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Abstract of the Dissertation

Characterization of Noble Metal Nanocatalysts
from First-Principles Calculations and Classical Force Field Simulations

by

Shangmin Xiong

Doctor of Philosophy

in

Materials Science and Engineering

Stony Brook University

2015

Nanoparticles (NPs) are useful in a wide variety of applications, such as
sensors, catalysis, and biomedical materials. NPs often exhibit properties
that are distinctively different from bulk materials, which are largely de-
termined by their size, shape and surface modifications. Characterizing NP
structures remains a challenge due to their small size, low symmetry, and the
presence of defects and surface disorders, which often falls beyond the scope
of experimental techniques. Work in this thesis focuses on characterizing
bare and supported noble metal NPs towards a fundamental understanding
of their structural, energetic and electronic properties, by a combined density
function theory (DFT) and classical force field (FF) study.

The first half of the thesis is devoted to the study of the size-, shape-
and temperature dependence of unsupported noble metal NPs. A series of
nm-sized Au NPs were investigated using classical FF simulations, and the
performance was evaluated by DFT calculations for small clusters up to 249
atoms. The trend of cohesive energy and bond length distribution as a func-
tion of size were extracted and analyzed. Larger NPs (3nm-10nm) were
studied using the classical FF simulations with the embedded atom method
(EAM) potentials. In particular, simulated annealing was performed to sys-
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tematically study the temperature effects on structural features of crystalline
and amorphous NPs. The thermal behaviors of spherical and cubic NPs were
characterized by coordination numbers, mean interatomic distances and ra-
dial distribution functions.

In the second half of this thesis, we moved on study supported Pt clus-
ters on semiconductor CdS surface by a comprehensive DFT study, which
was motivated by the significantly enhanced photocatalytic activity of hy-
drogen production experimentally observed upon adsorption of Pt clusters
on CdS. The trends of cohesive energy, bond length distribution, and exci-
tation energy (e.g. ionization potential and electron affinity) as a function
of size (10 atoms to 140 atoms) and shape (2D bilayer or 3D truncated oc-
tahedron) were extracted and analyzed for a series of sub-nm and nm-sized
Pt NPs. The adsorption characteristics and interface electronic structure of
a single Pt atom, a 2D Pt19 cluster, and a 3D Pt38 cluster on the nonpolar
CdS(101̄0) surface were investigated. Severe structural deformation in the
supported cluster and the substrate were observed, accompanied by signifi-
cant modifications of the surface electronic structure and shift in local surface
potential. A comprehensive picture of the structural and electronic interac-
tions at the metal NP-semiconductor interface was obtained towards better
understanding of the role of supported NPs in photocatalytic reactions.
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of ±0.02 eÅ−3. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

43 (a) Top and (b) side views of starting geometries of Pt38 on
CdS(101̄0). (c) Side views of relaxed geometries. . . . . . . . . 77

44 Side views (left) and radial distribution functions (right) of
ideal, unsupported, and supported Pt38 on CdS(101̄0) with
adsorption configurations T1 and C2. . . . . . . . . . . . . . . 78

45 Contours of electrostatic surface potential of Pt38/CdS on cut-
ting planes that are normal to: (b) z-axis and (c) x-axis, as
highlighted by blue in the structural model in (a). z- and x-
axis are along the [10̄10] and [0001] directions, respectively.
Potential energies are in eV. . . . . . . . . . . . . . . . . . . . 79

46 Projected density of states of Pt38/CdS(101̄0) in config. T1. . 80

xiii



List of Tables

List of Tables

1 Properties of bulk Au predicted by FF potentials at 0 K. Ref-
erence for cohesive energy (Ecoh) is obtained at 0 K in the unit
of eV/atom, those of the other properties at 300 K. a0 repre-
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1 Introduction

Noble and transition metal nanoparticles (NPs) with structures at the nanoscale
often exhibit unique optical, electronic, or mechanical properties that are
distinctively different from the bulk materials, which stimulate the research
interests in nanotechnology. They are useful in a wide variety of applica-
tions such as imaging, catalysis, biotechnology, and energy conversion due
to their tunable properties depending on size, shape, crystallinity and chem-
ical composition.[3, 4, 5] Determining the structure of a nanoparticle at the
atomic level is vital in understanding the structure-properties relationship
and further tuning the materials properties for optimal performance.

There are two challenges associated with the batch production and char-
acterization of the NPs. First, it is difficult to synthesize identical NPs in
experimental process. The particles produced in the batch reactions can vary
in size, shape, surface morphology and defects, resulting in different physical
and chemical properties. For example, it is possible that only a small por-
tion of the particles produced for catalysis can be highly efficient and actually
promote the reaction. Therefore, structural characterization is essential to
distinguish between the performing and the non-performing particles, and
in turn guide the synthesis to produce only the desirable particles. Second,
while robust techniques, such as X-ray diffraction, have been developed to
solve the structure problem of the bulk crystals, such robustness often breaks
down when the size goes down to nanoscale.[6] Local structure of a nanoma-
terial can be extracted from experimental data, such as neutron and X-ray
total scattering, and spectroscopy methods.[7] Spectroscopy methods, such
as transmission electron microscopy (TEM) techniques, can be useful to ex-
amine the NPs one by one. However, it is time consuming and inefficient.
On the other hand, the neutron and X-ray scattering techniques provide the
structural information based on averaging over all particles. By doing inverse
modeling using these experimental information (e.g. Reverse Monte Carlo
method), one can generate the solutions of nanostructures. However, such
structural solution is hardly unique, and sometimes even not physically plau-
sible. Therefore, computational simulations, including classical and ab initio
methods, are essential to provide alternative solutions to these two challenges.

In collaboration with experts in X-ray diffraction techniques, we combine
computational simulations of noble metal NP structures and theoretical mod-
eling of X-ray diffraction pattern to provide insight on structural solution of
nanoparticles. In Chapter 3, we focus on classical molecular dynamics sim-
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ulations of single crystalline Au NPs of 3 nm to 10 nm in diameter to probe
their size- and shape-dependent temperature effects. As metal nanocatalysts
often undergo temperature changes in annealing processes and catalytic re-
actions, it is important to study the overall expansion/contraction and the
surface reconstructions at finite temperatures. Theoretically, thermal expan-
sion is a direct measurement of the effect of anharmonicity, which plays a
role in thermal vibration.[8, 9] In isotropic close-packed crystals, thermal ex-
pansion is only affected by the atomic vibration. For nanoparticles, the low
coordination at the surface also changes the thermal expansion.[10] More-
over, an additional contribution from electronic excitations changes the ther-
mal expansion for small Au NPs. It was found in experiments that thermal
expansion occurs at low temperatures and thermal contraction occurs at
temperatures higher than a transition point for bare and supported Au NPs
of 4 nm or smaller.[11, 12] In addition to the effect of thermal expansion,
higher kinetic energy at higher temperature provides an additional driving
force for structural deformation and reformation, especially at the surface.
High resolution TEM studies of spherical Au NPs about 5 nm in diameter
indicate a clear surface reconstruction from high-index planes to low-index
facets at annealing temperatures.[13] As the surface energies of the (100) and
(111) facets are among the lowest in face centered cubic (FCC) crystalline,
they are the preferred planes on constructing the nanoparticles.[14] At an-
nealing temperature, the surface becomes (100) and (111) facets dominated,
and thus the shape of the spherical NPs evolves from near sphere to trun-
cated octahedron-like.[13] All these temperature effects will be investigated
using computational simulations, so that we may evaluate the performance
of the simulations according current experimental data, and provide further
guidance and feed back to experiments from the results predicted in the
simulations.

Ideally, first-principles calculations using the quasi-harmonic approxima-
tion can be a reliable method to study thermal expansion on nanoparticles,
especially when electronic interactions are heavily involved at small sizes.
However, such calculations are extremely computational demanding as size
goes beyond hundreds of atoms. Therefore, classical molecular dynamics
(MD) simulations at finite temperature were performed using a recently de-
veloped EAM potential [15] to study the thermal effects of spherical and
cubic 3 nm, 5 nm and 10 nm Au NPs. Structural optimizations of small Au
clusters up to 249 atoms using DFT were carried out to provide references
for the FF simulations. By comparing with DFT and experimental results,
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we aim to evaluate the performance of FF potentials and probe the lower size
limit of FF simulations, so as to provide realistic models for X-ray forward
simulations and to characterize Au NPs at this size range.

While classical FF simulations can be useful and reliable for larger NPs
and bulk, first-principles calculations are essential to investigate the geome-
tries and electronic structures of small-sized NPs and interfaces. Subnanometer-
and nanometer-sized noble metal nanoparticles are of special research inter-
est due to their applications in photocatalytic reactions. New photocatalysts
are being developed to achieve improved quantum efficiency for hydrogen
evolution. Since expensive noble metals, such as Pt, Rh and Au, are still
crucial as the electrodes in the reaction, one strategy of developing new cat-
alysts is to use metal nanoparticles as co-catalysts to increase the conversion
rate and to reduce the total cost. It has been recently reported by Prof.
Orlovs group at Stony Brook University that semiconducting CdS nanorods
or nanoparticles decorated with subnanometer- and nanometer-sized Pt clus-
ters showed promising applications in H2 production under visible light.[5]
Interestingly, the catalytic activity for Pt clusters on CdS was observed to
be significantly enhanced for a particular cluster size, which was proposed
to contribute from the energy level alignment of the Pt cluster and the CdS.
Due to the unavailability of the experimental data on the sub-nm Pt clusters,
theoretical studies, such as DFT calculations, can play an essential role of
investigating the adsorption geometry of the supported clusters and probing
into the interactions at the interface on the atomic and electronic scale. In
Chapter 4, we carried out DFT studies of CdS supported sub-nm Pt clusters
in an attempt to understand the structural and electronic interactions at the
cluster/semiconductor interface and obtain new insights into the role of Pt
in photocatalytic H2 production.

A systematic investigation of unsupported 2D bilayer and 3D Pt clusters
up to 1.5 nm yielded similar trends on their structural, energetic and elec-
tronic properties as functions of the cluster size. Detailed adsorption studies
of a single Pt atom, a 2D Pt19 cluster and a 3D Pt38 cluster on the non-
polar CdS(101̄0) surface revealed that both the cluster size/shape and the
adsorption configuration have considerable influence on the surface struc-
ture, adsorption strength and other interface characteristics. Strong bonding
interactions occur at the cluster/semiconductor interface, leading to severe
structural deformation of the substrate and the adsorbed clusters, as well
as modification of the electronic structure. In addition, significant charge
redistribution occurs at the interface and results in shift of the local surface
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potential. Our work highlights the importance of explicitly treating the in-
terface with realistic structural models in order to obtain an accurate picture
of the structural and electronic interactions at the interface and understand
the observed enhancement in photocatalytic activities. [16]
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2 Theory

This chapter focus on the theory and the approximations that will be ap-
plied in the thesis. We will give a broad introduction to the density func-
tional theory in the first subsection, mostly following Ref.[17]. In the second
subsection, we focus on the concepts in the classical force field simulation.
Development of the FF potentials will be briefly introduced.

2.1 Density Functional Theory

The density functional theory (DFT) has been the most successful approach
for quantum mechanical simulation of periodic system in the past decades,
and its application now ranges from atoms, molecules and surfaces to solid
and quantum and classical fluids. The simplest form of the time-independent
Schrödinger equation is HΨ = EΨ where Ĥ is the Hamiltonian, E is the total
energy of the system, and Ψ is the wave function.

In the most general form, the Hamiltonian of interacting particles is

Ĥ = − h̄

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|

−
∑
I

h̄

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

= T̂e + V̂eI + V̂ee + T̂I + V̂II (1)

where i and j are the ith and jth electrons, I and J are the Ith and Jth
nuclei in the system, me and MI are the mass of the electron and the nuclei,
respectively, and ZI is the nuclear charge. The first and the fourth terms,
T̂e and T̂I , describe the kinetic energy of the electrons and the nuclei in the
system, respectively. The second term V̂eI describes the potential due to
the electrostatic interaction of the electrons with the nuclei. The third and
the fifth terms are the Coulomb interactions between the electrons and the
nuclei, respectively.

The many body interactions become complicated as the number of par-
ticles (electrons and nuclei) increases, making it impossible to solve the
equation exactly. Therefore, the Born-Oppenheimer (BO) approximation,
also called the adiabatic approximation, is applied to further simplify the
Schrödinger equation. Due to the significant difference in mass between the
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electrons and the nuclei, the kinetic energy proportional to the inverse mass
of nuclei is small compared to the other terms. As a result, the kinetic energy
of the nuclei can be neglected, or separated from the other Hamiltonians as
a parameter. From this point, only the Hamiltonian for the electrons will be
considered, and the electronic Hamiltonian is

Ĥ = T̂e + V̂ext + V̂int + EII (2)

where the first term is the kinetic energy operator for the electrons, the
second term is the external potential on the electrons due to the nuclei, the
third term is the electron-electron interaction, and the last term includes the
interaction of nuclei and any other terms that are not electron-related.

2.1.1 Homogeneous Electron Gas

Thomas and Fermi [18, 19] introduced the first idea of density functional the-
ory in 1927. In this approximation, the electrons in the system were treated
as free electron gas with uniform density, and the kinetic energy of the system
was approximated as a functional of the density. The original Thomas-Fermi
method neglected the exchange and correlations. Dirac [20] then introduced
the approximation for local exchange to the energy functional

ETF [n] = C1

∫
d3rn(r)

5
3 +

∫
d3rVext(r)n(r)

+ C2

∫
d3rn(r)

4
3 +

1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
(3)

where the first term corresponds to the local Thomas-Fermi approximation
to the kinetic electron energy with C1 = 3

10
(3π2)

2
3 , the second term is the

external field, the third term is the local exchange with C2 = −3
4
( 3
π
)
1
3 , and

the last term is the electrostatic Hartree energy.
Thomas-Fermi-Dirac density functional formalism set the foundation of

the density functional theory, which solves the energy as a functional of a
smooth electron density. This approximation was remarkably simpler than
the full many-body Schrödinger equation and thus lowered the computational
cost significantly. The formulation of this idea was further developed with
the Hohenberg-Kohn theorems followed by the Kohn-Sham ansatz, making
DFT applicable to various systems.
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2.1.2 Hohenberg-Kohn Theorems

Hohenberg and Kohn (HK) developed a formulation as an exact principle for
the ground state energy of many-body systems. HK theorems can be stated
as the following:

Theorem 1: For a system of interacting particles in an external poten-
tial Vext(r), this potential term is uniquely determined by the ground state
particle density, n0(r).

Theorem 2: The energy E[n] as a universal functional of the density
n(r) can be defined for any external potential Vext(r). For any particular
external potential, the global minimum value of this functional is the exact
ground state energy of the system, and the exact ground state density n0(r)
is the density that minimizes the functional.

The theorems demonstrate that the ground state density uniquely de-
termines the external potential, and thus fully determines the hamiltonian.
Therefore, the many-body wavefunctions for both ground and excited states
are determined. Then all properties of the system are determined completely
from the ground state density. If the exact form of the functional of the en-
ergy based on the ground state density is known, the exact ground state
density and energy will be solved. However, HK theorems did not provide
any exact form of the electronic energy functional.

2.1.3 Kohn-Sham Ansatz

To tackle the problem of the electronic energy functional, Kohn and Sham
introduced an approach to replace the interacting many-body system with
a system of non-interacting electrons, with a Hamiltonian of an effective lo-
cal potential. The exact ground state electron density n0 was represented
by the ground state density of an auxiliary system of non-interacting parti-
cles, so that the hamiltonian can be solved more easily. In this ansatz, the
many-body problem is replaced by the independent particle problem for the
non-interacting system, which can be exactly solved. Then the many-body
interacting terms can be included in an exchange-correlation functional. The
accuracy of the solution for the ground state density and energy is then
limited only by the approximation in the exchange-correlation functional.

The Kohn-Sham (KS) auxiliary hamiltonian is defined as (given in Hartree
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atomic units h̄ = me = e = 4 π
ε0

= 1)

Ĥσ
aux = −1

2
∇2 + V σ(r) (4)

where the kinetic and the potential parts are separated.
For KS ansatz, it can be stated that the Kohn-Sham potential of the

interaction between electron densities, VKS, can be exactly determined if the
ground state density of the system is known. Then the Kohn-Sham potential
determines all the states of the system, in which the minimum would be the
ground state. Then the ground state of non-interacting particles directly
leads to the ground state density, which closing the cycle of HK theorems.

The Kohn-Sham equation of the ground state energy functional is in the
form

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] (5)

where Ts[n] is the independent-particle kinetic energy, Vext is the external
potential due to the nuclei and any other applied fields, EHartree[n] is the
classical Coulomb interaction energy of the electron density interacting with
itself, EII is the interaction between the nuclei, and Exc[n] is the exchange-
correlation energy. Thus the sum of the terms including Vext, EHartree[n],
and EII is well defined.

All many-body interactions from the exchange and correlations of the
electron densities are embedded into Exc[n] term, which can be written in
terms of the Hohenberg-Kohn functional as

Exc[n] = FHK [n]− (Ts[n] + EHartree[n])

=
〈
T̂
〉
− Ts[n] +

〈
V̂int
〉
− EHartree[n] (6)

where [n] is a functional of the density n(r, σ). If Exc[n] term were known
exactly, then the exact ground state energy and density of the system would
also be determined by solving the KS equations for independent-particles.

Applying the variational equation to EKS to solve for the ground state
energy of the system

δEKS
δψσ∗i (r)

=
δTs

δψσ∗i (r)
+ [

δEext
δn(r, σ)

+
δEHartree
δn(r, σ)

+
δExc

δn(r, σ)
]
δn(r, σ)

δψσ∗i (r)
= 0 (7)
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From the definition of the independent electron kinetic energy,

δTs
δψσ∗i (r)

= −1

2
∇2ψσi (r) (8)

and the electronic density is

δnσ(r)

δψσ∗i (r)
= ψσ(r) (9)

Applying the Lagrange multiplier method, δ[
〈
ψ|Ĥ|ψ

〉
−E

〈
ψ|ψ

〉
−1] = 0,

7 leads to the Schrödinger-like Kohn-Sham equation:

(Hσ
KS − εσi )ψσi (r) = 0 (10)

and thus the effective Hamiltonian HKS is

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r)

= −1

2
∇2 + Vext(r) +

δEHartree
δn(r, σ)

+
δExc

δn(r, σ)

= −1

2
∇2 + Vext(r) + VHartree(r) + V σ

xc(r) (11)

The Kohn-Sham density functional theory is an exact theory up to this point.
In principle, it is possible to solve the interacting many-body problem if one
knows all the density functionals of the Hamiltonian in Eqn. 11. Therefore,
DFT is an ab initio theory.

2.1.4 Exchange and Correlation Functionals

The exchange-correlation energy expressed as a functional of the density
Exc[n] is not known explicitly, and the development of approximations to
these functionals is still a field in progress. Exc is expressed in terms of the
energy density εxc, a functional of the electron density:

Exc[n] =

∫
drn(r)εxc([n], r) (12)

This section is devoted to several relevant approximate functionals, for exam-
ple, the local density approximation (LDA) and different flavors of generalized-
gradient approximations (GGAs).
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Local density approximation (LDA)
Local density approximation [21] is the simplest approximation to the

energy density. In LDA, εxc is assumed to be identical to the homogeneous
electron gas energy density:

ELDA
xc [n] =

∫
d3rn(r)εhomxc [n(r)] (13)

For polarized systems, the LDA sets εhomxc [n(r)] as εhomxc [n↑(r), n↓(r)]. For
unpolarized system, the LDA sets n↑(r) = n↓(r) = n(r)/2.

This approximation works best for solids that resemble homogeneous elec-
tron gas, with a smoothly varying electronic density. As a result, LDA fails
for molecular systems, where the electron density goes to zero outside the
molecular radius. For condensed matter, the accuracy of the energetics esti-
mated from LDA is rather poor, although results from LDA give reasonable
structural information.

Generalized gradient approximation (GGA)
The LDA has stimulated ideas for constructing functionals with improve-

ment. To account for the non-homogeneity of the electron density in real
systems, the gradient of density is considered in the generalized-gradient ap-
proximation (GGA). A Taylor-like expansion is applied to include the elec-
tronic density, n(r), and the gradient of the density, ∇n(r) in the exchange
and correlation energy density functional. A generalized form of GGA is

EGGA
xc [n] =

∫
d3rn(r)εGGAxc [n(r),∇n(r)] (14)

By definition, GGA functionals work better for non-homogeneous systems.
This form is further developed as

EGGA
xc [n] =

∫
d3rn(r)εhomx [n(r)]Fxc[n(r),∇n(r)] (15)

where εhomx s the exchange energy density functional of the electron gas,
and Fxc is a dimensionless term. The lowest order terms in the Taylor-like
expansion of Fx have been calculated analytically [22, 23]

Fx = 1 +
10

81
s2

1 +
146

2025
s2

2 + ... (16)

where s1 and s2 are proportional to the first and the second order fractional
variation in density normalized to the average distance between electrons.
Wide variety of the forms for Fx have been proposed.
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GGA methods are of the most popular methods used in heterogeneous
systems. The performance of GGA is superior compared with LDA for non-
periodic systems. It provides structures, energetics and electronic structures
for such systems with a good accuracy. Therefore, GGA will be adopted
in this thesis, where noble metals (Au or Pt), cadmium sulfide, and their
interfaces will be studied. One of the most popular generalized gradient
approximations used in the applications of the density functional theory,
PBE [24] by Perdew-Burke-Ernzerhof, will be used as the standard GGA
functional in Chapter 4.

2.1.5 Pseudopoentials

The wavefunctions of all-electron potential require enormous computational
cost to solve. As non-valence core electrons are strongly bonded to the nuclei
and usually chemically inert, the pseudopotential approximation replaces the
explicit treatment of the inert core electrons and the nucleus with a pseudopo-
tential, or an effective potential to reduce the computational cost.[25] The ap-
proximation describes the active valence electrons by pseudo-wavefunctions
explicitly, and treats the rest of the atom within a certain cutoff radius as rigid
non-polarized cores together with the frozen core electrons. The orbitals are
strong oscillations near the nuclei and thus require a large number of plane
waves to describe these oscillations if all electrons are involved. This method
allows remarkably fewer wavefunctions to be calculated, and thus make it
practical to apply plane-wave basis sets. Pseudopotential with large cutoff
radius is considered soft, leading to faster convergence and less accuracy.

Norm-conserving and ultrasoft first-principle pseudopotentials are the
most common forms applied in plane-wave DFT codes. Norm-conserving
pseudopotential is constrained so that the norm of each pseudo-wavefunction
is identical to the corresponding all-electron wavefunction outside the cutoff
radius.[26] The norm-conserving pseudopotential will be applied in Chapter
4 for all the systems investigated.

2.1.6 Structural Relaxation

Kohn-Sham equations are solved in a self consistent way. An initial guess
of the electronic density is applied to obtain the external potential. The
densities were generated by either orthogonal single electron plane waves, or
localized atomic orbitals. The simulation package VASP [27, 28] employed in
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Chapter 4 is based on the former approach. Then the ground state from KS
equations are determined using this external potential. The new electronic
density is deducted from the ground state, and compared to the initial guess.
The new density is used as the input to solve the KS equations again, until the
output density is consistent with the input density within a small tolerance
criteria set by the user.

From the output density, the ground state energy of the system is deter-
mined, then the forces on the system can be calculated. The force on the
atoms as a function of energy is

FI = − ∂E

∂RI

= −
〈
ψ| ∂Ĥ
∂RI

|ψ
〉
−
〈 ∂ψ
∂RI

|Ĥ|ψ
〉
−
〈
ψ|Ĥ| ∂ψ

∂RI

〉
− ∂EII
∂RI

(17)

The ground state density corresponds to the total energy minimum, and
the electron-electron interaction contributions leads to cancellation of the
middle terms. The remaining terms are the external potential and ion-ion
interactions, which explicitly depend on the ion positions. Then the force
becomes

FI = −
∫
d3rn(r)

∂Vext(r)

∂RI

− ∂EII
∂RI

(18)

Once the forces are determined for initial ionic positions, the forces can
be then minimized along the energy gradient. As the force minimized, the
atomic positions are updated to minimize the total energy. The energy of the
system is considered converged, and the structure relaxed, until the forces
acting on atoms are within a tolerance criteria.

2.2 Classical Force Field and Molecular Dynamics Sim-
ulations

First principal based method, such as DFT, can provide a good model to rep-
resent the interatomic forces, energetics, structures and electronic structures
in a system of a reasonable size and time-scale. Under the current compu-
tational condition, it is affordable to study a system consisting up to several
hundreds of atoms and a time scale of the order of hundreds of picoseconds.
However, the size and/or time-scale of a real world system often go beyond
the current limitation of DFT. Therefore, an approximation without solving
Schrödinger equation for electrons is needed. The empirical, or classical force
field (FF) based methods ignore the motions of the electrons and describes
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the nuclear positions only, which sacrifice the accuracy comparing to DFT
while allow to model systems and processes containing orders of magnitudes
more atoms at a time scale of nanoseconds or even microseconds. The quality
of a force field needs to be validated either using experiments, or by higher
level of simulation methods such as DFT.

In the first part, I will briefly discuss the basic concepts of the FF. In
the second part, I will specifically describe the potentials that are possibly
suitable to investigate pure or alloy metal NPs.

2.2.1 Force Field

A classical force field, or potential energy function, is an mathematical ex-
pression describing the ground state potential energy as a function of the
position of the particles (atoms). In the classical approximation, a system is
defined by the position r and the momenta p of the atom:

rN = (x1, y1, z1, ..., xN , yN , zN) (19)

pN = (px,1, ypy,1, pz,1, ..., px,N , py,N , pz,N) (20)

The Hamiltonian of a classical system is a function that describes the
energy of a configuration:

H(pN , rN) = K(pN) + U(rN) (21)

where the kinetic energy K(pN) is simply a function of the momenta:

K(pN) =
N∑
i

|pi|2

2mi

(22)

and the potential energy U(rN) depends on the positions. The classical
potential energy is a simplified approximation to the ground state energy
which would be the exact solution of Schrödinger equation for all the nuclei
and the electrons in the system.

U consists of a summation of two terms, intramolecular contributions
involving single atoms, and the intermolecular contributions involving pairs
of atoms, triples of atoms, and so on. The intramolecular term describes local
contribution (bonded forces) due to bond stretching, bond angle bending, and
dihedral torsions, as shown in Eqn. 23 as the first three terms, respectively.
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The intermolecular term consists of non-bonded forces associated with the
electrostatic interactions and van der Waals interaction. It includes two-,
three- and many-body interactions that require loop over pairs, triples and so
on, and therefore require the computational cost scales as N2, N3, and higher
orders, respectively, which make the simulation prohibitive as the scaling
goes beyond N3. Simplified intermolecular terms include the Coulombic
interactions, and the repulsive and Van der Waals interaction described by
pairwise potentials, as shown in Eqn. 23 as the last two terms, respectively.
In general, a minimal form of the potential energy function would be:

U(r) =
∑
bonds i

1

2
kb(di−d0)2+

∑
angles j

1

2
ka(θi−θ0)2+

∑
torsions k

[
∑
n

ck,n[1+cos(ωkn+γk)]

+
∑
elec ij

qiqj
4πε0rij

+
∑
L−J ij

4εij[(
rij
σij

)−12 − (
rij
σij

)−6] (23)

where the bond distances di, angles θj, torsions ωk and pairwise distances
rij are functions of rN . The repulsive force and Van der Waals interaction
is described by Lennard-Jones (L-J) potential in a simple form as shown in
the last term in Eqn. 23. Reasonable values of the constants, equilibrium
bond distance d0, spring constants ka and kb, electric permittivity ε0, can be
obtained or estimated from experimental values. Of the terms included here,
the last two pairwise sums, Coulomb potential and Lennard-Jones potential,
respectively, are the most computationally expansive parts, which scale as
N2 instead of N in the other sums.

Lennard-Jones potential [29] describes the pairwise interaction in a neu-
tral system with a weakly attractive term at long distances and a strongly
repulsive term when the atoms or molecules get too close. The most common
expression is

VLJ = 4ε[(
σ

r
)12 − (

σ

r
)6] (24)

where ε is the depth of the potential well at the equilibrium distance, σ is
the distance at which the potential is zero, and r represents the distance
between particles. The −r−6 term describes the attractive interaction, the
energy of which is proportional to −r−6. The repulsive term r−12 is chosen
for convenience and simplicity of computation as the square of the attractive
term. The properties of the neutral atoms or molecules are not so sensitive
to the repulsive energy, as long as it is a steep function. The parameters can
be obtained by fitting to experimental data or DFT calculations. The force
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is defined by F(r) = −∂U
∂r

, so the force derived from Lennard-Jones potential
is

F (r) = 4ε[12(
σ12

r13
)− 6(

σ6

r7
)] (25)

Lennard-Jones potential has a wide applications in computational simu-
lations due to its simplicity, including description of molecules in the fluids.
In Chapter 3, we will test the parametrized Lennard-Jones potential avail-
able in GULP for bulk Au, although its accuracy is limited to describe the
metallic system.

2.2.2 Manybody Potentials

The potential functions describing the intermolecular energy are formulated
as a summation over the interaction energy of particles (atoms) in the system.
In the case of the pairwise potentials, the potential energy is the summation
of two-body interaction energy of atoms with indices i and j. The pairwise
potential energy of the system consisting N particles is described as:

U(r) =
N∑
i=1

N∑
j<i

U(rij) (26)

where rij is the distance between atoms with indices i and j:

rij = |ri − rj| =
√

(rjx − rix)2 + (rjy − riy)2 + (rjz − riz)2 (27)

The force acting on ith particle is

Fi = − ∂

∂ri
u(r) = − ∂

∂ri

N∑
i=1

N∑
j<i

U(rij). (28)

Common pairwise potentials include Coulomb potential and Lennard-
Jones potentials as described in the previous section.

In the case of the many-body potentials, the potential energy is the sum-
mation of the interaction energy of the i-th atom with all other particles in
the system. The many-body potential energy of the system consisting N
particles is calculated as:

U(r) =
N∑
i=1

U(ri) (29)
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where ri is the position of all atoms in the system. The force acting on ith
atom is

Fi = − ∂

∂ri
U(r) = − ∂

∂ri

N∑
j 6=i

Uj(rj). (30)

2.2.3 Embedded Atom Method (EAM)

Embedded atom method (EAM) is a many-body potential describing the
energy between atoms.[30] The general form of the potential energy of atom
i is given by

Ei = Fα(
∑
i 6=j

ρβ(rij)) +
1

2

∑
i 6=j

φαβ(rij) (31)

where ρβ is the electron density at ith atom due to all the other atom j of type
β, rij is the distance between ith and jth atoms, Fα is the embedding energy
to place atom i of type α in an electron density ρβ, and φ is the pair-wise
potential between ith and jth atoms. The idea of applying the electron charge
density in the interatomic potential was adopted from first-principles, which
was particularly appropriate for metallic systems with delocalized electrons.
Therefore, various forms of EAM potentials have been developed and the
method is widely applied in molecular dynamics simulations.

In this section, we will focus on several many-body EAM or EAM-analogous
potentials for Au available in General Utility Lattice Program (GULP) [31]
simulation package. Several potentials discussed here were developed based
the idea of EAM, while others adopted the ideas of Finnis-Sinclair (FS) model
or the second moment approximation to the tight binding model (TB-SMA).
These models were proofed to be analogous in the expressions and the results,
although the terms have different physical meanings.[32] The functional ex-
pressions of the Finnis-Sinclair and TB-SMA models are out of the focus of
this work, and thus will not be discussed in detail.
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Glue Potential
Ercolessi and Adams [33] developed a force-matching method based on

fitting the potential to the first-principles atomic forces of various atomic
configurations at finite temperature. The Glue potential is

V =
1

2

∑
ij

φ(rij) +
∑
i

U(
∑
j

ρ(rij)) (32)

where φ(r) is a pair potential, ρ(r) represents the atomic density, and U(n)
is a glue function. The glue function acts in the transformations (a) ρ(r)→
Aρ(r), U(n)→ U(n/A), and (b) φ(r)→ φ(r) + 2Bρ(r), U(n)→ U(n)−Bn.
Initially (a) and (b) were calculated with arbitrary inputs with constraints,
and then the parameters are evaluated and recalculated after transformations
until A and B were converged.

In the model, the variable functions were defined as cubic splines (third-
order polynomials), which was a rough approximation. The results on ap-
plying such potential to Au particles will be discussed in Chapter 3.

Sheng Potential
Potential energy surface (PES) describes the energy of a system as a

function of atomic positions, and can be used to study the thermodynamics
and kinetics of the system.[34] A recent developing method for interatomic
potentials is to parameterize the potential based on fitting the PES of small
systems derived by first-principles calculations.[35, 31] The recently devel-
oped EAM potential by Sheng et al [15] used the force-matching method to
optimize the semiempirical potential to match the slopes of the PES gener-
ated by first-principles simulations. The embedded atom method was used
to fit the PES as

Etot =
∑
i,j

φ(rij) +
∑
i

F (ni) (33)

where ni =
∑

j ρ(rij), φ(rij), F (ni), and ρ(rij) are the pair, embedded, and
density functions, respectively. These three functions were expressed as high-
order quintic spline functions (fifth order polynomials).[36] The EAM poten-
tial was obtained from the recursive fitting process until several transforma-
tion parameters converge. These parameters were determined as a function
of lattice constants and cohesive energy at room temperature, and the liquid
density at the melting temperature, which were obtained from experiments.
The forces on atoms, total energies and stress tensors of several hundreds
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of configurations obtained from DFT calculations were included in the fit-
ting database. The PES was generated using linear scaling to eliminate the
discrepancies between DFT results and experimental data. This highly op-
timized EAM potential will be applied to the study of Au particles.

Universal Force Field Potential
The Universal force field (UFF) [37] was developed for the full periodic

table in 1992. The fundamental parameters were based on the element, its
hybridization and the connectivity. The potential energy is described as

E = ER + Eθ + Eφ + Eω + Evdw + Eel (34)

where ER corresponds to the valence interactions from bond stretching, Eθ
from bond angle bending, Eφ for dihedral angle torsion, Eω as inversion
terms, and Evdw describes the nonbonded interaction contributed from van
der Waals, Eel from electrostatic terms.

In the UFF method, bond stretch interaction ER is described as a har-
monic oscillator:

ER =
1

2
kIJ(r − rIJ)2 (35)

or as the more accurate Morse function:

ER = DIJ [e−α(r−rIJ ) − 1]2 (36)

where kIJ is the force constant in units of (kcal/mol)/Å2, rIJ is the bond
length in Å,DIJ is the bond dissociation energy (kcal/mol), and α = (kIJ/2DIJ)1/2.

The force is
F = G(Z∗IZ

∗
J/r

2
IJ) (37)

where Z∗I and Z∗J are effective charges, G is 332.06, and the force constant
becomes kIJ = 2G(Z∗IZ

∗
J/r

3
IJ).

The angular distortions, can be described as a general form:

Eγ = K

m∑
n=0

Cncos(nγ) (38)

where K and Cn are coefficients, and γ corresponds to θ as in bond angle
bending, φ as in dihedral angle torsion and ω as in inversion terms.

The van der Waals interaction in the UFF is described as

Evdw = Ae−Bx − C6/x
6 (39)

18



where B is the repulsive exponential parameter and C6 is the dispersive
attractive term, both of which is determined for the entire periodic table.

The final term, the electrostatic interactions, is described as:

Eel = 332.0637(QiQj/εRij) (40)

The UFF was developed to predict structures of main group, transition
metal, inorganic, and organometallic compounds. The accuracy of the struc-
tural prediction on bulk Au and Au particles will be discussed in Chapter
3.

Sutton-Chen Potential
Sutton-Chen potential was considered as long-range Finnis-Sinclair potentials,[38]

and was first developed to model mechanical interactions between atomic
clusters.[39] The total energy was written in the form:

ET = ε[
1

2

∑
ij

V (rij)− c
∑
i

ρ
1/2
i ] (41)

where
V (r) = (a/r)n (42)

and
ρi =

∑
i 6=j

(
a

rij
)m (43)

Here rij is the distance between ith and jth atoms, ε is a parameter in the
unit of energy, c is a positive dimensionless parameter, a is a parameter in
the dimension of length, and m and n are positive integers where m < n. It is
obvious that Finnis-Sinclair potential has the same form to those developed
in EAM potential, although the physical interpretation is different. The FS
equations are based on the tight-binding method, while the EAM is based
on DFT.

The effective pair potential obtained was

Veff (r) = ε[(
af

r
)n − nSfn

mSfm
(
af

r
)m] (44)

Obviously the Sutton-Chen potential is a Lennard-Jonesm-n potential, where
Sfn was defined as the lattice sum in the FCC crystal as

∑
j[a

f/rj]
n. Sim-

ilar term was defined for Sfm. The origin of Sutton-Chen determined that
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the range of this potential was the same as Lennard-Jones potential, with
improvement by adopting the density term from Finnis-Sinclair formalism.

Johnson Potential
The fundamental equation of EAM was applied in developing this poten-

tial. The basic equations simplified by Johnson [40] are

Etot =
∑
i

F (ρi) +
1

2

∑
i,j

φ(rij) (45)

ρi =
∑
j

f(rij) (46)

where Ei is the total energy, ρi is the electron density at ith atom due to all
the other atoms, rij is the distance between ith and jth atoms, f(rij is the
electron density at ith atom contributed from jth atom as a function of rij,
F (ρi) is the embedding energy to put atom i in an electron density ρi, and
φ is the two-body potential between ith and jth atoms.

In Johnson potential, the electron density and the two-body potential
were taken into consideration:

f(r) = fee
−β( r

re
−1) (47)

and
φ(r) = φee

−γ( r
re
−1) (48)

The embedding function was fitted to a universal equation of state, derived
as

F (ρ) = −Ec(1− lnx)x− 6φey (49)

where x = (ρ/ρe)
α/β, y = (ρ/ρe)

γ/β and α = 3(ΩB/Ec)
1/2. The parameters in

the model, equilibrium lattice constant a, atomic volume Ω, the bulk modulus
B, the cohesive energy Ec, were evaluated from quantum calculations for
FCC metals. Unrelaxed vacancy-formation energy and Voigt-average shear
modulus were used as physical input as well.

Cleri-Rosato Potential
Cleri-Rosato potential was developed for transition metal alloys using the

second-moment approximation of the tight-binding scheme [41] based on the
original tight-binding (TB) method.[42, 43] The total cohesive energy of the
system is

Ec =
∑
i

(Ei
R + Ei

B) (50)
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where the ion-ion repulsive term is

Ei
R =

∑
j

Aαβe
−pαβ(rij/r

αβ
0 −1) (51)

and the band energy is

Ei
B = −{

∑
j

ξ2
αβe
−2qαβ(rij/r

αβ
0 −1)}1/2 (52)

where rij is the distance between atoms i and j, rαβ0 is the first-neighboring
distance in the αβ lattice, A, p, q and ξ are parameters depending on the
interacting atomic species α and β. The Eqn. 52 is considered equivalent
to the embedding energy term in the EAM potential. The parameters were
fitted to the experimental cohesive energy, lattice parameters and indepen-
dent elastic constants. Cleri-Rosato potential applied the TB-SMA model to
longer range, resulting in a quite good agreement with experimental results.

2.2.4 Conclusion

In this section, we have briefly explained the classical force field simulations,
and the functions of the force field potentials are described. First, pair-wise
potentials are introduced to describe the basic concepts in force field. Next,
the many-body potentials are introduced, with emphasis on the embedded
atom method potentials. The EAM potentials are then described in terms of
the formulations of energy and force. In this way, the basic concepts of the
potentials to be utilized in Chapter 3 are provided.
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3 Atomistic Simulations of Au Nanoparticles

3.1 Introduction

Relating the properties of a material to its atomic structure through char-
acterization is the basis of materials science. The structure problem can
be simply stated as the problem of finding the atomic arrangement given a
new material. In the case of bulk crystals, there are reliable solutions to the
problem. For example, X-ray diffraction (XRD) provides a robust tool to
identify the atomic structure of a crystal by measuring the angles and inten-
sities of the diffraction beams. Computational simulations, including both
classical and quantum mechanical approaches, are capable of predicting bulk
structures with high accuracy. In the case of nanomaterials, however, the
structure problem becomes complex. Characterizing their structure is cru-
cial and remains a great challenge, due to the facts that their structures are
inherently complex, and the structures at nanoscale cannot be exactly solved
using the experimental techniques. Powder X-ray diffraction techniques are
frequently used for characterizing nanostructures. However, the structural
parameters obtained through diffraction techniques can yield multiple struc-
tural solutions with equal validity, due to the diffraction averaging of different
structural parameters in the nanoparticle ensemble. To tackle this problem,
we combine computational simulations of NP structures and theoretical mod-
eling of X-ray diffraction pattern in collaboration with Prof. I. C. Noyan at
Columbia University and Dr. H. Yan at NSLS-II Hard X-ray Nanoprobe
beam line at Brookhaven National Laboratory. First, classical molecular
dynamics (MD) simulations were carried out to elucidate the trends of the
structural, energetic and thermal properties of NPs as a function of NP size,
shape and temperature. Next, the MD-generated structural models were fed
as input structures to the highly parallel forward diffraction code scaling up
to thousands of GPU nodes. Finally, the synthetic diffraction datasets were
analyzed to extract the average structural parameters. By comparing these
parameters with the input structures, we aim to benchmark and improve the
accuracy, precision and resolution of X-ray diffraction analysis, and extend
the applicability of X-ray powder diffraction and nanodiffraction into a wider
range.

In this chapter, the performance of MD simulations using classical force
field potentials was evaluated based on experimental data for bulk and first-
principles calculations for small clusters. This is to ensure the robustness of
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the potential for generating reliable atomistic structures. Then the structures
were analysed and characterized both qualitatively and quantitatively by
examining the coordination numbers, mean interatomic distance, and radial
distribution functions. The lower limit in particle size that classical MD
simulations can be trustworthy was probed based on the structural analysis
of structure models.

3.2 Benchmarks

As discussed in the previous chapter, the classical force field potentials have
a wide variety of functional forms, which are parametrized to serve specific
purposes. In this chapter, our main goal is to generate and characterize
realistic models and therefore we will mainly focus on the structural prop-
erties, such as interatomic distances, bond length distribution, coordination
numbers, and atomic displacement contributed from surface effect, finite size
effect and/or thermal effect. The selection of a robust FF potential to well
reproduce the structural features of unsupported metal nanoparticles is a
non-trivial task. As developing a new semiempirical potential is out of our
current scope, we compare the performance of several popular choices of force
field potentials for Au and apply the most trusted potential in our simulations
throughout subsequent studies presented in this chapter.

3.2.1 Bulk Au

Structure relaxations for benchmarking were carried out using General Utility
lattice Program (GULP) [31]. Conjugate gradients were applied to optimize
the geometry. The cohesive energy, lattice constant and elastic properties
of bulk Au estimated from simulations at 0 K using these FF potentials are
listed in Table 1. In general, different reference data used in the develop-
ment of potentials, for example, experimental cohesive energies, resulted in
discrepancy among the simulation results. The Sheng potential, UFF poten-
tial and L-J potential have used the same reference for cohesive energy (3.93
eV/atom), which is different from 3.78 eV/atom or 4.07 eV/atom used for
the other potentials implemented in GULP. Moreover, the structural opti-
mization was carried out at 0 K, resulting in further systematic discrepancy
in lattice constant and elastic constants, of which references were obtained
at 300 K. Nonetheless, the discrepancy of lattice constant predicted by each
potential was within 0.5%, and the estimated elastic properties were within
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Table 1: Properties of bulk Au predicted by FF potentials at 0 K. Reference
for cohesive energy (Ecoh) is obtained at 0 K in the unit of eV/atom, those of
the other properties at 300 K. a0 represents lattice constant in Å, c11, c12 and
c44 are elastic moduli in GPa. K is bulk modulus in GPa, G shear modulus
in GPa, E Young’s modulus in GPa, and ν Poisson’s ratio (unitless).

Reference Potential
Sheng UFF S-C Johnson C-R Glue L-J

Ecoh 3.93 3.93 3.93 3.78 4.07 3.78 3.78 3.93
a0 4.08 4.06 4.08 4.08 4.07 4.08 4.07 4.08
c11 193 214 183 180 195 187 220 416
c12 163 177 159 148 170 154 160 238
c44 42 51 45 42 42 45 60 238
K 180.3 189.5 166.9 158.5 178.1 165.4 180.4 297.2
G 27 29.7 21.6 25.5 21.6 26.5 42.8 142.4
E 78 53.1 35.7 46.6 36.8 47.9 85.2 242.6
ν 0.44 0.45 0.46 0.45 0.47 0.45 0.42 0.36

a reasonable range, except for L-J potential as expected. We are to continue
the selection process using all the potentials except L-J potential.

3.2.2 Au Nanoparticles

It is well-known that DFT calculations can provide robust references in struc-
tural analysis at small NPs and a relatively good reference for energetics,
which serves the primary goal of this work to characterize realistic structural
models. Due to significantly increasing cost at larger particle sizes, DFT-PBE
optimizations were carried out on Au55, Au249 and bulk Au as reference. The
cohesive energy of bulk Au estimated from spin-polarized DFT calculation
is 3.07 eV/atom, which is 23 % smaller than the experimental value. The
lattice constant calculated from DFT was overestimated by 2 %.

A series of Au NPs from 1.2 nm to 4 nm in diameter were spherically
cut from bulk FCC Au, and optimized at energy minimum at 0K using the
selected potentials, as shown in Fig. 1. As shown in Fig. 2, the cohesive
energies (Ecoh) as a function of inverse radius (r−1) were fitted to E0 +Ar−1,
with fitted E0 being the cohesive energy at bulk, and fitted slope A being
-3.16, -3.97, -3.13, -2.11, -2.86, -1.96, -6.67 in the unit of eV/Å, for DFT-
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Figure 1: Views of optimized structures of Au NPs. Sizes (radius, r) of the
NPs through (a) to (g) are Au55 (6 Å), Au135 (8 Å), Au249 (10 Å), Au429 (12
Å), Au675 (14 Å), Au959 (16 Å), Au1433 (18 Å), and Au1985 (20 Å). Atoms
were colored according to the coordination numbers.

PBE, Sheng, UFF, Sutton-Chen, Johnson, Cleri-Rosato, and Glue potential,
respectively. The trend of cohesive energy predicted by DFT is similar to
that of UFF with an almost constant shift down of 0.9 eV/atom. Among the
FF potentials, the predicted slope by Glue potential has the largest discrep-
ancy from that by DFT. Lack of DFT data points at intermediate sizes may
introduce minor errors, which however should not effect the overall trend in
energetics significantly.

Structural analysis by radial distribution functions (RDFs) assisted fur-
ther comparisons among different potentials. As reference, the RDF peaks of
PBE-optimized Au55 and Au249 were reduced by 2 %, to compensate for the
fact that PBE overestimates the bond length by 2 % in bulk Au. The first
RDF peaks, which shows the distribution of the first nearest neighbor dis-
tances, i.e., bond length, are plotted for Au55 and Au249 in Fig. 3 and Fig. 4,
respectively. The first RDF peaks are discrete in the plots due to small num-
ber of atoms and small bin width (0.002 Å). Discrepancies between PBE and
each potential in the lower bound, the upper bound, and the highest inten-
sity peak position were computed and added up as an index for judgement.
In summary, the performance of the Sheng potential scores the highest, with
an accumulative error of 2.3 % for Au55 and 2.8 % for Au249. RDF peaks
of the Sutton-Chen and Cleri-Rosato potentials show similar bond length
distributions, with accumulative errors in the range of 3.2 % to 4.1 %. The
RDF peaks of the UFF and Johnson potentials show similar behaviours as
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Figure 2: The computed cohesive energies (Ecoh) as a function of inverse
radius (r−1) using DFT-PBE (black squares), Sheng (red circles), UFF (blue
up triangles), Sutton-Chen (green diamonds), Johnson (cyan triangles left),
Cleri-Rosato (orange pluses), and Glue (violet crosses).

well and have larger discrepancy from DFT results. The glue potential pre-
dicts a wide spread of bond length, which fails to reproduce the bond length
distribution from PBE.
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Figure 3: Radial distribution functions of Au55. Structures optimized using
DFT-PBE (a), Sheng (b), UFF (c), Sutton-Chen (d), Johnson (e), Cleri-
Rosato (f), and Glue (g). Peaks of DFT-PBE were reduced by 2 % for
comparison.
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Figure 4: Radial distribution functions of Au249. Structures optimized using
DFT-PBE (a), Sheng (b), UFF (c), Sutton-Chen (d), Johnson (e), Cleri-
Rosato (f), and Glue (g). Peaks of DFT-PBE were reduced by 2 % for
comparison.
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3.2.3 Surface Effect

The first peaks in radial distribution functions were generated and compared
for optimized Au NPs at 0 K from 1.2 nm to 4.0 nm in diameter using the
Sheng potential, as shown in Fig. 5. The peak position, which indicates the
most abundant bond length in the particle, increases as particle size increases,
and approaches the bond length at 2.884 Å in bulk Au. The sharpness of
the peak increases as size increases, resulting in quickly decreased full width
at half maximum. These deviations from bulk Au are mainly contributed
from the surface atoms. While the coordination number is 12 for atoms in
bulk FCC crystal, all the surface atoms of the investigated spherical NPs at
0 K are undercoordinated, as shown in Fig. 1, resulting in increasing surface
strain and thus overall decreasing bond length. As particle sizes increases
from 1.2 nm to 4.0 nm, the percentage of the surface atoms decreases from
76.4 % to 35.7 %. As a result, the bulk-like core atoms become dominant
in larger particles and the overall contraction of bonds contributed from the
undercoordinated surface atoms becomes limited as shown in the peaks. It
is noticed that the range of first distance peaks increases in larger particles,
indicating a general trend of wider distribution in bond length. This is con-
tributed from the wider variety of the surface morphology as size increases,
from a combination of (100) and (111) facets in Au55 to more complex com-
bination of higher order facets in larger particles. The coordination numbers
of surface atoms in Au55 varies from 5 to 8, and that in Au1985 varied from
5 to 11.

To further study the surface effect, a series of hollow particles were gen-
erated by cutting the core atoms out of a Au particle of 3.2 nm in diameter.
The structures were relaxed at 0 K using Sheng potential in GULP, as shown
in Fig. 6. The thickness of the shell in these hollow particles were 4 Å, 6 Å,
8 Å to 10 Å in Fig. 6 a to d, respectively. The solid particle was included
in Fig. 6 (e) as reference. The bond length distribution along the radius in
Fig. 6 clearly showed that the bond length at both inner and outer surfaces
had the tendency to be smaller than the bulk value, in accordance with the
smaller coordination numbers at both surfaces. We defined the ± 2 % of the
bond length in bulk Au as cut-off distances, so that the region where the
bond length frequently fell outside the bounds was defined as the penetra-
tion zone. As shown in Fig. 6, the penetration zone at the outer surface was
about 2 Å, which includes the first to the second atomic layer normal to the
surface, and the bond length in the penetration zone showes large diversity
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Figure 5: Radial distribution functions generated from Sheng potential for
Au55 (1.2 nm), Au135 (1.6 nm), Au249 (2.0 nm), Au429 (2.4 nm), Au675 (2.8
nm), Au959 (3.2 nm), Au1433 (3.6 nm), and Au1985 (4.0 nm).

from the bulk value. Bond contraction at the inner surface is less severe than
that at the outer. The difference in bond distribution at the outer surface
and at the inner surface can be explained by smaller coordination numbers in
average at the positively curved outer surface than at the negatively curved
inner surface, resulting in larger bond contraction in the former.

30



(a)

(c)

(e)

(d)

(b)

2.6

2.8

3.0

Bulk bond length
±2%

2.6

2.8

3.0

2.6

2.8

3.0

B
on

d 
le

ng
th

 (Å
)

2.6

2.8

3.0

0 2 4 6 8 10 12 14 16

Radial distance (Å)

2.6

2.8

3.0

Figure 6: Cross-section views of hollow Au particles (left) and bond length
distributions along radial distance (right) for Au578 with 12 Å ≤ r ≤ 16 Å
(a), Au734 with 10 Å ≤ r ≤ 16 Å (b), Au824 with 8 Å ≤ r ≤ 16 Å (c),
Au904 with 6 Å ≤ r ≤ 16 Å (d), and Au959 with r ≤ 16 Å (e). Atoms were
colored according to the coordination number. Bond length in bulk Au was
labeled in dashed line, with ± 2 % as the upper and lower bounds in dotted
lines.
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3.3 Au NPs at Finite Temperatures

Catalytic reactions operate at elevated temperatures and often undergo the
annealing process. Therefore, it is of great interest to study the structural
evolution of the nanoparticles at finite temperature. In this section, classical
MD simulations were performed to investigate how the structures of NPs
with different sizes (3 nm to 10 nm) and shapes (sphere and cube) evolve
with temperatures.

3.3.1 Computational Methods

Classical molecular dynamics simulations [44] were carried out using LAMMPS
[45] with a highly optimized embedded atom method potential developed by
Sheng, et al [15]. Energy minimization at 0 K was performed until the total
energy and the forces were converged to 10−12 eV and 10−12 meV/Å, re-
spectively. MD simulations at selected finite temperature were performed at
constant temperatures for the canonical (NVT) ensemble for 5 ns. Thermo-
dynamic data (e.g. temperature, energy, pressure) were computed every 10−3

ps and recorded every 10−1 ps. A total of 1000 configurations was collected
every 1 ps in the last 1 ns for structural analysis. Coordination number was
calculated with a cutoff distance of 3.3 Å for all geometry.

To study the size dependence of energetics and structural features, Au
NPs in the size of 3 nm (N = 736), 5 nm (N = 3589) and 10 nm (N = 28897)
in diameter were investigated, as shown in Fig. 7. The spherical shape were
adopted by truncating spheres out of the bulk Au FCC crystal. To probe
the shape effect, cubic Au NPs with side length of 3 nm (N = 1688), 5 nm
(NN = 7813) and 10 nm (N = 66326) were generated by truncating along the
(100), (010) and (001) planes of bulk Au. The spherical and cubic structures
adopted here do not correspond to the most stable structures found in the
experiments.

Fig. 8 shows a typical plot of the total energy per atom (E) at finite tem-
peratures as a function of time for the spherical 3 nm Au NP. By definition, E
is the negative value of Ecoh in classical FF simulation. Large energy fluctua-
tion occurred at the initial stage, normally within 0.2 ns before converging to
a moderate oscillation around the average value. Significantly larger energy
fluctuation was observed at the crystalline to amorphous transition temper-
ature , in this case around 880 K. Nevertheless, structural parameters were
extracted from 1000 configurations at transition temperature as well, even
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Figure 7: Optimized structures of spherical 3 nm (a), 5 nm (b) and 10 nm
(c) Au NPs, and cubic 3 nm (d), 5 nm (e) and 10 nm (f) Au NPs. Atoms
were colored according to coordination numbers.
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Figure 8: Energy of spherical 3 nm Au NPs at various temperatures. Each
simulation was maintained at a constant temperature for 5 ns.

though such system may not have reached its equilibrium at the investigated
time frame.

Temperatures during heating in experiments undergo an elevated process,
and thus simulations often include heating at a constant rate or step-heating
at the initial stage to mimic the realistic heating process. However, tem-
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perature in this work was set at constant during the entire MD simulation
and the relatively large time duration (5 ns) used in MD simulations allows
the single particle system reaching equilibrium well before data collection
(except at transition temperatures), as shown in Fig. 8. Indeed, results from
simulations for the spherical 3 nm Au NP at different heating rates showed
that the averaged energy of 1000 configurations and the standard deviation
were within 0.05 % and 7 %, respectively. Therefore, we are confident that
NP structures obtained using the simplified constant-temperature procedure
are representative at given temperatures and can be reliable for subsequent
structural analysis.

3.3.2 Spherical Au NPs

In this section, we will focus on characterization of spherical Au NPs us-
ing a combination of different structural properties. The overall size and
temperature effect contributed from all atoms in 1000 configurations will be
investigated.

Spherical single-crystalline Au NPs with diameter of 3 nm, 5 nm and 10
nm were equilibrated at finite temperatures up to above the melting tem-
perature of bulk gold of 1337 K. Fig. 9 shows the equilibrium structures of 5
nm NPs at each temperature. The temperatures goes from 10 K to beyond
the bulk melting points and therefore produces both crystalline and amor-
phous NP structures. The melting points of spherical 3 nm, 5 nm and 10
nm NPs can be roughly estimated from Fig. 10 as 900 K, 1100 K and 1250
K, respectively. For the 5 nm particle, the near perfect spherical shape was
maintained at temperatures up to 660 K. At 880 K, the surface of the particle
became (100) and (111) facet dominated. The surface of an ideal spherical
particle contains multiple high-index planes as shown in Fig. 9, resulting in
high surface energy. Increasing annealing temperature provided energy high
enough to conquer the energy barrier for bond-breaking and reforming, so
that the surface underwent evolution from high-index planes to low-index
facets to minimize its surface energy. The (111) and (100) facets have the
lowest surface energy for Au FCC crystal, and therefore are the dominant
facets after annealing. Similar evolution of surface structure has been ob-
served in experiments at 373 K and 473 K for Au particle about 5 nm in
diameter.[13] At temperatures above its melting point at 1100 K, the shape
of 5 nm particle became amorphous. The overall shape is near spherical with
irregular surfaces. Similar structure transition were observed for 3 nm and

34



4
5
6
7
8
9
10
11
12
13

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: Views of spherical 5 nm Au NPs at 5.00 ns at 10 K (a), 50 K (b),
100 K (c), 150 K (d), 200 K (e), 300 K (f), 440 K (g), 660 K (h), 880 K
(i), 1100 K (j), 1320 K (k) and 1540 K (l). Atoms were colored according to
coordination numbers.

10 nm particles at different temperatures due to different melting points.
Fig. 11 shows the averaged energy over 1000 configurations at finite tem-

peratures for spherical 3 nm, 5 nm and 10 nm particles. Dramatic increase
in energy is observed as temperature raises above experimental melting tem-
perature. The energies (E) as a function of temperature for Au crystallines
were fitted to E0 +a∗T , with fitted E0 being -3.66, -3.77 and -3.86 eV/atom,
and fitted slope a being 1.47× 10−4, 1.44× 10−4 and 1.55× 10−4 in the unit
of eV/K for 3 nm, 5 nm and 10 nm particles, respectively. For the amor-
phous structures, the energies were also fitted to E0 + a ∗ T , with fitted E0

being -3.67, -3.77 and -3.82 eV/atom, and fitted slope a being 2.25× 10−4,
2.20× 10−4 and 2.15× 10−4 in the unit of eV/K for 3 nm, 5 nm and 10
nm particles, respectively. The discrepancy in fitted E0 for crystalline and
amorphous particles is negligible for each size, indicating the energy at either
phase will converge at 0 K. The slope in amorphous region at each size is
significantly higher than that in crystalline, indicating a higher heat capacity
in amorphous particle.

35



Figure 10: Experimental (circles) and theoretical (line) melting temperatures
of Au particles as a function of size (Reproduced from Buffat [1]). The solid
line represents a least-square fit to a model based on the starting assumption
that solid-liquid particles having the same mass coexist at the melting point.
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Figure 11: Energy of spherical 3 nm (black circles), 5 nm (red squares) and
10 nm (blue up triangles) Au NPs as a function of temperature. Standard
deviation of each data point was included. Energies were fitted to E =
E0 + a ∗ T with different E0 and a for crystalline region and for amorphous
phase.
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Coordination Numbers. Spherical Au crystalline possesses complex
surface structures, including facets, edges, steps and corners of different co-
ordination numbers, as shown in Fig. 9 for the spherical 5 nm Au NP. Similar
surface structures were also found for 3 nm and 10 nm Au NPs. Coordinate-
dependent bond length contraction at surface has been observed in experi-
ments [46] and was confirmed in the previous subsections at 0 K. At temper-
atures up to 200 K, the coordination numbers almost remain constant, which
are shown as overlapping circles in Fig. 12, Fig. 13 and Fig. 14 for 3 nm, 5
nm and 10 nm NPs, respectively. Core atoms with a coordination number
of 12 dominates at low temperature, being 53.5 %, 70.7 % and 84.7 % of
the total atoms for 3 nm, 5 nm and 10 nm NPs, respectively. Coordination
numbers of surface atoms are under 12, depending on its morphology, where
center atoms on (111) facet have coordination numbers of 9, edge atoms 8,
corner atoms 5 to 6, and near center atoms on (100) facet have coordination
numbers of 8, edge atoms 7, corner atoms 6. A total of 6 atoms in each
particle are on top of (100) facets, with a coordination number of 4. Step
atoms have coordination numbers of 10 or 11. The coordination numbers
generally followed bimodal distributions where two distinct peaks occurred
at 7 and 12 at low temperatures.
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Figure 12: Coordination number of spherical 3 nm NPs at 10 K (grey circles),
50 K (brown circles), 100 K (yellow circles), 150 K (circle, cyan), 200 K
(maroon circles), 300 K (black circles), 440 K (red squares), 660 K (green
diamond), 880 K (blue up triangles), 1100 K (cyan pluses), 1320 (magenta
crosses) and 1540 K (orange stars).
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Figure 13: Coordination number of spherical 5 nm Au NPs at at 10 K (grey
circles), 50 K (brown circles), 100 K (yellow circles), 150 K (circle, cyan), 200
K (maroon circles), 300 K (black circles), 440 K (red squares), 660 K (green
diamond), 880 K (blue up triangles), 1100 K (cyan pluses), 1320 (magenta
crosses) and 1540 K (orange stars).
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Figure 14: Coordination number of spherical 10 nm Au NPs at 150 K (circle,
cyan), 300 K (black circles), 440 K (red squares), 660 K (green diamond),
880 K (blue up triangles), 1100 K (cyan pluses), 1320 (magenta crosses) and
1540 K (orange stars).

Starting from 300 K up to 880 K, population with 12 coordination num-
bers decreases as temperature increases, indicating a general trend of increase
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in bond length beyond the cutoff of 3.3 Å. For example, the percentage of
atoms with 12 neighbors at 880 K is 31.9 %, 45.8 % and 55.5 % for 3 nm, 5
nm and 10 nm NPs, respectively. In the meantime, population with smaller
coordination numbers increases as temperature increases, and two distinct
peaks start to merge at higher temperatures.

At temperatures above melting points, the distribution of the coordina-
tion numbers becomes unimodal. For both the 3 nm and 5nm particle, the
coordination number distribution peaks at 10 for 1100 K, and 9 for 1320 K
and 1540 K. For 10 nm particle with a melting point above 1200 K, coordina-
tion number below and above 1100 K shows a clear transition from bimodel
to unimodel distribution, with significant reduction of population at 12 and
increased population at low numbers.

Radial Bond Length Distribution. Bond length distribution along
radial direction for spherical 5 nm particles shows the trend of particle ex-
pansion as temperature increases, as shown in Fig. 15. The cutoff distance
for calculating bond length was set to be 3.5 Å, which is 20 % larger than
bond length in bulk Au and yet smaller than the second nearest neighbor
distance at 4.08 Å for bulk FCC Au. As temperature increases, the upper
limit of atomic bonds along radius extends, indicating an increase of about
15 % in particle radius from 100 K to 1320 K. The first lowest and the second
lowest limit of atomic bonds along radius are about 1.4 Å and 2.88 Å at
temperatures up to 880 K, responding to half and full length of an atomic
bond in FCC crystalline Au, respectively. Disappearance of these two char-
acteristic bond lengths at 1100 K or higher indicated the disappearance of
crystalline structures. Bond length distribution at 100 K is comparable to
that observed in 3.2 nm particle at 0 K in Fig. 6, with similar penetration
depth at about 2 Å and wider distribution of bond length at core. Not
only contraction occurs at the surface, bond expansion occurs from about
second layer beneath the surface and eventually extending to the whole par-
ticle. The spectrum of bond length becomes significantly wider at increased
temperatures. The maximum bond length goes beyond the cutoff distance
of 3.5 Å at higher temperatures, and the minimum bond length decreases
below 2.4 Å.

Linear Thermal Expansion Coefficient. Although the bond length
distribution provides a qualitative way to evaluate the thermal effect on par-
ticle size, a quantitative method to identify the characteristic length of the
particle is in demand. In the bulk, the characteristic length is obviously the
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Figure 15: Bond length distribution along radial direction for spherical 5
nm Au NPs at 100 K (black circles), 300 K (square, red), 440 K (diamond,
green), 660 K (up triangles, blue), 880 K (left triangles, violet), 1100 K
(triangle down, orange), and 1320 K (triangle right, maroon). Bond length
was calculated with a cutoff distance of 3.5 Å.

lattice constant, and the linear thermal expansion coefficient is defined as

αL =
1

l

dl

dT
(53)
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where l is the lattice constant in the bulk. However, there exists no such uni-
form lattice constant for finite systems due to atomic displacement from the
perfect periodic lattice. A commonly applied length is the mean interatomic
distance[47]

lmiad =
1

N(N − 1)

N∑
i,j=1

|ri − rj| (54)

where ri is the position of the ith atom of the N total atoms in the parti-
cle. The characteristic length, lmiad, measures the average pairwise atomic
distance, and thus describes the average “extension” of the atomic structure.
We calculated lmiad for 1000 configurations obtained at each finite tempera-
ture for each size, and the averaged lmiad with standard deviations as error
bars were plotted as shown in Fig. 16. lmiad of the optimized structure at
0 K was also included. For near spherical particles at 3 nm, 5 nm and 10
nm in diameter, lmiad has the value of 14.68 Å, 24.94 Å and 50.06 Å at
0 K, respectively, approaching the radius of each particle. At T < Tmelt for
all sizes, lmiad increases smoothly as a function of T . At T > Tmelt region,
similar trend with larger slope is observed for all sizes. There are remarkable
increases in lmiad as the temperature increases from below melting point to
above, indicating significant structural deformations occurs when melting.

From Eqn. 53 where lmiad was applied as l, the linear thermal expansion
coefficients were derived for all three sizes as shown in Fig. 17. The predicted
linear thermal expansion coefficients of bulk Au using Sheng potential from
MD simulations overlap with the experimental results at 160 K to 300 K,
with increasing discrepancies up to 8.9 % as temperature increases. αL for
spherical particles are all positive at all investigated temperatures, indicating
positive thermal expansion occurs at all three sizes. The positive trends for
5 nm and 10 nm particles are in general consistent with experimental obser-
vations for supported 5 nm particles [12]. However, the predicted trend for
3 nm particles fails to agree with experimental results for bare Au particles
of 4 nm, where a crossover from a positive thermal expansion at lower tem-
peratures to a negative thermal expansion at higher temperatures occurs at
around 125 K [11]. The phenomena was proposed to contribute from the dis-
crete electronic energy levels induced by the finite particle sizes.[48, 12] The
vibrational and electronic energy of the system, are temperature-dependent,
contributing to the positive thermal expansion and the negative thermal
expansion as T increases, respectively. As particle size decreases, the contri-
bution from the electronic energy due to thermally excited valence electrons
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Figure 16: Averaged mean interatomic distances (lmiad) of spherical 3 nm
(black circles), 5 nm (red squares) and 10 nm (blue up triangles) Au NPs
as a function of temperature. lmiad was averaged over 1000 configurations at
each temperature. Standard deviations were shown as error bars.

at increasing temperatures becomes significant, resulting in an overall neg-
ative thermal expansion. Unfortunately, classical EAM potential is limited
to include only contribution from thermal vibrational energy, not the elec-
tronic energy. Therefore, the discrepancy of the predicted thermal behavior
from the experimental results decreases as size increases. Nonetheless, the
EAM potential successfully predicts the overall positive thermal expansions
at larger sizes, approaching to bulk behavior as size increases. In addition,
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Figure 17: Linear thermal expansion coefficient (αL) of spherical 3 nm (black
circles), 5 nm (red squares) and 10 nm (blue up triangles) Au NPs as a
function of temperature. Experimental reference for bulk Au (green left
triangles) was reproduced from Nix and MacNair [2]. Coefficients of bulk Au
calculated from Sheng potential were included (violet stars). αL at melting
temperature region for each particle was omitted. Data points at T < Tmelt

were connected with solid lines, those at T > Tmelt with dashed lines.

the predicted αL of amorphous particles are higher than those in crystalline-
like particles, similar to the thermal behavior of liquid versus solid.

Raidal Distribution Function. Radial distribution function (RDF),
g(r), describes the atomic density as a function of distance from a refer-
ence particle, which provides detailed structural information about dynami-
cal changes of the structures. Fig. 18 shows the first four RDF peaks aver-
aged from 1000 configurations at each temperature. These four peaks cor-
respond to the atomic densities at the nearest neighbour distances at [110]
direction (bond length, d), [100] direction (lattice constant,

√
2d), [112] di-

rection (
√

3d), and [110] direction (2d) in perfect FCC crystal, respectively.
As temperature increases, the intensity of RDFs decreases and the peaks
broaden due to thermal fluctuations. The coordination number reduces sig-
nificantly as temperature increased, indicating decrease in the number of
nearest neighbors within the cutoff distances (3.3 Å) and thus an increase

43



2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Au-Au distance (Å)

g(
r)

10 K
25 K
50 K
100 K
200 K
300 K
440 K
660 K
880 K
1100 K
1320 K
1540 K

Figure 18: Averaged radial distribution functions of spherical 5 nm Au
NPs at finite temperature. Peaks were averaged over 1000 configurations
equilibrated at each temperature.

in nearest neighbor distances. The broad peak at smaller coordination num-
bers also indicates a broadening in bond length distribution. These facts
correspond to the decreasing intensity of RDF peaks, and the broadening of
the first peaks. A close investigation shows an increasing positive skewness
of the first peaks at higher temperature, indicating more population of the
bonds with larger bond lengths than the mode (maximum). The other peaks
shows increasing asymmetries as well, partly due to the addictive effect from
broadening neighboring peaks. The second and the fourth peak vanish at
temperatures above melting point, indicating the absence of longer range or-
der in the amorphous particles. Notable decrease in the positions of the first
peak and the almost vanished third peak are observed at T > Tmelt. Similar
trends are found in 3 nm and 10 nm particles.

More detailed information was extracted from the RDF peak positions
at the maximum points. The maximum, the breadth and the skewness of
the RDF peaks should all be taken into consideration when evaluating the
structures. Extracting the maximum seems straightforward. However, the
breadth and the skewness are difficult to evaluate due to lack of fitting func-
tions for RDFs. Due to the asymmetric nature of RDF peaks at elevated
temperatures, fitting the peaks to Gaussian function resulted in increasing
error at higher temperature. It is even more difficult to fit the peaks at larger
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Figure 19: Peak positions (maxima) of the averaged radial distribution
functions for spherical 3 nm (black circles), 5 nm (red squares) and 10 nm
(blue up triangles) Au NPs as a function of temperature. Positions of the
first peak d1 (a), second peak d2 (b), third peak d3 (c) and fourth peak d4

(d) were extracted from the averaged RDF plots.
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distances due to significant background noises. To avoid such fitting errors,
the peak positions in Fig. 19 were read from the 10-point averaging plots
of the original RDF peaks at the maxima. As shown in Fig. 19, the first
peak positions (d1) of all three sizes decrease as temperature increases at
T < Tmelt, whereas d2, d3 and d4 show positive trends. As concluded in the
previous section that the simulated particles at all three sizes shows positive
thermal expansion, it is easy to understand that the peak positions d2, d3

and d4 increase as a function of temperature. The negative trend of the first
peak positions indicated the balance resulting from the positive lattice ex-
pansion due to increasing vibrational energy and the (negative) contraction
due to increasing local strain, which is also shown as decreasing coordination
numbers as a function of temperature.

It is interesting that the RDF peak positions provide additional informa-
tion of distinguishing the particle sizes. All the peaks except d2 show that
the peak positions shift up as size increased, and the difference among sizes
slightly increased as temperature increased in general. It is most explicit
in the first peak positions, where the shift-up in d1 is about 3.5 % as size
increases from 3 nm to 10 nm at moderate to high temperatures. The aver-
aged lattice parameters d2 overlap as size varied. A rough estimation of linear
thermal expansion coefficient based on d2 in the temperature range of 10 K
to 880 K is 2.0 × 10−5 K−1, in the same order of magnitude of the estimated
αL. For d3 and d4, the discrepancies between 3 nm and 5 nm were obviously
larger than those between 5 nm and 10 nm, indicating the convergence of
peak position as particle size approaching bulk.

3.3.3 Cubic Au NPs

Cubic Au particles containing (100) facets at all six surfaces were studied to
compare with the spherical particles. To avoid confusion, the nominal size
of the cubic particle defined in this work is the length of the side. By this
definition, the cubes have far more atoms than the spheres having the same
nominal sizes. As a result, the melting temperature of the cubic particle at
a given size is significantly higher than the corresponding spheric one. As
shown in Fig. 20, the corner atoms with low coordination numbers deform
quickly as temperature increased from 10 K, forming small (111) facets at
each corner. The (111) facets become one of the two dominating facets as
temperature goes up to 1100 K, similar to the (111) and (100) dominated
surfaces at 880 K for spherical 5 nm shown in Fig. 9 (i). At T > Tmelt, the
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Figure 20: Views of cubic 5 nm Au NPs at 5.00 ns at 10 K (a), 50 K (b),
100 K (c), 150 K (d), 200 K (e), 300 K (f), 440 K (g), 660 K (h), 880 K
(i), 1100 K (j), 1320 K (k) and 1540 K (l). Atoms were colored according to
coordination numbers.

cubic shape completely disappears and becomes spherical, comparable to the
amorphous structures from spherical particles. Similar trends are found in
cubic 3 nm and 10 nm particles. Transitions from perfect cube to truncated
octahedron-like structure with (111) and (100) dominated surfaces occur at
lower temperatures in 3 nm particles.

The averaged energies over 1000 configurations for cubic 3 nm, 5 nm and
10 nm particles are shown in Fig. 21. Similar to the spherical particles, the
energies (E) as a function of temperature for Au crystallines were fitted to
E0 +a∗T , with fitted E0 being -3.69, -3.79 and -3.86 eV/atom, and the fitted
slope a being 1.19× 10−4, 1.39× 10−4 and 1.45× 10−4 in the unit of eV/K
for 3 nm, 5 nm and 10 nm particles, respectively. The absolute value of fitted
E0 is slightly larger in cubic particle at the same nominal size comparing to
spherical one due to increased number of atoms, which is consistent with the
size-dependent trend. For the amorphous structures, the fitted E0 is -3.73
and -3.79 eV/atom, and fitted slope a being 2.25× 10−4 and 2.15× 10−4 in
the unit of eV/K for the cubic 3 nm and 5 nm particles, respectively. The
absolute value of the fitted E0 for crystalline-like particles is larger than that
for the amorphous one, indicating the cubes are less stable than the spheres.
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Figure 21: Energy of cubic 3 nm (black circles), 5 nm (red squares) and 10
nm (blue up triangles) Au NPs as a function of temperature.

Coordination Number. The coordination numbers in cubic 3 nm par-
ticles show two modes: 8 from surface atoms on (100) facets and 12 from
core atoms at low temperatures, as shown in Fig. 22. Similar to spherical
particles, the distribution of coordination numbers transforms from bimodal
to monomodal as the particles transferred from crystalline to amorphous
structures. Again, the coordination numbers of the amorphous particles at
maximum shift down as temperature increases, indicating an increase in bond
length. Similar transitions are observed in 5 nm and 10 nm cubic particles,
as shown in Fig. 23 and Fig. 24, respectively.
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Figure 22: Coordination number of cubic 3 nm Au NPs at 10 K (grey circles),
50 K (brown circles), 100 K (yellow circles), 200 K (maroon circles), 300 K
(black circles), 440 K (red squares), 660 K (green diamond), 880 K (blue up
triangles), 1100 K (cyan pluses), 1320 (magenta crosses) and 1540 K (orange
stars).
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Figure 23: Coordination number of cubic 5 nm Au NPs at 10 K (grey circles),
50 K (brown circles), 100 K (yellow circles), 200 K (maroon circles), 300 K
(black circles), 440 K (red squares), 660 K (green diamond), 880 K (blue up
triangles), 1100 K (cyan pluses), 1320 (magenta crosses) and 1540 K (orange
stars).
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Figure 24: Coordination number of cubic 10 nm Au NPs at 100 K (orange
circles), 300 K (black circles), 440 K (red squares), 660 K (green diamonds)
and 880 K (blue up triangles).
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Linear Thermal Expansion Coefficient. The mean interatomic dis-
tances of cubic Au particles were extracted following the same procedure as
in spherical particles. Based on the previous analysis of spherical particles,
the thermal response of cubic particles should be positive as a function of
temperature as well. However, lmiad obviously failed to describe the positive
thermal effect on cubic particles, as shown in Fig. 25. Accompanied with the
structural transition from cubic to octahedron-like structure, lmiad decreases
as temperature increases for 3 nm particle at all temperatures below melting
point, and for 5 nm particles from 660 K to 1100 K. Severe geometry change
overcomes the minor contribution from thermal expansion, resulting in dra-
matic decrease in lmiad. As a result, the calculated linear thermal expansion
coefficient based on lmiad is totally unreliable, as shown in Fig. 26.
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Figure 25: Mean interatomic distances of cubic 3 nm (black circles) and 5
nm (red squares) Au NPs as a function of temperature.
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Figure 26: Linear thermal expansion coefficient (αL) of cubic 3 nm (black
circles) and 5 nm (red squares) Au NPs as a function of temperature. Ex-
perimental reference for bulk Au (green left triangles) reproduced from Nix
and MacNair [2]. αL at melting temperature region for each particle was
omitted. Data points at T < Tmelt were connected with solid lines, those at
T > Tmelt with dashed lines.

Radial Distribution Function. An alternative way to characterize the
thermal effect in the cubic particles is to extract structural information from
the RDF peaks. Fig. 27 shows the averaged RDFs of cubic 5 nm particle at
varying temperatures. Although it is unfair to compare the RDFs of those
from the spherical particles directly due to different number of atoms, the
trends observed for the cubic particles are similar to those in the spherical
NPs. Increases in d2, d3 and d4 indicate thermal expansion in cubic particles.
Although the peak positions of d1, d3 and d4 increased as size increased, The
difference in peak positions for 5 nm and 10 nm became much smaller in
cubic particles, indicating the convergence to bulk value as size increases and
possible difficulty in distinguishing particles with larger sizes. Nonetheless,
the RDF peak positions successfully predict the similar thermal and size
effects of the cubic particles comparing to the spherical particles.
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Figure 27: Averaged radial distribution functions of cubic 5 nm Au NPs
at finite temperature. Peaks were averaged over 1000 configurations at each
temperature.
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Figure 28: RDF peak positions of cubic 3 nm (black circles), 5 nm (red
squares) and 10 nm (blue up triangles) Au NPs as a function of temperature.
Positions of the first peak d1 (a), second peak d2 (b), third peak d3 (c) and
fourth peak d4 (d) were extracted from the averaged RDF plots.
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Figure 29: The original (a) and scaled (b) radial distribution functions of
spherical 5 nm Au NP (black) and cubic 5 nm Au NP (red) at 300 K.

Finally, the RDFs of spherical 5 nm NP and cubic 5 nm NP at 300 K were
compared in Fig. 29. Due to their different numbers of atoms, the original
RDFs of spherical and cubic 5 nm differ in intensities, as shown in Fig. 29 (a).
The intensity of the peaks was multiplied by the number of atoms for each
particle, as shown in Fig. 29 (b). The peak positions of the original and scaled
RDF peaks for spherical and cubic 5 nm NPs indicate negligible difference
resulting from different shapes. The scaled RDF peaks almost overlap with
each other, except a slight increase in peak intensity from cubic 5 nm particle,
probably contributed from the corners in the cubes. In conclusion, the RDF
peaks are an alternative way to characterize the nanostructures based on
averaging structural information. Shift in peak positions reflects the effect of
thermal expansion. However, RDF peaks provides little information of the
shape, resulting in difficulties in differentiating the spherical and cubic NPs
solely from RDFs.

3.4 Conclusion

The size-, temperature- and shape-dependent properties of Au particles up to
10 nm were investigated using a highly optimized EAM potential by Sheng,
et al [15]. As size increases, the thermal properties approaches the bulk value
due to less impact from the surface effect at finite sizes. For both spherical
and cubic Au particles, the thermal effects on the structures are always pos-
itive, which is consistent with the experimental results on particle sizes of
5 nm or larger. The thermal contraction for 4 nm or smaller Au NPs at
temperatures beyond a turnover point is contributed from the electron exci-
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tation, and thus it is impossible to reproduce the same trend using classical
force field potential that ignores the contribution from the excited electrons.
First-principles based MD simulations are needed to further investigate the
thermal behavior of small Au particles. Nonetheless, the MD simulations
with the EAM potential are reliable for generating realistic atomic struc-
tures of sizes larger than 5 nm.

The structural analysis is based on coordination number distribution,
mean interatomic distances, and radial distribution functions. Mean inter-
atomic distances (lmiad) provide quantitative information to characterize the
thermal effect and the size effect, leading to calculations of linear thermal ex-
pansion coefficients. However, lmiad is highly shape-dependent, which is only
applicable for perfect spherical particles and/or for particles without shape
deformation. The coordination number distribution reflects the changes in
size, temperature, and shape, providing supplementary information for struc-
tural analysis, especially the coordinate-dependent bond length distribution
at surface layers [46]. The radial distribution functions provide information
on atomic density, which can be reliable for structural analysis. Extracted
peak positions quantitatively characterize the thermal expansion of parti-
cles as a function of temperature and size, which are valid for both shapes.
Should there exists reliable fittings to the RDF peaks, the analysis on the
intensity and breadth of the RDF peaks would provide more information for
structural characterization.
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4 Nanoparticles for photocatalysis

This section was published in J. Phys. Chem. C 2015, 119 (9), 4834-4842
and partly in Catal. Sci. Technol. 2015, 20592064 (5).

4.1 Introduction

Noble metal nanoparticles in the range of a few nm to a few tens of nm
often exhibit properties that are distinctively different from the bulk mate-
rials, and are useful in a wide variety of applications such as imaging, catal-
ysis, biomedicine, etc. due to their tunable properties depending on size,
shape and chemical composition. Physical or chemical processing, such as
sonication[49], annealing[50], ligandation[51] and deposition on the substrate[52],
may further modify the NP structures and functionalities. In particular, for
catalytic applications, adsorption of the NPs on semiconductor or insulator
substrates can play an important role in determining the overall catalytic
activity of the combined system. It has been recently reported that semicon-
ducting CdS nanorods or nanoparticles decorated with sub-nm and nm-sized
noble metal clusters show promising applications in photocatalysis such as
H2 production under visible light [53, 54, 5, 55]. Interestingly, the catalytic
activity for Pt clusters on CdS was observed to be significantly enhanced
for a particular cluster size [55]. It was proposed that this cluster-size selec-
tivity stems from the alignment of the lowest unoccupied molecular orbital
(LUMO) of the cluster between the hydrogen reduction potential and the
CdS conduction band edge (CB) based on the idea that photo-excited elec-
trons are first transferred from CB of CdS to the cluster LUMO and then
to the H+ ions, both steps being downhill energetically. In order to eval-
uate the validity of this proposed model, it is necessary to understand not
only the quantitative trend of the cluster electronic structure as a function
of cluster size, but also very importantly the influence from the substrate.
Furthermore, the adsorption of the metal cluster is also expected to modify
the structural and electronic properties of the substrate, and in turn the en-
ergy level alignment at the cluster/substrate interface. Such cluster/support
interactions are additionally subject to the influence of finite temperature
[56] and chemical environment [57, 58], which adds to the complexity of the
surface reactions environment.

Several density functional theory (DFT) studies on supported noble metal
clusters have been reported previously [59, 60, 58]. The adsorption of Ag
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atom and small AgN clusters (N = 2, 4, 7) on polar CdS surfaces was stud-
ied [59], and the computed adsorption energy on the Cd-terminated (0001)
surface ranges from -2.5 eV (Ag1) to -4.6 eV (Ag7). The adsorption-induced
work function shifts of the Cd-terminated (0001) and S-terminated (0001̄)
surfaces were found to be of opposite signs, consistent with the relation
of Pauli electronegativity of S < Ag < Cd. Whereas similar adsorption
studies of sub-nm Pt clusters on CdS have not been reported in the litera-
ture, the atomic structure of a Pt246 nanoparticle adsorbed on the nonpolar
CdS (101̄0) surface was studied using ab initio molecular dynamics simula-
tions [60], which revealed a strong bonding accompanied by atomic diffusion
of substrate atoms into the Pt cluster, in contrast with the much weaker
interaction found between CdS and the amorphous or epitaxial slab of Pt.
In addition, profound substrate effects have been observed on the atomic
structure of the supported noble metal clusters. For example, a dispersion-
corrected DFT study of Pt cluster on graphite [61] showed that van der
Waals interactions contribute significantly to the overall adsorption energy
and, despite its weak nature, dramatically influence the structure (e.g., ex-
pansion and wetting) and electronic properties (e.g., enhanced metallicity)
of the supported Pt clusters. A recent study that combines DFT calcula-
tions with high-resolution TEM and extended X-ray absorption fine structure
spectroscopy [58] also revealed a strong dependence of the crystallinity and
energetic stability of the supported Pt cluster on the supporting materials
(graphene or γ-Al2O3) and adsorbate (H2).

In this Chapter, we investigate the adsorption characteristics of supported
Pt clusters on CdS surface as a first step toward understanding the enhanced
photocatalytic activity at the cluster/semiconductor interface. We focus
on CdS-supported Pt clusters of approximately 1 nm in size, which were
found by several experiments to be most active for photocatalytic hydrogen
production[5, 62, 55]. In particular, we examine the influence from the clus-
ter size and shape on the adsorption geometry and energetics, and analyze
in detail the structural deformation on both the cluster and the substrate, as
well as the influence on their electronic structures. For comparison, system-
atic studies of unsupported Pt cluster up to 1.5 nm were also carried out.
Our results indicate that realistic structural models which explicitly treat the
interactions between the clusters and the substrate are essential for properly
describing the electronic structure at the interface and better understanding
the role of Pt clusters in improving reactivity of CdS towards photocatalytic
water splitting.
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4.2 Computational Methods

Spin-polarized DFT calculations were carried out using the Vienna ab initio
simulation package (VASP) [27, 28] within the generalized gradient approxi-
mation with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [24]. The projected augmented wave (PAW) method [63] and a kinetic
energy cutoff of 400 eV were used. Geometry optimization was performed
without any symmetry constraint until the total energy and the ionic forces
were converged to 10−6 eV and 10 meV/Å, respectively. For selected sys-
tems, we examined the spin-orbit coupling (SOC) effect as implemented in
VASP by Kresse and Lebacq. [27, 28]

The computed lattice constant and cohesive energy of bulk face centered
cubic (fcc) Pt are 3.97 Å and 5.57 eV, in good agreement with experimental
values of 3.92 Å [8] and 5.84 eV [64], respectively. To probe the structural
and electronic features of Pt clusters in the sub-nm to nm range, unsup-
ported Pt clusters with diameter of 0.7-1.5 nm in both 2D bilayer and 3D
structures were investigated. The 3D structures of PtN (N = 13, 38, 55,
85, 140) adopting the truncated octahedron shape (Oh symmetry) were gen-
erated by truncating along the (111) and (100) planes of bulk Pt. These
3D Pt clusters were further truncated along the (111) plane to obtain the
corresponding bilayer structures of PtN (N = 10, 19, 31, 46). For a given
size the structure adopted in this work does not necessarily correspond to
the most stable one as has been found, for example, for Pt38 and Pt55 which
possess lower symmetry in the lowest-energy configurations[65, 66]. Never-
theless, the cluster structures adopted here are convenient for investigating
the general influence of shape and size on the adsorption geometry, energet-
ics, and interface electronic properties. In addition, we have estimated the
vertical ionization potential (IP) and electron affinity (EA) by computing the
total energy differences between neutral and charged Pt clusters. For the Pt
atom, IP and EA were estimated as 9.52 eV and 2.16 eV, in comparison to
the measured values of 8.96 eV [67] and 2.13 eV [68], respectively.

The calculated bulk lattice constants of wurtzite CdS are 4.20 Å and
6.84 Å, which are within 2% of the experimental parameters of 4.14 Å and
6.71 Å [69], respectively. As is common for (semi-) local exchange-correlation
functionals, PBE severely underestimates the band gap, yielding direct band
gap of 1.10 eV at the Γ-point compared to the experimental gap of 2.42
eV [70]. Clean nonpolar (101̄0) and (112̄0) surfaces are modeled using the
symmetric periodic slab model of 8 atomic layers, with 9×6×1 and 6×6×1
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k-grids, respectively. At least 20 Å of vacuum space is inserted to separate
slabs in neighboring supercells. Dependence of the surface energy and band
gap on the slab thickness is examined by varying the number of atomic layers
(nL) from 4 to 28. The adsorption of Pt clusters on CdS(101̄0) is modeled
using a (5 × 3) surface unit cell with a single Γ-point for the Brillouin zone
sampling. The bottom four layers are fixed at their bulk positions while
the top four atomic layers and the adsorbate are fully relaxed. The broken
symmetry of the slab leads to a net surface dipole moment of µ0

CdS = −7.4
Debye for the relaxed surface in the absence of the adsorbate.

4.3 Results and Discussion

4.3.1 Unsupported Pt clusters

We first study the structural and energetic properties of unsupported Pt
clusters and their dependence on the cluster size and shape. As shown from
the relaxed geometries (Fig. 30), the bilayer structure of the 2D clusters are
preserved except for Pt10, which relaxes into a more stable 3D structure.
Overall, the intra-layer bonds and inter-layer bonds at the cluster edges con-
tract by up to 0.3 Å relative to the computed bulk value, whereas the rest
of the interlayer bonds expand by up to 0.5 Å. For 3D Pt clusters, similar
trends can be observed within and between (111) layers, but the bond length
variations are less severe (within ±0.2 Å). The average Pt-Pt bond length
in 2D and 3D Pt clusters increases towards the bulk value (2.81 Å) as the
cluster size increases.

Fig. 31 illustrates the computed cohesive energy per atom (Ecoh), which
increases monotonically with cluster size. Ecoh can be roughly fitted to
E0+AN−α with the choice of α based on the approximate perimeter-to-area
ratio for 2D structures (N−

1
2 ) and surface-area-to-volume ratio for 3D struc-

tures (N−
1
3 ), respectively. The fitting parameter E0 corresponds to the co-

hesive energy at the limit N →∞. E2D
0 = 5.2 eV is slightly larger than the

computed Ecoh of a periodic bilayer of Pt(111) (5.0 eV). Similarly, E3D
0 = 5.9

eV is higher than the computed bulk cohesive energy (5.6 eV). The discrepan-
cies are caused partly by the small sampling size of the clusters, and partly
by the numerical errors from directly comparing total energies of isolated
systems with those of periodic systems (with different k-point sampling and
choice of supercells). It was reported [71] that the SOC effect plays an impor-
tant role in determining energetics of Pt clusters, and the inclusion of SOC
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(a)

(b)

Figure 30: Top and side views of optimized PtN clusters of (a) 2D bilayer
structures (N = 10, 19, 31, 46) and (b) 3D structures (N = 13, 38, 55, 140).
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Figure 31: The computed cohesive energies (Ecoh) as a function of cluster
size (N) for 2D bilayer structures (empty circles) and 3D structures (filled
squares) of PtN . The solid lines represent fitting of Ecoh to E0+AN−α for 2D
(α = 1

2
) and 3D (α = 1

3
) structures, with fitted parameter E0= 5.2 eV (2D)

and 5.9 eV (3D). Horizontal dashed line and dashed-dotted line correspond
to computed Ecoh of a periodic double-layer Pt(111) slab (5.0 eV) and of
bulk Pt (5.6 eV), respectively.
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Figure 32: Computed cohesive energy (Ecoh) for 2D and 3D structures of Pt
clusters obtained from spin-polarized calculations with (orange triangles) or
without (blue circles) inclusion of spin-orbit coupling effects.

effect systematically decreases Ecoh. Indeed, we found the same trend for all
Pt clusters examined (Fig. 32), in good agreement with previous results on
smaller PtN clusters (N = 2 − 6)[71]. In particular, the total energy of a
single Pt atom decreases by 0.63 eV and that of Pt clusters decreases by 0.41-
0.46 eV when SOC is included, resulting in an almost constant reduction of
Ecoh by 0.2 eV for both 2D and 3D Pt clusters. The subtle difference of SOC
effects may also change the energetic ordering of isomers. For example, Pt13

was found to be more stable when adopting in the D4h symmetry than in
the Oh symmetry without SOC with ∆Ecoh = 61 meV; with SOC the trend
is reversed with ∆Ecoh = −11 meV.

Estimates of the electron removal and addition energies of the Pt clus-
ters, or equivalently IP and EA, are an important factor in determining
the interfacial energy level alignment with the substrate. Fig. 33 shows the
computed IP and EA as functions of the cluster size (N), which roughly
fall on the curves Φ0 + BN−1/3. The power law of N−1/3, or equivalently
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Figure 33: Computed ionization potential (IP, red squares) and electron
affinity (EA, blue circles) of Pt clusters as a function of cluster size. Open
and filled symbols represent 2D and 3D structures, respectively; dashed lines
are fittings to Φ +BN−1/3.

R−1 for 3D clusters, is consistent with the liquid-drop model of metal clus-
ters [72] in which the asymptotic expressions for IP and EA take the form
IP= Φ + c1e

2/R and EA= Φ − c2e
2/R, where Φ is the bulk work function.

The fitted parameters from Fig. 33, ΦIP
0 =5.58 eV and ΦEA

0 =5.50 eV, are in
excellent agreement with work functions of low-index Pt surfaces computed
from DFT [73], Φ(111) = 5.69 eV and Φ(100) = 5.66 eV. As will be shown
later, the adsorption on the CdS surface modifies the cluster structure, and
in turn its IP and EA.

The density of states (DOS) of 2D and 3D Pt clusters become discrete
as size decreases, as shown in Fig. 34. States in black are for spin-up, red
for spin-down. Filled states (up to Fermi level) are shown in solids, empty
states in hollows. The finite small band gap near Fermi level at small clusters
approaches zero as size increases.
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Figure 34: Computed density of states (DOS) of bare 2D (a) and 3D (b) Pt
clusters.
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4.3.2 Low Index CdS Surfaces

The structures of relaxed clean CdS (101̄0) and (112̄0) surfaces are shown
in Fig. 35. Significant atomic displacements are observed for the under-
coordinated surface atoms in which S atoms move towards the surface and
Cd atoms move away from the surface. The extent of the displacement decays
moving away from the surface. For instance, the average displacement of an
8-layer CdS(101̄0) slab is 0.65 (0.20) Å for the unsaturated Cd (S) atoms in
the top layer, and only 0.19 (0.07) Å in the second layer. The displacements
at subsequent layers are reduced to below 0.1 Å. For the convenience of
discussion, we label Cd and S atoms at the top two layers of CdS(101̄0) as
shown in Fig. 35. The lateral distance between Cd and S atoms along [0001]
direction (denoted as x) are D12,x = 2.32 Å, D13,x = 0.69 Å and D14,x =
3.53 Å; the perpendicular distance along [101̄0] direction (denoted as z) are
D12,z = 0.76 Å, D13,z = 1.25 Å, D14,z = 1.46 Å. These results are in good
agreement with previously reported values [74] of 2.29 Å, 0.65 Å, 3.50 Å, 0.78
Å, 1.31 Å and 1.57 Å calculated using DFT/PBE. Similar trend of atomic
displacements was found for the CdS(112̄0) surface.

Next we examine the influence of the finite slab thickness on the surface
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Figure 35: Side views of relaxed (a) nonpolar (101̄0) and (b) (112̄0) CdS
surfaces. The magenta and yellow spheres represent Cd and S atoms, re-
spectively. The same color scheme is used throughout the paper. The black
frames define the boundary of the unit cells.
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energy and band gap. The surface energy is defined as:

γ =
Eslab − nEbulk

2S0

(55)

where Eslab is the total energy of a slab with n CdS formula units and Ebulk

is the total energy of the bulk crystal per CdS formula unit. S0 is the sur-
face area of the slab and the factor of 2 accounts for the two surfaces of the
slab. In order to avoid the divergence problem with computing surface en-
ergy from separately computed slab and bulk energies, we used the method
suggested by Fiorentini and Methfessel [75] and extracted Ebulk from a lin-
ear fitting of Eslab as a function of the slab thickness nL. The calculated
surface energy converges rapidly with nL, as shown for the (101̄0) surface in
Fig. 36(a). The converged surface energies are γ(101̄0) = 20.2 meV/Å2 and

γ(112̄0) = 20.0 meV/Å2. These values agree with the previously reported data

of 20.3 meV/Å2 and 19.7 meV/Å2 using PW91[76]; however, the energetic
order of γ(101̄0) and γ(112̄0) is opposite to that obtained by Barnard et al.[74]

using PBE, where γ(101̄0) = 17.5 meV/Å2 and γ(112̄0) = 18.1 meV/Å2, perhaps
due to difference in slab thickness and the procedure of estimating Ebulk. The
averaged surface energy for the polar (0001) and (0001̄) surfaces of CdS has
been previously estimated as 56.2 meV/Å2 [74], about three times larger than
that of the nonpolar surfaces. Since we are most interested in dominating
facets of CdS nanostructures used in photocatalytic applications [55, 62, 5],
we chose the CdS(101̄0) surface in our adsorption studies of the Pt/CdS
systems because of its low surface energy and relatively simple structure.

Fig. 37 displays the total and projected density of states (DOS) of bulk
CdS and that of the (101̄0) and (112̄0) surfaces evaluated at nL = 8. All three
DOS plots look similar, and the valence and conduction band edge states are
dominated by S p orbitals and Cd s orbitals, respectively. The computed gaps
are 1.10, 1.35 and 1.48 eV for bulk, (101̄0) and (112̄0), respectively. A closer
inspection of the projected DOS of the (101̄0) surface (Fig. 37(b)) reveals the
existence of surface states arising from the filled S p dangling bonds, which
reside below the Fermi level and slightly above the bulk-like valence band
maximum (VBM). The computed band gap, Eg, of the CdS(101̄0) surface as
a function of the slab thickness is plotted in Fig. 36(b) for nL = 4-28. The
extrapolated band gap for an infinitely thick slab, E∞g = 0.9 eV, is slightly
smaller than the computed bulk gap of 1.1 eV, perhaps due to the surface
relaxation effects and the existence of the in-gap surface states.
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Figure 36: Computed (a) surface energy and (b) band gap of the CdS(101̄0)
surface as a function of the slab thickness nL. Filled diamonds and circles
correspond to energy gap from the bulk-like VBM state and surface state to
the CBM state, respectively.
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4.3.3 Adsorption of Pt clusters on CdS surface

We study the adsorption characteristics of Pt19 and Pt38, both of which
are approximately 1 nm in diameter and correspond to the dominating size
found in recent experiments of photocatalytic H2 evolution [5]. Despite the
similar lateral size, the interface area and the interaction strength may differ
significantly due to the different dimensionality (Pt19: 2D bilayer; Pt38: 3D
Oh symmetry). A 8-layer slab of the nonpolar CdS(101̄0) is chosen as the
substrate, and the Pt clusters are placed on above the slab with different
initial position and orientation. In most configurations, the (111) plane of
the Pt clusters is placed parallel to CdS surface, since it is the most abundant
facet of Pt nanoparticles and also has the largest surface area in both clusters.
We have also examined configurations in which the (111) or (100) plane is
tilted such that it is parallel to the relaxed surface CdS bonds, labeled as
T1,2 in Fig. 40 and Fig. 43. For comparison, adsorption of a single Pt atom
(Pt1) is also considered, as shown in Fig. 38 and Fig. 39. The adsorption
energy, Ead, is defined as

Ead = EPtN/CdS − (EPtN + ECdS) (56)

where the terms on the right hand side correspond to total energies of
PtN/CdS(101̄0), of the unsupported PtN cluster, and of the clean CdS(101̄0)
surface, respectively. The SOC effect was found to have a negligible influence
on Ead and therefore was ignored in adsorption studies presented below. The
structural deformation of the substrate is quantified via Edef,CdS, the total en-
ergy difference between the surface in the adsorption geometry and the clean
surface. The deformation energy of the cluster Edef,Pt is similarly defined.
The adsorption configurations presented below are by no means exhaustive
or most stable. Nevertheless, these results clearly demonstrate the influence
of cluster size, shape, and adsorption configurations on the adsorption ener-
getics and the overall interface electronic structures as will be discussed in
detail below.

Pt1/CdS(101̄0). The energetic and structural properties of different
configurations (displayed in Fig. 39) of a single Pt atom adsorbed on CdS(101̄0)
are summarized in Table 2. Starting from ten different initial adsorption po-
sitions (see Fig. 38(a)), each adsorption system relaxes into one of four stable
configurations as shown in Fig. 38(b). Config. A, in which the Pt adsorbs
on the S-S bridge site and form two Pt-S bonds and one Pt-Cd bond, is
found to be most stable with Ead = −4.1 eV. The other three configurations
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Figure 38: Top views of (a) initial and (b) final adsorption positions of Pt1

on CdS(101̄0).
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Figure 39: Top and side views of relaxed geometries of Pt1/CdS(101̄0). Black
arrows in “A” indicate the Cd and (two) S atoms bonded to the adsorbed
Pt atom, which is blocked by the S atoms and cannot be seen.

have only a single Pt-S bond and values of Ead are higher by about 1 eV.
The binding energy in Pt-S, Pt-Cd and Cd-S dimers are estimated from our
DFT calculations to be 4.8 eV, 1.4 eV, and 1.2 eV, respectively. Although
the chemical environment is different for the dimers and the Pt1/CdS sys-
tem, we expect a similar trend of the inter-atomic binding energies. As
such, the stability of config. A can be understood from the fact that it con-
tains the most Pt-S bonds. The bond lengths in the adsorption systems,
〈dPt−S〉 = 2.2 − 2.3 Å and 〈dPt−Cd〉 = 2.6 − 2.8 Å, are slightly larger than
the calculated values of 2.05 Å and 2.50 Å for the dimers.

Upon Pt1 adsorption there is also structural deformation in the CdS sur-
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Table 2: Energetics and structural properties of Pt1/CdS(101̄0). Ead is the
adsorption energy; Edef,CdS is the deformation energy with respect to the
clean surface. 〈d〉 is the bond length averaged over the number of bonds (n)
formed at the interface. ∆µtot and ∆µCdS denote changes in the total and
substrate dipole moment normal to the surface in the adsorption geometry
relative to that of the clean surface. All energies are in eV, dipole moments
in Debye, and bond lengths in Å.

A B C D
Ead -4.1 -3.1 -3.1 -2.9
Edef,CdS 1.9 1.2 0.6 0.8
〈dPt−S〉 (nPt−S) 2.30 (2) 2.15 (1) 2.19 (1) 2.16 (1)
〈dPt−Cd〉 (nPt−Cd) 2.56 (1) 2.59 (1) 2.74 (2) 2.79 (1)
∆µtot -1.2 0.4 0.3 0.9
∆µCdS -1.7 0.3 0.9 1.1

face. It can be observed from Table 2 that Edef,CdS follows roughly the trend
of Ead, suggesting that the surface tends to deform to a larger degree in
order to accommodate more and/or stronger bonds with the Pt atom. For
example, in config. A, the two S atoms bonded to the Pt atom are pushed
up towards the surface whereas the Cd atom is pushed down away from the
surface (see Fig. 39), leading to a deformation energy as large as 2 eV. Such
atomic movement also results in a negative surface dipole moment relative
to that of the clean surface, with ∆µCdS = µCdS − µ0

CdS = −1.7 Debye. In
contrast, a positive ∆µCdS, although smaller in magnitude, is observed in
configs. B, C, and D. In addition, electron transfer between Pt1 and the
surface leads to an induced dipole moment µind. In config. A, the positive
value of µind indicates that electrons are transferred from Pt to CdS, which
is consistent with the formation of two Pt-S bonds and the relatively larger
electronegativity of S than Pt. The trend is opposite in config. C, which
can be explained by the formation of two Pt-Cd bonds and the smaller elec-
tronegativity of Cd than Pt. Configs. B and D both have one Pt-S bond and
one Pt-Cd bond, and therefore much smaller µind. The total dipole moment
relative to µ0

CdS, defined as ∆µtot = µind + ∆µCdS, varies from -1.2 to 0.9
Debye and contains contributions from both the structural deformation of
the substrate and the electron transfer at the interface.
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Pt19/CdS(101̄0). Next we examine the Pt19/CdS(101̄0) system (dis-
played in Fig. 40), and the adsorption energetics, structural properties, and
dipole moments are summarized in Table 3. The computed Ead are -10.6,
-7.6, -9.2, -6.4, -10.1 and -8.6 eV for C1, C2, C3, C4, C5, and T1, while the
total number of Pt-S (Pt-Cd) bonds are 10 (13), 6 (12), 9 (15), 4 (3), 8 (16)
and 8 (10), respectively. Again a clear correlation between the formation of
interfacial bonds and the overall energetic stability of the adsorption system
can be observed. The adsorption energy per unit area can be roughly es-
timated assuming a contact area of 40 Å for the 12-atom bottom layer of
Pt19, and the calculated values of -0.16 to -0.27 eV/Å2 is consistent with
the reported DFT result of -0.23 eV/Å2 for Pt246 on CdS(101̄0) [60]. The
average bond lengths, 〈dPt−S〉 = 2.3 Å and 〈dPt−Cd〉 = 2.8 Å, are consis-
tent with those of Pt1/CdS(101̄0), and 〈dPt−Pt〉 = 2.7 Å is similar to that
of the unsupported Pt19. However, as illustrated for configs. C1 and C4 in
Fig. 41, which correspond to the maximum and minimum magnitude of Ead

respectively, the distribution of dPt−Pt becomes significantly broader after
adsorption, indicating a decrease in local crystallinity similar to the case of
supported Pt37 on γ-Al2O3 [58].
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Figure 40: (a) Top and (b) side views of starting geometries of Pt19 on
CdS(101̄0). (c) Side views of relaxed geometries.
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Figure 41: Side views (left) and radial distribution functions (right) of ideal,
unsupported, and supported Pt19 on CdS(101̄0) with adsorption configs. C1

and C4.

The formation of interfacial Pt-S and Pt-Cd bonds is accompanied by
severe deformation of the substrate, and in some cases even the breaking of
Cd-S bonds. In general, the surface atoms at the fringe of Pt19 are pulled up-
wards to form bonds with Pt atoms whereas those right underneath Pt19 are
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Figure 42: Electron density difference isosurfaces after the adsorption of
Pt19 (C1) (left) and Pt38 (T1) (right) on CdS(101̄0). Red and blue denote
electron gain and loss, respectively, with isovalues of ±0.02 eÅ−3.

slightly pushed downwards as if the cluster is “sinking” into the substrate. In
config. T1, two surface S atoms are even pulled from the substrate and dif-
fuse into Pt19, similar to the observed atomic diffusion for Pt246 on CdS(101̄0)
from DFT molecular dynamics simulations [60]. As a result, ∆µCdS is nega-
tive (-1.7 Debye). In contrast, the surface Cd atoms are pulled up away from
the substrate in configs. C1-C5, leading to a positive ∆µCdS. For the adsorp-
tion configurations considered here, Edef,CdS ranges from 1.8 eV to 11.3 eV
and is roughly correlated with the magnitude of Ead (Table 3), similar to the
case of Pt1 adsorption. The structure of the supported Pt19 cluster is also
distorted and Edef,Pt is about an order of magnitude smaller than Edef,CdS,
showing less correlation with Ead. Due to the atomic rearrangement of the
cluster, the dipole moment of Pt19 (µPt19) varies from -1.6 to nearly zero
Debye, in contrast to the value of -1.8 Debye in the unsupported case. Inter-
estingly, Edef,Pt in C2 is computed to be as small as 0.2 eV, despite the fact
that the cluster is completely changed from the original 2D bilayer struc-
ture. In this case, the perturbation from the interfacial interactions is strong
enough to drive the cluster out of its local energy minimum into an energet-
ically more stable 3D shape. By subtracting Edef,CdS and Edef,Pt from Ead,
we obtain the “net” binding energies of 23.9, 13.9, 20.9, 9.1, 20.3, and 18.5
eV for C1, C2, C3, C4, C5, and T1, respectively, which directly reflects the
strong cluster-substrate interaction strength in the adsorption geometries.

The electron density difference contour map for Pt19 on CdS(101̄0) in
config. C1 is displayed in Fig. 42, which illustrate the complex re-distributions
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of electrons in Pt cluster and at the top two layers of CdS. Bader charge
analysis reveals that the supported Pt19 cluster gains 1.34 electrons, and the
predicted direction of charge transfer is consistent with the larger number
of Pt-Cd bonds than Pt-S bonds and the larger electronegativity difference
between Pt (2.2) and Cd (1.7) than that between Pt and S (2.5). Indeed,
for all the adsorption configurations examined here, µind is always negative,
indicating an overall electron transfer from CdS to the cluster. ∆µtot, as a
sum of ∆µCdS, µPt19 and µind, varies from -1.0 to -1.6 Debye, indicating an
overall downward shift of the local surface potential relative to the vacuum
level.

Pt38/CdS(101̄0). Below we present the computed adsorption charac-
teristics of the Pt38/CdS(101̄0), which enable us to examine the influence of
cluster shape on adsorption geometry and energetics since Pt38 is 3D unlike
the 2D Pt19. As shown in Fig. 43, Pt38 preserves its shape except in config.
T1 in which it is severely deformed. Comparison between the radial distri-
bution functions of Pt38 in T1 and C2 (Fig. 44) illustrates the significant
structural distortion in T1 as well as the largely preserved local crystallinity
in C2 (as in the other configurations). This observation is consistent with the
small magnitude of Edef,Pt in all the configurations except T1 (3.0 eV). The
same trend is found in Edef,Pt and Ead, as listed in Table 4. The averaged
bond lengths of Pt-Pt, Pt-S and Pt-Cd bonds are similar to the adsorption
cases of a single Pt atom and Pt19.

Table 4: Energetics and structural properties of Pt38/CdS(101̄0). Definition
of symbols is the same as in Table 2.

C1 C2 C3 T1 T2

Ead -6.0 -5.7 -6.9 -10.7 -6.0
Edef,CdS 6.8 0.8 7.7 10.5 2.9
Edef,Pt 0.9 0.5 1.6 3.0 0.8
〈dPt−Pt〉 (nPt−Pt) 2.75 (144) 2.74 (144) 2.74 (136) 2.71 (123) 2.74 (144)
〈dPt−S〉 (nPt−S) 2.25 (4) 2.33 (4) 2.27 (6) 2.33 (11) 2.34 (6)
〈dPt−Cd〉 (nPt−Cd) 2.89 (12) 2.84 (4) 2.85 (10) 2.82 (17) 2.77 (6)
∆µtot -0.2 -3.4 -2.2 -3.4 -2.5
∆µCdS 1.8 0.1 0.3 -3.4 0.4
µPt38 -0.3 -0.5 0.0 -1.1 -0.5
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Figure 43: (a) Top and (b) side views of starting geometries of Pt38 on
CdS(101̄0). (c) Side views of relaxed geometries.

Although Pt19 and Pt38 have similar cross sectional area, the area directly
in contact with the substrate is smaller for Pt38 due to its 3D shape, which
directly influences the adsorption structure and strength. For example, the
total numbers of Pt-Cd and Pt-S bonds formed at the interface are 23, 18,
24, 7, 24 and 18 for Pt19 in configs. C1-C5 and T1, and 16, 8, 16 and 12 for
Pt38 in configs. C1-C3 and T2, respectively; as a result, smaller magnitude
of Ead is found for the latter in general. The only exception is the T1 con-
figuration, in which the tilted orientation allows the Pt38 cluster to interact
with the substrate on more than one facet and form a total of 28 interfacial
bonds, with Ead = −10.7 eV. In contrast, the Pt19 cluster forms substan-
tially fewer interfacial bonds (18 in total) with Ead = −8.6 eV, although the
initial position and orientation of Pt19 and Pt38 are identical except for the
extra two (111) layers in Pt38 (see Figures S5 and S6). A closer inspection
of the interface structure reveals that while two surface S atoms diffuse into
the Pt19 as observed above, the same two S atoms migrate farther into the
cluster surface in the case of Pt38 and one of them become completely de-
tached from the substrate. On the other hand, the degree of “sinking” is
larger for Pt38 than for Pt19, allowing the former to come to closer proxim-
ity to the substrate atoms underneath and form more interfacial bonds. In
order to examine whether such differences are caused by the existence of the
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Figure 44: Side views (left) and radial distribution functions (right) of ideal,
unsupported, and supported Pt38 on CdS(101̄0) with adsorption configura-
tions T1 and C2.

extra two top layers in Pt38, which are not in contact with the substrate,
we removed these atoms from Pt38 in config. T1 and relaxed the resulting
Pt19/CdS system. The final adsorption geometry of Pt19, denoted as T′1 (see
Fig. 40), has similar adsorption energy (Ead = −10.9 eV) and similar number
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of Pt-Cd and Pt-S bonds compared to Pt38 in config. T1. However, the low-
ering of Ead is accompanied by severe deformation of both the substrate and
the cluster, with the latter amounting to as high as 8 eV with substantially
reduced number of Pt-Pt bonds (Table 3). Such a configuration, although
thermodynamically stable, may not be kinetically accessible during deposi-
tion and post-deposition annealing of the Pt clusters on CdS. Overall, our
calculations indicate that different initial geometry (cluster orientation and
adsorption site) can lead to rather different adsorption structure and ener-
getics, due to the strong and diverse bonding interactions at the interface.

Substantial changes in the charge distribution is observed between Pt38

and the CdS surface as illustrated in the electron density difference contour

2.5

-15

(b) (c)

(a)

Figure 45: Contours of electrostatic surface potential of Pt38/CdS on cutting
planes that are normal to: (b) z-axis and (c) x-axis, as highlighted by blue
in the structural model in (a). z- and x-axis are along the [10̄10] and [0001]
directions, respectively. Potential energies are in eV.
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map for Pt38 on CdS(101̄0) in config. T1 (Fig. 42), and an electron gain of
1.38 electrons is predicted from Bader charge analysis for the supported Pt38

cluster. Similar to the case of Pt19, ∆µtot is always negative (Table 4), and
correspondingly one expects a downshift of the surface potential and, in turn,
the CdS band edges. Of course, the magnitude of such shift depends not only
on the adsorption configuration but also on the coverage of clusters on the
surface.

Contour plots of the calculated effective surface potential of Pt38/CdS(101̄0)
are shown in Fig. 45, which clearly demonstrates the variation of surface
potential near the region where the cluster comes into contact with the sub-
strate.

Electronic Structure of Pt/CdS Interface. Finally, we examine the
electronic structure of the Pt/CdS interface, in particular near the Fermi
level. While a quantitatively accurate prediction of the energy level align-
ment at the interface may require the use of more advanced methods such
as the GW method [77], the electronic structure predicted at the DFT level
already provides useful insight on the the electronic coupling between the
adsorbed Pt cluster and the CdS substrate. The projected density of states
(PDOS) of Pt38/CdS(101̄0) in config. T1 (Fig. 46) clearly indicates metallic
behavior via the non-vanishing density of states at EF, which is in between
the bulk-like band edges, primarily stemming from states on the Pt cluster.
A further decomposition onto individual atoms reveals that the small but
finite PDOS of CdS near EF comes mainly from the surface S atoms bonded
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F
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D
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u
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Pt 

Figure 46: Projected density of states of Pt38/CdS(101̄0) in config. T1.
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to Pt. In contrast, surface Cd atoms bonded to Pt show only minor influence.
The overall shape and fine features of the PDOS of CdS differ from that of
the clean CdS(101̄0) surface (Fig. 37), as a result of the severe structural de-
formation due to the adsorption of Pt38 as well as the orbital hybridization
with the bonded Pt atoms.

In addition, the deformation of the supported Pt cluster results in changes
in its HOMO and LUMO levels, which can be approximated by the nega-
tives of IP and EA. Table 5 show the computed vertical IP and EA of un-
supported Pt19 and Pt38 clusters and of those in adsorption configurations
with the maximum and minimum structural deformation. The variation in
IP and EA values is within 0.2 eV except for Pt38 in config. T1, which has
a decrease of EA of as large as 0.6 eV. Overall, no clear correlation is found
between the change in IP or EA values and the degree of deformation. For all
adsorption configurations examined here for Pt19 and Pt38 , the LUMO levels
are always higher than absolute electrode potential energy of the standard
hydrogen electrode (-4.44 ±0.02 eV) [78], implying that their positions may
be appropriate for reducing water. Whether the combined system of Pt clus-
ter on CdS is able to split water under visible light will depend also on how
the EA and IP values of the adsorbed Pt clusters, as well as the band edges
of CdS substrate, will be further modified when electronic coupling at the
interface is fully taken into consideration. Other factors, such as the aqueous
environments where the device is in operation, also plays important roles in
determining the energy level alignment at the interface [79, 80]. Neverthe-
less, it is already clear from our DFT calculations that strong structural and
electronic interactions occur at the Pt/CdS interface and an oversimplified

Table 5: Computed vertical ionization potential (IP) and vertical electron
affinity (EA) of isolated Pt clusters in both unsupported and supported ge-
ometries. Adsorption configurations with largest Edef,Pt (Pt19@C1, Pt38@T1),
smallest Edef,Pt (Pt19@C4, Pt38@C2) are chosen (see Table 4). All energies
are in eV.

Pt19 Pt38

Unsupported C1 C4 Unsupported T1 C2

IP 6.81 6.74 6.61 6.77 6.61 6.56
EA 3.73 3.74 3.56 4.19 3.57 4.27
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picture based on the energy levels of the bulk substrate (or clean surface)
and unsupported clusters is not sufficient to describe the electronic structure
of the interface.

4.4 Conclusions

In summary, we have investigated both unsupported and supported Pt clus-
ters on the nonpolar CdS(101̄0) surface using first-principles DFT calcula-
tions. The unsupported 2D bilayer and 3D Pt clusters show similar trends
in cohesive energy and electron addition/removal energies (IP and EA) as
functions of the cluster size. Upon adsorption on the CdS surface, the Pt
clusters form multiple covalent bonds with the substrate atoms with magni-
tude of Ead up to 4 eV (Pt1), 10 eV (Pt19) and 11 eV (Pt38), accompanied
by severe structural deformation of the substrate. The supported clusters
undergo changes in both atomic structures and charged excitation energies.
Comparative studies of the adsorption of a 2D bilayer Pt19 cluster and a 3D
Pt38 cluster reveals considerable influence on the adsorption characteristics
from the cluster size, shape, adsorption site and orientation, In addition,
substantial charge transfer occurs at the interface, resulting in local shifts
of the surface potential and band edges. The surface electronic structure is
further modified due to the structural deformation of the substrate and the
orbital hybridization at the cluster/substrate interface. While a higher level
of theory may be necessary to accurately describe the interfacial energy level
alignment and gain further insight into the photocatalytic behavior at the
interface, the adsorption geometry and electronic structure predicted from
DFT provides valuable insights on the bonding interactions at the interfaces
beyond a simple picture based on energy levels of unsupported Pt nanopar-
ticles and bulk or clean surfaces of CdS .
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Tianquan Lian. Ultrafast charge separation and long-lived charge sep-
arated state in photocatalytic cds-pt nanorod heterostructures. J. Am.
Chem. Soc., 134(25):10337–10340, Jun 2012.

[55] Florian F. Schweinberger, Maximilian J. Berr, Markus Döblinger, Chris-
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