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Abstract of the Dissertation

Estimation of Stable distribution and Its Application to Credit Risk

by

Hua Mo

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

To capture the heavy tails and the volatility clustering of asset returns

is always an important topic in financial market. We studies two projects

related to the Alpha Stable distribution and Classical Tempered Stable(CTS)

distribution respectively which both have desired properties to accommodate

heavy-tails and capture skewness in financial series. (1) In the major part

of the first project, we introduce the algorithm of indirect inference method.

By using the skewed-t distribution as an auxiliary model which is easier to

handle, we can estimate the parameters of the Alpha Stable distribution

since these two models have the same numbers of parameters and each of

them plays a similar role. We also estimate of the parameters of the alpha

stable distribution with McColloch method, Characteristic Function Based

method and MLE method respectively. Finally, we provide an empirical

application on S&P 500 returns and make comparisons between these four

methods. (2) In the second project, we discuss the Gaussian firm value

model and the Classical Tempered Stable firm value model. By pointing out

the drawbacks of application of Merton’s model on firm value, we introduce
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the classical tempered stable distribution and make the market firm value

process follows a CTS distribution instead of Gaussian distribution. We

estimate the parameters of the CTS, and calculate the firm value and

default probability. By comparing these two models, the results suggest

that CTS firm value model has a better potential to predict the default

probability of a firm since it can better capture the heavy tails of the asset

returns.
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1 Introduction
The central limit theorem is one of the most important applications in sta-

tistics. It expresses the fact that a sum of many independent and identically

distributed (i.i.d.) random variables, or alternatively, random variables with

specific types of dependence, will tend to be a normal distribution regardless

of the individual shape. The consequence of this result is that the normal

distribution is widespread in statistical inference.

However, in some specific cases, especially in the field of finance, it’s empir-

ically observed that assets returns are heavy-tailed and leptokurtic. Man-

delbrot and Fama suggested that the financial assets returns have stable

non-Gaussian distributions in the 60’s. This means the central limit theory

fails and one should not expect the normal Gaussian distribution as a limit

law in such case. The α-stable distribution accommodates heavy-tailed fi-

nancial series and therefore produces more reliable measures of tail risk such

as VaR. Besides, the α-stable distribution can capture the skewness of one

distribution, which is another property of financial assets.

There are several equivalent ways to define the class of the α-stable dis-

tribution.

Definition 1. A random variable X is said to have stable distribution if

there is a positive number Cn and a real number Dn such that the sum of

n independent copies of X, X1 + X2 + · · · + Xn,has the same distribution as

CnX +Dn,that is

X1+X2+ · · ·+Xn
d
= CnX +Dn

Definition 2. where d→ denotes convergence in distribution.

Definition 3. A random variable X is said to have a stable distribution if it

has a domain of attraction, i.e. if there is a sequence of iid random variables

Y1, Y2, · · · and sequence of positive numbers {dn} and real numbers {an} such

that
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Y1 + Y2 + ...+ Yn
dn

+ an
d→ X

where d→ denotes convergence in distribution.

Definition 4. A random variable X is said to have a stable distribution

if there are parameters 0 < α ≤ 2, σ > 0,−1 ≤ β ≤ 1, µ ∈ R such that its

characteristic function (chf) has the following form

ϕ(t) = Ee
itX

= {
exp {−σα|t|α(1−iβ t

|t| tan (πα2 ))+iut},α 6=1

exp {−σ|t|(1+iβ 2
π
t
|t| ln (|t|))+iut},α=1

where t
|t| = 0 if t=0. Here α ∈ (0, 2],measures the tail thickness, β ∈ [−1, 1]

measures the degrees of asymmetry, σ > 0 determines the scale and µ ∈

R determines the location. Since the parameters in the above equation is

not continuous in the parameter space, it’s usually recommended to use the

following representation of the chf

ϕ(t) = Ee
itX

= {exp {−|σαtα|+iσtβ(|σt|α−1−1) tan (πα2 ))+iu1t},α 6=1

exp {−|σt|+iσtβ 2
π ln|σt|+iu1t},α=1

where 0 < α ≤ 2, σ > 0,−1 ≤ β ≤ 1, µ1 ∈ R,µ1 = {u+βσ tan πα
2 ,α6=1

u,α=1

It’s a nontrivial task to estimate the parameters of the α-stable distrib-

ution since there are no closed form expressions for the density functions

except for some specific cases. In this paper we will talk about four para-

meter estimation techniques: quantile method, characteristic function based

method, maximum likelihood and indirect inference. The quantile method is

produced by FamaandRoll and modified byMcCulloch. The Chf based meth-

ods include several methods, in this paper we just talk about regression type

estimator of Kogon-Williams. The maximum likelihood estimation (MLE)

theory was first proposed by DuMouchel. We emphasized the method of

the indirect inference. It is a method particularly suited to situations where

the model of interest is diffi cult to estimate but relatively easy to simulate.

Indirect inference involves the use of an auxiliary model. Auxiliary parame-

ters are estimated through maximization likelihood method and also have a

one-to-one correspondence with the parameters of the stable distribution.

3



This report organized as follows, Section 2 introduce the four parameters

estimation techniques: McCulloch, characteristic function based method,

maximum likelihood estimation and indirect inference. To emphasize the

application of the indirect inference, we set an example and detail its appli-

cation. Section 3 shows the empirical illustration. We resample the data and

compare the spread of the parameters with different methods. We also fit

the sample data pdf and the estimated data pdf and test the fitness. Finally

we compare the tail event between these four methods respectively. Section

4 make a conclusion, and section 5 envision future research on this topic.

Section 6 is the acknowledgement and section 7 is the reference.

2. Parameters Estimation Techniques
2.1 Quantile Method of McCulloch

In fact, this estimation method can be seen as a specific case of indi-

rect inference. According to McCulloch, the four parameters of a stable

distribution can be estimated from five predetermined sample quantiles, for

0.6 < α ≤ 2 and −1 ≤ β ≤ 1.Suppose we have n independent variables Xi from

the the stable distribution whose parameters are to be estimated. Denote xp

is the p-th quantile if F(xp)=p, where F(x) is the cdf of a random variable.

Let
∧
xpbe the corresponding sample quantile. Define

vα =
x0.95 − x0.05

x0.75 − x0.25

This index vα is independent of σ and µ. let
∧
vαbe the corresponding sample

value

∧
vα =

∧
x0.95 −

∧
x0.05

∧
x0.75 −

∧
x0.25

The statistic
∧
vαis the continuous estimator of vα.Define

vα = φ1(α, β)

vβ =
x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
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and let
∧
vβbe the corresponding sample and

∧
vβ =

∧
x0.95 +

∧
x0.05 − 2

∧
x0.50

∧
x0.95 −

∧
x0.05

The statistic
∧
vβis the continuous estimator of vβ . The value of vα and vβ as

functions of φ1(α, β) and φ2(α, β) are tabulated in Table 1 and 2. Table 1 and

2 are derived from DuMouchel’s tabulation [1971] of the stable distribution.

Table 1: vα = φ1(α, β)

β

α

0.00 0.25 0.50 0.75 1.00

2.00 2.439 2.439 2.439 2.439 2.439

1.90 2.512 2.512 2.513 2.513 2.515

1.80 2.608 2.609 2.610 2.613 2.617

1.70 2.737 2.738 2.739 2.742 2.746

1.60 2.912 2.909 2.904 2.900 2.902

1.50 3.148 3.136 3.112 3.092 3.089

1.40 3.464 3.436 3.378 3.331 3.316

1.30 3.882 3.834 3.720 3.626 3.600

1.20 4.447 4.365 4.171 4.005 3.963

1.10 5.217 5.084 4.778 4.512 4.451

1.00 6.314 6.098 5.624 5.220 5.126

0.90 7.910 7.590 6.861 6.260 6.124

0.80 10.448 9.934 8.779 7.900 7.687

0.70 14.838 13.954 12.042 10.722 10.370

0.60 23.483 21.768 18.332 16.216 15.584

0.50 44.281 40.137 33.002 29.140 27.782

Note that φ1(α, β) = φ1(α,−β)
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Table 2: vβ = φ2(α, β)

β

α

0.00 0.25 0.50 0.75 1.00

2.00 0.00 0.00 0.00 0.00 0.00

1.90 0.00 0.018 0.036 0.053 0.071

1.80 0.00 0.039 0.077 0.113 0.148

1.70 0.00 0.063 0.123 0.178 0.228

1.60 0.00 0.089 0.174 0.248 0.309

1.50 0.00 0.118 0.228 0.320 0.390

1.40 0.00 0.148 0.285 0.394 0.469

1.30 0.00 0.177 0.342 0.470 0.546

1.20 0.00 0.206 0.399 0.547 0.621

1.10 0.00 0.236 0.456 0.624 0.693

1.00 0.00 0.268 0.513 0.699 0.762

0.90 0.00 0.303 0.573 0.770 0.825

0.80 0.00 0.341 0.634 0.834 0.881

0.70 0.00 0.387 0.699 0.890 0.927

0.60 0.00 0.441 0.768 0.936 0.962

0.50 0.00 0.510 0.838 0.970 0.985

Note thatφ2(α, β) = −φ2(α, β)

The relationship

vα = φ1(α, β)

vβ = φ2(α, β)

may be inverted to produce the relationship

α = ψ1(vα, vβ)

β = ψ2(vα, vβ)

The parameter α and β may be estimated by

∧
α = ψ1(

∧
vα,
∧
vβ)

∧
β = ψ2(

∧
vα,
∧
vβ)
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The function ψ1(vα, vβ) and ψ2(vα, vβ) are tabulated in Tables 3 and 4.

Table 3: α = ψ1(vα, vβ)

νβ

vα

0 0.1 0.2 0.3 0.5 0.7 1

2.5 1.916 1.924 1.956 1.998 2 2 2

3.5 1.391 1.386 1.364 1.337 1.319 1.300 1.291

4.5 1.193 1.187 1.166 1.129 1.093 1.066 1.053

5.5 1.074 1.068 1.050 1.015 0.976 0.944 0.927

6.5 0.988 0.983 0.969 0.937 0.901 0.866 0.849

7 0.957 0.951 0.938 0.905 0.872 0.836 0.815

9 0.857 0.852 0.841 0.814 0.784 0.752 0.730

10 0.818 0.812 0.801 0.780 0.758 0.720 0.691

12 0.765 0.760 0.751 0.729 0.701 0.676 0.655

16 0.687 0.683 0.677 0.663 0.642 0.610 0.586

20 0.640 0.636 0.628 0.615 0.596 0.576 0.555

25 0.593 0.590 0.586 0.579 0.563 0.541 0.513

Note that ψ1(vα, vβ) = ψ1(vα,−vβ)

Table 4: β = ψ2(vα, vβ)

vβ

vα

0 0.1 0.2 0.3 0.5 0.7 1

2.5 0 1 1 1 0 0 0

3.5 0 0.165 0.499 0.943 1 1 1

4.5 0 0.119 0.355 0.596 1 1 1

5.5 0 0.102 0.302 0.498 0.731 1 1

6.5 0 0.091 0.272 0.453 0.662 1 1

7 0 0.088 0.259 0.435 0.639 1 1

9 0 0.078 0.231 0.391 0.597 1.968 1

10 0 0.074 0.220 0.377 0.546 0.874 1

12 0 0.070 0.207 0.354 0.501 0.788 1

16 0 0.063 0.189 0.324 0.470 0.708 1

20 0 0.060 0.177 0.303 0.446 0.677 1

25 0 0.056 0.167 0.285 0.428 0.650 1

Note that ψ2(vα, vβ) = −ψ2(vα,−vβ)
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Since there are no closed form expression for the functions ψ1(vα, vβ) and

ψ2(vα, vβ),we estimate α and β from
∧
vαand

∧
vβaccording to the Table 3 and

4. Observing the tables we can find that when
∧
vαis below 2.439

∧
α will be set

equal to 2 and
∧
β equal to 0.

McCulloch also provide the estimation formula of vσ:

vσ =
x0.75 − x0.25

σ
= φ3(α, β)

The function of φ3(α, β) is given in Table 5:

Table 5: vσ = φ3(α, β)

β

α

0 0.25 0.50 0.75 1.00

2.00 1.908 1.908 1.908 1.908 1.908

1.90 1.914 1.915 1.916 1.918 1.921

1.80 1.921 1.922 1.927 1.936 1.947

1.70 1.927 1.93 1.943 1.961 1.987

1.60 1.933 1.94 1.962 1.997 2.043

1.50 1.939 1.952 1.988 2.045 2.116

1.40 1.946 1.967 2.022 2.106 2.211

1.30 1.955 1.984 2.067 2.188 2.333

1.20 1.965 2.007 2.125 2.294 2.491

1.10 1.98 2.04 2.205 2.435 2.696

1.00 2 2.085 2.311 2.624 2.973

0.90 2.04 2.149 2.461 2.886 3.356

0.80 2.098 2.244 2.676 3.265 3.912

0.70 2.189 2.392 3.004 3.844 4.775

0.60 2.337 2.635 3.542 4.808 6.247

0.50 2.588 3.073 4.534 6.636 9.144

Note that φ3(α, β) = φ3(α,−β)

Replacing α and β with the estimator found according to the above method,

we can get the estimator
∧
σ by table 5 and the following formula:
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∧
σ =

∧
x0.75 −

∧
x0.25

φ3(
∧
α,
∧
β)

McCulloch also provides estimator for the location parameter µ :

vu =
u− x0.5

σ

However, when α → 1 and β 6= 0,there will be an discontinuity and makes

the linear interpolation highly incorrect. To solve this problem, McCulloch

proposes the following native location parameter:

ζ = {u+βσ tan πα
2 ,α6=1

u,α=1 ⇒

u = {ζ−βσ tan πα
2 ,α6=1

ζ,α=1

Table 6 shows the behavior of vζ = φ4(α, β) :

Table 6: vζ = φ4(α, β)

β

α

0.00 0.25 0.50 0.75 1.00

2.00 0.00 0.00 0.00 0.00 0.00

1.90 0.00 -0.017 -0.032 -0.049 -0.064

1.80 0.00 -0.03 -0.061 -0.092 -0.123

1.70 0.00 -0.043 -0.088 -0.132 -0.179

1.60 0.00 -0.056 -0.111 -0.17 -0.232

1.50 0.00 -0.066 -0.134 -0.206 -0.283

1.40 0.00 -0.075 -0.154 -0.241 -0.335

1.30 0.00 -0.084 -0.173 -0.276 -0.39

1.20 0.00 -0.09 -0.192 -0.31 -0.447

1.10 0.00 -0.095 -0.208 -0.346 -0.508

1.00 0.00 -0.098 -0.223 -0.383 -0.576

0.90 0.00 -0.099 -0.237 -0.424 -0.652

0.80 0.00 -0.096 -0.25 -0.469 -0.742

0.70 0.00 -0.089 -0.262 -0.52 -0.853

0.60 0.00 -0.078 -0.272 -0.581 -0.997

0.50 0.00 -0.061 -0.279 -0.659 -1.198

Note that φ4(α, β)=φ4(α,−β)
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The parameter now can be estimated by

∧
ζ =

∧
x0.5 +

∧
σφ4(

∧
α,
∧
β)

So we can get the estimator of the location parameter by

∧
u = {

∧
ζ−
∧
β
∧
σ tan π

∧
α
2 ,α 6=1

∧
ζ,α=1

2.2 Chf Based Method

Given a sequence of independent and identically distributed (i.i.d.) ran-

dom variables x1,x2,...xn, define the sample characteristic function by

∧
ϕ(t) =

1

n

n∑
j=1

eitxj , t ∈ R

Since
∣∣∣∧ϕ(t)

∣∣∣ is bounded by unity all moments of ∧ϕ(t) which are finite and, for

any fixed , it is the sample average of i.i.d. random variables . Hence, by

the law of large numbers, it is a consistent estimator of the chf.

Here we will talk about the regression-type estimator. Regression-type

estimator method is first presented by Koutrouveils. This method starts

with an initial estimate of the parameters and proceeds iteratively until

some pre-specified convergence criterion is satisfied. Each iteration consists

of two weighted regression runs. The number of points to be used in these

regressions depends on the sample size and starting values of α.However, this

technique involves a lot of computations because of the required iterations.

Then Kogon and William suggest a new method to eliminated this iteration

procedure and reduce the amount of computations.

The linear equations directly follows from the form of the logarithm of the

chf:

ln[−<(lnϕ(t))] = α lnσ + α ln |t|

=(lnϕ(t)) = u1t+ βσt(|σt|α−1 − 1) tan
πα

2

The parameter estimators can be constructed using the method of least

squares after replacing the chf for the sample chf. Kogon and Williams give

that the best choice is tk = {0.1 + 0.1k, k = 0, 1, ...9}− they are 10 equally

spaced points in the interval [0.1,1]. The algorithm is as follows:
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1. We first use the technique of McCulloch for the preliminary estimator

of σ0 and u01. Once the initial σ0 and u01 have been found, the data sample

{x1,x2,...,xn} are normalized:

x
′

j =
xj −

∧
u01

∧
σ0

, j = 1, 2, ..., n

2. let yk=ln[−<(lnϕ(t))], wk = ln |tk| where tk = {0.1 + 0.1k, k = 0, 1, ...9} and

εk denotes the error term, then we get the regression equation:

yk = b+ αwk + εk, k = 0, 1, ...9

Using the normalized sample {x′n} we can find the
∧
α and

∧
b according to the

method of OLS.

3. Let zk = =(lnϕ(t)), vk =
∧
σ1tk(

∣∣∣ ∧σ1tk

∣∣∣∧α−1

− 1) tan π
∧
α
2 , tk = {0.1 + 0.1k, k =

0, 1, ...9},then

zk = u11tk + βvk + ηk, k = 0, 1, ...9

The skewness parameter
∧
β and the modified location parameter

∧
u11can be

estimated from the above formula

4. The final estimate of the spread and modified location parameters are

found to be

∧
σ =

∧
σ
∧

0σ1,

∧
u1 =

∧
u01 +

∧
σ0
∧
u11

and the final estimate of the location parameter is from the estimator of
∧
u1

by

∧
u =

∧
u1 −

∧
β
∧
σ tan

∧
απ

2

2.3 Maximum Likelihood

The method of maximum likelihood is very popular in many applications

due to the good asymptotic properties of the estimates. The likelihood

function is defined as

L(x1,x2,...xn | θ) =

n∏
k=1

f(xk | θ)
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where {x1,x2,...xn} is a sample of i.i.d observations of a r.v. X. f(x | θ) is

the pdf of X, and θ is a vector of parameters. MLE are found by searching

for the parameter values which can maximize the likelihood function, that

is, to maximize the log-likelihood function:

∧
θn = arg max

θ
log(L(x1,x2,...xn | θ))

If we want to derive the expression for MLE analytically we need know

the close-form pdf of stable laws. Here we use the FFT-method to do the

transform and estimate the density function.

2.4 Indirect Inference

First introduces by Smith and Gourieroux, Monfort and Renault (1993),

indirect inference is an inferential approach which is quite suited for the

situation where the models of interest is diffi cult to estimate but relatively

easy to simulate.

The underlying principle is as followed: suppose we have a sample of T

observations y and a model whose likelihood function L∗(y; θ) is diffi cult to

handle and maximize. The maximum likelihood estimate of θ ∈ Θ,given by

∧
θ = max

θ∈Θ

T∑
t=1

lnL∗(θ; yt),

is unavailable. Let us take an alternative model, depending on a parameter

vector ζ ∈ Z,which is indicated as auxiliary model and easier to estimate,

suppose we use this model in place of the original one. Since the model is

unspecified, the ML-estimator

∧
ζ = max

∧
ζ∈Z

T∑
t=1

ln
˜

L(ζ; yt),

is unnecessarily consistent: the idea is to exploit simulations performed under

the original model to correct the inconsistency.
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The first step is to compute the quasi MLE of ζ,which is demoted as
∧
ζ.

Next, one simulates a set of S vectors of size T from the original model on

the basis of an arbitrary parameters vectors
∧
θ

(0)

. Let us denote each one of

those vectors as y(s)(
ˆ

θ
(0)

).The simulated values are then estimated using the

auxiliary model, yielding

∧
ζ(

ˆ

θ
(0)

) = max
ζ∈Z

S∑
s=1

T∑
t=1

ln
˜

L[ζ; y(s)(
ˆ

θ
(0)

)].

The idea is to numerically update the initial guess
ˆ

θ
(0)

in order to minimize

the distance

[
∧
ζ −

∧
ζ(θ)]

′
[
∧
ζ −

∧
ζ(θ)],

The indirect inference estimators are consistent and asymptotically nor-

mal under certain conditions. The most diffi cult part is to establish the

binding function which maps the parameters of the auxiliary model onto the

true model—alpha-stable distribution. The auxiliary model we decide to use

is the skewed-t distribution introduced by Azzalini&Capitanio in 2003, since

it has similarities to the alpha-stable distribution. Table 7 is the relationship

between these parameters.

Table 7: Relation structural and auxiliary parameters

characteristic Structural Auxiliary

Tail thickness α ν

Skewness β γ

Scale σ λ

Location µ ω

The skewed t distribution has the pdf as follows:

f(x; ν, γ, λ, ω) =
Γ(1/2 + ν)

ρλ(πν)
1/2

Γ(ν)( |x−ω+m|2
ν(ρλ)2(γsign(x−ω+m)+1)2

+ 1)1/2+ν

where

m =
2ρλγν1/2Γ(ν − 1/2)

π1/2Γ(ν + 1/2)

and

ρ =
1

ν1/2
√

(3γ2 + 1)( 1
2ν−2 )− 4γ2

π (Γ(ν−1/2)
Γ(ν) )2

13



In this paper, we do a little change on the algorithm, the steps are as

follows:

1. Use an alternative model, depending on a parameter vector ς,which is

indicated as an auxiliary model who has closed form density function and is

easier to estimate. The auxiliary we use here is skewed t distribution.

2. The sample data is then estimated using the auxiliary model with MLE

method, yielding

ˆ
ς = (ν, γ, λ, ω)

then we can get the probability density function f(x). According to the FFT,

we can also get the pdf of alpha stable distribution g(x).

3. Find the parameter θ = (α, β, σ, µ) in order to minimize the distance√∑
X∈P

|f(x)− g(x)2|

where P={x1, x2,...xN}.

In our application , we will estimate the parameters of the return distrib-

ution of S&P 500 index with daily price from 1/1/2009 to 7/27/2012. There

are totally 901 daily returns.

First step, we use MLE to estimate the parameters of skew-t distributions.

The results are as following:

{υ = 2.7988, γ = 0.2682, λ = 0.0088, ω = −0.0030}

Secondly, we find the α-stable distribution parameters which minimize

the distance between probability density of the skewed-t distribution and

alpha-stable distribution, which is
√∑

X∈P |f(x)− g(x)2|.

The numerical estimation result as following:

{α = 1.0001, β = 0.2682, σ = 5.0050, µ = −0.0032}

3. Comparison between Methods
We want to compare these four methods on simulated sample with

different sample size. In our simulation,we generate different size

alpha-stable samples with fixed parameters, and apply these methods to

estimate the parameters of alpha-stable distribution. I set

α = 1.2, β = 0.5, σ = 1, µ = 0.

14



3.1 Compare the Spread
To test the stabilities of the outcomes, I resample 100 groups of the

estimated stable parameters. The following are the boxplot diagrams:

MC CFE MLE IndIn

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
alpha;N=1000

Figure 1: Boxplot Diagrams of α,N=1000

MC CFE MLE IndIN
0.8

1

1.2

1.4

1.6

1.8

alpha;N=100

Figure 2: Boxplot Diagrams of α,N=100
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MC CFE MLE IndIn
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beta;N=1000

Figure 3: Boxplot Diagrams of β,N=1000

MC CFE MLE IndIn
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Figure 4: Boxplot Diagrams of β,N=100
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MC CFE MLE IndIn
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Figure 1. Figure 5: Boxplot Diagrams of σ,N=1000
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Figure 6: Boxplot Diagrams of σ,N=100
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MC CFE MLE IndIn
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Figure 7: Boxplot Diagrams of µ,N=1000
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Figure 8: Boxplot Diagrams of µ,N=100
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Table 8 : Mean and Standard Derivation of Estimate Parameters

According to the Four Methods; N=1000

MC CFE MLE IndIn

mean of α 1.1961 1.1956 1.2015 1.3025

std of α 0.0590 0.0464 0.0492 0.1384

mean of β 0.4999 0.4925 0.4939 0.3434

std of β 0.0740 0.1057 0.0597 0.3861

mean of σ 0.9875 0.9932 0.9971 1.1054

std of σ 0.0495 0.0444 0.0346 0.1953

mean of µ -1.5424 -1.5421 -0.1829 -1.4050

std of µ 0.0554 0.0534 0.0512 0.5693

Table 9 : Mean and Standard Derivation of Estimate Parameters

According to the Four Methods; N=100

MC CFE MLE IndIn

mean of α 1.1974 1.2094 1.2056 1.2449

std of α 0.1925 0.1771 0.1665 0.1861

mean of β 0.4742 0.4901 0.4743 0.2005

std of β 0.2496 0.2767 0.2225 0.3448

mean of σ 1.0091 1.0107 1.0006 1.0510

std of σ 0.1753 0.1616 0.1212 0.1966

mean of µ -1.5230 -1.5058 1.7595 -1.3621

std of µ 0.1854 0.1648 0.1512 0.3188

According to the above figures and tables, we can see that all the methods

have better performance when sample size is getting larger. Compare figure

1 and figure 2, it’s very obvious that when the sample size is large, MLE

appears to be the most superior approach, the mean is very close to 2 and

the standard deviation is small. MC and CFE also work well. The estimator

of IndIn has the worst performance when the size is large, in terms of the

mean and the standard deviation. MLE work less well when the sample

size is small, also do MC and CFE. But IndIn works much better when the

sample size is small compared with large size. Observing figure 3 and 4,

figure 5 and 6, figure 7 and 8, there are same situations for β, σ and µ.
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3.2 Compare the Fitness
To compare these methods more directly and exam how they perform in

the tail exam, I am going to set a specific example in this paper. Here we

also set α = 1.2, β = 0.5, σ = 1, µ = 0.In our simulation, we generate different

sample size of the fixed parameters, and apply MC, CFE, MLE and

indirect inference to estimate parameters respectively.

3.2.1 Fit the pdf in Figures
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Figure 9: Simulated Sample and Estimated Sample by Using MC, CFE,

MLE, IndIn Fitting pdf with Different Sample Size N
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3.2.2 Goodness of Fit

To compare the goodness of fit for the estimated CTS distribution, we

employ two statistics: Kolmogorov-Smirnov distance statistic(KS-statistic)

and Anderson-Darling statistic (AD - statistic).

Kolmogorov-Smirnov distance statistic is defined as follows:

KS =sup
x

∣∣∣∣ ˆ

F (x)− Fx(x)

∣∣∣∣
where

ˆ

F (x) is the empirical sample distribution and Fx(x) is the cumu-

lative distribution function of the estimated theoretical distribution. The

KS-statistic emphasize deviation around the median of the fitted distribu-

tion. It is a robust measure in the sense that it focuses only on the maximum

deviation between empirical and estimated distributions.

Anderson-Darling statistic can test the ability to model extreme events.

In simplest version, it is a variance-weighted KS statistic:

AD =sup
x

∣∣∣∣ ˆF (x)−Fx(x)

∣∣∣∣√
Fx(x)(1−Fx(x))

The AD-statistic measures the distance between the empirical and theo-

retical distribution functions but is rescaled by dividing the "standard de-

viation" of some distance. By this definition, the AD-statistic accentuates

more discrepancies in the tail. The following are the outcomes of the fitness

with McCulloch, Cfe, MLE and indirect inference method.

Table 10: Comparison in Terms of Goodness of Fit; N=25

MC CFE MLE IndIn

KS 0.8104 0.8617 0.2459 0.0787

AD 2.8454 4.5611 0.6137 0.3251

Table 11: Comparison in Terms of Goodness of Fit; N=100

MC CFE MLE IndIn

KS 0.3186 0.0536 0.3921 0.0568

AD 0.7173 0.2237 0.9719 0.2767
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Table 12: Comparison in Terms of Goodness of Fit; N=500

MC CFE MLE IndIn

KS 0.3738 0.4072 0.1164 0.0403

AD 1.1289 1.3189 0.2455 0.0933
Table 13: Comparison in Terms of Goodness of Fit; N=1000

MC CFE MLE IndIn

KS 0.5526 0.0704 0.0382 0.0727

AD 0.2390 0.4565 0.1592 0.8613

In figure 9, the blue line indicates the simulated sample distribution and

the red line indicated the estimated sample distribution. We can see that

all the methods have better performance when sample size is getting larger.

The estimator of McCulloch has the worst overall performance no matter

the sample size in terms of the Kolmogorov distance and Anderson-Darling

statistics. CFE and MLE don’t perform very well when the size is small, we

can see that both from the figure and the fitness outcome. But when the

sample becomes large, MLE has the most superior performance. The pdf fit

very well, the KS and AD are both very small. Indirect inference perform

the best when the sample is small, it also works well when the sample is

large, but still not as good as MLE.
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3.3 Compare the Heavy Tails

However, the above figures can’t tell the performance in the tail event,

that’s why we will compare the boxplot of the samples.
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Figure 10: Box-plots of Simulated Sample, Estimated Sample by

MC,CFE,MLE and Indirect Inference on Different Sample Size N
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In figure 10, (a) N=25, we can see that indirect inference (the fifth col-

umn) has most closest lower and upper whisker to simulated sample(the first

column), compared to the other three methods. When sample size is getting

larger, MC, CFE, MLE and IndIn they all have better performance. But

obviously, when the sample size is large, eg, in (d) N=1000, we can see that

MLE has closest lower and upper whisker to simulated sample ,compared

to MC, CFE and indirect inference. MC doesn’t work well no matter when

the size is small and large. CFE performs better than MC, but worse than

MLE when the size is large and worse than Indirect inference when the size

is small. Therefore, indirect inference has advantage when the sample size

is small and MLE has advantage when the sample size is large.
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4.Conclusion
The stable distribution is very useful to model financial asset returns which

usually have heavy-tails and skewed characteristic. However, it is very hard

to estimate their parameters because it does not have closed form of density

function. In this paper, we propose four methods to estimate the parameters.

The McCulloch method uses the quantile calculation. There are also some

characteristic function based methods rely on the sample chf for parameter

estimation, in this paper we use the called Kogon-Williams method, whose

main idea is to generate regression-type estimators. MLE is the most popular

estimation method people are using. Since the density function of a stable

distribution does not have a closed form but a stable series is relatively easy

to simulate, we propose an indirect inference estimator method which is

suited to such characteristics. In this paper, we use the skewed-t distribution

as the auxiliary model. We apply this method to S&P500 data and our

numerical result shows that it has very good performance.

This paper also provide comparison between the McCulloch method, the

Kogon-Williams method, MLE and indirect inference method with different

sample size. First I resample the data 100 times, and compare the boxplot of

the four parameters. The results show that MC and CFE have relatively less

diversity no matter what the size is, the MLE method has very small diversity

for the large sample size and the indirect inference has less diversity when

the size is small. Then we compare the fitness between simulated sample and

estimated sample, the box-plots of simulated sample and estimated sample

by the four methods on different sample size. MC has the worst performance

on all the tests, then does CFE. For small sample size, indirect inference has

better performance both on the fitness and heavy tail; For larger sample

size, MLE has better performance.
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5 Future Work

One of the most promising fields of applications of stable distributions is

that of time series models. As one can in fact note, several empirical phe-

nomenons that are observed over time exhibit asymmetry and leptokurtosis.

Definition 5. Let (St)t≥0, be the asset price process and (yt)t≥0 be the return

process of (St)t≥0 defined by yt = log St
St−1

. We propose the ARMA(1,1)-

GARCH(1,1) model:

{yt=ayt−1+bσt−1εt−1+σtεt+c

σ2t=α0+α1σ2t−1ε
2
t−1+β1σ

2
t−1

where ε0 = 0,and a sequence (εt)t∈N is a sequence of independent and

identically distributed real random variables. The innovation εt is assumed

to follow the standard normal distribution. In this case, the ARMA(1,1)-

GARCH(1,1) model is referred to as the normal-ARMA-GARCH model.

When the innovation εt is assumed to follow the alpha stable distribution,

the ARMA(1,1)-GARCH(1,1) model is referred to as the α-stable-ARMA-

GARCH model. α-stable-ARMA-GARCH model : εt ~α-stable(α, β, σ, µ)

We also want to use MLE method and Indirect inference method to esti-

mate the parameters. With the MLE method, the parameters are estimated

as follows:

1: Estimate parameters with student-t distributed innovation by the MLE.

2: Extract residuals using the estimated parameters.

3: Fit the parameters of the innovation distribution (alpha stable distri-

bution) to the extracted residual using the MLE.

With the Indirect Inference method, the idea one could pursue is to use

as auxiliary model the skewed-t distribution analog of the “true”model of

interest, e.g. for an α-stable-ARMA(1,1)-GARCH(1,1) an auxiliary skewed-

t-ARMA(1,1)-GARCH(1,1) model is used. That is to assume εt is a standard

skewed-t distribution, estimate the parameters of skewed-t-ARMA-GARCH

model, and then estimate the alpha stable distribution parameters by indi-

rect inference method which we proposed in chapter 2.
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Part II

Classical Tempered Stable Firm Value
Model
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1. Introduction
1.1 What’s Credit Risk?

Credit risk is one of the oldest forms of risk and has been become one of the

most popular studied topics in quantitative finance. Credit risk refers to the

risk that a borrower will default on a debt by failing to make required pay-

ments, it’s associated with any kind of credit-linked events, such as: changes

in the credit quality, variations of credit spread and the default event, which

occurs if the debtor is unable to meet its legal obligation according to the

debt contract.

In the last decade from July 1990 through March 1991, United states ex-

perienced a recession which recorded the lowest economic growth rate since

the Great Depression, In the mid-1980s United States experienced record de-

faults on bank loans and corporate bonds. The junk bond defaults jumped

to over 10 percent between the years 1990 and 1991. Economists still hold

different opinions on the reasons of the recession but credit risk is undoubt-

edly considered as a major factor. Banks then realized from the real estate

default experience that factors like diversification, liquidity and regulatory

changes such as risk-based capital requirements were becoming increasingly

important. The factors are viewed as very important in credit risk man-

agement. In recent years, more and more banks and corporations realized

that the Basel regulation do not manage credit risk adequately, therefore

they have built complex mathematical-statistical models as a substitution

for quantifying credit risk. These models are used to determine internal eco-

nomic capital to protect them from credit risks as well as to play important

roles in risk management and performance measurement processes, including

performance-based compensation, customer profitability analysis, risk-based

pricing and, to a lesser but growing degree, active portfolio management and

capital structure decisions.

1.2 Credit Risk Management: Credit Derivatives
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In recent times there have been developed many instruments to trans-

fer credit risk. These instruments are called credit derivatives. A credit

derivative is a financial instrument that transfers credit risk related to an

underlying entity or a portfolio of underlying entities from one party to an-

other without transferring the underlying. The underlyings may or may not

be owned by either party in the transaction. The market for credit deriva-

tives was created in the early 1990s in London and New York and it is the

fastest growing derivative market at the moment. Here we introduce some

common types of credit derivatives in the current financial market.

The first one is credit default swap (CDS). It is a financial swap agreement

that the seller of the CDS will compensate the buyer (usually the creditor

of the reference loan) in the event of a loan default (by the debtor) or other

credit event. This is to say that the seller of the CDS insures the buyer

against some reference loan defaulting. The buyer of the CDS makes a series

of payments (the CDS "fee" or "spread") to the seller and, in exchange,

receives a payoff if the loan defaults. It was invented by Blythe Masters

from JP Morgan in 1994. The value of a default swap depends not only on

the credit quality of the underlying reference entity but also on the credit

quality of the writer, also referred to as the counterparty. If the counterparty

defaults, the buyer of a default swap will not receive any payment if a credit

event occurs. We also note that if a counterparty defaults, the premium

payments end. Hence, the value of a default swap depends on the probability

of counterparty default, probability of entity default and the correlation

between them.

The other one is total return swap. It’s a swap agreement in which one

party makes payments based on a set rate, either fixed or variable, while

the other party makes payments based on the return of an underlying asset,

which includes both the income it generates and any capital gains. In total

return swaps, the underlying asset, referred to as the reference asset, is

usually an equity index, loans, or bonds. This is owned by the party receiving

the set rate payment. The most important difference between a TRS and a

CDS is the matter of isolating credit risk. While the default risk of a CDS

is completely isolated, a TRS transfers both credit and market risk.
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1.3 Credit Risk Modelling Approaches
There are three main approaches to credit risk modelling in financial

market. They range from practical market methods to theory methods

which rely on firm value. The first approach is the firm value models.

Under the structure models of the firm value, a default event is deemed to

occur for a firm when its assets reach a suffi ciently low level compared to

its liabilities. These models requires strong assumptions on the dynamics of

the firm’s asset, its debt and how its capital is structured. In this section,

we will mainly focus on firm value models. We will also introduce other

evaluation method of credit risk, such as intensity based model and rating

based model in the next chapter. Besides these method, there have been

also developed some credit derivatives such as: Total Return Swaps (TRS)

and Credit Default Swaps (CDS).

1.3.1 Firm Value Model

The firm value models go back to the initial proposal of Black and Scholes

(1973), It’s the oldest literature to the pricing of defaultable securities in

modern continuous-time finance. In their model, a defaultable security is

regarded as a contingent claim on the value of the issuing firm’s assets and

is valued according to option pricing theory. The firm’s value is assumed to

follow a diffusion process and default is modeled as the first time the firm’s

value hits a pre-specified boundary. Because of the continuity of the

processes used, the time of default is a predictable stopping time. The

payoff in default is usually a constant cash payment representing the

proceeds from liquidating the firm (possibly after bankruptcy costs). Two

classic structural models: the Merton’s model(Merton, 1974) and the

first-passage-time model (Black and Cox, 1976) are inspired by the

Black-Scholes model and are the representatives of this approach. Here we

mainly focus on the Merton’s model.

Although Merton’s model is a great application of option price method, it

has some drawbacks:

1. Skewness is not considered in the firm value model. Considering

skewness, two firms with same leverage and same volatility may have

different default probabilities.
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2. Driving process for the firm value is Brownian Motion. Therefore, it

can’t capture the fat-tail property and big jump of firm value process.

Because of these limitations which could not address the credit risk ac-

curately, in this paper we will introduce and apply a new firm value model:

Tempered stable firm value model. In this model, the driving process for the

firm value is the CTS. To avoid repetition, we will discuss the details later.

1.3.2 Intensity Based Model

In the intensity models the time of default is modeled directly as the

time of the first jump of a Poisson process with random intensity (a Cox

process). This approach is first proposed by Jarrow and Turnbull (1995),

Madan and Unal (1998). Unlike the firm value models, assumes that the

defaults are endogenous and ultimately determined by the asset value, the

defaults in the intensity-based model are exogenous and determined by an

externally specified intensity process that may or may not be related to the

asset value. Jarrow and Turnbull consider the simplest case where the default

is driven by a Poisson process with constant intensity with known payoff at

default. This is changed in the Madan and Unal model where the intensity

of the default is driven by an underlying stochastic process, and the payoff

in default is a random variable drawn at default, it is not predictable before

default. Many follow-up papers can be found in Lando (2004), Bielecki and

Rutkowski (2004).

In the intensity-based model, we can express the bond price as

B(t, T ) = B(t,Nt, rt, T )

where Nt is the number of defaults in [0, T] in the portfolio. Nt will be

modeled by the Non-homogeneous Poisson Process.

Definition 6. Nt is s a (simple, homogeneous) Poisson process with an in-

tensity λt = λ(t) > 0, t ≥ 0,if

i N(0)=0

ii It has independent and stationary increments.
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iii P (Nt+s − Nt = k) =
(
∫ t+s
t

λ(u)du)k

k! e−
∫ s+t
t

λ(u)du : the probability of k de-

faults in [t, t+ s] .

In the Cox process, λt is an Ito process with mean reverting property on

the risk-neutral world:

dλt = µλ(t)dt+ σλ(t)dWλ
t

The default free interest rate is also an Ito process on the risk-neutral world:

drt = µr(t)dt+ σr(t)dW
r
t

By Ito formula and Arbitrage Pricing Theory (APT), we obtain:

∂B

∂t
+
∂B

∂r
µr(t) +

1

2

∂2B

∂r2
σ2
r(t)−B(t, T )(λt + rt) = 0

When λt = 0, we can get the the PDE for default free bond B(t,T):

∂B

∂t
+
∂B

∂r
µr(t) +

1

2

∂2B

∂r2
σ2
r(t)−B(t, T )rt = 0⇒

B(t, T ) = Et(e
−
∫ T
t
rudu)

Therefore, the solution of the defaultable bond is

B(t, T ) = B(t, T )e−
∫ T
t
λudu

In terms of the yield, we have

B(t, T ) = e−Yt,T (T−t);B(t, T ) = e−Y t,T (T−t)

where Yt,T is the yield of default free bond during [t, T ], and Y t,T is the yield

of defaultable bond during time [t, T ] .Then we can get the spread

S(t, T ) = Y t,T − Yt,T =
1

T − t (lnB(t, T )− lnB(t, T ))

=
1

T − t

∫ T

t

λudu

There are some other popular intensity-based models derived from the

term-structure models, with reference to Vasicek (1977), Cox, Ingersoll and

Roll (1985) and Duffi e, Pan and Singleton (2000):

Vasicek: dλ(t) = a(b− λ(t))dt+ σ1dWt

Cox-Ingersoll-Roll: dλ(t) = a(b− λ(t))dt+ σ2

√
λtdWt
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Affi nejump: dλ(t) = a(b− λ(t))dt+ σ3dWt + dJt

The constant a, b, σ1, σ2 should be calibrated from the defaultable term

structure of interest rate. In the last model, σ3 =
√
σ2

1 + σ2
2λt,and Jt is an

independent compound Poisson process with constant jump intensity and

independent exponentially distributed jumps with mean u. These models are

attractive in finance because they could yield closed-form pricing formulas

and provide straightforward ways to simulate the future default intensity for

the purpose of predicting the conditional default probability.

1.3.3 Rating Based Model

In the last decade, rating based models in credit risk manegement have

become very popular. These systems use the rating of a company as the

decisive variable and not-like the formerly used structural models the value

of the firm-when it comes to evaluate the default risk of a bond or loan. The

popularity is due to the straightforwardness of the approach but also to the

new Capital Accord (Basel II) of the Basel Committee on Banking Supervi-

sion (2001), a regulatory body under the bank of International Settlements

(BIS). Basel II allows banks to base their capital requirement on internet as

well as external rating system.

The Moody’s KMV is a very famous internal rating platform which can

accommodate a wide variety of risk rating models. Specifically, it is used to

deploy risk models across a bank’s local and global lending network and to

manage the data requirements of the credit rating process. Banks around

the world are making the platform a critical component of their credit risk

process as they prepare for Basel II IRB compliance. Moody’s KMV believes

that all lending institutions, whether or not they are required to comply with

the new regulations, should carefully consider the credit policy issues and

recommendations raised by the Basel Committee in the context of manag-

ing risk and measuring customer profitability. Moody’s KMV offers several

products and services that help banks develop solutions that meet regulatory

requirements and contribute to improved business performance:
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1. Moody’s KMV Risk AdvisorTM and RiskAnalystTM allow institutions

to create and deploy internal rating models based on both quantitative and

qualitative criteria.

2. Moody’s KMV BaselCalcTM gives banks an optimized calculation of

required regulatory capital across any reporting jurisdiction.

3. Moody’s KMV RiskCalc R© Moody’s KMV CreditEdge R© and Moody’s

KMV Credit Monitor R© produce Expected Default FrequencyTM (EDFTM)

credit measures for individual borrowers.

4. Moody’s KMV LossCalcTM produces estimates of loss in the event of

default.

5. Moody’s KMV Professional Services provides implementation, model-

ing, portfolio advisory, and benchmarking services for the banking industry.

2. Term Structure Models
2.1 Introduction

The topic of term-structure modelling for derivatives pricing has been

discussed in recent years, it has a big significance to have a better under-

standing of the term structure of interest rate since the following reasons.

Firstly, a qualitatively new dimension has been added to the modelling com-

plexity, because of the appearance of pronounced and complex smiles in the

implied volatility surfaces of caplets and swaptions. Currently, the mod-

elling of smiles is one of the most active areas of research in interest-rate

derivatives pricing, and a suffi ciently amount of work has accumulated to

warrant a review of its achievements and of the problems still to be tack-

led.Secondly, we need a term structure of interest rates to embody in the

shape of the forward curve, for example, fixed income instruments typically

depend on a forward curve instead of a single point. Thus pricing such in-

struments needs a model that can describe a stochastic time evolution of the

entire forward curve. There exists a large number of term structure models

based on different choices of state variables parameterizing the curve, num-

ber of dynamic factors, volatility smile characteristics, etc. In this chapter,

we mainly focus on the short rate models including Hull-White model and

Cox-Ingersoll-Ross(CIR) model.
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2.2 Short Rate Models

A short-rate model is a mathematical model that describes the future

evolution of interest rates by describing the future evolution of the short

rate r(t). It can be classified into equilibrium and non-arbitrage model.

Equilibrium models are also referred to as endogenous term structure models

because the term structure if interest rate is an output of these models. If

we have a initial zero coupon bond curve, the parameters of the equilibrium

model will be calculated such that a zero coupon bond curve as close as

possible to the one observed in the market can be reproduced. Vasicek

model(1977) is a classic representative of equilibrium models. However, since

the equilibrium models have diffi culties in producing the initial condition,

non-arbitrage models are built to make up this shortcoming.

We apply a zero bond maturing T and paying 1 at T for all the models.

According to the risk-Neutral pricing formula, its value at time t is

B(t, T ) = E[e−
∫ T
t
r(u)du |Ft|]

2.2.1 The Hull-White Model

The Hull-White model is an non-arbitrage model in which the term struc-

ture of interest rate is an input. The Hull and White model is defined that

dr(t) = (a(t)− b(t)r(t))dt+ σ(t)dWt

where a(t), b(t) and σ(t) are non-random functions. The time deterministic

function a(t) is chosen so that the model fits the initial term structure of

the interest rate. we suppose ψ(t) = e
∫ t
0
b(s)ds, φ(t) = ψ(t)−1 = e−

∫ t
0
b(s)ds,then

according to the It
∧
o-Doeblin formula, we have

d(r(t)ψ(t)) = r(t)dψ(t) + ψ(t)dr(t) + dψ(t)dr(t)

= r(t)ψ(t)b(t)dt+ ψ(t)a(t)dt− ψ(t)b(t)r(t)dt+ ψ(t)σ(t)dWt

= ψ(t)a(t)dt+ ψ(t)σ(t)dWt

Integrate both sides of the formula, we get
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r(t)ψ(t) = r(0)ψ(0) +

∫ t

0

ψ(s)a(s)ds+

∫ t

0

ψ(s)σ(s)dWs =⇒

r(t) = φ(t)(r(0) +

∫ t

0

(φ(s))−1a(s)ds+

∫ t

0

(φ(s))−1σ(s)dWs)

The expectation of the r(t) is

E[r(t)] = φ(t)(r(0) +

∫ t

0

(φ(s))−1a(s)ds)

and the variance of r(t) is

V ar[r(t)] = (φ(t))2

∫ t

0

(φ(s))−2(σ(s))2ds

Since

E[

∫ T

0

r(s)ds] =

∫ T

0

E[r(s)]ds

=

∫ T

0

(φ(s)(r(0) +

∫ s

0

(φ(u))−1a(u)du))ds

= r(0)

∫ T

0

φ(s)ds+

∫ T

0

(φ(u))−1a(u)(

∫ T

u

φ(s)ds)du

V ar[

∫ T

0

r(s)ds] = Cov(

∫ T

0

r(s)ds,

∫ T

0

r(s)ds)

=

∫ T

0

∫ T

0

Cov(r(u), r(v))dudv

=

∫ T

0

∫ T

0

φ(u)φ(v)

∫ u∧v

0

(φ(s))−2(σ(s))2dsdudv)

=

∫ T

0

(φ(s))−2(σ(s))2(

∫ T

s

φ(u)du)(

∫ T

s

φ(v)dv)ds

=

∫ T

0

(φ(s))−2(σ(s))2(

∫ T

s

φ(u)du)2ds

We can get the bond price

B(0, T ) = E[e−
∫ T
0
r(s)ds]

= e−E[
∫ T
0
r(s)ds]+ 1

2V ar(
∫ T
0
r(s)ds)

= e−C(0,T )r(0)−A(0,T )

where
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C(0, T ) =

∫ T

0

φ(s)ds

A(0, T ) =

∫ T

0

(φ(s))−1a(s)(

∫ T

s

φ(u)du)ds− 1

2

∫ T

0

(φ(s))−2(σ(s))2(

∫ T

s

φ(u)du)2ds

Because r(t) in the Hull and White model is normally distributed, the

interest rate can be negative. The CIR model is designed to avoid this kind

of shortcoming.

2.2.2 Cox-Ingersoll-Ross (CIR) Model

The CIR model for the interest rate r(t) is

dr(t) = (a− br(t))dt+ σ
√
r(t)dWt

The advantage of CIR model over Vasicek model and the Hull-White model

is that the interest rate can not be negative. However, it doesn’t have a

closed form solution. Consider the price at time t ∈ [0, t] of a zero coupon

bond

B(t, T ) = E[e−
∫ T
t
r(u)du | Ft]

We have

d(e−
∫ t
0
r(u)duB(r(t), t, T ))

= e−
∫ t
0
r(u)du(−r(t))B(r(t), t, T )dt+ e−

∫ t
0
r(u)dudB(r(t), t, T )

= e−
∫ t
0
r(u)du(−r(t))B(r(t), t, T )dt+ e−

∫ t
0
r(u)du(B

′

t(r(t), t, T )dt+B
′

r(t)(r(t), t, T )dr(t) +

1

2
B
′′

r(t)r(t)(r(t), t, T )dr(t)dr(t))

= e−
∫ t
0
r(u)du(−r(t))B(r(t), t, T )dt+ e−

∫ t
0
r(u)du(B

′

t(r(t), t, T )dt+ (a− br(t))B
′

r(t)(r(t), t, T )dt+

B
′

r(t)(r(t), t, T )σ
√
r(t)dWt +

1

2
B
′′

r(t)r(t)(r(t), t, T )σ2r(t)dt)

= e−
∫ t
0
r(u)du[−r(t)B(r(t), t, T ) + (B

′

t(r(t), t, T ) + (a− br(t))B
′

r(t)(r(t), t, T ) +

1

2
B
′′

r(t)r(t)(r(t), t, T )σ2r(t)]dt+ e−
∫ t
0
r(u)duB

′

r(t)(r(t), t, T )σ
√
r(t)dWt
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We also find that the discount price e−
∫ t
0
r(u)duB(t, T ) is a martingale since

according to the tower property:

E[e−
∫ t
0
r(u)duB(t, T ) | Fs] = E[e−

∫ t
0
r(u)duE[e−

∫ T
t
r(u)du | Ft] | Fs]

= E[e−
∫ s
0
r(u)due−

∫ t
s
r(u)duE[e−

∫ T
t
r(u)du | Ft] | Fs]

= e−
∫ s
0
r(u)duE[e−

∫ t
s
r(u)duE[e−

∫ T
t
r(u)du | Ft] | Fs]

= e−
∫ s
0
r(u)duE[E[e−

∫ T
s
r(u)du | Ft] | Fs]

= e−
∫ s
0
r(u)duE[e−

∫ T
s
r(u)du | Fs]

= e−
∫ s
0
r(u)duB(s, T )

where 0<s<t. By the martingale property, we can easily deduce that

−r(t)B(r(t), t, T )+(B
′

t(r(t), t, T )+(a−br(t))B
′

r(t)(r(t), t, T )+
1

2
B
′′

r(t)r(t)(r(t), t, T )σ2r(t) = 0

and the terminal condition is B(r(t), T, T ) = 1.In the Hull and White model

case, we have the solution that B(r(t), t, T ) = e−rC(t,T )−A(t,T ).Thus B
′

t =

(−rC ′t −A
′

t)B, B
′

r(t) = −CB,B′′r(t)r(t) = C2B.Then we have

rB(−1− C
′

t − bC +
1

2
σ2C2)−B(A

′

t + aC) = 0

To solve −1− C ′t − bC + 1
2σ

2C2 = 0,we get

C(t, T ) =
sinh(γ(T − t))

γ cosh(γ(T − t)) + 1
2b sinh(γ(T − t))

A(t, T ) = −2a

σ2
log[

γe
b(T−t)

2

γ cosh(γ(T − t)) + 1
2b sinh(γ(T − t))

]

where γ = 1
2

√
b2 + 2σ2, sinhu = eu−e−u

2 , coshu = eu+e−u

2 .

3 Firm Value Models
3.1 Introduction

So far we have introduced several types of credit derivatives and the term

structural models. Now we will focus on the modeling method which can be

used on the pricing of credit derivatives.
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To be able to price credit derivatives we have to study the default risk

of the underlying asset. The aim of the firm value models and intensity-

based models are to model the default risk. Compared with the intensity

model, the firm value model use a more fundamental approach to value the

defaultable debt and also to provide a connection between debt of the firm

and the values of equity.

Firm’s value models assume a fundamental process V, denoting the total

value of the assets of the firm that has issued the bonds. V is described as a

stochastic process, influenced by the prices of all securities issued by the firm.

A very important point of this type of model is that all claims on the firm’s

value are modelled as derivative securities with the firm’s value as underlying.

Black and Scholes (1973) and Merton (1974) were the first people modeling

credit risk with what we know today as a firm’s value model. Modeling

credit risk means modeling default probability. The market value of the firm

is simply the sum of the market value of the firm’s debt and the value of its

equity. If both these quantities were readily observable, calculating default

probabilities would be trivial. While equity values are readily available,

reliable data on the market value of debt is generally unavailable.

The value of a firm is an economic measure reflecting the market value of

a whole business. The firm value can be measured by the price at which the

total of the firm’s liabilities can be bought or sold. It is a sum of claims of all

claimants: creditors (secured and unsecured) and equity holders (preferred

and common).

The market value of the asset Vt = market value of equity + market value

of debt = St+ Bt , where St is the stock price and Bt=B(t, T ) is the bond

price with maturity T and principle D.

We assume that the firm issues a single class of debt, a zero-coupon bond,

with a face value D payable at T. Default may happen only at date T. If

default happens, creditors take over the firm without incurring any distress

costs and realize an amount VT . Otherwise, they receive D. That is when

VT > D,the stock price ST =VT −D,and the bond price B(T, T ) = D;When

VT ≤ D,ST = 0, B(T, T ) = VT .Therefore we can get the stock price and the

bond price at maturity T are:
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ST = max(VT −D, 0)

B(T, T ) = min(D,VT ) = D −max(D − VT , 0)

We can also get:

St = EQ,t[e
−r(T−t)ST |F(t)]

B(t, T ) = EQ,t[e
−r(T−t)B(T, T )|F(t)]

where r is the risk free return, Q is risk neutral measure and EQ,t is condi-

tional expectation under information until time t and measure Q.

3.2 Gaussian Firm Value Model

The Merton model generates the probability of default for each firm at

any given point in time. To calculate the probability, the model subtracts

the face value of the firm’s existing debt from an estimate of the future

market value of the firm and then divides this difference by an estimate

of the volatility of the firm (scaled to reflect the horizon of the forecast).

The resulting score, which is referred to as the distance to default, is then

substituted into a cumulative density function to calculate the probability

that the value of the firm will be less than the face value of debt at the

forecasting horizon.

3.2.1 Merton Firm Value Process

The merton model makes an important assumption, which is the total

value of a firm follows the geometric Brownian motion:

dVt = uvVtdt+ σvVtdWt

or

Vt = V0 exp(uvt−
σ2
v

2
t+ σvWt)

where the variable σv is the volatility of firm value, the variable uv is the

expected rate of return, and Wt is a Wiener process under market measure

P. Under the risk neutral measure Q, we have
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dVt = rVtdt+ σvVtdW̃t

or

Vt = V0 exp(rt− σ2
v

2
t+ σvW̃t)

where W̃t is a Wiener process under the risk neutral measure Q.

The basic feature of Merton’s model is that the firm’s value drifts up-

wards over time and so its leverage falls. The second critical assumption of

the Merton model is that the firm has issued just one discount bond matur-

ing at time T. The company defaults if the value of its assets is less than

the promised debt repayment at time T. The equity of the company is a

European call option on the assets of the company with maturity T and a

strike price equal to the face value of the debt. The model can be used to

estimate the risk-neutral probability that the company will default as well

as the credit spread on the debt. As inputs, Merton’s model requires the

current value of the company’s assets, the volatility of the company’s assets,

the outstanding debt, and the debt maturity. In order to make the model

analytically tractable, one has to estimate the current value and volatility of

the company’s assets from the market value of the company’s equity and the

equity’s instantaneous volatility. A debt maturity date is chosen and debt

payments are mapped into a single payment on the debt maturity date in

some way. The rest of the implicit assumptions are the absence of transac-

tion costs, bankruptcy costs, taxes or problems with indivisibility of assets,

continuous time trading; unrestricted borrowing and lending at a constant

interest rate r, no restrictions on the short selling of the assets and few more.

3.2.2 Bond and Stock Prices

From now on in this model, the prices of both debt B(t, T ) and equity St

are functions of the firm’s value V and the time t. What Black and Scholes

(1973) and Merton (1974) did was a breakthrough. They showed that both

equity and debt of the firm can be seen as derivative securities on the value V

of firm’s assets. The representation of the payoff to creditors makes it clear

that the creditors short a put option written on the assets of the borrowing

firm with a strike price equal to D, the face value of debt.

45



In addition, once we recognize that the borrower (equity holders in Mer-

ton’s model), (a) owns the firm, (b) borrowed the amount D at t=0 , and

(c) owns a put option on the assets of the firm with a strike price equal to

D, it is immediate, by a put-call parity relationship, that equity is a call

option on the assets of the borrowing firm with a strike price equal to D, the

face value of debt. Therefore we can express stock and bond price as follows

respectively:

St = CallBS(Vt, D, r, T − t, σ)

B(t, T ) = D − PutBS(Vt, D, r, T − t, σ)

Since Vt = V0 exp(rt− σ2v
2 t+ σvW̃t),we may thus write

VT = Vt exp

{
σ(W̃T − W̃t) + (r − σ2

2
)(T − t)

}
= Vt exp

{
σ
√
T − tY + (r − σ2

2
)(T − t)

}

where Y is the standard normal random variable

Y = −W̃T − W̃t√
T − t

˜N(0, 1)

We see that exp
{
σ
√
T − tY + (r − σ2

2 )(T − t)
}
is independent of F(t), there-

fore,

St = EQ,t[e
−r(T−t)(VT −D)+|F(t)]

= EQ,t[e
−r(T−t)(Vt exp

{
−σ
√
T − tY + (r − σ2

2
)(T − t)

}
−D)+]

=

∫ ∞
−∞

1√
2π
e−r(T−t)(Vt exp

{
−σ
√
T − ty + (r − σ2

2
)(T − t)

}
−D)+e−

y2

2 dy

The integrand is positive only if Vt exp
{
−σ
√
T − ty + (r − σ2

2 )(T − t)
}
−D) is

positive, which is

y < d1 =
1

σ
√
T − t

[log
Vt
D

+ (r − σ2

2
)(T − t)]
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Then we can get

St =

∫ d1

−∞

1√
2π
e−r(T−t)(Vt exp

{
−σ
√
T − ty + (r − σ2

2
)(T − t)

}
−D)e−

y2

2 dy

=
1√
2π

∫ d1

−∞
Vt exp{−y

2

2
− σ
√
T − ty − σ2

2
(T − t)}dy − 1√

2π

∫ d1

−∞
exp{−r(T − t)− y2

2
}Ddy

=
1√
2π
Vt

∫ d1

−∞
exp{−1

2
(y + σ

√
T − t)2}dy − e−r(T−t)DN(d1)

=
1√
2π
Vt

∫ d1+σ
√
T−t

−∞
e−

1
2 z

2

dz − e−r(T−t)DN(d1)

= VtN(d2)− e−r(T−t)DN(d1)

where

d2 = d1 + σ
√
T − t =

1

σ
√
T − t

[log
Vt
D

+ (r +
σ2

2
)(T − t)]

Using the same method, we can get the bond price which is

B(t, T ) = e−r(T−t)DN(d1) + VtN(−d2))

3.2.3 Credit Spread and Probability of Default

Merton’s model allows us to compute (under the risk-neutral probability

measure), respectively, the credit spread and the probability of default as

follows:

Spread : s(t, T ) = spotrate R(t, T )− r

=
logD − logB(t, T )

T − t − r

= −r − 1

T − t log
B(t, T )

D

= −r − 1

T − t log(
e−r(T−t)DN(d1) + VtN(−d2))

D
)

= −r − 1

T − t log(e−r(T−t)N(d1) +MtN(−d2))

= − 1

T − t log(N(d1) +
Mt

e−r(T−t)
N(−d2))

where Mt = Vt
D .
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Probability of default = P (VT < D)

= P (Vt exp

{
σ
√
T − tY + (r − σ2

2
)(T − t)

}
< D)

= P (Y <
− log Vt

D − (r − σ2

2 )(T − t)
σ
√
T − t

)

= N(−d1)

3.2.4 Simulation Results

By applying Ito lemma, we get

σS =
∂S

∂V

V

S
σV

= N(d2)
V

S
σV

St = VtN(d2)− e−r(T−t)DN(d1)

Since risk free rate r, principal D of the bond, stock price history St are

observed in the market, and σS can be calculated empirically using historical

data of St, we can calculate Vt and σV by solving the above two formulas

numerically:

Vt =
St + e−r(T−t)DN(d1)

N(d2)

σV =
SσS

St + e−r(T−t)DN(d1)

Then if we know the volatility of stock price σS, we can calculate the volatility

of firm value σV .On the contrary, if we know σV ,we can calculate σS .Consider

a company at time t = 0, we assume the equity is St = 3m, then we can get

Table 14: Merton Model Prediction Results(%)

σS 10.00 15.00 20.00 25.00 30.00 40.00 50.00 60.00 70.00 80.00

σV 2.33 3.49 4.65 5.81 6.98 9.32 11.76 14.39 17.32 20.64

spread 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.22 0.57 1.22

default Prob 0.00 0.00 0.00 0.00 0.01 0.26 1.43 3.96 7.84 12.84
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Table 14 is the simulation results using the merton firm value model.

We set the volatility of stock price σS as 10%, 15%, 20%, 25%, 30%, 40%,

50%, 60%, 70%, 80%, and get the corresponding volatility of firm value, the

spread and the default probability respectively. According to the results, we

can see that when σS is 30%, the spread is 0 and the default probability

is only 0.01%, and when σS is as high as 80%, the spread is 1.22 and the

default probability is only 12.84%, which is nonsense and impossible in the

real financial market. The reason that leads to these results is that the

merton model fails to capture the heavy tail, and it can’t predict the default

probability of a firm correctly.

3.3 Classical Tempered Stable Firm Value Model

In the Merton’s firm value model, we assume that the firm value process

Vt follows a geometric Brownian motion. However, the empirical evidence

has shown that the Merton’s Gaussian firm value model is not accurate.

Firstly, in Merton’s Gaussian firm value model, the leverage (M=Vt/D) is

fixed, then high stock volatility means high default probability in the model

which is practically not always true. Secondly, skewness is not considered in

the firm value model. Considering skewness, two firms with same leverage

and same volatility may have different default probabilities. Thirdly, the

volatility of the firm value σv obtained in the Merton’s model is different

from the implied volatility. Finally, Driving process for the firm value is

Brownian Motion. Hence, it can’t capture the fat tail property and big

jump of firm value process.

Because of the drawbacks of the Merton’s model, the candidates for non-

normal distribution that proposed for modeling extreme events are referred

to as stable distributions. Stable distributions has desired property to ac-

commodate heavy tail and capture skewness in financial series. It also has

stability property that the sum of two independent stable random variables

follows, up to some correction of scale and location, the same stable distrib-

ution. Despite the empirical evidence rejecting the normal distribution and

in support of the stable distribution, there have been several barriers to the

application of stable distribution models.
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The major problem is that the variance of stable non-normal distribu-

tions is infinity. The second problem is that without a general expression for

stable probability densities, one can’t directly implement estimation method-

ologies for fitting these densities. The third problem is that the empirical

tail distribution for asset returns are thinner than the stable distribution.

To overcome the drawbacks , the tails of a stable random variable can be ap-

propriately tempered or truncated in order to obtain a proper distribution.

One alternative is classical tempered stable distribution (CTS).

In this chapter, we would use the classical tempered stable distribution as

the driving process of firm value, and estimate the parameters of the CTS

model. We then could calculate the default probability under CTS firm

value model, and compare it with the default probability under Merton’s

firm value model.

3.3.1 Classical Tempered Stable Distribution

In financial modeling, the infinite variance characteristic of a stable dis-

tribution makes its application impossible because the infinite variance of

the return lead to an infinite price for derivative instruments, clearly con-

tradicting reality and intuition. For this reason, Menn and Rachev (2009)

suggest the use of appropriately truncated stable distributions and tempered

stable distributions. These techniques make the tails of the alpha stable dis-

tribution behave like fat tails but are light tails in the mathematical sense.

Consequently, all moments of arbitrary order exist and are finite.

In this chapter, we will mainly discuss the CTS distribution. Let

α ∈ (0, 1) ∪ (1, 2), C, λ+, λ− > 0,and m ∈ R.X is said to follow the CTS

distribution if the characteristic function of X is given by

φX(u) = φCTS(u;α,C, λ+, λ−,m)

= exp(ium− iuCΓ(1− α)(λα−1
+ − λα−1

− ) +

CΓ(−α)((λ+ − iu)α − λα+ + (λ− + iu)α − λα−))

we denote X v CTS(α,C, λ+, λ−,m).

The cumulants of X are obtained by
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c1(X) = m

cn(X) = CΓ(n− α)(λα−n+ + (−1)nλα−n− ), for n = 2, 3...

The role of the parameters is as follows:

(1) m determines the location of the distribution.

(2) C is the scale parameter.

(3) λ+ and λ− control the rate of decay on the positive and negative tails,

respectively. If λ+ > λ−, the distribution is skewed to the left, if λ+ < λ−,

then the distribution is skewed to the right, and if λ+ = λ−, then it is

symmetric.

(4) The parameters λ+, λ−, and α are related to tail weights.

(5) If α approaches to 0, the CTS distribution converges to the variance

gamma distribution.

3.3.2 Classical Tempered Stable Firm Value Model

Let (Xt)t≥0 be the classical tempered stable process with parameters

(α,C, λ+, λ−,m), where α ∈ (0, 1) ∪ (1, 2), λ+ > 1. Under the risk neutral

measure Q and EQ[exp(Xt)] = exp(rt) with the risk free rate of return r <

λ+.Suppose that the firm value process V = (Vt)t≥0 is given by the exponen-

tial Lėvy process model as follows:

Vt = V0 exp(Xt)

As we have discussed before, the stock price at time t is given by

St = EQ,t[e
−r(T−t)(VT −D)+|F(t)]

= e−r(T−t)EQ,t[(Vt exp(XT −Xt)−D)+|F(t)]

Let f(x) be the p.d.f of the random variable XT − Xt.By the stationary

property of the tempered stable process X,XT −Xt has the same distribution

as XT−t.The p.d.f. f(x) is obtained by the complex inversion formula as

follows:

f(x) =
1

2π

∫ ∞
−∞

e−i(u+iρ)yφXT−t(u+ iρ)du
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Hence we can get

EQ,t[(Vt exp((XT −Xt)−D)+|F(t)]

=

∫ ∞
log D

Vt

(exp(x+ log Vt)−D)f(x)dx

=
1

2π

∫ ∞
log D

Vt

(exp(x+ log Vt)−D)

∫ ∞
−∞

e−i(u+iρ)xφXT−t(u+ iρ)dudx

Let z ∈ C.If Im(z) < −1, then we have∫ ∞
a

e(1−iz)xdx = −e
a(1−iz)

1− iz
and if Im(z) < 0 ∫ ∞

a

eizxdx =
e−iaz

iz

Hence, we can get∫ ∞
log D

Vt

(exp(x+ log Vt)−D)e−i(u+iρ)xdx

= Vt

∫ ∞
log D

Vt

e(1−i(u+iρ))xdx−D
∫ ∞

log D
Vt

e−i(u+iρ)xdx

= −
Vt exp((1− i(u+ iρ)) log D

Vt
)

1− i(u+ iρ)
−
D exp(−i(u+ iρ) log D

Vt
)

i(u+ iρ)

=
D exp(−i(u+ iρ) log D

Vt
)

(iu− i− ρ)(ui− ρ)

=
D1+ρ exp(−iu log D

Vt
)

V ρt (iu− 1− ρ)(ui− ρ)

Therefore, by Fubini’s theorem, for ρ < −1 we obtain the stock price formula

as follows:

St = e−r(T−t)EQ,t[(Vt exp(XT −Xt)−D)+|F(t)]

=
e−r(T−t)D

1+ρ

2πV ρt

∫ ∞
−∞

exp(−iu log K
St

)

(iu− 1− ρ)(ui− ρ)
φXT−t(u+ iρ)du

=
e−r(T−t)D

1+ρ

2πV ρt

∫ ∞
−∞

V iut φXT−t(u+ iρ)

Diu(iu− 1− ρ)(ui− ρ)
du

= De−r(T−t)
(D/Vt)

ρ

π
Re

∫ ∞
0

(D/Vt)
−iu φXT−t(u+ iρ)

(iu− 1− ρ)(ui− ρ)
du

where

φXT−t(z) = exp(im(T − t)z + (T − t)CΓ(−α)((λ+ − iz)α − λα+ + (λ− + σV zi)
α − λα−)

−iz(T − t)CΓ(1− α)(λα−1
+ − λα−1

− )
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and

−λ+ < ρ < −1

With the same method, we can get the bond price

B(t, T ) = D − EQ,t[e−r(T−t)(D − VT )+|F(t)]

= De−r(T−t)(1− (D/Vt)
ρ

π
Re

∫ ∞
0

(D/Vt)
−iu φXT−t(u+ iη)

(iu− 1− ρ)(ui− ρ)
du)

where

0 < η < λ−

Hence, the spread formula is

s(t, T ) = −r − 1

T − t log
B(t, T )

D

= −r −
log(e−r(T−t)(1− (D/Vt)

ρ

π Re
∫∞

0
(D/Vt)

−iu φYT−t
(u+iη)

(iu−1−ρ)(ui−ρ)du))

T − t

= −
log(1− (D/Vt)

ρ

π Re
∫∞

0
(D/Vt)

−iu φYT−t
(u+iη)

(iu−1−ρ)(ui−ρ)du)

T − t

4. Empirical Test

4.1 Parameters Estimation

In this chapter, we will use corporate bond spread data to estimate the

parameters of the CTS model and the Merton model. Table 15 is the Reuters

corporate bond spread for different credit rating industrials. The evaluators

obtain the spreads from brokers and traders at various firms. A generic

spread for each sector is created using input from street contacts and the

evaluator’s expertise. A matrix is then developed based on sector, rating,

and maturity.

We fit the spread data to the CTS distribution and get the parameters.

Table 16 shows the estimated CTS model parameters and the firm values at

time t=0 for different credit rating industrials. Table 17 shows the estimated

Merton model parameters for different credit rating industrials.
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Table 15: Reuters Corporate Bond Spread (%)

Aaa/AAA Aa2/AA A2/A Baa2/BBB Ba2/BB

1 yr 0.21 0.30 0.43 0.96 1.72

2 yr 0.26 0.32 0.58 1.11 2.72

3 yr 0.38 0.42 0.71 1.32 3.31

4 yr 0.45 0.53 0.79 1.44 3.46

5 yr 0.53 0.65 0.88 1.53 3.43

6 yr 0.55 0.72 0.92 1.60 3.35

7 yr 0.61 0.83 1.02 1.78 3.36

8 yr 0.65 0.95 1.15 2.04 3.41

9 yr 0.70 1.08 1.31 2.30 3.49

10 yr 0.76 1.21 1.47 2.53 3.61

12 yr 0.84 1.37 1.65 2.77 -

15 yr 0.99 1.49 1.75 2.80 3.86

20 yr 1.22 1.53 1.75 2.69 3.64

25 yr 1.27 1.46 1.62 2.40 3.04

30 yr 1.21 1.14 1.41 2.00 -

Table 16: Estimated CTS Parameters

α C λ+ λ− m V0

Aaa/AAA 0.8049 0.5569 59.6313 3.2948 0.0153 4.0157

Aa2/AA 0.8725 0.6082 48.0487 3.9470 0.0153 3.3357

A2/A 0.8963 0.6209 52.6168 4.2247 -0.0439 2.8342

Baa2/BBB 0.7461 0.5356 54.3634 1.6673 -0.0899 4.1039

Ba2/BB 0.9614 1.2377 53.6000 6.1976 -0.0809 2.0631

Table 17: Estimated Merton Parameters

Aaa/AAA Aa2/AA A2/A Baa2/BBB Ba2/BB

σV 0.3093 0.3302 0.3365 0.3997 0.4220

V0 2.9293 2.8262 2.5692 2.5697 1.8996

By these parameters we can get the simulated spread data. Fit the spread

data in figures as follows:
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Figure 11: Spread Data of AAA Credit Rating Industrials
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Figure 12: Spread Data of AA Credit Rating Industrials
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Figure 13: Spread Data of A Credit Rating Industrials
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Figure 14: Spread Data of BBB Credit Rating Industrials
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Figure 15: Spread Data of BB Credit Rating Industrials

Figure 11-Figure 15 dedicate the empirical spread data and the spread

data simulated by Merton model and CTS model for different credit rating

industrials. the black plus signs "+" give the empirical data, the blue lines

give the Merton model simulate data, and the red lines give the CTS model

simulate data. It is obvious that in each figure, the red line is closer to the

black signs compared to the blue line.

To compare the goodness of fit, we use four discrepancy measures: average

absolute error (AAE), average prediction error (APE), average relative pre-

diction error (ARPE) and root mean square error (RMSE) test, the measures

are as follows:

Table 18: goodness of fit - CTS model

AAA AA A BBB BB

AAE 0 0.0011 0.0014 0.0023 0.0016

APE 0 0.1179 0.1228 0.1174 0.0481

ARPE 0.1508 0.1527 0.1484 0.1214 0.0463

RMSE 0 0.0013 0.0016 0.0027 0.0019
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Table 19: goodness of fit - Merton model

AAA AA A BBB BB

AAE 0.0011 0.0012 0.0016 0.0028 0.0017

APE 0.1533 0.1280 0.1359 0.1449 0.0527

ARPE 0.2399 0.1902 0.1908 0.1782 0.0542

RMSE 0.0012 0.0014 0.0019 0.0034 0.0022

Compare table 18 and table 19, it is easy to find that under the CTS

model, all the four test results are smaller than the results under the Merton

model. That means the CTS model works better than the Merton model.

4.2 Default Probabilities

The default probability under the CTS firm value model is calculated as:

Probability of default = P (VT < D)

= P (Vt exp(XT ) < D)

= cdf_CTS(log
D

Vt
)

The default probability under the Merton firm value model is calculated

as:

Probability of default = P (VT < D)

= P (Vt exp

{
σ
√
T − tY + (r − σ2

2
)(T − t)

}
< D)

= P (Y <
− log Vt

D − (r − σ2

2 )(T − t)
σ
√
T − t

)

= N(−d1)

Since we have estimated the parameters of the CTS model and the Merton

model, we can then calculate the default probabilities according to the above

formulas. Table 20 is the default probabilities of CTS firm Value model for

different credit rating industrials at different maturity. Table 21 is the de-

fault probabilities of the Merton firm value model for different credit rating

industrials at different maturity. Table 22 - Table 26 give the default proba-

bilities and the volatility of stock price for different credit rating industrials

at different maturity.
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Table 20: Default Probabilities(%) of CTS Model
Aaa/AAA Aa2/AA A2/A Baa2/BBB Ba2/BB

1 yr 0.29 0.45 1.08 2.23 8.19

2 yr 1.04 1.67 4.08 6.02 18.45

3 yr 2.07 3.23 7.80 10.30 26.09

4 yr 3.21 4.81 11.54 14.55 31.94

5 yr 4.34 6.30 15.06 18.58 36.65

6 yr 5.43 7.65 18.29 22.35 40.56

7 yr 6.45 8.86 21.25 25.84 43.89

8 yr 7.40 9.95 23.96 29.07 46.80

9 yr 8.27 10.93 26.45 32.07 49.38

10 yr 9.07 11.81 28.75 34.85 51.69

12 yr 10.49 13.31 32.84 39.85 -

15 yr 12.23 15.10 38.03 46.23 60.58

20 yr 14.39 17.21 44.91 54.69 66.83

25 yr 15.92 18.65 50.34 61.27 71.60

30 yr 17.04 19.67 54.79 66.56 -
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Table 21: Default Probabilities(%) of Merton Model
Aaa/AAA Aa2/AA A2/A Baa2/BBB Ba2/BB

1 yr 0.04 0.12 0.37 1.39 8.92

2 yr 1.05 1.99 3.52 7.48 20.39

3 yr 3.41 5.36 7.98 13.93 28.26

4 yr 6.34 9.09 12.38 19.56 34.07

5 yr 9.36 12.69 16.37 24.37 38.62

6 yr 12.29 16.03 19.94 28.50 42.37

7 yr 15.04 19.08 23.12 31.10 45.53

8 yr 17.60 21.88 25.98 35.28 48.28

9 yr 19.98 24.44 28.56 38.13 50.70

10 yr 22.18 26.79 30.92 40.69 52.87

12 yr 26.16 30.97 35.05 45.16 -

15 yr 31.22 36.24 40.20 50.65 61.20

20 yr 37.97 43.17 46.91 57.72 67.07

25 yr 43.30 48.60 52.13 63.15 71.56

30 yr 47.69 53.05 56.39 67.52 -
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Table 22: Default Probabilities of Merton Model (AAA)
σS(%) Spread(%) Default probability(%)

1 yr 46.59 0.21 0.04

2 yr 46.07 0.26 1.05

3 yr 45.34 0.38 3.41

4 yr 44.55 0.45 6.34

5 yr 43.76 0.53 9.36

6 yr 43.01 0.55 12.29

7 yr 42.32 0.61 15.04

8 yr 41.69 0.65 17.60

9 yr 41.11 0.70 19.98

10 yr 40.57 0.76 22.18

12 yr 39.63 0.84 26.16

15 yr 38.45 0.99 31.22

20 yr 36.97 1.22 37.97

25 yr 35.88 1.27 43.30

30 yr 35.05 1.21 47.69

61



Table 23: Default Probabilities of Merton Model (AA)
σS(%) Spread(%) Default probability(%)

1 yr 50.66 0.0030 0.12

2 yr 49.90 0.0032 1.99

3 yr 48.89 0.0042 5.36

4 yr 47.84 0.0053 9.09

5 yr 46.84 0.0065 12.69

6 yr 45.94 0.0072 16.03

7 yr 45.11 0.0083 19.08

8 yr 44.37 0.0095 21.88

9 yr 43.70 0.0108 24.44

10 yr 43.08 0.0121 26.79

12 yr 42.02 0.0137 30.97

15 yr 40.72 0.0149 36.24

20 yr 39.12 0.0153 43.17

25 yr 37.96 0.0146 48.60

30 yr 37.09 0.0114 53.05
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Table 24: Default Probabilities of Merton Model (A)
σS(%) Spread(%) Default probability(%)

1 yr 54.49 0.43 0.37

2 yr 53.27 0.58 3.52

3 yr 51.79 0.71 7.98

4 yr 50.38 0.79 12.38

5 yr 49.10 0.88 16.37

6 yr 47.97 0.92 19.94

7 yr 46.97 1.02 23.12

8 yr 46.09 1.15 25.98

9 yr 45.30 1.31 28.56

10 yr 44.59 1.47 30.92

12 yr 43.37 1.65 35.05

15 yr 41.91 1.75 40.20

20 yr 40.13 1.75 46.91

25 yr 38.86 1.62 52.13

30 yr 37.92 1.41 56.39
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Table 25: Default Probabilities of Merton Model (BBB)
σS(%) Spread(%) Default probability(%)

1 yr 64.44 0.96 1.39

2 yr 62.18 1.11 7.48

3 yr 59.88 1.32 13.93

4 yr 57.89 1.44 19.56

5 yr 56.21 1.53 24.37

6 yr 54.78 1.60 28.50

7 yr 53.55 1.78 31.10

8 yr 52.49 2.04 35.28

9 yr 51.56 2.30 38.13

10 yr 50.74 2.53 40.69

12 yr 49.36 2.77 45.16

15 yr 47.75 2.80 50.65

20 yr 45.86 2.69 57.72

25 yr 44.55 2.40 63.15

30 yr 43.61 2.00 67.52
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Table 26: Default Probabilities of Merton Model (BB)
σS(%) Spread(%) Default probability(%)

1 yr 82.93 1.72 8.92

2 yr 75.42 2.72 20.39

3 yr 70.21 3.31 28.26

4 yr 66.43 3.46 34.07

5 yr 63.54 3.43 38.62

6 yr 61.25 3.35 42.37

7 yr 59.38 3.36 45.53

8 yr 57.82 3.41 48.28

9 yr 56.49 3.49 50.70

10 yr 55.35 3.61 52.87

12 yr - - -

15 yr 51.35 3.86 61.20

20 yr 48.95 3.64 67.07

25 yr 47.36 3.04 71.56

30 yr - - -
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4.3 Conclusion
According to Table 22 - Table 26, we find that when the maturity is

one year after, with the Merton firm value model, the volatility of stock

price σS is 46.59%, the corresponding default probability is 0.04% for AAA

credit rating industrials. The volatility of stock price σS is 50.66%, the cor-

responding default probability is 0.12% for AA credit rating industrials. The

volatility of stock price σS is 54.49%, the corresponding default probability

is 0.37% for A credit rating industrials. The volatility of stock price σS is

64.44%, the corresponding default probability is 1.39% for BBB credit rat-

ing industrials. The volatility of stock price σS is 82.93%, the corresponding

default probability is 8.92% for A credit rating industrials. It’s very obvious

that for the AAA rating industrials, the volatility of stock price won’t be

as high as around 50%. And when the volatility of stock price is as high as

around 50%. the default probability can not be less than 0.5%. As we have

discussed before, the merton model can’t capture the heavy tails, and these

results prove it again. Compared with the Merton model, the property of

capturing fat tails makes the temper stable distribution a better model to

predict the default probability.

5 Diffi culties and Future Work
Since there is not enough data, we are not be able to do the backtest

right now. We only know that the CTS firm value model is better than the

Merton firm value model, but we don’t know how good it is and how correct

it is to predict the default probability of a firm.

The next step to do is to collect the real default probability data

and do the backtest. We will also apply the CTS model on the credit

derivatives such as CDS.
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