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Abstract of the Dissertation

The Dynamical Basis of the Decanalization of Gene Expression in Krüppel

Mutant Embryos

by

Lena Panok

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2013

Canalization is the ability of an organism’s phenotype to remain stable under a perturbation

in their genotype or the environment. It has been noted that there is no canalization or

canalization is to a much smaller degree in mutants than in wild type. Waddington’s idea

was to understand canalization through studying gene interactions. We investigate the mech-

anisms of canalization of gap gene patterns in D.melanogaster through dynamical analysis

of the gene circuit.

To carry out this investigation we construct a dynamical model of the evolution of the

concentration of protein products of the gap genes in time. Our model, which is fitted to both

wild type and Kr− data, correctly captures the wild type averaged data and the lowered gap

gene expression in Kr−. Through a dynamical analysis on a simplified version of this model,

we investigate pattern formation in both wild type and Kr−. The analysis is concentrated

on the gap genes hb, Kr, gt and kni with outside input from maternal genes bcd and Cad.

Canalization manifests itself in this model by producing a lower variance, in wild type, of

posterior gt domain, in comparison to Bcd. Kr− mutants do not canalize Bcd perturbation.

We find the geometric structure that ensures the canalization in wild type. This structure is

an unstable manifold that patterns the posterior of the wild type embryos while remaining

invariant with respect to changes in Bcd. By continuously changing one parameter in our
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model (maximum synthesis rate of Kr), we can smoothly turn down the function of Kr

in such a way as to model an allelic series running from homozygous wild type levels to

heterozygous, and then to hypomorphic and finally to functional null. We discovered that

that there is an abrupt onset of the mutant phenotype and loss of canalization triggered by

the loss of the canalizing unstable manifold.
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Chapter 1

Introduction

Determination of patterns is an essential process for the development of an organism. Mor-

phological properties, such as pattern formation, are related to biochemical determinism

inside the cell. In the early embryo a cell can become one of several different types of struc-

tures, but as development progresses the cell’s fate is determined. Driesch separated the two

cells from a first cell division in sea urchins and noted that the entire larva was produced

from each [9]. Thus each cell at such an early stage had the capabilities to form into a com-

plete organism. On the other hand this is not true in the determined cell. Determination in

a cell is manifested by a commitment to a particular fate even if it is experimentally placed

in an abnormal environment. In 1918 Spemann demonstrated that if epidermal cells from

the late gastrula are transplanted into an area where neural tissues form, those cells still

developed into skin, hence their fate was determined and could not be swayed by changes in

the surroundings [14].

Robustness of pattern in the face of genotypic and environmental variation is an impor-

tant property. Organisms remain relatively stable in the face of small environmental and

genotypic perturbations. While there are a vast number of different mutations most of them

do not produce a mutant phenotype. Furthermore there are countless ways in which the

environment changes, yet there is still a limited number of phenotypes. The buffering of

1



phenotype against small internal and external disturbances is known as canalization.

In order to understand pattern formation and canalization, we can either develop all the

physics and chemistry necessary to have a complete theory of the phenomenon on the molec-

ular level, which would be equivalent to pulling the system apart and reconstructing all of

its constituents; this would take a very long time, and might not even be possible to achieve.

An alternative is to follow in the footsteps of Alan Turing in constructing a mathematical

model of pattern formation [74]. Such a model would incorporate key protein interactions

and mechanisms, and furthermore locally agree with the properties of the biological system

studied. Studying this model in silico would allow us to discern the mechanism(s) that

ensure the stability of the system with respect to perturbations.

To facilitate understanding of pattern formation as well as the robustness of the pattern

we turn to dynamical analysis. Determination in a cell can be related to the mathematical

concept of dynamical stability; a cell differentiating into the same type when it is placed

in a different environment is said to posses dynamical stability. Furthermore, organisms

demonstrate another dynamical systems concept—structural stability. A natural variation

in a population results in the same fate map, an assignment of the regions in an embryo to

the specific tissues that they will become in an adult organism. Canalization, the ability of

the organism’s phenotype to remain stable under perturbations in their genotype or the envi-

ronment, is directly related to developmental trajectories of the system being stable. These

parallels between biology and mathematics suggest that we can try to analyze development

with the aid of the dynamical systems.

Drosophila melanogaster is an ideal organism to study in order to understand the process

of determination of pattern, it has been widely used for genetic analysis over a number of

years. Its popularity is partially due to the relatively small size of the organism, numerous

visible genetic markers, ability to carry out saturation mutagenesis in order to classify genes

as well as availability of a wide range of tools for genetic manipulation. Drosophila has a

segmented body, where the segments along the anterior-posterior axis are determined by the
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segmentation genes—maternal genes, gap genes, pair rule genes and segment-polarity genes.

Dynamical and structural stability are present and it is possible to form a dynamical model

of the protein concentrations that would mirror the gene expression data using gene circuits

[55, 56]. Furthermore it has been illustrated that the wild type D. melanogaster canalizes

while various mutants do not. Up to now the efforts to find a model that correctly patterns

both wild type and mutants as well as showing greater degree of canalization for the wild

type have been unsuccessful.

This dissertation will use the ideas of Rene Thom on structurally stable dynamical sys-

tems and high temporal resolution data [69, 67] and build upon the dynamical systems

models [56, 57, 24, 42] in order to accomplish two goals. The first goal is to find a circuit

that correctly patterns both wild type and Kr− embryos as well as correctly predicts canal-

ization in wild type and decanalization in mutants. The second goal is to use ideas from

bifurcation analysis to uncover the mechanism of canalization in wild type and explain why

this mechanism breaks when the Kr− system is considered.

1.1 Canalization

Canalization is the ability of an organism’s phenotype to remain stable under a perturbation

in their genotype or environment. An organism has an innate ability to remain on a partic-

ular developmental pathway even if it is introduced to abnormalities in external factors such

as temperature or internal factors such as mutations. Waddington noted that canalization or

buffering is especially clear by noticing how much alike individuals from the wild type pop-

ulation are—this led him to proclaim wild type “amazingly constant” [75]. While there are

numerous variations in the genetic makeup and the environment that fostered an individual

organism, the organismal population produces distinct and well defined body types regard-

less. This constancy of wild type comes about through buffering against small changes, and

it is beneficial for the organisms that are developing in a world where the conditions are
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variable.

Waddington’s idea was to understand canalization through studying gene interactions

[75]. Reasoning that genotype determines the different developmental pathways the cell in

an organism can take, Waddington used a metaphor of a landscape to illustrate this point (see

figure 1.1.1). The epigenetic landscape’s features such as valleys, ridges, etc. are determined

by the organism’s genotype [76]. The range of all possible phenotypes is illustrated by the

full scope of the landscape, with time being represented by a flow through it. Hence the

flow through such a landscape represents the trajectory of development of a cell. Epigenetic

landscape gives us a way to describe multi-dimensional dynamics of biological system in an

intuitive way. It illustrates without the use of complex functions and calculations all the

possible states of the system, how they can be achieved as well as how sensitive they are to

perturbations. The height of the features in the landscape is directly related to how sensitive

the phenotype would be to external and internal variability. Furthermore, the epigenetic

landscape illustrates how canalization works. If the cell experiences small genotypic or

environmental perturbations the landscape will change a bit, but the ridges and valleys will

remain, and the cell, whose position also undergoes a small shift will settle back into the

trajectory that leads it through the valley. To come out of the valley would require major

environmental and/or genotypic changes. Thus the correct shape of the landscape results in

canalization.

The metaphor bridges a gap between mathematics and biology by making it easier to

visualize and describe dynamical concepts, although it does not provide the means to make

quantitative statements about our system. Furthermore not all possible biological behaviors

are readily translatable into the language of the epigenetic landscape. Oscillatory behavior,

such as that of circadian clock do not have an obvious parallel in the landscape unless one

visualizes a repetitive landscape that goes on forever. Additionally Waddington’s epigenetic

landscape has gradient dynamics, where the flow tends to go towards the lowest points in

the landscape or the minima of the corresponding gradient function. The problem is that

4



most biological networks do not have the gradient dynamics.

Waddington observed that the phenomenon of greater canalization of wild type in com-

parison to mutant was especially evident in D. melanogaster [75]. He noted that while

there was variability between individual wild type organisms, the mutant population had a

much greater variance between its members in the phenotypic expression. For example, the

majority of wild type flies have 4 bristles on the scutellum, with rare occurrences of 3 or 5

bristles. On the other hand, Rendel noted that scute mutants have a more variable number

of bristles. For males there are anywhere between 0 to 3 and 0 to 4 in females [58].

In order to try to explain the above observation invoking the metaphor of a landscape,

we can imagine that in going from wild type to mutant organism the landscape changes so

significantly that it no longer possess the canalizing properties (i.e. ridge became too small

or disappeared altogether, thus allowing the trajectory to flow over the flat surface, whereby

perturbations are no longer buffered).

Rene Thom provided a mathematical interpretation of Waddington’s ideas [72, 73]. In

order to study problems in developmental biology Rene Thom used methods from differential

topology and created catastrophe theory, which is part of bifurcation theory. Formalizing

the ideas from the epigenetic landscape metaphor, a biological model can be though of

as a dynamical system, where the state of the system changes with the passing of time.

Parameters of the model define the dynamics of it and hence the shape of the landscape.

The full scope of the landscape is the state space and given a set of initial conditions as

a starting point, dynamics dictate the trajectory, which is the flow through the landscape.

We can describe the dynamics of a system (in our case the state of a cell) as a set of ODEs

depending on the concentrations of the system’s constituents, external parameters and time.

A solution to these ODEs (given the starting condition) will describe the system at any

time point. Such a solution corresponds to a flow in the epigenetic landscape. In general,

an ODE can not be solved explicitly in a closed form. Using the theory of qualitative

dynamics we can find the global geometric behavior of the system, and therefore read off
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Reproduced from Jonathan M.W. Slack, Nature Reviews Genetics vol. 3:889-895(2002)

Figure 1.1.1: (a) Epigenetic landscape, with water flowing down the valleys. (b) Another
representation of epigenetic landscape, where instead of flow of water the trajectories are
represented by a rolling ball. (c) The underside of the landscape. Gene interaction forms
all the features of the landscape.
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the asymptotic behavior of trajectories without finding an analytic solution. Since we are

interested in canalization, we need to consider the case where perturbations are introduced

into the parameters of the ODE. In order to possess genotypic canalization the epigenetic

landscape of the perturbed system should still have the same shape in terms of ridges and

valleys. To minimize variability in the phenotype, perturbed trajectories must converge to a

common area. In the language of dynamical systems, we say that perturbed and unperturbed

solutions must exhibit the same asymptotic behavior. One way for such behavior to occur

is if both solutions belong to the basin of the same attractor. Here we define an attractor

to be the set such that if the flow under the dynamics of the system passes in the close

vicinity of this set it will tend to go to it. The basin of the attractor is the set such that the

trajectories with initial conditions starting in this set approach the attractor asymptotically.

Thus if perturbed and unperturbed initial conditions lie in the basin of the same attractor

their developmental trajectories will canalize due to attraction to the same set.

On the other hand situations where the system is not structurally stable are also of im-

portance for the development of the cell. For example a fork in the valley of the epigenetic

landscape provides a way for the cell to develop into different types. Here a small per-

turbation would lead to a completely different outcome. Alternatively, the whole topology

(location and existence of ridges for example) of the epigenetic landscape can change with

small perturbations in the parameters, thus leading the developmental trajectories of the

perturbed and unperturbed systems to completely different states. This is important as the

distinct outcomes for different cells would result in pattern formation. The study of how

perturbations in the parameters cause topological changes such as the type and number of

equilibria and attractor sets constitutes bifurcation theory. Bifurcation theory provides a

framework for classifying and describing small continuous changes in the parameters that

cause significant qualitative changes in behavior of the system. This framework will be used

to describe pattern formation and differing degree of canalization for wild type and Kr− D.

melanogaster.
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1.2 Molecular Patterning of Drosophila Melanogaster

This section will serve as a brief introduction to embryogenesis and segmentation of Drosophila

melanogaster (for a more in depth discussion of D.melanogaster development see [35, 3]).

Particular attention will be drawn to the first three hours after egg deposition as segment

determination occurs in this time interval.

Drosophila melanogaster, like all insects, is segmented. There are a total of 14 segments.

Depending on its location each segment has its own distinct identity. Three segments make

up the head. Three segments make up the thorax. The rest of the eight segments make up

the abdomen.

The eggs are 500 µm long and 150 µm wide, which is fairly large compared to the length

of an adult female, which is 2500 µm (males are slightly smaller). After the egg is fertilized

the newly formed zygotic nucleus undergoes a total of 13 divisions. The time between two

consecutive divisions is known as a cleavage cycle. Cleavage cycle i starts after division i− 1

and ends before ith division. Initially, the nucleus in the egg undergoes 9 rapid mitotic

divisions, each lasting about 10 minutes, within the central yolky regions of the embryo.

During the tenth nuclear division most of the nuclei migrate to the periphery of the embryo.

At this stage the embryo is said to be a syncytial blastoderm because the nuclei are not

separated by cell membranes and in fact the only cell membrane is the one surrounding

the egg itself. As the nuclei are contained within a common cytoplasm proteins and other

substances can readily diffuse between the nuclei. After the 13th division, in the middle

of cycle 14 (C14A), cell membranes form around the nuclei. This is called the cellular

blastoderm, and at the end we have a single layer of somatic nuclei, that are separated from

each other and are located at the periphery of the embryo. After this stage is completed, the

embryo undergoes gastrulation, to form the germ layers ectoderm, endoderm and mesoderm.

These will eventually form the tissues and organs of Drosophila melanogaster. Cycle 14A is

the longest one, lasting about 50 minutes. As this cycle is extensive and is also the focus

of our study, it can be further subdivided into eight time classes (T1-T8), each lasting 6.5
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minutes [68].

The segments that constitute the body plan of an adult fruit are determined by the

segmentation genes [50, 51, 49, 78, 62, 26]. These segmentation genes can be classified

into maternal factor genes and three types of zygotic segmentation genes, depending on

the mutant phenotype produced by saturation mutagenesis. Maternal factor genes come

from the mother and establish the anterior-posterior axis in the embryo. The three types of

zygotic segmentation genes are: gap, pair-rule and segment polarity genes. Mutation in the

gap genes leads to gaps of several segments in an embryo, pair-rule genes affect every other

segment whereas the segment polarity genes affect each segment.

The segmentation genes can be separated into a hierarchical structure (see figure 1.2.1),

where the upstream genes regulate the downstream genes [1, 19]. The domain of gene

expression becomes more refined as we go from maternal to gap to pair-rule and finally to

segment polarity genes. Maternal factor genes bicoid (bcd), caudal (cad) and nanos (nos)

form concentration gradients across the embryo and regulate the next ones downstream,

which are the gap genes. Gap genes such as hunchback (hb), Kruppel (Kr), giant (gt) and

knirps (kni) have broad expression domains. The gap genes along with maternal factor genes

regulate pair-rule genes, expression of which forms the first repetitive pattern. Pair-rule

genes such as paired (prd), fushi tarazu (ftz), even-skipped (eve), odd-skipped (odd), which

are expressed in patterns of 7 stripes. The next downstream sets of genes are the segment

polarity genes such as wingless (wg) and engrailed (en) are expressed in 14 domains; these

eventually lead to the formation of the segments in the embryo.

Prior to fertilization maternal factors are deposited in the egg, and as the nuclei are not

separated by membranes, these freely diffuse throughout the embryo. The anterior-posterior

body plan of the embryo is set up by three groups of maternal genes, that form spatial

protein gradients across the embryo. These groups effect the formation of anterior (head

and thorax), posterior (abdomen) and terminal regions.

The formation of the anterior structures in D. melanogaster is primarily influenced by
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bicoid (bcd) [10]. Progeny of Bcd mutant mothers lack the head and thorax [13]. Maternal

transcription factor Bcd forms a protein gradient that is a negative exponential, starting

high in the anterior pole, where its mRNA was originally deposited by the mother, and

dissipating in the posterior [11]. Besides forming its own gradient Bcd forces the formation

of Cad gradient. Ubiquitous cad mRNA translation is blocked by Bcd. Since Bcd is high in

the anterior cad is repressed in the anterior and as the bcd expression decreases exponentially

towards the posterior cad’s expression becomes stronger. Maternal hunchback (hb) mRNA

is distributed throughout the embryo [71]. Nanos (Nos), which is located in the posterior

inhibits the translation of hb whereas bcd activates it [70, 61, 12, 66]. As Nos forms a gradient

with high levels in the posterior, Hb forms a complimentary gradient with low level in the

posterior and high levels in anterior of the embryo [37]. Finally, in the terminal regions

of the embryo maternal input acts through regulation for the gap genes tailless (tll) and

huckebein (hkb) [77].

Thus the early patterns are formed by the morphogen gradient of the maternal factors,

where each part of the embryo gets a different concentration of the protein, and in turn

responds accordingly to form initial broad gap gene expression. The location where gap

genes are expressed becomes more precise once all of the gap gene form their own short-

range concentration gradients. The way zygotic genes interact is by making transcription

factors that either activate or repress the other genes (themselves included) present in the

embryo.

Zygotic expression of the above mentioned genes starts in cleavage cycle 10-12 [23]. Their

gene expression starts out low, increases with time and finally peaks in the middle of cycle

14A [68]. The maternal protein gradients of Bcd, Hb and Cad provide the regulatory inputs

for gap and pair-ruled genes. While the maternal factors provide the initial input to forming

gap gene domains, gap-gap cross regulation is needed to create the sharp borders [23].

This dissertation focuses on regulation of four gap genes: hb, Kr, gt and kni, and more

specifically on understanding what happens to this system when Kr is not present.
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Figure 1.2.1: Reproduced from Andrew D. Peel et. al., Nature Reviews Genetics vol 6:
905-916 (2005). Hierarchy of segmentation genes in D. melanogaster.
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1.3 Understanding Pattern Formation and Canaliza-

tion of Gap Gene Expression Pattern Through Dy-

namical Analysis

Using high resolution data [69] along with a quantitative model that correctly represents the

patterns of wild type gap gene expression [24] and with the aid of techniques from dynamical

analysis it is possible to study the structure of the phase space of our system. Phase space

is a collection of all the possible states that the system can take. The model determines

the state that the set is in at any time by solving a system of equations representing the

dynamics inside each nucleus—protein synthesis, degradation and diffusion. Furthermore,

this approach allows us to analyze phenomenons such as patterning, precise border formation

and canalization [42, 44, 43, 16].

Previous work on the model considered a simplified system, where diffusion and tll were

not present. Furthermore, the analysis focused on the middle part of the embryo, excluding

the terminal regions. It has been shown that the formation of the gap gene boundaries comes

about as a result of both maternal regulation as well as gap gene cross regulation [21, 44].

The dynamical analysis approach allows us to precisely identify the different mechanisms

responsible for formation of boundaries [42, 16]. These mechanisms further illustrate the roles

of maternal factors in boundary formation. The following two mechanisms are important

in the anterior of the embryo. The first one is the point attractor’s dependence on Bcd

concentration. The second one is the selection of a particular point attractor based on

the levels of maternal Hb (which serves as the initial condition). The last mechanism is

important in the posterior of the embryo—it is the dependence of the state of the system by

gastrulation on the 1-dimensional attracting set on the maternal Hb.

Pattern formation is controlled by different mechanisms in the anterior and posterior of

the embryo [42]. In the anterior pattern formation is mostly influenced by Bcd, whereas in

the posterior maternal Hb controls it. Furthermore, Manu has shown that the two regions
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are separated by a bifurcation. This bifurcation has biological significance. As mentioned

before bcd mutants are missing the segments in the anterior, right up to the location of this

bifurcation (see figure 4.2.1). Hence the dynamics of the model captures the fundamentally

important switch between two different modes of patterning. Manu further showed that

the anterior and posterior parts of the embryo exhibited different mechanisms for pattern

formation. In the anterior attraction to point attractors created the final patterns, whereas

in the posterior it was the one-dimensional manifold that attracted the trajectories.

This analysis allows us to explore canalization of gap gene patterns under Bcd pertur-

bation. Canalization at the gap gene level has been experimentally demonstrated [68, 18].

Variability of the maternal input—Bcd was shown to be much greater than the variability in

the borders of the gap gene domains [68]. An earlier experiment by Houchmandzadeh [18]

showed that embryo-to-embryo variability of Bcd gradient was high while the corresponding

posterior boundary of anterior hb displayed a reproducible profile between the 100 embryos

sampled (see figure 1.3.1). Furthermore Hb levels showed canalization when environmental

perturbations in terms of temperature were introduced. The temperature was varied between

9-29◦ C. The Bcd profile had high dependence on temperature while Hb border displayed

the same variability as before (see figure 1.3.2).

The circuits in [43, 44] correctly predict the reduction in variability from maternal Bcd

to gap gene expression. This reduction was shown to be dependent on gap gene cross

regulation. It was found that each of the two regions possesses structural stability, but even

more importantly there is a stability in trajectories as well; the latter allows for canalization

to be quantitative.

While these gene circuits correctly predict the canalization of wild type expression, the

efforts to model null mutants (Kr− mutants in particular) have not been successful. Previous

to the work described in this dissertation it has been possible to have two separate models—

one for wild type and another one for Kr−. Those two models would correctly predict the

patterns of their corresponding genotype, but they would have different parameters. What
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Reproduced from Bahram Houchmandzadeh, Nature vol 415:798-802 (2002)

Figure 1.3.1: Variability over 100 embryos in (a) Bcd and (b) Hb. The arrows demonstrate
the spread in position where the protein concentration crosses a particular threshold. For
(a) Bcd crosses 0.23 of maximal intensity and correspondingly (b) Hb crosses 0.5 of maximal
intensity.
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Reproduced from Bahram Houchmandzadeh, Nature vol 415:798-802(2002)

Figure 1.3.2: Variability in (a) Bcd and (b) Hb gradient due to temperature. (a) Average
profile of Bcd gradient for different temperatures. (b) Average profile of Hb gradient for
different temperatures.
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is needed is one model with unique parameters such that it fits both wild type and Kr−

data. Thus the model should correctly represent wild type and when the parameter that

describes the maximum synthesis rate for Kr is set to 0 it should correctly represent Kr−

patterns.

This dissertation will focus on understanding the decanalization of gap gene expression in

Kr− embryos through bifurcation analysis. A review of the protocol to acquire experimental

data is presented in Chapter 2. Furthermore chapter 2 contains the segmentation gene

expression in Kr− embryos, documented in [67], along with the kni− experimental results

undertaken in the course of this dissertation, which are also part of [67]. Chapter 3 provides

an overview of the theoretical methods from the dynamical analysis that were used as well as

the summary of gap gene circuits and optimization methods for finding the parameters for

these circuits. Chapter 4 presents the bifurcation analysis of model from [42] with respect

to maternal Bcd and Cad inputs. Chapter 5 illustrates the pattern formation for both wild

type and Kr−. Chapter 6 describes the mechanism of canalization in wild type as well as

the cause of failure to canalize in Kr−. Chapter 7 summarizes the results of chapter 5 and

6 as well as discusses other modeling approaches to pattern formation in D. melanogaster.
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Chapter 2

Experimental Data Acquisition

The aim of this dissertation is to explain the mechanism of canalization in wild type as well

as to understand why the mutant gap gene expression becomes decanalized. For this reason

data from mutant embryos is needed. Such data was obtained from Kr− and kni− as well as

Kr; kni double mutant by Surkova [67], the author [67], and Manu [42] respectively. While

data from kni− illustrated important effects the mutation had on the gap gene pattern there

were not enough embryos to launch an in depth analysis into the phenomenon of canalization.

On the other hand Kr− data was much denser thus this dissertation will focus on Kr mutants.

A summary of data from both Kr− and kni− will be presented at the end of this chapter.

In this section the acquisition of data for the gene expression of kni− will be described,

as this genotype was experimentally assayed by the author. In order to accurately compare

kni− to wild type Oregon R., the procedure for collection, fixation and staining of embryos

was done in parallel for both to ensure that the same experimental conditions held and

the same dilutions were used. The protocols for collection, fixation, staining and image

processing were developed in the lab by others and used in this work.

17



2.1 Collection, fixation and staining of embryos

kni− embryos came from a balanced stock, Df(3L)ri-XT1, ru[1]st[1]e[1]ca[1]/TM3, Ser[1], in

which one chromosome has a deficiency for kni. The embryos were collected every 1-4 hours

on apple juice agar plates. Both wild type and kni− embryos were fixed and immunofluores-

cently stained according to the protocol described in a previous publication [28]. Primary

antibodies used were against Kni, Hb and Eve. These were followed by fluorescently labeled

secondary antibodies, Alexa Fluor 488 anti-guinea pig, Alexa Fluor 555 anti-rabbit and Alexa

Fluor 647 anti-rat. For nuclear staining, mouse anti-histone H3 (primary), biotin-conjugated

anti-mouse (secondary) antibodies were used. Streptavidin Alexa Flour 700 conjugate was

then used as tertiary.

2.2 Confocal microscopy

The fluorescently stained embryos in lateral orientation were imaged on a Leica TCS SP2

confocal microscope (see figure 2.5.1 (A)-(F)). Embryos from cycle 14A were used. kni−

embryos were identified by having no expression in the Kni channel. In order to obtain

comparable confocal images for wild type and kni−, intensity was standardized on the wild

type embryos (as those showed higher levels of expression). The gain in the microscope was

set such that the brightest expression had several pixels saturated. The offset was set such

that the background that was not part of the embryo was removed. The gain and offset were

fixed and both wild type and kni− were imaged with the same settings. For each staining

the gain and offset were recalculated. A Differential Interference Contrast (DIC) image was

taken to aid in the temporal classification of the embryo.
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2.3 Image segmentation

Confocal images were segmented to obtain tabulated concentration data for each nucleus [25]

(see figure 2.5.1 for a confocal image of a wild type embryo (A), (C), (E) and its segmented

data of intensities of Eve, Hb and Kni along the A-P axis). First an embryo mask was

generated. An embryo mask is a binary representation of the scanned image, where pixels

have a value of 255 if they belong inside the embryo and 0 otherwise. The mask was generated

using nuclear staining or the maximum intensities for each nucleus from all channels and

thresholding this maximal image. The embryo mask was applied to the image and the region

outside of it was not considered.

A nuclear mask was then constructed. This mask sets the location of the nuclei by

allocating nonzero pixels exclusively to the nuclei. To construct the nuclear mask, the

watershed method [15] was used on the maximal image—the pixels with lower intensities

then those occupied by the nuclei were denoted as watershed areas, thus forming a boundary

around the nuclei. To detect edges the Shen-Castan edge detection method was implemented

[64].

The nuclear mask provides us with a way of locating the positions of nuclei along A-P

and D-V axes. Thus it allows us to obtain tabulated positions of nuclei as well as average

intensities in each channel for each nucleus.

2.4 Background removal

Non-specific binding of the antibodies produced background. For each individual embryo,

background needed to be removed. In order to achieve zero background and not to lose

any information about the intensities, the two dimensional paraboloid, which was found by

Myasnikova [48] to best approximate the background noise was fitted to data and subse-

quently subtracted. Then the data was normalized such that the intensities that were at

background level or below were set to 0, and the maximum intensity, 255 stayed the same.
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2.5 Time classification and registration

The next step was to classify the embryos into different time classes. Since the flies were

laying eggs for 3 hours, the acquired embryos were of different ages. As the patterns changed

with time, we want to average embryos from the same time class. The goal was to find

averaged gap gene expression at different times, providing us with the dynamics of gene

expression. In order to classify the embryos in cycle 14A DIC images of the membrane as

well as nuclear morphology and the patterns of the eve gene were used.

The shape of nuclei provided the visual clues to the age of the embryos. For early time

classes the nuclei were round and the membrane was not observable. By T3 the nuclei

became elongated. Starting at T4 membrane became visible. From T5 to T8 the membrane

moved from the apical to the basal side of the nuclei.

The above visual clues were combined with the expression of eve patterns. The early

time classes were classified according to the number of eve stripes that were present and

the later time classes, T5-T8, were classified according to the features of the 7 striped eve

pattern. At T1 eve had a broad domain. T2-T3 the stripes started coming up with more

anterior ones first, by T4 all of the stripes were present but their height was low. From T5

until T8 eve stripes grew in intensity and became similar in height. At T7 the height of

all the stripes was similar. T8 was differentiated from T7 by the saw tooth pattern of the

stripes.

The next step was to do image registration [47]. The patterns from all the embryos

needed to be aligned prior to the averaging. Stripe peaks and interstripe valleys were used

here as the characteristic features of eve expression pattern that were aligned. Those features

were extracted by fast dyadic wavelet transform. The latter allowed us to find the locations

of extrema in the eve expression by finding where the first derivative of the data was zero.

To align the extrema of eve expression an affine coordinate transformation was applied such

that the distance from each extrema in an embryo to the average position of that extrema

was minimized. The other channels were aligned based on the Eve channel.
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Figure 2.5.1: Confocal image of eve expression in (A) wild type and (B) kni−. Yellow lines
show the middle 10% strip used. Confocal image of kni expression in (C) wild type and
(D) kni−. Confocal image of hb in (E) wild type and (F) kni−. (G) Segmented data from
individual wild type embryo. (H) Segmented data from individual kni− embryo.

Before averaging the embryos were subdivided into 100 bins along the anterior-posterior

axis, each nucleus being almost exactly 1% EL. The averaging occurred at the bin level for

each of the segmentation proteins. Middle 10% of dorso-ventral values were used.

2.6 Segmentation gene expression in Kr− and kni−

2.6.1 Kr−

In this section some relevant results of Surkova et. al. [67] regarding gap gene expression in

the posterior part of Kr− embryos will be briefly discussed. Surkova acquired a quantitative

data set for Kr− through the methods described above. This allowed her to discern the

average gene expression in mutants, as well as to compare it to that of the wild type.
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Surkova found that the posterior gt expression was lower than in wild type, particularly

the difference is most striking in early and late cycle 14A. The Kr− posterior gt domain is

broader than its wild type counterpart. Even though the domain exhibits the same tendency

as wild type to contract with time, by the time of the gastrulation it is still about 5% EL

broader than the wild type. There is also a major difference in mutants in terms of the

degree of the movement of gt posterior domain. Kr− embryos exhibit more than 13% EL

anterior shift in posterior gt, even moving into the locus of kni domain (see second column

of figure 2.6.1).

kni expression in Kr− has an even more dramatic reduction that than of the gt domain.

Surkova noted that the maximum amplitude of kni domain in Kr− is about a tenth of its

wild type counterpart, which makes kni expression be dwarfed even in comparison with the

reduced expression of gt. In addition to this reduction, the expression starts to decline after

time class 5, and by the time of gastrulation it almost reaches the background level. The

anterior shift in kni is smaller than that of the gt domain. When compared to the wild

type kni domain, the location of the kni domain in Kr− is 3% EL more anterior (see third

column of figure 2.6.1). Surkova also noted that in wild type the gap gene expression levels

decrease or stop increasing late in cycle 14A, in contrast to Kr− where these levels reach

their maximum earlier and go down to very low levels by late cycle 14A.

When analyzing each individual embryos separately, Surkova was able to find insight into

the variability of the patterns of gap genes. She found that the posterior gt domain is very

variable early in cycle 14A when compared to wild type. Just like in wild type the variability

does decrease with time. On the other hand, the variability of kni domain in Kr− was as

low as in wild type. According to Surkova the posterior part of Drosophila embryo seems to

be less robust to mutations in trunk gap genes, such as Kr. This is especially evident from

the high variability of the posterior gt domain early on.

22



0

50

100

150

200

250

35 45 55 65 75 85 90
0

50

100

150

200

250

35 45 55 65 75 85 90

Hb Gt Kni
T1

T3

T6

T8

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90
0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

0

50

100

150

200

250

35 45 55 65 75 85 90

AP Position

wild type
Kr- T1T1

T3T3

T6 T6

T8 T8

R
e
la

ti
v
e
 P

ro
te

in
 C

o
n
ce

n
tr

a
ti

o
n

Figure 2.6.1: Comparison of the wild type and Kr− averaged gap gene expression in the
region 35-92% EL at selected time classes. Data is taken from Surkova et. al. [67]
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2.6.2 kni−

Results from kni− obtained by the author in the course of this dissertation work are described

below. A total of 64 kni− embryos were acquired. As these were stained only for gap gene

hb and pair-rule eve (staining for kni was only done to determine kni mutants), the results

will be based on hb and eve expression. For a more detailed discussion of kni− refer to [67].

Overall level of hb were lower in kni− than in wild type embryos. The level of anterior

hb region peaked around T5 and then was reduced quickly to the level of the early times.

For all the time classes this domain had lower intensity than its wild type counterpart. The

posterior hb domain formed later than in wild type [68], it became visible only around T3

(see column two of figure 2.6.2).

There were even more drastic differences between kni− and wild type eve expression.

First of all there was a delay in the formation of eve stripes in kni−. Stripes started to come

up only around T3, prior to that time eve formed a broad domain. Since the kni domain

was located over stripes 4-6, this is where the most significant difference were noted. Stripes

4, 5 and 6 were not differentiated, they were merged together in a domain of high expression.

kni− embryos possessed only stripes 1, 2, 3 and 7, whereas wild type had all 7 stripes (see

column one of figure 2.6.2).
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cated time classes. Left column is the dynamics of eve expression for wild type (green) and
kni− (red). Right column is the dynamics of hb expression.
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Chapter 3

The Mathematical Representation of

the Gap Gene System

This chapter will review the methods used in the analysis of canalization and pattern for-

mation. In particular gap gene circuits and finding optimal parameters for the model will

be discussed. This will be followed by simplifications to the above model to make analysis

accessible. Finally relevant material from dynamical analysis that will be used in subsequent

chapters is introduced.

3.1 Gap Gene Circuits

We want to model and understand the time evolution of the gap gene protein concentrations

in the embryo of D. melanogaster. During the blastoderm stage the embryo has a defined

anterior-posterior and dorsal-ventral axes, and the gene expression along the two axes are

fairly independent of each other in the trunk area of the embryo. We consider the anterior-

posterior pattern development and treat the embryo as a 1-dimensional row of nuclei from

35% EL to 92% EL. We will model the evolution from cycle 13 to cycle 14A, consisting of

interphase, followed by mitosis, followed by the only discontinuous process—division, and

then back to interphase. Interphase is modeled by synthesis, diffusion and decay terms.
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Mitosis prepares the cells for division by organizing the genetic information for the progeny

(two daughter nuclei for each nucleus), which will be identical to the predecessor nucleus.

Mitosis is modeled by turning off protein synthesis and utilizing only the diffusion and decay

of proteins. Division follows mitosis, and at the end of division there are twice as many

nuclei and the distance between neighboring nuclei is halved.

We will limit the time scope in this analysis to a total of 71.1 minutes, from the beginning

of cycle 13 to the end of cycle 14. The time is measured in minutes after the completion

of the 12th nuclear division. Cycle 13 ends and C14A begins at 21.1 minutes. C14A has

a finer subdivision into time classes. The time classification is based on the membrane

invagination and Eve protein patterns as was discussed in the previous chapter. The model

[22, 24, 56, 57] for the expression and regulation of the gap genes of Drosophila melanogaster

comprises of a system of ODEs describing the evolution in time of the concentration of

proteins corresponding to the gap genes hb, Kr, gt and kni, given by

dvai
dt

=Rag(ua) +Da(n)
[
(vai−1 − vai ) + (vai+1 − vai )

]
− λava. (3.1.1)

In 3.1.1 the first term is the protein synthesis. The second term is the diffusion, and the

third terms is protein degradation. Here i stands for the number of the nucleus starting from

anterior to posterior. Note that i is also the equivalent of % EL(egg length) in cycle 14. The

gap genes are denoted by the indices a and b. vai stands for the concentration of protein a

in the ith nucleus, where a ∈ {hb, Kr, gt, kni}. The time evolution of vai is the solution of

(3.1.1) and is our main object of interest.

Ra is the parameter for the maximum synthesis rate that can be attained. This rate

is mediated by a regulation-expression function g(ua) which essentially determines what

percent of Ra is used. g(ua) is a sigmoidal function that takes values in the range from 0 to

1. Explicitly g(ua) = 1
2
( ua√

(ua)2+1
+ 1). Note that if we are considering a mutant in gene a,
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Figure 3.1.1: Sigmoidal regulation expression function. X-axis represents the combined input
from all terms. Y -axis shows what fraction of Ra is used.

then the corresponding Ra would be 0.

We have two options for ua. The first option is

ua =
N∑
b=1

T abvbi +mavBcd
i (x) + Eaβvβi (t) + ha, (3.1.2)

and we denote the corresponding equation (3.1.1) as model 1. The second option is

ua =
N∑
b=1

T abvbi +
N∑
b,c

T abcvbiv
c
i +mavBcd

i (x) + Eaβvβi (t) + ha, (3.1.3)

and the corresponding equation (3.1.1) is model 2.

N is the number of zygotic genes to be modeled, in our case 4. Both models contain the

parameters T ab. This is the genetic interconnect matrix, the entries of which are indicative

of the interaction of gap gene a and gap gene b, for example, whether it is of an activation

or a repression. The second model has additional terms, which are elements of T abc—the

second order genetic interconnect matrix. This matrix represents how the combination of

maternal factors or gap gene protein products denoted by b and c affect gap gene protein

product a.
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ma is the maternal connection strength, which represents the regulatory effect of Bcd on

gap gene a. vBcd
i is the concentration of Bcd in nucleus i, this concentration forms a gradient

across the embryo, having a high concentration in the anterior region and tapering off towards

the posterior. There is no dependence on time for this maternal input. On the other hand,

we have external input that does vary in time as well as in space—the concentration of such

input in nucleus i at time t is vβi (t) and Eaβ is the external input strength of β on gene

a. In our study we include two such external inputs - cad and tll. These factors affect gap

gene expression but are themselves not affected by gap genes products [46, 2], hence we do

not need extra equations to account for the evolution of their protein concentrations. ha

represents contribution of maternal factors that are homogeneous with respect to both time

and space.

Diffusion between nuclei is represented by the Da parameter. The rate of diffusion is

assumed to be proportional to the inverse square distance between the neighboring nuclei.

The last term represents protein decay. The decay rate for the protein product of gap gene

a is inversely related to its half life ta1/2, λa = ln 2
ta
1/2

.

For each nucleus we need to specify several inputs to the model, namely vBcd, vCad and

vTll. The Bcd gradient has the property that it is fairly invariant in time during cycle

13 and most of C14A. Thus we need to specify only one Bcd input for each nucleus for

all time. Individual embryos have an exponential Bcd profile and so the Bcd data can be

closely approximated by a function of the form Ce−ax. Simple averaging of exponential

functions produces a function that is no longer exponential. This problem was overcome in

the following way [42]: as two parameters (C, a) define an exponential function Ce−ax, we

use the median values of (C, a) from an ensemble of Bcd profiles.

As concentrations of Cad and Tll vary in time and space for each nucleus, we have to

provide the values of vβi for all possible t. The average data has been collected by Surkova et.

al. [68] for each of the eight time classes in cycle 14 as well as for the midpoint in cycle 13.

Following [42] we will use linear interpolation between two time classes ti and ti+1 (where
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ti < t < ti+1) to get the concentration of external input vβi at time t.

Equations 3.1.1 are nonlinear due to the form that g(ua) takes. A consequence of this is

that analytic solutions are not possible (other than in special cases). We can however apply

numerical methods to solve our system of ODEs. It was found [42, 22] that the most efficient

algorithm for our case would be the Bulirsch-Stoer [54]. This algorithm is used throughout

this work to calculate the solutions to system of ODEs.

3.1.1 Optimization of parameters of the model

The parameters of 3.1.1 are optimized such that the model is as close to the data as possible.

The cost function that is minimized is

E =
∑

(vai (t)− vai (t)data)2 + Penalty (3.1.4)

where vai (t) is the solution of the ODE corresponding to the concentration of the protein

product of gene a at time class t and vai (t)data is the actual data for protein a from the same

time class. RMS is defined to be √
E

Ndata

(3.1.5)

where Ndata is the total number of data points.

We utilize two ways of constraining the search space for parameters. Parameters Ra, Da,

and ta1/2 are constrained in an interval that is the same for all four gap genes. Specifically,

only the region (0, 15) is sampled for Ra, (0, 0.2) for Da and (5, 18) for ta1/2. For all the ua

terms—input to g(ua), there is a collective penalty function that ensures that we do not end

up spending all our search time in the saturated part of the thresholding function,

Penalty =

{
eΛUa − e1 if ΛUa >1
0 otherwise

where Ua=
∑

(a,b)

(
T abvbmax)

2 + (Eaβvβmax)
2 + (mavBcd

max)
2 + (ha)2

)
. Here vXmax is the maximum
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concentration for protein product of the individual gene. Λ controls how far into the saturated

part of g(ua) our search ventures. We set Λ to 0.001.

To find the parameters that would minimize cost function 3.1.4, we need to sample

the large space of parameters of our system. We use PLSA, which is a parallelization

scheme of simulated annealing based on Lam’s Schedule [33, 34]. Simulated annealing is an

optimization method introduced by Kirkpatrick [27] that employs the Metropolis algorithm

[45]. The cost function 3.1.4 is used as the energy function for Metropolis algorithm and

the state variables are the parameters of our system. The Metropolis algorithm is used to

sample a Boltzmann distribution in the following way. We start from any configuration of

the state variables X0 which has energy E0. A move is proposed in our state space and our

new state is X, which has energy E, now we have two choices: either to accept this move or

to reject it and go back to the original state. The probability that this move will be accepted

is min(e−(E−E0)/T , 1), for a given temperature T. The idea behind this algorithm is to start

with the system at very high temperature and then to slowly cool it until the lowest energy

state is reached, which corresponds to the minimum of the cost function. This algorithm has

an advantage of being able to “climb out” from the local minima so that by the time T is so

low that the system is “frozen” we are close to global minimum which would be the optimal

solution and provide us with best fitting parameters for our model. Lam [33, 34] perfected

this algorithm further by creating an efficient cooling schedule for T . The optimal cooling

schedule that Lam proposed is

sn+1 = sn +

(
λ

σ(sn)

)(
1

s2
nσ

2(sn)

)(
4ρ0(sn)(1− ρ0(sn))2

(2− ρ0(sn))2

)
(3.1.6)

where sn = 1
Tn

, Tn is the temperature after n iterations, σ(sn) is the variance of sn, and ρ0

is the acceptance ratio which is the proportion of the moves accepted. λ is a user specified

parameter, it has the property that when it is low the quality of the answer produced is

better at the price of higher computational time. s2
nσ

2(sn) is the specific heat, which is a

rate of change of µ(sn) with respect to the temperature, where µ(sn) is the mean energy at
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inverse temperature sn. The last term in the schedule is
4ρ0(sn)(1−ρ0(sn))

2

(2−ρ0(sn))
2 , it is a measure of

how effective the move generation is in sampling the state space. It is a maximum at ρ0 ≈

0.44. To keep ρ0 near its optimum value the size of moves must be managed. Larger sizes

of moves lower the acceptance rate and conversely for smaller move sizes. As temperature

is lowered move size becomes smaller. µ and σ are estimated adaptively [33, 34, 57].

Chu [5, 4] designed a parallelization scheme for sampling the state by P processors using

the Lam cooling schedule. This was done to increase the speed of cooling (which in turn would

make calculations faster), as we have synchronized communication between P processors,

each can cool P times faster.

For our problem the time for each run was anywhere from 2-10 days. Initial temperature

was taken to be either 106 or 107, and 10 processors were used.

3.1.2 Simplification of the model

In this subsection the model is simplified enough to be used for dynamical analysis and yet

still be capable of reproducing the correct pattern. These approximations will be employed

for the analysis presented in Chapters 5 and 6

Our model considers 58 nuclei from 35% EL to 92% EL with each nucleus comprising

of four ODEs, one for each of the gap genes. The nuclei are coupled through the diffusion

term and gap genes are coupled through the T ab and T abc terms. Hence we have 232 coupled

equations. This is not an easy computational problem. Fortunately, we can make several

approximations that will simplify our task without causing major defects to the model.

Firstly, we turn off diffusion by setting D to 0. It has been shown [21, 44, 43] that

diffusion smoothes gap domains but is not responsible for setting the borders (see figure

5.1.2 panels (A)-(D)). Turning off diffusion uncouples the equations, hence we are left with

58 sets of four coupled ODEs, a much more feasible problem.

The nuclear position is defined by the concentration of Bcd, Cad and Tll. To simplify the

analysis Tailless (Tll) is removed from it. Tll input is nonautonomous, making calculations
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Figure 3.1.2: Combination of Bcd and Cad concentrations define % EL.

harder. Tll is important in the posterior formation of the gap gene expression hence we must

confine our model to 35-72% EL region of the embryo. The position in the embryo (% EL)

in the simplified model is defined by the Bcd and Cad concentrations (see figure 3.1.2). At

each point on the A-P axis we can assign a pair (vBcd, vCad) to every nucleus. Then the A-P

position x is varied by changing vBcd(x) and vCad(x) accordingly. The concentrations of Bcd

and Cad used here correspond to the averaged data from wild type flies whose profiles were

smoothed.

Mitosis occurs in an interval extending from 16 to 21 minutes after the onset of cycle 13.

As transcription shuts down during mitosis only protein decay governs the dynamics during

this period.

The Bcd gradient remains approximately constant during cycles 13 and 14 with the

exception of time classes T7 and T8 (end of cycle 14), during which there is a considerable
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decrease in Bcd concentration. Thus to keep our stationary approximation valid we consider

dva

dt
=


Rag(

∑N
b=1 T

abvb + δ
∑N

b,c T
abcvbiv

c
i +mavBcd(x)+

Ea←CadvCad(x, t) + ha)− λava, if t < t6

Rag(
∑N

b=1 T
abvb + δ

∑N
b,c T

abcvbiv
c
i +mavBcd(x)+

Ea←CadvCad(x, t6) + ha)− λava, otherwise,

(3.1.7)

where t6 stands for the midpoint of T6. δ=0 for model 1, and δ=1 when model 2 is considered.

The initial conditions in our four dimensional Hb-Kr-Gt-Kni phase space are represented

by specifying one state variable—namely Hb. Kr, gt and kni start to appear in cycle 13,

thus the initial condition for all of them is 0, while for hb we use the expression from the

maternal hb from cycle 12.

3.2 Dynamical Systems

This section introduces the use of dynamical systems as a way to understand the qualitative

properties of the system without finding solutions to the system of ODEs. Methods for

analyzing solutions of linear ODEs as well as identification of bifurcations are introduced.

3.2.1 Equilibrium points

Consider a system of ODEs

ẋ = f(x, α), (3.2.1)

where x ∈ Rn and α ∈ Rm.

A Dynamical system is a manifoldM inm-dimensional space, where for a given parameter

α we have a map f (also called the flow of an ODE) which maps points in M into M . M

is a phase space, which is all the possible states that the system (3.2.1) can take, where f

acts as a rule of how exactly the points will be mapped. The trajectory of a point is the set

of states that it will take in M under the rule f . This is the curve in the state space that

is parametrized by time (t). Another way we can think of phase space is a collection of all
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trajectories in the state space.

The simplest type of a trajectory is one that stays fixed for all time under f . An equi-

librium point is a point which remains stationary under the flow of the ODE. These points

have a great deal of influence on the structure of nearby solutions.

In a linear system ẋ = Ax we can classify the behavior of solutions based on the eigen-

values of the matrix A. As eigenvalues can be complex and the stability of an equilibrium

point depends on the sign of the real part, define the signature of the Jacobian to be the

signs of the real parts of its eigenvalues. To make this more relevant to our model we will

take x ∈ R4. If all the eigenvalues of a Jacobian at an equilibrium point have nonzero real

part, this equilibrium point is called hyperbolic. The Jacobian of any hyperbolic equilibrium

point in R4 will have four eigenvalues, thus the signatures can be:

1. four positive

2. four negative

3. mixture of positive and negative.

In the case of (1) the solutions are going to be exponentially repelled from the equilibrium

point, thus any trajectory starting at an equilibrium point will remain there, but any starting

point near x0 will be carried away from it by the flow of the ODE (for a two-dimensional

example see figure 3.2.1(B)). This point is called a repeller or a source. In the case of (2)

the trajectories will be exponentially attracted to x0, thus with any starting point (other

than x0, which remains invariant under the flow) the flow will carry it closer to x0 (for

a two-dimensional example see figure 3.2.1(A)). This equilibrium point is called a sink or

an attractor. If we are in case (2) and the complex part of the eigenvalue is not zero, the

point is called a focus (for a two-dimensional example see figure 3.2.1(D)). While in both

instances any small perturbation would bring us back to the equilibrium, for an attractor it

is accomplished monotonically while for the focus it is oscillatory. For (3) it is a combination

of (1) and (2) (for a two-dimensional example see figure 3.2.1(C)). Locally, the trajectories
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will be attracted along the space of eigenvectors that correspond to the eigenvalues where

the real part is negative, and at the same time trajectories will be repelled along the space

of eigenvectors that correspond to the eigenvalues where the real part is positive. This kind

of equilibrium point is called a saddle point.

In four dimensions we can have saddles with one eigenvalue with positive real part and

three eigenvalues having negative real part are denoted by S1,3 (see figure 3.2.1(I)). Saddles

with two eigenvalues having positive real part and two eigenvalues having negative real part

are denoted by S2,2 (see figure 3.2.1(G)). Finally, saddles with three eigenvalues having

positive real part and one eigenvalue having negative real part are S3,1 (see figure 3.2.1(J)).

Most of the problems in biology, including the one presented in this work are non-linear.

We can still use the theory from linear systems to find out local dynamics—the Hartman-

Grobman theorem (see below) allows us to treat our non-linear system as being linear around

equilibrium points and thus be able to classify the behavior of solutions as was done above.

As our model has two inputs vBcd and vCad, we denote the pair as α0. We find the

equilibrium points of (3.2.1) by setting the right hand side of the ODE to zero. Let x0 be a

hyperbolic equilibrium point. Expanding f(x, α0) as a Taylor series around (x0, α0), we find

ẋ =���
���:0

f(x0, α0) +Df |x0,α0(x− x0) +O((x− x0)2), (3.2.2)

where we have used the fact that f(x0, α0) = 0. The Hartman-Grobman theorem states that

the structure of a dynamical system in a neighborhood of x0 is topologically equivalent to

the linearized dynamical system,

ẋ = Df |x0,α0(x− x0). (3.2.3)

Theorem 1 [53] (The Hartman-Grobman Theorem) Let E be an open subset of Rn contain-

ing the origin, let f ∈ C1(E), and let φt be the flow of the nonlinear system (3.2.1). Suppose
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that f(0) = 0 and that the matrix A = Df(0) has no eigenvalue with zero real part. Then

there exists a homeomorphism H of an open set U containing the origin onto an open set V

containing the origin such that for each x0 ∈ U , there is an open interval I0 ⊂ R containing

zero such that for all x0 ∈ U and t ∈ I0

H ◦φt(x0) = eAtH(x0);

i.e. H maps trajectories of (3.2.1) near the origin onto trajectories of (3.2.3) near the

origin and preserves the parametrization by time.

A homeomorphism is a continuous function whose inverse is also continuous. Two spaces

are said to be topologically equivalent, if there is a homeomorphism between them, that is

to say that one space can be continuously deformed into the other. Topologically equivalent

objects have the same properties, and thus it is beneficial, instead of working with a complex

object of interest, to find the simplest topologically equivalent object to study. Topological

equivalence of the two spaces has an important consequence in that the number and types

of equilibria are the same. Hence the theorem says that qualitatively the dynamics near

equilibria for the non-linear system are the same as for its linearization. Thus the behavior

of solutions near the equilibrium point x0 is determined by the linear term Df |x0,α0 .

Let n+ denote the number of eigenvalues of Df |x0,α0 with real part greater than 0 and

let n− denote the number of eigenvalues of Df |x0,α0 with real part less than 0 [32]. Let T s

be the linear generalized eigenspace of Df |x0,α0 corresponding to the n− eigenvalues with

real part less than 0. Finally let T u denote the linear generalized eigenspace of Df |x0,α0

corresponding to the n+ eigenvalues with real part greater than 0.

Any equilibrium point has two invariant sets associated with it:

W s(x0) = (x|φt → x0 as t→ +∞) and W u(x0) = (x|φt → x0 as t→ −∞)

These sets are called the stable invariant manifold and the unstable invariant manifold

respectively [32]. A connection between the invariant stable and unstable manifolds for

an equilibrium point of system (3.2.1) and the stable and unstable spaces of the linearized

version (3.2.3) is given by Local Stable Manifold Theorem.
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Theorem 2 [32] (The Local Stable Manifold Theorem) Let x0 be a hyperbolic equilibrium

point. Then the intersections of W s(x0) and W u(x0) with a sufficiently small neighborhood of

x0 contain smooth submanifolds W s
loc(x0) and W u

loc(x0) of dimension n− and n+ respectively.

Moreover, W s
loc(x0) (W u

loc(x0)) is tangent at x0 to T s (T u).

The theorem says that in the neighborhood of x0 W
s and W u have T s and T u as tangent

spaces. Hence T s and T u serve as good approximations to W s and W u locally. Furthermore,

if we are looking in the neighborhood of an equilibrium point and our unstable manifold of

interest happens to be of dimension one, we can approximate it by starting the trajectories

at two points ε away from our equilibrium along the direction of the eigenvector associated

with the eigenvalue having positive real part.

If at the hyperbolic equilibrium point we perturb one of our parameters a bit (so that

the signature doesn’t change), the location of the point might change, but its type will

not. Furthermore, the hyperbolic equilibrium point will not disappear or split into more

fixed points; the dynamical behavior around it will be preserved. This is not true for a

nonhyperbolic equilibrium point, which is an equilibrium point where one or more eigenvalues

have zero real part. For these points any perturbation will result in a completely different

behavior of the trajectories as any change would result in the change in the signature. The

points where the signature changes, that is we go through an equilibrium point where the

Jacobian has one or more eigenvalues with zero real part is called a bifurcation point.

If the eigenvalues that we are dealing with are real, the best way to think about the above

ideas is to treat trajectories as a flow of water over the landscape. An attractor is a depression

into which the water flows, a source is a mountain peak, and a saddle is a pass. As we change

our parameters the landscape changes and the flow of the water automatically adjusts to the

change. If no bifurcation occurs as the parameters are varied, then the landscape will look

topographically the same, with just the location of mountaintops, passes and depressions

shifted. If a bifurcation does occur, then you can see qualitative changes: depressions,

saddles or summits may merge together, they can disappear, new ones can appear, etc.
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Figure 3.2.1: (A)-(E) Phase portraits in the neighborhood of an equilibrium point in two
dimensions. (F)-(J) All the possible combinations of different equilibria in four dimensions The
blue inset in the top right corner of each panel (A)-(E) is a representation of the eigenvalues corresponding
to their associated equilibrium point. The solid line is the real axis and the dotted line is the imaginary axis.
A blue circle is a stable equilibrium point, while an empty circle is an unstable equilibrium. (A) Attractor.
(B) Repeller. (C) Saddle. (D) Stable focus. (E) Unstable focus. (F) In four dimensions attractors can
have three different types of eigenvalues: all real, two with nonzero complex part or all with nonzero complex
part (from top to bottom). (G) S2,2 can have four different types of eigenvalues: all real, all complex, the
stable part real and the unstable part complex and vice versa (left to right, top to bottom). (H) Repellers
can have the same types as attractors in (F). (I) S1,3 can have only two different types of eigenvalues: all real
or a pair of complex (along the stable direction). (J)S3,1 can have only two different types of eigenvalues:
all real or a pair of complex (along the unstable direction).
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As we are dealing with a high dimensional dynamical system we cannot expect the solu-

tions to be completely dependent on equilibria and stable or unstable manifolds. Attracting

sets could in fact be higher dimensional, for example an n-dimensional torus. The system

could posses strange attractors, causing dynamics to be unpredictable due to great sensi-

tivity on the initial conditions. Fortunately, in our case all of the trajectories (with one

exception) that corresponded to relevant biological initial conditions (see section 3.1.2, page

34) lay in the basins of fixed point attractors and ended up at the attractor before or after

gastrulation. The only exception to the above was one initial condition whose trajectory

ended up on the limit cycle (to be discussed in section 5.2.1). Furthermore, our system did

not display extreme sensitivity to initial conditions. When Hb concentration, that differed

from the correct initial conditions by several units was considered, the resulting trajectory

ended up at the same state in Hb-Kr-Gt-Kni space. Thus in this work chaotic behavior was

not encountered, and the only attracting sets were the fixed point attractors and a limit

cycle.

The study of hyperbolic equilibrium points is more or less straightforward and as long

as we don’t go through any bifurcations the dynamical system would remain topologically

the same. Therefore, we will focus on the analysis of nonhyperbolic equilibrium points and

their associated bifurcations. We will first show that our equations at the bifurcation point

are reduced from 4 dimensions to 1 or 2 dimensions on a special manifold called the Center

manifold (W c). We will then focus our attention only on the W c and look at the behavior

of 1 or 2 dimensional systems that undergo bifurcations.

3.2.2 Reduction to the Center Manifold

The aim is to study bifurcations of equilibria in a 1 or 2-dimensional phase plane and apply

these ideas to the analysis of n-dimensional systems. For our system, the bifurcations that

will be encountered occur in a 1 or 2 dimensional invariant manifold. The behavior of the

system off this invariant manifold is not of great interest as the bifurcation does not affect it.
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Therefore we are justified in considering the systems with a 1 or 2 dimensional phase plane

and studying the bifurcations in them. The rest of this subsection deals with the justification

of this reduction.

Let α0 be a parameter such that there exists an x0 for which f(x0, α0) = 0 and Df |(x0,α0)

has an least one eigenvalue whose real part is 0. Keeping α0 fixed we can define f(x, α0) =

f̃(x). This constitutes a continuous-time system

ẋ = f̃(x) (3.2.4)

which is not parameter-dependent, where x ∈ Rn. f̃(x0) = 0, with f sufficiently smooth.

Also let λ1...λn be the eigenvalues of Df̃ |x0 . Consider x0 to be a nonhyperbolic equilibrium

point so that there are n0 eigenvalues lying on the imaginary axis, n− eigenvalues lying to

the left of the imaginary axis and n+ lying to the right of the imaginary axis. Let T c be the

linear generalized eigenspace of Df̃ |x0 that is associated with n0 eigenvalues that have the

real part equal to 0. Let φt be the flow associated with (3.2.4).

Theorem 3 [32] (Center Manifold Theorem) There is a locally defined smooth n0-dimensional

invariant manifold W c
loc(x0) of (3.2.4) that is tangent to T c at x = x0. Moreover, there is

a neighborhood U of x = x0, such that if φtx ∈ U ∀t ≥ 0(t ≤ 0), then φtx → W c
loc(x0) for

t→∞(t→ −∞)

Thus W c
loc is invariant under the flow, and it is called a center manifold [32]. We should also

note that while it can be proven that such a manifold exists it is not unique [32]. Expanding

(3.2.4) in a Taylor series around our nonhyperbolic point x0 we get

ẋ =��
��*

0
f̃(x0) +Df̃ |x0(x− x0) +O((x− x0)2). (3.2.5)

Consider a basis for system (3.2.4) formed by eigenvectors corresponding to the eigenvalues

of Df̃ |x0 . This is the eigenbasis of (3.2.4). Let vi be the eigenvectors corresponding to the
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λi such that the Re λi = 0 and ui to be the eigenvectors corresponding to the λi such that

the Re λi 6= 0. Thus we can rewrite (3.2.4) as

{
v̇ = Bv + h(u, v)
u̇ = Au+ g(u, v) (3.2.6)

Here u ∈ Rn++n− and v ∈ Rn0 , h and g have Taylor expansions with at least quadratic terms.

Comparing (3.2.5) and (3.2.6) we see that A has all the eigenvalues of Df̃ |x0 with nonzero

real part and the eigenvalues of B are all the eigenvalues of Df̃ |x0 with zero real part.

Locally we can represent the center manifold as

W c
x0

= ((u, v) : u = U(v)), (3.2.7)

where U : Rn0 → Rn++n− .

Theorem 4 [32] (Reduction Principle) System (3.2.6) is locally topologically equivalent near

x0 to the system: {
v̇ = Bv + h(U(v), v)
u̇ = Au

While the behavior off the center manifold is determined by the linear terms, the dynamics

on center manifold are governed by both linear and nonlinear terms of 3.2.6.

We can be even more explicit and break down u into the u− ∈ Rn− and u+ ∈ Rn+ ,

{
v̇ = Bv + h(U(v), v)
u̇− = −u−
u̇+ = u+.

(3.2.8)

Looking at (3.2.8) we see why the center manifold is an important object; the behavior in

a neighborhood of the bifurcation point x0 can be predicted from just looking at how the

system behaves on the center manifold, since the equations off the manifold are trivial (they

are attracting along u− and repelling along u+).

If we want to work with the parameter-dependent system, it can be shown that the
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behavior near the value of the parameter α where the bifurcation occurs is completely defined

by the n0 dimensional center manifold that we have already considered [32].

3.2.3 Codimension 1 Bifurcations

The codimension (codim) of a bifurcation is the number of parameters needed for that

particular bifurcation to occur. In this work only two local bifurcations of codimension 1 are

encountered—saddle-node and Hopf bifurcations.

Consider equations (3.2.1). In order for the system to undergo a bifurcation, the Jacobian

would have to have at least one eigenvalue where the real part vanishes. If we start with an

eigenvalue λ that has a nonzero real part, by varying α we can arrive at λ=0 (this is a saddle-

node bifurcation, discussed below) or we can arrive at λ=± iω (this is a Hopf bifurcation,

discussed below).

Both of these bifurcations can be found by varying only one parameter. As there are

two parameters in our system that can be varied, vBcd and vCad, the manifold on which they

occur in the two-dimensional parameter space is a curve, called the bifurcation curve (β).

From now on by Theorem 4 we will only focus on dynamics on the center manifold and deal

with the reduced system.

3.2.4 Saddle-node Bifurcation

A saddle-node bifurcation occurs when a stable equilibrium point and an unstable equilibrium

point collide, annihilating each other, the end result being no fixed point at all. If we have

a saddle-node bifurcation at α0 then our system near the bifurcation point is topologically

equivalent to

ẋ = x2 + (α− α0). (3.2.9)

From now on we can use 3.2.9 to discuss the saddle-node bifurcation. For α < α0 we have

two equilibria (one stable and one unstable); for α = α0 the two equilibria come together and
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Figure 3.2.2: (A)-(C)Trajectories of solutions in phase space for saddle-node bifurcations.
Bifurcation occurs at an equilibrium point for α = α0. (A) α < α0; (B) α = α0 (C) α > α0

(D)Corresponding bifurcation diagram. Dotted line (red) indicates unstable equilibrium
points (red circle), solid line (blue) indicates stable equilibrium points (blue circle).

annihilate each other; finally, for α > α0 there are no equilibria present (see figure 3.2.2).

3.2.5 Hopf Bifurcation

When the Jacobian at an equilibrium point has two complex eigenvalues (complex eigenvalues

occur in conjugate pairs) that are purely imaginary, a Hopf bifurcation occurs. In the phase

space this phenomenon corresponds to having one equilibrium point switch from attracting

trajectories to repelling them and at the time of the switch there is a creation of a limit cycle

to which the trajectories would now be attracted to or be repelled from. A limit cycle is a
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Figure 3.2.3: Trajectories of solutions in phase space for Hopf bifurcation. Bifurcation occurs
at an equilibrium point for α = α0. (A) α > α0, the equilibrium point is an attractor; (B)
α 5 α0, the equilibrium point switches to being a repeller and it also gives rise to a limit
cycle, which is an invariant two dimensional manifold.

closed trajectory such that every point on the cycle is rotated around it by the flow of the

ODE, and the trajectories in the neighborhood of the limit cycle spiral into it in forward or

backward time. As the parameter is varied, the radius of the limit cycle is varied, and as we

go back through the Hopf bifurcation point the radius becomes 0, in other words it merges

into the original equilibrium point.

A Hopf bifurcation is best visualized in polar coordinates. Consider the system:

{
ρ̇ = ρ((α− α0)− ρ2)
φ̇ = 1.

(3.2.10)

where ρ is the distance from the origin and φ is the angle with the positive x-axis. For

α < α0 we have one equilibrium at ρ=0 and it is stable. For α > α0 the equilibrium point

above becomes unstable, and further there is a stable set called a limit cycle ρ=
√

(α− α0),

having radius
√

(α− α0). The radius becomes 0 at α = α0 and the limit cycle disappears

(see figure 3.2.3).
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3.2.6 Codimension 2 bifurcations

In order to find a bifurcation of codimension 2, both parameters need to be varied simulta-

neously. In the 2-dimensional parameter space these bifurcations will correspond to points

(see figure 3.2.4 (*)).

There are five codimension 2 bifurcation in the continuous-time system. In this section

only one will be mentioned. The location of that bifurcation in the parameter plane will

be crucial in helping to identify gene circuits that display canalization (see Chapter 4).

This would provide yet another connection between properties of the dynamical system and

biological property of canalization of gap gene expression of the organism.

A cusp bifurcation occurs when one eigenvalue is zero and dim W c = 1 but the quadratic

coefficient of f is also zero. Two branches of saddle-node bifurcation curves come together at

this point (see figure 3.2.4 (SN1 and SN2)). In the neighborhood of the cusp three equilibria

are affected. These three equilibrium points annihilate each other pairwise along each of the

two saddle-node bifurcation curves.

A hyperbolic equilibrium point has the leading term of its Taylor series expansion vanish

and it does not have a center manifold. For a nonhyperbolic equilibria we can consider how

the system behaves near the bifurcation on the center manifold. As we saw in the previous

sections, for a saddle-node bifurcation the first order term vanishes as well as the leading

term. When higher order bifurcations such as the cusp are considered even more leading

terms vanish, and therefore higher order terms take precedence.

These ideas can be applied to experimental data from real biological systems as I will

demonstrate in the next 3 chapters.
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Figure 3.2.4: A cusp bifurcation. (*) denotes the location of a cusp bifurcation. The blue
curves SN1 and SN2 denote different saddle-node bifurcation curves.
(A) Two attractors (blue circles) and one saddle (red circle) are present. (SN1) Attractor
and saddle are annihilated. (SN2) Another attractor and saddle are annihilated. (B) Only
one attractor is left. Going through a cusp bifurcation (*) from (A) to (B) all three equilibria
merge together.
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Chapter 4

Bifurcation Analysis of the Original

Model

The goal of bifurcation analysis is to have a global understanding of the behavior of a system

with respect to its parameters. In this chapter the model’s (3.1.7) dependence on vBcd and

vCad will be explored. The notation for concentration will be used when talking about the

parameter space—[Bcd]-[Cad] plane. I will discuss the dependence of important equilibria

on the parameters as well as locate and analyze relevant bifurcations.

To study the parameter space we will subdivide the [Bcd]-[Cad] plane into regions where

the gap gene system has qualitatively the same behavior. To do this, we will start from

any equilibrium point of our system and perform parameter continuation. Parameter con-

tinuation is a numerical method that will tell us the location of the equilibria that we are

considering in the Hb-Kr-Gt-Kni phase space for different parameter values. The new lo-

cation of the equilibrium point is calculated while varying one of the two parameters until

we find a saddle-node or Hopf bifurcation. The curve in the [Bcd]-[Cad] plane is found such

that all the points on that curve exhibit the same bifurcation. This will separate the plane

into 2 regions with different dynamical behaviors, and the curve that separates the two is

the locus where that particular bifurcation happens (see figure 4.0.1). If we can find all
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the possible types of bifurcations and continue each in the [Bcd]-[Cad] plane we will derive

the parametric portrait for our model. This will be a subdivision of the [Bcd]-[Cad] plane

into regions, where in each region no bifurcation occurs—therefore the qualitative behavior

of the solutions of the system does not change. As a result we can classify all the possible

behaviors for different values of Bcd and Cad (vBcd, vCad).

4.1 Continuation of Equilibria and Detection of Bifur-

cations using AUTO

Recall that our model (3.1.7) consists of a system of 4 ODEs for each nucleus. Let us rewrite

(3.1.7) as

ẋ = f(x, α), (4.1.1)

where x = (vHb, vKr, vGt, vKni) ∈ R4, and α = (vBcd, vCad) ∈ R2.

For this chapter only model 1 (see equations 3.1.1 and 3.1.2) will be considered.

We start off by choosing a nucleus. For every nucleus there corresponds a pair of values

(vBcd, vCad) that describe the concentration of Bcd and Cad in that nucleus. For the starting

nucleus such a pair is α0 = (vBcd
0 , vCad

0 ). All the equilibrium points of the starting nucleus

are found by setting the left hand side of our equation to zero, and using the Newton-

Raphson iteration method to find all the combinations of x = (vHb, vKr, vGt, vKni) that satisfy

f(x, α0) = 0. Next we choose one of the hyperbolic equilibrium points and continue it as one

of the parameters changes (either vBcd or vCad but not both of them together). This will give

the dependence of an equilibrium on α. Take x = x0 to be such that for α0, f(x0, α0) = 0

(i.e. x0 is our first solution). To see what happens to our equilibrium point as one of the

parameters is varied, we need to compute the solution x1 at α1 = α0 + ∆α. In order to do

that AUTO [8] is used.

AUTO is a continuation software, originally developed by Eusebius Doedel; it also does
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Figure 4.0.1: Finding a bifurcation curve in the [Bcd]-[Cad] plane. Each point in the plane
corresponds to a 4-dimensional phase space Hb-Kr-Gt-Kni. The grey inserts represent the
projection of the phase space onto 3 dimensions. Red circles are the saddles, blue are the
attractors, and black arrows are the direction of the flow in the vicinity of the equilibrium.
(A) The starting point is the right saddle equilibrium (with an asterisk next to it). The
dotted green line is the continuation with respect to [Cad]. (B) The right hand equilibrium
formed by a merger of the middle equilibrium in (A) with that marked with an asterisk is
nonhyperbolic and is undergoing a saddle-node bifurcation. The bifurcation curve β is the
light blue curve. It comprises all ([Bcd], [Cad]) such that the bifurcation conditions hold,
and the phase space looks like (B) all along this curve. (C) If we go past the bifurcation
only the left saddle remains.
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limited bifurcation analysis. AUTO uses parameter continuation, to continue an equilibrium

solution. The continuation algorithm is essentially a predictor-corrector method.

1. Start with x0.

2. Predict x̃1, such that f(x̃1, α1) = 0 holds.

This is done using tangent prediction,

x̃1=x0 + ∆αẋ|x0,α0 ,

where ∆α is the step size and ẋ= dx
dα

.

3. Perform a correction to x̃1 by Newton iterations, such that the iteration converges to

x1, which is a point that is within a specified accuracy of the true equilibrium,

x̃n+1
1 = x̃n1 −

f(x̃n1 ,α1)

Df |x̃n1 ,α1
.

As long as Df is nonsingular and the step size is sufficiently small Newton iterations converge

to x1 from predicted point x̃1. It should be noted that the step size is controlled by the

following: if at our step size ∆α no convergence occurs the step size is increased; if on the

other hand convergence occurs after only a few iterations, the step size is decreased.

The goal is to find solutions xi, as α is incremented further using the previous values xi−1.

The method above fails when Df becomes singular, i.e. one of the eigenvalues of Df is 0.

This is the point where a saddle-node bifurcation occurs and the solution curve encounters

a fold, by having a branch of solution turn around (see figure 3.2.2). In this case AUTO

executes Keller’s Pseudo-Archlength Continuation [8, 32]. The best way to parametrize a

curve is through its arclength, thus instead of making a step in α, AUTO makes a step in the

pseudo-arclength, which we denote as s. Here we reparametrize our system by introducing s

such that both x and α are functions of s. By letting v(s) = (x(s), α(s)), we find equilibrium

points for the extended system Φ(v(s), s) = 0.

For every equilibrium point AUTO calculates the Jacobian at that point and also keeps

track of the Fold (this is to detect saddle-node bifurcation) and Hopf functions. These are
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test functions that depend on the eigenvalues of the Jacobian. They are defined to have

regular zeros at the bifurcation points, such that

Fold =
∏

λi(x, α) (4.1.2)

and

Hopf =
∏
i>j

(λi(x, α) + λj(x, α)), (4.1.3)

where λi(x, α) are the eigenvalues of the Df |x,α.

At the point where a bifurcation occurs we can start a 2 parameter continuation of the

bifurcation, to find the locus of the saddle-node or Hopf bifurcation points in the [Bcd]-[Cad]

plane. The continuation problem consists of finding all points in the (x-α)-plane that satisfy

f(x, α) = 0 (4.1.4)

and

detDf |xf ,αf = 0. (4.1.5)

Since x ∈ R4 and α ∈ R2, we have a six dimensional space and five constraints, meaning

that there is a 1-dimensional curve that satisfies both (4.1.4) and (4.1.5). When we project

this curve into our parameter plane we get the bifurcation curve β.

4.2 Parametric Portrait for Gap Gene Circuit

The first circuit analyzed was from [44, 43]. Manu [44, 43] looked for the bifurcations along

the A-P axis of the embryo. A saddle-node bifurcation located around 53% EL was found

to be responsible for separating the dynamics in an embryo. Anterior to this bifurcation

Bcd was crucial for pattern formation. This bifurcation has important biological meaning

and will be called a biologically significant bifurcation (BSB). bcd mutants are missing all

52



the segments in the head and thorax (see bottom of figure 4.2.1), which using the fate map

(defined in the introduction) translates back to the embryo missing all the structures up to

53% EL (fig 4.2.1) We can see that something fundamentally important happens in the fly

around 53% EL, which has not been biologically explained, and Manu’s analysis showed that

indeed this behavior is captured in the dynamics of the model.

Anterior to the BSB, the gap gene pattern forms by the point attractors dependence on

Bcd concentration. Posterior to BSB, the pattern arises by attraction to a 1-dimensional

manifold and the dependence of the final state of the system by gastrulation on the initial

Hb concentration.

While Manu looked at a one dimensional subset of the [Bcd]-[Cad] plane for bifurcations,

I extended his analysis of the same circuit by looking at the whole [Bcd]-[Cad] plane. This

chapter will show how a feature that is directly related to the BSB can help us determine

which circuits are the best representatives for our system by looking at the parametric

portrait alone.

To find the parametric portrait for the previously published circuit [44, table S3 Column

1] I continued all of the solutions to the equilibrium equation f(x, α) = 0 from every nucleus

by first varying vBcd and then varying vCad. Upon encountering a Hopf or a saddle-node

bifurcation AUTO continued each of them in two parameters. A parametric portrait was

constructed by plotting all the bifurcation curves in the [Bcd]-[Cad] plane. (see figure 4.2.2).

From the parametric portrait we note that the most unstable bifurcations are the ones of

codimension two (these correspond to points on the diagram), as any perturbation in either

of the two parameters will result in a different behavior. For a codimension one bifurcation

(these correspond to curves) there are some perturbations of both parameters simultaneously

that result in similar dynamics. At any point in a region we can look at phase space and

calculate how many attractors and saddles there are. If this is done for all regions explicit

change in dynamics can be discerned from the parametric portrait as we go from one region

to another.
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Frohnhofer et al. Nature vol. 324:120-125(1986) 

Figure 4.2.1: Saddle-node bifurcation at 53% EL corresponds to the location of
morphological anomaly in bicoid embryo. Mapping cuticular segments (bottom) to
percent embryo length (top) by locating segments and parasegments with respect to fushi-
tarazu and eve positions(middle) which in turn map to % EL in our model [7, figure 9].
Cuticular images are at the bottom [13]. Upper panel is wild type. Lower panel is strong bcd
phenotype (bcdE1/bcdE1) head and thorax missing. The top picture representing different
ways of pattern formation in the anterior and posterior is taken from [43, figure 7]. Solid
red line corresponds to the location of the saddle-node bifurcation.
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Figure 4.2.2: Parametric portrait of the [Bcd]-[Cad] plane. The solid lines divide this plane
into regions with different dynamics. The behavior of the system is qualitatively the same
in each domain. A is the number of attractors, S is the number of saddles. The location of
the BSB in [44, 43] is indicated by a black arrow, and its continuation is shown in red. C
indicates the cusp from which the BSB arises for appropriate values of Bcd and Cad. Blue
curve indicates a locus where a Hopf bifurcation occurs.
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One important feature of our parametric portrait should be noted—it is the most promi-

nent cusp (C) located on the bottom of the figure (4.2.2). This cusp is generated from

continuation of the BSB in the [Bcd]-[Cad] plane. At a cusp bifurcation, three equilibrium

points collide together and result in one equilibrium point. This equilibrium point is unsta-

ble at the cusp, and a perturbation in our parameters would result in unfolding those three

equilibrium points from the one equilibrium point.

The importance of the cusp will become evident once more circuits are considered and

their parametric portraits generated.

4.3 Other Circuits and their Parametric Portraits

Manu [42] found other circuits for the model as well. The candidate circuits were found by

first fitting them to integrated gap gene data using PLSA (Parallel Lam Simulated Anneal-

ing), such that the pattern of gap gene expression produced by the model was biologically

correct within a certain tolerance. To judge the quality of the fit root mean squared differ-

ence (RMS) between data and model was used. In [42] the following three conditions were

required to be fulfilled:

1. The squared difference between the model and the data had to be less than 12. RMS

< 12 was chosen to weed out the models whose fits were unequivocally unacceptable.

2. The circuit had to produce the correct gap gene pattern, those with serious defects

were not considered.

3. According to the experimental [6] and the theoretical [52] investigations Kr represses

hb. The circuits needed to reproduce this phenomenon.

23 circuits from a total of 65 optimizations passed the above three criteria. These were

called consistent circuits, and they had the same network topology as in Jaeger [24]. Namely,

Bcd and Cad were activators of hb, Kr, gt and kni ; Tll was an activator of hb, and a repressor
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Figure 4.3.1: Parametric portrait of Bcd-Cad plane, along with (Bcd, Cad) concentrations
from 88 simulations.

of the other gap genes; interaction between hb,Kr, gt, kni were of mutual repression except

that Gt was an activator of hb in all circuits obtained; kni was an activator of gt in about

half the circuits and a repressor in the other half. These 23 circuits were further subdivided

into canalizing and noncanalizing circuits.

Canalizing circuits were the circuits that showed positional accuracy (i.e. positional

variance for the six borders described below was comparable to variation of these borders in

the data) for all of the following six borders: the posterior border of the anterior hb domain,

the posterior border of the central Kr domain, both borders of the abdominal kni domain

and both borders of the posterior gt domain. There were a total of 15 canalizing and 8

noncanalizing circuits.

In my analysis, these circuits were further clustered into groups. The canalizing circuits

were subdivided into three groups and the noncanalizing circuits into two groups, by inspect-
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ing the location and the types of bifurcations that their parametric portraits admitted. This

was done by visual inspection of parametric portraits, where members of the same group

had a very similar parametric portrait, and members of different groups had drastically dif-

ferent portraits. Thus one property of a circuit was its associated parametric portrait while

the other property was an ensemble of the gap gene expression under Bcd perturbations,

described below.

Manu simulated how circuits would reproduce the pattern of gap genes under the effects

of variation between different Bcd profiles. Embryos in a population do not have the same

Bcd profile but they produce gap gene pattern that canalizes over time. It is important that

circuits were robust to different Bcd input, and reduced the variance of the gap gene pattern

in accordance with the experimental data. Thus to each circuit a graph of how the gap gene

pattern looked under 88 different Bcd profiles could be associated (for examples see figure

4.3.2). I found that there was a direct correspondence between the parametric portraits and

the pattern of gap genes under the different Bcd profiles.

This correspondence was evident by focusing on the location of the cusp C described in

the previous section. All the canalizing groups possessed such a cusp, and the saddle-node

bifurcation boundary that contained the BSB intersected with the range of 88 ([Bcd], [Cad])

values that were present in the embryo. On the other hand, half of the noncanalizing groups

did not possess such a cusp. Moreover, those that did have the cusp had it in locations such

that the biologically realistic ([Bcd], [Cad]) values did not lie on the appropriate bifurcation

boundary. Members of the same group were located in a cluster (see figure 4.3.2) when the

location of the cusp in the [Bcd]-[Cad] plane was plotted. The only exceptions were several

circuits that could not be identified clearly as members of one group and they possessed

distinct patterns under Bcd variation. Each cluster could be associated with an ensemble of

the gap gene patterns under Bcd variation (see figure 4.3.2).

Hence it is reasonable to suppose that the patterns of gap gene variability under different

Bcd profiles for a circuit depend on the location of the cusp on the [Bcd]-[Cad] plane of
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the parametric portrait for that circuit. Furthermore it can be conjectured that the cor-

rect canalization of a circuit, which is a biological property that has been experimentally

confirmed and correctly modeled, is directly related to its bifurcation structure, which is

embedded in the dynamics of the ODE describing the system.

To put the idea, that a bifurcation structure is responsible for the canalization of gap

gene pattern, to the test we need to consider the case when the pattern decanalizes. As was

previously discussed, the variability of the pattern in mutants is greater than in wild type,

therefore considering mutants would be the next logical step. Unfortunately, model 1 does

not reproduce the mutants’ pattern correctly [42]. In order to study how to relate a property

associated with a dynamical system to the phenomenon of canalization we need to consider

a model that can pattern both wild type and mutants. The next two chapters will discuss

how model 2 allows us to investigate pattern formation as well as to identify the structure

responsible for canalization.
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Figure 4.3.2: Locations of the cusp bifurcations on [Bcd]-[Cad] plane. Each group corresponds
to a circled cluster, where each cluster has an associated characteristic gap gene pattern under
Bcd variation. (O) Reproduced from Manu [42]. Gap gene expression data for late cleavage
C14 wild type embryos. There are 18 profiles for hb, 33 for Kr, 20 for gt and 17 for kni.
(A) This group contains the circuit analyzed in this chapter and in [42]. (B)-(H) Other
groups with varying degree of canalization (these circuits were taken from [42]).
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Chapter 5

Pattern Formation

In chapter 4 we demonstrated a connection between the degree of canalization in a circuit for

model 1 and the location of the cusp bifurcation. Chapters 5 and 6 will deal with circuits from

model 2 and use dynamical analysis to explain pattern formation. The degree of canalization

or the lack thereof will once again be tied to particular features of the dynamical system.

The goal of this chapter will be to understand the dynamics of pattern formation in

Kr− as it was described in section 2.6.1. First, I will describe how to find a suitable model

that captures both wild type and Kr− gap gene expression. Then I will compare the model

output to the data. Lastly, by analyzing equilibria and the dependence of solutions on the

maternal input, I will provide a reason for the significantly lowered levels of expression in

Kr−.

5.1 Selection of the circuit

Since previous efforts to model Kr− using model 1 have not been successful [42, 22], model

2 will be used from now on. As mentioned previously, the only difference between the two

models is the way gap gene products interact with each other. Unlike model 1, model 2

contains extra terms T abcvbvc which describe a multiplicative contribution of the product of

two genes b and c on the target gene a (see equation 3.1.3). The T abc matrix is symmetric. In
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order to talk about specific terms we will use the convention T a←(b,c), where T a←(b,c) describes

how the combination of gene products b and c affects the expression of a.

Model 2 was fitted to integrated gap gene data for both wild type and Kr− [68, 67] using

Parallel Lam Simulated Annealing [5, 4]. To determine which circuit is best we needed to

make sure that the pattern produced for wild type and mutant was qualitatively comparable

to data. Furthermore, the wild type system needed to canalize Bcd variability at the level

of gap gene expression.

The following two criteria were used:

1. The first measure of the quality of a fit was the RMS. There were separate RMS for

wild type and Kr−. To eliminate circuits with major patterning defects I considered only

the circuits whose RMS was low. It is generally the case that circuits with RMS higher than

12 contain serious anomalies in the pattern [24]. Those circuits with RMS less than 12 were

further visually inspected for anomalies in patterning.

2. The other property that the circuit had to have was correct canalizing behavior of

the gap genes in Kr− and wild type. The aim was to find a circuit where wild type would

canalize Bcd perturbations while Kr− would not.

In an effort to keep the number of parameters in equation 3.1.3 small the goal was to

find the minimal number of nonzero T abc elements that capture the correct patterning as

well as canalizing behavior in both systems. K. Kozlov undertook the task above by starting

with a large combination of nonzero T abc terms, then gradually narrowing it down to as few

terms as possible. The different combinations of nonzero T abc elements that he found are

depicted in table 5.1. All of the combination in the table produced correct patterns other

than numbers 1, 2, 3, 10 and 14. I replicated Kozlov’s trials 1-7 as well as tried 10 new

combinations of nonzero T abc elements (see table 5.2). In my case only combination numbers

7-10 produced correct patterns for both wild type and mutants. The only combination of

T abc terms that produced correct canalization behavior was nonzero T a←(Hb,Bcd), T a←(Kr,Kr)

and T a←(Kr,Kni) (number 5 from table 5.1).
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Nonzero T abc terms

1 T a←(Hb,Bcd)

2 T a←(Kr,Kni)

3 T a←(Hb,Bcd), T a←(Kr,Kr)

4* T a←(Hb,Bcd), T a←(Kr,Kni)

5* C T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Kni)

6* T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Kni), T a←(Hb,Gt)

7* T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Kni), T a←(Hb,Kr)

8* T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Kni), T a←(Hb,Kr), T a←(Hb,Gt)

9* T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Kni), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd)

10 T a←(Hb,Bcd), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd), T a←(Kr,Bcd), T a←(Kni,Bcd)

11* T a←(Hb,Bcd), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd), T a←(Kr,Bcd), T a←(Kni,Bcd),

T a←(Hb,Cad), T a←(Kr,Kni)

12* T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Kni), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd),

T a←(Hb,Cad), T a←(Kr,Bcd), T a←(Kni,Bcd)

13* T a←(Hb,Bcd), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd), T a←(Kni,Bcd), T a←(Kr,Gt),

T a←(Hb, Cad), T a←(Kr,Kni), T a←(Kr,Bcd)

14 T a←(Hb,Bcd), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd), T a←(Kni,Bcd), T a←(Hb, Tll),

T a←(Kr,Kni), T a←(Kr,Tll), T a←(Gt,Tll), T a←(Bcd,Cad), T a←(Tll,Bcd)

15* T a←(Hb,Bcd), T a←(Hb,Kr), T a←(Hb,Gt), T a←(Gt,Bcd), T a←(Kni,Bcd), T a←(Kr,Gt),

T a←(Kr,Kr), T a←(Hb,Cad), T a←(Kr,Kni), T a←(Kr,Bcd), T a←(Gt,Kni), T a←(Tll,Bcd)

Table 5.1: Combinations of nonzero T abc terms tested by K. Kozlov. The notation T a←(b,c)

describes how combination of gene products b and c affects the expression of a. Asterisk
(*) marks combinations that produced correct patterning behavior and C marks correct
canalizing behavior.
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Nonzero T abc terms

1 T a←(Kr,Kr), T a←(Kr,Kni)

2 T a←(Kr,Kr), T a←(Gt,Kr)

3 T a←(Kr,Kr), T a←(Hb,Kr)

4 T a←(Hb,Bcd), T a←(Gt,Kni)

5 T a←(Hb,Bcd), T a←(Gt,Kr)

6 T a←(Hb,Bcd), T a←(Gt,Gt)

7* T a←(Kr,Kr), T a←(Kr,Kni), T a←(Hb,Kr)

8* T a←(Hb,Bcd), T a←(Kr,Kni),T a←(Hb,Kni)

9* T a←(Hb,Bcd), T a←(Kr,Kni), T a←(Hb,Kni), T a←(Kr,Gt), T a←(Hb,Kni)

10* T a←(Hb,Bcd), T a←(Kr,Kr), T a←(Kr,Gt), T a←(Kr,Kni), T a←(Kr,Bcd), T a←(Kr,Cad)

Table 5.2: 10 combinations of nonzero T abc terms tested in this thesis. Asterisk (*) marks
combinations that produced correct patterning behavior.

Model 2 with nonzero T a←(Hb,Bcd), T a←(Kr,Kr) and T a←(Kr,Kni) was used for further study

in this thesis. Using the above mentioned model 39 circuits that correctly patterned both

wild type and mutant were found. Out of those 39 only two circuits showed the correct

canalization for both wild type and Kr−. These circuits produced parameters that were

strikingly similar (see table 5.3 ). Both circuits were analyzed and the results discussed in

chapters 5 and 6 are consistent between the two circuits. For clarity we chose one of them

(h -3.5 wt kr 11) and from now on the analysis of the model will refer to this circuit. The

RMS for wild type and Kr− were 11.49 and 11.30 respectively.

5.1.1 Comparison of data to model predictions

We now discuss how well our model reproduced the major findings from the Kr− data

described in Chapter 2. One of the most striking features of the Kr− data was the drastically

reduced levels of gap gene expression. Our model correctly represented the lowered Hb,

lowered Gt and greatly reduced Kni expression (see figure 5.1.1). Moreover, the model
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Table 5.3: Parameters for full model h -3.5 wt kr.11 and h -3.5 wt kr.13 with diffusion
and tll. Asterisk (*) marks the parameters that were not annealed on.

Parameter Model 11 Model 13

Rhb 15.0000 15.0000

RKr 15.0000 15.0000

Rgt 15.0000 15.0000

Rkni 15.0000 15.0000

Dhb 0.2000 0.2000

DKr 0.2000 0.2000

Dgt 0.180303 0.180610

Dkni 0.2000 0.2000

thb1/2 16.0665 16.0678

tKr1/2 11.7515 11.7378

tgt1/2 8.5051 8.5008

tkni1/2 10.3035 10.3026

hhb∗ −3.5000 −3.5000

hKr∗ −3.5000 −3.5000

hgt∗ −3.5000 −3.5000

hkni∗ −3.5000 −3.5000

mhb 0.080075 0.080120

mKr 0.053878 0.054241

mgt 0.033992 0.034083

mkni 0.058476 0.058769

Ehb←Cad 0.019791 0.019783

EKr←Cad 0.025042 0.024954

Egt←Cad 0.017928 0.017931

Ekni←Cad 0.018573 0.018567

Ehb←Tll −0.004557 −0.004547

EKri←Tll −0.021468 −0.021213

Egt←Tll 0.002626 0.002631

Ekni←Tll −0.175158 −0.174912
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Parameter Model 11 Model 13

T hb←Hb 0.021351 0.021344

TKr←Hb −0.016405 −0.016651

T gt←Hb −0.033599 −0.033619

T kni←Hb −0.007471 −0.007593

T hb←Kr 0.014623 0.014643

TKr←Kr 0.042268 0.042698

T gt←Kr 0.046056 0.046008

T kni←Kr 0.019732 0.019756

T hb←Gt 0.002661 0.002672

TKr←Gt −0.065261 −0.064835

T gt←Gt 0.020197 0.020224

T kni←Gt −0.008831 −0.008857

T hb←Kni −0.174888 −0.174833

TKr←Kni −0.017079 −0.017177

T gt←Kni 0.009825 0.009774

T kni←Kni 0.015671 0.015675

T hb←(Hb,Bcd) −0.000560 −0.000561

TKr←(Hb,Bcd) 0.000414 0.000417

T gt←(Hb,Bcd) 0.000929 0.000928

T kni←(Hb,Bcd) −0.000742 -0.000742

T hb←(Kr,Kr) −0.000106 −0.000106

TKr←(Kr,Kr) −0.000145 −0.000147

T gt←(Kr,Kr) −0.000683 −0.000684

T kni←(Kr,Kr) −0.000351 −0.000352

T hb←(Kr,Kni) −0.000305 −0.000304

TKr←(Kr,Kni) −0.000036 −0.000037

T gt←(Kr,Kni) −0.000800 −0.000798

T kni←(Kr,Kni) 0.000268 0.000269
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captured that the expression of kni in Kr− is on par with the background level by the time

of gastrulation [67].

Another behavior our model represented correctly was the earlier time at which the Kr−

gap gene expression peaked. Just like the data, our model showed that the expression reached

maximum around time class 5 and declined to very low levels thereafter, while the wild type

took longer to reach its maximum.

On the other hand, our model did not capture the full magnitude of the anterior shift of

the gt domain into the central part of the embryo as documented in the data. Our circuit

predicted the anterior shift, but not to the same degree as seen in data. Another shortcoming

of our model was that in Kr−, the posterior domain of gt in the data is much broader than

in the model. While the model predicted that the gt domain in Kr− was more variable than

its wild type counterpart, the variability was exaggerated.

Overall, the circuit captured the gap gene expression of wild type correctly. In addition it

reproduced the key features of Kr−, such as a lowered expression of all gap genes in addition

to the anterior shift of Gt.

5.2 Pattern formation in wild type

5.2.1 Anterior regime

In chapter 3 we discussed how framing the gap gene circuits as a dynamical system allows

us to use the techniques of dynamical analysis in order to explain processes such as pattern

formation and canalization. This chapter will use the techniques from chapter 3 with sim-

plifications that were introduced in chapter 4 to show how pattern formation arises from our

equations. We began our analysis by using a simplified version of h -3.5 wt kr 11 without

diffusion or Tll input and considering only the region 35-72% EL. Our analysis involved gath-

ering information about the equilibria and the behavior of the trajectories for each nucleus.

We first analyzed wild type—considering RKr=15. We calculated the equilibria using the
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Figure 5.1.1: Comparison between the dynamics of gap gene expression in the full
model h -3.5 wt kr 11 to data for wild type and Kr−. Each panel on the left provides
a comparison of full model of wild type to wild type data for all four gap genes at selected
times. Each panel on the right provides a comparison of full model of Kr− for the three
relevant gap genes at selected times.

68



Gt model

Hb model

Hb data

Kr data

Gt data

Kni data

Kr model

Kni model

350

300

250

200

150

100

50

0
35 45 55 65 75 85 90

350

300

250

200

150

100

50

0
35 45 55 65 75 85 90

350

300

250

200

150

100

50

0

35 45 55 65 75 85 90

350

300

250

200

150

100

50

0

R
e
la

ti
v
e
 P

ro
te

in
 C

o
n
ce

n
tr

a
ti

o
n

AP Position (%EL)

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0

A B

C D

E F

Figure 5.1.2: Comparison between the wild type and Kr− gap gene patterns. Time
class T6 is represented. (A)Gap gene pattern for wild type model and data with diffusion
and Tll. (B)Gap gene pattern for Kr− model and data with diffusion and Tll. (C)Gap
gene pattern for wild type model without diffusion. (D)Gap gene pattern for Kr− model
without diffusion. (E) Gap gene pattern for wild type model without diffusion and without
Tll. (F) Gap gene pattern for Kr− model without diffusion and without Tll.
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Newton-Raphson method starting from initial conditions that were uniformly distributed

inside the hypercube (0,350)×(0,350)×(0,350)×(0,350). Since the synthesis term is bounded

and decay term is bounded and nonzero, solutions lie in a bounded region. More specifically

solutions va to the equations Rag(ua)− λava = 0, where g(ua) is between 0 and 1, are such

that va ≤ Ra/λa. Hence, the maximum va will be is slightly less than 350. The equilibrium

points are the possible end states of the system, and the trajectories are the dynamics of

our ODE. Each nucleus had a specific initial condition associated to it—Hb forms a gradient

that decreases towards the posterior (see last column of table 5.4) and the other gap genes

are all 0.

% EL Bcd Cad Initial Conditions of Hb

35 43.55 10.80 57.43

37 38.58 14.27 53.63

39 34.18 15.50 50.05

41 30.28 21.38 47.73

43 26.82 26.65 42.27

45 23.76 35.01 39.12

47 21.05 38.07 32.69

49 18.65 39.70 29.40

51 16.52 45.25 23.39

53 14.64 53.84 20.67

55 12.97 54.83 15.57

57 11.49 58.68 13.20

59 10.18 66.19 9.45

61 9.02 69.31 8.06

63 7.99 66.44 5.72

65 7.08 68.41 4.77

67 6.27 75.08 3.38

69 5.56 76.40 2.95

71 4.92 77.19 2.24

Table 5.4: Description of nuclei in terms of Bcd, Cad and Hb. The dynamics of the nucleus
are determined by the pair (Bcd, Cad) but the specific trajectory and the final state of the
system at T6 are determined by the initial conditions of Hb.
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We use the following notation in the analysis below. Firstly, attractors are denoted as

Ai where i is a reference to a specific attractor. Secondly, the saddles are identified as

Sj,ki , where j is the number of positive and k is the number of negative eigenvalues of the

Jacobian at the saddle equilibrium. i is a reference to a specific saddle. Furthermore, to

add a quantitative description to the saddles and attractors of interest, the notation a, b-on

will represent an equilibrium point with high level of protein a and b (in this work that

means above 50) while the other proteins are at a low level [44, 43]. The notation all-off will

represent an equilibrium point where all the proteins are at a low level (in this work that

means below 25); see table 5.6 for a description of all the equilibrium points encountered in

our system. Lastly, there will be certain cases in this thesis where we will be interested in

one branch of a manifold emerging from saddles of type S1,3 and ending in an attractor An.

In those specific instances the branch of interest ending in An will be denoted as U+
n .

The rest of this subsection will describe how the underlying dynamics explain wild type

pattern formation in the anterior by looking at nuclei in the range of 35-57% EL. Table 5.5

contains a summary of this discussion.

At nucleus 35 there are two attractors: A1 and A2. There are also three saddles: S1,3
1 ,

S1,3
2 and S2,2

3 . Starting from the initial conditions on the Hb-axis that correspond to nucleus

35 the trajectory is attracted to A1, getting there by gastrulation, hence the state of the

system is hb, gt-on.

Moving posterior to nucleus 37 the system undergoes a bifurcation that creates two new

saddles: S1,3
4 and S2,2

5 . This change does not affect the trajectory that starts at initial

conditions for nucleus 37, hence by gastrulation the state of the system ends up at the

hb, gt-on attractor once again.

Moving to nucleus 39 affects the overall dynamics significantly, as the newly created

S1,3
4 and A1 annihilate each other in a saddle-node bifurcation. The saddle-node bifurcation

between nuclei 37 and 39 is responsible for the formation of the posterior border of the

anterior gt as it annihilates the attractor A1. The trajectories are attracted to a limit cycle
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% EL Bifurcations ante-
rior to this nucleus

Attractors Saddles Asymptotic
state from bi-
ological initial
conditions

State of the
system at
T6

35 A1 S1,3
1 , S1,3

2

A2 S2,2
3 A1 hb,gt-on

37 S1,3
4 and S2,2

5 are
created (saddle-
node)

A1 S1,3
1 , S1,3

2 , S1,3
4

A2 S2,2
3 , S2,2∗

5 A1 hb,gt-on

39 A1 and S1,3
4 are

annihilated (saddle-
node)

A2 S1,3
1 , S1,3

2 Limit cycle hb-on

S2,2
3 , S2,2∗

5

41 S2,2∗
5 7→A∗4 (Hopf).

A3 and S1,3
6 are cre-

ated (saddle-node)

A2 S1,3
1 , S1,3

2 , S1,3
6

A3 S2,2
3 A3 hb-on

A∗4

43-45 A2 S1,3
1 , S1,3

2 , S1,3
6

A3 S2,2
3 A2 via U+

2 Kr, hb-on

A∗4

47-57 A2 S1,3
1 , S1,3

2 , S1,3
6

A3 S2,2
3 A2 Kr-on

A∗4

Table 5.5: Summary of equilibria for each anterior nucleus for wild type (see table 5.6 for
biological characterization of these equilibria). The bifurcations which occur anterior to each
nucleus, the asymptotic behavior of the trajectories for each nucleus and the location of the
system in phase space by T6. Creation and annihilation are in the direction from anterior
to posterior. Equilibria marked with an asterisk have complex eigenvalues.
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Equilibrium point Description

A1 hb, gt-on

A2 Kr-on

A3 hb-on

A4 all-off

S1,3
1 Kr, kni-on

S1,3
2 hb,Kr-on

S2,2
3 all-off

S1,3
4 all-off

S2,2
5 all-off

S2,2
6 hb-on

Table 5.6: Biological characterization of the equilibrium points at the location in phase space
when the point first appears in table 5.5.
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Figure 5.2.1: Pattern formation for wild type from 35% EL to 72% EL. Blue spheres are
attractors. Red spheres are saddles of type S1,3. Brown spheres are saddles of type S2,2.
Time is represented by the color of the trajectories. Trajectories are green from cycle 13 to
beginning of C14A. Throughout C14A the color changes from green to red. Red corresponds
to gastrulation. There is an abrupt transition to blue after gastrulation. (A) 47% EL. 10
trajectories are shown with starting points uniformly distributed on the Hb axis between
0-100. (B)59% EL. 10 trajectories are shown with starting points uniformly distributed on
the Hb axis between 0-10. The unstable magenta manifold is generated by S1,3

1 . (C) Panel
(B) with Hb scale increased by a factor of 3. (D) Gap gene pattern for wild type (without
diffusion and without tailless). (E) Parametric portrait of the circuit for wild type. Black
lines are bifurcations involving only saddles. Green lines are bifurcations involving saddles
and attractors. The dark blue line is the Hopf bifurcation. Red triangles correspond to
nuclei 35-71, with 35% EL on the right bottom corner.
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that is associated with a Hopf bifurcation discussed in the paragraph below. The limit cycle

doesn’t have biological significance as it is transient and it does not allow for any special

dynamical behavior, it only serves as an attracting object to place the system at hb-on by

gastrulation.

Moving more to the posterior the system undergoes the last two bifurcations, a Hopf

and a saddle-node. The Hopf bifurcation turns S2,2∗
5 which is an all-off saddle with complex

eigenvalues into the attractor A∗4 with complex eigenvalues. As we approach the Hopf bifur-

cation the radius of the limit cycle decreases and this causes the space where the trajectories

were moving away from S2,2∗
5 to shrink. Eventually the limit cycle’s radius becomes 0 and

disappears altogether, leaving only the trajectories that were spiraling into it. This is how

A∗4 is formed. This attractor will pay an important part in posterior pattern formation. At

this anterior point on the A-P axis it does not play a part at all as its basin of attraction

consists of low values of Hb, which are only accessible from the initial conditions existing in

the posterior part of the embryo.

The saddle-node bifurcation creates S1,3
6 and A3. Hence at 41% EL we have a total

of three attractors: A2, which has been present from the most anterior point considered

together with the newly created A3 and A∗4.

As no more bifurcations occur at more posterior points, the patterning in this region is

a result of how changes in Bcd and Cad affect the position of different equilibria as well as

to which basin of attraction the initial condition on Hb belongs to and what structure the

trajectory gets attracted to. At 41% EL the nucleus is in the basin of A3.

Going from nucleus 41 to 43 the phase space undergoes two major changes in terms of

the location of equilibria. The S1,3
6 saddle goes from being hb-on to hb, kr-on and A3 moves

to an even higher location along the Hb-axis. Whereas in nucleus 41 the majority of the

trajectories tended to A3, now only the trajectories with high Hb initial conditions end up

at A3. Trajectories with a starting point at the intermediate Hb values go to A2 via an

unstable manifold U+
2 from S1,3

2 to A2. By the onset of gastrulation they wind up at the
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hb,Kr-on state. The spike in the Kr expression at its anterior border is solely an artifact

of the diffusionless model. In the model with diffusion there are no such spikes, but rather

a smooth transition from Kr-off to Kr-on. This is also the only place in the anterior where

the trajectories are attracted to the unstable manifold rather than point attractors.

More posteriorly, the saddle S1,3
2 moves in the direction of lower hb and higher Kr. This

movement of S1,3
2 is the mechanism by which the posterior border of anterior hb is formed.

Nucleus 47 is in the basin of A2 and the trajectories get to Kr-on by gastrulation (see figure

5.2.1 panel (A)). Hence the anterior border of the central Kr domain is formed by switching

basins into A2 from A3; the switch is facilitated by the movement of S1,3
2 . From 47% EL to

57% EL there are no significant changes in the phase space, and the nuclei are persistently

located in the basin of A2.

5.2.2 Posterior regime

From 59% EL until 72% EL the dynamical structure of the phase space remains invariant

and the initial Hb concentration places the nuclei in the basin of the all-off attractor A∗4.

Trajectories approach A∗4 by converging to the unstable manifold arising from S1,3
1 (see

magenta curve in figure 5.2.1 panel (B)). The unstable manifold traverses all of the states

in the embryo posterior to 57% EL. The trajectories approach the unstable manifold by

gastrulation and the final state in the phase space depends continuously on the initial Hb

position (see figure 5.2.1 panel (C)). The higher initial conditions of Hb, correspond to more

anterior nuclei which end up at kni-on, while the lower values correspond to more posterior

nuclei which end up at gt-on by gastrulation (see table 5.4 and figure 5.2.1 panel (C)). Thus

the posterior border of the central Kr domain is formed by crossing into the basin of A∗4,

while both the anterior and posterior borders of kni and the anterior border of posterior gt

are formed by the continuous dependence of the final state on the initial values of Hb as

facilitated by the attraction to the unstable manifold.

These results support a previous analysis of wild type [43]. In the anterior part of the
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Figure 5.2.2: Mechanisms of border formation for wild type. This is an annotated
version of panel (D) from figure 5.2.1. Borders are marked by letters A-D (A) Bifurcation
annihilates A1. (B) Trajectory switches from being in A3 basin to A2 basin. (C)Trajectory
switches from being in A2 basin to A∗4 basin. (D) Trajectory approaches the attractor via
an unstable manifold, with the state of the system by gastrulation dependent on the initial
value of Hb.
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embryo the main mechanism of pattern formation was the attraction to point attractors.

The change in concentration in Bcd and Cad was responsible for the change in the dynamics

that allowed for correct pattern formation.

In the posterior the object of attraction changed to an unstable manifold, and the states

of trajectories at gastrulation were sensitive to changes in the initial conditions of Hb. The

position of the manifold in Hb-Kr-Gt-Kni space remained fairly invariant for all nuclei pos-

terior to 57% EL. In fact, as we shall see in Chapter 6, this particular unstable manifold

will be fairly invariant to perturbations in Bcd alone with Cad fixed, and will play a major

role in canalizing the gap gene pattern. In the case of [42], the switch between two different

mechanisms for pattern formation came about through a saddle-node bifurcation, but in this

study it was through switching into the basin of A∗4.

5.3 Pattern formation in Kr−

The model for Kr− consists of the same parameters as the one for wild type with the

exception of RKr which is set to 0. Our analysis of mutants proceeds similarly to the wild

type. We start off by finding the equilibria for each nucleus and calculating the dynamics

that different combinations of Bcd and Cad bring about. There are two different ways of

finding equilibria. We can either think of our mutant model as a separate entity from wild

type and find the zeros using the Newton-Raphson method, or we can think of Kr− as a

numerically mutated wild type version. By continuously changing one parameter in our

model, the maximum synthesis rate of Kr, we can smoothly turn down the function of Kr

in such a way as to model an allelic series running from homozygous wild type levels to

heterozygous, and then to hypomorphic and finally to functional null. These two methods

were used to cross-validate each other.

At every nucleus each equilibrium found for wild type was used as the starting point

for continuation in the RKr parameter. AUTO (see section 4.2) allowed us to trace what
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happened to each of the equilibrium points as the transition between wild type and Kr−

took place (see figure 5.3.1).

The first aspect to notice is the annihilation of A2. A2 gets annihilated with S1,3
1 as RKr

is lowered (see figure 5.3.1 panel (A)). This saddle-node bifurcation occurs around RKr=6

for 35% EL, but the position moves continuously to higher values of RKr as we consider

more posterior nuclei. For 45% EL it is around 10 and stays so until 72% EL.

Another observation to note is that A4 appears sooner in mutants—by nucleus 39, while in

wild type it is only present from nucleus 41 onward (see table 5.7). This is the only time where

the stability of an equilibrium point is changed when we transition from wild type to Kr−.

All the attractors in the Kr− dynamics come from wild type through continuation in the

RKr parameter. In fact an even stronger statement can be made, which is that the attractors

remain fairly invariant throughout the transformation (see table 5.7). Furthermore, with

the exception of 35% EL all the saddles that appear in the Kr− dynamics are continuations

of saddles from the wild type (see figure 5.3.1).

Considering the dynamics of 35% EL with parameter RKr being lowered, the only two

equilibria that have not originated from wild type are S1,3
4 and S2,2

5 , which were created

through a saddle-node bifurcation at RKr=1.

The number of equilibria for each nucleus decreased from between 3 and 7 in wild type

to between 1 and 3 in Kr−.

At 35% EL the system possesses one attractor, A1 and two saddles, S1,3
4 and S2,2

5 . The

trajectory reaches A1 by gastrulation.

At 37% EL S1,3
4 has a dramatic gain in Hb concentration, thus guiding the trajectories

along higher Hb coordinates en route to A1. A1 is reached long after the gastrulation; at the

onset of gastrulation the system is in hb-on state.

There are two bifurcations between nucleus 37 and 39. The first is a Hopf bifurcation

which turns S2,2
5 with complex eigenvalues into A4 with complex eigenvalues. The second

bifurcation occurs when S1,3
4 and A1 come together and annihilate each other in a saddle-
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% EL RKr=15 (wild type) Dynamics for Intermediate values of
RKr

RKr=0 (Kr−)

35 A1, A2 A2 and S1,3
2 annihilate each other; A1

S1,3
1 , S1,3

2 , S2,2
3 S1,3

1 and S2,2
3 annihilate each other; S1,3

4 , S2,2
5

S1,3
4 S2,2

5 are created

37 A1, A2 A2 and S1,3
2 annihilate each other; A1

S1,3
1 , S1,3

2 , S2,2
3 , S1,3

4 , S2,2
5 S1,3

1 and S2,2
3 annihilate each other; S1,3

4 , S2,2
5

39 A2 A2 and S1,3
2 annihilate each other; A4

S1,3
1 , S1,3

2 , S2,2
3 , S2,2

5 S1,3
1 and S2,2

3 annihilate each other;

S1,3
5 turns into A4

41 A2, A3, A4 A2 and S1,3
2 annihilate each other; A4

S1,3
1 , S1,3

2 , S2,2
3 , S1,3

6 S1,3
1 and S2,2

3 annihilate each other;

A3 and S1,3
6 annihilate each other

43-72 A2, A3, A4 A2 and S1,3
2 annihilate each other; A3, A4

S1,3
1 , S1,3

2 , S2,2
3 , S1,3

6 S1,3
1 and S2,2

3 annihilate each other; S1,3
6

Table 5.7: Equilibria of Kr− obtained by continuous reduction of RKr from the equilibria of
wild type. This table summarizes the dynamics that occur as RKr is lowered, as well as the
final equilibria of the Kr− system. If two equilibria are either annihilated or created it is
done through a saddle-node bifurcation. If a saddle becomes an attractor or vice-versa it is
through a Hopf bifurcation.
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% EL Bifurcations ante-
rior to this nucleus

Attractors Saddles Asymptotic
state from bi-
ological initial
conditions

State of the system at T6

35 A1 S1,3
4 A1 hb, gt-on

S2,2
5

37 A1 S1,3
4 A1 hb-on

S2,2∗
5

39-41 S2,2∗
5 7→A∗

4 (Hopf).
A1 and S1,3

4 are
annihilated (saddle-
node)

A∗
4 A∗

4 hb-on

43-51 A3 and S1,3
6 are cre-

ated (saddle-node)

A3 S1,3
6 Nuclei 43-45 hb-on,

A4 A4 Nuclei 47-51 all-off

53-71 A3 S1,3
6 A∗

4 Nuclei 53-57 all-off

A∗
4 Nuclei 57-59 medium Gt,

Nuclei 59-71 gt-on

Table 5.8: Summary of equilibria for each nucleus for Kr− (see table 5.6 for biological
characterization of these equilibria). The bifurcations which occur anterior to each nucleus,
the asymptotic behavior of the trajectories for each nucleus and the location of the system
in phase space at T6 are presented. Creation and annihilation are in the direction from
anterior to posterior. Equilibria marked with an asterisk have complex eigenvalues.
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node bifurcation. Thus at 39% EL and 41% EL the system possesses only one attractor,

namely the all-off A∗4. The initial conditions of nuclei 39 and 41 place them too far away

from this attractor to reach it before the gastrulation, by the onset of which they are in

hb-on state (see figure 5.3.2 panel (A)).

The final bifurcation occurs between 41% EL and 43% EL. It is a saddle-node bifurcation

which creates S1,3
6 and A3. Note that even though the system now possesses A3, the basin of

its attraction consists of initial Hb values that are greater than 50, while by 43% EL the Hb

value is only 42.27 (see table 5.4). Hence this attractor does not play a role in the pattern

formation for Kr−. By nucleus 49 A4 is no longer complex. As we move to the posterior,

the initial conditions are closer to A4, which results in posterior nuclei having lower Hb final

state by the time of gastrulation. This is how the posterior border of the anterior hb domain

forms.

For nuclei posterior to 63% EL, A∗4 becomes complex again, with trajectories approaching

it via a spiral. The spiral lies in the Gt-Kni plane, with very a low Kni component (see figure

5.3.2 panels (C) and (D)). The gt domain is formed by attraction to a stable focus.

We now explain the reasons behind two main features of Kr− data: the reduced levels

of gap gene expression and the anterior shift of the gt domain. In the anterior the Hb levels

are reduced in mutants due to the loss of A1 via a saddle-node bifurcation (trajectories are

attracted to all-off A4). In the posterior the gap gene expression levels are drastically lowered

by attraction to an all-off attractor—A∗4. In particular Kni expression is especially low due

to trajectories traversing only the low values of Kni as they spiral into A∗4.

In the wild type system nuclei posterior to 57% EL belonged to the basin of A∗4. Of

those, only the most posterior nuclei (posterior to 65% EL) ended up in a gt-on state due

to the way that trajectories were attracted to U+
4 . In Kr− case A4 alone was responsible

for formation of gt domain. All nuclei posterior to 37% EL belonged to the basin of A∗4, and

nuclei posterior to 57% EL had initial conditions close enough to the all-off attractor to end

up in a gt-on state by gastrulation (as trajectories spiral into A∗4 along high values on Gt
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axis). Thus the anterior shift in the gt domain of Kr− is due to more anterior nuclei being

in the basin of A∗4.

There are many similarities between the bifurcation portraits of Kr− and the wild type

system (see figures 5.2.1 panel (E) and 5.3.2 panel (E)). Within the scope of 35% EL-72%

EL the same bifurcations are undergone by both systems. In fact even their equilibrium

points are similar in the sense that Kr− equilibria can be though of as derived from the wild

type without major changes (see figure 5.3.1 and table 5.7). However, the final expression

pattern of the gap genes of interest are drastically different.

The next chapter will show the importance of the extra saddles that the wild type system

has and the Kr− system lost during mutation of the RKr parameter. It will demonstrate that

those saddles aid in producing higher levels of expression in wild type. Most importantly

one of those saddles will be responsible for canalization of the Bcd perturbations, which is

visible in the wild type but is completely missing in Kr−.
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Figure 5.3.2: Pattern formation for Kr− from 35% EL to 72% EL. Red spheres are
saddles of type S1,3. Brown spheres are saddles of type S2,2. Time is represented by the
color of the trajectories. Trajectories are green from cycle 13 to the beginning of C14A.
Throughout C14A the color changes from green to red. Red corresponds to gastrulation.
There is an abrupt transition to blue after gastrulation. Orientation of the axes was chosen
to best illustrate the dynamics of each nucleus.
(A) Phase portrait for 39% EL. 10 trajectories are shown with starting points uniformly
distributed on the Hb axis between 0-100. Length of Hb axis is 205, length of Gt and Kni
axes is 65. (B) Phase portrait for 67% EL. 10 trajectories are shown with starting points
uniformly distributed on the Hb axis between 0-100. Length of axis is 355 for Hb and Gt,
255 for Kni. (C) Dynamics from panel(B) near A4. Scale of Hb is increased by a factor of 3.
5 trajectories are shown with starting points uniformly distributed on the Hb axis between
0-20. (D) Gap gene pattern for Kr− (without diffusion and without tailless). Red is Hb,
blue is Gt and magenta is Kni. (E) Parametric portrait of the circuit for Kr−. Red triangles
correspond to nuclei 35-72, with 35% EL on the right bottom corner.
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Chapter 6

Mechanism of Decanalization in Kr−

Embryos

It has been noted by Waddington [75] and Rendel [58], among others that the variability

between individuals within a population of wild type stock is much less than between those of

mutant stock. This difference in variance is especially clear in D.melanogaster. In Chapter

2, data showed that Kr− serves as an example of the above statement. The difference in

embryo-to-embryo variability in the gap gene pattern of Kr− is greater then in wild type

[67].

As it was mentioned in Chapter 4, in order to simulate the embryo-to-embryo variability

of gap gene expression in silico for both wild type and Kr− we used 88 different Bcd profiles

[42]. Fixing all the parameters other than vBcd, we are able to see what is the gap gene

expression under different biologically admissible Bcd inputs. This is done by repeatedly

running the diffusionless model without T ll using all 88 possible Bcd profiles separately.

Figure 6.0.1 demonstrates that there is a characteristic ensemble of gap gene expression for

wild type and one for Kr−. The model predicts canalization in wild type and decanalization

of the gap gene expression in mutants.

The most clear example of complete decanalization of Kr− in comparison to wild type
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Figure 6.0.1: Wild type and Kr− gap gene pattern ensembles under different Bcd
profiles in the region 35-72% EL. The model was run on the range 35-92%EL of which
only 35-72% EL is shown. The time class displayed is T6. Hb is red, Kr is green, Gt is
blue and Kni is magenta. (A) An ensemble of 88 wild type gap gene patterns, using the
full model, resulting from the 88 Bcd profiles (each Bcd profile corresponds to a gap gene
pattern). (B) An ensemble of 88 Kr− gap gene patterns using the full model. (C) An
ensemble of 88 wild type gap gene patterns, using a simplified model with no Tll and no
diffusion. (D) An ensemble of 88 Kr− gap gene patterns using the simplified model.
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is illustrated by variability in the expression of the posterior gt domain in mutants. In fact

the focus of the analysis in this work will be on the posterior part of the embryo, namely

59-72% EL and more specifically on the gt expression. For each nucleus in the posterior

of the wild type system, different inputs of Bcd bring about small changes in the relative

protein concentration of Gt. Thus for a specific nucleus gt is either on or off for all possible

88 Bcd concentrations. Over on the mutant side we have a much more uncertain picture. For

every nucleus in the posterior, the gt expression is highly dependent on the Bcd input, with

the state of gt having all the possibilities from completely on to completely off depending

on what Bcd concentration is chosen. Figure 6.0.2 demonstrates how extreme values of Bcd

chosen from the 88 profiles result in extreme expression in gt. Thus we can see that while

wild type takes the variability in maternal input and minimizes it at the gt expression level,

Kr− exaggerates the same variability at the gt level.

In this section we first investigate the mechanism by which wild type canalizes Bcd input.

We then show why the same mechanism cannot be extended to a Kr− circuit and under

which conditions it breaks down. The focus will be on the Gt coordinate in phase space

(figure 6.0.2) and this in turn will translate to the gap gene expression pattern (figure 6.0.1).

In the analysis done in Chapter 5 we have seen that in the wild type system all the

posterior nuclei are attracted to the unstable manifold, with the state of the system by

gastrulation dependent on the initial conditions of Hb. Thus it makes sense that changes in

Bcd result in similar states of the trajectories by gastrulation. It was also shown in Chapter 5

that wild type and Kr− possess different mechanisms of patterning the posterior. While A4

is the attracting state for both Kr− and wild type trajectories in the posterior, the way the

trajectories approach the attractor are different. The wild type system possesses an unstable

manifold U+
4 stemming from S1,3

1 and ending up at A4 that the trajectories get attracted to

by gastrulation (see figure 5.2.1 panel (B)). For Kr− the trajectories approach A4 directly

in a manner that is dependent on the A-P position.

In order to ascertain how the wild type canalizes and Kr− fails to canalize Bcd pertur-
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trajectories at gastrulation. (C) Phase space for wild type.
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bations we need to see what happens to the mechanism of patterning in the posterior as the

levels of Bcd are changed.

6.1 Dependence of the unstable manifold U+
4 on Bcd

concentration

For wild type U+
4 dependence on Bcd concentration needs to be examined. U+

4 depends on

the starting and ending point, namely S1,3
1 and A4. The behavior of the trajectories in the

neighborhood of U+
4 is influenced by the different equilibria that are nearby. Firstly, varying

the Bcd concentration in the biological range of interest produces no significant local changes

to the equilibria present. Secondly, we will use AUTO’s continuation package to track the

location and changes in type of S1,3
1 and A4. We will continue S1,3

1 and A4 as we vary Bcd

in the range of all the possible concentrations found in the 88 profiles. These two equilibria

were continued separately from each other.

Considering S1,3
1 first, figure 6.1.1 shows that not only does S1,3

1 remain of the same type,

without undergoing any bifurcations, as Bcd concentration is varied but it also remains in the

same state, namely Kr, kni-on, for almost all Bcd values. The location of the saddle-node

bifurcation that eventually annihilates the saddle (black arrow in figure 6.1.1) varies slightly

between the posterior nuclei with 63% EL being at Bcd concentration of 4.07 (here the Bcd

inputs are larger as it is more anterior), 69% EL at 0.15 and the rest of them between Bcd

concentrations of 2.62 and 3.29.

Next we consider continuation of A4. As we can see from figure 6.1.2, the attractor

persists only for Bcd concentrations less than 13.49 for nucleus 67. The attractor changes

into S2,2
4 as a result of a Hopf bifurcation1 (figure 6.1.2). As soon as A4 is transformed to

a saddle point S2,2
4 , the unstable manifold switches its end point to the other attractor—A3

1As Bcd concentration increases further S2,2
4 in essence becomes S2,2

7 through the creation and annihilation
of the ”transient” saddle S2,2

t .
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(see figure 6.1.3 panel (B)). Hence for Bcd concentrations below 13.49 we have U+
4 which

ends in A4 and above 13.49 we have U+
3 which ends in A3. A3 has very low components

of Gt, Kr and Kni, just like A4. The location of U+
4 and U+

3 on the Kr-Kni plane remains

practically the same.

The presence of S1,3
1 and its unstable manifold buffers the maternal perturbations. The

Bcd range among the 88 profiles can be split into two parts—below and above 13.49. For Bcd

concentration less than 13.49, U+
4 remains in the same location and for Bcd concentration

greater than 13.49 we have U+
3 which attracts the trajectories to gt-on state by gastrulation.

U+
3 and U+

4 persist due to the existence of S1,3
1 . As this saddle remains invariant in location

and type under the perturbations in Bcd, the unstable manifolds are not affected by different

levels of Bcd and the wild type system canalizes gt expression in the posterior.

Another finding from the wild type system must be noted, as it will be of importance in

the Kr− case. The Gt component of A4 increases to high level as Bcd increases, while the

Hb, Kr and Kni components remain mostly the same under Bcd changes (see figure 6.1.2).

With a decrease in Bcd concentration A4 becomes a stronger attractor as the absolute value

of the eigenvalues corresponding to the attractor increases (see table 6.1 last column). The

dependence of position and strength of A4 on Bcd is of no consequence in the wild type case,

as all these changes do not influence the location of the unstable manifold nor its ability to

attract trajectories to gt-on state by T6, but it will be crucial for Kr−.

6.2 Dependence of A4 in Kr− on Bcd concentration

For Kr− the dependence of A4 on Bcd parallels that of wild type. First, the Gt component

of the attractor rises with increasing Bcd concentration, as shown in figure 6.2.1. As is the

case with wild type, the absolute value of the real part of eigenvalues of A4 tend to increase

as Bcd concentration falls (see table 6.1 first column).

The difference between the wild type and Kr− continuations of A4 with respect to Bcd
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Hopf bifurcation turning the attractor into an S2,2

4 saddle. At a Bcd concentration of 13.92
there is a saddle-node bifurcation creating S1,3

t and S2,2
7 and at 13.93 another saddle-node

bifurcation annihilates S2,2
4 along with S1,3

t . S2,2
7 persists for all higher Bcd concentrations.

S2,2
7 is gt-on. Two arrows point to the saddle-node bifurcations. (B) Only the Kr component

is shown. Circle shows the position of the bifurcation on the Kr axis.
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is that for Kr− the Hopf bifurcation occurs at larger concentrations of Bcd. Therefore for

sufficiently large concentrations of Bcd the A4 of the wild type system is a saddle, while

in the Kr− system it is still an attractor. Furthermore A4 for the Kr− has two complex

eigenvalues, whereas A4 for wild type has four complex eigenvalues (see table 6.1 middle row

first and last columns). Furthermore, as Bcd concentration decreases the complex part of

the conjugate eigenvalues gets smaller and for sufficiently low Bcd A4 in the Kr− system has

four eigenvalues real. On the other hand all of the wild type attractor’s eigenvalues maintain

nonzero complex part throughout the range of interest for Bcd.

These findings about dependence of A4 on Bcd are very important in the Kr− case as

there are no other equilibria in the vicinity of the initial conditions to govern the dynamics.

Trajectories are dependent on the location and type of eigenvalues of A4. High Bcd concen-

tration results in a trajectory that spirals along large values on the Gt axis without reaching

the attractor by gastrulation(see figure 6.0.2 (H)). This is a consequence of the large Gt
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Bcd con-
centration

RKr=0 RKr=4 RKr=7.5 RKr=10 RKr=15

13.11 -0.059 -0.057-0.006i -0.057-0.008i -0.057-0.008i -0.056-0.008i

-0.059 -0.057+0.006i -0.057+0.008i -0.057+0.008i -0.056+0.008i

-0.025-0.022i -0.020-0.026i -0.015-0.028i -0.012-0.028i -0.005-0.027i

-0.025+0.022i -0.020+0.026i -0.015+0.028i -0.012-0.028i -0.005+0.027i

10.02 -0.063 -0.057-0.009i -0.055-0.012i -0.052-0.013i -0.052-0.014i

-0.059 -0.057+0.009i -0.055+0.012i -0.052+0.013i -0.052+0.014i

-0.036-0.013i -0.034-0.019i -0.032-0.024i -0.030-0.026i -0.026-0.030i

-0.036+0.013i -0.034+0.019i -0.032+0.024i -0.030+0.026i -0.026+0.030i

6.27 -0.068 -0.059-0.011i -0.056-0.015i -0.054-0.016i -0.051-0.018i

-0.059 -0.059-0.011i -0.056+0.015i -0.054+0.016i -0.051+0.018i

-0.043-0.005i -0.042-0.012i -0.041-0.017i -0.040-0.019i -0.037-0.024i

-0.043+0.005i -0.042+0.012i -0.041+0.017i -0.040-0.019i -0.037+0.024i

4.02 -0.070 -0.061-0.011i -0.058-0.016i -0.056-0.018i -0.052-0.019i

-0.059 -0.061-0.011i -0.058+0.016i -0.056+0.018i -0.052+0.019i

-0.049 -0.043-0.009i -0.043-0.013i -0.041-0.016i -0.041-0.021i

-0.041 -0.043+0.009i -0.043+0.013i -0.041+0.016i -0.041+0.021i

2.26 -0.071 -0.062-0.011i -0.059-0.015i -0.057-0.017i -0.053-0.020i

-0.059 -0.062-0.011i -0.059+0.015i -0.057+0.017i -0.053+0.020i

-0.052 -0.045-0.007i -0.044-0.011i -0.043-0.014i -0.040-0.018i

-0.040 -0.045+0.007i -0.044+0.011i -0.043+0.014i -0.040-0.018i

Table 6.1: Eigenvalues of A4 for selected values of RKr and Bcd for nucleus 67. Bcd concen-
trations are taken from 88 Bcd profiles.
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component of A4 combined with the smaller absolute value of the negative real part of the

eigenvalues as well as two of the eigenvalues being complex conjugates. Low Bcd concentra-

tion results in the trajectories that go straight to A4 (see figure 6.0.2(L)). This behavior is

due to A4 having a small Gt component and all of its eigenvalues having a larger absolute

value of the negative real part as well as all eigenvalues being real. Thus the Kr− system

amplifies the variability in the Bcd input by admitting all the possible responses from high

Gt to very low Gt concentration for a relatively small range of Bcd concentrations.

So far it has been shown that in the wild type system, S1,3
1 and its associated unstable

manifold are responsible for patterning the posterior of the embryo. Moreover this system

canalizes Bcd perturbations at the level of posterior gt expression. On the other hand in

Kr− posterior pattern formation is governed by the system’s dependence on A4 and there

is no mechanism to buffer the effect that variation in Bcd concentration has on A4. As a

result Kr− has a decanalized posterior gt expression. What happens to unstable manifold

in between wild type and mutants?

6.3 Loss of canalization by annihilation of S1,3
1

In the previous section we have seen that the unstable manifold is crucial to canalization. In

this section we investigate why Kr− does not allow for the unstable manifold that wild type

possesses and what happens to S1,3
1 as we transition from wild type to the mutant system.

This transition is undertaken by continuously changing RKr, the parameter for the maximum

synthesis rate of Kr. Through this change we can smoothly turn down the function of Kr to

get to Kr−. Thus we have a way to mutate our system all the way from wild type (RKr=15)

to Kr− (RKr=0).

All of the bifurcations that the system undergoes when continuing equilibria from wild

type to Kr− were briefly mentioned in Chapter 5, but the discussion below will go into more

detail with respect to two particular equilibria and one specific bifurcation that is important
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Figure 6.2.1: Location of A4 under Bcd perturbation for 67% EL in Kr−. Starting
with the median Bcd concentration for nucleus 67 (*) we continued A4 in the direction of
increasing and then in the direction of decreasing Bcd. Solid lines signify that the equilibrium
is an attractor; dotted lines mean that it is of a saddle type. Red is the Hb coordinate, blue
is Gt and magenta is Kni. The colored squares are the location of the Hopf bifurcation on
a coordinate of corresponding color. Arrows point to the saddle-node bifurcations. (A) All
three coordinates are represented with their corresponding colors. For all Bcd concentrations
less than 15.34 A4 remains in the state all-off and of type attractor. At Bcd 15.34 there is
a Hopf bifurcation turning the attractor into an S2,2

4 saddle. At Bcd concentration of 15.15
there is a saddle-node bifurcation creating S1,3

t and S2,2
7 and at 15.51 another saddle-node

bifurcation annihilates S2,2
4 along with S1,3

t . S2,2
7 persists for all higher Bcd concentrations.

S2,2
7 is gt-on. (B) Only the Hb component is shown. Circles shows the position of the

bifurcations on the Hb axis.
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Figure 6.3.1: Continuation of A4 with respect to RKr at 67% EL. This figure shows
how A4 responds to different values of RKr. Not only does A4 persists throughout all the
possible values of RKr from wild type to mutant, but its location in Hb-Kr-Gt space remains
practically invariant.

in order to understand decanalization.

In the posterior region of the gt domain, two equilibria play a major part in pattern

formation and canalization in wild type: A4 and S1,3
1 . Tracking these two equilibria while

turning RKr down, we note that A4 remains in the same location in the Hb-Gt-Kni space

(see figure 6.3.1). However, the eigenvalues corresponding to the extreme values of RKr

are quite different (see table 6.1 first and last columns). Whereas the attractor in the wild

type system has all complex eigenvalues, the attractor for the Kr− system has two real and

two complex ones. When we lower RKr from 15 to 0, the complex part of one of the two

pairs of conjugate eigenvalues becomes smaller and by RKr=0 it goes to zero, hence the two

eigenvalues become real.

The saddle S1,3
1 starts at high Kr and Kni concentrations when RKr=15, and as RKr

is lowered these two concentrations decrease. There is a saddle-node bifurcation that an-

nihilates the saddle before RKr gets to 0 (see figure 6.3.2). Therefore this saddle has no

analog for Kr−. This bifurcation is of major importance as the saddle that is destroyed is

responsible for canalization in the wild type. Without this saddle the system is not able to

buffer the perturbations in Bcd input that result in changes to A4. Low Bcd input creates

strong all-off attractor, causing trajectories to go straight to A4, resulting in low Gt by gas-
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trulation. High Bcd input creates weak all-off attractor, leading trajectories along high Gt

en-route to A4, which is reached long past gastrulation, resulting in high Gt by gastrulation.

Continuation of S1,3
1 was calculated for each nucleus separately, hence the location of the

saddle-node bifurcation is slightly different for each nucleus. It is largest for nuclei 63-65 at

RKr between 6.57 and 6.58 and for the other posterior nuclei it is between 6.24 and 6.32.

The equilibrium point that is annihilated along with the above saddle started off as S2,2
6 .

S2,2
6 underwent a Hopf bifurcation which converted it to an attractor At. This attractor

annihilates S1,3
1 and for all the values of RKr below 6.24 there is no S1,3

1 for any of the nuclei.

If we look at the gap gene pattern for each RKr (see figure 6.3.3) we see a sharp change

in canalization of the posterior gt domain as soon as the saddle-node bifurcation annihilates

S1,3
1 . Before the saddle-node bifurcation (see figure 6.3.3 (A)-(D)) posterior gt expression was

canalized. Once the saddle disappears and with it the associated unstable manifold, expres-

sion becomes completely decanalized taking all possible values from high Gt concentration

to low Gt concentration (see figure 6.3.3 (E)-(F)).

Three more points need to be made. Firstly, canalization is more pronounced for more

posterior nuclei. Recalling U+
4 from figure 5.2.1 panel (B) we see that the slope with respect

to Gt is negligible for more posterior nuclei, hence different trajectories project onto the

same Gt coordinates by gastrulation. On the other hand, the trajectories that start with

initial conditions corresponding to more anterior nuclei end up at the part of U+
4 that has

a large slope with respect to Gt. For these nuclei, even though the Bcd fluctuations are

buffered by the manifold, the differences in Gt coordinates by gastrulation are larger than

for their more posterior counterparts.

Secondly, kni expression becomes smaller with decreasing RKr values. The reason for

this is the change in S1,3
1 location as RKr changes. For the wild type S1,3

1 has high Kr and

Kni values but as RKr is lowered both Kr and the Kni coordinates decrease in value (see

figure 6.3.2). This reduces the distance between S1,3
1 and A4, the start and end point for

unstable manifold, respectively. This produces an unstable manifold that spans lower values
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Figure 6.3.2: Continuation of S1,3 with respect to RKr at 67% EL. By continuously
changing RKr (maximum synthesis rate of Kr) in our model, we smoothly turn down the
function of Kr all the way down to null. Continuing S1,3

1 , which is associated with the unstable
manifold using AUTO allows us to find a point at which unstable manifold no longer exists.
The starting point of the continuation is wild type (RKr=15). Kr− corresponds to RKr=0.
The colored squares are the location of the Hopf bifurcation on a coordinate of corresponding
color. This bifurcation converts S2,2

6 into At as RKr is turned down. Asterisk indicates the
position of the saddle-node bifurcation that annihilates S1,3

1 at RKr=6.26. (A)All four
coordinates are represented with their corresponding colors. Arrows point to the branch to
which S1,3

1 belongs to for each of the four coordinates. (B) Kni coordinate is illustrated.
Circle shows the position of the saddle-node bifurcation on the Kni axis.
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Figure 6.3.3: Continuation of S1,3
1 with respect to RKr corresponding to 67% EL and

characteristic ensembles of gap gene expression corresponding to different values
of RKr. For each RKr between wild type (RKr=15) and Kr−(RKr=0) we can associate an
ensemble of 88 gap gene patterns, corresponding to different Bcd inputs. These ensembles
were generated from the model with no diffusion and no Tll. The ensembles A-F are grouped
around panel G, and points in G corresponding to the ensembles in A-F are labeled with
the corresponding letter. The values are (A) RKr=15, which is the wild type, (B) RKr=13,
(C) RKr=10, (D) RKr=7.5, (E) RKr=4, (F) RKr=0, which is Kr−. (G) Panel (B) from
figure 6.3.2.
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on Kni axis.

Lastly, different RKr result in different methods of patterning the posterior of the embryo.

For high RKr, the pattern is a result of the trajectories choosing a state on unstable manifold

based on the initial conditions. As RKr is lowered the patterning is more and more influenced

by the effect Bcd input has on the eigenvalues of A4.

It has been shown in this chapter that while high biologically relevant Bcd concentration

always result in high gt expression, lower Bcd concentrations need to be buffered to produce

relatively invariant posterior gt pattern by the U+
3 or U+

4 . As the function of Kr is turned

down Kr and Kni coordinates of S1,3
1 are lowered causing kni domain to reduce significantly.

As RKr is lowered further, S1,3
1 is annihilated via a saddle-node bifurcation. With the loss

of S1,3
1 , the low values of Bcd result in drastically different gt expression and therefore a

complete loss of canalization is triggered by the abrupt absence of unstable manifold.
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Chapter 7

Conclusions

Dynamical analysis has been employed in this dissertation in order to explain the distinct

gap gene pattern in the Kr− embryos. Of particular interest were the lowered levels of

hunchback, giant and knirps, in light of the fact that it has been noted that Krüppel is a

repressor of all of them [31, 30, 20, 40]. Furthermore, bifurcation analysis highlighted the

mechanism and the structure responsible for canalization of posterior gt in wild type. This

analysis has displayed what happens to the mechanism as the function of Kr is turned down.

And finally it demonstrated why in the Kr− system there is a complete decanalization of gt

pattern.

We have employed a model that could be used for both wild type and well as null mutant

studies simultaneously. This model accurately predicted the gap gene expression for both

wild type and Kr null mutant phenotype in the range 35% EL-72% EL in the embryo. In

addition the model predicted canalization of gap gene pattern for wild and decanalization in

Kr−. The latter was a property of the model, it was not built into it.

The mathematical modeling approach employed in this work was of an inverse optimiza-

tion problem. We did not make any assumptions about the regulatory mechanisms instead

we let the large quantitative data set of high temporal resolution determine the values for

the parameters in the model. To this end the parameters were optimized such that they best
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fit the data for both wild type and Kr− gap gene expressions.

The model was simplified to allow us to use the techniques of dynamical analysis and

to have the ability to perform numerical calculations in reasonable time. Although Tll and

diffusion were set to 0 as a result of the simplifications, the patterns were reproduced correctly

for the region between 35% EL and 72% EL. Furthermore canalization was present in wild

type and absent in Kr− (see figure 5.1.2 and figure 6.0.1).

The analysis in this work was focused more on the trajectories in the phase space and

describing the system in a global qualitative way as well as identifying stable sets rather

than approaching the problem from a completely quantitative direction and concentrating

on the point attractors. This not only simplified our calculations but also allowed us to view

the system in its entirety and see what states could be achieved and what conditions were

needed to achieve them. Furthermore structures responsible for patterning and canalizing

were readily visible and their evolution with respect to different inputs could be tracked.

7.1 Dynamics of the phase space

7.1.1 Wild type system

In Chapter 5 we found that there are two mechanisms responsible for patterning gap gene

domains in wild type—as previously reported ([44, 43]). The mechanism for the anterior was

the attraction to point attractors and in the posterior attraction was to the one-dimensional

stable set. For the mutants, only one mechanism was present—attraction to the point

attractor, in particular to A4.

Attractors are an important feature of the phase space as they influence the nearby

trajectories, but tracking only the movement of attractors or bifurcations involving attractors

would not provide us with enough detail to understand patterning or canalization. Saddles

as well as their associated unstable manifolds play a very important role. With regards to

border formation for the wild type gap gene expression only one of them was formed as a
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direct result of annihilation of an attractor—posterior part of anterior gt. The other anterior

borders were formed by switching basins between two attractors as facilitated by a change

in the location of a saddle in Hb-Kr-Gt-Kni plane. For example the posterior border of

anterior hb and the anterior border of Kr was formed by the location of S1,3
2 moving in the

direction of higher Kr and lower Hb, as more posterior nuclei were considered. This combined

with reduced initial conditions on Hb caused the trajectories to switch basins from the A3

attractor to A2 .

Another example was a saddle, S2,2
5 , that was present in anterior nuclei (35% EL-39%

EL). That saddle turned out to be the most important feature of the posterior dynamics for

Kr− as well as for wild type. By undergoing a Hopf bifurcation, S2,2
5 was transformed into

A4 which was the attractor for the trajectories that corresponded to posterior part of the

embryo.

Not all the bifurcations were significant at the point that they occurred, but they had

influence over the dynamics of the overall phase space. For example, there was a saddle-

node bifurcation between nucleus 35 and nucleus 37 that created S2,2
5 and S1,3

4 . Seemingly

this did not affect the trajectories as they ended up at A1 for 37% EL, and yet afterwards

S1,3
4 collided with A1, thereby annihilating the relevant attracting state via the saddle-node

bifurcation and forming the posterior border of anterior gt.

It should be noted that in the previous model of gap gene system [43] there were three

mechanisms of boundary formation: movement of attractor, initial conditions switching from

the basin of one attractor to another and initial conditions choosing different states on the

attracting manifold. In this model we have seen only the last two mechanisms, though we

have not explored the boundary formation for every individual Bcd profile from the 88 as it

was done in the previous study [16].
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7.1.2 Kr− system

Kr− system has a reduction in the number of attractors and saddles in its dynamics (see

table 5.7). The exclusion of Kr from the interactions limited the number of equilibria. For

all nuclei, with 35% EL and 39% EL being the exception, each of the equilibria for the

Kr− system had an analog from the wild type system. As we transitioned from wild type

to Kr− the equilibria that had a low Kr component for wild type translated into having

no Kr component in Kr− but with no drastic change in their location in Hb-Gt-Kni space.

The equilibria with high Kr coordinate did not have an analog in Kr− system, they were

annihilated as RKr parameter was lowered (see table 5.7). This makes sense as intermediary

systems as well as Kr− do not have as much or any need for equilibria with higher Kr

component as Kr axis loses its importance and dynamics transition into 3-dimensional phase

space.

Whereas in the wild type system posterior patterning occurred by attraction to an unsta-

ble manifold, which stemmed from S1,3
1 and ended up at an A4, Kr− had a different means

of pattern formation. S1,3
1 was one of the saddles that was annihilated in the continuation

of equilibria from wild type to null mutant (see table 5.7), as the Kr component of this

saddle was high. Hence in Kr− we only had A4. Therefore the trajectories were completely

dependent on this attractor and patterns for all the nuclei after 37 were formed based on

dependence of A4 on Bcd as well as initial conditions on Hb.

The complexity of the eigenvalues of A4 clarified the phenomenon that for Kr− the gap

gene expression reached maximum expression earlier than wild type and afterwords went

down. This was a direct result of the fact that the trajectories approached A4 via a spiral

due to the attractor having complex eigenvalues. This was true for both wild type and

mutant, but in wild type the presence of unstable manifold allowed the trajectories to take

a longer route and reach maximum expression later in cycle 14.
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7.2 Canalization

The wild type system is structurally stable, there are several bifurcations in the anterior

part but only one that explicitly affects local dynamics of interest. This structural stability

is not enough to ensure canalization as Kr− system is structurally stable in the same way as

the wild type system is. As the asymptotic state and the state of the system at gastrulation

are not always the same, especially in the posterior part of the embryo, we need to examine

the question of canalization in more detail. When Bcd perturbations are introduced in the

posterior what changes the dynamics of relevant trajectories and the gastrulation state of

the system is not a change in topology but a quantitative change in the eigenvalues of A4.

The real and complex part of the eigenvalues of A4 are dependent on Bcd concentration

(see table 6.1). In Kr− case low Bcd concentration result in A4 having all real eigenvalues,

whereas in wild type eigenvalues of A4 remain complex. The changes in eigenvalues dictate

the way trajectories approach the equilibrium. Without any other attracting structures

nearby, trajectories become extremely dependent on A4. However, in wild type S1,3
1 and its

associated unstable manifold mitigate the effect changes in the eigenvalues of A4 have on the

trajectories.

It was shown in Chapter 6 that the unstable manifold (U+
3 or U+

4 ) is the reason for

canalization in wild type with respect to Bcd variability. The unstable manifold is formed

exclusively in wild type system. The only difference between the wild type and Kr− system

is lack of Kr in the latter. The formation of the unstable manifold is associated with the

network of genes balancing each other out, and if one of the genes is missing the manifold

is not able to form. This manifold facilitates the stability of the trajectories. The saddle

associated with the unstable manifold is an extremely important feature for canalization.

Support for the importance of S1,3
1 for canalization is afforded by comparison with hypo-

morphic and null Kr mutants in which the saddle is not present. These systems are severely

decanalized (figure 6.3.3).

Going back to the analogy of Waddington’s epigenetic landscape, we can associate un-
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stable manifold with some feature of the landscape (i.e. valley) that guides the flow to a

particular fate, in our case a gt-on state. As the epigenetic landscape is shaped by the

organism’s genotype and the networks that the genes form, the Kr null mutant’s network

would be missing all the connections associated with Kr. These missing connections are

responsible for a collapse of the structure that is associated with the unstable manifold. As

a result the flow is unhindered in its ability to explore all the different possible fates (all the

possible states from gt-off to gt-on) if it is perturbed, as the landscape is flat.

7.3 Other models

Another model of both wild type and Kr− gap gene pattern was implemented by Kozlov

et. al. [29], where he successfully modeled both wild type and Kr− gap gene expressions

in the posterior part of the embryo. Reasoning that the model was oversimplified as it had

only one parameter representing the effects of a regulator on its target, Kozlov considered

only the posterior part of the embryo (47% EL-92% EL), where the gap genes hb, Kr, gt

and kni are expressed in one domain, thus justifying the use of a single parameter. Kozlov

used model 1 (equation 3.1.2); whereas model 1 cannot be used to reproduce both wild type

and Kr− patterns correctly for the range considered in this work (35% EL-92% EL), it can

be used to model the reduced range between 47% EL and 92% EL.

Kozlov postulated that the decreased gap gene expression as well as the large anterior

shift of posterior gt expression were due to two events. Firstly, there is a decrease in the

strength of Cad activation in Kr−, which also leads to less auto-activation of all the gap

genes (in particular this is the reason for the reduction in posterior gt expression). Secondly,

as Kr is not longer part of the network in the mutants, new interactions, particularly those

of hb and gt, become important. Anterior gt domain, which is formed by the repression

from Kr and hb spreads anteriorly due to missing Kr expression. This spread of gt domain

reduced kni expression by moving into the region where kni was, and it lowers hb expression
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as gt is an activator of hb in this model.

While this model [29] fits both wild type and Kr− gap gene pattern well in the posterior,

the model doesn’t provide any fits of the anterior pattern. Furthermore, it hasn’t been

checked for robustness in the face of fluctuations as per [44, 43] or this work. The model

presented in this dissertation fits the data for wild type as well as Kr mutants expression

comparable to that of Kozlov. Our model predicts broad gt domain in Kr− more accurately

at earlier times than [29], whereas [29] predicts the dynamic anterior shift in gt better. Both

models miss the slight anterior shift of posterior hb in Kr− in later time class.

Another approach to modeling pattern formation is logical modeling of regulatory gene

networks [60]. This approach was also used to predict single and multiple mutant phenotype

but provided only qualitative results. Logical variables represented the product of each

gene in the network. Some variables had up to 4 levels to represent the situations where

different levels of concentration were needed to regulate different products. Regulatory

interactions were deduced from different mutants studies from the literature. Generalized

logical equations were formulated based on the regulatory interactions, and a state table was

constructed based on the generalized logical equations.

This approach does not provide high temporal resolution but rather divides the embryo

into four areas. While the model predicts several mutant phenotypes without prior knowledge

of mutant expression, the predictions are done with a very rough resolution and the level

of gap gene expression is not quantified, thus the model fails to capture the dynamics of

the mutants. For example the fact that the expression levels reach their maximum in Kr−

earlier than in wild type or that gt has a significantly reduced expression in Kr− is missed

in the logical analysis. This approach would not be suitable to study canalization.

Model 1 (3.1.2) with the same Bcd profiles as used in this thesis was employed by Gursky

[16] for an in-depth study of canalization of the hb border. Gursky found that hb border

formation was due to transition of the initial Hb profile from the basin of attractor that

was hb-on to the basin of another attractor that was in hb-off state (or a hb-off position
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on the unstable manifold). Thus the border formed when Hb profile crossed the boundary

between the two basins. Canalization of the Hb border came about because of the geometrical

fact that although the Hb profile was monotonically decreasing towards the posterior, the

position of the basin boundary along the AP axis was increasing. Thus the variability of the

intersection of the two was small when the effect of 88 different Bcd profiles on the basin

boundaries was considered.

Formation of the hb border in this thesis is consistent with the previous result [16]. In

Chapter 5 it was shown that the border forms by the trajectory switching from being in A3

basin to A2 basin. The mechanism for canalization discussed in this thesis is different from

the one found by Gursky as gt domain lies in the posterior where the pattern formation is

influenced by the unstable manifold and not point attractors (this observation holds true for

[16] as well). Unfortunately we cannot compare the canalization mechanisms in the anterior

to [16] as our model displays large variability in hb border which makes studying canalization

not possible.

Up to now the other efforts to study canalization have been mostly focused on iden-

tifying proteins [38, 59] or microRNA [39] that buffer perturbation to the system. These

molecular mechanisms for canalization consider the buffering against mutational effects and

not canalization of intrinsic fluctuations that are a result of embryo-to-embryo variability.

Furthermore they do not provide a model that explicitly shows what causes decanalization

in mutants. On the other hand we have shown that transformation of the model from wild

type to mutant causes changes to dynamical structures (i.e. equilibria, unstable manifold)

of the deterministic system and leads to decanalization of the gap gene pattern.

7.4 Limitations of the current modeling approach

The model currently is not able to correctly predict the dynamic shift of gt fully. In our

model gt expression levels rise and fall at the correct time and the gt domain is shifted to
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the anterior in comparison to wild type but not as much as the data from Kr− embryos

suggests.

As we studied the diffusionless approximation to the model it is of utmost importance

that this agrees with full model. There are only two discrepancies in the range of our interest

(35% EL-72% EL). These is an erroneous spike in Kr expression at nucleus 43 in wild type

system and a slightly heightened expression of gt after nucleus 65 in Kr−.

While cooperative interactions (encoded in T abc matrix) between transcription factors

that are bound in the vicinity of each other have been suggested by various computational

models [63, 17], the only one that was experimentally verified is Bcd cooperative binding

[41, 36]. The latter has been tried as the only cooperative interaction in our model, but the

fit was not as good as the model used in this work, and the wild type system didn’t canalize

the Bcd perturbation.

7.5 Future possibilities

We have used three cooperative interactions in this work. There were several other inter-

actions tried but those did not produce the best fits to the gap gene pattern and did not

show canalization for the wild type system. It would be instructive to find biologically viable

combinations of nonzero T abc elements and try to anneal on those. Furthermore, it would be

interesting to test out different combinations of T abc matrices that correctly patterns both

wild type and mutants as well as canalize and see if there is a characteristic topology for the

gap gene network.

A more ambitious endeavor would be to consider what type of bifurcations would occur

if we perturb any combination of other parameters, thus generating multi-dimensional para-

metric portraits. These types of parametric portraits would provide us with full knowledge

of the systems dependence on the parameters and what different states the system could

possibly take. This, of course, would be a challenge, as of right now AUTO could only
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handle continuation in two parameters.

This work only focused on simulations of one single null mutant. We have high resolution

quantitative data for other single null mutants as well as for double mutants. Considering

mutant phenotypes is a good test for the model, it would be instructive to find models that

could simulate each of those mutant data. Then we can see if there is a consensus at the

topology level and if there is one model that can predict more than one mutant gap gene

pattern. Next we could see if the model allows for the unstable manifold in the posterior to

provide canalization. An obvious step after that would be to see how having one or more

missing gap gene proteins destroys the manifold.

The anterior part (35% EL-57% EL) of the wild type system is not very sensitive to the

initial conditions on the Hb axis. As a result the basins of point attractors consist of a range

of concentrations of Hb for each nucleus. These basins are a property of our model, and

to test if they are biologically significant we could introduce different hb gradients. With

a range of different Hb concentrations for each nucleus we could compare the state of the

system in the Hb-Kr-Gt-Kni space in our model to the one from empirical data. One of the

ways to generate different hb profiles is by having one, two or four maternal copies of the hb

gene [65]. Furthermore lack of hb expression could be introduced by using mothers with hb

mutant germ cells. We could also consider uniform levels of hb expression throughout the

embryo by mutations in oskar gene [37].

Additionally, to test the claims that were made at the end of Chapter 6 about canalization

of the posterior gt domain in intermediary systems, we could consider Kr heterozygotes.

Analyzing each individual embryo separately one can get an insight into the variability

of the gt expression pattern in data. Surkova [67] has looked at the eve pattern in Kr

heterozygotes but not at the posterior gt domain.

In Chapter 5 we have seen that the dynamics of the trajectories is dominated by A4 for

both wild type and mutant systems. As the trajectories approached the attractor via a spiral

it would be possible to see the level of gt go up and then down in the span of cycle 14 in
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vivo. Additionally it would be possible to observe if the predicted trajectories were accurate

for a single nucleus for an individual embryo. For this we would have to create gt as well as

the rest of the gap gene protein fusions with GFP.
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