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in 
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2015 

  

 Advances in next-generation sequencing technologies are 

revolutionizing our ability to detect copy number variations (CNVs). Single-cell 

sequencing technology allows for the genome wide copy number analysis 

within a single nucleus which is isolated form mixed population of cells. It can 

avoid the disadvantage of genomic differences in complex mixtures of cells. 

Many statistical methods and tools have been developed for CNVs detection 

using high-throughput sequencing data, but most methods are not designed 

for low-coverage sequencing data. In this article, we present a new Bayesian 

based change-point Model which has never been used for CNVs detection 

before and propose two similarity scores to discover DNA CNVs with low-

coverage single-cell sequencing data and compare with other popular 

methods. 
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Chapter 1  

DNA Sequencing Technology and Copy Number 

Detection 

 In the late 1860s, Swiss physiological chemist Friedrich Miescher 

first discovered the existence of DNA. In the next decades, other scientists 

revealed more details about the structures and functions of DNA based on 

series of research. In 1953, a ground-breaking conclusion was announced 

by American biologist James Watson and English physicist Francis Crick 

that the structure of DNA molecule is double helix [1]. 

 DNA is made up of nucleotides. Each nucleotide is composed by 

three parts: a sugar molecule, a phosphate molecule and a nitrogenous 

base. The canonical structure of DNA has four kinds of nitrogenous 

bases: Thymine (T), Adenine (A), Cytosine (C) and Guanine (G). DNA 

molecules pair up with each other to form very stable and strong units 

called base pairs. DNA molecules are held together by hydrogen bonds 

formed between these four kinds of nitrogenous based. Adenine on one 

DNA strand binds to Thymine on the complementary DNA strand and 

Cytosine binds to Guanine. These combinations make the DNA double 

helix structure is extremely stable. Moreover, DNA double helix has the 

reform (renature) ability which is the basis of molecular hybridization. But 

the DNA molecules hydrogen bonds still can break due to environment 

changes, such as heat or chemicals, DNA molecules are able to reform 

when the environment becomes favorable again.  

 As the basis and foundation for all biological research, the 

determination of the precise sequence of nucleotides in a molecule of DNA 
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is very crucial. There are batches of methods and technologies that are 

used to determine the order of four nitrogenous bases – Thymine, Adenine, 

Cytosine and Guanine. DNA sequencing is one of the most important such 

technologies in bioscience today. As one of the key technologies in 

genomic research, DNA sequencing not only accelerates basic biological 

research, but also provides new opportunities in medical and clinical 

applications.  

 In the rest of this section, we present an overview of the 

development on the methods and technologies of DNA sequencing. The 

methods reviewed are: (i) Early-age methods: Sanger’s method and the 

Maxam & Gillert method; (ii) Shortgun sequencing method; (iii) Next-

generation sequencing method; and (iv) Single-cell sequencing method. 

For each method, we introduce the method’s basic idea, its simplified 

experimental process, real word applications, advantages and 

disadvantages. 

 

1.1 Basic DNA Sequencing Methods 

1.1.1 Sanger’s Method and Other Enzymic Methods 

 The first DNA sequencing method is called ‘plus and minus’ which 

introduced by Frederick Sanger and AR Coulson in 1975 [2] through 

chemical reaction conducted with polymerases. In their experiment, 

polymerases were resolved by ionophoreasis on denaturing 

polyacrylamide gels. Two years later, Sanger, Coulson and their coworker 

Nicklen made a significant improvement with a new method called the 

chain-termination method or the dideoxynucleotide method [3]. Their 
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method is based on the catalyzed enzymic reaction and also known as 

enzymic sequencing. They also proposed to anneal a short oligonucleotide 

primer to a specific point of template DNA which is used as an initial 

position for the sequencing process. However, the chain-termination 

method can only applied on short sequence with a few hundreds 

nucleotides. Later on, more enzymic sequencing methods had been 

proposed on top of chain-termination method which can be categorized 

into two major classes: random approach (shortgun sequencing) and direct 

approach (primer walking sequencing) [4].  

 Shotgun sequencing technology is a random process since there is 

no control of which region is going to be sequenced. People usually use 

this method for determining the sequence of a very large piece of DNA. 

For large ones, such as BAC DNA, the DNA is first randomly fragmented 

into small pieces. Then chain-termination method is used for each 

resultant piece. After the fragments got sequenced, they then are deduced 

from the original BAC DNA sequence. Due to the randomness of the 

fragmentation, this process usually is repeated several times through the 

target DNA.  

 Another enzymic method for genomic sequencing is known as 

primer walking [5, 6]. It is also called as direct sequencing method 

comparing with the random sequencing. In this method, instead of 

randomly fragmenting the DNA, the enzymic reaction is applied on each 

fragment piece by piece. The primary advantage of primer walking is the 

low redundancy [7]. In the meantime, it also requires the synthesis of each 

new primer which is time consuming and expensive. 

 The automated chain-termination method had dominated the 

industry for almost two decades. It made history and led to many 
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remarkable accomplishments including the completion of human genome 

project [8]. The human genome project is an international cooperation that 

sequencing the whole genome of the human. 

 

1.1.2 Maxam & Gilbert and Other Chemical Methods 

 In 1977, Allan Maxam and Walter Gilbert [9] described a DNA 

sequencing method based on chemical modification. It’s also known as 

chemical sequencing. In this method, DNA fragments require radioactive 

labelling at one 5’ end. Then, these end-labelled DNA fragments are 

subjected to random cleavage at specific bases. The DNA sequence then 

can be easily identified from the one or four parallel sequencing gel lanes. 

 Either double-stranded DNA or single-stranded DNA can be used in 

chemical sequencing methods. Before end-labelling processed, DNA 

fragments are digested with certain restriction enzyme [10]. They can be 

prepared from an rearranged DNA region [11]. These DNA fragments are 

then labelled at 5’ ends. 

 After Maxam and Gilbert originally first did end-labelling with 

phosphate and a nucleotide linked to phosphate in 1977, in 1985, Ornstein 

and Kashdan found an alternative method by using Dideoxyadenosin 5’-(α-

thio) triphosphate and deoxynucleotidyltransferase. Comparing with 

Maxam and Gilbert’s original method, this alternative method has higher 

stability and higher autoradiograph’s resolution. Nevertheless, the 

sequencing method using 21-mer fluorescein labelled M13 sequencing 

primer was proposed by Ansorge in 1988 where k-mer refers any 

substrings of length k from a DNA sequencing read. Due to the stability 

during the chemical reactions, non-radioactive fluorescein dye had been 
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used in new method [12] which was published in 1990. This paper gives us 

experimental evidence that fluorescein attached to the 5’-phosphate of an 

oligonucleotide shown to be stable during the reactions of chemical 

cleavage procedures [13]. Another non-radioactive labelling method used 

a biotin marker molecule chemically or enzymically attached to an 

oligonucleotide was proposed by Richterich in 1989 [14].  

 During the same period, Polymerase Chain Reaction (PCR) was 

developed by Kary Mullis in 1983 [15] to amplifying DNA fragments. In 

Polymerase Chain Reaction, the step of end-labelling is automated. The 

whole process includes several steps: denaturation, annealing, extension 

and final elongation. In the same year, Wade introduced an automatic DNA 

sequencing system. This system is compose of a computer controlled 

microchemical manipulator for the original Maxam-Gilbert DNA sequencing 

method [16]. 

 Comparing with Sanger’s chain termination reaction methods, the 

significant advantages of Maxam-Gilbert and other chemical methods are: 

(i) Instead of using enzymic copies in Sanger’s methods, Maxam-Gilbert 

method uses the original DNA fragment to do sequencing; (ii) No 

requirements of subcloning and Polymerase Chain Reaction (PCR); (iii) It 

has lower probability of making secondary structure mistakes or enzymic 

mistakes [17]; (iv) Protocols of Chemical methods are simple and easy. As 

a result, it’s easy to control [18].  

 

1.2 Next-Generation Sequencing 

 The above methods are considered as first-generation technologies 

and the novel methods are known as next-generation sequencing (NGS) 
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technologies. Over the last two decades, the first-generation technologies 

had dominated the industry. However, in recent years, we can significantly 

realize a fundamental shift away from the applications of the first-

generation technologies. The new sequencing technologies are 

combinations of template preparation, sequencing, imaging, genome 

alignment, and assembly methods [20]. 

 The emergence of next-generation sequencing technologies 

provides us high-throughput and low-cost sequencing platform. It doesn’t 

only change our landscape of genomes scientific approaches in basic 

research, but also ushers in more opportunities for sequencing in applied 

and clinical research. Due to its outstanding advantages, the next-

generation sequencing platforms have been used in many applications. 

For example, one application of next-generation sequencing is to help us 

to better understand the genetic different between health and disease 

tissue.  

 There are several commercial instruments of next-generation 

sequencing, including Roche 454 Life Sciences, Illumina, ABI, Life, Helicos 

BioSciences and Polonator instrument. They have advanced read 

generation throughput and have achieved base accuracy dramatically 

since 2004. Different sequencing platform has different advantages and 

disadvantages.  

 The 454 system is the first next-generation sequencing platform that 

available in industry [21]. It can sequences fragments of DNA up to one 

billion bases in a single day. As all other methods, a double helix DNA 

needs to be broken up into several short fragments in this system. Using 

restriction enzymes, DNA strand can be broken at specific points. Short 

fragment calls adapters that are attached to the DNA fragments. Then, 
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beads are added to the mixture. Based on the DNA complementary theory, 

DNA fragments can attach directly to the beads. After this step, we break 

the bonds of the joining double helix. One double strands DNA becomes 

two single strands. Then these fragments of DNA can be copied millions 

times on each bead by polymerase chain reaction (PCR). After filtering any 

beads that have either failed to attach to any DNA or contain more than 

one type of DNA fragment beads, we put the remaining beads into wells on 

a sequencing plate. One well only contains one bead. These wells contain 

the DNA polymerase and primers for sequencing reaction. Then, 

nucleotide bases are added into the wells. One type of base (adenine, 

cytosine, guanine and thymine) is added at a time. The camera will catch 

the light when each type of base is incorporated into the well. The intensity 

of the light corresponds to the number of nucleotides of the same type that 

have been incorporated. To get the sequence of the original piece of DNA, 

the patterns of light intensity can be plotted on a graph. The fragment 

libraries in this approach can be created by any methods. It can be a 

mixture of short and adaptor-flanked fragments. However, a major 

disadvantage of the 454 technology is homopolymers. It has difficulty 

distinguishing the number of bases in consecutive identical bases, such as 

AAA or GGG. 

 There are two kinds of clonal amplification method. In some 

platforms, like the 454, the Polonator and SOLiD rely on emulsion PCR to 

amplify clonal sequencing features [22]. In brief, it is the procedure that an 

𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 constructed adaptor-flanked shotgun library is PCR amplified in a 

emulsion. Only one of the PCR primers is attached to the surface of 

micron-scale beads by its 5′ end. Both the bead and the template molecule 

present in a productive emulsion compartments. PCR amplicons are 

captured to the surface of the bead. For example, the 454 uses PCR 
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amplicons to capture the surface of 28 − 𝜇𝑚 beads. After breaking the 

emulsion, amplification products carried by beads can be selectively 

enriched. Another amplification method is called bridge PCR and also 

referenced as cluster PCR [23, 24]. The Solexa technology uses this 

method. It also uses an 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜  constructed adaptor-flanked shotgun 

library. However, the different is, using a flexible linker, both primers are 

attached on a solid substrate surface by their 5′ ends. Each clonal cluster 

contains about 1,000 copies of a single member of the template library. 

 Comparing with conventional sequencing, the major advantage of 

next-generation sequencing is its ability to produce millions of sequence 

reads in parallel. This enormous volume throughput makes the sequencing 

experiment more efficient and less expensive. This feature expands the 

application of sequencing technology. The sequencing technology is not 

only used to determine the order of DNA nitrogenous, but also can be 

applied in other research areas. For example, instead of using microarrays 

technologies, it’s more popular to use sequencing based methods in the 

studies of gene-expression in recent years. Also, in the studies of DNA or 

RNA copy number variations, array-Comparative Genomic Hybirdization 

(array-CGH) is being replaced by next-generation sequencing. Moreover, 

due to the ability of sequencing the whole genome in a short time, the 

large-scale evolutionary studies of normal or tumor cells can be performed. 

Also, next-generation sequencing can avoid some cloning bias issues 

because its sequence reads are produced from DNA fragment libraries. 

This kind of cloning bias happens during vector-based cloning and 

Escherichia coli-based amplification step which can affects genome 

representation. 
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1.3 Single-Cell Sequencing 

 As we mentioned in the section above, researchers are able to 

generate a highly quantitative whole-genome sequencing data with 

remarkably lower cost and shorter time by using next generation 

sequencing machines. However, since most of previous technologies 

require bulk DNA or RNA from over 100,000 cells, it is very expensive and 

limits to provide the average state of the mixed population of cells. Thereby, 

technologies which can overcome such drawbacks are crucially important.  

 To address this set of problems, single-cell sequencing is an 

appealing technology that allows for copy number analysis of an individual 

cell isolated from mixed population of cells. In order to better understand 

and study heterogeneity of tumor, Mike Wigler and James Hicks’s team 

developed an approach in 2011. It’s known as single-nucleus sequencing 

(SNS) [25, 26] that can characterizes single-cell copy number profile for 

the genome wide. The experimental protocol for SNS includes three 

discrete and important steps: flow sorting of single nuclei, whole-genome 

amplification (WGA) of DNA and next-generation sequencing on the 

Illumina platform. 

 After flow sorting nuclei from a tissue or a cell line material, nuclei 

are putted into wells on a 96-well plate format. In SNS, WGA relies on a 

proprietary amplification method that randomly fragments the whole 

genome. It generates DNA fragments in 200-1,000 base pairs (bps) using 

a unique combination of primer extension pre-amplification and degenerate 

oligonucleotide primers. Generally, one can get around 90% success rates 

in amplification step. Then only these parts of DNA are selected for DNA 

library construction. After amplification, adaptor sequences of DNA are 

removed by sonication. In library construction, DNA is processed using a 
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standard Illumina library preparation protocol. To get high-quality libraries, 

adaptor-ligated libraries are purified by agarose gel electrophoresis. After 

purification, the popular DNA fragment amplification method, polymerase 

chain reaction (PCR) developled by Kary Mullis in 1983 [15], is applied. 

PCR is very popular in current biological and genomic research. This 

method was based on thermal cycling, repeating heating and cooling cycle 

for DNA melting and enzymatic replication. Initially, we should sequence 

each single cell on a lane of Illumina GAIIx instrument. However, in SNS, 

we sequence many single cells on a single lane by adopting multiplexing 

using DNA bar codes.  

 Singe-cell sequencing is the most advanced and state of the art 

technology in recent developments on DNA sequencing. It provides the 

ability of revealing genetic information through only one single cell which 

avoids the problem with genomic differences in complex mixtures of cells. 

Since singe-cell sequencing is a relatively new sequencing technology, to 

the author’s best knowledge, no existing statistical method has been 

developed for modeling single-cell sequencing data yet. On the other hand, 

the single-cell sequencing data has relatively low coverage and only 

achieves around 6% coverage of the whole genome of a single cell. Due to 

this limitation, most of existing change-point detection algorithms cannot 

be directly applied to get an accurate result. In this dissertation, we will 

present a novel two-steps change-point detection algorithm to detect DNA 

CNVs specifically designed for such low coverage single-cell sequencing 

data and compare the results with popular methods for detecting DNA 

CNVs. 
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Figure1. Schematic of the experimental workflow of SNS [27]  
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1.4 Copy Number Detection and Analysis 

The human genome is comprised of 6 billion nucleotides of DNA. 

Theoretically, DNA contains two sets of 23 chromosomes with each set 

inherited from each parent. As a result, each somatic cell almost always 

presents in two copies of DNA in a certain genomic region. DNA copy 

number is the number of copies of DNA at a certain region of a genome. 

However, recent studies have revealed that large segments of DNA can 

vary in copy number. In 2002, Charles Less found in his experiments that 

healthy control patients not always had two copies of DNA in the whole 

genome. As what he found, there were numerous variations in their 

genetic sequences. Some of these healthy patients had more copies of 

specific genes than others. Meanwhile, Steven Scherer and Michael Wigler 

also had made similar findings that indicated large-scale variations in copy 

number were prevalent in the human genome. While these variations can 

overlap areas of disease related genes, they also can exist in healthy 

individuals [28, 29].  

 This kind of genomic structural variation is named copy number 

variation (CNV). It is a major category of genetic aberrations [30] that leads 

to an abnormal number of copies of certain genomic regions in cells. For 

example, genes that are thought to always possess two copies may 

somehow present in one, three, or more than three copies. In general, 

CNVs include deletions, duplications and insertions. These kinds of 

variations are typically greater than one kilobases (Kb) and less than five 

megabases (Mb) and the average size is around 250,000 bases. In 2006, 

after testing 270 individuals, Redon discovered that roughly 12% of the 

human genome had copy number variants [31]. About 2900 known genes 

are included in these CNVs. It is known to associate with phenotypes. 
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Major Influences of copy number variation have been found in disease 

control and evolution. Among large number of reported CNVs, some do not 

have negative effect on human health, but some might be associated with 

complex diseases and phenotypes.  

 As we mentioned before, copy number variation is very common in 

healthy individuals, and it is not necessarily have a negative influence. 

Many researches have revealed the function of copy number variation in 

healthy individuals. For example, a higher copy number of CCL3L1 has 

been associated with lower susceptibility to human immunodeficiency virus 

(HIV) infection [32]. This means that the amplification of CCL3L1 can 

potently suppress HIV and therefore protect individuals from HIV and save 

lives. Similarly, some other copy number variations seem to have no 

function but might just be an evolutionary selection. 

 Although most CNVs discovered so far are benign variants that will 

not directly cause disease, approximately half of the copy number variants 

detected by scientists encompass protein-coding regions. As a result, this 

kind of copy number variations has been linked to the development and 

progression of many diseases [33]. Recent studies have shown that copy 

number variants can directly influence gene dosage through amplifications 

or deletions, which can result in altered expression or structure of 

oncogenes and tumor suppressor genes, and potentially cause genetic 

diseases. For instance, duplications can result in a higher copy number 

than what is normally expressed by adding an entire gene. A higher copy 

number usually results in a higher gene dosage. Also gene expression can 

be influenced by gene dosage as well. In genome-wide association studies, 

copy number variants have been associated with various diseases. For 

instance, the EGFR copy number can be higher than normal in non-small 

cell lung cancer. One of the earliest observed DNA copy number changes 
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is trisomy of chromosome 21 in Down’s syndrome. Besides those impacts 

mentioned above, even some individual copy number variant has no effect 

to health, but the combination of two or more copy number variants can 

results in complex diseases.  

 

1.5 Copy Number Variation Detection 

 Detection of DNA copy number variations can help us to better 

understand the genomic diversity and pathogenesis of cancer and other 

diseases. Furthermore, investigations of copy number variations also have 

been used to guide improved diagnostic and treatment decisions. For 

example, certain breast cancers are associated with overexpression of 

the ERBB2 gene. Patients who have ERBB2 gene amplification are more 

likely to respond to Herceptin treatment. Therefore, measuring 

the ERBB2 copy number can provide a diagnostic tool for breast cancer 

and other cancers. In brief, studies on CNVs are very important and high 

value for clinic applications. 

 There are many technologies that reveal genome-wide copy number 

and genetic aberrations at base pair resolution. DNA copy number can be 

assayed using fluorescence in situ hybridization, microarray-based 

comparative genomic hybridization (array-CGH) (Pinkel et al., 1998) [34] 

and next generation sequencing platforms.   
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1.5.1 Fluorescent In Situ Hybridization (FISH) 

 Fluorescence in situ hybridization (FISH) is a cytogenetic technique 

developed by biomedical researchers in the early 1980s [35] that is used to 

detect and localize the normal and the aberrant of 

specific DNA sequences on chromosomes. It is the extension of early in 

situ hybridization (ISH) technique, simply using the high-energy 

fluorophores instead.  

 The first in situ hybridization experiment was developed in 1969 by 

Joseph Gall and Mary Lou Pardue [36]. It is very sensitive and has many 

variations in the procedure. In early 1960s, the two scientists found that 

molecular hybridization can be used to identify the position of DNA 

sequences. Then, in later 1960s, they published a paper on DNA 

sequences detection that radioactive copies of a ribosomal DNA sequence 

can be used to identify the complementary DNA sequences. 

 After Gall and Pardue’s work, in 1977, Rudkin and Stollar provided a 

new type of labels, fluorescent labels, replaced radioactive labels in 

molecular hybridization probe [37]. Fluorescent-labeled DNA probes are 

more stable and ease to detect. Today, the most popular in situ 

hybridization technology, FISH, uses fluorescent probes to detect DNA 

sequences.  

 The basic elements of fluorescent in situ hybridization include a 

labelled DNA probe as the ‘magnet’ and a target biological sample as the 

‘needle’. Detecting a DNA sequence basically is the process to find the 

‘needle’ using the ‘magnet’. In the first step of Fluorescence in 

situ hybridization, the DNA probe should be labelled. There are two 

labeling strategies: indirect labeling and direct labeling. For indirect 

labelling, we labelled DNA probe with a modified nucleotides that contains 
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a hapten which then can be rendered fluorescent in later procedure. For 

direct labeling, the DNA probes are labeled with fluorescent nucleotides 

directly. Before hybridization, both the labeled DNA probe sequences and 

the target sequences are denatured. Then, mixing the denatured DNA 

probes and the target DNA sequences allows the annealing of matched 

DNA sequences. For direct labelled experiment, we can detect the position 

of DNA sequences directly. For other cases, an additional step is needed 

to visualize the nonfluorescent hapten before detecting the position. In 

brief, direct labelling method is faster with fewer steps, whereas the 

indirect labeling can provides the advantages of signal amplification. 

 FISH and other in situ hybridization technologies played an 

important role in human genome history. They led to many landmark 

accomplishments including the completion of human genome project. 

Experiment results from FISH and related in situ hybridization methods 

provided useful data for mapping the positions of genes on chromosomes. 

These data is collected and provides important genomic information for 

clinical diagnoses. 

 

1.5.2 Comparative Genomic Hybridization (CGH) 

 Comparative genomic hybridization was developed to study DNA 

copy number variations across a whole genome. It is a biological 

technology that using molecular cytogenetic method to analysis copy 

number variations between a test sample (for example, tumor tissue) and a 

reference sample (for example, normal tissue) without the need of culturing 

cells. It mainly has been used to detect large chromosomal regions 

deletions or amplifications. With CGH, differentially test and reference 
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genomic DNAs are cohybridized to normal metaphase chromosomes. 

Fluorescence ratios along the length of chromosomes provide a 

cytogenetic representation of the relative DNA copy number variation. 

 Conventional comparative genomic hybridization plays an important 

role in cancer research. It can be used in identifying chromosomal 

aberrations and has shown efficiency in diagnosing complex abnormalities 

associated with human genetic disorders. This technology also brings a lot 

of attentions for researcher in copy number field. Many papers have been 

published on detecting copy number variations by conventional CGH. 

There is a standard naming convention to describe the specific location or 

position of a gene on a chromosome. Usually a name of a location starts 

with the chromesome number which could be a number, letter ‘X’ or ‘Y’ 

and followed by the letter, p or q to represent the arm where the position is 

located. p represents the short arm and stands for petit meaning short in 

French. q indicates the long arm and stands for queue meaning tail in 

French. In some cases, there could be addtional number or letter at the 

end to further represent a particular position on the arm. Some of these 

copy number variations appear to be common to different kinds of fetal 

tumors. For example, amplification of chromosomal regions 1q, 3q and 8q, 

as well as deletions of regions 8p, 13q, 16q and 17p are very common in 

many kinds of tumor, such as breast, prostate and bladder cancer. 

However, some other CNVs are specific to certain tumor like amplification 

of 12p and Xp, can only be observed in testicular cancer and more 

examples, such as 13q gain, 9q loss in bladder cancer, 14q loss in renal 

cancer and Xp loss in ovarian cancer. These cancer specific alterations 

might reflect the unique selection forces operating during cancer 

development in different organs [38]. Conclusively, conventional CGH 

makes great contributions to the diagnosis and prognosis of cancer, as 
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well as therapy [39]. Also, it provides more genetic information for study 

the development of different cancer. 

 The main limitation of conventional comparative genomic 

hybridization is the detection resolution.  It has been shown in the literature 

that structural chromosomal aberrations smaller then 5-10Mb cannot be 

detected using conventional comparative genomic hybridization. In 

addition, it only can detect chromosomal gains and losses relative to the 

ploidy level. Any structural chromosomal aberrations without copy number 

changes, such as mosaicism, cannot be detected by conventional CGH. 

Furthermore, between individuals, short repetitive DNA sequences are 

highly variable in chromosomal regions, such as the regions of 

centromeres and telomeres. However, these chromosomal regions with 

short repetitive sequences can disrupt CGH analysis [40]. Therefore, we 

need a novel technology has high-resolution that can identify smaller 

chromosomal aberrations and can overcomes these limitations.  

 

1.5.3 Array Comparative Genomic Hybridization (array-

CGH) 

 Array-based comparative genomic hybridization, also referred as 

microarray-based comparative genomic hybridization, is a specific, 

sensitive, fast and high-throughput technique. In array-CGH, arrays of 

genomic BAC, P1, cosmid or cDNA clones are used for hybridization 

instead of metaphase chromosomes in conventional CGH technique. It 

detects copy number variations at multiple loci simultaneously. Before the 

emergence of next generation sequencing, array-CGH has been standard 

technology to detect interesting genomic regions which are associated with 
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copy number variations. It is a molecular cytogenetic technique that can 

identify DNA copy number aberrations which could cause human genetic 

diseases, such as deletions, amplifications and breakpoints on a genome 

wide and high resolution scale.  

 For each experiment, we prepare two samples, one test sample and 

one diploid reference sample. Usually, the test sample contains tumor cells 

and the reference sample contains normal cells. These two samples are 

labeled with different dyes. The next step is to mix and hybridize two dyed 

samples into a microarray chip. From the color of the chip, we can 

calculate the ratio of the fluorescence intensities of the test sample and the 

reference. Pinkel and Albertson (2005) [33] have reviewed the most recent 

developments of array-CGH technique and its applications.  

 To get the chromosome copy numbers from the log intensity 

measurements, typically we need to segment every chromosome into 

certain regions first. Then we estimate the real copy number at each 

location from the array-CGH data. Typically, the number we get is the 

average copy number at the certain location over all cells in the sample. 

Due to the heterogeneous of the cell population, there are differences 

between the real copy number and the estimated number. To avoid this 

disadvantage of array-CGH data, several statistical algorithms have been 

published in the recent years. It includes hidden Markov model (HMM, 

Fridlyand 2004) [41], wavelet approximation (Hsu, 2005) [42], recursive 

change-point detection (Circular Binary Segmentation, Olshen, 2004) [43] 

and a Bayes regression approach (Wen, 2006) [44]. 

 The same as conventional CGH, array-CGH is an important 

technology that provides genetic information for studying genetic diseases 

and for developing diagnostic and therapeutic targets. 
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 While early techniques such as fluorescence in situ hybridization 

were only able to locate copy number variations at the whole chromosomal 

or whole arm level, as a high-throughput technique, array-CGH can detect 

copy number variations at a level of 5-10 kilobases (1 kilo base pair=1,000 

base pairs) of DNA sequences [45]. Comparing with conventional CGH, in 

array-CGH, the metaphase chromosomes are replaced by short cloned 

DNA fragments between 100 to 200 kiolbases. The arrays of array-CGH 

using bacterial artificial chromosome fragments, and contain many regions 

with some known tumor suppressor genes and oncogenes. Array-CGH 

data is based on the log-ratios of normalized intensities from test sample 

and reference, such as solid tumor and normal tissue. For a given gene or 

region, a negative log-ratio is an indication of a deletion, and a positive log-

ratio is an indication of an amplification. If the log-ratio equals zero, the 

target sample and the reference sample have the same copy number for 

that given gene or region. 

 

1.5.4 Next-Generation Sequencing 

 During the last several years, the broadest application of next 

generation sequencing enables researchers to better understand how 

genetic differences affect health and disease.  As we mentioned in 

previous sections, traditional methods FISH and array-CGH suffer from low 

resolution of genomic regions. Comparing with array-CGH technique, 

recent advances in sequencing technologies enabled that massively 

parallel sequencing of millions of short sequence reads at remarkably 

lower costs and shorter time. There are several commercial platforms, 

including 454 Life Sciences, Roche, Illumine, ABI, and Life Technologies, 

have advanced read generation throughput and achieved base accuracy 
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dramatically since 2004. Using the ever-increasing output of next 

generation sequencing machines, researchers were able to generate a 

highly quantitative whole-genome sequencing data. Moreover, detection of 

DNA copy number variations from massively parallel sequencing data 

achieved greater sensitivity as well as greater precision for mapping 

breakpoints than similar detection based on array-CGH data. In conclusion, 

the advantages of next generation sequencing technology include lower 

cost, shorter time, higher coverage and resolution, higher sensitivity of 

copy number variations detection, and more accurate breaking points 

location.   

 However, because most of previous technologies require bulk DNA 

or RNA from over 100,000 cells, it is very expensive and limits to provid 

the average state of the mixed population of cells. Genetic heterogeneity is 

very common in solid tumors, but previous methods are not designed to 

resolve genomic differences in mixed populations of cells. Solid tumors are 

complex mixtures of cells including normal cells and multiple clonal 

subpopulations cancer cells. In a bulk of tumor tissue, there always are 

some normal cells and such presence can result in inaccurate copy 

number. Moreover, the characterization of tumor heterogeneity also 

impacts the purity of tumor tissue, where multiple clonal subpopulations 

with distinct genomic profiles might be present. Recent studies show that 

to better understand the evolution of tumor, the study of tumor 

heterogeneity is necessary. Several papers have described the details of 

heterogeneous nature of cancer. However, the common sequencing 

technologies are unable to avoid losing information of tumor cells genetic 

heterogeneity [26, 46].  

 Thereby, technologies which can overcome such drawbacks are 

crucially importance. To address this set of problems, single-cell 
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sequencing is an appealing technology that allows for copy number 

analysis of an individual cell isolated from mixed populations of cells.  

Single-cell genomic methods can help us to investigate tumor 

population structure and evolution, and enable the discovery of clonal 

mutations, cryptic cell types or transcriptional features that would be 

diluted or averaged out in bulk tissue. It leads to greatly improve our 

essential understanding of evolutionary and metastasize of tumor.  

 Sequencing data from bulk DNA or RNA from multiple cells provide 

global information on average states of cell populations. However, with 

whole-genome amplification and next-generation sequencing, researchers 

can detect variation in individual cancer cells and dissect tumor evolution. 

Such cancer genome sequencing will improve oncology by detecting rare 

tumor cells early, measuring intra-tumor heterogeneity, guiding 

chemotherapy and controlling drug resistance. The Single-cell 

sequencing technology explores the latest strategies that influence and aid 

cancer diagnosis, prognosis and prediction that will lead to individualized 

cancer therapy. 

 In order to better understand the tumor evolution and tumor 

population structure, Michael Wigler and James Hicks lab in Cold Spring 

Harbor Lab developed a novel approach, single-nucleus sequencing, that 

we can accurately quantify genomic copy number within an individual 

nucleus. Single-nucleus sequencing includes three major steps: isolate 

nuclei by flow-sorting, amplify DNA using whole genome amplification 

(WGA) and next generation sequencing.  

 To investigate evolution and population structure of tumor, Nicholas 

et al. (2011) [26] applied single-nucleus sequencing to analyze 100 single 

cells of two sets of human breast cancer, one with its matching living 
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metastasis. To cluster 100 single cells profiles, they calculated distances 

by using pair-wise distances algorithm and built a clustering tree using 

neighbor joining. The result was shown that one tumor’s 100 profiles have 

been clustered into four subpopulations: one is flat diploid profiles and 

other three are advanced tumor subpopulations. These three distinct clonal 

subpopulations were likely to have originated from a common precursor. In 

another tumor, the one with matching metastasis, the data indicates that a 

single clonal expansion formed the primary tumor and seeded the 

metastasis. The copy number profiles in primary tumors are highly similar 

to the metastasis, which indicates the metastatic cells are from a main 

advanced expansion, not from an earlier intermediate subpopulation. 

 To determining copy number profiles, sequencing data is processed 

using several different computational and algorithmic tools. Usually, for 

each nucleus they can get 2 million uniquely mapping reads using SAM 

tools package and the Bowtie algorithm with defined parameters. These 

mapping reads offer a low coverage (~6%, mean=5.95%, s.e.m.+-0.229, 

n=200) of the whole genome of a single cell, sufficient to count copy 

number from sequence read depth. 

 Single-cell genomic methods can help us to investigate tumor 

population structure and evolution, and enable the discovery of clonal 

mutations, cryptic cell types or transcriptional features that would be 

diluted or averaged out in bulk tissue. In addition, it provides earlier 

diagnosis. For example, in the early stage of breast cancer, only small part 

of cells has pathological changes. If we analysis the bulk tissue, we will 

lose value information. Using single-cell sequencing, we can diagnose 

genetic disease through single cell. Earlier diagnosis can be beneficial to 

the patients as they can undergo early appropriate treatment and 

prognosis. 
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1.6 Literature on Copy Number Variants Detection 

Methods 

 A cogent way to find cancerigenic genes is to identify genomic 

regions with recurrent CNVs, amplifications and deletions, in tumor 

genomes (Beroukhim R, et al., 2007) [47]. An ideal description of a copy 

number variation should include both accurate positions of breaking points 

and precise estimation of copy number in each segment. Over the last few 

years, diverse computational approaches have been developed to detect 

CNV regions with an unprecedented resolution using next-generation 

sequencing data.  Many methods developed for detecting structural 

variations can also be used to identify copy number variations. In summary, 

there are five strategies for CNV detection through sequencing data, 

including: (1) paired-end mapping (PEM), (2) split read (SR), (3) de novo 

assembly of a genome (AS),  (4) read depth (RD), and (5) combination of 

the above approaches (CB). In practice, none of these approaches can 

detect all type of copy number variations. Different methods have their own 

advantages and limitations. Most PEM-based, SR-based and CB-based 

approaches are originally designed for structural variations, but can be 

applied to detect copy number variations. AS-based and RD-based 

approaches are developed for copy number variations detection.  

 

1.6.1 Paired-End Mapping Approach 

 Previous computational approaches for detecting DNA copy number 

variations and structural variations using next generation sequencing data 
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are primarily based on paired-end read mapping (PEM), such as the 

method provided by Tuzun et al. (2005) and Korbel et al. (2007) [48, 49]. 

PEM is a large-scale genome sequencing method to identify copy number 

variations. It mapped DNA sequencing reads onto a reference genome, 

and compares the length between mapped read pairs to the average insert 

size of the genomic library [48]. Notably, PEM is only applied for paired-

end sequencing reads, not single-end reads. In paired-end sequencing 

data, distances between every two ends of a read pair has a specific 

distribution. PEM strategy detects SVs/CNVs from incongruous mapped 

paired-end whose distances are significantly different from the predefined 

average insert size. In Korbel et al. (2007) [49], they mapped over 1000 

copy number variations, and the number of copy number variations of 

human is much larger than initially hypothesized.  

 There are two different approaches have been used in PEM-based 

tools to identify SVs/CNVs, including the clustering method and the model-

based method. The clustering method uses a predetermined distance to 

recognize discordant reads. If the distance of paired-end reads higher then 

the expected distance, they will be labeled as discordant mapped reads. 

Meanwhile, model-based method applies a statistical probability test to 

identify the uncommon distance between mapped paired reads in 

comparison to the distance distribution in genome. The popular tool for 

PEM is so-called BreakDancer which includes two modules, 

BreakDancerMax and BreakDancerMini [50]. BreakDancerMax is a 

clustering-based method, while BreakDancerMini is a model-based 

method to detect smaller insertions and deletions range from 10 to 1000 

base pairs. However, in BreakDancer, each read can only be assigned to 

one cluster. As a result, the reads that can be aligned to multiple genomic 

regions are dumped, even if they are mapped with high quality. To 
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overcome this limitation, VariationHunter allows reads be assigned into 

multiple clusters to improve sensitivity [51].  

 The biggest advantage of PEM is this method can identify DNA copy 

number variations in a relative small fragment. It can detect deletions 

within 1 kb size, and locate breakpoints within small regions. The 

disadvantage of PEM is that some certain kinds of copy number variations 

are not easy to be identified, such as insertions larger than the average 

insert size of the genomic library [52] and variants located within complex 

genomic regions rich in segmental duplications.  

 

1.6.2 Split Read-base Approach 

 SR-based methods are also only can be applied to pair-end reads 

sequencing data. The basic idea of SR-based method is for each pair 

reads, if one read is aligned to the reference genome while the other one 

fails to map or only partially maps to the reference genome, then those 

unmapped or partially mapped reads potentially provide accurate breaking 

points at the single base pair level for SVs/CNVs. Pindel is the first SR-

based method tool to identify breaking points of large deletions(1bp-10kbp) 

and middle size insertions (1bp-20bp) (Ye K et al.,2009) [53]. Alignment 

with Gap Excision tool can identify breaking points of copy number 

variations with base pair level using a more strict local alignment algorithm 

(Abyzov A et al., 2011) [54]. SR-based methods can efficiently identify 

wide range of SV classes. The disadvantage of this kind of methods is they 

are limited by the length of reads and is only usable to the unique regions 

of the reference genome. 
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1.6.3 Assembly of a Genome  

 Comparing with PEM and SR methods, the AS-based methods do 

not need to align NGS reads to the known reference genome before the 

CNVs detection. Instead, AS-based methods first reconstruct DNA 

fragments (contigs), from short reads by assembling overlapping reads. 

Then they detect copy number variations by comparing the assembled 

contigs to the reference genome. As far, there are not so many AS-based 

methods being developed. The most recent one is Magnolya, which 

estimates copy number rely on two or more samples by applied a Poisson 

mixture model (Nijkamp JF et al., 2012) [55]. AS-based methods require a 

certain read coverage to detect overlapping fragments, although high 

coverage will increase the complexity of short read assembly.  

 

1.6.4 Read Depth Methods 

 Nowadays, mainly due to the advent of high-throughput sequencing 

technologies, we can get the accumulation of high-coverage NGS data. 

Therefore, RD-based methods have recently become the most popular 

method to detect CNVs, since it can identify CNV regions with an 

unprecedented resolution. Different from the PEM and SR-based methods, 

the RD-based methods can estimate the exact copy numbers, which other 

methods can’t because they only use the information of position. Moreover, 

RD-based methods are able to detect large copy number variations in 

complex genomic regions, which is difficult for PEM and SR methods 

(Yoon S et al., 2009) [56]. 
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 When we do sequencing, we assume the sequencing process is 

uniform, which means each genome region should have the same 

probability being mapped. Another underlying assumption of RD-based 

methods is that the number of reads mapping to a genome region is 

proportionate to the copy number of the same region. For example, if a 

genome region lost copy number, then this region should has a lower 

intensity than expected (Teo SM et al., 2012)[57] .  

 Generally, RD-based methods follow three fundamental steps: Data 

preparation, Data normalization and copy number variation identification. 

Here, we will discuss every step in details one by one. 

 

1.6.4.1 Data Preparation 

 The first fundamental step is mapping a set of short reads to the 

reference genome. Once short reads have been aligned to the reference 

genome, we need to perform several steps before read count estimation, 

including duplicated sequences removal, mapping quality filtering and 

window/bin size estimation. The main goal of removing duplicated reads is 

to alleviate the effects of Polymerase Chain Reaction (PCR) amplification 

bias produced during library construction. If multiple reads have the same 

exact external coordinates, only retain the read which has the highest 

mapping quality. Here, the samtools package (Li,H. et al., 2009) [58] can 

provide duplicate removal and other various utilities for operating 

alignments in the SAM format, such as sorting and merging. After 

removing duplications, we need to consider how to handle low mapping 

quality (MQ) sequences. Several aligner tools can provide MQ score for 

each sequence aligned to the reference genome. Low MQ score 
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represents the sequence falling in repetitive regions of the reference 

genome or have low base quality. For example, if a read has MQ = 0, it 

means that there are at least two regions of the genome can perfectly 

match this read. Conversely, if a read as MQ = 30, it means there are a 

few or only one region of the genome can match this read. For these 

reasons, a simple way to solve this problem is removing all sequences with 

MQ < 30. (Magi et al. 2011 and Yoon et al., 2009) [56, 59]. Then the next 

step is to estimate the best window size. 

 As we mentioned before, we assume the read depth at a certain 

position is expected to be proportional to the copy number at that position. 

However, this simple concept is complicated by the fact that genomes are 

not sequenced deeply enough to enable base-pair resolution. Then the 

binning procedure is necessary. In such methods, the whole genome is 

bucketed into several non-overlapping bins, and the read depth is 

calculated according to the number of mapped reads in each predefined 

bins. We assign each read only once by its start position. Following the 

assumption, the copy number of any genomic region can be estimated by 

counting the number of mapped reads aligned to that particular region. A 

large bin size would provide less precision in locating breaking points of 

copy number variations, while a small bin size would result in losing 

information and noise analysis results. To date, only two papers have 

mentioned a method to do optimal bin size selection, Miller et al. (2011) 

[60] and Xie et al. (2009) [61]. After we decided bin size, we can calculate 

read counts in each bin. 
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1.6.4.2 Data Normalization 

 The second step focuses on normalization and correction of 

potential biases in RCs data. Read depths are affected by two main 

sources of bias, including local DNA GC content and the genomic 

mappability.  

 GC content is the percentage of guanine and cytosine bases in a 

genomic region. The relationship between GC content and read coverage 

has been studied in several papers, for example, Harismendy et al. (2009) 

[62], Dohm et al. (2008) [63] and Hillier et al. (2009) [64]. They all have the 

same conclusion that there is a positive correlation between read coverage 

and GC content. They tested different sequencing data sets which are 

generated by different technologies, including the Roche 454, Illumina GA 

and the LT SOLiD. The read depth of coverage decreases with increasing 

AT content for all the three platforms. GC-rich sequences, like genic and 

exotic region, as well as GC-poor regions are often under-represented 

(Bentley et al.2008) [65] mainly caused by amplification steps in the 

protocol. 

 The influence of GC content bias can be effectively cancelled out by 

comparing the pair of disease and normal samples directly at each region. 

Local GC content normalization has been mentioned in a few papers. The 

tool CNAseg (Ivakhno S., 2010) [66]applied an algorithm using locally 

weighted scatterplot smoothing (LOWESS) regression to adjust GC bias 

between the two paired samples in each 10Kb region. Chiang et al. (2009) 

[67] proposed a method to relieve the dependence between local GC 

content and read coverage by using the ratio of the number of reads in 

tumor DNA sample and its paired normal sample. Yoon et al. (2009) [56] 

proposed another method to adjust RCs by using the observed deviation in 
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coverage for a given GC percentage. Each read count is normalized 

according to the following formula: 

𝑅𝐶! = 𝑅𝐶! ∙
𝑚
𝑚!"

 

Where 𝑅𝐶! read counts of the 𝑖th window, 𝑚!" is the median 𝑅𝐶 of all the 

windows that have the same GC percentage as the ith window, and m is 

the overall median of all the windows. 

 Another factor mappability bias, which can introduce a bias in 

sequencing, is due to the fact the genome contains many repetitive 

elements and aligning reads to these positions leads to ambiguous 

mapping (Miller et al., 2011) [68]. In a simple word, the mappable position 

pattern is not unique for some sequencing reads. An aligning read can be 

mapped perfectly with more than two regions in the genome. Sequence 

uniqueness within the genome plays an important role when attempting to 

map sequence, especially short sequence, like next-generation short 

sequencing reads. Usually, sequencing reads which can be mapped to 

multiple regions are often discarded. As a result, genomic regions with 

high sequence degeneracy (low mappability scores) show lower mapped 

read coverage than unique regions and create a routine bias.  

 Mappability bias can be measured by several different tracks, 

including the Broad alignability track, the Duke uniqueness track and so on. 

Each track will calculate their own mappability score. The alignability track 

measures how uniquely k-mer sequences align to a region of the genome 

(Derrien T, et al 2012) [69] where k-mer refers any substrings of length k 

from a DNA sequencing read. Usually, k can be set to 36, 40, 50, 75 or 

100 nts, For each window of k-mers, a mappability score is computed as 

S=1/(number of matches found in the genome). Thus, the score range of 
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alignability track is from 0 to 1. S=1 means one match in the genome, 

S=0.5 means two matches in the genome, and so on. Please note that 

alignability would allow up to two mismatches [69]. The uniqueness track 

measures how unique each sequence with particular length is on the 

positive strand starting at a particular base. Thus, the k-bp track, where k 

usually can be set to 20 and 36, indicates the uniqueness of all k base 

sequences with the score being assigned to the first base of the sequence. 

The uniqueness score also ranges from 0 to 1. A score of 1 indicates a 

completely unique sequence, and score of 0 represents a sequence that 

occurs more than 4 times in the genome. It’s obvious that a sequencing 

read with a higher score is more unique.  

 At present, there are two methods proposed and used for correcting 

read count data for sequencing biases due to mappability. Miller et 

al.(2011) [68] proposed to adjust RCs by multiplying the number of reads 

in a given window by the inverse of the percent mappability in the same 

region. Ivakhno et al.(2010) [66] proposed to correct for mappability by 

using an undecimated discrete wavelet transform (DWT) to smooth read 

counts in the regions which have low mappability.  

 

1.6.4.3 CNV Regions Identification 

 Once we corrected the read counts data from GC contend and 

mappability, the next step is to estimate the read count for each bin in 

order to identify copy number variations. Notably, after data normalization, 

the data we obtain from next generation sequencing experiments is very 

similar to the signal obtain from array-CGH data in mathematical view. 

Thus, some classical algorithms were originally designed to analysis array-
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CGH data can also been applied to next generation sequencing data to 

detect copy number variations. Generally, RD-based methods can be 

classified into two categories. One is statistical significance test and the 

other is segmentation method.   

 Yoon et al. (2009) [56] developed an advanced method, event-wise 

testing (EWT), for DNA copy number variation identification based on 

significance testing that works on intervals of data points. EWT is a 

computational analysis based on read depth. In this method, read depth is 

measured by counting the number of mapped reads in 100-bp windows 

while each read only be assigned once by its start position. After 

adjustment of GC content, they used the GC-adjusted read depth within 

100-bp windows as a quantitative measurement of genome copy number. 

The basic idea of EWT method is to identify regions of consecutive 100-bp 

windows with significantly increased or reduced read depth using corrected 

Z-score. It searches the entire genome for specific classes of small events 

that meet criteria of statistical significance, and then grouped them into 

large events. To identify which 100bp bin’s read depth is significantly 

duplication or deletion, the first step is to transfer the GC-adjusted read 

count of each bin to a Z-score. A Z-score is calculated based on the 

number of reads mapped in each bin according to a two-tailed normal 

distribution. Another method based on statistical significance test is 

provided by Xie and Tammi (2009) [61], named CNV-seq. This method 

analyzes the ratios between read counts from normal and tumor samples 

using a sliding window approach. Then they converted each read count 

into a t-statistic, and infer altered regions by using the distribution of t-

statistic. 

A lot of statistical models have been proposed as the segmentation 

algorithm to find the CNVs, such as Circular Binary Segmentation (CBS), 
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Mean Shift-Based (MSB), Shifting Level Model (SLM), Expectation 

Maximization (EM), and Hidden Markov Model (HMM). The basic idea of 

segmentation methods is to group the adjacent bins into segments with the 

same expected copy number. CBS method is the most popular 

segmentation method, which is originally designed for array-CGH data 

(Olshen et al., 2005) [43]. The algorithm recursively identifies the breaking 

points by changing genomic positions until the chromosomes are divided 

into segments with the same copy numbers that are significantly different 

from their adjacent regions. R package of circular binary segmentation 

method is very useful in today’s copy number research. Hsu et al. (2005) 

[42] developed a smoothing algorithm based on wavelets. Chromosomal 

Aberration Region Miner method (Myers et al. 2005) involves EM algorithm, 

and can be used to locate copy number variations edges more precisely. 

Fridlyand et al. (2004) [41] proposed a complex modeling method using 

Hidden Markov Model to measure copy number, in which underlying copy 

numbers are the hidden states with certain transition probabilities. Another 

method named Stochastic Change-Point Model (SCP), which is also based 

on Hidden Markov Model, is developed by Lai et al. in 2008 [70]. We will 

introduce this model, Stochastic Change-Point Model (SCP), in Chapter 3. 
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Chapter 2  

Change-point Detection 

Detecting abrupt points in time series data is referred as change-

point detection which attracts many scientists in statistics. Abrupt point 

stands for the point in a sequence at which the statistical properties of the 

sequential observations change. Detecting change-point is important in 

many research areas, such as finance, biology, genetic, climatology [71], 

and political. There is a growing need to identify the locations of multiple 

change-points within time series data. 

Time series data vary over time, and conventional statistical models 

fail to capture temporal variations in regression relationships. Change-point 

models are very popular to analyze time series data. One of the challenges 

in change-point analysis is the ability to identify the location of multiple 

change points within a given time series or sequence data. During the last 

decade, many algorithms of change-point analysis have been developed to 

overcome this challenge.  

There are several ways to classify change-point detection related 

problems. Depending on the number of change points, change-point 

detection can be classified into two groups:  Single change-point detection 

and multiple change-point detection. Depending on the data settings, it can 

also be classified into fixed sample problem and sequential setting problem. 

Otherwise, depending on the delay of detection, it can be grouped into 

another two categories: real-time detection and retrospective detection. 
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2.1 Change-point Detection for a Sequence of Random 

Variables 

In the procedure of data collection, if data points are in successive 

order and collected over a time interval, then we call this kind of data 

sequential data. In this section, we will focus more on the sequential data. 

We will begin with one point detection problem, and then introduce multiple 

change-points detection. The methods developed for solving change-point 

problems include maximum likelihood estimation, Bayesian estimation, 

isotonic regression, piecewise regression, non-parametric regression and 

so on. For independent and identically distributed random variables, there 

are several well-developed theories under maximum likelihood estimation. 

Let 𝑦! , 𝑖 = 1,…𝑛 be a sequence of observations of a time series 

data. For one change-point detection, we assume the change-point occurs 

at time 𝜏!:! , 𝜏 ∈ {1,… ,𝑛 − 1} . The statistical properties of 𝑦!,… ,𝑦!  and 

𝑦!!!,… ,𝑦!  are different in certain way. For the 𝑖𝑡ℎ segment, it can be 

denoted using parameter set 𝜃! ,𝜙! , where 𝜃! is the set of parameters that 

represent the distribution of the segment, and 𝜙! is the set of nuisance 

parameters. To detect the single change-point in a sequential data, we can 

perform a hypothesis test. 

𝐻!:𝑁𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑝𝑜𝑖𝑛𝑡,𝑚 = 0 

𝐻!:𝐻𝑎𝑣𝑖𝑛𝑔 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔 − 𝑝𝑜𝑖𝑛𝑡,𝑚 = 1 

Firstly, we should calculate the maximum log-likelihood value for 

both null and alternative hypotheses. For the null hypothesis, the maximum 

log-likelihood value is simply log 𝑝 𝑦!:! 𝜃) , where 𝑝 ∙  is the probability 

density function of the distribution of the data and 𝜃  is the maximum 

likelihood estimate of the segment parameter.  
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Under the alternative hypothesis, we assume there is only one 

change-point in the sequential data, and the position of the change-point is 

𝜏, 𝜏 ∈ {1,… ,𝑛 − 1}. Then we will write the maximum log-likelihood function 

as 

𝑙𝑜𝑔𝐿 𝜏 = log 𝑝 𝑦!:! 𝜃!) + log 𝑝 𝑦 !!! :! 𝜃!) 

The maximum value of log-likelihood under the alternative 

hypothesis is max! 𝑙𝑜𝑔𝐿 𝜏 . It considers all possible change-point positions. 

Then the test statistic is given as 

𝜆 = 2[max! 𝑙𝑜𝑔𝐿 𝜏 − log 𝑝 𝑦!:! 𝜃)] 

Then we need to choose a threshold so that if 𝜆 is larger than this 

threshold, we should reject the null hypothesis. If we reject the null 

hypothesis, we need to find a way to detect the position of change-point. 

To detect the change-point, we estimate its position as 𝜏, the value of 𝜏 

that maximizes 𝑙𝑜𝑔𝐿 𝜏 . How to get the appropriate value of the threshold 

is also an interesting research question. It depends on significant level and 

other information criteria. Many researchers have published papers on this 

topic, including Guyon and Yao (1999) [72], Chen and Gupta (1997) [73], 

Lavielle (2005) [74], and Birge and Massart (2007) [75]. 

Another similar method was named penalized likelihood approach 

which is more naturally extend to the multiple change-points detection than 

the likelihood ratio statistic approach [76]. Consider  𝑀! which corresponds 

to the model with 𝑘  change-points, with parameters 𝑝! . Denote the 

associated parameter vector by Θ! = (𝜏!:! ,𝜃!:!!!), and the likelihood by 

L(Θ!). Then the penalized likelihood is written as 

𝑃𝐿 𝑀! = −2 log𝑚𝑎𝑥L(Θ!) + 𝑝!𝜙(𝑛) 
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𝜙(𝑛) is the penalty function which is an non-decreasing function of 

the data length 𝑛. Obviously, the results will depends on the choice of the 

penalty function 𝜙(𝑛). Different penalty functions can be considered, for 

example Akaike’s information criterion (AIC) [77], Schwarz information 

criterion (SIC) and Hannan-Quinn information criterion [78]. The definition 

of each kind of penalty functions is as following: 

𝐴𝐼𝐶: 𝜙 𝑛 = 2 

𝑆𝐼𝐶: 𝜙 𝑛 = log𝑛 

𝐻𝑎𝑛𝑛𝑎𝑛 − 𝑄𝑢𝑖𝑛𝑛: 𝜙 𝑛 = 2 log log𝑛 

Among these kinds of penalty functions, AIC is the most popular one. 

It has been shown that AIC asymptotically overestimates the correct 

number of parameters. Both SIC and Hannan-Quinn criteria asymptotically 

estimate the correct number of parameters.  

For detecting the position of a single change-point, two penalized 

likelihoods need to be calculated. One assumes the existence of one 

change-point and another assumes no change-point. This step is similar 

with the calculation of the likelihood maximization step that described 

previously. Both of them are comparing the maximum log-likelihood of the 

two models corresponding to the scenario of one and no change-point. If 

the log-likelihood of one change-point is greater than certain threshold, a 

change-point is detected. The differences between penalized likelihood 

approaches and the likelihood ratio test approaches is how to calculate the 

threshold. 

Beside the maximum likelihood estimations, Bayesians methods are 

also very popular for detecting the change-point within the sequential data. 

Before performing the Bayesian analysis, we need to explain some 
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notations. Firstly, we introduce a family of distributions 𝑝(𝜃|𝜓) with the 

hyperparameters 𝜓. Then, we have a conditional probability. 

𝑝 𝜃!:!!! 𝜓 = 𝑝 𝜃! 𝜓
!!!

!!!

 

Either we known the value of 𝜓, or the model will be completed 

through an appropriate hyperprior on 𝜓. Note that the prior distribution, 

𝑝 𝜃 𝜓 , can be interpreted as describing the variability of the parameters 

across segments. If the hyperparameter 𝜓 are known, and we have a 

segment which contains observation 𝑦!!:!! , for 0 < 𝑡! < 𝑡! < 𝑛 , then the 

marginal likelihood of this segment is written as 

𝑄  𝑡!, 𝑡!;𝜓 = 𝑝 𝑦!!:!! 𝜃 𝑝 𝜃 𝜓 𝑑𝜃 

In Bayesian methods, it is important that all segments marginal 

likelihood can be calculated. That is, for all  𝑡!,  𝑡! 𝑎𝑛𝑑 𝜓, 𝑄  𝑡!, 𝑡!;𝜓  can be 

calculated. 

For the method of Bayesian analysis, we need to specify a prior 

probability for the case of a change-point, 𝑃(𝑀 = 1). If there is no change-

point, we use 𝑃(𝑀 = 0) denotes the prior probability, note that 𝑃 𝑀 = 0 =

1 − 𝑃(𝑀 = 1). 

Firstly, considering the simply case that the hyperparameters 𝜓 are 

known. In this case, the posterior distribution in terms of marginal 

likelihoods, 𝑄  𝑡!, 𝑡!;𝜓 , is very straightforward. It is defined as, 

𝑃 𝑀 = 0 𝑦!:! ∝ 𝑃(𝑀 = 0)𝑄(1,𝑛;𝜓) 

𝑃 𝑀 = 1, 𝜏 𝑦!:! ∝ 𝑃 𝑀 = 1 𝑝 𝜏 𝑄 1, 𝜏;𝜓 𝑄 𝜏 + 1,𝑛;𝜓  
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for 𝜏 = 1,… ,𝑛 − 1. Here 𝑝 𝜏  is the probability the position 𝜏 is the change-

point. 

In this case, the posterior is simple to calculate since the marginal 

likelihoods 𝑄  𝑡!, 𝑡!;𝜓  can be calculated analytically. To calculate the 

posterior probabilities, we can extend the above expression to get the 

likelihood ratio of whether there is a change-point. 

𝑃 𝑀 = 1 𝑦!:!
𝑃 𝑀 = 0 𝑦!:!

∝
𝑃 𝑀 = 1
𝑃 𝑀 = 0 (

𝑝 𝜏 𝑄 1, 𝜏;𝜓 𝑄 𝜏 + 1,𝑛;𝜓!!!
!!!

𝑄(1,𝑛;𝜓) ) 

We call the last term the Bayes Factor. The posterior ratio of probabilities 

of having a change-point to no change-point is the prior ratio multiplied by 

the Bayes Factor. 

Obviously, the value of 𝜓 decides the posterior distribution. The mis-

specification of 𝜓 can have significant effect on the posterior probability of 

having a change-point [79]. 

There are two popular methods of choosing 𝜓, in the absence of 

prior distribution information. The marginal likelihood of 𝜓 is defined as 

𝑀𝐿 𝜓 = 𝑃 𝑀 = 0 𝑄 1,𝑛;𝜓 + 𝑃(𝑀 = 1)𝑝(𝜏)𝑄(1, 𝜏;𝜓)𝑄(𝜏 + 1,𝑛;𝜓)
!!!

!!!

 

Let define 𝑝(𝜓) is the prior distribution of 𝜓. Then the marginal posterior of 

𝜓 is proportional to 𝑝 𝜓 𝑀𝐿(𝜓), which can be explored by Markov Chain 

Monte Carlo (MCMC) [80]. 

Another method of choosing 𝜓 is the empirical Bayes approach. It 

basically uses the underlying data to get a point estimate for 𝜓. We can 

find the value of 𝜓  which maximized 𝑀𝐿(𝜓). The disadvantage of this 

approach is it ignores the effect of uncertainty in the choice of 𝜓. 



 41 

 

2.2 Multiple Change-points Detection 

The problem can be extended from detecting one single change-

point to multiple change-points. Let us assume we have 𝑚 change points 

and the positions of change-points are 𝜏!:! = (𝜏!,… 𝜏!). Each position of 

change-point is an integer between 0 and 𝑚. We ask the change-points 

are orders so that 𝜏! < 𝜏! if and only if 𝑖 < 𝑗. As a result, the whole dataset 

will split into 𝑚 + 1 segments by 𝑚 change-points, and each segment has 

a set of parameters, and adjacent segments have different set of 

parameters. For the 𝑖𝑡ℎ segment, it contains data 𝑦 !!!!!! :!! and it can be 

denoted using parameter set 𝜃! ,𝜙! , where 𝜃! is the set of parameters that 

represents the distribution of the segment, and 𝜙! is the set of nuisance 

parameters.  

First, we need to test how many segments are needed to describe 

the data, how many change-points exits and then estimate the value of 

parameters associated with each segment. It is obvious that the likelihood 

test statistic can be extended from one change-point question to multiple 

change-points question simply by summing the likelihood of all 𝑚 

segments. Then the problem changes to estimate the maximum of 

𝑀𝐿 𝜏!:!  over all possible combinations of 𝜏!,… 𝜏!.  

In theory, many ideas of detecting single change-point can be 

adapted to the detecting of multiple change-points. However, as the 

number of possible change-point increases quickly, the complex of 

computation increases exponentially and thus much more challenging. For 

example, if we have a sequence with 1,000 data points. For single change-

point problem, the change-point could be at one of 999 possible positions. 
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For two change-points problem, the change-points could have 499,500 

different combinations. 

The problem of testing for a parameter change in statistical models 

was firstly introduced to public by Page in 1955 [81]. After several years, 

Quandt developed the likelihood ratio approach to detect change-points. 

He derived a statistic to test for the change of parameters of general linear 

regression model [82, 83]. However, Quandt didn’t derive the distributions 

of the likelihood ratio test statistic in small samples or asymptotic 

approximations.  

In 1964, Ghernoff and Zacks derived a test statistic to detect the 

parameter change for normal distribution using a Bayesian approach [84]. 

They studied the problem of estimating current mean of sequential 

variables of independent normal distribution whose means are subjected to 

change in time. Let 𝑦! , 𝑖 = 1,…𝑛 be independent random variables follow 

normal distribution, 𝑦!~𝑁 𝜇! ,𝜎! , 𝑖 = 1,… ,𝑛. The null hypothesis  

𝐻!: 𝜇! = ⋯ = 𝜇! = 𝜇!,−∞ <  𝜇! < ∞ 

𝐻!: 𝜇! = ⋯ = 𝜇! = 𝜇! 

𝜇!!! = ⋯ = 𝜇! = 𝜇! + 𝛿 

𝜏 ∈ 1,… ,𝑛 − 1 , 𝛿 > 0 

In Chernoff and Zacks’s method, they assumed 𝜇! is unknown and the test 

statistic is 

𝑇! = 𝑝(𝑗) (𝑦! − 𝑦!)
!

!!!!!

!!!

!!!

 

𝑦! =
𝑦!!

!!!

𝑛  
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where 𝑝(𝑗) represents prior probabilities of the change-point 𝜏.  

Two years later, depending on Ghernoff and Zacks’ results, Kander 

and Zacks extended it from normal distribution to the exponential family 

distribution [76] with density functions 

𝑓 𝑥;𝜃 = ℎ(𝑥)exp {𝜓! 𝜃 𝑈 𝑥 + 𝜓! 𝜃 } 

Where 𝑦! = 𝑈 𝑋! , 𝑖 = 1,… ,𝑛. {𝑋!}!!!!  is a sequence of independent random 

variables of exponential densities. 𝜓! 𝜃  and 𝜓! 𝜃   have continuous 

derivatives and 𝜓!! 𝜃 > 0. The null hypothesis is 

𝐻!:𝜃! = ⋯ = 𝜃! = 𝜃!(𝜃!𝑖𝑠 𝑘𝑛𝑜𝑤𝑛) 

And the composite alternative 

𝐻!:𝜃! = ⋯ = 𝜃! = 𝜃! 

𝜃!!! = ⋯ = 𝜃! = 𝜃! + 𝛿 

𝜏 1,… ,𝑛 − 1 , 𝛿 > 0 

However, they found the test statistic showed a weak convergence 

to normal distribution. They suggested using an Edgeworth expansion 

approximation for the distribution of the test statistic when the sample size 

is not very large.  

In 1969, Gardner derived a new statistic based on Chernoff and 

Zacks’s approach. He solved the problem for normal random variables 

using two-sided hypotheses with 𝛿 ≠ 0 in the alternative hypothesis [85]. 

The new statistic is 

𝑄! = 𝑝(𝑗) (𝑦! − 𝑦!)!
!

!!!!!

!!!

!!!
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Under the null hypothesis 𝐻! 

6𝑛
𝑛! − 1𝑄!~ 𝜆!𝑈!!

!!!

!!!

 

Where 𝑈!,… ,𝑈!!! are 𝑖. 𝑖.𝑑. standard normal random variables, and 

𝜆! =
6𝑛!

𝜋!(𝑛! − 1)𝑘!
2𝑛
𝑘𝜋 cos (

𝑘𝜋
2𝑛)

!!

 

where 𝑘 = 1,… ,𝑛 − 1. One can derive: 

6𝑛
𝑛! − 1𝑄!

! 6
𝜋!

1
𝑘! 𝑈!

!
!

!!!

 

as 𝑛 → ∞. However, Gardner didn’t get the asymptotic distribution of the 

test statistic under the alternative hypothesis.  

  The first change-point detection using a maximum likelihood based 

method was proposed by Hinkley in 1970. Hinkley is the first person that 

derived the asymptotic distribution of the test statistic. He tried to find a 

change-point in mean within normally distributed observations. 

MacNeill also derived the asymptotic distribution of a test statistic. 

He used methods of weak convergence to approximate the distribution in 

1974 [86]. The test statistic 

𝑇! = 𝑝 𝑗
 (𝜓!! 𝜃! 𝑌! +  𝜓!! 𝜃! ) 𝜓!! 𝜃!
𝜓!!! 𝜃! 𝜓!! 𝜃! − 𝜓!! 𝜃! 𝜓!!! 𝜃!

!

!!!!!

!!!!

!!!

 

Where 𝑌! = 𝑈 𝑋! , 𝑖 = 1,… ,𝑛. The mean and variance of a random variable 

𝑋! are 
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𝜇 𝜃 = −
𝜓!! 𝜃!
𝜓!! 𝜃!

 

𝜎! 𝜃 =
𝜓!!! 𝜃! 𝜓!! 𝜃! − 𝜓!! 𝜃! 𝜓!!! 𝜃!

(𝜓!! 𝜃! )!
 

Then, the test statistic 𝑇! is  

𝑇! = 𝑝 𝑗
 𝑦! −  𝜇(𝜃!)
𝜎(𝜃!)

!

!!!!!

!!!!

!!!

 

 Scott and Knott (1974) [87] and Sen and Srivastava (1975)[88, 89] 

performed the binary segmentation search algorithm to identify the 

change-point. In 1993, Venkatraman explained details of consistency 

results of the binary segmentation approach in multiple change-points 

problem under various conditions [90]. 

 Binary segmentation approach is an iterative algorithm can be 

applied with any single change-point method, in theory, together to detect 

multiple change-points. The entire process is similar to binary search. It 

starts with the entire sequence as a whole and try to detect one change-

point upon a time. If no change-point is detected, the algorithm stops. 

Otherwise, the sequence will be split into two sub-sequences by the 

detected change-point. Then the algorithm repeats the above steps in 

each sub-sequence to see if the change-point still exists. If a change-point 

is detected in either sub-sequence, the sub-sequence will be split further 

into two and repeat the detection part. The procedure keeps splitting the 

sequence until no further change-point is detected. 

In Sen and Srivastava’s paper, for a sequence with 𝑛 positions, let 

𝑆! = 𝑋! + 𝑋! +⋯+ 𝑋! , 1 ≤ 𝑡 ≤ 𝑛 be the sum of partial data up to position 𝑡, 

where 𝑋! is the observation of position 𝑡. When 𝑋! is normally distributed 
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with a known variance, the likelihood ratio statistic for testing the null 

hypothesis against the alternative at an unknown location 𝑡 is given by  

𝑍! = 𝑚𝑎𝑥!!!!!|𝑍!| 

Where 

𝑍! = {
1
𝑡 + 1/(𝑛 − 𝑡)}

!!/!{
𝑆!
𝑡 − (𝑆! − 𝑆!)/(𝑛 − 𝑡)} 

If the statistic 𝑍! exceeds the threshold 𝐶 so-called critical value, we reject 

the null hypothesis of no change-point.  

Sen and Srivastava used Monte Carlo simulations to determine the 

critical value for the hypothesis test. It also can be calculated using the 

approximation method which was introduced by Siegmund(1986).  

 The significant advantage of binary segmentation methods is 

the computation speed and efficiency. The computational complexity of 

binary segmentation is 𝑂(𝑛) which is linear to the length of data set. It has 

also been shown by venkatraman that binary segmentation approach 

usually provides consistency results under various conditions [90]. The 

difficult is how to decide the rejection threshold 𝐶. Obviously, the different 

choice of 𝐶 will lead to the differences in the number of estimated change-

pints. Also, due to the iterative nature of the binary segmentation 

procedure which only detects one single change-point at a time, it’s hard to 

detect a small change-point that buried in the middle of a large segment.  

 Another general search method was developed in 1998 by Braun, 

named the segment neighborhood search, also referred as global 

segmentation [91, 92]. Unlike binary segmentation algorithm that detects 

change-point one by one, global segmentation tries to split the entire 

sequence into multiple segments at once and segment boundaries are 
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change-points. In this algorithm, a measure of data fit 𝑅(∙) was introduced 

to measure the goodness of fit for each segment. It was recommended to 

set 𝑅(∙) as the negative maximum log-likelihood estimator. 

𝑅 𝑦!!:!! = − log 𝑝(𝑦!!:!!|𝜃) 

where 𝑡! < 𝑡! , and 𝑡! , 𝑡!  belong to a single segment. With a maximum 

number of segments M, the algorithm will detect no more than 𝑀 − 1 

change-points. 

 Segment neighborhood search applies dynamic programming to find 

the best way to split the entire data set into 𝑚 + 1 segments for 𝑚 =

0,1,… ,𝑀 − 1. They claimed the best segmentation partition must minimize 

the cost function below, 

𝑅(𝑦!!:!!!!)
!

!!!

 

where the change-points positions are at 𝜏!, 𝜏!,… , 𝜏!. 

 Auger and Lawrence [93] further improved the segment 

neighborhood search and provided better segmentation partition by 

improving the dynamic programming to maximize the log-likelihood directly. 

However, the disadvantage of neighborhood search is the high 

computational cost. The segment neighborhood search requires a 

computational complexity of 𝑂(𝑛!) . With large data sets and long 

sequences, the increased computational cost is not neglectable. However, 

compared with the binary segmentation algorithm, such cost increase does 

result in the improvement of predictive performance in simulation studies 

[92]. 
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 Bayesian–based method has also been proposed to detect multiple 

change-points. For Bayesian method, it is more like a nature extension 

from single change-point detection to multiple change-points scenario. 

Firstly, the method needs a prior for both the number and positions of 

change-points. There are two different ways to specify the prior. The first 

one is to specify the prior for the number of change-points first, and then 

specify the prior for the change-points positions given the number of 

change-points [94]. Another method is to specify the number of change-

points and their positions together indirectly through a prior distribution of 

the length of each segment. Comparing with the first one, the second one 

has many advantages [95]. With the second one, the prior does not need 

to be adapted based on the period of time. Also, it is easier to apply 

statistical inferences from similar data sets to construct appropriate priors. 

Plus, the second one also provides computational advantages.  

 To specify the prior distribution of the length of each segment, first, 

let’s denote the probability mass function 𝑔(∙;𝜓) as the mass function for 

the length of each segment. In the mass function, we allow unknown 

parameters which will be the hyperparameters of the model. A survivor 

function 𝑆(∙;𝜓) will be associated with the mass function. 

𝑆 𝑡;𝜓 = 𝑔(𝑖;𝜓)
!

!!!

 

Then, if we have multiple change-points at positions 𝜏!, 𝜏!,… , 𝜏!, the prior 

probability for this 𝑚 change-points will be 

𝑝 𝑚, 𝜏!:! 𝜓 = ( 𝑔 𝜏! − 𝜏!!!;𝜓
!

!!!

)𝑆(𝜏!!! − 𝜏!;𝜓) 
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 Usually, geometric distribution is selected as the distribution of the 

segment length with parameter 𝑝 . In this case, 

𝑔 𝑡;𝜓 = 𝑝 1 − 𝑝 !!!, 𝑆 𝑡;𝜓 = (1 − 𝑝)!!! and 𝑝 𝑚, 𝜏!:! 𝜓 = 𝑝!(1 −

𝑝)!!!!!. Note that the binomial distribution is the prior for the number of 

change-points, and the conditional uniform is the prior for the positions of 

change-points. 

 Then we need to calculate the posterior for the number of change-

points and their positions. For a fixed value of 𝜓 , we can derive the 

posterior as follow.  

𝑝 𝑚, 𝜏!:! 𝜓,𝑦!:! ∝ ( 𝑔 𝜏! − 𝜏!!!;𝜓
!

!!!

)𝑄(𝜏!!! + 1, 𝜏!;𝜓)) 

×𝑆(𝜏!!! − 𝜏!;𝜓)𝑄(𝜏! + 1, 𝜏!!!;𝜓) 

Where 𝑄(𝑡!, 𝑡!;𝜓) is the segment marginal likelihood. 

 Then we try to estimate the value of the segment parameters by 

simulating the posterior distribution given the change-points positions. 

There are two standard methods to generate samples from the posterior 

𝑝 𝑚, 𝜏!:! 𝜓,𝑦!:! . One is the Markov Chain Monte Carlo method (MCMC) 

[96], and another is reversible jump Markov Chain Monte Carlo method 

[94]. However, MCMC is very computationally intensive and usually has 

difficulties of diagnosing convergence of the MCMC algorithm. Therefore, 

MCMC algorithm is very time-consuming and requires a very long time to 

run. Otherwise, the simulation result will be incorrect. 

 To improve the computationally efficiency on sample generation 

from the posterior, researchers have proposed various algorithms which 

can be categorized as: forward filtering and backward filtering. The basic 

idea was firstly proposed by Yao in 1984 [97].  Barry and Hartigan in 1992 
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[98] and Liu and Lawrence in 1999 [99] also developed similar algorithms 

for detecting multiple change-points. In 2008, Fearnhead combined both 

procedures and proposed a forward-backward algorithm with hidden 

Markov models [100]. 

 For this algorithm, we denote 𝐾! to be the most recent change-point 

before time 𝑡, thus 𝐾! ∈ {0,1,… , 𝑡 − 1}. If 𝐾! = 0, then there is no change-

point before time 𝑡. Note, if the most recent change-point before 𝑡 is at time 

𝑡 − 1, then 𝐾! = 𝑡 − 1. If there is no change-point at time 𝑡 − 1, we have 

𝐾! = 𝐾!!!. 

 For forward step, we need to calculate 𝑃(𝐾! = 𝑖|𝑦!:! ,𝜓)  for 𝑖 =

0,1,… , 𝑡 − 1based on the following recursions. All recursions are initiated 

with 𝑃 𝐾! = 0 𝑦! = 1. For 𝑡 = 2,3,… ,𝑛, assuming there is no change-point 

at time  𝑡 − 1, therefore, 𝐾! = 𝐾!!!. Then the survive function and segment 

marginal likelihood terms correspond to the prior probability. The likelihood 

of the next new observation given condition 𝐾!!! = 𝑖  respectively is as 

follow: 

𝑃(𝐾! = 𝑖|𝑦!:! ,𝜓) ∝ 𝑃(𝐾!!! = 𝑖|𝑦!:!!!,𝜓)(
𝑆 𝑡 − 𝑖;𝜓

𝑆 𝑡 − 𝑖 − 1;𝜓 )(
𝑄(𝑖 + 1, 𝑡;𝜓)

𝑄(𝑖 + 1, 𝑡 − 1;𝜓)) 

for 𝑖 = 0,1,… , 𝑡 − 2. 

 Then assuming it is a change-point at time 𝑡 − 1 , therefore 

𝐾! = 𝑡 − 1 . Then denote 𝑄(𝑡, 𝑡;𝜓)  as the new likelihood function of 

observation at time 𝑡. Respectively, we can have: 

𝑃(𝐾! = 𝑡 − 1|𝑦!:! ,𝜓) ∝ 𝑄(𝑡, 𝑡;𝜓) 𝑃(𝐾!!! = 𝑗|𝑦!:!!!,𝜓)(
𝑔 𝑡 − 𝑗 − 1;𝜓
𝑆 𝑡 − 𝑗 − 1;𝜓 )

!!!

!!!
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 The last sum term is the probability that given observation 𝑦!,… ,𝑦!, 

we have a change-point at time 𝑡 − 1. More technical details about the 

procedure of derivation can be found through Fearnhead and Liu’s paper 

[101]. In this paper, they also showed how to use the output of these 

recursions to calculate the marginal likelihood 𝑄(∙) for 𝜓. 

 Then, the next step is the backward step in which we generate 

samples from the posterior of 𝑚  and 𝐾! . Firstly, we simulate the last 

change-point from the distribution of 𝐾!  given observation 𝑦!,… ,𝑦! . The 

probability mass function is written as 

𝑃(𝐾! = 𝑖|𝑦!:!,𝐶!!! = 𝑡,𝜓)  ∝ 𝑃(𝐾! = 𝑖|𝑦!:! ,𝜓) (
𝑔 𝑡 − 𝑖;𝜓
𝑆 𝑡 − 𝑖;𝜓 ) 

For 𝑖 = 1,2,… 𝑡 − 1. 

 The event 𝐶!!! = 𝑡 only happened when there is a change-point at 

time 𝑡. This mass function is written conditioned on a change-point at time 

𝑡. The observations after this change-point position are independent of the 

observations before this change-point. We recursively simulate change-

points backwards until we get 𝐶! = 0. 

 

2.3 Computation Packages of Change-Point 

 As the increasing needs to identify the location of change-points 

within time series data, many change-point detection packages had been 

developed in R or C++ environment. Some of them only provide single test 

statistic, like sde[102] , bcp [103]. Some of them are designed for specific 

research areas, like cumSeg [104, 105], DNAcopy [106]. Other 

comprehensive R packages are also available, for example, strucchange 
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[107] can be used to detect the changes in regression models and cpm 

can be used to detect change-point using parametric and nonparametric 

methods [108]. Contrary to the most packages that only provide one search 

algorithm for detecting multiple change-points, some other packages 

implement a choice of several search algorithms. For example, the R 

packages ‘changepoint’ [109] allows the user to select from a popular set 

of change-point algorithms and penalty types. 
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Chapter 3  

A Novel Two-Step Change-point Detection Method 

3.1 Data Preparation 

3.1.1 Data Transformation 

 The raw data we get from array-CGH and next-generation 

sequencing platforms is in a special data format, bam file, which can’t be 

used as input file directly in any algorithm. Therefore, before applying any 

algorithm, the data need to be pre-processed. Bowtie is a fast and 

accurate read aligner which can be used to align sequencing reads to the 

human genome. After using Bowtie, we can get experimental information, 

such as read ID, strand, chromosome, chromosome start position and read 

length from bam files. SAM (Sequence Alignment Map) tools provide a 

utility for transferring data format form bam file to text file. After 

transformation and binning process, the binned data has 4 columns, 

“chromosome”, “chromosome start position”, “absolute start position” and 

“read counts”. This is the input data of segmentation and change-point 

detection algorithms. 

 

3.1.2 Window Size Estimation 

 Segmentation model requires binned data. Before using any 

segmentation algorithm, bin boundaries and the window size needs to be 

decided to get the binned data. Deciding the correct window size is not 
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trivial. A larger window size would loses more information and causes the 

model to be insensitive on small changes, while a smaller window size 

would results in lower signal-to-noise ratio and causes the model to be less 

accurate and robust.  However, there is no standard approach to decide 

the correct bin size. Researchers usually use a fixed bin size based on 

their own judgments and domain knowledge. Few literatures has 

discussed on how to decide the window size. Xie in 2008 [61] proposed a 

data-driven approach for determining the reasonable window size. 

 As we mentioned earlier, modern sequencing technology often 

requires two sets of data, the tumor sample and a normal control sample. 

Let 𝑁  and 𝑇  denote the total number of aligned single-cell sequencing 

reads from normal and tumor sample respectively. 

 In Xie’s approach, assuming there is no breaking point in a window 

of length 𝑤, the number of reads in the window approximately follows a 

Poisson distribution with parameter 

𝜆 =
𝑆 ∙ 𝑤
𝐿 	

where 𝑆 is the total number of sequencing reads in the sample, 𝐿 is the 

size of the whole genome, 𝑤 is the sliding widow size where 𝑤 ≪ 𝐿. For 

normal sample, 𝑁 follows a Poisson distribution with parameter 𝜆! =
!∙!
!

 . 

For tumor sample, 𝑇 follows a Poisson distribution with parameter 𝜆! =
!∙!
!

 . 

When the average number of reads per window is greater than 10, we can 

approximate the Poisson distribution with a Gaussian distribution, 

𝑃𝑜𝑖𝑠𝑠𝑖𝑜𝑛 𝜆! ≈ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇! = 𝜆! ,𝜎!! = 𝜆!) 

𝑃𝑜𝑖𝑠𝑠𝑖𝑜𝑛 𝜆! ≈ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇! = 𝜆! ,𝜎!! = 𝜆!) 
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Then, the predicted window size 𝑤 is  

𝑤 =
(𝑁 ∙ 𝑟! + 𝑇) ∙ 𝐿 ∙ 𝑡!

(1 − 𝑟)! ∙ 𝑁 ∙ 𝑇 	

where	𝑡 = !∙!!!
!!!∙!!!!!!

, 𝑟 = 𝑧 ∙ !
!

 𝑎𝑛𝑑 𝑧 	is	the	actual	ratio	of	two	samples’	read	

counts.	

 

3.2 Bayesian Change Point Model 

 As we discussed in the previous chapter, the change point model is 

originally designed for detecting change-points and structural break. 

Bayesian-based change point models are a major group in this domain 

and have draw lots of attention lately due to the improved performance. 

Comparing with majority Bayesian Change point models which require 

Markov Chain Monte Carlo implementation [94] which is computationally 

expensive, a new Bayesian Change Point model (BCP) developed by Lai 

et al [110] provided an analytical formula for the posterior means and 

significantly improved the efficiency by avoiding simulation-based 

inference through MCMC. In their paper, BCP model has also shown 

improvement compared with widely used segmentation methods in 

genomic studies. More recently, Xing et al. applied this method on ChIP-

seq data to identify diffuse gene domains and demonstrated the new 

method outperformed the existing segmentation methods [111]. Detecting 

CNV is essentially to find the boundaries where the copy number count 

changes on chromosome. Although there is no literature that applied this 

methodology on CNV detections, the BCP framework naturally fits into this 

problem and therefore draws our attention.  
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3.2.1 Model Specification 

 As a change point model, BCP can calculate the posterior means by 

explicit formula and its piecewise constant property will help for calling 

segmentations. Here we also use bounded Complexity Mixture smoother 

procedure (BCMIX) to handle the weight calculation for forward and 

backward filter which is much more time efficient compared with other 

methods. Under BCP framework, assuming the sequencing process is 

uniform and the sequence reads are randomly mapped to the genome, the 

number of reads aligning to a region can be modeled as a Poisson 

distribution with mean directly proportional to the size of the region.  

 Below is the BCP model assumptions for CNV detection: 

1. Let 𝑦! be the read count in the 𝑡th window, where 𝑡 = 1,… ,𝑛. 

2. The observations 𝑦! follow a Poisson distribution with parameter 𝜃!, 

where 𝜃! represent the means of 𝑦! 

𝑦!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜃!  

3. 𝜃!  are independent and identically distributed Gamma random 

variables, 

𝜃!~𝐺𝑎𝑚𝑚𝑎 𝛼,𝛽  

 We assume the read count within the 𝑡 th window 𝑦!  follows a 

Poisson distribution with parameter 𝜃!. and 𝜃! follows a gamma distribution 

which is a conjugate prior of Poisson, where 𝑡 = 1,… ,𝑛. Please note, {𝑦!} 

are pairwise independent and {𝜃!}  are piecewise constant. Moverover, 

given {𝜃!} , {𝑦!}    are independent.  
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 Our goal is to estimate the expected read count 𝜃! in order to find 

the position where the expected read count changed. Comparing with 

common Hidden Markov Models (HMMs) with finite states, we allow infinite 

states (values) for {𝜃!}. 

 Before going into the model details forthis specific application, I will 

describe the general framework for BCP in exponential families mentioned 

in Lai and Xing’s paper [70]. Considering a multiparameter exponential 

family of densities 

𝑓 𝑦 𝜃 = exp{𝜃𝑦 − 𝜓(𝜃)} 

If the prior density is given as 

𝜋 𝜃; 𝑎!, 𝜇! = 𝑐 𝑎!, 𝜇! exp{𝑎!𝜇!𝜃 − 𝑎!𝜓(𝜃)} 

where !
!(!,!)

= exp{𝑎𝜇𝜃 − 𝑎𝜓(𝜃)}! 𝑑𝜃, and 𝜃 is the parameter we need to 

estimate, 𝜓(𝜃) is the function of 𝜃. Then we can have the posterior density 

of 𝜃 given the observation 𝑦!,… ,𝑦!,  𝑓(𝜃|𝑦!,… ,𝑦!) is, 

𝜋 𝜃; 𝑎! +𝑚,
𝑎!𝜇! + 𝑦!!

!!!

𝑎! +𝑚
 

3.2.2 Forward Filter 

 In our model, we base the estimation on the full sequence by 

combining both forward filtering and backward filtering. We first derive the 

forward filter 𝑓 𝜃! 𝑦!,… ,𝑦! . For the 𝑡th window, we denote 𝐼! = 1{!!!!!!! } 

as the indicator variable which are independent and identically distributed 

bernoulli random variable with constant success rate p. That is,  

𝐼! =
1 𝑤ℎ𝑒𝑛 𝜃! ≠ 𝜃!!!
0 𝑤ℎ𝑒𝑛 𝜃! = 𝜃!!!
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𝑃 𝐼! = 1 = 𝑝 

 Then we denote 𝐾! as the most recent change point before window 𝑡, 

and 𝑝!" is the conditional probability if 𝐾! = i.   

𝐾! = max 𝑠 ≤ 𝑡: 𝐼! = 1  

𝑝!" = 𝑃(𝐾! = 𝑖|𝑦!,… ,𝑦!) 

Where 𝑝!"!
!!! = 1. 

Given 𝐾! = i, that is 𝜃!!! ≠ 𝜃! =  𝜃!, then based on the independent 

and identically distributed assumption on {𝜃!}, the posterior distribution of 

𝜃!  given 𝐾! = i is independent from {𝑦!,… ,𝑦!!!} and follows the gamma 

distribution with parameters (𝛼!" ,𝛽!") . Since gamma is the conjugate 

posterior of Poisson, we can get the nice property that 

𝛼!" = 𝛼 + 𝑦!!!!
!!! ;𝛽!" = (1 𝛽 + t − i+ 1)

!!. Then we can get the posterior 

distribution of 𝜃! given 𝑦!,… ,𝑦! as 

𝑓 𝜃! 𝑦!,… ,𝑦! = 𝑓 𝜃! ,𝐾! = 𝑖 𝑦! ,… ,𝑦!

!

!!!

= 𝑝!,!

!

!!!

∙ 𝐺𝑎𝑚𝑚𝑎 𝜃!;𝛼!" ,𝛽!"  

where 𝑝!,! = 𝑃 𝐾! = 𝑖 𝑦!,… ,𝑦!  and it can be solved recursively.  

Here we consider the situation under two different conditions. The 

first one is when the most recent change-point position is at 𝑡, and the 

second situation is when the most recent change-point position is before 𝑡.  

When  𝑖 = 𝑡 , since 𝑓 𝑦! 𝑦!,… ,𝑦!!!  is a constant, so we have 

𝑝!,! = 𝑃 𝐾! = 𝑡 𝑦!,… ,𝑦! = ! !!!!,!! !!,…,!!!!
! !! !!,…,!!!!

 ∝ 𝑝 ∙ 𝑓 𝑦! 𝐼! = 1 . 

where 
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𝑓 𝑦! 𝐼! = 1 = 𝑓 𝜃! ∙ 𝑓 𝑦! 𝜃! 𝑑𝜃!
!

!!!
=
𝜋!,!
𝜋!,!

 

When 𝑖 < 𝑡 , 𝑝!,! = 𝑃 𝐾!!! = 𝑖 𝑦!,… ,𝑦! = ! !!!!!!,!! !!,…,!!!!
! !! !!,…,!!!!

 = 1 − 𝑝 ∙

𝑝!,!!! ∙ 𝑓 𝑦! 𝑦! ,… ,𝑦!!!,𝐾! = 𝑖 . 

where 

𝑓 𝑦! 𝑦! ,… ,𝑦!!!,𝐾! = 𝑖 = 𝑓 𝑦!|𝜃! ∙ 𝑓 𝜃! 𝑦! ,… ,𝑦!!!,𝐾! = 𝑖 𝑑𝜃!
!

!!!
=
𝜋!,!!!
𝜋!,!

 

In summary, we have: 

𝑝!,! = 𝑝!,!∗ / 𝑝!,!∗
!

!!!

∝ 𝑝!,!∗  

≔  
𝑝 ∙ 𝑓 𝑦! 𝐼! = 1 ,                                                      𝑖𝑓 𝑖 = 𝑡
1 − 𝑝 ∙ 𝑝!,!!! ∙ 𝑓 𝑦! 𝑦! ,… ,𝑦!!!,𝐾! = 𝑖 ,      𝑖𝑓 𝑖 < 𝑡  

= 
𝑝 ∙ !!,!

!!,!
,                                                𝑖𝑓 𝑖 = 𝑡

1 − 𝑝 ∙ 𝑝!,!!! ∙
!!,!!!
!!,!

,                     𝑖𝑓 𝑖 < 𝑡
 

where 𝜋!,! = 𝛽!!/𝛤 𝛼 ,  𝜋!,! = 𝛽!,!
!!!,!/𝛤(𝛼!,!) 

 

3.2.3 Backward Filter 

 To get the backward filter 𝑓 𝜃! 𝑦!!!,… ,𝑦! , the calculation and 

derivation are quite similar with the forward filter. The different is we use a 

location-reversed procedure with the information from 𝑦!!!  to 𝑦!  in 

backward filtering. For the 𝑡th window, we denote 𝐼! = 1{!!!!!!! }  as the 
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indicator variable which are independent and identically distributed 

bernoulli random variable with constant success rate 𝑝. That is,  

𝐼! =
1 𝑤ℎ𝑒𝑛 𝜃! ≠ 𝜃!!!
0 𝑤ℎ𝑒𝑛 𝜃! = 𝜃!!!

 

𝑃 𝐼! = 1 = 𝑝 

 Then we denote 𝐾! as the most recent change point after window 𝑡, 

and 𝑞!" is the conditional probability if 𝐾! = 𝑗.   

𝐾! = min 𝑠 ≥ 𝑡: 𝐼! = 1  

𝑝!" = 𝑞!" = 𝑃(𝐾! = 𝑗|𝑦! ,… ,𝑦!)  

Where 𝑞!"!
!!! = 1. 

If 𝑡  is the change point, 𝜃!  follows Gamma 𝛼,𝛽 . Otherwise, let’s 

denoted 𝑞!,!!!  as the probability that 𝑗  is the first change point after 𝑡 . 

Similarly, we could get the posterior distribution of 𝜃! given 𝑦!!!,… ,𝑦! as 

𝑓 𝜃! 𝑦!!!,… ,𝑦! = 𝑝 ∙ 𝑓(𝜃!) + (1 − 𝑝) ∙ 𝑞!,!!!

!

!!!!!

𝑓 𝜃! 𝐾!!! = 𝑗,𝑦!!!,… ,𝑦!  

= 𝑝𝐺𝑎𝑚𝑚𝑎 𝛼,𝛽 + 1 − 𝑝 ∙ 𝑞!,!!!

!

!!!!!

𝐺𝑎𝑚𝑚𝑎 𝜃!;𝛼!,!!!,𝛽!,!!!  

For 𝑞!,!  the formula is almost the same with 𝑝!,!  , expect we use 𝑡 + 1 

instead of 𝑡 − 1. 

𝑞!,! = 𝑞!,!∗ / 𝑞!,!∗
!

!!!

∝ 𝑞!,!∗ =  
𝑝 ∙
𝜋!,!
𝜋!,!

,                                                𝑖𝑓 𝑗 = 𝑡

1 − 𝑝 ∙ 𝑞!,!!! ∙
𝜋!,!!!
𝜋!,!

,                     𝑖𝑓 𝑗 > 𝑡
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As the above, where 𝜋!,! = 𝛽!!/𝛤 𝛼 ,  𝜋!,! = 𝛽!,!
!!!,!/𝛤(𝛼!,!). 

If 𝑗 = 𝑡 

𝑞!" = 𝑃 𝐾! = 𝑗 𝑦! ,… ,𝑦! = 𝑃(𝐾! = 𝑗, 𝐼! = 1|𝑦! ,… ,𝑦!) 

For backward filter, if at time 𝑡 , 𝐼! = 1 , then the information after 𝑡 , 

𝑦!!!,… ,𝑦! , are useless, that is  𝑃(𝐾! = 𝑗, 𝐼! = 1|𝑦! ,… ,𝑦!)  = 𝑃(𝐾! = 𝑗, 𝐼! =

1|𝑦!). In addition, since data 𝑦! ,… ,𝑦!  are observed, so we get 𝑓 𝑦! =

𝑓(𝑦!|𝑦! ,… ,𝑦!). Then, 

𝑞!" = 𝑃 𝐾! = 𝑗, 𝐼! = 1 𝑦! ∝ 𝑓 𝐼! = 1 𝑓 𝑦! 𝐼! = 1 = 𝑝 ∙ 𝑓 𝑦! 𝐼! = 1

= 𝑝 ∙
𝜋!,!
𝜋!,!

 

If 𝑗 < 𝑡 

𝑞!" = 𝑃 𝐾! = 𝑗 𝑦! ,… ,𝑦! ∝ (1 − 𝑝) ∙ 𝑞!,!!! ∙ 𝑓(𝑦!|𝐾!!! = 𝑗, (𝑦!!!,… ,𝑦!)) 

Here we use the similar derivation in forward filter for 𝑓(𝑦!|𝐾!!! =

𝑗, (𝑦!!!,… ,𝑦!). Then, 

𝑞!" ∝ 1 − 𝑝 ∙ 𝑞!,!!! ∙
𝜋!,!!!
𝜋!,!

 

 

3.2.4 Smoothing 

After calculating the posterior distributions of 𝜃!  with forward and 

backward filter, we can apply Bayes’ theorem, 

𝑓 𝜃! 𝑦!,… ,𝑦! ∝
𝑓 𝜃! 𝑦!,… ,𝑦! 𝑓 𝜃! 𝑦!!!,… ,𝑦!

𝑓(𝜃!)
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to combine both posteror and yield the posterior distribution of 𝜃! given 

𝑦!,… ,𝑦! as 

𝑓 𝜃! 𝑦!,… ,𝑦! = 𝛿!"# ∙ 𝐺𝑎𝑚𝑚𝑎 𝜃!;𝛼!" ,𝛽!"
!!!!!!!!!

 

where 𝛿!"# = 𝛿!"#∗ /𝑃! , 𝑃! = 𝑝 + 𝛿!"#∗!!!!!!!!!  

𝛿!"# ∝ 𝛿!"#∗ ≔
𝑝 ∙ 𝑝!" ,                                                        𝑖𝑓 𝑖 = 𝑡

1 − 𝑝 ∙ 𝑝!"𝑞!,!!! ∙
𝜋!"𝜋!!!,!
𝜋!"𝜋!!

,               𝑖𝑓 𝑖 < 𝑡   

and 𝜋!,! = 𝛽!!/𝛤 𝛼 ,  𝜋!,! = 𝛽!,!
!!!,!/𝛤(𝛼!,!) 

The above formula gives the estimate of 𝜃! 

E 𝜃! 𝑦!,… ,𝑦! = 𝛿!"# ∙ 𝛼!" ∙ 𝛽!"
!!!!!!!!!

 

We have forward filter, backward filter and prior density function of 𝜃! 

𝑓 𝜃! 𝑦!,… ,𝑦! = 𝑝!"𝜋(𝜃!; 𝑎! + 𝑡 − 𝑖 + 1,
𝑎!𝜇! + 𝑦!!

!!!

𝑎! + 𝑡 − 𝑖 + 1
)

!

!!!

 

𝑓 𝜃! 𝑦!!!,… ,𝑦! = 𝑝𝜋 𝜃!; 𝑎!, 𝜇! + 

(1 − 𝑝) 𝑞!,!!!𝜋(𝜃!; 𝑎! + 𝑗 − 𝑡,
𝑎!𝜇! + 𝑦!

!
!!!!!

𝑎! + 𝑗 − 𝑡
)

!

!!!!!

 

𝑓 𝜃! =  𝜋(𝜃!; 𝑎!, 𝜇!) 

Based on Bayes’ theorem 

𝑓 𝜃! 𝑦!,… ,𝑦!  
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∝ 𝑝 𝑝!"𝜋 𝜃!; 𝑎! + 𝑡 − 𝑖 + 1,
𝑎!𝜇! + 𝑦!!

!!!

𝑎! + 𝑡 − 𝑖 + 1

!

!!!

+ (1

− 𝑝) 𝑝!"𝑞!,!!!
𝜋!"𝜋!!!,!
𝜋!!𝜋!"

𝜋(𝜃!; 𝑎! + 𝑗 − 𝑖
!

!!!!!

!

!!!

+ 1,
𝑎!𝜇! + 𝑦!

!
!!!

𝑎! + 𝑗 − 𝑖 + 1
) 

Since 𝑃!"!
!!! = 1,  

𝑃! = 𝑝 + 𝛿!"#∗
!!!!!!!!!

= 𝑝 𝑃!"

!

!!!

+ 1 − 𝑝 ∙ 𝑝!"𝑞!,!!! ∙
𝜋!"𝜋!!!,!
𝜋!"𝜋!!

!

!!!!!

!

!!!

 

Then, under our specific model assumptions, 

𝑓 𝜃! 𝑦!,… ,𝑦! =
𝛿!"#∗

𝑃!
∙ 𝜋(𝜃!; 𝑎! + 𝑗 − 𝑖 + 1,

𝑎!𝜇! + 𝑦!
!
!!!

𝑎! + 𝑗 − 𝑖 + 1
)

!!!!!!!!!

= 𝛿!"# ∙ 𝐺𝑎𝑚𝑚𝑎 𝜃!;𝛼!" ,𝛽!"
!!!!!!!!!

 

Since E 𝐺𝑎𝑚𝑚𝑎 𝜃!;𝛼!" ,𝛽!" = 𝛼!" ∙ 𝛽!", 

E 𝜃! 𝑦!,… ,𝑦! = 𝛿!"# ∙ 𝛼!" ∙ 𝛽!"
!!!!!!!!!

 

 

3.2.3 Hyperparameters Estimation 

 The estimate of 𝜃! , E 𝜃! 𝑦!,… ,𝑦! , includes the hyperparameters  

𝑝,𝛼 𝑎𝑛𝑑 𝛽, which can be calculated using the empirical Bayes approach. 
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From the definition of 𝑝!,!∗  and the posterior distribution of 𝜃!|𝑦!,… ,𝑦!, the 

likelihood function of 𝑝,𝛼 𝑎𝑛𝑑 𝛽 is 

𝑓(𝑦!|𝑦!,… ,𝑦!!!)
!

!!!

= ( 𝑝!,!∗
!

!!!

)
!

!!!

 

Since 𝑦!,… ,𝑦! are exchangeable random variables in our model, we can 

first estimate 𝛼 and 𝛽  using the method of moments. Then putting the 

estimated hyperparameters 𝛼 and 𝛽 into above equation, we can estimate 

the relative frequency 𝑝 of change-points by maximizing the log-likelihood 

function 𝑙 𝑝 = log ( 𝑝!,!∗!
!!! )!

!!!   which can be conveniently computed 

with grid search[110]. 

𝑙 𝑝 = log 𝑝!,!∗
!

!!!

!

!!!

 

= log 𝑝 ∙ 𝑓 𝑦! 𝐼! = 1 + 𝑓 𝑦! 𝐾!!! = 𝑖,𝑦!!! 𝑝!,!!! 1 − 𝑝
!!!

!!!

!

!!!

 

= log 𝑝 ∙
𝜋!!
𝜋!!

+ (1 − 𝑝) ∙ 𝑝!,!!!
𝜋!,!!!
𝜋!,!

!!!

!!!

!

!!!

 

Since !!!
!!!

 and 𝑝!,!!!
!!,!!!
!!,!

!!!
!!!  can be calculated through the prior and 

posterior distribution, let us denote !!!
!!!

= 𝑐! and 𝑝!,!!!
!!,!!!
!!,!

!!!
!!! = 𝑐!. Then 

the likelihood function can be re-writed as, 

𝑙 𝑝 = log 𝑝 ∙ 𝑐! + (1 − 𝑝) ∙ 𝑐!

!

!!!

 

Then just take the derivative and set to zero to get: 
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𝜕𝑙(𝑝)
𝜕𝑝 =

𝑐! − 𝑐!
𝑐!𝑝 + 𝑐!(1 − 𝑝)

!

!!!

=
1

𝑝 + 𝑐!
𝑐! − 𝑐!

!

!!!

= 0 

Numerically, we can use grid search method to find 𝑝, which has the form 

{2! 𝑛 : 𝑗! < 𝑗 < 𝑗!, 𝑗 ∈ 𝒵, 𝑗! ≤ 0 ≤ 𝑗!}. 

 

3.3 Circular Binary Segmentation 

 Circular binary segmentation (CBS) is the most popular and the 

standard segmentation method in today’s copy number research and has 

been widely used and applied in genetic copy number study. The 

performance of CBS is usually very good with array-CGH and next 

generation sequencing data as reported in literature. Therefore, this is also 

the first algorithm out of three I am going to compare with in the 

experimental results. 

 Circular binary segmentation is original designed for array copy 

number data by Olshen and Venkatraman[43] in 2004. CBS is essentially a 

modified version over the binary segmentation method initially developed 

by Sen and Srivastava in 1975 [88, 89]. The underlying algorithm for CBS 

is still a recursive algorithm, which iteratively identifies all the potential 

change-points in the data. However, Olshen et al. made several 

modifications which made CBS the golden-standard algorithm and 

outperformed the basic binary segmentation method. 

The first and the most important modification is the test statistics 

used in CBS. In majority segmentation based methods, some kind of 

statistics is calculated to represent the gains or losses of copy number and 

then if the statistics is above certain threshold, the null hypothesis of no 
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change-point is rejected. In CBS, the statistics is inspired from the 

likelihood ratio test statistic proposed by Levin and Kline (1985).  Let 𝑦! be 

the array copy number in the 𝑡 th window, where 𝑡 = 1,… ,𝑛 . The 

observations 𝑦! has a common distribution function 𝐹!. For each window 𝑡: 

𝐻!: there is no change− point 

𝐻!: there is exactly one change− point at window 𝑡 

Let 𝑆! = 𝑦! + 𝑦! +⋯+ 𝑦! , 1 ≤ 𝑡 ≤ 𝑛  be the sum of partial data up to 

window 𝑡. The test statistics of CBS is: 

𝑍! = 𝑚𝑎𝑥!!!!!!! 𝑍!"  

where 𝑍!"  is a likelihood ratio test statistics for testing if two arcs have 

different mean: 

𝑍!" = {
1

𝑗 − 1 +
1

𝑛 − 𝑗 + 𝑖}
!!/!{

𝑆! − 𝑆!
𝑗 − 𝑖 −

𝑆! − 𝑆!+𝑆!
𝑛 − 𝑗 + 𝑖 } 

Same as the basic binary segmentation approach, if the statistic 𝑍! 

exceeds a certain threshold, a change-point is declared. The procedure is 

applied recursively until there is no any change-point in any segments. 

Also, this test statistics allows for both single change-point (𝑗 = 𝑛) and 

multiple change-points (𝑗 < 𝑛).  

CBS also introduced an additional “undo” step after all the changes 

are detected to remove the false change-points due to edge effect. It is 

observed in experiments that CBS tends to detect additional change-point 

when the actual change-point is close to the start of the end of the 

sequence. Therefore, after all change points are identified, CBS will re-

calculated the 𝑍!" for all change-point pairs if either 𝑖 is close to 1 or 𝑗 is 
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close to n to check if 𝑍!" still above the threshold. If not, the change point 

will be removed. 

Another modification is that CBS offers a permutation-based 

algorithm to construct the reference distribution when the data is not 

normally distributed. Under the null hypothesis, 𝑋! ,𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,…𝑛, are 

identically distributed. Then, let’s denote the reference data 𝑋!∗  is a 

random permutation sample of the original sequence 𝑋! , and 

corresponding 𝑍!∗ = 𝑚𝑎𝑥 𝑍!"∗ . For a given significant level 𝛼, the stopping 

criteria of the permutation procedure is when the number of 𝑍!∗ > 𝑍! , 

exceeds 𝛼 ∗ (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠)  for the first time. For really 

large datasets, CBS also offers to split the data into K equal-sized 

overlapping windows and then run the algorithm for each windows 

separately.  

Besides the general modifications above, CBS also have two 

additional modifications specifically for array DNA copy number data, 

which CBS is originally designed for, in order to reduce the overall noise in 

the data. One is automatic outlier smoothing as part of the data 

preprocessing and another is a ‘pruning’ procedure to stop earlier in the 

iterative process. 

The nice property of CBS is that CBS gives a natural way to split the 

entire chromosome into several contiguous segments and uses a 

permutation reference distribution to round parametric modeling of the data. 

Although CBS is originally designed for array copy number data, the 

methodology has became the standard for next generation sequencing 

data as well. R package ‘DNAcopy’ is one of the most popular package for 

applying CBS method to detect change-point. 
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3.4 Stochastic Change-Point Model (SCP) 

 Stochastic Change-Point model, which is developed by Lai et al. in 

2008 [70], was applied on intensity ratio estimation with array-CGH data 

and showed promising result. SCP is based on Hidden Markov Model. 

Compared with CBS, SCP is more similar with BCP regarding to the 

modeling framework, but with different target function and distribution 

assumptions.  

 As we discussed in chapter 2, Hidden Markov model is one of the 

popular statistical models for change-point modeling. In this paper, they 

proposed a new model by using the Hidden Markov models to measure 

intensity ratio between normal and cancel cells assuming underlying copy 

numbers are the hidden states with certain transition probabilities. SCP 

model uses the same idea by using Hidden Markov model to disclose the 

underlying copy numbers for each position spot. Comparing with other 

models that are based on pseudo-likelihood or Monte Carlo 

approximations, SCP has an outstanding advantage. Similar with BCP, 

SCP also gives the explicit formulation of the posterior distributions of the 

latent variable. As a result, SCP model is a latent variable model with 

attractive statistical and computational properties.  

 For each sample data from array-CGH experiments, we can get an 

ordered sequence of 𝑦! , where 𝑡  represents the position in the whole 

genome and 𝑦! is the log ratio of the tumor and normal samples intensities 

in the position 𝑡. {𝑦!} is a sequential number which naturally ordered by the 

genetic location along the whole genome. 

 Comparing with BCP, SCP has different target and input data. In 

BCP, 𝑦! represents the read count in the 𝑡th window which is non-negative 
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integer and therefore can be modeled as a Poisson distribution to estimate 

the parameter 𝜃!. However, in SCP, 𝑦! is the log ratio of intensitives of the 

dyes between tumor and normal tissues in array-CGH experiment at each 

spot. This intensity represents the copy number ratio of tumor and normal 

tissues. Then, SCP estimates the expected intensity ratio. 

 Model specification of SCP is as follow. SCP assumes the log ratio 

of tumor and normal cells at position 𝑡, 𝑦!, follows the a normal distribution 

with mean 𝜃! and variance 𝜎. 

𝑦! = 𝜃! + 𝜎𝜖! , 𝜖!~𝑁(0,1) 

where 𝜃! is an unknown step function of 𝑡 and 𝜖! is independent standard 

normal random variables. 

  The prior distribution of 𝜃! is modeled as a three-state reversible 

Markov Chain with one baseline state zero and two 𝑖. 𝑖.𝑑 non-zero states 

which follows normal distribution 𝑁(𝜇, 𝜐). In this setting, at any time 𝑡, if 𝜃! 

is in the baseline state, then at time 𝑡 + 1, it can choose to stay in the 

baseline state or jump to any non-zero states with equal probability. Then if 

𝜃! is in one of the non-zero state, it can choose to stay in the same state, 

jump to another non-zero state or move back to the baseline state. Let’s 

denote:  

• 𝑝/2 is the probability from the baseline state to non-zero state 

•  𝑎 is the probability of staying in any of the non-zero state 

•  𝑏 is the probability of jumping from a non-zero state to another non-

zero state 

•  𝑐 is the probability of jumpy from a non-zero state back to baseline 

state. 

Then we can construct the transition probability matrix as follow 
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𝑃 =
1 − 𝑝

1
2 𝑝

1
2 𝑝

𝑐 𝑎 𝑏
𝑐 𝑏 𝑎

 

 Now you can see, SCP has a different model specification and 

distribution assumptions due to the nature of the underlying data. However, 

after the model specification, SCP follows the exact same procedure and 

technics for the estimation part as BCP, which includes the forward and 

backward filtering, smoothparameters are derived through the forward 

filtering and backward filtering. Smoothing based on bayes’ theorem and 

hyperparameter estimation. For each position 𝑡, let 𝐾! be the most recent 

change-point position before or equal to 𝑡, 𝑝! is the probability that 𝜃! is in 

baseline state and 𝑞!,!  is the probability that 𝜃!  is in the non-zero state. 

Then we have: 

𝐾! = max {𝑠 ≤ 𝑡:𝜃! = ⋯ = 𝜃! ,𝜃!!! ≠ 𝜃!} 

𝑝! = 𝑃 𝜃!! = 0 𝑦!,… ,𝑦! = 𝑃 𝜃! = 0 𝑦!,… ,𝑦!  

𝑞!,! = 𝑃 𝜃!! ≠ 0,𝐾! = 𝑖 𝑦!,… ,𝑦!  

for 1 ≤ 𝑖 ≤ 𝑡. Then one can easily derive the forward filter, the posterior 

distribution of 𝜃! given 𝑦!,… ,𝑦!ass a mixture of normal distributions: 

𝜃!|𝑦!,… ,𝑦!~𝑝!𝛿! + 𝑞!,!

!

!!!

𝑁(𝜇!,! , 𝜐!,!) 

where,  

𝜇!,! = (
𝜇
𝜐 +

𝑦!
𝜎!

!

!!!

)𝜐!,! 
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𝜐!,! = (
1
𝑣 +

𝑡 − 𝑖 + 1
𝜎! )!! 

 Let 𝜙!,!  denotes the density function of the normal distribution 

𝑁(𝜇, 𝜐). 

𝜙!,! 𝑦 = (2𝜋𝜐)!!/!exp {−
1
2 𝑦 − 𝜇 !/𝜐} 

 Then applying the same recursion technic used in section 3.2.2, we 

can easily get the formula of 𝑝! and 𝑞!,! as follow: 

𝑝! ∝ 𝑝!∗ ≔ 1 − 𝑝 𝑝!!! + 𝑐𝑞!!!  

𝑞!,! ∝ 𝑞!,!∗ ≔

𝑝𝑝!!! + 𝑏𝑞!!! 𝜓
𝜓!,!

, 𝑖 = 𝑡

𝑎𝑞!,!!!𝜓!,!!!
𝜓!,!

, 𝑖 < 𝑡
 

where 𝑞! = 𝑞!,! = 1 − 𝑝!!
!!! ,𝜓 = 𝜙!,! 0  and 𝜓!,! = 𝜙!!,!,!!,! 0  for 𝑖 ≤ 𝑗 . 

Then,  

𝑝! = 𝑝!∗/[𝑝!∗ + 𝑞!,!∗
!

!!!

] 

𝑞!,! = 𝑞!,!∗/[𝑝!∗ + 𝑞!,!∗
!

!!!

] 

 After the calculation of 𝑝! and 𝑞!,!, we can get the estimation of 𝜃! 

given 𝑦!,… ,𝑦! as: 

𝐸 𝜃! 𝑦!,… ,𝑦! = 𝑞!,!𝜇!,!

!

!!!
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 As we mentioned before in BCP method, we can reverse the 

position and use the data after position 𝑡  to get the backward filter 

estimation. The calculation method is very similar with the forward filter 

estimation shown above. So first is to derive the posterior distribution of 

𝜃!!! given 𝑦!!!,… ,𝑦!: 

𝜃!!!|𝑦!!!,… ,𝑦!~𝑝!!!𝛿! + 𝑞!,!!!

!

!!!!!

𝑁(𝜇!!!,! , 𝜐!!!,!) 

Then we can calculate 𝑝! and 𝑞!,! by the recursion technics as we did for 𝑝! 

and 𝑝!,! to get: 

𝑝! ∝ 𝑝!∗ ≔ 1 − 𝑝 𝑝!!! + 𝑐𝑞!!!  

𝑞!,! ∝ 𝑞!,!∗ ≔

𝑝𝑝!!! + 𝑏𝑞!!! 𝜓
𝜓!,!

, 𝑗 = 𝑠

𝑎𝑞!,!𝜓!!!,!
𝜓!,!

, 𝑗 > 𝑠
 

where 𝑞!!! = 𝑞!,!!! = 1 − 𝑝!!!!
!!!!! . Then, the backward estimation of 𝜃! 

given data 𝑦!!!,… ,𝑦! 

𝜃!|𝑦!!!,… ,𝑦!~ 1 − 𝑝 𝑝!!! + 𝑐𝑞!!! 𝛿! + 𝑝𝑝!!! + 𝑏𝑞!!! 𝑁 𝜇, 𝜐

+ 𝑎 𝑞!,!!!𝑁(𝜇!!!,! , 𝜐!!!,!)
!

!!!!!

 

 Based on the Bayes’ theorem, we can combine the forward filter and 

the backward filter together to derive the posterior distribution of 𝜃! given 

data 𝑦!,… ,𝑦!, which is a mixture of normal distribution: 

𝜃!|𝑦!,… ,𝑦!~𝑎!𝛿! + 𝛽!"#𝑁(𝜇!" , 𝜐!")
!!!!!!!!!
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Where 

𝑎! = 𝑎!∗/𝐴! 

𝛽!"# = 𝛽!"#∗ /𝐴! 

𝐴! = 𝑎!∗ + 𝛽!"#∗
!!!!!!!!!

 

𝑎!∗ = 𝑝! 1 − 𝑝 𝑝!!! + 𝑐𝑞!!! /𝑐 

𝛽!"#∗ =

𝑞!,! 𝑝𝑝!!! + 𝑏𝑞!!!
𝑝 , 𝑖 ≤ 𝑡 = 𝑗

𝑎𝑞!,!𝑞!,!!!𝜓!,!𝜓!!!,!
𝑝𝜓𝜓!,!

, 𝑖 ≤ 𝑡 < 𝑗
 

 and the final expectation of 𝜃! given 𝑦!,… ,𝑦! is: 

𝐸(𝜃!|𝑦!,… ,𝑦!) = 𝛽!"#𝜇!"
!!!!!!!!!

 

 At the end, the figure below is the comparison among SCP, CBS 

and HMM from Lai’s paper [70]. SCP is more sensitive then the other two 

methods on small change-points. In the simulation section, we used R 

package ‘cnv’ to apply SCP method on our data and compared the result. 
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Figure 2. Array-CGH profile for chromosome 17 in cell line BT474. The lines are 

the signal levels estimated using SCP (top plot), HMM (middle plot), and CBS 

(bottom plot) [70]. 

 

3.5 Cumulative Sum Control Chart  

 The last method we introduce here is Cumulative Sum (CUSUM) 

control chart. It’s a very traditional method for data visualization. In recent 

years, some novel developments based on CUSUM’s theory are published 

with different stopping rule or delay of the time. 

 Cumulative Sum control chart is a change-point analysis technique 

which is developed by Page E.S. in 1954 [112]. It can be used to monitor 

the change-point in a sequential data. Let us define the sequential data as 

{𝑦!}, 𝑡 = 1,2,… ,𝑛. 𝑦! represents the value at position 𝑖. To build CUSUM 

charts, we need to calculate and plot a sequential cumulative sum based 
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on {𝑦!} .  Let 𝑆!, 𝑆!,… , 𝑆! represent the cumulative sums at each 

position. One thing needs to be noticed is that 𝑛 data points will have 𝑛 + 1 

(0 through 𝑛) cumulative sums.  To calculate the cumulative sums, we set 

𝑆! = 0 first. Then, the cumulative sums are calculated as  

𝑆! = 𝑆!!! + (𝑋! − 𝑋), where 𝑖 = 1,… ,𝑛,𝑋 = !!,!!,…,!!
!

  

 Here, 𝑆! is not the traditional cumulative sum of the values. Instead, 

it actually is the cumulative sum of divergence from the sequential 

average.  It’s easy to know that 𝑆! begins at zero, 𝑆! = 0, and also ends at 

zero. 𝑆! = 𝑆! + 𝑋! − 𝑋 +⋯+ 𝑋! − 𝑋 = 0 . Therefore, an upward trend 

of the CUSUM control chart indicates this period values are above the 

average and a downward trend means this period values are below the 

average.  

As I mentioned previously, CUSUM is a very traditional, yet efficient 

method. In 2013, Mei introduced a novel change-point detection method 

based on CUSUM approach. One advantage of this method is that the 

distribution change does not affect all data streams. Moreover, the 

stopping rule has higher computational efficiency. However, when the 

signal is small, the delay of the detection is significant. 

 In the simulation section, I used R package ‘qcc’ to apply CUSUM 

method to detect change-point.  

 

3.6 Similarity Score 

 All four methods discussed in the previous sections use the binned 

data. That is, we only get several candidate windows with potential change 
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points instead of the actual change-points positions. We assumed the read 

depth at a certain position is expected to be proportional to the copy 

number at that position. However, this simple concept is complicated by 

the fact that genomes are not sequenced deeply enough to enable base-

pair resolution. However, many mutation events encompassing or partially 

deleting those genes would be much smaller than the resolution of a 

segmentation profile for this type of data. In this case, segmentation 

method will fail to detect such small events. Moreover, segmentation 

approaches are limited to the bin sizes and would not be able to accurately 

detect the exact location of the events. Since BCP is still a segmentation 

based method, the same limitations hold for BCP as well. To overcome the 

limitation of binning, we tried to identify a more accurate position of change 

point though Distribution-based similarity score: Jensen-Shannon 

Divergence (JSD) and Knowledge-based similarity score: Different Score 

(DS). In theory, the similarity score will work well with any segmentation 

methods.  

 Within each segment region identified by a segmentation method as 

change-point, a similarity score is calculated for every mappable position 

to measure the similarity of both sides and then used to assess the 

likelihood of being a CNV point. Here we denoted 𝑥 as the middle position 

between two adjacent reads, 𝑥!  as left boundary position, 𝑥!  as right 

boundary position. To determine window’s left and right boundaries, we 

used the following rules:  for a tumor middle position 𝑥, we define local 

windows that include exactly 𝑤 consecutive reads in its matched normal 

sample to the left and to the right of position x. 𝑤 is a custom defined 

integer number. In other words, we can denote: 

𝑛 𝑥! , 𝑥 = 𝑛 𝑥, 𝑥! = 𝑤 
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3.6.1 Jensen-Shannon Divergence 

 For the distribution-based similarity score, we assumed the 

existence of single-cell sequencing read at every mappable position 

follows Bernoulli distribution with success probability 𝑃. After determining 

the left and right local window’s boundaries, 𝑥! and 𝑥!, we calculated the 

number of single-cell sequencing reads in tumor samples in each local 

window. Let’s assume the left local window has 𝑡! tumor reads, and the 

right local window has 𝑡! tumor reads. Then, we assumed every position in 

left region 𝑥! 𝑥 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑃!  and every position in right side 𝑥𝑥! 

follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑃! .  

𝑃! = 𝑡! 𝑤 and 𝑃! = 𝑡! 𝑤. 

For normal cell with no CNV, we have 𝑃! =  𝑃!. Therefore, detecting 

CNV becomes to find the position 𝑥 where 𝑃! ≠  𝑃!. To solve this problem, 

we used Jensen-Shannon divergence [113] to measure the distribution 

difference. It can measure the similarity between two probability 

distributions accurately and efficiently. Jensen-Shannon divergence is 

based on the Kullback-Leibler divergence with some useful improvements. 

 Kullback-Leibler divergence is a very popular statistics to measure 

the distance between two distributions.  Here is the definition of Kullback-

Leibler divergence on two discrete distributions 𝑃 and 𝑄, 

𝐷!"(𝑃| 𝑄 = 𝐻 𝑃,𝑄 − 𝐻 𝑃 = − 𝑃 𝑖 𝑙𝑜𝑔𝑄 𝑖 +
!

𝑃 𝑖 𝑙𝑜𝑔𝑃 𝑖
!
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= 𝑙𝑜𝑔
𝑃 𝑖
𝑄 𝑖 𝑃 𝑖

!

  

where 𝑃 𝑖! = 1, 𝑄 𝑖! = 1 

 Kullback-Leibler divergence is strictly positive, but the problem is 

that it is a directional and non-symmetric measurement, which means the 

Kullback-Leibler divergence distance of 𝑃 from 𝑄 is not the same as the 

Kullback-Leibler divergence distance of 𝑄 from 𝑃. 

 𝐷!"(𝑃| 𝑄 ≠ 𝐷!"(𝑄| 𝑃  

 To avoid these disadvantages, Jensen-Shannon divergence is a 

smoothed version of Kullback-Leibler divergence. It has a lot of good 

properties. It is symmetric , non-negative and monotonic.  That is the 

reason we choose to use Jensen-Shannon divergence as one of the 

scores to locate the change point. 

𝐽𝑆𝐷 (𝑃| 𝑄 =
1
2𝐷!"(𝑃| 𝑀 +

1
2𝐷!"(𝑄| 𝑀  

where M = !
!
𝑃 + 𝑄  

 In our case, we have two Bernoulli distributions with parameter 𝑃! 

and 𝑃!. The Jensen-Shannon divergence is given as below: 

𝐽𝑆𝐷 (𝑃| 𝑄 =
1
2𝐷!"(𝑃| 𝑀 +

1
2𝐷!"(𝑄| 𝑀

= log
𝑃 𝑖
𝑀 𝑖 𝑃 𝑖 + log

𝑄 𝑖
𝑀 𝑖 𝑄 𝑖

!

!!!

!

!!!
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= log
𝑃!

𝑃! + 𝑃!
2

∙ 𝑃! + log
1 − 𝑃!
𝑃! + 𝑃!
2

∙ (1 − 𝑃!)

+ log
𝑃!

𝑃! + 𝑃!
2

∙ 𝑃! + log
1 − 𝑃!
𝑃! + 𝑃!
2

∙ (1 − 𝑃!) 

 Jensen-Shannon divergence is symmetric, non-negative and 

monotonic. When it equals 0, it means two distributions are the same. The 

higher the Jensen-Shannon divergence is, the more different the two 

distributions are.  

 

3.6.2 Difference Score 

 The second similarity score we used to detect and locate CNVs from 

single-cell sequence data is Difference Score. Biologically, if there is no 

CNV, the read count in the tumor cell should be comparable with the read 

count in the same region of a normal cell. Otherwise, there is likely CNV.  

 Let 𝑛!  and 𝑡!  denote the total number of aligned single-cell 

sequencing reads from normal and tumor sample respectively in window 𝑥. 

The tumor-normal copy number ratio of this window, R, is defined as:  

𝑅 𝑥! , 𝑥! =
𝑡!
 𝑛!

 

where 𝑛! > 0. 

 Then we set up a log-ratio difference statistic D. In our algorithm, we 

used this local difference of log ratios statistics to identify significant copy 
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number changes. We calculated the difference in log ratio between the 

right window and the left window. 

𝐷 𝑥 = 𝑙𝑜𝑔( 𝑅 𝑥! , 𝑥 ) − 𝑙𝑜𝑔( 𝑅 𝑥, 𝑥! )   

Where  

𝑅 𝑥! , 𝑥 =
𝑡!
 𝑛!

𝑎𝑛𝑑 𝑅(𝑥, 𝑥!) =
𝑡!
 𝑛!

 

 Similar with Jensen-Shannon divergence, Difference-Score 

measures the difference and reflects the likelihood of being a breaking 

point. However, one advantage is that Difference-Score could be either 

positive or negative. A higher absolute value of Difference-Score indicates 

a greater likelihood of being a breaking point. Positive score means the 

position’s right side has higher copy number than its left side and vice 

versa.  

 After calculating two different scores for every point in the potential 

regions, to decide the significance of the existence of CNV, we 

approximated the p-value of every point by permutation method.  
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Chapter 4  

Simulation Study 

 In this section, we present the numerical results on simulation data 

where the ground truth is known and comparisons among our novel two-

step method and the other two popular segmentation method CBS [43] 

and SCP [70]. CBS is the most popular segmentation method in genetic 

study. SCP is a similar algorithm with BCP. Moreover, we also applied 

CUSUM as a change-point detection method. Before showing the 

simulation results, we will introduce the simulation mechanism and how the 

data is generated. Firstly, there are segmentation results from the BCP 

model, CBS model, SCP model. Then, we add change-point detection 

results from CUSUM model and followe by the improvement on the 

accuracy of change-point identification added by similar scores. Except the 

accuracy of segmentation results and change-point position, we also 

compare the computational efficiency of all algorithms. 

 

4.1 Experiment Setting  

 To study the performance of the new algorithm, we set up three 

simulation studies: no change-point simulation, one change-point 

simulation and multiple change-points simulation. Each simulation study 

covers several different scenarios with different reads coverage and 

different amplitude. For each scenario, 1000 samples of size 𝑠 = 5,000,000 

were generated to evaluate the performance of CBS, SCP, CUSUM and 

our new algorithm BCP with two similarity score methods.  
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As suggested by Xie’s method, we selected 50K as the window size 

for segmenting data. Also, we will use the same window size to calculate 

the similarity scores. We also performed power analysis on JS and DScore 

to verify the window size is reasonable.  

 On average, there are around 10 million reads on a full chromosome 

with length 3 ∗ 10! bps which yields a probability of !"!

!∗!"!
= 0.0033. In the 

power analysis, we set 𝑃! = 0.0033  and simulated four scenarios with 

different effect size (magnitude of the copy number change) of 50%, 80%, 

120% and 150%. In each scenario, 1 million samples are drawn from each 

distribution. Then both Jensen-Shannon divergence and Difference-Score 

are calculated with varying local window size.  

 Figure 3 shows the estimated power with different window size. For 

both scores, power increased rapidly at the beginning and didn’t gain much 

once the window size reached 50K. This is in line with Xie’s suggestion. 
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Figure 3. The power test of window size for different read coverage 

settings 

For comparing the performance among different segmentation 

algorithms, we use the Kullback-Leibler (KL) divergence and the mean 

Euclidean Error (EE) to measure the accuracy of segmentation esitimation. 

The Kullback-Leibler divergence can measure the difference between two 

distributions. In our study, we need to measure the distance between two 

Poisson ditributions. The Kullback–Leibler divergence of Pois(𝜆 ) from 

Pois(𝜆) is giving by 

𝐷!"(𝜆||𝜆 ) = 𝜆 – 𝜆 + 𝜆 ∗ 𝑙𝑜𝑔
𝜆
𝜆 

  

The Euclidean Error is defined as 

𝐸𝐸 𝜆, 𝜆 = (𝜆! − 𝜆!)!
!

!
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 Besides comparing the estimation accuracy, we also compared their 

capability of identifying the breaking point. In the results tables, we showed 

the count of false detected change-points and the count of true detected 

change-points. 

 Except the comparison of estimation of segmentation, we think the 

efficiency of the calculation is also important. To compare the algorithm 

efficiency, we recorded the system runtime of all simulation samples. Here, 

we present the average computational time of 1000 samples for each 

algorithm setting. Therefore, the results are based on 1000 ∗ 𝑛 samples, 

where 𝑛 is the number of scenario for each simulation study. 

 

4.2 No Change-point Simulation 

The first simulation study includes six synthetic chromosome 

scenarios with different reads coverage setting (0.002, 0.004, 0.008, 0.016, 

0.032 and 0.064). For each scenario, 1000 independent samples of size 

𝑠 = 5,000,000 were generated to compare the performance of CBS, SCP, 

CUSUM and BCP. For each sample, there is no change-point exists. The 

whole data was randomly drawn from Bernoulli distribution with parameter 

𝑃. The settings of 𝑃 are listed in the table 1. 

𝑃 

5million reads/ the length of genome ≈ 0.002 

10million reads/ the length of genome ≈ 0.004 

20million reads/ the length of genome ≈ 0.008 
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40million reads/ the length of genome ≈ 0.016 

80million reads/ the length of genome ≈ 0.032 

160million reads/ the length of genome ≈ 0.064 

Table 1. No Change-point Simulation Settings 

Firstly, we try to compare the segmentation results of BCP model, 

CBS model as well as SCP model when there is no change-point exists in 

data. Since the true 𝑃 is known in the simulation, we first compare the 

accuracy of the empirical estimate of expected read counts. Two 

measurements results, the Kullback-Leibler (KL) divergence and the mean 

Euclidean Error (EE), are shown in table 2. 

  

 

  KL EE 

P=0.002 BCP 0.0099 

(0.0051) 

1.1643 

(0.3206) 

 CBS 0.0073 

(0.0048) 

0.8863 

(0.3162) 

 SCP 0.0053 

(0.0032) 

0.7286 

(0.2938) 

P=0.004 BCP 0.0145 2.0464 
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(0.0063) (0.5107) 

 CBS 0.0067 

(0.0048) 

1.1927 

(0.4170) 

 SCP 0.0052 

(0.0028) 

1.1046 

(0.3743) 

P=0.008 BCP 0.0248 

(0.0084) 

4.0089 

(0.7747) 

 CBS 0.0063 

(0.0056) 

1.6804 

(0.5602) 

 SCP 0.0050 

(0.0028) 

1.5837 

(0.5000) 

P=0.016 BCP 0.0443 

(0.0117) 

7.9141 

(1.1286) 

 CBS 0.0061 

(0.0049) 

2.3299 

(0.7544) 

 SCP 0.0049 

(0.0019) 

2.2072 

(0.5916) 

P=0.032 BCP 0.0835 

(0.0163) 

15.8090 

(1.6001) 
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 CBS 0.0056 

(0.0041) 

3.1994 

(1.0379) 

 SCP 0.0047 

(0.0019) 

3.0022 

(1.0032) 

P=0.064 BCP 0.1637 

(0.0219) 

31.8133 

(2.1765) 

 CBS 0.0053 

(0.0042) 

4.4075 

(1.4345) 

 SCP 0.0040 

(0.0013) 

4.2705 

(1.2748) 

Table 2. Comparison between BCP, CBS and SCP on simulation data 

To compare their capabilities of identifying the change-point, we 

calculated the number of points which had been falsely detected by BCP, 

CBS, SCP and CUSUM (Table 3). In addition, we also measured the 

average running time from 5000 samples between among these four 

different methods (Table 4). 

 Method False Changepoint (1000 samples) 

P=0.002 BCP 0 

 CBS 7 

 SCP 175 
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 CUSUM 584 

P=0.004 BCP 0 

 CBS 18 

 SCP 199 

 CUSUM 550 

P=0.008 BCP 0 

 CBS 19 

 SCP 214 

 CUSUM 590 

P=0.016 BCP 0 

 CBS 18 

 SCP 250 

 CUSUM 604 

P=0.032 BCP 0 

 CBS 13 

 SCP 261 

 CUSUM 622 

P=0.064 BCP 0 

 CBS 10 
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 SCP 320 

 CUSUM 650 

Table 3. Number of false detected change-points by BCP, CBS, SCP and 

CUSUM on simulation data 

 

 Setting Runtime Average 

BCP P=0.002 0.018s 0.017s 

P=0.004 0.018s 

P=0.008 0.016s 

P=0.016 0.016s 

P=0.032 0.019s 

P=0.064 0.015s 

CBS P=0.002 0.230s 0.255s 

P=0.004 0.252s 

P=0.008 0.235s 

P=0.016 0.267s 

P=0.032 0.274s 

P=0.064 0.273s 
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SCP P=0.002 0.020s 0.018s 

P=0.004 0.020s 

P=0.008 0.020s 

P=0.016 0.019s 

P=0.032 0.016s 

P=0.064 0.014s 

CUSUM P=0.002 0.020s 0.018s 

P=0.004 0.020s 

P=0.008 0.020s 

P=0.016 0.019s 

P=0.032 0.016s 

P=0.064 0.014s 

Table 4. Running time of BCP, CBS, SCP and CUSUM on simulation data 

 

 Table 2 gives the Monte Carlo estimates of 𝑛!! 𝐷!"(𝜆!||𝜆! )!
!!!  and 

𝑛!! 𝐸𝐸(𝜆!||𝜆! )!
!!!   and their standard errors (in parentheses) for each 

simulation scenario. The result demonstrates that the estimates of the true 

copy number from BCP model are more accurate than from other three 

models. Moreover, BCP didn’t detect any change-point comparing that 

CBS detected even more than 10 change-points in 1000 samples, SCP 
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detected 200 times number of change-point and CUSUM detected 600 

times. 

  

4.3 Single Change-point Simulation 

 The second simulation study covered ten synthetic chromosome 

scenarios with different reads coverage (0.002 and 0.004) and different 

changing amplitudes (x1.5, x2, x4, x10 and x20). For each scenario, 1000 

independent samples of size 𝑠 = 5,000,000 were generated to evaluate the 

performance of four methods, BCP, CBS, SCP and CUSUM. Here, the 

simulation focuses on the case of one change-point. But it can be easily 

generalized to case of multiple change-points. For each sample, the 

change point was set as the middle point. Then the first half were randomly 

drawn from Bernoulli distribution with parameter 𝑃! and the second half 

were randomly generated from Bernoulli distribution with parameter 𝑃! . 

The settings of 𝑃! and 𝑃! are listed in the table 5. 

P! P! 

 

10million reads/ the length of genome ≈ 0.004 0.006,0.008,0.016,0.04,0.08 

5million reads/ the length of genome ≈ 0.002 0.003,0.004,0.008,0.02,0.04 

Table 5. One Change-point Simulation Settings 
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 After the data was generated, we first ran the step 1, BCP model as 

well as the other three popular methods, CBS, SCP and CUSUM model, to 

evaluate the segmentation results. The comparison contains two parts. 

The first part is comparing the accuracy of the empirical estimate of 

expected read counts. We use the Kullback-Leibler (KL) divergence and 

the mean Euclidean Error (EE) to measure the estimate’s accuracy. In 

biological research , the more important thing is the method’s ability to 

detect and identify all the CNVs. Therefore, in the second part, we also 

compared their capability of identifying the breaking point. True Positive 

Rate (TPR) can be used to measure the percentage of change points 

detected at the correct location by the model in all 1000 samples (Table 8). 

TPR is defined as: 

𝑇𝑃𝑅 =
# 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠  

  

  KL EE 

P!=0.002,P!=0.003 BCP 0.5561 

(0.2266) 

8.0290 

(1.6822) 

 CBS 0.8751 

(0.2686) 

9.3793 

(1.3337) 

 SCP 0.0053 

(0.0032) 

0.7286 

(0.2938) 

P!=0.002,P!=0.004 BCP 1.9343 15.9341 
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(0.5027) (2.0137) 

 CBS 2.4848 

(0.3643) 

17.2997 

(0.3695) 

 SCP 0.0052 

(0.0028) 

1.1046 

(0.3743) 

P!=0.002,P!=0.008 BCP 9.6499 

(0.7399) 

50.5418 

(1.1198) 

 CBS 10.3157 

(0.2121) 

50.4357 

(0.2469) 

 SCP 0.0050 

(0.0028) 

1.5837 

(0.5000) 

P!=0.002,P!=0.02 BCP 36.3709 

(0.3340) 

150.6906 

(0.2408) 

 CBS 38.6002 

(0.3652) 

150.4173 

(0.2365) 

 SCP 0.0049 

(0.0019) 

2.2072 

(0.5916) 

P!=0.002,P!=0.04 BCP 82.4686 

(0.5054) 

317.3518 

(0.2384) 
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 CBS 87.1415 

(0.5482) 

317.0760 

(0.2065) 

 SCP 0.0047 

(0.0019) 

3.0022 

(1.0032) 

Table 6. Comparison among BCP, CBS and SCP on simulation data of P!=0.002 

 

  KL EE 

P!=0.004,P!=0.006 BCP 1.1474 

(0.3567) 

16.4897 

(2.4729) 

 CBS 1.6008 

(0.2176) 

17.6707 

(0.9347) 

 SCP 0.0040 

(0.0013) 

4.2705 

(1.2748) 

P!=0.004,P!=0.008 BCP 3.9643 

(0.8396) 

33.0266 

(3.1815) 

 CBS 4.7621 

(0.5991) 

33.9787 

(1.0323) 

 SCP 0.0040 4.2705 
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(0.0013) (1.2748) 

P!=0.004,P!=0.016 BCP 19.1872 

(0.6595) 

101.3197 

(0.3621) 

 CBS 20.7010 

(0.2804) 

100.6187 

(0.3919) 

 SCP 0.0040 

(0.0013) 

4.2705 

(1.2748) 

P!=0.004,P!=0.04 BCP 72.7272 

(0.4755) 

301.3126 

(0.3673) 

 CBS 77.2537 

(0.5180) 

300.5813 

(0.2779) 

 SCP 0.0040 

(0.0013) 

4.2705 

(1.2748) 

P!=0.004,P!=0.08 BCP 164.8824 

(0.6932) 

634.6556 

(0.3736) 

 CBS 174.3066 

(0.7503) 

633.9297 

(0.3512) 

 SCP 0.0040 

(0.0013) 

4.2705 

(1.2748) 
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Table 7. Comparison among BCP, CBS and SCP on simulation data of P!=0.004 

 

  TPR 

P!=0.002,P!=0.003 BCP 97.00% 

 CBS 48.95% 

 SCP 45.50% 

 CUSUM 40.35% 

P!=0.002,P!=0.004 BCP 83.60% 

 CBS 50.00% 

 SCP 50.00% 

 CUSUM 44.70% 

P!=0.002,P!=0.008 BCP 51.85% 

 CBS 50.00% 

 SCP 50.00% 

 CUSUM 50.00% 

P!=0.002,P!=0.02 BCP 50.00% 

 CBS 50.00% 

 SCP 50.00% 

 CUSUM 50.00% 
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P!=0.002,P!=0.04 BCP 50.00% 

 CBS 50.00% 

 SCP 50.00% 

 CUSUM 50.00% 

P!=0.004,P!=0.006 BCP 92.40% 

	 CBS 49.90% 

	 SCP 43.00% 

	 CUSUM 38.40% 

P!=0.004,P!=0.008	 BCP 72.20% 

 CBS 50.15% 

 SCP 50.00% 

 CUSUM 48.70% 

P!=0.004,P!=0.016 BCP 51.85% 

 CBS 50.00% 

 SCP 50.00% 

 CUSUM 50.00% 

P!=0.004,P!=0.04 BCP 50.00% 

 CBS 50.00% 

 SCP 50.00% 
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 CUSUM 50.00% 

P!=0.004,P!=0.08 BCP 50.00% 

 CBS 50.00% 

 SCP 50.00% 

 CUSUM 50.00% 

Table 8. Comparison of True Positive Rate among BCP, CBS, SCP and CUSUM 

on simulation data 

 

  Runtime Average 

BCP P!=0.002 0.024s 0.024s 

 P!=0.004 0.023s  

CBS P!=0.002 2.326s 2.326s 

 P!=0.004 2.326s  

SCP P!=0.002 0.018s 0.018s 

 P!=0.004 0.017s  

CUSUM P!=0.002 0.028s 0.029s 

 P!=0.004 0.031s  

 Table 9. Runtime among BCP, CBS, SCP and CUSUM on simulation data 
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As in no change-point simulation study, table 6 and 7 give the Monte 

Carlo estimates of 𝑛!! 𝐷!"(𝜆!||𝜆! )!
!!!  and 𝑛!! 𝐸𝐸(𝜆!||𝜆! )!

!!!   and their 

standard errors (in parentheses) for each simulation scenario. BCP model 

seems more sensitive than other methods in small changes detection. For 

cases with small amplitude changes (X1.5 and X2), BCP model has 

smaller 𝐷!" and 𝐸𝐸 than other models. It demonstrates that the estimate of 

the true copy number from BCP model is more accurate than other models. 

For large amplitude situations, there is no significant different among these 

three methods in terms of the estimation accuracy. In table 8, the results of 

TPR suggest that BCP does a better job in identifying the correct 

segments for change-points with small amplitude changes. But with large 

amplitude changes, all methods only can reveal around half of the change-

points. It becomes the copy number of segment which contains the real 

change-point will more close to the amplified segment side. 

 Furthemore, no matter in genetic study, financial study or other 

area’s study, the computational efficiency is an important evaluation 

parameter of an algorithm. Since the large number of high-throughput data 

has been created every day, only the method which has high 

computational efficiency can be applied in real product. In table 9, we also 

evaluated the efficiency of all algorithms. The average runtime is based on 

10000 simulations for each algorithm. The BCP model with BCMIX 

implementation outperforms CBS 100 times in computational time without 

loss of accuracy. Comparing with SCP, BCP has the same level of 

computational time, but with much fewer false positive detected change-

points.  
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Figure 3. 𝑝-value of JSD and DS 

 After comparing the performance among segmentation methods, we 

also compare different methods’ ability of detecting change-point. Except 

three segmentation methods, two similarity scores and CUSUM will also 

be mentioned in change-point detection comparison. We calculated both 

JSD and DS scores for all positions within the adjacent segments where 

the segment boundary had been detected as a change-point by BCP 

model in the previous step. The empirical p-value is calculated by using 

permutation approach. Then, p-value is used to identify the change-point 

location at a confidence level of 0.05.  

 To evaluate the performance among new two-step method and other 

three popular methods, we calculated the absolute error between the 

detected change-point and the synthetic change-point to measure the 

accuracy. In Table 10, we present the absolute error of the results from 

CBS, SCP, CUSUM and our complete two-step approach, BCP + JSD and 

BCP + DS. For CBS and SCP, the segment boundary is used as the 

detected change-point. If the algorithm gives more than one change-point, 
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we choose the one which is the most nearest one to the real change-point 

position.  

As shown in Table 10, our new two-step method has higher 

accuracy in detecting the change point location compared to segmentation 

methods which is limited by the segmentation bin boundary positions. Also, 

the absolute error of both JSD and DS scores are reduced as the coverage 

of reads. In Figure 4, both scores tends to yield smaller error with High 

coverage setting (𝑃! = 0.004)  compared with low coverage setting 

(𝑃! = 0.002) . Compared between distribution-based JSD score and 

knowledge-based DS score, BCP + JSD outperformed BCP + DS with 

smaller absolute error in the simulation data. One possible explanation is 

that in simulation setting, there is no comparative normal cell information 

for DS score. It may cause DS score to be worse. Also, the randomly 

generated sample may favor the distribution-based score. 

One may argue that such comparison may not be fair given CBS, 

SCP and CUSUM are segmentation-based method but ours is not. We are 

aware of this. However, to our best knowledge, there is no CNV approach 

proposed on the raw position level in the literature yet. CBS is the most 

commonly used and widely adopted approach in genetic copy number 

analysis area. SCP is the most recent method which applied the similar 

idea with BCP. CUSUM is the most famous and widely used approach in 

change-point study. We felt it is worth of pointing out the improvement on 

the accuracy by taking the extra step to analyze on the raw position level.    

 BCP+JSD BCP+DS CBS SCP CUSUM 

P!=0.002,P!=0.003 11855 

(600) 

11977 

(600) 

26099 

(243) 

25099 

(243) 

25099 

(243) 
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P!=0.002,P!=0.004 3228 

(146) 

4013 

(208) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.002,P!=0.008 554 

(24) 

1088 

(53) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.002,P!=0.02 133 

(5) 

634 

(33) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.002,P!=0.04 52 

(2) 

513 

(28) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.004,P!=0.006 5501 

(270) 

6047 

(311) 

25099 

(71) 

24999 

(51) 

24999 

(83) 

P!=0.004,P!=0.008 1473 

(61) 

1830 

(82) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.004,P!=0.016 273 

(12) 

571 

(30) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.004,P!=0.04 61 

(2) 

343 

(19) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

P!=0.004,P!=0.08 24 

(0) 

293 

(16) 

24999 

(0) 

24999 

(0) 

24999 

(0) 

Table 10. Absolute Distance Error between the detected change point and the 

true change point position 
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Figure 4. Absolute Distance Error of One Change-point Simulation (Red-

BCP+JSD, Blue-BCP+DS, Pink-CBS, Yellow-SCP, Grey-CUSUM) 

 

4.4 Multiple Change-points Simulation 

 After no change-point simulation study and single change-point 

simulation study, the last simulation study includes ten synthetic scenarios 

with different reads coverage and different change amplitudes (x1.5, x2, x4, 

x10 and x20). As the other simulation study, each scenario has 1000 

independent samples. Each sample includes 𝑠 = 5,000,000 positions. In 

this simulation study, we tried to simulate cases with two change-points. 

But it can be easily generalized to cases with multiple change-points. For 

each sample setting, here are two different distances between two change-

points, 500,000 and 750,000. For length 500,000, the positions of change-
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point are 2,250,000 and 2,750,000. For length 750,000, the positions of 

change-point are 2,125,000 and 2,875,000. Then the first third and the last 

third were randomly drawn from Bernoulli distribution with parameter 𝑃! 

and the second third were randomly generated from Bernoulli distribution 

with parameter 𝑃! . The settings of 𝑃!  and 𝑃!  are the same with one 

change-point simulation study (Table 5).  

 Following the same step with the previous simulation study, BCP, 

CBS as well as SCP have been compared with their segmentation results. 

Since we know the true values of 𝑃! 𝑎𝑛𝑑 𝑃! in the simulation, the true read 

counts in each segment (window) has been calculated. Then, Kullback-

Leibler (KL) divergence and the mean Euclidean Error (EE) is used to 

measure the accuracy between calculated results and true read counts. 

True Positive Rate (TPR) is the percentage of change points detected at 

the correct location by the model in all 1000 samples. We use it to 

compare the ability of identifying change-points among new two-step 

mothed, CBS, SCP and CUSUM. 

 Comparing with one change-point simulation, the results of KL, EE, 

TPR and runtime of each method doesn’t change a lot. So I will not list 

these result tables here for two change-point simulations.  
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Figure 5. Absolute Distance Error of Two Change-points Simulation (Red-

BCP+JSD, Blue-BCP+DS, Pink-CBS, Yellow-SCP, Grey-CUSUM) 

 As shown in Figure 5, comparing with other three methods, our new 

two-step methods have higher accuracy in detecting the change-point 

location. The reason is traditional method is limited by the segmentation 

bin boundary positions. In figure 5, the absolute error of both JSD and DS 

scores reduced with the increase of the amplification. The reason is 

obvious that the larger amplification or deletion is easier to be detected. 

Also, both scores tend to yield smaller error with larger distance between 

two change-points (𝑙𝑒𝑛𝑔𝑡ℎ = 750𝐾)  compared with smaller distance 

(𝑙𝑒𝑛𝑔𝑡ℎ = 500𝐾) . That’s why the short change-point segment in copy 

number data is not easy being discovered.  
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Chapter 5  

Conclusion 

 In this dissertation, we developed a novel two-step approach for 

detecting CNVs from single-cell sequencing data. One key advantage of 

our method is that it can accurately locate change-point positions beyond 

the locations of bin boundaries. Based on simulation studies, our numerical 

results show, comparing with CBS, SCP and CUSUM, BCP gives a more 

accurate estimation of copy number and shows more sensitive with small 

variations. The BCMIX implementation makes BCP significantly efficient 

than CBS in computation time. Comparing with SCP and CUSUM, CBS 

has much lower false positive rate and higher true positive rate especially 

for detecting small amplitudes. Furthermore, to overcome the limitation of 

bin boundaries, we proposed two similarity scores, distribution-based JSD 

score and knowledge based DS score, to find out the accurate position of 

breaking point. Based on the results from the first step, two similarity 

scores were calculated for certain areas. Simulation results show the new 

method is very robust in detecting the true breaking point positions. 

Another conclusion we got from simulation studies is the accuracy of both 

scores would increase with the coverage of reads.  It would be very 

interesting to apply this new two-step algorithm on real chromosome data. 
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