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Abstract of the Dissertation 

The Chinese Equity Risk Factor Model Based on Heavy Tailed Distributions, 

and Its Application in Risk Management and Portfolio Selection  

by 

Tianyu (Daniel) Lu 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Quantitative Finance) 

Stony Brook University 

2013 

 

In financial risk and portfolio management, the heavy tailed distributions of one-dimensional 

asset returns and complex dependence structure among multi-dimensional asset returns are two 

widely discussed problems. Various distributions, which share the desired properties, such as 

heavy tails, skewness and kurtosis, have been introduced and applied into practice. On the other 

hand, factor modeling as a technique of dimension reduction, has been used in multivariate 

statistical analysis and econometric model building, especially in high-dimensional world of 

financial risk management 

In this dissertation, we study these two popular problems in risk and portfolio management. 

The findings are empirically examined through their applications to the Chinese stock markets. 

More specifically, we study the behavior of stock returns in the Chinese market from 2002 to 2012 

and build the advanced risk factor model for risk and portfolio management. Firstly we give an 

empirical examination of the Chinese market with testing the Gaussian hypothesis and alternative 

non-Gaussian distribution hypotheses under the (1) unconditional homoscedastic distribution 

assumption and (2) conditional heteroscedastic distribution assumption. An ARMA-GARCH 

model with non-Gaussian distributed innovations is applied to the index and backtested during 
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highly volatile market periods from 2006 to 2012. The model provides a strong capacity of 

forecasting and possible warning signals of coming market crash. Secondly, we build the equity 

multi-factor model covering the entire Chinese stock markets. Risk factor returns, including 

market factors and fundamental factors, are estimated though time series regression and 

cross-sectional regression. The forecasting methods are created with multivariate 

ARMA-GARCH models for different distributed innovations, and compared with industrial 

standard methods. Thirdly, we applied the risk factor models for portfolio and risk management, 

including risk monitoring, risk budgeting and portfolio optimization. Different risk measures and 

optimization strategies are tested to provide the most suitable tools.  



 

v 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents 

  



 

vi 

 

Table of Contents 

List of Figures ................................................................................................................ viii 

List of Tables ...................................................................................................................... x 

Acknowledgement ........................................................................................................... xii 

1. Probabilistic Models for Assets Return................................................................. 1 

1.1 Univariate Distributions ....................................................................................... 1 

1.1.1 Introduction ............................................................................................... 1 

1.1.2 Gaussian Distributions .............................................................................. 2 

1.1.3 α-Stable Distributions .............................................................................. 3 

1.1.4 Classical Tempered Stable Distributions .................................................. 5 

1.1.5 Infinitely Divisible Distributions .............................................................. 6 

1.2 Multivariate Distributions .................................................................................... 7 

1.2.1 Introduction ............................................................................................... 7 

1.2.2 Multivariate Mixture Distributions ........................................................... 8 

1.2.3 Copula and Meta Distributions ............................................................... 12 

1.3 Time Series Models............................................................................................ 15 

1.3.1 Introduction ............................................................................................. 15 

1.3.2 ARMA Processes .................................................................................... 16 

1.3.3 GARCH Processes .................................................................................. 17 

1.4 Some Statistical Tests......................................................................................... 17 

1.4.1 Kolmogorov-Smirnov Test ..................................................................... 17 

1.4.2 Anderson-Darling Test ............................................................................ 18 

1.4.3 Christoffersen Likelihood Ratio Test ...................................................... 18 

1.4.4 Berkowitz Likelihood Ratio Test ............................................................ 20 

2. An Empirical Examination of Return Distributions for Chinese Stocks ............ 23 

2.1 Introduction ........................................................................................................ 23 

2.2. Return and Volatility for the Chinese Stock Market ......................................... 25 

2.3. Examination of the Distribution Hypotheses for Chinese Stock Returns ......... 26 

2.3.1 Methodology ........................................................................................... 26 

2.3.2 Test Results ............................................................................................. 28 

2.4. Backtesting of ARMA-GARCH Model ............................................................ 29 

2.4.2 VaR, AVaR and Backtesting .................................................................... 31 

2.5 Conclusions ........................................................................................................ 33 



 

vii 

 

3. Chinese Equity Factor Model ............................................................................. 47 

3.1 Introduction ........................................................................................................ 47 

3.2 Multi-factor Risk Models ................................................................................... 47 

3.2.1 General Structure of Multi-factor Models .............................................. 47 

3.2.2 Statistical Calibration Strategies ............................................................. 49 

3.3 Model Scope and Factors ................................................................................... 52 

3.4 Factor Returns .................................................................................................... 56 

3.5 Measuring Risk with Factor Model and Backtests ............................................ 60 

3.5.1 Risk Measures and Approaches to Measure Risk ................................... 60 

3.5.2 Backtests ................................................................................................. 66 

3.6 Conclusions ........................................................................................................ 70 

4. Portfolio Optimization and Risk Budgeting ....................................................... 82 

4.1 Introduction ........................................................................................................ 82 

4.2 Stochastic Dominance ........................................................................................ 82 

4.3 Satisfaction and Mean-Risk Analysis ................................................................ 84 

4.3.1 Expected Utility ...................................................................................... 85 

4.3.2 Mean-variance Approach ........................................................................ 86 

4.3.3 General Mean-risk Approach .................................................................. 88 

4.4 Risk Budgeting................................................................................................... 92 

4.4.1 The Risk Budgeting Problem .................................................................. 92 

4.4.2 The Euler Principle and Examples. ......................................................... 93 

4.4.3 Risk Budgeting........................................................................................ 95 

4.5 An Example of Portfolio Optimization and Risk Budgeting ............................. 97 

4.5.1 A Portfolio Optimization Example.......................................................... 99 

4.5.2 A Risk Budgeting Example ................................................................... 100 

5. Conclusions ....................................................................................................... 112 

Bibliography .................................................................................................................. 113 



 

viii 

 

 

List of Figures 

Figure 2-1 Q-Q plot of sample return distributions against standard Gaussian distribution 

for the Chinese stock market and other world stock markets ...................... 43 

Figure 2-2 The Kolmogorov-Smirnov test statistic and Anderson-Darling test statistic of 

the Gaussian distribution hypothesis and the CTS distribution hypothesis, for WN 

model (a) (b), and for ARMA-GARCH model (c) (d). ................................ 44 

Figure 2-3 The log return and 1% AVaR for the normal-ARMA-GARCH and the 

CTS-ARMA-GARCH model. (a) The CSI 300 Index. (b) The S&P 500 Index.

...................................................................................................................... 45 

Figure 2-4 Daily spread between the 1% AVaR for the normal-ARMA-GARCH and 

CTS-ARMA-GARCH model. (a) The CSI 300 Index. (b) The S&P 500 Index.

...................................................................................................................... 46 

Figure 3-1 Number of trading stocks listed in Shanghai Stock Exchange and Shengzhen 

Stock Exchange, from 2000 to 2012. ........................................................... 78 

Figure 3-2 Cross-sectional multi-collinearity among factor exposures is measured by 

Variance Inflation Factor (VIF). VIFs of 7 style factor exposures are plotted from 

September 2005 to December 2012. ............................................................ 78 

Figure 3-3  CHE one-year trailing average of R^2 from January 2005 to December 2012.

...................................................................................................................... 79 

Figure 3-4 Q-Q plot of sample distributions of innovations from against standard 

Gaussian distribution for the Chinese stock market and other world stock markets.

...................................................................................................................... 80 

Figure 3-5 12-month rolling window bias statistics of the universe portfolio returns for 

different forecasting methods from January, 2007 to December 2012. ....... 81 

Figure 3-6 Forecasted volatility by VC-EWMA and MC-MGARCH methods and realized 

volatility of the universe portfolio from January, 2007 to December 2012. 81 

Figure 4-1 Performance comparisons. The M-V, M-AVaR portfolios and the CSI 300 

Index starting with ￥1000 from January 4, 2007 to December 29, 2012.106 

Figure 4-2 Volatility comparisons. The 60-day moving average of standard deviations of 

the M-V, M-AVaR and Index portfolios starting from January 4, 2007 to December 

29, 2012...................................................................................................... 106 

Figure 4-3 Distribution of monthly returns of the two portfolios starting from January 4, 

file:///C:/Users/lty/Dropbox/Research/Dissertation/Section%201/Dissertation.docx%23_Toc371690940
file:///C:/Users/lty/Dropbox/Research/Dissertation/Section%201/Dissertation.docx%23_Toc371690940
file:///C:/Users/lty/Dropbox/Research/Dissertation/Section%201/Dissertation.docx%23_Toc371690941
file:///C:/Users/lty/Dropbox/Research/Dissertation/Section%201/Dissertation.docx%23_Toc371690941
file:///C:/Users/lty/Dropbox/Research/Dissertation/Section%201/Dissertation.docx%23_Toc371690941


 

ix 

 

2007 to December 29, 2012. (a) The M-V portfolio. (b) The M-AVaR portfolio

.................................................................................................................... 107 

Figure 4-4 Time series of monthly returns of the two portfolios starting from January 4, 

2007 to December 29, 2012. (a) The M-V portfolio. (b) The M-AVaR portfolio.

.................................................................................................................... 108 

Figure 4-5 Underwater curves. The drawdowns of the two portfolios starting from January 

4, 2007 to December 29, 2012. (a) The M-V portfolio. (b) The M-AVaR portfolio.

.................................................................................................................... 109 

Figure 4-6 Cumulative return of portfolio P1 and P2 starting from January 4, 2007 to 

December 29, 2012. ................................................................................... 110 

Figure 4-7 Scalar plot of RP1 − RP2 and AVaRP1 − AVaRP2 ........................ 110 

Figure 4-8 Distribution of RP1 − RP2  and AVaRP1 − AVaRP2. (a) RP1 − RP2.  (b) 

AVaRP1 − AVaRP2. RP1 and RP2 stand for returns of P1 and P2, and AVaRP1 

and AVaRP2 stand for the values of AVaR for P1 and P2. ........................ 111 

  



 

x 

 

List of Tables 

Table 2-1 Distributional characteristics of returns in the Chinese stock market and other 

world stock markets. .................................................................................... 35 

Table 2-2 Percentages of stocks for which the Gaussian, α-stable, CTS and NTS 

distribution hypotheses are rejected at different significance levels using 

Kolmogorov-Smirnov test. .......................................................................... 36 

Table 2-3 Summary of the statistics of the various statistical tests of the WN models and 

ARMA-GARCH models for the entire sample ............................................ 36 

Table 2-4 Dates of major market declines for the CSI 300 Index from January 8, 2002 to 

June 29, 2012 ............................................................................................... 37 

Table 2-5 Daily analysis of major market declines of the CIS 300 Index under four 

different ARMA-GARCH models. .............................................................. 38 

Table 2-6 Summary of Christoffersen Likelihood Ratio tests of the CSI 300 Index for 6 

years. ............................................................................................................ 40 

Table 2-7 Summary of Berkowitz Likelihood Ratio tests of the CSI 300 index for 6 years.

...................................................................................................................... 41 

Table 2-8 Summary of the average relative difference from the stable-ARMA-GARCH 

model, CTS-ARMA-GARCH model and NTS-ARMA-GARCH model to the 

normal-ARMA-GARCH model, respectively. ............................................ 42 

Table 2-9 Summary of Chow test for structure breaks in daily spread of AVaR from 2005 

to 2011. ......................................................................................................... 42 

Table 3-1 The definition of all descriptors and formula of calculating style factor 

exposures...................................................................................................... 72 

Table 3-2 Regression-weighted cross-sectional correlation of style and industry factor 

exposures...................................................................................................... 73 

Table 3-3 Summary of the statistics of the various goodness-of-fit tests of univariate 

ARMA-GARCH models with different distributed innovations  ............... 74 

Table 3-4 Bias tests results of the universe portfolios and single stocks from January 2007 

to January 2012. ........................................................................................... 75 

Table 3-5 Summary of Christoffersen Likelihood Ratio tests of the universe portfolio for 5 

years.. ........................................................................................................... 75 

Table 3-6 Summary of Christoffersen Likelihood Ratio tests of the universe portfolio for 5 

years. ............................................................................................................ 76 



 

xi 

 

Table 3-7 Summary of Berkowitz Likelihood Ratio tests of the universe portfolio for 5 

years.  .......................................................................................................... 77 

Table 3-8 Summary of Berkowitz Likelihood Ratio tests tests of the universe portfolio for 

5 years.. ........................................................................................................ 77 

Table 4-1 Performance statistics of the M-V, M-AVaR portfolios and the CSI 300 Index 

starting from January 4, 2007 to December 29, 2012. ............................... 101 

Table 4-2 Monthly returns of the M-V and M-AVaR portfolios and the CSI 300 Index 

starting from January 4, 2007 to December 29, 2012. ............................... 103 

Table 4-3 Sample statistics of daily returns of the M-V and M-AVaR portfolios and the 

CSI Index wit total 1460 observations ....................................................... 104 

Table 4-4  Risk and return decomposition of current portfolio P2. Risk and return 

contributions are calculated as contribution of total risk and return, respectively.

.................................................................................................................... 105 

  



 

xii 

 

Acknowledgement 

I would like to express my profound gratitude to my advisor, Professor Svetlozar Rachev, 

for suggesting this important and exciting thesis topic and for his advice, support, 

encouragement and guidance toward my Ph. D. degree. He taught me not only the way to do 

scientific research, but also the way to become a professional scientist. He was always 

enthusiastic about my education. He is my advisor and a lifetime role model for me. 

I would like to thank Professor Andrew Mullhaupt. Sharp from whom I have learned 

many important financial and mathematical skills. I would also like to thank Professor Wei Zhu, 

Professor Xiaolin Li and Professor Christopher Bishop for being on my dissertation committee. 

I would like to thank my co-authors: Dr. Frank Fabozzi, Dr. Aaron Kim and Dr. Ivan 

Mitov for their kindness help in writing the papers. 

I would like to thank all my friends during my years of study as a graduate student at 

Stony Brook for their friendship and encouragement. In particular, I would like to mention Drs. 

Yuan Shang, Xiaoping Zhou, Xu Dong, Tengjie Jia, Pengyuan Shao, Yu Mu and many others. 

They have shared with me many interesting and inspiring ideas. 

Throughout my academic career, the constant support of my parents and my girlfriend has 

always motivated me to strive forward. Their unconditional love has never been affected by the 

physical distance between us. My dissertation is dedicated to them. 



 

1 

 

 

1. Probabilistic Models for Assets Return 

1.1 Univariate Distributions 

1.1.1 Introduction 

In this study, all probability distributions discussed here are continuous probability 

distributions. Although the price or return of a financial asset is not a continuous random 

variable, there is no loss in describing the random variables as continuous for a substantial gain 

in mathematical tractability and convenience. 

Numerous studies of return and price distributions of different assets and national 

financial markets reject the notion that the distributions are normal. These investigations led to 

the conclusion that the multivariate normal distribution is not appropriate to capture the 

complex dependence structure between assets, since it does not allow for modeling tail 

dependence between assets and leptokurtosis as well as heavy tails of marginal distributions. 

Since Mandelbrot (1963) introduced the Lévy stable (or α-stable) distribution to model the 

empirical distribution of asset prices, the α-stable distribution became the most popular 

alternative to normal distribution. Rachev and Mittnik (2000) and Rachev et al. (2008) have 

developed financial models with α-stable distributions and applied them to market and credit 

risk management, option price and portfolio selection as well as discussing the major attacks on 

the α-stable models. 

While the 𝛼-stabel distribution has certain desirable properties that mentioned above and 

will be discussed in more detail in Section 1.1.2, it is not suitable modeling applications such as 

the modeling of option prices. In order to obtain a well-defined model for pricing options, the 

mean, variance and exponential moments of the return distribution must exit. In addition, a fair 

conclusion of the literature is that while the empirical evidence does not support the normal 

distribution, it is also not consistent with an 𝛼-stable distribution. The distribution of returns 

for assets has heavier tails relative to the normal distribution and thinner tails than the 𝛼-stable 

distribution. For these reasons, the so-called tempered stable distributions obtained from 

tempering the tail properties of the 𝛼-stable distributions have been proposed for financial 

modeling. In this study we focus on the classical tempered stable (CTS) distribution (Koponen, 

1995; Boyarchenko and Levendorskiĭ, 2000; Carr et al., 2002). Other examples of the class of 

tempered stable distributions include and the modified tempered stable (MTS) distribution 

(Kim et al., 2009), the normal tempered stable (NTS) distribution (Barndorff-Nielsen and 
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Levendorskiĭ, 2001; Kim et al. 2008), the Kim-Rachev tempered stable (KRTS) distribution 

(Kim et al., 2007) and the rapidly decreasing tempered stable (RDTS) distribution (Bianchi et 

al., 2010; Kim et al., 2010). These distributions have not only heavier tails than the normal 

distribution and thinner than the 𝛼-stable distribution, but also have finite moments for all 

orders. 

 

1.1.2 Gaussian Distributions 

The class of normal distributions, or Gaussian distributions, is certainly one of the most 

important probability distributions in statistics, and due to some of its appealing properties, 

also the class that is used in applications in finance.  

Definition 1. (Gaussian distribution) 

The random variable 𝑋 ∈ ℝ is said to follow a Gaussian distribution 𝑁(𝜇, 𝜎), if the 

density function of the random variable is given by 

where 𝜇 is called the location parameter and 𝜎 is called the scale parameter. 

A Gaussian distribution with 𝜇 = 0  and 𝜎 = 1  is said to be a standard Gaussian 

distribution. Gaussian distribution has some interesting properties, which are useful in finance. 

Here we only discuss the properties that are shared with some particular classes of distributions, 

such as elliptical distributions, stable distributions, and infinitely divisible distributions. 

First, it is closed under linear combination, i.e. a random variable 𝑌 , obtained as 

𝑌 = 𝑎𝑋 + 𝑏, is Gaussian distributed if 𝑋 is a Gaussian distributed random variable. Second, it 

follows a stable law, i.e. if 𝑋1, 𝑋2  are two independent copies of a Gaussian distributed 

random variable 𝑋, then for 𝑎, 𝑏, 𝑐 > 0 and 𝑑 ∈ ℝ, the linear combination 𝑎𝑋1 + 𝑏𝑋2 has 

the same distribution as 𝑐𝑋 + 𝑑, which is also a Gaussian distribution. 

Third, it is infinitely divisible, i.e. for a Gaussian distribution with distribution function 

(d.f.) 𝐹 and for every positive integer 𝑛, there exist n independent, distributed (i.i.d.) random 

variable 𝑋1, … , 𝑋𝑛 whose sum ∑ 𝑋𝑖
𝑛
𝑖=1  also has the d.f. 𝐹. 

The last important property is the fact that the Gaussian distribution possesses a domain of 

attraction. A mathematical result called the Central Limit Theory states that under certain 

technical conditions the distribution of a large sum of random variables behaves necessarily 

like a normal distribution. It is often misunderstand that the Gaussian distribution is the unique 

class of probability distributions that has this property. In fact, it is the class of stable 

 
𝑓(𝑥) =

1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

𝜎2  
1.1  
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distribution (containing the Gaussian distribution), which is unique in the sense that a large 

sum of random variables can only converge to a stable distribution. All these properties will be 

discussed in details in the next sub-sections. 

 

1.1.3 α-Stable Distributions 

As mentioned in Section 1.1.1, there are several reasons for popularity of the 𝛼-stable 

distribution for modeling asset returns 

(i) 𝛼-stable distributions are leptokurtic; i.e., compared to the Gaussian distributions, they 

are typically heavy-tailed and more peaked around the center. 

(ii) 𝛼-stable distributions have domains of attraction. The CLT for normalized sums of 

i.i.d random variables determine the domain of attraction of each stable law. 

(iii) 𝛼 -stable distributions belong to their own domain of attraction, i.e., the set of 

𝛼-stable distributions is stable with respect to the 𝑛-fold convolution and scaling. 

(iv) The family of 𝛼-stable distributions is fairly flexible, given that it is characterized 

with four parameters. 

Here we given the definition of 𝛼-stable distributions. (see, Samorodnitsky and Taqqu, 

1944). 

Definition 2 (stable law) 

Suppose 𝑋1, … , 𝑋𝑛 are i.i.d random variables with d.f. 𝐻. The d.f. 𝐻 is said to be stable 

if there exist constants 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ, such that for any 𝑛: 

D.f. 𝐻 is said to be strictly stable if (1.2) holds with 𝑏𝑛 = 0. A stable d.f. is called 

symmetric if 𝐻(𝑥) = 1 − 𝐻(−𝑥). A symmetric stable d.f. is obviously strictly stable. 

Definition 3 (𝜶-stable distribution) 

The definition can also be represented explicitly with characteristic function : 

where 𝛼 ∈ (0,2], 𝛽 ∈ [−1,1], 𝑐 > 0  and 𝑚 ∈ ℝ, 𝑠𝑖𝑔𝑛(𝑢)  is 1  if 𝑢 > 0 , 0 if 

𝑢 = 0, and −1 if 𝑢 < 0. 

 
𝑎𝑛(𝑋1 +⋯+ 𝑋𝑛) + 𝑏𝑛

𝑑
= 𝑋1 

1.2  

 𝜙𝑠𝑡𝑎𝑏𝑙𝑒(𝑢) = 𝜙𝑠𝑡𝑎𝑏𝑙𝑒(𝑢; 𝛼, 𝛽, 𝑐,𝑚)

= {
exp (−𝑐𝛼|𝑢|𝛼 (1 − 𝑖𝛽𝑠𝑖𝑔𝑛(𝑢) tan (

𝜋𝛼

2
)) + 𝑖𝑚𝑢) , if 𝑎 ≠ 1,

exp (−𝑐|𝑢| (1 + 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛(𝑢)ln (u)) + 𝑖𝑚𝑢) , if 𝑎 = 1,

 

 

1.3  



 

4 

 

  The parameter 𝛼 is called the index of stability and can also be interpreted as a shape 

parameter. The parameter 𝛽  is called the skewness of the distribution. If 𝛽 = 0 , the 

distribution is symmetric, if 𝛽 > 0, it is skewed to the right, if 𝛽 < 0, it is skewed to the left. 

The distribution is said to be totally skewed to the right if 𝛽 = 1, and totally skewed to the left 

if 𝛽 = −1. The parameter 𝑐 is called the scale parameter. Finally the parameter 𝑚 is called 

the location parameter. We shall often assume for simplicity that 𝜇 = 0, because it affects only 

location. Since the characteristic function of an 𝛼-stable distribution is determined by these 

four parameters, we denote stable distribution by 𝑆𝛼(𝑐, 𝛽,𝑚). Here denote the scale parameter 

as 𝑐 instead of 𝜎, as in general, 𝛼-stable distributions don’t have second moment, except 

some special cases. 

Property 1. (Domain of attraction) 

D.f. 𝐻 is said to be in the domain of attraction of 𝛼-stable distributions 𝑆𝛼, if for any 

sequence of 𝑋1, 𝑋2, … of i.i.d random variables with common d.f. 𝐻, there are sequence of 

constants 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ such that 

where 𝑌𝛼 is an 𝑆𝛼-stable distributed random variables.  

It follows from the definition of 𝛼-stable that 𝑆𝛼 belongs to its own domain of attraction, 

i.e., if 𝑋𝑘 is assumed to be 𝛼-stable distributed then, under certain normalozation, the sums 

𝑋1 +⋯+ 𝑋𝑛 has the same distribution. On the orther hand if the d.f of 𝑋𝑘 belongs to the 

domain of attraction of 𝑆𝛼 the normalized sum 𝑍𝑛 is asymptotically 𝑆𝛼-distributed. 

There are three special cases of α-stable distribution, which has closed-form solution for 

the densities. They are (1) the Gaussian case (𝛼 = 2), (2) the Cauchy case (𝛼 = 1), and (3) the 

Lévy case (𝛼 = 1/2, 𝛽 = ±1) with the following respective densities: 

Here we briefly describe four basic properties of 𝛼-stable distributions. 

(1) The tail of the distributions decays like a power function (slower than the exponential 

decay), which can be described as 

 𝑍𝑛 ≔ 𝑎𝑛(𝑋1 +⋯+ 𝑋𝑛) − 𝑏𝑛
𝑑
→ 𝑌𝛼 

1.4  

Gaussian: 
𝑓(𝑥) =

1

√2𝜋𝑐2
𝑒
−
(𝑥−𝑚)2

𝑐2 , −∞ < 𝑥 < ∞ 
1.5  

Cauchy: 𝑓(𝑥) = 𝑐/(𝜋((𝑥 − 𝑚)2 + 𝑐2)),−∞ < 𝑥 < ∞ 1.6  

Lévy: 
𝑓(𝑥) = √𝑐/ (√2𝜋(𝑥 − 𝜇)

3
2) 𝑒

−
𝑐

2(𝑥−𝑚), 𝑚 < 𝑥 < ∞ 
1.7  

 𝑃(|𝑋| > 𝑥) ∝ 𝐶 ∙ 𝑥−𝛼, 𝑥 → ∞ 1.8  
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for some constant 𝐶. 

(2) The raw moments of the distributions satisfy the property: 

 (3) The mean of the distribution is finite only for 𝛼 > 1 

 

1.1.4 Classical Tempered Stable Distributions 

In this section, the CTS distribution and the generalized CTS distribution are discussed 

with their definitions and properties. 

Definition 4 (Classical tempered stable distribution) 

A random variable 𝑋 is said to follow the classical tempered stable (CTS) distribution if 

the characteristic function of 𝑋 is given by  

where 𝛼 ∈ (0,1) ∪ (1,2), 𝐶, 𝜆+, 𝜆_ > 0, and 𝑚 ∈ ℝ, and we denote 

𝑋 ∼ 𝐶𝑇𝑆(𝛼, 𝐶, 𝜆+, 𝜆−, 𝑚). 

Using the n-th derivative of 𝜓(𝑢) = log𝜙(𝑢) evaluated around zero, the cumulants of 𝑋 

are obtained by  

The parameter 𝛼 is the shape parameter. Along with parameter 𝛼, the parameter 𝜆+ and 

𝜆−  control the rate of decay on the positive and negative tails, respectively. If 𝜆+ > 𝜆− 

(𝜆+ < 𝜆−), then the distribution is skewed to the left (right), and if 𝜆+ = 𝜆− , then it is 

symmetric. The parameter 𝐶 is the scale parameter and parameter m is the location parameter. 

If we take a special parameter 𝐶 defined by 

Then 𝑋 ∼ CTS(𝛼, 𝐶, 𝜆+, 𝜆−, 1) has zero mean and unit variance. In this case, 𝑋 is called 

the standard CTS distribution with parameter (𝛼, 𝜆+, 𝜆−)  and denoted by 

 𝐸|𝑋|𝑝 < ∞ for any 0 < 𝑝 < 𝛼 

𝐸|𝑋|𝑝 = ∞ for any 𝑝 ≥ 𝛼 

1.9  

 𝐸(𝑋) = 𝑚, for 𝛼 > 1 

𝐸(𝑥) = ∞, for 0 < 𝛼 ≤ 1 

 

1.10  

 𝜙𝑋(𝑢) = 𝜙𝐶𝑇𝑆(𝑢; 𝛼, 𝐶, 𝜆+, 𝜆−, 𝑚) 

             = exp (𝑖𝑢𝑚 − 𝑖𝑢𝐶𝛤(1 − 𝛼)(𝜆+
𝛼−1 − 𝜆−

𝛼−1) 

             +𝐶𝛤(−𝛼)((𝜆+ − 𝑖𝑢)𝛼 − 𝜆+
𝛼 + (𝜆−

𝛼 − 𝑖𝑢)𝛼 − 𝜆−
𝛼)) 

1.11  

 𝑐1(𝑋) = 𝑚 

𝑐𝑛(𝑋) = 𝐶𝛤(𝑛 − 𝛼)(𝜆+
𝛼−𝑛 + (−1)𝑛𝜆−

𝛼−𝑛), for 𝑛 = 2, 3, … 

1.12  

 𝐶 = (𝛤(2 − 𝛼)(𝜆+
𝛼−2 + 𝜆−

𝛼−2))
−1

 1.13  
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𝑋 ∼ 𝑠𝑡𝑑CTS(𝛼, 𝜆+, 𝜆−). 

A more general for of the characteristic function of the CTS distribution is given by 

where 𝛼+, 𝛼− ∈ (0,1) ∪ (1,2) , 𝐶+, 𝐶−, 𝜆+, 𝜆− > 0 , and 𝑚 ∈ ℝ . This distribution is  

referred to as the generalized classical tempered stable (GTS) distribution and we denote it by 

𝑋 ∼ GTS(𝛼+, 𝛼−, 𝐶+, 𝐶−, 𝜆+, 𝜆−, 𝑚). 

The cumulants of 𝑋 are 

for 𝑛 = 2, 3, …. 

Other members of tempered stable distributions are introduced in literature (see, for 

example, Rachev, et al, 2011). In next section, we talk about the class of infinitely divisible 

distribution and the relationship among all the distributions we have already discussed. 

 

1.1.5 Infinitely Divisible Distributions 

Definition 5. (Infinitely divisible) 

A probability distribution 𝐹 on ℝ𝑑 is said to be infinitely divisible if for any integer 

𝑛 ≥ 2 , there exists 𝑛  i.i.d. random variables 𝑌1, … , 𝑌𝑛  such that 𝑌1 +⋯+ 𝑌𝑛  has the 

distribution 𝐹. 

The most common examples of infinitely divisible distributions are: the Gaussian 

distribution, the gamma distribution, the Poisson distribution, 𝛼-stable distribution and the 

tempered stable distribution. A random variable have any of these distributions can be 

decomposed into a sum of 𝑛  i.i.d. parts having the same distribution with modified 

parameters. For our study, if 𝑋 ∼ 𝑁(𝜇, 𝜎2), then 𝑋 can be rewritten as 𝑋 = ∑ 𝑌𝑖
𝑛
𝑖=1 , where 

𝑌𝑖 are i.i.d random variable following 𝑁 (
𝜇

𝑛
,
𝜎2

𝑛
). The relations of 𝑋 and 𝑌𝑖 for 𝛼-stable 

and CTS distributions are: 𝑋 ∼ 𝑆𝛼(𝐶, 𝛽,𝑚) , 𝑌𝑖 ∼ 𝑆𝛼 (
𝐶

𝑛
, 𝛽,

𝑚

𝑛
) ; and 

𝑋 ∼ CTS(𝛼, 𝐶, 𝜆+, 𝜆−, 𝑚) , 𝑌𝑖 ∼ CTS (𝛼,
𝐶

𝑛
, 𝜆+, 𝜆−,

𝑚

𝑛
)  (for other distributions, see, for 

example, Rachev, et al. 2011).  

In the literature, the characteristic function of one-dimensional infinitely divisible 

 𝜙𝐺𝐶𝑇𝑆(𝑢) = exp (𝑖𝑚𝑢 − 𝑖𝑢𝛤(1 − 𝛼)(𝐶+𝜆+
𝛼+−1 − 𝐶−𝜆−

𝛼+−1) 

                     +𝐶+𝛤(−𝛼+)((𝜆+ − 𝑖𝑢)𝛼+ − 𝜆+
𝛼+) 

                     +𝐶−𝛤(−𝛼−)((𝜆− − 𝑖𝑢)𝛼− − 𝜆−
𝛼−) 

1.14  

      𝑐1(𝑋) = 𝑚,  

𝑐𝑛(𝑋) = 𝐶+𝛤(𝑛 − 𝛼+)𝜆+
𝛼+−𝑛 + (−1)𝑛𝐶−𝛤(𝑛 − 𝛼−)𝜆−

𝛼−−𝑛 

1.15  
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distribution is generated by the Lévy-Khinchin formula: 

In the formula, the measure 𝜈 is referred to as Lévy measure. The measure is a Borel 

measure satisfying the condition that 𝜈(0) = 0 and ∫ (1 ∧ |𝑥2|)𝜈(𝑑𝑥)
ℝ

< ∞. The parameter 

𝛾 and 𝜎 are real numbers and 𝛾 is referred to as the center or drift and determines the 

location. This triplet (𝜎2, 𝜈, 𝛾) is uniquely defined for each infinitely divisible distribution, 

and called a Lévy triplet. 

If 𝜈(𝑑𝑥) = 0, the infinitely divisible distribution becomes the Gaussian distribution 

with mean 𝛾 and variance 𝜎2, which is easy to check from the characteristic function of the 

Gaussian distribution. 

For 𝛼-stable distribution, the Lévy measure is given by 

Using the Lévy-Khinchine formula we can obtain the characteristic function in (1.3). 

The Lévy measure of the tempered stable distributions can be obtained by multiplying 

tempering function to the Lévy measure of 𝛼-stable distribution. For instance, if we take 

𝑞(𝑥) = 𝑒−𝜆+𝑥𝟏𝑥>0 + 𝑒−𝜆−|𝑥|𝟏𝑥<0  as the tempering function, then we obtain the Lévy 

measure of the CTS distribution as  

For this reason, they are referred to as the tempered stable distribution. For more 

references of the multivariate cases of  α-stable distributions and TS distributions, see 

Rachev and Mittnik (2000), and Kim, et al. (2012).   

 

1.2 Multivariate Distributions 

1.2.1 Introduction 

Financial models are inherently multivariate. The value change of a portfolio of assets 

over a fixed time horizon depends on a random vector of risk-factor changes or returns. In 

this section, we consider some models for random vectors that are particular useful for 

financial data. We do this from a static, distributional point of view without considering about 

time series aspects, which will be discussed in Section 1.3.  

A stochastic model for a random vector can be thought of as simultaneously providing 

 
exp(𝑖𝛾𝑢 −

1

2
𝜎2𝑢2 +∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥1|𝑥|≤1)𝜈(𝑑𝑥)

∞

−∞

) 
1.16  

 
𝜈stable(𝑑𝑥) = (

𝐶+
𝑥1+𝛼

1𝑥>0 +
𝐶−

|𝑥|1+𝛼
1𝑥<0) 𝑑𝑥 

1.17  

 
𝜈CTS(𝑑𝑥) = (

𝐶+𝑒
−𝜆+𝑥

𝑥1+𝛼
1𝑥>0 +

𝐶−𝑒
−𝜆−|𝑥|

|𝑥|1+𝛼
1𝑥<0)𝑑𝑥 

1.18  
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probabilistic descriptions of the behavior of the components in the random vector and of their 

dependence structure. In Section 1.2.2 we review the widely used multivariate normal 

distribution and then discuss a generalization of it known as a multivariate normal mixture 

distribution, which shares much of the structure of the multivariate normal distribution and 

retains many of its properties. We treat both variance mixture, which belongs to the wider 

class of elliptical distributions, and mean-variance mixture, which allows asymmetry. 

Concrete examples include student-t distributions and generalized hyperbolic distributions.  

In Section 1.2.3, we look more closely at the issue of dependence structure among a random 

vector of financial risk factors using the concept of copula. Then we provide an approach to 

create the so-called meta distribution, which is a multivariate distribution defined by a 

particular copula with some marginal distributions. 

 

1.2.2 Multivariate Mixture Distributions 

Definition 6. (Multivariate normal distribution) 

A random vector 𝑿 = (𝑋1, … , 𝑋𝑑)′ is said to follow a multivariate normal or Gaussian 

distribution if  

where 𝑍 = (𝑍1, … , 𝑍𝑘)′ is a vector of i.i.d. univariate standard normal random variables, 

and 𝐴 ∈ ℝ𝑑×𝑘 and 𝝁 ∈ ℝ𝑑  are a matrix and a vector of constants, respectively.  

It is easy to verify that E[𝑿] = 𝝁 and cov[𝑿] = Σ = 𝐴𝐴′. We only focus on the 

non-singular cases where rank(𝐴) = d ≤ k. In these cases, the covariance matrix 𝚺 has full 

rank and is positive-definite. We denote the multivariate normal distribution by 𝑿 ∼

𝑁𝑑(𝝁, 𝚺) , and the standard multivariate normal distribution by 𝑿 ∼ 𝑁𝑑(𝟎, 𝑰𝑑)  if the 

components of 𝑿 are mutually independent and follow the standard normal distributions.  

The characteristics function of 𝑿 can be derived from that of the univariate standard 

normal r.v.s 𝒁 . Here we provide the characteristics function and also the continuous 

distribution function of 𝑿 as following: 

where |𝚺|denotes the determinant of Σ.  

It can be seen from the density that the points lie on ellipsoids determined by the 

 𝑿 = 𝝁 + 𝐴𝒁 1.19  

 
𝜙𝑋(𝒖) = exp (𝑖𝒖′𝝁 +

1

2
𝝁′𝚺𝝁  ) , 𝒖 ∈ ℝ𝑑 

1.20  

 
𝑓(𝑿) =

1

(2𝜋)
𝑑
2|𝚺|

1
2 
exp (−

1

2
(𝒙 − 𝝁)′𝚺(𝒙 − 𝝁)) 

1.21  
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equation of the form (𝒙 − 𝝁)′𝚺(𝒙 − 𝝁) = 𝑐, for constant 𝑐 > 0. Moreover, a multivariate 

density 𝑓(𝒙) depended on 𝒙 only through the quadratic form (𝒙 − 𝝁)′𝚺(𝒙 − 𝝁) is the 

density of a so-called elliptical distribution. 

An elegant character of multivariate normality is that 𝑿 is multivariate normal if and 

only if 𝒂′𝑿 is univariate normal for all 𝒂 ∈ ℝ𝑑\{𝟎}. 

A generalization of multivariate normal distribution is normal mixture distributions, 

which introduce randomness into the mean vector and covariance matrix of a multivariate 

normal distribution by introducing a positive random variable 𝑊. 

First we introduce the norm variance mixtures which only adopt randomness into the 

covariance matrix.  

 Normal variance mixtures 

Definition 7. (Normal variance mixtures) 

The random vector 𝑿  is said to follow a multivariate normal variance mixture 

distribution if  

where 𝒁 ∼ 𝑁𝑑(𝟎, 𝑰𝑘); 𝑊 ≥ 0 is a non-negative, scalar-valued random variable which 

is independent of 𝒁; and 𝐴 ∈ ℝ𝑑×𝑘 and 𝝁 ∈ ℝ𝑑 are a matrix and a vector of constants, 

respectively.  

Conditioning on the random variable 𝑊, we observe that 𝑿|𝑊 = 𝑤 ∼ 𝑁𝑑(𝝁,𝑤𝚺), 

where Σ = 𝐴𝐴′. Provided that 𝑊 has a finite expectation, we may easily calculate that  

The characteristic function of 𝑿 is given by 

where 𝐻̂(𝜃) = ∫ 𝑒−𝜃𝜈𝑑𝐻(𝜈)
∞

0
 is the Laplace – Stieltjes transform of the df 𝐻 of 𝑊. 

Based on (1.25) we use the notation 𝑿 ∼ 𝑀𝑑(𝝁, 𝜮, 𝐻̂) for normal variance mistues. 

If we take 𝑊 in (1.22) to be a random variable with an inverse gamma distribution 

 𝑿 = 𝝁 + √𝑊𝐴𝒁 1.22  

        E[𝑊] = E[𝝁 + √𝑊𝐴𝒁] 

                                 = 𝝁 + E[√𝑊]𝐴E[𝒁] = 𝝁 

1.23  

                     cov[𝑿] = E [(√𝑊𝐴𝒁)(√𝑊𝐴𝒁)
′
] 

                                        = E[𝑊]𝐴E[𝒁𝒁′]𝐴′ = E[𝑊]𝚺 

1.24  

 
𝜙𝑿(𝑢) = E [exp (𝑖𝒖′𝝁 +

1

2
𝑊𝝁′𝚺𝝁 )] 

= exp(𝑖𝒖′𝝁)𝐻̂ (
1

2
𝝁′𝚺𝝁) 

1.25  
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𝑊 ∼ Ig (
1

2
𝜈,

1

2
𝜈), then 𝑿 has a multivariate 𝑡 distribution with 𝜈  degrees of freedom.  

Another example is the symmetric generalized hyperbolic distributions, which are obtained 

by taking 𝑊 in (1.22) to have a generalized inverse Gaussian (GIG) distribution, 𝑊 ∼

𝑁−(𝜆, 𝜒, 𝜓).  

All of the multivariate distributions we have considered so far have elliptical symmetry, 

which implies that all one-dimensional marginal distributions are symmetric and thus 

contradict to the different tail behaviors of  positive and negative returns from financial risk 

factor observations. The asymmetry of the normal mixture distributions can be obtained by 

mixing normal distributions with different means as well as different variances. We give the 

definition of the class of normal mean-variance mixture distributions as following: 

 Normal mean-variance mixtures 

Definition 8. (Normal mean-variance mixtures) 

A random vector 𝑿 = (𝑋1, … , 𝑋𝑑)′  is said to follow a multivariate normal 

mean-variance mixture distribution if  

where 𝒁 ∼ 𝑁𝑑(𝟎, 𝑰𝑘); 𝑊 ≥ 0 is a non-negative, scalar-valued random variable which 

is independent of 𝒁; and 𝐴 ∈ ℝ𝑑×𝑘 and 𝝁 ∈ ℝ𝑑 are a matrix and a vector of constants, 

respectively; 𝒎: [0,∞) → ℝ𝑑 is a measurable function. 

One possible concrete specification for the function 𝒎(𝑊) in (1.26) is: 

where 𝝁 and 𝜸 are parameter vector in ℝ𝑑.  

Since 𝜮 = 𝑨𝑨′, we have that: 

When the mixing variable 𝑊 has finite variance, we observe from (1.28) and (1.29) 

that the parameters 𝝁 and 𝜮 are not, in general, the mean vector and covariance matrix. The 

is only the case when 𝜸 = 𝟎, so that (1.22) is a simpler formula of (1.27). 

A very flexible family of normal mean-variance mixtures is the so called generalized 

hyperbolic (GH) distributions, where  𝑊 ∼ 𝑁−(𝜆, 𝜒, 𝜓), a GIG distribution. An important 

property of GH distributions is their link to Lévy processes, i.e. processes with independent 

cases in continuous time. In fact, similar to the α-stable distributions and TS distributions 

 𝑿 = 𝒎(𝑊) + √𝑊𝐴𝒁 1.26  

 𝒎(𝑊) = 𝝁 +𝑊𝜸 1.27  

 E[𝑿] = E[E[𝑿|𝑊]] = 𝝁 + E[𝑊]𝜸 1.28  

    cov[𝑿] = E[cov[𝑿|𝑊]] + cov[E[𝐵|𝑊]] 

 = E[𝑊]𝜮 + var[𝑊]𝛄𝛄′ 

1.29  
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discussed in Section 1.1.3 and 1.1.4, GH distributions are also infinitely divisible distribution, 

a property that it inherits from the GIG mixing distribution of 𝑊.  

The characteristic function of GH distributions may be calculated as following: 

where 𝐻̂ is the Laplace – Stieltjes transform of  the GIG distribution. 

We adopt the notation 𝑿 ∼ GH𝑑(𝜆, 𝜒, 𝜓, 𝝁, 𝚺, 𝜸 ). Note that this notation is not unique. 

For instance, 𝑿 ∼ GH𝑑(𝜆, 𝜒, 𝜓, 𝝁, 𝚺, 𝜸 ) and 𝑿 ∼ GH𝑑(𝜆, 𝜒/𝑘, 𝑘𝜓, 𝝁, 𝚺, 𝜸 ) are identical.  

GH distribution family is extremely flexible and contains many special cases known by 

other names. Here we give some examples of these special cases. 

 If 𝜆 = 1, the multivariate distribution has univariate margins of one-dimensional 

hyperbolic distributions. The one-dimensional hyperbolic distributions have been 

widely studied in univariate analysis of financial returns; 

 If 𝜆 =
1

2
(𝑑 + 1), the multivariate distribution is referred to as a 𝑑-dimensional 

hyperbolic distribution whose margins are not one-dimensional hyperbolic 

distributions. For more references of hyperbolic distributions, see Eberlein and 

Keller (1995), and Eberlein, et al. (1997). 

 If = −
1

2
 , the distribution is known as an normal inverse Gaussian (NIG) 

distribution.  Its functional form is similar to hyperbolic with a slightly heavier tails. 

For more references about applying NIG model with financial return data, see 

Barndorff-Nielsen (1997). 

 If 𝜆 > 0 and 𝜒 = 0, we get a limiting cases of the distribution known variously as 

a generalized Laplace, Bessel function or variance-gamma distribution. For more 

references, see Madan, et al. (1998), and Kotz, et al. (2001). 

  If 𝜆 = −
1

2
𝜈, 𝜒 = 𝜈, and 𝜓 = 0 we get another limiting cases suggested by 

McNeil, et al. (2005), known as asymmetric or skewed 𝑡 distribution. For 

estimation and application of skewed 𝑡 distribution, see Aas and Haff (2005), Hu 

and Kercgeval (2006),  and McNei and Demarta (2007).  For alternative skewed 

extensions of the multivariate  𝑡, see Kotz and Nadarjah (2004), and Genton (2004). 

Univairate and multivariate t distributions have been widely used in modeling the 

financial return data, since they can model the heavy tails of the return distributions and 

dependence structures among them, for instance, through a  t copula. Due to the simplicity 

 
𝜙𝑿(𝒖) = e𝑖𝒖

′𝝁𝐻̂(
1

2
𝒖′𝚺𝒖 − 𝑖𝒖′𝜸) 

1.30  
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of those symmetric distributions, they cannot capture the observed asymmetry of the 

multivariate financial return data. For instance, large losses occur more frequently and 

simultaneously than large returns for equities. Thus it is natural and necessary to consider a 

skewed  t distribution model in some circumstances. 

Following the notation in McNeil, et al. (2005), the joint probability density function of 

multivariate skewed t distribution is given as following: 

where 𝑄(𝒙) = (𝒙 − 𝝁)′𝚺−1(𝒙 − 𝝁) and the normalizing constant is  

This density reduces to the standard multivariate t density as 𝜸 → 𝟎. We denote the 

multivariate skewed t distribution as 𝑿 ∼ 𝑠𝑘𝑒𝑤𝑒𝑑𝑡(𝜈, 𝝁, 𝚺, 𝜸).  

In this case, we obtain a special case of 𝑊 ∼ InverseGamma(𝜈/2, 𝜈/2) as an inverse 

gamma random variable. Thus it is easy to calculate the mean vector and covariance matrix 

of 𝑿 as following: 

The GH distributions can be fitted to data by the algorithms of the EM 

(expectation-maximization) type (see, Protassov, 2004; Barnforff-Nielsen and Shephard, 

2005).  Fitting the multivariate skewed t distributions with the EM-type algorithms with 

unknown degrees of freedom has been studied in many literatures, such as Meng and Rubin 

(1993), Liu and Rubin (1994), Liu (1997) and Meng and van Dyk (1997). Here we adopt the 

algorithms suggested by McNeil et al. (2005) and details given by Hu and Kercheval (2006). 

 

1.2.3 Copula and Meta Distributions 

A bottom-up approach to multivariate model building is particularly useful in such 

scenario that we have more information about the behavior of individual risk factors than 

their dependence structure. The copula approach, in general, provides a way of isolating the 

description of dependence structure and thus allows us to combine our more developed 

 

𝑓(𝑿) = 𝑐

𝐾(𝜈+𝑑)
2

(√(𝜈 + 𝑄(𝒙))(𝜸′𝚺−1𝜸))𝑒(𝒙−𝝁)
′𝚺−1𝜸

(√(𝜈 + 𝑄(𝒙))(𝜸′𝚺−1𝜸))

−
(𝜈+𝑑)

2

(1 + (
𝑄(𝒙)
𝜈 ))

(𝜈+𝑑)
2

 

1.31  

 
𝑐 =

21−(𝜈+𝑑)/2

𝛤 (
1
2
𝝁) (𝜋𝜈)𝑑/2|𝚺|1/2

 
1.32  

 E[𝑿] = 𝝁 + 𝜸
𝜈

𝜈 − 2
 

1.33  

 
                               cov[𝑿] =

ν

ν − 2
𝚺 + 𝜸𝜸′

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
 

1.34  
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marginal model with a variety of possible dependence models and to investigate the 

sensitivity of risk to the dependence specification. 

Copula helps in the understanding of dependence at a deeper level than the linear 

correlation, though the later one plays a central role in financial history. A common 

misunderstanding about linear correlation is that the marginal distributions and pairwise 

correlation determines its joint distribution. This statement is only true when our attentions 

are restricted to the elliptical distributions. A contradictory example is the normal 

mean-variance mixture given in (1.23) and (1.24) when 𝜸 ≠ 𝟎. However, in later of this 

section, we will show that this statement is true in general if we replace correlation with 

copula. 

A d-dimensional copula is defined as a distribution function on [0,1]𝑑 with standard 

uniform marginal distributions.  A fundamental theory of copula is given by the Sklar (1995) 

theorem as following: 

Theorem 1. (Sklar 1959) 

Let 𝐹 be a joint distribution function with margins 𝐹1, … , 𝐹𝑑. Then there exists a 

copula  : [0,1]𝑑 → [0,1] such that, for all 𝑥1, … , 𝑥𝑑 in ℝ̅ = [−∞,∞], 

Proof. For the proof, see McNeil et al. (2005). 

If the margins are continuous, then 𝐶 is unique; otherwise C is uniquely determined on 

Ran 𝐹1 × Ran 𝐹2 × …× Ran 𝐹𝑑, when Ran 𝐹𝑖 = 𝐹𝑖(ℝ̅) denotes the range of 𝐹𝑖. Conversely, 

if 𝐶 is a copula and 𝐹1, … , 𝐹𝑑 are univariate distribution of functions, then the function 𝐹 

is a joint distribution function with margins 𝐹1, … , 𝐹𝑑. 

Moreover, if the random vector 𝐹 has joint df 𝐹 continuous marginal distributions 

𝐹1, … , 𝐹𝑑, then the copula of 𝐹 (or 𝑋) is the df 𝐶 of 𝐹1(𝑋1),… , 𝐹𝑑(𝑋𝑑). 

If we evaluate (1.35) at 𝑥𝑢 = 𝐹𝑖
−1(𝑢𝑖), 0 ≤ 𝑢𝑖 ≤ 1, 𝑖 = 1,… , 𝑑 with satisfying 

conditions of the generalized inverse, we obtain 

which gives an explicit representation of 𝐶 in terms of 𝐹 and its margins. 

For the converse statement assume that 𝐶 is a copula and that  𝐹1, … , 𝐹𝑑 are 

univariate dfs. By taking 𝑼 to be a random vector with df 𝐶 and setting 

𝑿 ≔ (𝐹1
−1(𝑈1),… , 𝐹𝑑

−1(𝑈𝑑)), we verify through (1.31) that 

 𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑑(𝑥1))) 1.35  

 𝐶(𝑢1, … , 𝑢𝑑) = 𝐹(𝐹1
−1(𝑢1),… , 𝐹𝑑

−1(𝑢𝑑)) 1.36  
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The converse statement of Sklar’s Theorem provides a very powerful technique for 

constructing multivariate distributions with arbitrary margins and copulas. Starting with a 

copula 𝐶 and margins 𝐹1, … , 𝐹𝑑, then  𝐹(𝑿) ≔ 𝐶(𝐹1(𝑥1),… , 𝐹𝑑(𝑥𝑑)) defines multivariate 

df with margins 𝐹1, … , 𝐹𝑑. Such multivariate distributions are known as meta distributions. 

For instance, if the distribution is constructed with a Gauss copula and arbitrary margins, then 

it is called meta-Gauss distribution. In Chapter 3, we use this technique to model multivariate 

factor returns with the distribution constructed with classical tempered stable distributions as 

margins and a skewed t copula. 

A unique copula is contained in every multivariate distribution with continuous marginal 

distributions, and a useful class of parametric copulas are those contained in the normal 

mixture distributions in Section 1.2.2. Here we give an example of the skewed t copula.  

Example 1. (Skewed t copula) 

Consider 𝒀 ∼ 𝑠𝑘𝑒𝑤𝑒𝑑𝑡(𝜈, 𝝁, 𝚺, 𝜸) is a skewed t random vector, then its copula is a 

so-called skewed t copula with the form as following: 

where 𝑠𝑘𝑒𝑤𝑒𝑑𝑡
𝜈,𝜇𝑖,𝜎𝑖

2,𝛾𝑖

−1  is the inverse cumulative probability function of 

one-dimensional skewed t distribution with parameters (𝜈, 𝜇𝑖, 𝜎𝑖
2, 𝛾𝑖). In general skewed t 

copula does not have a close form.  

The estimation method may be the EM-type approach discussed in Section 1.2.2. Here 

we provide an algorithm for simulation of  skewed t copulas. Consider generated 𝑁 

independent 𝑑-dimensional vectors from the multivariate skewed t distribution with obtained 

parameter estimates (𝜈̂, 𝝁̂, 𝚺̂, 𝜸̂). The generated scenarios form a 𝑁 × 𝑛 matrix 𝑪 = {𝐶𝑖𝑗}. 

(1) Generate 𝑁 independent 𝑑-dimensional vectors 𝒁 from multivariate normal 

distribution 𝑁(𝟎, 𝚺̂). 

(2) Generate 𝑁 independent random variables 𝑊from the inverse gamma distribution 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝜈̂/2, 𝜈̂/2). 

(3) Obtain 𝑁 independent 𝑑-dimensional vectors 𝑺 = 𝝁̂ + 𝜸̂𝑊 + √𝑊𝒁. 

 𝑃(𝑋1 ≤ 𝑥1, … , 𝑋𝑑 ≤ 𝑥𝑑) 

= 𝑃(𝐹1
−1(𝑈1) ≤ 𝑥1, … , 𝐹𝑑

−1(𝑈𝑑) ≤ 𝑥𝑑) 

= 𝑃(𝑈1 ≤ 𝐹1(𝑥1),… , 𝑈𝑑 ≤ 𝐹𝑑(𝑥𝑑)) 

= 𝐶(𝐹1(𝑥1),… , 𝐹𝑑(𝑥𝑑)) 

1.37  

 𝐶𝜈,𝝁,𝚺,𝜸
𝑠𝑘𝑒𝑤𝑒𝑑𝑡(𝒖)

= 𝑠𝑘𝑒𝑤𝑒𝑑𝑡(𝜈,𝝁,𝚺,𝜸)(𝑠𝑘𝑒𝑤𝑒𝑑𝑡𝜈,𝜇1,𝜎1
2,𝛾1

−1 (𝑢1),… , 𝑠𝑘𝑒𝑤𝑒𝑑𝑡
𝜈,𝜇𝑑,𝜎𝑑

2,𝛾𝑑

−1 (𝑢𝑑)) 

1.38  
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(4) Transfer simulated 𝑺 into uniform scenarios 𝑪 either through the sample 

distribution function of the margins obtained from S, 

where 𝐼{∙} stands for the indicator function; or, ideally, from the cdf of margins 

Where 𝑓𝑘(∙) is the density of one-dimensional skewed t distribution with parameters 

(𝜈, 𝜇̂𝑘, 𝜎̂𝑘
2, 𝛾𝑘). Then  

While using the cdf of margins is more accurate, it is not analytically tractable. 

  

1.3 Time Series Models 

1.3.1 Introduction 

This section provides a short summary of classical time series analysis with a focus on 

that is relevant to modeling risk-factor return series. More specifically, we introduce some 

examples of models used in this study, such as ARMA (autoregressive moving-average) 

processes, and GARCH (generalized autoregressive conditionally heteroscedastic) processes. 

There are several variations of the form of these time series models, here we follow the 

definitions given in McNeil et al. (2005). 

In general, the processes we consider will be stationary in one or both of the following 

two senses: 

Definition 8. (strict stationary) 

 The time series (𝑋𝑡)𝑡∈ℤ is strictly stationary if  

for all 𝑡1, … , 𝑡𝑛, 𝑘 ∈ ℤ and for all 𝑛 ∈ ℤ. 

Definition 9. (covariance stationary) 

The time series (𝑋𝑡)𝑡∈ℤ  is covariance stationary (or weakly or second-order stationary) 

if the first two moments exist and satisfy 

 

𝐹̂𝑘(𝑥) =
1

𝑁
∑𝐼{𝑋𝑗𝑘 ≤ 𝑥}

𝑁

𝑗=1

 

1.39  

 
𝐹𝑘(𝑥) = ∫ 𝑓𝑘(𝑡)𝑑𝑡

𝑥

−∞

  
1.40  

           𝐶𝑗𝑘 = 𝐹̂(𝑆𝑗𝑘) 

or 

 𝐶𝑗𝑘 = 𝐹(𝑆𝑗𝑘) 

1.41  

 
(𝑋𝑡1 , … , 𝑋𝑡𝑛)

𝑑
=(𝑋𝑡1+𝑘, … , 𝑋𝑡𝑛+𝑘) 

1.42  
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Definition 10. (white noise) 

(𝑋𝑡)𝑡∈ℤ is a white noise process if it is covariance stationary with autocorrelation 

function 

A white noise process centered to have zero mean and variance 𝜎2 = var(𝑋𝑡) will be 

denoted as WN(0, 𝜎2). 

Definition 11. (strict white noise) 

(𝑋𝑡)𝑡∈ℤ is a strict white noise process if it is a series of iid, finite-variance random 

variables. 

 

1.3.2 ARMA Processes 

The family of classical ARMA process are widely used in financial applications of time 

series analysis. They are covariance-stationary processes that are constructed using white 

noise as a basic building block. A general notation in this section and reminder of this chapter 

we donate while noise by (𝜀𝑡)𝑡∈ℤ  and strict white noise by (𝑍𝑡)𝑡∈ℤ. 

Definition 12. (ARMA process) 

Let (𝜀𝑡)𝑡∈ℤ be WN(0, 𝜎2). The process (𝑋𝑡)𝑡∈ℤ is a zero-mean ARMA(𝑝, 𝑞) process 

if it is a covariance stationary process satisfying difference equations of the form  

𝑋𝑡 is an ARMA process with mean 𝜇 if the centered series (𝑋𝑡 − 𝜇)𝑡∈ℤ is a 

zero-mean ARMA(𝑝, 𝑞) process. 

Here we give an example of  a non-zero mean ARMA(1,1) process. The form of the 

process is given by: 

Suppose an ARMA(1,1) model of the form (1.42) has been fitted with the data and its 

parameters have been determined. The one-step ahead prediction for 𝑋𝑡+1 is  

Since E[𝜀𝑡+1|ℱ𝑡] = 0. And in general we have a h-step prediction  

 

 𝜇(𝑡) = 𝜇,                               𝑡 ∈ ℤ 

𝛾(𝑡, 𝑠) = 𝛾(𝑡 + 𝑘, 𝑠 + 𝑘), 𝑡, 𝑠, 𝑘 ∈ ℤ 

1.43  

 
𝜌(ℎ) = {

1, ℎ = 0
0, ℎ ≠ 0

 
1.44  

 𝑋𝑡 − 𝜙1𝑋𝑡−1 −⋯−𝜙𝑝𝑋𝑡−𝑝 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 1.45  

 𝑋𝑡 − 𝜇 − 𝜙(𝑋𝑡−1 − 𝜇) = 𝜀𝑡 + 𝜃𝜀𝑡−1 1.46  

 E[𝑋𝑡+1|ℱ𝑡] = 𝜇𝑡+1 = 𝜇 + 𝜙(𝑋𝑡 − 𝜇) + 𝜃𝜀𝑡 1.47  

 E[𝑋𝑡+ℎ|ℱ𝑡 ] = 𝜇 + 𝜙ℎ(𝑋𝑡 − 𝜇) + 𝜙ℎ−1𝜃𝜀𝑡 1.48  
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1.3.3 GARCH Processes 

ARCH and its modification GARCH processes are important for capturing the 

phenomena of volatility clustering observed in financial risk factor data.  

Definition 13. (GARCH) 

Let (𝑍𝑡)𝑡∈ℤ be SWN(0,1). The process (𝑋𝑡)𝑡∈ℤ is a GARCH(𝑝, 𝑞) process if it is 

strictly stationary and if it satisfies, for all 𝑡 ∈ ℤ and some strictly positive-valued process 

(𝜎𝑡)𝑡∈ℤ, the equations  

where 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑝, and 𝛽𝑗 ≥ 0, 𝑗 = 1,… , 𝑞. 

In practice, low-order GARCH models are most widely used and we concentrate on the 

GARCH(1,1) model. A GARCH(1,1) process is said to be a covariance stationary process if 

and only if 𝛼1 + 𝛽1 < 1. 

Since we have seen that the ARMA processes are driven by a white noise (𝜀𝑡)𝑡∈ℤ and a 

covariance stationary process is a white noise. It is nature to extend the basic GARCH model 

related to an ARMA model by setting the ARMA error 𝜀𝑡 equal to 𝜎𝑡𝑍𝑡. Hence, for instance, 

a ARMA(1,1)-GARCH(1,1) model has the form as following: 

where α0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0 and   𝛼1 + 𝛽1 < 1. 

And predictions for this model can be easily calculated as  

 

1.4 Some Statistical Tests 

1.4.1 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (K-S) test is a goodness-of-fit test used to decide if a sample 

comes from a hypothesized continuous distribution. Assume that a random sample 𝑥1, … , 𝑥𝑁 

comes from some continuous distribution with cumulative distribution function (cdf) 𝐹(𝑥). 

The empirical cdf is denoted by 𝐹̂(𝑥). 

 𝑋𝑡 = 𝜎𝑡𝑍𝑡 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖𝑋𝑡−𝑖

2

𝑝

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

1.49  

 𝑋𝑡 = 𝜇 + 𝜙1(𝑋𝑡−1 − 𝜇) + 𝜃1𝜎𝑡−1𝑍𝑡−1 + 𝜎𝑡𝑍𝑡 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜎𝑡−1𝑍𝑡−1 + 𝛽1𝜎𝑡−1

2  

1.50  

 E[𝑋𝑡+ℎ|ℱ𝑡 ] = 𝜇 + 𝜙ℎ(𝑋𝑡 − 𝜇) + 𝜙ℎ−1𝜃𝜀𝑡 1.51  

 

var[𝑋𝑡+ℎ|ℱ𝑡] = 𝛼0 ∑(𝛼1 + 𝛽1)
𝑖

ℎ−1

𝑖=0

+ (𝛼1 + 𝛽1)
ℎ−1(𝛼1𝜀𝑡

2 + 𝛽𝜎𝑡
2) 

1.52  
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 K-S test 

H0: The data follow the specified distribution. 

H1: The data do not follow the specified distribution. 

The Kolmogorov-Smirnov statistic for a given cdf 𝐹(𝑥) is  

where sup𝑥|∙| is the supremum of the set of distances.  

By the Glivenko-Cantelli theorem, if the sample comes from distribution 𝐹(𝑥), then 𝐷 

converges to 0 almost surely. The hypothesis regarding the distribution form is rejected if the 

test statistic, 𝐷, is greater than the critical value. There are several variations of the critical 

value tables in literature. We do not present the critical value table since many software 

programs that perform a K-S test will provide the relevant critical values. 

 

1.4.2 Anderson-Darling Test 

The Anderson-Darling (A-D) test is a goodness-of-fit test used if a sample of data came 

from a population with a specific distribution (see, Anderson, T.W. and Darling, D.A., 1952). It 

is a modification of the K-S test and gives more weight to the tails than does the K-S test. The 

K-S test is distribution free in the sense that the critical values do not dependent on the specific 

distribution tested. The A-D test males use of the specific distribution in calculating critical 

values. This has the advantage of allowing a more sensitive test and the disadvantage that 

critical values must be calculated each time. 

 A-D test 

H0: The data follow the specified distribution. 

H1: The data do not follow the specified distribution.   

The A-D test statistic for a given c.d.f.𝐹(𝑥) is  

where 𝑌𝑖 are the ordered data. 

 

1.4.3 Christoffersen Likelihood Ratio Test 

The Christoffersen Likelihood Ratio (CLR) test is a backtesting approach to test the 

accuracy of a putative VaR model. Specifically, consider a time series of daily ex post portfolio 

 𝐷 = sup
𝑥

|𝐹̂(𝑥) − 𝐹(𝑥)| 1.53  

 𝐴2 = −𝑁 − 𝑆 

𝑆 = ∑
2𝑖 − 1

𝑁

𝑛

𝑖=1

[ln 𝐹(𝑌𝑖) + ln(1 − 𝐹(𝑌𝑁+1−𝑖))] 

1.54  
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returns, 𝑅𝑡, and a corresponding time series of ex ante VaR forecast, VaR𝛼(𝑡) with promised 

coverage rate α, such that ideally 𝑃𝑡−1(𝑅𝑡 < −VaR𝛼(𝑡)) = 𝛼.  

Define the hit sequence of VaR𝛼(𝑅𝑡) violations as following: 

Christfoffersen (1998) points out that the problem of determining the accuracy of a VaR 

model can be reduced to the problem of determining whether the hit sequence, [𝐼𝑡(𝛼)]𝑡=1
𝑡=𝑇 

satisfy two following properties: 

1. Unconditional coverage property. The probability of number of violations for a fixed 

time period should equal the coverage rate. A higher or lower rate of violations would suggest 

the reported VaR measure systematically understates or overstates the portfolio’s actual level 

of risk, respectively. 

2. Independence property. This property places a strong restriction on the time 

dependence of violations. Specifically, any two elements of the hit sequence should be 

independent from each other.  

This two property lead to the null hypothesis in CLR test that the elements in the hit 

sequence should be iid random variable following a Bernoulli distribution with parameter α, 

i.e. 𝐼𝑡 ∼ 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛼) 

The test of correct unconditional coverage (uc) is suggested by Kupiec (1995). Denoting 

𝑛1 = ∑ 𝐼𝑡
𝑇
𝑡=1  as the number of violations in the time interval [1, 𝑇], the hypotheses are given 

as following: 

 Unconditional coverage test 

H0: 𝛼 = 𝛼̂ =
𝑛1

𝑇
. 

H1: 𝛼 ≠ 𝛼̂. 

And 𝛼̂ =
∑ 𝐼𝑡
𝑇
𝑡=1

𝑇
=

𝑛1

𝑇
 

According to Kupiec (1995) this test is best conducted as a likelihood ratio test. The test 

statistic takes the form: 

Under the null hypothesis LRuc is asymptotically χ2 distributed with one degree of 

freedom. If the value of the LRuc exceeds the critical value of the χ2 distribution, the null 

hypothesis will be rejected and the model is deemed as inaccurate. 

 
𝐼𝑡(𝛼) = {

1 if 𝑅𝑡 ≤ VaRα(𝑡)

0 if 𝑅𝑡 > VaRα(𝑡)
 

1.55  

 

LRuc = −2 ln(
(1 − 𝛼)𝑇−𝑛1𝑝𝑛1

(1 −
𝑛1
𝑇 )

𝑇−𝑛1

(
𝑛1
𝑇 )

𝑛1
) 

1.56  
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The test of independence is defined where the hit sequence follows a first-order Markov 

sequence with switching probability matrix 

Where πij is the probability of an state 𝑖 on time 𝑡 − 1 being followed by a state 𝑗 on 

time 𝑡, and state 0 stands for no violation occurred and state 1 stands for a violation occured. 

The test of independence (ind) is then: 

 Independence test 

H0: 𝜋01 = 𝜋11. 

H1: π01 ≠ 𝜋11.  

In implementation, denote nij as the number of observation with a state 𝑗 following a 

state 𝑖 and the calculate the ML estimates as  

And  

Under the null hypothesis, LRind is asymptotically χ2 distributed with one degree of 

freedom By combing the independence test with the unconditional coverage test we obtain a 

joint test of conditional coverage (cc) with  

And the test statistic LRcc is asymptotically χ2 distributed with two degree of freedom. 

 

1.4.4 Berkowitz Likelihood Ratio Test 

Unlike CLR test focusing on violations of VaR model, Berkowitz (2000) suggest density 

evaluation methods that make use of the full distribution of outcomes and thus extract a greater 

amount of information from the available data. 

As suggested in Rosenblatt (1952), it is possible to transfor all realizations into a series of 

iid random variable via the transformation as following  

 
Π = [

1 − 𝜋01 𝜋01

1 − 𝜋11 𝜋11
] 

1.57  

 π̂01 =
𝑛01

𝑛0
 

𝜋̂11 =
𝑛11
𝑛1

  

1.58  

 

LRind = −2 ln(
(1 −

𝑛1
𝑇 )

𝑛0

(
𝑛1
𝑇 )

𝑛1

(1 − 𝜋01)𝑛00𝜋01
𝑛01(1 − 𝜋11)𝑛10𝜋11

𝑛11
) 

1.59  

 LRcc = LRuc + LRind 1.60  

 
𝑥𝑡 = ∫ 𝑓(𝑢)𝑑𝑢

𝑦𝑡

−∞

= 𝐹̂(𝑦𝑡) 
1.61  



 

21 

 

where 𝑦𝑡 is the ex post portfolio profit or loss realization and 𝑓(∙) is the ex ante 

forecasted loss density.  

A wide variety of tests would be then available for independence and for uniformity. One 

approach is to transform the uniformity into normality and then calculate the Gaussian 

likelihood and construct LR tests. Such a transformation is given by 

And thus the null hypothesis is that 𝑧𝑡 are iid 𝑁(0,1) random variable.  

Loosely speaking, when backtesting a VaR model, we focus of the shape of the left tail of 

the loss distribution rather than the shape of the entire distribution. In particular, a LR tests is 

constructed on a censored observed tail and any observation which do not fall in the tail will be 

truncated. 

Consider a VaR𝛼 value calculated from a standard normal distribution, for instance, 

VaR95% is 1.64. Then the new variable zt
∗ is defined as following: 

The log likelihood function for joint estimation of μ and σ of the normal distribution is  

And the LR test statistics is given as  

Under the null hypothesis, the test statistics is χ2 distributed with two degree of freedom. 

The test of independence can be construted with a AR(1) processes with untruncated 𝑧𝑡: 

And the independent test statistics is calculated as following: 

where L(𝜇, 𝜎2, 𝜌) the well-known likelihood function associated with (1.66). 

To construct a test of AVaR or ETL, E[𝑧𝑡|𝑧𝑡 < −VaR𝛼], one might instead devise a 

one-sided test of the null. For instance, consider H0: 𝑧𝑡 ∼ 𝑁(𝜇, 𝜎2), 𝜇 < 0, 𝜎2 > 1. If either 

𝜇 < 0 or 𝜎2 > 1, the density places greater probability mass in the tail region that does an iid 

𝑁(0,1). 

 
𝑧𝑡 = Φ−1(𝑥𝑡) = Φ−1 (∫ 𝑓(𝑢)𝑑𝑢

𝑦𝑡

−∞

) 
1.62  

 
zt
∗ = {

−VaR𝛼 if 𝑧𝑡 ≥ −VaR𝛼

𝑧𝑡 if 𝑧𝑡 < −VaR𝛼
 

1.63  

 
L(𝜇, 𝜎|𝑧∗) = ∑ ln

1

𝜎
Φ(

𝑧𝑡
∗ − 𝜇

𝜎
)

𝑧𝑡
∗<−VaR𝛼

+ ∑ ln(1 − Φ(
−VaR𝛼 − 𝜇

𝜎
))

𝑧𝑡
∗=−VaR𝛼

 

1.64  

 LRtail = −2(L(0,1) − L(𝜇̂, 𝜎̂2)) 1.65  

 𝑧𝑡 − 𝜇 = 𝜌(𝑧𝑡−1 − 𝜇) + 𝜀𝑡 1.66  

 LRind = −2(L(𝜇̂, 𝜎̂2, 0) − L(𝜇̂, 𝜎̂2, 𝜌̂)) 1.67  
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2. An Empirical Examination of Return Distributions for Chinese Stocks 

2.1 Introduction 

Since the establishment of the Shanghai Stock Exchange in December 1990 and the 

Shenzhen Stock Exchange in April 1991 in China, some foreign investors have viewed these 

exchanges as being inefficient and conservative in the sense that there was a restriction on 

foreign investors in the Chinese A-shares prior to 2003.
1
 Mookerjee and Yu (1999) argue that 

this view is attributable to three unfavorable characteristics of these exchanges during the 

decade when they were introduced: a restricted supply of stocks, abrupt regulatory policy 

changes resulting in excessive volatility, and limited regulatory enforcement resulting in a 

scarcity of information needed by investors to evaluate companies. However, more recent 

empirical evidence supports improvements in market efficiency (e.g., Li, 2003a, 2003b; Fifield 

and Jetty, 2008). 

In this chapter, we document the behavior of stock returns and risk in the Chinese stock 

market. We start by examining whether the identically and independent distributed hypothesis 

of stock returns is valid for the Chinese stock market. For the U.S. stock market, Rachev et al. 

(2005b) provide empirical evidence that fails to support this hypothesis. Rachev et al. (2007) 

found the same for returns for the Taiwan stock market. For the Chinese stock market, Charles 

and Darné (2009) and Hou (2013) report similar results. The development of the Chinese stock 

market since the turn of the century, especially the efforts by financial regulators in China to 

increase market efficiency due to China’s accession to the World Trade Organization in 2001, 

suggest that a re-examination of stock return behavior is warranted. 

The autocorrelation of return and clustering of volatility behavior that have been observed 

in developed equity markets are also present in the Chinese stock market. In order to improve 

forecasting for the Chinese stock return process, an ARMA-GARCH model is used in this 

                                                 

1
 Foreign investor were only allowed to trade in B-share market, where shares are issued by mainland 

Chinese companies but traded in foreign currencies with some different regulations from the A-share (main) 

market. Although the restriction of Chinese domestic investors investing in B shares was lifted on February 19, 

2001 in order to increase the mobility and liquidity, the B-share market is still a marginal market compared to the 

A-share market. As of this writing, the government is experimenting with transferring B shares to H shares (shares 

traded in the Hong Kong stock market). Since December 1, 2012 a more convenient approach for foreign investors 

investing in the entire Chinese stock market, namely, Qualified Foreign Institutional Investors (QFII), was 

approved by the China Securities Regulation Commission (CSRC). See www.csrc.gov. 
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chapter. As we discussed in Chapter 1, Section 1.3, the autocorrelation of returns is explained 

by the autoregressive-moving average (ARMA) part and the volatility clustering is explained 

by the generalized autoregressive conditional heteroscedaticity (GARCH) part.  

The Gaussian distribution assumption for the innovations of GARCH models is not 

supported by empirical evidence and therefore this assumption is inappropriate for describing 

the stock return process, especially in forecasting market crashes. Kim et al. (2011) have shown 

that alternative distribution-based models, such as α-stable distribution family and tempered 

stable distribution family, perform better than the Gaussian model. This is because the 

Gaussian model fails to capture the skewness and leptokurtosis observed in stock returns. Since 

the Gaussian distribution is a special case in the α-stable distribution family, and the latter 

distribution is also embodied in the more general tempered stable distribution family, in this 

chapter we use the enhanced ARMA-GARCH models with tempered stable distributed 

innovations to study the behavior of the Chinese stock returns. 

    As for risk measures, the standard deviation has long been criticized as a measure of 

risk, despite its key role in mean-variance analysis for optimal portfolio construction. An 

alternative measure that has been proposed is the value-at-risk (VaR) measure. However, 

although VaR has been adopted as the risk measure in the financial industry because of its 

acceptance by bank regulators, it has a number of well-known limitations as a risk measure 

(e.g., Bookstaber, 2009). For example, VaR is not a coherent risk measure because of its 

non-subadditivity property (Artzner et al., 1999), and it ignores the extreme losses exceeding 

VaR. An alternative risk measure that offers a more reliable assessment of risk and the one we 

use in this chapter is average value-at-risk (AVaR). Also called conditional value-at-risk (CVaR) 

(Rockafellar and Uryasev, 2000, 2002), AVaR is the average of losses larger than the VaR for a 

given tail probability. In contrast to VaR, AVaR satisfies all axioms of coherent risk measure 

(Rachev et al., 2008).
2
 The closed-form solution for AVaR for the α-stable and the infinitely 

divisible distributions containing tempered stable distributions have been derived by Stoyanov 

et al. (2006) and Kim et al. (2011). 

In this chapter, we examine the return and volatility observed in the A-share sector of the 

Chinese stock market. We do not explore the B-share market or possible interactions between 

the A- and B-share sectors. As of June 29, 2012, the number and total capitalization of B-share 

stocks are, respectively, 5.1% and 0.72 % of those of A-share stocks. We find that the A-share 

                                                 

2
 If the distribution is continuous, AVaR is equivalent to expected tail loss (ETL). 
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returns are better characterized as a non-Gaussian distribution, such as α-stable and tempered 

stable distribution families.  In addition, we look at the forecasting performance of 

ARMA-GARCH models with different distributed innovations during periods of high volatility. 

We find that the tail-risk spread, which we define as the daily difference between the values of 

AVaR for the Gaussian and non-Gaussian ARMA-GARCH models, may offer an early warning 

signal for a forthcoming market crash. Moreover, we find that for the time period studied, 

January 2010 to June 2012, the Chinese stock market became more sensitive to tailrisk than it 

was in 2005 and 2006. Although other studies have investigated the use of tempered stable 

distribution family for several markets, we believe that this is the first to apply this distribution 

family to the Chinese stock market.  

The reminder of Chapter 2 is organized as following. In Section 2.2, we present the basic 

pattern of returns and volatility in the Chinese stock market. In Section 2.3, we provide tests for 

the distribution of stock returns under the white noise model and the ARMA-GARCH model, 

along with an explanation of the methodology and a description of our data. The 

ARMA-GARCH model with different distributed innovations is described in Section 2.4, 

along with a comparison of their forecasting performance. The backtesting of the values for 

VaR and AVaR generated by different ARMA-GARCH models are also presented and 

compared in that section. We summarize our principal findings regarding the behavior of 

Chinese stock returns in Section 2.5.  

 

2.2. Return and Volatility for the Chinese Stock Market  

A-share stocks are traded on the Shanghai and Shengzhen exchanges. In this chapter, we 

investigate the daily returns for the CSI 300 Index from January 8, 2002 to June 29, 2012 

(2,535 observations).
3
 We analyze the returns and volatility of this index as well as those of 

three market indices from more developed stock markets — a world index representing 24 

                                                 

3
 The CSI 300 Index, a capitalization-weighted stock market index that is compiled by the China Securities 

Index Company, Ltd., is designed for use as a performance benchmark and serves as a reference index for 

derivatives and a benchmark for equity indexing. As of year-end 2012, there were 12 exchange-traded funds, 24 

index funds, and one index futures contract tied to the CSI 300 Index in the Chinese financial market. The 

components of the CSI 300 Index belong to the top 300 A-share stocks by market capitalization and the most 

liquid 50% of all A-share stocks in both exchanges. The index has been calculated from January 8, 2002 with a 

base level of 1000 on November 31, 2004.  

.  

http://en.wikipedia.org/wiki/Capitalization-weighted_index
http://en.wikipedia.org/wiki/Stock_market_index
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developed markets (the Morgan Stanley Capital International World Index), the U.S. stock 

market  (the S&P Index), and the Hong Kong stock market (the Hang Seng Index). All data 

were obtained from Bloomberg L.P. Before using this data source, we checked the index 

provider’s website and other Chinese data provider’s open data sources. We found that no other 

source provides a longer time period for the index data. 

Some sample distribution statistics for the four stock market indices are presented in Table 

2.1. Statistics include daily return sample mean and standard deviation, coefficients of 

skewness and kurtosis, and Ljung-Box Q test statistic. The Ljung-Box Q (10) statistic is used to 

test the significance of serial autocorrelation at lag 10.  

There are five findings based on these summary statistics. First, the mean and standard 

deviation of returns for the CSI 300 Index is higher during the study period than those of the 

other three indices. Since the Chinese stock market is viewed as riskier than the other three 

markets, this finding is consistent with the notion of greater potential return in exchange for 

accepting greater risk. Second, minimum return for the Chinese index is less than that for the 

MSCI world index and the U.S. index, while its maximum return is less than all of the others. 

Large market crashes can still be observed in the Chinese stock market, but not as significant as 

it was in the 1990s (Wang et al., 2004). Third, the skewness coefficient for the Chinese stock 

market is negative and statistically significant, indicating asymmetry of the return distribution. 

Fourth, although the kurtosis coefficient is lower for the Chinese stock market than those for 

the other stock markets, the return distribution can still be characterized as exhibiting “fat tails”. 

Finally, the Ljung-Box Q(10) statistics are highly significant for all four stock indices, 

indicating that daily returns are positively autocorrelated.  

Figure 2.1 presents a more intuitive view of the return distributions for each stock market 

by comparing the normalized sample distributions against the standard Gaussian distribution. 

The sample return distributions deviate from the Gaussian distribution, especially the tails part. 

Moreover, the sample return distribution for the Chinese market implies a relatively thinner tail 

than those for the other stock markets, which, of course, is consistent with the sample kurtoses 

reported in Table 1. One possible reason for this finding is suggested by the study by Friedman 

and Sanddorf-Köhle (2002) who in comparing volatility before and after the imposition by 

Chinese regulators of daily price change limits in 1996, found a reduction in volatility. 

 

2.3. Examination of the Distribution Hypotheses for Chinese Stock Returns  

2.3.1 Methodology 
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In this section, we employ two models to test whether the return distribution of Chinese 

stocks follow a Gaussian distribution. In addition, we select and test three non-Gaussian 

distributions as alternatives. The Chinese stocks in our study are the 300 component stocks in 

the CSI 300 Index.
4
  

In the first model, we assume that the daily return observations are independent and 

identically distributed (iid), thus they are assumed to follow a white noise (WN) process. In the 

second model, the daily stock returns are assumed to follow an ARMA(1,1)-GARCH(1,1) 

process. The WN model concerns itself with the unconditional, homoscedastic distribution 

model while the ARMA-GRACH model belongs to the class of conditional heteroscedastic 

distribution models (Rachev et al., 2005a). For both models, we consider four distribution 

assumptions: the Gaussian distribution, the α-stable distribution,
5
 the classical tempered 

stable (CTS) distribution,
6
 and the normal tempered stable (NTS) distribution.

7
 The last three 

distributions are referred to as non-Gaussian distributions in this chapter. 

Let (𝑆𝑡)𝑡≥0  be the asset price process and (𝑦𝑡)𝑡≥0  be the return process of (𝑆𝑡)𝑡≥0 

defined by 𝑦𝑡 = log
𝑠𝑡

𝑠𝑡−1 
. We propose the following ARMA(1,1)-GARCH(1,1) model: 

where 𝜀0 = 0, and a sequence (𝜀𝑡)𝑡∈𝑁 of iid real random variables. If we set a, b, 𝛼1 

and 𝛽1 equal to zero, then the model becomes a WN process model, which assumes that stock 

returns are iid random variables. Without the preset of the parameters, we will have the 

ARMA(1,1)-GARCH(1,1) time-series model. The innovations 𝜀𝑡  are assumed to follow 

different distributions in this chapter. For convenience, we refer to these models with respect to 

                                                 

4
 We select all the 300 companies that are introduced in the CSI 300 Index at June 29, 2012, and select the 

full time series from January 8, 2002 to June 29, 2012, with 2,535 observations. The missing data are backfilled 

with the CSI300 index and MSCI Chinese sector indices, as the CSI300 sector indices do not have long enough 

time series. The backfill process is a linear regression model. 

5
 Extensive analysis of α-stable distributions and their properties can be found in Samorodnitsky and Taqqu 

(1994), Rachev and Mitnik (2000). 

6
 The CTS distribution has been introduced under different names including: truncated Lévy flight by 

Koponen (1995), the KoBoL distribution by Boyarchenko and Levendorskiǐ (2000), and the CGMY distribution 

by Carr et al. (2002). 

7
 The NTS distribution was originally obtained using a time-changed Brownian motion with a tempered 

stable subordinator by Barndorff-Nielsen and Levendorskiǐ (2001). Later, Kim (2008) defined the NTS 

distribution by the exponential tilting for symmetric MTS distribution. 

 
{
𝑦𝑡 = 𝑎𝑦𝑡−1 + 𝑏𝜎𝑡−1𝜀𝑡−1 + 𝜎𝑡𝜀𝑡 + 𝑐,

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜎𝑡−1

2 𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1 

2 ,
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their underlying distributions as following: 

WN models: normal-WN, stable-WN, CTS-WN, and NTS-WN models. 

ARMA(1,1)-GARCH(1.1) models: normal-ARMA-GARCH, stable-ARMA-GARCH 

model, CTS-ARMA-GARCH and NTS-ARMA-GARCH models. 

The parameters of the normal-ARMA-GARCH model are estimated using the maximum 

likelihood estimation (MLE) method. For the non-Gaussian ARMA-GARCH models, the 

parameters of the ARMA-GARCH part are estimated using a methodology described in 

Bianchi et al (2010). More specifically, the parameters of the ARMA-GARCH part are 

estimated using the quasi-maximum likelihood (QML) method assuming the innovations 

follow a Student’s t distribution. Then we extract residuals using the estimated parameters, and 

fit the parameters of the innovation distribution to the extracted residuals using MLE. 

For the assessment of the goodness-of-fit, we use the Kolmogorov-Smirnov (KS) test and 

the Anderson-Darling (AD) test. We use the later statistic in order to obtain a better test to 

evaluate the tail fit. 

 

2.3.2 Test Results 

Table 2.2 provides the test results using the standard KS test with different significance 

levels. The Gaussian hypothesis is rejected in almost all of the 300 stocks for both the WN 

model and ARMA-GARCH model at a significance level of 5%. Even at an extremely low 

significance level of 0.1%, the Gaussian hypothesis is rejected for 94% of the stocks for the 

WN model and 71% for the ARMA-GARCH model. For the α-stable distribution hypothesis, 

only around 25% of stock cases is rejected at the 0.1% significance level, and about half of all 

the stock cases are rejected at the significance level of 5% for both models tested. Moreover, 

there are much fewer cases of stocks being rejected under the two tempered stable distribution 

hypotheses for both models. The NTS distribution hypothesis is rejected for less than 10% of 

the stocks for the ARMA-GARCH model; the CTS distribution performs best among all the 

four tested distributions, with only 1% of the stocks being rejected for the ARMA-GARCH 

model.  

We believe that there are three fair conclusions that can be reached based on these results. 

First, returns in the Chinese stock market do not follow the Gaussian distribution. This holds 

regardless of whether the WN model or the ARMA-GARCH model is used. Second, the 

ARMA-GARCH model can better capture the characteristics of the stock return process than 

the WN model, which fails to account for the observed autocorrelations and volatility 
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clustering phenomenon. Finally, the three non-Gaussian distributions perform better than the 

Gaussian distribution in modeling Chinese stock returns, and the CTS-ARMA-GARCH model 

is believed to be the best among all tested models. 

Figure 2.2 provides more evidence against the Gaussian distribution hypothesis. In the 

figure, we plot KS statistic and AD statistic for all stocks under the Gaussian distribution 

hypothesis and the CTS distribution hypothesis for the WN models and ARMA-GARCH 

models. The four panels in Figure 1 show that for most stocks the KS statistics for the CTS 

distribution models are less than that for the Gaussian distribution models. This phenomenon is 

even more obvious in comparing the AD statistic of the two distribution models. The KS 

statistic implies that for our sample stocks there is a better fit of the CTS model around the 

center of the distribution while the AD statistic implies a better fit in the tails. The large 

difference between the AD statistics computed for the CTS model relative to the Gaussian 

model strongly suggests a much better ability to forecast extreme events using the CTS model.  

Summary statistics of the various statistical tests for the entire sample are provided in 

Table 3.3. Again, the results follow our previous analysis that the Gaussian-based model is the 

worst among the four models in describing the stock return process, and the other three models 

capture the asymmetry and heavy-tail characteristics. Generally, the KS statistic and AD 

statistic of the Gaussian models are about five times larger than those of the two tempered 

stable models. The CTS distribution performs better than the α-stable distribution and NTS 

distribution for both the WN and ARMA-GARCH models.  

 

2.4. Backtesting of ARMA-GARCH Model 

In this section, we first compare the ARMA-GARCH models with the Gaussian, α-stable, 

CTS, and NTS distributed innovations by analyzing their ability to identify a market crash. 

Then we perform a backtesting analysis of the four ARMA-GARCH models using two risk 

measures, VaR and AVaR. Here we use the daily time series of the CSI 300 Index from January 

8, 2002 to June 29, 2012. In the analysis, we adopt the same parameter estimation methods and 

the goodness-of-fit tests as in Section 3. We use a moving time window of three years of daily 

data for the parameter estimation. 

 

2.4.1 Forecasting Capability of the ARMA-GRACH Models 

We exam the forecasting capability of the four ARMA-GARCH models for the largest 10 

daily declines in the CSI 300 Index during the period 2002 to 2012. These bear market periods 
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are listed in Table 2.4. For estimating parameters, we use three years of historical data until the 

closest trading day of each selected date.  

In Table 2.5, we report the goodness-of-fit test statistics for the four ARMA–GARCH 

models, along with the forecasting probability of occurrence for these bear markets. The 

average time of occurrence of market crash is calculated by  

where 𝜀𝑡
∗ is the observed residual at time t. We provide the observed residual on the first 

day of the bear market, and the probability and average time that the price decline would 

happen under each different model. 

From Table 2.5, we see that the probabilities that the market would drop on the 10 days 

studied are smaller under the normal-ARMA-GARCH model than under the other three 

models. For example, on February 27, 2007, the CSI 300 Index dropped 9.24%, its worst daily 

performance during our study period, 2002 to 2012. Under the normal-ARMA-GARCH model, 

such a major market decline is expected to occur every 860 years, which provides no realistic 

warning. In contrast to the Gaussian model, the stable-ARMA-GARCH, 

CTS-ARMA-GARCH, and NTS-ARMA-GARCH models predict much shorter average times 

for a market decline of this type, which are 3.7 years, 17.6 years, and 15 years, respectively. 

Moreover, for four of the other nine days studied in this chapter, the average times for the 

corresponding market drops under the normal-ARMA-GARCH model are more than 10 times 

longer than those under the three non-Gaussian model. In real world markets, such major 

market declines should be expected to occur in much shorter time periods. Similar results are 

observed for the other five days studied, but the differences of the times for the Gaussian model 

and the non-Gaussian models are relatively smaller. 

 Among the three non-Gaussian models, the stable-ARMA-GARCH model gives the 

shortest average time of occurrence for the 10 days studied. However, the 

stable-ARMA-GARCH model is rejected based on the KS test at the 1% significance level for 

seven of the10 days studied, and the statistics from the AD test are much larger than those for 

the two tempered stable models for the seven days, suggesting that the α-stable model does not 

explain the tail property better than the tempered stable models. The CTS-ARMA-GARCH 

model and the NTS-ARMA-GARCH model are not rejected by the KS test at the 1% 

significance level on any of the 10 days studied.  The average times of occurrence for the two 

tempered stable models are typically close to each other except for May 30, 2012. Thus, we 

 1

250 ∙ 𝑃(𝜀𝑡 ≤ 𝜀𝑡
∗)
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conclude that the two tempered stable models provide better forecasting ability than the 

Gaussian and α-stable models, even though the normal-ARMA-GARCH model does consider 

the volatility clustering effect. Later we will see similar results in the backtesting of the four 

models during the highly volatile market period in Section 2.4.2. 

 

2.4.2 VaR, AVaR and Backtesting 

We define the VaR and AVaR with significance level η, given the information until time t, 

as following: 

where 𝑃𝑡(𝐴) is the conditional probability of a given event 𝐴 for the information until 

time 𝑡. 

For AVaR, if the distribution of 𝑦 is continuous, then we have 

For evaluating the accuracy of forecasting VaR and AVaR for the four ARMA-GARCH 

models, we perform backtesting using the Christoffersen Likelihood Ratio (CLR) test 

(Christoffersen, 1998) and the Berkowitz Likelihood Ratio (BLR) test (Berkowitz, 2001) 

discussed Chapter 1., Section 1.4.. The time periods considered in backtesting are one-year 

observations from 2006 to 2011. The CLR test accounts for the conditional coverage of the 

VaR measure, assuming the violations of VaR for a given period follow an iid Bernoulli 

distributed random variables. For the CLR test, we first perform the unconditional coverage 

test and the independence test, which account for the cumulative probability and independence 

of violations, respectively, and then perform a joint CLR test for the conditional coverage 

hypothesis.  

Table 2.6 provides the CLR test statistics and the corresponding p-values for the four 

models in the unconditional coverage tests and the joint tests. Only the 

normal-ARMA-GARCH model is rejected at the 1% significance level for 2007 and 2008; for 

the other years, none of the four models is rejected. For the independence test, none of the four 

models is rejected at the 1% significance level for all the years.  

Instead of relying on the violations of VaR in the CLR test, the BLR test makes use of the 

full distributions of the outcomes and thus uses more information from the available data. As 

 VaR𝑡,𝜂(𝑦𝑡+1) = −inf {𝑥 ∈ ℝ|𝑃𝑡(𝑦𝑡+1 ≤ 𝑥) > 𝜂}  

 
AVaR𝑡,𝜂(𝑦𝑡+1) =

1

𝜂
∫ VaR𝑡,𝜖(𝑦𝑡+1)𝑑𝜖

𝜂

0

, 

 

 

 AVaR𝑡,𝜂(𝑦𝑡+1) = −𝐸[𝑦𝑡+1|𝑦𝑡+1 < −VaR𝑡,𝜂(𝑦𝑡+1)].  
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suggested by Berkowitz, we use the likelihood ratio test for the independence property and the 

accuracy of forecast of the tail distribution, by comparing the forecast AVaR to the realized 

AVaR.  

From the BLR test results in Table 2.7, we find that none of the four models is rejected at 

the 1% significance level in the test of independence. In the test of tail distribution, the 

normal-ARMA-GARCH model is rejected at the 1% significance level for 2007 and 2008, 

while the other three models are not rejected at the same significance level. 

Because the three non-Gaussian ARMA-GARCH models typically provide larger values 

for VaR than that for the normal-ARMA-GARCH model in the test period, we compute the 

average of the relative difference (ARD) between the normal-ARMA-GARCH model and the 

other three models as following: 

where VaR𝑡,0.01
normal(𝑦𝑡+1) is the value of VaR for the normal-ARMA-GARCH model and 

the VaR𝑡,0.01
non−normal(𝑦𝑡+1) is the value of for the other three models (Kim et al. 2011).  

As VaR is related to the eligible capital requirement in risk control, the ARD metric is 

regarded as the difference in the capital requirement based on a non-Gaussian model calculated 

VaR and that based on a Gaussian model calculated VaR. Hence, for the non-Gaussian models, 

a smaller ARD is more economically efficient.  

Table 2.8 presents the ARD values computed for the six time periods. From the results we 

conclude that for year 2006 and 2007, the CTS-ARMA-GARCH model has larger ARD values 

than those for the stable-ARMA-GRACH model, but they are not markedly different. For years 

after 2007, the CTS-ARMA-GARCH model has ARD values that are roughly 19% while the 

stable-ARMA-GARCH model has ARD values exceeding 25%, except for 2010 when the 

ARD value is 22%. The ARD values for the NTS-ARMA-GARCH model are always just 

slightly larger than those for the CTS-ARMA-GARCH model. Taken together, the results of 

the CLR test and BLR test, in which the normal model is rejected in 2007 and 2008 when the 

market was highly volatile, we conclude that the two tempered stable ARMA-GARCH models 

are better than the other two models not only because they are not rejected in backtesting, but 

also because they are relatively economically efficient. This conclusion follows from the test 

results that we observed in Section 3. 

In Figure 2.3, we show the daily return series for the CSI 300 Index model from January 4, 

2005 to November 11, 2013 and the corresponding daily values of AVaR forecasted using the 

 
ARD = E [

VaR𝑡,0.01
non−normal(𝑦𝑡+1) − VaR𝑡,0.01

normal(𝑦𝑡+1)

VaR𝑡,0.01
normal(𝑦𝑡+1)

] 
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normal-ARMA-GARCH model and CTS-ARMA-GARCH. For comparison, we also plot the 

time series of SPX in the same time period. We calculate the spread dCTS&𝑁𝑜𝑟𝑚𝑎𝑙  as following: 

where AVaR𝑡,0.01
CTS  is the value of 1% AVaR for the CTS-ARMA-GARCH model and 

VaR𝑡,0.01
normal is the value for 1% AVaR for the normal-ARMA-GARCH model.  

In Figure 2.4, we present the time series of dCTS&𝑁𝑜𝑟𝑚𝑎𝑙 for the CSI 300 Index and the 

SPX index, from January 4, 2005 to November 11, 2013. 

The daily spreads for the entire year of 2008, a year in which the CSI 300 Index lost 65% 

of its value, are typically larger than those in the years before and after 2008, which matches the 

highly volatile market period observed in Figure 2.3. Moreover, by regressing the daily spreads 

from 2005 to 2011 with respect to an arbitrary constant, we divide the sample results into three 

regimes which corresponding to the daily spreads from 2005 to 2006, 2007 to 2009, and 2010 

to 2011. Each regime is tested against others using the Chow test under both homoscedasticity 

and heteroscedasticity assumptions. Also, we applied the Chow test within each regime by 

dividing the regime into shorter time periods according to the years. Panel a of Table 2.9 shows 

the results for the tests between each regime. The null hypotheses of no existing structure 

breaks are rejected based on a 1% level of significance, indicating that the daily spreads in 

2007 significantly increased to a higher level than that in the years 2005 and 2006. Thus, not 

only the increasing value of AVaR, but also the increasing value of the spreads indicates the 

increasing risk of the Chinese stock market. Additionally, the daily spreads after 2010 

decreased to a lower level than that from 2007 to 2009, but remained higher than that from 

2005 to 2006, which indicates that the market are more sensitive to tail risk (extreme events) 

after the recent financial crisis. The results for the within each regime test shown in panel b of 

Table 2.9 indicate that the null hypotheses are generally not rejected at the 1% level of 

significance. These results once again indicate the shift of spread level in 2007 and 2010, and 

the Chinese stock market remained highly sensitive to tail risk in 2010 and 2011. The similar 

results can be found for the SPX index.    

 

2.5 Conclusions 

In this chapter, we use the CSI 300 Index and its component stocks to investigate the 

return process for the Chinese stock market. We reject the Gaussian distribution hypothesis 

under either the unconditional homoscedastic distribution assumption or the conditional 

heteroscedastic distribution assumption. Instead, we first introduce an empirical 

 dCTS&𝑁𝑜𝑟𝑚𝑎𝑙 = AVaR𝑡,0.01
CTS − AVaR𝑡,0.01

normal  
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ARMA-GARCH model with 𝛼-stable and tempered stable distributed innovations. We then 

provide an assessment of the model’s forecasting power and compared it to the Gaussian 

distribution model. We find that the ARMA-GARCH model with CTS distributed innovations 

provides the best approach for modeling Chinese stock returns. 

 In addition, we analyze the accuracy of two risk measures for the different 

ARMA-GARCH models. Applying both the Christoffersen likelihood ratio and Berkowitz 

Likelihood ratio tests, we reject the Gaussian model during highly volatile market periods. In 

contrast, the three non-Gaussian models investigated are not rejected by these two tests. Our 

investigation of the relative difference between VaR values of the three non-Gaussian models 

and the Gaussian model indicates that from a practical risk control perspective, the capital 

requirement as suggested by the VaR calculated from the CTS and NTS models are lower than 

that from the α-stable model but higher than that from the Gaussian model.  

Based on our statistical tests coupled with our backtesting results, we conclude of the four 

models studied in this chapter, the CTS-ARMA-GARCH and NTS-ARMA-GARCH models 

provide superior modeling capability and forecasting for Chinese stock returns. Finally, we 

find two structural breaks of the daily spreads between AVaR values for the 

normal-ARMA-GARCH and the CTS-ARMA-GARCH models. The daily spreads increased 

one year before the market crash of 2008, suggesting increasing market risk.   
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Table 2-1 Distributional characteristics of returns in the Chinese stock market and other 

world stock markets: Daily returns from 2002 to 2012. 

a
 * Statistically significant at the 5% level. 

CSI 300: Equity index that consists of 300 A-share stocks listed on the Shanghai or Shenzhen Stock Exchanges in 

China. 

MXWO: The MSCI Word Index equity index including developed word markets, and not including emerging 

markets. 

S&P 500: Standard and Poor's 500 Index, equity index that consists of 500 stocks listed on the NYSE or 

NASDAQ in U.S. 

HSI: Hang Seng Index, equity index that consists of 50 stocks listed on the Stock Exchange of Hong Kong. 

  

  CSI 300  MXWO  S&P 500  HSI 

Mean return  0.0254%  0.0074%  0.0061%  0.0198% 

Std.dev  1.80%  1.14%  1.37%  1.60% 

Sharpe ratio  1.41%  0.65%  0.44%  1.22% 

Minimum - 9.70% - 7.33% - 9.47% - 13.58% 

Maximum  8.97%  9.10%  10.96%  13.41% 

Skewness - 0.2386* - 0.3403* - 0.1857*  0.0589 

Kurtosis  6.1667*  10.4593*  11.2674*  11.8310* 

Ljung-Box 

Q(10) 

 20.1525*  51.3604*  54.4398*  25.0047* 
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Table 2-2 Percentages of stocks for which the Gaussian, α-stable, CTS and NTS distribution hypotheses are 

rejected at different significance levels using Kolmogorov-Smirnov test. 

 

 

Table 2-3 Summary of the statistics of the various statistical tests of the WN models and ARMA-GARCH 

models for the entire sample 

 

 

 

Significance Level 5% 1% 0.5% 0.1% 

WN model     

Normal 100.00% 98.33% 97.67% 94.00% 

Stable 57.00% 39.33% 32.67% 23.67% 

CTS 8.67% 4.67% 2.67% 2.67% 

NTS 14.00% 6.67% 5.67% 2.67% 

ARMA-GARCH 

model     

Normal 98.33% 93.00% 90.00% 71.00% 

Stable 64.00% 43.00% 34.33% 25.67% 

CTS 1.33% 0.33% 0.00% 0.00% 

NTS 8.00% 5.00% 4.00% 3.33% 

 

 
KS Statistic AD Statistic 

 

Normal 

(p-Value) 

Stable 

(p-Value) 

CTS 

(p-Value) 

NTS 

(p-Value) 
AD Norm 

AD  

Stable 

AD  

CTS 

AD 

NTS 

WN         

Mean 
0.0609 

(0.0007) 

0.0322 

(0.1394) 

0.0236 

(0.4017) 

0.0196 

(0.4013) 
0.0908 0.0384 0.0265 0.0234 

Median 
0.0555 

(0.0000) 

0.0289 

(0.0328) 

0.0185 

(0.3665) 

0.0181 

(0.3693) 
0.0819 0.0320 0.0203 0.0207 

25% 

quantile 

0.0484 

(0.0000) 

0.0214 

(0.0013) 

0.0154 

(0.1809) 

0.0145 

(0.1229) 
0.0710 0.0240 0.0164 0.0161 

75% 

quantile 

0.0645 

(0.0000) 

0.0382 

(0.2074) 

0.0221 

(0.5962) 

0.0231 

(0.6392) 
0.0958 0.0443 0.0252 0.0272 

ARMA- 

GARCH 
        

Mean 
0.0506 

(0.0055) 

0.0326 

(0.0878 ) 

0.0133 

(0.7469) 

0.0146 

(0.6873) 
0.0727 0.0365 0.0129 0.0159 

Median 
0.0442 

(0.0001) 

0.0298 

(0.0220) 

0.0124 

(0.8279) 

0.0118 

(0.8370) 
0.0621 0.0315 0.0117 0.0113 

25% 

quantile 

0.0373 

(0.0000) 

0.0242 

(0.0009) 

0.0107 

(0.6115) 

0.0100 

(0.4722) 
0.0531 0.0264 0.0101 0.0093 

75% 

quantile 

0.0545 

(0.0017) 

0.0390 

(0.1016) 

0.0150 

(0.9319) 

0.0160 

(0.9579) 
0.0776 0.0428 0.0144 0.0159 
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Table 2-4 Dates of major market declines for the CSI 300 Index from January 8, 2002 to June 29, 2012 

 

  

 Date Return(%) 

   

1 February 27, 2007  -9.2 

2 June 10, 2008 -8.1 

3 June 4, 2007 -8.0 

4 January 22, 2008  -7.9 

5 November 18, 2008 -7.4 

6 June 19, 2008 -7.2 

7 October 27, 2008 -7.1 

8 August 31, 2009 -7.1 

9 January 28, 2008 -6.8 

10 March 30, 2007 -6.7 
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Table 2-5 Daily analysis of major market declines of the CIS 300 Index under four different 

ARMA-GARCH models. 

1. February 27, 2007. The CSI 300 Index dropped by 9.2% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0509 (0.0401) 0.0502  -4.43  4.65E-06 859.71  

Stable 0.0454 (0.0889) 0.0378  -4.55  1.11E-03 3.60  

CTS 0.0206 (0.9019) 0.0224  -4.55  2.27E-04 17.59  

NTS 0.0249 (0.7317) 0.0243  -4.55  2.66E-04 15.06  

2. June 10, 2008. The CSI 300 Index dropped by 8.1% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0603 (0.0083) 0.0785  -3.55  1.80E-04 22.21  

Stable 0.0888 (0.0000) 0.1209  -3.61  9.72E-03 0.41  

CTS 0.0126 (0.9997) 0.0120  -3.61  4.02E-03 1.00  

NTS 0.0289 (0.5494) 0.0321  -3.61  4.23E-03 0.94  

3. June 4, 2007. The CSI 300 Index dropped by 8% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0521 (0.0329) 0.0583  -3.13  7.91E-04 5.06  

Stable 0.0329 (0.3829) 0.0278  -3.40  5.44E-03 0.74  

CTS 0.0290 (0.5452) 0.0250  -3.40  4.74E-03 0.84  

NTS 0.0378 (0.2286) 0.0281  -3.40  4.56E-03 0.88  

4. January 22, 2008. The CSI 300 Index dropped by 7.9% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0509 (0.0397) 0.0671  -3.72  8.48E-05 47.17  

Stable 0.0700 (0.0012) 0.0912  -3.78  8.26E-03 0.48  

CTS 0.0154 (0.9932) 0.0151  -3.78  4.66E-03 0.86  

NTS 0.0272 (0.6275) 0.0293  -3.78  3.22E-03 1.24  

5. November 18, 2008. The CSI 300 Index dropped by 7.4% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0606 (0.0078) 0.0790  -2.42  7.96E-03 0.50  

Stable 0.0990 (0.0000) 0.1271  -2.49  2.57E-02 0.16  

CTS 0.0192 (0.9407) 0.0146  -2.49  2.02E-02 0.20  

NTS 0.0464 (0.0770) 0.0562  -2.49  1.77E-02 0.23  

6. June 19, 2008. The CSI 300 Index dropped by 7.2% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0570 (0.0148) 0.0779  -2.46  6.85E-03 0.58  

Stable 0.0931 (0.0000) 0.1246  -2.21  3.24E-02 0.12  

CTS 0.0162 (0.9878) 0.0129  -2.21  2.81E-02 0.14  

NTS 0.0428 (0.1255) 0.0573  -2.21  2.57E-02 0.16  

7. October 27, 2008. The CSI 300 Index dropped by 7.1% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0579 (0.0126) 0.0769  -2.21  1.41E-02 0.28  

Stable 0.0926 (0.0000) 0.1213  -2.25  3.24E-02 0.12  

CTS 0.0152 (0.9943) 0.0127  -2.25  2.75E-02 0.15  

NTS 0.0420 (0.1390) 0.0502  -2.25  2.45E-02 0.16  

8. August 31, 2009. The CSI 300 Index dropped by 7.1% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0644 (0.0038) 0.0811  -2.51  6.22E-03 0.64  

Stable 0.1052 (0.0000) 0.1424  -2.51  2.58E-02 0.16  
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CTS 0.0159 (0.9899) 0.0160  -2.51  1.96E-02 0.20  

NTS 0.0554 (0.0193) 0.0725  -2.51  1.77E-02 0.63  

9. January 28, 2008. The CSI 300 Index dropped by 6.8% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0521 (0.0333) 0.0719  -2.60  4.26E-03 0.94  

Stable 0.0755 (0.0004) 0.0975  -2.59  1.83E-02 0.22  

CTS 0.0143 (0.9975) 0.0123  -2.59  1.46E-02 0.27  

NTS 0.0187 (0.9520) 0.0180  -2.59  1.51E-02 0.26  

10. March 30, 2007. The CSI 300 Index dropped by 6.7% 

 
KS (p-value) AD Residual Probability Average Time 

Gaussian 0.0472 (0.0690) 0.0548  -3.88  4.57E-05 87.45  

Stable 0.0376 (0.2330) 0.0301  -4.58  2.26E-03 1.77  

CTS 0.0300 (0.4993) 0.0268  -4.58  9.58E-04 4.17  

NTS 0.0232 (0.8073) 0.0240  -4.58  4.04E-04 9.90  
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Table 2-6 Summary of Christoffersen Likelihood Ratio tests of the CSI 300 Index for 6 years. 

b
 CLRuc: Christoffersen Likelihood Ratio test of unconditional coverage. 

CLRind: Christoffersen Likelihood Ratio test of independence.  

CLRcc: Christoffersen Likelihood Ratio joint test of coverage and independence. 

  

Model 

2006(January 4, 2006 –  

December 29, 2006) 

2007(January 4, 2007 –  

December 28, 2007) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLR𝑐𝑐     
(p-value) 

N 
CLRuc   

(p-value) 

CLRind  
(p-value) 

CLRind  
(p-value) 

normal- 

ARMA-GARCH 
5 

0.1354 

(0.7129) 

0.0760 

(0.7829) 

0.2113 

(0.8997) 
9 

10.6646 

(0.0011) 

0.6985 

(0.4033) 

11.3631 

(0.0034) 

Stable- 

ARMA-GARCH 
2 

0.0748 

(0.7845) 

0.0336 

(0.8545) 

0.1084 

(0.94720 
6 

3.7987 

(0.0516) 

0.3064 

(0.5799) 

4.0961 

(0.1290) 

CTS- 

ARMA-GARCH 
2 

0.0748 

(0.7845) 

0.0336 

(0.8545) 

0.1084 

(0.94720 
6 

3.7987 

(0.0516) 

0.3064 

(0.5799) 

4.0961 

(0.1290) 

NTS- 

ARMA-GARCH 
2 

0.0748 

(0.7845) 

0.0336 

(0.8545) 

0.1084 

(0.94720 
6 

3.7987 

(0.0516) 

0.3064 

(0.5799) 

4.0961 

(0.1290) 

  
  

2008 (January 2, 2008 –  

December 31, 2008) 

2009 (January 5, 2009 – 

 December 31, 2009) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLRcc  
(p-value) 

N 
CLRuc  

(p-value) 

CLRind  

(p-value) 

CLRcc  
(p-value) 

normal- 

ARMA-GARCH 
8 

7.9155 

(0.0049) 

1.3553 

(0.2443) 

9.2708 

(0.0097) 
6 

3.7003 

(0.0544) 

0.3026 

(0.5823) 

4.0028 

(0.1351) 

Stable- 

ARMA-GARCH 
3 

0.8188 

(0.3655) 

4.0758 

(0.0435) 

4.89469 

(0.0865) 
2 

0.0891 

(0.7654) 

0.0331 

(0.8557) 

0.1221 

(0.9408) 

CTS- 

ARMA-GARCH 
3 

0.8188 

(0.3655) 

4.0758 

(0.0435) 

4.89469 

(0.0865) 
2 

0.0891 

(0.7654) 

0.0331 

(0.8557) 

0.1221 

(0.9408) 

NTS- 

ARMA-GARCH 
3 

0.8188 

(0.3655) 

4.0758 

(0.0435) 

4.89469 

(0.0865) 
2 

0.0891 

(0.7654) 

0.0331 

(0.8557) 

0.1221 

(0.9408) 

  
  

2010(January 5, 2010 – 

 December 31, 2010) 

2011(January 4, 2011 –  

December 30, 2011) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLRcc  
(p-value) 

N 
CLRuc  

(p-value) 

CLRind  

(p-value) 

CLRcc 
(p-value) 

normal- 

ARMA-GARCH 
5 

2.1463 

(0.1429) 

0.2128 

(0.6446) 

2.3591 

(0.3074) 
5 

2.0916 

(0.1491) 

0.2101 

(0.6467) 

2.2917 

(0.3179) 

Stable- 

ARMA-GARCH 
5 

2.1463 

(0.1429) 

0.2128 

(0.6446) 

2.3591 

(0.3074) 
3 

0.1210 

(0.7280) 

0.0750 

(0.7842) 

0.1960 

(0.9067) 

CTS- 

ARMA- GARCH 
5 

2.1463 

(0.1429) 

0.2128 

(0.6446) 

2.3591 

(0.3074) 
4 

0.08445 

(0.3581) 

0.1339 

(0.7144) 

0.9784 

(0.6131) 

NTS- 

ARMA- GARCH 
5 

2.1463 

(0.1429) 

0.2128 

(0.6446) 

2.3591 

(0.3074) 
4 

0.08445 

(0.3581) 

0.1339 

(0.7144) 

0.9784 

(0.6131) 
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Table 2-7 Summary of Berkowitz Likelihood Ratio tests of the CSI 300 index for 6 years. 

c
 BLRind: Berkowitz Likelihood Ratio test of independence.  

BLRtail: Berkowitz Likelihood Ratio test of tail distribution. 

 

  

Model 2006 2007 2008 

  BLRind  
(p-value) 

BLRtail   
(p-value) 

BLRind 
(p-value) 

BLRtail   
( p-value) 

BLRind 
(p-value) 

BLR_tail    
(p-value) 

normal- 

ARMA-GARCH 

0.0760 

(0.7829) 

0.2113 

(0.8997) 

0.6985 

 (0.4033) 

11.3631  

(0.0034) 

1.3553 

(0.2443) 

9.2708  

(0.0097) 

Stable- 

ARMA- GARCH 

0.0336  

(0.8545) 

0.1084  

(0.9472) 

0.3064 

(0.5799) 

4.0961  

(0.1290) 

4.0758 

(0.0435) 

4.89469  

(0.0865) 

CTS- 

ARMA- GARCH 

0.0336  

(0.8545) 

0.1084 

(0.9472) 

0.3064  

(0.5799) 

4.0961 

(0.1290) 

4.0758 

(0.0435) 

4.89469  

(0.0865) 

NTS- 

ARMA- GARCH 

0.0336  

(0.8545) 

0.1084 

(0.9472) 

0.3064 

 (0.5799) 

4.0961 

(0.1290) 

4.0758 

(0.0435) 

4.89469  

(0.0865) 

  2009 2010 2011 

  BLRind 
(p-value) 

BLRtail   
(p-value) 

BLRind 
(p-value) 

BLRtail   
(p-value) 

BLRind  
(p-value) 

BLRtail   
(p-value) 

normal- 

ARMA- GARCH 

0.3026 

(0.5823) 

4.0028 

(0.1351) 

0.2128  

(0.6446) 

2.3591  

(0.3074) 

0.2101  

(0.6467) 

2.2917  

(0.3179) 

Stable- 

ARMA- GARCH 

0.0331 

(0.8557) 

0.1221 

(0.9408) 

0.2128 

(0.6446) 

2.3591  

(0.3074) 

0.0750  

(0.7842) 

0.1960  

(0.9067) 

CTS- 

ARMA-GARCH 

0.0331 

(0.8557) 

0.1221 

(0.9408) 

0.2128 

(0.6446) 

2.3591 

(0.3074) 

0.1339  

(0.7144) 

0.9784  

(0.6131) 

NTS- 

ARMA-GARCH 

0.0331 

(0.8557) 

0.1221 

(0.9408) 

0.2128  

(0.6446) 

2.3591  

(0.3074) 

0.1339  

(0.7144) 

0.9784  

(0.6131) 
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Table 2-8 Summary of the average relative difference from the stable-ARMA-GARCH model, 

CTS-ARMA-GARCH model and NTS-ARMA-GARCH model to the normal-ARMA-GARCH model, 

respectively. 

 

Table 2-9 Summary of Chow test for structure breaks in daily spread of AVaR from 2005 to 2011.Test 

statistic of Chow test between each two of the three divided regimes which are 2005-2006, 2007-2009 and 

2010-2011. (a) Test statistic of Chow test between each two of the three divided regimes which are 2005-2006, 

2007-2009 and 2010-2011. (b) Test statistic of Chow test within each one of the three divided regimes 

which are 2005-2006, 2007-2009 and 2010-2011 

d
 

λ1,2  : 

Struc

ture 

brea

ks 

betw

een 2005-2006 and 2007-2009. 

λ2,3 : Structure breaks between 2007-2009 and 2010-2011. 

λ1,3 : Structure breaks between 2005-2006 and 2010-2011.  

(a) . 

e
 λ1,1 : Structure breaks between 2005 and 2006. 

λ2,2 : Structure breaks between 2007 and 2008-2009. 

λ1,3 : Structure breaks between 2010 and 2011. 

The size of the sample in each test is 50 and the observations are uniformly sampling from the daily spreads 

 

ARD 

 

2006 2007 2008 2009 2010 2011 

Normal- 

ARMA-GARCH 

stable- 

ARMA-GARCH 0.1466 0.1256 0.2585 0.2582 0.2246 0.2913 

 

CTS- 

ARMA-GARCH 0.1515 0.1411 0.1956 0.1922 0.1942 0.1892 

 

NTS- 

ARMA-GARCH 0.1637 0.1523 0.2063 0.2013 0.2043 0.1977 

 F statistics P-value Wald statistics  P-value 

λ1,2 48.3070 3.1970e-12 89.2257 0 

λ2,3 42.9570 2.0228e-11 25.0453 5.6000e-07 

λ1,3 116.1464 0 94.9391 0 

 F statistics P-value Wald statistics  P-value 

λ1,1 1.1458 0.3265 7.8104 0.0052 

λ2,2 2.0810 0.1359 0.0372 0.8471 

λ3,3 31.8083 0 4.7849 0.0287 
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Figure 2-1 Q-Q plot of sample return distributions against standard Gaussian distribution for the Chinese 

stock market and other world stock markets 
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(a)                                        (b) 

 
 

(c)                                       (d) 

 
Figure 2-2 The Kolmogorov-Smirnov test statistic and Anderson-Darling test statistic of the Gaussian 

distribution hypothesis and the CTS distribution hypothesis, for WN model (a) (b), and for ARMA-GARCH 

model (c) (d). 
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(a) 

 

(b) 

 

Figure 2-3 The log return and 1% AVaR for the normal-ARMA-GARCH and the CTS-ARMA-GARCH model. (a) The CSI 300 Index. (b) The S&P 500 Index. 
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(a) 

 

(b) 

 

Figure 2-4 Daily spread between the 1% AVaR for the normal-ARMA-GARCH and CTS-ARMA-GARCH model. (a) The CSI 300 Index. (b) The S&P 500 Index. 
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3. Chinese Equity Factor Model 

3.1 Introduction 

Building on the pioneering work of Markowitz (1952) of the modern portfolio theory, 

Sharpe (1964) proposed the Capital Asset Pricing Model for pricing risky assets. Under certain 

assumptions, Sharpe shown that the single super-efficient portfolio in Markowitz 

mean-variance framework was the market portfolio itself. Thus, the expected return of an asset 

only depends on the expected return of the market portfolio and the beta of the asset relative to 

the market. Based on the CAPM theory, the return of any asset can be decomposed into a 

systematic component that is perfectly correlated to the market, and a residual component that 

is uncorrelated with the market. The risk raised from the residual components of assets in a 

portfolio, called specific or idiosyncratic risk, can be reduced through diversification, while the 

risk raised from the systematic components, called systematic risk, can not be diversified 

(within one market) but can be hedged.  

The assumption of uncorrelated residuals of the CAPM can be challenged by empirical 

examination, even if there is only one source of expected returns. One extension is multi-factor 

risk model first development by Rosenberg (1974) and Rosenberg and Marathe (1975) to 

estimate the co-movement of stock returns, while in the CAPM theory the market portfolio 

return is treated as the only one factor. Returns that cannot be explained by the factors are 

deemed specific returns and are assumed to be uncorrelated. 

The applications of multi-factor models are various and are based on the analysis and 

prognosis of portfolio risk. Besides modeling the returns and covariance of the assets and 

constructing portfolios, multi-factor models can give valuable insights especially in 

performance and risk attribution. In this study we provide a Chinese equity factor (CEF) model 

for a universe of 2012 Chinese A-share stocks listed in both Shanghai and Shenzhen stock 

exchanges. In Section 3.2, we give the general methodology of the multi-factor risk model. 

Factor exposures and factor returns are computed in Section 3.3 and Section 3.4. In Section 3.5 

we discuss the time series forecasting model of factor returns and specific returns and extensive 

back-tests for both portfolio and assets level. Finally we give the conclusion in Section 3.5. 

 

3.2 Multi-factor Risk Models 

3.2.1 General Structure of Multi-factor Models 

Under the frame work of Markowitz portfolio theory, the expected return and covariance 
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are estimated and applied in portfolio construction. A key challenge in estimating the asset 

covariance matrix lies in the sheer dimensionality of the problem.  For instance, an active 

portfolio containing 2000 stocks
8
 requires more than two million independent elements. If the 

asset covariance matrix is computed naively, then the matrix is likely to be extremely 

ill-conditioned. The larger the number of assets the more severe estimation error and hence 

portfolio instability arise. A typical phenomena for a large scale portfolio is that the number of 

time observations is less than the number of stocks, then the covariance matrix is said to be 

“rank deficient”, meaning that it is possible to construct apparently riskless portfolios 

Multi-factor models were development to provide a more robust solution to this problem. 

For instance, computing the covariance matrix of a 2000 stocks portfolio with a 20-factor 

model requires estimation of roughly 2200 elements. An intuitive interpretation of multi-factor 

model follows the basic idea of the CAPM theory, that the returns of different stocks are 

“explained” by common factors and partly estimated through their sensitivity or exposures to 

the factors in a linear model. Within a factor model, the returns and risk of stocks are divided 

into two distinct sources. The first source, due to the factors, represents the systematic 

components. The second source represents the diversifiable components that cannot be 

explained by the factors, and is therefore deemed idiosyncratic or asset specific. More 

specifically, the stock return is explained as 

where 𝑟𝑖 is the return of stock 𝑖, 𝛾𝑖,𝑘 is the exposure of stock 𝑖 to factor 𝑘, 𝑓𝑘 is the 

return to the factor, and 𝑒𝑖 is the stock specific return. 

Consider a portfolio containing 𝑛 stocks with weight 𝑤𝑖, and return given by  

with the return of stocks given by the factor model, we write portfolio return as 

Two important assumptions need to be fulfilled in factor risk modeling are (a) the factor 

returns are uncorrelated with specific returns and (b) the specific returns are uncorrelated 

among themselves, i.e. the correlations of stock returns are only explained by the common 

                                                 

8
 Up to January 2013, there are 2473 A-share companies listed in Shanghai stock exchange and Shenzheng 

stock exchanges. 

 𝑟𝑖 = ∑𝛾𝑖,𝑘𝑓𝑘
𝑘

+ 𝑒𝑖  
3.1  

 𝑅𝑝 = ∑𝑤𝑖𝑟𝑖
𝑖

 
3.2  

 𝑅𝑝 = ∑∑𝑤𝑖𝛾𝑖,𝑘𝑓𝑘
𝑘𝑖

+∑𝑤𝑖𝑒𝑖
𝑖

 
3.3  
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factors. We do not in general require independence, only uncorrelatedness. This allows the 

variance of portfolio to be expressed as  

where 𝜎𝑘,𝑙
𝑓

 is the predicted covariance between factor 𝑘 and 𝑙, and 𝜎𝑖,𝑖 is the predicted 

variance of specific return 𝑒𝑖. 

We can rewrite the equation (3.3) and (3.4) in matrix format as 

where 𝒓 = (𝑟1, … , 𝑟𝑛)′ is a 𝑛-demensional random vector representing the observations 

of asset returns; 

𝒇 = (𝑓1, … , 𝑓𝑘)′ is a 𝑘-demensional random vector of common factors with 𝑘 < 𝑛; 

𝒆 = (𝑒1, … , 𝑒𝑛)′ is a 𝑛-demensional random vector of specific, or idiosyncratic terms, 

which are uncorrelated; 

𝜞 ∈ ℝ𝑛×𝑘 is a matrix of constant factor exposures; and 

Cov(𝒇, 𝒆) = 0.  

In the same way, we can write the return of portfolio as: 

where 𝒘 = (w1, …wd)′ is the n-by-1 portfolio weight vector. 

And the variance of portfolio return is computed as 

where  𝜣 = 𝑐𝑜𝑣(𝒇) is the k-by-k covariance matrix and 𝜴 = 𝑣𝑎𝑟(𝒆) is the n-by-n 

diagonal matrix with variance of specific returns. 

From the matrix formation, it is easy to see the tremendous dimension reduction effect by 

the factor model. For instance, the covariance matrix of stocks returns 𝛴 is a n-by-n matrix 

with 
1

2
𝑛(𝑛 + 1) different elements. By the factor model, we can compute 𝜮 = 𝜞𝜣𝜞 + 𝜴 

which only need (𝑛 +
1

2
𝑘)(𝑘 + 1) elements to be estimated.  

 

3.2.2 Statistical Calibration Strategies 

Now we have the data 𝑿1, … , 𝑿𝑘 ∈ ℝ𝑛 representing risk stock returns. Each vector 

observation 𝑿𝑡 recorded at a time 𝑡 is assumed to be generated by the factor model (3.5) for 

 𝑣𝑎𝑟(𝑅𝑝) = ∑𝑤𝑖,𝑗
2 𝛾𝑖,𝑗,𝑘

2 𝜎𝑘,𝑙
𝑓

𝑖,𝑗

+∑𝑤𝑖
2𝜎𝑖,𝑖

𝑒

𝑖

 
3.4  

 𝒓 = 𝜞𝒇 + 𝒆 3.5  

 𝑅𝑝 = 𝒘𝑻𝜞𝒇 + 𝒘𝑻𝒆 3.6  

 𝑉𝑎𝑟(𝑅𝑝) = 𝑉𝑎𝑟(𝒘𝑻𝜞𝒇 + 𝒘𝑻𝒆) 

= 𝑉𝑎𝑟(𝒘𝑻𝜞𝒇) + 𝑉𝑎𝑟(𝒘𝑻𝒆) 

= 𝒘(𝜞𝜣𝜞𝑻)𝒘𝑻 +𝒘𝛀𝒘𝑻 

3.7  
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some common factor return vector 𝒇𝑡 and some specific return vector 𝒆𝑡. 

There are mainly three different methodologies to estimate factor models depending on 

whether or not the factor is observable or unobservable: 

1. time series analysis, 

2. cross-sectional analysis, 

3. statistical factor analysis. 

In time-series analysis, we assume that appropriate factors for the stock returns have been 

identified and collected in advance and thus they are observable. A simple instance would be 

the CAPM case, in which the market index representing the efficient market portfolio is the 

only factor. Given the time series of individual stock return observations 𝑿𝑖 and index return 

observations 𝒇𝑀, we can estimate the factor exposure γM which is usually named β using the 

standard ordinary least-squares (OLS) method in linear regression. The regression model of  

𝑋𝑖 take the form as 

The advantage of this approach is the control of the factors which can be interpreted easily. 

Typical factors are considered relevant in many studies. For instance, the factors in the studies 

of Berry et al. (1988) are the excess return of long term bonds, exchange rates, price changes of 

raw materials and inflation. Another famous example is the study of Fama and French (1993) 

and later Fama and French (2012), in which factors are Rm-Rf, SMB, HML and Mom. 

Usually a linear regression is performed with the additional assumption that the factor 

exposures, known as effects or regression coefficients in linear regression, are constant over 

time. In the original formulation the factor model, this constancy was not required. It is 

reasonable to assume that the factor exposures change over time. Even if no constancy of the 

parameters is assumed, this methodology always need some time to identify and adapt to 

changes in these parameters due to some abrupt changes, such as mergers or even unexpected 

financial reports of companies. A shorter estimation period, for instance, daily update instead 

of monthly, can mitigate the weakness. 

In cross-sectional analysis, the factors are not unobservable while the factor exposures are 

taken as given. Intuitively all stock return observations 𝑿𝑛,𝑡 at a time 𝑡 are regressed against 

some pre-selected factor exposures 𝜞𝑡, which are regarded as regressors or independent 

variables in a linear regression language. The regression model in period 𝑡 thus take the form 

 

(
𝑥𝑖,𝑡0
⋮

𝑥𝑖,𝑡

) = [

𝑓1,𝑡0 ⋯ 𝑓𝑘,𝑡
⋮ ⋱ ⋮

𝑓1,𝑡 ⋯ 𝑓𝑘,𝑡

] (

𝛾𝑖,1
⋮

𝛾𝑖,𝑘
) + (

𝑒𝑖,𝑡0
⋮
𝑒𝑖,𝑡

) 

3.8  
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as: 

This regression is performed for several periods and the estimated regression coefficients 

are collected as the time series of factor returns 𝐹𝑡. Starting from these time series we can then 

estimate future factor returns 𝐹̂𝑡+𝑠 and corresponding covariance 𝛩𝑡+𝑠, where 𝑠 ≥ 1. For 

instance, the multi-factor model developed by BARRA
9
 use fundamental descriptors to 

calculate factor exposures, which representing the sensitivity of stock returns to the economic 

profile of the corresponding companies. Compare to time series regression, cross-sectional 

regression has little problem with companies change their financial profile overnight. However, 

it suffer from with econometric problems that not all observations carry the same information. 

Observations with large errors should be weighted less, but there is little available theory 

guiding model builders. Also multivariate outliers are difficult to spot and might have a 

nontrivial effect on factor returns (Scherer, et al. 2010). 

In statistical factor analysis, appropriate factors alone with factor exposures are 

themselves estimated simultaneously from the data (𝑿1, … , 𝑿𝑛). In the case of stock risk factor 

model, it is not clear a priori what the best set of factors would be. There are two general 

strategies for finding factors. The first strategy, which is quite common in finance, is to use the 

method of principle components to construct factors (See McNiel, et al, 2005). We note that the 

factors we obtain can on the one hand, “optimally” explain the past, but on the other hand may 

not have obvious economical interpretations. In the second approach, classical statistical factor 

analysis, it is assumed that the data are identically distributed with a distribution whose 

covariance matrix have the factor structure. Various techniques are used to find the estimates 

and then use them to construct factors. The statistical models have a good in sample it, while 

they are more challenged with bad out of sample performance. Empirical test by Miller (2006) 

have shown that statistical models have a poor record in identifying changing risk structure. 

Using statistical models in isolation might not be a very good idea, Instead they are 

increasingly used to safeguard against hidden factors in residuals. This idea gives rise to so 

called hybrid models try to combine different models. Using fundamental factors either by time 

                                                 

9
 BARRA, founded by Rosenberg in 1975, later acquired and combined with MSCI in 2004, developed 

several versions of multi-factor equity model for markets in several countries and regions, as well as a global 

market version. 

 

(
𝑥1,𝑡
⋮

𝑥𝑛,𝑡

) = [

𝛾1,1,𝑡 ⋯ 𝛾1,𝑘,𝑡
⋮ ⋱ ⋮

𝛾𝑛,1,𝑡 ⋯ 𝛾𝑛,𝑘,𝑡
] (

𝑓1,𝑡
⋮

𝑓𝑘,𝑡

) + (

𝑒1,𝑡
⋮

𝑒𝑛,𝑡
) 

3.9  
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series analysis or cross-sectional analysis provides context for risk and portfolio management 

as well as aligning the covariance matrix of asset returns. On the other hand, applying a 

statistical factor model on the residuals imposes coverage of un-modeled common factors. 

 

3.3 Model Scope and Factors  

This section describes how to construct a factor risk model in a time series framework and 

the factors used in our CHE factor model. Technical details about descriptors and factor 

exposures are discussed at the end. 

In the context of risk management, the goal of all approached to factor models is to obtain 

factor returns 𝒇𝑡 and factor exposures 𝜞𝑡 (and the constant part where relevant). After this 

approach, we can then concentrate on modeling the distribution or dynamics of 𝒇1, … , 𝒇𝑘, 

which is a lower-dimensional problem then modeling 𝑿1, … , 𝑿𝑛. The unobservable residuals 

𝒆1, … , 𝒆𝑛 are of secondary importance. In situation we have many risk factors the risk 

embodied in the residuals is partly mitigated by a diversification effect, whereas the risk 

embodied in the common factors remains. 

In our work we focus on the factor model with pre-defined factors, which means either 

factors or factor exposures are observable and collected first. More specifically, except for one 

market factor collected from the market, all other factors are unobservable, but the exposure 

matrix 𝛤 is assumed to be known.  

In a time series framework, we define of the factor model as following: 

 

 Some considerations must be emphasized in building a high-quality factor risk model. 

A key assumption is that factors capture all systematic drivers of stock returns, thus implying 

that specific returns are mutually uncorrelated. Thus, on one side, a high-quality factor 

structure should explain as fully as possible the co-movement among stock returns. Missing 

important factors could impact the portfolio through diversification as hidden risk resources 

spuriously appeared to be diversified. On the other side, the factor structure should be 

parsimony, meaning systematic component in stock returns is explained with the fewest 

 𝑹𝑡 = 𝜞𝑡−1𝒇𝑡 + 𝒆𝑡 3.10  

where 𝐗t = 𝑛-dimensional vector of one-period stock returns; 

 𝜞𝑡−1 = 𝑛 × 𝑘 matrix of stock exposures to factors as of time t − 1; 

 𝒇𝑡 = 𝑘-dimensional vector of one-period factor returns; and 

 𝒆𝑡 = 𝑛-dimensional vector of one-period specific returns; 
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possible number of factors. Combining weak or spurious factors makes the model more 

susceptible to noise and less robust in capturing the underlying relations of stock returns. One 

way to avoid weak or spurious factors is to ensure the statistical significance of factor returns. 

In particular, the statistical significance should be persistent across time, and not due to isolated 

events that are unlikely to occur in the future. 

Collinearity is another important consideration in building factor risk model. If the factor 

structure is excessively collinear, which means one or more factors can be approximately 

replaced by linear combinations of other factors, estimation errors in regressions can be very 

large and the factor returns difficult to interpret. A frequently used measure of collinearity is 

Variance Inflation Factor (VIF). A detailed discussion can be found in Section 3.4. 

Last, but not least, risk factors should be intuitive. In other words, they must be 

transparent, easily interpretable, and consistent with investors’ views about what these factors 

represent. 

The CEF model provides risk forecasts for a broad coverage universe of total over 2000 

A-share stocks listed in Shanghai Stock Exchange (SHSE) and Shengzhen Stock Exchange 

(SZSE), excluding small cap stocks listed in ChinNext market
10

. We collect the data from 

January 4, 2002 to December 29, 2012 and provides forecast since 2005, as only a limited 

number of stocks available before then. Figure 3.1 presents the estimation universe, which 

shows a blooming growth of stocks in later half of first decade in 21th century. The returns of 

stocks are calculated on a daily base as  

where 𝑟𝑡 is the log-return at time 𝑡, 𝑝𝑡+1 and 𝑝𝑡 are the adjusted closing price at time 

𝑡 + 1 and 𝑡, respectively. 

The Chinese equity model uses total 18 equity factors: 

 A market factor 

 7 style factors 

                                                 

10 As an independent market of China’s multi-tier capital market system, ChiNext offers a new capital 

platform tailor-made for the needs of enterprises engaged in independent innovation and other growing venture 

enterprises. The difference between ChiNext and the main board lies in their mechanisms of financing, investment 

and risk management for issuers at various stages of development, rather than simply the sizes. The ChiNext 

market was launched in SZSE on October 23, 2009. Due to the short period of available data, we exclude stocks 

listed in ChiNext market in this study. 

 𝑟𝑡 = log (
𝑟𝑡+1
𝑟𝑡

) 
3.11  
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 10 industry factors 

The return of CSI 300 index
11

 is used as the market factor, which representing the 

efficient market portfolio same as in CAPM. The market factor exposure is estimated ahead 

of other factors with time series regression, providing intuitively a beta-like parameter for 

portfolio management.  

Style factors and industry factors are referred as fundamental factors used to capture 

fundamental and market-driven systematic sources of risk and return. Referring to equity 

models developed by Barra (see Briner, et al., 2009 and Menchero, et al., 2011 ) and other 

multi-factor models (see Connor, 1995; Campbell et al., 1997; Alexander, 2001, Zivot and 

Wang, 2003), the 7 factors are size, value, growth, momentum, liquidity, volatility and 

leverage. Style factor exposures are built by combining multiple descriptors with similar 

characteristics. The formula of combination and definition of all descriptors used can be 

found in Table 3.1. Here we summarize the qualitative characteristics of the styles.  

The Size factor captures systematic return and risk difference between large cap and 

small cap stocks. The exposures of the stocks to this factor are calculated based on their 

market capitalization. Most stocks in the CEF universe have negative size exposure. This is a 

consequence of centering the exposures such that the cap-weighted portfolio has zero 

exposure. Size factor returns generally exhibit positive correlations with the market factor. 

The Value factor uses the price-to-book descriptor. It indicates whether or not a company 

is undervalued based on its trading price and book value. The value factor does not consider a 

company’s ability of generating positive future income. Some companies have positive 

exposure to value factor could indicate nice investment possibility as the market undervalues 

their potential earning ability, while some companies with positive exposure because the 

market grades them negatively due to a failed business model. 

The Growth factor combines three descriptors widely used in fundamental analysis of 

stocks, which are dividend per share, earning per share and return on equity.  

The Momentum factor is related to the traditional technique analysis of stocks, which 

uses the past performance of stocks over a pre-defined time period to measure the relative 

strength.  

The Liquidity factor represents the liquidity in the market. The factor exposures are 

                                                 

11
 Description of CSI 300 can be found in Chapter 3. More details are provided on 

http://www.csindex.com.cn. 

http://www.csindex.com.cn/
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defined as the natural logarithm of 20-day average volume over the 20-day average market 

capitalization. 

The Volatility factor measures the stock’s relative volatility over time according to its 

historical behavior.  

The Leverage factor provides a measure of the stock’s exposure to debt level. The 

exposure of a given stock is calculated as its total debt over its market capitalization. 

Industries represent another major class of risk model factors. Here we adopt industry 

factors based on the Global Industry Classification Standard(GICS®), a widely used 

hierarchical industry scheme. The factor exposure of a given stock to a particular industry 

factors is either 1 if the stock belongs to that industry or 0 otherwise.  

Some technical details about handling descriptors and factor exposures are discussed 

next. 

 Truncation of outliers 

There are three types of outliers. 

The first group represents values so extreme that they are treated as potential data errors 

and removed from the estimation process. For instance, a stock’s market capitalization and 

book to price ration must be positive.  

The second group represents values that are regarded as legitimate, but nonetheless so 

large that their impact on the model must be limited. We trim these observations to three 

standard deviations from the mean or to their certain quintiles.  

The third group of observations, forming the bulk of the distribution, consists of values 

that are less than three standard deviations from the mean; these observations are left 

unadjusted. 

 Standardize factor exposures  

Style factor exposures 𝛾𝑠 are centered and standardized over the core market part of the 

estimation universe. 𝛾𝑖,𝑙
𝑠  is denoted as standardized factor exposure of stock 𝑖 to factor 𝑙, and 

calculated as following:  

 
𝛾𝑠

𝑖𝑙
=

𝛾𝑖𝑙
𝑠(𝑟𝑎𝑤)

− 𝜇𝑙
𝜎𝑙

 
3.12  

 

𝜇𝑙 = ∑𝑤𝑖𝛾𝑖𝑙
𝑠(𝑟𝑎𝑤)

𝑁

𝑖=1

 
 

 
𝜎𝑙 = √𝑣𝑎𝑟(𝛾𝑙

𝑠(𝑟𝑎𝑤)
) 
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where 𝛾𝑖𝑙
𝑠(𝑟𝑎𝑤)

 denotes the raw exposure of stock 𝑖 o factor 𝑙 , 𝑤𝑖 = 𝑀𝐶𝑖/∑ 𝑀𝐶𝑗𝑗  is the 

market capital weight of stock 𝑖, 𝜇𝑙 is the cap-weighted average raw exposure of factor 𝑙, and 

𝜎𝑙 is the equal-weighted standard deviation of all raw exposures of factor 𝑙. 

 Missing data 

In some cases that not all descriptor exposures are available for a stock, exposures are 

replaced by industry capitalization weighted average exposures of stocks with valid exposures 

in the same industry. This method to replace missing exposure is based on the notion that many 

industry exhibit a distinctive style signature. For example, technology industry contains many 

small companies with high fundamental growth and small value. Size exposures are not 

replaces as every stock in the universe of estimation must have size exposures, which means its 

market capitalization should be available.  

 

3.4 Factor Returns 

In this section, we first describe the methodology of estimate market factor exposures 

and fundamental factor returns. An R squared statistic and in-sample goodness-of-fit tests are 

provide after then. With the time series of factor returns, we compare different forecast 

models widely used in both academy and industry. Out-of-sample tests are provided in both 

individual stock level and portfolio level.  

 

3.4.1 Factor returns estimation and in-sample tests 

On a daily base, the exposure of market factor is obtained through a robust linear 

regression of stock returns against one index returns representing market factor returns. To be 

consistent, we still use the CSI 300 index as the market factor. The regression model for stock 

𝑖 from time 𝑡0 to 𝑡 has the form as following: 

where (𝑟𝑖,𝑡0 , … , 𝑟𝑖,𝑡)′ is the time series of daily return of stock 𝑖 from time 𝑡0 to 𝑡, 

(𝑓𝑡0
𝑀, … , 𝑓𝑡

𝑀)′ is the time series of daily return of the CSI 300 Index, 𝛾𝑀̂ is the estimator of 

exposure of market factor, and (𝜀𝑖̂,𝑡0 , … , 𝜀𝑖̂,𝑡)′ is the residuals left. 

Also we can rewrite (3.13) in a matrix form and define the daily excess return of stocks 

𝑟̃ as following: 

 

(

𝑟𝑖,𝑡0
⋮
𝑟𝑖,𝑡

) = 𝛾𝑀̂ (

𝑓𝑡0
𝑀

⋮
𝑓𝑡1
𝑀
) + (

𝜀𝑖̂,𝑡0
⋮
𝜀𝑖̂,𝑡

) 

3.13  
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Fundamental factor returns are estimated by regressing daily excess returns against the 

style and industry factor exposures. The cross-sectional regression can be described as a 

geometric projection; it projects the excess returns from the 𝑁-deminsional asset space to the 

much smaller 𝐾-dimensianl factor space. The cross-sectional regression model at a time 𝑡 

can be described as following: 

where 𝒓̃𝑡 = (𝑟̃1,𝑡, … , 𝑟̃𝑛,𝑡)′ is the vector representing stock returns at a time 𝑡; 

𝜞̃𝑡−1 = (

𝛾1,1,𝑡−1 ⋯ 𝛾1,𝑘−1,𝑡−1
⋮ ⋱ ⋮

𝛾𝑛,1,𝑡−1 ⋯ 𝛾𝑛,𝑘−1,𝑡−1
), is the matrix representing style and industry factor 

exposures calculated at time 𝑡 − 1; 

𝒇̂𝑡 = (𝑓1,𝑡, … , 𝑓𝑘−1,𝑡)′ is the vector containing factor return estimators; and 𝒆̂𝑡 =

(𝑒̂1,𝑡, … , 𝑒̂𝑛,𝑡)′ is the vector containing specific return estimators. 

For cross-sectional regression, we use ordinary least squares (OLS) method, where the 

residuals are not assigned with any distribution assumption but only assumed to be 

uncorrelated and have finite variance. Thus we assume that 𝐸(𝒆) = 0, 𝐸(𝒆𝒆′) = 𝜎2𝑰, where 

𝜎2 is the variance of the residuals and 𝐼 is the identity matrix; and 𝑹̃ is distributed 

independently of the residual 𝒆. We estimate 𝒇̂ by minimize the sum of the squared 

residuals (SSR) and have 𝒇̂ = (𝜞̃′𝜞̃)
−𝟏

𝜞̃′𝒓̃.  

The assumption that 𝜎, the standard deviation of the residual, is constant over all values 

of the explanatory variables. In other words, each data point in the regression provides 

equally information. This assumption, however, clearly does not hold, even approximately, in 

factor modeling. For example, large cap returns exhibit more common behavior than small 

cap returns and it makes sense to favor them in regression. Weighted least squares (WLS) can 

be used to maximize the efficiency of parametric estimation. This is done by attempting 

to give each data point its proper amount of influence over the parameter 

estimates. A procedure that treats all of the data equally would give less 

precisely measured points more influence than they should have and would give 

highly precise points too little influence. 

WLS method reflects the behavior of the random errors in the model. It 

works by incorporating extra nonnegative constants, or weights, associated with 

 𝒓̃ = 𝒓 − 𝛾𝑀𝒇𝑀 3.14  

 𝒓̃𝑡 = 𝜞̃𝑡−1𝒇̂𝑡 + 𝒆̂𝑡  3.15  
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each data point, into the fitting criterion. The size of the weight indicates 

the precision of the information contained in the associated observation. 

Optimizing the weighted fitting criterion to find the parameter estimates allows 

the weights to determine the contribution of each observation to the final 

parameter estimates. It is important to note that the weight for each observation 

is given relative to the weights of the other observations; so different sets 

of absolute weights can have identical effects. 

In the CHE model, regression weights are set to 𝑤𝑖 =
𝑀𝐶𝑖

∑ 𝑀𝐶  
, where 𝑀𝐶 is the 

market capitalization. The WLS criterion minimized to obtain the parameter 

estimators is: 

This problem can be transformed and solved in an OLS form as: 

where 𝒘 = (𝑤1, … , 𝑤𝑛)′ is the vector representing the weights in WLS, and 

⊗ represents out products.  

Next, we present and discuss some of the quantitative characteristics of 

the CHE factors. In particular, we investigate the degree of collinearity among 

factor exposures, and the statistical significance, performance and volatility 

of the factor returns 

A feature of the multi-factor model is that it disentangles the effects of 

many variables acting simultaneously. One measure of collinearity is pair-wise 

cross-sectional correlations between factor exposures. In Table 3.2, we report 

regression-weighted correlations among style factors and industries, averaged 

over the period January 2004 to December 2012. In general, the correlations are 

intuitive in signs. For instance, value is positive correlated with energy, 

financial, utilities and negatively correlated with basic materials and 

non-cyclical consumer. Volatility is positively correlated with liquidity and 

negatively correlated with size. Although none of the correlations are 

 
𝑄 = ∑𝑤𝑖(𝑟̃𝑖 − 𝜸̃𝒊𝒇̂)

2
𝑛

𝑖=1

  
3.16  

 √𝒘⊗ 𝒓̃𝑡 = (√𝒘⊗ 𝜞̃𝑡−1)𝒇̂𝑡 + 𝒆̂𝑡 3.17  
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particularly large, the correlations between pairs of style factors are 

typically larger, on average, than those between styles and industries.  

Another frequently used measure of cross-sectional multi-collinearity is 

Variance Inflation Factor (VIF), which is defined as following: 

where 𝑅𝑗 is the R squared by regressing factor exposure 𝑖 to the rest of 

other factor exposures, and 𝑉𝐼𝐹𝑖 is the VIF of factor exposure 𝑖. 

Typically VIF greater than 5 is an indication for multi-collinearity. In Figure 3.2, we 

report the VIF of all 7 style factors from September 2005 to December 2012, as style factor 

exposures exhibit larger correlations than those of industry factor exposures.  

The goodness of fit parameter, 𝑅2, of the factor regression indicates the percentage of 

the variance of stock returns that can be explained by the model.We adjust the formula from 

normal 𝑅2 in OLS to follow the estimation method in WLS.  

Figure 3.3 presents the trailing one-year average 𝑅2 of CHE. Results are obtained on 

the full CHE estimation university and use regression weights. The solid lines indicates that 

the full model has an averaged 𝑅2 of 54% over the 8-year backtesting period. 𝑅2 peaks in 

the period of high market volatility such as the recent financial crisis starting in 2008. The 

market recovering from the bottom in 2009 is characterized by lower volatility. In this period 

the model has a lower average 𝑅2, indicating that a smller percentage of the stock volatility 

can be attributed to common factors. In addition, the second peak in 2010 corresponds to the 

end of the short market recovery and a continuous bear market from middle 2010 to 2012.  

The additional 𝑅2 time series in Figure 3.3 (a) gives valuable insight into the in-sample 

relevance of different factor categories. The dotted line indicates the explanatory power of the 

CHE market factor alone, with an average 𝑅2 of 17%. While this indicated that the market 

factor has significant power in explaining, it also shows that a single market model misses a 

lot of systematic factor risk compared to the full CHE model. The dashed line shows the 

explanatory power given industry factors and the market factor. It is clear that the industry 

factors have significant in-sample explanatory power with an increment of 24% of the 

average 𝑅2. Finanlly the style factors add 7% to the total average 𝑅2.  

Isolating the explanatory power of style factors and industry factors helps to understand 

the changing investment characteristics of the market. The solid line in Figure 3.3 (b) is the 

 
𝑉𝐼𝐹𝑖 =

1

1 − 𝑅𝑗
2 

3.18  
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time series of isolated 𝑅2 given by style factors and the dashed line is the isolated 𝑅2 given 

by industry factors. The 𝑅2 by style factors peaks in 2007 and declines to a relatively 

constant level after the financial crisis in 2008, while the 𝑅2 by industry factors drops in 

2007 and grows to a highest level in 2009. These together indicating that in the period of 

market bubble investigating the financial profile of the companies is more important than 

choosing the industries to the investors, and in the period of post financial crisis, choosing the 

right industries becomes more important and attractive as different industries having different 

time for recovering. This change of investment characteristics of the market becomes more 

obvious in 2012.  

 

3.5 Measuring Risk with Factor Model and Backtests 

3.5.1 Risk Measures and Approaches to Measure Risk 

Before presenting the forecasting methodology in CHE model, it is helpful to discuss 

some challenges in quantitative risk management (QRM) (see McNail, et al. 2005). A very 

important challenge in QRM is the need to address unexpected, abnormal or extreme outcomes, 

rather than expected normal or average outcomes that are the focus of many classical 

applications. A further important challenge is presented by multivariate nature of risk. A 

particular concern in the multivariate modeling is the phenomenon of dependence between 

extreme outcomes, when many risk factors move simultaneously. Another challenge is the 

typical scale of the portfolio under consideration, in the most general case a portfolio may 

represent the entire position in risky assets of a financial institution. Calibration of 

high-dimensional multivariate model is a well-nigh impossible task and hence dimension 

reduction techniques are required. All these challenges must be considered carefully when 

modeling risk in QRM. 

 Central issues in QRM include the measurement of risk, approaches for measuring risk 

and backtesting the performance of risk-measurement system. 

In the CHE model, we model the return of asset value in a short time horizon with a linear 

function with the risk factor returns by (3.1). The next question arises as modeling factor 

returns in conditional or unconditional return distributions. The differences between 

conditional or unconditional return distributions are strongly related to time series properties of 

the series of risk factor returns (𝒇𝒕)𝑡∈𝑁. Suppose risk factor returns form a stationary time 

series with some stationary distribution, and for a fixed point in time 𝑡, denote by ℱt =

𝜎({𝒇𝑠: 𝑠 < 𝑡}), the sigma field generated by past and present factor returns. In most stationary 
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time series models relevant to QRM, the distribution of 𝒇𝒕+𝟏|ℱ𝑡 is not equal to the distribution 

of 𝒇, unless (𝒇𝒕)𝑡∈𝑁 are iid series. In CHE model, we observe that the (𝒇𝒕)𝑡∈𝑁 are not iid 

series, hence we model the conditional distribution of factor returns and further the conditional 

distribution of stock returns. 

Historically the variance of asset return distribution has been the dominating risk measure 

in finance, to a large extent, due to the huge impact of the portfolio theory of Makowitz (see, for 

example, Markowitz 1952). Variance is a well-understood concept which is easy to use 

analytically. However, as a risk measure it has at least two drawbacks. On one side, the 

assumption that the second moment of return distribution exists may not be guaranteed in 

practice. For instance, modeling a heavy-tailed r.v.s with student t distribution requires the 

degree of freedom larger than 2. On the other side, variance makes not distinction between 

positive and negative deviations from the mean, which makes variance as a good risk measure 

only in the case of symmetric distribution assumptions of asset returns. 

Value-at-Risk (VaR) is probably the most widely used risk measures in financial 

institutions nowadays and has made its way into the Basel II capital-adequacy frame work. The 

idea is straight stated as “maximum loss which is not exceed with a given high probability, the 

so-called confidence level”. In probability terms, VaR is simply a quantile of the return 

distributions. Here we give an example of VaR for Gaussian distributions 

Suppose that the return distribution 𝐹𝑋 is Gaussian with mean 𝜇 and variance 𝜎2, then  

where 𝛼 is the confidence level and 𝛷−1(𝑥) is the inverse distribution function of 

standard Gaussian. 

Average-Value-at-Risk (AVaR), also named expected shortfall (see Artzner et al. 1997, 

1999) or conditional VaR (see Rockafellar and Uryasev, 2000), is closely related to VaR. 

Instead of fixing a particular confidence level 𝛼 we average VaR over all levels 𝑢 ≥ 𝛼 and 

thus “look further into the tail” of the return distributions. Formal definition is discussed in 

Section 2.4. Here, again, we only give an example of AVaR for Gaussian distributions. 

where 𝜙 is the density of standard Gaussian distribution.  

Next we discuss several approaches to measure risk in CHE model. 

Firstly, we model the factor returns with conditional multivariate distributions as the 

conditional distributions are not equal to their stationary distributions especially for a small 

 VaR𝛼 = −𝜇 + 𝜎𝛷−1(𝛼) 3.19  

 
AVaR𝛼 = −𝜇 + 𝜎

𝜙(𝛷−1(𝛼))

1 − 𝛼
 

3.20  
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time horizon, such as one day. Thus the stock returns are also modeled with conditional 

distributions, which may be the same as the distributions of factor returns, depending on 

whether these distributions are closed under linear operations. 

There three methods in the CHE model to measure factor returns, which are: 

 VC-EWMA: A conditional version of the variance-covariance method in which the 

multivariate exponentially weighted moving average (EWMA) method is used to model 

the conditional covariance matrix of the next day’s risk factor returns.  

 VC-MGARCH: A conditional version of the variance-covariance method in which the 

multivariate GARCH with constant conditional correlation method is used to model the 

conditional covariance matrix of the next day’s risk factor returns. 

 MC-MGARCH: A dynamic version of the Monte Carlo method in which the 

multivariate ARMA-GARCH with constant conditional correlation method is used to 

model the conditional distribution of the next day’s risk factor returns. 

 In VC-EWMA and VC-MGARCH method, we assume that given the information until 

today, tomorrow’s distribution of factor returns follows a multivariate Gaussian distribution, 

denoted by 𝒇𝑡+1|ℱ𝑡 ∼ 𝑁𝑘(𝝁𝑡+1, 𝚺𝑡+1), where 𝝁𝑡+1 and 𝚺𝑡+1 are the conditional mean and 

covariance matrix. Thus the conditional distribution of stock returns is also Gaussian with 

additional Gaussian assumption for the specific returns. Then, given a portfolio with weights 

𝑾 = (𝑤1, … , 𝑤𝑛)′, the tomorrow’s variance, VaR and AVaR of the portfolio have the form as 

following:  

where 𝜣𝒕+𝟏 is a k-by-k matrix representing the conditional covariance matrix of factor 

returns and 𝛀𝐭+𝟏 is a n-by-n diagonal matrix with elements representing the conditional 

variance of specific returns, of which the estimation method is presented in the end of this 

section. 

It is easy to calculate the VaR and AVaR at a confidence level α for the portfolio of which 

the return follows a Gaussian distribution. 

and 

where 𝜇t+1 is the portfolio’s forecasted return, which can be calculated separately with 

other return forecast model, such as an ARMA(p,q) model, or simply assumed to be zero for 

 Var(𝑅𝑝,𝑡+1|ℱ𝑡) = 𝑾𝒕(𝜞𝒕𝜣𝒕+𝟏𝜞𝒕 
𝑻)𝑾𝒕

𝑻 +𝑾𝒕𝛀𝐭+𝟏𝑾𝒕
𝑻 3.21  

 VaRα(𝑅𝑝,𝑡+1|ℱ𝑡) = −𝜇𝑡+1 + 𝜎𝑡+1𝛷
−1(𝛼) 3.22  

 
AVaRα(𝑅𝑝,𝑡+1|ℱ𝑡) = −𝜇𝑡+1 + 𝜎𝑡+1

𝜙(𝛷−1(𝛼))

1 − 𝛼
 

3.23  
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in the risk management world. 𝜎𝑡+1 is the portfolio’s forecasted standard deviation. 

In VC-EWMA method, we forecast 𝜣𝒕+𝟏 with a EWMA method, which is also adapted 

by BARRA equity factor with some modification of the general form. 

where 𝑚 denotes the sample size and 𝜆 denotes the exponential weight, which reduces 

the influence of past observations on the present forecast. Here we set 𝜆 = 0.99. 

In VC-MGARCH method, we estimate the time series of factor returns with 

ARMA-MGARCH model and use the corresponding forecasting method. An 

ARMA(1,1)-MGARCH(1,1) model for the factor returns has the following form: 

where 

It is easy to calculate the conditional mean and covariance matrix of (𝒇𝑡+1|ℱ𝑡): 

In CHE model, the ARMA(1,1)-MGARCH(1,1) model is fitted with a two-stage method, 

in which the individual factor return process is estimated by fitting univariate 

ARMA(1,1)-GARCH(1,1) model using MLE. In the second stage we construct an estimate the 

 𝜃𝑘,𝑙
𝑡+1 = 𝑐𝑜𝑣(𝑓𝑘, 𝑓𝑙)𝑡+1 

=
𝑚(1 − 𝜆)

(𝑚 + 1)(1 − 𝜆𝑚)
∑ 𝜆𝑡−𝑠(𝑓𝑘,𝑠 − 𝑓𝑘̅)(𝑓𝑙,𝑠 − 𝑓𝑙̅)

𝑡

𝑠=𝑡−𝑚

  

3.24  

 𝒇𝑡+1 = 𝒄 + 𝝓𝒇𝑡 + 𝜽𝜺𝑡 + 𝜺𝑡+1 

𝜺𝑡+1 = 𝚺𝑡+1

1
2 𝒁𝑡+1 

𝚺t+1 = 𝚫𝑡+1𝑷𝑐𝚫𝑡+1,   𝚫𝑡+1 = diag(𝝈t+1
2 ) 

𝛔t+1
2 = 𝛂0 + 𝜶1,𝑖𝜺𝑡 + 𝜷𝛔t

2 

3.25  

𝒇𝑡+1 = k-dimensional vector of factor returns at time 𝑡 + 1; 

𝒄, 𝝓, 𝜽 = k-dimensional vector of ARMA(1,1) coefficients; 

𝜶𝟎 > 𝟎 

𝜶𝟏, 𝜷 ≥ 𝟎 

= k-dimensional vector of GARCH(1,1) coefficients;  

𝑷𝑐 = 𝑘 × 𝑘 constant, positive definite correlation matrix; 

𝚫𝑡+1 = 𝑘 × 𝑘 diagonal matrix with elements 𝝈t+1
2  follow the univariate 

GARCH model; 

𝚺𝑡+1

1
2  

= 𝑘 × 𝑘 Cholesky factor of a positive-definite matrix  𝚺𝑡+1, which is 

measurable with respect to ℱ𝑡; and 

𝒁𝑡+1 = (𝐙s)s∈ℤ is the SWN(𝟎, 𝑰𝑘) process. 

   E(𝒇𝑡+1|ℱ𝑡) = 𝑐 + 𝒄 + 𝝓𝒇𝑡 + 𝜽𝜺𝑡 3.26  

 cov(𝒇𝑡+1|ℱ𝑡) = 𝚺t+1 = 𝚫𝑡+1𝑷𝑐𝚫𝑡+1 3.27  
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innovation process denoted by 𝒀̂𝑡 = 𝚫̂t
−1𝜺𝑡, where 𝚫̂𝑡 is the estimate of 𝚫t. Assuming the 

adequacy of the model, the 𝒀̂𝑡 data should behave like a realization from a standard 

WN(𝟎, 𝑃𝑐) process, and the conditional correlation matrix 𝑷𝑐 can be estimated from 𝒀̂𝑡 with 

sample correlation estimate 𝑷̂𝑐.   

The conditional variance of specific returns, denoted as 𝛀𝐭+𝟏 are forecasted with 

univariate GARCH(1,1) model, which is simpler compared to forecast of factor returns. Then, 

together with the forecasted conditional covariance matrix of factor returns, the VaR and AVaR 

of a portfolio are calculated with (3.23) and (3.24). 

To our knowledge of finance and previous empirical examination of the Chinese stock 

market (see Lu et al. 2013), we know that the Gaussian distribution hypothesis of stock returns 

are generally rejected in neither (1) unconditional homoscedastic distribution assumption or (2) 

conditional heteroscedastic distribution assumption. Thus model risk would arise if the factor 

returns are assumed to follow the multivariate Gaussian distribution.  

To answer the challenges in QRM discussed at the beginning of Section 3.5.1, we suggest 

a state-of-art methodology for modeling the behavior of stocks in the Chinese and possible 

extension to other stock markets. 

To better capture the non-Gaussian characteristics of stock return distributions, such as 

heavy-tail, skewness and kurtosis, the ARMA-GARCH model with non-Gaussian distributed 

innovations, especially Classical Tempered Stable (CTS) distributed innovations, is suggested 

in Chapter 2, with both in-sample and out-of-sample tests. Hence, the CHE model adopts the 

same method in modeling factor returns, and finally the stock returns through linearized 

operator.  

In MC-MGARCH method, the factor return process are fitted with 

CTS-ARMA-MGARCH model and the risk forecasts are calculated by Monte Carlo 

simulation.  

ARMA-MGARCH-CTS is defined as following: 

where innovations, denoted by 𝒖𝑡+1 ∈ (𝒖𝑠)𝑠∈ℤ, is the SWN(𝟎, 𝜮) process, and other 

notations remains the same as in (3.26).  

Consider a fixed point at time 𝑡, 𝒖𝑡 follows a k-dimensional multivariate distributions, 

 𝒇𝑡+1 = 𝒄 + 𝝓𝒇𝑡 + 𝜽𝜺𝑡 + 𝜺𝑡+1 

𝜺𝑡+1 = 𝚫𝑡+1𝒖𝑡+1, 

𝚫𝑡+1 = diag(𝝈t+1
2 ) 

𝛔t+1
2 = 𝛂0 + 𝜶1,𝑖𝜺𝑡 + 𝜷𝛔t

2 

3.28  
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denoted as CTS-skewedt distribution, with margins of the CTS distributions and dependence 

structure described by the skewed t copula. Thus, the extreme outcomes and asymmetry of 

individual factor returns are estimated through marginal distributions and the different tail 

dependences are estimated by the copula instead of a simple linear correlation. 

The parameters of the CTS-ARMA-MGARCH model are estimated through a two-stage 

method known as the quasi-maximum likelihood (QML) method; first we fit the 

ARMA-GARCH part with MLE, assuming univariate student t distributed innovations. In the 

second stage, we fit individual series of the extracted 𝒖 = 𝛆/𝛔  with standard CTS 

distribution and the entire sample series of 𝒖 with skewed t copula.  

Next we generate scenarios, typically 10,000 for daily forecast, from 

CTS-ARMA-MGARCH model by Monte Carlo simulation. This process can be viewed as an 

inverse process of model estimation.  

Algorithm (simulation of MC-MGARCH) 

(1) Generate 𝑼(𝑠) = (𝑼1
(𝑠), … , 𝑼𝑘

(𝑠))
′

, and 1 ≤ 𝑠 ≤ 10,000 from k-dimensional skewed t 

copula;  

(2) Generate the 𝒖(𝑠) = (𝐹𝐶𝑇𝑆
−1 (𝑼1

(𝑠)), … , 𝐹𝐶𝑇𝑆
−1 (𝑼𝑘

(𝑠))) ′, where 𝐹CTS
−1  is the inverse 

distribution function of CTS distribution. The random vector 𝒖(𝑠) has the margins of CTS 

distribution and skewed t copula. 

(3) Return 𝒇(𝑠) = (𝛹(𝒖1
(𝑠)), … ,𝛹(𝒖𝑘

(𝑠))) ′, where 𝛹 is the function of 

ARMA-MGARCH with estimated parameter.  

With generated scenarios, it is easy to calculate variance, VaR and AVaR for either 

individual stock or portfolios. A practice is given in Chapter 4. 

For the assessment of the goodness-of-fit, we use the Kolmogorov-Smirnov (KS) test and 

the Anderson-Darling (AD) test for the hypotheses of marginal distribution of innovations. We 

use the later statistic in order to obtain a better test to evaluate the tail fit. Similar work has been 

done for returns of stock in the Chinese stock market in Chapter 2. 

Table 3.3 provides the test results using the standard KS test with different significance 

levels. The Gaussian hypothesis is rejected by KS test at a significance level of 5% for fifteen 

of eighteen factors, and twelve of eighteen factors at a smaller significance level of 1%. The 

α-stable hypothesis is rejected for twelve factors at a significance level of 5%, and ten factors 

at a significance level of 1%. While the CTS hypothesis is not rejected for any factor by KS 

test at a significance level of 1%. 
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Figure 3.4 uses growth and basic material factors as examples, and presents a more 

intuitive view of the distributions of innovations by comparing the sample distribution of the 

innovations against the standard Gaussian standard α-stable and standard CTS distributions. 

The Q-Q plots for growth and basic material factors indicate that Gaussian hypothesis and 

α-stable hypothesis are rejected by goodness-of-fit test for different reasons. For instance, the 

tail parts indicate the Gaussian distribution underestimates the extreme outcomes from the 

sample while α-stable distribution overestimate the extreme outcomes by generating excessive 

extreme scenarios. Comparing with Gaussian andα-stable distributions, the samples studied 

here are better fitted with CTS distribution. 

As we mentioned in Section 3.3, modeling the specific returns 𝒆 is of second importance 

as the risk embodied in 𝒆 can be mitigated through diversification in the Markowitz portfolio 

framework. In addition, each series of specific returns 𝒆 can be estimated by univariate time 

series model, due to its idiosyncratic character. In VC-EWMA and VC-MGARCH method, 

specific returns are fitted by standard ARMA(1,1)-GARCH(1,1) model; in MC-MARCH 

method, they are fitted by CTS-ARMA(1,1)-GARCH(1,1) model.  

The challenge with using time series estimation is that not all stocks in a broad universe 

lend themselves to this modeling approach. For instance, recent IPOs have only a short history 

of specific returns, which implies that their sample volatility has a high estimation error. 

Another example would be the stocks of recent resumption.  

In the CHE model, specific returns are divided into three categories with respect to the 

length of their time series: long-history stocks with more than 212 (85% of the 250) last daily 

specific returns present; short-history stocks with less than 212 but more than 60 last daily 

specific returns present; shortest-history stocks with less than 60 last daily specific returns 

present.  

Long-history specific returns are fitted directly from ARMA-GARCH models. 

Short-history and shortest-history specific returns are treated as iid r.v.s from 𝑁(0, 𝜎2), where 

𝜎 in the former case is estimated by sample standard deviation for the former case while in the 

latter case it is estimated by the factor model. Standard deviation estimates for long-history 

specific returns in one industry are regressed against their size factor exposures, and the 

regression coefficient is used in calculating the 𝜎 estimate for shortest-history specific returns 

in the same industry. 

 

3.5.2 Backtests 
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This section discusses the characteristics of the CHE risk factor forecasts. It provides 

insight into differences among three forecasting methods and overall forecasting capability of 

the CHE model.  

Bias tests are a standard method of assessing the out-of-sample performance of risk 

models. Essentially, bias tests determine how often the risk forecast of a test item (asset, factor, 

or portfolio) falls within a 95% confidence interval (CI) over a back-test period.  

The z-scores 𝑧𝑡 and bias statistics 𝑏𝑡,𝑇 over a time horizon 𝑇, is defined as following: 

where 𝑟𝑡 is the realization of return at time 𝑡, 𝜎̂𝑡 is the forecasted standard deviation at 

𝑡 − 1; then 𝑧𝑡 is standardized return with forecasted risk. 

If forecasts are perfect, (𝑧𝑡)𝑡∈ℤ have a standard deviation of one. A standard deviation 

below one is indicative of over-forecasting and a standard deviation above one indicates 

under-forecasting. Under simplifying norm assumption of return 𝑟𝑡, a 95% confidence 

interval can be given for the basic statistic: 

    

This means that, with perfect forecasts and normal returns, 95% of a broad group of bias 

statistic value fall within the confidence interval 𝐶𝑇. 

From (3.32) it can be seen that the confidence interval is determined by the time horizon 

𝑇. In this backtesting, 𝑇 is set to be 22 days, which corresponds to a confidence interval of 

[0.6984, 1.3015]. Though increasing 𝑇 leads to narrowing 𝐶𝑇, calculating bias statistic over 

a long time horizon does not necessarily increase accuracy. Instead, a phase where the model 

consistently over-forecast can be followed by another phase where the model under-forecasts, 

producing an average deceptively close to one. In practice 𝑇 should be specified according to 

the investor’s interest.  

A main disadvantage of a short time horizon is a high sensitive to outliers. For instance, 

either a large positive return or large losses 𝑟𝑡 in (3.31) results in an outlier 𝑧𝑡 with a large 

absolute value, and all bias statistics in (3.32) containing this outlier will be out of confidence 

 zt =
𝑟𝑡
𝜎̂𝑡

 
3.29  

 

𝑏𝑡,𝑇 = (
1

𝑇 − 1
∑ (𝑧𝑠 − 𝑧̅)

𝑡

𝑠=𝑡−𝑇+1

)

1/2

 

3.30  

 

𝐶𝑇 = [1 − √
2

𝑇
, 1 + √

2

𝑇
] 

3.31  
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irrespective of the value of the other z-scores used. This shortcoming is related to the 

assumption of normally distributed returns in (3.33). If it is possible to precisely model the size 

and frequency of outliers, the confidence interval could be stretched accordingly to take into 

account the outlier distribution. An alternative way suggested by Barra EUE3 to limit influence 

of outliers is by truncating the z-scores: 

Then robust statistics are calculated with truncated z-scores z̃𝑡. This truncation approach 

probes the ability of the model to predict the core of the return distribution and mitigates the 

influence of outliers to the testing results. In spite of their shortcomings, raw bias statistics do 

reflect the outliers that should not be ignored by investors. In addition, the difference between 

raw bias statistics and robust statistics can provide insight about the severity and frequency of 

outliers. Notice that a covariance model cannot predict the timing and size of future outliers 

and tend to under-forecast when an outlier is observed.  

Bias tests are applied for stock returns on both individual stock level and portfolio level. 

The test universe is stocks with valid price and size factor exposures on the first trading day in 

2007, such that the universe is not too small to represent the market and the testing period could 

cover the highly volatile market periods as well. A universe portfolio is constructed with 

equally weighted stocks of the entire test universe. 

Table 3.4 provides the detailed bias tests results over the testing period from 2007 to 2012. 

In Table 3.4(a) the 22-days rolling raw bias statistics and robust bias statistics based on three 

different forecasting methods are compared by the percentage of those in the same CI. First 

looking at testing results of robust bias statistics, the VC-MGARCH method has the largest 

percentage in CI, followed by MC-MGARCH and then VC-EWMA. Although the difference 

of percentage in CI are not significant among three methods, it indicates that the 

VC-MGARCH method, which is the combination of EWMA estimate for correlation matrix 

and GARCH estimate for individual variance, performs best in forecasting portfolio’s variance 

among three studied methods. Moreover, the model tends to over-forecasting more frequently 

than under-forecasting regardless of the forecasting methods. The differences between pair 

values of robust and raw bias statistics indicate influence of outliers which cannot be predicted 

by a variance model.  

A close look of bias statistics on the individual stock level presents more obvious 

differences of percentage of raw bias statistics in certain intervals among different forecasting 

methods. Simply calculating the percentages in the intervals (−∞, 0.9] and [1.1,∞), the CHE 

 z̃𝑡 = max(−3,min(+3, 𝑧𝑡)) 3.32  
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factor model tends to more frequently over-forecasting than under-forecasting for the variance 

of individual stocks. More specifically, MC-MGARCH method gives a larger percent of 

over-forecasting than the VC-MGARCH method, due to the different estimation methods of 

conditional correlation of factor returns. 

Figure 3.5 present a more intuitive view of the bias statistics calculated from VC-EWMA 

and MC-GARCH method. An interesting phenomenon shows that the bias statistics from the 

two methods diverges increasingly after 2010. Together with Figure 3.6 which plots the 

forecasted volatility by VC-EWMA and MC-MGARCH methods and realized volatility, we 

may conclude that the two methods performs differently in predicting variance in a relatively 

stable market time period while they are more consistent in a relatively volatile market time 

period. This may indicate a regime switch of dependence structure in the market of different 

time periods.   

 A major disadvantage of variance or standard deviation as a risk measure is that it 

penalize symmetrically both the negative and positive deviations from the mean. Instead of the 

classical bias test based on a variance model, we consider VaR and AVaR backtests as 

alternatives. Here we use the joint Christoffersen Likelihood Ratio (CLR) test (Christoffersen, 

1998) and the Berkowitz Likelihood Ratio (BLR) test (Berkowitz, 2001) as the same as in 

Chapter 2. The CLR test accounts for the conditional coverage of the VaR measure, assuming 

the violations of VaR for a given period follow an iid Bernoulli distributed random variables. 

And, loosely speaking, the BLR test compares the shape of forecasted tail of density of risk 

factors to the observed tail. The time periods considered in backtesting are one-year 

observations from 2007 to 2011. 

Table 3.5 and Table 3.6 provide CLR test statistics and corresponding p-values for the 

three forecasting methods in the unconditional coverage tests, independence tests and the joint 

tests, and VaR are calculated at 95% and 99% confidence level, respectively. In Table 3.5, 

the MC-MGARCH method is rejected at a 1% significance level in the unconditional tests for 

2009 and 2010; none of the three methods is rejected at a 1% significance level in the 

independence tests or the joints for all the years. In Table 3.6, none of the three methods is 

rejected at a 1% significance level in all tests. Although the number of violations given by the 

MC-MGARCH method is smaller than that given by the VC-EWMA method, the differences 

are not significant in general.  

Table 3.7 and Table 3.8 provide BLR test statistics and corresponding p-values with AVaR 

calculated at 95% and 99% confidence level, respectively. Table 3.7 shows that in the BLR 
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tail test VC-MGARCH method and MC-MGARCH are rejected at a 1% significance level for 

most years except 2008 and 2011, respectively; while VC-EWMA method is only rejected for 

2007 and 2009. Furthermore, none of the three methods is rejected at a 1% significance level 

in BLR independence test for all years. Compared to Table 3.7, Table 3.8 shows fewer 

rejections at a 1% significance level. In the BLR tail tests, MC-MGARCH method is rejected 

for 2007 and 2010; VC-MGARCH method is rejected for 2009 and 2010; and VC-EWMA 

method is rejected for 2007 and 2009. And none of the three methods are rejected in the BLR 

independence tests. 

 From the VaR backtest results we may conclude that the CHE factor model has a strong 

capability in describing the time dependence structure as well as the tail behaviors of the stock 

returns. 

 

3.6 Conclusions 

In this chapter, we provided the CHE factor model for risk and portfolio management. 

Developed for modeling the entire Chinese stock markets, this factor model includes 17 

specified factors from the market and companies financial profiles. Different time series 

models have been developed for describing risk factor returns and residuals. More 

specifically, a multi-dimensional AMRM-GARCH process with innovations following a 

heavy-tailded and skewed multivariate distribution has been applied for the factor returns and 

the one-dimensional ARMA-GARCH process has been applied for the individual series of 

residuals from the factor models. 

Sophisticated in-sample and out-of-sample statistical tests have been applied for model 

validation. And the test results suggested the CHE model with strong capacity in describing 

and forecasting the risk of the Chinese stock markets. 
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Table 3-1 The definition of all descriptors and formula of calculating style factor exposures. 

 

 

 

 

 

 

 

 

 

  

Factor Formulation Description 

Size  = ln𝑀𝐶 Market Capitalization – last month average 

 

Value = 1/𝑃𝐵 Book-to-Price ratio – last month 

 

Growth 
= (1 −

𝑑𝑝𝑠

𝑒𝑝𝑠
)𝑟𝑜𝑒 

Dividends per share  – last year trailing 

Earnings per share – last year trailing 

Income before extraordinary income  

– last year trailing  

Common equity value  – last year 

 

Momentum 
=

𝑀𝑜𝑚(𝜖𝑒𝑞)

𝑀𝑜𝑚(𝑟𝑚)
   

𝑀𝑜𝑚(𝑟) = ∏(1 + 𝑟𝑖)

𝑛

𝑖=1

 

Stock price time-series for one year 

Market time-series for one year 

 

 

 

 

Liquidity 
=

𝑙𝑛 𝑇𝑉

𝑙𝑛𝑀𝐶
, 

𝑇𝑉 =
1

𝑛
∑𝑃𝑋𝑡−𝑖𝑉(𝑡−𝑖)

𝑛−1

𝑖=0

 

Traded Volume time-series – last 20 days 

Market Capitalization – last 20 days 

 

 

 

 

Volatility 
=

ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤

ℎ𝑖𝑔ℎ + 𝑙𝑜𝑤
 

Stock price time-series for one month 

 

 

Leverage 
=

𝑑𝑒𝑏𝑡

𝑀𝐶
 

Long-term Debt – most recent report data 

Short-term debt – most recent report data 

Market Capitalization – last month average 
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Table 3-2 Regression-weighted cross-sectional correlation of style and industry factor exposures. Results 

are averages over the period January 2004 to December 2012. Correlations above 0.10 in absolute value are 

shaded in gray. 

 

 

 

 

 

 

 

 

 

 

  

Factor Size Value Growth Momentum Liquidity Volatility Leverage 

Size 1.000  -0.255  -0.002  0.071  -0.898  -0.354  0.114  

Value -0.255  1.000  0.226  -0.365  0.240  0.265  -0.365  

Growth -0.002  0.226  1.000  -0.204  -0.016  0.047  -0.107  

Momentum 0.071  -0.365  -0.204  1.000  -0.099  -0.163  0.110  

Liquidity -0.898  0.240  -0.016  -0.099  1.000  0.436  -0.098  

Volatility -0.354  0.265  0.047  -0.163  0.436  1.000  -0.119  

Leverage 0.114  -0.365  -0.107  0.110  -0.098  -0.119  1.000  

Basic Materials 0.497  -0.130  -0.007  0.019  -0.455  -0.130  -0.055  

Communications -0.022  0.030  0.015  -0.010  -0.007  0.000  -0.043  

Consumer, Cyclical 0.051  -0.034  0.045  -0.017  -0.086  -0.020  0.144  

Consumer, 

Non-Cyclical 
0.296  -0.133  0.039  0.017  -0.314  -0.153  0.133  

Diversified -0.007  0.003  0.016  0.002  0.016  0.007  0.091  

Energy -0.016  0.065  -0.001  -0.027  0.000  0.001  -0.035  

Financial 0.095  0.119  0.089  -0.063  -0.091  0.000  -0.031  

Industrial 0.203  -0.069  0.003  0.027  -0.240  -0.078  0.062  

Technology -0.014  -0.046  0.018  -0.001  0.003  -0.011  -0.010  

Utilities 0.049  0.151  0.135  -0.102  -0.066  0.020  -0.091  
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Table 3-3 Summary of the statistics of the various goodness-of-fit tests of univariate ARMA-GARCH 

models with different distributed innovations for factor returns from January 2005 to December 2012. P-values 

less than 0.05 are shaded and those less than 0.01 are bolded. 

 

  

 
Gaussian Stable CTS 

 
p-value ks ad p-value ks ad p-value ks ad 

Market 0.000  0.059  0.069  0.000  0.072  0.088  0.468  0.022  0.019  

Size 0.308  0.030  0.048  0.339  0.030  0.025  0.418  0.028  0.026  

Value 0.503  0.026  0.033  0.105  0.038  0.050  0.586  0.024  0.024  

Growth 0.002  0.058  0.086  0.006  0.054  0.053  0.868  0.019  0.022  

Momentum 0.012  0.050  0.055  0.004  0.056  0.064  0.804  0.020  0.024  

Turnover 0.280  0.031  0.037  0.183  0.034  0.047  0.930  0.017  0.019  

Volatility 0.049  0.043  0.046  0.143  0.036  0.037  0.982  0.015  0.020  

Leverage 0.006  0.054  0.071  0.154  0.036  0.042  0.447  0.027  0.026  

Basic Materials 0.001  0.060  0.074  0.010  0.052  0.064  0.325  0.030  0.027  

Communications 0.006  0.054  0.063  0.031  0.045  0.055  0.065  0.041  0.029  

Consumer, Cyclical 0.004  0.056  0.069  0.000  0.066  0.073  0.444  0.027  0.026  

Consumer, 

Non-Cyclical 
0.000  0.070  0.080  0.000  0.079  0.093  0.534  0.025  0.026  

Diversified 0.031  0.045  0.057  0.259  0.032  0.036  0.950  0.016  0.016  

Energy 0.001  0.064  0.080  0.000  0.076  0.099  0.200  0.034  0.039  

Financial 0.001  0.064  0.075  0.003  0.057  0.054  0.832  0.020  0.022  

Industrial 0.003  0.058  0.069  0.000  0.064  0.069  0.451  0.027  0.028  

Technology 0.001  0.064  0.077  0.002  0.058  0.067  0.640  0.023  0.026  

Utilities 0.000  0.066  0.079  0.001  0.061  0.071  0.525  0.026  0.028  
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Table 3-4 Bias tests results of the universe portfolios and single stocks from January 2007 to January 2012. 

(a) 22-days rolling bias statistics for universe portfolios based on different forecasting methods. Table shows 

percentage of robust bias statistics and raw bias statistics (in brackets) in confidence. (b) Entire raw bias 

statistics for single stocks in the universe portfolios based on different forecasting methods. Table shows the 

percentage of bias statistics in different interval. 

(a) 

(b)  

 

Table 3-5 Summary of Christoffersen Likelihood Ratio tests of the universe portfolio for 5 years. VaR is 

calculated at the confidence level of 95%. 

Universe Portfolio VC-EWMA VC-MGARCH MC-MGARCH 

over-forecast 5.63% (5.27%) 4.72% (4.38%) 4.97% (4.52%) 

in-forecast 91.25% (88.30%) 92.00% (89.02%) 91.32% (88.70%) 

under-forecast 3.12% (6.43%) 3.28% (6.60%) 3.71% (6.68%) 

Single Stocks VC-EWMA VC-MGARCH MC-MGARCH 

(−∞, 0.7) 20.49% 19.46% 18.28% 

[0.7,0.9) 32.96% 33.15% 56.33% 

[0.9,1.1) 28.24% 28.24% 17.33% 

[1.1,1.3) 10.36% 11.00% 5.64% 

[1.3, +∞) 7.75% 7.95% 2.22% 

Model 

2007(January 4, 2007 –  

December 28, 2007) 

2008 (January 2, 2008 –  

December 31, 2008) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLR𝑐𝑐     
(p-value) 

N 
CLRuc   

(p-value) 

CLRind  
(p-value) 

CLRind  
(p-value) 

VC- 

EWMA 
12 

0.0000  

(1.0000)  

0.2471  

(0.6191)  

0.2471  

(0.8838)  
16 

1.2764  

(0.2586)  

0.7622  

(0.3826)  

2.0386  

(0.3608)  

VC- 

MGACH 
11 

0.0901  

(0.7640)  

0.4222  

(0.5158)  

0.5124  

(0.7740)  
7 

2.5629  

(0.1094)  

0.5538  

(0.4568)  

3.1167  

(0.2105)  

MC- 

MGACH 
10 

0.3711  

(0.5424)  

0.6530  

(0.4190)  

1.0241  

(0.5993)  
15 

0.7340  

(0.3916)  

1.0658  

(0.3019)  

1.7997  

(0.4066)  
  

  

2009 (January 5, 2009 – 

 December 31, 2009) 

2010(January 5, 2010 – 

 December 31, 2010) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLRcc  
(p-value) 

N 
CLRuc  

(p-value) 

CLRind  

(p-value) 

CLRcc  
(p-value) 

VC- 

EWMA 
9 

0.8610  

(0.3535)  

0.9474  

(0.3304)  

1.8084  

(0.4049)  
8 

1.5823  

(0.2084)  

0.5542  

(0.4566)  

2.1366  

(0.3436)  

VC- 

MGACH 
10 

0.3711  

(0.5424)  

0.6530  

(0.4190)  

1.0241  

(0.5993)  
9 

0.8610  

(0.3535)  

0.7045  

(0.4013)  

1.5656  

(0.4571)  

MC- 

MGACH 
4 

7.4886  

(0.0062)  

0.1362  

(0.7121)  

7.6248  

(0.0221)  
4 

7.4886  

(0.0062)  

0.1362  

(0.7121)  

7.6248  

(0.0221)  
  

  

2011(January 4, 2011 –  

December 30, 2011) 
 

N 
CLRuc  

(p-value) 
CLRind  

(p-value) 
CLRcc  

(p-value) 
    

VC- 

EWMA 
12 

0.0000  

(1.0000)  

1.2693  

(0.2599)  

1.2693  

(0.5301)  
    

VC- 12 0.0000  1.2693  1.2693      
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Table 3-6 Summary of Christoffersen Likelihood Ratio tests of the universe portfolio for 5 years. VaR is 

calculated at the confidence level of 99%. 

 

  

MGACH (1.0000)  (0.2599)  (0.5301)  

MC- 

MGACH 
8 

1.5823  

(0.2084)  

0.5542  

(0.4566)  

2.1366  

(0.3436)  
    

Model 

2007(January 4, 2007 –  

December 28, 2007) 

2008 (January 2, 2008 –  

December 31, 2008) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLR𝑐𝑐     
(p-value) 

N 
CLRuc   

(p-value) 

CLRind  
(p-value) 

CLRind  
(p-value) 

VC- 

EWMA 
4 

0.8974  

(0.3435)  

0.1362  

(0.7121)  

1.0336  

(0.5964)  
2 

0.0714  

(0.7893)  

0.0338  

(0.8542)  

0.1051  

(0.9488)  

VC- 

MGACH 
1 

1.0573  

(0.3038)  

0.0084  

(0.9270)  

1.0657  

(0.5869)  
1 

0.1404  

(0.7079)  

0.2043  

(0.6513)  

0.3447  

(0.8417)  

MC- 

MGACH 
2 

0.0714  

(0.7893)  

0.0338  

(0.8542)  

0.1051  

(0.9488)  
1 

1.0573  

(0.3038)  

0.0084  

(0.9270)  

1.0657  

(0.5869)  
  

  

2009 (January 5, 2009 – 

 December 31, 2009) 

2010(January 5, 2010 – 

 December 31, 2010) 

N 
CLRuc  

(p-value) 

CLRind  
(p-value) 

CLRcc  
(p-value) 

N 
CLRuc  

(p-value) 

CLRind  

(p-value) 

CLRcc  
(p-value) 

VC- 

EWMA 
3 

0.1404  

(0.7079)  

0.0763  

(0.7824)  

0.2167  

(0.8973)  
3 

0.1404  

(0.7079)  

0.0763  

(0.7824)  

0.2167  

(0.8973)  

VC- 

MGACH 
4 

0.8974  

(0.3435)  

0.1362  

(0.7121)  

1.0336  

(0.5964)  
4 

0.8974  

(0.3435)  

0.1362  

(0.7121)  

1.0336  

(0.5964)  

VC- 

MGACH 
0 

4.8242  

(0.0281)  

0.0000  

(1.0000)  

4.8242  

(0.0896)  
4 

0.8974  

(0.3435)  

0.1362  

(0.7121)  

1.0336  

(0.5964)  
  

  

2011(January 4, 2011 –  

December 30, 2011) 
 

N 
CLRuc  

(p-value) 
CLRind  

(p-value) 
CLRcc  

(p-value) 
    

VC- 

EWMA 
3 

0.1404  

(0.7079)  

0.0763  

(0.7824)  

0.2167  

(0.8973)  
    

VC- 

MGACH 
3 

0.1404  

(0.7079)  

0.0763  

(0.7824)  

0.2167  

(0.8973)  
    

MC- 

MGACH 
2 

0.0714  

(0.7893)  

0.0338  

(0.8542)  

0.1051  

(0.9488)  
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Table 3-7 Summary of Berkowitz Likelihood Ratio tests of the universe portfolio for 5 years. VaR is 

calculated at the confidence level of 95%. 

 

 

Table 3-8 Summary of Berkowitz Likelihood Ratio tests tests of the universe portfolio for 5 years. VaR is 

calculated at the confidence level of 99%. 

 

 

 

Model 2007 2008 2009 

  BLRind  
(p-value) 

BLRtail   
(p-value) 

BLRind 
(p-value) 

BLRtail   
( p-value) 

BLRind 
(p-value) 

BLR_tail    
(p-value) 

VC- 

EWMA 

2.4415  

(0.1182)  

20.4803  

(0.0000)  

0.1825  

(0.6692)  

1.1319  

(0.5678)  

0.9674  

(0.3253)  

16.2260  

(0.0003)  

VC- 

MGACH 

2.2489  

(0.1337)  

20.5868  

(0.0000)  

0.4931  

(0.4825)  

0.8099  

(0.6670)  

1.0081  

(0.3154)  

17.8236  

(0.0001)  

MC- 

MGACH 

1.2714  

(0.2595)  

13.4807  

(0.0012)  

1.9881  

(0.1585)  

17.4405  

(0.0002)  

3.1226  

(0.0772)  

22.3617  

(0.0000)  
  2010 2011  

  BLRind 
(p-value) 

BLRtail   
(p-value) 

BLRind 
(p-value) 

BLRtail   
(p-value) 

  

VC- 

EWMA 

1.8014  

(0.1795)  

8.3540  

(0.0153)  

0.2491  

(0.6177)  

7.1538  

(0.0280)  
  

VC- 

MGACH 

1.9186  

(0.1660)  

9.3207  

(0.0095)  

0.0870  

(0.7681)  

7.3252  

(0.0257)  
  

MC- 

MGACH 

2.1913  

(0.1388)  

12.3798  

(0.0021)  

3.1120  

(0.0777)  

8.3059  

(0.0157)  
  

Model 2007 2008 2009 

  BLRind  
(p-value) 

BLRtail   
(p-value) 

BLRind 
(p-value) 

BLRtail   
( p-value) 

BLRind 
(p-value) 

BLR_tail    
(p-value) 

VC- 

EWMA 

2.4415  

(0.1182)  

12.6328  

(0.0018)  

0.1825  

(0.6692)  

0.0521  

(0.9743)  

0.9674  

(0.3253)  

13.5565  

(0.0011)  

VC- 

MGACH 

2.2489  

(0.1337)  

5.2388  

(0.0728)  

0.4931  

(0.4825)  

-0.2338  

(0.8897)  

1.0081  

(0.3154)  

13.0136  

(0.0015)  

MC- 

MGACH 

1.2714  

(0.2595)  

10.9016  

(0.0043)  

1.9881  

(0.1585)  

4.0757  

(0.1303)  

3.1226  

(0.0772)  

6.0372  

(0.0489)  
  2010 2011  

  BLRind 
(p-value) 

BLRtail   
(p-value) 

BLRind 
(p-value) 

BLRtail   
(p-value) 

  

VC- 

EWMA 

1.8014  

(0.1795)  

8.5490  

(0.0139)  

0.2491  

(0.6177)  

4.6937  

(0.0957)  
  

VC- 

MGACH 

1.9186  

(0.1660)  

10.4664  

(0.0053)  

0.0870  

(0.7681)  

4.3856  

(0.1116)  
  

MC- 

MGACH 

2.1913  

(0.1388)  

12.1373  

(0.0023)  

3.1120  

(0.0777)  

5.5948  

(0.0610)  
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Figure 3-1 Number of trading stocks listed in Shanghai Stock Exchange and 

Shengzhen Stock Exchange, from 2000 to 2012. 

Figure 3-2 Cross-sectional multi-collinearity among factor exposures is measured by 

Variance Inflation Factor (VIF). VIFs of 7 style factor exposures are plotted from 

September 2005 to December 2012. 
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(a) 

 

(b) 

 

Figure 3-3  CHE one-year trailing average of R^2 from January 2005 to December 2012. 

 (a) The decomposition of 𝑅2 into factor categories highlights the incremental explanatory power of the 

CHE market, industry and style factors. 

(b) The isolated explanatory power given by style factor or industry factor along helps to understand the 

investment characteristics of the market. 
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(a) 

 

 (b) 

 

Figure 3-4 Q-Q plot of sample distributions of innovations against standard Gaussian, α-stable and CTS 

distributions for the Chinese stock market and other world stock markets. 

(a) Q-Q plot for growth factor. (b) Q-Q plot for basic material factor 
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Figure 3-5 12-month rolling window bias statistics of the universe portfolio returns for different forecasting 

methods from January, 2007 to December 2012. 

 

 

Figure 3-6 Forecasted volatility by VC-EWMA and MC-MGARCH methods and realized volatility of the 

universe portfolio from January, 2007 to December 2012. 
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4.  Portfolio Optimization and Risk Budgeting 

4.1 Introduction  

Optimal portfolio selection concerns prudent decision making about the portfolio 

composition, in order to obtain the investor’s objectives. An objective is a feature of a given 

portfolio for a given investment horizon. For instance, an objective is represented by final 

wealth at the horizon, or net gains, or wealth relative to some benchmark. The objective is a 

random variable dependent on the portfolio. One method of evaluating the portfolios, or more 

precisely, the distribution of objective relative to a portfolio is through the definition of 

stochastic dominance, a criterion by which we are allowed to evaluate the distribution of the 

objective as a whole. While the theory of stochastic dominance is solid, the practical 

application is limited as the resulting optimization problems are very difficult to solve. Thus, 

the investor might not be able to compare the results of different portfolios and make the right 

investment decision. 

As a consequence, in Section 4.2, an alternative approach is achieved by defining an index 

of satisfaction which summarizes all the properties of a distribution in a single number. If the 

index of satisfaction is properly defined the investor can in all circumstances choose the 

portfolio that best suits him. The potential features of a proper satisfaction index are displayed 

by Fruttelli and Rosazza Gianin (2002) and Meucci (2007).  

A major category of such satisfactory index is based on the intuitive concept of expected 

utility. In Section 4.3.1, we discuss some properties and examples of the utility functions. From 

this point, the famous mean-variance analysis introduced by Harry Markowitz in the 1950 can 

be viewed as an approximation, according to which the investor’s satisfaction is determined by 

the first two moments of the distribution of his objective. The mean-variance optimization has 

significant advantages as well as some well-known pitfalls. In Section 4.3.2. In general, the 

mean-variance analysis can be extended to a broader framework, namely, the mean-risk 

analysis. In section 4.3.4, Instead of taking variance as a proper measure of risk, quantile, such 

as Value-at-Risk (VaR) and coherent indices, such as Average Value-at-Risk (AVaR) are 

selected as a risk measure.  

 

4.2 Stochastic Dominance 

In this section, we present the stochastic dominance approach to portfolio optimization. 

For further references, see Ingersoll(1987), Lévy (1998), Yamai and Yoshiba (2002), and 
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Meucci (2007).  

An investor’s objectives are described as the quantities that the investor perceives as 

beneficial and therefore he desires in the largest possible amounts from investing in a portfolio. 

Given a portfolio with allocation 𝛼, the objectives denoted by 𝛹𝐵 = 𝜶′𝑴 can be the final 

wealth over the investment horizon and 𝑴 denotes the market vector, for instance. In such 

ways, two portfolios with different allocation 𝛼 and 𝛽 can be selected by comparing the 

corresponding objectives 𝛹𝛼 and 𝛹𝛽. If the objective 𝛹𝛼 is always larger than the objective 

𝛹𝛽 in all scenarios, then the former one is said to strongly dominate the later one:  

In other words, the difference between two objectives is a positive random variable. 

Therefore an equivalent definition of strong dominance is given by the form of cumulative 

probability function as following:  

The strong dominance is also called order zero dominance, for the reasons become clear 

below. 

Nevertheless, the strong dominance cannot be a proper criterion because if strong 

dominance takes place, there will be an arbitrage opportunity. Instead, in general an objective 

𝛹𝛼 from an allocation 𝛼 is lager in some scenarios and smaller in others that the objective 𝛹𝛽 

from another allocation 𝛽. Thus we would be prone to choose an allocation 𝛼 over another 

allocation 𝛽 if the probability density function of the ensuing objective were concentrated 

around larger value than for the other allocation. This condition is expressed more easily in 

terms of cumulative probability function. The objective 𝛹𝛼, or the allocation 𝛼, is said to 

weakly dominate the objective 𝛹𝛽, or the allocation 𝛽, if the following condition holds: 

Weak dominance is also called first-order stochastic dominance (FSD), and other form of 

the definition may display. 

Although less restrictive than the strong dominance, the weak, or first order dominance 

hardly ever happens. An even weaker type of dominance, such as second-order stochastic 

dominance (SSD) is introduced. 

The objective 𝛹𝛼, or the allocation 𝛼, is said to weakly dominate the objective 𝛹𝛽, or the 

allocation 𝛽, if the following condition holds: 

 strong dom:𝛹𝛼 ≥ 𝛹𝛽   in all scenarios 4  

 strony dom: 𝐹𝛹𝛼−𝛹𝛽
(0) ≡ 𝑷(𝛹𝛼 −𝛹𝛽 ≤ 0) = 0 4.2  

 weak dom: 𝐹𝛹𝛼
(𝜓) ≤ 𝐹𝛹𝛽

(𝜓) for all 𝜓 ∈ ℝ 4.3  
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Where ℐ2 is the iterated integral of the pdf: 

We can extend the second-order dominance if weaker types of dominance are need. In 

general, we say the objective 𝛹𝛼, or the allocation 𝛼, order-𝑞 dominates the objective 𝛹𝛽, or 

the allocation 𝛽, if the following condition holds: 

Applying the integration operator to both sides of (4.6) we see that order-𝑞 dominance 

implies order (𝑞 + 1) dominance, but the opposite is not necessarily to be true. 

Taking advantage of the criteria of stochastic dominance, we can characterize the efficient 

sets of the corresponding categories of investors. The efficient set of a given class of portfolios 

is defined as the set of portfolios not dominated with respect to the corresponding stochastic 

dominance relation. Any portfolio which is not in the efficient set will be discarded by all 

investors in that class. Once efficient set is obtained, the investor can rank all possible 

portfolios in the efficient set with respect to some criteria and maximize his objectives. 

Nevertheless, in practice the explicit efficient set is difficult to obtain. In addition, there is 

no guarantee that there exists an order 𝑞 such that any two portfolio can be ranked, i.e. the two 

portfolio cannot be compared in the sense that neither of the respective objectives dominates 

the other. 

It should cause attention whether adopting the stochastic dominance approach for the 

payoff or the return. For instance, the SSD on the set of payoff distributions implies the same 

order dominance of the set of log-return distributions but not vice versa. For more references, 

see Rachev, et at, 2008.    

 

4.3 Satisfaction and Mean-Risk Analysis 

Alternative to the stochastic dominance approach for portfolio selection, we summarize 

all the features of a given portfolio 𝛼 into one single number 𝑆 that indicates the respective 

degree of satisfaction: 

The investor will then chooses the portfolio that corresponds to the highest degree of 

satisfaction. In Meucci 2007, the satisfaction index can be mainly divided into three categories, 

 SSD: ℐ2[𝑓𝛹𝛼
](𝜓) ≤ ℐ2 [𝑓𝛹𝛽

] (𝜓) for all 𝜓 ∈ ℝ 4.4  

 
ℐ2[𝑓𝛹](𝜓) ≡ ℐ[𝐹𝛹](𝜓) ≡ ∫ 𝐹𝛹(𝑠)𝑑𝑠

𝜓

−∞

  
4.5  

 𝑞-dom: ℐ𝑞[𝑓𝛹𝛼
](𝜓) ≤ ℐ𝑞 [𝑓𝛹𝛽

] (𝜓) for all 𝜓 ∈ ℝ 4.6  

 𝜶 → 𝑆(𝜶) 4.7  
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namely certainty-equivalent (expected utility), quantile (Value-at-Risk), and coherent indices 

(expected shortfall). Here we adopt the concept of satisfaction index but combine the latter two 

categories into a general mean-risk approach, which is derived from the famous mean-variance 

approach by Markowitz. 

The properties and methods of construction of a satisfaction index can be found in Meucci, 

2007. 

 

4.3.1 Expected Utility 

Consider a generic portfolio 𝛼 that gives rise to the investor’s objective 𝛹𝛼, a utility 

function 𝑢(𝜓) describes the extent to which the investor enjoys the outcome 𝛹𝛼 = 𝜓 of the 

objective, in case that realization takes place. By applying the expectation of all possible 

outcomes of the utility function, we obtain the satisfaction index as the expected utility from 

the given portfolio: 

where 𝑓𝛹  is the probability density function of the objective. Indeed, this is the Von 

Newumann-Morgenstern specification of expected utility as an index of satisfaction, that the 

higher value is preferred by investors. 

Here we pick some properties of the utility function that are derived from common 

arguments valid for investors belonging to a certain category. For non-satiation investors who 

prefer more to less have the utility functions with the following properties: 

 Sensibility, i.e., the utility function must be an increasing function of the objective. 

Assuming that the utility function is smooth then the first derivative of the utility must 

be positive: 

where 𝐷 is the derivative operator. 

 Consistence with stochastic dominance, i.e., the expected utility is consistent with 

first-order stochastic dominance. In other words, if 𝑢 is increasing, then: 

However, consistence with second-order stochastic dominance is not guaranteed 

unless the utility function is increasing and concave. For a smoothing utility function, 

this condition is displayed as following: 

 
𝜶 → E[𝑢(𝛹𝛼)] ≡ ∫𝑢(𝜓)𝑓𝛹𝛼

(𝜓)𝑑𝜓
ℝ

 
4.8  

 𝐷𝑢 ≥ 0 4.9  

 𝐹𝛹𝛼
(𝜓) ≤ 𝐹𝛹𝛽

(𝜓) for all 𝜓 ∈ ℝ ⇒ E[𝑢(𝛹𝛼)] ≥ E[𝑢(𝛹𝛽)] 4.10  

 𝐷𝑢 ≥ 0,𝐷2𝑢 ≤ 0 4.11  
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 Risk aversion. 

Consider a fair game, i.e., a portfolio 𝐟 such that its objective 𝛹𝐟 has zero expected 

value. Then the expected utility is risk averse if the risk-free portfolio 𝐛 is preferred 

to the risky portfolio 𝐛 + 𝐟 for any given level of the risk-free outcome 𝜓𝒃 and any 

fair game 𝐟: 

and the expected utility is risk seeking if : 

and the expected utility is risk neutral if: 

To better describe the investor’s attitude towards risk we define a more loca measure, 

namely, the Arrow-Pratt absolute risk aversion, as following: 

  

The Arrow-Pratt absolute risk aversion is positive if and only if the second 

derivative of the utility function is negative, which means that the utility function is 

concave. 

 

4.3.2 Mean-variance Approach 

A different approach toward portfolio optimization was introduced by Harry Markowitz 

in the 1950, mean-variance analysis (M-V analysis) and popularly referred to as modern 

portfolio theory (MPT), Makowitz (1952) suggested that the portfolio choice be made with 

respect to two criteria: the expected portfolio return and the variance of the portfolio, the latter 

used as a proxy for risk. Not only is M-V analysis intuitive, but also it is easy to apply in 

practice. There are convenient computational recipes and geometric interpretations of the 

trade-off between the two criteria.  

Like the expected utility approach, we look for the consistence of M-V analysis with 

stochastic dominance. M-V analysis is consistent with first-order stochastic dominance, i.e., 

higher return is always appreciated by all non-satiation investors. However, generally M-V 

analysis is not consistent with second-order stochastic dominance, unless the distribution of the 

investor’s market follows multivariate normal distribution, which is a very restrictive 

assumption. Alternatively, M-V analysis describes the correct choices by investors with 

 Ψ𝒃 ≡ 𝜓𝑏 , 𝐸[Ψf] ≡ 0 ⇒ 𝐸[𝑢(𝜓𝑏)] ≥ 𝐸[𝑢(𝜓𝑏 +𝛹𝐟)] 4.12  

 Ψ𝒃 ≡ 𝜓𝑏 , 𝐸[Ψf] ≡ 0 ⇒ 𝐸[𝑢(𝜓𝑏)] ≤ 𝐸[𝑢(𝜓𝑏 +𝛹𝐟)] 4.13  

 Ψ𝒃 ≡ 𝜓𝑏 , 𝐸[Ψf] ≡ 0 ⇒ 𝐸[𝑢(𝜓𝑏)] ≡ 𝐸[𝑢(𝜓𝑏 +𝛹𝐟)] 4.14  

 
𝐴(𝜓) ≡ −

𝐷2𝑢(𝜓)

𝐷𝑢(𝜓)
 

4.15  
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quadratic utility function. Again the assumption of quadratic utility function is very restrictive 

even though we can extend it and consider all utility function that can be sufficiently well 

approximated by quadratic utilities.  

Another well-known drawback is that in M-V analysis variance is used as a measure of 

risk. The deficiency was recognized by Markowitz (1959) and he suggested the downside 

semistandard deviation as a measure of risk. In contrast to variance, the downside semistandard 

deviation is consistent with SSD. With carefully choosing alternative risk measure, we can 

extend the mean-variance analysis to a more general approach to portfolio optimization, 

namely mean-risk analysis, which could be consistent with SSD. Two widely used measure of 

risk, namely, Value-at-Risk and average Value-at-risk, will be discussed under the mean-risk 

analysis in Section 4.3.3 

 The main principle behind M-V analysis can be summarized in two ways.  

1. Given a certain level of expected return, find the optimal portfolio that has the minimal 

variance. The allocation 𝜶 is the solution to the optimization problem defined as following: 

where 𝐶 denotes the set of constraints. The constraints are determined by the investors 

for strategy specific or liquidation considerations. For instance, a maximum allocation to a 

given industry, or transaction cost. 

2. Alternatively, given a certain level of variance, find the optimal portfolio with maximal 

expected return. The allocation 𝜶 is the solution to the optimization problem defined as 

following: 

where 𝜈∗ ≥ 0. Making use of the Lagrangian formulation in (5.16), we can express the 

optimization problem as following: 

The Lagrange coefficient λ that solves (4.18) can be interpreted as a coefficient of risk 

aversion. If 𝜆 is null the investor is risk neutral: indeed, the argument in the objective function 

 min 
α

            Var(𝛹𝛼) 

subject to   𝛂 ∈ C 

                      E[𝛹𝛼] = 𝜓∗ 

4.16  

 max 
α

            E[𝛹𝛼] 

subject to   𝛂 ∈ C 

                      Var(𝛹𝛼) = 𝜈∗ 

4.17  

 max 
α

            E[𝛹𝛼] − λ(Var[𝛹𝛼]) 

subject to   𝛂 ∈ C 

4.18  
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of (4.18) becomes the expected value. On the other hand, if 𝜆 is positive the investor is risk 

averse: indeed, portfolios with the same expected value but with larger variance are penalized. 

Similarly, if 𝜆 is negative the investor is risk seeking. In fact, the objective function in (4.18) 

with fixed 𝜆 is the expected utility of an investor with a quadratic function,  

Where the utility 𝑢(𝑥) = −𝜆𝑥2 + 𝑥 + 𝜆𝑏 with 𝑏 equals to the squared expected value 

of the portfolio.  

The M-V analysis can be also interpreted in the way of the index of satisfaction. Since the 

satisfaction index is a function of the distribution of the investors objective, which is in general 

univocally determined by its moments: 

where CMk denotes the central moment of order 𝑘 of a univariate distribution. 

Suppose that we can focus on the two first moments only and neglect all the higher 

moments. In other words, assume that (4.20) can be approximated as following: 

for a suitable bivariate function ℋ̃. In this approximation, the mean-variance analysis 

arises as maximize the index of satisfaction. In fact, the only index of satisfaction 𝑆 such that 

the approximation (4.21) is exact no matter the market is the case of quadratic utility. 

Nevertheless the quadratic utility is not flexible enough to model the whole spectrum of the 

investor’s preferences. For more references, see Meucci 2008. 

As mentioned in the beginning of Section 4.3.2, there are several pitfalls of the M-V 

analysis. In general M-V analysis is not consistent with SSD, which concerns the non-satiation, 

risk-averse investors. It is only under specific conditions concerning the multivariate 

distribution of the market variables, such as multivariate normal distribution and the broader 

class of elliptical distributions. Alternatively, M-V analysis is consistent with the stochastic 

order arising from quadratic utilities, which also limits the practical application of the problem 

(4.16), (4.17) and (4.18). 

 

4.3.3 General Mean-risk Approach 

 E[𝛹𝛼] − λ(Var[𝛹𝛼]) = E[𝛹𝛼] − λ(E[𝛹𝛼 − E(𝛹𝛼)]
2) 

                                        = E[𝛹𝛼] − λ(E[𝛹𝛼]
2 − (E[𝛹𝛼])

2) 

                                        = E(−𝜆E[𝛹𝛼]
2 +𝛹𝛼 + 𝜆(E[𝛹𝛼])

2) 

                                        = E[𝑢(𝛹𝛼)] 

 

4.19  

 𝑆(𝛂) ≡ ℋ(E[𝛹𝛼], CM2[𝛹𝛼], CM3[𝛹𝛼], … ) 4.20  

 𝑆(𝜶) ≈ ℋ̃(E[𝛹𝛼], Var[𝛹𝛼]) 4.21  
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In Section 4.3.2, we discussed about the mean-variance (M-V) analysis to portfolio 

optimization and some pitfalls in applying it into practice. The principle reason is that it leads 

to correct decisions only when the market vector 𝑴  follows the multivariate normal 

distribution, and, as we noted, there is strong empirical evidence against that assumption. The 

extensions involve including different risk measures in the optimization problem.  

The M-V analysis can be extended for a general risk measure 𝜌(∙), and the corresponding 

optimization problems can be re-stated in a similar way to M-V analysis: 

1. Given a certain level of expected return, find the optimal portfolio that has the minimal 

risk. The allocation 𝜶 is the solution to the optimization problem defined as following: 

2. Alternatively, given a certain level of risk, find the optimal portfolio with maximal 

expected return. The allocation 𝜶 is the solution to the optimization problem defined as 

following: 

where 𝜈∗ ≥ 0. Again, making use of the Lagrangian formulation in (5.22), we can 

express the optimization problem in a way of utility function as following: 

The Lagrange coefficient λ that solves (4.24) can be interpreted as a coefficient of risk 

aversion. If 𝜆 is null the investor is risk neutral; if 𝜆 is positive the investor is risk averse; if 𝜆 

is negative the investor is risk seeking.  

 M-R optimization problems are different from their counterparts in M-V analysis. In 

order to calculate the risk of the portfolio’s objective ρ[𝛹𝛼], we need to know the multivariate 

distribution of the market vector 𝑴 . Otherwise, it will not be possible to calculate the 

distribution of the portfolio’s objective, and, as a result, portfolio risk will be unknown. This 

requirement is not so obvious in the M-V optimization problems where we only need the 

covariance matrix as input.  

In Chapter 2, we discussed several types of risk measure, of which the quantile measures 

 min 
α

          𝜌(𝛹𝛼) 

subject to   𝛂 ∈ C 

                      E[𝛹𝛼] = 𝜓∗ 

4.22  

 max 
α

            E[𝛹𝛼] 

subject to   𝛂 ∈ C 

                      𝜌(𝛹𝛼) = 𝜈∗ 

4.23  

 max 
α

            E[𝛹𝛼] − λ(𝜌[𝛹𝛼]) 

subject to   𝛂 ∈ C 

4.24  
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and coherent measures, such as Value-at-Risk (VaR) and average Value-at-Risk (AVaR) 

respectively, are most frequently discussed ones in both academy and industry. The question is 

that: are they natural candidates as risk measures adopted in the mean-risk (M-R) analysis of 

portfolio optimization? Basically, the answers to the question are different with respect to VaR 

and AVaR. For M-R analysis, a key concept inherited from M-V analysis is diversification, 

which is described by the sub-additive property of the risk measure. For all non-satiation, 

risk-averse investors with two different portfolios with allocation 𝜶 and 𝜷 the following 

inequity should be satisfied: 

behind which is the effect of diversification. However, in general, VaR does not follow 

(4.25).  This is the main reason why alternative measure of risk, such as AVaR were developed. 

Moreover, although VaR is consistent with first-order stochastic dominance, it is not consistent 

with second-order stochastic dominance (see, for example, Guthoff et al, 1997).  

By definition, AVaR at tail probability 𝜖, AVaR𝜖(𝛹𝛼), is the average of the VaR numbers 

larger than the VaR at tail probability 𝜖. The formal definition is given in in Chapter 2. 

Substituting AVaR𝜖(𝛹𝛼) for 𝜌[𝛹𝛼] in (4.22), we obtain the corresponding AVaR optimization 

problem. AVaR belongs to the class of coherent risk measure which is defined with the 

sub-additive property, thus AVaR as a risk measure implies the effect of diversification. 

Although in general, a coherent risk measure is not necessarily consistent with SSD, there exist 

some particular representatives where the consistency condition is true. For instance, AVaR and, 

more generally, a spectral risk measure are consistent with SSD. DeGiorgi (2005) provides 

more information and a formal proof of this fact.  

The difficulty of solving in practice problem (4.22), (4.23) and (4.24) depends on the 

particular choice of the risk measure 𝜌(∙). Generally, if the risk measure is convex function of 

𝜶, then the optimization problems belongs to the convex problems and be solved using the 

methods of convex optimization. If additionally 𝜌(∙)  is differentiable, the one can take 

advantage of a method for numerical optimization of smooth function, for example gradient 

methods, or sequential quadratic programming methods. For some specific risk measure, the 

optimization problem can be further simplified. For instance, in the case of variance as risk 

measure, the optimization problem reduces to a quadratic programming problem. And there are 

examples in which the risk measures can be linearized and in consequence the optimization 

problem reduces to a linear programming problem. For instance this is the case when 𝜌(∙) is 

the AVaR or a spectral measure of risk (see, Rockafellar and Uryasec, 2002, and Acerbi and 

 𝜌(𝛂 + 𝛃) ≤ 𝜌(𝜶) + 𝜌(𝜷) 4.25  
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Simonetti, 2002). 

 Next we give an example of mean-AVaR portfolio optimization problem and discuss the 

approach of reducing it to a linear programming problem. In this example we choose the 

returns 𝒓 of assets in the portfolio as the market vector and the portfolio weights 𝒘 of the 

assets as the allocation 𝜶, then the portfolio optimization problem is given as following: 

where 𝒓 = (𝑟1, … , 𝑟𝑛)
′ , 𝒘 = (𝑤1, … , 𝑤𝑛)

′ , 𝒆 = (1,… , 1)′ , 𝜖 ∈ (0,1)  and 𝑅∗ ∈ ℝ . If 

there are available scenarios for asset returns, we can reduce (4.26) to a linear programming 

problem by adopting a linearization of AVaR (see, Rockafellar and Uryasev, 2000). The 

scenarios can be historical observations of asset returns or independent, identically distributed 

(i.i.d.) scenarios generated from a multivariate model, for instance, a multi-factor model. These 

scenarios can be arranged in a 𝑠 × 𝑛 matrix 𝐻, in which each column represents the time 

series of historical observations or generated i.i.d. scenarios of each asset returns, given as 

following: 

where 𝑟𝑗
𝑘 denotes the observation of asset return 𝑗 at a time 𝑘, or 𝑘-th scenarios of asset 

return 𝑗. Therefore we can write AVaR in the linearized formulation as following: 

where 𝒅 = (𝑑1, … , 𝑑𝑠)
′ is a vector of auxiliary variables and 𝜃 ∈ 𝑅 is the additional 

parameter. The first inequality in (5.26) concerns vectors and is to be interpreted in a 

component-by-component manner, 

The objective function is linear and all constraints are linear equalities and inequalities, 

which construct the linear programming problem. In this way, we can re-write (4.26) in a form 

of linear programming problem as following: 

 min
𝒘

         AVaRϵ(𝒘
′𝒓) 

sbject to E[𝒘′𝒓] = 𝑅∗ 

                  𝒘𝑇𝒆 = 1 

4.26  

 

𝐻 = (
𝑟1
1 ⋯ 𝑟𝑛

1

⋮ ⋱ ⋮
𝑟1
𝑠 ⋯ 𝑟𝑛

𝑠
) 
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AVaR𝜖(𝐻𝑤) = min

𝜃,𝒅
𝜃 +

1

𝑠𝜖
𝒅′𝒆 

subject to − 𝑯𝒘− 𝜃𝒆 ≤ 𝒅 

                    𝒅 ≥ 𝟎, 𝜃 ∈ ℝ 
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−𝑯𝒘− 𝜃𝒆 ≤ 𝒅 ⇔ |
−𝑟1𝑤 − 𝜃 ≤ 𝑑1

⋮
−𝑟𝑠𝑤 − 𝜃 ≤ 𝑑𝑠
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where 𝒘 ≥ 0 represents a long-only portfolio. As a result, problem (4.30) has a more 

simple structure than (4.26). However, it turns out that (4.30) is not always superior as far as 

the computational burden is concerned. The simplification of (4.26) results in the cost of 

increasing the problem dimension. For instance, problem (4.26) has n variables and 𝑛 + 2 

linear constraints, where 𝑛 denotes the number of assets in the portfolio. In contrast, the 

corresponding linear problem (4.30) has 𝑛 + 𝑠 + 1  variables and 2𝑠 + 𝑛 + 2  linear 

constraints, in which 𝑘 denotes the number of scenarios of each asset. A typical number of 

scenarios for calculating AVaR is 10,000. Furthermore, adding more scenarios makes the 

matrix defining the linear constraints in the linear programming problem become more 

nonsparse, which makes the numerical methods for linear programming less efficient. 

 

4.4 Risk Budgeting 

4.4.1 The Risk Budgeting Problem 

Generally, risk budgeting is a way of thinking about investment and portfolio 

management, which takes for granted reliance upon probabilistic or statistical measures of risk 

and the use of modern risk and portfolio management tools to manage risk. Narrowly defined, 

risk budgeting is a process of measuring and decomposing risk, using the measures in asset 

allocation decisions, assigning portfolio managers risk budgets defined in terms of these 

measures, and using these risk budgets in monitoring the asset allocations and portfolio 

managers. A prerequisite for risk budgeting is risk decomposition, which involves identifying 

the various sources of risk, or risk factors, such as equity returns, interest rates, and ex-change 

rates and measuring each factors contribution to the total risk. More specifically, risk 

decomposition is a methodology to decompose the total risk of a portfolio into smaller units, 

each of which corresponds to each of the individual securities, or each of the subsets of 

securities in the portfolio. The smaller decomposed units of the total risk can be interpreted as 

 
min
𝒘,𝜃,𝒅

            𝜃 +
1

𝑠𝜖
𝒅′𝒆 

subject to − 𝑯𝒘− 𝜃𝒆 ≤ 𝒅 

                    𝒘′𝒆 = 𝟏 

                    𝐄[𝒘′𝒓] = 𝑅∗ 

                    𝒘 ≥ 𝟎 

                    𝒅 ≥ 𝟎, 𝜃 ∈ ℝ 
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the risk contribution. Tasche (2000) showed that there is only one definition for risk 

contributions which is suitable for risk budgeting performance measurement, namely as 

derivative of the underlying risk measure in direction of the asset weight of the portfolio. 

After the primary source of the risk is identified, active portfolio hedging strategies can be 

carried out to hedge the significant risk already taken. 

It is worthwhile to mention that we assume that there exists a portfolio already before the 

risk attribution analysis is taken. This pre-existing portfolio could be a candidate of or even an 

optimized portfolio. As the optimal portfolios are quite rare in practice, and because of the 

rapid changes of market environment, successful portfolio management is indeed a process 

consisting of small steps, which requires detailed risk diagnoses, namely risk budgeting. The 

process of portfolio optimization and risk attribution can be repeatedly performed until the 

satisfactory result is reached. 

Consider a portfolio with the random returns set 𝑿 = (𝑥1, … , 𝑥𝑛)′  of n assets and 

corresponding weight set 𝑾 = (𝑤1, … , 𝑤𝑘) ’ of each asset in the portfolio. A three-step 

procedure for risk budgeting is used in practice: 

Step 1. Compute the overall risk 𝜌(𝑟𝑝) where 𝑟𝑝 = 𝑾′𝑿 and 𝜌(∙) is a particular risk 

measure such as standard deviation, VaR or AVaR; note that at this stage we are not stipulating 

that 𝜌(∙) must be coherent. 

Step 2. Decompose the overall risk 𝜌(𝑟𝑝)  into the individual asset in the portfolio 

according to some mathematical risk decomposition principle such that, if CR𝑖 denotes the 

contribution to risk of asset 𝑖 with potential return 𝑋𝑖, the sum of the risk contribution amount 

corresponds to the overall risk 𝜌(𝑟𝑝), which means that: 

where MCR𝑖 denotes the marginal contribution to risk of asset 𝑖 in the portfolio.  

Step 3. Adjust the weights of assets in the portfolio with a small non-significant amount 

according to some risk budgeting principle, such that the adjusted overall risk 𝜌(𝑟𝑝)
̃ ≤ 𝜌(𝑟𝑝), 

where 𝜌(𝑟𝑝)
̃ = ∑ MCR𝑤𝑖

𝑤̃𝑖
𝒏
𝒊=𝟏 . 

 

4.4.2 The Euler Principle and Examples.  

 
𝝆(𝒓𝒑) = ∑𝐂𝐑𝒊

𝒏

𝒊=𝟏

 

= ∑𝒘𝒊𝐌𝐂𝐑𝒘𝒊

𝒏

𝒊=𝟏
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Here we restrict our attention to risk measures that are positive homogenous, such as 

coherent risk measure, but also include standard deviation and VaR. Recall  Euler’s 

well-known rule that states that of 𝜌(𝑟𝑝) is positive homogeneous and differentiable at 𝑾, we 

have 

Now we look at some examples of Euler’s rule corresponding to different choices of risk 

measure 𝜌. 

 Standard deviation risk decomposition 

Consider the risk measure 𝜌(𝑟𝑝) = √var(𝑟𝑝) and Σ with elements 𝜎𝑖,𝑗 denote the 

covariance matrix of asset returns 𝑿. Then the corresponding MCR𝒘𝒊
st.d. of asset 𝑖 is calculated 

as following: 

 VaR risk decomposition 

Consider the risk measure 𝜌(𝑟𝑝) = VaR𝜖(𝑟𝑝). In general the VaR𝜖(𝑟𝑝) is a complex 

expression of the allocation. Therefore the explicit decomposition cannot be computed 

analytically. Here we follow the conclusion in Tasche (2000). Under the simplifying 

assumption that the return distribution of 𝑿 has a joint density, subject to technical conditions: 

 AVaR risk decomposition 

 

𝜌(𝑟𝑝) = ∑𝑤𝑖

𝜕𝜌

𝜕𝑤𝑖
(𝑟𝑝)

𝑑

𝑖=1

 

= ∑𝑤𝑖MCR𝑤𝑖

𝑛

𝑖=1
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MCR𝒘𝒊

st.d. =
𝜕𝜌

𝜕𝑤𝑖
(𝑟𝑝) 

=
∑ cov[𝑋𝑖, 𝑋𝑗]𝑤𝑗

n
j=1

√var(𝑟𝑝)

 

=
cov[𝑋𝑖, ∑ 𝑋𝑗

𝑑
𝑗=1 ]

√var(𝑟𝑝)

 

=
cov[𝑋𝑖, 𝑟𝑝]

√𝑟𝑝
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MCR𝒘𝒊

VaR =
𝜕𝜌

𝜕𝑤𝑖
(𝑟𝑝) 

= −E[Xi|𝑟𝑝 = −VaR𝜖(𝑟𝑝)] 
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4.4.3 Risk Budgeting  

Risk decomposition helps identify the contribution to risk of each asset in the portfolio. 

Based on this identification, the portfolio can be adjusted with respect to some market or 

self-imposed risk constraints or budgets on either positions of certain assets or the entire 

portfolio. Combined with information about expected returns, the risk decomposition can also 

help optimize reward-risk tradeoff. For instance, it will help the portfolio manager identify the 

expected return forecasts explicit in the choice of a particular portfolio, that is, the implied 

views. It can also help to decide whether the benefits of altering a position are large enough to 

cover transaction cost. Moreover this process can be used to justify the efficiency of the 

optimizer used in selecting portfolio. Examples can be found in Pearson 2002. 

Here we provide a general illustration about risk budgeting.  

Suppose we have a general mean-risk portfolio. After exploiting a link between 

percentage contributions to risk, we can arrive at a rule for identifying risk diversifiers and risk 

contributors in the portfolio. The portfolio optimization problem is given as following: 

Where 𝜆 is the risk-aversion coefficient and 𝐶 is some set of constraints. Solving this 

optimization problem with the allocation 𝑾, we can calculate marginal contribution to risk 

and the contribution to risk of each asset with equation 5.30 as following:  

In addition we can calculate the contribution to risk of each asset with respect to the total 

risk: 

 
MCR𝒘𝒊

AVaR =
𝜕𝜌

𝜕𝑤𝑖
(𝑟𝑝) 

=
1

𝜖
∫

𝜕𝑉𝑎𝑅𝑢

𝜕𝑤𝑖
(𝑟𝑝)𝑑𝑢

𝜖

0

 

=
1

𝜖
∫ E[Xi|𝑟𝑝 = −VaR𝑢(𝑟𝑝)]𝑑𝑢

𝜖

0

 

= −E[Xi|𝑟𝑝 ≤ −VaR𝜖(𝑟𝑝)] 
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 max
𝑾

E[𝑾′𝑿] − 𝜆𝜌(𝑾′𝑿) 

subject to  𝑾 ∈ 𝐶  
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MCR𝑤𝑖

=
𝜕𝜌

𝜕𝑤𝑖

(𝑾′𝑿) 

CR𝑤𝑖
= 𝑤𝑖

𝜕𝜌

𝜕𝑤𝑖

(𝑾′𝑿) 
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Assets in the portfolio with positive CR𝑤𝑖
 or CR𝒘𝒊

%  are defined as risk contributors and 

those with negative CR𝑤𝑖
 or CR𝒘𝒊

%  are defined as risk diversifiers, meaning that increasing the 

weight of risk diversifiers or decreasing the weight of risk contributors can reduce the total risk 

of portfolio. Note that the sign of MCR𝑤𝑖
 is not necessarily to be the same as the sign of 𝑤𝑖. In 

particular increasing the weight of short position means establishing a larger short position, 

which can be seen from the fact that for short positions the sign of CR𝑤𝑖
 is opposite of the sign 

of MCR𝑤𝑖
. 

The risk decomposition clearly highlights the positions that should be the focus of the 

portfolio or risk manager’s attention. In the terminology of Litterman (1996), these positions 

are the portfolio’s hot spots. The hot spots have no direct relationship with the size of the 

positions, meaning that large position may not be the focus of concern and vice versa. 

Consider a target of risk 𝜂∗ about the entire portfolio, if the risk of the current portfolio 

𝜌(𝑾′𝑿) > 𝜂∗ then we need to adjust the weight 𝑾 to a new one 𝑾∗ such that 𝜌(𝑾∗′𝑿) ≤

𝜂∗, namely, risk budgeting. This target can be approached by adjusting contribution to risk of 

certain positions in several ways, such as: 

 Adjust certain positions with respect to risk contributor and risk diversifier 

Suppose asset 𝑗 with largest positive CR𝑤 
, the effect of reducing the weight from 𝑤𝑗 to  

𝑤𝑗
∗ can be obtained from the following equation: 

reducing the total risk of approximately 𝛥𝜌(𝑾′𝑿). The actual change in risk resulting 

from the reducing is not exactly the same as 𝛥𝜌(𝑾′𝑿), due to the fact that the risk 

decomposition is a marginal analysis and only exactly correct for infinitesimally small changes 

in the positions.  

This analysis can be reversed to approximately determine the trade necessary to have a 

desired effect on the total risk. Still taking asset 𝑗 as an example, the new weight 𝑤𝑗
∗ can be 

determined as following: 

A more general approach to reducing total risk can be achieved by altering positions of 

 
CR𝒘𝒊

% =
CR𝒘𝒊

𝜌(𝑾′𝑿)
× 100% 

(5.36) 

 
𝛥𝜌(𝑾′𝑿) ≈

𝜕𝜌

𝜕𝑤𝑗

(𝑾′𝑿)𝑤𝑗 ×
𝑤𝑗

∗ − 𝑤𝑗

𝑤𝑗
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𝑤𝑗

∗ =
𝜂∗ − 𝜌(𝑾′𝑿)

𝜕𝜌
𝜕𝑤𝑗

(𝑾′𝑿)
+ 𝑤𝑗 

4.39  



 

97 

 

both risk contributors and risk diversifiers simultaneously. 

Suppose we do not have a risk budget and we do not want to change the total net value of 

current portfolio. Sort all positions with respect to MCR𝑤𝑖
 in a deceasing order denoted by 

(𝑤1, … , 𝑤𝑛)′, and set an integer 𝐶 <
1

2
𝑛 and a vector 𝜟 = (Δ1, … , Δ2𝐶)′ such that the sum of 

elements in 𝜟 equals zero. Increase the top 𝐶 weights (𝑤1, … , 𝑤𝐶)′ according to 

(Δ1, … , Δ𝐶) and decrease the bottom 𝐶 weights (𝑤𝑛−𝐶 , … , 𝑤𝑛)′ according to 

(Δ𝐶+1, … , Δ2𝐶)′. The adjusted weight 𝑾∗ reduces the total risk such that 𝜌(𝑾∗) ≤ 𝜌(𝑾). 

This adjust process can be done with optimization process repeatedly.  

 Adjust certain positions with respect to best hedging. 

Another approach of risk budgeting is used to compute risk-minimizing trades, or best 

hedge, for each assets in the current portfolio. We illustrate this using the position of asset 𝑗. 

Letting Δ𝑤𝑗 denote the change to current position 𝑤𝑗, the risk-minimizing trade is the Δ𝑤𝑗 

that minimize the portfolio risk, or the solution of the following equation: 

where 𝑰𝑗 is a vector with 𝑗-th element equals 1 and others equal zero. 

Best hedge can be applied to each position separately. It is also possible to be applied 

involving two or more position. In practice, a particular set 𝐻 is selected and best hedge can be 

described by solving the optimization problem with changes in the positions included in 𝐻. 

 

4.5 An Example of Portfolio Optimization and Risk Budgeting 

In this section, we provide two back-testing experiments of long-only
12

 optimal portfolio 

strategies using the CSI 300 universe. In the first experiment, different risk-reward strategies 

are applied and compared; and in the second experiment, risk budgeting process is adopted in 

                                                 

12
 The reason of choosing long-only strategy instead of long-short strategy is stated with the fact of market as 

following: A pilot program of margin trading and securities trading, also known as credit trading, was launched on 

March 31
th

, 2010, with 90 stocks eligible for such behaviors. The scope of eligible stocks was expanded to 278 in 

December 2011, and later to 494 in January 2013. The most recent expansion was on September 16
th

, 2013, with 

700 eligible stocks, which account for approximately 28% of all A-share stocks in the Chinese stock markets. 

Thus only in the last year of our 6 year backtesting time period, most stocks in the portfolios are available for short 

trading. To obtain a realistic testing result, we only consider long-only portfolios in this circumstance. For more 

information about stock trading rules in the Chinese market, see 

http://sse.com.cn/tradmembership/trading/overview/ and http://www.szse.cn/main/en/Products/Trading. 

 Δ𝑤𝑗 = argmin
Δ𝑤 

{𝜌((𝑾+ Δ𝑤𝑗𝑰𝑗)′𝑿)} 4.40  
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the portfolio strategies. The back-testing time period is 6 years starting from January 4
th

, 2007 

to December 29
th

, 2012. In these strategies, the CSI 300 Index is used as the benchmark. The 

optimization algorithm would take the form of mean-variance and mean-AVaR optimization 

problems described in (5.23) with the risk measures 𝜌 being the standard deviation and AVaR, 

respectively. 

In Section 4.5.1, we present and compare two daily trading portfolios both with the CHE 

factor model discussed in Chapter 3 as the risk-forecasting model, but with different 

optimization processes. In Section 4.5.2, we adopt the process of risk budgeting discussed in 

Section 4.4. Again, we compare the two portfolios, of which one is M-V portfolio and the other 

is M-AVaR portfolio. 

To ensure a consistent analysis of all the experimental results, we first define the 

constraints, which are applied in the optimization problems for all tested portfolios, and some 

useful portfolio performance measures in comparing different portfolios. 

The general mean-risk portfolio optimization problems with weight constraints and 

turnover constraints has the form as following: 

where 𝜆𝜌 is a positive constant representing the risk-aversion coefficient consistent for 

the particular risk measure 𝜌. 𝑾0 is a non-negative vector representing the weights of 

portfolio from last trade or initial portfolio which is a equal-weighted one. ‖∙‖ is the 

Euclidean norm and 𝑑 is a positive constant related to the turnover or transaction cost 

constraints. 𝑐 is a positive constant representing the upper-bound of the weight of each asset 

in the portfolio, we drop the total investment constrain, which requires 𝑰′𝑾 = 1, assuming 

holding cash in the portfolios in some time periods. 

 The portfolio performance measures consider here are the Sharpe ratio and the 

STARR ratio. The Sharpe ratio, which was introduced by Sharpe (1966), is defined as 

following: 

where 𝜎𝑾′𝑿 is the standard deviation of the portfolio and 𝑟𝑏 is a constant representing 

the expected return of the benchmark. In our cases, 𝑟𝑏 is set to be 2.5% for simplicity.  

The STARR ratio, which stands for stable tail-adjusted return ratio, is defined as 

 max
𝑾

E[𝑾′𝑿] − 𝜆𝜌𝜌(𝑾′𝑿) − 𝑑‖𝑾−𝑾0‖ 

subject to 𝟎 ≤ 𝑾 ≤ 𝑐𝑰 

 

4.41  

 
𝑆𝑅(𝑾) =

E[𝑾′𝑿] − 𝑟𝑏
𝜎𝑾′𝑿

 
4.42  
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following: 

 

where AVaR𝜖(𝑾
′𝑿 − 𝑟𝑏) = AVaR𝜖(𝑾

′𝑿) + 𝑟𝑏 for a constant 𝑟𝑏. Again, 𝑟𝑏 is set to 

be 2.5% in our cases. 

 

4.5.1 A Portfolio Optimization Example 

 In this section we provide a comparison between two mean-risk portfolios constructed 

by different strategies, namely, M-V (mean-variance) strategy and M-AVaR (mean-average 

VaR) strategy with AVaR given at a 99% confidence level.  The objective function takes the 

form of a utility function by maximizing the return with respect to a certain level of risk. The 

set of constraints includes weight constraints and turnover/transaction cost constraints. 

A generic scenarios generation module provides scenarios with specified preferences on 

both margins and dependence structure of a multivariate model. In our experiments we 

estimate portfolio expected return and risk separately: expected returns of each stock are 

estimated from the mean-AVaR optimization problems model of individual time series of 

historical daily log-returns; and risk are calculated from scenarios generated from the CHE 

factor model discussed in Chapter 3. 

Figure 4.1 provides the net value of investing ￥1000 in the M-V and M-AVaR portfolios 

and the CIS 300 Index on January 4
th

, 2007 and rebalancing the two portfolio every day. It is 

obvious that both portfolios outperform the index, especially after the financial crisis in 2008. 

In Figure 4.2, the realized volatility, given by the 60-day moving average of standard deviation 

of portfolio returns, indicates that the M-V portfolio is as volatile as the index in the highly 

volatile market periods from 2007 to 2009, and stays in a higher level of volatile than the index 

after 2009. However, the M-AVaR portfolio is much less volatile than the index in most years. 

Figure 4.3 and 4.4 provide the distributions and time series of monthly returns of the two 

portfolios from 2007 to 2012, respectively. It can be observed from Figure 4.3 that the M-V 

portfolio has heavier tails of the monthly return distribution in both tails than those of the 

M-AVaR portfolio. Figure 4.4 may indicate that the two portfolios have the similar 

performance in terms of the months of profits and losses but the M-V portfolio has larger 

monthly profits and losses. 

Another important characteristic of portfolio performance is the drawdown defined as the 

 
𝑆𝑇𝐴𝑅𝑅𝜖(𝑾) =

E[𝑾′𝑿 − 𝑟𝑏]

AVaR𝜖(𝑾′𝑿 − 𝑟𝑏)
 

4.43  
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peak-to-trough decline during a specific record period. In Figure 4.5, we plot the so-called 

underwater curve of the drawdown of the two portfolios from 2007 to 2012. The M-V portfolio 

has a maximum drawdown of 98% in October, 2008. In contrast, the maximum drawdown of 

the M-AVaR portfolio is 43%.  

 The performance statistics of the two portfolios and the index and the net returns in each 

year are provided in Table 4.1. We may conclude that the M-AVaR portfolio outperforms the 

M-V portfolio in terms of all the test performance statistics. For instance, the higher Sharpe 

Ration and STARR of the M-AVaR portfolio may indicate a better trade-off between risk and 

reward. And the smaller values of drawdown of the M-V portfolio may indicate a better control 

in the downside risk. The monthly returns in each year are provided in Table 4.2. 

Table 4.3 provides more information in the quantitative point of view. We applied the 

CAPM to the daily returns of the two portfolios, assuming an annual risk-free rate of 3.5%. 

The M-AVaR portfolio has a smaller value of Beta than that of the M-V portfolio. And both 

portfolios have the non-significant values of Alpha in terms of daily returns. The statistics of 

sample moments of the daily return distributions of the two may indicated that they are skewed 

to the left and concentrate around zero, which may be fitted with α-stable or tempered stable 

distributions. In addition, the quantiles of the returns also indicate that the return distributions 

are heavy-tailed. 

 

4.5.2 A Risk Budgeting Example 

In this section, we present a risk budgeting example through comparison of two M-AVaR 

portfolios denoted by P1 and P2. P1 and P2 are constructed as the same as the M-AVaR 

portfolio in Section 4.5.3, except that it is rebalanced every two days. The difference between 

P1 and P2 is that P2 has a risk budgeting process on the second day after optimization, while P1 

simply hold the positions on the second day. 

The risk budgeting process includes 3 steps: 

(1) Calculate the MCR (marginal contribution to risk) with (4.35) of all positions that has 

weight 𝑤𝑖 > 0.1%. 

(2) Sort MCRs in a descending order and choose the top 5% and bottom 5% of the group 

and divided them into two subgroups, namely, contributors and diversifiers. 

(3) Adjust the weights of positions in contributors as following: 

 
𝑤𝑖

𝑎𝑑 = 𝑤𝑖 − Δ
MCR𝑤𝑖

∑ MCR𝑤 𝑗∈𝐶
 

4.44  



 

101 

 

where 𝑖, 𝑗 ∈ 𝐶 and 𝐶 stands for the subgroup of contributors. 

And adjust the weights of positions in diversifiers as following: 

where 𝑖, 𝑗 ∈ 𝐷 and 𝐷 stands for the subgroup of diversifiers. 

Figure 4.6 presents the cumulative return of portfolio P1 and P2 starting from January 4, 

2007 to December 29, 2012. It is obviously that P2 outperforms P1 in almost all time periods 

after 2008. Noting that the optimal portfolio of P1 and P2 given by the M-AVaR optimization 

approach may have different positions, as the pre-optimization weights are different after risk 

budgeting.  

Figure 4.7 presents the scalar plot of the pair RP1 − RP2 and AVaRP1 − AVaRP2, where 

RP1, RP2 are the daily returns of P1 and P2, and AVaRP1, AVaRP2 are the daily forecasted 

AVaR of P1 and P2, respectively. It can be observed that, with most positive values of 

AVaRP1 − AVaRP2 representing reductions in total risk, there are more negative values of 

RP1 − RP2 representing increase in total returns. Thus it may indicate that in a long time period, 

decreasing risk can increase returns. A more clearly investigation is provided in Figure 4.8, 

which plot the distributions of values of RP1 − RP2 and AVaRP1 − AVaRP2  

 In Table 4.4, we provide an example of risk budgeting process of P2 in an arbitrary day. 

In this example, all contributors have positive MCRs and all diversifiers have negative MCRs. 

We decreased the weights of contributors and decreased the weights of diversifiers according 

to (4.4) and (4.5). Finally, the reduction in total risk is 12 base points with a slightly reduction 

in total return of 0.4 base points. 

Table 4-1 Performance statistics of the M-V, M-AVaR portfolios and the CSI 300 Index starting from 

January 4, 2007 to December 29, 2012 

(a) Performance statistics over the entire investing periods. 

 
𝑤𝑖

𝑎𝑑 = 𝑤𝑖 + Δ
MCR𝑤𝑖

∑ MCR𝑤 𝑗∈𝐷
 

4.45  

  M-V M-AVaR Index 

Total Return 141.83% 171.74% 25.57% 

Annualized Return 15.86% 18.13% 3.87% 

Annualized Std. Deviation 34.40% 28.19% 31.74% 

Correlation 0.033  0.032  1 

Sharpe Ratio (rf=3.5%) 0.71  1.04  0.18  
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(b) Yearly return of the two portfolios and the index over the entire investing periods 

  

STARR(99%) 0.17  0.42  0.03  

Worst Month -25.67% -16.77% -19.80% 

Date of Worst Month 09/2008 09/2008 06/2008 

Worst Drawdown -95.80% -43.50% -117.40% 

Date of Worst Drawdown 01/08 - 11/08 01/08 - 11/08 10/07 - 11/08 

Year or YTD M-V M-AVaR Index 

2012 -27.16  -16.59  -14.40  

2011 
-22.53  -10.52  -23.87  

2010 17.57  22.01  -6.31  

2009 
108.18  92.37  60.99  

2008 -46.14  -8.86  -82.72  

2007 111.91  93.32  91.87  
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Table 4-2 Monthly returns of the M-V and M-AVaR portfolios and the CSI 300 Index starting from January 4, 

2007 to December 29, 2012.  

(a) The M-V portfolio 

(b) The M-AVaR portfolio 

(c) The CSI 300 Index 

 

 

  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2012 -20.2  10.1  10.0  -8.2  9.9  -6.9  -7.0  -6.2  -0.4  -0.9  0.2  -7.7  

2011 5.4  -2.3  6.5  1.8  -7.6  -4.8  3.7  -3.4  -6.2  -11.2  2.2  -6.5  

2010 1.1  -9.2  5.9  9.4  -15.6  -1.7  -8.1  15.8  5.1  10.7  14.4  -10.3  

2009 13.5  22.3  7.8  16.4  13.6  0.8  15.1  -2.3  2.9  2.0  9.7  6.3  

2008 10.3  4.5  0.5  -10.6  -11.7  13.9  -25.0  13.0  -25.7  -13.9  -8.1  6.6  

2007 17.8  18.7  16.5  30.7  1.9  -9.2  15.6  15.5  16.2  -17.0  -5.0  10.3  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2012 -13.9  8.4  11.0  -6.1  8.8  -4.8  -3.6  -6.9  -2.7  -0.6  0.4  -6.7  

2011 1.7  -2.7  7.4  1.1  -4.6  -4.2  5.0  -2.3  -4.3  -8.6  5.6  -4.9  

2010 1.6  -3.9  4.1  7.8  -14.8  0.6  -3.6  11.3  3.2  10.8  13.0  -8.2  

2009 9.1  18.4  6.2  12.6  7.3  4.6  13.2  0.8  -1.3  4.1  9.6  7.8  

2008 7.4  -2.3  -1.0  -11.9  -5.2  14.3  -16.8  16.5  -16.8  -4.0  1.4  9.6  

2007 18.6  6.8  8.8  18.9  9.9  -0.8  11.8  10.8  7.6  -4.0  -5.4  10.3  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2012 -9.9  11.0  4.2  -4.3  5.4  -4.3  -2.7  -4.8  -6.4  4.2  0.7  -7.4  

2011 -4.1  3.2  -0.3  4.7  -6.9  -5.7  5.5  -10.6  -1.6  -7.1  6.9  -7.8  

2010 -4.4  -6.0  2.0  3.7  -16.4  -3.5  -3.6  7.4  4.6  10.6  0.6  -1.3  

2009 -0.9  13.4  6.9  5.3  6.8  11.6  15.4  -12.7  5.7  2.9  7.4  -0.9  

2008 -2.9  -7.4  -16.8  -3.5  -0.8  -19.8  0.7  -18.8  -15.6  -14.1  9.0  7.2  

2007 6.8  9.2  11.9  24.5  0.3  2.4  14.4  19.1  3.9  6.3  -19.7  12.8  
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Table 4-3 Sample statistics of daily returns of the M-V and M-AVaR portfolios and the CSI Index wit total 

1460 observations, starting from January 4, 2007 to December 29, 2012. Alpha and Beta are calculated from the 

CAPM model assuming annual risk-free rate to be 

 

 

 

 

 

 

 

 

 

 

 

 

  

  M-V M-AVaR Index 

Alpha (p-value) 0.002 (0.000) 0.002 (0.000)  

Beta  (p-value) 0.067 (0.011) 0.043 (0.041)  

Mean  1.1% 1.3% 0.3% 

Standard Deviation  2.2% 1.8% 02.1% 

Skewness -0.404 -0.338 -0.243 

Kurtosis 4.209  4.719 5.149 

[
1% 5%
95% 99%

] 

Quantiles    

 [
−6.3% −3.7%
3.4%  5.5%

]           

 

[
 −5.2% −3.1% 
2.8% 4.6%

]           

  

[
 −5.5% −3.6%  
3.2%  5.1%

]        
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Table 4-4  Risk and return decomposition of current portfolio P2. Risk and return contributions are 

calculated as contribution of total risk and return, respectively. All numbers is shown in percentage. 

 

 

 
Return 

Return 

Contribution  
MCTR 

Risk 

Contribution 
Weight 

Reduction in 

Total Risk 

Adjusted 

Weight 

C1 1.12  0.87  23.38  1.61  0.42  0.14  0.38  

C2 1.28  1.06  23.32  1.72  0.45  0.14  0.41  

C3 1.33  1.13  23.12  1.75  0.46  0.14  0.42  

C4 1.47  1.32  22.87  1.84  0.49  0.14  0.45  

C5 1.41  1.24  22.87  1.79  0.47  0.14  0.44  

C6 1.29  1.07  22.85  1.69  0.45  0.13  0.41  

C7 1.33  1.12  22.75  1.72  0.46  0.13  0.42  

C8 1.49  1.35  22.74  1.85  0.49  0.13  0.46  

C9 1.49  1.36  22.74  1.85  0.49  0.13  0.46  

C10 1.33  1.13  22.73  1.72  0.46  0.13  0.42  

C11 1.45  1.29  22.73  1.81  0.48  0.13  0.45  

C12 1.38  1.19  22.72  1.75  0.47  0.13  0.43  

C13 1.51  1.39  22.68  1.86  0.50  0.13  0.46  

C14 1.51  1.39  22.58  1.85  0.50  0.13  0.46  

        
D1 0.40  0.24  -1.09  -0.06  0.32  0.01  0.35  

D2 0.41  0.24  -1.09  -0.06  0.32  0.01  0.35  

D3 0.39  0.23  -1.13  -0.06  0.32  0.01  0.35  

D4 0.39  0.23  -1.15  -0.06  0.32  0.01  0.35  

D5 0.83  0.57  -1.17  -0.07  0.37  0.01  0.40  

D6 0.51  0.32  -1.18  -0.07  0.33  0.01  0.36  

D7 0.54  0.34  -1.27  -0.07  0.34  0.01  0.37  

D8 0.53  0.33  -1.28  -0.07  0.34  0.01  0.37  

D9 0.47  0.29  -1.31  -0.07  0.33  0.01  0.36  

D10 0.61  0.39  -1.37  -0.08  0.34  0.01  0.38  

D11 0.52  0.32  -1.41  -0.08  0.33  0.01  0.37  

D12 0.53  0.33  -1.43  -0.08  0.34  0.01  0.37  

D13 0.44  0.26  -1.44  -0.08  0.33  0.01  0.36  

D14 0.44  0.27  -1.52  -0.08  0.33  0.01  0.36  

D15 0.72  0.48  -1.57  -0.09  0.36  0.01  0.40  

Total Return 

Reduction 
0.43 BP 

     

Total Risk 

Reduction 
12.09 BP 
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Figure 4-1 Performance comparisons. The M-V, M-AVaR portfolios and the CSI 300 Index starting with 

￥1000 from January 4, 2007 to December 29, 2012. 

 

 

Figure 4-2 Volatility comparisons. The 60-day moving average of standard deviations of the M-V, M-AVaR 

and Index portfolios starting from January 4, 2007 to December 29, 2012 
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(a) 

 

(b) 

 

Figure 4-3 Distribution of monthly returns of the two portfolios starting from January 4, 2007 to December 

29, 2012. (a) The M-V portfolio. (b) The M-AVaR portfolio 
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(a) 

 

(b) 

 

Figure 4-4 Time series of monthly returns of the two portfolios starting from January 4, 2007 to 

December 29, 2012. (a) The M-V portfolio. (b) The M-AVaR portfolio. 
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(a) 

 

(b) 

 

Figure 4-5 Underwater curves. The drawdowns of the two portfolios starting from January 4, 2007 to 

December 29, 2012. (a) The M-V portfolio. (b) The M-AVaR portfolio. 
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Figure 4-6 Cumulative return of portfolio P1 and P2 starting from January 4, 2007 to December 29, 2012. 

 

 

Figure 4-7 Scalar plot of RP1 − RP2 and AVaRP1 − AVaRP2 
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Figure 4-8 Distribution of RP1 − RP2  and AVaRP1 − AVaRP2. (a) RP1 − RP2. (b) AVaRP1 − AVaRP2 . 

RP1 and RP2 stand for returns of P1 and P2, and AVaRP1 and AVaRP2 stand for the values of AVaR for P1 

and P2. 
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5. Conclusions 

In this thesis, we presented a factor model based framework for market risk estimation 

and portfolio optimization. The framework is based on multivariate factor model with 

advanced time series forecasting approach enhanced by heavy-tailed, skewed distributions and 

copula.  

Started with an overview empirical examination of the return distributions for Chinese 

stock market, we found the appropriate time series model providing superior modeling 

capability and forecasting signals for market crashes.  

A multi-factor model is then created for modeling returns and risk of stocks by 

introducing common factors to stocks returns, such as market factors, style factors and industry 

factors. As far as modeling stand-alone variables is concerned, we considered ARMA-GARCH 

process with innovations following the class of stable distributions and the class of classical 

tempered stable distributions. For capturing the dependence structure between variables, we 

considered a skewed t copula approach. 

The described framework is a forward looking tool as it is based on the Monte Carlo 

method. All risk statistics are computed on the basis of generated scenarios from the fitted 

multivariate model. The downside risk measure we considered is the value-at-risk and average 

value-at-risk, and the latter one not only provides more information about the tail behavior 

beyond a certain point, but also is a coherent risk measure. As a consequence, we can 

incorporate the average value-at-risk with the heavy-tailed model and build risk budgeting 

tools and forward-looking portfolio optimization tools. 

The recent turbulent evens in 2008 represent clear evidence that measuring and managing 

properly risk is a complicated task. This task has to be performed looking at the portfolio from 

different angles with different tools. For this purpose, practitioners need an integrated 

framework built upon realistic assumptions.  

The empirical examples presented here and published in a number of papers support the 

concept.   
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