
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Multi-Armed Bandits with

Applications to Markov Decision

Processes and Scheduling Problems

A Dissertation Presented

by

Isa M. Muqattash

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University

December 2014



Stony Brook University

The Graduate School

Isa M. Muqattash

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Jiaqiao Hu – Dissertation Advisor
Associate Professor, Department of Applied Mathematics and Statistics

Esther Arkin – Chairperson of Defense
Professor, Department of Applied Mathematics and Statistics

Yuefan Deng
Professor, Department of Applied Mathematics and Statistics

Luis E. Ortiz
Assistant Professor

Department of Computer Science, Stony Brook University

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Multi-Armed Bandits with Applications to
Markov Decision Processes and Scheduling

Problems

by

Isa M. Muqattash

Doctor of Philosophy

in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University

2014

The focus of this work is on practical applications of stochastic
multi-armed bandits (MABs) in two distinctive settings.

First, we develop and present REGA, a novel adaptive sampling-
based algorithm for control of finite-horizon Markov decision pro-
cesses (MDPs) with very large state spaces and small action spaces.
We apply a variant of the ε-greedy multi-armed bandit algorithm
to each stage of the MDP in a recursive manner, thus comput-
ing an estimation of the “reward-to-go” value at each stage of the
MDP. We provide a finite-time analysis of REGA. In particular, we
provide a bound on the probability that the approximation error
exceeds a given threshold, where the bound is given in terms of the
number of samples collected at each stage of the MDP. We empiri-
cally compare REGA against other sampling-based algorithms and
find that our algorithm is competitive. We discuss measures to aid

iii



against the curse of dimensionality due to the backwards induction
nature of REGA, necessary when the MDP horizon is large.

Second, we introduce e-Discovery, a topic of extreme significance
to the legal industry, which pertains to the ability of sifting through
large volumes of data in order to identify the “needle in the haystack”
documents relevant to a lawsuit or investigation. Surprisingly, the
topic has not been explicitly investigated in academia. Looking at
the problem from a scheduling perspective, we highlight the main
properties and challenges pertaining to this topic and outline a
formal model for the problem. We examine an approach based on
related work from the field of scheduling theory and provide sim-
ulation results that demonstrate the performance of our approach
against a very large data set. We also provide an approach based
on list-scheduling that incorporates a side multi-armed bandit in
lieu of standard heuristics. Necessarily, we propose the first MAB
algorithm that accounts for both sleeping bandits and bandits with
history. The empirical results are encouraging.

Surveys of multi-armed bandits as well as scheduling theory are in-
cluded. Many new and known open problems are proposed and/or
documented.

iv



Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Multi-Armed Bandits 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sample Applications of the Bandit Model . . . . . . . . . . . . 2
1.3 Regret of a Forecaster . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Bandit Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Stochastic Bandits . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Adversarial Bandits . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Other Bandits . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 An ε-Greedy Multi-Armed Bandit Approach to Markov Deci-
sion Processes 15
2.1 Introduction to (PO)MDPs . . . . . . . . . . . . . . . . . . . 15
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Adaptive Sampling MDP Framework and AMS . . . . 20
2.3 The REGA method . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 The OREGA Method . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Practical Limitations . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Rolling Horizon Control (RHC) . . . . . . . . . . . . . 41
2.5.2 Decreased Simulation Allocation into the Horizon . . . 42

2.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.1 The SysAdmin Problem . . . . . . . . . . . . . . . . . 45
2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 A Note on the Generalized Epsilon-Greedy Method and Regret
of MABs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 56

3 Scheduling in the e-Discovery Domain 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 A Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 A POMDP Approach . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 An Overview from Scheduling Theory . . . . . . . . . . . . . . 65
3.5 A Scheduling Algorithm for e-Discovery . . . . . . . . . . . . . 69
3.6 List Scheduling With Side Bandits . . . . . . . . . . . . . . . 76
3.7 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 93

vi



List of Figures

1.1 The randomized ε-greedy algorithm . . . . . . . . . . . . . . . 7
1.2 The randomized ε-greedy algorithm with historical information

(HUCB3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Outline of the adaptive multi-stage sampling algorithm . . . . 21
2.2 The UCB-based adaptive multi-stage sampling algorithm (AMS) 23
2.3 The recursive ε-greedy algorithm (REGA) . . . . . . . . . . . 26
2.4 The chain MDP benchmark problem . . . . . . . . . . . . . . 43
2.5 The loop MDP benchmark problem . . . . . . . . . . . . . . . 43
2.6 Example network topologies . . . . . . . . . . . . . . . . . . . 47
2.7 Performance of REGA, RASA, OREGA, AMS and PGS against

a cycle network configuration of 10 machines with machine fail-
ure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. . . . . . . . . . . 49

2.8 Performance of REGA, RASA, OREGA, AMS and PGS against
a star network configuration of 10 machines with machine fail-
ure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. . . . . . . . . . . 49

2.9 Effect of the exploration control parameters ci on REGA when
applied to a cycle network configuration of 10 machines with
machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. . . . 50

2.10 Effect of the exploration control parameters ci on OREGA when
applied to a cycle network configuration of 10 machines with
machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. . . . 51

2.11 Effect of the exploration control parameters ci on REGA when
applied to a star network configuration of 10 machines with
machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. . . . 51

2.12 Effect of the exploration control parameters ci on OREGA when
applied to a star network configuration of 10 machines with
machine failure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. . . . 52

2.13 A comparison of various generalized ε-greedy algorithm for MAB
problem #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



2.14 A comparison of various generalized ε-greedy algorithm for MAB
problem #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.15 A comparison of various generalized ε-greedy algorithm for MAB
problem #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.16 A comparison of various generalized ε-greedy algorithm for MAB
problem #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 An out-forest with three out-trees. . . . . . . . . . . . . . . . . 60
3.2 The sequence of discrete-time events that can occur on each

processing machine during the e-Discovery workflow. . . . . . 72
3.3 The evolution of a ready queue for a processing machine as

nodes 1, 2 and 3 are processed, in order. Solid nodes denote
files that have been uncovered, whereas hollow nodes denote
attachment files that are unknown at that time. . . . . . . . . 74

3.4 The e-Discovery scheduling algorithm . . . . . . . . . . . . . . 75
3.5 A standard list-based scheduling policy . . . . . . . . . . . . . 78
3.6 A list-based scheduling policy with a side bandit . . . . . . . . 79
3.7 Total work-stealing over time for the eDisc2 problem under a

complete information setting of work-stealing. . . . . . . . . . 90
3.8 Total work-stealing over time for the eDisc2 problem under an

incomplete information setting of work-stealing. . . . . . . . . 91

viii



List of Tables

2.1 Performance of REGA against the chain benchmark problem
using various sample allocation decay strategies with M0 = 32
and 1 minute simulation timeouts . . . . . . . . . . . . . . . . 44

2.2 Performance of REGA against the loop benchmark problem us-
ing various sample allocation decay strategies with M0 = 32
and 1 minute simulation timeouts . . . . . . . . . . . . . . . . 45

2.3 Performance of REGA, RASA, OREGA, AMS and PGS against
a cycle network configuration of 10 machines with machine fail-
ure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. The optimal
value is V ∗ = 149.93. . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Performance of REGA, RASA, OREGA, AMS and PGS against
a star network configuration of 10 machines with machine fail-
ure probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01. The optimal
value is V ∗ = 149.93. . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Various MAB problems (courtesy of [13]) . . . . . . . . . . . . 53

3.1 File type counts of e-Discovery benchmark problem eDisc1 at
each level of the out-forest (122537 files in total). . . . . . . . 81

3.2 File type counts of e-Discovery benchmark problem eDisc2 at
each level of the out-forest (5824813 files in total). . . . . . . . 81

3.3 Point-based (mean) initial statistics for the e-Discovery bench-
mark problem, assuming 100 sample points from historical pro-
cessing jobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Simulation results (makespan) for e-Discovery benchmark prob-
lem eDisc1 using 5, 50 and 100 processing machines, network
file copy speeds of 10 MB/s and 100 MB/s using different heuris-
tics. Work-stealing as a complete information setting. . . . . . 85

3.5 Simulation results (makespan) for e-Discovery benchmark prob-
lem eDisc1 using 5, 50 and 100 processing machines, network
file copy speeds of 10 MB/s and 100 MB/s using different heuris-
tics. Work-stealing as an incomplete information setting. . . . 86

ix



3.6 Simulation results (makespan) for e-Discovery benchmark prob-
lem eDisc2 using 5, 50 and 100 processing machines, network
file copy speeds of 10 MB/s and 100 MB/s using different heuris-
tics. Work-stealing as a complete information setting. . . . . . 87

3.7 Simulation results (makespan) for e-Discovery benchmark prob-
lem eDisc2 using 5, 50 and 100 processing machines, network
file copy speeds of 10 MB/s and 100 MB/s using different heuris-
tics. Work-stealing as an incomplete information setting. . . . 88

x



Acknowledgements

To me this has been a journey like no other. I have overcome many difficulties
in the past, but this work was completed under special circumstances that have
spread my attention very thin across different aspects of life. Nonetheless, it
is difficult for me to comprehend that this journey has come to an end. Yes,
arriving at the final destination is important and is mine to keep forever, but
the steps taken towards this goal will be missed, and I am certain that at some
point in my life a portion of the details will become forgotten. I will continue
to look back and reflect in awe.

This journey would have been impossible without the significant support
that I have received from many. First and foremost, I would like to take a
moment to thank my advisor Professor Jiaqiao Hu for all the mentoring,
support, and guidance that he has provided me over the last few years. I
realize how busy you have been. Yet, you somehow always managed to find
the time to meet with me and provide me with the necessary feedback. Your
ability to quickly spot my mistakes continues to impress me. Thank you for
everything that you have done for me.

I would also like to thank the Chair of my dissertation committee Pro-
fessor Esther (Estie) Arkin. Since the time that I first met you in your
Linear Programming course, you have been helpful each and every time that I
have spoken with you. Your dedication and willingness to help your students
is applaudable. Thank you for your “open door” policy, it is the most any
student can ask for.

I would like to also thank my committee member Professor Yuefan
Deng. The time when we met over lunch for a discussion of my thesis topic
while I was still struggling to put my thoughts together, you (subconsciously)
said something to me that has stuck with me ever since: Since I had been work-
ing in the “field” for a little while before returning to academia, you reminded
me of the need to reduce the complexity of my models and to make simplifying
assumptions in order to be able to tackle more manageable problems. I will
never forget what you said. Thank you for that eye-opening comment.

Special thanks to my external committee member Professor Luis E. Or-

xi



tiz for taking the time out of your busy schedule. Even though the timing of
my defense conflicted with a NSF function in which you were taking part, you
insisted that I need not change my defense date. Thank you for pointing out
important literature related to the work that appears within this manuscript.
I am very glad to have met you during one of the Game Theory sessions that
we both attended. I am still very much interested in Game Theory and hope
that we can work together in the future.

In parallel to working towards my degree, I have been working fulltime
as a software engineer. Leading two different lifestyles at once has not been
easy, and a few co-workers in particular deserve special mention. First, my
previous manager Howard Robinson. I enrolled at Stony Brook University
shortly after I started working for you. With my office being 50 miles away in
New York City, your flexibility and arranging for me to work some days from
“home” on a weekly basis were key in enabling me to attend classes at Stony
Brook. You continue to mentor me until this day even though we no longer
work together. I’d also like to thank my current manager Jonathan Cagle
for flexibility in my work schedule in the last few weeks while I focused on
writing my dissertation. I truly enjoy working with you. Also to thank is my
colleague Malcolm Pollack for your frequent words of encouragement. You
telling me once that “the five (plus) years would pass by whether you did your
PhD or not” has helped propel me since joining this program.

If there is anyone to be thanked for giving me that extra push to “plant the
seed” and join a PhD program, that would be my father Mithqal Muqat-
tash and mother Samia Haddad. Your initial and continued encouragement
throughout the entire process have been paramount.

I’d also like to thank my parents-in-law Thomas and Kathie Melton for
their encouragement, support, and understanding each and every time they
asked to spend time with me. Yes, I really was that busy! I promise to make
up for lost time.

It would be complete injustice to not mention my wife Lauren Muqat-
tash. You have endured more than anyone else over the last few years and
had to make many selfless sacrifices. On many occasions you had to fill in for
me when I was not available. Many times you would wake up in the wee hours
of the morning to make sure I was okay. As with everything else in our lives,
you have shared with me the entire PhD process day after day. Thank you,
and I love you!

My son Andrew, at two years old you are too young to understand why
Daddy was too busy to spend more time with you. Your frequent visits into
my office to give me hugs and kisses are the most sincere a parent can ask for.
I owe you a lot of “makeup” time buddy!

xii



To all the others that I have not mentioned, you are too many but each
and every one of you knows whom you are. Thank you for being my friends
and family.

xiii



Chapter 1

Multi-Armed Bandits

1.1 Introduction

Consider a gambler faced with a slot machine with multiple arms, each return-
ing an average reward that is unknown to the gambler. The gambler starts
out with a fixed number of tokens and has to decide which arm to play next
in order to maximize her total profit. If the average reward of each arm is
known, then the optimal strategy is to simply always play the arm with the
highest expected average reward. However, the average rewards are unknown
to the gambler. Before each play, the gambler has to decide between exploring
the payoff models of the arms vs. playing the machine believed to be optimal
based on her prior observations.

Picture a clinical trial where alternative treatments are possible for some
type of disease. The medical staff have to decide which treatment to prescribe
to the next patient in order to maximize the likelihood of curing the patient.
A decision has to be made whether to test the effectiveness of one of the
promising drugs as opposed prescribing the drug found to be most effective to
date.

Consider the example of online advertisement placement where the objec-
tive is to maximize the total number of advertisement clicks by the website
visitors. Several options for product brand, color, font, etc. are to be chosen
when the next visitor views the web site in order to increase the odds of the
visitor clicking the advertisement.

The scenarios outlined above are all examples of sequential decision making
with limited available information. They are all examples of the so-called
multi-armed bandit (MAB) problem. In the most basic setting, a fixed set
of actions are available, and the objective of the decision maker is to balance
between learning the payoff distribution of each arm (exploration) and taking

1



advantage of prior observations to play next the arm believed to be optimal
(exploitation). As we will discuss later, it is not necessarily optimal that the
exploration phase be completed before the exploitation phase can begin. This
is particularly clear from the advertisement placement example as the set of
available actions (arms) can change over time. The study of MABs dates
back to the 1930s (c.f. [139] pertaining to the aforementioned clinical trials
example), and continues to be applied to newer technologies today. The term
“bandit” is attributed to the first (classical) casino example mentioned in the
beginning of this chapter.

In the remainder of this chapter, we give a brief survey of applications of
MABs, provide a light introduction to the MAB framework, summarize the
most common types of bandit models, and highlight the most recent develop-
ments in the field. [37, 84] provide excellent surveys on the topic of MABs.
While [84] focuses on bandits with switching costs, [37] provides a broader
“state of the art” coverage of the subject. Sections 1.2 - 1.4.2 are primarily
based on their work.

1.2 Sample Applications of the Bandit Model

The work in [84] surveys a wide range of settings where the bandit model lends
itself naturally. The reader is encouraged to refer to the original manuscript
for the detailed survey, as our objective is limited to providing some examples
of applications of MABs. The examples that follow all appear in [84].

One example of the bandit model appears when studying the behavior of
workers deciding to migrate to one of several cities since their decisions can be
influenced by the (unknown) potential offerings of each city (c.f. [103]).

Another obvious example of bandits is optimal search, where the researcher
has to decide on the next location to look for an instance of a resource. An
example is when mining for oil or other natural resources under finite budget
constraints. The trade-off in this case between exploration and exploitation is
obvious, and example papers covering this area include [25, 26, 148].

Yet another area where bandits are applicable is when buyers and sellers
interact with a market where there is incomplete information pertaining the
quality or fair price of a commodity. This setting falls under the broader
category of experimentation and learning, and the potential to make future
decisions based on past observations naturally fits into the bandit model. Ex-
amples of work in this area include [19, 104, 119].

Bandits have several applications in the field of game theory. In section
1.4.2, we discuss the class of adversarial bandits which is motivated by a game-
theoretic setting where an agent plays a game against an adversary. Usually,

2



the agent’s objective is to achieve a minimax regret while repeating experi-
ments in a setting with incomplete information. This setting can be thought
of as a two-person zero-sum game where the adversary (or Mother Nature)
attempts to maximize the regret while the agent attempts to minimize the
regret (c.f. the related work of [122]).

1.3 Regret of a Forecaster

Consider a MAB problem with K ≥ 2 arms. Suppose that each arm i =
1, . . . , K returns a reward sequence {Xi,t} at time t = 1, 2, . . .. Consider a
policy or forecaster that plays a sequence of arms {It}. We define the regret
of the policy after n time steps by

ρn = max
i=1,...,K

n∑
t=1

Xi,t −
n∑

t=1

XIt,t. (1.1)

Both the rewards Xi,t and policy actions It can be stochastic, and so two
notions of regret can be defined, with the expectation taken with respect to
the randomness in Xi,t and It: Expected regret E [ρn] and pseudo-regret ρn,
given in equations 1.2 and 1.3, respectively. In general, ρn ≤ E [ρn]. That is,
the expected regret provides a stronger notion of regret since the expectation
is taken with respect to the optimal action observed in the sequence of re-
ward realizations, whereas the pseudo-regret compares the optimal action in
expectation [37].

E [ρn] = E

[
max

i=1,...,K

n∑
t=1

Xi,t −
n∑

t=1

XIt,t

]
. (1.2)

ρn = max
i=1,...,K

E

[
n∑

t=1

Xi,t −
n∑

t=1

XIt,t

]
. (1.3)

In the most general case, the best possible bound on the expected regret
E [ρn] is O(

√
n), whereas the pseudo-regret ρn can be bounded by O(log n).

Since it is more natural for a forecaster to compete against the optimal action
in expectation, the pseudo-regret ρn is preferable in comparison to the expected
regret E [ρn] [37].

3



1.4 Bandit Models

MAB problems can be categorized into three types based on the properties
of their reward processes: Stochastic, adversarial and Markovian. We cover
the stochastic and adversarial settings in sections 1.4.1 and 1.4.2, respectively,
both essentially a summary of the survey work of [37]. We omit discussions on
Markovian bandits. In section 1.4.3, we cover other special types of bandits.

1.4.1 Stochastic Bandits

The stochastic bandit framework is the most basic and original bandit model.
In this model, each arm i ∈ {1, . . . , K} has an unknown reward density νi with
mean µi. The forecaster draws a reward from arm It ∈ {1, . . . , K} at each time
step t = 1, 2, . . . and receives a reward XIt,t ∼ νIt that is independent of all
previous rewards. That is, the reward realizations of any given machine are i.i.d
of previous rewards of that machine. Moreover, the rewards are independent
across machines. Let µ̂i,s denote the sample average reward returned by arm

i after it is drawn s times, then µ̂i,s =
1

s

s∑
t=1

Xi,t since the rewards are i.i.d.

Let i∗ = argmax
i∈{1,...,K}

µi denote the optimal arm, and let µ∗ = µi∗ and ν∗ =

νi∗ denote the optimal arm’s average reward and reward probability density
function, respectively. Let ∆i = µ∗ − µi denote the average regret of drawing
arm i, and let ∆ = min

i6=i∗
∆i be the regret of the second best arm. For simplicity,

it is common in the literature to assume that there exists a unique optimal
arm so that ∆ > 0. Several well-known results become invalidated and new
challenges are exposed when multiple optimal arms exist.

If the optimal arm is known, then the problem becomes trivial and the
optimal strategy for the forecaster is to always pull the optimal arm. There-
fore, it is assumed that the optimal arm is unknown. Hence, the goal of
the forecaster is to determine a sequence of arms to draw with objective of
minimizing the pseudo-regret solely based on the rewards observed in previ-
ous drawings. To that end, let 1{} be the indicator function and denote by

Ti(n) =
n∑

t=1

1{It = i} the number of times arm i is drawn in the first n time

steps, then the pseudo-regret is given by

ρn =
K∑

i=1

∆i E [Ti(n)] . (1.4)

4



Due to interaction with an uncertain environment, the best a forecaster
can do is to optimize her actions based on a heuristic. A simple yet effective
heuristic for stochastic bandit settings is the principle of optimism in the face
of uncertainty. The principle is generic and applicable to many sequential
decision settings. At a high level, the principle devises a solution in three steps:
First, at a given time step, a set of possible environments is constructed based
on the prior observations of the forecaster. Then, the most likely environment
is identified. Finally, the forecaster draws the arm optimal in the environment
identified as most likely [37].

The Upper Confidence Bounds (UCB) Method

A well-known method based on the principle of optimism in the face of uncer-
tainty is the upper confidence bounds (UCB) method, which was introduced by
Lai and Robbins in 1985 in the classical paper [93] to provide an asymptotic
analysis of the regret of stochastic bandit problems. In essence, the method
computes an upper confidence index for each machine based on all reward re-
alizations obtained from that machine up to that point in time. The index is
then used as an estimate for the expected reward of the machine, and the ma-
chine with the highest index is chosen by the forecaster at the next time step.
All prior realizations are needed in order to compute the index, and so the
computation is difficult in general [13]. For MAB problems where the reward
models belong to a specific family of distributions, [93] introduced UCB-based
policies and proved that the policies suffer logarithmic regret. In particular,
they showed that for any suboptimal arm i 6= i∗, their policies satisfy

E [Ti(n)] ≤
(

1

D (νi||ν∗) + o(1)

)
log(n),

where D (νi||ν∗) =
∫

νi log
(

νi

ν∗
)

is the Kullback-Leibler (KL) divergence be-
tween the two densities νi and ν∗ and o(1) → 0 as n →∞ [13].

In [37], the authors discuss a UCB-based algorithm called (α− ψ)-UCB
for the case of (unbounded) reward functions under proper conditions on
the moments of the distributions of rewards X. In particular, they assume
that there exists a convex function ψ satisfying logE

[
eλ(X−E[X])

] ≤ ψ(λ) and

logE
[
eλ(E[X]−X)

] ≤ ψ(λ) for all λ ≥ 0. The algorithm draws at time t an arm
It satisfying

It ∈ argmax
i∈{1,...,K}

[
µ̂i,Ti(t−1) + (ψ∗)−1

(
α log(t)

Ti(t− 1)

)]
,

where ψ∗(ε) = sup
λ∈R

(λε− ψ(λ)) is the Legendre-Fenchel transform of ψ and α >

5



0 is a parameter of the algorithm. The authors prove an upper bound on the
regret attained by the algorithm for rewards drawn from general distributions,
as well as a lower bound for the special case where the rewards are drawn from
Bernoulli distributions. A more general lower bound can be found in [93]. The
(α− ψ)-UCB algorithm generalizes the method outlined in [13] for the case of
bounded rewards. The algorithm is referred to as α-UCB for the special case of
bounded rewards. The α-UCB algorithm is near-optimal in general, but when
∆2

i is significantly smaller than D (νi||ν∗), the gap between the upper and
lower bounds of α-UCB can be significant. The recently-proposed KL-UCB
method, independently designed by [63] and [97], addresses this situation. The
KL-UCB method strictly dominates the α-UCB method and is optimal for the
case of unbounded Bernoulli-distributed rewards [37].

The ε-Greedy Method

In [13], Auer et al. provided several simple and efficient MAB algorithms that
achieve logarithmic regret uniformly over time. One simple algorithm is based
on the well-known ε-greedy heuristic borrowed from the field of reinforcement
learning (c.f. [135]). In its most basic version, the ε-greedy algorithm pre-
scribes to play with probability 1− ε the machine with highest observed aver-
age reward, and an arbitrary arm with probability ε. A constant exploration
rate ε will yield linear regret, but decreasing ε at a rate of 1/t allows for a proof
of logarithmic bound on the regret, where t denotes the index of the current
play. Figure 1.1 describes the algorithm as it appears in the original text (c.f.
Figure 3 of [13]).

The following theorem (c.f. Theorem 3 of [13]) gives a bound on the regret
achieved by the ε-greedy method. We emphasize the fact that the theorem
gives a bound on the “instantaneous” regret achieved by the algorithm. The
proof of the theorem can be found in the original manuscript.

Theorem 1.4.1. Let K > 1. For all reward distributions ν1, ..., νK with sup-
port in [0, 1], suppose that the ε-greedy algorithm is run with 0 < d ≤ min

i:µi<µ∗
∆i.

Then the probability that a suboptimal machine is chosen after any number
n ≥ cK/d2 of plays is at most

c

d2n
+2

(
c

d2
log

(
(n− 1)d2e1/2

cK

))(
cK

(n− 1)d2e1/2

)c/(5d2)

+
4e

d2

(
cK

(n− 1)d2e1/2

)c/2

.

As the authors point out, for c > 5, the bound given in theorem 1.4.1 is of
order c/(d2n) + o(1/n). This is indeed the case since the last two terms are
O(1/nφ+1) for some φ > 0.

6



The Randomized ε-greedy Algorithm

Input: Parameters c > 0 and 0 < d < 1. Initialization: For t = 1, 2, ...,
define the sequence εt ∈ (0, 1] by

εt = min

{
1,

cK

d2t

}
.

Loop: For each t = 1, 2, ...
{

1. Let µ̂t be the machine with the current highest reward.

2. Play machine µ̂t with probability 1 − εt, and play a random arm with
probability εt.

}
Figure 1.1: The randomized ε-greedy algorithm

Finally, we point out that empirical tests reported in [13] reveal that the
regret of the ε-greedy algorithm is highly dependent on the choice of parameter
c. While a well-tuned algorithm is shown to perform well in most settings, it is
not possible to pick a single value of c that works well for all types of problems.
Certainly, without proper tuning, the regret can degrade rapidly. Furthermore,
in the case of problems with many suboptimal machines with severely varied
expected rewards, the uniform exploration of the algorithm can result in large
regret [13].

Recent Developments

Stochastic bandits have continued to receive attention in recent years. State
of the art algorithms with tightest distribution-free bounds are MOSS (c.f.
[11, 12]) and improved-UCB (c.f. [15, 112]). The long-forgotten approach of
Thompson sampling (c.f. [139]) has also received much attention lately as a
very promising approach, and significant progress has been made in this area.
In particular, [4] was the first to prove a logarithmic bound on the regret of
Thompson sampling, and [87] showed that the regret is comparable to that
of α-UCB. The KL-UCB method mentioned earlier is also recent. These and
other recent developments pertaining to stochastic bandits are given in chapter
2 of [37].

7



1.4.2 Adversarial Bandits

A class of bandit problems that arises in the field of game theory is the so-called
adversarial bandit (or game theoretic bandit). Consider a forecaster faced with
the task of playing an unknown game. In particular, consider a casino with slot
machines that return a sequence of non-stochastic rewards controlled by some
adversary or mechanism. Since the rewards are not i.i.d, this setting is different
than that of stochastic bandits. The mechanism controlling the sequence of
rewards can behave independently of the forecaster’s strategy, in which case
the mechanism is called oblivious. On the other hand, the mechanism can be
reactive to the forecaster’s moves and is called non-oblivious. We provide a
brief summary based on the information found in [37].

The connection between game theory and the bandit problem is nowa-
days well-known. In game theory, the problem of repeatedly playing a game
has been studied by many since the 1950s, including the often cited work of
Hannan, Blackwell and Banõs (c.f. [20, 71]). In particular, Banõs considered
the problem where the game is unknown and the player observes her own
payoff but not that of her opponent, which is precisely equivalent to the non-
oblivious adversarial bandit problem. In [14], Auer et al. re-discovered the
same problem and coined the term non-stochastic multi-armed bandit. With
that, the connection between regret minimization in bandits and equilibria in
games was made. The work in [61] is also closely related. More recently, regret
minimization for the setting of reactive opponents has been studied in [9, 115].

For adversarial bandits, the performance of the player’s strategy against
the forecaster after n plays is measured via the same notion of regret ρn =

max
i=1,...,K

n∑
t=1

Xi,t −
n∑

t=1

XIt,t as previously given in equation 1.1. The objective

is to obtain regret bounds that are sublinear in the number of plays, but that
is impossible to achieve when the forecaster’s strategy is deterministic. For
instance, consider the following example taken from [37] where an adversary
plays the following strategy to force a regret ρn ≥ n/2:

For It = 1, set X2,t = 1 and Xi,t = 0 ∀ i 6= 2.

For It 6= 1, set X1,t = 1 and Xi,t = 0 ∀ i 6= 1.

Therefore, it’s imperative that a forecaster be randomized in the adversarial
bandit setting, and so the regret ρn becomes a random variable. Thus, the
objective is to bound the regret with high probability with respect to random-
ization in the forecaster and opponent’s strategies. The pseudo-regret ρn as
previously defined in equation 1.3 is easier to bound, and [14, 37] give the so-
called exponential weights for exploration and exploitation (Exp3) algorithm

8



which achieves ρn = O
(√

nK log K
)

for a problem with K arms. Although
an improved constant factor is shown for the case when the number of plays n
is known to the forecaster, a bound with the same order holds for the anytime
setting when n is not known to the forecaster, albeit with a larger constant
factor.

As for bounds on the regret ρn, a variant of the Exp3 method called Exp3.P
also appears in [14, 37] which yields with probability 1 − δ a regret ρn ≤√

nK

log K
log δ−1 + 5.15

√
nK log K for an arbitrary confidence level δ. Exp3.P

is also shown to have expected regret E [ρn] ≤ 5.15
√

nK log K +

√
nK

log K
.

In [14, 37], lower bounds on the pseudo-regret ρn are provided, and it is
shown that the upper bounds outlined above are tight up to a factor log K.
This logarithmic gap was tightened in [11] with the introduction of the so-
called implicitly normalized forecaster (INF) class of strategies which have

pseudo-regret of order ρn = O
(√

nK
)
. As for the case of bounding the regret

ρn with high probability and in expectation, [12] suggests that it is possible
to achieve a log-free upper bound in the case of an oblivious adversary, and
the authors conjecture that a log free bound is not possible for the case of a
non-oblivious adversary. To the best of our knowledge, the logarithmic gap
for the non-oblivious case remains an open problem to date.

Finally, with aim of arriving at a flexible strategy that applies to both
stochastic and adversarial bandits, the recent work of [38] introduced the
stochastic and adversarial optimal (SAO) algorithm which guarantees the op-
timality achieved by both UCB and Exp3.P. The idea is that if the problem
is likely not consistent with i.i.d rewards (based on certain conditions and
checks), then the algorithm switches to the Exp3.P method under the as-
sumption that the problem is a stochastic bandit problem.

This section is based on chapter 3 of [37]. We refer the reader to the original
manuscript for details of the results summarized herein.

1.4.3 Other Bandits

Many other modifications to the aforementioned bandit models appear in the
literature. With too many variants to mention, we restrict our discussion to
some flavors of interest to our work.

9



Sleeping Bandits

In many practical settings, not all bandits are available at each stage of the
game. For example, consider the classical casino setting. There are usually
many gamblers on the casino floor, and so a gambler wishing to pull a particu-
lar arm may find that arm occupied by another player. Similarly, as discussed
later in section 3.6, a scheduling policy that selects the next action (or arm)
based on feedback from a side-bandit model may find that not all actions are
available at each iteration of the algorithm.

When some bandits are unavailable at one or more decision steps, the prob-
lem becomes the so-called sleeping bandit. [92] studies this problem in both
the incomplete information setting (called sleeping bandits) and the setting
of complete information (called sleeping experts). For the bandit setting, the
authors cover both the stochastic and adversarial bandits with objective of
minimizing the expected regret. However, since not all actions are available
at all times, the formula for expected regret given in equation 1.2 must be
modified to only consider actions available at each stage. To that end, con-
sider a pool of K arms, where at time-step t = {1, . . . , n} a subset of arms
At ⊆ {1, . . . , K} are available to the player. Suppose that selecting action
i ∈ At returns a bounded reward Xi,t ∈ [0, 1]. Let i∗t be the best arm amongst
those in At (per some utility function), then the expected regret after n steps
of a sleeping bandit that plays at time t action It is given by

E [ρn] = E

[
n∑

t=1

Xi∗t ,t −
n∑

t=1

XIt,t

]
.

Suppose that the K possible arms are ordered per their true (yet unknown)
mean rewards such that µ1 > µ2 > . . . > µK . [92] gives a variant of the UCB1
method of [13] for the stochastic bandit having regret bounded from above by

(64 log n)
K−1∑
i=1

(µi+1 − µi)
−1 after n iterations. With a theoretical lower bound

on the regret given by Ω

(
log n

K−1∑
i=1

(µi+1 − µi)
−1

)
, the provided algorithm is

within constant factor of optimality.

Bandits with History

In most of the work that appears in the literature, assumptions are made
that the bandit model starts from “scratch” without availability of historical
observations. However that is often not the case in practice. For example,
when a clinical study is temporarily suspended and is only permitted by a

10



judge to be resumed under new conditions, it is neither efficient nor practical
to throw away all experimental results collected prior to the court rulings.

In a novel approach, [124] recently considered stochastic bandits with his-
torical information, and extended three well-known algorithms to take advan-
tage of historical information. The authors show that a logarithmic amount
of historical information can reduce the regret by a logarithmic factor. Since
the algorithms extended in their work are known to attain logarithmic regret,
the result implies that a logarithmic amount of historical data can result in
constant regret for the case of finite historical data, and zero regret in case
of an infinite amount of historical data. Such result is very powerful. The
authors claim that exploiting historical data cannot aid in reducing the regret
in an adversarial setting.

This untapped area of study is particularly interesting with ample oppor-
tunities for a fresh perspective on a new class of bandits. The trick is to
determine how the historical data per arm is incorporated into existing bandit
algorithms. For example, as before, let Ti(t) be the number of times arm i has
been played in the first t time-steps, and let X i,Ti(t) denote the sample average
observed for arm i during these plays, then the UCB1 method of [13] plays

at time t the arm i that maximizes X i,Ti(t−1) +
√

2 log t
Ti(t−1)

. On the other hand,

the historical version presented by [124], called HUCB1, selects at time t the

arm i that maximizes X
h

i,Ti(t−1) +
√

2 log(Hi+t)
Hi+Ti(t−1)

, where Hi is the number of his-

torical samples for arm i and X
h

i,Ti(t)
is the average sample mean including all

Hi +Ti(t) historical and “new” observed samples. Using this upper confidence
bound, the authors were able to show a tighter upper bound on the expected
regret than for the most natural algorithm that plays arm i that maximizes

X
h

i,Ti(t−1) +

√√√√2 log

(
K∑

i=1

Hi + t

)
(Hi + Ti(t− 1))−1.

Recall the ε-greedy algorithm of [13] previously outlined in figure 1.1. Al-
though one would expect the historical version to replace the rate c

d2t
with

c
d2(t+Hi)

, such change does not allow the authors to provide strong theoretic

guarantees. The historical version given by [124] is outlined in figure 1.2.
Theorem 1.4.2 is the equivalent historical version of theorem 1.4.1.

Theorem 1.4.2. Let K > 1. Given reward distributions ν1, ..., νK with support
in [0, 1], suppose that the HUCB3 algorithm is run with 0 < d ≤ min

i:µi<µ∗
∆i. For

c ≥ 10, the probability that a suboptimal machine j is chosen after any number

n ≥ cK/d2 of plays is at most
c

cK exp (Hjd2/c)− cK + d2n
+ o

(
1

n

)
.

11



The Randomized ε-greedy Algorithm with Historical Information
(HUCB3)

Input: Parameters c > 0 and 0 < d < 1. Initialization: For t = 1, 2, ...,
define the sequence εt ∈ (0, 1] by

εi
t =

{
1/K, t ≤ cK/d2;

(K (exp (Hjd
2/c))− 1) + d2t/c)

−1
, t > cK/d2.

Loop: For each t = 1, 2, ...
{

1. Let µ̂t be the machine with the current highest reward X
h

µ,Tµ(t−1).

2. Play machine µ̂t with probability 1 −
K∑

i=1

εi
t, and play each arm j with

probability εj
t .

}
Figure 1.2: The randomized ε-greedy algorithm with historical information
(HUCB3)

An open problem posed by [124], based on the authors’ choice to incor-
porate the historical data into the upper confidence bound in the form of

log

(
t +

K∑
i=1

Hi

)
as opposed to log(t + Hi), is whether or not it is possible for

HUCB1 to be improved such that the per-arm historical data can be better
exploited.

Other Bandits

Several other bandit models appear in the literature. It is not unreasonable
in many practical setting to pay some cost associated with switching between
bandit arms. For example, consider the scenario where a print shop has a
machine that takes a single dye. Orders arrive for various products per some
arrival distribution that is unknown to the machine operator. The objective is
to decide at any time whether or not to continue to make products using the
current dye installed in the machine. Switching to a different dye is associated
with downtime which can be thought of as a switching cost. This is an exam-
ple of the so-called multi-armed bandit with switching costs. [2, 3] study this

12



subject and provide algorithms that are efficient in the asymptotic sense for
both stochastic and Markovian rewards. The main idea behind their approach
is to group the samples collected for each bandit arm into blocks of increasing
size in such a way that the regret associated with switching costs is marginal.
In particular, it is possible to sample suboptimal arms at most O(log n) times
during the first n iterations of the algorithm, which in turn bounds the num-
ber of arm switches to o(log n). This results in a logarithmic bound on the
regret (asymptotically) up to constant factor, which is the same as that for
bandits without switching costs. A necessary condition is for the switching
costs to either be fixed or bounded, and a fundamental assumption is made
such that there exists a unique optimal arm. If the latter does not hold, then
an arbitrarily large amount of switching can occur between the optimal arms.

Another variation on the classical stochastic multi-armed bandit is the
so-called restless bandit. While in the original MAB only the chosen arm
evolves at each stage of the algorithm, in the restless bandit arms that are not
played can also evolve at each iteration. This introduces additional complexity
that needs to be dealt with. Although not generally the case, an UCB-based
algorithm results in logarithmic regret under the right conditions (c.f. [110,
137]).

Yet another variation is the max k-armed bandit. In contrast with the origi-
nal bandit problem which aims at minimizing the regret in a cumulative sense,
the max k-armed bandit aims at maximizing the maximum payoff. While in
the classical stochastic MAB an efficient algorithm plays the optimal arm ex-
ponentially more frequently than the other arms, in the max k-armed bandit
the optimal arm must be played at a rate that increases doubly exponentially
relative to the other (suboptimal) arms. [134] gives a simple algorithm under
simplified assumptions. The max k-armed bandit problem was first introduced
by [52].

1.5 Open Problems

The study of multi-armed bandits in its various flavors continues to be an
interesting and active area of study. We herein highlight some open problems
for future work.

1) When the objective is to bound the regret ρn with high probability or in
expectation, [12] suggests that it’s possible to achieve a log-free upper bound
in the case of an oblivious adversary, and it is conjectured that a log-free bound
is not possible for the case of a non-oblivious adversary. To the best of our
knowledge, this remains an open problem to date.

2) As [92] points out, although theoretical guarantees are given for the al-

13



gorithms that they present for adversarial bandits, these algorithms are com-
putationally inefficient. The authors pose as an open problem the question
of whether or not efficient algorithms exist for this setting which can achieve
regret that grows polynomially in the number of bandit arms.

3) Following the ideas of [124], taking advantage of historical data from
previous plays of a bandit can be used to significantly reduce the MAB regret.
This opens a direction for new work where historical data can be incorporated
into various types of bandits to achieve new generalized algorithms.

4) The long-forgotten area of Thompson sampling is yet another promising
approach for minimizing bandit regret. This approach has picked up momen-
tum in recent years.

14



Chapter 2

An ε-Greedy Multi-Armed
Bandit Approach to Markov
Decision Processes

In this chapter we present REGA, a novel adaptive sampling-based algorithm
for control of finite-horizon Markov decision processes (MDPs) with very large
state spaces and small action spaces. We apply a variant of the ε-greedy
multi-armed bandit algorithm to each stage of the MDP in a recursive man-
ner, thus computing an estimation of the “reward-to-go” value at each stage
of the MDP. We provide a finite-time analysis of REGA. In particular, we pro-
vide a bound on the probability that the approximation error exceeds a given
threshold, where the bound is given in terms of the number of samples col-
lected at each stage of the MDP. We empirically compare REGA against two
other sampling-based algorithms by running simulations against the SysAdmin
benchmark problem with 210 states. The results show that REGA is a com-
petitive algorithm. Moreover, REGA is found to empirically outperform an
implementation of the algorithm that uses the “original” ε-greedy algorithm
that commonly appears in the literature.

2.1 Introduction to (PO)MDPs

Markov decision processes (MDPs), named after Andrey Markov, provide a
mathematical framework for modeling decision-making in situations where
outcomes associated with an agent’s actions are controlled stochastically. An
MDP can be fully described by the tuple (S, A, T, R, γ): S is the set of system
states. We use the notation st ∈ S to denote the state of the system at time t.
A is the set of available actions, with As ⊆ A being the subset actions available

15



to the agent from each state s ∈ S. p(s′|s, a) = T (st+1 = s′|st = s, at = a)
captures the transition model, i. e., the probability of arriving at state s′ at
time (t + 1) if action a is taken at state s at time t. Finally, R denotes the set
of rewards, with ra(s, s

′) ∈ R being the immediate (expected) reward when
action a is taken at state s, thus resulting in transition to state s′ with prob-
ability p(s′|s, a). γ ∈ [0, 1] is a discount factor that is optional for the finite
horizon setting but necessary for the infinite horizon setting.

In an MDP, at each decision-making moment, taking action a at state s
advances the system to state s′ with probability p(s′|s, a), and provides the
agent with an immediate reward ra(s, s

′). Let π be a policy that maps states
to actions, then a value function V is used to measure the quality of π over
the (possibly infinite) planning horizon H. Let π (st) denote the action taken
at time t = 0, 1, . . . , H − 1 when the system is at state st, then starting at an
initial state s0, the value function is given by

V π(s0) = E

[
H−1∑
t=0

γtrπ(st)(st, st+1)

]
.

We consider the objective of determining an optimal policy, π∗, that maxi-
mizes total reward over the planning horizon. In the literature, there are three
well-known algorithms that solve for an optimal policy: Value iteration, policy
iteration, and linear programming.

The usual way to solve for an optimal policy of an MDP is via the Bellman
equation, also known as the dynamic programming equation. Chapter III.3 of
[21] describes Bellman’s principle of optimality as follows:

Principle of optimality: An optimal policy has the property that
whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state
resulting from the first decision.

To that end, using the notation of [114], the value iteration algorithm
computes the optimal policy via Bellman’s recursion, as follows:

π∗(s) = arg max
a∈A

Q∗(s, a),

where

Vh(s) = ra(s) + max
a∈A

Qh(s, a)

and

16



Qh(s, a) = γ
∑

s′∈S

p(s′|s, a)Vh−1(s
′).

Here, any quality with an asterisk (i. e., π∗, V ∗, Q∗, etc.) denotes the opti-
mal value of the function. The subscript in Vh and Qh denotes the remaining
“to-go” value of the functions at stage h of the MDP. The special case of h = 0
denotes the value of the function at the initial state. When the context is clear,
we drop the subscript and use V (s) instead of V0(s0).

A fundamental assumption in the MDP framework is that the state of
the system is known at all times. However, in many cases, including the e-
Discovery scheduling problem (which we will cover in chapter 3), the agent can
only make a partial observation of the state of the system. The partially ob-
servable (PO)MDP framework (c.f. [10, 57]) handles this case by introducing
the notion of a belief, which is a probability distribution over the state space.
A POMDP is fully defined by the tuple (S,A, O, T, Ω, R, γ), with S,A, T, R, γ
all as in the MDP setting. The two additional components are a set of obser-
vations O, and a probability distribution Ω(o|s) that gives the probability of
observing o ∈ O when the system is in state s ∈ S.

The belief is updated as the agent interacts with the system. Following
the notation in [114], let b be the current belief of the agent, if taking action a
results in observation o, the updated belief about the new state s′ is given by

ba,o(s′) =
p(o|s′)

p(o|b, a)
p(s′|b, a),

where p(s′|b, a) is given by the following formula (replace the integral with a
sum for the discrete case)

p(s′|b, a) =

∫

s∈S

p(s′|s, a)b(s)ds.

For a POMDP, the Bellman recursion is given by

Vh(b) = sup
a∈A

{< ra, b > +γ

∫

o

p(o|b, a)Vh−1(b
a,o)do},

where < ra, b > is defined per the following formula (replace the integral
with a sum for the discrete case)

< f, b >=

∫

s∈S

f(s)b(s)ds.

It is worth noting that any belief-based POMDP can be converted to
a continuous-state MDP, with one dimension per state. In the case of a

17



continuous-state POMDP, the resulting MDP has an infinite-dimensional con-
tinuous state space. This follows from the fact that the belief contains sufficient
information for optimal planning [29].

As far as solving POMDPs for optimal policies is concerned, the vast ma-
jority of the literature covers the discrete case. Some papers on value itera-
tion algorithms include [40, 49, 85, 107, 113, 129, 149]. [130] introduced the
PERSEUS algorithm, which is a point-based value-iteration algorithm that has
been shown to be efficient for discrete POMDPs.

More recently, the case of continuous POMDPs has been considered. [114]
showed that the value function for arbitrary continuous POMDPs is in gen-
eral convex, and piecewise-linear and convex in the special case where the state
space is continuous but the action and observation spaces are discrete. More-
over, the paper extends the PERSEUS algorithm to cover the cases of continuous
state space (c.f. [114], section 5), as well as the case of continuous action and
observation spaces (c.f. [114], section 6). We refer the reader to the original
paper for the details of the extended sampling approach.

In the aforementioned formulation of MDPs and POMDPs, the system
dynamics are stochastic. However, when the goal is to simulate an MDP or
POMDP, another equivalent definition is more useful to capture the model.
Consider a finite horizon MDP with non-negative rewards. As before, let A and
S be finite action and state spaces, respectively, and let H denote the horizon
of the MDP. For any stage t = 0, . . . , H−1 and state st ∈ S, choosing a control
at ∈ A will (stochastically) lead to a future state st+1. The system dynamics
can be captured by st+1 = f(st, at, wt), where wt ∼ U(0, 1) is a uniform
random variable representing the uncertainly of the system (c.f. [72, 116]).
Let R(st, at, wt) denote the immediate reward, and let Π be the set of all
possible deterministic non-stationary Markovian policies π = {πt|πt : S →
A, t = 0, . . . , H − 1}. To simplify our notation, let w = (wt, wt+1, . . . , wH−1).
Given a policy π ∈ Π, the reward-to-go value function is given by V π

t (st) =

Eπ
w

[∑H−1
i=t R (si, πi(si), wi)

]
, with V π

H(s) = 0, ∀ s ∈ S. Let the optimal reward-

to-go value function be denoted by V ∗
t (s) = max

π∈Π
V π

t (s), with V ∗
H(s) = 0, ∀ s ∈

S, then V ∗
t (s) can be computed recursively using

V ∗
t (s) = max

a∈A
Q∗

t (s, a)

Q∗
t (s, a) = Eπ

w

[
R(s, a, w) + V ∗

t+1(f(s, a, w))
]
.

When clear from the context, we omit the subscript for the initial horizon
and state, and use V ∗(s) instead of V ∗

0 (s0).

18



2.2 Related Work

Recent years have seen theoretical progress in the area of simulation-based
methods for solving large finite-horizon MDPs. Two algorithms closely re-
lated to the method we propose in this chapter are the recursive automata
sampling algorithm (RASA) of [43] and the adaptive multi-stage sampling al-
gorithm (AMS) of [44]. RASA recursively applies a learning automata algo-
rithm at each stage of the MDP in order to calculate the reward-to-go value
function. When applied to the initial state of the MDP, the algorithm pro-
duces an approximated value for the MDP. The objective is to maximize the
total reward criterion, but the algorithm and results can be trivially restated
for minimization problems. In [43], the authors give two probabilistic bounds
on the performance of RASA as a function of the number of samples at each
stage. In particular, a lower bound on the probability that the algorithm will
sample the optimal action, and an upper bound on the probability that the
error of the algorithm exceeds a given threshold.

The AMS algorithm is very similar to RASA, except that learning au-
tomata is replaced with a UCB-based multi-armed bandit algorithm to drive
the simulation at each stage of the MDP. In [44], the authors showed that
the MDP value function estimator produced by AMS is asymptotically unbi-
ased. This asymptotic convergence result is weaker than the convergence in
probability result shown for RASA. The value function estimator required to
show the theoretical results for AMS is based on weighted averaging of the Q-
function estimates of each sampled action, where the weights are taken based
on the number of times each action is chosen for simulation by the underlying
MAB algorithm. Thus, the resultant value function estimator is biased below
the true value function of the MDP. Other simulation-based approaches for
solving MDPs include stochastic annealing [76], neuro-dynamic programming
[27], stochastic neural networks [121] and Q-learning [146, 147].

In this section, we propose a novel algorithm called the recursive ε-greedy
algorithm (REGA), that combines ideas from RASA and AMS. Like AMS, the
sampling strategy at each stage of the MDP is based on a multi-armed bandit
model. In particular, we use a generalized variant of the ε-greedy algorithm
by Auer et al. (c.f. [13]). On the other hand, our theoretical analysis and
the value function estimator that we use are similar to those of RASA. We
give a finite-time analysis of REGA following the same ideas found in [43]. In
particular, we give an upper bound on the probability that the approximated
reward-to-go generated by REGA has an absolute error larger than a tolerated
threshold. We provide a convergence rate in terms of the number of samples
captured at each stage of the MDP. Much credit goes to [43] for the ideas
behind our theoretical analysis.

19



The rest of the chapter is organized as follows: Section 2.2.1 covers the
adaptive sampling framework and the AMS algorithm. Our REGA algorithm
is introduced and finite-time analysis is provided in section 2.3. A similar
analysis of a variant that we call OREGA is covered in section 2.4. Section
2.5 discusses some practical limitations and potential workarounds. Empirical
results in comparison to the RASA and AMS algorithms appear in section 2.6.
A discussion pertaining to Auer’s ε-greedy method and the attained regret for
the traditional stochastic bandit problem is given in section 2.7. We conclude
with some remarks in section 2.8.

2.2.1 Adaptive Sampling MDP Framework and AMS

[75] describes a simulation-based framework for approximately solving general
finite horizon MDPs with large state spaces. In this section, we outline the
proposed framework and main results from chapter 3 of [75]. All theorems are
listed without proof. We refer the reader that is interested in the proofs to the
original manuscript.

Consider a MDP with large state space and finite horizon H. This simulation-
based framework treats the MDP as a decision tree with depth H, where each
node in the tree represents a state of the MDP, the root note represents the
initial state, and the leaf nodes represent the state of the MDP at horizon
H − 1. Via a depth-first search, the algorithm generates sample trajectories
from the root of the tree to the leaf nodes. Based on the sample averages of
the Q-functions, backwards induction is used to estimate the value function
at previous stages further up the tree. The calculated value at the root node
represents the estimate of the value function for the entire MDP.

Consider a single stage i = 0, 1, . . . , H − 1 and current state s ∈ S. Let
Q̂i,Mi

(s, a) and V̂i,Mi
(s) = argmax

a∈A(s)

Q̂i,Mi
(s, a) denote estimates of Q∗

i (s, a) and

V ∗
i (s), respectively, when Mi simulations are allocated to stage i. When clear

from the context, we drop the suffix Mi and use the simplified notation Q̂i(s, a)
and V̂i(s). By convention, we set V̂H(s) = 0. Let M i

a(s) denote the number of

times action a is sampled at stage i. It always holds that Mi =
∑

a∈A(s)

M i
a(s).

The objective is to estimate V ∗(s) = V ∗
0 (s), the optimal value of the MDP at

the initial state.
Figure 2.1 outlines the basic implementation of the adaptive multi-stage

sampling algorithm. We point out that in step 4 of the loop, the algorithm
calls itself recursively and that the estimates for the Q-functions, Q̂i,Mi

(s, â),
are updated via backwards induction. Notice also that the algorithm does
not sample every state of the MDP. In particular, the only states sampled are

20



those reached by the next-state functions f(s, â, w). It thus follows that the
runtime complexity of the algorithm is in general independent of the (possibly
large) size of the state space.

General Adaptive Multi-Stage Sampling Algorithm

Input: Stage i < H, state s ∈ S, Mi > 0, algorithm Υ to determine
the next action to sample, parameters specific to algorithm Υ.

Initialization:

1. Max horizon stopping rule: Set V̂H,MH
(s) = 0.

2. Perform any Υ-specific initializations.

Loop (Ni times):
{

1. Determine next action â to play via algorithm Υ.

2. Simulate the next state via f(s, â, w), where w ∼ U(0, 1).

3. Increment the number of times â has been sampled: M i
â(s) = M i

â(s)+1.

4. Backwards induction and recursion: Update Q̂i,Mi
(s, â) based on

Ŕ(s, â, w) and V̂i+1,Mi+1
(f(s, â, w)).

5. Update any parameters specific to algorithm Υ.

}

Output: V̂i,Mi
(s) based on the estimates of Q-functions {Q̂i,Mi

(s, a)}.

Figure 2.1: Outline of the adaptive multi-stage sampling algorithm

The adaptive multi-stage sampling algorithm determines the next action
to sample via some generic mechanism Υ. We note that this mechanism is
intentionally not specified. In related work, [89] uses a similar recursive tree
sampling structure to create an on-line near-optimal planning algorithm for
solving large MDPs. However, in their work, each action is sampled a fix
number of times. Under tight computational and time budgets, it is imperative
to sample actions in a more strategic fashion. In particular, it is desirable to
sample more frequently the actions that either have high reward variability
or are more likely to produce higher rewards [75]. To achieve this goal, [75]

21



uses a MAB-based algorithm for Υ in order to adaptively choose the next
action to sample based on the observed variability of the rewards from previous
iterations of the simulation.

The intuition behind the sampling-based algorithm is as follows: Consider a
single stage of the finite horizon MDP. For an arbitrary current state s, redefine
the regret to be the difference between the true optimal value at s and the
approximate value yielded by the sampling process. A MAB algorithm is used
to minimize the regret for the current state, which equivalently minimizes
the error of approximating the optimal value of the state. The one-stage
approximations are then combined in a recursive manner in order to provide
a multi-stage approximate solution to the entire MDP.

For each one-stage problem, the MAB algorithm chosen by [75] is the
UCB1 algorithm of [13]. They call the resultant method the adaptive multi-
stage sampling algorithm (AMS), which overloads the term and can thus cause
ambiguity between the UCB-based AMS and the generic AMS algorithm out-
line in figure 2.1. In the remainder of this chapter, we use AMS to denote the
UBC-based AMS algorithm.

It is well-known that efficient MAB algorithms play the optimal arm expo-
nentially more frequently than other arms [93]. As such, AMS estimates the
value of the MDP by weighing each Q̂(s, a) using the number of times action

a is sampled by the algorithm. That is, V̂i,Mi
(s) =

∑

a∈A(s)

M i
a(s)

Mi

Q̂i,Mi
(s, a).

Figure 2.2 outlines the AMS algorithm.

The runtime complexity of AMS is O

((
|A| max

i=0,...,H−1
Mi

)H
)

. Most no-

table is that the bound is independent of the (possibly large) size of the state
space of the MDP, but is dependent on the size of the action space |A| due
to the requirement that each action be sampled at least once at each state
sampled by the algorithm, as well as the update step for the current optimal
action â.

In [75], it is shown that AMS achieves an approximate solution for the MDP
that is asymptotically unbiased, and that the bias is bounded by a quantity

that converges to zero at a rate of O

(
H−1∑
i=0

log Mi

Mi

)
. In particular, ∀s ∈ S and

a ∈ A(s), let θ(s) = min
a 6=a∗

(V ∗(s)−Q∗(s, a)) > 0 denote the difference between

the largest and second largest (strictly suboptimal) expected bandit rewards,
then the main result of [75] is given in theorem 2.2.1.

Theorem 2.2.1. Suppose there exists a constant c > 0 such that inf
s∈S

θ(s) ≥ c,

22



The UCB-Based Adaptive Multi-Stage Sampling Algorithm (AMS)

Input: Stage i < H, state s ∈ S and Mi > max
s∈S

|A(s)|.

Initialization:

1. Max horizon stopping rule: V̂H,MH
(s) = 0.

2. Simulate the next state f(s, a, wa
1) for each action a ∈ A(s), where

{wa
j } ∼ U(0, 1) is the random number sequence for action a.

3. Set the overall number of samples so far: m̄ = |A(s)|.
4. Set the number of times each action a ∈ A(s) has been sampled so far:

M i
a(s) = 1.

5. Set Q̂i,Mi
(s, a) = Ŕ(s, a, wa

1) + γV̂i+1,Mi+1
(f(s, a, wa

1)), ∀a ∈ A(s).

Loop (until m̄ = Mi):
{

1. Let â be the current estimate of the optimal action. That is,

â = argmax
a∈A(s)

(
Q̂i,Mi

(s, a) + Rmax

√
2 log m̄

M i
a(s)

)
,

where

Q̂i,Mi
(s, a) =

1

M i
a(s)

M i
a(s)∑

j=1

[
Ŕ(s, a, wa

j ) + γV̂i+1,Mi+1
(f(s, a, wa

j ))
]
. (2.1)

2. Update M i
â(s) = M i

â(s) + 1. Generate wâ
M i

â(s) ∼ U(0, 1) and update

Q̂i,Mi
(s, â) per 2.1 using simulated next state f

(
s, â, wâ

M i
â(s)

)
. Update

m̄ = m̄ + 1.

}

Output:

V̂i,Mi
(s) =

∑

a∈A(s)

M i
a(s)

Mi

Q̂i,Mi
(s, a).

Figure 2.2: The UCB-based adaptive multi-stage sampling algorithm (AMS)

23



and suppose that |A(s)| > 1 for all s ∈ S. If AMS is run with input Mi at each
stage i = 0, ..., H − 1 starting at an arbitrary state s ∈ S, then it holds that

lim
M0→∞

lim
M1→∞

. . . lim
MH−1→∞

E
[
V̂0,M0(s)

]
= V ∗

0 (s). Furthermore, the bias induced

by the algorithm is bounded by a quantity that converges to zero. In particular,

V ∗
0 (s)− E

[
V̂0,M0(s0)

]
≤ O

(
H−1∑
i=0

log Mi

Mi

)
.

Note that in theorem 2.2.1, the strictly non-negative lower bound assump-
tion on θ(s) trivially holds when the state space of the MDP is finite.

We conclude by noting that the results outlined above are based on the
rather conservative weighted estimator V̂ (s). Since the bias of this estimator is
defined in terms of the MAB regret, and it is well-known that the regret must
be logarithmic at best, the bound provided above is the tightest possible. In
order to achieve tighter bounds on alternative estimators, it is necessary that
the bias of such alternative estimators not be defined in terms of the MAB
regret. The REGA algorithm discussed later in this chapter avoids defining
the value function estimator in terms of the MAB regret.

Empirical results outlined in [75] compare this estimator to two alternative
estimators, which we refer to here as AMS1 and AMS2. AMS1 replaces the
original estimator with an alternative estimator based on the best observed
Q-function. On the other hand, AMS2 replaces the original estimator with an
alternative estimator based on the action most sampled.

AMS1 estimator: V̂i,Mi
(s) = max

a∈A(s)
Q̂i,Mi

(s, a). (2.2)

AMS2 estimator: V̂i,Mi
(s) = Q̂i,Mi

(s, ă), where ă = argmax
a∈A(s)

M i
a(s). (2.3)

AMS1 was found to outperform AMS empirically, but determining the
convergence rates for value function estimators in the form of AMS1 and AMS2
is noted as difficult to obtain and is left as an open problem. Moreover, the
quest for an algorithm with provable convergence in a stronger sense than
asymptotic unbiasedness is also posed as an open problem. The REGA method
that we proposed in this chapter addresses these problems.

2.3 The REGA method

In this section, we introduce the recursive ε-greedy algorithm (REGA). The
algorithm is motivated by the UCB-based AMS algorithm discussed in section

24



2.2.1. We provide a finite-time analysis for REGA, which is stronger than the
asymptotic unbiasedness results obtained for AMS in [75].

Consider a single stage i = 0, 1, . . . , H − 1 and current state s ∈ S, and let
ci ≥ 1 be tunable parameters that control the amount of pure exploration at
each stage i of the algorithm. Moreover, for a non-negative integer m and a
state s, let {εs

m}m be the non-increasing sequence given by

εs
m = min

{
1,

ci|A(s)|√
m

}
, (2.4)

where A(s) is the set of available actions at state s, and |A(s)| is the size of
A(s). When the state s is clear from the context, we drop the superscript and
use the simplified notation εm instead of εs

m. The REGA algorithm is outlined
in figure 2.3.

We note that the widely-cited ε-greedy method of [13] defines εs
m differently

where the denominator
√

m in equation 2.4 is replaced with m. See section
2.4 for a theoretical analysis using the original definition of εs

m and section 2.6
for a comparison of empirical results of the two variants. We show in section
2.7 that this change is not desirable for stochastic MABs.

The REGA algorithm treats each action available at the current state as
an arm in a MAB setting. As such, the next arm to sample is chosen in
accordance with the ε-greedy MAB method. Let m be the number of samples
drawn at the current stage thus far. At first, all arms are uniformly sampled
up to a certain total number of purely exploratory/training simulations. After
that, with ties broken arbitrarily, the arm believed to be optimal is sampled
with increasing probability 1− εm. For each simulation and chosen action, the
MDP advances stochastically to a future stage si+1 according to the system
dynamics si+1 = f(si, ai, wi) (c.f. [72, 116]). The next state si+1 is once again
treated as a MAB. We continue to apply the ε-greedy method recursively until
the maximum horizon H is reached. Via backwards induction, the optimal
reward-to-go at each stage is estimated, and when applied to the initial state
of the MDP, we obtain an estimation of the optimal value function of the MDP.
Similar to AMS, the main advantage of REGA is that the reward-to-go need
not be computed for every state of the MDP, as the algorithm only considers
the states visited during sampling. As such, REGA is well-suited for MDPs
with very large state spaces.

25



Recursive ε-Greedy Algorithm (REGA)
Input: Stage i < H, state s ∈ S, ci ≥ 1, and Mi ≥ 1.
Initialization: V̂H(s) = 0, Q̂i(s, a) = 0 and M i

a(s) = 0 ∀ a ∈ A(s).
Loop (For m = 1, 2, ..., Mi):
{

1. Update the current optimal action âi.

âi = argmax
a∈A(s)

Q̂i(s, a)

2. Pick the next action to sample

āi =

{
âi, w.p. (1− εm)

(uniformly) random arm, w.p. εm

3. Generate wi
m ∼ U(0, 1) then simulate the next state f(s, āi, w

i
m) and

immediate reward R(s, āi, w
i
m).

4. Update Q̂i(s, āi) =

M i
āi

(s)Q̂i(s, āi) + V̂i+1 (f(s, āi, w
i
m)) + R(s, āi, w

i
m)

M i
āi

(s) + 1
. (2.5)

5. Update M i
āi

(s) = M i
āi

(s) + 1.

}
Output: V̂i(s) = argmax

a∈A
Q̂i(s).

Figure 2.3: The recursive ε-greedy algorithm (REGA)

We now provide a theoretical treatment of the convergence properties of
REGA. Before introducing the main result, the following lemma is needed to
justify some algebraic steps.

Lemma 2.3.1. Let c ≥ 1 be a fixed real number, and let M ≥ 1 and r >

26



(c2 + c)
2

be fixed integers. Then the following inequalities holds:

cM√
r + M + 1

<

r+M∑
i=r+1

− log

(
1− c√

i

)
<

(c + 1)M√
r

(2.6)

r+M∑
i=r+1

log2(1− c√
i
) < (c + 1)2 log

(
1 +

M

r

)
. (2.7)

Proof. Let x > (c2 + c)
2

and consider the function b(x) = − log (1− c/
√

x).
We have lim

x→∞
b(x) = 0 and b′(x) < 0. Therefore, b is positive and decreasing

in x, and so the definite integral of b can be bounded from below by the right-
hand Riemann sum, and from above by the left-hand Riemann sum, yielding

0 <

∫ r+M+1

r+1

b(x)dx ≤
r+M∑
i=r+1

b(i) ≤
∫ r+M

r

b(x)dx. (2.8)

To prove the first part, we lower bound the function b. Recall that the identity
log(1− y) < −y holds for y ∈ (0, 1). Since c/

√
x ∈ (0, 1), we obtain

b(x) >
c√
x
. (2.9)

Combining equations 2.8 and 2.9 yields

r+M∑
i=r+1

b(i) ≥
∫ r+M+1

r+1

b(x)dx >

∫ r+M+1

r+1

c√
x
dx

= 2c
(√

r + M + 1−√r + 1
)

=
2cM√

r + M + 1 +
√

r + 1

>
cM√

r + M + 1
,

which proves the first part. We now turn our attention to the second part of

our claim. For brevity, denote u =
(c2 + c)(

√
x− c)√

x− c2 − c
. It can be seen via basic

27



algebraic steps that

− log(1− c√
x

) = log

(
(u− c)(c + 1)

cu

)

= log(1− c

u
)− log(1− c

c2 + c
) =

∫ u

c2+c

c

t(t− c)
dt.

≤
∫ u

c2+c

c + 1

t2
dt =

c√
x− c

<
c + 1√

x
. (2.10)

Combining equations 2.8 and 2.10 yields

r+M∑
i=r+1

b(i) ≤
∫ r+M

r

b(x)dx ≤
∫ r+M

r

c + 1√
x

dx

= 2(c + 1)
(√

r + M −√r
)

=
2(c + 1)M√
r + M +

√
r

<
(c + 1)M√

r
.

This completes the proof of equation 2.6. We now prove equation 2.7. Squaring
both sides yields of equation 2.10 yields

log2(1− c√
x

) <
(c + 1)2

x
.

Therefore,
r+M∑
i=r+1

log2(1− c√
i
) <

r+M∑
i=r+1

(c + 1)2

i
. (2.11)

But 1/x is positive and decreasing for x > 0, therefore its definite integral can
be bound from below by the function’s righthand Riemann sum. Hence,

r+M∑
i=r+1

(c + 1)2

i
≤

∫ r+M

r

(c + 1)2

x
dx = (c + 1)2 log

(
1 +

M

r

)
,

which completes the proof.

Recall that the discrete probability distribution of the sum of independent
Bernoulli trails that are not identically distributed is known as the Poisson
binomial distribution. The following theorem gives a bound on the error of es-

28



timating the Poisson binomial distribution CDF using the “standard” Poisson
distribution CDF (c.f. [123], theorem 5.1).

Theorem 2.3.2. Let X1, ..., Xn be independent Bernoulli variables with re-
spective success probabilities p1, ..., pn. Assume that 0 < pi < 1 and let
λi = − log(1 − pi) for all 1 ≤ i ≤ n. Let Y (λ) denote a random variable
having the Poisson distribution with mean parameter λ. Then for each integer
m ≥ 1 we have

P

[
Y

(
n∑

i=1

λi

)
≤ m

]
≤ P

[
n∑

i=1

Xi ≤ m

]
≤ P

[
Y

(
n∑

i=1

λi

)
≤ m

]
+

1

2

n∑
i=1

λ2
i .

The following result appears in [43] as theorem 3.1 and extends Hoeffding’s
inequality to the case where the number of random variables averaged is itself
a random variable. We refer the reader to the original manuscript for a proof
of the result.

Theorem 2.3.3. Let {Xi : i = 1, 2, . . .} be a sequence of i.i.d. non-negative
uniformly bounded random variables, with 0 ≤ Xi ≤ D and E [Xi] = µ for all
i, and let M be a positive integer-valued random variable bounded from above.
Then for any real ε > 0 and integer N > 0 it holds that

P

[∣∣∣∣∣
1

M

M∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε,M ≥ N

]
≤ 2 exp

[
−N

(
D + ε

D
log

D + ε

D
− ε

D

)]
.

Before analyzing REGA, we first consider a simpler version of the algorithm
in which V̂i+1 is replaced with V ∗

i+1 in equation 2.5. This removes the recursion
from REGA under the assumption that the true reward-to-go at the next
stage is known, and thus reduces the problem from a multi-stage problem to a
single-stage problem. We refer to this algorithm as the non-recursive ε-greedy
algorithm (NREGA). Later on, we derive results pertaining REGA.

In what follows, we make use of the following additional notation. Define

Λ = max
{

(c2 + c)
2
, (c|A(s)|)2

}
and ξε = RmaxH+ε

RmaxH
log

(
RmaxH+ε
RmaxH

)
− ε

RmaxH
.

Note that ξε > 0 for ε > 0. Moreover, consider a fixed but arbitrary stage
i of the algorithm, state s and action a of the MDP. Denote by ai(t) the
arm played at iteration t of the algorithm. Let 1{ai(t) = a} be a random
variable indicating whether or not the chosen arm ai(t) is in fact arm a, and
let 1U{ai(t) = a} denote whether or not the arm was chosen (independently)
per the uniformly random rule in step 2 of the REGA algorithm (see figure

2.3). Let N i,M
a (s) =

M∑
t=1

1{ai(t) = a} be a random variable denoting the

29



total number of times action a is played during the first M iterations of the

algorithm at stage s. Similarly, let U i,M
a (s) =

M∑
t=1

1U{ai(t) = a}.
The following result is carved out from the proof of lemma 3.2 in [43]. It

was originally stated for the RASA algorithm but also applies to NREGA.

Lemma 2.3.4. For any positive integer N , it holds for NREGA that

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
≤ 2 exp[−ξεN ] + P

[
N i,M

a (s) ≤ N
]
.

Proof. By NREGA, the estimated reward to go of any action a after M iter-
ations of the algorithm is given by

Q̂i,M(s, a) =
1

N i,M
a (s)

N i,M
a (s)∑
j=1

(
R (s, a, wj) + V ∗

i+1 (s, a, wj)
)
.

Since the noise sequence of random variables {wj : j ≥ 1} are i.i.d, we
apply theorem 2.3.3 to obtain

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε,N i,M

a (s) ≥ N
]
≤ 2 exp[−ξεN ].

Now define the events AM =
{∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

}
and BM ={

N i,M
a (s) ≥ N

}
. By the law of total probability we have

P [AM ] = P [AM ∩ BM ] + P [AM |Bc
M ] P [Bc

M ]

≤ P [AM ∩ BM ] + P [Bc
M ]

≤ 2 exp[−ξεN ] + P
[
N i,M

a (s) ≤ N
]
.

This completes the proof.

The next lemma gives a finite time bound on the estimation errors of the
Q-functions induced by NREGA at the exit of the algorithm as a function of
the number of allocated simulations at each stage. The result is analogous to
lemma 3.2 in [43].

Lemma 2.3.5. Let ε > 0 and α ∈ (1, 2) be fixed. Consider a single stage of
NREGA applied to a MDP using parameters c ≥ 2

√
3 and a total number of

allocated simulations M large enouch such that M ≥ Λ1/α and Mα ≥ M + 2.

30



Then for any action a and state s, we have

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
<

(c + 1)2

2
log

(
1 + M1−α

)
(2.12)

+
ec√
2

(
c√
2

exp

{√
2− c√

2
− ξε

})M1−α/2

.

Proof. Consider a fixed but arbitrary stage i of the algorithm, state s and
action a of the MDP. By lemma 2.3.4, for any positive integer N we have

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
≤ 2 exp[−ξεN ] + P

[
N i,M

a (s) ≤ N
]
. (2.13)

We first bound the term P
[
N i,M

a (s) ≤ N
]
, and then replace N with an

appropriate function of M .
Indeed, N i,M

a (s) ≥ U i,M
a (s) ∀a ∈ A(s) and N i,M

a (s) > U i,M
a (s) for some

a ∈ A(s). Therefore, N i,M
a (s) dominates U i,M

a (s) almost surely. Hence,

P
[
N i,M

a (s) ≤ N
] ≤ P

[
U i,M

a (s) ≤ N
]

= P

[
M∑
t=1

1U{ai(t) = a} ≤ N

]
. (2.14)

For iteration t = 1, . . . , M of the algorithm, let εt be defined as per equation
2.4. Per the algorithm description, the random variables 1U{ai(t) = a} are
independent and have probabilities

P
[
1U{ai(t) = a} = 1

]
=

εt

|A(s)| =

{
c√
t
, t ≥ (c|A(s)|)2

1
|A(s)| , o/w

.

Let integer r ≥ Λ be a constant “shift” variable, and let X1, ..., XM be
independent Bernoulli variables with success probabilities pt = c√

r+t
. Since

pt ≤ εt

|A(s)| ∀ t = 1, . . . , M , then each random variable Xt is (first-order) stochas-

tically dominated by the corresponding random variable 1U{ai(t) = a} for any
fixed t. Hence, it holds that

P

[
M∑
t=1

1U{ai(t) = a} ≤ N

]
≤ P

[
M∑
t=1

Xt ≤ N

]
. (2.15)

Combining equations 2.14 and 2.15 yields

31



P
[
N i,M

a (s) ≤ N
] ≤ P

[
M∑
t=1

Xt ≤ N

]
. (2.16)

Let λt = − log(1 − c√
t
). We now applying theorem 2.3.2 to equation 2.16

which yields

P
[
N i,M

a (s) ≤ N
] ≤ P

[
Y

(
r+M∑
t=r+1

λt

)
≤ N

]
+

1

2

r+M∑
t=r+1

λ2
t . (2.17)

It is known that applying Chernoff bounds to a Poisson random variable
Y (λ) yields

P (Y ≤ y) ≤ e−λ(eλ)y

yy
, for y ≤ λ. (2.18)

Consider N ≤ cM√
r + M + 1

. It follows from lemma 2.3.1 that N ≤
r+M∑
t=r+1

λt.

Hence, we can apply the Chernoff bound from equation 2.18 to equation 2.17
to obtain

P
[
N i,M

a (s) ≤ N
] ≤ 1

2

r+M∑
t=r+1

λ2
t +

exp

[
−

r+M∑
t=r+1

λt

](
e

r+M∑
t=r+1

λt

)N

NN
. (2.19)

We wish to give an elementary upper bound on the righthand side of 2.19.

Since e−λ(eλ)y

yy is decreasing in λ for y ≤ λ, it follows from lemma 2.3.1 that

P
[
N i,M

a (s) ≤ N
] ≤ 1

2
(c + 1)2 log

(
1 +

M

r

)
(2.20)

+ exp

[
− cM√

r + M + 1

](
ecM

N
√

r + M + 1

)N

.

Now let r = dMαe and N = dM1−α/2e. For the bound in equation 2.20 to
converge to zero as M → ∞, it is necessary that α ∈ (1, 2). Moreover, the

condition N ≤ cM√
r + M + 1

is indeed satisfied since c ≥ 2
√

3 implies that

32



M ≥
( √

3

c−√3

) 2
2−α

⇔ M1−α/2 + 1 ≤ cM1−α/2

√
3

⇒ M1−α/2 + 1 ≤ cM√
Mα + M + 2

⇒ dM1−α/2e ≤ cM√
Mα + M + 2

⇔ N ≤ cM√
r + M + 1

,

where the second equation follows from the restriction Mα ≥ M + 2.
Substituting r and N into equation 2.20 and relaxing the bound yields

P
[
N i,M

a (s) ≤ N
] ≤ 1

2
(c + 1)2 log

(
1 +

M

Mα

)
+ (2.21)

exp

[
− cM√

Mα + M + 2

](
ecMα/2

√
Mα + M + 1

)M1−α/2+1

.

By the condition Mα ≥ M + 2, we have

exp

[
− cM√

Mα + M + 2

](
ecMα/2

√
Mα + M + 1

)M1−α/2+1

(2.22)

≤ exp

[
− cM√

2Mα

] (
ec√
2

)M1−α/2+1

= exp

[
−cM1−α/2

√
2

+ M1−α/2 + 1

](
c√
2

)M1−α/2+1

=
ec√
2

(
c√
2

exp

{√
2− c√

2

})M1−α/2

.

Combining equations 2.21 and 2.22 yields

P
[
N i,M

a (s) ≤ N
] ≤ (c + 1)2

2
log

(
1 + M1−α

)
+

ec√
2

(
c√
2

exp

{√
2− c√

2

})M1−α/2

.

(2.23)

33



Recall that N = dM1−α/2e and that ξε > 0 for ε > 0. Therefore, equation
2.13 can be relaxed to

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
<

(c + 1)2

2
log

(
1 + M1−α

)
(2.24)

+
ec√
2

(
c√
2

exp

{√
2− c√

2
− ξε

})M1−α/2

,

which completes the proof.

Corollary 2.3.6. Suppose the conditions of lemma 2.3.5 hold. Let Φ =
c√
2
exp

{√
2−c√
2
− ξε

}
< 1. If M is large enough such that ΦM1−α/2 ≤ M1−α,

then for any state s and action a we have

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
<

(c + 1)2 +
√

2ec

2
M1−α.

Proof. It is well-known (c.f. [142]) that log(1 + x) ≤ x for x > −1. The result
immediately follows by relaxing the bound in lemma 2.3.5.

Note that the result in corollary 2.3.6 can be made arbitrarily close to
O(1/M) in the limit by selecting α arbitrarily close to 2. However, as α is
increased towards 2, the minimum value of M for which the finite time bound
applies grows exponentially.

For purposes of our theoretical analysis, we now make the following as-
sumption that is identical to that made in [43].

Assumption 2.3.7. We assume that the optimal action at each stage of the
algorithm is unique, so that the MDP has a unique optimal policy. That is,
θ = min

s∈S,i=0,...H−1
θi(s) > 0, where θi(s) = min

a6=a∗
(V ∗

i (s) − Q∗
i (s, a)) ∀ s ∈ S, a ∈

A(s) and i = 0, . . . , H − 1.

Note that a small value of θ means increased difficulty in differentiating
between the truly optimal action and the best suboptimal action(s). Therefore,
θ measures the “size” of the problem.

We are finally ready to make the leap from NREGA to the recursive REGA
algorithm. We start by restating lemma 3.3 of [43] in a manner that is useful
and applicable to REGA1. We refer the reader to the original manuscript for
the proof.

1Equation 11 of Lemma 3.3 in [43] is unnecessarily loose, where N i
a(x) is bounded from

above by Ki+1 instead of Ki. Using the lemma as-is will cause our lower bound on the

34



Lemma 2.3.8. Consider REGA applied with Mi simulations allocated to each
stage i = 0, . . . , H − 1. Suppose that assumption 2.3.7 holds, and suppose that

δi ∈ (0, 1) satisfies P
(∣∣∣Q̂i,Mi

(s, a)−Q∗
i (s, a)

∣∣∣ > θ
2i+2

)
< δi for all i and s ∈ S.

At the exit step we have

P

(∣∣∣V̂0,M0(s0)− V ∗
0 (s0)

∣∣∣ <
θ

2

)
> (1− δ0)

H−1∏
i=1

(1− δi)
∏i−1

j=0 Mj .

The following definition is needed in the next theorem:

ξi =
RmaxH + θ/2i+2

RmaxH
log

(
RmaxH + θ/2i+2

RmaxH

)
− θ/2i+2

RmaxH
.

We now state our main result pertaining the REGA algorithm, in the form
of a finite-time bound on the probability that the approximation error of the
MDP value function will exceed half the size of the problem, i. e., θ/2. The
bound is given as a function of the number of simulations M0 allocated at the
first stage of the MDP.

Theorem 2.3.9. Suppose that assumption 2.3.7 holds and that the require-
ments of corollary 2.3.6 are satisfied for each stage i of the MDP, where ξε is

replaced with ξi. Let φ > 1 be fixed, and suppose that Mi =
i−1∏
j=0

M
φ/(α−1)
j for

all i = 1, . . . , H − 1. Denote Ψ = (c+1)2

2
+ ec√

2
. Then at the exit step of REGA

we have

P

(∣∣∣V̂0,M0(s0)− V ∗
0 (s0)

∣∣∣ <
θ

2

)
>

(
1−ΨM1−α

0

)HM
(α−1)/φ
0 .

Proof. By corollary 2.3.6, it holds for each stage i = 0, . . . , H − 1 that

P

(∣∣∣Q̂i,Mi
(s, a)−Q∗

i (s, a)
∣∣∣ >

θ

2i+2

)
< ΨM1−α

i .

probability in theorem 2.3.9 to converge to 0 instead of 1 as the number of simulations
at each stage of the MDP is increased to infinity, whereas one would expect the bound to
improve as the number of samples is increased. We necessarily use the tighter bound.

35



By lemma 2.3.8, we have

P

(∣∣∣V̂0,M0(s0)− V ∗
0 (s0)

∣∣∣ <
θ

2

)

>
(
1−ΨM1−α

0

) H−1∏
i=1

(
1−ΨM1−α

i

)∏i−1
j=0 Mj

=
(
1−ΨM1−α

0

) H−1∏
i=1

(
1−ΨM1−α

i

)M
(α−1)/φ
i

>
(
1−ΨM1−α

0

)HM
(α−1)/φ
0 ,

where the last inequality follows from the fact that (1−Ψx1−α)
x(α−1)/φ

is in-
creasing in x. This completes the proof.

We conclude by noting that the bound in theorem 2.3.9 goes to 1 as M0 →
∞.

2.4 The OREGA Method

In the previous section, we mentioned that the REGA method uses an ε-
greedy scheme that differs from the one commonly cited in the literature. In
this section, we consider a modification to REGA that is consistent with the
heavily-cited ε-greedy method of [13], where the denominator

√
m in equation

2.4 is replaced with m. We refer to this method as OREGA (original REGA).
The analysis of OREGA that we provide herein follows the same steps

provided in the previous section. The following result is needed to justify
some algebraic steps. It is analogous to lemma 2.3.1 and the proof is similar,
so we omit the proof.

Lemma 2.4.1. Let c > 1 be real-valued, and let r ≥ 1 and M ≥ 1 be fixed
integers. Then the following inequalities hold:

• If r > c + 1, then

0 < c log

(
1 +

M

r + 1

)
≤

r+M∑
i=r+1

− log
(
1− c

i

)
. (2.25)

36



• If r ≥ c2 + c, then

r+M∑
i=r+1

log2(1− c

i
) ≤ (c + 1)2 M

r(r + M)
. (2.26)

Now define Λ̄ = dmax (c2 + c, c|A(s)|)e. The following result pertaining the
one-stage non-recursive OREGA method (NOREGA) is analogous to lemma
2.3.5.

Lemma 2.4.2. Let ε > 0 be fixed. Consider a single stage of NOREGA applied
to a MDP using parameter c > 1 and a total number of allocated simulations
M large enough such that

M ≥
(

max

{
exp

[
exp

[
ξε(c− 1)

d2

]]
, exp

[
ξεce

1+ξε

d2

]
,
√

2Λ̄ + 1

})2

.

Then for any action a and state s, we have

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
<

2 (c + 1)2

√
M

.

Proof. The proof of lemma 2.3.5 applies until equation 2.16. From there, we
follow similar ideas but the derivation is different.

Let λt = − log(1 − c
t
). We now applying Theorem 2.3.2 to equation 2.16

which yields

P
[
N i,M

a (s) ≤ N
] ≤ P

[
Y

(
r+M∑
t=r+1

λt

)
≤ N

]
+

1

2

r+M∑
t=r+1

λ2
t . (2.27)

It is known that applying Chernoff bounds to a Poisson random variable X
with mean λ yields

P (X ≤ x) ≤ e−λ(eλ)x

xx
, for x ≤ λ. (2.28)

For brevity, let J = 1 + M
r+1

. Now consider N ≤ c log J . Since r > c + 1,

it follows from equation 2.25 that N ≤
r+M∑
t=r+1

λt. Hence, we can apply the

37



Chernoff bound from equation 2.28 to equation 2.27 to obtain

P
[
N i,M

a (s) ≤ N
] ≤ 1

2

r+M∑
t=r+1

λ2
t +

exp

[
−

r+M∑
t=r+1

λt

](
e

r+M∑
t=r+1

λt

)N

NN
. (2.29)

We wish to give an elementary upper bound on the righthand side of 2.29.

Since e−λ(eλ)x

xx is decreasing in λ for x ≤ λ, it follows from equation 2.25 that

exp

[
−

r+M∑
t=r+1

λt

](
e

r+M∑
t=r+1

λt

)N

NN
≤ exp [−c log J ] (ec log J)N

NN
(2.30)

=
(ec

N
log J

)N

J−c.

Moreover, by equation 2.26 we have

r+M∑
t=r+1

λ2
t ≤ (c + 1)2 M

r(r + M)
. (2.31)

Combining equations 2.29, 2.30 and 2.31 we obtain

P
[
N i,M

a (s) ≤ N
] ≤

[ec

N
log J

]N

J−c + (c + 1)2 M

2r(r + M)
. (2.32)

We now choose an appropriate value for N . In particular, we set

N =

⌊
c log J

log log J

⌋
. (2.33)

Note that

N ≤ c log J

log log J
⇔ N log log J ≤ c log J (2.34)

⇔ (log J)N ≤ J c

⇔ (log J)N J−c ≤ 1

38



and

1 ≤ log J

log log J
⇔(c− 1) log J

log log J
≤ c log J

log log J
− 1 (2.35)

⇒(c− 1) log J

log log J
≤

⌊
c log J

log log J

⌋
= N.

Therefore we have

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
(2.36)

< 2e−ξεN +
(ec

N

)N

(log J)N J−c + (c + 1)2 M

2r(r + M)

≤ 2e−ξεN +
(ec

N

)N

+ (c + 1)2 M

2r(r + M)

≤ 3
(
max

{
e−ξε ,

ec

N

})N

+ (c + 1)2 M

2r(r + M)

≤ 3

(
max

{
e−ξε ,

ec log log J

(c− 1) log J

}) (c−1) log J
log log J

+ (c + 1)2 M

2r(r + M)
.

where the second inequality follows by equation 2.34 and the last inequality
follows by equation 2.35 and the fact that the first term is decreasing in N .

It remains to select an appropriate value for r. The essential requirement
for the bound in equation 2.36 to converge to zero is that r →∞ and r/M → 0
as M → ∞. Ideally, one would optimize over r to arrive at the tightest
possible bound in 2.36. However, to simplify the bound, we chose r in the form
dMα − 2e for some α ∈ (0, 1). Although not necessarily optimal, a choice of

r =
⌈√

M − 2
⌉

allows to simplify the final result. Note that

J = 1 +
M

r + 1
≥ M

r + 1
≥ M(√

M − 1
)

+ 1
=
√

M. (2.37)

Moreover, note that r ≥ Λ̄ > 2 since c > 1. It hence holds that

M

2r(r + M)
≤ 1

2r
≤ 1

r + 2
≤ 1

(
√

M − 2) + 2
=

1√
M

. (2.38)

Since the first and second terms of equation 2.36 are decreasing in J and r,

39



respectively, equations 2.38 and 2.37 can be used to relax equation 2.36 to

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
(2.39)

< 3

(
max

{
e−ξε ,

ec log log
√

M

(c− 1) log
√

M

}) (c−1) log
√

M

log log
√

M

+ (c + 1)2 1√
M

≤ 3 (exp [−ξε(c− 1)])
log

√
M

log log
√

M +
(c + 1)2

√
M

,

where the last equation follows since the restriction M ≥ (
exp

[
ξεce

1+ξε
])2

implies that e−ξε ≥ ec log log
√

M

(c−1) log
√

M
. Moreover, it follows from the restriction M ≥

(exp [exp [ξε(c− 1)]])2 that

(exp [−ξε(c− 1)])
log

√
M

log log
√

M = M

( −ξε(c−1)

2 log log
√

M

)
≤ 1√

M
. (2.40)

Combining equations 2.39 and 2.40 and the fact that (c + 1)2 ≥ 3, it follows
that

P
[∣∣∣Q̂i,M(s, a)−Q∗

i (s, a)
∣∣∣ ≥ ε

]
≤ 2 (c + 1)2

√
M

.

Finally, note that the requirement r ≥ Λ̄ is satisfied for M ≥ (
Λ̄ + 1

)2
. This

completes the proof.

Finally, we give the analogues of theorem 2.3.9 pertaining the multi-stage
recursive OREGA algorithm. Define

βi =
(
max

{
exp [exp [ξi(c− 1)]] , exp

[
ξice

1+ξi
]
,
√

2Λ̄ + 1
})2

,

then the following result holds. We omit the proof as it is identical to that of
theorem 2.3.9.

Theorem 2.4.3. Suppose that assumption 2.3.7 holds and that the require-
ments of lemma 2.4.2 are satisfied. Let φ > 2 be fixed. Suppose that M0 ≥ β0

and that Mi =
i−1∏
j=0

Mφ
j for all i = 1, . . . , H − 1. Then at the exit step of

OREGA we have

P

(∣∣∣V̂0,M0(s0)− V ∗
0 (s0)

∣∣∣ <
θ

2

)
>

(
1− 2 (c + 1)2

√
M0

)HM
1/φ
0

.

40



We note that the bound in theorem 2.4.3 approaches 1 as M0 is increased
towards infinity. We conclude by noting that the bound on REGA provided in
theorem 2.3.9 is better than the bound on OREGA provided in theorem 2.4.3.
As we will discuss in section 2.6, REGA was found to empirically outperform
OREGA when applied to our benchmark problems. Nonetheless, it is unclear
from our analysis whether or not the provided bounds are tight, and so no the-
oretical conclusions comparing the two algorithms can be drawn solely based
on our results.

2.5 Practical Limitations

Value iteration and policy iteration are classical exact methods for solving
MDPs. One iteration of these methods has runtime complexity O(|S|2|A|)
and O(|S|2|A|+ |S|3), respectively, which are nonlinear in the size of the state
space |S|. On the other hand, the (O)REGA algorithm has runtime com-

plexity O

((
max

i=0,...,H−1
{Mi}

)H
)

, which is independent of the size of the state

space 2. Due to the backwards induction process, the runtime complexities of
(O)REGA, RASA and AMS grow exponentially as the sampling horizon H
is increased. Thus, these algorithms are particularly attractive for problems
with a large state space |S|, small action space |A| and small horizon H.

We now give two suggestions to dealing with MDPs with relatively large
horizons.

2.5.1 Rolling Horizon Control (RHC)

As [75] points out, one solution to the exponential runtime complexity issue
pertaining a large horizon H is to use rolling horizon control (RHC), also
known in the literature as receding/moving horizon control. RHC provides an
approximate solution to infinite horizon control problems in an online manner.
The basic idea is to consider a fixed horizon length to determine the best
policy/action at the current stage, ignoring stages far out into the future in
hopes that they have little effect on the decision being made at the current
stage. If the length of this “sliding” lookahead window is chosen to be large
enough, then the error induced by this approach can be made small.

2Although the runtime complexities are also independent of the size of the action space,
the accuracies of the algorithms are certainly dependent on the size of the action space. As
such, (O)REGA, RASA and AMS are generally not well-suited for MDPs with large action
spaces. Furthermore, unlike (O)REGA, AMS has to sample each action at least once.

41



To that effect, let πrh denote the rolling H-horizon control policy for some
fixed finite lookahead length H. The RHC framework proceeds by defining a
sequence of smaller finite-horizon problems with non-stationary optimal poli-
cies {π∗0, π∗1, ..., π∗H−1}, then returns a stationary optimal policy for the infinite
problem πrh = π∗0. For the discounted reward criterion, the value of the policy
induced by rolling horizon control converges to the true (infinite horizon) op-
timal value uniformly in the initial state. As such, the policy is asymptotically
optimal and the rate of convergence is geometric in the length of the rolling
horizon and is characterized by the discount factor γ. We emphasize that
the RHC policy is determined based on the sequence of finite horizon prob-
lem. Yet, its value function V πrh(s) is calculated against the original infinite
horizon problem.

As usual, for any initial state s ∈ S, let V ∗(s) denote the true optimal
value of the MDP. For an MDP with positive rewards, the following bound
appears in [73]:

0 ≤ V ∗(s)− V πrh(s) ≤ Rmax

1− γ
γH , s ∈ S.

2.5.2 Decreased Simulation Allocation into the Horizon

Another approach to dealing with the exponential runtime complexity of the
AMS and (O)REGA methods is to reduce the number of simulations allocated
for each stage as the horizon increases, especially in the case of discounted
future rewards. As such, if Mi denotes the number of simulations allocated to
stage i = 0, ..., H−1, we consider a non-increasing sequence {Mi} of simulation
allocations. The intuition here is that if the rewards obtained at future stages
are discounted, then they can potentially be of less significance. Note though
that our theoretical results outlined earlier require that the number of samples
be increased in future states to guarantee the provided convergence rates.
However, we believe these requirements are too strict, and our simulations in
the next section demonstrate that using a fixed number of samples per stage
can yield “good” results.

To illustrate the effect of a non-increasing sequence {Mi}, consider the two
MDP benchmark problems chain and loop that appear in [56]3.

chain As shown in figure 2.4, this MDP consists of five states, each with two
actions a and b. State 1 is the initial state. In many settings, the optimal
policy for this domain is to take action a all the time. This optimal policy
holds for the infinite horizon problem with discount factor γ = 0.99,

3Figures 2.4 and 2.5 are courtesy of [56].

42



as well as for the (non-discounted) finite horizon problem with horizon
H ≥ 6. The challenge is that learning algorithms can get trapped at
the initial state always taking action b, thus yielding a series of smaller
rewards. To achieve a stochastic setting, the actions are flipped with
“slip” probabilities 0.2.

Figure 2.4: The chain MDP benchmark problem

loop Depicted in figure 2.5, this MDP consists of two loops. State 0 is the
initial state, and actions are deterministic in this setting. A learning
algorithm can end up following a myopic solution consisting of always
picking action a at state 0 before backtracking from state 8 which has a
larger reward but is too far into the future. The optimal policy for this
problem is to pick action b everywhere.

Figure 2.5: The loop MDP benchmark problem

We empirically compare three intuitive simulation allocation sequences
{Mi} against our benchmark problems to gain some insight into their ef-
fect on the REGA algorithm. The sequences all share the property that
M0 ≥ M1 ≥ ... ≥ MH−1 ≥ 1. Two of the allocation schemas are geometric
in some decay constant α > 0, and have the form Mi = dαiM0e: One scheme
samples each stage proportionally to the amount of discounting applied at
that stage, i. e., α = γ, thus achieving Mi = dγiM0e with the intuition being
to allocate more samples towards stages with least discounted reward. The
other scheme counteracts the curse of dimensionality via exponential decay
using α = 1/2 to obtain Mi = dM0/2

ie. Such exponential decay will typically

43



Max Geometric Geometric Linear Fixed

Horizon Mi = d(1/2)iM0e Mi = dγiM0e Mi =
⌈
M0 − i M0−1

H−1

⌉
Mi = M0

V̂ Runtime V̂ Runtime V̂ Runtime V̂ Runtime

(sec) (sec) (sec) (sec)

1 2.00 0.018 2.00 0.001 2.00 0.001 2.00 0.001

2 3.80 0.002 3.80 0.007 3.80 0.001 3.80 0.005

3 1.62 0.016 5.42 0.087 2.71 0.004 5.42 0.116

4 6.88 0.071 6.88 1.981 6.88 0.061 6.88 3.529

5 8.19 0.183 8.19 43.679 8.16 0.962 DNF DNF

8 18.39 0.541 DNF DNF DNF DNF DNF DNF

10 22.98 0.741 DNF DNF DNF DNF DNF DNF

25 40.72 2.448 DNF DNF DNF DNF DNF DNF

Table 2.1: Performance of REGA against the chain benchmark problem us-
ing various sample allocation decay strategies with M0 = 32 and 1 minute
simulation timeouts

result in vast improvement in the runtime performance of REGA. The third
allocation scheme follows linear decay of the form Mi = dM0 − iαe. A choice
of α = M0−1

H−1
yields MH−1 = 1.

We run simulations for the three decaying simulation allocation sequences
as well as the constant allocation sequence where Mi = M0. We set the
discount factor to γ = 0.9 and the number of samples at stage zero to M0 = 32.
Each scenario was allowed to run for 1 minute before declaring that the run
did not finish (denoted by DNF ).Tables 2.1 and 2.2 summarize the results for
the chain and loop benchmark problems, respectively. We observe that the
geometric decay strategy with α = 1/2 outperforms the other strategies. In
particular, we note that out of all four simulation allocation strategies, the
geometric decay strategy with α = 1/2 is the only one useful in practical
problems. The other allocation strategies do not run in reasonable time even
for basic small problems when the horizon of the problem is large. Moreover,
in cases were the runs with other allocation strategies did in fact complete
within the imposed deadline on the simulation, the geometric decay strategy
with α = 1/2 returned a value function that is on par, yet at a significantly
smaller fraction of the runtime cost.

2.6 Empirical Results

In this section, we provide emperical results that compare our (O)REGA algo-
rithm against other algorithms. But first, we introduce the SysAdmin bench-
mark problem.

44



Max Geometric Geometric Linear Fixed

Horizon Mi = d(1/2)iM0e Mi = dγiM0e Mi =
⌈
M0 − i M0−1

H−1

⌉
Mi = M0

V̂ Runtime V̂ Runtime V̂ Runtime V̂ Runtime

(sec) (sec) (sec) (sec)

1 0.00 0.120 0.00 0.001 0.00 0.001 0.00 0.001

2 0.00 0.002 0.00 0.006 0.00 0.001 0.00 0.005

3 0.00 0.016 0.00 0.082 0.00 0.006 0.00 0.106

4 0.00 0.071 0.00 1.940 0.00 0.059 0.00 3.355

5 1.31 0.173 1.31 38.727 1.31 0.869 DNF DNF

8 1.31 0.508 DNF DNF DNF DNF DNF DNF

10 2.08 0.778 DNF DNF DNF DNF DNF DNF

25 2.95 2.325 DNF DNF DNF DNF DNF DNF

Table 2.2: Performance of REGA against the loop benchmark problem us-
ing various sample allocation decay strategies with M0 = 32 and 1 minute
simulation timeouts

2.6.1 The SysAdmin Problem

In what follows, we demonstrate the performance of (O)REGA when applied to
the well-known SysAdmin discrete-time problem (c.f. [66]). In the SysAdmin
problem, a system administrator manages B computing machines that are con-
nected via a known network configuration, so that each machine b = 1, . . . , B
is connected to a subset of “neighbor” machines N(b). Let Ih

b denote the
state of machine b at horizon h = 0, . . . , H − 1, where Ih

b = 1 indicates that
the machine is in working state, and Ih

b = 0 indicates that the machine is in
faulted state. The state of the system at time h can be captured as a binary
vector < Ih

1 , Ih
2 , . . . , Ih

B >, and so the size of the state space is 2|B|, which is
exponential in the number of machines. At each time step, the system ad-
ministrator collects rewards r(b) associated with each machine b that is in

working state. The objective is to maximize E

[
H−1∑

h=0

B∑

b=1

r(b) Ih
b

]
, the expected

total non-discounted reward over the entire horizon of the problem, where the
expectation is taken with respect to machine states.

At each time step, the system administrator has to decide to either reboot
a particular machine, or not reboot any machine at all. Only one machine
can be rebooted at each time step. Hence, the action space consists of |B|+ 1
actions. We denote the action taken at each horizon h by a binary vector
< Ah

1 , A
h
2 , . . . , A

h
B >, where Ah

b = 1 if machine b is rebooted, and Ah
b = 0

otherwise. Since at each time step at most one machine can be rebooted, we

45



have 0 ≤
B∑

b=1

Ah
b ≤ 1.

Machine states are controlled via the following rules: If any machine in
N(b) is in faulted state, then b will also fail with high probability p1. On the
other hand, if none of the machines in N(b) are in faulted state, then b can
still fail with a much smaller probability p2. When a machine is rebooted, it
will fail to start up in working state with a very small probability p3. The
transition probabilities for each machine can be formally stated as follows:

1. A faulted machine that is not rebooted will remain in faulted state.

P
(
Ih+1
b = 0 | Ih

b = 0 , Ah
b = 0

)
= 1.

2. A machine in working state that is not rebooted will become in faulted
state with different probability depending on the state of neighbor ma-
chines.

P
(
Ih+1
b = 0 | Ih

b = 1 , Ah
b = 0

)
=

{
p1, if ∃ β ∈ N(b) s.t. Ih

β = 0

p2, o/w

P
(
Ih+1
b = 1 | Ih

b = 1 , Ah
b = 0

)
=

{
1− p1, if ∃ β ∈ N(b) s.t. Ih

β = 0

1− p2, o/w

3. Rebooting a machine can result in it becoming in faulted state (regardless
of its current state).

P
(
Ih+1
b = 0 | Ih

b ∈ {0, 1} , Ah
b = 1

)
= p3.

P
(
Ih+1
b = 1 | Ih

b ∈ {0, 1} , Ah
b = 1

)
= 1− p3.

Typically, in the literature, the SysAdmin problem is modeled as a finite hori-
zon discrete-time MDP with total (non-discounted) reward criteria. Due to the
size of the state space, it is often cited in articles related to so-called factored
MDPs (c.f. [66]).

2.6.2 Results

We consider two network topologies: A ring configuration and a star config-
uration. In the ring configuration, each machine b ∈ B is connected to two
neighbor machines b− 1 and b + 1 (arithmetic taken modulo |B|). In the star

46



Figure 2.6: Example network topologies

configuration, there is one central server, and all other machines are connected
only to the central server. The two topologies are depicted in figures 2.6.

In addition to REGA, RASA and OREGA, we also consider the trivial
purely greedy strategy (PGS) where each action is sampled exactly once, after
which each iteration of the algorithm plays the machine with highest observed
average reward. We also simulate AMS and its two variants AMS1 and AMS2
previously mentioned in equations 2.2 and 2.3. We simulated all algorithms
against the cycle and star network topologies of 10 machines with an initial
state of all machines being online. The problems have state spaces with 210

states and action spaces with 11 actions. We set the horizon of the problem
to H = 3. The number of simulations was set to a constant across all stages,
i. e., M1 = M2 = M3. The reward of each machine b being online was set
to b, instead of being fixed across all machines, in order to eliminate any
simplifications introduced by symmetry where trivial strategies can perform
well. The machine failure rates were set to p1 = 0.7, p2 = 0.1 and p3 = 0.01.
For REGA and OREGA, we set the parameters ci to c1 = c2 = c3 = 6, and
for RASA we set the tunable parameter µi = 1 − 2−1/Mi as was chosen in
the simulations described by the original paper [43]4. Each simulation was
repeated 30 times in order to calculate the average reward and standard error
for each setting. AMS1 performed best, followed by REGA and RASA which
were found to have similar performance, and as expected both algorithms
outperformed the trivial PGS policy. Interestingly OREGA did not perform
as well as REGA and RASA. Tables 2.3 and 2.4 summarizes the results of
our simulations. The same results are plotted in figures 2.7 and 2.8. For both
networks, the optimal value is V ∗ = 149.93, which was obtained via value
iteration.

Recall the parameters ci in REGA and OREGA control the amount of

4The performance of the ε-greedy method (and thus REGA and OREGA) is generally
sensitive to the choice of values ci. Our choice is not necessarily the best, but was found to
perform well. We experiment later in this chapter with the effect of varying ci.

47



Mi REGA RASA OREGA AMS AMS1 AMS2 PGS

35 160.8(0.99)158.7(0.85)161.0(0.92)118.2(1.03)159.2(1.18)142.3(1.68)139.8(0.77)

50 157.9(0.82)157.0(0.87)155.9(0.81)118.4(0.86)156.1(0.89)141.5(1.34)136.7(0.76)

75 151.0(0.81)150.5(0.84)149.6(1.03)119.7(0.56)151.6(0.99)143.0(1.28)135.1(0.43)

100148.1(0.88)147.1(0.65)143.7(0.58)120.5(0.81)147.5(1.48)143.7(0.81)132.7(0.51)

125144.6(0.43)145.0(0.52)140.2(0.62)121.7(0.47)148.7(1.48)143.6(1.04)132.3(0.42)

150144.5(0.52)144.5(0.73)138.7(0.49)122.8(0.54)149.7(2.22)139.6(0.83)131.4(0.33)

175142.6(0.50)141.8(0.46)137.0(0.36)122.7(0.53)148.0(2.91)139.8(0.89)131.2(0.33)

200142.1(0.41)141.9(0.56)136.3(0.31)122.0(0.43)147.0(1.80)140.1(0.59)131.8(0.35)

225140.7(0.42)141.5(0.57)135.5(0.29)122.3(0.23)148.5(2.43)137.4(0.67)130.3(0.27)

250140.7(0.39)140.8(0.48)135.0(0.27)122.4(0.38)146.9(2.91)139.1(0.75)131.2(0.39)

Table 2.3: Performance of REGA, RASA, OREGA, AMS and PGS against a
cycle network configuration of 10 machines with machine failure probabilities
p1 = 0.7, p2 = 0.1, p3 = 0.01. The optimal value is V ∗ = 149.93.

Mi REGA RASA OREGA AMS AMS1 AMS2 PGS

35 162.7(0.58)159.5(0.93)163.6(0.34)118.9(1.11)157.4(1.66)140.6(2.17)145.2(0.76)

50 158.7(0.72)158.7(0.69)156.3(0.78)118.9(0.99)153.5(1.16)143.5(2.24)141.4(0.64)

75 153.6(0.79)152.4(0.73)152.9(0.65)120.8(0.89)155.1(1.59)145.7(1.63)139.2(0.46)

100149.6(0.52)149.9(0.60)146.7(0.58)122.6(0.74)150.5(1.39)145.2(0.84)138.4(0.47)

125149.4(0.61)147.3(0.57)143.5(0.50)122.8(1.02)152.8(2.70)144.6(1.09)137.8(0.40)

150147.8(0.44)148.0(0.47)142.4(0.32)124.4(0.90)149.7(1.16)144.0(0.99)138.0(0.37)

175146.1(0.48)146.3(0.41)141.7(0.39)123.5(0.63)153.0(2.43)142.5(0.60)137.9(0.46)

200145.8(0.51)145.9(0.50)141.3(0.29)123.5(0.55)150.4(1.94)143.7(0.54)136.4(0.40)

225145.4(0.40)145.0(0.49)140.5(0.27)124.0(0.61)150.9(1.96)143.1(0.74)137.0(0.27)

250145.1(0.37)144.7(0.48)140.3(0.26)123.4(0.31)151.7(2.69)144.3(0.68)136.5(0.37)

Table 2.4: Performance of REGA, RASA, OREGA, AMS and PGS against a
star network configuration of 10 machines with machine failure probabilities
p1 = 0.7, p2 = 0.1, p3 = 0.01. The optimal value is V ∗ = 149.93.

48



Figure 2.7: Performance of REGA, RASA, OREGA, AMS and PGS against a
cycle network configuration of 10 machines with machine failure probabilities
p1 = 0.7, p2 = 0.1, p3 = 0.01.

Figure 2.8: Performance of REGA, RASA, OREGA, AMS and PGS against a
star network configuration of 10 machines with machine failure probabilities
p1 = 0.7, p2 = 0.1, p3 = 0.01.

49



Figure 2.9: Effect of the exploration control parameters ci on REGA when
applied to a cycle network configuration of 10 machines with machine failure
probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01.

exploration via the definition of εs
m in equation 2.4. In [13], the authors discuss

how the observed empirical performance of the ε-greedy MAB (for a traditional
single-stage stochastic MAB) algorithm is generally sensitive to the parameters
c. Simulations for the effect of ci on the cycle and star benchmark problems
are summarized in figures 2.9 - 2.12. We found in our experiments that REGA
is generally not very sensitive to the values ci. On the other hand, OREGA
is more sensitive for experiments with smaller simulation allocations per stage
Mi, but not as sensitive to ci for larger Mi at each stage i. This can be
seen from the spacing between the plots for each value of ci. When further
spaced out, that is indication of higher sensitivity to the value of ci, and when
“bunched” together, that is indication of low sensitivity to ci.

2.7 A Note on the Generalized Epsilon-Greedy

Method and Regret of MABs

We discussed earlier how a changed to the exploration-exploitation model pro-
posed by Auer in [13] provides improved empirical results when estimating
the value function of an MDP. That is, REGA outperformed OREGA in our
experiments. It is thus natural to consider whether or not the same change can
yield improved results when the objective is to minimize regret for the classical
stochastic MAB. It turns out that such modification is actually not desirable,
as the resultant MAB algorithm can be shown to no longer attain logarithmic

50



Figure 2.10: Effect of the exploration control parameters ci on OREGA when
applied to a cycle network configuration of 10 machines with machine failure
probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01.

Figure 2.11: Effect of the exploration control parameters ci on REGA when
applied to a star network configuration of 10 machines with machine failure
probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01.

51



Figure 2.12: Effect of the exploration control parameters ci on OREGA when
applied to a star network configuration of 10 machines with machine failure
probabilities p1 = 0.7, p2 = 0.1, p3 = 0.01.

regret as does Auer’s original ε-greedy method. We include empirical results
that demonstrate how the regret can rapidly increase when deviating from the
original exploration-exploitation model proposed by Auer in [13], but first we
provide the theoretical analysis.

Consider a generalization to Auer’s ε-greedy method outlined in figure 1.1,
where the real-valued parameter α > 0 is introduced so that

εα
n = min

{
1,

cK

d2nα

}
. (2.41)

The following result asserts that for α ∈ [0, 1), it is impossible for the
generalized ε-greedy method to achieve logarithmic regret. Although we are
unable to prove it, we conjecture that the same suboptimality persists for
α > 1.

Theorem 2.7.1. Let K > 1. For all reward distributions ν1, ..., νK with sup-
port in [0, 1], suppose that the generalized ε-greedy algorithm from figure 1.1
(but using equation 2.41) is run with α ∈ [0, 1) and 0 < d ≤ min

i:µi<µ∗
∆i.

Then the probability that a suboptimal arm j is chosen after any number

n ≥ (cK/d2)
1/α

of plays is strictly larger than c/ (d2n). Thus, the general-
ized ε-greedy algorithm cannot achieve logarithmic regret.

Proof. Let In be the arm sampled at iteration n, and consider any subop-

timal arm j. For n ≥ (cK/d2)
1/α

, it holds that εα
n = cK/ (d2nα). Per the

52



MAB ID 1 2 3 4 5 6 7 8 9 10

1 0.9 0.6

2 0.55 0.45

3 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

4 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Table 2.5: Various MAB problems (courtesy of [13])

“randomized” exploration step outlined in figure 1.1, we have

P [In = j] ≥ εα
n

K
=

c

d2nα
>

c

d2n
.

The result follows by aggregating over n.

Recall that in the closely-related theorem 1.4.1, Auer showed that the orig-
inal ε-greedy method attains instantaneous regret P [In = j] of order c/(d2n)+
o(1/n). Hence, Auer’s algorithm is indeed superior. In fact, Auer’s algorithm
attains logarithmic regret which is the best one can achieve. Furthermore,
recall that REGA uses a sequence {εα

n} with α = 1/2 which allows for more
exploration that benefitted the case of estimating the value function in the
MDP setting, but such choice clearly causes large regret when considering a
“pure” single-stage stochastic MAB problem.

In the remainder of this section, we re-run some of the experiments carried
out in [13] for α ∈ {1/2, 1, 2} using various values for the tuning parameter
c. Table 2.5 outlines some MAB problems that appear in [13]. Each row
indicates a separate MAB problem, and each column represents an arm of
the MAB. Each arm i returns a binary reward in {0, 1} following a Bernoulli
distribution with success probability µi. The cells of the table show the values
µi. Problems 1 and 2 each have two arms whereas problems 3 and 4 each have
10 arms. Problems 1 and 3 are easier than problems 2 and 4 since for the
latter µ∗−µi are smaller and the reward distributions of the optimal machines
have larger variances. As in [13], each simulation was performed 100 times for
105 iterations. The results for each of the four MAB problems are depicted
in figures 2.13 - 2.16. We observe in the graphs that ε

1/2
n performs better for

smaller values of c, i. e., c = 0.15 whereas ε2
n performs better for larger values

of c, i. e., c = 6. Moreover, a well-tuned ε2
n outperforms a well-tuned ε

1/2
n .

The original ε-greedy method of Auer (i. e., ε1
n) is generally best-tuned using

small c ∼ 0.15. All three variants of the algorithm, when well-tuned, perform
reasonably well for the simpler MAB problems 1 and 3. The distinction in
performance is more pronounced for the relatively difficult problems 2 and 4.

53



Figure 2.13: A comparison of various generalized ε-greedy algorithm for MAB
problem #1

Figure 2.14: A comparison of various generalized ε-greedy algorithm for MAB
problem #2

54



Figure 2.15: A comparison of various generalized ε-greedy algorithm for MAB
problem #3

Figure 2.16: A comparison of various generalized ε-greedy algorithm for MAB
problem #4

55



2.8 Concluding Remarks

We introduced REGA and its variant OREGA, recursive methods based on
the well-known ε-greedy multi-armed bandit algorithm useful for numerically
solving MDPs with (possibly large) state spaces but small action spaces. We
provided a finite-time analysis of REGA and OREGA, and showed that the
bounds on the errors induced by the algorithms approach zero as the number
of sample points at each stage of the MDP is increased. The algorithms were
tested empirically against the SysAdmin benchmark problem with up to 210

states and compared to other closely related algorithms that appear in the
literature. In our experiments, we found that a modification to the explo-
ration/exploitation trade-off model of the ε-greedy method commonly cited
in the literature yields improved results in practice against multi-stage MDP
problems (i. e., REGA vs. OREGA). As discussed in section 2.7, while this
modification aids in obtaining better results for the adaptive sampling MDP
framework, we proved that the same change will produce inferior results if
applied to the classical stochastic MAB problem with objective of minimizing
regret.

There remain many open problems and areas for future work. It would
be interesting to construct a counterpart algorithm that is useful for MDPs
with large action space and small state space. It would be of interest to
carry out a formal theoretical analysis comparing, in probability, the relative
performance of REGA, RASA and AMS. An open problem is to find a MAB-
based algorithm that can explicitly spell out a near-optimal policy rather than
only the optimal value of the MDP (c.f. a relevant discussion in section 2.5
of [86]). To the best of our knowledge, work along this path has not been
conducted to date. Finally, AMS1 and AMS2 are known to converge to the
truly optimal value of the MDP w.p.1 (c.f. [75], section 3.4.1), but finding
bounds on the rate of convergence of the two algorithms remains an open
problem.

56



Chapter 3

Scheduling in the e-Discovery
Domain

3.1 Introduction

In this chapter we introduce a topic of extreme significance to the legal in-
dustry, pertaining to the ability of sifting through large volumes of data in
order to identify the “needle in the haystack” electronic documents related
to a lawsuit or investigation. Looking at the task from a parallel computing
and scheduling perspective, we highlight the main properties and challenges
pertaining to the problem at hand, and propose an approach to abstract the
problem into mathematical form. We hypothesize that the statistical proper-
ties of the subtasks at hand can be exploited to produce competitive schedules.
We discuss an approach to the problem based on related work from the field
of scheduling theory and provide simulation results that demonstrate the per-
formance of our approach. We also provide a novel approach that weds a
side multi-armed bandit to list-based scheduling. Necessarily, we propose the
first MAB algorithm that accounts for both sleeping bandits and bandits with
history.

When a legal investigation takes place, the involved entities are required
to provide certain evidence and/or documentation as ordered by the court.
For larger organizations and corporations, this often means plowing through
many systems and large amounts of data in search of records related to the
case. Failure to provide the mandated evidence in a timely manner may result
in imposed penalties against the offending entity. Since Moore’s Law has it
that the amount of data in the world doubles every 20-24 months, it becomes
imperative that the discovery process be automated.

Electronic Discovery, or e-Discovery for short, refers to the process of iden-

57



tifying, collecting, and searching electronic data with the objective of using it
as evidence in a civil or criminal legal case. Locating the relevant data is an
interesting problem in its own right, but is not one that we cover in this work.

Once located, the data must be harvested in a forensically-sound manner
that maintains the integrity of the file contents, as well as any system-level
meta data such as system dates. Proper collection techniques are covered
under the field of forensics. A wide array of commercial off-the-shelf products
are in existence today.

The data collected will, in general, be highly non-normalized. For example,
most data sets are composed of many different file types, some files may be
encrypted or password protected, a large amount of duplicated files can be
present, and irrelevant system files may have not been filtered out in order
to simplify the data collection process. The data need not be harvested in a
single pass, as it is common to provide rolling deliveries of collected data for
examination. Furthermore, data will generally be nested in layers, where a
file can contain one or more attachments and embedded objects, all of which
need to be captured and analyzed in a recursive manner since they can have
attachments of their own.

In order to accommodate queries with different search criteria, commonly
referred to in the industry as “search terms”, a data processor is used to nor-
malize and index the data into a searchable database. To shed some light on
what we mean by data normalization, consider a data set containing two files:
A Microsoft Word document, and a Unix e-mail message. The Word docu-
ment has an “author” and a “creation date”, and the e-mail message has a
“sender” and a “date sent” property. The data processor will map the author
of the Word document and the sender of the e-mail message into the CRE-
ATOR property, and the two dates are mapped into the CREATION DATE
property. Going forward, we refer to the component responsible for this data
“massaging” as the Data Processor, or the Processor for short, which we treat
as a black box. The data processor is a software program that receives sup-
ported file types as input, extracts and normalizes their contents, and then
optionally outputs the results to a searchable database or filesystem. It must
also discover and handle the attachments found within the files that it receives.

Indeed, multiple data processors can work in parallel to crawl the entire
data set in an efficient manner. However, decomposing the data set for parallel
processing is not a trivial task. In fact, the scheduling problem with arbitrary
task processing times is known to be NP-hard [95]. It is hence natural to
search for near-optimal scheduling policies instead. The metric of interest
that we consider is the makespan of the schedule produced by the scheduling
algorithm, that is, the total time it takes to process the entire data set at

58



hand. We casually refer to this problem as the e-Discovery scheduling problem.
The rest of the chapter is organized as follows: Section 3.2 outlines a formal
model of the e-Discovery problem. Section 3.3 discussed a relevant POMDP
approach that appears in the literature. Section 3.4 outlines some related
results from the field of scheduling theory. Section 3.5 describes an online real-
time algorithm based on ideas from scheduling theory. Section 3.6 provides
a novel approach that incorporates a side multi-armed bandit in conjunction
with the previously discussed ideas from scheduling theory. Simulation results
are provided in section 3.7. Concluding remarks and directions for future work
are given in section 3.8.

3.2 A Formal Model

In this section, we aim at formalizing a model that captures the e-Discovery
scheduling problem. The data to be processed consists of a collection of top
level files that exist on the file system. Each top level file can (potentially)
have some attachments, each of which can have attachments of their own. We
will refer to the attachments as attached files.

In graph theory, an out-tree is a rooted tree, i. e., it has one root and each
node has exactly one predecessor node in the tree. The root node naturally
does not have a predecessor. An out-forest is a collection of out-trees. Figure
3.1 depicts an out-forest with three out-trees. Each node in a tree has a level
that signifies its depth within the tree, and we adopt the notion that the level
of a node is 1-based, that is, the root has level 1, the immediate child nodes
of the root have level 2, etc. The depth of each tree is the maximum level of
all (leaf) nodes in the tree.

We visualize the data set to be processed in e-Discovery as an out-forest,
where each top level file is a root of an out-tree, and the attachments are
descendant nodes. A directed edge exists from the root to each of its immediate
attachment nodes at level 2. In turn, any attachment node at level l ≥ 2 can
have attachments of its own at level l + 1, and a directed edge exists from
each “parent” to “child” node. The leaf nodes are files that do not have any
attachments. In general, a file at level l ≥ 1 will have zero or more children
at level l + 1. In what follows, we denote by A(f) the set of attachments of
file f , and by integer N(f) = |A(f)| ≥ 0 we denote the number of successors
(i. e., attachments) of file f .

In practice, the files encountered in e-Discovery can be of any file type, but
the number of different file types is finite, albeit large, and several file types
can have similar statistical properties when considering properties of interest
to the modeler. We suppose that each file encountered during processing can

59



Figure 3.1: An out-forest with three out-trees.

be classified as having one of file types in F = {F1,F2, . . .}.
The entire data set is processed by a finite set of identical processing ma-

chines M = {M1,M2, . . .}, with the number of machines being significantly
smaller than the total number of nodes in the out-forest (top level plus attach-
ments). While processing machines can work on different files in parallel, we
make a practical assumption that each machine can only process one file at a
time. Within the context of the e-Discovery scheduling problem, the structure
of the data tree is unknown, and file migrations involve transfers over the net-
work, and are thus quite costly. Moreover, all processing machines are uniform
in terms of their processing power, and so we avoid preemptive algorithms even
though non-preemptive scheduling algorithms are known for producing sched-
ules of lower quality, and the “good” schedules are generally too complex for
implementation in practice [23]. Since we do not allow preemptions, once a
machine begins processing a file it cannot be interrupted and must complete
processing the file. However, the parent file and its attachments need not be
processed on the same machine. Yet, we do allow reassigning to a different
machine ḿ a task previously mapped to another machine m if the latter has
not yet begun working on the task. Finally, a file already processed is not
permitted to be reprocessed, and so each file is processed exactly once.

At time zero, all top level files exist on some “source” storage device that
is accessible to all processing machines 1, and data has not been copied yet

1The source storage device can be modeled as a “special” processing machine with
infinite processing costs so that it is not chosen by any (reasonable) scheduling policy. The
cost of copying from this machine is set appropriately per the actual cost of copying from
the storage device. This allows for easier simulations and modeling of the problem.

60



to any of these machine. Moreover, at time zero, only the top level files are
known and the attachment nodes are not known to exist yet. As progress is
made, attachments are uncovered and can be processed by either the same
machine that processed their parent or on different machines. The edges of
each out-tree denote precedence constraints so that a parent must be processed
before its attachments are uncovered and later processed. The objective is to
minimize the makespan. Due to precedence constraints, the last file to be
processed is necessarily a leaf node.

Before a machine can process a file, whether top level or an attachment,
the machine must obtain a local copy of the file. There is always a copy cost
associated with processing top level files. Ideally, the file is copied directly from
the client’s source storage device rather than from another processing machine,
since that signifies the first time the file is copied. As for attachments, there
is an (optional) copy cost depending on whether or not the attachment is
processed on the same machine where its parent was processed. The general
rule of thumb adopted here is that when a parent is processed on machine m ∈
M, its attachments are extracted locally to the hard drive of machine m. If
later on machine m processes one of the attachments and finds it to exist on its
local hard drive, then a copy cost is not incurred for processing the attachment.
However, if machine m no longer has a copy of the attachment locally (perhaps
there was need to free space on the machine in order to accommodate other
tasks), or a machine other than m processes the attachment, then a copy cost
will be incurred.

We adopt a notion where copy costs are measured in terms of the time
it takes to copy the file from source to destination machine, and that copy
costs are proportional to the size of the files being copied. For any network,
file transfer times are in general random due to external factors such as copy
activities initiated by other users of the network. Suppose this randomness
is captured by a (usually) small bounded random variable ω ≥ 1 drawn from
an unknown distribution. Two costs are incurred when copying a file having
size s bytes over the network: A latency b to initiate the copy request, and a
streaming cost linear in s. For a network with speed of T bytes/second, the cost
to copy a set of k files {a1, a2, . . . , ak} having file sizes si = s(ai)∀ i = 1, . . . , k
(in bytes) is given by the function 2

C(a1, a2, . . . , ak) = ω

(
k b +

1

T

k∑
i=1

s(ai)

)
. (3.1)

2For simplicity, in our experiments we set the network latency l = 0 and network state
random multiplier factor ω = 1. The file sizes of the nodes that we sample are however
randomized and that captures the randomness of the problem at hand.

61



We now discuss processing costs. Consider an arbitrary file a with file type
ft ∈ F , size s ≥ 0 bytes, and let l ≥ 1 denote the level of the file in its out-tree.
When convenient, we denote such file by the tuple a =< ft, s, l >. Upfront
before the file is processed, its file type, file size and level in the tree are all
known3, but the same information pertaining its attachments as well as the
number of attachments are unknown. A random variable X(a) drawn from
an unknown distribution represents the cost (per byte) of processing the file
and extracting its attachments as “stand-alone” files to the local disk of the
processing machine. This is when the attachments become known and added
as successors to the out-tree of file a, thus becoming eligible to be processed.
Recall that the set A(a) denotes the attachments of file a. The cost of fully
handling all nodes of an out-tree with root a is denoted by H(a) and can be
computed recursively using

H(a) = s(a) X(a) +
∑

n∈A(a)

H(n). (3.2)

Although the files processed in a job can be of arbitrary flavor, in prac-
tice data from the same legal matter can be generally assumed to follow the
principle of locality, so that future data tends to be similar to historic ones
previously observed. We consider four families of empirical distributions that
we track over time based on observations collected throughout the lifetime
of the legal case. For each of the following four families, the file type and
level of the node in the out-tree define an instance of the family. That is, a
different distribution is tracked for each file type and node level combination.
Let L = 10 be the maximum attachment depth observed in most situations in
practice, then the four distribution families are as follows:

Definition 3.2.1. Consider any node in a data tree. Let ft denote a file
type and l ∈ {1, . . . , L} denote the level of the node, then define the following
families of distributions for each combination of ft and l:

• Probability distribution of file type ft appearing at a level l:

Denote this probability by f(ft, l) ∈ [0, 1] such that
∑

∀ft∈F
f(ft, l) = 1

for each fixed 1 ≤ l ≤ L.

• Processing cost per byte for a node at level l of file type ft:
Denote this cost by x(ft, l). This cost does not include the cost of

3We make a simplifying assumption that the file type is known up front, whereas in
reality that is not necessarily the case. One can certainly make use of the file extension or
a lightweight file check command, but that can return an incorrect file type on occasion.

62



processing the attachments of the file, and can be used to estimate the
value of X that appears in equation 3.2.

• Number of attachments of file type ft at level l: Denote the
number of attachments by n(ft, l), which can take on nonnegative integer
values.

• File size for file type ft at level l: Denoted by s(ft, l), the size of
any file can take on nonnegative real values if tracked in higher units
such as kilobyte, or nonnegative integers if tracked in bytes.

Since historical data for each file type and level combination need not be
always available, some interpolation may be necessary in practice. Likely to
be most useful is the observation that for a fixed file type ft, n(ft, l) and
s(ft, l) are generally non-increasing in the level l. The intuition here is two
fold: Theoretically, if that were not the case, then we would not expect an
out-tree to be of finite size. Furthermore, a ZIP file or email archive found on
the file system usually has file size and attachment count larger than a ZIP
file found attached to an email document, etc. On the other hand, another
reasonable assumption that is useful is that x(ft, l) is dependent on the file
type ft but independent of the level l, as the processing software need not care
whether or not a file is an attachment vs. top level.

We conclude this section by noting that equation 3.2 can only be used
when the entire data tree is known. However, since the data tree is not known
a priori, an estimate on the number and type of attachments of each file can
be used to compute an estimate of H(a). In particular, given a node a of
file type ft, size s and level l, the processing cost X(a) can be computed by
sampling from the distribution x(ft, l) and multiplying the result by the file

size s (recall x is the processing cost per byte), whereas the cost
∑

n∈A(a)

H(n)

of processing all attachments can be estimated by first sampling from n(ft, l)
to estimate the attachment count, then sampling from f(ft, l) to estimate the
file type of each attachment, and finally sampling s(ft, l) to estimate the file
size of the attachment. This can be done in a recursive manner all the way to
the maximum level L. For any random variable Y , let Ỹ denote a realization
of Y , then the procedure can be captured by the recursion

H̃(ft, s, l) = s x̃(ft, l) + ñ(ft, l)
∑

∀j∈F
f̃(j, l + 1)H̃ (j, s̃(j, l + 1), l + 1) . (3.3)

63



3.3 A POMDP Approach

Since in e-Discovery the data tree nodes are revealed in an online manner as the
process evolves, any consideration of a model-based solution that incorporates
the data tree into the state space of an MDP will naturally result in a POMDP
model due to uncertainty. In this section, we discuss a POMDP approach that
we attempted unsuccessfully.

There does not exist a dominating policy amongst the class of online
scheduling policies, which makes it necessary to have knowledge of a prior
distribution over task arrival patterns if one is to have any hope of deter-
mining an optimal policy [41]. For a finite horizon setting, the theory of
POMDPs guarantees existence of an optimal scheduling policy for a fixed ar-
rivals distribution, but calculating such policy is intractable in general. [41]
uses stochastic planning techniques to address the scheduling problem where
future tasks are unknown, and points out that prior work based on sampling
techniques (c.f. [88, 89, 102]) are not practical due to the time required to
carry out the necessary computations.

We now highlight the main results of [41], since the paper relates closely
to an approach that we considered for addressing the e-Discovery scheduling
problem. We do note that their work does not consider precedence constraints,
which is at the core of the e-Discovery problem. In [41], tasks arriving in the
future are assumed to be categorized into different classes, with each class
conforming to a hidden Markov model (HMM). The entire scheduling problem
is formally modeled as a POMDP. To that end, suppose future arriving tasks
are categorized into m classes. For each i ∈ {1, ..., m}, let an HMM be defined
by a tuple < Qi, Ti, Λi, Πi >, where Q is a finite set of task-generation states, T
gives the probability distribution for each next state in Q, Λ maps each state in
Q to probabilities of task arrivals, and Π is a distribution over Q representing
the uncertainty of the initial state of the HMM. Let d be a fixed deadline,
measured as a time offset since the arrival of a task. The entire scheduling
problem is defined as a POMDP with state space Q = Q1×...×Qm×{0, 1}m×d,
where the last factor captures the ready tasks that have not been processed yet,
and is called the buffer of each state. The POMDP action space is {1, ..., m},
meaning that a task of type i is selected for processing. State transitions are
analogous to the transition probabilities of the HMMs and the state buffers.
The observation space is given by {0, 1}m, where each of the m dimensions is
a binary indicator representing the observed arrival of a task from that class.
The observation probabilities p(o|s) are also binary ∈ {0, 1}.

Given the POMDP formalization, section 3 of [41] gives three basic online
scheduling algorithms, whereas section 4 of their work gives a polynomial-
time offline scheduling algorithm for the discounted minimum loss problem,

64



where losses are measured in terms of missed deadlines, under a simplifying
assumption that the entire list of processing tasks is known a priori. In their
empirical results, it was found that sampling can reduce the weighted loss by
20− 35%. The authors point out that an expectation maximization algorithm
can be used to infer an HMM when a distribution describing future arrivals is
unknown or subject to change over time [117].

We note that the e-Discovery problem can certainly be modeled as a
POMDP, but we are unable to provide a model where the state space is com-
pact enough to allow for practical usage of the model in real-time scheduling.
During our investigation, we considered a few POMDP models that track the
states of the data tree and the processing machines. As expected, these models
were found to provide competitive schedules for very small problems involving
only a handful of machines and small data trees. However, when the number
of machines or number of nodes in the data tree were increased, the curse of
dimensionality resulted in expensive computations due to the massive size of
the state space required to capture the dynamics of the problem. Furthermore,
a POMDP approach requires strong assumptions of knowledge of the involved
transition distributions between the states of the underlying Markov model.
Similarly, modeling the problem as a non-linear program and relaxing the con-
straints using a technique from [106], we found that the optimal solution was
once again expensive to compute, making it impractical for real-time schedul-
ing applications. We have thus abandoned our attempts at applying POMDPs
and non-linear programs to arrive at competitive schedules for the e-Discovery
setting. Our lack of success using this approach is not to be taken as indication
that these approaches cannot be applied effectively to the e-Discovery problem
in online fashion, and that continues to remain an open problem to consider in
future work. In the remainder of this chapter, we discuss related results from
the field of scheduling theory, outline a real-time online scheduling algorithm
for the e-Discovery problem, and provide empirical results all based on a com-
bination of popular scheduling approaches that appear in the literature. Our
empirical results are based on large data sets.

3.4 An Overview from Scheduling Theory

In this section, we provide some relevant background from scheduling theory,
some of which is used in the next section to provide a real-time scheduling
algorithm for the e-Discovery problem. We note that in e-Discovery the nodes
of the data tree are not known a priori, and so we are unable to use scheduling
algorithms that rely on identifying and exploiting knowledge of the critical
path. Recalling that an out-tree is a special case of a directed acyclic graph

65



(DAG) is useful in making the connection between the e-Discovery problem
and some of the results that appear in the scheduling theory literature.

In precedence-constrained scheduling, a task cannot be scheduled until its
predecessors have been processed. Tasks that can be scheduled are commonly
known as ready tasks. A common solution to scheduling problems is list
scheduling, where the set of ready tasks are sorted in a list/queue by some
order of priority, and then the scheduler repeatedly assigns out the highest
priority task to the best candidate resource/processor that can complete the
task. Some of the common prioritization schemes include ordering by high-
est level first, longest processing time, and longest path [153]. A well-known
method in the field of project management is the Critical Path method [91].All
list-based scheduling using p identical processors are a (2−1/p)-approximation
to the optimal makespan [64, 65].

Firing-squad scheduling (FS) addresses the scheduling problem from a dif-
ferent perspective, where a free processor always selects a task at random from
a set of enabled tasks, which is a subset of all ready tasks. In essence, this can
be viewed as a prioritization scheme where ready tasks are classified as either
enabled or disabled, and all enabled tasks have equal priority. [24] studies
a special case of the DAG scheduling problem with uniform-length tasks on
asynchronous processors, where asynchrony here refers to processors of differ-
ent speeds. In particular, the paper compares bounds for the makespan of two
algorithms used to determine the set of enabled tasks: The ALL algorithm,
where all ready tasks are enabled, and LEVEL, where only tasks at the lowest
level of the DAG are enabled. It is shown that asymptotically, the LEVEL
algorithm is on-par or better than the ALL algorithm. To that end, let log∗(n)
denote the iterated logarithm of n, that is, the number of times the logarithm
function must be iteratively applied before the result is less than or equal to
1. Let W and D denote the total number of tasks and the longest path in the
DAG, respectively, and let πave be the average speed of the p processors during
execution of the DAG. [24] derived the following bounds for the makespan Tp:

• For algorithm ALL:

Tp =





Θ
(

D
pπave

)
, W

D
≤ p

log p
,

Θ
(
(log p)α W

pπave
+ (log p)1−α D

πave

)
, W

D
= p(log p)1−2α, α ∈ [0, 1],

Θ
(

W
pπave

)
, W

D
≥ p log p.

66



• For algorithm LEVEL:

Tp = Θ

(
W

pπave

+ [log∗ p− log∗(pD/W )]
D

πave

)

In greedy scheduling, processors are not allowed to stay idle if they can be
assigned ready tasks. In the special case of homogeneous processors where all
processors are identical, greedily scheduling the DAG on p processors without
redundancies produces a schedule with makespan Tp ≤ W

pπave
+ D

pπave
[36, 65],

which is within factor 2 of optimal since W
pπave

and D
pπave

are both lower bounds

on the best possible makespan [65]. However, for the heterogeneous case, the
last term is not a bound on the optimal makespan, and so the same argument
does not hold [24]. For the common case in parallel computing, it holds that
W
D

> p, and so a makespan dominated by Θ
(

W
p

)
is nearly optimal, for both

cases of homogeneous and heterogeneous processors [24]. For the homogeneous
setting, all greedy schedules have comparable makespans within a factor of 2
of each other [23]. Lemma 7 of [24] demonstrates that the number of time
steps during which there are more than p enabled tasks is at most O(αW/p)
with probability at least 1− 2−Θ(αp+αW/p). More results on parallel processing
in a heterogeneous setup can be found within publications from the field of
asynchronous parallel computing (c.f. [17, 18, 39, 53, 90]). [23] points out
that while asynchronous parallel computing assumes extreme fluctuation in
processor speeds, scheduling theory considers fixed processor speeds, prior
knowledge necessary for certain computations, and the scheduling authority is
assumed to have global knowledge of the entire state of the system. As such,
[23] provides a scheduler that bridges the gap between asynchronous parallel
computing and scheduling theory.

As discussed later in this chapter, within the context of the e-Discovery
scheduling problem it is reasonable to do as much as possible on a machine to
which the involved files have already been copied until other machines become
free and can pick up a portion of the remaining tasks. We consider a work-
stealing (WS) approach where an under-utilized or idle processor “steals” some
of the remaining tasks, typically half, from a busy processor. Earlier research
on work-stealing can be found in [39, 69]. [31] showed that with p processors,
the makespan of the scheduler is bounded by O(T1/p + T∞), where Tn is a
lower bound on the execution time of the multi-threaded computation using
n processors, so that T∞ is the length of the critical path. Since T1/p and
T∞ are both lower bounds on the makespan, this bound is within a constant
factor of optimal. This scheduler is implemented as CILK, an ANSI C-based
programming language for multi-threaded parallel programs. We refer the

67



reader to [32, 120, 152] for more details on CILK. [7] generalizes WS to a
non-blocking implementation with running time O(T1/pA + T∞p/pA), where
pA is the average number of processors that work in parallel to fully execute
the schedule. The constant hidden in the big-Oh notation is very close to one.
The authors argue that this bound is within constant factor of optimal, and
achieves a linear speedup, i. e., O(T1/pA), if pA is relatively small compared
to the relative parallelism T1/T∞ of the data tree. [136] gives bounds on the
number of steals within a schedule. Other important papers on WS include
[131] which tackles the problem via a queueing theoretic approach, [105] which
is based on a differential equations approach, and [1, 132, 133] which in some
sense are biased towards locality and processor-cache affinity with tolerance for
necessarily-induced load imbalance. The resultant technique is called affinity
scheduling. [108] gives a good bibliography on the main results pertaining to
WS, from which we collected some of the information outlined above.

In general, the scheduling problem with arbitrary task processing times
is known to be NP-hard [95], thus making it necessary to consider heuristic
techniques. Selecting the best heuristic for a particular problem from amongst
those that appear in the literature is not easy due to differences in assump-
tions in the original studies for each heuristic [35]. At a high level, scheduling
heuristics can be classified into two types: offline (static) schedules vs. on-
line (dynamic/reactive) schedules. Offline scheduling requires knowledge of
the problem in advance and is more efficient in the sense that heavy calcu-
lations can be computed upfront. However, such schedules cannot react to
unexpected anomalies encountered at runtime, whereas online algorithms can.
As [23] points out, early papers in scheduling theory approximate the schedule
makespan using O(

√
p)-approximation algorithms (c.f. [81, 82]), and more

recent papers propose O(log p)-approximation algorithms (c.f [45, 46, 50, 51]).
[35] implements and compares 11 offline heuristics found in the literature, rep-
resenting various flavors of iterative, non-iterative, greedy, and biologically-
inspired techniques. Other techniques mentioned in the paper (see section 3.3
of [35]) include the Mapping Heuristic (MH) algorithm [58], linear program-
ming [54], the Dynamic Level Scheduling (DLS) algorithm [126], the Levelized
Min Time (LMT) algorithm [79], the Cluster-M technique [59], recursive bisec-
tion [127], neural networks [47], the k-percent best (KPB) and Sufferage heuris-
tics [100], and the Heterogeneous Earliest-Finish-Time (HEFT) and Critical-
Path-on-a-Processor (CROP) techniques [141]. Due to the uncertainty in the
data being processed, offline schedulers are not ideal for the e-Discovery set-
ting. Nonetheless, due to simplicity of implementation, we believe they are
widely used in the e-Discovery industry.

Several studies have considered online schedules for the heterogeneous set-

68



ting. Examples include [99], which introduced the hybrid remapper, a non-
preemptive list-based hybrid scheduling algorithm that starts with an offline
scheduling algorithm as a baseline, and then incorporates the most up-to-date
state of the system at runtime. Other references on scheduling in the heteroge-
nous setting include [7, 48, 70, 80, 94].

Some of the more recent work from scheduling theory is tailored towards ad-
vances in the IT industry. [78] gives a very good overview of cloud computing,
as well as a simulation for dynamically deciding when to add worker machines
to scale vertically in an on-demand manner, thus meeting workload require-
ments without letting many machines sit idle. In essence, a common theme in
cloud computing is for the number of collaborating processors to be dynami-
cally adjusted at run-time based on the amount of pending workload. On the
other hand, [68] studied multiple DAGs scheduled in an internet-computing
framework, where the performance of the scheduler is measured by the av-
erage number of tasks ready for processing at any time. A static max-min
heuristic would perform well per this definition. Similarly, [99] describes two
variants of the hybrid remapper method based on the intuition that executing
the subtasks with larger “rank” as early as possible can reduce the expected
makespan of the resultant schedule. Practical experience with the e-Discovery
setting has shown that processing larger files as early as possible yields rea-
sonable schedules and allows for discovering larger portions of the data tree
early on. We revisit this heuristic in our simulations and describe our findings
later on in this chapter.

3.5 A Scheduling Algorithm for e-Discovery

In this section, we combine ideas from scheduling theory discussed in section
3.4, which allow us to obtain real-time online schedules for the e-Discovery
problem. In particular, we make use of list scheduling and work stealing, along
with the min/max path heuristics and firing-squad scheduling heuristics.

Consider a set of identical processing machines M tasked with fully pro-
cessing a data set TL consisting of top level files. At time zero, only the top
level files are known. Each processing machine maintains a ready-queue con-
sisting of out-trees ready to be processed, so that the ready queue represents an
out-forest. Furthermore, for each machine we maintain a discrete-time event
queue where the machine knows the type of events in the queue but not the
time the events occur due to uncertainty with respect to the performance of
the system and structure of the data being processed. The event-queue can
hold events of one of three types:

StealFiles This event occurs when the ready-queue of a processing machine

69



becomes empty. A work stealing event occurs where the machine steals
unprocessed files from another machine, chosen based on the heaviest
estimated remaining workload. Files begin to be copied immediately and
a FileCopyCompleted event (which we define momentarily) is pushed
onto the event queue, to be completed in the future per the copy costs of
equation 3.1. We adopt the notion that if multiple machines steal files
at the same exact moment, then they all steal from the machine with
the heaviest load. In particular, let Wm denote the total workload in
the ready-queue of each machine m ∈ M. If j machines steal work at
any moment from a machine z = argmax

m∈M
Wm, then the objective is for

each machine to end up with a workload of roughly Wz/(j + 1), with
an equal portion of that kept on the source machine z. Therefore, if
only one machine steals work, then it aims at stealing half the remaining
workload of the victim machine z. A special case of work-stealing occurs
at the beginning of the processing job at time zero, where all processing
machines M steal roughly an equal portion of the TL top level files that
are to be processed from the source storage device. Arguably, the most
inefficient limitation of our proposed model is a simplifying assumption
that work stealing and file processing cannot occur in parallel on different
threads. Furthermore, each machine can be engaged in at most one
StealFiles event at any time.

FileCopyCompleted This event occurs in the future as a result of initiating
a StealFiles event at some point in the past. Its time of occurrence is
controlled by equation 3.1.

FileProcessingCompleted This event occurs when a processing machine
completes processing a single node a and extracting all its attachments
to the machine’s local file system. If the machine begins processing the
file at time t1, then this event occurs at time t1 + s(a) X(a), where s(a)
and X(a) are as given in equation 3.2.

The sequence of events on any given processing machine is as follows: At
time zero, the machine’s ready-queue is empty and so a StealFiles event
occurs where the machine begins to copy an (ideally equal) portion of files
from the TL top level files that currently only exist on a client’s external
storage device. Portions are divided by giving each file a weight according to
some stealing heuristic Hs. In practice, as we discuss in our simulation results,
a heuristic that performs well gives each top level file a weight proportional to
the total copy cost plus processing costs of the file and all its descendants. That
is, each file a is given a weight proportional to an estimate of H(a) + C(a).

70



By convention, we sort the files according to their associated weights then
round-robin through the list and divide the files amongst the machines that
are to share these files. That is, the first file in the sorted list is assigned
to the first machine, the second file to the second machine, etc. When the
last machine is served its first file, the first machine is served its second file,
and so on. The intuition here is to give each machine some “heavy” tasks
as well as some “light” tasks in hopes of minimizing the need to re-balancing
the workload at a future time step which will incur additional work-stealing
costs. A StealFiles event is always followed by a FileCopyCompleted
event. Until the FileCopyCompleted event occurs, the processing machine
remains busy purely copying files without any files being processed on that
machine, as we assume that all copied files arrive at once. A file that is
currently being processed cannot be stolen by another machine since we do
not allow preemptions of started tasks. Furthermore, if a machine has one
file remaining to be processed but processing has not begun yet, then that file
cannot be stolen as it would introduce an unnecessary (and inefficient) copy
cost, only to be processed on an identical machine. Finally, while a file is
flagged as in the process of being stolen (i. e., a copy request is in progress),
it cannot be stolen by any other machine nor processed by the machine from
which the file is stolen. This ensures that a file is never processed twice which
is a requirement that we impose in our setting.

The occurrence of a FileCopyCompleted event signifies that the ready-
queue is no longer empty. The machine now can and will immediately begin
to process all files in the ready-queue per the scheduling policy. We restrict
our attention to list schedules using heuristics that we will discuss later. The
heuristic used to select the next file to process, denoted Hp, need not be
the same as the heuristic Hs used for work-stealing. The processing events are
tracked in the event-queue via a series of FileProcessingCompleted events.
Eventually, the ready-queue becomes empty and a StealFiles event needs to
occur so that the machine is assigned more work from another machine. This
sequence of events continues to occur until all files, including their attachments,
have been processed. The objective is to minimize the makespan, which is
the time the last FileProcessingCompleted event occurs across the event
queues of all the processing machines. The sequence of events is depicted in
figure 3.2.

Each machine has a ready-queue of files that are eligible to be processed.
Since the ready files have not been processed yet, the attachments that they
contain, if any, are unknown. Once a ready file a with level l is processed,
the processing cost s(a) X(a) in incurred (in time units) and the immediate
attachments at level l+1 become known, although the lower-level attachments

71



Figure 3.2: The sequence of discrete-time events that can occur on each pro-
cessing machine during the e-Discovery workflow.

72



at level l + 2 (and beyond) are not known yet, since only one level of the out-
tree is discovered at a time. As soon as the attachments of a processed file
are known, we remove the root node (i. e., processed file) from the out-tree,
thus creating smaller out-trees which we add to the ready-queue, one for each
discovered attachments. Following this notion, the root of an out-tree in the
ready-queue always corresponds to a file that is ready for processing. Given
this implementation, we are able to liberally speak of ready files and ready
out-trees interchangeably. Figure 3.3 demonstrates the evolution of the ready
queue as nodes 1, 2 and 3 are processed, in order. The solid circles denote files
that have been uncovered, whereas the hollow nodes denote files attachments
that are unknown at that time.

Under expectations that the principle of locality holds, we assume that his-
torical data provide a good starting point for estimating statistical properties
of data arrivals in the future. As such, at time zero the scheduling policy starts
with the distributions outlined in definition 3.2.1 initialized based on historical
data. As the scheduling policy progresses over time, sample statistics observed
are used to update these distributions. We track one set of global statistics
that are shared by all processing machines rather than a separate set of statis-
tics per machine. The algorithm that we propose for e-Discovery scheduling
is outlined in figure 3.4, where we use the following added notation: 1{g} is
the indicator function so that 1{g} = 1 if condition g holds, and 1{g} = 0
otherwise. RQm denotes the ready-queue of machine m ∈M. For an ordered
list J , σ(j) denotes the jth element where j = 0, 1, 2, . . . is zero-based. We
emphasize that in our algorithm we do not account for copy costs when de-
termining the victim machine from which a steal is to occur. However, once
a victim machine is determined, balancing the amount of work to steal takes
into account the copy costs, but only for the stealing machines and not for
the victim machine (recall a portion of works remains assigned to the victim
machine). That is, with five identical files and only one stealing machine, the
stealing machine picks up one or two files and the victim machine keeps the
rest since the latter do not incur copy costs.

We conclude this section with a brief discussion of the work-stealing heuris-
tic Hs and the Hp heuristic used to select the next file to process. Given an
out-forest A consisting of out-trees ai ready to be processed, consider the
maximum estimated total tree process time max

ai∈A
H̃(ai). For Hs, we believe

that max
ai∈A

H̃(ai) + C(ai) is the most logical choices since the aim is to bal-

ance the workload on all available processing machines in order to minimize
the makespan. To see this, suppose that H(ai) can be computed precisely
in a full-information setting, and suppose that we have two processing ma-
chines and total workload W to be split between the two machines. Suppose

73



Figure 3.3: The evolution of a ready queue for a processing machine as nodes
1, 2 and 3 are processed, in order. Solid nodes denote files that have been
uncovered, whereas hollow nodes denote attachment files that are unknown at
that time.

74



The e-Discovery Scheduling Algorithm
Initialization: M ≥ 2 processing machines. Max node level L. ∀ file types ft ∈ F
and level 1 ≤ l ≤ L, initialize f(ft, l), x(ft, l), n(ft, l) and s(ft, l) outlined in
definition 3.2.1. Specify heuristics Hs and Hp. RQm are empty ∀ machines m.
Loop (until all files are processed)
Parallel.Foreach machine 1 ≤ m ≤ M

1. Work-Stealing step:

(a) Determine machine m0 = argmax
i∈M

∑

a∈RQi

Hs(a) having heaviest workload

(or use client hard drive at start of algorithm).

(b) Assume machines m1, . . . ,my arrive here simultaneously (y ≥ 1). Re-
order a ∈ RQm0 per Hs(a) + C(a) in non-increasing order.

(c) Split the load: ∀z = 0, . . . y, assign one file σ(z) ∈ RQm0 to each machine
mz and update SWz = Hs(σ(z)) + 1{z 6= m0}C(σ(z)).

(d) ∀a ∈ RQm0 that remain, repeatedly assign the next file a to machine
z∗ = minSWz and update SWz∗ = SWz∗ +Hs(a) + 1{z∗ 6= m0}C(a).

(e) Block until file copying completes, incurring copy costs per equation 3.1.

(f) If stole some files, goto “Process Step”, else Sleep one time-step then
goto “Work-Stealing step”.

2. Process Step: While ready queue not empty

(a) Select next file fm ∈ RQm to process per Hp(fm).

(b) Process fm having file type ft and level l. Update x(ft, l) per incurred
cost per byte X(fm).

(c) Remove fm from RQm. Add discovered attachments A(ftm) to RQm.
Update n(ft, l), f(ft, l) and s(ft, l).

end

3. Update “local” makespan of this machine LMm = current time.

4. Goto “Work-Stealing step”.

end
end
Return: Makespan max

m∈{1,...,M}
LMm.

Figure 3.4: The e-Discovery scheduling algorithm

75



that the first machine is allotted workload W1 = W/2 + δ, where δ ≥ 0, and
the second machine is allotted the remaining workload W2 = W −W1. The
makespan is given by max(W1,W2) and is minimized when δ = 0, i. e., when
the two machines are given an equal workload. As for Hp, we know from prior
practical experience with the e-Discovery problem that the max

ai∈A
H̃(ai) heuris-

tic produces reasonable schedules. Copy costs are ignored in the case of Hp

since the ready files are made available locally on the machine before they are
considered ready for processing4.

Since one of the main challenges in the e-Discovery setting is due to uncer-
tainty in the data tree sub-nodes that are yet to be uncovered as the process
evolves, it’s reasonable to consider for Hp a heuristic max

ai∈A
Ñ(ai) that schedules

next the node that yields the most information about the yet unknown child
nodes (attachments). Recall that N(a) denotes the number of immediate chil-
dren of node a, not to be confused with the total number of sub-nodes in the
data tree under a. Using the total number of sub-nodes instead of the imme-
diate child-node count can result in expensive computation of the heuristic,
which in turn can degrade the performance of the scheduling algorithm thus
leaving it unusable for real-time scheduling problems. We thus do not consider
the latter in our study.

We conclude by noting that these heuristics can be combined where one
heuristic is used for initial sorting and then another heuristic is used to break
ties. Heuristics can also be combined in a weighted manner depending on the
problem setting. We simulate the performance of several heuristics in section
3.7.

3.6 List Scheduling With Side Bandits

In this section, we demonstrate a novel approach where bandits can be used in
lieu of heuristics to improve the quality of online list-based scheduling policies.
The general idea is that in scheduling problems with incomplete information,
when the heuristic of choice is itself a random variable due to uncertainly,
the quality of a list-based scheduling policy can be potentially improved over
time so that later iterations of the schedule can take advantage of earlier ob-

4For work-stealing, min
ai∈A

H̃(ai) + C(ai) and max
ai∈A

H̃(ai) + C(ai) produce identical steal

schedules but with the files assigned to the stealing machines in opposite order. Thus, the
makespan is not affected if either is used. However, selecting the next file for processing
is not symmetric with respect to these two heuristics since the processing schedule can be
interrupted with a steal event from another machine. See our simulation results in section
3.7.

76



servations. When the heuristic can be computed in deterministic fashion, the
choice is to schedule next the action that optimizes the heuristic. However,
when only an estimate of the heuristic is available, an opportunity presents
itself to consider a trade-off between selecting an action that optimizes the
heuristic (exploitation) vs. selecting another action to explore its effect on
the heuristic (exploration). This concept sounds all too familiar and can be
achieved by incorporating a side bandit model that is used by the scheduling
policy in order to determine the next action to take. We refer to this approach
as list scheduling with side bandits5. There is a wide array of publica-
tions in the scheduling domain where bandits are used, but to the best of our
knowledge our work is the first to replace a heuristic with a side bandit model
to improve the quality of list-based scheduling policies over time.

Let At denote the finite set of actions available to the scheduling policy at
time t. Suppose that each time action ai ∈ At is played, it returns a heuristic
Ht(ai). Furthermore, suppose that for each fixed ai, Ht(ai) are i.i.d random
variables having distribution Yt(ai), where t ≥ 0. Furthermore, with respect
to actions ai, Yt(ai) are also independent. That is, samples drawn from Y
are independent with respect to both t and ai. For simplicity, we restrict our
discussion to the setting in which the heuristics are stationary with respect to
the time t, and thus drop the suffix and denote Y (ai) = Yt(ai)∀ t ≥ 0.

Without a side bandit, at each iteration of the algorithm, a conventional
list-based scheduling policy in an incomplete-information setting would list
any available action a per the sample mean of its respective heuristics Y (a).
Such policy is demonstrated in figure 3.5. Aiming to minimize the regret
due to randomness in the heuristic associated with a particular action, we
integrate a multi-armed bandit into the algorithm. Since not all actions are
available to the scheduling policy at decision-making times, we adopt a sleeping
bandit algorithm 6. In particular, we consider the AUER algorithm of [92].
Since historical information can also be available to the scheduling policy from
previous runs, we also incorporate results pertaining to bandits with history. In
particular, we chose the HUCB1 algorithm of [124]. The sleeping and history
bandits are fused together, and the resultant list-based scheduling algorithm
with side bandit is outlined in figure 3.67.

5For the case of complete information, best experts are a natural choice instead of multi-
arm bandits; c.f. [92] which also provides a theoretical treatment of the subject.

6Recall that in a sleeping bandit not all arms are available at each iteration of the
algorithm. See section 1.4.3.

7Both the AUER and HUCB1 algorithms are adapted versions of the UCB1 method
of [13]. Combining the two algorithms as done in figure 3.6 results in a generalized MAB
algorithm which we believe is the first to appear in the literature for the setting of sleeping
bandits with history. Since the underlying algorithms are each known to achieve logarithmic

77



A Standard List-Based Scheduling Policy
for each time step t = 0, 1, . . . do

1. Determine the set of available actions At.

2. Schedule action at = argmax
a∈At

Y (a) that optimizes the heuristic Y .

end
Figure 3.5: A standard list-based scheduling policy

We now turn our discussion to the e-Discovery scheduling problem. Sev-
eral properties of our setting make the inclusion of a side multi-armed bandit
particularly attractive. More specifically, all nodes of the data tree are to be
eventually visited by the scheduling policy, and we do not allow files to be pro-
cessed more than once8. Thus, incorporating a side bandit into the scheduling
policy simply re-orders the way in which the nodes are processed. Moreover,
the setting of synchronous (i. e., identical) processors allows for one central
side multi-armed bandit that can share all observations obtained from all pro-
cessing machines. In the case of asynchronous (i. e., non-identical) processing
machines, each machine would have to maintain its own side multi-armed ban-
dit which is less cooperative and is subject to higher estimation errors due to
reduced sample counts for each bandit arm. Additionally, tracking multiple
side bandits will increase the overhead of the scheduling policy in terms of
memory and CPU usage. We are fortunate to avoid such issues in our setting.

In practice, not all heuristics fit the side bandit model well. For example,
consider the e-Discovery data tree model, and suppose that the total subtree
processing heuristic, max H(a), is used. Per equation 3.2, H(a) must be com-
puted recursively, and thus a relatively-expensive bandit similar in some sense
to the REGA method will be necessary unless a myopic or rolling-horizon
approach is taken to estimate H(a) (c.f. sections 2.3 and 2.5 for a relevant
discussion). This becomes particularly problematic if the data tree contains
very deep attachments since the side bandit will generally be too expensive to
compute in real-time due to the curse of dimensionality associated with the
backwards induction process.

On the other hand, we discussed in section 3.5 a simple and interesting
heuristic based on the number of immediate attachments N(a) which fits the

regret, we conjecture that the resultant combination can also be shown to have logarithmic
regret. We leave that for future work.

8The opposite of scheduling each task once is known in the scheduling theory literature
as eager scheduling, where a task is allowed to be processed multiple times in parallel by
several processors.

78



A List-Based Scheduling Policy with a Side Bandit
Input: Current time t. List of available actions At. For each action

ai ∈
⋃

t=0,1,...

At, historical averages zi
h and number of simulations ni

h are

provided. New observation averages zi = 0 and counts ni = 0 are initialized
to zero.

for each time step t = 0, 1, . . . do

1. Determine the set of available actions At.

2. if ∃ aj ∈ At s.t. nj = 0 then choose at = aj

else choose action at = argmax
aj∈At

(
nizi + ni

hz
i
h

ni + ni
h

+

√
8 log (t + ni

h)

ni + ni
h

)

end

3. Schedule action at and observe heuristic rat ∼ Y (at).

4. Update zat = zat + rat .

5. Update nat = nat + 1.

end

for each available action ai ∈
⋃

t=0,1,...

At, update histories for future use:

1. zi
h =

nizi + ni
hz

i
h

ni + ni
h

.

2. Update ni
h = ni

h + ni.

end
Figure 3.6: A list-based scheduling policy with a side bandit

side bandit approach well. In particular, the side multi-armed bandit is used
to select the next action (i. e., file) a ∈ At, and the file is then processed and
the actual attachments count N(a) is discovered and represents the side ban-
dit’s one-step reward associated with processing files from the same class as
a. Computation of the bandit reward in this case is obtained, essentially for
free, as a byproduct of file a being processed and its content discovered, which
allows for such heuristic to be used in real-time scheduling problems without
much added computational overhead. The max N(a) heuristic is particularly

79



interesting in our setting where the data tree is discovered in an online fash-
ion, and can be interpreted as being the “added value” of learning more about
the data tree. We thus only consider max N(a) and not min N(a). We re-
fer to the bandit version of max N(a) as the side bandit attachments count
(SBAC) heuristic. We discuss the empirical performance of SBAC and the
other heuristics in section 3.7.

3.7 Empirical Results

We simulate the e-Discovery scheduling algorithm outlined in figure 3.4 against
two randomly-generated benchmark problems with 122537 and 5824813 files
in total, including attachment. We refer to these as problems eDisc1 and
eDisc2, respectively, with problem eDisc2 being the larger of the two. We
classify each file in the datasets as being one of four types: Email archive, Zip
file, regular file, and files that cannot contain attachments. All but the last
type can contain zero or more attachments. Email archives can contain imme-
diate attachments that are email messages which we include in the regular file
category, or contact information items which cannot contain any attachments,
but email archives cannot contain Zip files as immediate attachments. Zip
files can contain all other types, including other zip files. All file types can
appear as top level or attachments within the data tree. eDisc1 and eDisc2
have maximum node depths six and seven, respectively. Tables 3.1 and 3.2
outline the file type counts for each level of the out-tree of eDisc1 and eDisc2,
respectively. The total file size of the two problems is 5.4 GB top level (17.1
GB total) and 162 GB top level (458 GB total), respectively9.

As samples are collected throughout our simulation, we update the distri-
butions outlined in definition 3.2.1. Rather than track actual families of dis-
tributions, we track point-based averages for each file type and tree node level
encountered at runtime. The statistics are initialized per table 3.3 to simulate
historical information collected from previous processing jobs. We assume that
the statistics were computed based on 100 historical sample points for each
combination of file type and tree node level. When meaningful and consistent
with general trends encountered in real-world data, certain statistics are set
to be decreasing in the level of the node. In particular, deeper attachments
are smaller and contain less attachments on average. We adopt the notation
Y + := max(0, Y ) for easier readability.

We simulated processing of the benchmark problems using 5, 50 and 100

9eDisc2 is not uncommon in the field, but is certainly a “respectable” amount of data
to handle. Many data sets of size similar to eDisc1 are encountered on a daily basis in the
field.

80



Level Email Archive Zip File Regular File No Attachments File

1 0 12 0 0

2 0 0 9822 4725

3 7 4 61483 2557

4 0 0 28608 4172

5 0 0 7084 3643

6 0 0 410 10

Table 3.1: File type counts of e-Discovery benchmark problem eDisc1 at each
level of the out-forest (122537 files in total).

Level Email Archive Zip File Regular File No Attachments File

1 21 32 392326 176564

2 179 177 1266812 556829

3 59 69 1865764 720240

4 0 0 540440 100218

5 0 0 101473 70755

6 0 0 15860 14336

7 0 0 713 1946

Table 3.2: File type counts of e-Discovery benchmark problem eDisc2 at each
level of the out-forest (5824813 files in total).

81



Level Stats Email Zip Regular No Attachments
Archive File File File

f(ft, l) 0.35 0.35 0.20 0.10
1 x(ft, l) 2× 10−6 2× 10−6 2× 10−6 2× 10−6

n(ft, l) 2000 500 6 0
s(ft, l) 3GB 200 MB 200 KB 1 KB

f(ft, l) 0.01 0.01 0.68 0.30
2 x(ft, l) 2× 10−6 2× 10−6 2× 10−6 2× 10−6

n(ft, l) 95 300 5 0
s(ft, l) 100MB 9 MB 200 KB 1 KB

f(ft, l) 10−6 10−6 0.999998× 2.5/l 0.999998× (l − 2.5)/l

≥ 3 x(ft, l) 2× 10−6 2× 10−6 2× 10−6 2× 10−6

n(ft, l) (100− 5l)+ (20− l)+ (6− l)+ 0
s(ft, l) 100MB (10− l)+ MB 200 KB 1 KB

Table 3.3: Point-based (mean) initial statistics for the e-Discovery benchmark
problem, assuming 100 sample points from historical processing jobs.

processing machines. For each simulation, two file transfer speeds T are consid-
ered: 10 MB/s and 100 MB/s10. Treating the statistics outlined in definition
3.2.1 as point-based (averages), we sample each statistic with current average
u from a uniform distribution U(0, 2 u) when in need of a sample point for a
statistic.

For work stealing, the workload of each machine m ∈ M is estimated via
the total work of all files available in its ready queue RQm (plus copy costs),

so that the heuristic Hs is given by Hs =
∑

a∈RQm

H̃(a) + C(a), where C and

H̃ are given in equations 3.1 and 3.3, respectively. We refer to this as a work-
stealing setting with incomplete information due to the lack of full information
of the actual costs H(a). For sake of completeness, we redo all simulations and
consider work-stealing under the complete information setting where H̃(a) is

replaced with H(a) and Hs is given by Hs(a) =
∑

a∈RQm

H(a) + C(a). This

provides a more controlled setting to compare the performance of the various
scheduling heuristics Hp used.

We consider several heuristics Hp for selecting the next file a to pro-
cess from each machine’s ready queue RQm: Minimum estimated total sub-
tree processing cost min

a∈RQm

H̃(a), maximum estimated total subtree process-

10For sake of comparison, a gigabit ethernet connection has speeds of up to 125 MB/s.

82



ing cost max
a∈RQm

H̃(a), maximum estimated number of immediate attachments

max
a∈RQm

Ñ(a), as well as the two firing-squad (FS) scheduling methods ALL and

LEVEL described in section 3.4.
We also consider what we call the side bandit attachments count (SBAC)

extension of the max Ñ(a) heuristic, as outlined in figure 3.6. With four file
types ft ∈ F and up to ten levels l ∈ {1, . . . , L = 10} in each data tree, we
define |F| × L = 40 bandit arms where each arm is a filetype and node level
pair (ft, l).

Moreover, although unrealistic, for sake of comparison we also simulate the
case where Hp selects the next file to process from each machine’s ready-queue
based on the (true) maximum total subtree processing cost max H(a) and
maximum number of immediate attachments max N(a) under the assumption
of complete information. When reporting our simulation results, we list these
at the bottom of tables 3.4 - 3.7. Furthermore, we ignore these unrealistic
settings in our discussions of how the various heuristics compare to one another
based on the simulation results.

Each simulation setting was run 10 times and the results for the eDisc1
and eDisc2 benchmark problems with complete and incomplete work-stealing
settings are outlined in tables 3.4 - 3.7. Each cell in the tables contains an entry
in the form of “X(Y ) < Z >”, where X is the resultant average makespan
(in seconds), Y is the standard error of the sample population, and Z is the
average total file size moved around due to steals (in megabyte) from the
beginning to the end of the entire schedule.

Plots of total work-steals over time (i. e., aggregated file sizes stolen up to
current time) for the eDisc2 problem in the complete and incomplete work-
stealing settings are given in figures 3.7 and 3.8, respectively. “Good” schedules
would have a single steal at time zero in order to split up the total work across
all machines, which in turn would keep machines busy till the very end where
one would expect to see a second (small) spike of steals towards the end of the
schedule as machines begin to complete the tasks initially assigned to them.

For the larger of the two problems, eDisc2, it is easier to spot relative
differences in the performance of the algorithms. As such, in tables 3.6 and
3.7 we highlight for each simulation setting (column) the heuristic (row) that
performs best, with the performance being measured by both the makespan
and total work-steals. The two metrics are observed independently, and so for
any column one heuristic can have the best average makespan while another
heuristic can have the best (least) amount of average generated network traffic
due to work-stealing.

The results of our simulations suggest that faster file copy speeds T and a
larger number of machines M both independently reduce the makespan of the

83



produced schedule. We also surprisingly find that increasing T or M will in
general independently reduce the total bytes transferred over the network, i. e.,
less steals, which can be important in busy or non-dedicated networks. An
interesting observation is that the standard error of the makespan is decreased
as the network speed T is increased. A similar correlation between M and the
sample standard error cannot be verified from our experiments. In general, a
lower variance is desirable, as it increases our confidence in the “predictability”
of the performance of the scheduling policy. This is particularly important in
the e-Discovery setting where one has a “single shot” at processing the data
set and there is little to no benefit from processing the data more than once.

A slow network can easily become the bottleneck in the performance of
the scheduling policy. This is clear when observing in table 3.7 that none of
the heuristics show much improvement in the makespan of eDisc2 for a slow
network of 10 MB/s when doubling the number of machine from 50 to 100
machines. The decreased amount of steals, however, continues to hold due to
the increase in the number of machines.

We observe that for the smaller eDisc1 problem, the performance of all
heuristics is roughly similar in terms of makespan. However surprisingly, the
min H̃(a) heuristic results in the least amount of network traffic (i. e., steals).
As for the much larger eDisc2 problem, the FS LEVEL, max H̃(a) and SBAC
algorithms result in the best makespans, in general. SBAC performed best
overall compared to the other algorithms with respect to total work-steals.
As expected, SBAC’s incorporation of a side bandit resulted in significant im-
provements over its max Ñ(a) counterpart, both in terms of the makespan as
well as total work-steals. Somewhat expected due to the theoretical guaran-
tees that appear in [24], firing-squad LEVEL generally outperformed ALL,
even in a finite-time (non-asymptotic) sense. In terms of worst performance,
max Ñ(a) and min H̃(a) generated the most amount of network traffic. The
two algorithms produced in several settings the worst average makespan, es-
pecially for the setting with a small number of machines M = 5.

In terms of runtime performance of the three heuristics that performed
best overall, max H̃(a) is rather expensive to estimate for lower-level (shal-
lower) nodes due to the recursion involved in its estimation (c.f. equation
3.3), and the cost of computing this heuristic becomes cheaper as the level
of the root of the subtree increases, thus resulting in a shallower subtree to
estimate. On the other hand, SBAC and FS LEVEL have computational cost
that is independent of the nodes’ level in the data tree. While SBAC accounts
for anomalies outside of expected performance based on historical data, FS
LEVEL may not handle anomalies as well.

84



H
p

M
=

5
M

=
50

M
=

10
0

T
=

10
T

=
10

0
T

=
10

T
=

10
0

T
=

10
T

=
10

0

m
in

H̃
(a

)
69

94
0(

34
.6

0)
63

73
3(

81
.6

0)
48

01
8(

12
8.

34
)

41
24

4(
55

.1
5)

47
98

0(
94

.8
6)

40
26

0(
35

.4
6)

<
19

70
7

>
<

17
75

2
>

<
69

08
>

<
68

00
>

<
60

37
>

<
58

98
>

m
ax

H̃
(a

)
69

84
4(

31
.5

2)
63

40
7(

3.
03

)
47

70
5(

90
.6

8)
41

25
5(

10
1.

21
)

47
96

8(
74

.5
9)

40
24

6(
12

.7
6)

<
22

26
7

>
<

24
59

9
>

<
68

82
>

<
66

93
>

<
59

75
>

<
58

75
>

m
ax

Ñ
(a

)
70

04
4(

65
.0

2)
63

60
3(

64
.3

6)
47

94
4(

80
.5

3)
41

13
7(

29
.1

6)
47

79
8(

55
.3

5)
40

23
2(

7.
81

)

<
28

94
3

>
<

23
70

0
>

<
69

69
>

<
68

61
>

<
59

92
>

<
58

85
>

F
S
A
LL

69
88

9(
37

.3
6)

63
55

5(
47

.1
6)

47
89

5(
78

.2
1)

41
17

7(
71

.1
1)

47
87

8(
59

.2
2)

40
24

0(
9.

62
)

<
26

87
6

>
<

20
89

3
>

<
68

47
>

<
67

24
>

<
59

87
>

<
58

79
>

F
S
LE
V
EL

69
95

6(
39

.0
3)

63
54

8(
19

.9
7)

47
92

8(
10

2.
25

)
41

11
0(

53
.3

3)
47

96
4(

11
8.

33
)

40
24

0(
7.

71
)

<
25

54
7

>
<

20
02

8
>

<
69

16
>

<
67

75
>

<
60

17
>

<
58

82
>

S
B

A
C

69
93

9(
56

.4
2)

63
57

3(
35

.4
5)

48
00

6(
10

2.
24

)
41

15
7(

52
.9

3)
48

05
8(

12
3.

01
)

40
22

5(
9.

01
)

<
22

77
7

>
<

23
60

5
>

<
68

19
>

<
67

20
>

<
60

08
>

<
58

76
>

m
ax

H
(a

)
69

94
0(

33
.0

2)
63

41
2(

4.
20

)
47

38
7(

84
.4

6)
40

92
8(

46
.8

5)
47

46
2(

11
2.

07
)

40
20

1(
8.

12
)

<
26

90
9

>
<

26
28

2
>

<
68

89
>

<
67

66
>

<
59

68
>

<
58

80
>

m
ax

N
(a

)
70

15
3(

71
.7

1)
63

65
7(

89
.4

7)
47

88
4(

61
.6

4)
41

20
5(

39
.5

1)
47

93
4(

94
.0

6)
40

22
7(

11
.9

7)

<
27

99
4

>
<

27
96

9
>

<
69

36
>

<
68

58
>

<
59

93
>

<
58

86
>

T
ab

le
3.

4:
S
im

u
la

ti
on

re
su

lt
s

(m
ak

es
p
an

)
fo

r
e-

D
is

co
ve

ry
b
en

ch
m

ar
k

p
ro

b
le

m
eD

is
c1

u
si

n
g

5,
50

an
d

10
0

p
ro

ce
ss

in
g

m
ac

h
in

es
,
n
et

w
or

k
fi
le

co
p
y

sp
ee

d
s

of
10

M
B

/s
an

d
10

0
M

B
/s

u
si

n
g

d
iff

er
en

t
h
eu

ri
st

ic
s.

W
or

k
-s

te
al

in
g

as
a

co
m

p
le

te
in

fo
rm

at
io

n
se

tt
in

g.

85



H
p

M
=

5
M

=
50

M
=

10
0

T
=

10
T

=
10

0
T

=
10

T
=

10
0

T
=

10
T

=
10

0

m
in

H̃
(a

)
70

01
6(

58
.4

6)
63

64
3(

58
.5

3)
47

25
3(

71
.0

2)
41

55
0(

10
8.

06
)

47
01

4(
17

3.
18

)
40

14
3(

40
.0

7)

<
19

17
6

>
<

17
95

1
>

<
71

04
>

<
68

83
>

<
60

11
>

<
59

11
>

m
ax

H̃
(a

)
69

80
9(

35
.9

1)
63

39
4(

4.
57

)
46

97
9(

17
0.

51
)

41
24

1(
95

.6
1)

46
76

3(
10

0.
87

)
40

13
1(

16
.4

0)

<
26

71
7

>
<

27
18

8
>

<
70

58
>

<
68

84
>

<
59

66
>

<
58

80
>

m
ax

Ñ
(a

)
70

19
5(

10
3.

21
)

63
63

9(
51

.1
8)

47
29

8(
12

2.
17

)
41

39
5(

72
.0

4)
46

96
0(

15
6.

68
)

40
09

8(
10

.7
5)

<
25

31
7

>
<

20
21

5
>

<
72

73
>

<
69

35
>

<
59

91
>

<
58

98
>

F
S
A
LL

69
85

9(
43

.8
4)

63
48

4(
14

.6
7)

46
82

5(
11

2.
52

)
41

28
8(

75
.7

1)
47

02
1(

18
4.

76
)

40
09

5(
7.

96
)

<
20

69
9

>
<

22
80

6
>

<
72

95
>

<
68

93
>

<
59

98
>

<
59

00
>

F
S
LE
V
EL

69
92

7(
56

.1
9)

63
50

4(
26

.0
7)

46
88

7(
10

4.
79

)
41

20
9(

86
.5

1)
46

86
9(

19
2.

51
)

40
10

3(
13

.0
2)

<
26

57
5

>
<

24
87

8
>

<
71

23
>

<
68

80
>

<
59

90
>

<
58

88
>

S
B

A
C

69
85

8(
42

.2
6)

63
62

2(
36

.0
6)

46
91

1(
79

.3
8)

41
25

5(
82

.0
2)

46
87

8(
20

3.
68

)
40

09
8(

6.
38

)

<
21

01
6

>
<

25
98

2
>

<
71

21
>

<
68

64
>

<
59

89
>

<
58

89
>

m
ax

H
(a

)
69

97
3(

50
.3

0)
63

42
1(

5.
01

)
47

02
8(

17
2.

21
)

41
06

1(
55

.0
6)

47
01

5(
18

3.
45

)
40

09
9(

9.
78

)

<
34

85
2

>
<

28
78

5
>

<
72

30
>

<
69

44
>

<
60

01
>

<
58

83
>

m
ax

N
(a

)
70

30
5(

13
1.

20
)

63
53

9(
35

.5
1)

47
30

4(
21

9.
12

)
41

31
7(

60
.6

1)
46

93
8(

23
7.

82
)

40
11

6(
14

.4
1)

<
31

47
1

>
<

27
49

4
>

<
72

71
>

<
70

25
>

<
59

89
>

<
58

81
>

T
ab

le
3.

5:
S
im

u
la

ti
on

re
su

lt
s

(m
ak

es
p
an

)
fo

r
e-

D
is

co
ve

ry
b
en

ch
m

ar
k

p
ro

b
le

m
eD

is
c1

u
si

n
g

5,
50

an
d

10
0

p
ro

ce
ss

in
g

m
ac

h
in

es
,

n
et

w
or

k
fi
le

co
p
y

sp
ee

d
s

of
10

M
B

/s
an

d
10

0
M

B
/s

u
si

n
g

d
iff

er
en

t
h
eu

ri
st

ic
s.

W
or

k
-s

te
al

in
g

as
an

in
co

m
p
le

te
in

fo
rm

at
io

n
se

tt
in

g.

86



H
p

M
=

5
M

=
50

M
=

10
0

T
=

10
T

=
10

0
T

=
10

T
=

10
0

T
=

10
T

=
10

0

m
in

H̃
(a

)
15

86
61

0(
19

15
8.

50
)

14
29

05
0(

15
62

9.
93

)
93

35
41

(1
0.

83
)

83
77

25
(2

12
4.

06
)

93
35

30
(3

1.
04

)
80

86
58

(2
.8

7)
<

16
17

74
8

>
<

12
54

88
5

>
<

32
87

52
>

<
38

31
38

>
<

21
89

42
>

<
27

68
05

>

m
ax

H̃
(a

)
13

09
21

9(
38

7.
76

)
11

86
64

2(
73

.1
6)

93
36

19
(3

.1
7)

81
98

57
(6

.7
0)

93
36

26
(6

.5
3)

80
86

30
(0

.0
8)

<
13

20
85

5
>

<
76

56
45

>
<

24
36

77
>

<
23

81
48

>
<

24
37

28
>

<
20

90
73

>

m
ax

Ñ
(a

)
15

78
72

6(
29

28
1.

41
)

13
35

60
4(

16
83

9.
01

)
93

38
48

(1
38

.1
3)

82
48

45
(1

07
0.

96
)

93
34

35
(3

.0
7)

80
86

31
(1

1.
87

)
<

18
31

14
0

>
<

14
86

98
4

>
<

57
78

29
>

<
33

93
10

>
<

21
76

61
>

<
23

97
65

>

F
S
A
LL

13
81

45
3(

14
54

7.
16

)
12

58
20

5(
21

22
3.

29
)

93
39

19
(1

23
.7

0)
82

62
89

(1
36

7.
80

)
93

35
77

(1
7.

59
)

80
98

23
(1

01
4.

13
)

<
12

73
74

5
>

<
14

00
62

7
>

<
58

63
05

>
<

31
50

03
>

<
27

45
05

>
<

22
81

77
>

F
S
LE
V
EL

13
08

33
8(

67
7.

81
)

11
86

88
2(

55
.0

8)
93

35
99

(9
5.

87
)

82
02

70
(5

4.
83

)
93

34
91

(1
4.

52
)

80
85

66
(6

2.
74

)
<

10
98

76
7

>
<

71
05

27
>

<
35

73
01

>
<

26
69

78
>

<
23

56
17

>
<

21
34

22
>

SB
A

C
13

08
32

6(
48

3.
40

)
11

86
64

0(
63

.2
1)

93
37

44
(1

07
.7

7)
82

24
57

(4
05

.1
9)

93
35

08
(1

.3
7)

80
85

72
(0

.9
0)

<
94

13
94

>
<

64
19

76
>

<
47

77
72

>
<

24
87

00
>

<
21

40
87

>
<

22
28

40
>

m
ax

H
(a

)
13

11
01

7(
33

8.
32

)
11

87
00

6(
47

.2
8)

94
16

17
(9

0.
42

)
82

17
72

(3
9.

18
)

94
14

42
(2

.3
2)

81
19

17
(2

.8
2)

<
11

70
56

4
>

<
86

67
01

>
<

46
54

12
>

<
25

01
84

>
<

21
32

91
>

<
33

67
59

>

m
ax

N
(a

)
13

11
92

0(
48

9.
54

)
11

87
02

6(
76

.9
9)

93
35

80
(2

.6
1)

82
04

77
(7

.1
6)

93
35

81
(0

.6
5)

80
86

30
(1

.9
4)

<
13

09
44

9
>

<
91

17
60

>
<

26
24

19
>

<
25

44
91

>
<

26
76

91
>

<
21

29
41

>

T
ab

le
3.

6:
S
im

u
la

ti
on

re
su

lt
s

(m
ak

es
p
an

)
fo

r
e-

D
is

co
ve

ry
b
en

ch
m

ar
k

p
ro

b
le

m
eD

is
c2

u
si

n
g

5,
50

an
d

10
0

p
ro

ce
ss

in
g

m
ac

h
in

es
,
n
et

w
or

k
fi
le

co
p
y

sp
ee

d
s

of
10

M
B

/s
an

d
10

0
M

B
/s

u
si

n
g

d
iff

er
en

t
h
eu

ri
st

ic
s.

W
or

k
-s

te
al

in
g

as
a

co
m

p
le

te
in

fo
rm

at
io

n
se

tt
in

g.

87



H
p

M
=

5
M

=
50

M
=

10
0

T
=

10
T

=
10

0
T

=
10

T
=

10
0

T
=

10
T

=
10

0

m
in

H̃
(a

)
15

91
55

8(
23

13
0.

42
)

14
57

96
5(

18
38

1.
40

)
92

14
57

(3
45

.6
6)

83
05

93
(1

61
1.

26
)

91
93

30
(3

2.
17

)
80

94
48

(6
60

.0
5)

<
19

12
37

8
>

<
14

67
20

1
>

<
48

64
54

>
<

29
95

66
>

<
26

93
94

>
<

23
98

31
>

m
ax

H̃
(a

)
13

09
76

4(
31

4.
72

)
11

86
74

7(
56

.8
8)

91
78

58
(9

7.
64

)
82

07
89

(9
8.

60
)

91
77

94
(3

2.
70

)
80

83
08

(0
.3

3)
<

13
71

63
9

>
<

95
74

93
>

<
36

42
97

>
<

28
65

30
>

<
25

40
55

>
<

22
72

72
>

m
ax

Ñ
(a

)
15

56
35

9(
31

18
8.

37
)

13
02

99
3(

11
29

2.
50

)
91

93
21

(1
90

.7
9)

82
74

41
(2

62
0.

49
)

91
92

91
(1

0.
89

)
80

96
31

(1
21

7.
73

)
<

17
77

13
6

>
<

15
37

07
4

>
<

48
85

16
>

<
40

60
10

>
<

32
93

54
>

<
35

49
36

>

F
S
A
LL

14
47

69
8(

34
39

6.
18

)
12

88
63

0(
24

09
1.

06
)

92
03

14
(7

53
.9

6)
82

51
28

(8
87

.3
1)

91
92

95
(1

8.
61

)
80

88
54

(3
18

.4
6)

<
15

40
74

8
>

<
13

92
71

6
>

<
29

38
74

>
<

33
49

31
>

<
26

63
38

>
<

23
02

26
>

F
S
LE
V
EL

13
08

24
1(

37
1.

00
)

11
86

81
5(

37
.7

7)
91

93
87

(1
02

.1
6)

82
13

72
(5

87
.8

8)
91

92
76

(2
.4

8)
80

83
11

(1
.5

6)
<

11
90

34
8

>
<

84
45

18
>

<
31

97
39

>
<

28
26

17
>

<
21

32
79

>
<

21
42

93
>

SB
A

C
13

07
47

7(
44

5.
70

)
11

86
75

5(
69

.7
3)

91
93

92
(8

9.
55

)
82

13
58

(3
16

.4
7)

91
93

10
(2

2.
90

)
80

83
08

(0
.3

2)
<

11
20

47
2

>
<

83
11

41
>

<
41

15
18

>
<

27
59

44
>

<
26

33
90

>
<

21
04

29
>

m
ax

H
(a

)
13

10
40

8(
34

5.
11

)
11

86
85

6(
59

.4
2)

91
94

04
(8

7.
79

)
82

01
48

(2
17

.3
4)

91
92

57
(3

.9
0)

80
83

16
(3

.5
0)

<
13

23
19

1
>

<
11

71
03

0
>

<
40

27
68

>
<

30
00

19
>

<
27

20
79

>
<

26
39

78
>

m
ax

N
(a

)
13

12
07

8(
11

07
.1

9)
11

87
19

4(
85

.5
4)

91
93

52
(6

33
.6

9)
82

85
74

(3
56

.3
8)

91
81

23
(3

3.
82

)
80

89
05

(0
.2

5)
<

15
65

09
9

>
<

11
50

90
4

>
<

52
70

73
>

<
30

29
09

>
<

30
41

38
>

<
21

39
65

>

T
ab

le
3.

7:
S
im

u
la

ti
on

re
su

lt
s

(m
ak

es
p
an

)
fo

r
e-

D
is

co
ve

ry
b
en

ch
m

ar
k

p
ro

b
le

m
eD

is
c2

u
si

n
g

5,
50

an
d

10
0

p
ro

ce
ss

in
g

m
ac

h
in

es
,

n
et

w
or

k
fi
le

co
p
y

sp
ee

d
s

of
10

M
B

/s
an

d
10

0
M

B
/s

u
si

n
g

d
iff

er
en

t
h
eu

ri
st

ic
s.

W
or

k
-s

te
al

in
g

as
an

in
co

m
p
le

te
in

fo
rm

at
io

n
se

tt
in

g.

88



We conjecture that a scheduling policy that mixes SBAC and LEVEL for
“shallower” nodes, and max H̃(a) and SBAC for nodes deeper in the data
tree would perform well in the field and is lightweight enough so that such
policy can be used for real-time online scheduling problems. Further studies
are needed to confirm or reject our proposal for a mixing policy of this type.

We conclude with a note on the greediness of our algorithm, which is
based on Graham’s list-scheduling algorithm. The latter is indeed a greedy
algorithm in the sense that machines are not allowed to remain idle if there is
work to be done. Certainly, in our proposed algorithm an idle machine steals
work from another machine immediately upon becoming idle. Due to copy
costs, precedence constraints, and the online fashion in which the data tree is
revealed, such greedy policy is not necessarily optimal. Consider for example a
scenario having two files currently assigned to machine M1, whereas machine
M2 is idle. Both files have copy times of 1 second and processing times of 0.25
seconds. If machine M2 steals at least one file, the makespan of the schedule
is > 1. On the other hand, if machine M2 is left idling, then the makespan is
0.5. In a similar argument, one can easily construct examples of unbalanced
data trees where waiting until a file’s attachments are uncovered can result in
a better work-stealing balance across the machines involved in the steal, thus
improving on the makespan compared to when the steal occurs greedily in
presence of higher uncertainly. [143] covers interesting examples where greedy
schedules are suboptimal in stochastic scheduling settings with and without
precedence constraints. We strongly encourage the interested reader to consult
their work.

3.8 Concluding Remarks

In this chapter, we introduced the e-Discovery scheduling problem, which is
effectively a job-shop scheduling problem with precedence constrains and setup
times 11. We surveyed related results from scheduling theory and combined
some of these ideas to produce a distribution-free online algorithm for schedul-
ing in an e-Discovery setting. Our algorithm does not require any knowledge
of the underlying mathematical models embedded within the data set that is
to be processed. Our algorithm also boasts very low computational overhead,
which makes it usable for real-time scheduling problems as well as “produc-
tion” environments. We found that three heuristics perform particularly well

11In scheduling theory, the term “setup times” is commonly used, whereas in the multi-
armed bandit domain, the term “switching costs” is commonly used instead. The two carry
the same meaning, which is a cost associated with migrating a task (or ready-file in the
e-Discovery setting) from one machine to another.

89



(a) M = 5, T = 10 (b) M = 5, T = 100

(c) M = 50, T = 10 (d) M = 50, T = 100

(e) M = 100, T = 10 (f) M = 100, T = 100

Figure 3.7: Total work-stealing over time for the eDisc2 problem under a
complete information setting of work-stealing.

90



(a) M = 5, T = 10 (b) M = 5, T = 100

(c) M = 50, T = 10 (d) M = 50, T = 100

(e) M = 100, T = 10 (f) M = 100, T = 100

Figure 3.8: Total work-stealing over time for the eDisc2 problem under an
incomplete information setting of work-stealing.

91



in the e-Discovery setting.
We demonstrated how incorporating a bandit model into list-scheduling

can result in improved performance, both in the sense of makespan and total
generated network traffic, compared to the “non-bandit” counterpart heuris-
tic, and the results are encouraging. To achieve this, we provided a novel
algorithm that we believe to be the first to account for both sleeping bandits
and bandit history in a single algorithm. We conjecture that the algorithm
achieves logarithmic regret, but leave that for future work.

In our simulations, we made a simplification that assumes file copying
(setup/switching) costs are deterministic in the size of the file/task being
transferred across machines. It would be interesting in future work to con-
sider randomness in the copying costs due to network load. In a related sense,
it would be interesting to consider a problem with multiple objectives of reduc-
ing the makespan as well as minimizing the number of concurrent file copy re-
quests, which can in practice degrade the performance of a network. Achieving
such Pareto improvements without modifications to the computer and network
infrastructure is of particular interest to practitioners. Another direction of
interest is to allow file processing and work-stealing to occur in parallel, which
is very practical since the two operations use different resources on a process-
ing machine (processing is CPU-intensive whereas file copying is IO-intensive).
Finally, the performance of our algorithm was demonstrated empirically, and
it is desirable to conduct a formal analysis to obtain theoretical guarantees of
average and worse-case performance. It is already known that the problem is
NP-completed even without switching costs.

92



Bibliography

[1] U. A. Acar and G. E. Blelloch. The data locality of work stealing. Theory
of Computing Systems, 1-12, 2000.

[2] R. Agrawal, M. V. Hedge, and D. Teneketzis. Asymptotically efficient adap-
tive allocation rules for the multiarmed bandit problem with switching cost.
IEEE Transactions on Automatic Control, 33(10):899 - 906, 1988.

[3] R. Agrawal, M. V. Hedge, and D. Teneketzis. Multi-Armed Bandit Prob-
lems with Multiple Plays and Switching Cost. Stochastics and Stochastic
Reports, 29:437-459, 1990.

[4] S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-
armed bandit problem. In Proceedings of the 25th Annual Conference on
Learning Theory (COLT), JMLR Workshop and Conference Proceedings
Vol. 23, 2012.

[5] I. Ahmad, Y. Kwok, and M. Wu. Performance comparison of algorithms
for static scheduling of DAGs to multiprocessors. Second Australasian Con-
ference on Parallel and Real-time Systems, 185-192, 1995.

[6] S. Albers. Better bounds for online scheduling. SIAM Journal on Comput-
ing, 29(2):459473, 1999.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for
multiprogrammed multiprocessors. Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), Puerto Val-
larta, 119-129, 1998.

[8] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. Theory of Computing Systems, 34(2):115-
144, 2001.

[9] R. Arora, O. Dekel, and A. Tewari. Online bandit learning against an adap-
tive adversary: from regret to policy regret. In Proceedings of the 29th
International Conference on Machine Learning (ICML), 2012.

93



[10] K. J. Åström. Optimal control of Markov decision processes with incom-
plete state estimation. Journal of Mathematical Analysis and Applications,
10:174-205, 1965.

[11] J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and
stochastic bandits. In Proceedings of the 22nd Annual Conference on Learn-
ing Theory (COLT), 2009.

[12] J.-Y. Audibert and S. Bubeck. Regret bounds and minimax policies under
partial monitoring. Journal of Machine Learning Research, 11:2635-2686,
2010.

[13] P. Auer, N. Cesa-Bianchi and P. Fisher. Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning, 47:235-256, 2002.

[14] P. Auer, N. Cesa-Bianchi, Y. Freund and R. Schapire. The nonstochas-
tic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48-77,
2003.

[15] P. Auer and R. Ortner. UCB revisited: Improved regret bounds for the
stochastic multi-armed bandit problem. Periodica Mathematica Hungarica,
61:55-65, 2010.

[16] M. Aufenanger, and P. van Lck, Simulation-based adaption of scheduling
knowledge, Proceedings of the 2010 Winter Simulation Conference, 2010.

[17] Y. Aumann, K. Palem, Z. Kedem, and M. O. Rabin. Highly efficient
asynchronous execution of large grained parallel programs. Procs. of the
34th Annual Symposium on the Foundations of Computer Science (FOCS),
271-280, 1993.

[18] Y. Aumann, M. A. Bender, and L. Zhang. Efficient execution of non-
deterministic parallel programs on asynchronous systems. Information and
Computation, 139(1):1-16, 1997.

[19] R. Azoulay-Schwartz, S. Kraus and J. Wilkenfeld. Exploitation vs. Explo-
ration: Choosing a Supplier in an Environment of Incomplete Information,
Decision Support Systems, 38(1):1-18, 2004.

[20] A. Banõs. On pseudo games. The Annals of Mathematical Statistics,
39:1932-1945, 1968.

[21] R. Bellman. Dynamic programming. Princeton University Press, 1957.

94



[22] M. A. Bender, and M. O. Rabin. Scheduling cilk multithreaded parallel
programs on processors of different speeds. Proceedings of the 12th Annual
Symposium on Parallel Algorithms and Architectures, 13-21, 2000.

[23] M. A. Bender, and M. O. Rabin. Online scheduling of parallel programs
on heterogeneous systems with applicatoins to CILK. Theory of Computing
Systems Special Issue on SPAA, 35(3):289-304, 2002.

[24] M. A. Bender, and C. A. Phillips. Scheduling DAGs on asynchronous
processors. 19th ACM Symp. on Parallel Algorithms and Architectures,
35-45, 2007.

[25] L. Benkherouf and J.A. Bather. Oil exploration: Sequential decisions in
the face of uncertainty. Journal of Applied Probability, 28:529-543, 1988.

[26] L. Benkherouf, K.D. Glazebrook and R.W. Owen. Gittins indices and oil
exploration. Journal of Royal Statistical Society, Serial B, 54:229-241, 1992.

[27] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dymanic programming. Bel-
mont, MA Athena Scientific, 1996.

[28] D. P. Bertsekas and D. A. Castanon. Rollout algorithms for stochastic
scheduling problems. Journal of Heuristics 5(1):89-108, 1999.

[29] D. P. Bertsekas. Dynamic programming and optimal control. Athena Sci-
entic, Belmont, MA, 2001. 2nd Edition.

[30] J. Bidot, T. Vidal, P. Laborie, and J. C. Beck. A theoretic and practical
framework for scheduling in a stochastic environment. Journal of Schedul-
ing, 12(3):315-344, 2009.

[31] R. D. Blumofe, and C. E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. 35th Annual Symposium on Foundations of Com-
puter Science (FOCS 1994), 1994.

[32] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 1995.

[33] R. D. Blumofe and D. Papadopoulos. The performance of work stealing
in multiprogrammed environments (extended abstract). Proceedings of the
1998 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, Poster Session, 266-267, 1998.

95



[34] R. D. Blumofe, and C. E. Leiserson. Scheduling multithreaded computa-
tions by work stealing, Journal of the ACM (JACM), 46(5):720-748, 1999.

[35] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund. A comparison of eleven static heuristics for mapping a class of in-
dependent tasks onto heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing. 61(6):810-837, 2001.

[36] R. P. Brent. The parallel evaluation of general arithmetic expressions.
Journal of the ACM, 21(2):201-206, 1974.

[37] S. Bubeck and N Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends in Ma-
chine Learning, 5(1):1-122, 2012.

[38] S. Bubeck and A. Slivkins. The best of both worlds: stochastic and adver-
sarial bandits. In Proceedings of the 25th Annual Conference on Learning
Theory (COLT), JMLR Workshop and Conference Proceedings, vol. 23,
2012.

[39] F. Burton, and M. Sleep. Executing functional programs on a virtual tree
of processors. Proc. of the 1981 conference on Functional programming
languages and computer architecture (FPCA), 187-194, 1981.

[40] A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning:
A simple, fast, exact algorithm for partially observable Markov decision
processes. In Proceedings of Uncertainty in Artificial Intelligence, 54-61,
1997.

[41] H. S. Chang, R. Givan, and E. K. P. Chong. On-line scheduling via sam-
pling. Artificial Intelligence Planning and Scheduling (AIPS), 62-71, 2000.

[42] H.S. Chang and S. I. Marcus. Approximate receding horizon approach for
Markov decision processes: Average reward case. Journal of Mathematical
Analysis and Applications, vol. 286, 2003.

[43] H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus. Recursive learning automata
approach to Markov decision processes. IEEE Transactions on Automatic
Control, 52(7):1249-1355, 2007.

[44] H. S. Chang, M. C. Fu, J. Q. Hu and S. I. Marcus. Simulation-based
algorithms for Markov decision processes. Springer. 2007.

96



[45] C. Chekuri and M. A. Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. Proc. of the
Sixth Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO), Lecture Notes in Computer Science, 1412:383-393, 1998.

[46] C. Chekuri, and M. A. Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. Journal of Al-
gorithms, 41:212-224, 2001.

[47] R. M. Chen, and Y. M. Huang. Multiconstraint task scheduling in multi-
processor systems by neural networks, 10th IEEE Conference on Tools with
Artificial Intelligence, 288-294, 1998.

[48] H. Chen. Distributed dynamic scheduling for composite tasks on grid com-
puting system, Masters Thesis, Department of Electrical & Computer En-
gineering, University of Manitoba, Winnipeg, Manitoba, Canada, 2001.

[49] H. T. Cheng. Algorithms for partially observable Markov decision pro-
cesses. PhD thesis, University of British Columbia, 1988.

[50] F. A. Chudak, and D. B. Shmoys. Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that run
at different speeds (extended abstract). Proc. of the Eighth Annual ACM
SIAM Symposium on Discrete Algorithms (SODA), 581-590, Jan. 1997.

[51] F. A. Chudak and D. B. Shmoys. Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that run
at different speeds. Journal of Algorithms, 30(2):323-343, 1999.

[52] V. Cicirello and S. F. Smith. The max k-armed bandit: A new model
of exploration applied to search heuristic selection. In Proceedings of the
Twentieth National Conference on Artificial Intelligence, 13551361, 2005.

[53] R. Cole, and O. Zajicek. The expected advantage of asynchrony. SPAA ’90
Proceedings of the second annual ACM symposium on Parallel algorithms
and architectures, 1990.

[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to algorithms,
MIT Press, Cambridge, MA, 1992.

[55] G. Cordasco, and A. L. Rosenberg. On scheduling DAGs to maximize
area. Parallel and Distributed Processing, 2009:1-12, 2009.

[56] R. Dearden, N. Friedman, and S. Russell. Bayesian Q learning. AAAI,
15:761-768, 1998.

97



[57] E. B. Dynkin. Controlled random sequences. Theory of probability and its
applications, 10(1): 1-14, 1965.

[58] H. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto
arbitrary target machines. Journal of Parallel Distrib. Comput. 9(2):138-
153, 1990.

[59] M. Eshaghian. Heterogeneous computing, Edited, Artech House, Nor-
wood, MA, 1996.

[60] D. Fernandez-Baca. Allocating modules to processors in a distributed sys-
tem. IEEE Trans. Software Engrg, 15(11):1427-1436, 1989.

[61] D. P. Foster, R. Vohra. Regret in the Online Decision Problem. Games
and Economic Behavior, 29:7-35, 1999.

[62] T. Furmston, and D. Barber. Lagrange dual decomposition for finite hori-
zon Markov decision processes. Proceedings of the 2011 European confer-
ence on Machine learning and knowledge discovery in databases, vol. Part
I. pp. 487-502. Springer-Verlag. 2011.

[63] A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochas-
tic bandits and beyond. In Proceedings of the 24th Annual Conference on
Learning Theory (COLT), JMLRWorkshop and Conference Proceedings,
vol. 19, 2011.

[64] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell
System Technical Journal, 45:1563-1581, 1966.

[65] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Jour-
nal on Applied Mathematics, 17(2):416-429, 1969.

[66] C. Guestrin, D. Koller, R. Parr, and S Venkataraman. Efficient Solution
Algorithms for Factored MDPs. Journal of Artificial Intelligence Research,
19(1):399-468, 2003.

[67] E. Haddad. Dynamic load distribution optimization in heterogeneous mul-
tiple processor systems. Technical Report TR-93-02, Computer Science,
Virginia Polytechnic Institute and State University, 1993.

[68] R. Hall, A. L. Rosenberg, and A. Venkataramani. A comparison of DAG-
scheduling strategies for internet-based computing. International Parallel
and Distributed Processing Symposium/International Parallel Processing
Symposium - IPDPS(IPPS), 1-9, 2007.

98



[69] R. Halstead. MULTILISP: A language for concurrent symbolic com-
putation. ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(4):501-538, 1985.

[70] B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynamic scheduling techniques
for heterogeneous computing systems. Concurrency: Practice and Experi-
ence, 7(7):633-652, 1995.

[71] J. Hannan. Approximation to Bayes risk in repeated play. Contributions
to the theory of games, 3:97-139, 1957.

[72] O. Hernandez-Lerma. Adaptive Marokov Control Processes. New York.
Springer-Verlag. 1989.

[73] O. Hernandez-Lerma and J.B. Lasserre. Error bounds for rolling horizon
policies in discrete-time Markov control processes. IEEE Transactions on
Automatic Control, vol. 35:1118-1124, 1990.

[74] J. Honda and A. Takemura. An asymptotically optimal bandit algorithm
for bounded supportmodels. In Proceedings of the 23rd Annual Conference
on Learning Theory (COLT), 2010.

[75] J. Q. Hu. Randomized search methods for solving Markov decision pro-
cesses and global optimization. PhD thesis, Electrical Engineering, Univer-
sity of Maryland (College Park, Md.), 2006.

[76] J. Q. Hu and H. S. Chang. An aproximate stochastic annealing algorithm
for finite horizon Markov decision processes. In Proceedings of the 49th
IEEE Conference on Decision and Control (CDC), 5338-5343, 2010.

[77] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling indepen-
dent tasks on nonidentical processors, Journal of the ACM, 24(2):280-289,
1977.

[78] J. Idziorek. Discrete event simulation model for analysis of horizontal
scaling in the cloud computing model. Proceedings of the 2010 Winter Sim-
ulation Conference, 3004-3014, 2010.

[79] M. Iverson, F. Özgüner, and G. Follen. Parallelizing existing application
in a distributed heterogeneous environment. 4th IEEE Heterogeneous Com-
puting Workshop (HCW ’95), 93-100, 1995.

[80] M. Iverson, and F. Özgüner. Dynamic, competitive scheduling of multiple
DAGs in a distributed heterogeneous environment. Heterogeneous Comput-
ing Workshop, 1998.

99



[81] J. M. Jaffe. An analysis of preemptive multiprocessor job scheduling. Math-
ematics of Operations Research, 5(3):415-421, 1980.

[82] J. M. Jaffe. Efficient scheduling of tasks without full use of processor re-
sources. Theoretical Computer Science, 12:1-17, Aug. 1980.

[83] K. Jamieson, M. Malloy, S. Bubeck and R. Nowak. lil ′ UCB: An Optimal
Exploration Algorithm for Multi-Armed Bandits. In Proceedings of the 27th
Annual Conference on Learning Theory (COLT), JMLR Workshop and
Conference Proceedings, vol. 35, 2014.

[84] T. Jun. A survey on the bandit problem with switching costs. De
Economist, 152(4):513-541. 2004.

[85] L. P. Kaelbling, M. L. Littman and A. R. Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101(1-
2):99-134, 1998.

[86] S. Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis, University College London, 2003.

[87] E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymp-
totically optimal finite-time analysis. In Proceedings of the 23rd Interna-
tional Conference on Algorithmic Learning Theory (ALT), 2012.

[88] M. Kearns, Y. Mansour, and A.Y. Ng. Approximate planning in large
POMDPs via reusable tragectories. Advances in Neural Information Pro-
cessing Systems, 1999.

[89] M. Kearns, Y. Mansour and A. Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. Machine Learn-
ing, 49:193-208, 2002.

[90] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. Efficient
program transformation for resilient parallel computation via randomiza-
tion. Proc. of the 24th Annual ACM Symposium on the Theory of Com-
puting (STOC), 306-317, 1992.

[91] J. Kelley, Jr. Critical path planning and scheduling: Mathematical basis.
Operations Research, 9(3):296-320, 1961.

[92] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret bounds for sleep-
ing experts and bandits. Machine Learning, 80(2-3):245-272, 2010.

100



[93] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6:4-22, 1985.

[94] C. Leangsuksun, J. Potter, and S. Scott. Dynamic task mapping algo-
rithms for a distributed heterogeneous computing environment. 4th Hetero-
geneous Computing Workshop (HCW 95), 30-34, 1995.

[95] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of
machine scheduling problems. Annals of Discrete Mathematics, 1:343-362,
1977.

[96] C. K. Li and W. K. Wong. Extension of stochastic dominance theory to
random variables. RAIRO - Operations Research, 33(4):509-524, 1999.

[97] O.-A. Maillard, R. Munos, and G. Stoltz. A finite-time analysis of multi-
armed bandits problems with Kullback-Leibler divergences. In Proceedings
of the 24th Annual Conference on Learning Theory (COLT), JMLR Work-
shop and Conference Proceedings, vol. 19, 2011.

[98] A. Mahajan and D. Teneketzis. Multi-armed bandit problems. In Founda-
tions and Applications of Sensor Management. 121 151. Springer. 2008.

[99] M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling
algorithm for heterogeneous computing systems. In Seventh Heterogeneous
Computing Workshop, 57-69, 1998.

[100] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund.
Dynamic mapping of a class of independent tasks onto heterogeneous com-
puting systems. Journal of Parallel Distributed Computing, 59(2):107-121,
1999.

[101] M. S. Maxwell, S. G. Henderson, and H. Topaloglu. Identifying effective
policies in approximate dynamic programming: beyond regression. Proceed-
ings of the 2010 Winter Simulation Conference, 2010.

[102] D. A. McAllester and S. Singh. Approximate Planning for Factored
POMDPs using Belief State Simplification. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, 409-416, 1999.

[103] B. P. McCall and J. J. McCall. A Sequential study of migration and job
search. Journal of Labor Economics, 5:452476, 1987.

[104] A. McLennan. Price dispersion and incomplete learning in the long run.
Journal of Economic Dynamics and Control, 7:331-347, 1984.

101



[105] M. Mitzenmacher. Analyses of load stealing models based on differential
equations. Proceedings of the 10th Annual ACM Symposium on Parallel
Algorithms and Architectures, 212-221, 1998.

[106] R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic
scheduling: The power of LP-based priority policies. Journal of the ACM
(JACM), 46(6):924-942, 1999.

[107] G. E. Monahan. A survey of partially observable Markov decision pro-
cesses: Theory, models, and algorithms. Management Science, 28(1):1-16,
1982.

[108] D. B. Neill. Work stealing: An annotated bibliography, Annotated Bibli-
ography, http://tinyurl.com/orcyxdd.

[109] J. Neufeld, A. György, D. Schuurmans, and Cs. Szepesvári. Adaptive
Monte Carlo via Bandit Allocation. In Proceedings of the 31st International
Conference on Machine Learning (ICML ’2014), 1944-1952, 2014.

[110] R. Ortner, D. Ryabko, P. Auer, and R. Munos. Regret bounds for restless
Markov bandits. arXiv preprint arXiv:1209.2693, 2012.

[111] Sandeep Pandey, Deepayan Chakrabarti, and Deepak Agarwal. Multi-
armed bandit problems with dependent arms. In Proceedings of the 24th
international conference on Machine learning (ICML ’07), 721-728, 2007.

[112] V. Perchet and P. Rigollet. The multi-armed bandit problem with covari-
ates. Arxiv preprint arXiv:1110.6084, 2011.

[113] J. Pineau, G. Gordon and S. Thrun. Point-based value iteration: An
anytime algorithm for pomdps. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1025-1032, 2003.

[114] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart. Point-based
value iteration for continuous POMDPs. Journal of Machine Learning Re-
search, 7:2329-2367, 2006.

[115] D. Pucci de Farias and N. Megiddo. Combining expert advice in reactive
environments. Journal of the ACM, 53(5):762-799, 2006.

[116] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic
programming. New York. Wiley. 1994.

[117] L. R. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257-285, 1989.

102



[118] H. Robbins. Some aspects of the sequential design of experiments. Bul-
letin of the American Mathematical Society, 58:527-535, 1952.

[119] M. Rothschild. A Two-armed bandit theory of market pricing. Journal
of Economic Theory, 9:185-202, 1974.

[120] S. Ryu. Scheduling multithreaded computations by work stealing.
Presentation. http://plrg.kaist.ac.kr/ media/home/lectures/cs720 2010-
1/lecture14.pdf, 2010.

[121] G. Santharam and P. S. Sastry. A reinforcement learning neural net-
work for adaptive control of Markov chains. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part A Systems and Humans, 27(5):588-600,
1997.

[122] K. H. Schlag. How to Minimize Maximum Regret under Repeated
Decision-Making. Discussion paper, Florence: European University Insti-
tute, 2003.

[123] R. J. Serfling. Some elementary results on Poisson appoximation in a
sequence of Bernoulli trails. SIAM Rev, 20(3):567-579, 1978.

[124] P. K. Shivaswamy and T. Joachims. Multi-armed bandit problems with
history. Journal of Machine Learning Research - Proceedings Track, 1046-
1054, 2012.

[125] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li. Het-
erogeneous computing. Parallel and Distributed Computing Handbook, A.
Y. Zomaya, ed., McGraw-Hill, New York, NY, 725-761, 1996.

[126] G. C. Sih, and E. A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE
Transactions on Parallel Distributed Systems, 4(2):175-186, 1993.

[127] H. D. Simon, and S. H. Teng. How good is recursive bisection?. SIAM
Journal Scientific Computing, 18(5):1436-1445, 1997.

[128] A. Skoogh and J. Michaloski. Towards continuously updated simulation
models: combining automated raw data collection and automated data pro-
cessing, Proceedings of the 2010 Winter Simulation Conference, 2010.

[129] E. J. Sondik. The optimal control of partially observable Markov pro-
cesses. PhD thesis, Stanford University, 1971.

103



[130] M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value
iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195-
220, 2005.

[131] M. S. Squillante and R. D. Nelson. Analysis of task migration in shared-
memory multiprocessor scheduling. Proceedings of the 1991 ACM SIG-
METRICS conference on Measurement and modeling of computer systems,
143-155, 1991.

[132] M. S. Squillante, and E. D. Lazowska. Using processor-cache affinity in-
formation in shared-memory multiprocessor scheduling, IEEE Transactions
on Parallel and Distributed Systems, 131-143, 1993.

[133] M. S. Squillante, C. H. Xia, D. D. Yao, and L. Zhang. Threshold-based
priority policies for parallel-server systems with affinity scheduling, Proc.
American Control Conference, 2992-2999, 2001.

[134] M. Streeter and S. F. Smith. A simple distribution-free approach to
the max k-armed bandit problem. In Proceedings of the 12th international
conference on principles and practice of constraint programming. Lecture
Notes in Computer Science 4204, 560-574. Springer, Berlin. 2006.

[135] R. Sutton and A. Barto. Reinforcement learning, an introduction. Cam-
bridge: MIT Press/Bradford Books. 1998.
Szepesvari2010 Cs. Szepesvri. Reinforcement Learning Algorithms for
MDPs. Wiley Encyclopedia of Operations Research, Wiley. 2010.

[136] M. Tchiboukdjian, N. Gast, D. Trystram, J. Roch, and J. Bernard. A
tighter analysis of work stealing. Proceedings of ISAAC (2):291-302, 2010.

[137] C. Tekin and M. Liu. Online learning of rested and restless bandits. IEEE
Transactions on Information Theory, 58(8):5588-5611, 2012.

[138] L. Tesfatsion. Stochasic dominance and maximization of expected utility.
Review of Economic Studies, 43:301-315, 1976.

[139] W. Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Bulletin of the American
Mathematics Society, 25:285-294, 1933.

[140] M. Tokic. Adaptive ε-greedy exploration in reinforcement learning based
on value differences. KI 2010: Advances in Artificial Intelligence, Lecture
Notes in Computer Science, 6359, Springer-Verlag, 203-210, 2010.

104



[141] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for
heterogeneous processors. 8th IEEE Heterogeneous Computing Workshop
(HCW ’99), 3-14, 1999.

[142] F. Topsφe. Some bounds for the logarithmic function. Research report
collection, 2004.

[143] M. Uetz. When greediness fails: Examples from stochastic scheduling.
Operations Research Letters, 31:413-419, 2003.

[144] M. Van Oyen and J. Pichitlamken. Properties of optimal-weighted flow-
time policies with a makespan constraint and set-up times. Manufacturing
& Service Operations Management, 2(1):84-99, 2000.

[145] E. Vecchia, S. Marco, and A. Jean-Marie. Illustrated review of con-
vergence conditions of the value iteration algorithm and the rolling hori-
zon procedure for average-cost MDPs. Annals of Operations Research,
199(1):193-214, 2012.

[146] C. J. C. H. Watkins. Learning from delayed rewards. PhD tesis, Cam-
bridge University, 1989.

[147] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279-
292, 1992.

[148] M.L. Weitzman. Optimal search for the best alternative. Econometrica,
47:641-654, 1979.

[149] N. L. Zhang and W. Zhang. Speeding up the convergence of value itera-
tion in partially observable Markov decision processes. Journal of Artificial
Intelligence Research, 14:29-51, 2001.

[150] H. B. Zhou. Scheduling DAGs on a bounded number of processors. Paral-
lel and Distributed Processing Techniques and Applications, 823-834, 1996.

[151] http://research.microsoft.com/en-us/projects/bandits/

[152] http://supertech.csail.mit.edu/cilk

[153] http://en.wikipedia.org/wiki/List scheduling

105


	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Multi-Armed Bandits
	1.1 Introduction
	1.2 Sample Applications of the Bandit Model
	1.3 Regret of a Forecaster
	1.4 Bandit Models
	1.4.1 Stochastic Bandits
	1.4.2 Adversarial Bandits
	1.4.3 Other Bandits

	1.5 Open Problems

	2 An -Greedy Multi-Armed Bandit Approach to Markov Decision Processes
	2.1 Introduction to (PO)MDPs
	2.2 Related Work
	2.2.1 Adaptive Sampling MDP Framework and AMS

	2.3 The REGA method
	2.4 The OREGA Method
	2.5 Practical Limitations
	2.5.1 Rolling Horizon Control (RHC)
	2.5.2 Decreased Simulation Allocation into the Horizon

	2.6 Empirical Results
	2.6.1 The SysAdmin Problem
	2.6.2 Results

	2.7 A Note on the Generalized Epsilon-Greedy Method and Regret of MABs
	2.8 Concluding Remarks

	3 Scheduling in the e-Discovery Domain
	3.1 Introduction
	3.2 A Formal Model
	3.3 A POMDP Approach
	3.4 An Overview from Scheduling Theory
	3.5 A Scheduling Algorithm for e-Discovery
	3.6 List Scheduling With Side Bandits
	3.7 Empirical Results
	3.8 Concluding Remarks

	 Bibliography

