

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Modeling of Parachute Dynamics with GPU

Enhanced Continuum Fabric Model and Front

Tracking Method

A Dissertation Presented

by

Qiangqiang Shi

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

December 2014

Stony Brook University

The Graduate School

Qiangqiang Shi

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Xiaolin Li - Dissertation Advisor

Professor, Department of Applied Mathematics and Statistics

James Glimm - Chairperson of Defense

Professor, Department of Applied Mathematics and Statistics

Xiangmin Jiao - Member

Associate Professor, Department of Applied Mathematics and

Statistics

Foluso Ladeinde - Outside Member

Associate Professor, Department of Mechanical Engineering

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Modeling of Parachute Dynamics with GPU
Enhanced Continuum Fabric Model and Front

Tracking Method

by

Qiangqiang Shi

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2014

An advanced mesoscale spring-mass model is used to mimic fabric surface

motion. The fabric surface is represented by a high-quality triangular surface

mesh. Both the tensile stiffness and the angular stiffness of each spring are

determined by the material’s Young’s modulus and Poisson ratio, as well as

the geometrical characteristics of the surface mesh. The spring-mass system

is a nonlinear Ordinary Differential Equation (ODE) system solved by fourth

order Runge-Kutta method. The model is shown to be numerically convergent

under the constraint that the summation of points masses is constant. Through

coupling with an incompressible fluid solver and the front tracking method, the

iii

spring-mass model is applied to the simulation of the dynamic phenomenon

of parachute inflation. Complex validation simulations conclude the effort via

drag force comparisons with experiments.

Three applications of Graphics Processing Unit (GPU)-based algorithms

for high performance computation of mathematical models were reported. Us-

ing one GPU device in the solving of the spring-mass system, we have achieved

6× speedup. In the second set of simulations, the system of one-dimensional

gas dynamics equations is solved by the Weighted Essentially Non-Oscillatory

(WENO) scheme; the GPU code is 7-20× faster than the pure CPU code. In

the last case, a GPU enhanced numerical algorithm for American option pric-

ing under the generalized hyperbolic distribution is studied. We have achieved

2× speedup for pricing single option and 400× speedup for multiple options.

Key Words: elastic membrane, spring model, parachute inflation, front

tracking

iv

To my Parents

v

Table of Contents

List of Figures . xv

List of Tables . xviii

Acknowledgements . xix

1 Introduction . 1

1.1 Overview and Motivation . 1

1.2 Parachute Inflation . 2

1.3 Fabric Dynamics . 4

1.4 Front Tracking Methods . 7

1.5 Dissertation Organization . 7

2 Mathematical Models . 9

2.1 Navier-Stokes Equations . 9

2.2 Spring-Mass Models . 10

2.2.1 Representation of Fabric Structure 11

2.2.2 Two Simplified Spring-Mass Models 11

2.2.3 An Advanced Spring-Mass Model 15

vi

2.3 Stress Analysis . 19

3 Numerical Methods and the Implementations 21

3.1 Numerical Methods for the Fluid Dynamics 22

3.1.1 Projection Method . 23

3.1.2 Fluid Solver for the Advection Term 26

3.2 Numerical Methods for the Structure Dynamics 28

3.3 The Implementations in the FronTier Library 29

3.3.1 The Extensions of the FronTier Library 29

3.3.2 The Fluid-Canopy Coupling 34

3.3.3 Modeling of Parachute Gores 40

3.3.4 Modeling of Canopy Porosity 41

3.3.5 Modeling of Parachute Clusters 43

4 Application of GPU . 45

4.1 Introduction to GPU Computing 45

4.2 Experiment Platform . 46

4.3 GPU Investigation . 48

4.3.1 Optimized Execution Resource Allocation 48

4.4 GPU Application to Gas Dynamics 51

4.4.1 Euler Equations of the Gas Dynamics 52

4.4.2 GPU implementation 54

4.4.3 Optimization . 58

4.5 GPU Application to the Spring Model 62

4.6 GPU Application to American Option Pricing 67

vii

4.6.1 Partial-integro differential equation for American options 67

4.6.2 GPU implementation 68

4.7 Computation-Memory Ratio 73

5 Numerical Results . 74

5.1 Verification of Numerical Convergence 75

5.2 Verification of Young’s Modulus and Poisson’s Ratio 77

5.3 Computation of Stress . 85

5.4 Comparison of Drag in Inflation 86

5.5 Simulation of Angled Drop . 89

5.6 Enhancement of the Efficiency 91

5.6.1 Gas Dynamics Results 91

5.6.2 Spring Model Results 93

5.6.3 American Option Pricing Results 96

6 Conclusions . 100

Bibliography . 102

viii

List of Figures

2.1 The spring model on a triangulated mesh. Each vertex point in

the mesh represents a mass point with point massm. Each edge of

a triangle has a tensile stiffness. With the equilibrium lengths set

during the initialization, the changing length of each side exerts

a tensile spring force on the two neighboring vertices in oppo-

site directions. Each angle of a triangle has an angular stiffness

which is set during the initialization. An additional tensile force

is generated when the the angle is changed. Gore boundaries are

modeled by springs with higher tensile stiffness. 12

2.2 (a) Rest triangle TX0
whose vertices are Xi0. (b) Deformed tri-

angle TX whose vertices are Xi. 17

2.3 Triangles T1 and T2 share Xi and Xj, the other vertices of trian-

gles T1 and T2 are Xm and Xn respectively. 18

ix

3.1 The flow chart of the computation for the parachute system using

FronTier as the base library. The spring system is a new module

built on the FronTier data structure and functions. The system

is coupled with a high order incompressible solver for the Navier-

Stokes equation. 22

3.2 The difference between the collision handling for fluid interface

and the fabric surface. The upper two plots show the topologi-

cal bifurcation of fluid interface. The lower two plots show the

repulsion of the fabric collision. 31

3.3 The parachute canopy is an open surface and cannot separate the

space into subdomains. But we can still coat different indices

for mesh cells close to the surface using the local geometrical

information. The light and dark shaded polygons represent the

sets of mesh cells on the positive and negative sides of the canopy

respectively. An interpolation is carried out on vertices of the

same color. 34

3.4 The reinforcement cables for the gores, are modeled using the

same spring system, but with different spring constant along the

gore seams or curved edges. The left plot shows fully opened

canopy with expanded gores. After the inflation, the gore struc-

ture is clearly revealed. The right plot shows the surface mesh

and the details of the gore boundary curves. 41

3.5 A cluster of three G11 parachutes. 44

4.1 GPU accelerated code structure 46

x

4.2 Architecture of multi-GPU devices. Each GPU hardware con-

sists of memory (global, constant, shared) and 14 SMs. Each SM

consists of 32 SPs and can run 1536 threads simultaneously. . . 48

4.3 Fifth order WENO scheme stencils. Each point represents a com-

putational node. Red points are updated by the threads while

the green points are only used as data source. Each thread up-

dates one red point only. (a) Without shared memory usage, each

thread reads seven points’ information. (b) With shared memory,

each thread reads only one point’s information. In the testing

case, the number of threads in one block is 512. Without shared

memory usage, each block will fetch 3584 (512*7) points’ informa-

tion; with shared memory, only 518 (512+6) points’ information

is necessary. 59

4.4 GPU computing performance on different block sizes and mesh

sizes. 63

4.5 Flow chart of the complete algorithm. The computation of the

spring model, which is marked by red color, is the most time con-

suming section. This part is calculated in parallel by the GPU

device with multiple threads in order to improve the computa-

tional efficiency . 64

4.6 Without-GPU (Left) and With-GPU (Right) Flow chart for single

option. 69

4.7 Without-GPU (Left) and With-GPU (Right) Flow chart for mul-

tiple options. 72

xi

5.1 Convergence test of the string chord under mesh refinement. From

left to right the total number of points in the string are 60, 123,

248, 498 respectively. The total mass of the string chord as well as

the payload at the lower end are kept constant in the simulations. 77

5.2 Convergence test results of spring model on string chord. In this

test the string chord is fixed at one end while the other end has a

payload and is free to move. The simulations are on the sequences

with 60, 123, 248, 498 points respectively. The total mass M =

Nm is a constant in the simulation. The upper left plot shows

the string lengths during the four simulations and the upper right

plot is the Cauchy error of the sequences. The lower plots are for

the total kinetic energy of the system. 78

5.3 Convergence test of the drum membrane under mesh refinement.

From left to right the computational mesh of the domain are 153,

303, and 603 respectively. The total mass of the membrane is

kept constant in the simulations. The upper three plots show

the membrane position at t = 1sec and the lower plots show the

membrane position at t = 2sec. 79

xii

5.4 Convergence test results of spring model on membrane. The

boundary of the membrane is fixed. The simulations are on the

sequences with 153, 303, 603 and 1203 mesh for the computational

domain respectively. The total mass M = Nm is a constant in

the simulation. The left plot shows the total area during the

four simulations and right plot shows the Cauchy errors of the

sequences. 80

5.5 Young’s Modulus (Left) and Poisson’s Ratio (Right). We tested

the spring model by stretching the fabric surface to different

lengths. The numerical results show that the spring-mass model

catches the fabric’s Young’s Modulus and Poisson ratio nicely in

the linear regime of strain. 84

5.6 Simulation of a table cloth draping under the action of the grav-

ity. The fabric constraint automatically adjusts the regions of the

cloth. The spring model of the fabric gives a realistic motion of

the cloth. The characteristic eigen frequency for the fabric model

in this simulation is
√

k/m = 1000 and the friction constant is

κ = 0.1. 85

5.7 The von-Mises formula Eq. (2.19) is used to calculate the fabric

stress in the spring model. The left plot shows the von-Mises

stress of a rectangular membrane when pulled from the four cor-

ners. Similarly, the right plot shows the von-Mises stress of the

triangular membrane pulled from its three vertices. 87

xiii

5.8 The von-Mises formula Eq. (2.19) is used to calculate the fabric

stress in the spring model. The plots show the von-Mises stress of

a rectangular membrane stretched along the horizontal axis. The

shock wave has been captured clearly. 88

5.9 Von-Mises stress on the parachute canopy during its inflation.

The red color shows regions with high stress. The figure shows

that the areas near the canopy-string connection points are the

most stressful part of the parachute during inflation. 89

5.10 Drag force time history during the inflation phase of a C-9 per-

sonnel parachute. The experimental data is provided by Dr. Jean

Potvin at St. Louis University. 90

5.11 Angled deployment of C-9 parachute with the flow. The deploy-

ment starts with a 15◦ angle between the initial parachute and

the direction of flow. The parachute experiences only slight asym-

metry of the canopy. The plots show the parachute at (from left

to right) t = 0sec, t = 1.5sec and t = 3.0sec respectively. 91

5.12 Angled deployment of C-9 parachute with the flow. This sequence

starts with a 60◦ angle between the initial parachute and the

direction of the flow. In this case, the canopy skirt is dangerously

wrapped at the lower side of the canopy. The plots show the

parachute at (from left to right) t = 0sec, t = 1.5sec and t =

3.0sec respectively. 92

xiv

5.13 Inversion of the parachute canopy during an angled drop. The

alignment of the parachute started with a 75◦ angle with the

direction of the velocity. A complete inversion occurs at t = 2sec.

The two plots are views of the inverted canopy from different

directions. 93

5.14 Sod problem results, the solution domain is [−1, 1]. The mesh

size of the left figure is 400 while the right one’s is 3200. 93

5.15 GPU (left) and CPU (right) time per step. The GPU computing

time is 29-86× faster than CPU’s. However, GPU total time is

only 4-20× faster than CPU’s. This is due to the time used to

transfer the data between the host and the device in GPU. From

the left plot, we can clearly see that the time spent on copying

data is at least twice larger than the time spent on computing. . 95

5.16 GPU (left) and CPU (right) time per step. The GPU computing

time and total time are 5-6× faster than CPU’s. This is due to

the negligible time used to transfer the data between the host and

the device. 95

5.17 GPU (left) and CPU (right) time per step. The GPU computing

time is 1.7-12× faster than CPU’s. However, the performance of

GPU is worse when the mesh size is small. Because the time used

to transfer the data dominates GPU calculation time. 97

5.18 GPU (left) and CPU (right) time per step. The GPU computing

time is relatively stable when the number of options is below 2048. 99

xv

List of Tables

4.1 A Dell Precision T7600 Workstation with dual NVIDIA Quadro

graphics cards was used to set up the test environment. 47

4.2 Execution Resource analysis. In this particular application, each

thread needs 63 registers and each block needs (block size + 2 ∗

ghost size)∗(number of shared doubles per thread)∗sizeof(double)

shared memory where ghost size = 3, and number of shared doubles per thread =

11 are decided by the algorithm and sizeof(double) = 8 is decided

by the compiler. Given these parameters and the total size of reg-

isters and shared memory per SM has, we can get the maximum

number of blocks limited by registers and shared memory. . . . 61

5.1 Initial configuration of the 2-D and 3-D simulations 77

xvi

5.2 Convergence tests of spring model for a swing chord. In the com-

putational sequences, the total mass of the swing chord is fixed.

As the number of points increases, the point mass is reduced ac-

cordingly. Cauchy error is calculated on two consecutive mesh

sequences. Column el, ek, and ep are errors of total length, total

kinetic energy and total spring potential energy respectively. The

numerical results show the first order convergence on each of them. 80

5.3 Convergence tests of spring model for a fabric drum. In the com-

putational sequences, the total mass of the membrane is fixed.

As the number of points increases, the point mass is reduced ac-

cordingly. Cauchy error is calculated on two consecutive mesh

sequences. Column eA, ek, and ep are errors of total area, total

kinetic energy and total spring potential energy respective. The

numerical results show the first order convergence on each of them. 81

5.4 Young’s modulus and Poisson ratio verification 83

xvii

5.5 GPU and CPU computing time of solving one dimensional Euler

equations by the fifth order WENO scheme in one step. Eight

different mesh sizes (1024, 2048, 3072, 4096, 5120, 6144, 7168,

8192) were tested with both pure CPU code and hybrid (CPU

and GPU) code. Based on the analysis and experiments in section

4.4, we choose one of the best block size 128 here. The hybrid

code is 8-20× faster than the pure CPU code for the computation

of the intensive part when the mesh size is larger than 2048. In

the table, ”Time of copy data from Host to Device” and ”Time of

copy data from Device to Host” denoted by ”H2D” and ”D2H”,

respectively. 94

5.6 GPU and CPU computing time of three dimensional spring model.

Spring models with eight different mesh sizes of 2641, 4279, 6466,

9064, 12361, 15567 were tested with both pure CPU code and

hybrid (CPU and GPU) code. The hybrid code is 5-6× faster

than the pure CPU code for computing the intensive part. . . . 96

5.7 Operation time of single option pricing under the generalized hy-

perbolic distribution, parameters λ = 1.0, α = 8.15, β = −2.5, δ =

0.767 . 97

5.8 Operation time of multiple options pricing under the general-

ized hyperbolic distribution, parameters λ = 1.0, α = 8.15, β =

−2.5, δ = 0.767 . 99

xviii

Acknowledgements

I would like to express my sincere gratitude to my adviser, Professor

Xiaolin Li, for suggesting this important and exciting thesis topic and for his

advice, support, and guidance toward my Ph.D. degree. He taught me not only

the way to do scientific research, but also the way to become a professional

scientist. He is my adviser and a good friend.

I would like to thank Professors James Glimm, Xiangmin Jiao, Roman

Samulyak who provided encouragement and valuable technical knowledge. I

would also like to thank Professor Foluso Ladeinde for being on my dissertation

committee. I would like to acknowledge the support of Department of Applied

Mathematics and Statistics and its staff.

I would like to thank all my friends during my years of study as a graduate

student at Stony Brook for their friendship and encouragement. I would like

to mention Dr. JoungDong Kim, Dr. Yan Li, Dr. Yijing Hu, Yiyang Yang,

Zheng Gao, Xiaolei Chen, Saurabh Joglekar, and Xiuzhu Ang.

Throughout my academic career, the constant support and unconditional

love of my parents have always motivated me to strive forward. My dissertation

is dedicated to them. Above all, I thank God for his love, grace, wisdom, favor,

faithfulness, and protection.

xix

Chapter 1

Introduction

1.1 Overview and Motivation

The analysis of the deformations and shape forming of canopy-like fab-

ric structures such as parachutes, is nowadays an important scientific and

technological topic, due to the wide range of applications of these structures.

The mechanics of such structures can be approached in three ways: instru-

mentation and experimental studies, which is a development of the old craft

methods of subjective evaluation; statistical correlations of test data, or the

more recent methods of neural networks, fuzzy logic, and evolutionary algo-

rithms, as described by Majumdar and Abhijit [59]; and applied mechanics

modeling. The thinness and lack of bending stiffness of fabrics introduces a

separation in scales of local and global curvature, contact interactions, and

two-sided fluid-structure interactions. Due to these complexities, parachute

modeling and simulation has traditionally been empirical in nature. However,

advance of parachute in the 21st century requires a quantitative engineering

approach to design instead of the age-old qualitative craft methods based on

1

experience and trial-and-error. Realistic and accurate analysis requires sophis-

ticated techniques in fluid-structure interaction (FSI) including computational

fluid dynamics (CFD) and computational structure dynamics (CSD).

1.2 Parachute Inflation

In contrast to terminal descent, parachute inflation has a relatively short

time duration, typically a few seconds. However, this short period regime

is paramount to the effectiveness of the deceleration system and modeling

it accurately with physics-based tools is difficult. Any malfunction, such as

inversion, barber’s pole, or jumper-in-tow, happens in this short stage could

have serious effect on the fate of the personnel and cargo delivery.

Parachute inflation is a complex aeroelastic phenomenon that involves

complex aerodynamics and elastic structures. The fact that the flow field and

the canopy’s geometric shape are interactive makes the inflation process a very

difficult event to model [65]. Researchers have studied parachute inflation with

different methods including empirical analysis [66], semi-numerical simulation

[67], and through experiments [67, 68]. During the inflation sequence, the

canopy not only experiences extremely increase in internal volume and large

loading, but also involves geometric and material nonlinearities which make

it a highly challenging event to model from a dynamic structures perspec-

tive [15]. Parachute inflation consists of a sequence of dynamically animated

stages. These stages have been summarized in [102, 20]. For example, dur-

ing the inflation of a circular parachute, the canopy starts as a vertical tube

with an open lower end. With very little drag, air quickly rushes into the

2

canopy tube due to the fast descending velocity of the system. Due to the

limited volume inside the canopy, the pressure at the apex point increases

dramatically leading to a large pressure difference between the internal and

the external sides of the canopy. Meanwhile, the continued accumulation of air

inside the canopy (inflation) results in the expansion both vertically and hor-

izontally. The duration of the inflation process depends on the orientation of

the parachute to the oncoming flow, altitude, and flight speed and ends when a

sufficient amount of high pressure air fills the canopy. The aerodynamic forces

that act in opposite directions along the parachute determine its steady-state

shape and the final shape of the recirculating region (air bubble) inside [66].

In addition, the presence of the intense flow separation outside the canopy,

the strong turbulence near the edge of parachute canopy and the narrow space

inside the canopy before it is fully inflated result in computational challenges

from the CFD perspective [101].

Simulation of parachute inflation via computational method has attracted

attention of scientists at Laboratories and academic alike. In the using of

the finite element method for the fluid and structure dynamics, Stein, Ben-

ney, et al.had made important contributions [82, 81, 78, 83, 79, 80]. Tez-

duyar et al.[92, 91, 86, 85, 93] had successfully addressed the computational

challenges in handling the geometric complexities and the contact between

parachutes in a cluster by applying the Deforming-Spatial-Domain/Stabilized

Space-Time (DSD/SST) method. Using the immersed boundary method to

study the semi-opened parachute in both two and three dimensions, Kim and

Peskin et al.[49, 50], performed simulations with small Reynold number (about

3

300). Yu and Min [102] studied the transient aerodynamic characteristics of

the parachute opening process. Karagiozis used the large-eddy simulation to

study parachute in Mach 2 supersonic flow [45]. Purvis [70, 71] used springs

to represent the structures of forebody, suspension lines, canopy, etc. In these

papers, the authors used cylindrical coordinate with the center line as the

axis. An algorithm called PURL to couple the structure dynamics (PRESTO)

and fluid mechanics (CURL) was developed by Strickland et al.[84]. In this

algorithm mass is added to each structure node based on the diagonally added

mass matrix and a pseudo is computed from the fluid code which is the sum

of the actual pressure and the pressure associated with the diagonally added

mass. Tutt and Taylor [97, 95] used an Eulerian-Lagrangian penalty coupling

algorithm and multi-material ALE capabilities with LS-DYNA to replicate the

inflation of small round canopies in a water tunnel.

1.3 Fabric Dynamics

Simulation of fabric dynamics through computational method has ap-

plications in both computer graphics and engineering. Scientific applications

include modeling of cell skin and soft tissues. The textile and fashion in-

dustry invites computer tools that can realistically generate the shape of a

cloth dressing. Many authors have contributed to the modeling of cloth and

fabric surface. A continuous model for deformable objects was proposed by

Terzopoulos and Fleischer [90, 88, 89]. Using the Tchebychev net cloth model

Aono et al.[2, 3] simulated a sheet of woven cloth composites. Due to its

intuitiveness and simplicity particle method gained popularity in 1990’s and

4

2000’s. A particle-based model capable of being tuned to reproduce the static

draping behavior of specific kinds of woven cloth was presented by Breen

et al.in [8, 9]. Eberhardt et al.[26, 25] extended the model and introduced

techniques to model measured force data exactly and thus cloth-specific prop-

erties. They also extended the particle system to model air resistance. Choi

and Ko [12] also used particle spring model, on which our model is base on. On

the physics based modeling, Platt and Barr[40] showed how to use mathemat-

ical constraint methods based on physics and on optimization theory to create

controlled, realistic animation of physically-based flexible models. Carignan

et al.[11] discussed the use of physics-based models for animating clothes on

synthetic actors in motion. Provot [69] described a physics-based model for

animating cloth objects, derived from elastically deformable models, and im-

proved order to take into account the non-elastic properties of woven fabrics.

Volino et al.[99] presented an efficient set of techniques that simulates any

kind of deformable surface in various mechanical situations. Hsiao and Chen

[39] used the spring model to draw the cloth pattern. They found that cloth

shows different appearance with different values of the spring constant. Aileni

et al.[1] applied the mass-spring model for a three dimensional simulation of

apparel products using virtual mannequins. Their model supports different

types of human bodies created in the virtual environment. Ji [41] used the

mass-spring model to describe the dynamic draping behavior of the selected

five types of fabric materials including woven and knitted fabrics. In his pa-

per, the material properties are measured through the Kawabata Evaluation

System (KES) [46].

5

We follow the general idea of the particle and spring mass method for

the modeling and simulation of the cloth stretching and draping. Previous

studies of Kim et al. [48] and Li et al. [57] discuss the application of the

mesoscale model in effects to mimic the dynamic motion of a fabric surface

while coupled with an incompressible fluid solver for parachute inflating and

descending. The numerical simulations demonstrated good agreement with

the experimental results both qualitatively and quantitatively, but questions

remain on the validity of the model and its relation to the continuum model of

the fabric surface as an elastic membrane. Recently, Delingette [19] proposed

a revision of the spring-mass model that includes the angular deformation

energy where the force at each triangle vertex includes spring forces through

both its adjacent and opposite sides. Delingette demonstrated that with this

modification, the force in the spring model is indeed related to the strain and

stress of the elastic membrane. This work will demonstrate that the difference

between the spring-mass model used in our previous studies and Delingette

model can be bridged by a re-interpretation of the spring constant and by

adding additional forces contributed by the opposite sides of the vertex. We

also demonstrate that the spring-mass model is numerically convergent under

the constraints that the total mass is conserved and that both the tensile

stiffness and the angular stiffness of the spring conform with the material’s

Young’s modulus and Poisson ratio. In addition, an algorithm to compute

the von-Mises stress of a fabric surface under strain was also included. The

objective of this work is employ the Delingette-modified spring-mass model in

the simulation of parachute inflation.

6

1.4 Front Tracking Methods

Front Tracking is a numerical algorithm which assigns special degrees of

freedom to a surface, moving dynamically through a background grid. This

method, when coupled with underlying PDE solvers, can provide high res-

olution to the geometry and physical variables across the interface. Front

Tracking is a Lagrangian interface method; it can deliver solutions superior

to Eulerian methods, including the level set and the volume of fluid methods

[21].

1.5 Dissertation Organization

In Chapter 2, we will introduce the mathematical models which include

Navier-Stokes equations, three spring-mass models, and an algorithm to com-

pute the von-Mises stress of a fabric surface under strain. Chapter 3 presents

the numerical framework and the implementations of the above models. We

will discuss some of the major extensions we have made to the FronTier func-

tionalities and the coupling of the spring models with the incompressible fluid

solver in FronTier . In Chapter 4, we will introduce the application of the

Graphics Processing Unit (GPU) in the simulations. In Chapter 5, several

benchmark test cases on the modeling of fabric surface through the front track-

ing method have been presented. We will give the verification of numerical

convergence as well as the verification of Young’s modulus and Poisson ratio

of the spring system. In addition, the computation of the stress was discussed

and the numerical solutions have been compared with the available experimen-

7

tal data for validation. Chapter 6 will summarize this work and discuss some

of the on-going work and amendment to our current computational method

for the parachute system.

8

Chapter 2

Mathematical Models

2.1 Navier-Stokes Equations

For personnel and cargo parachute, the speed of the surrounding flow

is much smaller than the sound speed, therefore the use of incompressible

Navier-Stokes equation is appropriate.

ρ
Du

Dt
+∇p = µ∇2u+ ρg, (2.1)

where D
Dt

=
∂

∂t
+u · ∇ is the material derivative of the fluid. The incompress-

ibility is given by Eq. (2.2)

∇ · u = 0. (2.2)

For the parachute system, this equation is solved through the projection

method with special treatment at the canopy surface.

9

2.2 Spring-Mass Models

Using a spring-mass system to model a fabric surface has been explored by

computer scientists and applied mathematicians. This spring system provides

good model for the simulation of thin surfaces such as skin, soft tissue, paper

and textile. It has also become a natural choice for the modeling of leaves and

parachute canopy.

The non-fluid material in the parachute simulation is called the structure

component whose motion is governed by the Newton’s second law subject to

certain internal constraints. Both the canopy surface and the string chords (or

the risers) which connect the canopy and the payload are flexible structures

and they too, are continuum systems. In many literature, the motion of the

structure is described by the quasi-ordinary equation

ρi
d2xi

dt2
= fi − ν

dxi

dt
+∇ · σi, (2.3)

where at position xi, ρi is the density, fi is the external force density (for

example, due to gravity and fluid pressure), σi is the stress tensor, and ν is

the damping coefficient.

In general, all derivatives in Eq. (2.3) should be considered as partial

derivatives. However, very few have attempted to solve Eq. (2.3) exactly. Like

the fluid, discretization of Eq. (2.3) is also needed. We followed the work by

Choi and Ko [12] and applied to the triangular mesh from the front tracking

library. Although the basic idea is similar, there are several marked differences

in our application.

10

2.2.1 Representation of Fabric Structure

In this work, the fabric surface is represented by a high-quality triangu-

lar surface mesh which is generated with no small or large angles. Fig. 2.1

illustrates the spring model on the triangulated mesh. In the model we used

herein, we seek to approximate Eq. (2.3) through physical intuition, that is, we

approximate each discretized element as a mass point while the stress tensor σi

is approximated by a set of springs connecting to the neighboring points. The

spring system has only the restoring force against stretching and compression,

therefore it may not exactly describe the structure system, especially when

the structure’s stress tensor may include restoring force against bending and

twisting. Since the structure involved in the parachute study contains only

fabric surface and string chord, we believe such approximation is good enough

and can capture the most important properties of the structure dynamics in

the parachute system. The details of such system will be described in the

following subsections.

2.2.2 Two Simplified Spring-Mass Models

When no external driving force is applied, the fabric surface is a con-

servative system whose total energy (kinetic energy and potential energy) is

a constant. Assuming each mesh point represents a point mass m in the

spring system with position vector xi, the kinetic energy of the point mass i

is Ti =
1
2
m|ẋi|2, where ẋi is the time derivative, or velocity vector of the point

mass i.

11

Figure 2.1: The spring model on a triangulated mesh. Each vertex point in the

mesh represents a mass point with point mass m. Each edge of a triangle has a

tensile stiffness. With the equilibrium lengths set during the initialization, the

changing length of each side exerts a tensile spring force on the two neighboring

vertices in opposite directions. Each angle of a triangle has an angular stiffness

which is set during the initialization. An additional tensile force is generated

when the the angle is changed. Gore boundaries are modeled by springs with

higher tensile stiffness.

The first simplified spring-mass system, which we refer to as Model-I, has

the potential energy between two point masses xi and xj in the form of

Vij =
k

2
|(xi − xj)− (xi0 − xj0)|2 , (2.4)

where k is the spring constant and xi0 is the equilibrium position of mass point

12

i. A spring system with potential energy Eq. (2.4) has pure oscillatory motion

and its eigen frequencies have an upper bound
√

2Mk/m, where M is the

maximum number of neighbors a mass point can have. This upper bound of

eigen frequencies plays an important role in the analysis of numerical stability

and accuracy for schemes to solve the system.

It is easy to analyze the upper bound of eigen frequencies of Model-I.

However, Model-I contains strong bending force and is not suitable for fabric

modeling since a fabric surface is considered as a membrane which is an ideal-

ized two dimensional manifold for which forces needed to bend it are negligible.

For a realistic spring system to model the fabric surface, we have to assume

that the spring force between two neighboring mass points is only proportional

to the displacement from their equilibrium distance, the potential energy due

to the relative displacement between two neighboring point mass xi and xj is

given by

Vij =
k

2
(|xi − xj | − l0ij)

2, (2.5)

where l0ij = |xi0−xj0| is the equilibrium length between the two point masses.

We refer to this system model as Model-II.

The Lagrangians of the two systems are, therefore,

L = T − V =

N
∑

i=1

1

2
m|ẋi|2 −

1

4

N
∑

i=1

N
∑

j=1

k |(xi − xj)− (xi0 − xj0)|2 ηij (2.6)

13

for Model-I and

L = T − V =

N
∑

i=1

1

2
m|ẋi|2 −

1

4

N
∑

i=1

N
∑

j=1

k(|xi − xj | − l0ij)
2ηij (2.7)

for Model-II, where ηij is the adjacency coefficient between mass point i and

j, and ηij = 1 if mass points i and j are immediate neighbors, ηij = 0 if i = j

or mass points i and j are not direct neighbors.

Applying the Lagrangian equation

d

dt

(

∂L

∂q̇i

)

=
∂L

∂qi

to each mass point at xi where q = (x, t), we have

m
dẋi

dt
= m

d2xi

dt2
= −

N
∑

j=1

ηijk ((xi − xj)− (xi0 − xj0)) , (2.8)

for Model-I and

m
dẋi

dt
= m

d2xi

dt2
= −

N
∑

j=1

ηijk
(

xi − xj − l0ijeij
)

, (2.9)

for Model-II, where eij =
xi−xj

|xi−xj |
is the unit vector from xi to xj .

The difference between Model-I and the fabric model (Model-II) is that

the latter has no bending energy, thus no restoring force in the direction normal

to the surface.

14

2.2.3 An Advanced Spring-Mass Model

Model-II serves as a simplified mesoscale model which assumes the force

required to bend the surface is negligible and the force to stretch the surface

is proportional to the displacement from the equilibrium distance between

adjacent mass points. Although this model can simulate the dynamic motion

of a fabric surface and exert correct tension and wrinkling of the surface,

there is a lack of proof on the relation between this model and the continuum

model for an elastic membrane. Van Gelder argued [30] that the simple spring-

mass model cannot be related to the continuum model for the linear elastic

membrane and therefore not suitable to represent the fabric surface. However,

recently, Delingette [19] proposed a revision of the spring-mass model that

includes the angular deformation energy where the force at each triangle vertex

includes spring forces through both its adjacent and opposite sides. The work

of Delingette [19] details the modeling efforts of a nonlinear membrane using

a spring-mass model with a triangulated mesh. This model is favored because

of its relation to the elastic membrane model in continuum mechanics.

Illustrative features of Delingette’s model are given in Fig. 2.2. The

energy of membrane W (TX0
) that is required to deform a single triangle

TX0
with vertices {X10,X20,X30} into its deformed position TX with vertices

{X1,,X2,X3} consists of two parts,

• The energy of three tensile springs that prevent edges from stretching.

• The energy of three angular springs that prevent any change of vertex

angles.

15

For a triangle in equilibrium TX0
, the initial states are given by area AX0

,

angles αi, and lengths l0i (i ∈ 1, 2, 3) in equilibrium while AX, βi and li denote

the area, angles, and lengths of the deformed triangle TX respectively.

The edge elongation can be written as dli = li − l0i . The potential energy

is given [19] as

W (TX0
) =

3
∑

i=1

1

2
k
TX0

i (dli)
2 +

3
∑

i=1
j=(i+1) mod 3
k=(i+2) mod 3

γ
TX0

i dljdlk

where

k
TX0

i =
(l0i)

2(2 cot2 αi(λ+ µ) + µ)

8AX0

is the tensile stiffness and

γ
TX0

i =
l0j l

0
k(2 cotαj cotαk(λ+ µ)− µ)

8AX0

(2.10)

is the angular stiffness, where j = (i+1) mod 3 and k = (i+2) mod 3. λ and µ

are the Lamé coefficients of the material. These coefficients are simply related

to the two physically meaningful parameters defined in planar elasticity for a

membrane, that is, Young’s modulus E and the Poisson ratio ν [33]:

λ =
Eν

1− ν2
and µ =

E(1− ν)

1− ν2
.

Young’s modulus quantifies the stiffness of the material, whereas the Poisson

ratio characterizes the material compressibility.

Through the application of Rayleigh-Ritz analysis the fabric surface, rep-

16

X30

X10

X20

X3

X2X1

I02
I01

I03

I2 I1

α1

α2

α3

β3

β1
β2

I3

Figure 2.2: (a) Rest triangle TX0
whose vertices areXi0. (b) Deformed triangle

TX whose vertices are Xi.

resented by the triangular mesh, should evolve by minimizing its membrane

energy. Therefore, along the opposite derivative of that energy with respect

to the nodes of the system, that is, the deformed positions Xi:

Fi(TX0
) = −∂W (TX0

)

∂Xi

=
∑

j 6=i

k
TX0

j (dlj)
Xk −Xi

lj
+
∑

j 6=i

(γ
TX0

k dli + γ
TX0

i dlk)
Xk −Xi

lj
(2.11)

The membrane deformation energy of the whole triangulation is the sum of

the energy of each triangle. Thus, we obtain the force at each vertex point as

Eq. (2.12).

Fi =

N
∑

j=1

ηijFij (2.12)

As illustrated by Fig. 2.3, if Xi and Xj are shared by two triangles T1

and T2, and the other vertices of triangles T1 and T2 as denoted as Xm and

17

T1

T2

Xm

Xi Xj

Xn

Figure 2.3: Triangles T1 and T2 share Xi andXj, the other vertices of triangles

T1 and T2 are Xm and Xn respectively.

Xn respectively, we have

Fij = ((kT1

ij + kT2

ij)dlij + (γT1

i dlim + γT1

j dljm + γT2

i dlin + γT2

j dljn))eij

= k̃ijdlijeij + γ̃ijdlijeij (2.13)

where k̃ij = kT1

ij + kT2

ij , γ̃ij = (γT1

i dlim + γT1

j dljm + γT2

i dlin + γT2

j dljn)/dlij and

eij is the unit vector from Xi to Xj.

If the second term in Eq. (2.13) is neglected, Delingette’s model is same

as Model-II except that the spring constant varies if the corresponding initial

triangles deviate from isosceles triangles. Numerical evidence suggests that

both the variation of k̃ij and the modification from the second term (due to

angular stiffness) are significant in the simulations.

18

2.3 Stress Analysis

The stress distribution of the parachute canopy fabric and gores during

the process of inflation is valuable information prior to the real-world test and

evaluation process. The natural stresses are normal stresses directed parallel

to the triangle sides and the natural stress of the triangle in the spring-mass

model is due to the stretching of each triangle side. Let τ1, τ2, τ3 be the natural

stress on side 1, 2, 3 of a triangle, we have

τi = k(li − l0i), i = 1, 2, 3, (2.14)

where k is the spring constant, l0i is the equilibrium length of side i and li is the

stretched length of the side i. This natural stress can be converted [33] into

the stress in Cartesian coordinates on the plane of the triangle. The Cartesian

stress is a 2× 2 tensor in the plane of the triangle

σ =







σxx σxy

σxy σyy






. (2.15)

The conversion from natural stress to Cartesian stress is accomplished through

a mapping matrix, that is













σxx

σyy

σxy













=













c21 s21 s1c1

c22 s22 s2c2

c23 s23 s3c3













−1











τ1

τ2

τ3













(2.16)

19

where ci = cos θi = dxi/li and si = sin θi = dyi/li are the trigonometric

functions of the angle of each side with respect to the x−axis. The stresses

in each of the two principal directions are obtained via diagonalization of the

stress tensor, that is







σxx σxy

σxy σyy






= T−1







σ1 0

0 σ2






T, (2.17)

where σ1 and σ2 are the solutions of the characteristic equation

∣

∣

∣

∣

∣

∣

∣

σxx − σ1,2 σxy

σxy σyy − σ1,2

∣

∣

∣

∣

∣

∣

∣

= 0. (2.18)

The von-Mises stress is commonly used to evaluate safety factors of ma-

terial and is given by Eq. (2.19). So called, safety factors, are defined as the

ratio of the significant strength of the material to the von-Mises stress observed

under the application of interest. When this factor is observed to be a critical

value (that corresponds to a high stresses application of the fabric surface or

gores) the parachute construction or material may need to be modified or a

more appropriate model used for that particular application.

σvm =
√

σ2
1 + σ2

2 − σ1σ2 (2.19)

20

Chapter 3

Numerical Methods and the Implementations

The computational procedures for the parachute system are demonstrated

by the flow-chart in Fig. 3.1. The numerical method we have used in this

paper for the simulation of parachute system contains several components.

The data structures and many functionalities are based on the FronTier library

developed for the front tracking method. The parachute canopy is modeled by

the spring-mass system on a homogeneously triangulated mesh while the string

chords connecting the payload. A finite damping coefficient is added to both

the canopy and the riser spring chains in order to dissipate the kinetic energy of

oscillatory motion. We solve the Navier-Stokes equations using the projection

scheme [13, 10] and couple the fluid equation with the canopy surface through

the impulse method. We briefly discuss the components of the computational

framework in the following sections.

21

Figure 3.1: The flow chart of the computation for the parachute system using

FronTier as the base library. The spring system is a new module built on

the FronTier data structure and functions. The system is coupled with a high

order incompressible solver for the Navier-Stokes equation.

3.1 Numerical Methods for the Fluid Dynamics

Most of the components in the numerical model are formally in at least the

second order, but due to its geometrical complexity, the overall system cannot

achieve global second order due to splitting computation over each system.

22

We improved the accuracy of the fluid solver by adapting the staggered grid

algorithm in the projection step [87, 61, 55, 56].

3.1.1 Projection Method

Projection method is an effective means of numerically solving time-

dependent incompressible fluid flow problems. The advantage of the projection

method is that the computation of velocity and the pressure fields are decou-

pled. Some approximation to the momentum Eq. (2.1) is used to determine

the velocity u or a provisional velocity, and then an elliptic equation is solved

that enforces the divergence constraint Eq. (2.2) and determines the pressure.

In some variations, the viscous term in Eq. (2.1) is advanced in a separate step

from the advection terms. The original projection method is that the velocity

field is forced to satisfy a discrete divergence constraint at the end of each time

step. Projection methods which enforce a discrete divergence constraint, or

exact projection methods, have often been replaced with approximate projec-

tion methods. Approximate projection methods are used because of observed

weak instabilities in exact methods and the desire to use more complicated

or adaptive finite difference meshes on which exact projections are difficult or

mathematically impossible to implement. Additionally, as with all fractional

step methods, a crucial issue is how boundary conditions are determined for

some or all of the intermediate variables.

Projection method pioneered by Chorin [13, 14] for numerically integrat-

ing Eqs. (2.1) and (2.2) is based on the observation that the left-hand side of

equation Eq. (2.1) is a Hodge decomposition. Hence an equivalent projection

23

formulation is given by

ut = P [−(u · ∇)u+ ν∇2u], (3.1)

where P is the operator which projects a vector field onto the space of divergence-

free vector fields with appropriate boundary conditions. In the 1980s, several

papers appeared in which second-order accurate versions of the projection

method were proposed. Those of Goda [38], Bell et al.[5], Kim and Moin

[47], and Van Kan [98] are motivated by the second-order, time-discrete semi-

implicit forms of Eqs. (2.1) and (2.2),

un+1 − un

∆t
+∇pn+1/2 = −[(u · ∇)u]n+1/2 +

ν

2
∇2(un+1 + un) (3.2)

∇ · un+1 = 0, (3.3)

where [(u · ∇)u]n+1/2 represents a second-order approximation to the convec-

tive derivative term at time level tn+1/2 which is usually computed explicitly.

Spatially discretized versions of the coupled Eqs. (3.2) and (3.3) are cumber-

some to solve directly. Therefore, a fractional step procedure can be used to

approximate the solution of the coupled system by first solving an analog to

Eq. (3.2) for an intermediate quantity u∗, and then projecting this quantity

onto the space of divergence-free fields to yield un+1. In general this procedure

is given by

24

Step 1: Solve for the intermediate field u∗

u∗ − un

∆t
+∇q = −[(u · ∇)u]n+1/2 +

ν

2
∇2(u∗ + un), (3.4)

B(u∗) = 0, (3.5)

where q represents an approximation to pn+1/2 and B(u∗) a boundary

condition for u∗ which must be specified as part of the method.

Step 2: Perform the projection

u∗ = un+1 +∆t∇φn+1 (3.6)

∇ · un+1 = 0, (3.7)

using boundary conditions consistent with B(u∗) = 0 and un+1|∂Ω =

un+1
b .

Step 3: Update the pressure

pn+1/2 = q + L(φn+1), (3.8)

where the function L represents the dependence of pn+1/2 on φn+1. Once

the time step is completed, the predicted velocity u∗ is discarded, not to

be used again at that or later time steps. There are three choices that

need to be made in the design of such a method. They are the pres-

sure approximation q, the boundary condition B(u∗), and the function

L(φn+1) in the pressure-update equation. An important issue is that the

boundary condition for u∗ must be consistent with Eq. (3.6) although at

25

the time the boundary conditions are applied the function φn+1 is not

yet known and hence must be approximated.

In the first step of the method, if q is a good approximation to pn+1/2,

the field u∗ may not differ significantly from the fluid velocity and thus

a reasonable choice for the boundary condition B(u∗) = 0 may be (u∗ −

ub)|∂Ω = 0. On the other hand, one may not be interested in computing

the pressure at every time step and would like to choose q = 0 and obviate

the third step in the method. In this case u∗ may differ significantly from

the fluid velocity, requiring the boundary condition B(u∗) to include a

nontrivial approximation of ∇φn+1 in Eq. (3.6). Regarding the third

step of the method, substituting Eq. (3.6) into Eq. (3.4), eliminating u∗,

and comparing with Eq. (3.2) yield a formula for the pressure-update

pn+1/2 = q + φn+1 − ν∆t

2
∇2φn+1. (3.9)

The last term of this equation plays an important role in computing the

correct pressure gradient and allows the pressure to retain second-order

accuracy up to the boundary. Without this term, the pressure gradient

may have zeroth-order accuracy at the boundary even if the pressure

itself is high-order accurate.

3.1.2 Fluid Solver for the Advection Term

The calculation of advection of the velocity field is based on the fifth

order finite difference WENO schemes by Jiang and Shu[42] with a general

26

framework for the design of smoothness indicators and nonlinear weights. A

key component of the WENO scheme is the linear combination or reconstruc-

tion of lower order fluxes to obtain a higher order approximation. The WENO

schemes use the idea of adaptive stencils to automatically achieve high order

accuracy and non-oscillatory property near discontinuities. In the system case,

WENO scheme is based on local characteristic decomposition and flux split-

ting to avoid spurious oscillation. The time discretization of WENO schemes

is implemented by a class of high order TVD Runge-Kutta methods. Assum-

ing L(u) is a discretization of the spatial advection operator, the third-order

TVD Runge-Kutta is

u(1) = un +∆t · L(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t · L(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆t · L(u(2)).

The advection equation is a scalar equation but has both linear and nonlinear

flux functions (flux of Burgers equation). Using the flux version of the WENO

scheme, this can be computed robustly. This is followed by a second order

Crank-Nicolson solver for the diffusion (viscous) term. The fluid pressure is

a derived variable from the elimination of velocity divergence at each time

step. Only pressure gradient or pressure difference (across canopy) is used to

calculate the force which the fluid interacts with the structure (canopy).

27

3.2 Numerical Methods for the Structure Dynamics

The resulting equation for the spring mass model is an ODE system. To

accurately and efficiently solve this system, it is important to understand the

characteristic motion of the mass points. In particular, we need to understand

the eigen frequencies of the oscillatory modes and estimate the upper bound

of the eigen frequencies. The choice of numerical scheme and the criterion

for choosing time step will affect the stability and accuracy of the solution.

Previous analysis proved that the spring-mass system without external force is

a conservative system and the motion of point mass in its tangential direction

to the surface (or string on 2D) is purely oscillatory, and that there exists an

upper bound for the eigen frequency of the oscillation

ωmax ≤
√

2Mk

m
, (3.10)

where k is the spring constant, m is the point mass, and M is the maximum

number of neighbors a vertex point in the spring mesh can have. Using the

fourth order Runge-Kutta method, we showed that the energy amplification

factor per time step is ξ2 ∼ 1− 1
72
(ωmax∆t)6, where ∆t is the time step. There-

fore to ensure stability and accuracy, ωmax∆t < 0.1 is chosen for simulations

discussed herein. The modification of the spring model due to Delingette adds

variation to the spring constant, but the general principle of the upper bound

is still valid except that the maximum spring constant in Eq. (3.10) should

be substituted in for the determination of the upper bounds. This claim is

numerically verified in all the simulations.

28

3.3 The Implementations in the FronTier Library

To correctly model the parachute system, an accurate coupling between

the Navier-Stokes equation and the structure dynamics must be carefully con-

sidered near the canopy surface. The method we designed for the simulations

in this paper uses the superposition of impulse on every mass point. Each

mass point in the spring system acts as an elastic boundary point and exerts

an impulse to the fluid in its normal direction. Our algorithm ensures that

the action and reaction between the spring mass point and the fluid solver

are equal in magnitude and opposite in directions, a requirement of Newton’s

third law.

3.3.1 The Extensions of the FronTier Library

Front tracking method treats a hyper-surface as a topologically linked

set of marker points. The front tracking library contains data structure and

functionalities to optimize and resolve the hyper-surface mesh with topological

consistency. This method has been used for the simulations of fluid interface

instabilities [24, 23, 32, 31], diesel jet droplet formation [7], and plasma pel-

let injection process [73, 74]. In these problems, the hyper-surface is used

to model the interior discontinuities of materials and such manifold surface

may undergo complicated changes in geometry and topology. The modeling

of fabric surface is simpler in topological handling due to the fact that a fabric

surface cannot bifurcate. However the fabric system has certain constraints

and poses new challenges to the front tracking data structure and some asso-

29

ciated functionalities.

Saving of the Initial Conditions

Since there is always a finite elasticity of a fabric material, to approximate

the fabric surface as a highly stiffened spring system is not only convenient,

but also realistic. However, the calculating of the force on each spring always

need the equilibrium lengths of the related springs and the initial sizes of

related angles. This requirement prompts us to add an equilibrium state of

the mesh and treat the marker points of the hyper-surface as a set of spring

vertices. This equilibrium lengths of the triangles’ sides and the initial size of

the triangles’ angles are computed after the mesh optimization and stored in

memory throughout the computation.

Collision Handling

Front tracking method also relies on the index of the side to check the

topological consistency of the interface. For fluid interface instability prob-

lems, collision and contact of surfaces are resolved by merging or bifurcation.

However, fabric surface can neither merge nor bifurcate, therefore we need to

have functions which can carefully deal with the repulsive contact of structure

surfaces, especially when the fabric surface is folded. Parachute collision/-

contact is handled through the standard FronTier library with major revisions

such as functions to handle the non-manifold surface and three dimensional

curves (not as boundary of a surface, such as the spring chords). Fig. 3.2

shows the difference of collision handling between the fluid-fluid interface and

30

the fabric-fabric surface.

Figure 3.2: The difference between the collision handling for fluid interface

and the fabric surface. The upper two plots show the topological bifurcation

of fluid interface. The lower two plots show the repulsion of the fabric collision.

Global Indexing of Surface Mesh

Global indexing is a new feature that added to the computational frame-

work. The original FronTier [22] had to deal with frequent surface mesh opti-

mization and topological reconstructions. This makes the parallelization based

on the matching of global index very difficult. As a result, the original FronT

ier library relied on floating point matching for parallel communication. The

31

floating point matching is not completely reliable therefore more complicated

algorithms were implemented as reinforcement. However for fabric-like surface,

especially when a spring-mass model is used, the inter-connectivity and prox-

imity of the interface marker points should not be changed. Therefore, global

indexing is ideal for the parallel communication of the surface information as

employed in this work.

Local Index Coating Algorithm

Front tracking method has been mostly used for the study of fluid in-

terface problems such as the Rayleigh-Taylor instability [36, 34], Richtmyer-

Meshkov instability [29], and the jet problem [37, 35]. In these problems, the

fluid interface is topologically a manifold, that is, the two sides of each surface

are the boundaries of separate subdomains. Many front tracking functions

are based on this assumption. However, in the parachute system, the canopy

surface has an open boundary. In general, a space point with a finite distance

away from the canopy surface cannot distinguish to which side of the canopy

it belongs. But we may still assign the side to which a point belongs if the

point is sufficiently close to the canopy surface.

The local side information of a space point close to canopy surface plays

an important role in the calculation of pressure difference, and thus the drag

force of the air to the canopy. The pressure in one side at the canopy surface is

not continuous and therefore should be interpolated and computed using the

value from its own side. This is realized by “painting” the grid cells using the

so-called locally mesh coating algorithm.

32

Assuming the domain in which the canopy surface is immersed is indexed

by l, the local index coating algorithm follows three steps:

(1). For any grid point P with a distance d ≤ h away from the surface, where

h is the grid spacing, find the nearest point on the interface (FronTier is

well equipped with these geometry functions) Ps. Using the sign of the

scalar product PPs ·ns, we can determine the side of the point. Reassign

domain index to l − 1 if the point P is on the negative side, otherwise

reassign the index to l + 1.

(2). Reassign any grid point adjacent to a point indexed l − 1 to the same;

reassign any grid point adjacent to a point indexed l + 1 to the same.

Repeat this assignment for three sweeps. The resulting landscape of the

grid indices will look like Fig. 3.3.

(3). The interpolation of side-sensitive variables will use grid points of the

same locally coated index.

Modularized Functionalities

Modularization is emphasized in our code development. The parachute

module is an independent application program. This new module consists of

four components:

(1). the initialization module,

(2). the ODE module for the spring system,

(3). the PDE module for fluid dynamics,

33

Figure 3.3: The parachute canopy is an open surface and cannot separate the

space into subdomains. But we can still coat different indices for mesh cells

close to the surface using the local geometrical information. The light and dark

shaded polygons represent the sets of mesh cells on the positive and negative

sides of the canopy respectively. An interpolation is carried out on vertices of

the same color.

(4). the FronTier library for the interface geometry handling.

3.3.2 The Fluid-Canopy Coupling

For incompressible Navier-Stokes equation, it is the boundary condition

that controls the dynamics of the solution. For the parachute problem, the

boundary condition consists of two parts, the external boundary and the two

interior sides of the canopy surface. In our computation, we have three dif-

ferent types of external boundary conditions, the preset Dirichlet boundary,

the flow-through boundary, and the periodic boundary. The periodic bound-

34

ary does not need special treatment and always follows the order of the nu-

merical scheme. The Dirichlet boundary for the hyperbolic and parabolic

(advection-diffusion) part of the numerical scheme is also relatively easy to

specify. Normally the preset Dirichlet boundary is on the upwind side while

the flow-through boundary is on the downwind side. The only approximation

we made is to assume the downwind side of flow-through boundary is a con-

stant extrapolation. This is needed for the parabolic equation. To compute the

projection, we have used Neumann boundary for the preset Dirichlet boundary

and the constant pressure (or φ) for the flow-through boundary. Since only

the pressure gradient is physically significant, without losing generality, we set

the φ at the flow-through boundary to zero. The interaction between fluid

and the canopy is the most crucial part of the algorithm for the parachute

simulation. We noted that the immersed boundary method by Kim and Pe-

skin [49, 50] can only carry payload up to a few grams. This is not in the

realistic range of parachute payload. The T-10 personnel parachute and the

G-11 cargo parachute both carry payload ranging from hundreds to thousands

of kilograms. Aside from the fact that Kim and Peskin’s simulations are in

fluid with small Reynold number, we also think that a more accurate modeling

between the air flow and the canopy surface should be considered.

The system described by Eq. (2.8) conserves the total energy. However

in dynamic simulation of the fabric surface, the total energy may increase

and the system can be excited due to stretching and compression by external

forces. The external force not only adds to the acceleration of the macro-scale

motion of the fabric surface, it also displaces the mass points in the tangential

35

directions and incites internal energy for the spring system. The restoring force

between each pair of neighboring mass points of the spring system serves as the

self-adjustment to satisfy the fabric constraint and Young’s modulus. However,

when the internal energy of the spring system is too high, the system may be

dominated by the random meso-scale motion of the mass points. Therefore

adding a damping force will help to stabilize the system. When there is an

external velocity field ve, we define the external impulse as Iei = mve
i , where

ve
i is the external driving velocity at point xi. At any given time, we can solve

the equations of the spring system and obtain the internal impulse Isi . Since

the spring force is a function of the relative position of the point mass with

respect to its neighbors, we can use the superposition principle and add to the

total impulse

Ii = Iei + Isi . (3.11)

Our method is to apply damping to the internal impulse only.

Physically, the canopy experiences three forces, the gravitational force

due to the weight of the fabric, the lift force due to the pressure difference

between the two sides of the canopy, and the internal force, which in our model

is the spring restoring force and the friction force (to prevent the spring system

becoming over-excited). The gravitational force of the payload is propagated

through the spring system from the string chord to the boundary of the canopy,

and then spread to each mass point of the canopy through the elastic sides

of simplices. Although the interaction between the fluid and canopy has the

participation of both the external and the internal forces, for each mass point

in the spring system, we can still divide the impulse into three components,

36

the gravitational impulse, the fluid impulse due the pressure difference between

the two sides of the canopy, and the internal impulse due to its neighboring

mass points in the spring system, that is

Ici = Icgi + Icpi + Icsi (3.12)

Our current model has not considered the fluid interaction with the mass

point of the string chord and the payload. Therefore for these mass points,

the impulse is

Isi = Isgi + Issi. (3.13)

In our method, the external impulse (due to gravity and pressure) is time

integrated for each mass point, that is

Igi =

∫ t

0

mgdt (3.14)

for both canopy and string chord mass points and

Ipi =

∫ t

0

σ(p− − p+)ndt (3.15)

for canopy points only, where p− and p+ are the pressure on lower and upper

sides of the canopy, σ is the mass density of canopy per unit area, and n is the

unit normal vector pointing from lower to upper side of the canopy. We would

like to emphasize that the current calculation of fluid impulse has considered

only the pressure in the normal direction, we have followed Kalro and Tezduyar

[44] for using this simplification. A more accurate fluid interaction should

37

include the velocity shear near the canopy surface and the stress to the surface.

We will put this as future improvement in the new papers.

The internal impulse for both canopy and string chord mass points are

solved by the damping spring system. The impulse due to payload force is

propagated through the string chords to the edge points of the canopy surface.

The interaction between the canopy and fluid is through the normal ve-

locity component of each mass point on the canopy. At every time step, the

fluid exerts an impulse to the mass points, but this part of the impulse is bal-

anced by the gravitational impulse and the restoring force of the spring. The

normal component of the superposition of the three forces feeds back to the

fluid in the following step. The result is that the momentum exchange between

the canopy and the fluid is equal in magnitude and opposite in directions, a

requirement by Newton’s third law.

To prevent the spring system getting into over-excited state, we add a

damping force to the system. Therefore, the complete system of equations is

the following

dvi

dt
= − 1

m

N
∑

j=1

ηijk
(

|xi − xj | − l0ij
)

eij + f ei − κvs
i ,

dxi

dt
= vi,

where f ei is the external force, κ is the damping coefficient and vs
i is the velocity

component due to the spring impulse vs
i = Isi/m.

We have studied two ways to implement the reacting impulse which the

canopy exerts on the fluid (or vice versa). The first method is through the

38

immersed boundary method which treats the reaction of the canopy as the nor-

mal force approximated by the smoothed delta function. The second method

is to use the canopy as an internal moving boundary with a normal velocity

(after spring settlement) of the canopy as the boundary value.

In the first method, we compute the increment of the impulse at each

point on the canopy. We have followed Peskin’s delta function method, that

is, let

f(x, t) =

∫

F(s, t)δ(x−X(s, t))ds. (3.16)

The difference between our method and Kim and Peskin’s method lies in the

calculation of F. Instead of computing the tension through the derivative with

respect to the arc length, we use the impulse of the mass point as a result of

the superposition of three forces from the spring system, that is

F(xi, i) = d(Ig + Ip + Is)/dt (3.17)

Eq. (3.17) is more physically realistic, especially because Is is solved from the

spring equations. In the canopy spring system, we have observed that the

tension is high at the top of the canopy where the curvature is almost zero.

The numerical implementation of Eq. (3.17) is straight forward after we

have obtained the solution from the ODEs of the spring system. The surface

force is the product of normal component of the acceleration and mass density

at the canopy surface

F(s, t) = ρc(a · n)n, (3.18)

39

where n is the unit normal vector on the canopy surface, and ρc is the mass

density of canopy per unit area. In the second method we treat the canopy as

a moving boundary rather than an immersed interface. Instead of using the

normal component of the acceleration as a singular force, we solve a Dirichlet

boundary problem on each side of the canopy, we use the normal velocity

computed from the ODEs of the spring system. Since the acceleration is the

derivative of velocity in a time step, the two methods are physically consistent

but with different truncation errors.

3.3.3 Modeling of Parachute Gores

Most parachute canopies are made in patches called gores. Parachute

gores are stitched by the reinforcement cables. The reinforcement cables are

important structures which can have substantial impact on the parachute’s

interaction with the surrounding fluid. The gore structures in the parachute

system can also affect the stability of the parachute motion. To accurately

model the aerodynamic motion of a parachute, a mathematical model which

reveals the geometry as well as the material strength of the canopy surface and

the gore stitches must be employed. In the present model, the reinforcement

cables are treated as curves embedded in the canopy surface. Young’s modulus

for the fabric surface and the reinforcement cable differ by assigning different

spring constants to the surface mesh and to the gore curves. The insertion of

reinforced gore boundaries as stiffened interior curves in the canopy surface

mesh is demonstrated by Fig. 2.1. Fig. 3.4 demonstrates that when fully

inflated, the spring system reveals both the patches and the indentation of the

40

reinforcement cables.

Figure 3.4: The reinforcement cables for the gores, are modeled using the

same spring system, but with different spring constant along the gore seams

or curved edges. The left plot shows fully opened canopy with expanded gores.

After the inflation, the gore structure is clearly revealed. The right plot shows

the surface mesh and the details of the gore boundary curves.

3.3.4 Modeling of Canopy Porosity

It has long been known that permeability is an important material prop-

erty that influences canopy performance; it is paramount to accurately captur-

ing fabric dynamics, total drag, and drift distance. A finite permeability will

make the parachute much more stable while still maintain the balance of the

payload. The permeability of the parachute material often plays a vital role

41

in the parachute design. A state-of-art tuning from an impervious material to

a highly permeable fabric can make a parachute from a wandering sloth into a

plummeting stabilizer. We have considered three different implementations of

porosity for the parachute including Tezduyar and Sathe [94], Kim and Peskin

[49], and Tutt[96]. We have chosen to implement the two latter methodolo-

gies because they share a similar frame work of computational mesh and are

compatible with the front tracking environment employed.

For Kim and Peskin’s method, porosity is considered as leaking pores in

the immersed elastic boundary. Let β be the density of pores and there are

βds pores in the interval (s, s + ds) along the surface. If each pore has an

aerodynamic conductance equal to γ, the flux through the pore is γ(p1 − p2)

where p1 and p2 are the pressures on the two sides of the boundary, then the

flux through the interval (s, s+ ds) of the boundary is given by βγ(p1−p2)ds.

Tutt’s algorithm is closest to the front tracking implementation. Tutt

used the Ergun equation to describe the magnitude of porous flow velocity at

a given pressure difference based on two coefficients in the following equation:

∆P

L
=

µ

K1
· vf +

ρ

K2
· v2f = a · vf + b · v2f

where:

K1 =
ε3 ·D2

150 · (1− ε)2

K2 =
ε3 ·D

1.75 · (1− ε)

are referred to as the viscous and inertial factors respectively. D is defined

42

as the characteristic length, ε is the porosity and is equal to the ratio of the

void and total volume. vf , µ, and ρ are fluid velocity, viscosity, and density

respectively. In the FronTier -airfoil code used here, the pressure difference is

computed after the velocity projection into the divergence-free space. We can

then use the pressure difference on two sides of the canopy to compute vf and

add it to the advection solver as flux from the immersed elastic surface.

3.3.5 Modeling of Parachute Clusters

Parachute clusters have been used in a wide range of applications through-

out their history, and the process utilized for their development and design has

significantly improved over the years. Compared with excessively large single

canopies, parachute cluster systems have a number of benefits in many appli-

cations. These benefits include the ability to rig and manufacture the system,

backup protection, and excellent stability characteristics. Of course, there are

some undesirable features of parachute clusters, which include the difficulty

in obtaining a time-sequenced opening of all canopies together. Most cluster

applications described in the literature are National Aeronautics and Space

Administration (NASA) systems, including the Apollo recovery systems and

the space shuttle solid rocket booster recovery systems [62, 16, 53, 28, 77, 54].

However, parachute clusters are employed for many other applications, in-

cluding numerous military applications. Military systems that use clusters

include extraction systems and low-velocity airdrop systems for cargo, which

consistently deliver payloads as heavy as 60,000 pounds. Based on the single

parachute modeling, we implemented structures and functions for parachute

43

clusters. Fig. 3.5 demonstrates a cluster consisting of three G11 parachutes.

Figure 3.5: A cluster of three G11 parachutes.

44

Chapter 4

Application of GPU

4.1 Introduction to GPU Computing

General Purpose Graphics Processing Units (GPGPU) computing [52] is

to use the GPUs together with CPUs to accelerate a general-purpose scientific

and engineering application. Heterogeneous computing can offer dramatically

enhanced application performance by offloading computation-intensive por-

tions of the programming code to the GPU units, executing the remainder of

the code still on the CPU. Joint CPU/GPU applications constitute a pow-

erful combination because CPUs consist of a few cores optimized for serial

processing, while GPUs on the other hand, consist of thousands of smaller,

more efficient cores are designed for massive parallel calculations. Therefore,

running the serial portions of the code on the CPU and intensive parallel por-

tions of the code on the GPU improves the performance of the applications

dramatically. Fig. 4.1 demonstrates the structure of a hybrid GPU/CPU code.

From the viewpoint of a user, applications simply run remarkably faster. To

fully exploit the acceleration effect of GPUs, the property of a specific prob-

45

lem should be thoroughly considered and an optimized execution resources

allocation strategy should be developed.

Figure 4.1: GPU accelerated code structure

4.2 Experiment Platform

Both the CPU and the GPU studies in this work were implemented on a

dell precision T7600 Workstation with dual Intel Xeon E5-2687W CPUs and

dual NVIDIA Quadro 6000 graphics cards. The Intel Xeon E5-2687W CPU

is the latest multi-threaded multi-core Intel-Architecture processor. It offers

eight cores on the same die running at 3.10 GHz. The Intel Xeon E5-2687W

processor cores feature an out-of-order super-scalar micro-architecture, with

newly added 2-way hyper-threading. In addition to scalar units, it also has

4-wide SIMD units that support a wide range of SIMD instructions. Each

has a separate 32KB L1 cache for both instructions and data and a 256 KB

unified L2 data cache. All eight cores share an 20 MB L3 data cache. The

46

Intel Xeon E5-2687W processor also features an on-die memory controller that

connects to four channels of DDR memory. Each Quadro 6000 graphics card

consists of 14 streaming multiprocessors (SMs) running at 1.15 GHz that share

a single 768 KB L2 cache and 6 GB global memory on the device. Each SM

consists of 32 streaming processors (SPs), a 48 KB shared memory and 32768

32-bit registers. Fedrora 18 with kernel 3.9.2-200, CUDA Toolkit 5.0 and GCC

4.7.2 were used in the computations. Table 4.1 shows the hardware structure

of the computer on which the experiments run. Fig. 4.2 demonstrates the

architecture of multi-GPU devices.

Hardware

CPU

Dual Eight Core XEON E5-2687W, 3.1GHz

64GB DDR3

32KB x 16 L1 Cache, 256KB x 16 L2 Cache

20MB x 2 L3 Cache

GPU

Dual Quadro 6000 with 14 multiprocessor

448 cores, 1.15Hz

6GB global memory, 64 KB constant memory

48KB shared memory

32768 registers per multiprocessor

Software

OS Fedora 18 with kernel 3.9.2-200.fc18.x86 64

Compiler gcc version 4.7.2

CUDA CUDA Toolkit 5.0

Table 4.1: A Dell Precision T7600 Workstation with dual NVIDIA Quadro

graphics cards was used to set up the test environment.

47

SM #0

SM
#1

SM
#13

Bus

Shared Memory

SP0 SP1 SP2 SP31

Constant Memory Global Memory

Global Memory Bus

Constant Memory Bus

PCI-E Bus

GPU
#1

GPU #0

Figure 4.2: Architecture of multi-GPU devices. Each GPU hardware consists

of memory (global, constant, shared) and 14 SMs. Each SM consists of 32 SPs

and can run 1536 threads simultaneously.

4.3 GPU Investigation

4.3.1 Optimized Execution Resource Allocation

Hardware Limitation

In a heterogeneous computing code, the most computation intensive and

parallelizable part will be executed on GPU, but the serial part will remain

on CPU. GPU computation can be activated by invoking a kernel function

which will launch a grid containing hundreds of thousands of threads. Thread

is the most fundamental execution unit and threads in same grid execute the

48

same kernel function. In the computation process, threads are organized into

blocks and the grid is made up of thread blocks. The number and dimension

of blocks in the grid and the number and dimension of threads in the block

can be specified according to the requirement of specific problem.

There are some hardware limitations on the dimension of grids and blocks,

as well as the number of threads per block. In our computing platform, which

is Quadro 6000 with compute capability 2.0, the corresponding limitations are:

• Maximum number of threads per block is 1024

• Maximum dimension size of a thread block is 1024× 1024× 64

• Maximum dimension size of a grid is 65535× 65535× 65535

Listing 4.1 demonstrates a calling of the kernel function of 1D gas dy-

namic model, flux kernel, on the host. When this kernel function is launched, a

one dimensional grid with size (total mesh size+block size[0]−1)/block size[0]

is generated and each block is one dimensional with size block size[0]. This

thread hierarchy setting satisfies the hardware limitation of the current com-

puting platform.

1 dim3 b l o c k s i z e (128 , 1 , 1) ;

2 dim3 g r i d s i z e ((t o t a l me s h s i z e + b l o c k s i z e [0] − 1) / b l o c k s i z e

[0] , 1 , 1) ;

3 i n t shared mem s ize Bytes = 11 ∗ (b l o c k s i z e [0] + 2 ∗

g h o s t p o i n t s i z e) ∗ s i z e o f (double) ;

4 f l u x k e r n e l <<<g r i d s i z e , b l o c k s i z e , shared mem size Bytes>>>(

gamma, lambda , maxeig [0] , maxeig [1] , maxeig [4] , ex t end s i z e ,

49

gho s t s i z e , dev u , dev f lux) ;

Listing 4.1: The host calls the kernel function of 1D gas dynamic.

Dynamic Resource Allocation

To obtain better parallalization effect, the intuitive idea is to run as many

threads as possible concurrently. The number of active threads is limited by

available execution resources which is dynamically allocated block-by-block in

each streaming multiprocessor. So, efficient thread management is important

for GPU acceleration. The corresponding resource limitations on our comput-

ing platform are:

• Maximum blocks per streaming multiprocessor is 8.

• Maximum registers per streaming multiprocessor is 32768 (unit 32 bit).

• Maximum shared memory per streaming multiprocessor is 49152 bytes.

• Maximum warps per streaming multiprocessor is 48, which is equivalent

to maximum 1536 threads per streaming multiprocessor.

Block size determines the number of active threads and occupancy of

computing resources in each streaming multiprocessor(SM). Inside a block,

warp, which is made up of 32 threads, is the basic unit for resources allocation.

Based on the register limitation, the maximum number of warps per SM

is

number of warps per SM =

⌊

total registers

registers per thread× threads per warp

⌋

,

50

which is equivalent to the maximum number of threads per SM

total active threads = number of warps per SM × threads per warp.

Then, the maximum number of blocks derived from register limitation is

⌊

total active threads

block size

⌋

.

Considering the shared memory limit, the maximum number of threads

per SM is
⌊

total shared memory

shared memory per block.

⌋

In sum, for any fixed block size, the maximum number of blocks per SM

can be calculated as

number of blocks per SM = min

(⌊

total active threads

block size

⌋

,

total shared memory

shared memory per block
, limit of blocks per SM.

)

Theoretical analysis based on the actual execution resources is given in section

4.4 in detail which is consistent with the numerical tests results.

4.4 GPU Application to Gas Dynamics

In recent years high-order numerical methods have been widely used to ef-

fectively resolve complex flow features such as turbulent or vertical flows [27].

51

High-order shock-capturing schemes such as the Essentially Non-Oscillatory

(ENO) and Weighted ENO (WENO) [58, 43] schemes not only make the com-

putational fluid dynamics (CFD) solvers get rid of extremely fine mesh for

complex flows, but also perfectly eliminate the oscillations near discontinu-

ities. However, such high-order schemes are complicated and much more time

consuming than traditional schemes. GPUs, although originally developed for

computer graphics, now become a popular tool for scientific computations,

especially in the CFD area [64, 103] because it extremely enhanced the time

efficiency of the CFD computations. In this part, we focus on the use of GPUs

for solving one dimensional fluid dynamics problems with WENO scheme.

4.4.1 Euler Equations of the Gas Dynamics

The one dimensional governing equations of the compressible in-viscid

gases are the Euler equations of gas dynamics, shown as Eq. (4.1) .

Ut + F(U)x = 0 (4.1)

where

U =













ρ

ρu

E













,F =













ρu

ρu2 + p

(E + p)u













E = ρ(e+
u2

2
), p = ρe(γ − 1), γ = 1.4

52

where ρ, u, P , e, and γ denote the density, velocity, pressure, internal energy

per unit mass and ratio of specific heats, respectively. The Jacobian matrix of

the Euler equations is defined as Eq. (4.2)

A =
∂F

∂U
(4.2)

The eigenvalues of the Jacobian matrix A are Eq. (4.3)

λ1 = u− c, λ2 = u, λ3 = u+ c (4.3)

where c =
√

γp
ρ

is the sound speed. and the corresponding right eigenvectors

are Eq. (4.4)

r1 =













1

u− a

H − ua













, r2 =













1

u

u2

2













, r3 =













1

u+ a

H + ua













(4.4)

where H is the total specific enthalpy, which is related to the specific enthalpy

h and other variables, namely

H = (E+p)
ρ

= 1
2
u2 + h, h = e+ P

ρ
(4.5)

We denote the matrix whose columns are eigenvectors in Eq. (4.4) by

R = (r1, r2, r3) (4.6)

53

and denote L = R−1.

4.4.2 GPU implementation

The Euler equations of gas dynamics are nonlinear hyperbolic equations

and its Jacobian matrix has three different eigenvalues which represent the

wave speeds. Let {Ii} be a partition of the computation domain R, where

Ii = [xi− 1

2

, xi+ 1

2

] is the i-th cell. The evaluation of the numerical flux of the

WENO scheme consists the following steps:

1. At the fixed grid point xj+ 1

2

, compute average state Um
j+ 1

2

by the simple

mean Um
j+ 1

2

= 1
2
(Uj + Uj+1).

2. Compute the eigenvalues λi,j+ 1

2

(i = 1, 2, 3), the matrix R, and L in

terms of Um
j+ 1

2

.

3. Do the local characteristic decomposition to get primitive variables.

4. Compute both the positive flux and negative flux.

5. Update Uj.

GPUs parallelization is desirable since the floating point operation of the

above procedures is highly intensive and the size of the partition can be very

large. We interchangeably use the term ”host” to refer to the CPU, and the

term ”device” to refer to the GPUs. Listing 4.2 shows part of the host-side

code for the stepping and Listing 4.3 shows the part of the device side code

for the flux calculating.

For each time step, the host fulfills three steps:

54

1. Copy the fluid states of all points to the device.

2. Call the GPU kernel function to calculate the flux on all points and wait.

3. Copy all points’ flux back from the device.

When the GPU kernel function was called, the device was triggered.

Each thread on the device acts according to its identification number. An

activated thread will fetch corresponding fluid state data and perform the flux

calculation according to the WENO scheme.

1 // f o r each time step

2 {

3 // copy f l u i d v a r i a b l e s from host to dev i c e

4

5 // c a l l k e rne l to compute f l ux

6 f l u x k e r n e l <<<g r i d s i z e , b l o c k s i z e , shared mem size Bytes

>>>(gamma, lambda , maxeig [0] , maxeig [1] , maxeig [4] ,

ex t end s i z e , g ho s t s i z e , dev u , dev f lux) ;

7 // copy the r e s u l t s back from dev i c e to host

8

9 }

Listing 4.2: Partial host-side code of the WENO scheme implementation.

1 g l o b a l vo id f l u x k e r n e l (. . .) {

2

3 // use shared memory f o r a c c e l e r a t i o n

4 extern s h a r e d double uf [] ;

5 // get thread g l o ba l and l o c a l id

55

6 i n t g index = threadIdx . x + blockIdx . x ∗ blockDim . x +

gho s t s i z e ;

7 i n t l i ndex = threadIdx . x + gho s t s i z e ;

8 i n t b l o c k ex t end s i z e = blockDim . x + 2 ∗ g h o s t s i z e − 1 ;

9

10 i f (g index < e x t end s i z e − g h o s t s i z e + 1) {

11 // 1) load f l u i d v a r i a b l e s from g l oba l memory to shared

memory

12 // 1 . 1) c en t e r a l c e l l s f o r o f b lock

13 f o r (i n t i = 0 ; i < 6 ; i++) {

14 uf [l i ndex + i ∗ b l o ck ex t end s i z e] = dev u [i] [g index] ;

15 }

16 // 1 . 2) ghost c e l l s o f the b lock

17 i f (threadIdx . x < g h o s t s i z e) {

18 f o r (i n t i = 0 ; i < 6 ; i++) {

19 uf [threadIdx . x + i ∗ b l o ck ex t end s i z e] = dev u [i

] [g index − g h o s t s i z e] ;

20 }

21 }

22 i f (l i ndex > blockDim . x | | gindex + 2 ∗ g h o s t s i z e − 1 >

e x t end s i z e) {

23 f o r (i n t i = 0 ; i < 6 ; i++) {

24 uf [l i ndex + gho s t s i z e − 1 + i ∗ b l o ck ex t end s i z e

] = dev u [i] [g index + gho s t s i z e − 1] ;

25 }

26 }

27 // 2) synchron ize a l l threads

28 sync thr eads () ;

29 // 3) compute average s t a t e

56

30 f o r (i n t i = 0 ; i < 5 ; i++) {

31 u mid [i] = 0 .5 ∗ (uf [l i ndex + i ∗ b l o ck ex t end s i z e] +

uf [l i ndex − 1 + i ∗ b l o ck ex t end s i z e]) ;

32 }

33

34 // 4) compute matrix R, and L in terms o f the average

s t a t e

35

36 // 5) do the l o c a l c h a r a c t e r i s t i c decomposit ion to get

p r im i t i v e

37 // va r i a b l e s , matmvec (y ,A, x) r e tu rns y = Ax

38 f o r (i n t i = 0 ; i < 6 ; ++i) {

39 f o r (i n t j = 0 ; j < 5 ; ++j)

40 u [j] = uf [l i ndex − g h o s t s i z e + i + j ∗

b l o ck ex t end s i z e] ;

41 matmvec (s t en u [i] , RL, u) ;

42 f o r (i n t j = 0 ; j < 5 ; ++j)

43 u [j] = uf [l i ndex − g h o s t s i z e + i + (6 + j) ∗

b l o ck ex t end s i z e] ;

44 matmvec (s t e n f [i] , RL, u) ;

45 }

46

47 // 6) compute both the p o s i t i v e f l ux and nega t iv e f l ux

48 f o r (i n t j = 0 ; j < 5 ; ++j) {

49 f tmp [j] = weno5 sca l (g f luxp [j]) ;

50 f tmp [j] += weno5 sca l (gfluxm [j]) ;

51 }

52 matmvec (f f , RL, f tmp) ;

53

57

54 }

55 }

Listing 4.3: Partial device-side code of the WENO scheme implementation.

4.4.3 Optimization

Shared memory usage

The computation on different stencils can be performed simultaneously

by GPUs which dramatically enhanced the time efficiency. Fifth order finite

difference WENO scheme is used on structured mesh in these simulations.

Each stencil needs to read the information of six nearby points which is still

very time consuming. The shared memory of the GPUs give a better solution

to this problem. Because it is on-chip, shared memory latency is roughly 100x

lower than uncached global memory latency. Shared memory is allocated per

thread block, so all threads in the same block have access to the same shared

memory. Threads can access data in the shared memory loaded from the global

memory by other threads within the same block. Using this capability, the code

reads the information of each point to the shared memory by corresponding

thread once, then for stencils need the information of this point can fetch

it directly from the shared memory. This strategy dramatically enhanced

the performance of the computation. Figure. 4.3 demonstrates the difference

between cases without and with shared memory usage.

58

(a)

(b)

Figure 4.3: Fifth order WENO scheme stencils. Each point represents a com-

putational node. Red points are updated by the threads while the green points

are only used as data source. Each thread updates one red point only. (a)

Without shared memory usage, each thread reads seven points’ information.

(b) With shared memory, each thread reads only one point’s information. In

the testing case, the number of threads in one block is 512. Without shared

memory usage, each block will fetch 3584 (512*7) points’ information; with

shared memory, only 518 (512+6) points’ information is necessary.

Block size

In section 4.3, we discussed the optimization of block size based on the

hardware limitation and dynamic resources allocation theoretically. Here we

give a detailed analysis based on the actual execution resources of this appli-

cation. To find the optimized thread management strategy, we calculate the

thread occupancy at different block sizes. This algorithm requires 63 registers

59

per thread. Then, the maximum number of active threads per SM is

⌊

32768

63× 32

⌋

× 32 = 512,

and this implies the theoretical maximum thread occupancy is

512

1536
=

1

3
.

In Table 4.2, given specific block size, the number of blocks per SM can be

limited by one or several of three major factors: register limitation (544 case),

shared memory limitation (64 case) and block per SM limitation (32 case).

In addition, different block sizes lead to different effective threads per device

which determines the scale of parallalization. As we can see, in the case of block

size 128, 256 and 512, the number of effective threads is larger and they can

handle more threads at the same time. So, in this specific problem, 128, 256

and 512 are optimized block size. However, even in these most optimized cases,

only 33.3% of SM threads are occupied. To further improve the efficiency of the

problem, a direct method is to improve the threads occupancy by eliminating

number of registers consumed per thread and corresponding shared memory

per block.

To verify above analysis, seven groups of test cases with block sizes of

32, 64, 128, 192, 256, 384, and 512, respectively are carried out. Each group

has eight different mesh sizes of 1024, 2048, 3072, 4096, 5120, 6144, 7168,

and 8192. Figure. 4.4 shows the results. In table 4.2 we conclude that the

effective threads per device is 3584 when the block size is 32. In the the right

60

Block size 32 64 128 192 256 384 512 544

Shared memory/block (bytes) 3344 6160 11792 17424 23056 34320 45584 48400

Number
of blocks
limited

by

register 16 8 4 2 2 1 1 0

shared memory 14 7 4 2 2 1 1 1

max blocks/SM 8 8 8 8 8 8 8 8

effective blocks 8 7 4 2 2 1 1 0

Effective threads/SM 256 448 512 384 512 384 512 0

Effective threads/device 3584 6272 7168 5376 7168 5376 7168 0

SM threads occupancy (%) 16.7 29.2 33.3 25.0 33.3 25 33.3 0

Table 4.2: Execution Resource analysis. In this particular ap-

plication, each thread needs 63 registers and each block needs

(block size+2∗ghost size)∗(number of shared doubles per thread)∗sizeof(double)

shared memory where ghost size = 3, and

number of shared doubles per thread = 11 are decided by the algo-

rithm and sizeof(double) = 8 is decided by the compiler. Given these

parameters and the total size of registers and shared memory per SM has,

we can get the maximum number of blocks limited by registers and shared

memory.

upper subplot (subplot (2)) of Fig. 4.4, we can see two jumps on the line, the

first jump happened when the mesh size increased from 3072 to 4096 and the

second one from 7168 to 8192. The first one happened because the effective

threads number 3584 is between 3072 and 4096. When the mesh size is 3072,

all the threads can perform simultaneously; however, when the mesh size is

4096, two rounds are needed. In the first round, only 3584 threads can perform

61

simultaneously and the rest threads have to wait until the first round ends.

Similarly, since 7168 = 3584 ∗ 2 < 8192, two and three rounds needed when

mesh size is 7168 and 8192 respectively. In the same way, we can explain

the jumps in other subplots of Fig. 4.4. In sum, from the consistency of the

analysis in the table 4.2 and the results in Fig. 4.4, we can conclude that the

method used to optimize the block size is reliable and using optimized block

size to perform calculation is less likely to suffer performance jumps.

4.5 GPU Application to the Spring Model

Fig. 4.5 is the complete flow chart of the algorithm. Upon testing, we

identified the panel marked by red color in Fig. 4.5 is the most time consuming

section.

Solving the spring model by 4-th order Runge-Kutta method consists the

following steps:

1. Find the positions of all the neighbors of each vertex.

2. Calculate the force on each vertex using Delingette method .

3. Calculate the acceleration of each vertex.

4. Update the location of the vertex.

5. Go to step (2) if this is not the 4-th Runge-Kutta step, end this time

step, otherwise.

The computation of the spring model is time consuming because the

number of the vertices is large. However, at each time step, all vertices are

62

2000 4000 6000 8000
100

200

300

400

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

(1) Performance Comparison

32 64 128 192 256 384 512

2000 4000 6000 8000
100

200

300

400

(2) Block size 32

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(3) Block size 64

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(4) Block size 128

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(5) Block size 192

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(6) Block size 256

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(7) Block size 384

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(8) Block size 512

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

Figure 4.4: GPU computing performance on different block sizes and mesh

sizes.

63

Save Time ?

End Time ?

End

Begin

No

Yes

FronTier++ Initialization

Fluid Field Calculating

FronTier++ Save

Solve Spring Model

Yes

No

Figure 4.5: Flow chart of the complete algorithm. The computation of the

spring model, which is marked by red color, is the most time consuming section.

This part is calculated in parallel by the GPU device with multiple threads in

order to improve the computational efficiency

independent. To accelerate the calculation of this part, we then shift it to the

GPU cores for massively parallel processing.

For each time step, the host performs the following steps:

1. Copy the position and velocity of each point to the device.

2. Call the first GPU kernel function to duplicate current position of each

point.

3. Call the second GPU kernel function to calculate acceleration of each

point .

64

4. Call the third GPU kernel function to fulfill the Runge-Kutta step and

goto step (3) if this is not the 4-th Runge-Kutta step.

5. Copy the position and velocity of each point back from the device.

The difference between this case and the gas dynamics case is that the

mesh here is unstructured mesh while the mesh used in the gas dynamics

problem is structured mesh. Therefore, we can not use the shared memory

of GPUs to further enhance the performance of the computation. Listing 4.4

shows part of the host-side code for each step.

1 // f o r each time step

2 {

3 // copy the po s i t i o n and v e l o c i t y o f a l l po in t s from host to

dev i c e

4

5 // dup l i c a t e cur r ent po s i t i o n o f each po int

6 po s t o o l d <<<g r i d s i z e , b l o c k s i z e >>>(dev x o ld , dev x pos ,

dev v o ld , dev v pos , s i z e , dim) ;

7 // c a l c u l a t e a c c e l e r a t i o n o f each po int

8 comp spr ing acce l <<<g r i d s i z e , b l o c k s i z e >>>(dev sv ,

dev acce l , s i z e , dim) ;

9 // update each po int ’ s l o c a t i o n by four th order Rung−Kutta

method

10 f o r (n = 0 ; n < loop ; ++n) {

11 RK 1 <<<g r i d s i z e , b l o c k s i z e >>>(dev x new , dev v new ,

dev x pos , dev v pos , dev x o ld , dev v o ld , dev acce l , dt ,

s i z e , dim) ;

12 comp spr ing acce l <<<g r i d s i z e , b l o c k s i z e >>>(dev sv ,

dev acce l , s i z e , dim) ;

65

13

14 RK 2 <<<g r i d s i z e , b l o c k s i z e >>>(dev x new , dev v new ,

dev x pos , dev v pos , dev x o ld , dev v o ld , dev acce l , dt ,

s i z e , dim) ;

15 comp spr ing acce l <<<g r i d s i z e , b l o c k s i z e >>>(dev sv ,

dev acce l , s i z e , dim) ;

16

17 RK 3 <<<g r i d s i z e , b l o c k s i z e >>>(dev x new , dev v new ,

dev x pos , dev v pos , dev x o ld , dev v o ld , dev acce l , dt ,

s i z e , dim) ;

18 comp spr ing acce l <<<g r i d s i z e , b l o c k s i z e >>>(dev sv ,

dev acce l , s i z e , dim) ;

19

20 RK 4 <<<g r i d s i z e , b l o c k s i z e >>>(dev x new , dev v new ,

dev x pos , dev v pos , dev x o ld , dev v o ld , dev acce l , dt ,

s i z e , dim) ;

21 i f (n != n tan − 1) {

22 comp spr ing acce l <<<g r i d s i z e , b l o c k s i z e >>>(dev sv ,

dev acce l , s i z e , dim) ;

23

24 po s t o o l d <<<g r i d s i z e , b l o c k s i z e >>>(dev x o ld ,

dev x pos , dev v o ld , dev v pos , s i z e , dim) ;

25 }

26 }

27 // copy the r e s u l t s back from dev i c e to host

28

29 }

Listing 4.4: Partial host-side code of the Spring-Mass model implementation.

66

4.6 GPU Application to American Option Pricing

4.6.1 Partial-integro differential equation for American

options

Substantial volume of exchange-traded options are American options and

there have been many attempts to solve such option pricing problems which

have no closed form of analytical solutions. Most pioneer works [6, 63, 18]

assume that the log-return of the underlying asset follows normal distribu-

tion and this assumption fails to capture skewness and asymmetry properties

indicated by empirical observations [51]. A possible solution is to use the

exponential Lévy model to simulate the price of the underlying asset which

represents the extreme returns as discontinuities in the prices.

We build the model based on the generalized hyperbolic distributions

introduced by Barndorff-Nielsen [4] which contain five parameters and encom-

pass many special cases such as the hyperbolic distribution and the normal

inverse Gaussian distribution etc. The Lévy measure which characterizes the

exponential Lévy model based on generalized hyperbolic distribution has the

form

g(x) =
eβx

|x| (
∫ ∞

0

exp(−
√

2y + α2|x|)
π2y[J2

|λ|(δ
√
2y) + Y 2

|λ|(δ
√
2y)]

dy + 1λ>0λe
−α|x|)

where λ ∈ R demonstrates certain sub-classes; α > 0 determines the shape;

0 ≤ |β| < α represents the skewness; δ > 0 is the scaling parameter. The fifth

parameter µ ∈ R which is not shown in the formula indicates the location. Due

67

to these five parameters, the distribution is relatively flexible and can better

characterize real market behaviors; but this will lead to more complicated

form and multiple integrations which greatly increase calculation complexity

and calls the need for GPU.

Based on Cont, Rama and Tankov [17], assume f (τ, x) = V (t, S) , τ =

T − t and x = ln S
S0
, the partial integro differential equation for European

option is

fτ (τ, x)− (r − σ2

2
)fx (τ, x)−

σ2

2
fxx (τ, x) + rf (τ, x)

−
∫

g (y) [f (τ, x+ y)− f (τ, x)− (ey − 1) fx (τ, x)] dy = 0,

where t is time, S is underlying asset price, r is the interest rate, σ2 is the

volatility of the underlying asset and V (t, S) is the option price at time t

with underlying asset price S. Then the American put option pricing can be

realized by coupling appropriate free boundary condition.

4.6.2 GPU implementation

Assume fn
k = f (τn, xk), then the discretization of the PIDE can be rep-

resented as

fn+1
k − fn

k

△t
=

(

r − σ2 + σ2
ǫ

2
−

∫

|y|>ǫ

g (y) (ey − 1) dy

)

fn
k+1 − fn

k−1

2△x
+

σ2 + σ2
ǫ

2

fn+1
k+1 − 2fn+1

k + fn+1
k−1

(△x)2
− rfn

k +

∫

|y|>ǫ

g (y) [f (τn, xk + y)− fn
k] dy

68

where σ2
ǫ =

∫ ǫ

−ǫ
y2g (y)dy [100]. The flow chart in Fig. 5.18 (left) illustrates the

major steps of the algorithm. After testing, the calculation of Lévy measure

{g (k△x)} , k = 1, · · · , N related terms is identified as quite intensive in the

pricing of single option and can be moved to GPU. The corresponding flow

chart describes the process can be found in Fig. 5.18 (right). Listing 4.5 shows

part of the host-side code for the stepping of pricing single option.

End

Begin

FronTier++ Initialization

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

End

Begin

FronTier++ Initialization

Initialize Coefficients

GPU Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

Figure 4.6: Without-GPU (Left) and With-GPU (Right) Flow chart for single

option.

1 // c a l l e d by host func t i on only once

2 {

3 // a l l o c a t e memory f o r opt ion parameters and copy them from

host to dev i c e

69

4

5 // c a l c u l a t e opt ion p r i c e s f o r g iven parameters on each thread

6 GHI kernel << <g r i d s i z e , b l o c k s i z e >>>(N, tempx1 , tempx2 , dx ,

dev BlI , dev Bl I I , dev Br , dev params) ;

7 // copy the r e s u l t s back from dev i c e to host

8

9 }

Listing 4.5: Partial host-side code of the implementation of pricing single

option.

1 g l o b a l vo id GHI kernel (

2 i n t N,

3 double tempx1 ,

4 double tempx2 ,

5 double dx ,

6 double ∗dev BlI ,

7 double ∗ dev BlI I ,

8 double ∗dev Br ,

9 PARAMS ∗params) {

10 i n t i = threadIdx . x + blockIdx . x ∗ blockDim . x ;

11 i n t j ;

12

13 // Thread task managed to avoid execut ion d ive r g ence

14 i f (i < N − 1) {

15 tempx2 = tempx2 − i ∗dx ;

16 dev BlI [i] = dev GHILI (params , tempx2 , 0 . 0 , 1 . 0 , 0 . 0) ;

17 }

18 e l s e i f (i < 2 ∗ N − 2) {

19 j = i − N + 1 ;

70

20 tempx2 = tempx2 − j ∗dx ;

21 dev B l I I [j] = dev GHILII (params , tempx2 , 0 . 0 , 1 . 0 , 0 . 0) ;

22 } e l s e i f (i < 3 ∗ N − 3) {

23 j = i − 2 ∗ N + 2 ;

24 tempx1 = tempx1 − j ∗dx ;

25 dev Br [j] = dev GHILR(params , tempx1 , 0 . 0 , 1 . 0 , 0 . 0) ;

26 }

27 }

Listing 4.6: Partial device-side code of the implementation of pricing single

option.

At each node, three different integral terms are calculated using three

threads. Due to the single-instruction, multiple-thread hardware execution

style of GPU, the threads are organized as List 4.6. This arrangement ensures

that threads in the same warp will follow same paths of control flow and avoid

extra execution time result from thread divergence.

The motivation of using heterogeneous computing on single American

option pricing is due to the high modeling complexity. In contrast, the pricing

of multiple options which involve large problem sizes is also a good candi-

date for parallel computing. The independence between each single option

and corresponding unique parameters enables the whole calculation process of

one option being fulfilled in a single thread. This joint CPU/GPU algorithm

greatly outperforms pure CPU algorithm, especially in large number of op-

tions case, and Fig. 4.7 illustrates this process. Listing 4.7 shows part of the

host-side code for the stepping of pricing multiple options.

1 // c a l l e d by host func t i on only once

71

End

Begin

FronTier++ Initialization

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

End

Begin

FronTier++ Initialization

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

Last Option ?

Yes

No

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Option 1 Option N

Figure 4.7: Without-GPU (Left) and With-GPU (Right) Flow chart for mul-

tiple options.

2 {

3 // a l l o c a t e memory f o r opt ion parameters and copy them from

host to dev i c e

4

5 // c a l c u l a t e opt ion p r i c e s f o r g iven parameters on each thread

6 d r i v e k e r n e l <<<g r i d s i z e , b l o c k s i z e >>>(dev params ,

dev lambda , dev alpha , dev beta , dev de l ta , dev E , dev sigma ,

dev S0 , dev T , dev dl , dev dr , dev BlI , dev Bl I I , dev Br ,

dev B , dev S , dev f0 , dev o ld f , dev newf , dev V , dev tempBl ,

dev tempBr , dev c , dev d , num op) ;

7 // copy the r e s u l t s back from dev i c e to host

8

72

9 }

Listing 4.7: Partial host-side code of the implementation of pricing multiple

options.

4.7 Computation-Memory Ratio

In the previous sections, we explored the hardware limit of GPU com-

puting and derived optimized block size subject to execution resources. The

one dimensional gas dynamic model based on the WENO scheme is used to

show the calculation process. Only computing time, i.e. the time running on

kernel, is considered. However, the three introduced heterogeneous computing

models also involve data transfer between CPU and GPU which should be

taken into consideration for performance measurement. In chapter 5, we will

discuss the advantages and disadvantages of both GPU and CPU, based on

the time-including computing time and data transfer time.

73

Chapter 5

Numerical Results

The system of equations for the spring model is nonlinear and an ana-

lytical proof of convergence for this model is very difficult. Therefore proof of

convergence through numerical mesh refinement is presented here, e.g., with

fixed initial and boundary conditions are used, the displacement, the energy

(kinetic energy and potential energy), and the total length (2D) or area (3D),

which are functions of time, are convergent under mesh refinement. It is not

surprising that the convergence rate is of first order due to the equation of

each vertex point in the spring mesh involves only its immediate neighbors

and that convergence is not ideal when the surface is compressed or wrinkled.

Proving analytical convergence for the coupled spring-mass model fluid

solver system is even more difficult than the spring-mass model itself; as a re-

sult, coupled simulation results are compared directly with experiments. One

of the main interests of this effort is the short time history response of the

parachute during inflation where the drag force can be validated with exper-

imental data. It is demonstrated that the coupled method discussed above

74

captures important properties of the parachute inflation force response.

5.1 Verification of Numerical Convergence

One crucial step in assessing the mathematical validity of the spring-

mass model is convergence under mesh refinement. The following question is,

if the system is convergent, to what continuum model and partial differential

equations the discrete computation of the spring-mass model would converge?

The numerical results reveal that the spring model is convergent under the

conditions that the total mass of the fabric surface is kept constant and that

both the spring tensile stiffness and angular stiffness conform with Young’s

modulus and the Poisson ratio of the material[19].

A sequence of numerical simulations of a string with fixed boundary in a

two-dimensional (2-D) domain and a membrane with fixed boundary in a three-

dimensional (3-D) domain are carried out. In both 2-D and 3-D simulations,

the spring constant of the string (2-D) or the membrane (3-D) is conformed

with the material’s Young’s modulus and Poisson ratio. The total mass, which

is the summation of all point mass Mtotal = Nm, is keep constant where N is

the total number of points and m is the mass of each mass point. Therefore,

as the computational mesh is refined and the total number of mass points

increases, the point mass m is decreased in proportion to the reciprocal of N .

The simulations are computed in domains of 1×1m2 in 2-D and 1×1×1m3

in 3-D. In the first test case, the dynamic motion of a swinging string with one

end fixed is simulated. The initial length of the string is 0.583m and a weight

of 0.5g as shown in Fig. 5.1. The total number of grid points is increased

75

and the point masses for each experiment varied accordingly. The details of

each simulation are presented in Table 5.1. The total length and total kinetic

energy of the string as a function of time and their Cauchy errors are displayed

in Fig. 5.2 and the numerical errors are shown in Table 5.2. From Table 5.2,

it is clear that the errors in the Cauchy sequence are reduced approximately

by half each time as we reduce the average mesh size by half. This indicates

that the sequence is convergent to first order.

In the second case, a circular vibrating membrane with radius of 0.4m

and a total weight of 380g is simulated. The membrane is linearly perturbed

initially from the center to the fixed boundary . Fig. 5.3 shows the membrane

at t = 1sec and t = 2sec in a sequence of three different mesh refinements.

The refinement experiments include four levels of refinements corresponding

to the mesh sizes of 153, 303, 603, and 1203, respectively. The details of each

simulation are presented in Table 5.1. The errors of the total area in the

Cauchy sequence are shown in Fig. 5.4 and Table 5.3. The convergence of

the membrane is time synchronized as in the string chord case. From Fig. 5.4

and Table 5.3, we can see that the errors of Cauchy sequence are reduced

approximately by half in each step as the average mesh size is reduced by half.

This implies that the membrane spring-mass system is also convergent in first

order.

76

Swing Mesh size Stiffness(N/m) Number of points Average mass(g)

case 1 502 5000 60 0.008333

case 2 1002 10000 123 0.004065

case 3 2002 20000 248 0.002016

case 4 4002 40000 498 0.001004

Drum Mesh size Stiffness(N/m) Number of points Average mass(g)

case 1 153 1000 266 1.428571

case 2 303 1000 990 0.383838

case 3 603 1000 3790 0.100264

case 4 1203 1000 14841 0.025605

Table 5.1: Initial configuration of the 2-D and 3-D simulations

Figure 5.1: Convergence test of the string chord under mesh refinement. From

left to right the total number of points in the string are 60, 123, 248, 498

respectively. The total mass of the string chord as well as the payload at the

lower end are kept constant in the simulations.

5.2 Verification of Young’s Modulus and Poisson’s Ra-

tio

Young’s modulus, also known as the tensile modulus or elastic modulus,

is a measure of the stiffness of an elastic material and is a parameter used to

77

0.0 0.5 1.0 1.5 2.0

Time [sec]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

L
e
n

g
th

[c
m

]

Mesh: 50
Mesh: 100
Mesh: 200
Mesh: 400

0.0 0.5 1.0 1.5 2.0

Time [sec]

0.000

0.002

0.004

0.006

0.008

0.010

e
l
[c

m
]

Mesh: 50

Mesh: 100

Mesh: 200

0.0 0.5 1.0 1.5 2.0

Time [sec]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

K
in

e
ti

c
E

n
e
rg

y
[J

]

Mesh: 50
Mesh: 100
Mesh: 200
Mesh: 400

0.0 0.5 1.0 1.5 2.0

Time [sec]

0.00

0.01

0.02

0.03

0.04

0.05

e
k

[J
]

Mesh: 50

Mesh: 100

Mesh: 200

Figure 5.2: Convergence test results of spring model on string chord. In this

test the string chord is fixed at one end while the other end has a payload and

is free to move. The simulations are on the sequences with 60, 123, 248, 498

points respectively. The total mass M = Nm is a constant in the simulation.

The upper left plot shows the string lengths during the four simulations and

the upper right plot is the Cauchy error of the sequences. The lower plots are

for the total kinetic energy of the system.

characterize materials. It is defined as the ratio of the stress along an axis

over the strain along that axis in the range of stress in which Hooke’s law is

valid. In solid mechanics, the slope of the stress-strain curve at any point is

78

Figure 5.3: Convergence test of the drum membrane under mesh refinement.

From left to right the computational mesh of the domain are 153, 303, and

603 respectively. The total mass of the membrane is kept constant in the

simulations. The upper three plots show the membrane position at t = 1sec

and the lower plots show the membrane position at t = 2sec.

called the tangent modulus. The tangent modulus of the initial, linear portion

of a stress-strain curve is called Young’s modulus. Young’s modulus, E, can

be calculated by dividing the tensile stress by the tensile strain in the elastic

portion of the stress-strain curve:

E =
tensile stress

tensile strain
=

σ

ǫ
=

F/A0

∆l/l0
=

F l0
A0∆l

(5.1)

79

0 1 2 3 4 5

Time [sec]

0.50

0.52

0.54

0.56

0.58

0.60

A
r
e
a

[c
m
2
]

Mesh: 15

Mesh: 30

Mesh: 60

Mesh: 120

0 � 2 3 4 5

Time [sec]

0.000

0.005

0.0�0

0.0�5

0.020

A
b
s
o
lu

te
E

r
r
o
r

[c
m
2
]

Mesh: 15

Mesh: 30

Mesh: 60

Figure 5.4: Convergence test results of spring model on membrane. The

boundary of the membrane is fixed. The simulations are on the sequences

with 153, 303, 603 and 1203 mesh for the computational domain respectively.

The total mass M = Nm is a constant in the simulation. The left plot shows

the total area during the four simulations and right plot shows the Cauchy

errors of the sequences.

mesh size el ek ep

50 and 100 0.00374 0.01664 0.03464

100 and 200 0.00184 0.00821 0.01726

200 and 400 0.000918 0.00406 0.008614

Table 5.2: Convergence tests of spring model for a swing chord. In the compu-

tational sequences, the total mass of the swing chord is fixed. As the number

of points increases, the point mass is reduced accordingly. Cauchy error is cal-

culated on two consecutive mesh sequences. Column el, ek, and ep are errors of

total length, total kinetic energy and total spring potential energy respectively.

The numerical results show the first order convergence on each of them.

80

mesh size eA ek ep

15 and 30 0.02528 1.91810 1.97967

30 and 60 0.01507 1.21784 1.21772

60 and 120 0.00604 0.53550 0.52837

Table 5.3: Convergence tests of spring model for a fabric drum. In the com-

putational sequences, the total mass of the membrane is fixed. As the number

of points increases, the point mass is reduced accordingly. Cauchy error is cal-

culated on two consecutive mesh sequences. Column eA, ek, and ep are errors

of total area, total kinetic energy and total spring potential energy respective.

The numerical results show the first order convergence on each of them.

where E is Young’s modulus, F is the force exerted on the object under tension,

A0 is the original cross-sectional area through which the force is applied, ∆l

is the change of length of the object from the original length l0 of the object.

Poisson’s Ratio is the negative ratio of transverse strain to axial strain.

When a material is stretched, it usually tends to contract in the directions

transverse to the direction of stretching. The Poisson ratio is the ratio of

relative contraction to relative stretching.

ν = −dǫtrans
dǫaxial

= −dǫy
dǫx

(5.2)

where ν is the Poisson’s Ratio, ǫtrans is transverse strain and ǫaxial is axial

strain. Theoretically, in the case of small deformations Poisson’s Ratio ν was

computed by Eq. (5.3) and in the case of large deformation it was computed

by Eq. (5.4).

81

ν = −∆w/w0

∆l/l0
(5.3)

ν = −log(1+∆l/l0)(1 + ∆w/w) (5.4)

To verify that the spring model can catch isotropic elastic material’s

Young modulus and Poisson ratio, we carried out a set of simulations by

stretching fabric surfaces with different Young’s modulus and Poisson ratios.

These simulations start with a fabric surface which has its original length

l0 = 0.1m and original width w0 = 0.02m. The fabric is then pulled along the

direction of the longer side of it with a distributed force.

Firstly, three groups of simulations which stretch fabric surfaces with

Poisson ratios of −0.14, −0.22, and −0.30, respectively are carried out. Each

group with five different values of Young’s modulus, that is 0.1GPa, 0.2GPa,

0.3GPa, 0.4GPa, and 0.5GPa respectively. The fabric surface is pulled at one

end. Young’s modulus and Poisson ratio are calculated from the deformation

of the surface and the force added on it. The results are summarized by

Table 5.4 which shows that the spring-mass model nicely reproduces the values

of Young’s modulus and the Poisson ratio from the input.

Next, a group of simulations, stretching the fabric surface whose Young’s

modulus and Poisson ratio are fixed at 0.5Gpa and −0.14 respectively, are

carried out. The total number of triangles of the triangulations use in these

simulations change from 1143, 1590, 2468, to 4520. The strain of the elongation

change from 0.002, 0.004, 0.006, 0.008 to 0.01. The measured Young’s modulus

82

Group 1
Young’s Modulus results (GPa) Poisson Ratio results

Input Numerical Input Numerical

case 1 0.1 0.0963016606 -0.14 -0.141887

case 2 0.2 0.1926061554 -0.14 -0.141920

case 3 0.3 0.2888656609 -0.14 -0.141910

case 4 0.4 0.3852341348 -0.14 -0.141913

case 5 0.5 0.4815205552 -0.14 -0.141905

Group 2
Young’s Modulus results (GPa) Poisson Ratio results

Input Numerical Input Numerical

case 1 0.1 0.0957361901 -0.22 -0.223342

case 2 0.2 0.1914918931 -0.22 -0.223332

case 3 0.3 0.2870650506 -0.22 -0.223382

case 4 0.4 0.3829895385 -0.22 -0.223349

case 5 0.5 0.4784196259 -0.22 -0.223365

Group 3
Young’s Modulus results (GPa) Poisson Ratio results

Input Numerical Input Numerical

case 1 0.1 0.0953452395 -0.30 -0.305362

case 2 0.2 0.1906619377 -0.30 -0.305342

case 3 0.3 0.2860538596 -0.30 -0.305343

case 4 0.4 0.3814011184 -0.30 -0.305359

case 5 0.5 0.4767297379 -0.30 -0.305355

Table 5.4: Young’s modulus and Poisson ratio verification

83

and Poisson ratio from these simulations are demonstrated in Fig. 5.5.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
ǫ

−1

0

1

2

3

4

5

6

σ
[M

P
a

]

Spring Model
Theoretical

Figure 5.5: Young’s Modulus (Left) and Poisson’s Ratio (Right). We tested

the spring model by stretching the fabric surface to different lengths. The

numerical results show that the spring-mass model catches the fabric’s Young’s

Modulus and Poisson ratio nicely in the linear regime of strain.

The numerical solutions imply that the revised spring-mass model based

on the derivation by Delingette [19] can accurately simulate an isotropic elas-

tical membrane in the linear region with strain up to 0.01. The error between

the spring model and continuum model increases when elongation is too large

and the deformation reaches the nonlinear regime. For parachute simulation,

the strain of the canopy, even during the most dynamic phase of inflation,

should still be in the linear regime. Therefore the spring model is an excellent

model for such simulations.

It should be mentioned that in the case in which the fabric surface is

compressed and it adjusts itself with wrinkles, the convergence is not obvious.

In some cases, a small perturbation of the initial condition may result in sub-

stantially different folding and wrinkling patterns. How to describe such case

84

and define its mathematical convergence remain as an open question to the

model. Fig. 5.6 shows the draping of a table cloth due to gravitational force

on a circular table. The right plot shows the wrinkled edge of the cloth.

Figure 5.6: Simulation of a table cloth draping under the action of the gravity.

The fabric constraint automatically adjusts the regions of the cloth. The spring

model of the fabric gives a realistic motion of the cloth. The characteristic

eigen frequency for the fabric model in this simulation is
√

k/m = 1000 and

the friction constant is κ = 0.1.

5.3 Computation of Stress

The geometrical deformation of a fabric surface is the major source of

stress on the material. The stress causes surface tension in parachute canopy

and exerts a normal component of force which the parachute canopy interacts

with the surrounding fluid to produce drag of the deceleration. The stress is

also an important engineering variable in the parachute safety design. There-

fore accurate computation of stress will not only help to understand the fluid

dynamics of the parachute, but also to ensure the material will not be ripped

85

apart during the deceleration. The stress has been computed on a rectangu-

lar and a triangular fabric surface being stretched from point forces at their

corners. The magnitude of von-Mises stress on each individual triangle of the

spring mesh is given in Fig. 5.7. In the rectangular fabric simulation, the total

mass of the membrane is 13g and the spring constant is 1000N/m. A total

of 5461 mass points are in the triangulated mesh. The color plot shows that

the largest stress is near the pulling corner while the central part is relatively

non-stressed. The right plot shows the stress computed using Eq. (2.19). In

the second case, the total mass is also 13(g) with 1123 mass points. Fig. 5.8

demonstrates that the advanced spring-mass model can capture the front of

the shock wave clearly when a rectangular fabric surface was stretched along

the horizontal axis. Fig. 5.9 shows the most stressful areas of a C-9 canopy

during the inflation stage of the parachute. Here the peaks in stress are located

at the canopy-string connection points.

5.4 Comparison of Drag in Inflation

Parachute inflation is one of the most crucial stages for the deceleration

system. Both experimental data and numerical simulation results showed that

there exists a time period during which the parachute canopy experiences a

peaked drag force that can be as high as 3-4 times of the payload. Potvin

recorded the drag force personally from his jumps. The experimental results

(Fig. 5.10) reveal that the peak of the drag force climbed during the first

second after the canopy deployment. The drag force reached about 700 lbs.

at roughly t = 1.3 − 1.5sec). At this time the air from bottom opening

86

Figure 5.7: The von-Mises formula Eq. (2.19) is used to calculate the fabric

stress in the spring model. The left plot shows the von-Mises stress of a

rectangular membrane when pulled from the four corners. Similarly, the right

plot shows the von-Mises stress of the triangular membrane pulled from its

three vertices.

rushes to fill the volume of the canopy causing expansion in both vertical and

horizontal directions. The ballooning canopy exerts the majority of the drag

force force to all the stiffer chords. In the simulations, the parachute drag

force is recorded as the sum of forces on each chord. The total force as a

function of time is compared with the experimental data by Potvin. We have

carried out simulations with different initial shapes of the canopy. The flat

and partially closed canopies show similar peaked drag at t = 1.2−1.6sec, but

the canopy with an angled initial condition demonstrated a peak at the later

time of t = 2sec. Early in the simulations the drag force appears oscillatory

for several seconds following the highest peak. The dynamic evolution of the

87

Figure 5.8: The von-Mises formula Eq. (2.19) is used to calculate the fabric

stress in the spring model. The plots show the von-Mises stress of a rectangu-

lar membrane stretched along the horizontal axis. The shock wave has been

captured clearly.

canopy geometry at these times corresponds to to the oscillatory motion of the

horizontal motion of the string chord and the breathing motion of the canopy.

Such oscillation is reduced when a transverse damping force is added to the

string chord.

88

Figure 5.9: Von-Mises stress on the parachute canopy during its inflation.

The red color shows regions with high stress. The figure shows that the areas

near the canopy-string connection points are the most stressful part of the

parachute during inflation.

5.5 Simulation of Angled Drop

The majority of parachute malfunctions occur during the inflation se-

quence. One of the most harmful malfunctions is the canopy ”inversion” which

occurs when one or more gore sections near the skirt of the canopy blows be-

tween the suspension lines on the opposite side of the parachute and then

catches air [72]. That portion then forms a secondary lobe with the canopy

inverted. The condition may work out or may become a complete inversion

i.e. the canopy turns completely inside out [60]. Inversion during parachute

inflation is dangerous as it can completely shut up the inlet of the canopy and

prevent the creation of an air volume under the canopy, thus reduces the drag

force to essentially zero and results in a free fall.

Numerical solution becomes a valuable tool for the parachute design if

89

0 � 2 3 4 5 � 7

Time [sec]

0

200

400

�00

�00

D
ra

g
F

o
rc

e
[l

b
]

Test (YPG004)
Test (YPG005)
Test (YPG008)
CFD (Flat Initial)
CFD (Partially Closed Initial)
CFD (New)

Figure 5.10: Drag force time history during the inflation phase of a C-9 per-

sonnel parachute. The experimental data is provided by Dr. Jean Potvin at

St. Louis University.

computer simulation can reveal and predict malfunctions of the parachute

canopy during the deployment. A group of different drops in which the initial

alignments of the parachute form different angles with the direction of the fluid

velocity are simulated here. Fig. 5.11 shows the case in which the alignment

of canopy-string-payload forms a 15◦ angle with the fluid velocity. In this

case, the canopy only slightly loses its symmetry during the inflation, but the

inflation is normal. The total adjustment to vertical fall takes a longer time,

but the opening of the canopy is just on time. In the case of the parachute

forming a 60◦ angle with the flow, as shown in Fig. 5.12, the side of the

90

parachute facing the flow is dented and wrapped up and the opening time is

increased. In the case in which the parachute forms a 75◦ angle with the flow,

the complete inversion of the canopy happens at approximately t = 2.0sec.

Fig. 5.13 shows such inverted canopy.

Figure 5.11: Angled deployment of C-9 parachute with the flow. The deploy-

ment starts with a 15◦ angle between the initial parachute and the direction

of flow. The parachute experiences only slight asymmetry of the canopy. The

plots show the parachute at (from left to right) t = 0sec, t = 1.5sec and

t = 3.0sec respectively.

5.6 Enhancement of the Efficiency

5.6.1 Gas Dynamics Results

The test case for the Euler equations is the shock-tube problem. This

problem is a well-known Riemann problem introduced by Sod [76]. The solu-

91

Figure 5.12: Angled deployment of C-9 parachute with the flow. This sequence

starts with a 60◦ angle between the initial parachute and the direction of the

flow. In this case, the canopy skirt is dangerously wrapped at the lower side

of the canopy. The plots show the parachute at (from left to right) t = 0sec,

t = 1.5sec and t = 3.0sec respectively.

tion domain is [−1, 1], and the initial conditions are Eq. (5.5).

(ρ, u, p) =















(1, 0, 1),

(0.125, 0, 0.1),

x 6 0

x > 0

(5.5)

The results are demonstrated in Fig. 5.14 and the operation time recorded by

the CPU clock and time for GPU intensive computational part are collected

in Table 5.5. Figure. 5.15 displays the GPU time and CPU time for each step.

From Table 5.5 and Fig. 5.15 we can conclude that the application of the GPUs

has clear advantage in the computation of the flux using the WENO scheme.

92

Figure 5.13: Inversion of the parachute canopy during an angled drop. The

alignment of the parachute started with a 75◦ angle with the direction of the

velocity. A complete inversion occurs at t = 2sec. The two plots are views of

the inverted canopy from different directions.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t = 0.3 second

x

d
e

n
s

it
y

,
 v

e
lo

c
it

y
,

 p
re

s
s

u
re

exact density

exact velocity

exact pressure

numerical density

numerical velocity

numerical pressure

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t = 0.3 second

x

d
e
n

s
it

y
,
 v

e
lo

c
it

y
,
 p

re
s
s
u

re

exact density

exact velocity

exact pressure

numerical density

numerical velocity

numerical pressure

Figure 5.14: Sod problem results, the solution domain is [−1, 1]. The mesh

size of the left figure is 400 while the right one’s is 3200.

5.6.2 Spring Model Results

The test case of the spring model is stretching a rectangular fabric surface.

In this simulation, the total mass of the membrane is 13g and the spring

93

Mesh
CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

1024 3427 336 118 272 726 29.0424 4.7204

2048 6896 349 146 273 768 46.9726 8.9297

3072 10053 365 152 283 800 65.6053 12.4650

4096 13912 340 183 365 888 75.3989 15.5383

5120 16774 411 215 321 947 77.4930 17.5935

6144 20126 397 249 308 954 80.2811 20.9539

7168 23463 525 271 396 1192 86.0996 19.5747

8192 25376 509 363 365 1237 69.5344 20.4050

Table 5.5: GPU and CPU computing time of solving one dimensional Euler

equations by the fifth order WENO scheme in one step. Eight different mesh

sizes (1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192) were tested with both

pure CPU code and hybrid (CPU and GPU) code. Based on the analysis and

experiments in section 4.4, we choose one of the best block size 128 here. The

hybrid code is 8-20× faster than the pure CPU code for the computation of

the intensive part when the mesh size is larger than 2048. In the table, ”Time

of copy data from Host to Device” and ”Time of copy data from Device to

Host” denoted by ”H2D” and ”D2H”, respectively.

constant is 1000N/m.

The total operation time recorded by CPU clock and time for GPU in-

tensive computational part are collected in Table 5.6.

The left plot in Fig. 5.7 shows that the largest stress is near the pulling

94

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
GPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

x 2
10

x 10
3

Copy data: device to host
Computing time
Copy data: host to device

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

4 CPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

x 2
10

Computing time

Figure 5.15: GPU (left) and CPU (right) time per step. The GPU computing

time is 29-86× faster than CPU’s. However, GPU total time is only 4-20×

faster than CPU’s. This is due to the time used to transfer the data between

the host and the device in GPU. From the left plot, we can clearly see that

the time spent on copying data is at least twice larger than the time spent on

computing.

2641 4279 6466 9064 12361 15567
0

2

4

6

8

10
x 10

4 GPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

Copy data: host to device
Computing time
Copy data: device to host

2641 4279 6466 9064 12361 15567
0

1

2

3

4

5

6

7
x 10

5 CPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

Computing time

Figure 5.16: GPU (left) and CPU (right) time per step. The GPU computing

time and total time are 5-6× faster than CPU’s. This is due to the negligible

time used to transfer the data between the host and the device.

corner while the central part is relatively non-stressed. This spring model

has also been used to calculate the stress on a C-9 parachute canopy during

95

Mesh
CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

2641 223565 171 41328 644 42143 5.4095 5.3049

4279 294037 340 42200 1239 43734 6.9751 6.7233

6466 376137 376 51180 530 52086 7.3493 7.2215

9064 481941 786 70444 2241 73471 6.8415 6.5596

12361 554545 687 85744 727 87158 6.4674 6.3625

15567 601600 1503 96310 1066 98879 6.2465 6.0842

Table 5.6: GPU and CPU computing time of three dimensional spring model.

Spring models with eight different mesh sizes of 2641, 4279, 6466, 9064, 12361,

15567 were tested with both pure CPU code and hybrid (CPU and GPU)

code. The hybrid code is 5-6× faster than the pure CPU code for computing

the intensive part.

inflation [75]. The right plot in Fig. 5.7 shows that the most stressful areas of

a C-9 parachute canopy during the inflation stage located at the canopy-string

connection points.

5.6.3 American Option Pricing Results

After several tests, we found that for single American option pricing the

intensive integrations are the most time consuming part when mesh size is not

too large. Fortunately, we can calculate these integrations in parallel using a

GPU. The total operation time and time for intensive integrations measured

in micro-seconds for computing single option with parameters τ = 1, r =

96

0.1, σ2 = 0.4, K = 1 are collected in Table 5.7.

Mesh
CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

128 942539 752740 540774 55 1293569 1.7429 0.7286

256 2825369 757925 1034025 59 1792009 2.7324 1.5766

512 8088534 757555 2124162 115 2881832 3.8079 2.8067

1024 22214927 780483 3867521 79 4648083 5.7440 4.7794

2048 55254249 810256 6475537 87 7285880 8.5328 7.5837

4096 134558431 755945 11294322 256 12050523 11.9138 11.1662

Table 5.7: Operation time of single option pricing under the generalized hy-

perbolic distribution, parameters λ = 1.0, α = 8.15, β = −2.5, δ = 0.767

0

2

4

6

8

10

12

14
x 10

6 GPU

ti
m

e
 (

m
ic

ro
 s

e
c
o
n
d
)

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Copy data: device to host
Computing time
Copy data: host to device

0

2

4

6

8

10

12

14
x 10

7 CPU

ti
m

e
 (

m
ic

ro
 s

e
c
o
n
d
)

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Computing time

Figure 5.17: GPU (left) and CPU (right) time per step. The GPU computing

time is 1.7-12× faster than CPU’s. However, the performance of GPU is

worse when the mesh size is small. Because the time used to transfer the data

dominates GPU calculation time.

From Table 5.7 and Fig. 5.17 we can conclude that GPU has an obvious

97

advantage in computing intensive integrations, which leads to less total opera-

tion time when the mesh size is relatively large. However, when the mesh size

increases, the operation time of other parts, especially time iteration steps,

increases gradually and undermines the effect of parallel computing. There is

a trade-off between operation time and accuracy which depends on the mesh

size. In this example, when we require lower accuracy and the mesh size is

relatively small, CPU algorithm is the better choice; when higher accuracy is

required and the mesh size is relatively large, CPU/GPU joint algorithm is the

better choice. But this advantage of CPU/GPU joint application will decrease

as the mesh becomes more refined.

To meet the requirements of timely and efficiently pricing of multiple

options, we transform the CPU algorithm to joint CPU/GPU algorithm. Table

5.8 compares the operation time on pricing multiple options without GPU and

with GPU respectively at a given mesh size of 128. As we can see, the operation

time with GPU is relatively stable and is around 4 seconds when the number

of options is below 2048. The ratio of CPU operation time and CPU/GPU

joint operation time improves greatly as the number of options increases. In

summary, the algorithm with GPU has an overwhelming advantage over the

algorithm without GPU on pricing a large number of options.

98

Number of
options

CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

32 35361760 2902 3892648 96 3895646 9.0842 9.07735

64 70723520 3484 3900757 324 3904565 18.1307 18.11303

128 141447040 2752 3954747 195 3957694 35.7664 35.73986

256 282894080 3199 3955152 382 3958733 71.5255 71.46086

512 565788160 3200 4097343 1429 4101972 138.0866 137.93087

1024 1131576320 3232 4366600 1064 4370896 259.1436 258.88896

2048 2263152640 3257 4767045 1945 4772247 474.7496 474.23218

4096 4526305280 3328 9540157 3352 9546837 474.4477 474.11579

Table 5.8: Operation time of multiple options pricing under the generalized

hyperbolic distribution, parameters λ = 1.0, α = 8.15, β = −2.5, δ = 0.767

0

2

4

6

8

10
x 10

6 GPU

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Copy data: device to host
Computing time
Copy data: host to device

0

1

2

3

4

5
x 10

9 CPU

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Computing time

Figure 5.18: GPU (left) and CPU (right) time per step. The GPU computing

time is relatively stable when the number of options is below 2048.

99

Chapter 6

Conclusions

A spring model for the simulation of fabric surface is discussed based on

the modifications of Delingette. New components to the parachute module

have been included including the distinction of gore boundary, more sophis-

ticated collision handling and porosity. A dramatic computational speed up

the spring model simulation is achieved through heterogeneous computations

where the most expensive portion of calculation is performed by the GPU. Nu-

merical experiments verified first order convergence of the spring model under

the conditions that the total mass of the membrane is kept constant and that

both the tensile stiffness and angular stiffness of the spring conform with the

material’s Young’s modulus and the Poisson ratio. However, the convergence

is weak in the case when the fabric is under compression and forms wrinkles.

The verification of the spring model on the material properties of the

fabric membrane gives exciting results. Both Young’s modulus and Poisson

ratio agree with the theory excellently in the linear regime in which the relative

displacement ∆l/l is less than 10 percent. The difference increases as it reaches

100

the nonlinear regime in which the relative displacement exceeds 10 percent.

However, since both parachute canopy and string chords are stiff materials

and the relative stretches are both smaller than 10 percent even during the

most dynamic inflation phase, the spring model is sufficient for the simulation

of parachute deceleration system.

Our comparison of the inflation drag with the experimental data by

Potvin shows agreement on the peak drag force at approximately t = 1.2 −

1.6sec. However, simulations demonstrate oscillatory variation of the drag

force, or after-shock. By adding transverse damping of string chord such os-

cillation can be reduced, but do not fully explain the discrepancies between

experiment and simulations. Future work will focus on the effects due to poros-

ity and the wake of parachutist body or payload. Parachute malfunctions

during the inflation stage is dangerous and our numerical simulations show

that parachute canopy can undergo inversion when the parachute is dropped

with an angle exceeding 60◦ between the parachute and the free fluid stream

velocity.

101

Bibliography

[1] R. M. Aileni, D. Farima, and M. Ciocoiu. Simulating cloth in realistic
way using vertices model based. 7th International Conference-TEXSCI,
2010.

[2] M. Aono, D. Breen, and M. Wozny. Fitting a woven cloth model
to a curved surface: mapping algorithms. Computer-Aided Design,
26(4):278–292, April 1994.

[3] M. Aono, P. Denti, D. Breen, and M. Wozny. Fitting a woven cloth
model to a curved surface: dart insertion. IEEE Computer Graphics
and Applications, 16(5):60–70, September 1996.

[4] Ole Barndorff-Nielsen. Exponentially decreasing distributions for the
logarithm of particle size. Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences, 353(1674):401–419, 1977.

[5] J. B. Bell, P. Colella, and H. M. Glaz. An efficient sceond-order projec-
tion method for viscous incompressible flow. Proceedings of the Tenth
AIAA Computational Fluid Dynamics Conference, AIAA:360, 1991.

[6] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. The Journal of Political Economy, 81(3):637–654, 1973.

[7] W. Bo, X. Liu, J. Glimm, and X. Li. Primary breakup of a high speed
liquid jet. ASME Journal of Fluids Engineering, submitted, 2010.

[8] D. Breen. A particle-based model for simulating the draping behavior of
woven cloth. PhD thesis, Rensselaer Polytechnic Institute, 1993.

[9] D. Breen, D. House, and M. Wozny. Predicting the drape of woven
cloth using interacting particles. In Proceedings of ACM SIGGRAPH
94, pages 365–372. ACM Press, 1994.

102

[10] D. Brown, R. Cortez, and M. Minion. Accurate projection method for
the incompressible Navier Stokes equations. J. Comp. Phys., 168:464–
499, 2001.

[11] M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thalmann.
Dressing animated synthetic actors with complex deformable clothes.
In Computer Graphics (Proceedings of ACM SIGGRAPH 92), pages 99–
104. ACM Press, 1992.

[12] K.-J. Choi and H.-S. Ko. Stable but responsive cloth. ACM Transactions
on Graphics, 21:604–611, 2002.

[13] A. J. Chorin. Numerical solution of the Navier Stokes equations. Math.
Comp, 22:745–762, 1968.

[14] A. J. Chorin. On the convergence of discrete approximations to the
Navier-Stokes equations. Math. Comp, 23:341, 1969.

[15] Cedric Cochrane, Maryline Lewandowski, and Vladan Koncar. A flex-
ible strain sensor based on a conductive polymer composite for in situ
measurement of parachute canopy deformation. Sensors (14248220),
10:8291 – 8303, 2010.

[16] David J Cockrell and Alec David Young. The aerodynamcis of
parachutes. Technical report, DTIC Document, 1987.

[17] Rama Cont and Peter Tankov. Financial modelling with jump processes,
volume 2. CRC Press, 2004.

[18] John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing:
A simplified approach. Journal of financial Economics, 7(3):229–263,
1979.

[19] Herve Delingette. Triangular springs for modeling nonlinear membranes.
IEEE Transactions on Visualization and Computer Graphics Volume 14
Issue 2, pages 723–731, March 2008.

[20] Hamid J. Desabrais K.J. Aerodynamics of parachute opening.
ADA411095, ARO37594.6-EG. Mechanical Engineering Department,
Worcester Polytechnic Institute, pages 1–131, 2002.

[21] J. Du, B. Fix, J. Glimm, X. Jiao, X. Li, Y. Li, and L. Wu. A simple
package for front tracking. J. Comput. Phys., 213:613–628, 2006.

103

[22] Jian Du, Brian Fix, James Glimm, Xicheng Jia, Xiaolin Li, Yunhua Li,
and Lingling Wu. A simple package for front tracking. J. Comput. Phys.,
213:613–628, 2006.

[23] S. Dutta, E. George, J. Glimm, J. Grove, H. Jin, T. Lee, X. Li, D. H.
Sharp, K. Ye, Y. Yu, Y. Zhang, and M. Zhao. Shock wave interactions
in spherical and perturbed spherical geometries. Nonlinear Analysis,
63:644–652, 2005. University at Stony Brook preprint number SB-AMS-
04-09 and LANL report No. LA-UR-04-2989.

[24] S. Dutta, E. George, J. Glimm, X. L. Li, A. Marchese, Z. L. Xu, Y. M.
Zhang, J. W. Grove, and D. H. Sharp. Numerical methods for the deter-
mination of mixing. Laser and Particle Beams, 21:437–442, 2003. LANL
report No. LA-UR-02-1996.

[25] B. Eberhardt, M. Meißner, and W. Straßer. Knit fabrics. In D. House
and D. Breen, editors, Cloth Modeling and Animation, pages 123–144.
A.K. Peters, 2000.

[26] B. Eberhardt, A. Weber, and W. Straßer. A fast, flexible, particle-
system model for cloth draping. IEEE Computer Graphics and Applica-
tions, 16(5):52–59, September 1996.

[27] John A. Ekaterinaris. High-order accurate, low numerical diffusion
methods for aerodynamics. Progress in Aerospace Sciences, 41(34):192
– 300, 2005.

[28] EG Ewing, HW Bixby, and TW Knacke. Recovery systems design guide.
Technical report, DTIC Document, 1978.

[29] C. L. Gardner, J. Glimm, J. W. Grove, O. McBryan, R. Menikoff,
D. H. Sharp, and Q. Zhang. A study of chaos and mixing in Rayleigh-
Taylor and Richtmyer-Meshkov unstable interfaces. In M. Duong-van
and B. Nichols, editors, Proceedings of the International Conference on
’The Physics of Chaos and Systems Far from Equilibrium’ (CHAOS’ 87),
Monterey, CA, USA, Jan. 11–14, 1987. 1988. Special Issue of Nuclear
Physics B (proceedings supplements section).

[30] A. Van Gelder. Approximate simulation of elastic membranes by trian-
gulated spring meshes. J. Graphics Tools, 3(2):21–41, March 1998.

104

[31] E. George, J. Glimm, X. L. Li, Y. H. Li, and X. F. Liu. The influence
of scale-breaking phenomena on turbulent mixing rates. Phys. Rev. E,
73:016304, 2006.

[32] E. George, J. Glimm, X. L. Li, A. Marchese, and Z. L. Xu. A comparison
of experimental, theoretical, and numerical simulation Rayleigh-Taylor
mixing rates. Proc. National Academy of Sci., 99:2587–2592, 2002.

[33] James M. Gere. Mechanics of materials, sixth edition. Bill Stenquist,
2004.

[34] J. Glimm, X.-L. Li, R. Menikoff, D. H. Sharp, and Q. Zhang. A nu-
merical study of bubble interactions in Rayleigh-Taylor instability for
compressible fluids. Phys. Fluids A, 2(11):2046–2054, 1990.

[35] J. Glimm, X. L. Li, W. Oh, A. Marchese, M.-N. Kim, R. Samulyak,
and C. Tzanos. Jet breakup and spray formation in a diesel engine. In
Proceedings of the Second MIT Conference on Computational Fluid and
Solid Mechanics. Cambridge, MA, 2003. SUNY Stony Brook preprint
No. susb-ams-02-20.

[36] J. Glimm, O. McBryan, R. Menikoff, and D. Sharp. Front tracking ap-
plied to Rayleigh-Taylor instability. SIAM J. Sci. Stat. Comput., 7:230–
251, 1986.

[37] James Glimm, M.-N. Kim, X.-L. Li, R. Samulyak, and Z.-L. Xu. Jet sim-
ulation in a diesel engine. In Computational Fluid and Solid Mechanics
2005. Elsevier Science, 2005.

[38] Katuhiko Goda. A multistep technique with implicit difference schemes
for calculating two- or three-dimensional cavity flows. J. Comput. Phys.,
30:76–95, 1979.

[39] S.-W. Hsiao and R.-Q. Chen. A method of drawing cloth patterns with
fabric behavior. 5th WSEAS International Conference on Applied Com-
puter Science, pages 635–640, 2006.

[40] A. H. Barr J. C. Platt. Constraints methods for flexible models. In
SIGGRAPH ’88 Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, pages 279–288, 1988.

[41] F. Ji, R. Li, and Y. Qiu. Simulate the dynamic draping behavior of
woven and knitted fabrics. J. Industrial Textiles, 35:201–214, 2006.

105

[42] G. Jiang and C.-W. Shu. Efficient implementation of weighted ENO
schemes. J. Comput. Phys., 126:202–228, 1996.

[43] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of
weighted ENO schemes. Journal of Computational Physics, 126(1):202
– 228, 1996.

[44] Vinay Kalro and Tayfun E. Tezduyar. A parallel 3D computational
method for fluid-structure interactions in parachute systems. Computer
Methods in Applied Mechanics and Engineering, 190:321–332, 2000.

[45] K. Karagiozis, R. Kamakoti, F. Cirak, and C. Pantano. A computational
study of supersonic disk-gap-band parachutes using large-eddy simula-
tion coupled to a structural membrane. Journal of Fluids and Structures,
27(2):175–192, 2011.

[46] S. Kawabata. The standardization and analysis of hand evaluation. J.
Text. Mach. Soc. Japan, 1980.

[47] J. Kim and P. Moin. Application of a fractional-step method to incom-
pressible Navier-Stokes equations. J. Comput. Phys., 59:308, 1985.

[48] J.-D. Kim, Y. Li, and X.-L. Li. Simulation of parachute FSI using the
front tracking method. Journal of Fluids and Structures, 37:101–119,
2013.

[49] Y. Kim and C. S. Peskin. 2-D parachute simulation by the immersed
boundary method. SIAM J. Sci. Comput., 28:2294–2312, 2006.

[50] Y. Kim and C. S. Peskin. 3-D parachute simulation by the immersed
boundary method. Comput. Fluids, 38:1080–1090, 2009.

[51] Young Shin Kim, Svetlozar T Rachev, Michele Leonardo Bianchi, and
Frank J Fabozzi. Financial market models with lévy processes and time-
varying volatility. Journal of Banking & Finance, 32(7):1363–1378, 2008.

[52] David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann, 2010.

[53] Theo W Knacke. Parachute recovery systems design manual. Technical
report, DTIC Document, 1991.

[54] AC Knoell. Alaa 2nd aerodynamic deceleration systems conference.
1968.

106

[55] Hans Petter Langtangen, Kent-Andre Mardal, and RagnarWinther. Nu-
merical methods for incompressible viscous flow. Advances in Water
Resources, 25(8):1125–1146, 2002.

[56] Long Lee and Randall J LeVeque. An immersed interface method for in-
compressible navier–stokes equations. SIAM Journal on Scientific Com-
puting, 25(3):832–856, 2003.

[57] Y. Li, I-Liang Chern, J.-D. Kim, and X.-L. Li. Numerical method of
fabric dynamics using front tracking and spring model. Communications
in Computational Physics, 14(5):1228–1251, 2013.

[58] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of Computational Physics, 115(1):200 – 212,
1994.

[59] Abhijit Majumdar. Soft computing in textile engineering. Elsevier, 2010.

[60] Jr. Manley C.Butler and Michael D.Crowe. The design, development and
testing of parachutes using the bat sombrero slider. 15th CEAS/AIAA
Aerodynamic Decelerator Systems Technology Conference, 1999.

[61] Maciej Matyka. Solution to two-dimensional incompressible navier-
stokes equations with simple, simpler and vorticity-stream function ap-
proaches. driven-lid cavity problem: Solution and visualization. arXiv
preprint physics/0407002, 2004.

[62] Randall C Maydew, Carl W Peterson, and Kazimierz J Orlik-
Rueckemann. Design and testing of high-performance parachutes (la
conception et les essais des parachutes a hautes performances). Techni-
cal report, DTIC Document, 1991.

[63] Robert C Merton, Michael J Brennan, and Eduardo S Schwartz. The
valuation of american put options. The Journal of Finance, 32(2):449–
462, 1977.

[64] Paulius Micikevicius. 3d finite difference computation on gpus using
cuda. pages 79–84, 2009.

[65] Carl W. Peterson. The fluid physics of parachute inflation. Physics
Today, 46:32, 1993.

[66] J. Potvin. Parachute inflation. McGraw-Hill Yearbook of Science and
Technology, 1998.

107

[67] J. Potvin, K. Bergeron, G. Brown, R. Charles, K. Desabrais, H. Johari,
V. Kumar, M. McQuilling, A. Morris, G. Noetscher, and B. Tutt. The
road ahead: A white paper on the development, testing and use of ad-
vanced numerical modeling for aerodynamic decelerator system design
and analysis. AIAA paper 2011-2501, May 2011.

[68] Jean Potvin and Mark McQuilling. The bi-model: Using cfd in simu-
lations of slowly-inflating low-porosity hemispherical parachutes. AIAA
paper 2011-2542, May 2011.

[69] X. Provot. Deformation constraints in a mass-spring model to describe
rigid cloth behavior. In Proceedings of Graphics Interface (GI 1995),
pages 147–154. Canadian Computer-Human Communications Society,
1995.

[70] J. W. Purvis. Prediction of line sail during lines-first deployment. AIAA
21st Aerospace Sciences Meeting, 1983.

[71] J. W. Purvis. Numerical prediction of deployment, initial fill, and in-
flation of parachute canopies. 8th AIAA Aerodynamic Decelerator and
Balloon Technology Conference, 1984.

[72] Douglas S.Adams. Lessons learned and flight experience from planetary
parachute development. 7th International Planetary Probe Workshop
(IPPW7), 2010.

[73] R. Samulyak, T. Lu, and P. Parks. A hydromagnetic simulation of pellet
ablation in electrostatic approximation. Nuclear Fusion, 47:103–118,
2007.

[74] R. Samulyak, T. Lu, P. Parks, J. Glimm, and X. Li. Simulation of
pellet ablation for tokamak fuelling with itaps front tracking. Journal of
Physics: Conf. Series, 125:012081, 2008.

[75] Qiangqiang Shi, Daniel Reasor, Zheng Gao, Xiaolin Li, and Richard D.
Charles. On the verification and validation of a spring fabric for medeling
parachute inflation. Submitted to Journal of Fluids and Structures, 2014.

[76] Gary A Sod. A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws. Journal of Computational
Physics, 27(1):1 – 31, 1978.

108

[77] GA Solt Jr. Performance of and design criteria for deployable aerody-
namic decelerators. US Air Force Flight Dynamics Lab Report, ASD-
TR-61-579, page 357, 1963.

[78] K. Stein, R. Benney, V. Kalro, T. E. Tezduyar, J. Leonard, and M. Ac-
corsi. Parachute fluid-structure interactions: 3-D computation. Comput.
Methods Appl. Mech. Engrg, 190:373–386, 2000.

[79] K. Stein, R. Benney, T. Tezduyar, and J. Potvin. Fluid-structure inter-
actions of a cross parachute: numerical simulation. Computer Methods
in Applied Mechanics and Engineering, 191(6-7):673–687, 2001.

[80] K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, E. Thorn-
burg, C. Kyle, and T. Nonoshita. Aerodynamic interactions between
parachute canopies. J. Appl. Mech., 70:50–57, 2003.

[81] K. R. Stein, R. J. Benney, V. Kalro, A. A. Johnson, and T. E. Tezdu-
yar. Parallel computation of parachute fluid-structure interactions. 14th
Aerodynamic Decelerator Systems Technology Conference, 1997.

[82] K. R. Stein, R. J. Benney, E. C. Steeves, Development U.S. Army Nat-
ick Research, and Engineering Center. A computational model that cou-
ples aerodynamic and structural dynamic behavior of parachutes during
the opening process. Technical report (U.S. Army Natick Laboratories).
United States Army Natick Research, Development and Engineering
Center, Aero-Mechanical Engineering Directorate, 1993.

[83] K. R. Stein, R. J. Benney, T. E. Tezduyar, J. W. Leonard, and M. L.
Accorsi. Fluid-structure interactions of a round parachute: Modeling
and simulation techniques. J. Aircraft, 38:800–808, 2001.

[84] J. H. Strickland, V. L. Porter, G. F. Homicz, and A. A. Gossler. Fluid-
structure coupling for lightweight flexible bodies. 17th AIAA Aerody-
namic Decelerator Systems Technology Conference and Seminar, 2003.

[85] K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T. E. Tezdu-
yar. Fluid-structure interaction modeling and performance analysis of
the orion spacecraft parachutes. International Journal for Numerical
Methods in Fluids, 65:271–285, 2011.

[86] Kenji Takizawa, Timothy Spielman, and Tayfun E. Tezduyar. Space-
time FSI modeling and dynamical analysis of spacecraft parachutes and
parachute clusters. Computational Mechanics, 48:345–364, 2011.

109

[87] Eric Yu Tau. A second-order projection method for the incompressible
navier-stokes equations in arbitrary domains. Journal of Computational
Physics, 115(1):147–152, 1994.

[88] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Com-
puter, 4(6):306–331, December 1988.

[89] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: vis-
coelasticity, plasticity, fracture. In Computer Graphics (Proceedings of
ACM SIGGRAPH 88), pages 269–278. ACM Press, July 1988.

[90] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically de-
formable models. In Computer Graphics (Proceedings of ACM SIG-
GRAPH 87), pages 205–214. ACM Press, July 1987.

[91] T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space-time finite el-
ement techniques for computation of fluid-structure interactions. Com-
puter Methods in Applied Mechanics and Engineering, 195:2002–2027,
2006.

[92] T. E. Tezduyar, S. Sathe, M. Schwaab, J. Pausewang, J. Christo-
pher, and J. Crabtree. Fluid-structure interaction modeling of ringsail
parachutes. Computational Mechanics, 43:133–142, 2008.

[93] T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christo-
pher. Space-time finite element computation of complex fluid-structure
interactions. International Journal for Numerical Methods in Fluids,
64:1201–1218, 2010.

[94] Tayfun E. Tezduyar and Sunil Sathe. Modelling of fluid-structure in-
teractions with the space-time finite elements: Solution techniques. In-
ternational Journal for Numerical Methods in Fluids, 54(6-8):855–900,
2007.

[95] B. Tutt, S. Roland, R. D. Charles, and G. Noetscher. Finite mass sim-
ulation techniques in LS-DYNA. 21st AIAA Aerodynamic Decelerator
Systems Technology conference and Seminar, 2011.

[96] B. A. Tutt. The application of a new material porosity algorithm for
parachute analysis. 9th International LS-DYNA Users Conference, 2006.

[97] B. A. Tutt and A. P. Taylor. The use of LS-DYNA to simulate the
inflation of a parachute canopy. 18st AIAA Aerodynamic Decelerator
Systems Technology conference and Seminar, 2005.

110

[98] J Van Kan. A second-order accurate pressure-correction scheme for vis-
cous incompressible flow. SIAM Journal on Scientific and Statistical
Computing, 7(3):870–891, 1986.

[99] P. Volino, M. Courchesne, and N. Magnenat-Thalmann. Versatile and
efficient techniques for simulating cloth and other deformable objects. In
Proceedings of ACM SIGGRAPH 95, pages 137–144. ACM Press, 1995.

[100] Yiyang Yang, Qiangqiang Shi, and Xiaolin Li. A gpu enhanced numer-
ical algorithm for american option pricing under generalized hyperbolic
distribution. Submitted to applied numerical mathmatics, 2013.

[101] CAO YIHUA, SONG QIANFU, WU ZHUO, and JOHN SHERIDAN.
Flow field and topological analysis of hemispherical parachute in low
angles of attack. Modern Physics Letters B, 24:1707 – 1725, 2010.

[102] Li Yu and Xiao Ming. Study on transient aerodynamic characteristics
of parachute opening process. Acta Mechanica Sinica, 23:627–633, 2007.

[103] Peter Zaspel and Michael Griebel. Solving incompressible two-phase
flows on multi-gpu clusters. Computers & Fluids, 80(0):356 – 364, 2013.

111

