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Abstract of the Dissertation 

 

An Ensemble Three-Dimensional Constrained Variational Analysis (3DCVA) 

Method to Derive Large-Scale Forcing Data for Single-Column Models 

by 

Shuaiqi Tang 

Doctor of Philosophy 

in 

Marine and Atmospheric Sciences 

Stony Brook University 

2015  

 

Atmospheric vertical velocities and advective tendencies are essential as large-

scale forcing data to drive single-column models (SCM), cloud-resolving models (CRM) 

and large-eddy simulations (LES).  They cannot be directly measured or easily calculated 

with great accuracy from field measurements.  In the Atmospheric Radiation 

Measurement (ARM) program, a constrained variational algorithm (1DCVA) has been 

used to derive large-scale forcing data over a sounding network domain with the aid of 

flux measurements at the surface and top of the atmosphere (TOA).  We extend the 

1DCVA algorithm into three dimensions (3DCVA) along with other improvements to 

calculate gridded large-scale forcing data.  We also introduce an ensemble framework 

using different background data, error covariance matrices and constraint variables to 

quantify the uncertainties of the large-scale forcing data.  The results of sensitivity study 



iv 
 

show that the derived forcing data and SCM simulated clouds are more sensitive to the 

background data than to the error covariance matrices and constraint variables, while 

horizontal moisture advection has relatively large sensitivities to the precipitation, the 

dominate constraint variable.  Using a mid-latitude cyclone case study in March 3
rd

, 2000 

at the ARM Southern Great Plains (SGP) site, we investigate the spatial distribution of 

diabatic heating sources (Q1) and moisture sinks (Q2), and show that they are consistent 

with the satellite clouds and intuitive structure of the mid-latitude cyclone.  We also 

evaluate the Q1 and Q2 in analysis/reanalysis, finding that the regional 

analysis/reanalysis all tend to underestimate the sub-grid scale upward transport of moist 

static energy in the lower troposphere.  With the uncertainties from large-scale forcing 

data and observation specified, we compare SCM results and observations and find that 

models have large biases on cloud properties which could not be fully explained by the 

uncertainty from the large-scale forcing data and observation.  The analysis of GCM and 

satellite data further verifies the model biases globally and climatologically. 
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Chapter 1. Introduction 

 

Global Climate Models (GCM) provide us a relatively complete description of the 

climate system and are widely used to forecast global and regional climate in future years, 

decades, and centuries.  However, GCMs still poorly simulate certain phenomena such as 

Madden-Julian Oscillation (e.g. Zhang 2005), monsoons (e.g. Annamalai et al. 2007), the 

Inter-Tropical Convergence Zone (ITCZ) (e.g. Lin 2007) and the El-Niño Southern 

Oscillation (ENSO) (e.g. AchutaRao and Sperber 2006).  Although computing power is 

growing rapidly, the resolution of major GCMs is still too coarse to simulate certain 

physical processes such as convections, turbulence, and cloud macro- and micro-physics. 

To represent these physical processes, parameterizations are always needed, which are 

considered as major error sources of GCMs.  Therefore, it has been a subject of intensive 

research in the last several decades to develop sophisticated parameterizations to reduce 

model errors to the greatest extent possible. 

One approach to improve physical parameterizations is using Large-Eddy 

Simulations (LES) (e.g. Khairoutdinov and Kogan 2000; Zhang et al. 2012), Cloud-

Resolving Models (CRM) (e.g. Khairoutdinov and Randall 2003; Ran and Li 2013), and 

Single-Column Models (SCM) (e.g. Del Genio et al. 2005; Xie et al. 2005) as tools.  LES 

and CRM can improve our understanding of certain physical processes such as cloud and 

turbulence because of the finer resolutions.  The information from LES and CRM is then 

simplified and used to design GCM parameterizations.  SCM is a helpful tool to simulate 

one column of a GCM to test the physical parameterizations against observations.  This 
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strategy to use LES/CRM/SCM to develop and test physical parameterizations in GCM is 

illustrated in Figure 1.1.  Observations gathered globally can be used to evaluate the 

performance of GCM simulations.  Those intensive observations from specific field 

campaigns and/or observational sites can be used to derive large-scale dynamics forcing 

LES/CRM/SCM to develop and test physical parameterizations specifically.  The large-

scale dynamics prescribe the mean condition of the atmosphere and determine if the 

convection could be trigged, how strong or how weak the turbulence would be, how the 

current meteorology condition will evolve in the future, etc.  In LES and CRM, some 

statistical quantities of clouds like the net cloud mass flux, hydrometeor mixing ratio and 

cloud fraction are strongly constrained by the prescribed large-scale forcing data 

(Khairoutdinov and Randall 2003).  Thus, obtaining accurate large-scale forcing data are 

important for realistic LES/CRM/SCM simulations.  “Derived fields” such as vertical 

velocity and advective tendencies are especially important but difficult to determine 

because they are not directly measured and involve horizontal derivatives of the mean 

flow in calculation which could contain large errors.   

Although it is possible to directly obtain large-scale forcing data from numerical 

weather prediction (NWP) or reanalysis products with global coverage, parameterization 

deficiencies in the operational models can strongly affect the forcing data by introducing 

large errors (e.g. Morrison and Pinto 2004; Xie et al. 2003).  Past forcing data are 

therefore primarily derived by careful objective analysis of atmospheric sounding data 

(e.g. Lin and Johnson 1996a; Ooyama 1987; Schumacher et al. 2007).  Many of the 

observational data are obtained from the Atmospheric Radiation Measurement (ARM) 

program.  ARM program is funded by the U.S. Department of Energy (DOE) focused on 
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developing highly instrumented ground stations to study clouds, aerosols and radiative 

transfer for more than two decades.  It has high-density, multi-source surface 

measurements in some main sites like the Southern Great Plains (SGP), the North Slope 

of Alaska (NSA), and the Tropical Western Pacific (TWP) sites.  These sites are typically 

a couple hundred kilometers across, representing an atmospheric column in a GCM.  

Also, there are many intensive field campaigns operated at ARM sites, which measure 

high-frequency surface and upper-air atmospheric quantities.  These intensive 

measurements provide us a great platform to calculate more accurate large-scale forcing 

data. 

Zhang and Lin (1997) developed a constrained variational analysis algorithm 

(hereafter 1DCVA) to improve the accuracy of atmospheric forcing data by enforcing the 

consistency of the atmospheric transport with auxiliary measurements at the surface and 

the top of the atmosphere (TOA).  This method has been used in the ARM program and 

several other field campaigns (e.g. Schumacher et al. 2007; Schumacher et al. 2008; Xie 

2005; Xie et al. 2006; Xie et al. 2010; Zhang et al. 2001) for more than one decade.  It 

calculates the time varying vertical profiles of large-scale forcing data for an atmospheric 

column by adjusting state variables (horizontal wind u, v, water vapor mixing ratio q, dry 

static energy s. refers as background data hereafter) from sounding measurements to 

satisfy the conservations of mass, moisture, heat, and momentum.  To ease the 

requirement of this method on high-density sounding measurements which are only 

available during specific intensive operational periods (IOPs), and to reduce errors in the 

NWP-derived forcing data, Xie et al. (2004) combined NWP background data with 

observed constraint variables to obtain long-term forcing data (the ARM Continuous 
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Forcing Product).  Moreover, Huang (2012) made improvements to this algorithm by 

adding the hydrostatic balance constraints in each vertical layer and incorporating vertical 

and temporal correlations of errors in the 1DCVA.  These algorithms so far have been 

designed for a one-dimensional atmospheric column representing the horizontal average 

of a spatial domain, which represents a GCM grid box of a few hundred kilometers across.  

As climate models evolve towards higher spatial resolutions, there is the need for 

resolution-dependent forcing data to test and improve physical parameterizations in these 

models.  Xie et al. (2014) derived single-column forcing data for different domain sizes 

centered at the SGP central facility.  However, for a small-size domain, surface 

observations are severely under-utilized.  The first objective of this thesis is to extend the 

1DCVA method into 3-Dimensional Constrained Variational Analysis (hereafter 3DCVA) 

at higher spatial resolution with additional features to improve the data quality, and to 

develop an ensemble framework to investigate the sensitivity of large-scale forcing data 

to different inputs of 3DCVA and quantify the uncertainties.   

As shown in Yanai et al. (1973), the large-scale forcing data can be used to 

calculate the Q1 (apparent heating sources) and Q2 (apparent moisture sinks).  Q1 and 

Q2 have been widely used to reveal the role of diabatic heating in atmospheric processes 

such as the Madden-Julian Oscillation (MJO)  (e.g. Lin et al. 2004; Yanai et al. 2000), 

monsoons (e.g. Garcia and Kayano 2011; Hung and Yanai 2004), energy and moisture 

budget (e.g. Katsumata et al. 2011; Lin and Johnson 1996b; Yang and Smith 1999) etc.  

Neglecting ice processes, the equations of Q1 and Q2 can be written as: 

 
' '

Q1 rad v

s s s
V s Q L c e

t p p




  
       
  

   (1.1) 
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 
' '

Q2 v v v

q q q
L V q L c e L

t p p




   
        

   

   (1.2) 

Where ps C T gz  is the dry static energy; q is vapor mixing ratio; V is the horizontal 

wind in vector form; Lv is the latent heat of vaporization; radQ is radiative heating rate; c 

is condensation rate; e is evaporation rate; ω is vertical velocity in pressure coordinate; p 

is pressure; the overbar refers to horizontal average in each grid (omitted in later 

equations) and the prime refers to a deviation from the average.  Most of the previous 

research on Q1 and Q2 are focused on their 1D vertical profiles.  Recently, Ling and 

Zhang (2013) and Wright and Fueglistaler (2013) compared the global distribution of 

climatological diabatic heating profiles in different reanalyses.  They found that the gross 

features of Q1 are consistent in mid-latitude and in the middle and lower troposphere, 

while in the tropics and in the upper troposphere/lower stratosphere there are large 

differences among the different reanalysis products.  As there are quite large uncertainties 

in the climatological means, it can be expected that regional Q1 and Q2 in the reanalyses 

on transient time scales would contain even larger uncertainties.  With the 3DCVA 

developed, this thesis will present a spatial distribution of Q1 and Q2, and evaluate the 

corresponding Q1 and Q2 in several analysis/reanalysis products associated with a mid-

latitude cyclone case. 

 Clouds are the largest error source in current GCM simulations.  Cloud 

simulations not only have large discrepancies from satellite- and ground- based 

observations, but also differ a lot among different models.  Zhang et al. (2005) found that 

the majority of ten GCMs only simulated 30% to 40% of the observed middle clouds and 

half of them underestimate low clouds comparing to satellite cloud analysis from ISCCP 
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(International Satellite Cloud Climatology Project) and CERES (Cloud and the Earth’s 

Radiant Energy System).  Xie et al. (2005) evaluated 9 SCMs and 4 CRMs using 

MICROBASE (ARM Baseline Microphysical Retrieval) ground measurements for a mid-

latitude cyclone system, and found that the models generally captured the bulk 

characteristics of frontal clouds but differed significantly in the detailed structures.  Klein 

et al. (2009) compared the simulations from 17 SCMs and 9 CRMs for an Arctic mixed 

phase cloud case.  They found that the median simulated liquid water path (LWP) is 

about one-third of the observed value, and the spread among models are quite significant 

due to different physical schemes.  Jiang et al. (2012) examined 19 CMIP5 (Coupled 

Model Intercomparison Project phase 5) models and found both model-observation 

difference and model spread are large especially at the upper troposphere levels.  With 

the uncertainties from large-scale forcing data and observations specified, this thesis tries 

to diagnose the sources of model-observation bias and to isolate the errors from physical 

parameterizations. 

The main objectives of this thesis are:  

(1) introducing a 3DCVA approach;  

(2) introducing an ensemble framework and analyzing the sensitivity of 3DCVA 

atmospheric derivative fields to input data;  

(3) presenting a 3-dimensional structure of Q1 and Q2 associated with a mid-latitude 

cyclone and evaluating the corresponding analysis/reanalysis; and  

(4) diagnosing the source of cloud bias in the Community Atmospheric Models (i.e. 

CAM4 and CAM5) by using the 3DCVA products.   
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This thesis is organized as below: Chapter 2 describes the method of the 3DCVA.  

Chapter 3 introduces an ensemble framework and investigates the sensitivities due to 

different inputs of 3DCVA.  Chapter 4 presents a spatial distribution of Q1 and Q2 

associated with a mid-latitude cyclone and evaluates the corresponding 

analysis/reanalysis.  Chapter 5 shows a model-observation comparison and diagnoses the 

model bias.  Chapter 6 summarizes the conclusions and discusses future work.  
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Chapter 2. The Method of Three-Dimensional Constrained Variational 

Analysis (3DCVA) 

 

2.1 Model of the 3DCVA 

The general idea of 3DCVA is to adjust the background data (horizontal wind u, v, 

water vapor mixing ratio q, dry static energy s) within their uncertainties to satisfy some 

constraint equations.  Following Zhang and Lin (1997), the column-integrated 

conservations of mass, water vapor and heat are used as constraint equations:  

1 sdP
V

g dt
          (2.1) 

l

s rec

q q
Vq E P

t t

 
    

 
    (2.2) 

l

TOA SRF v rec v

s q
Vs R R L P SH L

t t

 
      

 
 (2.3) 

In the above constraint equations, the bracket represents vertical integration from 

the surface to the top of atmosphere (TOA); V is the horizontal wind in vector form, with 

its west-east and south-north components as u and v, respectively; g is gravity 

acceleration constant; Ps is surface pressure; t is time; q is water vapor mixing ratio; 

ps C T gz  is the dry static energy, where Cp is the specific heat capacity at constant 

pressure, T is temperature, and z is geopotential height; sE  is surface evaporation rate; 

recP  is surface precipitation rate; Lv is the specific latent heat of vaporization; lq  is cloud 
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liquid water content; TOAR and SRFR  are net downward radiation flux at TOA and surface; 

SH is surface sensible heat flux.  Ice processes and advections of cloud hydrometeors are 

neglected for simplicity.  The terms in the right hand sides of the equations are treated as 

“truth” and referred to as constraint variables in this thesis.  In reality, the constraint 

variables would not be error-free.  The errors in the magnitude and spatial distribution of 

constraint variables will propagate to the entire atmospheric column.  Generally speaking, 

the surface and TOA constraint variables would shift the entire vertical profiles more 

than change the shape to consist the column budget.  Although the possible errors in 

constraint variables may bring the system away from the truth, it still ensures that the 

whole system is self-consistent.  In the constraint of these variables, the background data 

are carefully adjusted; vertical velocity, advections and other variables needed for cloud 

models are calculated (Figure 2.1).  

When calculating Q1 as the residual of large-scale dynamics (Eq. 1.1), spurious 

heating and cooling centers are often found at upper layers near the tropopause, where no 

strong diabatic heating sources or sinks should exist except radiation.  At these layers, the 

vertical gradient of s is large, so it amplifies the errors of vertical velocity to the errors of 

Q1 via vertical advections.  In the 1DCVA, it uses spatial smoothing on the background 

data at upper levels to remove the spurious heating and cooling centers.  In the 3DCVA, 

we introduce another physical constraint to reduce the tropopause errors. 

Q1 in the atmosphere includes latent heating, radiative heating and sub-grid scale 

heat transport.  In the calm atmosphere without clouds, latent heating and sub-grid scale 

heat transport are zero (or close to zero), and the only heating source is radiative 
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heating/cooling.  The radiative heating rate should be equal to Q1 calculated from the 

large-scale dynamics.  Therefore, we impose a radiative constraint:   

   
 

Q1 rad

ss
Vs Q

t p


   
 

    (2.4) 

at each layer above observed cloud top or a specified height (400hPa in this study), 

whichever is higher.  In this thesis, cloud top pressure data is obtained from NASA 

Langley (or from ARM External Value-Added Product (VAP)): Minnis Cloud Products 

Using VISST (Visible Infrared Solar-infrared Split Window Technique) Algorithm 

(Minnis et al. 2008) from satellite GOES 8, and radiative heating rate is calculated by 

Rapid Radiative Transfer Model for GCMs (RRTMG) using the temperature and 

moisture profiles from the background data.  Because we do not have the cloud water and 

cloud ice information, we just calculate the radiative heating rate in cloud-free condition 

and use the radiative heating rate above the cloud top described before, so the impact of 

cloud top to the heating rate above it is ignored.  The new constraint provides additional 

information to upper atmosphere and removes all spurious large heating and cooling 

centers. 

 The anomalies of atmospheric state variables are usually assumed as following 

Gaussian distribution.  This is a reasonable assumption for u, v, and s, but not for q at 

upper layers.  In the upper atmosphere, the value of q is quite small, so the Gaussian 

distribution can make q less than zero which is unphysical.  To solve this problem, we 

rewrite the variable q to
lnqe , and then Eq. 2.2 becomes:  
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,      where ln
l

s rec

Q

Q q
V E P Q q

t t

e
e

 
     

 
  (2.5) 

The error of Q follows Gaussian distribution better than q, and we adjust Q as a new 

variable instead of q.  It guarantees that q is positive definite no matter how large the 

adjustment of Q is.   

2.2 Numerical Algorithms 

 The adjustments of background data are obtained by minimizing the cost function 

from Zhang and Lin (1997): 

               1 1 1 1T T T T

o u o o v o o q o o s oI u u B u u v v B v v q q B q q s s B s s              

          (2.6) 

where u, v, q, s are column vectors of wind, water vapor mixing ratio and dry static 

energy for all grids in each time step.  For a three-dimensional domain with I×J 

horizontal grids and K vertical levels, column vector

 111 211 I11 I21 IJ1 IJ2 IJK, ,..., ,..., ,..., ,..., ,...,
T

u u u u u u u u ; v, q and s are similar.  The superscript 

T denotes the transpose of a vector; the subscript o denotes the initial state, and B 

represents error covariance matrix for each state variable.  To better calculate the fluxes 

and improve the convergence, we use the adjusted C-grid (Figure 2.2) for background 

data.  In the adjusted C-grid, u is at the center of east/west grid faces, v is at the center of 

north/south grid faces, s and q are at the center of all four grid faces and all the constraint 

variables (precipitation, radiation, surface fluxes) are in grid centers that represent grid 

averaging values.   
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 We use the Lagrange multiplier method to minimize the cost function I while 

subject the atmospheric state variables to the constraint equations.  The constraint 

equations (Eq. 2.1, 2.5, 2.3, and 2.4) can be written in the residual forms: 

1 s
mass

dP
A V

g dt
          (2.7) 

Q

lQ

water s rec

e q
A Ve E P

t t

 
     

 
    (2.8) 

l

heat TOA SRF rec

s q
A Vs R R LP SH L

t t

 
       

 
  (2.9) 

 
 

radiation rad

ss
A Vs Q

t p


   
 

    (2.10) 

So the 3DCVA model can be described as minimizing I while keeping all A=0.  Since the 

units of these residuals of constraints are different, we normalize these constraint 

equations by dividing the equations by the horizontal mean standard deviations (std.) of 

the time series of the original residual A.  Some tunable factors C are multiplied on the 

standard deviation (5 on std. of moisture constraints and 10 on std. of radiation 

constraints) aiming for improving convergence.  These tunable factors C would change 

the adjustments of u, v, q, s by telling the model to satisfy some constraints more strictly 

but satisfy some others less strictly.  The residuals of the constraint equations after 

adjustment need to be analyzed to choose appropriate factors C. 

 We define X = (u−uo, v−vo, q−qo, s−so)
T
  represents the adjustment vector of all 

background data, and rewrite the cost function I as: 
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  1TI X X B X       (2.11) 

Error covariance matrix B specifies how the variable X is adjusted.  Theoretically, B 

should be related to the difference between the first guess (background data) and the truth, 

but the truth is never known.  The 1DCVA uses the time variance of the background data 

plus instrument and measurement uncertainty to estimate the error covariance matrix, for 

a given background variable i and vertical level k, the diagonal value of the error 

covariance matrix is calculated by  

 var( ) unc
ik ikX X ik iB X        (2.12) 

where var(X) represents the variation of vector X, Xik is a time series in each spatial point 

in 1DCVA, and the unci represents the instrument and measurement uncertainty estimates 

which are 0.5 m s
-1 

for winds, 0.2K for temperature and 3% for specific humidity (Zhang 

and Lin 1997; Zhang et al. 2001).  All the non-diagonal values are 0, which assumes 

errors at different locations and for different variables are independent.  This independent 

error covariance may be over-simplified.  Huang (2012) calculated the correlations of the 

adjustments and found that there are strong correlations existing between different 

vertical levels, especially large positive correlations are found with the adjacent levels. 

 In ensemble 3DCVA with different inputs (see Chapter 3 for details), we use the 

anomaly covariance of different background data as the error covariance matrix.  For 

each variable at horizontal location i,j and vertical level k, we calculate the anomaly of 

each background data to the ensemble mean:   

 ( , ) ( , ) mean( , )ijk ijk ijkX b t X b t X b       (2.13) 
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Where b denotes background data, t denotes time, and mean(X,b) denotes the mean value 

of X of different background data.  We reshape the ijkX  from two dimensions (b,t) into 

a vector, the error covariance matrix is calculated by 

 
1 2 1 2cov( , )X XB X X         (2.14) 

where cov(a,b) represents covariance of two vectors a and b.  It removes the ensemble 

mean of the time variation and represents the spread of the ensemble background 

members.  In the future it is also possible to revise the calculation of error covariance 

matrix not for the whole time period, but for each time steps, so the error covariance 

matrix would become time dependent and would have different features in different 

atmospheric conditions. 

 Since the adjustments would be largely correlated with each other especially for 

adjacent points, we include the horizontal and vertical correlations to the surrounding 

points and neighboring levels (Figure 2.3).  For each variable not at the lateral and 

vertical boundaries, it has correlations to eight neighboring variables in horizontal and 

one variable at its upper level and one at lower level using Eq 2.14.  We still assume that 

there is no correlation between different variables, and no correlation between different 

time steps.  A sensitivity study of the impacts to the analyzed forcing data using different 

error covariance matrices will be addressed in Chapter 3.  Thus, the error covariance 

matrix can be written in a bulk matrix form: 



15 
 

  

0 0 0

0 0 0

0 0 0

0 0 0

u

v

q

s

B

B
B

B

B

 
 
 
 
 
 

     (2.15) 

 We introduce a Lagrange multiplier λ, and define a new cost function J as: 

     k k

k

J X I X A X        (2.16) 

subscript k represents all constraints in each grid box.  The minimization problem 

becomes solving the following linear equations: 

 
   

0
k

k

ki i

I X A X

x x


 
 

 
       (2.17) 

  0kA X          (2.18) 

where ix represents each variable in vector X (the same as jx  below).  If we treat all λk as 

another variable similar to ix , and let    *, iX X x   , we can rewrite the linear 

equations in a simple format: 

  *
0

i

J

x





       (2.19) 

Then, we use Newton’s iteration method to solve this linear equation.  The general idea 

solving an equation 𝑓(𝑥) = 0 using Newton’s iteration method is calculating the tangent 

line of 𝑓(𝑥) and its x-intercept to iteratively reach the point.  Specifically in 3DCVA, we 
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make the Taylor expansion of the gradient of J at point
*

iox , and ignoring higher order 

terms, the previous equation becomes:   

2
*

* *
0j

ji io io jo

J J J
x

x x x x


 

  
  

   
      (2.20) 

or 

 

2
*

* * j

j io jo io

J J
x

x x x




 
 

  
       (2.21) 

In 3DCVA, Error covariance matrix B is a large, sparse matrix and could be ill-

conditioned.  Directly calculating the inversion of an ill-conditioned matrix contains large 

numerical errors, so it is needed to avoid the inversion of B.  Note that the Eq. 2.21 could 

be rewritten as the following matrix form:  

 

1

1

2
2

0

k k
k

kk io jo jo
i io kj

kT io

kk
k

jo

A A
B

Ax x x B x xx
x

A
A

x










  
                      
       




 (2.22) 

We multiply a matrix 
0

0

0

B

I

 
 
 

( 0I  is identity matrix) to cancel the inversion of B.  After 

some derivation, the equation becomes 

 
02

2

0

k k
k

kk io jo jo
i io kj

kT io

kk
k

jo

A A
I B B

Ax x x x x Bx
x

A
A

x






  
                         

       




   (2.23) 



17 
 

We solve this linear matrix equation and update the variable 
*

iox , then repeat these 

procedure iteratively. 

The procedure of the 3DCVA is described below: 

1. Input the initial guess of background data, constraint variables, cloud top pressure 

and radiative heating rate data.  Pre-process the background data and constraint 

variables to the designed adjusted-C grids.  The data and interpolation method 

used in this thesis are described in Chapter 3.   

2. Set the initial values of all λs as 1.0 (the result is insensitive to the initial values of 

λs).  Calculate the error covariance matrix. 

3. Calculate 1
st
 and 2

nd
 derivative of A.  ( k

io

A

x




and 

k

io jo

A

x x



 
, see Appendix 1) 

4. Calculate 
*

jx  by solving the Eq. 2.23 using LSQR method (described later). 

5. Update 
*

oX  as
*( 1) *( ) *n n

jo jo jx x x   , where n is iteration index. 

6. Repeat step 3-5 with updated values. 

7. Continue the loop until the norm of the vector 
*

io

J

x

 
 
 

 is less than a certain 

threshold.  Considering the convergence speed and the accuracy of the algorithm, 

we use 0.01 as the default threshold, and the iteration stops when reaching 

maximum iteration number (20 in default).  If the maximum iteration number is 

reached, we release the threshold to one percent of the norm of 
*

io

J

x

 
 
 

at the first 

iteration.  If it still larger than the threshold, we consider this time step as “fail to 



18 
 

converge”, then skip this time step without adjustment.  Typically it will reach the 

maximum iteration number 20, but satisfy the released condition since the norm at 

the first iteration is quite large (usually more than 10
6
 times larger than the final 

norm).  The absolute value of the norm of 
*

io

J

x

 
 
 

will change when tuning the 

tunable factor C which changes the magnitude of constraint residuals. 

8. The adjusted fields are then used to calculate the large-scale forcing data for each 

grid. 

The Eq. 2.23 is a typical type of linear system 𝐴𝑥 = 𝑏 where A is a large, sparse 

matrix.  For a 3DCVA domain used in this thesis, with 10×9 horizontal grids and 27 

vertical levels, A is a ~10
4
×10

4
 matrix.  Moreover, the matrix A is ill-conditioned and the 

condition number increases along with the increasing grid numbers, the increasing 

constraint numbers, and the inclusion of the horizontal and vertical correlations.  Again, it 

will contain large numerical errors if directly solving this ill-conditioned system by 

multiplying the inversion of A.  For better accuracy, we use a LSQR method (built in 

function in MATLAB) to solve the sparse linear matrix equation.  LSQR is a conjugate-

gradient method to iteratively solve the least squares solution x that minimizes the 

norm (𝑏 − 𝐴 ∗ 𝑥) (Barrett et al. 1994; Paige and Saunders 1982).  The LSQR method is 

more accurate and faster than directly solving the equation, but it is still quite time 

consuming and always reach its maximum iteration number 1000.  
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Chapter 3. Ensemble 3DCVA and Sensitivity Study 

 

3.1 Ensemble 3DCVA 

 In the 3DCVA algorithm discussed in Chapter 2, there are three important inputs 

that can impact the accuracy of the results: background data, error covariance matrix and 

constraint variables.  Background data are the first guess of the 3DCVA; all the 

adjustments are based on the original background data.  Error covariance matrix 

determines how the background data are adjusted.  Constraint variables, which are the 

right hand sides of the constraint equations, control the budget of the whole system.  

Previous studies (Xie et al. 2004; Zhang et al. 2001) have shown that precipitation is the 

dominant constraint variables during precipitation periods.  To reduce the impact of 

uncertainties in these inputs and to analyze the sensitivities, we run 3DCVA using 

different combinations of six background data, five error covariance matrices and three 

constraint variables (Table 3.1) and calculate the ensemble mean.  The data used in this 

thesis are described below. 

 The six background data are obtained from reanalysis/analysis products (Table 

3.2).  They are the latest version of reanalyses with higher resolution and more 

sophisticated models and data assimilation systems comparing to the earlier generation of 

reanalysis data.  

 ERA-interim (Dee et al. 2011) reanalysis is produced by European Centre for 

Medium-Range Weather Forecasts (ECMWF) to replace its previous reanalysis 
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ERA-40.  This reanalysis uses a spectral model Integrated Forecast System (IFS, 

release Cy31r2) with 30 minutes time step and T255 (79km) horizontal resolution 

with 60 vertical model levels.  The data assimilation system it uses is a four-

dimensional variational (4D-Var) scheme with 12-hourly analysis cycles. The 

upper-level atmospheric fields (temperature, wind, humidity, etc) are assimilated 

separately with the analyses of near-surface parameters (2-m temperature and 2-m 

humidity), and are archived every 6-hourly.  

 CFSR (Saha et al. 2010) reanalysis is produced by the National Centers for 

Environmental Prediction (NCEP).  It uses a Coupled Forecast System model 

with a spectral atmospheric model at T382 (38km) horizontal resolution and 64 

vertical levels coupled with an ocean model.  The data assimilation system it uses 

for atmosphere is Gridded Statistical Interpolation (GSI) which is a three-

dimensional variational (3D-Var) scheme, but it includes the flow dependence to 

the background error variances and the First-Order Time interpolation to the 

Observation (FOTO) to account for the time aspect.   

 MERRA (Rienecker et al. 2011) reanalysis is produced by the National 

Aeronautics and Space Administration (NASA) focusing on the assimilation of 

NASA’s Earth Observing System (EOS) satellite data.  MERRA reanalysis uses 

the version 5.2.0 of the Gordard Earth Observing System (GEOS-5) atmospheric 

model and data assimilation system.  The GEOS-5 model is a finite-volume 

atmospheric GCM (AGCM) in ½° latitude by 2/3° longitude horizontal resolution 

with 72 vertical levels.  The data assimilation in MERRA is also 3D-Var GSI 

scheme with 6-hourly update cycles, but it uses an incremental analysis update 
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(IAU) procedure which applies the correction to the forecast model through 

additional tendency term.  It has rain rates from SSM/I and TRMM satellite 

assimilated but with low weight and weak impact on the system. 

 JRA-55 (Kobayashi et al. 2015) is produced by the Japan Meteorology Agency 

(JMA) to replace its previous reanalysis JRA-25.  It uses the operational semi-

implicit semi-Lagrangian global numerical weather prediction model in JMA as 

of December 2009 with TL319 (55km) horizontal resolution and 60 vertical levels. 

The data assimilation system is a 4D-Var scheme with variational bias correction 

(VarBC) for satellite radiances.  

 NARR (Mesinger et al. 2006) is the North American Regional Reanalysis 

produced by NCEP as a high-resolution, high-frequency regional reanalysis.  It 

uses NECP Eta Model and its data assimilation system R-CDAS, which is a 3D-

Var system.  The time interval is 3-hour, horizontal resolution is 32km and 

vertically it has 45 levels.  One most important feature in NARR is that it 

assimilates the observed precipitation by converting it into latent heat, so the 

model precipitation during the assimilation is close to that observed. 

 The Rapid Update Cycle (RUC; Benjamin et al. 2004) is the only operational 

regional analysis data used here as background data produced by NCEP.   It is 

also used in 1DCVA to produce continuous forcing data (Xie et al. 2004).  The 

analysis used in this thesis is RUC2 (implemented from year 1998 to 2002) with 

40km horizontal resolution, 40 vertical levels and 1 hour assimilation frequency, 

and we only use the 3-hour data (00Z, 03Z, 06Z, …) for the 3DCVA.  The RUC 

analysis also uses a 3D-Var data assimilation system. 
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All the background data are linearly interpolated into 0.5°×0.5° horizontal resolution, 3-

hourly time resolution, and 27 vertical levels from 1000 hPa to 100 hPa.   

 The constrained variables are mostly derived from ARM surface and TOA 

measurements.  The spatial distribution of the surface stations of ARM measurement 

platforms can be found in (Zhang et al. 2001), which includes the following datasets: 

 Surface Meteorological Observation Stations (SMOS) measuring surface 

precipitation, surface pressure, surface winds, temperature, and relative humidity. 

 Energy Budget Bowen Ratio (EBBR) stations measuring surface latent and 

sensible heat fluxes and surface broadband net radiative flux. 

 Eddy Correlation Flux Measurement System (ECOR) providing in situ half-hour 

averages of the surface vertical fluxes of momentum, sensible heat flux, and latent 

heat flux. 

 Oklahoma and Kansas mesonet stations (OKM and KAM) measuring surface 

precipitation, pressure, winds, and temperature. 

 Microwave Radiometer (MWR) stations measuring the column precipitable water 

and total cloud liquid water. 

 These surface measurements are interpolated into 0.5°×0.5° horizontal resolution 

covering the SGP domain (34.5-39°N, 95-100°W).  If there are actual measurements 

within the 0.5°×0.5° grid box, simple arithmetic averaging is used to obtain the value for 

that grid box.  Under circumstances that multiple instruments observe the same quantities, 

their measurements are merged in the arithmetic averaging process with a weighting 

function depending on their quality.  If there is no actual measurement in the grid box, the 
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Barnes scheme (Barnes 1964) is used with the length scale of Lx=50km, Ly=50km, and 

Lt=6hr to fill the missing boxes.  The satellite measurements of radiative fluxes and cloud 

top pressure are available at NASA Langley (Minnis et al. 2008) measured by the 

Geostationary Operational Environment Satellite 8 (GOES8) which is already in 0.5°×0.5° 

grid box.  The precipitation rate data is from the 4-km resolution gridded precipitation 

products from Arkansas-Red Basin River Forecast Center (ABRFC) based on WSD-88 

rain radar and gauge measurements, and is averaged into 0.5°×0.5° horizontal resolution 

and 3-hourly time resolution.   

 Except radiative fluxes and precipitation rate, other surface data all surfer the 

same problem: interpolation from several stations to regular grids.  The uncertainties 

from the interpolation could impact the column budget significantly in the absence of 

radiative fluxes and precipitation.  However, when there is modulate to strong 

precipitation, the precipitation will dominate the other constraint variables, while the 

uncertainties from other constraint variables become less important.  In this thesis, we 

mostly focused on precipitation period.  In the case of light precipitation or no 

precipitation, more accurate gridded surface data are needed for the accuracy of the 

column budget.  

 In the ensemble 3DCVA, we have found different sources of background data.  

However, we don’t have multiple sources for constraint variables.  Similar as in Xie et al. 

(2014), we consider a 40% fractional root-mean-square error (RMSE) for radar-based 

rainfall products, and use the upper bound (1.4 times estimated rain rate), lower bound 

(0.6 times estimated rain rate) and the estimated rain rate to form the ensemble members.  
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The 40% uncertainty is only considered on the magnitude of the rain rate, but the 

uncertainty of precipitation location is not considered.  

 We have two methods in hands to calculate the error covariance matrix.  One 

method is the original algorithm (Zhang and Lin 1997; Zhang et al. 2001) in 1DCVA, 

which is calculated from the timeseries of the background data plus instrument and 

measurement uncertainties (Eq. 2.12), with no correlation.  The other method is 

calculated on anomaly covariance of different background data in each spatial grid, with 

different correlation types.  In this method, we can have different correlation types of no 

correlation, vertical correlation only, horizontal correlation only, and both horizontal and 

vertical correlations.  In total we can have five error covariance matrices for ensemble 

members.   Totally we have 90 (6×3×5) 3DCVA members.  When testing the sensitivity 

to one input (such as background data), we average the 3DCVA results over the other two 

input datasets (such as error covariance matrix and precipitation rate).   

 In this thesis, we choose the ARM March 2000 intensive operational period (IOP) 

at the Southern Great Plains (SGP) as a case study.  This IOP contains several 

precipitation events with various types of clouds.  We apply the 3DCVA in a rectangle 

domain from 34.5-39°N, 95-100°W at SGP (hereafter SGP domain, see Figure 4.1(a)), 

with 0.5°×0.5° horizontal resolution and 3-hour time resolution.  In this chapter, we are 

focusing on the SGP domain averaged large-scale forcing data during the whole IOP.  

The three-dimensional analysis of a mid-latitude cyclone case during this period will be 

addressed in Chapter 4.  
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Figure 3.1 shows the domain averaged precipitation and ensemble mean 

temperature, water vapor mixing ratio, vertical velocity (omega), horizontal and vertical 

advections of dry static energy (s, all figures on s and advection of s in this thesis are 

divided by specific heat capacity at constant pressure Cp so it is in the unit of K) and 

moisture (q) from ensemble 3DCVA.  There are several precipitation events during 

March 2-4, March 8, March 11, and March 16-19, separately.  The rising motion, 

moisture and dry static energy advections correspond well with these events.  The general 

patterns of these forcing data are quite consistent with forcing data derived from 1DCVA 

(not shown), which uses the same constraint variables within a slightly smaller domain at 

SGP. 

Figure 3.2 shows the domain averaged ensemble mean analyzed horizontal winds 

(u, v), vapor mixing ratio (q) and dry static energy (s) from ensemble 3DCVA, and the 

domain averaged ensemble mean adjustments for each variable.  The mean adjustments 

of horizontal winds are smaller than 0.5 m s
-1

, but the standard deviation on horizontal 

grids (not shown) are in the magnitude of 1 m s
-1

, showing that the adjustments on 

horizontal winds have compensate effect horizontally, which bring large change to the 

divergence and advections.  The mean adjustments of vapor mixing ratio are mostly 

smaller than 0.5 g kg
-1

, except in one low-level point at March 4
th

, 18Z.  The possible 

reason of this large adjustment may come from the relatively large uncertainties in 

surface constraint variables in the absence of precipitation.  When the constraint variables 

are considered as the truth, the possible large uncertainties cause the imbalance of column 

budget which requires more moisture added on top of the relatively low vapor mixing 

ratio profiles in background data.   The adjustments of s show strong diurnal cycle with 
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warm adjustments of ~0.3K in the daytime and cold adjustments of ~0.1K in the 

nighttime.  The horizontal standard deviations have the similar magnitude with the 

adjustments.  This systematic adjustment indicate that there are inconsistent diurnal cycle 

between background data and surface (TOA) energy budget, which may due to the 

unrealistic simulation of diurnal cycle in reanalysis/analysis models.  The discontinuity at 

~700mb and ~300mb may be related with the issue of vertical resolution changing from 

25mb at boundary layer and tropopause to 50mb at mid-troposphere.  In future update of 

3DCVA, a constant vertical interval of 25mb will be used. 

3.2 Sensitivity of Large-Scale Forcing Data 

 To understand the sensitivities of large-scale forcing data to different background 

data, error covariance matrices and constraint variables, we calculated the standard 

deviations of large-scale forcing data due to different inputs of 3DCVA (Figure 3.3).  

When we calculate the standard deviation due to one input (such as background data), we 

average the large-scale forcing data over the other two input datasets (such as error 

covariance matrix and precipitation rate).   The standard deviations of the analyzed fields 

due to background data are shown in the left column.  Those due to error covariance 

matrices and precipitation are shown in the middle and right columns respectively.  From 

top to bottom, the fields are temperature, water vapor mixing ratio, vertical velocity, 

horizontal and vertical advections of s and q.  It is seen that the magnitude of standard 

deviation of temperature and water vapor mixing ratio is generally smaller than 2K and 

1g kg
-1

, respectively.  During the whole IOP, the mean 1-sigma uncertainty (mean 

standard deviation due to different inputs relative to the temporal standard deviation of 
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the ensemble mean field) for all the inputs is about 1.5% for temperature and 5.6% for 

vapor mixing ratio.  If we separate precipitation periods (precip) and non-precipitation 

periods (non-precip), the 1-sigma uncertainty is 1.6 % (precip) and 1.4% (non-precip) for 

temperature and 6.3% (precip) and 4.9% (non-precip) for vapor mixing ratio.  For vertical 

velocity and advections (sum of horizontal and vertical advections) of s (q), the 

magnitude of standard deviation is generally smaller than 0.2Pa s
-1

 and 10K day
-1

 (5g kg
-1

 

day
-1

), respectively.  The mean 1-sigma uncertainty for all the inputs is about 21.6% 

(whole period), 26.7% (precip) and 16.7% (non-precip) for vertical velocity, 27.0% 

(whole period), 31.9% (precip) and 22.4% (non-precip) for advections of s, and 24.9% 

(whole period), 32.5% (precip) and 17.6% (non-precip) for advections of q.   

 The relative uncertainties of vertical velocity and advective tendencies are much 

larger than the relative uncertainties of temperature and water vapor mixing ratio.  During 

precipitation period, the large-scale forcing data are more uncertain than during non-

precipitation period.  Advections of s at upper-levels also have large sensitivities than at 

mid- and low-levels, which may be related to the relatively larger vertical gradient of s.   

The standard deviation due to different background data is relatively larger than that due 

to the other two inputs in most of time, showing the importance of the initial first guess to 

the final forcing data.  For uncertainties due to precipitation, horizontal moisture 

advection has much larger uncertainty than other variables, which indicates tight 

relationship between the horizontal moisture advection and precipitation process. 

Chapter 5 will investigate the sensitivities of model simulations of clouds and 

radiation due to different inputs (background data, error covariance matrices and 

constraint variables) in producing large-scale forcing data.  These sensitivities define the 
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range of model simulation uncertainties that can be caused by large-scale forcing data.  

This will enable the identification of true model errors when the simulation results are 

compared with observations.   
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Chapter 4. A Case Study of Mid-Latitude Cyclone 

 

The major advantage of 3DCVA comparing to the original variational analysis is 

the three-dimensional description in the analyzed domain.  In this chapter, we will use the 

ensemble 3DCVA results obtained in Chapter 3 to investigate the spatial distribution of 

diabatic heating (Q1) and drying (Q2) associated with a mid-latitude cyclone case, and 

evaluate the corresponding Q1 and Q2 in analysis/reanalysis products. 

4.1 Synoptic Condition 

We choose a mid-latitude cyclone during the ARM SGP March 2000 cloud IOP 

for the case study.  Figure 4.1(a) shows the satellite image of the cyclone at ~00Z March 

3
rd

, 2000 (the exact time is 23:45Z March 2
nd

).  The red rectangle represents the SGP 

domain in which 3DCVA is applied.  At this time snapshot, the SGP domain was under 

the impact of an occluded front with dry air wrapping around the cyclone from the west.  

A more detailed description of this frontal case can be found in an ARM-GCSS (Global 

Energy and Water Cycle Experiment Cloud System Study) case study by Xie et al. 

(2005).  Figure 4.1(b) shows the ABRFC precipitation rate in the SGP domain at 00Z 

March 3
rd

 interpolated into 3-hour and 0.5°×0.5° resolution.  This time snapshot is chosen 

because of the clear boundary between cloudy and clear regions that can be used to verify 

the results. 

The synoptic structure of the 00Z March 3
rd

 cyclone in different 

analysis/reanalysis is plotted in Figure 4.2, which shows the temperature (red lines), 
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geopotential height (black lines) and specific humidity (colors) at 850 hPa.  All these 

datasets well capture the cyclone passing to the SGP domain.  The low pressure center is 

located to the west of the SGP domain, with a cold center to its north or northwest.  The 

specific humidity shows a comma-shaped moisture field, with dry air on its north and 

west sides.  At the scale of a few hundred kilometers within the SGP domain, however, 

differences in the moisture field among these datasets are quite large. The differences are 

even more prominent in the vertical velocity field.  Figure 4.3 shows the corresponding 

temperature (red lines), geopotential height (black lines) and vertical velocity (colors) at 

500 hPa.  While rising motion (cool color) dominates the SGP domain and the 

surrounding region to the east, and downward motion (warm color) prevails at the west, 

the spatial pattern and the magnitude of the vertical velocity within the SGP domain is 

quite different among different datasets.  The large differences of vertical velocity 

illustrate the potential uncertainties of using these products as large-scale forcing data of 

SCMs, CRMs and LES. 

4.2 3D Structure of Q1 and Q2 

If the atmospheric analysis/reanalysis satisfy the thermodynamic and moisture 

continuity equations, the vertically integrated Q1 and Q2 (hereafter referred to as VIQ1 

and VIQ2 respectively) should be equal to the total constraint variables in the right hand 

sides of Eq. 2.2 and Eq. 2.3.  When the latent heating from precipitation dominates the 

physical processes, positive VIQ1 and VIQ2 should be good approximations of the rain 

rates.  Negative VIQ1 implies column cooling due to radiation while negative VIQ2 

implies column moistening due to surface evaporation.  Figures 4.4 and 4.5 show VIQ1 
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and VIQ2, respectively, from (a) ensemble 3DCVA, (b) ensemble background and (c-h) 

different background members.  Although it has been shown that the  global distributions 

of climatological VIQ1 from reanalyses are consistent with observed rain rates (Ling and 

Zhang 2013), Figures 4.4 and 4.5 show that on regional synoptic scale (~5° by 5° domain 

size), none of the background data captures the pattern of the precipitation.  The 

ensemble background data are more consistent with the precipitation pattern than any of 

the individual members, but there are still some biases in terms of position of maximum 

and minimum values.  The 3DCVA forces both VIQ1 and VIQ2 to be consistent with 

column-integrated constraints, in this case dominated by rain rates, thus both VIQ1 and 

VIQ2 in 3DCVA are much closer to the observed surface precipitation. 

We next examine Q1 and the associated circulation (streamlines) along the 

southwest-to-northeast cross section indicated by the bold black line in previous figures.  

At this time snapshot, clouds and precipitation are located primarily in the northeast half 

of the cross section.  Q1 in ensemble 3DCVA is shown in Figure 4.6(a).  Positive Q1 is 

seen in the mid-troposphere above 800 hPa to the east of 98
o
W with a peak in between 

600 hPa and 700 hPa, and negative Q1 is seen below 800 hPa.  These features can be 

explained as latent heating from cloud condensation and cooling from evaporation of rain 

droplets below the clouds.  The relatively weak heating at 750hPa may be due to the 

cooling by melting.  These features are consistent with the corresponding relative 

humidity shown in Figure 4.7(a) as contours.  Figure 4.7(a) also shows the corresponding 

cross section of Q2 (in colors).  Q1 and Q2 are consistent with each other to the extent of 

possible differences contributed by the radiative cooling and sub-grid scale vertical 

transport of heat and moisture that will be discussed further later.  The peak altitude of 
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Q2 is generally lower than that of Q1 from 98°W to 96°W.  This may be explained by the 

upward transport of moist static energy.  Eastward of 96
o
W, the peak altitude of Q2 is 

higher than that of Q1.  This may be explained by radiative cooling from clouds with 

high tops.   Overall, the Q1, Q2, and relative humidity distributions are consistent with 

the satellite cloud image and physical intuitions of these fields in the region of broad 

upward motion of the cyclone.  

We now examine these same fields in the background data.  The Q1 in ensemble 

background (Figure 4.6(b)) has two major differences comparing to Q1 in 3DCVA: 

stronger heating between 350hPa to 600hPa to the west of 98°W and weaker cooling 

below 800hPa to the east of 97°W.  These two features contribute to the generally larger 

VIQ1 value along the cross section in ensemble background comparing to that in 

ensemble 3DCVA (Figure 4.4(b) to 4.4(a)).  The Q2 in ensemble background (Figure 

4.7(b)) has stronger drying (positive) between 800hPa to 900hPa to the west of 98°W and 

stronger moistening (negative) below 800hPa to the east of 97°W.  These two features 

contribute to the larger VIQ2 at the west and smaller VIQ2 at the east of the cross section 

in ensemble background comparing to that in ensemble 3DCVA (Figure 4.5(b) to 4.5(a)), 

and they are inconsistent with the satellite image in Figure 4.1(a).  The individual 

background data have different problems while RUC seems have largest bias in this case.  

4.3 Sub-grid Transport of Moist Static Energy 

As in Yanai et al. (1973), if we subtract Eq. 1.2 from Eq. 1.1, we get 

' '
Q1 Q2 rad

h
Q

p


  


   (4.1) 
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where vh s L q  is moist static energy.  In strong precipitation events, radiative heating 

and cooling are relatively small in the lower and middle troposphere, so Q1−Q2 

approximately represents the second term in the right hand side, the sub-grid scale 

transport of moist static energy. 

 In Figure 4.8, we composite the Q1−Q2 profiles related to the rain rate 

(approximately represented by VIQ1).  The composite covers the full cyclone evolution 

from 18Z March 1
st
 to 24Z March 3

rd
.  In the events of precipitation larger than 20mm 

day
-1

, it is clearly seen that the ensemble 3DCVA shows large low-level negative and 

high-level positive Q1−Q2, indicating vertical divergence of sub-grid scale moist static 

energy in the lower troposphere, and vertical convergence of sub-grid scale moist static 

energy in the upper troposphere.  The altitude of the sign change in Q1−Q2 represents the 

height of maximum upward transport of moist static energy, which is at around 600hPa.  

The sub-grid scale vertical transport is expected of convective cells embedded within the 

frontal system.  This vertical structure however is not clear in all operational 

analysis/reanalysis products.  The representation of rain rate becomes weaker when VIQ1 

is small, so the profiles in small VIQ1 region are not examined here.  The 

analysis/reanalysis data have some gross feature of low-level negative and high-level 

positive Q1−Q2, but they all show weaker low-level sub-grid scale transport of moist 

static energy in small and moderate rain rate region (20-80 mm day
-1

), and show 

problematic features in large rain rate region (>80mm day
-1

).  Possible causes of the 

model errors can come from inadequate physical parameterization of convection and 

adverse impact of the data assimilation process.  
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Chapter 5.  Single-Column Model Simulations of Clouds 

  

5.1 SCM results of cloud and sensitivities  

The SCMs used here are the Community Atmospheric Model version 4 (SCAM4) 

and version 5 (SCAM5).  The two versions of SCAM have similar dynamic core but 

different physics packages.  The parameterization schemes used in SCAM4 and SCAM5 

are listed in Table 5.1.  Each member of the large-scale forcing data averaged in the SGP 

domain from the ensemble 3DCVA is used to drive both SCMs, and the ensemble mean 

simulation results are used for the analysis.  The two models are reinitialized at 15Z every 

day from March 1
st
 to March 19

th
 for 36 hours without relaxation to avoid large model 

drift, and we choose the hour 9 to 33 of the simulations (00Z to 24Z of the next day) for 

analysis.  Surface sensible and latent heat fluxes are prescribed from the forcing data.  

The time-pressure cross sections of the ensemble mean cloud fraction, liquid 

water content (LWC) and ice water content (IWC) from SCAM4 and SCAM5 are shown 

in Figure 5.1, as well as the observations obtained from ARM Baseline Microphysical 

Retrieval (MICROBASE) during this period.  MICROBASE is a cloud retrieval product 

combining multiple measurements from cloud radar, lidar, ceilometer, microwave 

radiometer and soundings.  It is located at SGP central facility and has two versions with 

different time resolutions: 10-second intervals and 20-minutes average.  We are using the 

20-minutes averaged data that are further averaged into 3-hour interval in order to 

compare with SCAM simulations in this study.  The assumption is that the time average 

of point observation would be comparable with the spatial average properties within a 
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domain.  The models generally captured the several cloud events during the IOP, with 

good consistency to observations especially in cloud fraction.   

The differences between models and observations will be discussed in the next 

section.  These differences can come from three possible sources: the prescribed large-

scale forcing data, the biases in the model physical parameterizations, and the 

observational biases from measurement and sampling errors. To evaluate the models, it is 

necessary to isolate the true model errors from the impact of uncertainties from the large-

scale forcing data and observational biases.  

The standard deviation of simulated cloud fraction, LWC and IWC due to using 

different inputs to produce the large-scale forcing data are shown in Figure 5.2 (for 

SCAM4) and Figure 5.3 (for SCAM5).  The 1-sigma uncertainty of cloud properties at 

some time steps could reach up to more than 50% of simulated values, but the time 

evolution of the cloud distribution patterns is consistent with different forcing data, which 

implies that the amount of the cloud fraction and hydrometeors, not the occurrence of 

clouds, is sensitive to the initialization of large-scale forcing data.  The mean 1-sigma 

uncertainty is about 34.1% (SCAM4) and 25.9% (SCAM5) for cloud fraction, 22.5% 

(SCAM4) and 17.6% (SCAM5) for LWC and 25.2% (SCAM4) and 20.6% (SCAM5) for 

IWC.  Among the three inputs in 3DCVA, background data are still the largest 

contributor to cloud simulation uncertainties relative to the other two input data, which is 

similar to the results in Chapter 3.  Overall, different inputs in deriving large-scale 

forcing data have considerable impacts on SCM performance of cloud simulation. 
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5.2 SCM Model Bias and Source Diagnostics  

When we have the uncertainties from the large-scale forcing data, and assuming 

the uncertainties of observations, we can compare the model results and observations, and 

diagnose the source of model bias (discrepancy between models and observations).  If the 

model bias is larger than the uncertainties from the forcing data and observations, the 

physical parameterizations should be the source of the model bias, and it can be 

considered as a “true” model error.   

We calculate the model bias and compare it with the model uncertainties from 

large-scale forcing data plus uncertainties of observations.  The uncertainties from large-

scale forcing data are calculated by the doubled standard deviation (2-sigma uncertainty) 

of model results using different large-scale forcing data from all 90 3DCVA members 

mentioned in Table 3.1.  The observation uncertainties used here are estimated as 15% 

for LWC, 55% for IWC and 25% for cloud fraction, respectively, based on the study by 

Zhao et al. (2014).  These uncertainties are quantified by perturbing some inputs and 

parameters in cloud retrieval algorithms.  Some limitations and concerns about the cloud 

retrievals are discussed later. 

Figure 5.4 shows the model bias of cloud fraction, LWC and IWC for SCAM4 

(middle) and SCAM5 (right), and the vertical profiles averaged in this period (left).  The 

black lines circle out where model bias is larger than the uncertainties from forcing data 

and observations.  In general, SCAM4 underestimates cloud fraction; it also 

underestimates low-level LWC while overestimates mid-level LWC.  SCAM5 

overestimates high-cloud while underestimates low-cloud, it also underestimates LWC.  
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Both SCAM4 and SCAM5 underestimate IWC and miss some cloud events.  Most of 

these biases are significantly larger than the total uncertainties from large-scale forcing 

data and observations. 

Although uncertainties of the cloud retrievals are given in the comparison, they 

could be underestimated.  Zhao et al. (2014) pointed out that these uncertainties could be 

even larger when considering all assumptions and precipitating clouds.  When comparing 

different retrieval products, the spread among them is much larger than the diagnosed 

uncertainty for each product (Zhao et al. 2012).  Different input data, different treatments 

of rain contamination and mixed-phase clouds are mainly responsible for the large 

difference of retrieved LWC (Huang et al. 2012).  

 Although the large uncertainties in cloud retrievals prevent us diagnosing the 

source of model bias with high confidence, we can use other variables as cross references.  

Figure 5.5 shows the observed liquid water path (LWP), outgoing longwave radiation 

flux at TOA, total cloud fraction (daytime mean) and surface downward shortwave 

radiation flux (daily mean) obtained from ARM best estimate (ARMBE) products, where 

LWP is measured by microwave radiometer at the central facility of SGP, and radiation 

fluxes and total cloud fraction are obtained from GOES8 satellite.  We take daily 

(daytime) averaging for the latter two variables in order to smooth out the strong diurnal 

cycle.  All these variables are generally consistent with cloud fraction and hydrometeors 

during this period.  For LWP, SCAM5 has much lower value than the observation at most 

of cloud events, while SCAM4 has comparable magnitude with the observation.  This is 

consistent to the model biases of LWC.  The averaged LWP (with standard deviation, 

same as below) during this period in the SCAM4 and SCAM5 are 170.0±7.4 and 
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94.8±6.9 g m
-2

 respectively, comparing to the observed 191.3 g m
-2

.  Note that the cloud 

retrievals of LWC use LWP measured at SGP central facility as a constraint, which is 

also used to produce the domain mean LWP, so the LWC and LWP are not totally 

independent.  For longwave radiation flux at TOA, both SCAM4 and SCAM5 miss some 

cloud events where longwave flux decreases sharply in observation but has higher value 

in models.  During the whole IOP, SCAM4 and SCAM5 simulated TOA longwave 

radiation flux of 233.3±1.1 and 229.4±1.1 W m
-2

 respectively, larger than observed 227.6 

W m
-2

, which is consistent with the smaller cloud liquid and ice contents in the models.  

However, model does not always underestimate clouds and overestimate longwave flux 

at TOA.  When SCAM5 has more high cloud fraction than observations, it generally 

underestimates longwave radiation flux.  For the total cloud fraction and surface 

downward shortwave flux, the daily averaging process has smoothed out some short-

period cloud features, while during March 13
th

 to 15
th

, when both models miss most of 

the cloud events, they show significant underestimation of total cloud fraction and 

overestimation of downward shortwave radiation flux.  The consistency between biases 

of cloud fraction and hydrometeors with biases of the vertical integrated cloud properties 

and radiation fluxes gives us more confidence to attribute model biases to the deficiency 

of the model physical parameterizations. 

5.3 GCM Verifications 

 The above analysis of model biases is limited to one single IOP.  It is useful to 

diagnose the model biases in GCMs in order to understand the applicability of the SCM 

results in this IOP to the GCMs.  In this section we use the comparison of CAM5 GCM 
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and satellite observations to examine if the biases of SCAM5 also exist in CAM5 GCM.  

The satellite retrievals used here is the merged CALIPSO, CloudSat, CERES, and 

MODIS satellite product C3M (Kato et al. 2011).  It has global coverage from July 2006 

to June 2010 for 4 years.  The horizontal resolution is 2.5°×2°, so as CAM5 GCM results.  

Figure 5.6 shows the climatological mean cloud fraction, LWC and IWC at SGP site 

from CAM5 (blue), C3M (red) and MICROBASE (black).  The differences between 

CAM5 GCM and MICROBASE during these 4 years are consistent with the differences 

between SCAM5 and MICROBASE during March 2000 IOP.  However, there are also 

quite large differences between satellite retrievals and ground-based retrievals, especially 

for LWC.  Comparing to the differences between observations and CAM5 GCM, the 

differences between the two cloud retrievals are smaller for IWC and cloud fraction.  For 

LWC, however, the difference between C3M and MICROBASE is surprisingly large, 

while the CAM5 GCM is more close to the C3M profile, far smaller than MICROBASE.  

The large offset of different cloud retrievals is also found in previous research by Zhao et 

al. (2012) and Huang et al. (2012).  Despite the large differences in LWC, the SCAM5 

biases of the underestimation of low cloud fraction and overestimation of high cloud 

fraction are valid in the CAM5 GCM.  The underestimation of the cloud ice is also 

consistent.  

 For the global distribution of clouds, we can only compare CAM5 with C3M.  

Because of the large differences of the hydrometeors between satellite and MICROBASE 

products, we only focus on cloud fraction here.  The high-, mid- and low-cloud fractions 

from both CAM5 and C3M are shown in Figure 5.7.  CAM5 overestimates high-cloud 

especially in mid- to high-latitude.  For mid-cloud, it simulates more cloud in polar 



40 
 

region but less in the tropics.  For low-cloud, CAM5 significantly underestimates cloud 

fraction over tropical oceans.  The global mean fraction of high-, mid- and low-cloud in 

CAM5 is 37.96%, 26.81% and 43.75%, respectively, comparing to 30.22%, 28.37% and 

50.32% in C3M.  This model bias is overall consistent with SCAM5 bias at SGP as 

overestimation of high cloud and underestimation of low cloud.    
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Chapter 6. Conclusions and Future Work 

 

6.1 Conclusions 

 This thesis has developed a new three-dimensional constrained variational 

analysis (3DCVA) method based on the original algorithm (1DCVA) developed by 

Zhang and Lin (1997).  The 3DCVA enables the derivation of gridded atmospheric 

vertical velocity and advective tendencies that are intended to force SCM/CRM/LES 

models as well as derive Q1 and Q2 within atmospheric systems.  The new method made 

the following improvements to the 1DCVA: 

 The 3DCVA extends the original method from one atmospheric column into 

many columns.  The constraint equations are satisfied in each column 

simultaneously.  All columns interact with each other through lateral fluxes that 

are constrained by spatially distributed surface and TOA measurements.   

 The incorporation of radiative constraints (Eq. 2.4) eliminates the large spurious 

heating and cooling centers near the tropopause.   

 The 3DCVA incorporates horizontal and vertical correlations in the error 

covariance matrix.  The new error covariance matrix describes the correlation 

between different spatial grids more realistically. 

 The 3DCVA rewrite water vapor mixing ratio q to
lnqe , and adjust lnq as a new 

variable.  It guarantees a positive definite q under the assumption of Gaussian 

distribution. 
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 The new algorithm has been evaluated by using a case study during the ARM 

March 2000 IOP at the SGP.  The distributions of the Q1 and Q2 fields are found 

to be consistent with the spatial distribution of satellite cloud images and surface 

precipitation which is not the case in all analysis/reanalysis products. 

An ensemble 3DCVA is performed and the sensitivities of the large-scale forcing 

data due to different background data, error covariance matrices and constraint variables 

are reported.  The ensemble approach reduces possible uncertainties of the 3DCVA large-

scale forcing data due to the error from one specific data source, and provides a 

quantitative estimation of uncertainty of large-scale forcing data.  The results of 

sensitivity study show that all the three inputs of the 3DCVA have considerable impact to 

the analyzed large-scale forcing data and the related SCM results, especially to vertical 

velocity, advective tendencies and model simulated cloud properties.  It implies that 

although the atmospheric state variables are accurate enough, the derivative variables 

could have larger uncertainties so as model simulated clouds.  Among the three inputs in 

3DCVA, background data contributes to the largest sensitivity, while precipitation 

contributes to relatively larger sensitivity to horizontal moisture advection.  

Although analysis/reanalysis data also provide 3D large-scale forcing data, this 

thesis shows that they contain large biases in the derivative terms (Q1, Q2) at regional 

scale of a few hundred kilometers.  For the March 3
rd

 2000 mid-latitude cyclone case, the 

analyzed Q1 and Q2 in 3DCVA showed clear contrast between precipitation and non-

precipitation regions, which are consistent with the intuitive interpretation of the diabatic 

heating and moistening fields for mid-latitude cyclones.  While different 

analysis/reanalysis have different errors, they generally show weaker low-level cooling 
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and stronger low-level moistening, and weaker low-level upward transport of moist static 

energy.   

 With the uncertainty from the large-scale forcing data calculated and the 

uncertainty of observations estimated, this thesis compared the model results and 

observations, and diagnosed the source of model bias for ARM March 2000 IOP at SGP.  

Comparing single-column model results of CAM4 (SCAM4) and CAM5 (SCAM5) with 

MICROBASE cloud retrievals, we found that SCAM4 underestimates cloud fraction, and 

it overestimates mid-level LWC while underestimates low-level LWC; SCAM5 

overestimates high-cloud while underestimates low-cloud, and it underestimates LWC; 

both SCAM4 and SCAM5 underestimate IWC and miss some cloud events.  Most of 

these model biases are larger than the uncertainty from large-scale forcing data plus 

uncertainty from observations, indicating that these biases could be considered as “true” 

model error.  Although large observation uncertainties and large offset between different 

cloud retrievals reduce the confidence of model bias diagnosis, these results are 

consistent with the model biases of LWP, total cloud fraction, surface and TOA radiation 

fluxes.  A 4-year comparison between CAM5 GCM and C3M satellite retrievals further 

verifies that the SCM bias seen in March 2000 IOP at SGP site is robust climatologically 

and globally in terms of cloud fraction. 

6.2 Future Work 

Because of more grid columns, more constraint variables, and more complex 

covariance matrix, the convergence speed of the 3DCVA algorithm becomes much 

slower than that of the 1DCVA and the computational cost becomes much higher.  
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Further improvements are needed to optimize the 3DCVA algorithm in order to improve 

the computational performance.  This could be done by replacing Newton’s iteration 

method, improving numerical schemes of constraint equations, or using faster-converging 

numerical solver for large linear matrix equation.  

 Applying more physical constraints may make the final analysis more realistic.  

One physical constraint may be added is hydrostatic balance, which has been 

incorporated in 1DCVA by Huang (2012).  Another possible constraint to be added is to 

limit relative humidity no larger than saturation (RH≤100%).  Currently it is treated by 

setting a cap of 100% at post-processing.  However, more physical constraints also imply 

slower convergence speed and more computational time.  The cost and benefit of adding 

a constraint should be better understood. 

 The 3D derived fields of Q1 and Q2 can be used to better understand the coupling 

of the diabatic heating fields with dynamical circulations.  One example is the MJO 

evolution.   The ARM field campaigns at the Tropical Western Pacific (TWP) site can be 

used to apply the 3DCVA.  The derived Q1 and Q2 can reveal the spatial heating and 

drying structure in different phases of MJO.  This information can be used to investigate 

the roles of heating fields in the PBL and convective systems in the development and 

maintenance of the MJO, and the relationship between heating tilt and the evolution of 

MJO.  Another example is the heating profiles for different convective systems from 

shallow convections to deep convections.  ARM SGP site would be a preferred location 

for this purpose because of its dense surface measurements of fluxes providing relatively 

reasonable surface budget in non-precipitating shallow convection cases, although the 

uncertainty of the 2D gridded surface data and its impact to the heating profiles needs 
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future investigation.  Q1, Q2 and other atmospheric variables in different types of 

convections can be composited to understand the relationship between convections and 

the large-scale properties such as mass flux. 

 The ultimate goal of the 3DCVA is to use resolution-flexible large-scale forcing 

data to drive SCM/CRM/LES to better understand cloud processes and their 

parameterizations.  Climate modeling centers around the world are now developing 

resolution-dependent physical parameterizations. The 3D large-scale forcing data in 

different resolutions and the sensitivity study would help them better investigate the 

impact of model resolutions and test the resolution-dependent parameterizations.  We 

envision at least two types of new experiments that can make use of the 3DCVA data.  In 

one type, SCM/CRM/LES can be run in each column of the 3DCVA domain and produce 

simulations as a “regional model” to evaluate GCMs.  In another type, SCM/CRM/LES 

can be run with forcing data at different resolutions as a tool to design scale-aware 

physical parameterizations of GCMs.  The 3DCVA forcing data will also enable the 

SCM/CRM/LES models to be configured for domain sizes that are more compatible with 

available observational data such as those from the scanning radars at the SGP in the 

ARM program.  
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Appendix 1: numerical calculation of 1st and 2nd derivatives 
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at the grid of i,j (see Figure 2.3) at the time step t and the vertical level k (for radiation 

constraint).  Subscript m represents in the center of the grid, e.g.: 
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The 1
st
 derivatives of the constraints at the grid (i,j) at the timestep t to the variables are: 

 

For u and v: 
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Other 1
st
 derivatives are all zero. 

 The 2
nd

 derivatives only apply to some combination of the variables.  The non-

zero 2
nd

 derivatives of the constraint at the grid (i,j) are: 
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Figure 1.1:  Working strategy illustration of GEWEX (Global Energy and Water Cycle 

Experiment) Cloud System Study (GCSS) presented by A. Pier Siebesma in 2008.  

Large-scale forcing data derived from field campaigns and/or observational sites are 

needed to drive LES, CRM and SCM which are used to develop and test the physical 

parameterizations in GCM and NWP. 
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Figure 2.1: schematic figure of the 3DCVA.  It shows the inputs of background data (3D state 

variables), surface and TOA constraint variables, and the output of 3D large-scale forcing data. 
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Figure 2.2: the adjusted C-grid used in 3DCVA.  u is at the center of east/west grid faces, v is at 

the center of north/south grid faces, s and q are at the center of all four grid faces and all the 

constraint variables (precipitation, radiation, surface fluxes) are at the grid center and represent 

grid average. 
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Figure 2.3: Illustration of horizontal and vertical correlations.  i, j and k represent the horizontal 

and vertical grid/level indices.  Bold i, j show the index of the grids while the thin i, j show the 

index of the boundary variables, so the grid (i, j) has 4 boundary variables at i, i+1, j, and j+1.  

KB is the level at the surface and KT is the level at the TOA.  Blue dots are the variables of the 

background data, and the red arrows show the correlation of the center variable to its surrounding 

variables. 
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Background data RUC,  ERA-interim,  CFSR,  JRA55,  MERRA,  NARR (details 

see Table 3.2) 

 

 

 

 

 

Error covariance 

matrix 

Calculated from variance of time series, only auto correlation.  

Calculated from variance of ensemble members, only auto 

correlation.   

Calculated from variance of ensemble members, vertical 

correlation.   

Calculated from variance of ensemble members, horizontal 

correlation.   

Calculated from variance of ensemble members, horizontal and 

vertical correlation.   

 

 

Constraint 

variables 

Arkansas-Red Basin River Forecast Center gridded 

precipitation products  

Upper bound: 1.4 × ABRFC precip amount 

Lower bound: 0.6 × ABRFC precip amount 

 

Table 3.1: different background data, error covariance matrices and constraint variables used as 

inputs in ensemble 3DCVA. 
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Name Reference Horizontal 

resolution 

Vertical levels 

(1000-100hPa) 

Time 

resolution 

ERA-

interim 

Dee et al., 2011 ~0.7°×~0.7° 27 6 hourly 

CFSR Saha et al., 2010 0.5°×0.5° 27 6 hourly 

MERRA Rienecker et al., 2011 1.25°×1.25° 25 3 hourly 

JRA55 Kobayashi et al. 2015 1.25°×1.25° 27 6 hourly 

NARR Mesinger et al., 2006 32.463km×32.463km 29 3 hourly 

RUC Benjamin et al., 2004 40km×40km 37 3 hourly 

 

Table 3.2: the six background data used in ensemble 3DCVA.  All datasets are interpolated into 

0.5°×0.5°, 27 levels and 3-hourly. 
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Figure 3.1: SGP domain (34.75-38.75°N, 95.25-99.75°W) averaged profile of (a) precipitation, (b) 

temperature, (c) water vapor mixing ratio, (d) vertical velocity, (e – h) horizontal and vertical 

advections of dry static energy s and moisture q.  
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Figure 3.2: (left) ensemble mean SGP domain averaged horizontal wind, moisture and dry static 

energy (u, v, q, s) and (right) ensemble mean SGP domain mean adjustments of u, v, q, s. 
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Figure 3.3: the standard deviations of large-scale forcing data (from top to bottom: T, q, ω, 

horizontal and vertical advections of s and q) due to different background data (left), error 

covariance matrices (middle) and constraint variables (right, only precipitation). 
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Figure 4.1: (a). GOES-8 satellite cloud image at 23:45Z March 2
nd

 2000.  The red box shows the 

SGP domain applying 3DCVA.  (b) 3-hourly precipitation rate centered at 00Z Mar 3
rd

 averaged 

into 0.5°×0.5° horizontal resolution from the Arkansas-Red Basin River Forecast Center 

(ABRFC).  The bold black line shows the position of cross-front section in later figures. 
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Figure 4.2: 850hPa Geopotential height (gpm, black lines), temperature (K, red lines) and specific 

humidity (g kg
-1

, shaded) from (a) RUC, (b) ERA-Interim, (c) JRA 55, (d) NARR, (e) CFSR, (f) 

MERRA at 00Z Mar 3
rd

 2000.  The red box indicates the SGP domain.   
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Figure 4.3:  Same as Figure 4.2 except that the shading is for vertical velocity (Pa s
-1

) and the 

level is 500hPa. 
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Figure 4.4: The vertically integrated Q1 from (a) ensemble 3DCVA, (b) ensemble background 

data, (c) RUC, (d) ERA Interim, (e) JRA 55, (f) NARR, (g) CFSR and (h) MERRA at 00Z Mar 

3
rd

 2000.  The unit is mm day
-1

.  The bold black lines in (a) and (b) shows the position of cross-

front section in later figures. 
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Figure 4.5: The same as figure 4.4 but for vertical integrated Q2 (mm day
-1

).  
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Figure 4.6: cross section (indicated by the bold black line in figure 4.1(b)) of Q1 (color, K hr
-1

) 

and circulation along the cross section (streamlines) from (a) ensemble 3DCVA, (b) ensemble 

background data, (c) RUC, (d) ERA Interim, (e) JRA 55, (f) NARR, (g) CFSR and (h) MERRA.  

The time is 00Z Mar 3
rd

 2000.  X axis shows the longitude along the cross section. 
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Figure 4.7: cross section (indicated by the bold black line in figure 4.1(b)) of Q2 (color, K hr
-1

) 

and relative humidity (contour, %) (a) ensemble 3DCVA, (b) ensemble background data, (c) 

RUC, (d) ERA Interim, (e) JRA 55, (f) NARR, (g) CFSR and (h) MERRA.  The time is 00Z Mar 

3
rd

 2000.  X axis shows the longitude along the cross section. 
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Figure 4.8: (top) Q1−Q2 profiles (K hr
-1

) as a function of VIQ1 and (bottom) PDFs of VIQ1 (in 

fraction) from (a) ensemble 3DCVA, (b) ensemble background data, (c) RUC, (d) ERA Interim, 

(e) JRA 55, (f) NARR, (g) CFSR and (h) MERRA for all grids in SGP domain during 18Z March 

1
st
 to 24Z March 3

rd
.   
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Scheme SCAM4 SCAM5 

Eddy scheme HB (Holtslag and Boville 

1993) 

Diag_TKE(Grenier and 

Bretherton 2001) 

Micro physics RK(Rasch and Kristjánsson 

1998) 

MG(Morrison and 

Gettelman 2008) 

Macro physics RK(Rasch and Kristjánsson 

1998) 

Park(Park et al. 2014) 

Shallow convection Hack(Hack 1994) UW(Park and Bretherton 

2009) 

Deep convection ZM(Zhang and McFarlane 

1995) 

ZM(Zhang and McFarlane 

1995) 

Radiation CAMRT RRTMG 

 

Table 5.1: physical schemes used in SCAM4 and SCAM5. 
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Figure 5.1: the ensemble average of simulated cloud properties in SCAM4 (left), SCAM5 (middle) 

and cloud retrievals from MICROBASE (right).  From top to bottom: cloud fraction, LWC and 

IWC. 
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Figure 5.2: the standard deviations of SCAM4 simulated clouds (from top to bottom: cloud 

fraction, LWC and IWC) due to different background data (left), error covariance matrices 

(middle) and precipitation (right). 
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Figure 5.3: the same as figure 4 but for SCAM5 

 

 

 

 

 

 



77 
 

 

 

 

 

 

 

Figure 5.4: (middle and right) model bias of cloud properties at SGP site for SCAM5 (middle) 

and SCAM4 (right).  Blue color means model underestimation while yellow/red means 

overestimation, with black lines circle out where model bias is larger than the total uncertainty 

from large-scale forcing data and observations.  (left) vertical profiles averaged in March 2000 

IOP.  Black line is MICROBASE, red dashed line is SCAM4, and blue dotted line is SCAM5.  

From top to bottom: cloud fraction, LWC and IWC. 
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Figure 5.5: ensemble averaged simulations (red lines) of (a, b) LWP, (c, d) TOA net longwave 

radiative flux, (e, f) total cloud fraction and (g, h) surface downward shortwave radiative flux 

from SCAM5 (left) and SCAM4 (right) and observations from ARMBE (black lines).  The red 

dashed lines show the standard deviation due to different large-scale forcing data. 
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Figure 5.6: 4-year (July 2006 to June 2010) mean profiles of cloud fraction (right), LWC (middle) 

and IWC (right) at SGP site or the nearest grid.  Blue line is from CAM5 GCM, red line is from 

C3M merged satellite retrieval, black line is from MICROBASE ground retrieval. 
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Figure 5.7: 4-year (July 2006 to June 2010) mean total high (top), middle (middle) and low 

(bottom) cloud fraction in CAM5 GCM (left) and C3M merged satellite retrieval (right). 
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