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Abstract of the Dissertation 

Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems 

by 

Ning Sun 

Doctor of Philosophy 

in 

Materials Science and Engineering  

Stony Brook University 

2016 

Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can 

easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, 

and be easily parallelized allowing for simulation of large systems. While most of the current 

studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method 

makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic 

microstructures and local reactions. In this thesis, LBM is introduced to be an alternative 

computational method for the study of electrochemical energy storage systems (Li-ion batteries 

(LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on 

mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried 

out: 

(1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and 

the discharge processes on 2D systems of complex random electrode geometries (pure random, 

random spheres and random fibers). Steric effect of concentrated solutions is considered by using 

modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-

Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler 

morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied 

in detail. The influence of applied potential during discharging process is also discussed. 

(2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice 

Boltzmann model can capture all the experimentally observed features of microstructure 

evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation 

process in mesoscopic scale is discussed in detail and compared with the traditional Sand’s time 

theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at 

the electrode-electrolyte interface. When the inhomogeneity is small, dendrites form mainly 

under high current densities, in which the mass transfer is dominated by electromigration; when 

the inhomogeneity is very large, dendrites may form under both high and low current densities, 

which is dominated by electromigration in high current density and by surface reactivity in low 

current density. We show that the critical current density for dendrite formation is sensitive to 
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surface inhomogeneous reactivity and the onset time of dendrite formation is sensitive to the 

initial roughness of electrode. A new analysis method is introduced, which can predict the 

formation of dendrites in batteries at a very early stage even before large dendrites form. 

Charge/discharge cyclic properties of the system are also studied, which shows that electrode 

roughness will increase during cycles and the break-off of dendritic structures is inevitable once 

big dendrites form; however, it is possible to minimize the amount of break-off materials by 

optimizing the rate of discharge. 

(3) The LBM is also used to simulate intercalation reactions in a Li-Ion battery with graphite as 

anode and pure Li metal as counter electrode. Both galvanostatic and potentiostatic conditions 

were studied. The relation between operation parameters (current and potential) and electrode 

parameters (porosity, thickness and diffusivity) and plating times were discussed. Different 

equilibrium potentials forms (empirical fitting, fitting of SONY 18650 cell, and staged profiles) 

were also compared. By modifying the morphology of electrode with a density gradient, it was 

shown that much better electrode performance can be obtained, which can be helpful for the 

designing and manufacturing of better batteries. 

(4) The transdermal drug delivery system is also simulated by using LBM. Two kinds of 

transdermal structures are discussed: “brick and mortar” structure and a simple homogenized 

structure. It is demonstrated that the homogenized system is able to obtain similar steady state 

flux as the “brick and mortar” structure; however, in the early transient region, their flux value 

can be different. The influence of different system parameters (amount of drug in patch, patch 

thickness, partition coefficient at patch/ Stratum Corneum (SC) interface, and the diffusion 

coefficient of drug in each component) is discussed in details. It turns out that in this system, the 

rate-determine step for mass transfer should be the partition between patch and SC layers and the 

diffusion in the SC layer. The influence of enhancer is also tested. It is shown that by adding 

enhancers, the drug flux can be significantly increased. However, the peak time of drug does not 

necessarily match the peak flux time of enhancer. The peak time of drug could be adjusted 

(pushed earlier or dragged later) by using different kinds of enhancers, which has higher/smaller 

diffusivity than drug in the SC layer. 
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Chapter 1. Introduction 

Mass transfer, known as a “non-equilibrium” dynamic process, is one of the most commonly 

observed phenomena in our daily lives. The examples of mass transfer problems are diffusion of mass 

according to concentration gradient, electromigration of charged particles in electric field, fluid flows, etc. 

The dynamics involving these processes are usually very complicated, particularly when combined with 

external fields, complex geometries, moving boundaries, interactions and reactions both at the interfaces 

and in the bulk phases. From an experimental point of view, these systems represent several challenges as 

they require the ability to follow the mass transport in complex environments while following all the 

different reactions and changes in the local environment. “Operando” type analysis has resulted in the 

ability to follow these different effects simultaneously, but these studies could be significantly enhanced 

by the development of computational methods for these complex systems, In this thesis, we develop 

mesoscopic computational methods to look systems where mass transfer is critical to the operation of the 

device. We focus mainly on energy related applications, such as supercapacitors and batteries, but to 

show the range of our method, we also apply it to transport in biomedical systems, and study the transport 

of drugs in transdermal patches.  

The most commonly developed numerical methods to solve the mass transfer problems can 

usually be divided into two: macroscopic scale simulation, such as conventional Computational Fluid 

Dynamics (CFD)[1, 2], and atomistic scale simulation, such as Molecular Dynamics (MD) and direct 

simulation Monte Carlo (MC))[3]. In conventional CFD, the continuum fluid mechanics are described by 

a set of partial differential equations (PDEs), and the state of the system is obtained by solving such PDEs 

under different discretization methods, such as finite volume method (FVM), finite element method 

(FEM), finite difference method (FDM), etc. These analysis tools are widely used to solve the unsteady, 

three-dimensional, compressible Euler or Navier-Stokes equations. The Euler solutions are found to be 

valid for inviscous flow, while the Navier-Stokes solution can be used for the system that includes 

viscous effects. Therefore, the Euler solutions are less costly in CFD calculations compared to the Navier-

Stokes solution. But there are still some problems in CFD based on different discretization methods. For 

example, FDM has difficulty in satisfying conservation laws and also is hard to apply for irregular 

geometries; FVM tends to be biased toward edges and one-dimensional physics; and it is difficult to solve 

hyperbolic equations by using FEM. 

MD and MC simulations of fluid dynamics, on the other hand, are carried out in a bottom-up 

manner. In these models, the dynamics of the atoms or molecules are explicitly calculated, and the fluid 

properties, such as the flow velocity or density field, can be calculated as averages over the trajectories of 

the particles[3]. It is possible to extend the modeling accuracy to a wider range of scales and regimes, and 

exhibit nonlinear transport effects and small-scale fluctuations. But for pure MD, it is difficult to model 

the reaction-dependent processes, such as electrochemical reactions, in a reasonable timescale, because 

these processes are not driven by force field. For MC methods, they do not explicitly contain the time 

variable, and they are not truly dynamic methods. Also, these methods are computationally expensive, 

and it is problematic to be extended to large systems. 

Even though these numerical methods are powerful in handling some targeted (usually 

simplified) systems, they may fail in the simulation of complex systems that require tracking the 

properties of the system both microscopically and macroscopically. Therefore, we need a mesoscopic 

numerical method that can bridge these two scales. In this thesis, we are trying to develop a mesoscopic 

method, Lattice Boltzmann Method (LBM), to simulate complex mass transfer problems. LBM was 

introduced two decades ago[5, 6], and now it has been developed into a powerful tool for CFD. From 

numerical calculation side, the kinetic nature of LBM has three important features. First, the convection 

operator (streaming process) of LBM in phase space (velocity space) is linear, contrasting with the 
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nonlinear convection terms in other approaches. Second, the pressure in LBM can be obtained by an 

equation of state in the nearly incompressible limit, compared to the direct numerical simulation, where 

the pressure has to be calculated by solving a Poisson equation with velocity strains acting as sources, 

which usually requires special treatment, such as iteration or relaxation. Third, comparing with the 

traditional kinetic theory with the Maxwell-Boltzmann equilibrium distribution, the LBM uses a smaller 

set of velocities in phase space. Therefore, the transformation between the microscopic distribution 

function and macroscopic quantities is greatly simplified. This method is particularly successful in fluid 

flow applications involving interfacial dynamics and complex boundaries[7]. Even though it is based on a 

particle picture, rather than concentrating on the microscopic behavior of particles, LBM focuses on the 

averaged microscopic behavior. Thus, the computational cost is lower than the atomistic methods. 

The popularity of LBM is based in part on its simple formulation and application to flow 

problems compared with solving the Navier-Stokes equations, and in part on the high level of scalability 

on parallel processing systems[8]. Therefore, it is possible to use this method to simulate a comparatively 

large system. In this thesis, we are particularly interested in the electrochemical energy storage systems 

and transdermal drug delivery system. In the following chapters, this thesis will be constructed in the 

following way: 

Chapter 2 gives a brief introduction of the LBM. We briefly show that how Lattice Boltzmann 

Equation (LBE) is derived from traditional Boltzmann Equation, Chapman-Enskog Expansion and 

asymptotic analysis of LBE, lattice arrangement and boundary conditions of LBM. 

Chapter 3 shows the LBM model for EDLCs. The simulation of diffuse charge dynamics is 

carried out for both the charge and the discharge processes on complex random electrode geometries of 

2D symmetric systems. We accounted for the steric effect and compared the influence of microstructures 

of electrodes in the systems. 

Chapter 4 focuses on the LBM model for the dendrite formation process on the anode of LIBs. A 

half-cell 2D simulation is carried out to simulate the dendrite formation on the Li metal electrode during 

charge and discharge cycles. The mechanism of dendrite formation process is discussed in detail and 

compared with the traditional Sand’s time theories. A new analysis method is introduced, which can 

predict the formation of dendrites in batteries at a very early stage even before large dendrites form. 

Chapter 5 introduces the LBM model for simulating the intercalation reactions in graphite 

electrode of LIBs. A 3D half-cell is used for the simulation of intercalation reactions of randomly 

distributed graphite electrode with different electrode densities. Both galvanostatic and potentiostatic 

conditions were studied. The relation between operation parameters (current and potential) and electrode 

parameters (porosity, thickness and diffusivity) and plating times were discussed. 

Chapter 6 shows the LBM model for transdermal drug delivery system. We compared two 

commonly used structures for the simulation - “brick and mortar” and homogenized structures. The 

influence of different system parameters (amount of drug in patch, patch thickness, partition coefficient at 

patch/ Stratum Corneum (SC) interface, and the diffusion coefficient of drug in each component) is 

discussed in details. The influence of enhancer is also tested.   

Finally, we will end with the discussion of future work. 
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Chapter 2. Introduction to Lattice Boltzmann Method 

The LBM was originally used as a class of Computational Fluid Dynamics methods to simulate 

the dynamics of fluids. LBM has its origins in the lattice gas automata (LGA) method. LGA can be 

considered as a simplified fictitious molecular dynamics model in which the fluid particles move and 

collide on the regular lattices and the macroscopic variables, such as the density and velocity, satisfy the 

equation similar to the Navier-Stokes equations[9]. While Lattice Gas methods have been used to study 

different flow conditions[10-12], there are a number of problems associated with this method, such as 

lacking of Galilean invariance and noisy simulations which require a great deal of averaging[13]. 

LBM improves on the ideas in LGA. Rather than following the evolution of “particles”, LBM 

traces the evolution of “ensemble-averaged distribution function” which represents the probability of 

finding a particle at a particular site. Using this approach, the macroscopic Navier-Stokes equations can 

be obtained from the Lattice Boltzmann Equation (LBE). Even though LBM is a widely used CFD 

method, it also has lots of applications in complex dissolution processes[14-17], 

electroosmotic/electrokinetic flows[18-20], crystallization[21, 22], electrochemical systems[23, 24], and 

even the simulation of the Schrödinger equation[25, 26]. In this chapter, we start by introducing the 

Boltzmann equation and then discuss how the Lattice Boltzmann Equations can be obtained from it. 

Finally, we will show how to construct lattice and deal with the boundary conditions for the Lattice 

Boltzmann Method, so that it can be applied to the problems dealing with mass transport and local 

reactions.  

2.1 The Boltzmann Equation 

In 1872, the famous Austrian physicist Ludwig Eduard Boltzmann devised the Boltzmann 

Equation (BE) or Boltzmann Transport Equation (BTE) to describe the statistical behavior of a 

thermodynamic system not in thermodynamic equilibrium. In the BE, instead of tracing all the individual 

positions and momenta of each particle in a system, it considers the probability that a number of particles 

in a volume of d3rd3p phase space. This probability distribution function is denoted as f(r, p, t), where r 

and p are the position and momenta at the time t. The number of particles N which all have r and p at time 

t has the following relationship with the probability distribution function: 

 𝑑𝑁 = 𝑓(𝒓, 𝒑, 𝑡)𝑑3𝒓𝑑3𝒑 ( 2.1.1 ) 

Now, consider an external force F acting on the particles. At time t + ∆𝑡, particle position will be 

r + ∆𝒓 = r + p∆𝑡/𝑚, and momentum will be p + ∆𝒑 = 𝒑 + 𝑭∆𝑡. If there are no internal collisions, the 

phase space volume element should be constant, which gives: 

 𝑓 (𝒓 +
𝑷

𝑚
∆𝑡, 𝒑 + 𝑭∆𝑡, 𝑡 + ∆𝑡) 𝑑3𝒓𝑑3𝒑 = 𝑓(𝒓, 𝒑, 𝑡)𝑑3𝒓𝑑3𝒑 ( 2.1.2 ) 

However, if internal collisions take place, there will be a net difference of particle numbers in the 

phase space volume element d3rd3p. The change rate of distribution function due to collisions is called 

collision operator, Ω . Now we can write out the evolution equation for the probability distribution 

function: 

 𝑓 (𝒓 +
𝑷

𝑚
∆𝑡, 𝒑 + 𝑭∆𝑡, 𝑡 + ∆𝑡) 𝑑3𝒓𝑑3𝒑 − 𝑓(𝒓, 𝒑, 𝑡)𝑑3𝒓𝑑3𝒑 =  𝛀(𝑓)∆𝑡𝑑3𝒓𝑑3𝒑 ( 2.1.3 ) 

Dividing the above equation by 𝑑3𝒓𝑑3𝒑 and let ∆𝑡 → 0, then: 
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𝑑𝑓

𝑑𝑡
=  Ω(𝑓) ( 2.1.4 ) 

Since the probability distribution function f is a function of r, p, and t, therefore,  

 
𝑑𝑓

𝑑𝑡
=

𝜕𝑓

𝜕𝒓

𝑑𝒓

𝑑𝑡
+

𝜕𝑓

𝜕𝑷

𝑑𝑷

𝑑𝑡
+

𝜕𝑓

𝜕𝑡
  ( 2.1.5 ) 

 

Replace dr/dt with p/m, dp/dt with F, and take ∇ as the gradient operator. Then we will obtain the 

Boltzmann Equation as: 

 
𝒑

𝑚
∇𝑓 + 𝑭

𝜕𝑓

𝜕𝑷
+

𝜕𝑓

𝜕𝑡
=  Ω(𝑓) ( 2.1.6 ) 

Note that this equation is still not complete because the collision term Ω(𝑓) is unknown. This 

term should be a statistical representation of particle collisions, which has a relationship with the statistic 

distributions of particles, such as Maxwell–Boltzmann, Fermi–Dirac or Bose–Einstein distributions. 

2.2 H-theorem and The Bhatnagar–Gross–Krook (BGK) Approximation 

As is shown in the equ.2.1.6, the key factor to solve Boltzmann equation is to determine the collision 

term that specifies how the distribution function changes after a two-particle collision. However, the 

forms of this term in most physical systems are too complicated to be used. So simplifications are needed 

to approximate the collision process.  

Boltzmann made an assumption that the collision term is determined from two-body interaction that 

is uncorrelated before the collision. This is also known as the Stosszahlansatz or molecular chaos 

assumption. Under this assumption, the continual process of collisions is associated with irreversibility, 

which reflects the second law of thermodynamics. Boltzmann discovered a quantitative measure of the 

irreversibility, which is referred as the H-function[27]: 

 𝐻(𝑡) =  −∫𝑓 𝑙𝑛𝑓 𝑑3𝒑𝑑3𝒓 ( 2.2.1 ) 

This is a monotonically increasing function of time, regardless of the underlying microscopic 

potential (H-theorem). Therefore, when designing the approximation of the collision term, at least two 

main properties should be kept[28]: first, the same quantities that are conserved under collisions must also 

be conserved in the approximation; second, Boltzmann’s H-theorem must be fulfilled for the 

approximated collision operator. 

Bhatnagar, Gross and Krook introduced a simple but widely used collision operator that is known 

as BGK collision operator. The BGK approximation states that the main effect of the collision term is to 

bring the local distribution function to the local equilibrium distribution. If 𝑓  and 𝑓𝑒𝑞  denote the 

distribution function and local equilibrium distribution function respectively, and let 𝜏 be the relaxation 

time which reflects the rate of this process, then the collision operator 𝛺(𝑓) can be explicitly expressed as: 

 Ω(𝑓) =  −
1

𝜏
 (𝑓 − 𝑓𝑒𝑞) ( 2.2.2 ) 

Therefore, the Boltzmann equation can be simplified as: 
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𝒑

𝑚
∇𝑓 + 𝑭

𝜕𝑓

𝜕𝑷
+

𝜕𝑓

𝜕𝑡
=  −

1

𝜏
 (𝑓 − 𝑓𝑒𝑞) ( 2.2.3 ) 

2.3 Discretization and The Lattice Boltzmann Equation 

 The equ.2.2.1 is a continuum differential equation. If we assume this equation is valid along 

specific directions and linkages i in space, the discrete Boltzmann equation can be written as, 

 
𝜕𝑓𝑖
𝜕𝑡

+
𝒑𝑖

𝑚
∇𝑓𝑖 + 𝑭𝑖

𝜕𝑓𝑖
𝜕𝒑𝑖

= −
1

𝜏
 (𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) ( 2.3.1 ) 

or, 

 
𝜕𝑓𝑖
𝜕𝑡

+
𝒑𝑖

𝑚
∇𝑓𝑖 = −

1

𝜏
 (𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) − 𝑭𝑖

𝜕𝑓𝑖
𝜕𝒑𝑖

 ( 2.3.2 ) 

 If we check the above equation carefully, we can find that the equation looks like an advection 

equation with source term. The left-hand side of the equation represents the advection and the right-hand 

side term represents the source. With a small time interval ∆𝑡, and let 𝐹𝑖
𝑙 be a generalization of the force 

in the equation, such as 𝐹𝑖
𝑙  ↔ 𝑭𝑖

𝜕𝑓𝑖

𝜕𝒑𝑖
, then we can obtain: 

 
𝑓(𝑥 + 𝑣𝑖∆𝑡, 𝑣𝑖 , 𝑡 + ∆𝑡) − 𝑓(𝑥, 𝑣𝑖, 𝑡)

∆𝑡
=  −

1

𝜏
 (𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) − 𝐹𝑖

𝑙 ( 2.3.3 ) 

Where 𝑣𝑖 = 
𝒑𝑖

𝑚
 is velocity in ith direction. Here, if we discrete velocity space to a finite number of velocity 

vectors 𝑣𝑖, and discrete the space to lattices where 𝑥 + 𝑣𝑖∆𝑡 is again a lattice position, then the velocity 

vectors are fixed. Therefore, the Lattice Boltzmann Equation can be obtained as, 

 𝑓(𝑥 + 𝑣𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓(𝑥, 𝑡) =  −
∆𝑡

𝜏
 (𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) − 𝐹𝑖

𝑙∆𝑡 ( 2.3.4 ) 

 If there is no external force, this equation can be simplified as, 

 𝑓(𝑥 + 𝑣𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓(𝑥, 𝑡) =  −
∆𝑡

𝜏
 (𝑓𝑖 − 𝑓𝑖

𝑒𝑞
) ( 2.3.5 ) 

 This simple equation can be applied for many physics by specifying proper equilibrium 
distribution function, relaxation time and source term (external force) if needed. 

2.4 Equilibrium Distribution Functions 

 In 1859, Maxwell constructed a distribution function of particles with the velocity of c in 
phase space. If the average kinetic energy and the temperature of the gas satisfy the following 
equation: 

 
1

2
 𝑚𝑐2

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

3

2
 𝑘𝑇 ( 2.4.1 ) 

  Then the distribution function is written as[29]: 
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 𝑓(𝑐) =  4𝜋(
𝑚

2𝜋𝑘𝑇
)
3
2𝑐2𝑒−

𝑚𝑐2

2𝑘𝑇  ( 2.4.2 ) 

Where T is temperature, k is Boltzmann constant, and m is the mass of particle. We should note that when 

constructing the distribution function, Maxwell did not assume the equilibrium is reached.  

 To devise the equilibrium distribution function, Boltzmann assumed that for any system large or 

small in thermal equilibrium at temperature T, the probability of particles being in a particular state of 

energy E is proportional to 𝑒
−𝐸

𝑘𝑇 . Then the equilibrium distribution function can be written as[29], 

 𝑓(𝑐) =  (
𝑚

2𝜋𝑘𝑇
)
3
2𝑒−

𝑚𝑐2

2𝑘𝑇  ( 2.4.3 ) 

 If we multiply the Boltzmann distribution function by 4𝜋𝑐2, which is the surface area of a sphere 

in phase space, the Maxwell distribution function can be recovered. Therefore, this equilibrium 

distribution function is also called the Maxwell – Boltzmann distribution. We can therefore use this 

distribution function for the equilibrium distribution function in lattice Boltzmann equation. 

 For particles with density 𝜌 moving in a medium with macroscopic velocity u and particle 
velocity c, the normalized Maxwell’s distribution function can be written as[29], 

 𝑓 =  
𝜌

2𝜋/3
𝑒−

3
2
𝑐2

 𝑒
3(𝒄⋅𝒖− 𝑢2)

2  ( 2.4.4 ) 

 Where 𝑐2  and 𝑢2  are 𝒄 ∙ 𝒄  and 𝒖 ∙ 𝒖  respectively. By using the Taylor expansion around the 

stationary state, we can obtain, 

 𝑓 =  
𝜌

2𝜋/3
𝑒−

3
2
𝑐2

 [1 + 3(𝒄 ∙ 𝒖) −
3

2
 𝑢2 + ⋯ ] ( 2.4.5 ) 

 If we regard that this equation is also valid along specific directions and linkages i in space, and 

note that the Maxwell distribution also reflects the equilibrium distribution, by discarding the higher order 

terms, then we can obtain the discrete form of the equilibrium distribution, 

 𝑓𝑖
𝑒𝑞

=  Φ𝜔𝑖 [𝐴 + 𝐵(𝒄𝒊 ∙ 𝒖) + 𝐶(𝒄𝒊 ∙ 𝒖)2 + 𝐷𝒖2] ( 2.4.6 ) 

 A, B, C and D are constants and can be calculated out from conservation of mass, momentum and 

energy, etc. 𝜔𝑖 is the weight in the ith linkage and it is related to the lattice arrangements, which we will 

introduce in the section 2.7. The summation of all 𝜔𝑖 of the lattice links at a certain lattice is unity, 

 ∑𝜔𝑖

𝑛

𝑖=0

= 1 ( 2.4.7 ) 

 Φ is a scalar which represents the local density of the “particles” that we are investigating. Note 

that the “particles” here are generalized particles that can be mass, temperature or thermal energy, etc. 

depending on the physical system we are interested in. Φ can be obtained by the summation of all the 

distribution functions of the lattice links at a certain lattice, 

 Φ = ∑𝑓𝑖
𝑒𝑞

𝑛

𝑖=0

 ( 2.4.8 ) 



 

7 

 

 For different physical systems, different equilibrium distribution functions can be 
constructed. For example, for a pure diffusion process, the macroscopic velocity of flow is zero, 
therefore the distribution function is, 

 𝑓𝑖
𝑒𝑞

=  Φ𝐴𝜔𝑖  ( 2.4.9 ) 

 Putting equ.2.4.9 back to equ.2.4.8, it is easy to get the value of A, which is 1. 

2.5 The Chapman-Enskog Expansion 

 The distribution of the particles can also be regarded as a mean field picture emerging from 
a perturbative treatment of the kinetic equations[27]. Let the perturbation parameter be the 
Knudsen number 𝜖, which is the ratio of mean free path and the characteristic length of the system, 
by Chapman-Enskog Expansion, the distribution function 𝑓𝑖 and 𝑓𝑖

𝑒𝑞
 can be expressed as, 

 𝑓𝑖 = 𝑓𝑖
(0)

+  𝜖𝑓𝑖
(1)

+ 𝜖2𝑓𝑖
(2)

+  𝒪(𝜖3) ( 2.5.1 ) 

 

 𝑓𝑖
𝑒𝑞

= 𝑓𝑖
(𝑒𝑞,0)

+  𝜖𝑓𝑖
(𝑒𝑞,1)

+ 𝜖2𝑓𝑖
(𝑒𝑞,2)

+  𝒪(𝜖3) 
( 2.5.2 ) 

 

 The Taylor expansion of the LBE equ.2.3.5 can be written as, 

 𝜖(𝒄𝑖 ∙ ∇𝑓𝑖) + 𝜖2 (𝜕𝑡𝑓𝑖 +
(𝒄𝑖 ∙ ∇𝑓𝑖)

2

2
) +  𝒪(𝜖3) =  −ω[𝑓𝑖 − 𝑓𝑖

𝑒𝑞
] ( 2.5.3 ) 

Where ω = 
∆𝑡

𝜏
 is the relaxation parameter and 𝒄𝑖 =

𝛿𝑥,𝑖

𝛿𝑡
 is the lattice speed. 

By inserting equ.2.5.1 and equ.2.5.2 to equ.2.5.3, for each leading orders in 𝜖 we have, 

 0 =  −𝜔 [𝑓𝑖
(0)

− 𝑓𝑖
(𝑒𝑞,0)

] 
( 2.5.4 ) 

 

 𝒄𝑖 ∙ ∇𝑓𝑖
(0)

= −𝜔 [𝑓𝑖
(1)

− 𝑓𝑖
(𝑒𝑞,1)

] 
( 2.5.5 ) 

 

 
𝒄𝑖 ∙ ∇𝑓𝑖

(1)
+ 𝜕𝑡𝑓𝑖

(0)
+

(𝒄𝑖 ∙ ∇𝑓𝑖
(0)

)
2

2
=  −𝜔 [𝑓𝑖

(2)
− 𝑓𝑖

(𝑒𝑞,2)
] 

( 2.5.6 ) 

 Note that the order of 𝜖 can be extended to higher orders if needed, and the method will be the 

same. Now for an equation of a particular order in 𝜖, it is possible to use collision invariants and replace 

𝑓𝑖
(𝑛)

 of higher order in 𝜖  by the equations of lower order in 𝜖 . In the end, macroscopic variables of 

differential equations can be obtained by moments of the distribution functions. 

2.6 Asymptotic Analysis for Advection-Diffusion Equation 

 Now we take the advection-diffusion equation as an example to illuminate the idea of 
Chapman-Enskog Expansion introduced in the former section. The advection-diffusion equation can 
be written as, 
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𝜕𝜌

𝜕𝑡
+ ∇(𝒖𝜌 − 𝐷∇𝜌) =  0 ( 2.6.1 ) 

 The LBE is written as, 

 𝑓(𝑥 + 𝑐𝑖𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝑓(𝑥, 𝑡) =  −𝜔 (𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖
𝑒𝑞

(𝑥, 𝑡)) ( 2.6.2 ) 

with the equilibrium distribution function, 

 𝑓𝑖
𝑒𝑞

= 𝑤𝑖𝜌[1 + 
𝒄𝑖 ∙ 𝒖

𝑐𝑠
2 ] ( 2.6.3 ) 

where cs is the speed of sound in the lattice which reflects an effective propagation velocity of the lattice. 

Now expand density, flux and advective velocity according to Chapman-Enskog Expansion, 

 𝜌 =  𝜌(0) +  𝜖𝜌(1) + 𝜖2𝜌(2) +  𝒪(𝜖3) ( 2.6.4 ) 

 

 𝒋 =  𝒋(0) +  𝜖𝒋(1) + 𝜖2𝒋(2) +  𝒪(𝜖3) ( 2.6.5 ) 

 

 𝒖 = 𝒖(0) +  𝜖𝒖(1) + 𝜖2𝒖(2) +  𝒪(𝜖3) ( 2.6.6 ) 

 Insert these equations into the equilibrium distribution function, and then the expansion of the 

equilibrium distribution function can be obtained. It has been proved[29] that if the advective velocity 𝒖 

is initialized properly, 𝒖(0) = 0. Therefore, 

 𝑓𝑖
(0)

= 𝑤𝑖𝜌
(0) ( 2.6.7 ) 

 For the distribution function of order one in 𝜖, 

 𝑓𝑖
(1)

= −
1

𝜔
(𝒄𝑖 ∙ ∇(𝑤𝑖𝜌

(0))) + 𝑤𝑖(𝜌
(1) + 𝜌(0)  

𝒄𝑖 ∙ 𝒖(𝟏)

𝑐𝑠
2 ) ( 2.6.8 ) 

 Taking the first moment of 𝑓𝑖
(1)

 gives, 

 𝒋(1) = 𝜌(0)𝒖(1) −
𝑐𝑠
2

𝜔
∇𝜌(0) ( 2.6.9 ) 

 Note that 𝒋(0) =  0, since 𝒖(0) = 0. 

Going on to the order two in 𝜖, we get: 

 ∇𝒋(1) + 𝜕𝑡𝜌
(0) + 

𝑐𝑠
2

2
∇2𝜌(0) = 0 ( 2.6.10 ) 

and inserting equ.2.6.9 will lead to, 

 𝜕𝑡𝜌
(0) + ∇ [𝜌(0)𝒖(1) − 𝑐𝑠

2 (
1

𝜔
−

1

2
)∇𝜌(0)] = 0 ( 2.6.11 ) 
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which is an advection diffusion equation with a diffusion constant satisfying, 

 𝐷 = 𝑐𝑠
2 (

1

𝜔
−

1

2
) ( 2.6.12 ) 

2.7 Lattice Arrangements 

 When applying LBE to simulate physical systems, we have to specify the arrangement of lattices 

for the numerical calculation. The common terminology used in LBM is to refer to the dimension of the 

problem and the number of speed by using DnQm, where n represent the dimension of the problem (1 for 

1-D, 2 for 2-D and 3 for 3-D) and m refers to the speed model, number of linkages[29]. The lattices 

cannot be setup arbitrarily because a certain degree of isotropy should be satisfied in order to retrieve the 

desired equation. We will not dig into this topic here. Some references[27, 30] are available if you are 

interested.  In this thesis we will just introduce some widely used lattice arrangements that can be applied 

to our systems.  

2.7.1 Two-Dimensional System 

 In general two models are used in simulation of two-dimensional system, D2Q5 and D2Q9. 

Fig.2.1[31] shows the arrangement of these two lattices. 

 

Fig. 2. 1 Arrangement of D2Q5 (left) and D2Q9 (right) lattices  

 As is shown in the Fig.2.1, D2Q5 lattice has 4 velocity vectors, 𝒆1, 𝒆2, 𝒆3, and 𝒆4, and one more 

velocity for the distribution function resides at the central node, which is zero. There are 5 distribution 

functions in a lattice, 𝑓0, 𝑓1, 𝑓2, 𝑓3, and 𝑓4. Each of the distribution functions represents the amount of 

particles moving along with the corresponding lattice velocity vectors. This distribution functions can be 

regarded as a histogram representing the frequency of occurrence, which denotes the direction-specific 

fluid densities. The weighting factors 𝑤𝑖, which we have mentioned in the previous chapters, are 1/3 for 

𝑓0 and 1/6 for 𝑓1, 𝑓2, 𝑓3, and 𝑓4. It is worthy to mention that this arrangement cannot be used to simulate 

fluid flows[29]. However, the advection-diffusion problems can be simulated with this simple lattice. 

 The D2Q9 lattice is very commonly used for solving fluid flow problem. The velocities in the 

lattice can be grouped into 3 categories: 𝒆0 has a velocity of 0; 𝒆1 through 𝒆4 have a velocity of 1 lattice 

unit per time step (1 lu ts-1); 𝒆5 through 𝒆8 have a velocity of √2 lu ts-1, as is shown in the Fig.2.1. The 

weights of distribution are 0 for direction 4/9 (original position), 1/9 for directions of 1, 2, 3, 4, and 1/36 

for directions of 5, 6, 7, and 8. 
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2.7.2 Three-Dimensional system 

 The most widely used 3D lattice for advection-diffusion systems is D3Q7, while for Navier-

Stokes systems is D3Q19[27].  

                        

Fig. 2. 2 Arrangement of D3Q7 (left) and D3Q19 (right) lattices  

 The way we discrete 3D system is much similar to the 2D system. For D3Q7 lattice, there are 7 

velocity vectors. The weights are 1/4 for direction of 0 and 1/8 for the rest directions. For D3Q19 lattice, 

there are 19 velocity vectors. The weights are 1/3 for direction of 0, 1/18 for directions from 1 to 6, and 

1/36 for the rest directions. 

2.8 Boundary Conditions 

 While the equ.2.3.4 and equ.2.3.5 define the evolution of distribution functions, on the boundaries, 

the process can be different according to different boundary conditions. There are various boundary 

conditions proposed by many investigators for different applications[32-37]. Here, we will only focus on 

four basic kinds of boundaries that are commonly used: Periodic, Bounce-back, Neumann, and Dirichlet 

Boundaries. 

2.8.1 Periodic Boundary Condition 

 The periodic boundary condition is used when the surface effects play a negligible role, or 
when only the properties of the bulk are concerned. It is very easy to implement periodic boundary 
condition in the LBM system. Only a buffer boundary is needed to get the information on the 
opposite side and the streaming step will update the information directly on the boundary nodes. 
Here, we need to the update the buffer boundary in every time step before the streaming happens. 
The basic idea of periodic boundary condition is shown in Fig.2.3. The solid nodes denote the 
simulation domain and the hollow nodes denote the buffer boundary. When particles leave from 
the right, they will fill in the left buffers and vice versa. 
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Fig. 2. 3 Illustration of Periodic boundary condition 

2.8.2 Bounce-back Boundary Condition 

 Bounce-back boundary is also called no-slip Bounce-back boundary.  It is commonly used when 

the solid wall is sufficient rigid so that there is no net fluid motion at the wall. Two distinct types of 

implementations can be used for Bounce-back nodes: On-grid and Mid-grid. 

 In the On-grid Bounce-back boundary condition, the physical boundary lies exactly on a grid line. 

Therefore, what we need to do is just to reverse all populations sitting on a boundary node in a certain 

collide and the stream step. 

 In the Mid-grid Bounce-back boundary condition, the physical boundary lies in between two grid 

lines, so that solid nodes are at one side of the boundary line and fluid nodes are at the other side. The 

bounce-back process can be divided into 4 steps shown in Fig.2.4. 



 

12 

 

 

Fig. 2. 4 Illustration of Mid-grid Bounce-back boundary condition 

 It is proved that the On-grid Bounce-back is generally first-order accurate while the Mid-grid 

Bounce-back has second-order accuracy[27]. 

2.8.3 Neumann Boundary Condition 

 Neumann boundary conditions usually define the flux value at the boundaries. For a known flux 

value, a velocity vector u is specified at the boundary. After the streaming step, the unknown direction 

densities at each boundary node, pointing from the boundary into the domain, should be solved based on 

the velocity information. Taking a D2Q9 lattice as an example (shown in Fig.2.5), densities f4, f7, and f8 

are unknown after steaming.   

 

Fig. 2. 5 Illustration of boundary nodes for D2Q9 lattice 



 

13 

 

 The macroscopic density is defined as: 

 𝜌 =  ∑ 𝑓𝑖

𝑞−1

𝑖=0

 ( 2.8.1 ) 

 If the velocity at the boundary is defined as 𝒖 = [
𝑢𝑥

𝑢𝑦
] , it is possible to decompose the 

contribution of individual distribution function fi to the velocity in x and y directions: 

 𝜌𝑢𝑥 = 𝑓1 − 𝑓3 + 𝑓5 − 𝑓6 + 𝑓8 − 𝑓7  ( 2.8.2 ) 

 

 𝜌𝑢𝑦 = 𝑓2 − 𝑓4 + 𝑓5 − 𝑓8 + 𝑓6 − 𝑓7 ( 2.8.3 ) 

 Right now, we have four unknowns but only three equations. To solve for these unknowns, we 

need a proper assumption to construct the fourth equation. Zou and He[38] proposed an assumption that 

the Bounce-Back condition can be applied in the direction normal to the boundary, therefore: 

 𝑓2  − 𝑓2
𝑒𝑞

= 𝑓4 − 𝑓4
𝑒𝑞

 ( 2.8.4 ) 

 The equilibrium distribution functions can be calculated based on equ.2.4.6 mentioned in section 

2.4. Until now, there are linear equations for four unknowns, and it is easy to solve these linear equations 

to obtain the unknown distributions. 

 We should note that the Zou and He’s assumption is just one of the commonly used method for 

this boundary condition. There are several assumptions worked for the Neumann boundary conditions. 

The reader can refer to other papers for further readings[39-41]. 

2.8.4 Dirichlet Boundary Condition 

 Similar to Neumann boundary conditions, in Dirichlet boundary conditions the unknown 

direction densities at each boundary node should be solved based on the pressure/density information that 

is predefined at the boundaries.  Also here we use a D2Q9 lattice in Fig.2.5 as an example, and densities f4, 

f7, and f8 are unknown after steaming.  

 The Dirichlet boundary condition imply that the density at the boundary is known, 𝜌 =  𝜌0: 

 𝜌0 = ∑ 𝑓𝑖

𝑞−1

𝑖=0

 ( 2.8.5 ) 

 The velocity at the boundary is defined as 𝒖 =  [
0
𝑢𝑦

]. Here we assume the velocity that is tangent 

to the boundary is zero and the velocity that is normal to the boundary is unknown. Then we have, 

 0 =  𝑓1 − 𝑓3 + 𝑓5 − 𝑓6 + 𝑓8 − 𝑓7 ( 2.8.6 ) 

 

 𝜌0𝑢𝑦 = 𝑓2 − 𝑓4 + 𝑓5 − 𝑓8 + 𝑓6 − 𝑓7 ( 2.8.7 ) 
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 And also assume the Bounce-back condition can be applied in the direction normal to the 

boundary: 

 𝑓2  − 𝑓2
𝑒𝑞

= 𝑓4 − 𝑓4
𝑒𝑞

 ( 2.8.8 ) 

 Now we have four equations for four unknowns, which can be solved easily. 

 Similar to Neumann boundary conditions, there are other assumptions worked for the Dirichlet 

boundary conditions. The reader can refer to other papers for further reading. [42-48]. 
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Chapter 3. Simulation of Diffuse-charge Capacitance in Electric Double Layer 

Capacitors by Using Lattice Boltzmann Method 

3.1 Introduction 

 The rapidly growing demand for energy storage has brought considerable attention to the study of 

batteries and Electric Double Layer Capacitors (EDLCs)[49]. Generally speaking, batteries store energy 

in the form of electrochemical reactions known as the faradaic processes, while EDLCs store energy by 

physical separation of ions. Comparing to batteries, EDLCs have much better cyclic reversibility, faster 

charge/discharge rate and wider working temperature range, which makes them a very attractive option as 

energy storage devices in lots of applications, such as electrical and hybrid vehicles[50], smart grid 

management[51, 52], renewable energy generation[53], and piezo-electric[54]. However, one of the 

biggest shortcomings of EDLCs is its low energy density. In order to increase energy density, lots of 

attempts have been made[55-62], and the key point that has been identified is to synthetize porous 

electrode materials with high surface area while at the same time improving the accessibility of the pores 

to the electrolyte[63]. The development of numerical tools to study EDLCs can be of great help for us to 

understand the physical phenomena and identify the design parameters for the electrode in order to obtain 

optimal performance[64]. In this chapter, we will introduce a LBM model to simulate the diffuse-charge 

dynamics in the EDLCs, which can handle complicated geometries of capacitors and include the steric 

effects of concentrated charged particles. The model can be helpful for the capacitor design from the 

mesoscopic point of view. 

3.2 Background 

 While there are many attempts to model the EDLCs systems by using equivalent electrical 

circuits method[65-69], which are useful to monitor the performance of macroscopic EDLCs systems, the 

lack of detailed information of electrode structures and mass transfer mechanisms in these models makes 

them insufficient for us to understand the inherent physical processes and to design optimal materials for 

EDLCs. To tackle these problems, microscopic[70-75] and mesoscopic[64, 76-83] electric double layer 

(EDL) models have been developed.  Microscopically, people have focused on studying the electrode-

electrolyte interphase (Stern layer) that is influenced by adsorption, dielectric property of the media and 

particle-solvent interactions. This is usually simulated by using Molecular Dynamics (MD) and can give 

us information of the charge distribution in the Stern layer and thus the double layer capacitance. These 

studies are performed at a length scale too small to allow for design of electrode structures. To increase 

the length scale involved, mesoscopic numerical models based on solving Poisson-Boltzmann (PB) 

equation or Poisson-Nernst-Plank (PNP) equations are used to obtain charge distributions beyond the 

Stern layer. The Stern layer effect is either ignored or simplified by a Stern layer capacitance to take 

account of a potential drop in that thin layer. The diffuse charge dynamics in these systems are usually 

solved analytically or by asymptotic analysis[78-80, 83], or numerically for simple electrode 

morphologies or porous electrode with homogenization[64, 76, 82, 84, 85]. Current models, however, do 

not account for details in the electrode structure. Since the electrode materials in EDLCs are highly 

randomized porous structures (and may have locally ordered structures), the mass transfer inside of the 

porous structure plays a critical role in the system. Therefore, we need a mesoscopic numerical method to 

take the consideration about the structure of the electrode materials. More recently, Chirkov and Rostokin 

simulated the active layers in EDLCs with 3D random morphologies[86, 87], but they mainly focused on 

the effective properties of the porous electrode itself rather than the whole capacitor system and they also 

did not consider the local ordered structures (spheres and fibers). Because of the large difference in the 

length scale (stern layer to the whole cell), it is hard to use a single simulation method to get the detailed 

charge distributions in both the stern layer and the whole capacitor system at the same time. Our work 

will focus on the mesoscopic simulation by using Lattice Boltzmann Method (LBM).  
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 LBM was introduced three decades ago and was originally used as a powerful method for 

Computational Fluid Dynamics (CFD)[6, 88]. Extensions to the LBM have also been developed to 

simulate mass transfer systems of advection-diffusion type[89, 90], electroosmosis flow[91-93], and 

electrochemical reactions[23, 24]. It has been proved to be particularly successful in fluid flow 

applications involving interfacial dynamics and complex boundaries[7]. The diffuse-charge dynamics in 

EDLCs is very similar to electroosmosis flow system. However, instead of solving Poisson-Boltzmann 

equation for the equilibrium state, here we try to solve Poisson-Nernst-Plank equations directly for the 

time-dependent diffuse charge dynamics in the absence of electro-osmotic flow. In this chapter, both 

charge and discharge processes on complex random electrode geometries of 2D systems (pure random, 

random spheres and random fibers) will be investigated; steric effects of concentrated solutions will be 

considered by using modified Poisson-Nernst-Plank (MPNP) equations; and two different collision 

operations for LBM will be compared, one is to treat the electromigration as the advective term of regular 

advection diffusion equation, and the other is to treat it as the source or force term. 

3.3 Simulation Model 

3.3.1 Charge Transfer Dynamics 

 The charge transfer in the electrolyte can be expressed by the Poisson-Nernst-Plank (PNP) 

equations if no steric effect is considered: 

 
𝜕𝑐𝑖

𝜕𝑡
=  𝐷𝑖∇(∇𝑐𝑖  +  

𝑧𝑖𝑒𝑐𝑖

𝑘𝑇
∇𝜓) ( 3.3.1 ) 

 

 ∇2𝜓 = −
𝜌𝑓

∈
 ( 3.3.2 ) 

 

where 𝑐𝑖 is the concentration of species i; 𝐷𝑖 is the diffusion coefficient of the species; 𝑧𝑖 is the charge on 

species i; e is the charge of an electron; k is Boltzmann constant; T is temperature; and 𝜓 is electrical 

potential; 𝜌𝑓 is the net charge density; and ∈ is dielectric constant. 

 The steric effect can be considered by adding a steric term into the equ.3.3.1: 

 
𝜕𝑐𝑖

𝜕𝑡
=  𝐷𝑖∇(∇𝑐𝑖  + 

𝑧𝑖𝑒𝑐𝑖

𝑘𝑇
∇𝜓 + 

𝑐𝑖∇(∑ 𝑐𝑗𝑗 )

1
𝑎3 —(∑ 𝑐𝑗𝑗 )

) ( 3.3.3 ) 

where a is the mean spacing of ions at the maximum concentration, 𝑎 =  𝑐𝑚𝑎𝑥
−1/3

; and ∑ 𝑐𝑗𝑗  represents total 

local concentration of ions.  

 To solve these equations numerically, we firstly normalize them according to previous work by 

Kilic, etc[79]. The resulting equations are as followings for PNP system: 

 
𝜕𝑐+

𝜕𝑡
=  𝜀

𝜕

𝜕𝑥
(
𝜕𝑐+

𝜕𝑥
+ 𝑐+

𝜕𝜙

𝜕𝑥
) ( 3.3.4 ) 
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𝜕𝑐−

𝜕𝑡
=  𝜀

𝜕

𝜕𝑥
(
𝜕𝑐−

𝜕𝑥
− 𝑐−

𝜕𝜙

𝜕𝑥
) ( 3.3.5 ) 

 

 −𝜀2∇2𝜙 = 𝑐+ − 𝑐− ( 3.3.6 ) 

 For MPNP system (the Poisson equation will be kept the same as equ.3.3.6), and the Nernst-

Plank equations become: 

 
𝜕𝑐+

𝜕𝑡
=  𝜀

𝜕

𝜕𝑥
(
𝜕𝑐+

𝜕𝑥
+ 𝑐+

𝜕(𝜙 − ln(1 − 𝜐(𝑐+ + 𝑐−)))

𝜕𝑥
) ( 3.3.7 ) 

 

 
𝜕𝑐−

𝜕𝑡
=  𝜀

𝜕

𝜕𝑥
(
𝜕𝑐−

𝜕𝑥
− 𝑐−

𝜕(𝜙 + ln(1 − 𝜐(𝑐+ + 𝑐−)))

𝜕𝑥
) ( 3.3.8 ) 

where 𝑐+ = 𝑐+
′ /2𝑐0, 𝑐− = 𝑐−

′ /2𝑐0, 𝑐+
′  and 𝑐−

′  are original concentration of cation and anion in equ.3.3.1 

and 3.3.3, 𝑐0is the initial ion concentration. 𝜀 =  𝜆𝐷/𝐿, is the ration of Debye length 𝜆𝐷 to the system size 

𝐿. 𝜙 is normalized electrostatic potential calculated from the Poisson equation. 𝜐 = 2𝑎3𝑐0, quantifies the 

role of steric effects. 

 The Poisson equation was solved by using traditional Successive Over-Relaxation (SOR) method, 

which readers can find in other publications[94]. 

 There are two kinds of total diffuse charge in this system: one is the total net charge at the 

electrode-electrolyte interface, 𝑞𝑠, and the other is the total net charge (positive or negative) in the whole 

electrolyte 𝑞𝑎. They are scaled by 2𝑧𝑒𝑐0𝐿 and calculated as: 

 𝑞𝑠 = ∫ (𝑐+ − 𝑐−)𝑑𝑥
Ω𝑎𝑛𝑜𝑑𝑒/𝑐𝑎𝑡ℎ𝑜𝑑𝑒

 ( 3.3.9 ) 

 

 𝑞𝑎 = ∫𝛿(𝑐+ − 𝑐−)𝑑𝑥 ,          {
𝛿 = 0, 𝑖𝑓 𝑐+ − 𝑐− ≤ 0

𝛿 = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 3.3.10 ) 

where Ω𝑎𝑛𝑜𝑑𝑒/𝑐𝑎𝑡ℎ𝑜𝑑𝑒  denotes the electrode-electrolyte interface of anode or cathode. Since we used 

symmetric electrodes, the integration will be the same for anode and cathode. Similarly, the integration of 

all the positive net charge and negative net charge will be the same because of the conservation of charge 

in the whole system.  

 The simulation of charge and discharge processes will stop when the system reaches equilibrium. 

Numerically speaking, we regard that when the error of 𝑞𝑎 at a certain time t (not time step) satisfies the 

following relationship:  

 |
𝑞𝑎,𝑡 − 𝑞𝑎,𝑡−1

𝑞𝑎,𝑡
| ≤  10−6 ( 3.3.11 ) 

the system is regarded to reach equilibrium. 
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3.3.2 Boundary Conditions 

 The boundary condition for electrical potential can take accounts of the possible presence of a 

thin insulating layer of fixed capacitance, and in the normalized form it reads: 

 ∅ ±  𝜀𝛿
𝜕𝜙

𝜕𝑥
=  ±𝑣 ( 3.3.12 ) 

where 𝛿 represents the normalized effective thickness of the surface insulating layer; 𝑣 = 𝑧𝑒𝑉/𝑘𝑇, is the 

normalized apply potential on anode and cathode. Since we do not know the exact value of 𝛿 in a system, 

in this paper, unless specified, we will ignore this layer and regard 𝛿 = 0. However, it is possible to 

obtain the value for a specific system by microscopic simulations such as MD. 

 We used Bounce-back boundary condition for electrode boundaries. In the direction parallel to 

electrodes, we applied periodic boundary condition. 

3.3.3 LBM Collision Operations 

 Generally speaking, there are two ways to solve the PNP equations in the framework of LBM. 

One is to treat the electromigration as the advective term of regular advection diffusion equation[18], and 

the other is to treat it as the source or force term[20]. These two methods should be able to give identical 

result for the system. Since we are interested in 2D system in this stage, D2Q5 lattice is used for the LBM. 

 A typical advection-diffusion equation has the following form: 

 
𝜕𝑐

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝜀

𝜕𝑐

𝜕𝑥
− 𝒖⃗⃗ 𝑐) ( 3.3.13 ) 

 If comparing the equ.3.3.13 with equ.3.3.4, 3.3.5, 3.3.7, and 3.3.8 term by term, it is easy to find 

that for PNP system: 

 𝑢+⃗⃗ ⃗⃗  =  −𝜀
𝜕𝜙

𝜕𝑥
 ( 3.3.14 ) 

 

 𝑢−⃗⃗ ⃗⃗  =  𝜀
𝜕𝜙

𝜕𝑥
 ( 3.3.15 ) 

and for MPNP system:  

 𝑢+⃗⃗ ⃗⃗  =  −𝜀
𝜕(𝜙 − ln(1 − 𝜐(𝑐+ + 𝑐−)))

𝜕𝑥
 ( 3.3.16 ) 

 

 𝑢−⃗⃗ ⃗⃗  =  𝜀
𝜕(𝜙 + ln(1 − 𝜐(𝑐+ + 𝑐−)))

𝜕𝑥
 ( 3.3.17 ) 

 Therefore, we can solve the PNP/MPNP equations according to the well-developed advection-

diffusion system in LBM directly. In a single-relaxation-time LB model, this physical system can be 

expressed as: 
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 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖, 𝑡 +  ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
 𝑓𝑖

𝑒𝑞
 ( 3.3.18 ) 

 Where fi (r, t) is the local density distribution function in the i direction; τ is the relaxation time. 

The velocity vi is chosen so that, in one time step ∆t, a particle can reach one of its nearest neighbors. 𝑓𝑖
𝑒𝑞

 

is the equilibrium density distribution function. With a simple BGK dynamics, it can be calculated based 

on the expression: 

 𝑓𝑖
𝑒𝑞

= 𝑡𝑖𝜌 (1 + 
1

𝑐𝑠
2  𝐯𝑖  ∙ 𝐮) ( 3.3.19 ) 

 Where 𝑐𝑠 is the sound of speed in the lattice, and 𝑡𝑖 is the weight factor in the i direction. 

 The PNP and MPNP systems could also be regarded as the diffusion of charged particles biased 

by electrical forces. Generally, people consider the influence of electrical force as a source term. Here we 

follow the method developed by Yang, etc.[20] but ignore the Navier-Stokes equations for the movement 

of electrolyte. The evolution equation of the model can be expressed as: 

 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖 , 𝑡 + ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
 𝑓𝑖

𝑒𝑞
− 𝛿𝑡𝑆(𝒓, 𝑡) ( 3.3.20 ) 

where 𝛿𝑡 is the time step, and the local equilibrium distribution function is defined by equ.3.3.19, but in 

our case the velocity 𝐮 = 𝟎, because the electrolyte is assume to be static in the whole simulation.  

 The source term distribution function can be expressed as: 

 𝑆(𝒓, 𝑡) =  𝑡𝑖𝐯𝑖 ∙ 𝑺 ( 3.3.21 ) 

 Where 𝑺 = (
𝝉−

𝟏

𝟐

𝝉
)𝜌∇ϕ for PNP system, and the steric effects can be added into the electrical 

potential term for the MPNP system. The advantage of this method is that the advection and the force 

terms are separated so that it is possible to add the influence of electrolyte movement into the system. 

 If two numerical operations can lead to the same results for the same system, there must be some 

mathematical relationship between them. If we compare the equ.3.3.18 and equ.3.3.20 more carefully, put 

equ.3.3.19 and equ.3.3.21 back to the original equations, and suppose the potential gradient in the certain 

direction i is 𝑑𝜙𝑖 and the lattice velocity is v𝑖, taking the PNP system as an example, we can obtain the 

following equations. 

 For advection-diffusion form: 

 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖 , 𝑡 + ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
𝑡𝑖𝜌 − 

𝜀

𝜏𝑐𝑠
2  𝑡𝑖𝜌v𝑖𝑑𝜙𝑖  ( 3.3.22 ) 

 For the source term method (𝐮 = 𝟎, 𝛿𝑡 = 1): 

 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖 , 𝑡 + ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
𝑡𝑖𝜌 − (

𝜏 −
1
2

𝜏
) 𝑡𝑖𝜌v𝑖𝑑𝜙𝑖 ( 3.3.23 ) 

 Note that 𝜀 and 𝜏 have the following relation: 
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 𝜏 =
𝜀

𝑐𝑠
2 +

1

2
 ( 3.3.24 ) 

 Put equ.3.3.24 back to equ.3.3.22 and 3.3.23, not surprisingly, we get identical equations. 

Therefore, mathematically speaking, these two collision operations are the same. So in this paper, we will 

use the advection-diffusion form for the simulations. 

3.4 Results and Discussion 

3.4.1 Validation of Model for Flat Electrodes 

 Firstly, we tested our LBM model by using flat electrodes. Fig.3.1 shows the net charge and 

potential distribution in the PNP system for two different applied potentials (𝑣 = 0.1 and 𝑣 = 2.0). In 

both cases, charges will accumulate at the surface of electrode gradually, until the system reaches 

equilibrium. As expected, a higher applied potential will lead to higher charge density at the interface. 

The space charge distribution will then influence the potential distribution in the system. As is shown in 

Fig.3.1, a high potential gradient is observed near the electrode-electrolyte interface. The electrical 

migration resulting from potential field and the diffusion resulting from concentration gradient will have 

opposing influences on the movement of charged particles, and the equilibrium of the system is reached 

when these two factors balance each other. The same results can be obtained by using finite difference 

method (FDM) in the previous work by Bazant, etc[78]. 

                   (a)                      (b) 
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                (c)          (d) 

            

Fig. 3. 1 Profiles of the dimensionless charge density and potential 𝜙 (for 𝜀 = 0.05, 𝛿 = 0.1). 

(a) net charge density with dimensionless voltage  𝑣 = 0.1, (b) net charge density with 

dimensionless voltage  𝑣 = 2.0, (c) dimensionless potential distribution with dimensionless 

voltage 𝑣 = 0.1, and (d) dimensionless potential distribution with dimensionless voltage  𝑣 =
2.0. 

 For MPNP system, we validated our model according to the parameters that used by Kilic, 

etc[79]. Fig.3.2 shows the total bulk concentration and net charge in both the PNP and MPNP systems for 

comparatively large applied potential 𝑣 = 10.  The steric effects parameter 𝜐 = 0.25  reflects that the 

maximum dimensionless bulk concentration in the system is 1/𝜐 = 4.0. As is shown in Fig.3.2, the 

interface concentration of the MPNP system will accumulate to the maximum bulk concentration, and 

then the system will reach equilibrium, while the interface concentration for PNP system will accumulate 

to a unreasonably large value due to the high applied potential. The consequence is that salt depletion in 

bulk is weaker in the MPNP system than the PNP system. Also, the same results can be obtained by using 

finite difference method (FDM) in the previous work by Kilic, etc[79]. 

       

Fig. 3. 2 The numerical solution to the PNP (red) and MPNP (black) systems. The left figure 

shows the dimensionless bulk concentration field; the right figure shows the dimensionless 

charge density. 

3.4.2 Charging and Discharging Processes for Electrodes with Random Morphologies 

 Since our LB model has been validated against other literature models, for the next set of 

simulations we included the effect of the electrode morphology and studied the charging and discharging 
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process for these capacitors. For charging, we fixed the applied potential of the system as 𝑣 = 2.0, and 

ignored the Stern layer effect (𝛿 = 0).  The ration of Debye length 𝜆𝐷 to the system size 𝐿, 𝜀 is fixed as 

0.1. 

 We use the same system parameters for the discharge process as the charge process, and let the 

discharge begin right after the same system being fully charged under the potential of ν = 2.0. By 

applying different potentials (ν = 1.5, 1.25, 1.0, 0.75, and 0.5) at the electrode, we tested the diffuse 

charge dynamics of discharging process on different electrode morphologies. 

 What we are mostly interested in the capacitor system are the total net charge, which represents 

the total energy stored, the total interface charge, which denotes the net charge accumulated at the solid 

liquid interface (without stern layer), and the charge time, which reflects the speed of charge. For 

simplicity, in this paper, we will call the total net charge in the whole capacitor system as total charge, 

and the total interface charge will be kept as it is. 

 Three kinds of random morphologies were tested: pure random, random spheres and random 

fibers. Different electrode densities (from 20% to 50%) and different sizes (radius r for spheres and length 

L for fibers) of random structures were compared. r and L are in the unit of lattice length. The 

morphology of anode and cathode are symmetric. Fig.3.3 shows the morphologies of anode at the density 

of 30%. Also, in order to reduce the errors resulted from a certain random morphology, every data point 

in this paper has been averaged over 5 different random morphologies. 

                               

Fig. 3. 3 Electrode morphologies of density of 30%: random (left), random sphere s with r = 3 

(middle), and random fibers with L = 8 (right).  

 Fig.3.4 shows the number of interface nodes on different electrodes, which represents their 

surface area. It indicates that when electrode density is small, random electrode has larger surface area. 

When electrode density is high, random sphere electrode with larger radius has larger surface area. 
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Fig. 3. 4 Comparation of number of interface nodes on different electrodes. 

 For our first set of simulations, we assumed a random morphology for the electrode and varied 

the density of the electrode. The 2D system is 512 by 256 lattice units. In real units this corresponds to a 

distance of 20 times of the Debye length. The thickness of electrodes is 28 lattices (1.1 times of the Debye 

length in real units). Fig.3.4 indicates that as the electrode density increases, surface area of pure random 

electrode will increase and then decrease. The maximum surface area of the system is the electrode 

density of about 30%. 

 Fig.3.5 shows the total charge and the total interface charge under both PNP and MPNP systems 

for the random electrodes. It turns out that the total charge is negatively correlated with electrode density, 

and the system with the highest surface area will not necessarily lead to the highest total charge. This is 

because of the smaller volume of pores in the electrode material for the electrode with larger densities. 

Basically speaking, charges have to be saved in the pores, and the volume of available pores will confine 

the total charge that can be saved in the structure. The total interface charge is highly positively correlated 

with electrode surface area, instead of the volume of pores, which means at this length scale, the size of 

the pores does not have very large influence on the distribution of charge at the electrode-electrolyte 

interface. The MPNP system shows the similar tendencies in both total charge and total interface charge 

as the PNP system, except that MPNP system tends to have smaller charge values, due to the steric effects, 

which may hinder the accumulation of local charge (as is shown in Fig.3.6). Also, system with larger 

electrode density tends to have smaller steric effects. This might be because that most of the accumulation 

of charge happens in the porous structures, and the electrodes with larger densities have much less pores 

for this accumulation. 



 

24 

 

 

Fig. 3. 5 Total net charge in the whole capacitor system (left) and  total interface charge (right) 

      

Fig. 3. 6 Net charge distribution in electrode of random morphology with density of 30%, for 

PNP system (left) and MPNP system (right).  

 Fig.3.7 shows the time to reach full charge (charge time) in the system. The result shows that 

charge time will decrease with an increase of electrode density. This is because electrodes with higher 

densities will have fewer pores to be “filled up” by charges. It is known that mass transfer in porous 

structures will be slower than in the bulk solution. Therefore, the charge time will decrease with the 

increase of electrode density. However, when electrode density is below a certain threshold (for example 

30% in this case), the averaged charge time will not change too much, indicating smaller influence of 

pores on the charge transfer dynamics. The variation in the data (at smaller densities) indicates that, in 

this limit, the charge time is sensitive to the morphology of electrode materials. The MPNP system shows 

similar tendency of charge time as the PNP system, but with shorter charge time. This is because the 

steric effects will require less charge to be “filled up” in the porous structure, and therefore, require less 

charging time. 
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Fig. 3. 7 Normalized charge time in the random electrode system for both PNP and MPNP 

conditions. 

 Fig.3.8 shows the equilibrium total charge during the discharge process for both PNP and MPNP 

systems. Similar to charging processes, the total charge will decrease as the electrode density increases 

for a fixed applied potential. Higher applied potential will lead to higher total space charge. The total 

space charge seems to have a linear relation with applied potential under both PNP and MPNP systems. 

This is mainly due to the very small potential applied in the system. Mathematically speaking, when the 

applied potential is small, the exponential part of the Poisson distribution can be linearized as a function 

of local potentials. Therefore the bias could be linear with applied potentials. The slope of the lines 

indicates the sensitivity of space charge to the change of applied potential. It turns out that the smaller the 

electrode density, the more sensitive is the total space charge. This might be a result of the larger total 

volume of pores in the electrode with smaller densities. In this case as well, the MPNP system still has 

similar tendencies as the PNP system in the charge distribution, but MPNP system will have smaller net 

charge due to steric effects. 

 

 

Fig. 3. 8 Total charge during the discharge process for both PNP (left) and MPNP (right) 

systems on random electrodes. 

 A big difference between the MPNP and PNP systems, however, is observed when we calculate 

the discharge time, as is shown in Fig.3.9. Here, we see opposite trends (slopes) in these two systems.  In 

MPNP system, steric effects will push the accumulated charge to move back to the bulk solution at a 
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faster speed, therefore, it can discharge faster. For PNP system, mass transfer is purely driven by 

concentration gradient. But in the porous structure, the comparatively slow speed of diffusion will hinder 

the mass transfer of the inner part of the electrode. In reality, during discharge process, systems with 

higher potentials should reach equilibrium faster, because they are nearer to the initial state (� = 2.0, in 

our case). Therefore, from the discharge time point of view, only MPNP system gives the right tendency.  

 Since both systems shows similar tendencies in charge distribution, but MPNP shows the right 

tendency in discharge time, in the following sections, we will only show the simulation data from MPNP 

systems. 

 

Fig. 3. 9 Discharge time for PNP (left) and MPNP (right) systems on random electrodes.  

 Fig.3.10 shows the total charge and total interface charge for different electrodes. Total charge 

will monotonically decrease as electrode density increases, regardless of the electrode morphologies. For 

the same electrode density, it is possible to optimize total charge by adjusting the morphology of 

electrode. When electrode density is small, random morphology has more total charge. When electrode 

density is high, random sphere electrode with larger radius has more total charge. Further, the larger 

spherical morphology electrode shows the least variation as a function of density. We believe that this is a 

result of the accessibility of pores in this system being the least affected by density, as we are not near the 

close packing limit for spheres. Once we go to densities of greater than 40% however, all electrodes show 

a marked decrease in the total charge.  

 

Fig. 3. 10 Total charge (left) and total interface charge (right) for different electrodes. 
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 Fig.3.4 and Fig.3.10 indicate that the total interface charge is governed by electrode surface area. 

When electrode density is small, random morphology has more total interface charge. When electrode 

density is high, random sphere electrode with larger radius has more total interface charge.  

 Finally, we investigate the effect of electrode morphology on the charge time. Fig.3.11 shows the 

charge time for different electrode morphologies. The result indicates that when electrode density is small, 

the morphology influence on charge time is not very large. When electrode density is high, large 

variations can be observed in the charge time, which is mainly resulted from the poor accessibility of 

some pores inside of the electrode materials.  This effect appears to be most pronounced for fiber shaped 

electrodes, as the accessibility of pores is the most limited in this case.  

 

Fig. 3. 11 A comparison of charge time for different electrode morphologies.  

3.5 Conclusion 

 In this chapter, by using Lattice Boltzmann Method, both charge and discharge processes in 2D 

systems of complex random electrode geometries (pure random, random spheres and random fibers) are 

investigated. The results show that when electrode density is low, pure random electrode will have higher 

total space charge in electrolyte, while when electrode density is large, larger sphere electrodes tend to 

have higher total space charge. The total charge in electrolyte seems to increase linearly with the applied 

potential in the small applied potential region for both PNP and MPNP systems. Deviation should be 

observed in larger potential systems, which we will investigate in the future. The total interface charge is 

governed by the total interface area in the systems. 

 Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank 

(MPNP) equations. The MPNP systems tend to have very similar properties as the PNP systems, except 

that MPNP systems will have smaller charge values due to the steric effects introduced into the systems. 

However, our results show that the discharge time turns to decrease as the applied potential increases in 

the MPNP systems, while the opposite tendency can be observed in the PNP systems. This is because the 

accumulation of charged particles in the pores will block the mass transfer in the inner part of the 

electrode in the PNP systems, and therefore elongate the discharge time. 
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Chapter 4. Simulation of Dendrite Formation Process on the Anode of Li-ion 

Batteries by Using Lattice Boltzmann Method 

4.1 Introduction 

 Lithium ion batteries (LIBs) are one of the most widely used energy storage systems for electrical 

vehicles and portable devices. Despite the advances made in the battery technology[95-97], a primary 

failure mechanism in LIBs is the formation of dendrites on the anode during the charging process[98, 99]. 

This dendrite formation has two importance impacts on the performance of LIB. First, the needle-like 

dendrite can penetrate through the separator between the anode and cathode, resulting in an internal short. 

Second, dendrites may break off from the surface of electrode in the discharging process, resulting in 

capacity fading. Efforts to suppress dendrite formation involve adding additives into electrolyte to either 

adsorb on the surface of electrode or adjusted the formation of SEI layer[100, 101], coating the separator 

to maintain a uniform ionic flux and decreasing the surface tension of lithium metal[102], using physical 

protective layers[103, 104], and designing 3D current collector to confine the growth of dendrite[105]. 

These methods have not completely alleviated dendrite formation and in order to design better battery 

systems, we need to have a better understanding of the mechanisms of dendrite formation during battery 

cycling. In this chapter, we will introduce a LBM model to simulate the dendrite formation process, in 

order to understand the fundamental processes that control the formation. Our model is able, in contrast to 

available models in literature, to study both the charge and discharge process, and thus we can observe 

dendrite formation (and subsequent break-off) and design strategies to optimize battery performance.  

4.2 Background 

 Theoretical models of dendrite formation can generally be categorized into either microscopic or 

macroscopic models, depending on the length scale of the model. Microscopically, many of the 

nucleation processes have been simulated by using Molecular Dynamics (MD), which can be used to 

model the stress and strain effects such as torsion-induced grain growth[133, 134] and additives 

influences during electrodeposition[135, 136]. In order to include electrochemical reactions into the 

system, several hybrid methods are developed, such as Molecular dynamics-Monte Carlo (MD-MC) 

method[137-139] and First-principles molecular dynamics (FPMD)[140]. Another atomic level (or 

particle level) simulation that is used in electrodeposition system is Monte Carlo (MC). Simulations based 

on Monte Carlo methods have been developed to investigate the evolution of lattice formation at the 

atomic level[141], the early stages of electrodeposition[142, 143], the additives effects[144], and so forth. 

In general, most of the direct MC methods have focused on individual steps of overall reaction 

mechanisms, rather than on overall mechanisms that consist of a variety of steps and pathways[145]. Both 

MD and MC methods can provide rich information of near-surface chemistry, detailed reaction 

mechanisms, or intricate molecular traffic patterns that occur in the course of metal ion reduction and 

lattice formation, but they can not be used in macroscopic engineering models due to the expensive 

computational costs. Macroscopically, continuum models are used to simulate electrodeposition processes 

defined by convection-diffusion equation and the surface chemistry is defined by a series of mean field 

rate equations. These models have already been used to simulate the effects of additives[146, 147], 

morphology evolution influenced by several factors (such as surface tension) under different 

conditions[106, 131, 148]. These models have been used to study dendrite propagation and we briefly 

review some of them below.  

 Chazalviel and others[126-129] associated dendritic growth with the Sand’s time (when the local 

ion concentration at the surface of the anode goes to zero). However, during dendrite growth, mass 

transfer is only part of the story. Monroe and Newman proposed models focusing on the electrochemical 

kinetic reactions at the electrode-electrolyte interface, which is mainly based on Butler-Volmer equation 
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(BVE) with surface tension, mechanical forces and deformation effects[106, 130, 131]. These models 
made predictions about the growth rate of dendrites (constant in later extensions of the Chazalviel 
model, and accelerating for the Monroe and Newman models). More recently, Ely and Garcia[132] 
used thermodynamic arguments and phase field models that cast the problem in terms of the 
stability of a critical nucleus of electrodeposited material, and established principles that control 
either its growth (into a possible dendrite) or decay. While these models did establish the basic 
principles that control dendritic growth, they did not take into account any variations in local 
electrode morphology (albeit through an indirect assumption of non-uniform current density at the 
surface), and more importantly did not model the discharge process, which can increase the 
propensity to form dendrites. 

 In this chapter, we introduce a mesoscopic model that is based on Lattice Boltzmann method 

(LBM) to simulate the whole charge/discharge cycles on non-idealized geometries of Lithium metal 

anode. LBM was introduced three decades ago[6, 88], and now it has been developed into a powerful tool 

for Computational Fluid Dynamics (CFD). This method is particularly successful in fluid flow 

applications involving interfacial dynamics and complex boundaries[7]. LBM has been used to simulate 

mass transfer problems in various situations, such as advection-diffusion[89, 149-151], 

electroosmotic/electrokinetic flows[18-20] and electrochemical systems[23, 24]. It has been applied to 

simulate interfacial dendrite growth dynamics in alloy solidification[22, 152-154] and crystal growth[21] 

as well. 

 Our study shows that the Lattice Boltzmann model can capture all the experimentally observed 

features of microstructure evolution at the anode, from smooth to mossy to dendritic. We find that the 

onset time of dendrite formation is sensitive to the initial roughness of electrode but not very sensitive to 

surface energy. However, once the dendrite begins to propagate, its morphology will be influence by 

surface energy. Since the dendrite growth cannot be prevented once the system has reached the 

propagation regime[106], we show that it is possible to predict the formation of dendrites in batteries at a 

very early stage, by monitoring the rate of change of surface area and examine the effect of cycling the 

battery. 

4.3 Model Details 

 It is straightforward to divide the battery system into two domains: the electrolyte in which mass 

transfer takes place, and the electrode-electrolyte interface where the electrochemical reaction happens.  

4.3.1 The Electrolyte Domain 

 If the convection force in the electrolyte is ignored, the ionic transport across the entire cell 

(outside any molecular-scale compact layers) can be expressed by the time-dependent Nernst-Planck 

equation[78]: 

 𝐽𝑗 = −𝐷𝑗∇𝐶𝑗 − 
𝑧𝑗𝐹

𝑅𝑇
𝐷𝑗𝐶𝑗∇∅ ( 4. 3. 1 ) 

where 𝐽𝑗 is the mass flux of species j; 𝐷𝑗 is the diffusion coefficient; 𝐶𝑗 is the local concentration; 𝑧𝑗 is the 

charge on species j; F is the Faradic constant; R is the ideal gas constant; T is the system temperature; ∅ is 

the local electrical potential. The first and the second term in equ.4.3.1 denote the diffusion and the 

electromigration of the charged species respectively. However, the electrical mobility in the 

electromigration part (𝑢𝑗 =
𝑧𝑗𝐹

𝑅𝑇
𝐷𝑗 ) is based on Einstein equation, which may not be applied to high 

concentration system. Therefore, in this chapter we calculate mobility based on electrolyte conductivity 𝜎, 

which is 𝜎𝑗 = 𝑧𝑗 𝑒𝑐𝑗𝜇𝑗. To solve the Nernst-Planck equation, we follow the method in literature in which 
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the electromigration part was regarded as the advection term in the conventional Lattice Boltzmann 

Equation for the advection-diffusion lattice[18]. In a single-relaxation-time LB model, this physical 

system can be expressed as: 

 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖 , 𝑡 + ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
 𝑓𝑖

𝑒𝑞
 ( 4. 3. 2 ) 

where fi (r, t) is the local density distribution function in the i direction; τ is the relaxation time. The 

velocity vi is chosen so that, in one time step ∆t, a particle can reach one of its nearest neighbors. 𝑓𝑖
𝑒𝑞

 is 

the equilibrium density distribution function. With a simple BGK dynamics, it can be calculated based on 

the expression: 

 𝑓𝑖
𝑒𝑞

= 𝑡𝑖𝜌 (1 + 
1

𝑐𝑠
2  𝐯𝑖  ∙ 𝐮) ( 4. 3. 3 ) 

 The local drift velocity u can be obtained from the electromigration term as we mentioned 

previously. The microscopic potential distribution in the system should be calculated as the evolution of 

time in order to obtain the electromigration term in the Nernst-Planck equation. This potential distribution 

is defined by Poisson’s Equation: 

 ∇2∅ = −
𝜌𝑓

𝜀
 ( 4. 3. 4 ) 

where 𝜌𝑓  denotes free charge density and ε denotes the electric permittivity. A traditional Successive 

Over-Relaxation (SOR) method is used to solve the Poisson’s equation[94]. 

4.3.2 The Electrode-Electrolyte Interface 

 At the electrode-electrolyte interface, we follow a mean field approach, where the magnitude of 

the local metal cation flux on the growing surface jc is given by the modified Butler-Volmer (B-V) 

equation[131]: 

 𝑗𝑐 = 𝑗0𝑒
((1−𝛼1)∆𝜇𝑒/𝑅𝑇)(𝑒𝛼1𝐹𝜂 𝑅𝑇⁄ − 𝑒−𝛼2𝐹𝜂 𝑅𝑇⁄ ) ( 4. 3. 5 ) 

 Here, 𝑗0 is the exchange current density; 𝛼1 and 𝛼2 are symmetry factors related to the potential 

barrier for metal cation reduction (in our simulation, 𝛼1=𝛼2=0.5); R is gas constant; T is temperature; 𝜂 is 

the local overpotential, which is given by[148]: 

 𝜂 =  𝑉𝑒𝑞 − 𝑉𝑒𝑥𝑡 +
𝑅𝑇

𝐹
𝑙𝑛 (

𝐶𝑐

𝐶𝑒𝑞
) ( 4. 3. 6 ) 

where 𝑉𝑒𝑞 is the equilibrium potential, 𝑉𝑒𝑥𝑡 is the applied potential, 𝐶𝑐 is the local concentration of Li ion 

at the solid-liquid interface, 𝐶𝑒𝑞 is the equilibrium concentration of Lithium ions; ∆𝜇𝑒  is the 

electrochemical potential change in the electrons within the electrode induced by local strain or interfacial 

shape change. When stress and compression of the electrolyte region are negligible and the electrolyte is 

1:1, ∆𝜇𝑒 can be expressed as[106]: 

 ∆𝜇𝑒 = −2𝛾𝑉𝑀𝜅 ( 4. 3. 7 ) 

where 𝛾 is surface energy; 𝑉𝑀 is molar volume of Lithium; 𝜅 is surface curvature. If we take equ.4.3.7 

into equ.4.3.5 and take the 
(2𝛼1−2)𝛾𝑉𝑀

𝑅𝑇
 part as a constant K (it is called curvature constant in this paper), 

we can get: 



 

31 

 

 𝑗𝑐 = 𝑗0𝑒
(𝐾𝜅)(𝑒𝛼1𝐹𝜂 𝑅𝑇⁄ − 𝑒−𝛼2𝐹𝜂 𝑅𝑇⁄ ) ( 4. 3. 8 ) 

 Equ.4.3.8 suggests that the local curvature at the interface has an influence on the local exchange 

current density (and hence the deposition process). In our simulations, unless mentioned, we use a value 

of K = 0.005 𝜇m, as this is roughly around the values calculated from the surface energy/surface tension 

in previous studies[130, 131, 148, 155-157]. We should note that this curvature term actually reflects the 

inhomogeousity of reactivity at the electrode-electrolyte interface, which is due to the curvature effects. 

The value of 0.005 𝜇m only indicates that this effect is on the same order of magnitude of surface tension. 

Other effects, such as stress, compression of the electrolyte region, the specific adsorption on the low 

curvature regime, and the formation of SEI, may have much larger influence than surface tension; 

therefore we may have a large spectrum of K values for different systems. 

 The local curvature 𝜅, is calculated by using the virtual front tracking model[158], which gives 

the local curvature: 

 𝜅 = [(
𝜕𝑓𝑆
𝜕𝑥

)
2

+ (
𝜕𝑓𝑆
𝜕𝑦

)2]−3 2⁄ [2
𝜕𝑓𝑆
𝜕𝑥

𝜕𝑓𝑆
𝜕𝑦

𝜕𝑓𝑆
𝜕𝑥𝜕𝑦

− (
𝜕𝑓𝑆
𝜕𝑥

)
2 𝜕2𝑓𝑆

𝜕𝑦2
−

𝜕2𝑓𝑆
𝜕𝑥2

(
𝜕𝑓𝑆
𝜕𝑦

)2] ( 4. 3. 9 ) 

where 𝑓𝑆  denotes local solid fraction. This equation is solved by a simple centered finite difference 

method[159]. 

 The evolution of electrode-electrolyte interface during charge/discharge process is monitored by 

the local solid fraction distribution, fS, which is defined as the volume fraction of solid at each lattice node. 

During the charging process, we assume the nodes fully occupied by Li metal, where fS = 1.0, as a part of 

anode, while the nodes with fS < 1.0 as electrolyte. Only the electrolyte nodes that have at least one nearby 

anode node can have deposition reaction (the number of nearby anode nodes is also counted into the local 

reaction). During discharge process, same criteria applied, but we regard the node with fS = 0 as 

electrolyte and fS > 0 as anode. Only the anode with at least one nearby electrolyte can have a dissolution 

reaction and the interface numbers are also counted into the local reaction. In this model, we also added a 

cluster-tracing step to distinguish between linked and unlinked solids. Only the interface between linked 

solid and electrolyte will have an electrochemical reaction. We also assume the unlinked solid will stay 

static in electrolyte until the end of a charge/discharge cycle when they are cleared away from the system. 

Once an electrolyte node becomes an anode node, bounce back condition will be applied; while when an 

anode node becomes an electrolyte node, BGK dynamics will be applied. 

4.3.3 Boundary Conditions and System Parameters 

 In the paper, we tested our simulation approach by using a 400 x 400 D2Q5 lattice to represent a 

cell size of 0.4mm x 0.4mm. In our simulations, unless mentioned, we keep the cell thickness a constant 

of 0.4mm. Charge/discharge processes are carried out on a Li metal anode within a binary electrolyte 

(without any supporting electrolyte). Bounce back conditions are applied at the two parallel electrodes for 

mass transfer equations. Periodic boundary conditions are applied at the other two sides of the system to 

represent infinite length of electrodes. The initial thickness of anode is 0.025mm (given that 

inhomogeneous dissolution will take place during discharge process); the thickness of cathode is 

0.001mm. The reaction speed constant, k = 1.3e-4 mm/s, which is used to calculate the exchange current 

density.  The mobility of the Li and the PF6 ions were both fixed at 1.0e-3 mm2/(s V), which represents 

the electrolyte (1 M) conductivity of about 2 mS/cm.  Note that the conductivity from other papers[160-

162] is around 6 to 10 mS/cm. Considering the local ion concentration in the cell may drop to very low 

values, we used a little bit smaller value, but it is still in the same magnitude. The temperature T was kept 

constant at 298K and the dielectric constant of the electrolyte was fixed at 46.44. We used diffusion 

constants for the Li and PF6 ions equal to 2.0e-4 mm2/s and 1.0e-4 mm2/s respectively. The bulk 
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concentration of Li ion was initialized at 1.0mol/L. All our simulations are run under constant current 

density conditions, unless otherwise specified. The applied potential on the anode will be adjusted in 

every time step to maintain the constant current density, and the potential of cathode is kept constant as 0 

V. Potentials in the system are referred to the equilibrium potential of Li|Li+(1M) reference electrode at 

298K and 1 atm. We note that where possible all the values that we use are from the experimental 

literatures as we wanted to make our model as predictive as possible. In all the simulations our unit of 

length is 1 micron, and we started off by initializing our anode with an rms roughness of 1 micron. The 

roughness of the system is governed by the standard deviation of normal distribution, 𝜎. Fig.4.1 shows 

the system initial morphologies and the relationship with 𝜎. All our results are averaged over 10 different 

initial states of the rough anode surface with the same 𝜎 value.  Since we are only interested in the 

reactions at the anode, cathode reactions are simplified by a constant homogenous inlet/outlet flux of Li+ 

with zero velocity so that the conservation of mass in the cell system can be maintained.  

                                     

Fig. 4. 1 Initial roughness of the anode; (left) shows the morphologies when 𝜎 = 0.1, 1.0 and 

3.0 (from left to right); (right) shows the relationship between 𝜎, the average anode thickness 

and the local thickness. Note that the base line of the anode is 25 𝜇m 

 While the B-V equation defines the kinetic reactivity at the electrode-electrolyte interface, the 

amount of Li ions that are available can be limited by the mass transfer in the electrolyte. At low 

overpotentials, kinetic reactivity dominates this process; at high overpotentials, mass transfer dominates. 

4.4 Results and Discussion 

4.4.1 Current Densities and Applied Potentials 

 In a 2D system, only a line current density (mA/cm) is available. In order to compare our results 

with experiments, we normalized our current density with respect to the diffusion limiting current density 

(Jdiff) of the system. The Jdiff is obtained by applying fixed potentials on a flat anode, keeping everything 

the same as our targeted system, but turning off electromigration and morphology change. As the 

overpotential increases, the steady state current density of the system will reach an upper limit, which is 

Jdff. As is shown in Fig.4.2a, the Jdiff for the 0.4mm cell is around 0.001 mA/cm. Note that Jdff is only 

governed by pure diffusion of Li ions and the cell thickness (because of inlet flux at the cathode), so a real 

battery system with electromigration and growth of deposition layer can have much larger current density 

than Jdiff. Also the Jdiff in our system may be higher than actual limiting diffusion current in a real battery 

system since the separator between two electrodes will decrease the apparent diffusion speed.  

 Fig.4.2b shows relationship between steady state currents and applied potentials when 

electromigration is considered. The good linearity in the high potential regime indicates the mass 
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transport is essentially Ohmic. Sawada etc. suggested that in this regime, transport by diffusion can be 

neglected[163]. In the low applied potential regime, the deviation from that linearity indicates a transition 

from electromigration dominant process to diffusion dominant process. It is noted here that this transition 

is not a result of the reaction kinetics at the electrode-electrolyte interface, since if we change the cell 

thickness (shown in Fig.4.2c), the current densities around the transition potentials will change 

correspondingly, indicating a mass transfer dominant process. Also we notice that, in spite of the cell 

thickness, the transition potential is about -0.2V. The transition current density (J/Jdff) is about 1.5 for the 

0.4mm cell and about 2.0 for the 0.3mm cell. 

           (a)     (b)       (c) 

 

Fig. 4. 2 (a) Current density at fixed potential system without electromigration and morphology 

change for cell thickness of 0.4mm. (b) Steady state current density at fixed potential system 

with electromigration but without morphology change for cell thickness of 0.4mm. (c) Steady 

state current density at fixed potential system with electromigration but without morphology 

change for cell with different thicknesses.  

 Next, we go further to add morphology changes of deposits and switch to a constant current 

density condition. Fig.4.3 shows the morphologies of the deposits under different current densities (K = 

0.005 𝜇m, 𝜎 = 0.1). We can observe a transition from mossy to dendritic structure at the current density 

of around 1.75. 

 

Fig. 4. 3 Morphologies of deposits under different current densities (K = 0.005 𝜇m, 𝜎 = 0.1). 

The current density are J/Jdiff = 0, 1.5, 1.7, 1.75, 1.85, 2.0 from left to right. 
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Fig.4.4 compares the applied potentials of the cell system with and without morphology change. For 

the system without morphology change (Fig.4.4a), the applied potential will firstly drop due to 

concentration polarization that drives the equilibrium potential away from the standard equilibrium 

potential, and then reach a steady state. For the system with morphology change (Fig.4.4b), when the 

current density is small, the applied potential will also drop and then oscillate around a steady state. This 

oscillation may be due to the roughening of the anode surface. When current density increases, the 

applied potential will first decrease and then increase. This increase is mainly a result of an increase of 

surface area, which is the consequence of forming mossy and dendritic structures on the surface, and a 

decrease in cell thickness, which results from the deposits on electrode surface. The critical current 

density when dendrites form in the system is within the range of 1.5 to 2.0, which indicates the transition 

point from diffusion to electromigration dominant process as we mentioned before (Note that as 

deposition time goes on, the cell thickness is decreasing. Therefore, when the mossy/dendritic structure 

forms, the actual cell thickness is exactly within the range of 0.3 to 0.4 mm as well). Because of the 

increases of surface area and decrease of cell thickness in these systems, the applied potentials in Fig.4.4b 

are more positive than Fig.4.4a when the current density is the same. 

          (a)                                     (b) 

                  

Fig. 4. 4 Change of applied potentials. (a) System without morphology change. (b) System with 

morphology change. 

 Fig.4.4b also shows that for the mossy and dendritic structure systems, the applied potential will 

fall below -0.2V, which is also the very potential for transition from diffusion dominated process to the 

electromigration dominated process. Diffusion tries to homogenize ions distribution, while 

electromigration accelerates growth of deposits on high curvature regimes. More specifically speaking, 

mossy structure forms at the potentials near the transition point, while the dendritic structure forms at the 

potentials that the system is dominated by electromigration. Similar results have been confirmed both 

experimentally[164] and theoretically[123], where the growth speed of dendrite is governed by electrical 

field intensity. 

4.4.2 Electric Field Distribution 

 Since the growth of dendrites that form at high current density is governed by electromigration, 

the electric field in the system will play a very important role in the morphology formation process. 

Fig.4.5 shows the electric field intensity distribution in the system that dendrite forms. 
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Fig. 4. 5 Electric Field Distribution for dendritic system under charging process. Intensity of 

electric field (left). Electrical force on Li ions at the vicinity of a dendrite (right).  

 Fig.4.5 shows that the electrical field intensity is high at the tips of big dendrites; on the contrary, 

the intensity is very small at the vicinity of small dendrites. The electrical force will drive Li ions to move, 

at higher speed, towards the tip of big dendrites during charging and outwards from the tip regime during 

discharging.  Therefore, once dendrites begin to form, the inhomogeneous distribution of electrical field 

will accelerate the growth of big dendrites, while the growth of smaller dendrites that are between big 

dendrites will be suppressed. 

4.4.3 Concentration Distribution of Li Ions and Sand’s Time 

 It has been proved that during the dendrite formation process, when current density is high, the 

ionic concentrations in the vicinity of the negative electrode drop to zero at the Sand’s time[127]. The 

higher current density is, the lower Li ion concentration at the surface of anode will be. Here, we observe 

similar results in the simulation. The data in Fig.4.6 shows a depletion of Li ion on the surface of the 

deposited Li, and as the current density increases, the surface concentration of Li ion decreases, which is 

due to the higher local electrochemical reaction rate under the higher current density condition. 

                 

Fig. 4. 6 Distribution of Li ions at the vicinity of anode during charge process. The current 

densities (J/Jdiff) from left to right are 1.5, 1.75, and 2.0 respectively.  

The “Sand’s time”, 𝜏 , which is the time when system concentration drops to zero, can be 

calculated based on the following equation[127]: 

 𝜏 =  𝜋𝐷 (
𝐶0𝑒

2𝐽𝑡𝑎
)
2

 
( 4. 4. 1 ) 
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where 𝑡𝑎 = 
𝜇𝑎

𝜇𝑎+ 𝜇𝑐
 is the anionic transport number, D =  

𝐷𝑐𝜇𝑎+𝐷𝑎𝜇𝑐

𝜇𝑎+𝜇𝑐
 is the ambipolar diffusion constant for 

the salt. Fig.4.7 shows the relation between current density J and the Sand’s time in our simulation. The 

results show that when current density is high, our simulation is in accordance with theoretical result. But 

the simulation results deviate from the theoretical value when current density drops. We believe this 

deviation is a result of three main factors: First, the roughness of anode, which results in an 

inhomogeneity in the local electric field and larger actual surface area. As is shown in Fig.4.7a, higher 

roughness system tends to have shorter Sand’s time. Second, the constant inlet flow from the cathode 

boundary breaks the semi-infinite assumption of the theoretical system. In the thin cell system, when the 

current density is comparatively small, the inlet flux can transfer to the surface of anode before the system 

reaches the theoretical Sand’s time, which increases mass transfer speed at the anode surface, and 

therefore increase the Sand’s time. However, when current density is high, in the much shorter Sand’s 

time, the inlet flux may not have transferred to the anode, and thus has little influence on the Sand’s time. 

Third, the deposits before Sand’s time is reached actually decrease the cell thickness, leading to larger 

Sand’s time. It turns out that the last two effects have larger influences in our system. 

 By comparing Fig.4.7a and b, we also notice that the Sand’s time is sensitive to the initial 

morphology and the curvature constant. However, when the roughness of anode is above a certain 

threshold (about 𝜎 = 1.0), the curves turn to be identical, which indicates that the surface roughness has a 

limited influence on the Sand’s time. We also observe shorter Sand’s time as the curvature constant K 

increases to a much larger value (K = 1.0). This indicates that when curvature constant is very large, it 

will have an influence on the Sand’s time as well. Indeed, the curvature constant K may have much larger 

value than 0.005 when we consider the stress and compression of the electrolyte region in the calculation 

of ∆𝜇𝑒 in equ.4.3.5. Monroe and Newman pointed out that surface tension contributes minimally to 

electrode stability in comparison to the much larger impacts of compressive and deformational forces 

acting across the interface with solid electrolytes[131], and gave out the full expression of ∆𝜇𝑒 as 

well[106]. We also believe that the formation of solid electrolyte interphase (SEI) will have a great 

impact on the surface deformational forces, resulting in large K values. 

                (a)       (b) 

                   

Fig. 4. 7 Relationship between Sand’s time and current density. (a) Systems with different 

initial roughness (𝜎 denotes roughness) for constant K = 0.005. (b) Systems with different 

curvature constants for constant 𝜎= 0.1. 

 It is believed that when current density is not high, the ionic concentration profile evolves to a 

steady state and local concentration will not go to zero. Dendrite formation may follow Monroe and 

Newman’s model which is surface reaction controlled[130]; while at high current density, the local 
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concentration will go to zero at anode at sand’s time, and Chazalviel attributed the dendrite formation to 

the local space charge associated with a large electric field[126]. The crossover value J* is given by: 

 𝐽∗ = 
2𝑒𝐶0𝐷

𝑡𝑎𝐿
 ( 4. 4. 2 ) 

where L is the distance between two electrodes. In our system the critical value of J* calculated from 

equ.4.3.2 is 15.4 mA/c𝑚2, which is 1.54× 10−3 mA/cm in line density (J*/Jdiff = 1.54) when the cell 

thickness is 0.375 mm (the thickness of initial anode is 0.025 mm). And actually, the lowest current 

densities we can observe zero concentration is J/Jdiff = 1.75 when the curvature constant is not very large 

(𝑲 = 0.005 ~ 0.1, shown in Fig.4.8). This is a little larger than the theoretical crossover current density. 

It is possible that this is a result of the inlet flow on the other side of the cell, which will increase the value 

of C0, and the decreased cell thickness due to the deposits before sand’s time, which decreases the value 

of L. However, we do observe smaller crossover current density when the curvature constant is very large 

(when 𝑲 = 1.0, J*/Jdiff = 1.6 and when 𝑲 = 5.0, J*/Jdiff = 1.45, shown in Fig.4.8). But the crossover current 

density is not very sensitive to surface roughness. Therefore, it seems that the curvature constant, which 

denotes the inhomogeneity of reactivity at electrode-electrolyte interface, has larger influence on the 

critical current density that whether the system will form mossy or dendrite structures, while once we are 

above the critical current density, the formation time of dendrites is more sensitive to anode roughness. 

 

Fig. 4. 8 Crossover current densities for different roughness with constant k = 0.005 (up) and 

different K with constant 𝜎 = 0.1(down).   

 Liu etc.[165] also reported that in experiment they observed good linearity of log 𝜏 vs. log 𝐽 when 

current densities are much larger than the critical value J*. They noted that in this regime, the dendrite 

growth could be explained by the local inhomogeneities of ion concentrations, which was indicated by 

Rosso etc.[166]. Fig.4.9 shows the relationship between log 𝜏 and log 𝐽. It reflects good linearity when the 

current densities are larger than 1.82 (log(J/Jdiff) = 0.26) in all cases, which is also larger than the 

crossover current densities we mentioned before. A comparison of Fig.4.9a and b shows that this linearity 

may hold in almost the entire spectrum of current densities when curvature constant is small and 

roughness is large, but for high curvature constant systems, the deviation is obvious. An interesting 

observation shows that this deviation point is not sensitive to curvature constant, which indicates this 

process is not surface reactivity governed. A possible explanation is that it reflects the transition of 

electric field governed mass transfer to diffusion governed mass transfer. As we shall see in the next 

section (Fig.10), this transition point is very close to the transition current density that system morphology 

changes from mossy structure to dendritic structure. And the reason why we could not observe the 
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transition in Fig.4.9a when surface roughness is large is because very large roughness is equivalent to say 

that the system is dendritic initially (Fig.4.1). And the large potential field at the tip of the initial 

“dendrites” will dominate the growth at the beginning of deposition. 

                 (a)            (b) 

              

Fig. 4. 9 Relationship between log 𝜏 and log 𝐽 for (a) different roughness (with constant k = 

0.005) and (b) different K (with constant 𝜎 = 0.1).   

4.4.4 Morphologies of Deposits and Change Rate of Surface Area 

 Our model can capture all the experimentally observed features of microstructure evolution at the 

anode, from smooth to mossy to dendritic. Fig.4.10 shows the morphologies under different current 

densities for different surface roughness and curvature constants. We can observe that when current 

density is not large, increasing either roughness or curvature constant will lead to rougher surface. Higher 

curvature constant turns to have earlier mossy structures, but the transition from mossy structure to 

dendritic structure happens at almost the same current density, which is around 1.7~1.8, no matter 

whether the system has larger curvature constant or larger roughness. These results further confirmed our 

previous conclusion that the crossover current density, which defines whether the system will form 

dendritic or mossy structure, is governed by the inhomogeneous surface reactivity (curvature constant); 

while the transition current density for dendrite formation is governed by the relative speed of diffusion to 

electromigration, which may indicate the transition from mossy to dendritic structure. This transition is 

governed by the diffusion coefficient, mobility and the cell thickness. These parameters are fixed in our 

model, so we obtained almost similar transition current density when dendrite forms. When curvature 

constant is large, system seems to have larger current density regime to form mossy structure, which 

indicates that mossy structures are easier to be obtained in high curvature constant systems. 
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Fig. 4. 10 Morphologies of deposits under different current densities for different surface 

roughness and curvature constants. 

 However, when curvature constant is extremely large (for example, K = 20), we do observe 

dendrite formation at very small current densities. Fig.4.11 shows that when K = 20, we can observe 

dendrite formation even at the current density of 0.1, which is one order of magnitude smaller than the 

theoretical crossover current density. And we can observe dendrite structures at high current densities as 

well. However, the morphologies of the dendrites are different. For small current density, the dendrite is 

needle-like, while for large current density, the dendrite is branched, and it is large at the head and small 

at the “neck” that connects the dendrite to anode. Similar morphologies have been observed in experiment 

for Li deposition as well[127]. When curvature constant is extremely large, the deposition is governed by 

interface reactivity at very small current density. The large curvature constant will lead to uneven 

reactivity at the surface and thus form dendrites. 

                     

Fig. 4. 11 Morphologies of deposits under extremely large  curvature constant system (K = 20); 

the current density (J/Jdiff) are 0.1, 1.0, 1.5, 1.7, and 2.0 from left to right.  

 Now we can have a whole picture of the story: when the curvature constant is not extremely high, 

there are two transition current densities in the deposition system. One is the crossover current density, 

which is governed by inhomogenous surface reactivity and denotes the transition from flat/rough structure 

to mossy/dendritic structure. The other is the critical current density that is governed by the relative speed 



 

40 

 

of diffusion to electromigration, which denotes the transition from mossy structure to dendritic structure. 

For high curvature constant systems, there is larger current density regime for mossy structure formation; 

for low curvature constant system, the regime is small, and sometimes it may not be easy to observe the 

mossy structure and the system will turn into dendritic structure directly. When curvature constant is 

extremely high, dendrite may form at small current density condition, which is mainly governed by highly 

inhomogenized reactivity. 

 While the Sand’s time reflects the initial stage of the deposition process, it does not provide any 

information of the ongoing process of dendrite growth. Here we introduce a way to monitor dendrite 

growth by tracing the change rate of solid-liquid interface area. Fig.4.12 shows a typical curve of change 

rate of surface area when current density is high (J/Jdiff = 2.0). We can divide this curve in to several 

regions: 0 to 203 s, curve is almost flat, and dendrite does not form in this region since it has not reached 

the sand’s time (averaged 𝜏 = 203 � for this system); 203 to 330 s, surface area increases at accelerated 

speed due to the initial growth of lots of small dendrites; 330 to about 555 s, surface area goes on 

increasing, but at decreasing speed, because some big dendrites forms and their growth suppresses the 

growth of smaller dendrites; 555 to 750 s, surface area still go on increasing with decreasing rate, since 

the growth of big dendrites decreases cell thickness, the deposition gradually change from 

electrochemical reaction controlled to mass transfer controlled, thereafter, the growth of the big dendrites 

is mainly in width rather than in length. 

 

Fig. 4. 12 Change rate of surface area for a single system with current density (J/J diff) of 2.0 

(left) and the corresponding morphologies of the system at different times (right).  

 By comparing the change rate of surface area for different current densities, we can clearly 

observe a transition current density that dendrite will form or not in the system (Fig.4.13). Once an initial 

dendrite forms, it will automatically grow at a faster speed than its surroundings, thus, the change rate of 

surface area will be much higher than non-dendrite system. We can actually use this to predict dendritic 

system even before big dendrites form. Fig.4.13 also indicates that the onset time for surface area 

increasing is almost the same as the sand’s time of the system, which also proves that dendrites will begin 

to grow and accelerate the growth after sand’s time. Similar tendency can also be observed in higher K 

and 𝜎 systems but with larger fluctuations. 
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Fig. 4. 13 Change rate of surface area under different current densities (This data is averaged 

over 10 different initial morphologies).  

 It is argued that some dendrites may form from the concentration depletion region.  As is shown 

in Fig.4.14, our simulation shows that at high current density condition, there can be an ion depletion 

layer at the interface, and the final dendrite will form exactly at the positions where there are initial small 

protrusions. The ion depletion layer for these protrusions will develop into the bulk electrolytes, resulting 

in a “roughness” of depletion layer as well. 

 

Fig. 4. 14 Position of dendrite and the concentration distribution at the interface.  
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4.4.5 Discharge and Cyclic Properties 

 Following the same procedure, our model is capable to simulate the discharge process as well. 

Fig.4.15 shows the discharge of a single dendrite system. It shows that during the discharge process, the 

dendrite may break off from the anode. The unlinked Li metal will be excluded from the battery cycles in 

the future and thus result in capacity fading. It seems that once dendrite forms, some part of it will break 

off from the anode no matter how small the discharge current density is. However, we note that this is 

only for a single dendrite, and for a system with multiple dendrites, the dissolution of nearby dendrites 

will definitely have influence on each other. 

           

Fig. 4. 15 Discharge of a single dendrite system. ( left) Number of unlinked nodes as a function 

of discharge current density. (right) Morphologies of the system (current densities (Jdiss /Jdiff) 

are: 0, 0.1, 0.2, 0.5, and 1.0 from left to right).  

 An interesting observation is that higher discharge current density seems to result in smaller 

amount of unlinked solid, and the same tendency is observed in the random morphology systems with 

multiple dendrites form (Fig.4.16). We believe the smaller amount of unlinked solid at higher discharge 

current density is due to concentration polarization at the electrode-electrolyte interface. Fig.4.16 shows 

that the concentration of Li ions is higher at the base of the dendrite than the tips. The higher local 

concentration will influence the equilibrium potential and lead to smaller overpotential at the “neck” of 

the dendrites. The higher the discharge current density, the larger the local concentration, and thus the 

larger concentration polarization can be expected. The high local concentration at the base of dendrites 

might be a result of the much smaller electrical field at the base and the steric effect. 
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Fig. 4. 16 Discharge of random morphologies. ( left) Number of unlinked nodes as a function of 

discharge current density. (right) Concentration of the system at the initial stage of discharge 

(current densities (Jdiss /Jdiff) are: 0.1, 0.5, 1.0, and 1.5 from left to right).  

 The advantage of LBM is that it can be parallelized very easily and we can simulate the 

charge/discharge cycles directly. Fig.4.17 shows the applied potential and current density changes in the 

charge/discharge cycles for two systems, one is dendritic and the other is non-dendritic, and with the same 

discharge current of 0.5 as an example. The results confirm that we can get stable current density in the 

cyclic system. But the applied potential may vary from cycle to cycle at the beginning of the whole 

process when charge current density is comparatively high. While for lower charge current density system, 

the applied potential is stable at beginning, and then begins to vary after about 10 cycles. The applied 

potential change reflects the morphology changes in the system. As we shall see in Fig.4.19, large 

variation of applied potential indicates dendrite formation or break off, while small variation indicates 

adjustment of local roughness. 
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Fig. 4. 17 Applied potential and current density in the charge/discharge cycles.  

 Fig.4.18 shows the deposits morphologies in the systems for the 1st, 5th, 10th, and 15th cycles for 

different discharge current densities (Jdiss/Jdiff = 0.1, 0.5, 1.0 and 1.5) and different charge current densities 

(Jdep/Jdiff = 1.5 and 2.0). It reflects that the surface of anode will become rougher and rougher during the 

charge/discharge cycles in all cases. Also, by comparing different discharge current density conditions we 

can observe that when charge current density is not high, the discharge speed will not influence anode 

morphology in a small number of charge/discharge cycles, even though the anode surface does get 

rougher and rougher. But when the charge current density is high, especially when the system becomes 

dendritic, the discharge speed will influence the anode morphology. Since dendrites may break off during 

discharge process, and the unlinked solid will be removed from the system in each cycle, the anode will 

become thinner and thinner during cycling.  
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Fig. 4. 18 Morphologies of anode during charge/discharge processes under different charge and 

discharge current densities. 

 We can count the disconnected solid in each charge/discharge cycle and compare the influence of 

discharge current density (shown in Fig.4.19 left, charge current density is 2.0). The results show that as 

the cycle number increases, the number of breakaway nodes will decrease and increase alternatingly. This 

is because the breakaway of big dendrite will somehow help to smooth the anode surface, leading to 

smaller dendrite formation in the following cycles. But since the charge current density is high, the effects 

of dendrite formation in each cycle will accumulate to form larger dendrite again. Therefore, under high 

deposition current densities, the number of breakaway solid nodes will decrease and increase alternatingly 

as the cycle number increases. An interesting observation is that there seems to be an optimal discharge 

current density that minimizes the number of unlinked solid, which is 0.5 in this system. Under this 

discharge current density, dendrites will break off normally at initial cycles and then form a “stable” 

structure in which for the following cycles, even though the charge process will result in rougher surface, 

but no big dendrite forms (see Fig.4.18). Same tendency can be observed for the other charge current 

densities when there is break off of solid during discharge process (shown in Fig.4.19 right). We believe 

this optimal discharge current density may be resulted from the competition between higher local 

concentration and higher applied potential. As we mention before, higher concentration seems to suppress 

the break off due to concentration polarization. However, when discharge current is high, the 

overpotential will mainly be contributed by the applied potential, and the concentration polarization will 

have comparatively smaller effect. 
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Fig. 4. 19 Total number of unlinked solid in (left) each charge/discharge cycle of the system 

with fixed charge current density of 2.0 and different discharge current densities (Normalized 

to the total amount of solid deposited on the anode in each cycle), and (right) 15 

charge/discharge cycles for different charge and discharge current densities (Normalized to the 

total amount of solid deposited on the anode of the 15 cycles).  

4.5 Conclusion 

 LBM can be a powerful simulation tool to simulate the electro-deposition and electro-dissolution 

process. Our model can capture all the experimentally observed features of microstructure evolution at the 

anode, from smooth to mossy to dendritic. Our results show that when inhomogeneous reactivity at the 

electrode-electrolyte interface (denoted by curvature constant K) is not extremely high, there are two 

transition current densities in the deposition system. One is the crossover current density, which is 

governed by inhomogeneous surface reactivity (when diffusivity and mobility of charged particles are 

fixed) and denotes the transition from flat/rough structure to mossy/dendritic structure. The other is the 

critical current density that is governed by the relative speed of diffusion to electromigration, which 

denotes the transition from mossy structure to dendritic structure. While the system current density is 

larger than the crossover current density, the time when dendrite may form (sand’s time) is more sensitive 

to electrode roughness than the inhomogeneous reactivity at interface, when both roughness and curvature 

constant are not too high. For comparatively high inhomogeneous reactivity system, there is larger current 

density regime for mossy structure formation; for low inhomogeneous reactivity system, the regime is 

small, and sometimes it may not be easy to observe the mossy structure and the system will turn into 

dendritic structure directly. When inhomogeneous reactivity is extremely high, dendrite may form at 

small current density condition, which is mainly governed by the highly inhomogeneous reactivity at 

electrode-electrolyte interface. 

 We also introduced a method to monitor the growth of morphologies in the system by tracing the 

change rate of surface area, which is very sensitive to dendritic structure. It can predict the dendritic 

system even before big dendrites form.  

 Our model is capable to simulate the charge/discharge cycles of a battery system. It seems that no 

matter how small the discharge current density is, the surface of anode will become rougher and rougher 

during cycles. It is inevitable to have Li metal break off during discharge process if the anode is already 

dendritic. However, there seems to be an optimal discharge current density, which lead to more “stable” 

anode morphology in the first several cycles and results in smaller amount of break-off dendrites. This 
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optimal discharge current density may be resulted from the competition between higher local 

concentration and higher applied potential in the system. 
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Chapter 5. 3D Simulation of Intercalation Reactions in Graphite Electrode of 

Li-ion Batteries by Using Lattice Boltzmann Method 

5.1 Introduction 

 Carbon materials, such as graphite, are widely used in Li-ion batteries as the active component of 

the anode, and these systems are currently the foremost candidates to be used in electric vehicles 

(EVs)[167]. Even though lots of attempts have been made to improve the properties of anode 

materials[168-170], one of the key issues is to suppress the plating of Li metal, which can grow into 

dendritic structures that cause capacity loss and even trigger short circuits[99, 171, 172]. To fulfill this 

target, we have to be able to control the relation between operating parameters, such as current and 

voltage, the mass transfer properties of anode materials and the packing structure of anode in order to 

optimize the uniformity of the composite graphite electrodes as electrochemical reaction happens[170], or 

add active additives to suppress dendrite formation, mainly by adjusting solid electrolyte interphase (SEI) 

formation[173-176]. Even though SEI formed on the anode surface can suppress dendrite formation to a 

certain extent, it also leads to increase of cell resistance and capacity fade, which are not favorable for the 

battery system[176, 177]. In the meanwhile, in order to identify the design parameters to obtain optimal 

performance of the batteries, many numerical models have been developed, which can be of great help in 

order to understand the physical phenomena. In this chapter, we will introduce a LB model to simulate the 

intercalation reaction process in graphite electrode of Li-ion batteries. We will mainly focus on the 

influence of microscopic morphology of electrode and operation conditions on the intercalation reactions, 

especially on how to optimize them to suppress the plating of Li dendrites. 

5.2 Background 

 Ever since the simulation work published by Doyle, Fuller and Newman[178], which established 

a generalized mean-field model for an idealized Li-ion battery system, lots of macroscopic models have 

been developed. Various effects were added to develop the original model to make it more physical, such 

as the influence of side reactions [179, 180], microscopic cell design[181, 182], and thermal effects[183]. 

However, all of these macroscopic models have to homogenize the microstructures of electrodes to some 

effective parameters, which make them insufficient to consider the detailed microscopic properties of the 

system. More recently, Smith, etc. developed a model that based on microstructures, which accounts for 

the mass transfer and interaction between particles in the porous electrodes explicitly[184];  Chirkov and 

its coworkers modeled equal-sized grain system and investigated the percolation properties of the anode 

active layer and the anode with nanosize particles[185]; and Harris, etc. simulated the non-shrinking-core 

behavior in a MCMB (meso carbon micro beads) graphite composite electrode by considering the 

polycrystalline nature and anisotropic diffusion of MCMB particles[186]. These mesoscopic models are 

either in 2D or use simplified particle morphologies, for example, square lattices or spheres. Even though 

some 3D models were developed to simulate the battery system[187-191], they either focused on 

individual particles in simple geometries, or simple system morphologies with identical particle 

distributions. 3D random morphologies are considered in some models[192], however, only in the 

homogenization step. Ideally speaking, we need a mesoscopic simulation method that can easily handle 

the mass transfer in the random porous system and local electrochemical reactions in a computationally 

efficient manner. 

 In this chapter, we introduce a mesoscopic numerical method, called the Lattice Boltzmann 

Method (LBM), to simulation the intercalation reactions in graphite electrode. Originated as a numerical 

method for Computational Fluid Dynamics (CFD) three decades ago[6, 88], LBM has been developed 

into a powerful tool to simulate complex mass transfer phenomena, such as advection-diffusion system[89, 

90], electroosmosis flow[91-93], and electrochemical reactions[23, 24]. It is particularly easy to handle 
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complex boundary geometries[7], which has lots of applications in simulating mass transfer in porous 

structures[16, 193, 194]. And the intrinsic local operations of the LBM algorithm makes it very easy to be 

parallelized to simulate comparatively large system[8]. Therefore, LBM can be an ideal numerical 

method to model batteries. 

 By using LBM, we simulated a 3D half-cell system with random graphite as anode and pure Li 

metal as counter electrode. Both galvanostatic and potentiostatic conditions were discussed. We tested the 

relation between operating parameters (current and potential) and electrode parameters (porosity, 

thickness and diffusivity) on the initial plating time and the final total charge density when plating 

happens. Different equilibrium potentials forms (empirical fitting[195], fitting of SONY 18650 cell[196], 

and staged profiles[197]) were also compared. Finally, we tried to modify the random morphology of 

electrode with density gradient and obtained much better electrode performance, which can be helpful for 

the designing and manufacturing of better batteries. 

5.3 Model Setup 

5.3.1 Mass Transfer in Electrolyte and Electrode Materials 

 Without convection, the mass transfer in electrolyte can be expressed by Poisson-Nernst-Plank 

(PNP) equations: 

 
𝜕𝑐𝑖

𝜕𝑡
=  𝐷𝑖∇(∇𝑐𝑖  +  

𝑧𝑖𝑒𝑐𝑖

𝑘𝑇
∇𝜓) ( 5. 3. 1 ) 

 

 ∇2𝜓 = −
𝜌𝑓

𝜀𝜀0
 ( 5. 3. 2 ) 

where 𝑐𝑖 is the concentration of species i; 𝐷𝑖 is the diffusion coefficient of the species in electrolyte; 𝑧𝑖 is 

the charge on species i; e is the charge of an electron; k is Boltzmann constant; T is temperature; and 𝜓 is 

electrical potential; 𝜌𝑓  is the net charge density; 𝜀0  is dielectric constant in vacuum and 𝜀  is relative 

dielectric constant. The electrical mobility in the electromigration part (𝑢𝑗 =
𝑧𝑖𝑒

𝑘𝑇
𝐷𝑗) is calculated based on 

electrolyte conductivity 𝜎, which is 𝜎𝑗 = 𝑧𝑗 𝑒𝑐𝑗𝜇𝑗, instead of the Einstein equation in the original PNP 

equations. 

 To solve the PNP equations in the framework of LBM, we can simply regard the electromigration 

part as the advection term in the conventional Lattice Boltzmann (LB) Equation for the advection-

diffusion lattice[18]. In a single-relaxation-time LB model, the physical system can be divided into two 

steps: collide and stream, which are expressed in a single equation: 

 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖 , 𝑡 + ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
 𝑓𝑖

𝑒𝑞
 ( 5. 3. 3 ) 

where fi (r, t) is the local density distribution function in the i direction; τ is the relaxation time. The 

velocity vi is chosen so that, in one time step ∆t, a particle can reach one of its nearest neighbors. 𝑓𝑖
𝑒𝑞

 is 

the equilibrium density distribution function. With a regular BGK dynamics, it can be calculated based on 

the expression: 

 𝑓𝑖
𝑒𝑞

= 𝑡𝑖𝜌 (1 + 
1

𝑐𝑠
2  𝐯𝑖  ∙ 𝐮) ( 5. 3. 4 ) 

 The local drift velocity u can be obtained from the electromigration term. 
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 The microscopic potential distribution in the system defined in equ.5.3.2 can be solved by using 

traditional Successive Over-Relaxation (SOR) method[94]. 

 The mass transfer inside of graphite electrode can be simplified as a diffusion process. The same 

solver for the PNP system can be used by setting the local drift velocity u = 0 (no electrical field is 

considered inside the anode material). 

5.3.2 Electrochemical Reactions at Electrode-Electrolyte Interface 

 The electrochemical reaction at the electrode-electrolyte interface is defined by the following Butler-

Volmer expression: 

 𝑖 = 𝑖0(𝑒
𝛼1𝐹𝜂 𝑅𝑇⁄ − 𝑒−𝛼2𝐹𝜂 𝑅𝑇⁄ ) ( 5. 3. 5 ) 

where F is faradic constant, R is gas constant and T is temperature. 𝜂 is overpotential, which is defined as 

𝜂 = 𝑉𝑎𝑝𝑝 − 𝑈, where 𝑉𝑎𝑝𝑝 is the applied potential on the anode, and U is the open-circuit potential (OCP) 

of the graphite electrode. 𝛼1  and 𝛼2  are symmetry factors related to the potential barrier for the 

intercalation reaction. in this system, we use 𝛼1 = 𝛼2  = 0.5. 𝑖0  represents local exchange current 

density. When concentration polarization is considered, the l ocal exchange current density can 

be calculated based on[180]: 

 𝑖0 = 𝑖0
𝑒𝑞

(𝑐𝑡 − 𝑐𝑠)
𝛼1(𝑐𝑠)

𝛼2(𝑐)𝛼1 ( 5. 3. 6 ) 

where 𝑖0
𝑒𝑞

 is the exchange current density at open-circuit condition. 𝑐𝑡  is the maximum 

concentration in intercalation material. 𝑐𝑠 is the concentration of lithium in solid phase. 𝑐 is the 

concentration of lithium in liquid phase at the interface. In every time  step, the concentration 

of interface nodes at the electrolyte lattice for Li ions will be decreased by the amount that is 

calculated based on the equ.5.3.6 locally, and the concentration of the interface nodes at the 

solid lattice for Li atom will increase the corresponding amount.  

 The OCP is a function of intercalation stage of the system, and it can be obtained both 

experimentally or theoretically. In this paper, we used three different open-circuit potential formulas 

obtained from papers: empirical fitting[195], fitting of SONY 18650 cell[196], and staged profiles[197]. 

We will call them OCP1, OCP2 and OCP3 correspondingly. OCP1 used the Redlich-Kister expansion to 

fit for the OCP of MCMB in experiment. OCP2 fits for SONY 18650 cell and is widely used in many 

simulations. OCP3 used piecewise function to represents different stages of intercalation in experiment. 

Fig.5.1 shows the OCPs as a function of intercalation stage. 
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Fig. 5. 1 Open-circuit potential (OCP) of the graphite electrode for empirical fitting (OCP1), 

fitting of SONY 18650 cell (OCP2), and staged profiles (OCP3).  

 When the interface overpotential drops to a certain value, plating may happen. The overpotential for 

plating, 𝜂𝑝, can be calculated based on Nernst equation: 

 𝜂𝑝 = 𝑉𝑎𝑝𝑝 − 𝐸𝑝
𝑒𝑞

− 
𝑅𝑇

𝑧𝐹
𝑙𝑛(𝑐)  ( 5. 3. 7 ) 

where 𝐸𝑝
𝑒𝑞

 is the equilibrium potential for plating at open-circuit condition. When 𝜂𝑝 < 0, plating will 

happen at the local position. Our simulation will stop at the same time.  

5.3.3 Boundary Conditions 

 In this 3D model, two parallel electrodes were used. One is the working electrode, graphite, with 

random morphologies. The other is an “imaginary” counter electrode of pure Li metal. We did not 

calculate the reactions at the “imaginary” counter electrode explicitly. Instead, a uniform inlet current was 

applied, which is averaged based on the total current at the graphite electrode. Periodic boundaries were 

used in the other two directions that are perpendicular to the electrodes plane. For electrolyte lattices, 

which are used to calculate the mass transfer in electrolyte, bounce back boundary condition was applied 

at electrode nodes. For solid lattice, which is used to calculate the mass transfer in electrode materials, 

bounce back boundary condition was applied at the solid boundaries, and no dynamics were assigned to 

the electrolyte nodes. The bounce back nodes in the solid lattice have regular BGK dynamics but the 

distribution functions point to the electrolyte directions will bounce back in each time step. In order to 

handle the intercalation step at the electrode-electrolyte interface, one layer of overlap nodes is used at the 

interface (shown in Fig.5.2). The lattice dynamics were assigned for different lattices based on Table.1. 

Here, a partition coefficient of 1.0 is used to assume that all the reduced Li atoms will intercalate into 

graphite electrode, if the local overpotential 𝜂𝑝 ≥ 0. Note that we did not consider the formation of SEI in 

this model, which plays an important role in the capacity fading of the battery. However, the effects of 

SEI (consumption of electrolytes and increasing resistance at the interface) can be added at the interface 

nodes easily in a modular manner, which will be included in our future work. 
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Fig. 5. 2 An illustration of phase distribution of the system.  

 

Table. 5. 1 Dynamics for different phases in different lattices  

 

5.3.4 System Morphologies 

 In this paper, we used 256 × 128 × 128 D3Q7 lattices to represent a cell with the size of 256 𝜇m 

by 128 𝜇m by 128 𝜇m, in which the graphite anode is 32 𝜇m thick in x direction, unless otherwise 

specified. Periodic boundary conditions are applied in the y and z directions. The anode morphologies are 

generated randomly with the solid volume fractions from 50% to 80% (shown in Fig.5.3). In each of the 

morphologies, we checked the percolation of the solid nodes to guarantee the volume fraction of isolated 

“bad” solid nodes is within 0.5%. We should note that there are ways to generate morphologies more 

exactly from real electrode morphologies in experiment[198], which would be very helpful to increase the 

accuracy of the model. In order to eliminate the error from a certain random morphology, we averaged 5 

different random samples for a certain volume fraction in the system for the data in this chapter. 
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Fig. 5. 3 Morphologies of graphite electrodes. (left) 3D morphology for 50% density electrode. 

(right) 2D slices of graphite morphologies in the x -z plane of the middle of y-axis (from left to 

right, electrode densities are 50%, 60%, 70%, and 80%).  

 Fig.5.4 shows the averaged number of interface nodes at different electrode densities. It reflects 

the interface area in the system. The result shows that as the electrode density increases, the interface area 

decreases. As the electrode density increase from 60% to 70%, there is a sharp drop of interface area of 

the system. This sharp drop will result in some property change of the system, as we shall show in the 

results section. 

 

Fig. 5. 4 Averaged number of interface nodes at different elect rode densities. 

5.3.5 System Parameters 

 The equilibrium exchange current density 𝑖0
𝑒𝑞

= 0.21 mA/cm2 [180].  The mobility of the Li and 

the PF6 ions were both fixed at 1.0e-3 mm2/(s V), which represents the electrolyte (1M) conductivity of 

about 2 mS/cm.  Note that the conductivity from other papers for LiPF6 (1M) is around 6 to 10 

mS/cm[160-162]. Considering the local ion concentration in the cell may drop to very low values, we 

used a slightly smaller value, but it is still in the same magnitude. The temperature T was kept constant at 
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298K and the dielectric constant of the electrolyte was fixed at 46.44. We used diffusion constants for the 

Li and PF6
−  ions in electrolyte equal to 2.0e-4 mm2/s and 1.0e-4 mm2/s respectively. The diffusion 

coefficient of Li atoms Ds in graphite can vary from 1.0e-5 to 1.0e-8 mm2/s[199, 200]. The bulk 

concentration of Li ion was initialized at 1.0M. Unless specified, most of the paper will focus on 

galvanostatic conditions. In galvanostatic condition, the applied potential on the graphite electrode will be 

adjusted in every time step to maintain the constant current density, and the potential of the counter 

electrode is kept constant as 0 V. Potentials in the system are referred to the equilibrium potential of 

Li|Li+(1M) reference electrode at 298K and 1 atm. The maximum concentration of Li atom in 

graphite 𝑐𝑡 = 30.54  mol/L, and the density of graphite is 2.20 g/cm3 [180], and the charge 

density (mass density) of graphite can be calculated to be 372 mAh/g when the electrode is 

fully intercalated. 

5.4 Results and Discussion 

5.4.1 Influence of Electrode Density 

 Fig.5.5 shows the final charge density of the system before plating or until the electrode is fully 

intercalated, whichever comes first. It indicates that smaller electrode density will always lead to higher 

charge density, when the rest of the parameters are the same. Larger current or smaller diffusivity of Li 

atom in electrode will give smaller charge density when electrode density is high. An interesting 

observation is the drop of charge density mainly begins when the electrode density increases from 60% to 

70%. This is exactly the same point at which we see a sharp surface area change in the system. When 

electrode density increases, the mass density increases, and thus the actual current in a fixed volume will 

increase (shown in Fig.5.6). And at the same time, the surface area decreases sharply. These will result in 

a large increase of current density at the electrode-electrolyte interface. And when the diffusion of Li 

atom into the electrode material is not fast enough, the interface graphite will soon become fully 

intercalated and thus result in plating. This leads to very large inhomogeneous distribution of Li 

intercalation in the electrode (shown in Fig.5.7). 

 

Fig. 5. 5 Final charge density of electrodes with different densities under galvanostatic 

conditions. 
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Fig. 5. 6 Current of the system with different electrode densities under galvanostatic 

conditions. 

 

                 

Fig. 5. 7 Normalized Li atom density in the working electrodes under galvanostatic conditions. 

(left) 60%, 1C, and Ds = 1.0e-7 mm2/s. (right) 70%, 1C, and Ds = 1.0e-7 mm2/s. 

 Fig.5.8 shows the phase diagram of transition points of the system when plating happens before 

electrode is fully intercalated. In these plots we adopt the convention of the C rate as a measure of the 

charging rate. 1C rate means the battery can be fully charged in 1h. It shows that electrode with smaller 

densities (50% and 60%) can tolerate higher current (3C and 2C correspondingly) without any plating. In 

addition, when the electrode density is comparatively high (60 % to 80%), plating is not very sensitive to 

the diffusivity of Li atom in electrode. However, if the electrode density is low (50%), plating can be 

sensitive to the diffusivity (the transition happens at the region of Ds = 1.0e-6 to 1.0e-7 mm2/s). 
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Fig. 5. 8 Phase diagram of transition points of the system when plating happens b efore 

electrode is fully intercalated under galvanostatic conditions. 

5.4.2 Influence of Li Atom Diffusivity in Graphite 

 Fig.5.9 shows the final charge density of the system as a function of Li atom diffusivity in 

graphite under galvanostatic conditions. It indicates that when electrode density is not high (60%), the 

final charge density is not sensitive to the Li atom diffusivity in graphite. While electrode density is 

comparatively high (70%), higher diffusivity will lead to higher final charge density. There seems to be 

an apparent drop of charge density when the diffusion coefficient drops from 1.0e-6 to 1.0e-7 mm2/s. This 

transition might be governed by the relative speed of graphite diffusivity and interface reactivity. 

 

Fig. 5. 9 Final charge density as a function of Li atom diffusivity in graphite under 

galvanostatic conditions. 

 Fig.5.10 shows the phase diagram of transition points for plating of the system at different 

diffusion coefficients of graphite electrode. The result shows that the transition curve of plating is not 

sensitive to the diffusivity in graphite when electrode density is comparatively high (above 60%). But 

when electrode density is low (50%), higher diffusivity (above 1.0e-6 mm2/s) systems can tolerant larger 

C-rate current (3C). 
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Fig. 5. 10 Phase diagram of transition points of the system at different diffusion coefficients of 

graphite electrode under galvanostatic conditions.   

5.4.3 Influence of Current 

 Fig.5.11 shows the final charge density of the system as a function of C-rate current under 

galvanostatic conditions. The result shows that when electrode density is small (60%) the final charge 

density is not very sensitive to the applied current, if the diffusivity of graphite does not change too much. 

When electrode density is high (70%), larger current will lead to smaller amount of charge density.  We 

can expect that apparent decrease of charge density could be observed in small electrode density system 

(below 60%) when the current becomes much larger. 

 

Fig. 5. 11 Final charge density as a function of C-rate current under galvanostatic conditions. 

 Fig.5.12 shows the phase diagram of transition points for plating of the system at different C-rate 

currents under galvanostatic conditions. It indicates that when current is small (below 1.0C), plating will 

happen only when electrode density is comparatively large (above 70%). When current increases, we may 

need to decrease the electrode density to suppress plating. The diffusivity of graphite plays a limited role, 

except that when the C-rate current is intermediate (2.0C). 



 

58 

 

 

Fig. 5. 12 Phase diagram of transition points for plating of the system at different C -rate 

currents under galvanostatic conditions. 

5.4.4 Influence of Electrode Thickness 

 To test the influence of electrode thickness, we compared the system with 3 different thicknesses: 

16, 32, and 64 𝜇m. In all cases, the thickness of electrolyte domain is kept constant. Fig.5.13 shows the 

final charge density of the system at different electrode thicknesses with constant current of 1C and Ds = 

1.0e-6 mm2/s. The result indicates that when electrode density is small (60%), the charge density is not 

very sensitive to the thickness of electrode. But when the electrode density is large (70%), the electrode 

thickness will have tremendous influence on the final charge density. The final charge density will 

decrease with the increase of electrode thickness when electrode density is large. This is mainly because it 

is harder for electrolyte to penetrate into the inner part of the electrode with higher densities, which may 

lead to the inhomogeneous distribution of Li atoms in the electrode material, and the longer diffusion 

length in the thicker electrode. Also, the thicker electrode requires larger current density in the C-rate 

current system, which would lead to large reaction speed, thus large accumulation of Li atoms at the 

electrode-electrolyte interface.  

 

Fig. 5. 13 Final charge density at different electrode thicknesses with constant current of 1C 

and Ds = 1.0e-6 mm2/s. 
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 Fig.5.14 shows the normalized Li atom density in the working electrodes at different electrode 

thicknesses when electrode density is 70%. It shows that the thicker the electrode is, the more 

inhomogeneous the Li atom distribution will be. 

 

Fig. 5. 14 Normalized Li atom density in the working electrodes at different electrode 

thicknesses with electrode density of 70%, current of 1C and D s = 1.0e-6 mm2/s. From left to 

right, the electrode thicknesses are 16, 32 and 64 𝜇m. 

5.4.5 Influence of Equilibrium Potential Formula 

 In the previous sections, the OCP of the system is defined by the fitting curve of experiment 

result form SONY 18650 cells (OCP2). In this section, we are going to check the influence of OCP in the 

system by comparing 3 different OCP formulas defined in section 5.3.2 (OCP1, OCP2, and OCP3). 

 Fig.5.15 shows the applied potential change in the system with different OCPs under 

galvanostatic conditions with current of 1C, electrode density of 60% and Ds = 1.0e-6 mm2/s. This figure 

has the similar tendencies as the OPC curves in Fig.1, which means the applied potential is highly 

positively related to its OCP formula. 
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Fig. 5. 15 Applied potential in the system with different OCPs under galvanostatic conditions 

with current of 1C, electrode density of 60% and D s = 1.0e-6 mm2/s. 

 Fig.5.16 shows the final charge density for the three different OCP systems under different 

electrode density conditions (60% and 70%). The results indicate that when both electrode density and 

current are small (60% and 1C), system charge density will not be influence by the form of OCP. When 

the electrode density is large (70%) or when the current is large (2C), the final charge density in the 

system tend to have the tendency: OCP3 > OCP2 > OCP1. Which may result from the comparatively 

larger equilibrium potential in OCP3 when the intercalation amount tends to be high. This will lead to 

higher applied potential and from Eq.5.3.7 we know that plating will be harder in this system. 

           

Fig. 5. 16 Final charge density for different OCPs. (left): electrode density is 60%; (right): electrode 

density is 70%. 

5.4.6 Modified Electrode Morphologies 

 The fast developing 3D printing technology may make it possible to manufacture batteries with 

targeted microstructure in the future.  As is shown previously, the microstructure of electrode materials 

can have large impact on the properties of the system. Therefore, there is possibility to improve the 

performance of battery by modifying the morphologies of electrode materials. 
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 Fig.5.17 shows the cross section of a modified morphology, which has larger densities at the base 

of the electrode and smaller densities near the electrolyte domain. Fig.18 compares the final charge 

densities of the modified electrode to the pure random electrode systems.  The result indicates that by 

adjusting the packing distribution of electrode materials, it is possible to increase the performance of 

battery tremendously for a fixed volume fraction of electrode. The modification here at one hand 

increases the surface area to decrease the current density, and at the other hand, makes it easier for 

electrolyte to penetrate into the inner part of the electrode. Even though the density near the base of the 

electrode is high, the thickness is very small. From the observations in section 5.4.4, it is known that the 

very thin electrode materials will not decrease the charge amount a lot. Therefore, we could obtain higher 

total charge by modifying the distribution of electrode materials with a gradient (high near the current 

collector and small near the electrolyte domain) of the electrode density. 

(a)             (b) 

                            

Fig. 5. 17 2D cross section snapshot of the electrode morphologies: (a) pure random, and (b) 

modified 

 

Fig. 5. 18 Comparison of final charge densities of the modified electrode to the pure random 

electrode systems. 
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5.4.7 Potentiostatic Test 

 In potentiostatic test, the applied potential is fixed at a certain value. As the intercalation reaction 

goes on, the local OCP will drop until the system reaches equilibrium, at which the applied potential 

should be very close to the OCP value of the intercalated material. 

 Fig.5.19 shows the typical curve of the current in the potentiostatic condition. It shows a sharp 

decrease of current at the initial stage of the intercalation reaction, and then the current decreases 

asymptotically to zero. The sharp initial drop of the current is mainly due to the drop of local OCP at the 

electrode-electrolyte interface. As is shown in Fig.5.1, the curve of OCP2 that is applied in the system 

will drop sharply at the initial stage of intercalation, therefore decrease the overpotential for the interface 

reaction, leading to a sharp decrease of current initially. In this stage, there is a sharp accumulation of Li 

atoms at the interface. With the decrease of the current, the accumulation will slow down, while at the 

same time, the Li atom will diffuse into the inner part of the electrode. The interfacial reaction and the 

diffusion of Li atom will be balanced, resulting in the following asymptotical decrease of current to zero, 

when the OCP of the electrode material reaches the value of OCP2 in Fig.5.1. 

 

Fig. 5. 19 Current in the potentiostatic condition with applied potential of 0.2V, electrode 

density of 60% and Ds = 1.0e-6 mm2/s 

 Fig.5.20 shows the final charge densities of the potentiostatic system when different potentials 

(0.1, 0.2 and 0.5 V) are applied. It reflects that the higher applied potential is, the lower the final charge 

density will be. This is because the amount of reaction is bounded by the applied potential in the system. 

When the intercalation reaches the equilibrium amount, applied potential equals the equilibrium potential, 

and no reaction could happen. An interesting observation is that the final charge density is almost 

identical for the same applied potential, no matter whether the electrode density or the Li atom diffusivity 

in graphite changes or not. This is because in the region of the asymptotical decrease of current, the 

distribution of Li atom will be homogenized. This homogenization state is only governed by the OCP 

value at equilibrium. Different diffusivities of Li atom will only alter the speed to reach the equilibrium, 

but they cannot change the equilibrium state itself. Therefore, if the intercalation reaction can carry on for 

enough time, the final charge density will be only governed by applied potential. 
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Fig. 5. 20 Final charge densities of the potentiostatic system. 

5.5 Conclusion 

 By using LBM, we simulated a 3D half-cell system with random morphologies of graphite as 

anode and pure Li metal as counter electrode. We tested the relation between operating parameters 

(current and potential) and electrode parameters (porosity, thickness and diffusivity) on the final total 

charge density when plating happens. It is shown that our model can track most of the key features of the 

intercalation system. 

 In galvanostatic condition, our model shows that smaller electrode density, smaller C-rate current 

and larger diffusivity of Li atom in graphite can help to obtain higher final charge density before plating 

happens. There is a sharp change of the property of the electrode when the electrode density change from 

60% to 70%, which is mainly due to the sharp change in the interfacial area in the system. The applied 

current and the diffusivity of Li atom will have apparent influence on the final charge density when the 

electrode density is comparatively high. Thicker electrode tends to have smaller charge density when 

electrode density is high. The different forms of OCP will have larger influence on the system when the 

electrode density is high as well. By modifying the random morphology of electrode with density gradient, 

it is possible to obtain much better electrode performance. This model may help to design battery 

microstructures for optimal performance, which can be the input for new manufacturing methods, such as 

3D printing. 

 In potentiostatic condition, the final charge density will be only governed by applied potential, 

which will be equal to the OCP value when the current of the system drop asymptotically to zero. 

 In the future, it is possible to simulate the full cell system and add the side reactions, the influence 

of SEI layer and the heat convections into the system in a modular manner straightforwardly. 
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Chapter 6. Simulation of Transdermal Drug Delivery by Using Lattice 

Boltzmann Method 

6.1 Introduction 

 Ever since 1979 when the first transdermal patch was introduced in the United States, the number 

of new transdermal delivery systems is gradually increasing. Especially in more recent years (2003 to 

2007), new systems were introduced at a remarkable pace; one every 7.5 months[201], and transdermal 

delivery has been transformed from an interesting new idea to a multi-billion US dollar per year 

industry[202]. The transdermal drug delivery has several advantages, such as the avoidance of pain, 

possible infection and compliance issues related to injections; the possibility to control drug release over 

long periods; and avoiding the first-pass metabolism via the oral route that can lead to large loss of 

drug[203]. The increasing demands for the transdermal patches, on the one hand, call for clinical research 

to develop more effective way of drug delivery through the stratum corneum (SC), which is the main 

barrier for skin permeability, and on the other hand, require more efficient drug design methods that can 

guide the drug development to obtain the transdermal patches with targeted delivery properties. During 

the past 30 years, many delivery enhancement methods were introduced, such as using chemical 

enhancers, noncavitational ultrasound and iontophoresis (second-generation delivery systems), and using 

microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound (third-

generation delivery systems)[201, 204-216]. Numerical tools can be of great help for us to understand the 

physical phenomena and identify the design parameters to reduce the cost and time for new drug 

development. In this chapter, we will introduce a LB model to simulate the transdermal drug delivery 

system, which can handle the “brick and mortar” structure of the SC layer explicitly and add the influence 

of enhancer straightforwardly. The influence of the key properties of the system, such as drug diffusivity, 

concentration, partition coefficients, will be tested and compared for more effective drug design. 

6.2 Background 

 The numerical simulation models of transdermal drug delivery mainly focus on two levels: the 

molecular level and the patch-SC level. At the molecular level, Molecular Dynamics (MD) has been 

widely used to identify the partition coefficient and the diffusion properties of solute under different 

transdermal conditions[217-221]. In the patch-SC level, mass transfer of drug is usually regarded as a 

diffusion process, and Fick’s Laws are applied. This mass transfer can be simplified as steady state Fick’s 

first law, or described fully by Fick’ second law[222, 223]. The structure of SC layer is either ignored[222, 

223], or by homogenization of the “bricks and mortar” structures [224-228]. Passive diffusion [225, 229] 

(drug can diffuse through the corneocytes), nonlinear diffusion[230], and the effects of enhancer[221] 

have been investigated. However, in order to obtain more quantitively accurate simulation data for the 

guidance of drug design, there are several questions we need to answer: 1. Does the simplified steady 

state fick’s law works for the drug delivery system that actually has finite size of patch and inhomogenous 

stratum corneum structure? 2. Is the homogenization of the stratum corneum structures an adequate way 

to capture the transport property in the actual inhomogenous structure?  

 The mostly widely used mathematical approaches to the Fick’s mass transfer in transdermal 

delivery system are Laplace Transform Method (LTM)[231, 232], Finite Difference Method (FDM)[225, 

229], Finite Element Method (FEM)[221, 224, 230], and Random Walk Method (RWM)[233].  The 

former three methods are numerical tools to solve differential equations in a top-down manner, which is 

not easy to implement complex local interactions and boundary conditions. On the contrary, the RWM is 

carried out in a bottom-up manner, which traces the random thermal motion of molecules in the system, 

and the mass transfer properties, such as the flux or density distributions, can be calculated by averaging 

the trajectories of the particles. But for large systems, this method is computationally expensive, and to 



 

65 

 

eliminate too much noise from the results, a lot of random trails need to be carried out. Here we try to 

introduce another bottom-up numerical method, called Lattice Boltzmann Method (LBM), to simulate the 

mass transfer in transdermal delivery system. 

 LBM was introduced three decades ago as a mesoscopic simulation method for Computational 

Fluid Dynamics (CFD)[6, 88]. Then it is soon developed to simulate advection-diffusion mass transfer 

systems[90]. A lot of complex advection-diffusion based physical systems have been studied, including 

electroosmotic flow in microchannels[19, 234, 235], dendrite formation from melt[21] and in convective 

solutions[153, 236], reacting flows[237, 238], and anisotropic diffusion[89, 239]. It is proved to be 

particularly successful in fluid flow applications involving interfacial dynamics and complex 

boundaries[7]. Therefore, LBM is an ideal numerical method for the simulation of transdermal drug 

delivery system. 

 In this chapter, by using LBM, we will compare the transdermal drug delivery models in the 

“brick and mortar” structures, and in the homogenized anisotropic system. By using “brick and mortar” 

structure, we tested the influences of different parameters, such as the drug amount in patch, patch 

thickness, partition coefficient at patch/SC interface, and the diffusion coefficient of drug in each 

component. Also, we will show that the influence of enhancer can be included in the model in a 

straightforward way. 

6.3 Model Setup 

6.3.1 Lattice Boltzmann Model 

 LBM is a particle-based model to simulate the evolution of physical systems. The evolution of a 

system is expressed by discrete Boltzmann Equation (BE), and if we use a simple single-relaxation-time 

BGK (Bhatnagar–Gross–Krook) dynamics[90] for the collision operation, the physical system can be 

expressed as:  

 𝑓𝑖(𝒓 + ∆𝑡𝒗𝑖 , 𝑡 + ∆𝑡) = (1 − 
1

𝜏
) 𝑓𝑖 + 

1

𝜏
 𝑓𝑖

𝑒𝑞
 ( 6. 3. 1 ) 

where fi (r, t) is the local density distribution function in the i direction; τ is the relaxation time. The 

velocity vi is chosen so that, in one time step ∆t, a particle can reach one of its nearest neighbors. 𝑓𝑖
𝑒𝑞

 is 

the Equilibrium Distribution Function (EDF). 

 One of the key problems in LBM is to construct a suitable EDF to represent a targeted physical 

system. In this chapter, we will mainly consider three situations: pure diffusion, anisotropic diffusion in 

different directions and diffusion with enhancer. 

 The EDF for pure diffusion system can be easily derived from Maxwell distribution and 

conservation of mass[240]. It is: 

 𝑓𝑖
𝑒𝑞

= 𝑡𝑖𝜌  ( 6. 3. 2 ) 

where 𝑡𝑖 is the weight factor in the i direction, which is a constant for a chosen lattice structure, and 𝜌 is 

the local density of solute. The relaxation time τ is a function of diffusion coefficient: 

 𝐷 =  𝑐𝑠
2 (𝜏 −

1

2
) ( 6. 3. 3 ) 
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where cs is the speed of sound in the lattice, which reflects an effective propagation velocity of the lattice. 

By using Chapman-Enskog Expansion, it is easy to prove that this EDF and relaxation time can recover  

the pure diffusion equation[240]: 

 
𝜕𝜌

𝜕𝑡
=  ∇(𝐷∇𝜌) ( 6. 3. 4 ) 

 Based on the pure diffusion EDF, it is easy to develop the collision step of the anisotropic 

diffusion with different diffusion coefficients at different directions. Note that in LBM, the diffusion 

coefficient is related to the local relaxation time. Therefore, for this anisotropic system, the relaxation 

time is also directional dependent[240]: 

 𝐷𝑖 = 𝑐𝑠
2 (𝜏𝑖 −

1

2
) ( 6. 3. 5 ) 

where “i” denotes the direction in space. The EDF can be kept the same as pure diffusion. Then, we can 

obtain the new distribution function in each streaming directions based on Eq. (1), and the distribution 

function at the lattice center can be calculated from the conservation of mass. 

 For particles diffusion with enhancer, the Fick’s second law can be expressed as: 

 
𝜕𝜌

𝜕𝑡
=  ∇(𝐷(𝑐𝑒𝑛)∇𝜌) ( 6. 3. 6 ) 

where 𝐷(𝑐𝑒𝑛) is the anisotropic diffusion coefficient of the solute due to the local concentration of 

enhancer. Equ.6.3.6 is the same as equ.6.3.4, except that the local diffusion coefficient is not a constant in 

equ.6.3.6. We can simply adjust local diffusion coefficient by: 

 𝐷(𝑐𝑒𝑛) =  𝑐𝑠
2 (𝜏𝑐𝑒𝑛

−
1

2
) ( 6. 3. 7 ) 

where 𝜏𝑐𝑒𝑛
 is the local relaxation time at each lattice node.  

6.3.2 System Morphologies and Homogenization Method 

 Two levels of morphologies are used in the simulation. On the cell level, typical “brick and 

mortar” structures are employed as SC layer. The bricks represent corneocytes with edge length 10 um 

and thickness of 0.75 um. The mortar represents lipid layer between corneocytes, which has an equal 

horizontal and vertical gap of 75 nm. A slip ratio is used to control the stacking arrangement of the 

corneocytes in two adjacent layers. As is shown in Fig.6.1, this ratio is defined as a/b. In this paper, unless 

otherwise specified, we will fix this ratio as 0.4. Fig.6.1 shows each layer with one unit cell and one layer 

of lipid. Periodic boundary condition will be applied in the lateral direction. Patch is placed on the top of 

the SC layer. 

 At the homogenization level, the SC layer is simplified as a homogeneous rectangular box. A 

two-layer structure is used to represent the transdermal system, as is depicted in Fig.6.1.  
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Fig. 6. 1 System morphologies. (left) shows the “brick and mortar” representation of the 

stratum corneum layer with corneocytes in black and lipid in white. (right) shows the 

homogenized structure of the patch-stractum-corneum system. 

 To obtain the effective diffusion coefficients for homogenization, finite difference method is used 

to solve the steady state flux of drug in the “brick and mortar” structure. For transverse effective diffusion, 

a fix concentration 𝜌0 is applied on the top of the SC layer, and the bottom boundary concentration is 

fixed as zero. When the system reaches steady state, the Fick’s second law can be reduced Laplace 

equation: 

 ∇2𝜌 = 0 ( 6. 3. 8 ) 

 The solution of equ.6.3.8 can give us the concentration distribution of the system, and the steady 

state out flux can be calculated based Fick’s first law on the out flux boundary: 

 𝐽𝑡𝑟𝑎𝑛𝑠 = −𝐷
𝜕𝜌𝑜𝑢𝑡

𝜕𝑦
 ( 6. 3. 9 ) 

 The principle of effective diffusion is: if we choose the same system size with homogeneous 

distribution and the same boundary conditions, the effective diffusion coefficient for the homogenized 

system should be able to give us the same flux value as the “brick and mortar” structure. If the “brick and 

mortar” structure has a length of 𝑙𝑦 in the transverse direction, then the homogenized system should have 

an out flux equal to: 

 𝐽𝑡𝑟𝑎𝑛𝑠
𝑒𝑓𝑓

= −𝐷𝑡𝑟𝑎𝑛𝑠
𝑒𝑓𝑓 𝜌0

𝑙𝑦
 ( 6. 3. 10 ) 

 By equating equ.6.3.9 and 6.3.10, we can obtain the effective diffusion coefficient for transverse 

direction: 

 𝐷𝑡𝑟𝑎𝑛𝑠
𝑒𝑓𝑓

= 𝐷
𝜕𝜌𝑜𝑢𝑡

𝜕𝑦

𝑙𝑦

𝜌0
 ( 6. 3. 11 ) 

 The same method can be applied to obtain the effective diffusion coefficient in the lateral 

direction. 
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6.3.3 Boundary Conditions 

 For the “brick and mortar” structure, since no passive diffusion is considered in the system right 

now, we apply bounce back boundary condition for corneocytes. Periodic boundary condition is used in 

the lateral direction, except for the effective lateral diffusion calculation system, in which constant 

concentration is fixed at the two boundaries in the lateral direction. The Neumann boundary of zero flux 

is applied at the top of patch. 

 For homogenized structure, the same boundary conditions are applied at the system boundaries as 

the “brick and mortar” system, except that there are no corneocytes, therefore no bounce back boundaries, 

inside of SC layer.  

 For the interfaces between patch and SC layers, equilibrium partition is used for mass transfer 

across interfaces, and Neumann boundary of zero flux is applied at the interfaces. 

6.3.4 System Parameters 

 We use fentanyl as the model drug, which was reported to have an averaged diffusion coefficient 

of 1.2 × 10−7 cm2/s, and oleic acid as the enhancer, which has the averaged diffusion coefficient of 

2.65 × 10−8 cm2/s in the lipid of SC. In patch, fentanyl and oleic acid are assumed to have the same 

diffusion coefficient of 1.0 × 10−9 cm2/s. The partition coefficients of fentanyl and oleic acid from patch 

to SC are the same, which is 0.14. All these parameters can be found in Rim’s paper[221]. 

6.4 Results and Discussion 

6.4.1 Effects of Homogenization 

 To test the effects of homogenization, we will compare the flux value calculated from a specific 

“brick and mortar” structure and the flux from the homogenized system with the same size and boundary 

conditions. Only one component is considered. Fig.6.2 shows the influence of number of cells in each cell 

layer of the SC in the “brick and mortar” structure. The result indicates that when periodic boundary 

condition is applied, the one-cell-per-layer representation is large enough to obtain reliable averaged out 

flux at the boundary. Therefore, all of our following calculations based on “brick and mortar” structures 

will use one cell in each layer and periodic boundary in the lateral direction. 

 

Fig. 6. 2 Flux in “brick and mortar” structure with slip ratio 0.4, cell length10 um and 10 

layers of cells. Different number of cells in each layer is compared.  
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 To test the homogenization effects on the out flux, two conditions are applied here. One is the 

pure SC layer with constant inlet boundary concentration of 0.09 g/cm3 and outlet concentration of zero.  

The other is SC and patch layers with initial drug concentration of 0.09 g/cm3 in patch, and the thickness 

of patch is 5 um. As is shown in Fig.6.3, generally speaking, the homogenized system can get similar flux 

as the “brick and mortar” structure after system reaches steady state or after the flux peak. However, the 

duration time to reach steady state or reach the peak flux is much longer for homogenized system than the 

“brick and mortar” system. Also, for the SC and patch structure, the peak flux value for homogenized 

system is smaller than the “brick and mortar” structure. If we use larger corneocytes, we can capture the 

similar tendency, and the steady state errors tend to be even larger. This may indicate that if we are 

interested steady state flux or the flux after the peak, a homogenized system may be enough to capture the 

properties that we want, as long as the cell size is not too large. But the information related to transition 

state, such as the duration time to reach steady state and the peak flux value, may not be obtained from 

this homogenization method directly. This is mainly due to the way we define the effective diffusion in 

the system. Since the effective diffusion coefficient is calculated based on steady state flux only, the 

transition information is lost in the homogenization. 

                     (a)               (b) 

          
                      (c)                (d) 

           

Fig. 6. 3 Comparison of flux in “brick and mortar” and homogenized systems. Cell slip ration 

is 0.4, and the number of cells layers in the SC is 10. (a) and (b) have cell size of 10 um, (c) 

and (d) have cell size of 40 um.  (a) and (c)  are systems with only SC layer. (b) and (d) are 

systems with SC and patch layers. 
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6.4.2 Effects of Different Parameters for “Brick and Mortar” System 

 Since the homogenization may not be a good estimation of the physical system, now we will 

focus on the “brick and mortar” structure directly and test the sensitivity of out flux to different 

parameters of the system. We use the parameters in Table.1 as the base case. By varying each parameter 

in the base case, we can do the sensitivity test. 

Table. 6. 1 Test Parameters for Homogenized System 

 

6.4.2.1 Effects of Drug Diffusivity in Patch 

 Fig.6.4 shows the flux and drug distributions (Drug amount is normalized to lattice volume) in 

the two-layer system with different drug diffusivities in patch. It turns out that the influence of drug 

diffusivity in patch does not have much influence on the flux and drug distribution, since all the curves 

are almost identical.  

         (a)    (b)        (c) 

   

Fig. 6. 4 Flux and drug distributions in the patch-SC system with different drug diffusion 

coefficients in patch. (a) Flux, (b) Total drug amount left in patch, and (c) Total drug amount 

in SC.   

 However, if we look at the peak positions in Fig.6.4a, as is shown in Fig.6.5, we can find that by 

increasing the diffusivity of drug in patch, the peak time will be shifted earlier a little bit, and the peak 

flux will increase a little as well. But the shift of time and the increase of flux are very small, and they 

seem to have a small influence in the system, indicating that the mass transfer in the system is not 

governed by diffusivity of drug in patch. 
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Fig. 6. 5 Peak time and peak flux with different drug diffusion coefficients in patch.  

6.4.2.2 Effects of Drug Diffusivity in SC 

 By increasing the diffusion coefficient of drug in SC layer, we can observe an obvious increase of 

drug flux in the system (shown in Fig.6.6). The drug concentration in patch will decrease faster with 

higher diffusivity in SC layer; however, the drug in SC will decrease faster as well. The total amount of 

drug in SC layer is determined by the relative speed of inlet from patch and outlet to sink boundary. 

Faster diffusion speed in SC will increase the outlet and thus lead to smaller amount of drug in SC layer.  

         (a)    (b)        (c) 

 

Fig. 6. 6 Flux and drug distributions in the patch-SC system with different drug diffusion 

coefficients in SC layer. (a) Flux, (b) Total amount of drug left in  patch, and (c) Total drug 

amount in SC.    

 A more careful investigation on the peak flux information shows that the peak flux values has 

almost linear relationship with the diffusion coefficient of drug in SC layer (shown in Fig.6.7). Actually, 

the mathematical components of the system, including the partition and the flux equations, are linear 

function of concentration gradient. And all of these components are linked together in series. Therefore, if 

the amount of drug in patch does not decrease too much, we should be able to get a linear relationship 

here. Also, we can find that the higher diffusion in SC will shift the peak time earlier, and the shift is not 

linearly with diffusivity. 
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Fig. 6. 7 Peak time and peak flux with different drug diffusion coefficients in SC.  

6.4.2.3 Effects of Partition Coefficient 

 The flux of drug will increase with an increase of the partition coefficient at the patch/SC 

interface (shown in Fig.6.8). Drug amount left in patch will decrease with faster speed as the partition 

coefficient increases, because higher partition coefficient will increase the transfer from patch to SC. The 

consequence is higher inlet to the SC and therefore, the amount of drug in SC layer will increases as the 

partition coefficient increases. 

         (a)    (b)        (c) 

 

Fig. 6. 8 Flux and drug distributions in the patch-SC system with different partition 

coefficients at patch/SC interface. (a) Flux, (b) Total amount of drug left in patch, and (c) 

Total drug amount in SC.    

 The peak flux will increase linearly with the increase of partition coefficient and the peak time 

will decrease with the increase of partition coefficient (shown in Fig.6.9).  The reason for the linearity 

should be the same as what we mentioned before in section 6.4.2.2. 
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Fig. 6. 9 Peak time and peak flux with different partition coefficients.  

6.4.2.4 Effects of Initial Patch Concentration 

 As is shown in Fig.6.10, the flux of drug, the amount of drug left in patch, and the amount of drug 

in SC layer will increase as the patch concentration increases. This is just simply because the inlet flux 

into SC layer increases as the patch concentration increases, due to the linear partition at the interface. 

           (a)    (b)                (c) 

 

Fig. 6. 10 Flux and drug distributions in the patch-SC system with different initial patch 

concentrations. (a) Flux, (b) Total amount of drug left in patch, and (c) Total drug amount in 

SC.    

 As we can expect, the linear property of the system leads to the linear relation of the peak flux to 

the initial patch concentration (shown in Fig.6.11). An interesting observation is that the peak time is 

almost unchanged as the initial patch concentration increases. This is also due to the linear property of the 

system. The larger initial concentration in patch will only “rescale” the numerical values in the system to 

a larger value, but the relative relation of numerical values will stay the same. 
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Fig. 6. 11 Peak time and peak flux with different initial patch concentrations. 

6.4.2.5 Effects of Patch Thickness 

 The patch thickness seems to have small effects on the drug flux in the system. Fig.6.12 shows 

that the drug flux will decay faster with smaller patch thickness. However, when the patch thickness is 

larger than a certain value, the difference in the decay speed will be indistinguishable in a short period of 

time. This flux decay is mainly due to insufficient amount of drug in the patch. Therefore, we can observe 

smaller amount of drug both in patch and SC when the patch thickness decreases. 

            (a)      (b)                    (c) 

 

Fig. 6. 12 Flux and drug distributions in the patch-SC system with different patch thickness. 

(a) Flux, (b) Total amount of drug left in patch, and (c)  Total drug amount in SC.  

 Fig.6.13 shows that the patch thickness has a limited influence on the peak flux and peak time. As 

the thickness increases, both peak time and peak flux will increase and then reach a maximum value. This 

indicates that when the patch thickness is large enough, it will have little influence on the mass transfer in 

the system. 
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Fig. 6. 13 Peak time and peak flux with different initial patch concentrations.  

6.4.2.6 Comparison of Different Parameters 

 Fig.6.14 compares the peak time and peak flux under different parameters. The changes of the 

testing parameters are in the unit of base parameters shown in Table.6.1. The results indicate that the flux 

in the system is governed by the partition coefficient at patch/SC interface, the initial patch concentration 

and the diffusivity of drug in SC layer. And the peak flux has almost linear relationship with these three 

parameters. Patch thickness and patch diffusion coefficient seems to have very little influence on flux in 

the test range. We should note that if we change these two parameters to some extreme values, they could 

become the governing factors of the system.  

          

Fig. 6. 14 Comparison of peak flux (left) and peak time (right) under different testing 

parameters. 

 The peak time of the system is more sensitive to the diffusion coefficient of drug in SC, patch 

thickness and partition coefficient at patch/SC interface. Of these three parameters, the diffusion 

coefficient of drug in SC has the largest effects. The peak time will be delayed as the patch thickness 

increases. 
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 Therefore, on the whole, within the testing range, the governing factors for the system should be 

the partition coefficient at patch/SC interface and the diffusion coefficient of drug in SC layer. 

6.4.3 Effects of Enhancer 

 As is previously mentioned, the solution of homogenized system may deviate from the “brick and 

mortar” system at transient state. For the anisotropic diffusion of drug with enhancer, the system will 

always be in the “transient state”, as long as the amount of enhancer in the patch is finite. Therefore, the 

simple homogenization method may not be an ideal model for such a system, and here we will test the 

effects of enhancer in “brick and mortar” structure directly. 

 For testing purpose, we use a simple linear relation to demonstrate the effect of local 

concentration of enhancer on the local diffusion coefficient of drug, which was proved in previous work 

by Rim, etc.[221]: 

 𝐷𝑑𝑟𝑢𝑔 = 2.03 × 10−6𝑐𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 + 1.2 × 10−7 ( 6. 4. 1 ) 

where the “drug” stands for fentanyl and the “enhancer” stands for oleic acid. The unit of diffusion 

coefficient is cm2/s, and the unit of concentration is g/cm3. A simplified patch-SC structure is used, which 

is the same as what we applied for testing the effects of homogenization in section 6.4.1. The length of 

cell in SC layer is assumed to be 10 um and there are 10 layers of cell in this layer. Patch has a finite 

thickness of 5 um. Periodic boundary condition is applied in the lateral direction. The diffusion 

coefficient of enhancer is assumed to be independent of the concentration of drug and enhancer itself, 

with the constant value of 2.65 × 10−8 cm2/s. The partition at the patch/SC interface is assumed to be 

the same for both patch and enhancer, with the value of 0.14. By adjusting the initial concentrations of 

enhancer in the patch (0, 0.06, 0.13, 0.20, 0.25 g/cm3), we can check the influence of enhancer on the flux 

of the system. 

          

Fig. 6. 15 Outlet flux with different initial concentrations of enhancer in patch. Enhancer has 

higher diffusivity in SC than drug. (left) Drug flux. (right) Enhancer flux. 

 Fig.6.15 shows the flux at the outlet boundary of SC layer for drug and enhancer with different 

initial concentration of enhancer in patch. It is not surprising that the larger concentration of enhancer 

leads to larger flux of drug in the system. The flux of enhancer is also higher with larger initial 

concentration in patch. However, the peak flux time for drug does not necessarily match the peak flux 

time for enhancer. In this system, the peak time for drug is much earlier than the peak time for enhancer. 
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Notice that the diffusion coefficient for drug is almost one to two magnitudes higher than it is for the 

enhancer. Therefore, enhancer will travel much slower than drug. In the meantime, the drug concentration 

in the patch will drop, which will limit the inlet of drug into the SC layer. These two factors will lead to 

the mismatch of the peak time of the two components. 

 If we choose an enhancer that will travel faster than drug, we can actually observe earlier flux 

peak for enhancer than the drug (shown in Fig.6.16). In Fig.6.16, the diffusion coefficient of drug in SC 

layer is set to be 8.0× 10−7cm2/s, which is 6 times larger than the diffusion coefficient of drug. 

 

Fig. 6. 16 Outlet flux with different initial concentrations of enhancer in patch. Enhancer has 

higher diffusivity in SC than drug. (left) Drug flux. (right) Enhancer 

 Fig.6.17 shows the peaks time and the peak flux value of drug with different initial concentration 

of enhancer in the patch. It indicates that the peak time will be “lagged” to later time with higher initial 

concentration of enhancer, if the enhancer has smaller diffusivity than drug; while the peak time could be 

“pushed” earlier with higher concentration of enhancer, if the enhancer has higher diffusivity than drug. 

The peak flux value in these two cases does not vary too much. This gives us a hint that we can adjust the 

peak time of the drug by using different kinds of enhancers in the system. Enhancer with faster diffusion 

speed than drug may push the peak time earlier; while the enhancer with mush slower diffusion speed 

may drag the peak time later.  

 

Fig. 6. 17 Peak time and peak flux value of drug with different enhancer concentrations. (left) Enhancer 

has smaller diffusivity than drug. (right) Enhancer has higher diffusivity than drug.      
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 Fig.6.17 also shows that the enhancer will increase the peak flux of drug in a linearly manner, 

which might be mainly due to the linear relationship between the local concentration of enhancer and the 

local diffusion coefficient of drug depicted in equ.6.4.1. 

6.5 Conclusion 

 In this chapter, we mainly introduced a new numerical method, Lattice Boltzmann Method, to 

simulate the transdermal drug delivery system. Two kinds of transdermal structures are discussed: “brick 

and mortar” structure and a simple homogenized structure. We demonstrated that the homogenized 

system is able to obtain similar steady state flux as the “brick and mortar” structure; however, in the early 

transient region, their flux value can be different. 

 We tested the influence of different system parameters on the outlet flux of drug, the drug 

distribution in each layer, and the peak flux and peak flux time. It turns out that in this system, the rate-

determine step for mass transfer should be the partition between patch and SC layers and the diffusion in 

the SC layer.  

 The influence of enhancer is tested. Our results show that by adding enhancers, the drug flux can 

be significantly increased. However, the peak time of drug does not necessarily match the peak flux time 

for enhancer. The peak time of drug might be adjusted (pushed earlier or dragged later) by using different 

kinds of enhancers, which has higher/smaller diffusivity than drug in the system. 
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Future Work 

I. Diffuse Charge Dynamics in Electric Double Layer Capacitors 

 It should be straightforward to test the high potential system. When the applied potential is high, 

the charge v.s. potential should not follow the linear relation and the steric effect can be higher. The stern 

layer capacitance can be added into the system by changing the value of 𝛿 to non-zero values directly or 

by MD simulations to obtain the capacitance value numerically. It is important to extend the simulation 

system into 3D to monitor the microstructure of real electrode systems. Also, it should be possible to add 

the heat convection effects into the mass transfer process in a modular manner. 

II. Dendrite Formation on the Anode of Li-ion Batteries 

 The formation of SEI layer plays an important role in the dendrite formation process. The SEI 

effects can be added to the system by using Monte Carlo Method to adjust the local reactivity according 

to an imaginary thin layer at the electrode-electrolyte interface, or by using Lattice Spring Model to 

simulate the dendrite-SEI interaction directly. The growth induced convection and heat convection in the 

electrolyte can be added to the model in a modular manner. Also, it should be possible to extend the 

model into 3D straightforwardly. 

III. Intercalation Reaction in Graphite Electrode of Li-ion Batteries 

 It should be possible to add the effect of SEI in a modular manner, which will increase electrode 

resistance and consume electrolyte. A whole cell simulation (including the intercalation reaction of 

cathode materials) can be useful to foretell the performance of a battery system, and can be simulated in 

the similar way as we discussed in the thesis. Different micro-filler (spheres and fibers, etc.) and their 

distributions can be tested to optimize the battery performance. 

IV. Transdermal Drug Delivery 

 A more accurate homogenization method is needed to simplify the simulation when we extend 

the system into 3D. This can be done by following the more sophisticated homogenization methods in 

other porous structure studies. Non-regular cell morphologies can be introduced into the system to 

represent more realistic condition. Passive diffusion of drug should be added into the model in a 

straightforward way.  
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