aluminum-zinc 

powders were synthesized via mechanical alloying in a planetary ball mill.  Mechanical alloying 

(MA) is a solid-state powder metallurgy processing technique which essentially involves the cold 

welding, fracturing, and rewelding of powder [17].  MA enables the alloying of several different 

powders to create unique phases.  One of the greatest advantages of MA is that it can alloy 

elements which are normally immiscible, which is not possible with any other processing 

technique [18].  This process was developed by John Benjamin and his colleagues at the Paul D. 

Merica Research Laboratory within the International Nickel Company in order to produce 

nickel-based superalloys for gas turbine applications in 1966 [17]. Mechanical alloying is a 

relatively inexpensive and simple technique which is ideal for powder processing because it 

enables the user to process powders under non-equilibrium conditions.  By “energizing and 

quenching” materials during processing under non-equilibrium conditions like mechanical 

alloying, the unique and desired materials properties can be obtained by rapidly cooling said 

material.    
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Figure 1:  Non-equilibrium synthesis by “energizing and quenching” used in multiple materials 

processing techniques (rapid solidification, mechanical alloying, vapor deposition) [17].   

 

 1.2.1.  Mechanical Alloying Variables 

 Mechanical alloying is a complex process which involves optimizing several variables to 

achieve the desired microstructure and/or phase.  Some important parameters that effect the final 

powder’s properties include: 

 Type of mill (1.2.1.1.) 

 Milling speed (1.2.1.2.) 

 Milling container (1.2.1.3.) 

 Milling time (1.2.1.4.) 

 Type and size of grinding medium 

(1.2.1.5.) 

 Percent of empty space in the jar 

(1.2.1.6.) 

 Milling atmosphere (1.2.1.7.) 

 Ball-to-powder ratio (1.2.1.8.) 

 Process controlling agent (1.2.1.9.) 

 Temperature of milling (1.2.1.10.)  

All of these variables are not necessarily independent of each other (i.e. the ideal milling time 

depends upon the size of the grinding medium, the type of mill, the ball-to-powder ratio, etc.) 

and will be discussed in more detail in the following sections.  

 



 

 8 

1.2.1.1.  Type of Mill 

There are several different mills that one can use for MA.  They differ in milling speed, 

jar capacity, and ability to vary the milling temperature in order to minimize powder 

contamination [17].  Table 1 lists some common mill types and an allowable sample weight.  The 

powder type, powder quantity, and the final constitution of the powder dictates which mill is 

ideal for the powder processing.  For instance, planetary ball mills or attritors are used to produce 

large quantities of powder, while shaker mills are used for alloy screening purposes [17].  In 

certain specific applications, specially designed mills are used (and are not included in Table 2).   

  Table 2:  Common mill types and their allowable capacities (sample weights) 

[17] 

Mill Type: Sample Weight: 

Mixer Mills Up to 2 x 20 g 

Planetary Mills Up to 4 x 250 g 

Attritors 0.5 – 100 kg 

Uni-Ball Mill Up to 4 x 2000 g 

 

1.2.1.2.  Milling Speed 

The faster the mill rotates, the higher the energy input into the powder would be.  The 

maximum speed of the mill is restricted upon what type of mill is used, and above a certain 

critical speed, the grinding media will be pinned to the inner walls of the milling jar, they do not 

fall down, and as a result, they do not exert any impact force upon the powder [17].  In order to 

deliver the highest energy input to the powder, the maximum speed should hit the critical value 
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such that the grinding media falls from a maximum height to produce the desired maximum 

collision energy [17].  The temperature increase that naturally comes with faster speeds may be a 

disadvantage, and will therefore limit the maximum speed for those reasons.  Higher 

temperatures from faster speeds are ideal in cases where diffusion is required to promote alloying 

[17].  The increase in temperature can be a disadvantage in cases that decomposition of the 

supersaturated solid solutions/metastable phases that have been formed occurs [17].  

Additionally, higher speeds also increase the likelihood of contamination because of the jar’s 

temperature increase [17].   

1.2.1.3.  Milling Container 

Milling jars are typically made of hardened steel, hardened chromium steel, tool steel, 

tempered steel, tungsten carbide, tungsten carbide cobalt, stainless steel, and bearing steel 

[17,18].  The material that is used to make the milling jar is important because the some of the 

milling jar material will contaminate/be incorporated into the chemistry of the final powder.  The 

shape of the jar may also affect the rate at which alloying occurs.  In a study by J.L. Harringa, 

B.A. Cook, and B.J. Beaudry, alloying occurred within their flat-ended SPEX mill container 

significantly higher than the round-ended SPEX mill container (the time to achieve the (111) 

peak of Si-Ge was 9 hours for the flat-ended container and 15 hours for the round-ended 

container) [19].   

1.2.1.4.  Milling Time  

The duration of milling is chosen as to achieve a steady state between fracturing and cold 

welding of the powder particulates.  Milling time is an important parameter.  The ideal time is 

dependent upon several factors: type of mill used, ball-to-powder ratio, the milling temperature, 
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and the milling intensity/speed [17].  Because the level of contamination increases with milling 

time (along with some potentially undesirable phases), the milling time should last for the 

required duration, and not any longer than that.   

1.2.1.5.  Type and Size of Grinding Medium 

The most common materials used for the grinding medium are stainless steel, hardened 

steel, hardened chromium steel, tool steel, tempered steel, bearing steel, and tungsten-carbide 

cobalt [17].  In order to create enough of an impact force on the powder, the density of the 

grinding medium should be high.  The grinding medium and the milling jar should be made of 

the same material whenever possible in order to reduce the amount of cross contamination.   

The milling efficiency is influenced by the diameter/size of the grinding medium.  High 

density grinding medium with larger sizes will generally transfer more impact energy to powder 

particles [17].  However, according to multiple studies, larger sized grinding media is not ideal 

when trying to achieve an amorphous phase.  In a set of investigations, an amorphous phase of 

titanium-aluminum alloys was produced faster while using 3/16” diameter steel balls than using 

3/4” diameter balls [20,21].  In fact, only a stable crystalline compound of titanium-aluminum 

was produced when milling was done with larger diameter steel balls [20].  In another study, an 

amorphous phase of titanium-aluminum was only formed when 5mm or 8mm balls were used for 

milling; when using 12mm balls, an amorphous phase did not form [21,22].  A very similar 

result occurred when milling palladium-silicon – an amorphous phase of that powder system was 

favored when smaller media was used [23].  It was suggested that the reasoning behind this is 

because smaller sized media produced more intense frictional action which in turn promoted 
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amorphization [22].  “Soft” milling conditions (smaller media size, lower energies, and lower 

ball-to-powder ratios) seem to enable metastable phase formation/amorphization [22].   

Throughout mechanical alloying investigations and research, it is common to see only 

one size of grinding medium used.  There have been a few instances where the researchers 

decided to use different sized media.  It was predicted by Gavrilov et al. that the highest collision 

energy can be achieved if different sized media was used [24].  In the beginning stages of 

milling, the surface of the grinding medium gets coated with powder; and in some circumstances, 

the powder cold welds to the grinding medium [17].   The overall thickness of this coating layer 

should always try to be minimized in order to prevent a ball-powder heterogeneous product from 

forming [24].  Unfortunately, it is difficult to detach the powder from the media, so it can lead to 

low powder yields [17,24].  By combining both large and small media sizes, it has been reported 

that it minimizes the coating of powder formed on the media’s surface and it minimizes the 

potential for powder cold welding to the media’s surfaces [25,26].  This can possibly be because 

the shearing forces that are produced by different sized media may help detach powder from the 

media’s surface [17].  

Additionally, to ensure that the motion of the grinding media is randomized, combining 

smaller and larger media sizes is necessary [27].  Using the same sized grinding media 

(regardless of jar type) has been shown to produce tracks [17].  It is more ideal to have the media 

hit surfaces randomly than it is to have them traveling along a well-defined trajectory.   

1.2.1.6.  Percent of Empty Space in Jar 

There has to be enough empty space in the jar in order for the impact forces of the 

grinding media to be exerted on the powder; it is necessary for there to be enough empty space 
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for the media and the powder particles to move around [17].  If there is too much free space, then 

the quantity of powder is not maximized.  If there is too little room in the jar, then there is not 

enough free space for the media to move around, so the impact energy of the media is less.  The 

percentage of empty space necessary in the jar depends upon the manufacturer’s 

recommendations.  Generally, about 50% of the jar space is left empty [17].  

1.2.1.7.  Milling Atmosphere 

If the milling atmosphere is not controlled, contamination of the powder can also occur 

(mostly due to oxygen present – it can cause oxidation and/or oxides).  Powders are typically 

milled in containers that either have been evacuated or in inert gas atmospheres (such as argon or 

helium) [17].  High purity argon is the most commonly used to prevent oxidation and/or 

contamination of the powder.   

1.2.1.8.  Ball-to-Powder Ratio (BPR) 

The ball-to-powder ratio (BPR) has a significant effect on the milling time required in 

order to achieve a certain phase in the powder.  Researchers have experimented with ratios as 

low as 1:1 and as high as 220:1 [17].  The higher the BPR, the shorter the time to achieve the 

desired results.  For example, in a study done by C. Suryanarayana, G.H. Chen, and F.H. Froes, 

an amorphous phase of Ti-33 atomic % Al powder mixture was milled in a SPEX mill with a 

BPR of 10:1 in 7 hours, and that same powder mixture became amorphous within just 1hr with a 

BPR of 100:1 [28].  The number of collisions per unit time increases with an increasing BPR 

because more energy is transferred from the grinding media to the powder (alloying occurs 

much, much faster).  The temperature of the jar increases with higher BPR due to more frictional 

forces, this can also change the resulting powder (had there been more heat in the jar, the 
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amorphous powder in C. Suryanarayana’s study could have crystallized) [17,20].  Higher BPR, a 

“hard” condition, produces equilibrium phases, while lower BPR, a “soft” condition, produces 

metastable phases [17].   

1.2.1.9.  Process Controlling Agent (PCA)  

Alloying during milling can be disrupted if powder particles cold weld to one another.  

The heavy plastic deformation which the powder particles experience (especially in cases where 

the powder particles are ductile) is what causes the cold welding.  A balance of fracturing and 

cold welding must be maintained.  A process control agent (PCA) (which can also be referred to 

as a a surfactant or a lubricant) is commonly added to the powder before mixing in order to 

reduce the effect of cold welding.  PCAs can be solids, liquids, or gases – they are usually (but 

not necessarily) organic compounds that are absorbed onto the surface of the powder particles 

[17].  This lowers the surface tension of the solid material, which thereby reduces the likelihood 

of cold welding which in turn, reduces unwanted powder agglomeration.  E, the energy that is 

physically required for the size reduction process, is given by: 

𝑬 =  𝜸 ∙  𝚫𝑺 

where  is the specific surface energy and S is the change (or increase) in surface area.  By 

reducing surface energy, it results in shorter milling times and/or the generation of powders with 

smaller diameters.   

Typically, 1-5 wt% of PCAs are added to the powder mixture [17].  There are several 

different kinds of PCAs that one can use, the most important ones that are used, however, 

include:  ethanol, methanol, hexane, and stearic acid [17].  Some other exotic PCAs can be used, 

including:  trichlorotrifluoroethane, didocyldimethyl ammonium bromide (DDAB), diodecyl 
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dimethyl ammonium acetate (DDAA), lithium-1,2-bis-dodecyloxy carbonyl sulfasuccinate, 

sodium-1,2-bis(dodecyl carbonyl)ethane-1-sulfonate, polyethylene glycol, ethyl acetate, boric 

acid, oxalic acid, alumina, and aluminum nitrate [17].  Most of the PCAs used decompose during 

milling, they sometimes they interact with the powder and form compounds, and these become 

inclusions and/or dispersoids into the powder particles during the milling process [17].  The 

carbohydrates and hydrocarbons found within the PCAs are likely to introduce oxygen and/or 

carbon into the powder particles.  This results in the formation of oxides and carbides that are 

evenly distributed within the matrix [17].  Luckily, this is not typically harmful to the alloy 

system because the addition of the carbides and oxides contribute to the dispersion strengthening 

of the material, which means the powder particles have increased strength and increased 

hardness [29].  Hydrogen from the PCAs typically escapes as a gas, or it can be absorbed into the 

metal lattice on sintering or heating [17].  Most of the time, hydrogen does not usually participate 

in the alloying process, it primarily acts as a surfactant [30].   

The type of PCA and the quantity used determines the powder’s final shape, size, and 

purity.  A larger quantity of PCA typically reduces the powder particle’s size by two to three 

orders of magnitude.  In a study done by Lu and Lai, the milling of aluminum for 5 hours with 1 

wt% stearic acid added produced a particle size of around 500 microns [31].  When 3 wt% of 

stearic acid was added to a 5 hour run, the aluminum powder size was only around 10 microns 

[31].  This makes sense because the more of the process control agent there is, the less likely that 

cold welding (a solid-state process which increases the powder particle diameter) will occur.   

The purity of the final powder product and the nature of the desired powder being milled 

is what determines which PCA one should use.  The amount of PCA and the type of PCA will 

determine the final powder yield and particle size.  The overall effectiveness of the PCA can 
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actually be determined by the total powder yield after mechanical alloying.  If the powder yield 

is high and the jar is cleaned out properly, it can be concluded that the PCA was effective.  If the 

powder yield is low and the weight of the cleaned media after mechanical alloying is 

significantly more than before mechanical alloying, it can be concluded that the PCA is not 

effective.  For instance, in the same study by Lu and Lai, it was found that 100% of the powder 

was recovered after milling for 15 hours when using 2 wt% stearic acid, but only 50% of the 

powder was recovered if 2 wt% polyethylene glycol was used [31].     

All milling conditions and circumstances are different; there is no “universal” PCA that 

one can use.  The amount of PCA that should be used is dependent upon the amount of powder 

and the grinding medium used, the thermal and chemical stability of the PCA, and the cold 

welding characteristics of the powder [17].  One must also decide on the PCA by looking at all 

possible interactions between the PCA and the metal.   

1.2.1.10.  Temperature of Milling 

The milling temperature is another important parameter because temperature regulates 

diffusion processes, which thereby dictates the final constitution of the milled powder.  Diffusion 

is heavily involved in the formation of alloys – so the milling temperature has a significant 

effect.   

 The milling temperature was intentionally varied in only a few studies.  The temperature 

can be lowered by dripping some liquid nitrogen into the milling jar and the temperature can be 

increased by heating the jar electrically [17].  In a study by Hong et al., the root mean square 

strain was lower and the grain size was found to be larger during the formation of nanocrystals at 

higher milling temperatures [32].  Solid solubility has been shown to decrease at higher milling 
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temperatures.  While planetary ball milling Cu-37at%Ag powder mixture, a crystalline 

supersaturated solid solution and an amorphous phase were obtained while milling at room 

temperature; however, only a Cu-8at%Ag solid solution was achieved when milling the powder 

at 200C [33].  Increased diffusivity and the effects of equilibrium at higher milling temperatures 

was given for the decrease in solid solubility.   

 In mechanical alloying, higher milling temperatures enhance the kinetics of 

amorphization because higher temperatures enable diffusion processes to take place – as 

explained in 1.3.  Mechanism of High Energy Milling, in order to achieve an amorphous phase in 

MA, a micro-diffusion couples must be formed of the constituent powders, and this should be 

followed by a solid state amorphization reaction.   Higher temperatures have led to the 

amorphization of nickel-titanium and nickel-zirconium systems because they went through a 

mechanical alloying process [34,35].  It should be mentioned that during mechanical milling 

(MM) processes, it has been shown to be more ideal for the temperature to be lower in order to 

achieve an amorphous phase [17].  The difference between MA and MM is that MA enables the 

alloying of powder mixtures and material transfer is required to reach homogenizaton, while MM 

involves the milling of powders with a uniform composition (i.e. pure metals, intermetallics, etc.) 

and material transfer is not required for homogenization [17].  In MM, the powders are already 

alloyed, so the milling time required compared to MA is about half [17].  The reason why MM 

favors lower temperatures for amorphization is because it occurs by a different mechanism as 

compared to MA.  During MM, amorphization occurs due to the increase in free energy in the 

crystalline phase which is caused by the introduction of defects (increased grain boundary area or 

anti-site chemical disorder) that occur while forming a nanocrystalline structure [17].  Thus, it is 

expected that lower milling temperatures are expected to favor the formation of an amorphous 
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phase.  However, depending upon the powder being milled, both increased and decreased 

temperatures have been reported to favor amorphization by MM, even with the same powder 

composition [17].  For instance, when miling nickel titanium, it was reported that a shorter 

milling time was required for amorphization at 170C than it was at 60C [34].  Interestingly, 

Koch et al. reported reduced amorphization kinetics with increased milling temperature [35,36].  

They reported it that it took 18 hours of milling to reach an amorphous phase at a milling 

temperature of 220C, while it only took 2 hours to reach an amorphous phase at liquid nitrogen 

temperature [35,36].  The results Koch et al. reported were understood to be that amorphization 

took place due to increased grain boundary energy through the formation of a nanocrystalline 

structure, and that this nanocrystalline structure formed at lower milling temperatures [35,36].  

The increase in milling time required for several intermetallics (including nickel titanium ) with 

an increase in milling temperature can be seen in Figure 2.   
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Figure 2:  Plot of milling time required for amorphization versus the normalized milling 

temperature (Tmilling / Tmelting) for NiTi, NiZr2, and CoZr [17].  The increase in normalized 

temperature is directly related to milling time required for all three intermetallics.   

 

1.3.  Mechanism of Alloying – High Energy Milling 

 Powder particles are repeatedly flattened, cold welded, fractured, and then rewelded 

during high energy milling.  Whenever there is a collision between two malls, some powder will 

be trapped in between them, as demonstrated in Figure 3 [17].   
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Figure 3:  A schematic of the collision between the ball and powders during MA [17].  This 

collision is what leads to some powder being trapped on the ball’s surface and the severe plastic 

deformation of the powder particles.   

 

Approximately 1000 particles with an approximate weight of 0.2 mg are trapped during every 

collision – it is the force of this impact which causes the plastic deformation of powder particles, 

leading to fracture and work hardening [17].  Cold welding occurs because the new surfaces that 

are created allow for welding between the particles to occur – and this is what leads to an 

increase in particle size [17].  During the beginning of the milling run, the powder particles are 

pretty soft (during the milling of ductile-ductile powders and ductile-brittle powders).  Because 

of this, the likelihood of the powder to weld together and form larger particles is high and a 

broad range of powder particle diameters develops – some diameters are even three times larger 

than the starting powder (from points a to b in Figure 4) [17].  The structure of these new, larger 

powder diameters have a layered structure that consists of various combinations of the original 

powder constituents (which can also be seen in Figure 3).  As the deformation continues, 

particles experience work hardening and fracture by the fragmentation of fragile flakes and/or a 

fatigue failure mechanism [17].  It is at this stage that the likelihood of fracture is more than the 

likelihood of cold welding and the average particle size drops (from points b to c in Figure 4).  
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Eventually, the structure of the particles is steadily refined, due to the continued impact of the 

grinding medium, but then the particle size stays around the same [17].  As the plastic 

deformation continues, the spacing between the powder particle’s layers decrease and the 

number of layers the particle has increases [17].   

 In a conventional ball mill, the efficiency of the particle size reduction that occurs is 

>0.1% [17].  Despite the fact that the efficiency is higher in high energy ball milling processes, 

the efficiency there is still less than 1% [17].  Most of the energy is lost as radiating heat; a small 

amount is utilized in the elastic deformation and the plastic deformation of the powder particles.   

 A steady-state equilibrium is reached after milling for a certain period of time when the 

rate of welding (that causes the increase of the average particle size) and the rate of fracturing 

(that decreases the average particle size) is about equal (from points c to d in Figure 4).  Smaller 

particles tend to be able to survive the impact of the grinding media without fracturing; however, 

eventually, they tend to weld into larger pieces which eventually drive both the very large and 

the very small/fine particles towards an intermediate size [37].  It is when this occurs that every 

particle contains all of the starting ingredients, with the proportions that they were mixed 

together [17].  Due to the accumulation in strain energy, the particles reach a saturation hardness 

and at this stage, the size distribution of the powder particles is small – the particles which are 

larger than the average experience a reduction in size at the same rate that the smaller particles 

grow through agglomeration with other smaller particles [17].  A graph of the particle size with 

respect to milling time can be seen in Figure 4: 
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Figure 4:  General relationship between the average particle size and the milling time [17].  

Points a to b:  In the beginning of a milling run, the powders tend to weld together and create 

larger particles (the rate of particles welding is much greater than the rate at which particles are 

fracturing), so the average particle size increases.  Points b to c:  As the powder particles 

experience more deformation, the powders experience work hardening and fracturing, so the rate 

at which the powders fracture is much less than the rate at which they are welding; therefore, the 

average particle size is decreasing.  Points c to d:  Represents the equilibrium that the milling 

process eventually experiences – the rate of welding is equal to the rate of fracturing because the 

particles which are larger than the average experience a reduction in size at the same rate that the 

smaller particles grow through agglomeration with other smaller particles.   

 

 Clearly, the powder particles experience severe plastic deformation during the process of 

MA.  This severe plastic deformation results in the presence of a variety of crystallographic 

defects within the powder particles, including:  dislocations, stacking faults, vacancies, and an 

increased number of grain boundaries [17].  The presence of these defects is actually beneficial 

because not only does it it enhances the diffusivity of the solute elements into the solvent’s 

 a b 

d 

c 
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matrix, but it also decreases the distance needed for diffusion due to refined microstructural 

features [17].  This rise in temperature leads to the true alloying of the powder constituents.   

While the alloying that takes place during MA generally occurs at room temperature, 

sometimes it is necessary for the powders to undergo annealing at an elevated temperature in 

order for the alloying to be achieved.  The elevated temperatures during annealing further aid the 

powder’s diffusion behavior, which will enable the desired alloying to occur.  This is usually 

necessary for some intermetallics that undergo MA [17].  

The time required to form any given structure in any system is a function of the powder 

particle’s initial size, the characteristics of the powder’s ingredients, the equipment that is being 

used for MA, and the equipment being used to control the operating parameters.  In most cases, 

the rate at which the internal structure (i.e. particle size, lamellar spacing, crystallite size, and 

etc.) is being refined has a roughly logarithmic scale with the chosen processing time [17].  

Because of this relationship, one can conclude that the size of the starting powder particles is 

basically irrelevant.  During the beginning of the MA run, the grain size is reduced to nanometers 

and the lamellar spacing usually becomes small, as seen in Figure 5 [17].  Nanostructured 

materials are easily synthesized with MA, which is why MA is extensively used to create 

nanocrystalline materials [17]. 
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Figure 5:  A schematic representing the logarithmic relationship between milling time in hours 

versus particle size (or grain size) in nanometers [17].  As mentioned before, the rate of 

refinement of the powder particles increases with a decreasing ball-to-powder ratio, higher 

energy milling, lower temperature, and etc. 

 

It is possible to conduct MA in three different combinations of metals and alloys:  

ductile-ductile, ductile-brittle, and brittle-brittle.  Because aluminum-silicon, aluminum-

zirconium, aluminum-magnesium, and aluminum-zinc are either ductile-ductile or ductile-brittle, 

the mechanism of MA during those two combinations will be discussed in the following two 

sections.   

 1.3.1.  Ductile-Ductile MA Systems 

Ductile-ductile MA systems are the most ideal combination of materials for MA.  It has 

been suggested that it was necessary to have at minimum 15% of a ductile component in the 

milling jar in order to achieve alloying [37].  This is because, as mentioned earlier, true alloying 

occurs due to the welding and fracturing of particles repeatedly, and cold welding cannot occur if 

the powders lack ductility [17].   
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The mechanism of alloying in a two different ductile component system was described by 

Benjamin and Volin [38].  They suggested that in the earlier stages of MA, the ductile 

components get flattened into a pancake/platelet shape via a micro-forging process.  A small 

amount of powder (with a thickness of one to two particles) gets welded onto the media’s 

surfaces.  The forming of this coating is ideal because it prevents excessive wear of the grinding 

medium and it prevents the contamination of powder by the grinding medium.  However, 

although it is advantageous, this coating on the grinding medium should be kept to a medium in 

order to reduce the likelihood that the grinding medium and the powder form a heterogeneous 

final product [24].  In the next stage of MA, the pancake/platelet like particles cold weld to one 

another to form a composite with a lamellar structure of the original constituents.  During this 

stage, the the particle size is expected to increase.  As the MA time is increased, the composite 

powder particles undergo work hardening, and consequently, the hardness and the brittleness of 

the powders increase, so the powder size decreases, resulting in powders with more equiaxed 

dimensions.  Afterwards, the elemental lamellae eventually becomes more convoluted rather 

than linear, as seen in Figure 6.   

 

Figure 6:  Scanning electron micrograph of the convoluted lamellar layer of a ductile-ductile 

component system (Ag-Cu) [17].   
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This happens because equiaxed powder is randomly welded together without any 

particular preference to the orientation in which welding occurs.  At this stage, welding begins to 

occur because of the combination of increased lattice defect density, decreased diffusion 

distances (interlamellar spacing), and any heating that may have happened during milling.  The 

particle size and hardness tend to reach saturation at this point – it is often referred to as the 

steady-state processing stage.  True alloying occurs at the atomic level with further milling, and 

this results in the formation of intermetallics, solid solutions, and/or amorphous phases.  The 

spacing between lamellar spacing becomes so fine (or it appears to disappear) that this stage; it 

becomes no longer visible under an optical microscope.  One can tell that the MA process has 

been completed (a homogenous structure in the powder has been attained), when the powder can 

be removed from the grinding medium [1].   

 1.3.2.  Ductile-Brittle MA Systems  

Another MA system found within this thesis work is ductile-brittle.  The microstructural 

evolution of the MA of ductile-brittle system has been described by Benjamin and others [24,39].   

The ductile component flattens during the initial powder-ball collisions, while the brittle particles 

get fragmented/comminuted as seen in Figure 7.   
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Figure 7:  Typical deformation characteristics of some representative constituents of starting 

powders that is used in MA [17].  

 

During the earlier phases of MA, the brittle, fragmented particulates tend to become trapped in 

the ductile particles and become occluded by the ductile particles.  The brittle constituents tend 

to be trapped and closely spaced along the interlamellar spacings, as seen in Figure 8(a).  As the 

milling time increases, the ductile powders experience work hardening, the lamellae get 

convoluted and refined (which is to be expected) – each individual particle’s composition begin 

to converge toward the overall composition of the starting powder’s blend as seen in Figure 8(b).  

Eventually, the lamellae gets further refined as the milling time continues to increase, the spacing 

between interlamellar spaces decreases, and the brittle particulates get evenly dispersed 

throughout if they are insoluble within the ductile powder’s matrix (as seen in Figure 8(c)).  

Figure 9 is a transmission electron microscopy image showing a generally uniform dispersion of 

Er2O3 particles within MM 2-titanium aluminide alloy matrix (the case where the brittle 

component is not soluble with the ductile matrix).   
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Figure 8:  The structural evolution during MA of ductile-brittle systems of powders [1].  (a)  

Brittle particles tend to become trapped within ductile particles in early stages of MA; (b)  

Ductile powder experiences work hardening and lamellae gets further refined, the brittle particles 

become further refined; (c)  If the brittle powder is insoluble with the ductile powder’s matrix, 

the lamellae will get further refined, the interlamellar spacing decreases, and the brittle particles 

are evenly dispersed throughout [17].   

 

If the brittle phase is in fact soluble within the ductile powder’s matrix, alloying will occur 

between both components and the desired chemical homogeneity is achieved. An example of a 

ductile-brittle powder system in which the brittle component is soluble with the ductile matrix is 

NiZr2 (brittle) in pure Zr (ductile) [40].  Alloying of ductile-brittle powder systems during MA 

requires simply the fragmentation of brittle particles in order to initiate short-range diffusion, but 

additionally, a reasonable solid solubility within the ductile component’s matrix.   
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Figure 9:  Transmission electron microscopy image showing a generally uniform dispersion of 

Er2O3 particles within MM 2-titanium aluminide alloy matrix (the case where the brittle 

component is not soluble with the ductile matrix). 

 

 1.3.3.  Planetary Ball Mill   

 In order to produce MA powders, different types of high-energy milling equipment can 

be used.  Because this research involves the use of a planetary ball mill, the specifics about this 

type of mill will be explained in this section.  A planetary ball mill, also referred to as 

Pulverisette, is a popular mill for conducting MA.  It can only mill a few hundred grams of 

powder at a time [1].  They are currently being manufactured by Retsch in Germany (pictured in 

Figure 10) and Fritsch GmbH in Germany, which is marketed by Gilson Co., in the United States 

and Canada [17,41].  The name of this mill was given for the planet-like movement of its vial(s) 

[17].  The vials are rotated on a support disk (which it revolves like the Earth would around the 

Sun) and a special drive mechanism also causes them to rotate around their own axes, as seen in 

Figure 11 [17].   
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Figure 10:  Retsch PM100 Planetary Ball Mill used within a glove box to mill the Al-Si, Al-Zn, 

Al-Mg, and Al-Zr powder systems [42].  This ball mill only has only 1 grinding station.  
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Figure 11:  Schematic of a planetary ball mill in motion [17].  Shows the planetary-like motion 

of the balls where the jar rotates along its own axis and the entire jar revolves in the direction of 

the movement of the supporting disk.   

When comparing to a SPEX mill, the linear velocity of the media in a planetary ball mill 

is faster than that of a SPEX mill; however, because the frequency of impacts that occur within a 

SPEX mill is greater than that of a planetary ball mill, a planetary ball mill can be considered a 

lower energy mill [17].  Additionally, the estimated temperature rise within the SPEX mill is less 

than that of a planetary ball mill.  With a Ni-Zr system, it was estimated that a SPEX 8000 mill 

would cause a temperature rise 180C [43].  With a Ni-Al system, it was estimated that a 

planetary ball would cause a temperature rise of 220C [44].   

1.4.  Problem Statement  

Nanocrystalline metals have useful mechanical properties such as high strength, 

improved wear resistance, and longer fatigue life [1-3].  Despite their potential, nanocrystalline 

metals are relatively unstable and can be easily subjected to rapid grain growth.  After comparing 
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the work of Murdoch and Schuh, which used a thermodynamic model to estimate grain boundary 

segregation enthalpy to the experimental work of Umbrajkar et al., it was realized that 

nanocrystalline powders can be stabilized via grain boundary doping though mechanical alloying 

[10,11].  In order to determine whether or not a grain boundary can be doped with a certain 

element, it must be determined whether or not the solute and the solvent will chemically mix.  

Within this thesis work, 99 atomic % aluminum 1 atomic % silicon, 99 atomic % aluminum 1 

atomic % zinc, 99 atomic % aluminum 1 atomic % magnesium, and 99 atomic % aluminum 1 

atomic % zirconium were ball milled with a Retsch Planetary Ball Mill under an argon 

atmosphere.  As mentioned before, the work of Murdoch and Schuh suggests that magnesium 

has a positive enthalpy of segregation in aluminum and that if they were to be alloyed, 

magnesium would prefer to be at the grain boundaries, and this was proven experimentally by 

S.M. Umbraikar et al. [10,11].  The rest of the secondary elements (silicon, zinc, and zirconium) 

were chosen based upon their Moh’s hardness compared to that of aluminum, as seen in Table 3.  

X-ray Powder Diffraction was used to determine average crystallite size, strain within the 

powder particulates, and to determine whether or not each of the binary systems underwent 

chemical mixing.   

Table 3:  Moh’s hardness values for each of the elemental powders used [14].   

Element: Moh’s Hardness Value 

(MPa): 

Aluminum 2.75 

Magnesium 2.5 

Silicon 6.5 

Zinc 2.5 

Zirconium 5 
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Chapter 2:  Materials and Methods  

 The following section discusses the powders used in this thesis and provides general 

procedures for both ball milling and X-ray powder diffraction.  Additionally, necessary 

calculations and chosen parameters are provided and described for both ball milling and X-ray 

powder diffraction.   

 2.1.  Materials – Binary Systems   

In order to determine whether or not a grain boundary can be doped with a certain 

element, it must be determined whether or not the solute and solvent will chemically mix.  As 

mentioned before, the work of Murdoch and Schuh suggests that magnesium has a positive 

enthalpy of segregation in aluminum and that if they were to be alloyed, magnesium would 

prefer to be at the grain boundaries, and this was proven experimentally by S.M. Umbraikar et al. 

[10,11].  Within this thesis work, 99 atomic % aluminum 1 atomic % silicon, 99 atomic % 

aluminum 1 atomic % zinc, 99 atomic % aluminum 1 atomic % magnesium, and 99 atomic % 

aluminum 1 atomic % zirconium were ball milled with a Retsch Planetary Ball Mill under an 

argon atmosphere.  The powders were acquired from the following:  aluminum powder from 

Alfa Aesar with a 99.5% purity and a mesh size of -325, magnesium powder from Alfa Aesar 

with a 99.8% purity and a mesh size of -325, silicon powder from Alfa Aesar with a 99.5% 

purity and a mesh size of 325, zinc powder from Alfa Aesar with a 99.9% purity and a -140 to 

325 mesh size, and zirconium powder from Strem Chemicals, Inc. with a 99.5% purity and a 

mesh size of -50. The rest of the secondary elements (silicon, zinc, magnesium, and zirconium) 

were chosen based upon their Moh’s hardness values compared to both aluminum’s and 

magnesium’s:  aluminum has a hardness of 2.75MPa, magnesium has a hardness of 2.5MPa, 
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silicon has a hardness of 6.5MPa, zinc has a hardness of 2.5MPa, and Zirconium has a hardness 

of 5MPa.  

 2.2.  Characterization – X-ray Diffraction  

 After MA or MM, powders can be characterized for their microstructural features, phase 

constitution, shape, surface area, and size. It is particularly important to measure the grain size 

and the lattice strain within mechanically alloyed powders because transformation characteristics 

and phase constitution are critically dependent upon them [17].   X-ray Powder Diffraction 

(XRD) is a considerably powerful characterization technique for crystalline powders – it is an 

analytical technique that can be used for phase identification of crystalline material, it can 

provide unit cell dimensions through the use of/deviations from Bragg’s Law, and it can be used 

to derive crystallite size and strain within metallic powders [47].   

XRD peak broadening techniques are indicative of the elemental phases present, can help 

to evaluate the crystallite size of crystalline powders, and can also determine the lattice strain of 

the powder.  Once a powder has undergone XRD, a plot of 2 ( referring to the angle in 

degrees) versus Intensity (which is typically represented as total counts or in counts per second) 

is generated and the pattern of peaks which is generated is a characteristic “fingerprint” of a 

certain phase.  The positions of peaks in a powder pattern is determined by the shape, size, and 

symmetry of the phase’s unit cell and the intensities depends upon the arrangement of atoms 

within the cell [78].   

XRD for powder analysis does have its strengths and its limitations.  XRD’s strengths 

include:  that it is powerful and rapid (depending upon the user’s scanning preferences), it 

provides unambiguous phase determination in most cases, sample preparation is minimal, the 
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sample does not have to be discarded after undergoing XRD, and data interpretation is straight 

forward [47].  On the other hand:  in order to determine an unknown, it is best to have a single 

phased and homogenous sample; one must have access to a standard reference of d-spacing’s and 

2 angles, which can be hard to access and/or is relatively expensive;  indexing non-isometric 

crystal systems is complicated; and peak overlay can occur, which worsens at higher angle 

“reflections” [47].   

 2.2.1.  X-ray Diffraction Instrumentation – Rigaku Ultima III 

 For this research, a Rigaku Ultima III (as seen in Figure X), located within the Center for 

Functional Nanomaterials at Brookhaven National Laboratory, was used (Figure 12).  Most X-

ray diffractometers, including the Ultima III, consist of three basic elements:  an X-ray tube, a 

sample holder, and an X-ray detector, which can be seen in Figure 13.     

 

Figure 12:  Rigaku Ultima III which was used for this research and is located at the Center for 

Functional Nanomaterials at Brookhaven National Laboratory in Upton, NY.   
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Figure 13:  The Rigaku Ultima III’s X-ray tube (A), sample holder (B), and an X-ray detector 

(C).   

In the Rigaku Ultima III, X-rays are generated in a cathode ray tube by heating a filament 

to produce electrons, accelerating them towards a target by applying a voltage potential, and 

hitting the target with electrons [47].  When electrons have a high enough energy to dislodge 

inner shell electrons of the target, characteristic X-rays are produced.  There are several different 

components which make up all of the characteristic X-rays that are produced, the most common 

of which being: K (which consists of K1 and K2) and K [47].  K1 has a wavelength which 

is roughly twice the intensity of K2, and a slightly shorter wavelength than K2; the specific 

wavelength and intensity of these X-rays are characteristic of the target material, and when using 

the Ultima III, the target material is copper [47].  Foils or crystal monochrometers then filter the 

characteristic X-rays in order to produce monochromatic rays that are required for XRD (K1 

and K2 typically are close enough in wavelength where a weighted average of both is used) 

[47].  CuK radiation’s wavelength, , is 0.154184nm [47].  Lastly, the X-rays are collimated 
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and are then directed to the sample.  As the sample and detector are rotating, the intensity of the 

X-rays that are reflected are recorded with respect to the angle.  When the incident rays hit the 

sample and constructive interference occurs, it causes a peak in intensity [47].  The detector 

records the incoming X-ray signal at each angle increment, converts it to a count rate, and then 

sends it to a computer.  The X-ray generator rotates at an angle  across the sample while the X-

ray detector rotates at an angle 2 across the sample.  A goniometer is used to maintain the angle 

and rotate the sample.  After obtaining the data, data analysis can be performed with various 

computer programs, including Jade.   

2.2.2.  X-ray Powder Diffraction Fundamentals  

When the incident, monochromatic X-rays interact with the powder sample, it produces 

constructive interference and a diffracted X-ray and when this occurs, it satisfies Bragg’s Law 

[47].  Bragg’s Law is the fundamental principle behind XRD – it relates the wavelength of the 

electromagnetic radiation (X-rays, in this case) to the diffracting beam’s angle and then the 

lattice spacing within a crystalline sample [47].  The d-spacing of each phase present can be 

derived from Bragg’s Law.  Bragg’s Law is: 

𝒏𝝀 = 𝟐𝒅 𝐬𝐢𝐧 𝜽        

where n is an integer (when n is a positive integer, constructive interference occurs),  is the 

wavelength of the rays,  is the angle between the incident rays and the crystal’s surface, and d is 

the interatomic spacing between layers of atoms.   
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Figure 14:  Schematic representation of Bragg’s Law (n = 2dsin()) during XRD [49].   

 

While Bragg’s Law is used for determining the d-spacing of a particular phase, there is 

more information about a sample that can be extracted from the peak’s shape. The width of the 

peak can provide information about crystallite size and strain.  XRD peaks are broadened due to 

small particle sizes, lattice strain within the material and instrumental effects [17].   Interestingly, 

instrumental effects play a big role in terms of dictating shape, as seen in Figure 15: 

 

Figure 15:  Diffraction patterns of silicon that were produced from the exact same sample, but 

with two different diffractometers that had different optical configurations [50].  This apparent 

peak broadening is due to instrumentation alone.   
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Once the effects of instrumentation are removed via estimation techniques used in computer 

software, during XRD pattern software analysis, crystallite size and lattice strain for the powder 

sample can be determined, which as stated earlier, is crucial for understanding how effective the 

MA process was and the state of the alloyed powder.   

 G.K. Williamson and his student, W.H. Hall were able to calculate the mean size of the 

crystallites and the strain within a powder independently from one another for the first time in 

1953 [51].  The approximate formulas for L, or size broadening which was derived from the 

Scherrer equation, and e, or strain broadening, do vary differently with respect to the Bragg 

angle, : 

𝜷𝑳 =
𝑲𝝀

𝑳 𝐜𝐨𝐬 𝜽
    ;     𝜷𝒆 = 𝑪𝜺 𝐭𝐚𝐧 𝜽    [36] 

Where L is the broadening due to crystallite size (relating to the volume average), e is the 

broadening due to strain, L is the crystallite size,  is the wavelength, K is the Scherrer constant,  

 is the inhomogenous strain, and C is a constant that is dependent upon assumptions made about 

the inhomogenous strain (and typically equals either 4 or 5) [51].   

If both contributions are present in the width of the peaks, then one can conclude that 

their combined effect should be determined by convolution [51].  If the sum of squares method 

for convolution is used in order to simplify the Williamson-Hall method, then: 

𝜷𝒕𝒐𝒕𝒂𝒍 = 𝜷𝑳 + 𝜷𝒆 = 𝑪𝜺 𝐭𝐚𝐧 𝜽 +
𝑲𝝀

𝑳 𝐜𝐨𝐬 𝜽
    [51] 

The equation of a line can be achieved by multiplying the equation above by cos(): 
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𝜷𝒕𝒐𝒕𝒂𝒍 𝐜𝐨𝐬 𝜽 = 𝑪𝜺 𝐬𝐢𝐧 𝜽 +
𝑲𝝀

𝑳
    [51] 

When comparing this to y = mx + b, one can see that by plotting total*cos versus sin, the 

strain component can be determined from the slope (C) and the crystallite size component from 

the intercept (K/L), which can also be seen in Figure 16: 

 

Figure 16:  Williamson-Hall plot which can be used to derive the crystallite size and strain 

within powders by relating both contributions to peak widening by convolution (sum of squares) 

and getting the equation into the form “y = mx + b” [51].   

 

Alternatively, the plot can also be expressed in reciprocal space parameters, * and d*:  

𝜷∗ =
(𝑭𝑾𝑯𝑴𝒓𝒂𝒅𝒊𝒂𝒏𝒔)(𝐜𝐨𝐬 𝜽𝒓𝒂𝒅𝒊𝒂𝒏𝒔)

𝝀
    ;     𝒅∗ =

(𝟐 𝐬𝐢𝐧 𝜽𝒓𝒂𝒅𝒊𝒂𝒏𝒔)

𝝀
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By using this form to create Williamson-Hall plots, either the information extracted from XRD 

analysis programs like Jade can be used to plot Williamson-Hall plots in Excel, and/or 

Williamson-Hall plots can be generated within the XRD analysis programs itself.   

 2.2.3.  XRD Data Analysis – Jade  

 After the XRD data had been collected, it underwent data analysis using Jade, a software 

created by MDI.  Jade is designed to peak profile fitting techniques in order to deliver accurate 

information about each peak to estimate crystallite size and strain [50].  This software 

empirically fits experimental data with a series of estimation techniques/equations which allows 

for precise peak positions, heights, areas, and widths with statistically valid estimates.  Typically, 

diffraction peaks are a mixture of Gaussian or Lorentzian components, which is somewhat 

complicated [50].  So, the peaks are fit with either a Pseudo-Voigt (linear combination of 

Gaussian or Lorentzian components) or a Pearson VII (exponential mixture of Gaussian or 

Lorentzian components) curve [50].  After picking which function within the Profile Fitting 

section of Jade, the background function is then selected.  Typically, the fixed or linear 

background function is used – both of these functions specify how the background underneath 

the peak will be modeled [50].  There are other functions which can be modified, but the most 

important are choosing which diffraction peak component computational method to use, along 

with how the computer should model the background.  A typically data export file can be seen in 

Figure 17: 

 

Figure 17:  Data output file from the Peak Profile Fitting program on Jade [50].   
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  2.3.  Experimental Procedures and Chosen Parameters 

 Within the following section, general procedures for both ball milling and X-ray Powder 

Diffraction are discussed in detail and calculations needed to solve for ball milling parameters 

are also discussed.  Additionally, specific parameters and/or values for certain parameters for 

both the mechanism and characterization techniques are described.   

2.3.1.  Ball Milling Procedure 

The actual process of mechanically alloying starts by adding powders in the right 

proportion into the jar along with a grinding medium (usually steel or tungsten carbide).  First, 

the density of the powder(s) that are to milled should be measured because the density of the 

powder is going to be different than a solid of the same composition of the powder.  This can be 

done by taking several weight measurements of a graduated cylinder being filled by powder, 

recording the weight and the volume, and then determining the density of the powder and the 

standard deviation of the density.  The multiple weights and volumes should be recorded in order 

to ensure that the calculated density is accurate.   

As described in Section 1.2.1.6. Percent Empty Space in Jar, there has to be enough 

empty space in the jar in order for the impact forces of the grinding media to be exerted on the 

powder; it is necessary for there to be enough empty space for the media and the powder 

particles to move around [17].  The percentage of empty space necessary in the jar depends upon 

the manufacturer’s recommendations.  Generally, about one third to half of the jar space is left 

empty [17,45,46].  In the case where one third of the space in the jar should be empty, one third 

of the volume is typically powder and one third of the volume is typically media [45,46].  Based 

upon the calculated powder density, the powder mass required to fill one third of the jar volume 
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can be calculated.  From there, the volume of the of the grinding media can be calculated based 

upon the chosen or ideal BPR by the following steps:  

1. Multiply the calculated weight of the powder by the chosen BPR – this will be the 

grinding media’s weight  

2. Weight the grinding media on a scale until the approximate weight required has 

been achieved, then count the number of balls that were weighed out  

3. Calculate the volume of the grinding media, where Vtotal (mL) is the total volume 

of the grinding media in milliliters, # balls is the number of balls that were 

counted out, and r is the radius of the grinding media: 

𝑽𝒕𝒐𝒕𝒂𝒍(𝒎𝑳) = (# 𝒃𝒂𝒍𝒍𝒔) ∗ (𝟒
𝟑⁄ )𝝅𝒓𝟑] ∗ (𝟎. 𝟎𝟎𝟏 𝒎𝑳

𝒎𝒎⁄ ) 

The powder volume plus the grinding media volume should allow for one third of the jar volume 

at minimum to remain empty, if not, then the BPR should be changed.   

 After determining the number of balls needed to mill the correct powder volume, then the 

procedure for each run within that particular powder system is as follows:  

1. Weigh the grinding media before each new run.  Divide the weight of the media 

by the BPR  

2. Multiply each weight percent of each powder by the quotient of the grinding 

media weight and the BPR to get the total weight of each powder to be put in to 

the jar, record these numbers 
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3. Weigh out each powder to get approximately what was calculated in the last step, 

record these numbers 

4. Add the percentage of PCA to the jar along with the weighed, clean media 

5. Calculate the total mass of the jar, media, and powder together 

6. Put sealed jar into ball mill properly, change the milling parameters if needed 

(milling speed, time, intervals, etc.) 

i. Ensure that the counter weight opposite the jar is accurate to total jar’s 

weight (it is crucial that the jar’s weight is balanced) – if it is not, the 

milling container should shut off and display an error message  

7. Watch the ball mill for approximately ten minutes to ensure that the ball mill is 

functioning properly  

8. After run has been completed and the jar has sufficiently cooled down (which 

should take around one to two hours), the powder is collected off of the grinding 

media and the gar as much as possible, the jar is cleaned thoroughly with either 

methanol or ethanol with Kimtech Kimwipes (or some other low lint paper 

product), and the grinding media is cleaned with a sonicator for at least a half an 

hour  

This procedure work will continue for a certain powder system as long as the desired powder 

volume and the BPR stays the same.  If any of those two variables change, this entire procedure 

should be repeated (unless the powder density will not change, and in that event, that section 
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should be skipped).  After the powder has been cleaned out of the milling jar, it undergoes 

characterization via X-ray Powder Diffraction.   

 2.3.2.  Ball Milling – Chosen Parameters  

Elemental aluminum, magnesium, silicon, zinc, and zirconium powders were milled in a 

Retsch PM100 Planetary Ball Mill to produce four different binary, nanocrystalline alloys 

consisting of 99 atomic % aluminum, and 1 atomic % either magnesium, silicon, zinc, or 

zirconium.  The powders were acquired from the following:  aluminum powder from Alfa Aesar 

with a 99.5% purity and a mesh size of -325, magnesium powder from Alfa Aesar with a 99.8% 

purity and a mesh size of -325, silicon powder from Alfa Aesar with a 99.5% purity and a mesh 

size of 325, zinc powder from Alfa Aesar with a 99.9% purity and a -140 to 325 mesh size, and 

zirconium powder from Strem Chemicals, Inc. with a 99.5% purity and a mesh size of -50.  

 The ball milling procedure was followed from section 2.3.2.  A 50mL tungsten carbide 

with 5mm tungsten carbide media was used for all runs.  The ball mill was located in an argon 

filled glove box to ensure that the environment in which the ball mill is milling is controlled.  

The PCA was chosen to be 2% stearic acid, the BPR was 5:1, the milling speed was 550RPM, 

and there was no interval used during milling.  Once the milling run was over, one to two hours 

was added to the time in order to allow the powder to sufficiently cool.  Once the powder was 

collected, the jar and media were cleaned with methanol or ethanol, and then the media 

underwent sonication for a half an hour to ensure no powder particles contaminated the media’s 

surfaces.  Next, the powder underwent XRD analysis. 

 

   



 

 45 

2.3.3.  General X-ray Powder Diffraction Procedure  

This procedure was followed during X-ray powder diffraction analysis: 

1. The sample was prepared under a HEPA (High Efficiency Particulate Air) filtered 

hood – powder was placed into the sample holder with a uniform height and a smooth 

surface (if any clumps of powder were present, they were removed).  The sample 

holders that were used can be seen in Figure 18: 

 

Figure 18:  Example of what the powder sample holder that was used throughout 

XRD analysis looks like [51].   

 

2. The radiation was turned on (which increased the voltage to 20kV and the current to 

2mA).   

3. The “everyday use” macro was then turned on.  This macro will slowly ramp up the 

voltage and current until they reach operating values: V = 40kV, I = 44mA, and the 

State = 1.76kW.  Because this takes a few minutes, the goniometer undergoes 

initialization of all its axes at the same time.   

4. After the “everyday use” macro runs and initialization is complete, the sample can 

then be put on the stage. At this time, the divergence height limiting slit (which is 

responsible for the controlling the horizontal divergence of X-rays, or in other words, 

the area of the sample experiencing irradiation) should be placed in the X-ray tube.  
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The largest divergence height limiting slit (10mm, or H10) is used, as seen in Figure 

19: 

 

Figure 19:  The divergence height limiting slit used throughout XRD analysis. It is 

the largest slit that can be used; meaning that it allows for all of the sample be 

irradiated.   

 

5. Next, the sample height and tilt is configured.  2/ is moved to 0, the attenuator 

(which is used to reduce the intensity of the beam) is moved from open to 1/800, and 

then the only three variable slits within the goniometer are moved as follows:  the 

divergence slit (DS) is moved to 0.1mm, the scattering slit (SS) is moved to 1mm, 

and the receiving slit (RS) is moved to 0.1mm.  A schematic of the goniometer’s 

layout can be seen in Figure 20:   

 

Figure 20:  Schematic of the goniometer’s layout [51].  The only variable slits that 

are adjusted are DS (divergence slit), SS (scattering slit), and RS (receiving slit).  The 

rest are either fixed or are adjusted automatically by computer software.  

  

6. A rough Z scan is performed from -2.5mm to -0.5mm, with a speed of 5mm/min, and 

a sample width of 0.1.  An S-curve should be generated as seen in Figure 21.  A spot 
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was chosen in the middle of the curve, then Z was moved to that position.  The first Z 

measurement was recorded in a laboratory notebook.   

 

Figure 21:  Approximate shape of S-curve which is generated during the initial Z 

scan.  

7. Ry is then measured.  It is measured between -1 and 1 degrees, with a width of 0.1, 

and a speed of 2.  The resulting curve is in the shape of a positive parabola.  The top 

of the parabola is determined and then Ry is moved to that location.  The Ry 

measurement was recorded in a laboratory notebook.   

8. A second Z scan is performed in order to determine that the ideal Z position did not 

change due to the change in Ry.  The range at which this Z scan is performed was 

based upon the results of the first Z scan (for instance, if the results of the first Z scan 

were -1.8, choosing -2.0 to -1.6 is reasonable). The sample width is now 0.001, and 

the speed is 0.5.  The curve generated is similar to that seen in Figure A, and point in 

the middle of the curve is where Z should be moved to.  The second Z measurement 

was recorded in a laboratory notebook.   

9. Now the parameters for the final scan are being set up in these last steps.  First, the 

divergence slit and the receiving slit are moved to 0.2mm (the scattering slit was kept 
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at 1mm).  Then, the attenuator was moved from 1/800 to open.  Lastly, the 2/ 

under goes a quick, continuous scan in order to make sure that the first peak that was 

expected is present.  For instance, aluminum (111), or aluminum’s first peak, occurs 

at a 2 measurement of approximately 38.472.  So, a rough, continuous scan of the 

sample was selected to run from 33 - 43, with a step size (or width) of 0.1, and a 

speed of 5 degrees/minute.  The first peak should appear, and the angle at which it 

occurs is recorded in a laboratory notebook.  

10. The final run is now to be set up.  The degree range should be chosen based upon 

known peaks of the phases and/or elements that are expected to be seen.  The final 

scan was performed with the FT (fixed time) method, with a degree range which 

suited the sample’s constituents, with a step size (w) of 0.1, a count time that allowed 

the user to maximize the allotted time they had scheduled with the machine (the angle 

range, or  angle, divided by the step size (w) gives the number of steps (# steps); the 

number of steps multiplied by the count time (CT) and divided by 3600 seconds per 

hour gives the approximate run time in hours as shown below), and the counting unit 

was chosen to be CPS, or counts per second.   

𝚫 𝒂𝒏𝒈𝒍𝒆
𝒘⁄ = # 𝒔𝒕𝒆𝒑𝒔    ;      

# 𝒔𝒕𝒆𝒑𝒔 ∗ 𝑪𝑻

𝟑𝟔𝟎𝟎(𝒔
𝒉𝒓⁄ )

 = 𝑹𝒖𝒏 𝑻𝒊𝒎𝒆 (𝒉𝒓𝒔) 

Once the run had been completed, the raw data was saved, the sample was removed from the 

diffractometer, and the diffractometer was shut down properly.   
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2.3.4.  X-ray Powder Diffraction – Chosen Parameters  

 The XRD procedure is followed exactly from section 2.3.3.  For nearly every XRD 

session, the specified count time allowed for approximately 4 or more hours of analysis.  

 After the XRD analysis has been completed, Jade is used for data analysis.  By using 

Jade’s peak profile fitting tool, the Pearson VII and Pseudo-Voigt estimation techniques for best 

peak fitting are selected in order to extract the information seen in Figure 15 from the peaks.  

Afterwards, graphs of the 2theta/omega versus intensity peaks are generated and Williamson 

Hall Plots are made in Excel to calculate crystallite size/grain size and strain.  A table of of dhkl 

measurements for each characteristic 2 peak for each element that is being used in this thesis 

work  can be seen in Table 4 and the unmilled, pure aluminum peaks can be seen in Figure 22.   
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Table 4:  List of dhkl measurements for each characteristic 2 peak for each element that is being 

used in this thesis work  [53].   
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Figure 22:  XRD peaks of pure, unmilled aluminum powder.  The sample was scanned from 

37-84, the grain size was calculated to be 83.333nm and the strain was calculated to be 

0.00015.  

 

Chapter 3:  Synthesis of Results and Discussion 

 3.1.  Aluminum – Silicon Alloys   

99 atomic % aluminum and 1 atomic % silicon were milled for 1 hour, 4 hours, 8 hours, 

and 16 hours at a powder volume of 16.5mL, and an additional 8 hour run was completed using 

only a powder volume of 8mL.  Because silicon has a much higher hardness than aluminum – 

6.5MPa versus 2.75MPa – silicon is not expected to chemically mix with aluminum.  

Results from these powder runs can be seen in Figure 23 through Figure 29.   
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Figure 23:  99 atomic % aluminum, 1 atomic % silicon milled for 1 hour with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 16.5mL of powder, 21.366g of aluminum powder 

and 0.225g of silicon powder.  The resulting powder underwent XRD from 25-85 with a count 

time (CT) of 70.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 97.087nm and the strain was calculated to be 0.0006.  Because 

there are peaks of silicon still present, this system has not chemically mixed.   

 

Figure 24:  99 atomic % aluminum, 1 atomic % silicon milled for 4 hours with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 16.5mL of powder, 21.360g of aluminum powder 

and 0.224g of silicon powder.  The resulting powder underwent XRD from 25-85 with a count 

time (CT) of 17.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 63.291nm and the strain was calculated to be 0.0003.  Because 

there are peaks of silicon still present, this system has not chemically mixed.   
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Figure 25:  99 atomic % aluminum, 1 atomic % silicon milled for 8 hours with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 16.5mL of powder, 21.357g of aluminum powder 

and 0.224g of silicon powder.  The resulting powder underwent XRD from 25-85 with a count 

time (CT) of 20.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 45.045nm and the strain was calculated to be 0.00055.  Because 

there are peaks of silicon still present, this system has not chemically mixed.   

 

Figure 26:  99 atomic % aluminum, 1 atomic % silicon milled for 16 hours with 2% SA and a 

5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 21.403g of aluminum 

powder and 0.224g of silicon powder.  The resulting powder underwent XRD from 25-85 with 

a count time (CT) of 70.  Peaks that are present without an angle given to them are angles that 

Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 74.074 and the strain was calculated to be 0.0008.  Because there 

are peaks of silicon still present, this system has not chemically mixed.   
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Figure 27:  99 atomic % aluminum, 1 atomic % silicon milled for 8 hours with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 8mL of powder, 10.393g of aluminum powder and 

0.1g of silicon powder.  The resulting powder underwent XRD from 25-85 with a count time 

(CT) of 24.  Peaks that are present without an angle given to them are angles that Jade software 

did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The grain size 

was calculated to be 60.241nm and the strain was calculated to be 0.0003.  Because there are 

peaks of silicon still present, this system has not chemically mixed.   

 

Figure 28:  99Al1Si peaks after an 8Hr run with 8mL of powder and an 8Hr run with 16.5mL of 

powder.  The difference in peak width is minimal, the 16.5mL run had a smaller grain size, and 

the 8mL run had the smaller strain.  Increasing the empty jar volume did not encourage chemical 

mixing like the aluminum-magnesium alloy system.   
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Figure 29:  99Al1Si milling time comparison for 16.5mL runs.  The difference between the 

99Al1Si peaks are minimal and this is to be expected because silicon has a much higher hardness 

(6.5MPa) than aluminum (2.75MPa) – making it hard for this mixture to chemically mix.  There 

seems to be no reduction in the silicon peak, so the likelihood of this system chemically mixing 

seems very unlikely.   

3.2.  Aluminum – Zinc Alloys  

99 atomic % aluminum and 1 atomic % zinc were milled for 1 hour, 4 hours, 8 hours, and 

16 hours at a powder volume of 16.5mL, and an additional 8 hour run was completed using only 

a powder volume of 8mL.  Because zinc’s hardness is slightly less than aluminum’s – 2.5MPa 

versus 2.75MPa – the likelihood of this powder system chemically mixing compared to the 

aluminum-silicon system is greater; however, the XRD peaks show that zinc did not chemically 

mix with aluminum in all figures besides the 1Hr, 16.5mL run.     

Results from these powder runs can be seen in Figure 30 through Figure 35.   
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Figure 30:  99 atomic % aluminum, 1 atomic % zinc milled for 1 hour with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 16.5mL of powder, 21.069g of aluminum powder 

and 0.5g of zinc powder.  The resulting powder underwent XRD from 35-91 with a count time 

(CT) of 21.  Peaks that are present without an angle given to them are angles that Jade software 

did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The grain size 

was calculated to be 59.880nm and the strain was calculated to be 0.00003.  Because there are 

peaks of zinc still present, this system has not chemically mixed.     

 

Figure 31:  99 atomic % aluminum, 1 atomic % zinc milled for 4 hours with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 16.5mL of powder, 21.089g of aluminum powder 

and 0.5g of zinc powder.  The resulting powder underwent XRD from 35-91 with a count time 

(CT) of 22.  Peaks that are present without an angle given to them are angles that Jade software 

did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The grain size 

was calculated to be 83.333nm and the strain was calculated to be 0.00015.  Because there are 

peaks of zinc still present, this system has not chemically mixed.           
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Figure 32:  99 atomic % aluminum, 1 atomic % zinc milled for 8 hours with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 16.5mL of powder, 21.08g of aluminum powder 

and 0.5g of zinc powder.  The resulting powder underwent XRD from 35-91 with a count time 

(CT) of 74.  Peaks that are present without an angle given to them are angles that Jade software 

did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The grain size 

was calculated to be 52.083nm and the strain was calculated to be 0.00015.  Because there are 

peaks of zinc still present, this system has not chemically mixed.          

 

Figure 33:  99 atomic % aluminum, 1 atomic % zinc milled for 8 hours with 2% SA and a 5:1 

BPR.  To produce a volume of approximately 8mL of powder, 10.178g of aluminum powder and 

0.2g of zinc powder.  The resulting powder underwent XRD from 35-91 with a count time 

(CT) of 22.  Peaks that are present without an angle given to them are angles that Jade software 

did not pick up with either the Pearson VII or Pseudo-Voight approximations. The grain size was 

calculated to be 45.249nm and the strain was calculated to be 0.00001.  Because there are peaks 

of zinc still present, this system has not chemically mixed.          
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Figure 34:  99Al1Zn peaks after an 8Hr run with 8mL of powder and an 8Hr run with 16.5mL of 

powder.  The difference in peak width is minimal; however, the 8mL run had the smaller grain 

size and had less strain.  Increasing the empty jar volume did not encourage chemical mixing like 

the aluminum – magnesium system.   

 

Figure 35:  99Al1Zn milling time comparison for 16.5mL runs.  The Zn peaks became more 

defined as the milling time increased, which is interesting because zinc’s hardness is slightly less 

than aluminum’s – 2.5MPa versus 2.75MPa – the likelihood of this powder system chemically 

mixing compared to the aluminum-silicon system is greater.  There seems to be no reduction in 

the zinc peak, so the likelihood of this system chemically mixing seems very unlikely.     
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3.3.  Aluminum – Magnesium Alloys  

99 atomic % aluminum and 1 atomic % magnesium were milled for 1 hour, 4 hours, and 

8 hours at a powder volume of 8mL, and then for 1 hour, 4 hours, 8 hours, and 16 hours at a 

powder volume of 16.5mL.  Because magnesium’s hardness is slightly less than aluminum’s – 

2.5MPa versus 2.75MPa – the likelihood of this powder system chemically mixing compared to 

the aluminum-silicon system is greater.  This powder system did chemically mix, and it occurred 

in the 8Hr, 8mL run and the 16Hr, 16.5mL run.  Interestingly, zinc’s hardness is the same as 

magnesium’s and unlike magnesium, aluminum and zinc did not chemically mix.       

Results from these powder runs can be seen in Figure 36 through Figure 45.   

 

Figure 36:  99 atomic % aluminum, 1 atomic % magnesium milled for 1 hour with 2% SA and a 

5:1 BPR.  To produce a volume of approximately 8mL of powder, 10.3936g of aluminum 

powder and 0.1g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 33.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 56.497 and the strain was calculated to be 0.0001.  Because 

there are peaks of magnesium still present, this system has not chemically mixed.       
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Figure 37:  99 atomic % aluminum, 1 atomic % magnesium milled for 4 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 8mL of powder, 10.342g of aluminum 

powder and 0.1g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 67.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 204.082nm and the strain was calculated to be 0.0007.  

Because there are peaks of magnesium still present, this system has not chemically mixed.       

 

Figure 38:  99 atomic % aluminum, 1 atomic % magnesium milled for 8 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 8mL of powder, 10.337g of aluminum 

powder and 0.1g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 95.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 44.843nm and the strain was calculated to be 0.00015.  

Because there are no peaks of magnesium present, this system has chemically mixed.   
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Figure 39:  99Al1Mg milling time comparison for 8mL runs.  The magnesium peaks 

disappeared as the milling time increased, which proves that magnesium and aluminum did mix, 

like Murdoch and Schuh’s thermodynamic model had suggested and S.M. Umbraikar et al. 

experimentally had proven [10,11].  There is a reduction of the magnesium peaks over time, so 

this system can be milled till it chemically mixed.   

 

Figure 40:  99 atomic % aluminum, 1 atomic % magnesium milled for 4 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 21.4g of aluminum 

powder and 0.2g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 23.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 74.074nm and the strain was calculated to be 0.00025.  

Because there are peaks of magnesium still present, this system has not chemically mixed.       
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Figure 41:  99 atomic % aluminum, 1 atomic % magnesium milled for 4 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 21.373g of aluminum 

powder and 0.2g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 30.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 63.291nm and the strain was calculated to be 0.0003.  

Because there are still peaks of magnesium present, this system has not chemically mixed.       

 

Figure 42:  99 atomic % aluminum, 1 atomic % magnesium milled for 8 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 21.4g of aluminum 

powder and 0.2g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 75.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 86.957nm and the strain was calculated to be 0.003.  Because 

there are peaks of magnesium present, this system has not chemically mixed.       
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Figure 43:  99 atomic % aluminum, 1 atomic % magnesium milled for 16 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 21.576g of aluminum 

powder and 0.2g of magnesium powder.  The resulting powder underwent XRD from 30-85 

with a count time (CT) of 90.  Peaks that are present without an angle given to them are angles 

that Jade software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  

The grain size was calculated to be 70.422nm and the strain was calculated to be 0.00095.  

Because there are no peaks of magnesium present, this system has chemically mixed.       

 

Figure 44:  99Al1Mg peaks after an 8Hr run with 8mL of powder and an 8Hr run with 16.5mL 

of powder.  The 8Hr, 8mL run was able to chemically mix by the 8Hr mark.  The 16.5mL run 

required more time to chemically mix because there was less free space available in the jar.  

Because there are still magnesium peaks present in the 16.5mL run and none for the 8mL run for 

the same milling time, there seems to be a dependence of chemical mixing upon free volume 

remaining in the jar.     
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Figure 45: 99Al1Mg milling time comparison for 16.5mL runs. This run was able to chemically 

mix by the 16 hour mark. The magnesium peaks disappeared as the milling time increased, 

which proves that magnesium and aluminum did mix, like Murdoch and Schuh’s thermodynamic 

model had suggested and S.M. Umbraikar et al. experimentally had proven [10,11].  There is a 

reduction in the magnesium peak over time, so this system can chemically mix over milling time.       

 

3.4.  Aluminum – Zirconium Alloys  

99 atomic % aluminum and 1 atomic % zirconium were milled for 1 hour, 4 hours, 8 

hours, and 16 hours at a powder volume of 16.5mL, and for 8 hours at a powder volume of 8mL.  

Because zirconium has a higher hardness than aluminum – 5MPa versus 2.75MPa – zirconium is 

not expected to chemically mix with aluminum; however, this powder system did mix during the  

4Hr, 16.5mL run.   

Results from these powder runs can be seen in Figure 46 through Figure 52.   
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Figure 46:  99 atomic % aluminum, 1 atomic % zirconium milled for 1 hour with 2% SA and a 

5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 20.88g of aluminum 

powder and 0.7g of silicon powder.  The resulting powder underwent XRD from 30-90 with a 

count time (CT) of 11.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 57.471nm and the strain was calculated to be 0.0002.  Because 

there are still peaks of zirconium present, this system has not chemically mixed.         

 

Figure 47:  99 atomic % aluminum, 1 atomic % zirconium milled for 4 hours with 2% SA and a 

5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 20.871g of aluminum 

powder and 0.7g of silicon powder.  The resulting powder underwent XRD from 30-90 with a 

count time (CT) of 72.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 59.880nm and the strain was calculated to be 0.0001.  Because 

there are peaks of zirconium still present, this system has not chemically mixed.         
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Figure 48:  99 atomic % aluminum, 1 atomic % zirconium milled for 8 hours with 2% SA and a 

5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 20.885g of aluminum 

powder and 0.7g of silicon powder.  The resulting powder underwent XRD from 30-90 with a 

count time (CT) of 20.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 13.774nm and the strain was calculated to be 0.00375.  Because 

there are peaks of zirconium still present, this system has not chemically mixed.         

 

Figure 49:  99 atomic % aluminum, 1 atomic % zirconium milled for 8 hours with 2% SA and a 

5:1 BPR.  To produce a volume of approximately 8mL of powder, 10.138g of aluminum powder 

and 0.3g of silicon powder.  The resulting powder underwent XRD from 30-90 with a count 

time (CT) of 85.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 0.112nm and the strain was calculated to be 1.0714.  Because 

there are peaks of zirconium still present, this system has not chemically mixed.       
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Figure 50:  99 atomic % aluminum, 1 atomic % zirconium milled for 16 hours with 2% SA and 

a 5:1 BPR.  To produce a volume of approximately 16.5mL of powder, 20.87g of aluminum 

powder and 0.7g of silicon powder.  The resulting powder underwent XRD from 30-90 with a 

count time (CT) of 18.  Peaks that are present without an angle given to them are angles that Jade 

software did not pick up with either the Pearson VII or Pseudo-Voight approximations.  The 

grain size was calculated to be 31.447nm and the strain was calculated to be 0.00035.  Because 

there are still peaks of zirconium present, this system has not chemically mixed.        

 

Figure 51: 99Al1Zr peaks after an 8Hr run with 8mL of powder and an 8Hr run with 16.5mL of 

powder.  The difference in peak width is minimal; however, the 8mL run had the smaller grain 

size and had less strain. Increasing the empty jar volume did not encourage chemical mixing like 

in the aluminum – magnesium system.   



 

 68 

 

Figure 52: 99Al1Zr milling time comparison for 16.5mL runs.  The Zn peaks became more 

defined as the milling time increased, which is interesting because zinc’s hardness is slightly less 

than aluminum’s – 2.5MPa versus 2.75MPa – the likelihood of this powder system chemically 

mixing compared to the aluminum-silicon system is greater.  There seems be an increase in the 

zirconium peak over milling time, so the likelihood of this system chemically mixing seems very 

unlikely with increased milling time.   

 

 3.5.  Synthesis of Results  

Within this thesis work, aluminum – silicon alloys, aluminum – zinc alloys, aluminum – 

magnesium alloys, and aluminum – zirconium alloys were ball milled with a Retsch Planetary 

Ball Mill under an argon atmosphere.  The samples were analyzed with a Rigaku Ultima III X-

ray Diffractometer to determine whether or not these powder systems have chemically mixed.    

It was found that the 99Al1Mg powder system chemically mixed during the 8Hr, 8mL run and 

during the 16Hr, 16.5mL run, and the 99Al1Zr powder system chemically mixed during the 4Hr, 

16.5mL run.  The results obtained during this work somewhat matched the hypothesis that the 

likelihood of chemical mixing is dependent upon the mechanical properties (hardness) and 
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relative volume fraction of the harder element within the softer element, which are listed within 

Table 5.   

Table 5:  Comparison of Moh’s Hardness values and crystal structures of aluminum and the 

secondary elements/solutes used [14].   

Element: Moh’s Hardness (MPA): Crystal Structure: 

Al 2.75 Face Centered Cubic 

Mg 2.5 Simple Hexagonal 

Si 6.5 Tetrahedral Packing 

Zn 2.5 Simple Hexagonal 

Zr 5 Simple Hexagonal 

 

In order for two elements to chemically mix, it was suggested that as long as both 

systems were mechanically similar and have similar structural properties. Some powder systems 

remain dual phase because plastic deformation occurs more likely within the softer phase 

material, and accordingly, the atoms do not shear across the interphase interface [54-56].  To 

encourage this “co-deformation,” it has been suggested that milling elements with similar 

mechanical properties is one way to do this – as long as microstructure (crystal geometries), low 

volume fractions of hard elements, and mechanical properties (such as hardness) are considered 

when choosing elements to alloy during high energy mechanical alloying, then the results should 

be favorable [54,57-59].  Although these suggestions on ways to ensure chemical mixing occurs 

intuitively makes sense, the results achieved in this work do not prove that considering 

microstructure and mechanical properties alone leads to ideal chemical mixing scenarios.  It is 

important to note that the difference in the obtained results versus the work of others can be due 

to incorrect high energy ball milling parameters, which will be discussed.  Additionally, the 



 

 70 

segregation enthalpies and mixing enthalpies with respect to stable binary nanocrystalline 

structures will be discussed and compared to the results obtained because mechanical properties 

and structure do not explain the results obtained within this work.   

Despite the fact that magnesium and zinc have the same hardness value and the same 

crystal structure, as seen in Table 5, aluminum and magnesium chemically mixed and aluminum 

and zinc did not – which contradicts the idea of mechanical properties and structure can dictate 

ideal chemical mixing scenarios.  Both magnesium and zinc have a Moh’s hardness value of less 

than that of aluminum and both magnesium and zinc have a simple hexagonal structure – which 

perhaps, for reasons outside of mechanical properties and structure, enabled magnesium to easily 

be dissolved and chemically mix with the face-centered cubic structure of aluminum.   

The aluminum-silicon system and the aluminum-zirconium system, due to secondary 

element’s high hardness values compared to that of aluminum’s hardness value, were expected to 

not mix at all if mechanical properties and structure of the alloying elements were considered; 

however, the 4Hr, 16.5mL aluminum-zirconium system did mix, which is an interesting and 

unexpected result.  This interesting result may have occurred for various reasons.  With the 

zirconium powders in particular, unlike the other powder systems, there seemed to be a lot of 

pre-defined tracks of the media and a lot of cold welding of the powders themselves.  This means 

that there either is not enough free space within the jar and/or for this powder system, the wrong 

amount of process control agent was used (there might have been too little due to the large 

amount of cold welding which occurred) and/or the wrong process control agent was used. The 

solution ultimately would be to try to reduce the amount of free space in the jar, possibly 

increase the ball-to-powder ratio of this system, and/or increase the amount of process control 

agent.  Additionally, to ensure that the motion of the grinding media is randomized, combining 
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smaller and larger media sizes is necessary, especially since this powder system displayed pre-

defined tracks of motion [27].  Using the same sized grinding media (regardless of jar type) has 

been shown to produce tracks [17].  It is more ideal to have the media hit surfaces randomly than 

it is to have them traveling along a well-defined trajectory.  Unideal ball milling parameters 

could be the reason why the 4Hr, 16.5mL run of the aluminum – zirconium alloy system was the 

only run to chemically mix, while the other runs did not achieve chemical mixing.   

 Besides the aluminum – magnesium alloy system, which was both theoretically and 

experimentally proven to chemically mix, the only other system within this work which 

produced results which aligned with the hypothesis about relative hardnesses/mechanical 

properties impacting the likelihood of chemical mixing was the aluminum – silicon alloy system.  

It did not matter if the milling time and/or the empty jar volume was changed, this system did not 

mix, which makes sense because it is hard to dissolve a very hard element into a very soft 

element through high energy ball milling.  

 Perhaps a reason why the results obtained during this work did not correlate to other 

experimental work/theoretical work which relates mechanical properties and microstructure to 

chemical mixing was because in this case, each powder system and each run did not plastically 

strain similarly, as shown in Figure 53.  Z.C. Cordero and C.A. Schuh published an experimental 

and simulation paper to begin to understand the roles of the mechanical properties and 

microstructure of each elemental phase’s role in mechanical alloying [54].  They milled W, 

W50Cr50, and W50Zr50 in a SPEX ball mill, in a steel vial, in an inert argon atmosphere, and a 

ball-to-powder ratio of 5:1 (same BPR as chosen for this work) [54].   Approximately 0.2g of 

powder was removed periodically for characterization purposes [54].  They calculated grain size 

of the powder post XRD with the Williamson-Hall method, like this work, and plotted data 
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points of each calculated grain size along with an exponential refinement trend common with 

grain sizes in milled powders, given by: 

𝐷 = 𝐷𝐹 + (𝐷𝑂 − 𝐷𝐹)𝑒−𝑘𝑙𝑡    [54] 

where DO is the initial grain size, DF is the final grain size, t is the total milling time up till that 

point, kl is a rate constant which is dependent upon material properties and milling parameters.  

The raw data they calculated using Williamson-Hall fit the exponential refinement trend as seen 

in Figure 53.  In Figure 53, one can see the reduction in grain size at a very similar rate for all 

three powders.  Because grain size is inversely proportional to the plastic strain that has been 

accumulated over time during the very early stages of ball milling, Figure 53 proves that W and 

Zr and W and Cr were deforming at the same rate because they were plastically strained 

similarly [54,63-64].  Data points with lines connecting each point for clarity of this work’s 

calculated grain sizes using the Williamson-Hall method can be seen in Figure 54(a), the 

calculated exponential refinement trend for this work’s data can be viewed in Figure 54(b) for 

clarity purposes.   
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Figure 53:  Grain size versus milling time, calculated with the Williamson-Hall method and 

shown as points, and an exponential refinement trend common to powders undergoing MA given 

by the equation above [54].  Because the grain refinement process was similar in all three 

powders, it is proof that they are plastically strained similarly, and therefore co-deform similarly 

[54].   

 

Figure 54(a):  Grain size versus milling time calculated with the Williamson-Hall Method for 

AlSi, AlMg, AlZr, and AlZn.  The decrease in grain size did not fit the exponential refinement 

trend seen in Figure 54(b), meaning that these powder systems did not co-deform at similar rates.   
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Figure 54(b):  Calculated grain size exponential refinement trend for AlSi, AlZn, AlMg, and 

AlZr with the relationship D = DF + (DO + DF)e
-klt

.  The calculated grain sizes in Figure 54(b) do 

not align with the typical exponential refinement trend common for most mechanically alloyed 

powders.   

 The kl value was estimated in order to get the exponential refinement trend on a similar 

scale to that of the approximate grain size values in Figure 54(a).  One can see that the calculated 

Williamson-Hall grain sizes did not fit the exponential refinement trend as it did in Figure 53.  

This can be because in the experiment done by Cordero and Schuh, they took approximately 0.2g 

of powder out periodically for characterization purposes (decreasing the variability in this trend 

line/data calculations in particular) unlike this experiment.  From Figures 54(a) and (b), it is 

evident that the rate at which grain size decreased did not align with the exponential refinement 

trend, meaning in all powder systems and runs, the aluminum did not plastically strain similarly 

to each secondary elemental powder used, meaning co-deformation did not occur.  However, in 

the aluminum-magnesium powder system, for both the 8mL volume runs and the 16.5mL runs, 

where chemical mixing did in fact occur, the rates of co-deformation between aluminum and 
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magnesium should have been similar according most theory which give mechanical properties 

and microstructure credit for co-deformation in mechanical alloying which leads to chemical 

mixing, disproving this mechanism to being valid, at least for these powder systems.  Even if 

0.2g of powder was not taken out periodically during each powder run for characterization (this 

data was compiled from many runs, not just one), the plastic straining experienced during each 

run be nearly similar, yielding results closer to that obtained in Cordero and Schuh if co-

deformation occurred in the powder systems. Ideal mechanical properties and microstructure can 

lead to co-deformation, which increases the likelihood of chemical mixing; however, this is not 

the only mechanism by which chemical mixing occurs, as shown in the data obtained by this 

work.   

The next steps in this analysis involve implementing the thermodynamic model proposed 

by Murdoch and Schuh by determining the enthalpy of dissolving of each aluminum-zinc 

system, comparing those values to the aluminum-magnesium system, and seeing if there is a 

difference which is significant enough to justify the results obtained experimentally [10].  

Clearly, the mechanical and structural properties of powders cannot predict the likelihood of 

chemical mixing after all, there are more factors to consider.  Additionally, it is important to 

mention that the results achieved by the magnesium-aluminum powder system were very similar 

to that achieved by another study, which is ideal [11].   

There have been recent molecular dynamic studies which investigate an alloy’s 

mechanical properties and how they impact the mechanism by which deformation/chemical 

mixing occurs, but despite this, there still is not a quantitative method to predict the mixibility of 

alloying systems [54-55,60-62].  Another approach to determining the enthalpy of segregation of 

these binary systems.  The value of the enthalpy of segregation, in terms of binary systems, gives 
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the degree to which a solute will dissolve into the solvent’s grain boundaries.  A thermodynamic 

model proposed by H.A. Murdoch for the enthalpy of segregation for several binary systems can 

be seen in Figure 55.  Unlike other thermodynamic models for binary systems, it incorporates 

grain boundary segregation [10].  The enthalpy of segregation can be described by the following: 

Δ𝐻0
𝑠𝑒𝑔

= 𝜁 [𝜔𝑐 −
𝜔𝑔𝑏

2
−

Ω𝐵𝛾𝐵−Ω𝐴𝛾𝐴

2𝜁𝑡
]   [10] 

Where c is the bulk crystalline interaction parameter (which is proportional to the enthalpy of 

mixing), A and B are the pure interfacial energies,  are the volume fractions,  is the 

coordination number, and t is the grain boundary thickness [10].   

 

Figure 55:  Calculated segregation enthalpies for binary systems using a thermodynamic model 

proposed by H.A. Murdoch and C.A. Schuh [10].  The value of the enthalpy of segregation for 

AlZr is -25 to -50kJ/mol, AlZn is 0 to 25kJ/mol, AlSi is 0 to 25kJ/mol, and AlMg is 0 to 

25kJ/mol [10].   
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 In Figure 55, the value of the enthalpy of segregation for AlZr is -25 to -50kJ/mol, AlZn 

is 0 to 25kJ/mol, AlSi is 0 to 25kJ/mol, and AlMg is 0 to 25kJ/mol [10].  In H.A. Murdoch’s 

thesis work, the calculated values of the enthalpy of segregation of aluminum – magnesium was 

12.7kJ/mol, aluminum – silicon was 5.3kJ/mol, aluminum – zinc was 7.1kJ/mol, and aluminum – 

zirconium was -49.5kJ/mol [65].  The results do in fact correlate with what was obtained 

experimentally!  The two powder systems which experienced chemical mixing have the highest 

values of enthalpy of segregation, meaning the solute atoms must be able to segregate 

themselves within the surface or interface of the solute in order to minimize the overall free 

energy of the binary system.  Aluminum – magnesium has the highest positive enthalpy of 

segregation, meaning that it is likely to chemically mix in order to reduce the overall free energy 

of the system, and that magnesium will wind up in the grain boundaries of the aluminum.  

Aluminum-zirconium has the highest negative enthalpy of segregation, meaning it will 

chemically mix in order to reduce the free energy of the system; however, zirconium will not 

wind up in the grain boundaries of the aluminum.  Aluminum – silicon and aluminum – zinc 

have low enough enthalpies of segregation where it was not needed to chemically mix in order to 

reduce the amount of free energy in the system.   

In addition to understanding the reasoning behind how chemical mixing occurs in 

mechanically alloyed powder systems, there was an interesting result which needs to be 

mentioned. In the aluminum-magnesium alloy system, a powder volume of eight milliliters 

(meaning that approximately greater than or equal to fifty percent of the jar volume was empty) 

achieved a chemically mixed state within eight hours, while a powder volume of sixteen and a 

half milliliters (meaning that approximately one-third of the jar volume was empty) could not 

achieve a chemically mixed state within eight hours, but it eventually did within sixteen hours of 
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milling time.  This suggests that there is an empty space jar volume dependence upon the rate at 

which a powder system chemically mixes, which can be a strong dependence to consider, 

especially for trying to create models which either predict ideal ball milling parameters and/or 

are used to determine whether or not powder systems do mix.  Further testing with other powder 

systems that do chemically mix need to be tested to prove this result.   

Chapter 4:  Concluding Remarks and Future Work   

 Within this thesis work, 99 atomic % aluminum 1 atomic % silicon, 99 atomic % 

aluminum 1 atomic % zinc, 99 atomic % aluminum 1 atomic % magnesium, and 99 atomic % 

aluminum 1 atomic % zirconium were ball milled with a Retsch Planetary Ball Mill under an 

argon atmosphere.  The samples were then analyzed with a Rigaku Ultima III X-ray 

Diffractometer to determine whether or not these powder systems have chemically mixed.    It 

was found that the 99Al1Mg powder system chemically mixed during the 8Hr, 8mL run and 

during the 16Hr, 16.5mL run, and the 99Al1Zr powder system chemically mixed during the 4Hr, 

16.5mL run.   

Despite the fact that magnesium and zinc had the same hardness, magnesium and 

aluminum chemically mixed and zinc did not.  Both magnesium and zinc have a simple 

hexagonal structure, so perhaps the next steps in this analysis involve implementing the 

thermodynamic model proposed by Murdoch and Schuh by determining the enthalpy of mixing 

and the enthalpy of dissolving of the aluminum-zinc system, comparing those values to the 

aluminum-magnesium system, and seeing if there is a difference which is significant enough to 

justify the results obtained experimentally [10].  Additionally, the results achieved by the 
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magnesium-aluminum powder system were very similar to that achieved by another study, which 

is ideal [11].   

Interestingly, in the aluminum-magnesium section, a powder volume of 8mL (meaning 

that approximately greater than or equal to fifty percent of the jar volume was empty) achieved a 

chemically mixed state within eight hours, while a powder volume of 16.5mL (meaning that 

approximately one-third of the jar volume was empty) could not achieve a chemically mixed 

state within eight hours, but it eventually did within sixteen hours.  This suggests that there is an 

empty space jar volume dependence upon the rate at which a powder system chemically mixes, 

which can be a strong dependence to consider, especially for trying to create models which either 

predict ideal ball milling parameters and/or are used to determine whether or not powder systems 

do mix.  Further testing with other powder systems that do chemically mix need to be tested to 

prove this result.   

 The aluminum-silicon system and the aluminum-zirconium system, due to secondary 

element’s high hardness values compared to that of aluminum’s hardness value, were expected to 

not mix at all, however, the 4Hr, 16.5mL aluminum-zirconium system did mix, which is an 

interesting result.  This interesting result may have occurred for various reasons.  With the 

zirconium powders in particular, unlike the other powder systems, there seemed to be a lot of 

pre-defined tracks of the media and a lot of cold welding of the powders themselves.  This means 

that there either is not enough free space within the jar and/or for this powder system, the wrong 

amount of process control agent was used (there might have been too little due to the large 

amount of cold welding which occurred) and/or the wrong process control agent was used. The 

solution ultimately would be to try to reduce the amount of free space in the jar, possibly 

increase the ball-to-powder ratio of this system, and/or increase the amount of process control 
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agent.  Additionally, to ensure that the motion of the grinding media is randomized, combining 

smaller and larger media sizes is necessary, especially since this powder system displayed pre-

defined tracks of motion [27].  Using the same sized grinding media (regardless of jar type) has 

been shown to produce tracks [17].  It is more ideal to have the media hit surfaces randomly than 

it is to have them traveling along a well-defined trajectory.   

 The reasoning behind the results that were obtained in this thesis work was not due to the 

mechanical properties and microstructure of the binary powder system, it was in fact because of 

the enthalpy of segregation of the binary, aluminum powder systems which influenced the degree 

of mixing.  In H.A. Murdoch’s thesis work, the calculated values of the enthalpy of segregation 

of aluminum – magnesium was 12.7kJ/mol, aluminum – silicon was 5.3kJ/mol, aluminum – zinc 

was 7.1kJ/mol, and aluminum – zirconium was -49.5kJ/mol [65].  The results do in fact correlate 

with what was obtained experimentally!  The two powder systems which experienced chemical 

mixing have the highest values of enthalpy of segregation, meaning the solute atoms must be 

able to segregate themselves within the surface or interface of the solute in order to minimize the 

overall free energy of the binary system.  Aluminum – magnesium has the highest positive 

enthalpy of segregation, meaning that it is likely to chemically mix in order to reduce the overall 

free energy of the system, and that magnesium will wind up in the grain boundaries of the 

aluminum.  Aluminum-zirconium has the highest negative enthalpy of segregation, meaning it 

will chemically mix in order to reduce the free energy of the system; however, zirconium will 

not wind up in the grain boundaries of the aluminum.  Aluminum – silicon and aluminum – zinc 

have low enough enthalpies of segregation where it was not needed to chemically mix in order to 

reduce the amount of free energy in the system.   
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In order to continue this work, there are some things that could be done in the future.  

One, being, to further prove the free jar volume dependence on the rate of chemical mixing of a 

powder system with other powder systems that have the potential to chemically mix.  In addition, 

Transmission Electron Microscopy and annealing should be performed in future.  Occasionally, 

it might be necessary to anneal mechanically alloyed powders in order to further encourage 

chemical mixing.  In the case of the aluminum zirconium system, there may be more runs 

undergoing chemical mixing post an annealing process [17].  After the annealing process, XRD 

should be performed and then compared to the unannealed samples to see if chemical mixing 

was encouraged due to annealing process.  Additionally, in order to ensure that the secondary 

powder did in fact dissolve into the primary powder’s grain boundaries, Transmission Electron 

Microscopy must be performed.  Although, XRD can provide enough contrast in data to possibly 

prove chemical mixing occurred, XRD cannot accurately determine solid solubility limits [17].   
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