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Abstract of the Dissertation

APPROXIMATION OF LONG MEMORY PROCESS BY SHORT

MEMORY PROCESS - with Application to Option Valuation

by

Pengyuan Shao

Doctor of Philosophy

in

Applied Mathematics and Statistics

Quantitative Finance

Stony Brook University

2013

Options on an asset which follow a long memory process are diffi cult to value

by conventional methods, due to the existence of arbitrage opportunities. Here we

show how to avoid the problem of arbitrage opportunities and value vanilla European

options when underlying asset returns follow a FARIMA(p,d,q) processes with d > 0

which is widely used as an model of long memory price processes.

We use information distance to prove that stationary ARMA processes are dense

in all FARIMA processes in the total variation distance. As a consequence, statistical

tests with finite sample size fail to distinguish a FARIMA process from ARMA

processes. As option values are a special case of statistical test, the well understood

option values for a suffi ciently close stationary ARMA process can be taken as

option values for the FARIMA process, with very low probability of error. We

provide Monte Carlo experiments that confirm that long memory processes are not

easily distinguished from our approximate ARMA processes with finite sample sizes
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using a variety of well known statistical tests. We examine how long memory affects

the option values and implied volatility surface. Finally we examine high frequency

data for equities and spot foreign exchange rates for evidence of long memory effects.
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1 Introduction

When the underlying asset returns allow long memory or long range dependence

exist, it is diffi cult to have a closed-form option pricing formula. Instead of using

geometric Brownian motion to model the asset prices, fractional Brownian motion

has been proposed to model the asset prices while capture the existence of long mem-

ory processes. However, there exists the arbitrage opportunities by using fractional

Brownian motion model the asset prices, Rogers [59] show it by constructed such an

arbitrage. FARIMA models are able to model the fractional Gaussian noises, which

are the unit increments of fractional Brownian motion. To solve this problem, we

use short memory ARMA processes to approximate the FARIMA processes valuate

the European vanilla option based on the approximated ARMA processes. We show

that FARIMA and approximated ARMA processes are indistinguishable with finite

sample size, which means the option valuations are indistinguishable in discrete case.

So the main concept of this thesis is how to valuate option while underlying asset

returns are following long memory processes.

In this first chapter of the dissertation, we give a brief introduction to long

memory processes and some pioneering works concerning the existence and modeling

of long memory processes in financial time series. Also we review the previous

works on the connection between long memory processes and other non-long memory

stochastic processes, which can pass statistical tests for long memory.

1.1 Dissertation Organization

We briefly describe the organization of dissertation here:

In Chapter 1, "Introduction", we review long memory processes and their appli-

cation to financial time series; the connection between long memory processes and

other stochastic processes. We state the main results of this work.

In Chapter 2, "Distance between distributions", we propose to use information

distance to measure the relation between different distributions and processes. We

1



review the connection among total variations, Hellinger distance and information

distance to make the connection clear to statistical inference. Two processes close

in information distance, then they are close in Hellinger distance and total variation.

In Chapter 3, "Fractional autoregressive integrated moving average model", we

give the information geometry of the classical econometric model FARIMA mod-

els, which are widely used to model long memory processes. We use short memory

process ARMA process to approximate the FARIMA model with long memory prop-

erty. Also we use the connection proposed in chapter 2 to state the long memory

FARIMA model can not be distinguished from the short memory ARMA processes

by statistical inference with finite sample size.

In Chapter 4, "Simulation", we present our connection between long and short

memory processes numerically. Based on different classical long memory statistical

tests and the Monte Carlo evidences, we show that long memory processes cannot

be distinguished from an approximated short memory processes with finite sample

size. Also we show the connection between statistical inference and information

distance numerical in this section.

In Chapter 5, "Option pricing with long memory processes", we valuate the

European vanilla options based on Black-Scholes-ARMA model by approximating

the long memory processes by stationary ARMA processes. Also we show that how

the long memory processes affect the option valuation and the implied volatility

calculated in Black-Scholes model. Also we show the change of term structure of

volatility by adding a short-term volatility model to the long memory model.

In Chapter 6, "Empirical finance", we give an empirical investigation to show

whether long memory process exists at high frequency financial time series firstly,

which is hard to find in the literatures.

In Chapter 7, "Conclusion", we draw our conclusion of this dissertation and a

brief summary of the problems we solved.
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1.2 Long memory process

Whether a stochastic process has long memory or short memory is usually defined

based on its autocovariance functions. Short memory stationary process is usually

referring to the stochastic process whose autocovariance functions decay fast and

its spectral density is bounded everywhere. One of the most widely applied time

series model with short memory is the stationary autoregressive moving average

model (ARMA), which we will describe more and make the connection between

long memory process later in this dissertation. Compared to short memory process,

long memory process is the stochastic process with slowly decaying autocovariance

functions, which is not integrable or summable (see Mcleod and Hippel [14] in 1978).

Equivalently, spectrum density of long memory process is unbounded.

Then the definition of the long memory is:

Definition 1. A time series rt, whose E (xt) = µ and Cov (xt, xt+j) = γj do not

depend on time t, is said to be a covariance stationary time series [16]. Given the

autocovariance functions γk, autocorrelation function ρk is defined as ρk = γk/γ0.

Then the time series rt is a long memory process when the absolute value of auto-

correlation functions is not finite:

lim
T→∞

T∑
k=0

|ρk| =∞ (1)

1.3 Hurst exponent

Hurst exponent is a widely used measure of the long memory in observable time

series, which is also related to the fractional differencing parameter in FARIMA

model. The classical range statistics (R/S) was developed by Hurst [26]:

R/S (n) =
1

S (n)

[
max
0≤t≤n

(
Y (t)− t

n
Y (n)

)
− min
0≤t≤n

(
Y (t)− t

n
Y (n)

)]
, n ≥ 1 (2)

3



where S (n) is the standard deviation estimator and Y (n) is the sample returns.

S (n) =

√
1

n

∑
0≤t≤n

(
Y (t)− Ȳn

)2 (3)

The relation between Hurst exponent and the R/S statistics is

Q (n) = R/S (n) = anH (4)

whereH is the estimated Hurst exponent. Traditionally, processes with long memory

are identified with Hurst exponents 12 < H < 1.

Lo [6] shows that the normalized R/S statistic, Vc = 1√
n
Q (n), has the asymp-

totic distribution as follows

FV (v) ∼ 1 + 2
∞∑
k=1

(
1− 4k2ν

)
e−2(kv)

2

(5)

Also Lo [6] states that the classic R/S statistic could be biased caused by the

short term memory and he proposes the modified R/S statistic Q̃ (n, q) in the fol-

lowing form:

Q̃ (n, q) = R (n) /S̃ (n, q) (6)

where

S̃ (n, q) = S (n) + 2

q∑
i=1

ωi (q) γ̂i, ωi (q) = 1− i

q + 1
, q < n (7)

where γ̂i are the sample estimated autocorrelations and we denote the normalized

modified rescaled range statistics as

V (q) =
1√
n
Q̃ (n, q) (8)

Modified rescaled range statistics will exclude part of long term dependence

implied by short term dependence. However, the shortcoming of modified R/S

statistic is the need to choose parameter lag q, diffi cult to do robustly [6]. Lo [4]

gives the fractiles of the distribution FV (v), which will be used to implement the

statistical test in the empirical finance section.
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Also the well-known fractional Brownian motion is defined based on the Hurst

exponent by Mandelbrot [60]:

BH (t) =
1

Γ
(
H + 1

2

) ∫ t

−∞
(t− τ)H−

1
2 dB (τ) (9)

where Γ (·) is the gamma function and H is the Hurst parameter, 0 < H < 1.

From the definition, we can also obtain the covariance function for fractional

Brownian motion described by Hurst exponent H,

RH (t, s) = E [BH (t)BH (s)] =
1

2

(
t2H + s2H − |t− s|2H

)
(10)

BH (t) =
1

Γ
(
H + 1

2

) ∫ t

0
(t− s)H−

1
2 dB (s) (11)

We will show the connection between Hurst exponent and fractional differencing

parameter later and use Hurst exponent in the Chapter "Empirical finance".

1.4 Long memory in financial time series

The existence of long memory process in financial time series has been discussed by

numerous paper for a long time. We briefly review some of the pioneering works and

important literatures here. The main discussions can be classified by return series

and volatility series

One of the most widely used detection of long memory process is rescaled range

analysis, R/S, which is proposed by Mandelbrot [5] in 1972. The reason we mention

R/S first is that many pioneering researches are based on R/S or the modified R/S

in the following years. Lo [6] in 1989, proposed the modified R/S analysis and found

little evidence of long memory in the U.S. stock market returns by this measurement.

Nawrocki [8] in 1995 claimed that there existed the long memory from the view of

R/S statistics and suggest that the dependence raised from general economic cycle.

5



in 1996, Chow et al. [9] did the research on 22 international equity market indexes

based on modified R/S test and rescaled variance ratio test. They found evidence

against the random walk hypothesis is very weak, in agreement with Lo’s result [6].

Mandelbrot [4] in 1997 claimed that there existed the long memory phenomenon

in stock prices. In 1998, Lobato and Savin [10] analyzed the subperiods of returns

and individual stocks in U.S. stock market and found no long memory in these

returns. Willinger et al. [11] in 1999 argued that Lo [6] had a bias to accept the

null hypothesis and they used the CRSP1 daily data to show empirical evidence

of long memory, but with low Hurst exponent (around 0.6). In 2001, Sadique and

Silvapulle [12] found long memory, suggesting that some countries are not effi cient

markets. In currency markets, Cheung and Lai [13] in 2001 gave an alternative

explanation to puzzling behavior of yen exchange rate based on long memory.

Compared to debate of the long memory process existence in financial returns,

volatility series has been shown to have more pronounced long memory process by

numerous literatures. Ding et al. [7] in 1993 did the research on the absolute return

|rt|d, and claimed that this power transformation had very high autocorrelation for

long lags. Bollerslev and Mikkelsen [19] in 1996 show the long memory process

existence in U.S. stock market volatility and proposed to use fractionally integrated

EGARCH model for characterizing the long memory. Breidt et al. [18] in 1998 show

the empirical evidence of the long memory existence in an extensive set of U.S.

stock return indexes and proposed the long memory stochastic volatility (LMSV)

model, which incorporates FARIMA process in a standard stochastic scheme, to

model the value-weighted CRSP market index. In 1998, Lobato and Savin [10] show

that squared returns have strong long memory in individual stock returns.

Besides the financial returns and volatility series, long memory process has also

been investigated in other parts of financial markets. For example, Baillie and

1CRSP: Center for Research in Security Prices is one of the major providers of historical stock

market data. CRSP covers the U.S. traded stock data back to 1926. For more information, readers

are referred to: http://www.crsp.chicagobooth.edu/index.html.
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Bollerslev [23] in 1994 show that in foreign exchange market, the forward premium

had long memory. Bouchaud et al. [21] reported the long memory effect in market

order flow in the Paris Stock Exchange in 2004.

From the perspective of classical financial theory, the main reason that we want

to know whether a financial time series is long memory or short memory process is

related to the effi cient market hypothesis (EMH). The effi cient market hypothesis

has a long history in finance and the existence long memory process means that the

information from the distant past can still affect current value significantly, which

would cast doubt on EMH.

Also in the Black-Scholes option pricing model, one important assumption is

that stock returns will follow the exponential Brownian motion. Pricing financial

derivatives using martingales does not deal with the long memory property easily.

CAPM, or arbitrage pricing theory also has problems with long memory process.

1.5 Long memory process and other stochastic processes

There are many theoretical literatures discussing about whether non-long memory

processes can present the properties of long memory process, which they call spurious

long memory process. In 1974, Klemeš [24] show that the infinite memory of a

process could be caused by the nonstationarity. Granger [1] in 1980 proved that

some specific aggregation of AR models could have long memory properties. In 1997,

Taqqu et al. [3] found that the aggregation of stationary process with superposition

of many ON/OFF was converging to fractional Brownian motion with long memory

property.

Diebold and Inoue [2] in 2001 show that, various structural break models could

be confused with long memory process. However, most of these “analytical connec-

tions”have very strong assumptions and we can construct the spurious long memory

processes with these assumptions as many as we want.

In reality, when we have finite samples instead of infinite length, the analytical
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difference between the spurious and real ones might not be too important. For

example, Diebold and Inoue [2] did the statistical tests on simulation from short-

memory process and concluded that it was hard to clear the confusion between long

memory process and spurious one given small number of samples. Specifically in

their empirical part, he show the GPH result with a static markov-switching model,

which is a short memory process. He said that when sample size was not large (5,000

here), the test would reject the process is a short memory process. But when sample

size is large, this kind of fake process eventually wont be rejected as a short memory

process. If the null hypothesis is d = 0 for I(d) process, finding the relation between

the rate of rejection and sample size is important for identifying long memory process

with finite sample size. We will state this issue in this dissertation.

1.6 Statistical tests

We briefly describe the statistical tests we will use to compare two distributions.

Since the connection between total variation and information distance is bridged,

these statistical tests are also used to examine the effectiveness of information dis-

tance numerically.

1.6.1 Kolmogorov-Smirnov test

Kolmogorov-Smirnov statistic is a supremum class statistic to determine if two em-

pirical distribution differ significantly and it. The statistic is based on the maximum

absolute distance between two empirical distribution function, whose definition is

as follows:

Definition 2. Kolmogorov-Smirnov statistic of two samples:

Dn = sup
x
|F1 (x)− F2 (x)| (12)

8



where F1 (x) and F2 (x) are the empirical distribution functions of the first and

second sample respectively.

1.6.2 Anderson-Darling Test

Anderson-Darling is a statistical test to tell whether a group of data are coming

from a given probability distribution

n

∫ ∞
−∞

(Fn (x)− F (x))2

[F (x) (1− F (x))]
dF (x) (13)

where Fn (x) is the empirical cumulative distribution and F (x) is the hypothe-

sized distribution.

However, we want to compare the empirical distributions from two samples

rather than a given probability distribution, we apply the methodology proposed

by Scholz and Stephens [29]. To simplify the problem, we get the two sample

Anderson-Darling statistic from the k-sample Anderson-Darling test statistics [29]:

A22N =
1

N

2∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)2

j (N − j) (14)

where Mij is the ith sample which are not greater than Zj and N is total obser-

vations number of two samples. As for the Zj , Zj is the ordered sample in the pool

of both sample observations, Z1 < Z2 < · · · < ZN .

As for the variance formula of A2kN , Scholz and Stephens [29] give the following

formula

9



σ2N =
aN3 + bN2 + cN + d

(N − 1) (N − 2) (N − 3)
(15)

a = (4g − 6) (k − 1) + (10− 6g)H

b = (2g − 4) k2 + 8hk + (2g − 14h− 4)H − 8h+ 4g − 6

c = (6h+ 2g − 2) k2 + (4h− 4g + 6) k + (2h− 6)H + 4h

d = (2h+ 6) k2 − 4hk

H =
k∑
i=1

1

ni

h =
N−1∑
i=1

1

i

g =

N−2∑
i=1

N−1∑
j=i+1

1

(N − i) j

The Anderson-Darling test statistic is standardized as follows:

TkN =
A2kN − (k − 1)

σN
(16)

The Table 1 is the critical points for different significant levels [29]:

α .25 .10 .05 .025 .01

Critical Point .326 1.225 1.960 2.719 3.752

Table 1: Critical points for different significant levels of two samples Anderson-

Darling test

10



2 Total variation, Hellinger and information distances

In this section, we briefly review the well known relationship between the total

variations and Hellinger distances [34] and the relationship between Hellinger and

information distances [33].

2.1 Total variation and Hellinger distances

In statistical hypothesis test, there are a hypotheses P0 and alternative P1, where

P0 and P1 are probability measures. There are two errors of the statistical test: one

is to reject P0 while P0 is true and the other one is to accept P1 while P1 is false.

The sum of these two error probabilities of test φ can be written as [34]:

SP0,P1 (φ) =

∫
χ
φ (x) dP0 (x) +

∫
χ

(1− φ (x)) dP1 (x) (17)

So the best statistical hypothesis test is the test φ∗ , which minimizes the sum

of two errors probabilities (eq. 17), and the minimized errors probability can be

represented by the total variation distance ‖P0 − P1‖1 (see Lehamann and Romano

[34] in details):

SP0,P1 (φ∗) = 1− 1

2
‖P0 − P1‖1 (18)

Definition 3. The total variation distance between P0 and P1 is defined as (see

Lehmann and Romano [34]):

‖P0 − P1‖1 =

∫
|p1 − p0| dµ (19)

where pi is the density of Pi with respect to any measure µ dominating both P0

and P1.

The connection between statistical error probabilities and total variation dis-

tance (eq. 18) shows that the smaller the total variation distance is, the worse the

optimal statistical test is. For example, if total variation distance between P0 and

11



P1 is small enough, which means that the density functions of P0 and P1 are close

enough, then we have SP0,P1 (φ∗) to be close to 1, which means the sum of the error

probabilities of the optimal statistical test for P0 and P1 is close to 1.

Total variation distance is very hard to calculate based on its definition, but

there is the well known relationship between total variation and Hellinger distances,

which has the following definition:

Definition 4. The square of the Hellinger distance H (P0, P1) between two proba-

bility distributions P0 and P1 can be defined as [34]:

H2 (P0, P1) =
1

2

∫
χ

[√
p1 (x)−

√
p0 (x)

]2
dµ (x) (20)

where pi is the density of Pi with respect to any measure µ dominating both P0

and P1.

Theorem 1. There exists the following relationship between total variation and

Hellinger distances [34]:

H2 (P0, P1) ≤
1

2
‖P0 − P1‖1 ≤ H (P0, P1)

[
2−H2 (P0, P1)

]1/2
(21)

2.2 Hellinger and information distances

Mullhaupt [33] shows that Hellinger distance is bounded by the information distance.

Before going into the relationship between Hellinger distance and information dis-

tance, we review the Fisher information matrix. The information distance is defined

on a family of distributions and we assume that the distributions of the family have

densities p (x, θ) parameterized by θ.

Definition 5. The Fisher information matrix is defined as [33]:

F (θ) = E
(

(∂θ log p (x, θ)) (∂θ log p (x, θ))T |θ
)

(22)

=

∫
p (x, θ) (∂θ log p (x, θ)) (∂θ log p (x, θ))T dµ (x) (23)

12



Definition 6. The information distance I (θ0, θ1) is the Riemannian distance de-

fined by choosing the Fisher information matrix as the metric tensor and it is defined

by

I (θ0, θ1) = min

∫ 1

0

(
θ̇ (t)T F (θ (t)) θ̇ (t)

)1/2
dt (24)

s.t.θ (0) = θ0, θ (1) = θ1 and θ (t) ∈ C [0, 1]

Mullhaupt [33] shows that the information distance multiplied by a constant is

a upper bound for Hellinger distance. The proof is not given here, it can be found

in Mullhaupt [33].

Theorem 2. The Hellinger distance between two probability distributions P0 and

P1 is bounded by:

H (P0, P1) ≤
1√
8
I (P0, P1) (25)

Using transfer function instead of the density function, Mullhaupt [39] shows

that the Fisher information matrix element of a minimum phase transfer function

f (z) is
1

2πi

∫
|z|=1

(∂u log f (z)) (∂v log f (z))∗
dz

z
(26)

The logarithm of the transfer function can be parameterized in the form

log f (z) = a0 + a1z + a2z
2 + . . .

and the Fisher information matrix elements (j, k) are

1

2πi

∫
|z|=1

(
∂aj log f (z)

)
(∂ak log f (z))∗

dz

z
= δjk (27)

which shows that the information distance between white noise and any stochastic

processes with minimum phase transfer function is the norm of the Hardy space of

the disc H2 (D):

I (f, 1) = ‖log f‖2H2 =

∞∑
k=0

|ak|2 (28)
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The information distance between two transfer functions f (z), g (z) with mini-

mum phase can be written as

I (f (z) , g (z)) = I

(
f (z)

g (z)
, 1

)
=

∥∥∥∥log

(
f (z)

g (z)

)∥∥∥∥2
H2

= ‖log f (z)− log g (z)‖2H2 (29)

2.3 Statistical inference and information distance

After showing the relationship between total variation distance, Hellinger distance

and information distance, we can also get the bounded relationship between total

variation distance and information distance.

We know that 2H (P0, P1)
[
2−H2 (P0, P1)

]1/2 is a nondecreasing function of
H (P0, P1) when 0 < H (P0, P1) < 1. Then we have

‖P0 − P1‖1 ≤ 2H (P0, P1)
[
2−H2 (P0, P1)

]1/2
≤ 1√

2
I (P0, P1)

[
2− 1

8
I2 (P0, P1)

]1/2
(30)

≤ I (P0, P1) (31)

We can see that when the total variation is bounded by the information distance.

2.4 Connection with option valuation

The total variation distance controls the error of statistical tests based on bounded

measurable functions; however option values are based on payouts that are not

bounded, even though the value (discounted expected payout) may still be bounded.

We do not know a priori that the processes we study will have bounded option

values, but it is very unlikely that processes for which the value of a simple call

option is infinite will have sensible values. We give here proofs of the intuitively

clear results that if any call option has a finite value, then all call options have finite

values, and call options decay to zero as the strike increases to infinity. This allows

us to approximate the value any finite basket of options with as closely as we like

with a finite basket of options with a bounded payout. This allows us to apply the

theory of bounded statistical tests to option values.
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Lemma 1. If there exists a finite strike price K such that the vanilla European call

option with strike price K has finite value, then the value of vanilla European call

options of all strikes have finite values, and the value C of the call option goes to 0

as the strike price goes to infinity.

Proof: Let X denote the underlying asset price and the value of the vanilla

European call option with strike K is C (S0,K, T ) = e−rTE (ST |ST ≥ K). We have

C (S0,K, T ) ≤ C (S0, 0, T ) ≤ K + C (S0,K, T )

which proves the first claim, since

e−rTE (ST |ST ≥ K) = e−rT [E (ST )− E (ST |ST < K)]

= e−rT [E (ST )− E (ST · 1 (ST < K))] (32)

then the monotone convergence theorem shows

lim
K→∞

E (ST · 1 (ST < K)) = E (ST ) (33)

so we have

lim
K→∞

C (S0,K, T ) = e−rT [E (ST )− E (ST )] = 0 (34)

Lemma 2. The value of any basket of finitely many European vanilla options can

be approximated as closely as desired by the value of an options basket with bounded

payout.

Proof: The slope of the payout of a basket of finitely many European vanilla

options is a constant for prices above the highest strike in the basket. We buy or sell

a call in the appropriate amount so that the call payout has the opposite slope as the

basket slope for high prices. The payout resulting from adding the call to the basket

is bounded since the slope for high prices is zero. By choosing the strike price of the

call as high as we like, by the preceding lemma, the value of the call is as close to
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zero as we like. Therefore the basket with the call has bounded payout, and value as

close as we like to the original basket.

Accordingly we restrict our attention to option positions with bounded payouts.

The difference between values of one option position with bounded payout for two

processes P0 and P1, is special case of a statistical test between P0 and P1, and it

may or may not be a best possible test. The sum of Type 1 and Type 2 errors for

the best test satisfies:

α+ β ≥ 1− 1

2
‖P0 − P1‖1 (35)

Since the total variation distance is bounded by the Hellinger distance and

Hellinger distance is bounded by the information distance, when the information

distance between P0 and P1 is small enough, α + β will be close to 1 and it is

extremely diffi cult to distinguish these option prices.

When the underlying return process is a long memory process, it is impossible to

value the option price using non-arbitrage condition. However if we can approximate

the long memory process by a sequence of short memory processes converging in

information distance, then the option valuations based on short memory processes

are well defined, and cannot be distinguished based on any given finite amount of

data from option prices that make sense for the long memory process. We will go

into this discussion in the section "Option pricing with long memory".
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3 Fractional autoregressive integrated moving average

model

We use FARIMA to represent the fractional autoregressive integrated moving aver-

age model, while some other acronyms are also used in literature, such as ARFIMA

and ARIMA. For example, Hosking [25] used ARIMA to represent the fractional

ARIMA process by allowing the order of differencing d to be fractional. To make it

more clear and less ambiguous, FARIMA is used to represent the fractional autore-

gressive integrated moving average process in this dissertation.

3.1 Fractional difference operator

The fractional difference operator is one of the fundamental parts in the FARIMA

model and it is also the part that adds the long memory property to the short

classic memory ARMA process. The definition of the fractional difference operator

is defined as follows (see Hosking [25] in 1981):

Definition 7. Fractional difference operator ∇d can be defined by a binomial series

of the backward-shift operators:

∇d = (1− L)d =

∞∑
k=0

 d

k

 (−L)k =

∞∑
k=0

∏k−1
a=0 (d− a)

k!
(−L)k (36)

where L is the backward-shift operator, such that Lxt = xt−1, and we also have the

following expression:∇−d =
∑∞

k=0

 d

k

Lk

3.2 FARIMA process

FARIMA process can be defined as follows:

Definition 8. FARIMA (p, d, q) process is defined to have the following form [25,

28]:

φ (L)∇dxt = θ (L) εt (37)
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where ∇d is the fractional difference operator; φ (L) and θ (L) are polynomials of

the backward-shift operator L:

φ (L) = 1− φ1L− φ2L2 − · · · − φpLp

θ (L) = 1− θ1L− θ2L2 − · · · − θqLq

p and q define the order of AR and MA parts respectively and they are integers. d

represents the order of fractional difference and it can take fractional value.

Hosking [25] showed that without AR or MA effects in FARIMA process,

−12 < d < 1
2 would ensure FARIMA (0, d, 0) to be stationary and invertible. To

be consistent with other parts of this dissertation, we will use z to represent the

backward-shift operator L here.

3.3 Information distance between white noise and FARIMA(0,d,0)

The simplest stochastic process is white noise, which is also a short memory process.

Before getting into more complicated short memory processes, we compare the white

noise process and the FARIMA (0, d, 0) process.

The transfer function of white noise process is simply:

g (z) = 1

and we know that the transfer function of FARIMA (0, d, 0) is:

f (z) = ∇−d = (1− z)−d =

(
1

1− z

)d
(38)

The logarithm of the transfer function of FARIMA (0, d, 0) is:

log f (z) = d
∞∑
k=1

zk

k
(39)
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So the information distance, described in previous section, between the two

processes can be written as

‖log f (z)− log g (z)‖2H2 =
∞∑
k=1

d2

k2
=
π2d2

6
(40)

and the shortest information distance between these two processes is 0, when d = 0.

According to the binomial expansion of the fractional difference operator (see

equation 36), the transfer function of FARIMA (0, d, 0) can also be expressed as:

f (z) = (1− z)−d =

∞∑
k=0

 d

k

 zk = 1 +

∞∑
k=1

∏k−1
a=0 (d+ a)

k!
zk (41)

Equivalently, the impulse response function h (n) of FARIMA (0, d, 0) can be writ-

ten as:

h (n) =

∏n−1
a=0 (d+ a)

n!
(42)
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3.4 Information distance between ARMA(p,q) and FARIMA(0,d,0)

In this part, we consider the more general class of stochastic processes, autoregressive

moving average process, ARMA. Compared to the FARIMA process with d > 0, the

stationary ARMA process is a short memory process, whose autocovariance function

decays exponentially. Here through two more generalized theorems, we show that 1)

for fixed p, q, the ARMA (p, q) processes are not information dense in the processes

with finite information length; 2) with unbounded p, q, the ARMA (p, q) processes

are not information dense with the processes with finite information length.

3.4.1 FARIMA(0,d,0) and ARMA(p,q) with bounded p and q

To show that for bounded p, q, the ARMA(p, q) processes are not information dense

with the processes with finite information length, we provide two Lemmas first. Let

S be a subset of the complex plane, and Rpq (S) denote the set of rational functions

which have p poles and q zeros, and the poles and zeros are in S. For example,

with D as the unit disc {z s.t. |z| < 1}, then Rpq (C\D) includes the stable and

minimum phase ARMA (p, q) processes, and some limiting cases.

Lemma 1. Rpq (C\D) is a subset of exp
(
H2 (D)

)
, that is, the information length

of any f ∈ Rpq (C\D) is finite.

Proof: Write the logarithm of f ∈ Rpq (C\D) as

log f (z) = log f (0) +

p∑
j=1

log

(
1

1− λjz

)
−

q∑
k=1

log

(
1

1− µkz

)
then the triangle inequality provides

‖log f‖H2(D) ≤ |log f (0)|+
p∑
j=1

∥∥∥∥log

(
1

1− λjz

)∥∥∥∥
H2(D)

+

q∑
k=1

∥∥∥∥log

(
1

1− µkz

)∥∥∥∥
H2(D)

.

Since for |a| ≤ 1 we have∥∥∥∥log

(
1

1− az

)∥∥∥∥2
H2(D)

=
∞∑
j=1

|a|2

k2
≤
∞∑
j=1

1

k2
=
π2

6
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then

‖log f‖H2(D) ≤ |log f (0)|+ π (p+ q)√
6

.

Corollary 1. An immediate corollary to the lemma is that Rpq
(
C\D

)
⊂ Rpq (C\D) ⊂

exp
(
H2 (D)

)
.

Lemma 2. ∣∣∣∣log
f (0)

g (0)

∣∣∣∣2 ≤ I (f, g)2 .

Proof: Since log f(z)
g(z) ∈ H

2 (D), we have

(
log

f (0)

g (0)

)2
=

∫ π

−π

(
log

f
(
reiθ

)
g (reiθ)

)2
dθ

2π

and∣∣∣∣log
f (0)

g (0)

∣∣∣∣2 ≤
∣∣∣∣∣∣
∫ π

−π

(
log

f
(
reiθ

)
g (reiθ)

)2
dθ

2π

∣∣∣∣∣∣ ≤
∫ π

−π

∣∣∣∣∣log
f
(
reiθ

)
g (reiθ)

∣∣∣∣∣
2
dθ

2π
= I (f, g)2 .

After having the two Lemmas, we give our theorem for bounded p, q.

Theorem 3. Let f be given with 0 = inf
{
I (f, g) s.t. g ∈ Rpq

(
C\D

)}
. Then f ∈

Rpq (C\D).

Proof: Let g ∈ Rpq
(
C\D

)
satisfy I (f, g) ≤ 1, then log f(z)

g(z) ∈ H
2 (D), and∣∣∣∣log

f (0)

g (0)

∣∣∣∣ ≤ I (f, g) ≤ 1.

Since g (0) is finite, so is f (0). By hypothesis there exists gm, a sequence in

Rpq
(
C\D

)
such that I (gm, f)→ 0 as m→∞. Since

I (gm, gn) ≤ I (gm, f) + I (f, gn)

must also tend to zero for all n ≥ m as m→∞, then log gm is a Cauchy sequence

in the Hilbert space H2 (D), and must converge to a limit log g∞ ∈ H2 (D). Since

I (g∞, f) = 0, log g∞ = log f , and limm→∞ gm (0) = f (0). Let θm ∈ Dp+q be
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the vector of poles and zeros of gm, then the sequence θm must have a point of

accumulation θ∞ in the closed polydisc D
p+q
and there is a subsequence mk such

that θmk
→ θ∞ as k →∞. Therefore

f (z) = f (0)

∏q
j=1

(
1− µ∞j z

)
∏p
k=1 (1− λ∞k z)

∈ Rpq (C\D) .

This theorem shows that for fixed p, q, the ARMA (p, q) processes are not in-

formation dense in the processes with finite information length exp
(
H2 (D)

)
, since

there are many functions which are analytic but not rational. In particular the frac-

tionally differenced process has transfer function (1− z)d which is rational if and

only if d is an integer. However since∥∥∥∥∥log

(
1

1− z

)d∥∥∥∥∥
H2(D)

=
π |d|√

6

all the fractionally differenced and fractionally integrated noises have finite infor-

mation length. By the theorem or any particular noninteger d, and fixed p, q, we

have

inf

{
I

((
1

1− z

)d
, g

)
s.t. g ∈ Rpq (C\D)

}
> 0.

On the other hand, for the random walk, we have

lim
r↗1

∥∥∥∥log

(
1

1− z

)
− log

(
1

1− rz

)∥∥∥∥
H2(D)

= 0

since the theorem of mean convergence to boundary function [31]. This is consistent

with the theorem since 1
1−z ∈ Rpq (C\D).

In the case of the fractionally differenced or integrated noises, we will have

to use sequences with unbounded p, q if we want to approximate these noises to

arbitrary information distance precision. In fact, the processes with unbounded p, q

are information dense in the finite information length processes, as we will show in

the next theorem.
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3.4.2 FARIMA(0,d,0) and ARMA(p,q) with unbounded p and q

Here we show that theARMA(p, q) processes are information dense with the processes

with finite information length when p and q are unbounded by the following theorem:

Theorem 4. Rational functions are information dense with the transfer functions

that have finite information distance from the unit variance white noise.

Proof: Let Rpq (z), f (z) represent the rational functions and the transfer func-

tions that have finite information distance from the unit variance white noise re-

spectively. So we have

Rpq (z) =
P (z)

Q (z)
, ‖log f (z)‖H2 <∞ (43)

where 1) P and Q are polynomials in z; 2) poles and zeros of Rpq (z) are in C\D

with D as the unit disc {z, s.t. |z| < 1}.

So the proposition is equivalent to prove that:

‖logRpq (z)− log f (z)‖H2 < ε, ∀ε > 0 (44)

To prove this proposition, we need to use the dilated process of f (z), which is

denoted as f (rz) and 0 < r < 1. Then we have

‖logRpq (z)− log f (z)‖H2

= ‖logRpq (z)− log f (rz) + log f (rz)− log f (z)‖H2 (45)

≤ ‖logRpq (z)− log f (rz)‖H2 + ‖log f (rz)− log f (z)‖H2 (46)

In order to prove that ‖logRpq (z)− log f (z)‖H2 can be suffi ciently small, we

will show that both ‖logRpq (z)− log f (rz)‖H2 and ‖log f (rz)− log f (z)‖H2 can be

suffi ciently small.

1) From the theorem of mean convergence to boundary function [31], we know

that if an analytic function f (z) ∈ Hp,∫ π

−π

∣∣∣f (reiθ)− f (eiθ)∣∣∣p dθ → 0 (47)
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as r ↑ 1, where f
(
eiθ
)
is the boundary value of f (z) which exists a.e.

Since ‖log f (z)‖H2 <∞, then we have

lim
r↑1
‖log f (z)− log f (rz)‖2H2 < ε1,∀ε1 > 0 (48)

2) Recall Runge’s theorem [32]: let K be a compact subset of C and g be analytic

on a neighborhood of K, and let P ⊂ C\K. Then for any ε > 0, there exists a

rational function r (z) with poles in P such that

max
z∈K
|g (z)− r (z)| < ε (49)

We know that f (rz) is analytic on |z| < r−1. Then Runge’s theorem tells us

that there exists a exists a rational function Rpq (z), that has poles outside |z| < r−1,

such that

max
|z|<r−1

|f (rz)−Rpq (z)| < ε2 (50)

which is equivalent to

‖f (rz)−Rpq (z)‖H∞ < ε2 (51)

Since 0 < |f (rz)| < ∞, 0 < |Rpq (z)| < ∞, we have 0 < |log f (rz)| < ∞,

0 < |logRpq (z)| <∞. Then we can get

‖log f (rz)− logRpq (z)‖H∞ ≤M ‖f (rz)−Rpq (z)‖H∞ < Mε2 (52)

where M is a positive constant.

Based on the definition of norms in Hardy space, we know that ‖·‖2H2 ≤ ‖·‖2H∞,

then we have

‖log f (rz)− logRpq (z)‖H2 ≤ ‖log f (rz)− logRpq (z)‖H∞ ≤Mε2 (53)

After having (Eq. 48) and (Eq. 53), there exists ε = ε1 +Mε2, such that

‖log f (z)− logRpq (z)‖2H2 ≤ ε1 +Mε2 = ε (54)

24



Based on this theorem, we derive the following corollaries which connect sta-

tionary ARMA processes with other processes from the perspective of information

distance.

Corollary 2. The information distance between stationary ARMA(p,q) and unit

root processes can be suffi ciently small.

Proof: Recall the definition of Rpq (z) in the proposition, Rpq (z) = P (z)
Q(z) and

both poles and zeros of Rpq (z) are outside |z| < 1. We know that the transfer

functions of stationary ARMA(p,q) processes satisfy it. The transfer function of

unit root process is f (z) = 1
1−z and we know that transfer functions of unit root

processes have finite information distance from the unit variance white noise, since

‖log f (z)‖H2 =

∥∥∥∥∥
∞∑
k=1

zk

k

∥∥∥∥∥
H2

=
π√
6
<∞ (55)

So we know that there exists a stationary ARMA(p,q) process with transfer func-

tion Rpq (z) such that∥∥∥∥logRpq (z)− log

(
1

1− z

)∥∥∥∥ < ε,∀ε > 0 (56)

Corollary 3. The information distance between stationary ARMA(p,q) and FARIMA(0,d,0)

processes can be suffi ciently small.

Proof: Similarly, the transfer functions of FARIMA(0,d,0) processes, f (z) =(
1
1−z

)d
, have finite information distance from the unit variance white noise, since

‖log f (z)‖H2 = d

∥∥∥∥∥
∞∑
k=1

zk

k

∥∥∥∥∥
H2

=
πd√

6
<∞ (57)

So we know that there exists a stationary ARMA(p,q) process with transfer func-

tion Rpq (z) such that∥∥∥∥∥logRpq (z)− log

((
1

1− z

)d)∥∥∥∥∥ < ε,∀ε > 0 (58)
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Corollary 4. The information distance between stationary ARMA(p̂,q̂) and FARIMA(p,d,q)

processes can be suffi ciently small.

Proof: The transfer function of FARIMA(p,d,q) can be written as:

f (z) =
1 +

∑q
k=1 θkz

1−
∑p

k=1 φkz

(
1

1− z

)d
(59)

and we can easily get ‖log f (z)‖H2 <∞, since

‖log f (z)‖H2 ≤
∥∥∥∥log

(
1 +

∑q
k=1 θkz

1−
∑p

k=1 φk

)∥∥∥∥
H2

+

∥∥∥∥d log

(
1

1− z

)∥∥∥∥
H2

<∞

So there exists a stationary ARMA(p̂,q̂) process have suffi ciently small informa-

tion distance from FARIMA(p,d,q) processes.
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4 Simulation

In previous section, we have shown that the information distance between short

memory processes and long memory processes or the unit root process can be suf-

ficiently small. Based on the connection between information distance, Hellinger

distance and total variation, we know the total variation between the two processes

can be suffi ciently small. So suffi ciently small information distance means that these

processes can not be distinguished from each other with finite sample size. To show

these results numerically, we implement different statistical tests to see whether

these processes can be distinguished from each other.

4.1 White noise and FARIMA(0,d,0)

Like the idea from Diebold and Inoue [2], we are doing a Monte Carlo simulation

(the number of trials is 1, 000 here) with different sample size N and fractional

differencing parameter d.

So given sample size N and fractional differencing parameter d, two samples

with sample size N are generated from white noise and FARIMA(0,d,0) processes.

The two samples are represented by S1 and S2 here and the null hypothesis for the

statistical test is:

H0 : S1 and S2 are sampled from the same distribution

We show the fraction of 1, 000 trials where inference based on different statistics

leads to rejection of the null hypothesis H0 at 95% confidence interval. The results

of Kolmogorov-Smirnov and Anderson-Darling tests are shown in Table 2 and Table

3 respectively. A few observations from these numerical tests are consistent with

the information distance between white noise and FARIMA(0,d,0) processes:

1. When the same size N is small, such as 50 or 100, it is hard to reject the null

hypothesis even if d is significantly different from 0.
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2. A smaller value of information distance, π2d2

6 here, needs more samples to

reject the null hypothesis. It’s also consistent with the underlying relation-

ship between total variation distance and information distance: that the total

variation distance is bounded by the information distance.

White noise process is one of the simplest stochastic process with short memory

property. However, when sample size is small, statistical test cannot distinguish it

from a long memory process, FARIMA(0,d,0) with d > 0 here. We will explore the

long memory process with more complicated structure and higher dimensions in the

following part of the dissertation.
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Table 2: Kolmogorov-Smirnov statistic of white noise process and FARIMA(0,d,0)

process

N

d 50 100 500 1, 000 1, 500 2, 000 2, 500

−0.40 0.750 0.993 1.000 1.000 1.000 1.000 1.000

−0.35 0.367 0.835 1.000 1.000 1.000 1.000 1.000

−0.30 0.188 0.477 1.000 1.000 1.000 1.000 1.000

−0.25 0.081 0.228 0.995 1.000 1.000 1.000 1.000

−0.20 0.044 0.080 0.793 0.998 1.000 1.000 1.000

−0.15 0.031 0.047 0.316 0.759 0.962 1.000 1.000

−0.10 0.030 0.032 0.098 0.211 0.425 0.563 0.718

−0.05 0.026 0.042 0.031 0.057 0.088 0.091 0.107

0.00 0.044 0.045 0.052 0.050 0.049 0.045 0.038

0.05 0.076 0.062 0.085 0.113 0.131 0.163 0.164

0.10 0.113 0.091 0.184 0.262 0.333 0.402 0.479

0.15 0.153 0.168 0.312 0.416 0.553 0.615 0.739

0.20 0.188 0.229 0.419 0.564 0.662 0.747 0.810

0.25 0.227 0.327 0.544 0.616 0.722 0.780 0.826

0.30 0.302 0.381 0.618 0.698 0.726 0.781 0.789

0.35 0.394 0.463 0.661 0.741 0.757 0.797 0.783

0.40 0.449 0.535 0.734 0.819 0.833 0.906 0.910

d represents the fractional differencing parameter and N represents sample size.

The null hypothesis is that two samples with sample size N generated from white

noise and FARIMA(0,d,0) processes come from the same distribution. The numbers

in the table represent the fraction of 1, 000 trials where inference based on the

Kolmogorov-Smirnov statistic leads to reject the null hypothesis.
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Table 3: Anderson-Darling statistic of white noise process and FARIMA(0,d,0)

process

N

d 50 100 500 1, 000 1, 500 2, 000 2, 500

−0.40 0.981 1.000 1.000 1.000 1.000 1.000 1.000

−0.35 0.758 0.993 1.000 1.000 1.000 1.000 1.000

−0.30 0.433 0.894 1.000 1.000 1.000 1.000 1.000

−0.25 0.159 0.587 1.000 1.000 1.000 1.000 1.000

−0.20 0.080 0.224 0.994 1.000 1.000 1.000 1.000

−0.15 0.039 0.079 0.750 0.993 1.000 1.000 1.000

−0.10 0.025 0.035 0.202 0.578 0.843 0.945 0.989

−0.05 0.030 0.044 0.048 0.091 0.109 0.193 0.251

0.00 0.046 0.048 0.047 0.061 0.034 0.048 0.056

0.05 0.078 0.075 0.099 0.139 0.187 0.216 0.219

0.10 0.112 0.138 0.253 0.383 0.481 0.618 0.720

0.15 0.158 0.214 0.424 0.595 0.744 0.865 0.915

0.20 0.231 0.289 0.530 0.724 0.846 0.900 0.953

0.25 0.284 0.398 0.621 0.735 0.850 0.884 0.934

0.30 0.366 0.452 0.663 0.763 0.787 0.853 0.855

0.35 0.441 0.513 0.713 0.782 0.782 0.834 0.826

0.40 0.474 0.611 0.759 0.852 0.868 0.916 0.939

d represents the fractional differencing parameter and N represents sample size.

The null hypothesis is that two samples with sample size N generated from white

noise and FARIMA(0,d,0) processes come from the same distribution. The numbers

in the table represent the fraction of 1, 000 trials where inference based on the

Anderson-Darling statistic leads to reject the null hypothesis.
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4.2 Unit root and short memory processes

In proposition 4, we show that the information distance between a stationary ARMA(p,q)

process and unit root process can be suffi ciently small. Here we construct differ-

ent stationary ARMA processes, which are short memory processes, and apply the

statistical test to identify whether they are unit root processes. Here, we apply

two statistical tests, Augmented Dickey-Fuller (ADF) and Kwiatkowski—Phillips—

Schmidt—Shin (KPSS) tests, to examine whether the approximated short memory

processes and unit root processes can be distinguished.

4.2.1 Augmented Dickey-Fuller test

Augmented Dickey-Fuller (ADF) test is a statistical test for unit root in the sample

of a time series. Let yt represents the samples from a stochastic time series and the

ADF test is based on the OLS-estimated coeffi cients of the following equation [38]:

∆yt = f (t) + (a− 1) yt−1 +

p∑
i=1

ai∆yt−i + εt (60)

where ∆yt = yt−yt−1 and εt is a mean zero innovation process. The null hypothesis

of a unit root is

H0 : a = 1 (61)

So if the null hypothesis cannot be rejected, the ADF test concludes that yt is a

unit root process.

Two short memory processes, which are approximated the unit root processes,

are tested by the ADF test. One is to approximate the impulse response, or the char-

acteristic equation, of the unit root processes by high dimensional ARMA processes;

the other one is the dilated process of the unit root process, which is a short memory

process. Table 4 and Table 5 show the ADF test results of approximated ARMA

processes and dilation processes respectively.
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Table 4: ADF tests of samples from stationary ARMA process

n

N 1 2 10 20 50 100 200

500 1.000 0.467 0.068 0.075 0.049 0.061 0.052

1, 000 1.000 0.993 0.062 0.055 0.052 0.054 0.048

5, 000 1.000 1.000 0.297 0.060 0.085 0.057 0.065

10, 000 1.000 1.000 0.905 0.112 0.052 0.048 0.064

n represents the dimensions of approximated ARMA processes and N represents

sample size. The null hypothesis is that the samples from approximated ARMA

processes are from the unit root processes. The numbers in the table represent the

fraction of 1, 000 trials where inference based on the ADF statistic leads to reject

the null hypothesis.

Table 5: ADF tests of samples from dilation processes

d

N 1− 10−1 1− 10−2 1− 10−3 1− 10−4 1− 10−5

500 1.000 0.311 0.064 0.049 0.047

1, 000 1.000 0.780 0.083 0.052 0.064

5, 000 1.000 1.000 0.292 0.082 0.053

10, 000 1.000 1.000 0.742 0.071 0.047

d represents the dilation parameter in the dilation process of the unit root

processes and N represents sample size. The null hypothesis is that the samples

from the dilation processes are from the unit root processes. The numbers in the ta-

ble represent the fraction of 1, 000 trials where inference based on the ADF statistic

leads to reject the null hypothesis.
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4.2.2 KPSS tests

The Kwiatkowski—Phillips—Schmidt—Shin (KPSS) tests is an alternative statistical

test for the unit root process. The KPSS tests [52] are used for testing the null

hypothesis that a time series is stationary around a deterministic trend. Using yt to

represent the observable time series and the null hypothesis of KPSS tests can be

derived from the following equations [52]:

yt = ξt+ rt + εt (62)

rt = rt−1 + ut (63)

where εt are iid
(
0, σ2ε

)
and ut are iid

(
0, σ2u

)
. The null hypothesis of KPSS tests is:

H0 : σ2u = 0 (64)

So yt is a stationary process if the null hypothesis can not be rejected.

Similar to the ADF tests, approximated ARMA and dilation processes are tested

by the KPSS test. Table 6 and Table 7 show the ADF test results of approximated

ARMA processes and dilation processes respectively.
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Table 6: KPSS tests of samples from stationary ARMA process

n

N 1 2 10 20 50 100 200

500 0.968 1.000 1.000 1.000 1.000 1.000 1.000

1, 000 0.972 1.000 1.000 1.000 1.000 1.000 1.000

5, 000 0.963 1.000 1.000 1.000 1.000 1.000 1.000

10, 000 0.964 1.000 1.000 1.000 1.000 1.000 1.000

n represents the dimensions of approximated ARMA processes and N represents

sample size. The null hypothesis is that the samples from approximated ARMA

processes are from stationary processes. The numbers in the table represent the

fraction of 1, 000 trials where inference based on the KPSS statistic leads to reject

the null hypothesis.

Table 7: KPSS tests of samples from dilation processes

d

N 1− 10−1 1− 10−2 1− 10−3 1− 10−4 1− 10−5

500 1.000 1.000 1.000 1.000 1.000

1, 000 1.000 1.000 1.000 1.000 1.000

5, 000 1.000 1.000 1.000 1.000 1.000

10, 000 1.000 1.000 1.000 1.000 1.000

d represents the dilation parameter in the dilation process of the unit root

processes and N represents sample size. The null hypothesis is that the samples

from the dilation processes are from stationary processes. The numbers in the table

represent the fraction of 1, 000 trials where inference based on the KPSS statistic

leads to reject the null hypothesis.
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4.3 FARIMA(0,d,0) and short memory processes

In the previous sections, we show that there exists short memory processes, station-

ary ARMA processes, to be close enough to the FARIMA(0,d,0) processes (d > 0) in

information distance. Here we approximate the FARIMA(0,d,0) processes (d > 0)

with stationary ARMA processes and examine whether we can find the long memory

properties in these approximated ARMA processes.

We examine our approximated short memory processes and the long memory

processes from two perspectives. One is from the serial correlation of the time series

samples; the other one is from the conditional distributions of these processes. The

first kind of test is more strict than the second one since it’s based on the charac-

teristic equation of the stochastic processes. The reason we are also interested in

the second test perspective is that conditional distributions are the most important

factor in European vanilla option valuation.

To examine FARIMA(0,d,0) and short memory processes from the perspective of

the serial dependency, we apply the widely used statistical estimations for long mem-

ory processes, correlogram and Geweke-Porter-Hudak (GPH) estimations. Then

we construct the statistical hypothesis tests on these estimations of long memory

processes.

4.3.1 Correlogram estimation

Recall that the definition of long memory processes is based on the decay speed of the

autocorrelation function of the underlying processes. Let ρk be the autocorrelation

function of a time series rt and the long memory processes have the absolute value

of autocorrelation not summable: limn→∞
∑n

i=1 |ρk| =∞.

Therefore another way to examine the long memory is through the limiting

decay rate of the autocorrelation function [53, 54]. Many previous works compare

the estimated autocorrelation at lag k to the 95% confidence interval, which is

±2/
√
k in this case, and argue whether there exists long memory in the observable
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time series.

Beran [15] shows that for a stationary long memory process, there exists a real

number α ∈ (0, 1) and a constant cρ > 0 such that

lim
k→∞

ρk
cρk−α

= 1 (65)

So one alternative way to test for long memory processes is to see how the log |ρk|

for the processes decays asymptotically. A linear relation can be obtained by taking

logarithm of the asymptotic relationship as k →∞:

log (|ρ (k)|) ∼ log cρ − α log (k) (66)

To test whether the estimated α from long and short memory processes’samples

are statistically indistinguishable, we construct the following hypothesis testing.

Let Y represent logarithm of estimated autocorrelation values and X represent

the corresponding logarithm of lags. Use D to be the dummy variable (with value

equal to 0 or 1) to identify the estimations from FARIMA(0,d,0) processes and

approximated ARMA processes. Then we have the following linear equations to

regress:

Yi = c+ γDi + αXi + β (DiXi) + εi (67)

where εi are iid Gaussian innovations.

So the null hypothesis in our statistical inference is:

H0 : β = 0 (68)

and we say the samples from FARIMA(0,d,0) and approximated ARMA processes

are indistinguishable if we can not reject the null hypothesis at a given significant

level.

After constructing the null hypothesis of statistical inference, the procedures and

parameters in our simulation are described as follows:

Step 1: Choose a positive fractional differencing parameter d in the FARIMA(0,d,0)

processes, dimension of approximated ARMA process n, sample size N .
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Step 2: Approximate the impulse response of FARIMA(0,d,0) process by the n

dimensions ARMA process.

Step 3: Simulate 500 trials from the two processes in Step 2 and estimate the

sample autocorrelation functions of two samples in each trial.

Step 4: Implement the hypothesis testing on these estimated autocorrelation

functions in each trials and count the fraction of these trials where the statistical

inference leads to reject the null hypothesis.

We show the simulation results of d = 0.3 and d = 0.4 in Table 8 and Table 9

respectively. In these tables, we find that when the dimension of approximations

increase, the information distance is smaller and it is harder to reject the null hy-

pothesis that samples from FARIMA(0,d,0) and approximated ARMA processes are

from the same process. Also when the long memory processes are more significant

(larger d), it’s easier for the statistical test to distinguish data from long memory

and approximated short memory processes. But as we show in the previous propo-

sitions, there exists an approximated short memory ARMA processes to be close

enough to a FARIMA(0,d,0) process when |d| < 1
2 . So the statistical test can not

distinguish the data from FARIMA(0,d,0) and approximated process even though

with a large fractional differencing parameter d.

To show how the information distance and statistical inference are connected nu-

merically, Fig 1Fig 2 and Fig 3 show the cases for FARIMA(0,0.2,0), FARIMA(0,0.3,0)

and FARIMA(0,0.4,0) respectively.
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Figure 1: Hypothesis testing based on correlogram estimations and information

distance between FARIMA(0,0.2,0) and approximated processes
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Figure 2: Hypothesis testing based on correlogram estimations and information

distance between FARIMA(0,0.3,0) and approximated processes
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Figure 3: Hypothesis testing based on correlogram estimations and information

distance between FARIMA(0,0.45,0) and approximated processes
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In Fig 1, Fig 2 and Fig 3, we find that: 1) the fraction of rejecting the null

hypothesis is highly related to the information distance and the fraction is going

to zero when information distance is small enough; 2) information distance is not

always decreasing with higher order of approximation, since the approximation is

not implemented based on the measure of information distance; 3) higher fractional

differencing parameter d leads to higher fraction of rejecting the null hypothesis

with the same dimensions of the approximated ARMA processes.
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Table 8: Hypothesis testings based on correlogram estimation of FARIMA(0,0.3,0)

and its approximation

n

N 10 20 50 100 500

5, 000 0.138 0.020 0.000 0.000 0.000

10, 000 0.194 0.092 0.000 0.000 0.000

50, 000 0.838 0.392 0.698 0.000 0.000

100, 000 0.954 0.624 0.356 0.066 0.000

Distance 5× 10−4 3× 10−5 4× 10−6 5× 10−7 7× 10−8

Table 9: Hypothesis testings based on correlogram estimation of FARIMA(0,0.4,0)

and its approximation

n

N 10 20 50 100 500

5, 000 0.440 0.128 0.066 0.000 0.000

10, 000 0.496 0.404 0.082 0.000 0.000

50, 000 0.966 0.798 0.762 0.134 0.000

100, 000 0.978 0.964 0.916 0.620 0.000

Distance 6× 10−4 8× 10−5 1× 10−5 1× 10−6 2× 10−7

n and N represent the dimensions of approximated ARMA processes and sample

size respectively. The numbers in the table represent the fraction of 500 trials where

inference correlogram estimations described in (Eq.67 and 68) leads to reject the null

hypothesis. The last row in each table represents the information distance between

these two processes.
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4.3.2 GPH estimations

An alternative way to say whether we can distinguish the specific FARIMA(0,d,0)

processes and approximated short memory processes is to compare the estima-

tions of fractional differencing parameter with finite sample size. There are dif-

ferent methodologies to estimate the fractional differencing parameter d in the

FARIMA(p,d,q) models. As it is already shown in Definition 9, without the ARMA

part in FARIMA(p,d,q) processes, xt is said to follow FARIMA(0,d,0) process when

xt = (1− z)−d εt. So its autocovariance-generating function is

gx (z) = σ2 (1− z)−d
(
1− z−1

)−d
=
[
(1− z)

(
1− z−1

)]−d
(69)

since σ2 = 1 for standard Gaussian innovations. So the spectral density function of

FARIMA(0,d,0) is:

f (ω) =
1

2π

[(
1− eiω

) (
1− e−iω

)]−d
=

1

2π

(
4 sin2

ω

2

)−d
(70)

To estimate the fractional differencing parameter d, Geweke and Porter-Hudak

[55] proposed to use the periodogram estimator to estimate the spectrum density

function f (ω) and estimate the d through the linear regression of log f (ω):

log f (ω) = − log 2π − 2d log
(

2 sin
ω

2

)
(71)

Similar to the hypothesis testing in correlogram estimation part, the null hy-

pothesis here is also based on a categorical regression. Let Y represent logarithm

of estimated power values by periodogram and X represent the corresponding fre-

quencies. Use D to be the dummy variable (with value equal to 0 or 1) to identify

the estimations from FARIMA(0,d,0) processes and approximated ARMA processes.

Then we have the following linear equations to regress:

Yi = c+ γDi + αXi + β (DiXi) + εi (72)

where εi are iid Gaussian innovations.
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Similarly the null hypothesis in our statistical inference is:

H0 : β = 0 (73)

and we say the samples from FARIMA(0,d,0) and approximated ARMA processes

are indistinguishable if we can not reject the null hypothesis at a given significant

level.

The procedures in this simulation are the same as the correlogram estimation’s

and it is not described again here. We show the simulation results of d = 0.3

and d = 0.45 in Table 10 and Table 11 respectively. Similar to the results in the

statistical inference from correlogram estimation, the results show that statistical

inference can not distinguish the samples from original and approximated processes

with finite sample size when dimension of approximation is large enough. Also

we find that statistical inferences based on GPH is weaker than the ones from

correlogram estimation, which may be related with the raw periodogram regression.

Other estimations of the spectral density are also be used to estimate the fractional

differencing parameter d. For example, Reisen [57] applied smoothed periodogram

to estimate d, Robinson [58] proposed a new of the log-periodogram regression etc.
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Table 10: Hypothesis testings based on GPH estimation of FARIMA(0,0.3,0) and

its approximation

n

N 2 5 10 20 50

5, 000 0.566 0.000 0.000 0.000 0.000

10, 000 0.990 0.000 0.000 0.000 0.000

50, 000 1.000 0.008 0.000 0.000 0.000

100, 000 1.000 1.000 0.000 0.000 0.000

1, 000, 000 1.000 1.000 1.000 0.000 0.000

Distance 5× 10−2 1× 10−2 5× 10−4 3× 10−5 4× 10−6

Table 11: Hypothesis testings based on GPH estimation of FARIMA(0,0.45,0) and

its approximation

n

N 2 5 10 20 50

5, 000 0.996 0.000 0.000 0.000 0.000

10, 000 1.000 0.000 0.000 0.000 0.000

50, 000 1.000 0.998 0.000 0.000 0.000

100, 000 1.000 1.000 0.000 0.000 0.000

1, 000, 000 1.000 1.000 1.000 0.000 0.000

2, 000, 000 1.000 1.000 1.000 0.004 0.000

Distance 3× 10−2 5× 10−3 7× 10−4 1× 10−4 2× 10−5

n and N represent the dimensions of approximated ARMA processes and sample

size respectively. The numbers in the table represent the fraction of 500 trials where

inference correlogram estimations described in (Eq.72 and 73) leads to reject the

null hypothesis.
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4.3.3 Conditional distributions

With regard to the application in European vanilla option pricing, we care more

about the conditional distributions of underlying asset prices instead of the serial

dependency, which has been examined in the previous parts. For the valuation

of European vanilla option, it’s completely determined by the distributions of the

underlying asset prices at the expiration time. So if statistical inference can not

tell the difference between the distributions of underlying asset returns with long

memory and short memory processes with finite sample size, the option valuations

are not distinguishable neither.

To implement the statistical tests on conditional distributions, we have a "true"

price distribution generated by the FARIMA(0,d,0) and an approximated price dis-

tribution. Here we apply the widely-used statistical tests for distributions, Kolmogorov-

Smirnov test. Let S(s,1)t and S(s,2)t represent the sth simulated price trajectories at

time t from "true" and approximated price processes respectively. 1 ≤ s ≤ S and

1 ≤ t ≤ T . Given S and T , we have the null hypothesis:

H0 : S
(s,1)
T and S(s,2)T are sampled from the same distribution (74)

In this simulation study, the static parameters are chosen as: S0 = 30, σ = 15%,

h = 1min and T = 1/4. We show the Kolmogorov-Smirnov statistics with varying

fractional differencing parameters d, sample size S and approximated dimensions n.

Fig 4 shows how the Kolmogorov-Smirnov statistics change with different frac-

tional differencing parameter d and approximated dimensions n. The sample size S

is fixed to be 1, 000 here. In Fig 4, we find that 1) given the same approximated

dimension, the Kolmogorov-Smirnov static is larger with larger d. Or in other word,

when dimension of approximated ARMA processes is the same, it is easier to tell

the difference between samples when d is larger; 2) when approximated ARMA

dimensions increase, it is harder to tell difference between samples.
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Figure 4: Kolmogorov-Smirnov statistics with varying fractional differencing para-

meter d and approximated dimensions n
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Table 12 and Table 13 are two numerical studies show the Kolmogorov-Smirnov

statistics and the p-values to reject the null hypothesis when d is chosen to be 0.2

and 0.3 respectively. We find that 1) when the approximated dimension is low,

K-S statistic distinguish with small amount of samples, i.e. n = 2 and S = 1, 000

in Table 12; 2) when the approximated dimension is large, K-S statistics can not

distinguish the samples even with large sample size, i.e. n = 100 and S = 100, 000

in Table 12; 3) it requires higher dimensions of approximation to not to reject the

null hypothesis when the fractional differencing parameter is larger. These results

are consistent with our our theoretical analysis in previous sections that it is hard

to reject the null hypothesis when the dimension of approximations is large with

finite sample size.
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Table 12: Hypothesis testings(K-S) on conditional distributions of FARIMA(0,0.2,0)

and its approximations

Dimensions n

Sample size S 2 10 20 50 500

100
0.3200

(0.0000)

0.1600

(0.1400)

0.0900

(0.7942)

0.0400

(1.0000)

0.0100

(1.0000)

1, 000
0.2920

(0.0000)

0.1380

(0.0000)

0.0720

(0.0106)

0.0090

(1.0000)

0.0020

(1.0000)

10, 000
0.2899

(0.0000)

0.1225

(0.0000)

0.0590

(0.0000)

0.0029

(1.0000)

0.0004

(1.0000)

100, 000
0.2815

(0.0000)

0.1174

(0.0000)

0.0567

(0.0000)

0.0018

(0.9964)

0.0001

(1.0000)

Table 13: Hypothesis testings(K-S) on conditional distributions of FARIMA(0,0.3,0)

and its approximations

Dimensions n

Sample size S 2 10 20 50 500

100
0.4000

(0.0000)

0.2600

(0.0018)

0.1600

(0.1400)

0.0300

(1.0000)

0.0200

(1.0000)

1, 000
0.3730

(0.0000)

0.1990

(0.0000)

0.0960

(0.0002)

0.0110

(1.0000)

0.0030

(1.0000)

10, 000
0.3555

(0.0000)

0.1775

(0.0000)

0.0902

(0.0000)

0.0052

(0.9992)

0.0005

(1.0000)

100, 000
0.3556

(0.0000)

0.1786

(0.0000)

0.0887

(0.0000)

0.0036

(0.5499)

0.0001

(1.0000)
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5 Option pricing with long memory process

In the previous sections, we have already shown that a long memory process, such as

FARIMA(p,d,q), can be close enough at information distance. Based on the connec-

tion between total variation distance and information distance, the total variation

distance between these two processes can also be suffi ciently small. Also the nu-

merical simulations show that given finite number of samples (large enough), the

samples from FARIMA process with long memory property and stationary ARMA

process can not be distinguished statistically at a certain confidence level.

As for the pricing of derivatives, Black and Scholes in 1973 [40] and Merton in

1973 [41] gave the theoretical estimates of the European option price, which will

be briefly reviewed in the following parts. The Black-Scholes model assumes the

underlying asset returns follow geometric Brownian motion. But it is also well-

know that financial returns have significantly serial correlation in empirical finance,

which does not obey the Black-Scholes model assumption. Voluminous works have

shown that financial returns are not independent from the historical data. Some

influential pioneering works are Fama in 1965 [42] and 1970 [45], Lo and Mackinlay

in 1988 [44], Fama and French in 1988 [46], Jegadeesh in 1990 [43] etc.

Even though financial returns have significant serial correlation, the Black-Scholes

model can still be applied to the predictable underlying asset returns given some

constraints. For example, Grundy in 1991 [47] shows that the Black-Scholes model

holds under a Ornstein-Uhlenbeck(O-U) process, which generates the returns with

serial correlation. Lo and Wang in 1995 [48] constructed an adjustment to the

Black-Scholes model for the predictability of asset returns. Moreover, Wang et

al. [49] showed the Black-Scholes model can be applied to the underlying asset re-

turns which follow ARMA process and derived the closed-form formula.

However, it is extremely hard, or impossible, to price the option when the un-

derlying asset return series follows a long memory process. Since the price process

is required to be a semi-martingale to eliminate the arbitrage opportunities [50] and
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long memory process, such as FARIMA process, is not a semi-martingale process,

there will always exist the arbitrage opportunities for a long memory price process.

So to price option with long memory process, firstly we approximate the long mem-

ory process by a high dimensions ARMA process, which is information distance

close enough to the original process. Then the option price can be determined by

the Black-Scholes model with ARMA process [49].

5.1 Review of Black-Scholes model

Black-Scholes option pricing model has been widely used in the derivatives pricing

in practice. We briefly review the assumptions and formulas of Black-Scholes option

pricing model here.

The fundamental assumptions of classic Black-Scholes model are 1) the option

is European style option, which can only be exercised at expiration; 2) the returns

of underlying asset is a geometric Brownian motion; 3) there is no transaction cost

involved; 4) there is no dividends; 5) there is no arbitrage opportunity. With these

assumptions, the well-known Black-Scholes equation is:

∂V (S, t)

∂t
+

1

2
σ2S2

∂2V (S, t)

∂S
+ rS

∂V (S, t)

∂S
− rV = 0 (75)

where S is the price of stock, V (S, t) is the price of a derivative, r is the risk-free

rate and σ is the volatility of stock’s returns.

With the initial condition and the payoff function of derivative, the European

call option C and put option P have the following closed form prices:

C = N (d1)St −N (d2)Ke
−r(T−t) (76)

P = N (−d2)Ke−r(T−t) −N (−d1)St (77)

where d1 = 1
σ
√
T−t

[
ln (St/K) +

(
r + σ2/2

)
(T − t)

]
, d2 = d1−σ

√
T − t, N (·) is the

cumulative distribution function of standard normal distribution, St represents the

stock price at t, K represents the stick price and (T − t) is the time to maturity.
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5.2 European option pricing with ARMA process

When returns of stock prices St follow a stationary ARMA(p,q) model, it can be

written as

ln
St
St−1

= µ+

p∑
k=1

φk ln
St−k
St−k−1

+ σ

q∑
k=0

θkεt−k (78)

where φk and θk are the AR and MA coeffi cients respectively, σ is the constant

volatility coeffi cient, εt are the standard normal innovations. Let z represent the lag

operator, we have

ln
St
St−1

= µ+

(
p∑

k=1

φkz
k

)
ln

St
St−1

+ σ

(
q∑

k=0

θkz
k

)
εt (79)

ln
St
St−1

=
µ(

1−
∑p

k=1 φk
) + σ

(∑q
k=0 θkz

k
)(

1−
∑p

k=1 φkz
k
)εt (80)

and we know that it can be written in the MA (∞) form:

ln
St
St−1

= ω + σ

( ∞∑
k=1

fkz
k

)
εt (81)

where fk is the kth element in the impulse response of this ARMA process.

When the stock price St follows a stationary ARMA model, Wang et al. [49]

gave the closed form solutions for its European option pricing by using martingale

pricing method.

C = N
(
d̃1

)
St −N

(
d̃2

)
Ke−r(T−t) (82)

P = N
(
−d̃2

)
Ke−r(T−t) −N

(
−d̃1

)
St (83)

where

d̃1 =
1

σ
√
T − t

[
ln

(
St
K

)
+

(
r +

σ̃2

2

)
(T − t)

]
(84)

d̃2 = d̃1 − σ̃
√
T − t (85)
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So the only difference between European option price with ARMA process and

classic Black-Scholes model is the calculation of volatility. As for the calculation of

volatility function σ̃

σ̃ =

√
Vn
T − t (86)

Assume the sampling frequency is h, n is the integer part of T−th and fk is the

coeffi cient of kth lag operator in eq.(81), the Vn can be calculated by

Vn = σ2
n−1∑
j=0

(
1 +

j∑
i=1

fi

)2
h (87)

So when the price process is a geometric Brownian motion, fk = 0, for k ≥ 1.

Then the volatility (eq.86) is

σ̃ =

√
σ2
∑n−1

j=0 h

T − t = σ

√
T − t
T − t = σ (88)

and the option pricing formula is the same as Black-Scholes model.

5.3 Option valuation of long memory processes

To compare our vanilla European option valuation and Black-Scholes model, we

show the calculated option prices based on our long memory option valuation ap-

proach with various long memory processes when S0 = 100, K = 100, rf = 0.25%,

σ = 20% and h = 10mins. Table 14 shows the ratio of our option valuation to

the BSM prices. Numerically we show that 1) existence of long memory process

affect the option valuation dramatically; 2) price valuations based on our approach

converge with higher approximated dimension.
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Table 14: ATM call option valuation of FARIMA(0,d,0)

n

d 2 10 50 100 200 1000

−0.40 71% 47% 47% 47% 47% 47%

−0.35 67% 47% 47% 47% 47% 47%

−0.30 62% 47% 47% 47% 47% 47%

−0.25 56% 47% 47% 47% 47% 47%

−0.20 50% 47% 48% 48% 48% 48%

−0.15 47% 51% 51% 51% 51% 51%

−0.10 47% 60% 59% 59% 59% 59%

−0.05 50% 75% 74% 74% 74% 74%

0.00 63% 97% 100% 100% 100% 100%

0.05 81% 130% 142% 142% 142% 142%

0.10 103% 176% 209% 208% 208% 208%

0.15 130% 240% 312% 310% 310% 310%

0.20 161% 328% 464% 459% 460% 460%

0.25 196% 444% 661% 653% 653% 653%

0.30 237% 585% 852% 844% 844% 844%

0.35 284% 738% 946% 943% 943% 943%

0.40 337% 867% 957% 957% 957% 957%

d represents the fractional differencing parameter and n represents the number

of approximated ARMA processes dimensions. The static parameters for option

pricing are: S0 = 100, K = 100, rf = 0.25%, σ = 20%, h = 10 mins. The entries in

this table represent the ratio of approximated Black-Scholes-ARMA option valuation

to BSM prices.

51



Since we are using high dimensions ARMA processes to approximate long mem-

ory processes, we calculate an ATM call option price with different approximated

dimensions in ARMA model to see whether the option price converges when di-

mension increases. In this experiment, we select the static parameters S0 = 100,

rf = 0.25%, σ = 20%, h = 10 mins and d = 0.1. Fig 5 and Fig 6 show how the

call option prices changes with different strike prices or times to maturities. In Fig

5 and Fig 6, n represents the dimensions of approximated ARMA processes.
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Figure 5: ATM call option valuations of FARIMA(0,0.1,0) with different approxi-

mated dimensions and time to maturity
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Figure 6: ATM call option valuations of FARIMA(0,0.1,0) with different approxi-

mated dimensions and strike prices

From Fig 5 and Fig 6, we can see that when dimensions of approximated ARMA

processes is low, the option prices are close to the Black-Scholes option prices. When

the dimension n is large enough (n = 100 here), the option prices are hardly to be

distinguished.

To observe how the long memory processes affect the option valuations, we imple-

ment an experiment with various fractional differencing parameters d in FARIMA(0,d,0)

processes. The other static parameters are chosen to be: S0 = 100, rf = 0.25%,

σ = 20%, h = 10mins and n = 1, 000. Similarly we have Fig 7 and 8 show the

changes of ATM call option prices with different T and the changes of call option

prices with different strike prices respectively.
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Figure 7: ATM call option valuations of FARIMA(0,d,0) with different d and time

to maturity
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Figure 8: ATM call option valuations of FARIMA(0,d,0) with different d and strike

prices
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From Fig 7 and Fig 8, we can see that when d = 0, the underlying prices are
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following geometric Brownian motion and the Black-Scholes-ARMA option prices

are the same as Black-Scholes’. Also when d is higher, the option valuation is higher

given maturity and strike price.

5.4 Implied volatility surface

In Black-Scholes model, the volatility is assumed to be a constant. But in empirical

finance, volatility surface calculated from the market option prices are not flat and

there exists both significant volatility smile and term structure of volatility. In this

part, we analyze the implied volatility surface of our long memory option prices.

The implied volatility is calculated calculated in the classic Black-Scholes model.

To distinguish it from Black-Scholes model, we use CARMA (S0,K, σ, rf , T, h, ψ (z))

to represent the risk-neutral valuation of European call option price in Black-Scholes

model with ARMA(p,q) process, which is described previously.

In CARMA (S0,K, σ, rf , T, h, ψ (z)), S0 represents the stock price at t0, K repre-

sents the strike price, σ represents the annual volatility constant, rf is the annual

risk-free interest rate, T is the time from t0 to the option expiration, h is the sam-

pling frequency in the ARMA processes and ψ (z) is the characteristic equation of

approximated ARMA process. So the risk-neutral valuation of European call option

price can be calculated given these parameters.

To get the implied volatility surface, including the volatility smile and term

structure of volatility, the following procedures are implemented:

1. Assume the underlying asset price is following a stochastic model which is a

long memory process. Here we are using FARIMA(p,d,q) here with d > 0;

2. Use the long memory stochastic model FARIMA(p,d,q) as the price trajectory

generator and generate S = 1, 000 price paths with fixed price length T ∗. So

now we have S(s)t , 1 ≤ t ≤ T ∗, 1 ≤ s ≤ S, to represent the price path in each

price path;
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3. For each trajectory S(s)t , we fit our ARMA(p,q) process, which is equivalently

a linear time invariant system, to the return series and estimate the charac-

teristic equation ψ(s) (z), 1 ≤ s ≤ S.

4. To get the evaluation of the option in the Black-Scholes-ARMA model, we use

S
(s)
T ∗ as the stock price at t0. We haveK, rf , T , σ and h fixed and characteristic

equations ψ(s) (z) are estimated in each trajectory. Then we can get the eval-

uation of the European call option price CARMA

(
S
(s)
T ∗ ,K, σ, rf , T, h, ψ

(s) (z)
)

in the sth trajectory with moneyness
S
(s)
T∗
K .

5. After calculating the call option price in each trajectory, the implied volatility

σ̃(s) can be calculated in the Black-Scholes models. So now we can see whether

the volatility smile exists from the implied volatility σ̃(s) with different mon-

eyness
S
(s)
T∗
K , 1 ≤ s ≤ S.

6. Similarly by changing the maturity T , we can get the term structure of volatil-

ity and the volatility surface.

Based on the above-mentioned procedure and different approximation processes

(different dimensions of ARMA process), we will analyze the following questions

numerically:

1. Whether our approximation of a long memory process, which is FARIMA(0,d,0)

here, can produce an option valuation closer to the reality. In the previ-

ous chapters, we know that the higher dimensions the ARMA process is, the

shorter information distance between ARMA and FARIMA(0,d,0) processes.

So we observe the Black-Scholes implied volatilities with different dimensions

to examine whether the underlying idea is correct.

2. How does the long memory return process affect the our option valuation?

We examine the Black-Scholes implied volatility with different fractional dif-

ferencing parameter d in the price path generator.
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3. What is the term structure of volatility in a long memory process option

valuation model? It is examined by changing the time to maturity T in our

long memory option valuation model.

5.4.1 Implied volatility in different approximations

Using the FARIMA(0,d,0) processes with d > 0 as the underlying returns stochastic

process in the simulation, we could generate the long memory return series. We

are using a stationary ARMA(p,q) process to approximate the long memory process

and the information distance is smaller between them when the dimensions of the

ARMA model increases. Here we examine the impact on implied volatility with dif-

ferent approximated ARMA processes’dimensions. In this simulation, the variable

is the dimensions of approximated ARMA processes and the other parameters are

chosen in Table 15. We only examine the difference of implied volatility against the

moneyness level here, rather than the term structure of volatility.

S0 K rf T (year) h(min) σ d

100 100 0.25% 0.5 5 5% 0.1

Table 15: Parameter settings in simulation with different dimensions of approxima-

tions

Table 16 displays how the implied volatility changes with different moneyness

level and dimensions of approximated ARMA processes.
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Dimension of approximated ARMA processes

moneyness(%) 2 10 50 100 200 400 800 1, 000

80 7.75 13.48 22.34 15.21 9.19 6.49 5.51 5.38

82 7.70 12.72 19.49 13.46 8.45 6.22 5.42 5.32

84 7.66 12.04 16.92 11.88 7.79 5.98 5.34 5.26

86 7.62 11.44 14.64 10.48 7.20 5.77 5.27 5.20

88 7.59 10.92 12.65 9.26 6.68 5.59 5.21 5.16

90 7.56 10.48 10.95 8.21 6.24 5.43 5.16 5.12

92 7.54 10.13 9.54 7.34 5.87 5.30 5.11 5.08

94 7.52 9.85 8.43 6.65 5.58 5.20 5.08 5.05

96 7.50 9.66 7.60 6.14 5.37 5.13 5.05 5.03

98 7.49 9.55 7.06 5.80 5.23 5.08 5.03 5.02

100 7.48 9.51 6.81 5.64 5.16 5.06 5.03 5.01

102 7.48 9.56 6.86 5.66 5.17 5.07 5.03 5.01

104 7.48 9.69 7.19 5.85 5.26 5.10 5.03 5.02

106 7.49 9.91 7.82 6.22 5.41 5.16 5.05 5.04

108 7.50 10.20 8.73 6.77 5.65 5.25 5.08 5.06

110 7.51 10.58 9.93 7.50 5.96 5.37 5.12 5.08

112 7.53 11.03 11.43 8.40 6.34 5.51 5.16 5.12

114 7.55 11.57 13.21 9.48 6.80 5.68 5.22 5.16

116 7.58 12.19 15.29 10.73 7.33 5.88 5.28 5.21

118 7.61 12.88 17.65 12.17 7.94 6.10 5.35 5.26

120 7.65 13.67 20.31 13.78 8.63 6.35 5.43 5.32

Table 16: Implied volatility in different dimensions of approximated ARMA

processes

Fig 9 shows the changes of volatility smiles with different dimensions of approx-

imated ARMA processes.
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Figure 9: Implied volatility with different dimensions of ARMA processes
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In these subplots, the x-axis is the moneyness(%), the y-axis is the implied

volatility(%) calculated in the Black-Scholes model. The blue dots are the data

points in the simulation and the red line is the least square fitted polynomial function

(degree is 2) to these data.
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5.4.2 Implied volatility in different underlying long memory processes

In this part, using FARIMA(0,d,0) with d > 0 to generate the price paths with long

memory property, we show that the implied volatility based on Black-Scholes model

and our option valuation model has the volatility smile effect.

To investigate the impact of long memory process on option valuation, we test

various fractional differencing parameters d to observe the changes of implied volatil-

ity. The way we calculate the implied volatility from Black-Scholes model and our

valuation of option price has been described in the previous section.

In this simulation, the static parameters are chosen as follows

S0 K rf T (year) h(min) σ np

100 100 0.25% 0.5 5 5% 400

Table 17: Simulation parameters setting
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Fractional differencing parameter d

moneyness(%) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

80 6.32 6.42 6.62 7.16 7.56 7.78 11.36 17.70

82 6.07 6.17 6.36 6.86 7.31 7.69 11.03 16.90

84 5.85 5.95 6.13 6.59 7.07 7.62 10.73 16.17

86 5.66 5.75 5.92 6.34 6.87 7.56 10.46 15.51

88 5.48 5.58 5.74 6.13 6.69 7.50 10.22 14.90

90 5.34 5.43 5.59 5.95 6.54 7.46 10.02 14.36

92 5.22 5.31 5.46 5.80 6.41 7.43 9.85 13.88

94 5.12 5.21 5.36 5.68 6.30 7.40 9.72 13.47

96 5.06 5.14 5.28 5.59 6.23 7.39 9.62 13.11

98 5.01 5.09 5.23 5.53 6.17 7.39 9.55 12.82

100 4.99 5.07 5.20 5.50 6.15 7.39 9.52 12.60

102 5.00 5.07 5.20 5.50 6.15 7.41 9.52 12.43

104 5.04 5.10 5.23 5.54 6.17 7.43 9.55 12.33

106 5.10 5.15 5.28 5.60 6.22 7.47 9.62 12.29

108 5.18 5.23 5.35 5.69 6.30 7.51 9.72 12.32

110 5.29 5.33 5.45 5.82 6.40 7.57 9.86 12.40

112 5.43 5.46 5.58 5.97 6.52 7.63 10.03 12.55

114 5.59 5.61 5.73 6.16 6.68 7.70 10.23 12.77

116 5.78 5.79 5.91 6.37 6.86 7.79 10.47 13.04

118 5.99 6.00 6.12 6.62 7.06 7.88 10.74 13.38

120 6.23 6.22 6.35 6.90 7.29 7.99 11.04 13.78

Table 18: Implied volatility in different FARIMA(0,d,0) models
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Figure 10: Comparison of volatility smile with different fractional differencing pa-

rameters
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Figure 11: Implied volatility with different FARIMA(0,d,0) processes
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In these subplots, the x-axis is the moneyness(%), the y-axis is the implied

volatility(%) calculated in the Black-Scholes model. The blue dots are the data

points in the simulation and the red line is the least square fitted polynomial function

(degree is 2) to these data.
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5.4.3 Volatility surface with GARCH(p,q) process

Financial return data are well-known to have volatility clustering, heavy tail prop-

erties which Gaussian distributions do not have. Volatility clustering increases the

short-term volatility, which can be seen in the term structure of volatility. To

produce the short-term volatility clustering in simulation, we combine the general-

ized autoregressive conditional heteroskedasticity model, GARCH model with the

FARIMA(0,d,0) model.

The reason we want to add the GARCH model into the price generator in our

simulation is to introduce the short term volatility clustering, which is closer to

the reality. Fig 12 shows the volatility surface based on solely FARIMA(0,0.1,0)

return generator. Because of the existence of long memory, the implied volatility

is exploding when time to maturity is longer and it is opposite to the reality. So

to increase the variety of the return generator in our simulation, we add GARCH

model for the short-term volatility clustering.

Figure 12: Volatility surface with d = 0.1
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GARCH model is widely used to model realized volatility of financial time series.

Let σt be a time series of the realized volatility and GARCH(p,q) is defined as

follows [51]:

σ2t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i (89)

where εt is the white noise process, αi > 0, βi > 0 and
∑q

i=1 αi +
∑p

i=1 βi < 1.

So instead of simulating the price paths S(s)t from a FARIMA(0,d,0) process

in sth scenario, we split the return series (after removing the drift part) into a

FARIMA(0,d,0) process and a GARCH(1,1) model:

ln
S
(s)
t

S
(s)
t−1

= σ
(s)
t u

(s)
t (90)

where u(s)t are the fractional Gaussian noise generated from the FARIMA(0,d,0)

process and σ(s)t is modeled by GARCH(1,1) model(eq. 89).

In the simulation, we use the GARCH(1,1) parameters estimated from the daily

return series of S&P 500 index (SPX), which are from 1/3/1990 to 10/21/2013.

The estimated parameters and statistics are shown in Table 19, which shows the

parameters estimated values are statistically significant.

Parameter Value Standard Error T statistic

α0 1.03× 10−6 1.26× 10−7 8.14

α1 0.075 0.0044 16.96

β1 0.917 0.0049 185.70

Table 19: GARCH(1,1) parameter estimation with SPX daily return series

Fig 13 shows the conditional standard deviation σt in GARCH(1,1) model with

the SPX daily returns. Also the strong evidence of volatility clustering and short-

term volatility explosion can been seen in this example.
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Figure 13: Conditional standard deviation in GARCH(1,1)

By adding the estimated GARCH(1,1) model with SPX daily returns, we im-

plement the following steps to get the volatility surface from our option valuation

model.

Step 1: The underlying asset returns are assumed to follow a stochastic model

which combines a long memory process FARIMA(0,d,0) and a short term volatility

model GARCH(1,1), which parameters are estimated from SPX daily returns data.

Step 2: Given the price path length T ∗, we generate S1 = 100 conditional

volatility paths from the given GARCH(1,1) model and they are denoted as σ(s1)t ,

where 1 ≤ t ≤ T ∗ and 1 ≤ s1 ≤ S1.

Step 3: Given each conditional volatility path σ(s1)t generated in the previous

step, we generate S2 = 100 price paths S(s1,s2)t , where 1 ≤ t ≤ T ∗, 1 ≤ s1 ≤ S1 and

1 ≤ s2 ≤ S2. The price paths S(s1,s2)t are simulated based on (eq. 90):

ln
S
(s1,s2)
t

S
(s1,s2)
t−1

= σ
(s1)
t u

(s2)
t

where u(s2)t is generated from a FARIMA(0,d,0) process with d > 0.
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Step 4: Now we have S = S1S2 = 10, 000 scenarios of price trajectories. For

each trajectory S(s1,s2)t , we fit our ARMA(p,q) process, which is equivalently a linear

time invariant system, to the return series and estimate the characteristic equation

ψ(s1,s2) (z), where 1 ≤ s1 ≤ S1 and 1 ≤ s2 ≤ S2.

Step 5: To get the evaluation of the option in the Black-Scholes-ARMA model,

we use S(s1,s2)T ∗ as the stock price at t0. We have K, rf , σ and h fixed, characteristic

equations ψ(s1,s2) (z) are estimated in each trajectory and time to maturity T is

chosen to be the same as T ∗. Then we can get the evaluation of the European call

option price CARMA

(
S
(s1,s2)
T ∗ ,K, σ, rf , T

∗, h, ψ(s1,s2) (z)
)
in the (s1, s2) trajectory

with moneyness
S
(s1,s2)

T∗
K .

Step 6: After calculating the call option price in each trajectory, the implied

volatility σ̃(s1,s2) can be calculated from the Black-Scholes models.

Step 7: By using different time to maturity T ∗ in these simulations, we can get

the volatility surface with different time to maturity and moneyness.

Fig 14 shows the implied volatility surface when the fractional differencing pa-

rameter d is chosen to be 0.1.
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Figure 14: Volatility surface with d = 0.1 and GARCH(1,1)
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In Fig 14, we can find that volatility smile becomes less significant when the

time to maturity is further, which is consistent with the phenomenon observed in

the financial data.

When we increase the fractional differencing parameter d in the simulations, we

find that the long memory FARIMA(0,d,0) part dominates the short term volatility

GARCH(1,1) part and the implied volatility increases when the time to maturity

is further. However, the volatility smile is still less significant with longer time to

maturity. We give an example with d = 0.2 in Fig 15.
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Figure 15: Volatility surface with d = 0.2 and GARCH(1,1)
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6 Empirical finance at high frequency

We have reviewed some of the pioneering works and literatures of the existence of

long memory process in financial time series in the "Introduction" section. However,

few works have been done on the high frequency financial data. In this section, we

examine the long memory phenomenon with high frequency financial data and we

show our major findings of empirical finance results in this section.

Based on the high frequency financial returns and volatility time series, we apply

these widely used statistical techniques, which have been mentioned previously, of

the long memory process. Also we examine long memory phenomena on equity

markets and spot foreign exchange (FX) markets. Because there are much fewer

works about long memory process in FX market published than equity markets, we

focus more on the FX part in this study.

6.1 Long memory in FX market

Data in this empirical research are coming from the tick by tick quote database,

recorded in Hotspot trading venue2. The data set are the seven most liquid cur-

rencies in the world, which are called G7 currencies in the following sections. The

G7 currencies are Australian Dollar (AUD), Canadian Dollar (CAD), Swiss Franc

(CHF), Euro (EUR), British Pound (GBP), Japanese Yen (JPY) and US Dollar

(USD). The largest factor that we only used G7 currencies here is the liquidity.

Compared to other trading instruments, FX trading is more liquid and multi-

venues traded. Instead of a single electronic exchange, various trading venues exist,

such as Reuters, Hotspot, FXCM and a lot of single-bank ecommerce platforms,

such as Citi, Barclays, etc [63]. For this reason, it is almost impossible to get an

completely aggregate FX order book among the entire existed trading venues. In

this empirical study, we apply the tick data from Hotspot, which is very dense and

has higher trading volumes than most other trading venues. The following graph is

2The Hotspot data for this study are provided and authorized by Presagium (USA) LLC.
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the FX volume trend in some major trading venues3:

Figure 16: FX Volume Trends

This graph shows us that it is reasonable to use Hotspot quote data to repre-

sent the FX trading rates. The top five currency pairs by volume in Hotspot are

EUR/USD(47.33%), AUD/USD(10.74%) , USD/JPY(9.52%) , GBP/USD(8.92%) ,

USD/CAD(5.05%).4 G10 currencies contribute the majority of trading volumes in

FX trading and that is why only G10 currencies are under the consideration in this

empirical study.

There are few published research concerning the long memory processes in ultra

high frequency trading. We extract the last mid-price of ask price and bid price

3Sources: Hotspot Monthly Statistics, Jan 2012
4Source: Hotspot Monthly Statistics, Jan 2012

71



every second. The data range from 2008-01-01 00:00:01 to 2011-12-31-23:59:59,

which include 4 years data. Also there exists 30 currency pairs generated from the

G10 currencies, such as USD/CHF, AUD/CAD, AUD/NZD etc.

FX market is a 24 × 5 trading instrument and generally trading events do not

occur during weekend (trading typically starts 2100GMT Sunday). We exclude all

non-trading periods, such as weekend, holiday, etc. Even though FX is a 24 hours

trading instrument, there is no guarantee that there will be new quotes placed every

second, especially for some less liquid currency pairs. For example, considering

EUR/CHF, there are far fewer quotes generated in Asia trading time than the New

York and London trading time. If there are no new quotes during any one second,

we exclude that second in our data.

6.1.1 R/S statistics

The null hypothesis for the test: long memory does not exist in the return series.

Table 20 shows the classical and modified R/S statistics of selected FX pairs return

series. The null hypothesis can not be rejected based on the results and there is

no strong evidence to say that there exist long memory process in high frequency

(second) FX return series.

Because it is hard to decide the lag parameter q in the modified R/S statistic,

we apply some short memory processes to remove the short range dependence in

original series. Then we use normalized classical range scaled statistics Vc to test

the existence of long memory in the residuals. AR (1), MA (1), ARMA (1, 1) and

ARMA (1, 1)−GARCH (1, 1) processes are fitted to the data to remove the short

range dependence components.

The critical values of the modified R/S statistic are given by Lo [6]: 90% con-

fidence interval is [0.861, 1.747]; 95% confidence interval is [0.809, 1.862] and 99%

confidence interval is [0.721, 2.098]. Table ?? shows the results of the test and we

find that none of the tested currency pairs can reject the null hypothesis. After
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removing the short range dependence part by filtering through these short memory

processes, we still can not get the conclusion that there exists long memory in return

series of FX rate in ultra high frequency.

We now show the results for the same test, but based on absolute returns, which

shows that strong long memory exists in the absolute return series. The result is

completely different from the returns’. There is a very strong long memory process

exist in the absolute second returns of G7 FX rates.
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Table 20: Classic and modified R/S statistics of FX return series (second)

rt Vc V
(1)
c V

(2)
c V

(3)
c V

(4)
c V(5) V(10) V(20) V(40) V(80)

AUD/CAD 0.65 0.73 0.75 0.85 0.89 0.88 0.80 0.84 0.87 0.90

AUD/CHF 0.65 0.79 0.86 0.94 0.93 0.97 0.89 0.94 0.97 0.99

AUD/JPY 1.23 1.26 1.26 1.26 1.22 1.22 1.26 1.24 1.23 1.21

AUD/USD 1.22 1.25 1.26 1.29 1.19 1.28 1.29 1.29 1.28 1.28

CAD/JPY 1.09 1.15 1.09 1.17 1.09 1.18 1.17 1.18 1.18 1.18

CHF/JPY 1.03 1.18 1.23 1.33 1.20 1.35 1.28 1.32 1.34 1.37

EUR/AUD 0.77 0.86 0.89 1.00 1.08 1.05 0.95 1.00 1.04 1.07

EUR/CAD 0.77 0.86 0.89 0.99 1.01 1.05 0.94 0.99 1.03 1.08

EUR/CHF 1.04 1.13 1.15 1.24 1.29 1.27 1.21 1.24 1.26 1.28

EUR/GBP 0.86 1.00 0.86 1.04 0.98 1.09 1.03 1.06 1.08 1.11

EUR/JPY 0.97 0.99 0.99 1.02 0.97 0.99 1.00 1.00 0.99 1.00

EUR/USD 0.88 0.94 0.94 0.99 0.83 0.98 0.97 0.97 0.98 0.99

GBP/AUD 0.77 0.86 0.88 0.95 0.97 0.98 0.92 0.95 0.98 1.00

GBP/CAD 0.58 0.64 0.66 0.73 0.74 0.77 0.70 0.73 0.76 0.79

GBP/CHF 0.73 0.83 0.86 0.91 0.90 0.96 0.89 0.92 0.95 0.97

GBP/JPY 1.21 1.28 1.29 1.33 1.20 1.31 1.31 1.32 1.31 1.31

GBP/USD 1.34 1.37 1.38 1.37 1.27 1.37 1.38 1.38 1.37 1.37

USD/CAD 1.12 1.17 1.17 1.25 1.11 1.24 1.22 1.23 1.24 1.25

USD/CHF 1.47 1.48 1.48 1.56 1.44 1.55 1.53 1.54 1.55 1.56

USD/JPY 0.63 0.69 0.71 0.74 0.62 0.73 0.71 0.72 0.73 0.73

Vc: classic R/S statistics; V
(1)
c : classic R/S statistics after filtering by AR(1);

V
(2)
c : classic R/S statistics after filtering by MA(1); V (3)c : classic R/S statistics after

filtering by ARMA(1,1); V (4)c : classic R/S statistics after filtering by ARMA(1,1)-

GARCH(1,1); V(q): modified R/S statistics with lag parameter q; (∗∗) and (∗) denote
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the statistics is significant at 99% and 95% level respectively.
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Table 21: Classic and modified R/S statistics of absolute values of FX return series

(second)

|rt| Vc V(5) V(10) V(20) V(40) V(80)

AUD/CAD 631.52∗∗ 195.88∗∗ 353.84∗∗ 279.86∗∗ 214.46∗∗ 160.88∗∗

AUD/CHF 486.14∗∗ 150.10∗∗ 272.33∗∗ 215.33∗∗ 164.58∗∗ 122.79∗∗

AUD/JPY 658.89∗∗ 210.69∗∗ 374.09∗∗ 297.38∗∗ 230.01∗∗ 173.98∗∗

AUD/USD 778.26∗∗ 226.29∗∗ 414.67∗∗ 325.05∗∗ 247.92∗∗ 185.66∗∗

CAD/JPY 500.25∗∗ 158.98∗∗ 281.40∗∗ 224.45∗∗ 173.57∗∗ 131.32∗∗

CHF/JPY 330.55∗∗ 102.42∗∗ 181.42∗∗ 143.79∗∗ 111.38∗∗ 85.56∗∗

EUR/AUD 616.96∗∗ 203.31∗∗ 353.25∗∗ 283.54∗∗ 221.22∗∗ 169.17∗∗

EUR/CAD 522.89∗∗ 180.47∗∗ 308.49∗∗ 249.45∗∗ 195.90∗∗ 151.08∗∗

EUR/CHF 292.86∗∗ 98.86∗∗ 168.90∗∗ 136.25∗∗ 107.14∗∗ 83.11∗∗

EUR/GBP 505.59∗∗ 148.47∗∗ 263.18∗∗ 206.26∗∗ 160.39∗∗ 127.23∗∗

EUR/JPY 470.75∗∗ 164.86∗∗ 281.53∗∗ 227.19∗∗ 178.52∗∗ 139.15∗∗

EUR/USD 385.32∗∗ 134.52∗∗ 219.96∗∗ 177.82∗∗ 143.78∗∗ 116.94∗∗

GBP/AUD 646.62∗∗ 211.03∗∗ 369.53∗∗ 296.24∗∗ 230.08∗∗ 174.77∗∗

GBP/CAD 516.26∗∗ 178.96∗∗ 307.40∗∗ 248.49∗∗ 194.65∗∗ 148.80∗∗

GBP/CHF 423.04∗∗ 136.55∗∗ 237.09∗∗ 189.96∗∗ 148.36∗∗ 114.20∗∗

GBP/JPY 432.19∗∗ 152.55∗∗ 256.01∗∗ 207.66∗∗ 164.70∗∗ 129.33∗∗

GBP/USD 522.40∗∗ 179.73∗∗ 304.41∗∗ 245.98∗∗ 194.44∗∗ 151.32∗∗

USD/CAD 662.87∗∗ 205.53∗∗ 366.00∗∗ 290.54∗∗ 224.27∗∗ 170.11∗∗

USD/CHF 271.76∗∗ 102.81∗∗ 167.64∗∗ 138.37∗∗ 110.84
∗∗

87.32∗∗

USD/JPY 393.40∗∗ 128.53∗∗ 214.05∗∗ 171.54∗∗ 137.48∗∗ 111.69∗∗

V(q): modified R/S statistics with lag parameter q; (∗∗) and (∗) denote the

statistics is significant at 99% and 95% level respectively.
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6.1.2 Correlogram estimations

As discussed before, correlogram estimation is much less accurate when the long

memory effect is less significant. So we only apply the correlogram estimation to

the absolute return to see whether there is strong evidence of long memory in the

absolute return series. To see whether the result is robust, or the tail of autocorrela-

tion decays stably, we estimate it by different number of lags N . Table 22 and Table

23 show the estimated Hurst exponents when N = 100 and N = 10, 000 respec-

tively. These results also show that very strong long memory exists in the absolute

return of FX rates at the frequency of second, which stands the same as modified

rescaled range results. All of the selected currency pairs have strong long memory

and most of the estimated Hurst exponents are even larger than 0.9. AUD/USD

has the highest Hurst exponent estimation, which is 0.97. This level of long memory

has not previously been reported in published research.
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Table 22: Correlogram estimations of FX absolute returns (second) with the number

of lags equal to 100

N = 100 Ĥ 95% CI 99% CI

AUD/CAD 0.952310 [0.952270, 0.952350] [0.952302, 0.952318]

AUD/CHF 0.961603 [0.961537, 0.961669] [0.961590, 0.961616]

AUD/JPY 0.943674 [0.943594, 0.943753] [0.943658, 0.943689]

AUD/USD 0.950410 [0.950359, 0.950460] [0.950399, 0.950420]

CAD/JPY 0.940665 [0.940607, 0.940722] [0.940653, 0.940676]

CHF/JPY 0.908390 [0.908293, 0.908488] [0.908371, 0.908410]

EUR/AUD 0.925992 [0.925948, 0.926037] [0.925983, 0.926001]

EUR/CAD 0.912354 [0.912326, 0.912383] [0.912349, 0.912360]

EUR/CHF 0.900993 [0.900909, 0.901077] [0.900976, 0.901010]

EUR/GBP 0.816872 [0.816493, 0.817252] [0.816797, 0.816948]

EUR/JPY 0.894664 [0.894516, 0.894812] [0.894634, 0.894694]

EUR/USD 0.828689 [0.828376, 0.829002] [0.828626, 0.828752]

GBP/AUD 0.936937 [0.936873, 0.937001] [0.936924, 0.936950]

GBP/CAD 0.932685 [0.932622, 0.932748] [0.932672, 0.932698]

GBP/CHF 0.909436 [0.909398, 0.909473] [0.909428, 0.909443]

GBP/JPY 0.892867 [0.892708, 0.893026] [0.892835, 0.892899]

GBP/USD 0.905427 [0.905304, 0.905550] [0.905403, 0.905452]

USD/CAD 0.935134 [0.935081, 0.935187] [0.935123, 0.935145]

USD/CHF 0.886113 [0.886010, 0.886216] [0.886092, 0.886133]

USD/JPY 0.818747 [0.818466, 0.819029] [0.818691, 0.818803]
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Table 23: Correlogram estimations of FX absolute returns (second) with the number

of lags equal to 1000

N = 10000 Ĥ 95% CI 99% CI

AUD/CAD 0.968843 [0.968840, 0.968846] [0.968842, 0.968844]

AUD/CHF 0.929510 [0.929498, 0.929521] [0.929507, 0.929512]

AUD/JPY 0.961892 [0.961890, 0.961894] [0.961892, 0.961893]

AUD/USD 0.974766 [0.974764, 0.974768] [0.974766, 0.974766]

CAD/JPY 0.929779 [0.929777, 0.929782] [0.929779, 0.929780]

CHF/JPY 0.853738 [0.853724, 0.853751] [0.853735, 0.853740]

EUR/AUD 0.956222 [0.956219, 0.956225] [0.956221, 0.956222]

EUR/CAD 0.925398 [0.925391, 0.925405] [0.925397, 0.925400]

EUR/CHF 0.900955 [0.900950, 0.900960] [0.900954, 0.900956]

EUR/GBP 0.939420 [0.939408, 0.939431] [0.939417, 0.939422]

EUR/JPY 0.919640 [0.919636, 0.919643] [0.919639, 0.919640]

EUR/USD 0.922862 [0.922852, 0.922871] [0.922860, 0.922864]

GBP/AUD 0.954527 [0.954525, 0.954529] [0.954527, 0.954527]

GBP/CAD 0.939754 [0.939751, 0.939757] [0.939753, 0.939754]

GBP/CHF 0.901365 [0.901360, 0.901369] [0.901364, 0.901366]

GBP/JPY 0.924787 [0.924784, 0.924791] [0.924787, 0.924788]

GBP/USD 0.952395 [0.952391, 0.952399] [0.952394, 0.952396]

USD/CAD 0.963177 [0.963173, 0.963180] [0.963176, 0.963177]

USD/CHF 0.881305 [0.881301, 0.881309] [0.881304, 0.881306]

USD/JPY 0.929824 [0.929815, 0.929833] [0.929822, 0.929826]

6.1.3 GPH estimation

We implement the GPH estimation on the high frequency FX returns and absolute

return series. To see whether our data are sensitive to the choice of sample length
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n in estimating the fractional differencing parameters, we try different n in this

empirical study, n = T 0.45, T 0.5, T 0.55. Recalling the relationship between Hurst

exponent H and fractional differencing parameter d, H = 1/2 + d, Table 24 and

Table 25 show the estimated Hurst exponents of return series and absolute return

series in GPH estimations respectively. Null hypothesis is: d = 0, or H = 1/2

equivalently.

In Table 24, only EUR/CHF and EUR/GBP have a H ∈ (1/2, 0) statistically

significant, but nulls are only marginally rejected for some specified choice of n. In

consistent with other long memory test, there is no strong evidence to show the long

memory process exists in FX return series at second frequency.

In Table 25, all of the currency pairs show a very strong long memory in the

absolute return series and they are statistically significant at 99.99% level. The

results agree to the empirical results of modified R/S statistics and correlogram

results that there exist a very strong long memory process in absolute returns of FX

rates at second frequency.
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Table 24: GPH estimations of FX returns (second)

rt T0.45 T0.5 T0.55 T0.45 T0.5 T0.55

AUD/CAD 0.4348∗∗

(0.0000)

0.4477∗∗

(0.0000)

0.4433∗∗

(0.0000)
EUR/JPY 0.4803

(0.0953)

0.4926

(0.3370)

0.4935

(0.1876)

AUD/CHF 0.5122

(0.3626)

0.4973

(0.7503)

0.5011

(0.8464)
EUR/USD 0.5138

(0.2706)

0.4999

(0.9891)

0.4969

(0.5373)

AUD/JPY 0.4782

(0.0895)

0.4885

(0.1615)

0.4981

(0.7239)
GBP/AUD 0.4778

(0.0631)

0.4759∗∗

(0.0019)

0.4844∗∗

(0.0026)

AUD/USD 0.4946

(0.6703)

0.4840

(0.0563)

0.4865∗

(0.0117)
GBP/CAD 0.4656∗∗

(0.0089)

0.4791∗

(0.0121)

0.4793∗∗

(0.0001)

CAD/JPY 0.4764

(0.0859)

0.4856

(0.1078)

0.5058

(0.3191)
GBP/CHF 0.5090

(0.4632)

0.5166∗

(0.0352)

0.5014

(0.7749)

CHF/JPY 0.4971

(0.8179)

0.4926

(0.3492)

0.4814∗∗

(0.0002)
GBP/JPY 0.0491

(0.4682)

0.4839∗

(0.0368)

0.4898∗

(0.0375)

EUR/AUD 0.4998

(0.9856)

0.4898

(0.1919)

0.4905

(0.0582)
GBP/USD 0.4911

(0.4873)

0.4956

(0.5947)

0.4889∗

(0.0357)

EUR/CAD 0.4916

(0.4973)

0.4959

(0.6064)

0.4947

(0.3007)
USD/CAD 0.5111

(0.4043)

0.5056

(0.5277)

0.4994

(0.9242)

EUR/CHF 0.5276∗

(0.0371)

0.5051

(0.5487)

0.4990

(0.8580)
USD/CHF 0.5246

(0.0643)

0.5074

(0.3774)

0.4979

(0.6937)

EUR/GBP 0.5102

(0.4108)

0.5186∗∗

(0.0192)

0.5061

(0.2367)
USD/JPY 0.4707∗

(0.0305)

0.4777∗∗

(0.0099)

0.4852∗∗

(0.0073)

Table 25: GPH estimations of absolute values of FX returns (second)

|rt| T0.45 T0.5 T0.55 T0.45 T0.5 T0.55

AUD/CAD 0.8863∗∗

(0.0000)

0.8698∗∗

(0.0000)

0.8859∗∗

(0.0000)
EUR/JPY 0.8163∗∗

(0.0000)

0.8545∗∗

(0.0000)

0.8939∗∗

(0.0000)

AUD/CHF 0.9116∗∗

(0.0000)

0.9922∗∗

(0.0000)

1.0638∗∗

(0.0000)
EUR/USD 0.7802∗∗

(0.0000)

0.8242∗∗

(0.0000)

0.8058∗∗

(0.0000)

AUD/JPY 0.8639∗∗

(0.0000)

0.9001∗∗

(0.0000)

0.9355∗∗

(0.0000)
GBP/AUD 0.8129∗∗

(0.0000)

0.8620∗∗

(0.0000)

0.8820∗∗

(0.0000)

AUD/USD 0.8327∗∗

(0.0000)

0.8917∗∗

(0.0000)

0.9429∗∗

(0.0000)
GBP/CAD 0.7716∗∗

(0.0000)

0.8242∗∗

(0.0000)

0.8771∗∗

(0.0000)

CAD/JPY 0.7898∗∗

(0.0000)

0.8376∗∗

(0.0000)

0.8637∗∗

(0.0000)
GBP/CHF 0.8229∗∗

(0.0000)

0.8252∗∗

(0.0000)

0.8508∗∗

(0.0000)

CHF/JPY 0.7761∗∗

(0.0000)

0.7711∗∗

(0.0000)

0.8398∗∗

(0.0000)
GBP/JPY 0.8340∗∗

(0.0000)

0.8406∗∗

(0.0000)

0.8758∗∗

(0.0000)

EUR/AUD 0.8619∗∗

(0.0000)

0.8774∗∗

(0.0000)

0.8875∗∗

(0.0000)
GBP/USD 0.7741∗∗

(0.0000)

0.8490∗∗

(0.0000)

0.8931∗∗

(0.0000)

EUR/CAD 0.7546∗∗

(0.0000)

0.7671∗∗

(0.0000)

0.8067∗∗

(0.0000)
USD/CAD 0.7216∗∗

(0.0000)

0.8418∗∗

(0.0000)

0.8672∗∗

(0.0000)

EUR/CHF 0.7936∗∗

(0.0000)

0.8349∗∗

(0.0000)

0.8287∗∗

(0.0000)
USD/CHF 0.7700∗∗

(0.0000)

0.8112∗∗

(0.0000)

0.8530∗∗

(0.0000)

EUR/GBP 0.7936∗∗

(0.0000)

0.8349∗∗

(0.0000)

0.8287∗∗

(0.0000)
USD/JPY 0.8221∗∗

(0.0000)

0.8512∗∗

(0.0000)

0.8675∗∗

(0.0000)

81



6.2 Long memory in equity market

There has been a long time history of the long memory research in equity market,

such as Lo [6], Chow et al. [9], Mandelbrot [4], Lobato and Savin [10], Willinger et

al. [11] etc. To examine the long memory effects in high frequency equity market,

we are using S&P500 listed stocks data from the Trade and Quote, TAQ5, database.

We query 465 stocks out of S&P500 listed stocks and estimated the Hurst exponent

at different frequencies varying from 1 minute to 390 minutes. There are numerous

outliers in ultra high frequency data, which are usually caused by the misplacement

of quotes or the quote recorded problem. Thompson’s τ method [61,62] here is used

to remove the statistically significant outliers.

After removing the ARMA-GARCH effect by filtering through ARMA(1,1)-

GARCH(1,1) model, the Hurst exponents are estimated based on the innovations

series. Fig 17 shows the estimated Hurst exponents (based on R/S statistics) quan-

tities of the return series across 465 stocks. Based on the classic R/S estimation,

more than 25% of the selected stocks show the long memory existence in their in-

traday return series. Also some of the stocks’Hurst estimation increase when the

frequency is lower.

5TAQ: Trade and Quote database is a high frequency database at Stony Brook University.

The data are originally collected from NYSE, extracted and maintained by Quantitative Finance

Program at Stony Brook University.

82



Figure 17: Hurst exponents estimation(R/S) of S&P500 stocks rt at different fre-

quencies
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Comparing to the debate on the existence of long memory in stock return series,

realized volatility of the stock returns has been examined to pertain long memory

property in many published works. Here we examine the Hurst exponents esti-

mations of stocks realized volatility at a much higher frequency than most of the

previous works. Fig 18 and Fig 19 show the estimated Hurst exponents quantities

of realized volatilities across 465 stocks based on classic R/S and correlogram esti-

mations respectively. Realized volatility series of most stocks are estimated to have

long memory property in both studies and they show similar decaying pattern. The

estimated Hurst exponents of realized volatility series decay with lower sampling

frequencies, which is different from the pattern in return series.
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Figure 18: Hurst exponents estimation(R/S) of S&P500 stocks |rt| at different fre-

quencies
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Figure 19: Hurst exponents estimation(Correlogram) of S&P500 stocks |rt| at dif-

ferent frequencies
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7 Conclusion

In this thesis, we show that rational functions are information dense with the trans-

fer functions that have finite information distance from the unit variance white

noise. Under the connection among total variation, Hellinger and information dis-

tances, long memory, such as FARIMA(p,d,q), and short memory processes, such

as ARMA(p,q), can not be distinguished by statistical inference with finite sample

size.

Option pricing with long memory processes is diffi cult to achieve and we show

that it can be valuated by Black-Scholes model based on approximated ARMA

models. Also we show that volatility smile can be generated by this long memory

option valuation approach. Adding short term volatility model to option valuation

approach makes the implied volatility surface close the the reality numerically. Be-

sides we examine the volatility in high frequency equity and FX world and classic

statistical tests show strong evidence of long memory existence.
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Appendix A. Equivalence of ARMA and LTI

.

ARMA representing form has numerical constraints in high dimensional calcu-

lations and state space representation is an equivalent representation of the ARMA

stochastic process, but with better numerical stability. In this appendix, we briefly

show the mathematical equivalence between ARMA and state space representations

by one example.

Recall the definition of ARMA representation of y (t) (eq. ??),

y (t) =

p∑
k=1

φky (t− k) + x (t) +

q∑
k=1

θkx (t− k) (91)

where x (t) are iid white noises.

Without loss of generality, assume p = q = k since we can make the extra

coeffi cients ϕk or θk to be zero, if p 6= q. Equivalently, we can represent y (t) in (eq.

91) by the following state space form with various z (t), A, B, C and D.

z (t+ 1) = Az (t) +Bx (t) (92)

y (t) = Cz (t) +Dx (t) (93)

One possible solution to that is:

z (t) =
[
y (t) · · · y (t− p) x (t) · · · x (t− q)

]T
2k×1

x (t) = x (t)
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and

A =

 A1 A2

0 A3


2k×2k

B =
[

1 0 · · · 0 1 0 · · · 0
]T
2k×1

C =
[

1 0 · · · 0 0 0 · · · 0
]T
2k×1

D = 1

where

A1 =


ϕ1 · · · ϕp−1 ϕp

1 0

. . .
...

1 0


p×p

, A2 =


θ1 · · · θq−1 θq

1 0

. . .
...

1 0


q×q

, A3 =


ϕ1 · · · ϕp−1 ϕp

1 0

. . .
...

1 0


p×p

There are also other equivalent state space representations of ARMA model and

readers are referred to [37] for more equivalent representations. The example we

show is not the only solution for the state space representation of ARMA process.

However, they have different numerical stabilities which we will show in the following

part of appendix.
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Appendix B. Triangular input balance representation of

LTI

.

In this appendix, we briefly show the form of one state space representation, tri-

angular input balanced representation, which has better numerical stability. Recall

the state space representation of LTI:

z (t+ 1) = Az (t) +Bx (t) (94)

y (t) = Cz (t) + x (t) (95)

In a linear time invariant system, the Hankel matrix and impulse response can

be factorized as

h (t) =
(
CB CAB CA2B · · ·

)
(96)

H =


C

CA

CA2

...


(
B AB A2B · · ·

)
(97)

We say the input pairs is triangular input normal form if and only if

AA∗ +BB∗ = I (98)

and A is a lower triangular matrix. We have the following by z transformation:

Y (z) =
[
C (zI −A)−1B + I

]
X (z) (99)

So the poles of linear time invariant system in triangular input balanced form are

the eigenvalues of matrix A. Since A is a lower triangular matrix here, eigenvalues

of A are the diagonal entries and it does not need any transformations to get the

poles at all.
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Known the poles of linear time invariant system, λk, we can get the explicit band

fraction representation for the triangular input balance form(see Mullhaupt [35,36]):

A = M−1N,B = ρ1M
−1e1

where M and N are sparse matrices and the form also increases the calculation

speed dramatically:

M =


1

γ1 1

γ2
. . .
. . . . . .

 , N =


λ1

µ1 λ2

µ2
. . .
. . . . . .

 (100)

where

ρk =

√
1− |λk|2 (101)

µk =
ρk+1
ρk

(102)

γk = λ∗kµk (103)
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Appendix C. Numerical stability of triangular input bal-

ance representationI

.

We compare numerical stability of ARMA and triangular input balance repre-

sentations here. Rewrite the ARMA(p,q) by the lag operator:(
1− ϕ1L− ϕ2L2 − · · · − ϕpLp

)
yt =

(
1 + θ1L+ θ2L

2 + · · ·+ θqL
q
)
xt (104)

where xt are iid white noises.

Then we can get

yt =

(
1 + θ1L+ θ2L

2 + · · ·+ θqL
q
)(

1− ϕ1L− ϕ2L2 − · · · − ϕpLp
)xt (105)

yt =
D (L)

N (L)
xt (106)

where D (L) and N (L) are polynomial functions.

So ARMA models can be described by the two polynomial functions, D (L) and

N (L). ARMA model is reduced ARMA form when the D (L) and N (L) do not

have coprime.

Now considering the state space representation,

z (t+ 1) = Az (t) +Bx (t) (107)

y (t) = Cz (t) +Dx (t) (108)

Laplace-transform of the linear time invariant system will lead to:

Z (s) = (sI −A)−1BX (s) (109)

Y (s) =
[
C (sI −A)−1B + I

]
X (s) (110)

So the poles of the state space representation should be the solution set of:

det |sI −A| = 0 (111)
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which means that the poles of LTI system are the eigenvalues of matrix A. According

to the equivalence between LTI systems and ARMA processes, the poles of LTI

systems should be equal to the poles of ARMA process. So the eigenvalues of A

should be the same as the roots of N (L) in the characteristic function of ARMA

processes.

One simple numerical test for instability in ARMA processes is to compare the

location of given poles and corresponding roots of N (L). Firstly let’s take a look at

the low dimension system shown in Fig 20, when the number of poles is small. In

this example, we choose 10 poles to ARMA process and examine the roots of N (L).

We can see that in low dimension, roots of N (L) are very stable and close to the

selected poles. The most important thing is that all of the poles are still lying inside

the unit disc.

Figure 20: Location of poles of low dimension ARMA process
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However, the stable phenomenon will change when we increase the dimensions of

system. Fig 21 is one example for the high dimensions system. 1) Now 100 selected

poles, inside the unit disc, are given to the ARMA process; 2) For the state space

represented by triangular input balance form, it has exactly the same poles as what
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we assign, because A is a lower triangular matrix; 3) Then we can observe that the

roots of N (L) lie outside the unit disc and will lead the system to be very unstable.

Figure 21: Location of poles of high dimension ARMA process
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From these two simply numerical examples, it can be easily seen that ARMA

process will become very unstable when the dimensions, or number of poles, in-

creases. However, triangular input balance representation has a very stable poles

location when dimension is high.

Appendix D. Example of information distance between

FARIMA(0,d,0) and ARMA with fixed p or q

.
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Proposition 1. The information distance between any stationary AR(1) and FARIMA(0,d,0)

with d>0 processes has a lower bound.

Proof: The information distance between AR(1) and FARIMA(0,d,0) processes

is:

‖log f (z)− log g (z)‖2H2 =
∞∑
n=1

(
λn

n
− d

n

)2
=

∞∑
n=1

(
λ2
)n

n2
− 2d

∞∑
n=1

λn

n2
+
∞∑
n=1

d2

n2

= Li2
(
λ2
)
− 2dLi2 (λ) +

π2d2

6
(112)

where Lin (λ) is the polylogarithm and it has these properties which will be used

later:

∂

∂λ
Lin (λ) =

1

λ
Lin−1 (λ) (113)

Li0 (λ) =
λ

1− λ (114)

Li1 (λ) = − log (1− λ) (115)

To show the information distance between these two processes has a lower bound,

we show the information distance is a convex function of λ.

∂2

∂λ2
‖log f (z)− log (z)‖2H2

=
∂2

∂λ2

(
Li2

(
λ2
)
− 2dLi2 (λ) +

π2d2

6

)
=

2

λ2
log
(
1− λ2

)
+

4(
1− λ2

) − 2d

λ2
log (1− λ)− 2d

λ (1− λ)

=
2

λ2

(
(2− d)λ2 − dλ

1− λ2
− log

(
(1− λ)d

1− λ2

))
(116)
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Because log
(
(1−λ)d
1−λ2

)
≤ (1−λ)d

1−λ2 − 1, then we have

∂2

∂λ2
‖log f (z)− log (z)‖2H2

≥ 2

λ2

(
(2− d)λ2 − dλ

1− λ2
− (1− λ)d

1− λ2
+ 1

)
≥ 2

λ2
(
1− λ2

) ((1− d)λ2 + (1− dλ)− (1− λ)d
)

(117)

Let κ (λ) = (1− d)λ2 + (1− dλ) − (1− λ)d and |λ| < 1, 0 < d < 1
2 . It can be

easily shown that κ (λ) ≥ κ (0) = 0 since ∂2κ(λ)

∂λ2
= (1− d)

(
2 + d (1− λ)d−2

)
≥ 0

and ∂κ(λ)
∂λ |λ=0 = 0 when |λ| < 1, 0 < d < 1

2 .

So now we show that

∂2

∂λ2
‖log f (z)− log (z)‖2H2 ≥ 0 (118)

and the information distance between these two processes is a convex function of

λ. Since we know that

∂

∂λ
‖log f (z)− log (z)‖2H2 =

2

λ

(
Li1

(
λ2
)
− dLi1 (λ)

)
=

2

λ

(
(1− λ)d − λ2 + 1

)
(119)

so the lower bound can be obtained by numerically solving the equation (1− λ)d+

λ2 − 1 = 0.

Proposition 2. The information distance between any stationary MA(1) processes

and FARIMA(0,d,0) with d>0 processes has a lower bound.

Proof: It is easier to show the lower bound of MA(1) than the AR(1) process.

The information distance between these two processes is:

‖log f (z)− log g (z)‖2H2 =

∞∑
n=1

(
µn

n
+
d

n

)2
= Li2

(
µ2
)

+ 2dLi2 (µ) +
π2d2

n2
(120)
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and the first derivative of information distance is:

∂

∂µ
‖log f (z)− log g (z)‖2H2 =

∂

∂µ

(
Li2

(
µ2
)

+ 2dLi2 (µ) +
π2d2

n2

)
=

2

µ
Li1

(
µ2
)

+
2d

µ
Li1 (µ) (121)

To show the convexity of information distance between MA(1) and FARIMA(0,d,0)

processes, the second derivative of information distance is shown to be nonnegative:

∂2

∂µ2
‖log f (z)− log g (z)‖2H2

=
2

µ2
(
dLi0 (µ)− dLi1 (µ) + 2Li0

(
µ2
)
− Li1

(
µ2
))

=
2

µ2

(
dµ+ dµ2 + 2µ2

1− µ2 + d log
((

1− µ2
)

(1− µ)
))

≥ 2

µ2

(
dµ+ dµ2 + 2µ2

1− µ2 +
dµ3 − dµ2 − dµ
(1− µ2) (1− µ)

)
≥ 2 (2− d− 2µ)

(1− µ2) (1− µ)
≥ 0 (122)

and the lower bound of the distance can be obtained by numerically solving the

equation
(
1− µ2

)
(1− µ)d = 0.
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