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Quantifying the risk of the uncertainty in the future value of a portfolio is a key task in risk 

management. For decades many researchers have been trying to formalize sophisticated risk 

measures and apply them in the real financial world. In view of that this dissertation is dedicated 

to investigate the development of risk measures along with the applications in risk management, 

particularly in partial hedging under stochastic interest rate.  

In this dissertation we assess the partial hedging problems by formulating hedging 

strategies that minimize conditional value-at-risk (CVaR) of the portfolio loss under stochastic 

interest rate environment. The combination of stochastic interest and CVaR hedging method 

makes the valuing approach more complex than the existing model with constant interest rate. 

We take up two issues in searching the optimal CVaR hedging strategy: given the initial capital 

constraint we minimize the CVaR of the portfolio loss; by prescribing a bound on the risk, we 
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also minimize the hedging cost. As an illustration of this hedging technique we derive hedging 

strategies for a European call option with the Black Scholes setting under HJM framework; 

explicit formulas are presented. We also investigate CVaR hedging problems by using the real 

financial data.  

The last chapter in this dissertation investigate nominal and robust portfolio optimization 

by employing difference version of CVaR as the risk measure. We assume that the return only 

known to follow a distribution set. High frequency data is used to test the performance of CVaR 

optimization and Worst CVaR optimization with contrast to a equally weighted protfolio.   
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1. Introduction 
 

Quantifying the risk of the uncertainty in the future value of a portfolio is a key task in 

risk management. For decades many researchers have been trying to formalize sophisticated 

risk measures and apply them in the real financial world. In view of that this dissertation is 

dedicated to investigate the development of risk measures along with the applications in risk 

management, particularly in partial hedging under stochastic interest rate.  

The problem of pricing and hedging of a contingent claim is well understood in the 

context of a complete market. Given a sufficient allocation of initial wealth, every contingent 

claim can be replicated by a self-financing trading strategy, thereby being hedged perfectly. 

The cost of replication defines the price of the claim, and can be computed as the expectation 

of the claim under a unique equivalent martingale measure. The main characteristic of partial 

hedging is that it allows investors to allocate a smaller amount of initial capital than in the 

case of perfect hedging, while still managing the risk in a systematic way.  

Different partial hedging approaches have been proposed and examined in the 

literature. The well-known examples are quadratic hedging and quantile hedging using 

Value-at-Risk. The performance of partial hedging mostly relies on the selection of the 

underlying risk measure. In this dissertation we introduce a partial hedging strategy by using 

Conditional value-at-risk (CVaR). We formulate hedging strategies that minimize CVaR of 

the portfolio loss under stochastic interest rate environment. The combination of stochastic 

interest and CVaR hedging method makes the valuing approach more complex than the 

existing model with constant interest rate. We take up two issues in this work: given the 

initial capital constraint we minimize the CVaR of the loss L; by prescribing a bound on the 
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risk, we minimize the cost of the target portfolio. As an illustration of this hedging technique 

we derive hedging strategies for a European call option with the Black Scholes setting under 

HJM framework; explicit formulas are derived. We also investigate CVaR hedging problems 

by using the real financial data.  
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2. Monetary Measure of Risk 
 

Risk measures are quantitative tools developed to determine the minimum capital 

reserves that need to be maintained by financial institutions so as to ensure their financial 

stability. In 1952 Markowitz first adopted variance as the measure of risk.  Value-at-Risk 

(VaR) is a popular measure of downside risk in financial risk management since the middle 

of 1990s, and defined as the maximum amount of loss that can be observed for a given 

confidence level in the determined time interval. For a given probability distribution, VaR is 

basically a quantile estimation written as 

1( ) ( )VaR X Fα α−=  

VaR is an important risk measure and required by the Basel Accord. However, it has 

been criticized in recent years in terms of three aspects: first, VaR is not sub-additive in the 

general distribution cases; also, VaR may exhibit multiple local extreme values for discrete 

distributions and hard to be optimized; moreover, VaR only represents a percentile of a 

probability distribution, and does not fully grasp the information of the uncertainty beyond.  

     The criticisms of VaR motivated researchers to formalize better measures of risk. ADEH 

took the first line of research by introducing the ideal of “Thinking Coherently” in 1997. In 

1999 ADEH introduced “Coherent Risk Measures” where the consistency conditions were 

illustrated. This is considered a major contribution in risk measurement research. New risk 

measures that satisfy these consistency conditions and as easy to compute as VaR are 

constructed, for example, Conditional Value at Risk (CVaR) by Uryasev and Rockafeller in 

1999 and Expected Shortfall (ES) by Acerbi et. Al. in 2000.  Another significant contribution 

in this area was done by Follmer and Schied in 2002 with the introduction of “Convex Risk 

Measures”. Convex risk measure forms a theoretical framework going one step further in 

terms of reflecting real market conditions. This group of risk measures drop the positive 
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homogeneity axiom of coherent risk measures in order to reflect the liquidy risk in financial 

markets. Later in 2004 Bion-Nadal defined conditional convex risk measures, which allows 

random variable to be values of risk measure, and evolves the convex risk measures by 

integrating the asymmetric information theory in risk measurement.  

Dynamic risk measure is a sequence of conditional risk measures adapted to the 

underlying filtration. A crucial question in the dynamical framework is how risk evaluations 

at different time periods are interrelated.  One of todays most used notion of time consistency 

is strong time consistency, which can be characterized by additivity of the acceptance sets 

and penalty funtions, and also by a supermartingale property of the risk process and the 

penalty function process, see [11,13]. 

An outline of this section is as follows: section 2 review the notion of a measure of risk, 

its proper axioms, and some representation results concerning them; section 3 we extend the 

measures to a conditional framework. Dynamic risk measures in both continuous time and 

discrete time settings are investigated; time consistency as an important property for dynamic 

risk measures is also presented. As an illustration of all theories discussed in this section, we 

introduce the dynamic entropic risk measure and its application with a pension fund setting. 
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2.1 Axioms and Acceptance Set 

The uncertainty in the future value of a portfolio is usually described by a function

X :Ω→! , where Ω represents a fixed set of scenarios, and X can be interpreted as the 

discounted value of a portfolio which is the risk. We aim to determine ρ(X), which quantifies 

the risk and can serve as the minimal amount of capital that makes the position acceptable. 

Let χ  denotes a linear space of functions X , and 0( , , )L F Pχ ⊂ Ω . It will be seen late that we 

often restrict ourselves to ( , , ), [1, ]pL F P pΩ ∈ +∞ .   

     Definition 2.1 A mapping ρ: X→!  is called a monetary risk measure if it satisfies the 

following conditions for all X, Y χ∈ . 

• Monotonicity: If X≤ Y, then ρ(X) ≥ ρ(Y). 

• Cash invariance: If m ∈ R, then ρ(X+ m) = ρ(X) – m 

     Monotonicity implies that if a portfolio has higher returns for all possible states of 

nature relative to another portfolio, risk associated to this portfolio is naturally lower. 

Translation invariance assures that a risk measure is expressed in currency terms by saying 

that when an amount of cash is added to the portfolio as a risk free investment, the risk of the 

portfolio decreases by the same amount.  

     Definition 2.2 A monetary measure of risk ρ: X →! is called a coherent measure of risk 

if it satisfies the condition of 

• Positive Homogeneity: If λ ≥0, then ρ (λ X) =λ ρ(X), 

• Subadditivity: ρ(X+Y) ≤  ρ(X) + ρ(Y). 

     Positive homogeneity implies that there is a linear relation between the position size 

and the associated risk of the portfolio. Subadditivity states that a merger does not create 

extra risk. Convex risk measure below drops the positive homogeneity axiom in order to 

reflect the liquidity risk in financial market. 
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     Definition 2.3 A monetary risk measure ρ: X →!  is called a convex measure of risk if it 

satisfies the property of 

• Convexity: ρ (λ X+ (1−λ)Y) ≤  λ ρ(X) + (1−λ)ρ(Y), for 0 ≤ λ≤ 1. 

    It is immediately clear that coherent risk measure is indeed a special case of convex 

risk measure. That is, when the liquidity risk is taken as 0, every coherent risk measure is 

convex.  

     Proposition 2.4.  For a risk measure ρ : X →!  we have  

                           ( ( )) 0X Xρ ρ+ =  for X χ∈ , where ( ) .Xρ < +∞  (1) 

     If additionally positive homogeneous, then it holds that 

(1)     (0) 0ρ = , i.e., ρ is normalized, 

(2)     ( )c cρ = −  for all c∈ ° . 

Proof.  Appendix 1 

 

We formally introduce the concept of acceptance with respect to its risk measure ρ  

   ( ):   {X  | X 0}Aρ χ ρ= ∈ ≤                                     (2) 

     The set Aρ is called the acceptance set of acceptable future net value, where ρ(X) is 

considered the smallest amount of money that would have to be added to X to make it 

acceptable. The following propositions summarize the relations between monetary measures 

of risk and their acceptance sets. 

     Proposition 2.5.  Suppose that ρ is a monetary measure of risk with its acceptance set 

: ρΑ = Α . 

(a) Α is non-empty, closed with respect to the supremum norm ⋅ , and satisfies 

the following two conditions: 
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 inf{ | }m m∈ ∈Α > −∞° .  

 Χ∈Α ,Y χ∈ ,Y Y≥ Χ⇒ ∈Α .  

(b) ρ  can be recovered from Α : 

                                 ( ) inf{ | }X m mρ = ∈ +Χ∈Α° ,                                     (3) 

(c) ρ  is a convex risk measure if and only if Α is convex, 

(d) ρ  is positively homogeneous if and only if Α is a cone. In particular, ρ is coherent if 

and only if Α is a convex cone. 

Proof. Appendix 2 

(3) takes a given set χΑ ⊂  of acceptable positions as the initial object, i.e., for χΧ∈ , 

we define the capital requirement as the minimal amount m for which m +Χ becomes 

acceptable.   
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2.2  Structure Theorems and Robust Representation 

To find out whether a risk measure is coherent or not, we need to characterize the class 

of coherent risk measures. Here we investigate how a coherent risk measure can be 

constructed. The following theorem is usually a useful tool.   

Theorem 2.6 Let p  and q  be such that [ )1,p∈ +∞  and 1/ 1/ 1p q+ = . A mapping 

ρ : Lp (Ω,F ,P)→!  is a coherent risk measure satisfying the pL Fatou− property if and only 

if there exists a convex ( )qL P closed− and qL bounded− set ς of probability measures that are 

absolutely continuous with respect to P such that 

 ( ) sup ( )X E X
ς

ρ
∈

= −§
§

, ( , , )pX L F P∈ Ω . (4) 

    Proof: (Inoue, 2003)  

Recall: A risk measure : ( , , )pL F Pρ Ω → ° , [ )1, ,p∈ +∞ is said to satisfy the pL Fatou−

property if for each bounded sequence ( ) ( , , )p
n nX L F P∈ ⊂ Ω• and ( , , )pX L F P∈ Ω  such that 

pL
n nX X

→∞
⎯⎯⎯→  , we have ( ) liminf ( ).nn

X Xρ ρ
→∞

≤  The remaining of this section will introduce 

a dual representation. 

The structure theory was extended to the convex case by Foller and Schied and some 

others. Readers are referred to [33,34,35,37] 

Let ( )1 1( ) ,P FΜ =Μ Ω  denote the set of all probability measures Q on ( ), FΩ  which are 

absolutely continuous with respect to P. Moreover, and let ( )1, 1,( ) : ,f fP FΜ = Μ Ω  represent 

the set of all finitely additive set functions Q (Q: F→[0,1]) that are normalized to Q[Ω ]=1, 

and continuous with respect to P so that Q[Z]=0 when P[Z]=0.  

Let 𝛼:𝑀!,! 𝑃 → ℝ ∪ {+∞} be any functional such that  

min
!∈!!,! !

𝛼(𝑄) ∈ ℝ                                                       (5) 
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For each 𝑄 ∈ 𝑀!,!(𝑃)  with 𝛼 𝑄 < ∞ , the functional 𝑋 ↦ 𝐸! −𝑋 − 𝛼(𝑄)   is convex, 

monotone, and cash invariant on 𝐿!, and these three properties are preserved when taking the 

supreme over 𝑄 ∈ 𝑀!,! 𝑃 .  Thus,  

𝑝 𝑋 ≔ sup
!∈!!,! !

𝐸! −𝑋 − 𝛼 𝑄                                                                                   (6) 

defines a convex measure of risk on 𝐿! such that  

                           𝑝 0 = − min
!∈!!,! !

𝛼(𝑄)                                               (7) 

The functional 𝛼 is called a penalty function for risk measure ρ on 𝑀!,!(P).    

Every convex measure of risk on 𝐿! is of form (6). (8) gives a variational formula for the 

minimal penalty function 𝛼!"#. 

                      ρ 𝑋 = sup
!∈!!,! !

(𝐸! −𝑋 − 𝛼!"# 𝑄 )                                           (8) 

The minimal penalty function 𝛼!"# 𝑄  is given by 

( ) [ ] ( )( )supmin Q
X

Q E X X
χ

α ρ
∈

= − −                                               (9) 

    Theorem 2.7 Suppose ρ  : 𝐿! → ℝ is a convex measure of risk. Then the following 

conditions are equivalent.   

a) ρ can be represented by some penalty function on 𝑀! 𝑃 , 

b) ρ can be represented by the restriction of the minimal penalty function 𝛼!"# to           𝑀!(𝑃): 

𝑝 𝑋 = sup
!∈!! !

(𝐸! −𝑋 − 𝛼!"# 𝑄 ), ∈ 𝐿! ,                             (10) 

c) ρ is continuous from above: If  nX X]    P - a.s.  then ( ) ( )nX Xρ ρZ , 

d) ρ has the “Fatou property”: For any bounded sequence 𝑋!  which converges             P - a.s.    

to some 𝑋, 
 

( ) liminf ( )nn
X Xρ ρ

↑∞
≤ . 

    The robust representation form for coherent risk measures is a special case of the 

robust representation form for convex risk measures. 
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Corollary 2.8 The minimal penalty function 𝛼!"# of a coherent measure of risk ρ  takes 

only the values 0 and +∞.  In particular, 

ρ 𝑋 = 𝑚𝑎𝑥
!∈ maxς

𝐸![−𝑋]                                        (11) 

Where maxς ≔ {𝑄 ∈ 𝑀!,!(𝑃)|𝛼!"# 𝑄 = 0}  is the largest set ς for which robust 

representation of (11) holds. 

Proof.   

        Due to the positive homogeneity of ρ , its minimal penalty function satisfies 

𝛼!"# 𝑄 = sup
!∈!!

𝐸! −𝑋 − ρ 𝑋 = sup
!∈!!

𝐸! −𝜆𝑋 − ρ 𝜆𝑋 = 𝜆𝛼!"#(𝑄) 

for all 𝑄 ∈ 𝑀!,!(𝑃) and 𝜆 > 0.  Hence, 𝛼!"# can only take the values 0 and +∞. 
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2.3   Dynamic Risk Measure    

Let T ∈ !∪{∞} be the time horizon; T: ={0,...,T} for T <∞,  and !: = "0  for T = ∞ . 

Denote t as a fixed stopping time given information available at time t, t∈T . Introduce a 

sub-σ-algebra tF in addition to the probability space (Ω, ,F P); tF  can be interpreted as 

knowledge about the underlying risk at time t such that 0 { , }F φ= Ω , TF F= for T<∞, and 

0( )t tF Fσ ≥= U  for T=∞.  

Define the spaces { }0: |
A

A k L k= ∈ <∞  and B := k ∈ A |Δkt ≥ 0∀t ∈ !{ }, where

1: ,t t tk k k −Δ = −  1 0k− = , and 1 : tA t
k E k

∈
⎡ ⎤= Δ⎣ ⎦∑ •

. Define also the bilinear form on L A∞ × , 

i.e., , : .t t
t

X k E X k
∈

⎡ ⎤
= Δ⎢ ⎥

⎣ ⎦
∑
•

 By introducing a projection { }( ) : 1t ttX Xτ τπ Λ≤= T , t τ≤ <T , we 

can obtain the above in a conditional setting. In Particular, : ,t tL Lπ∞ ∞= : ,t tA Aπ=
 

[ ],
: ,  and , : | .t t t t tt

t t
B B X k E X k Fπ

∈

⎡ ⎤
= = Δ⎢ ⎥

⎢ ⎥⎣ ⎦
∑
T

Finally, we define the set of density processes as 

{ }: | 1, 1 .t t t
k B k= ∈ =¢  

 

 

 

 

 

 

 

 

 



 

 12  

 

2.3.1 Risk Measures in Conditional Framework 

 

A natural extension of a static risk measure is given by a conditional risk measure, which 

integrates the information available at the time of risk assessment. Intuitively, a conditional 

measure of risk should be a mapping from χ to the set of tF -measurable random variables. 

For , : ( , , )t tt T L L F P∞ ∞∈ = Ω is the space of all essentially bounded tF  measurable random 

variables. All equalities and inequalities between random variables and between sets are 

understood to hold P almost surely. 

    Consider risk measures defined on the set L∞ . In the dynamical setting, a conditional 

risk measure tρ  assigns to each terminal payoff X an tF - measurable random variable

( )tX Fρ . Rigorous definitions of conditional risk measure are given below.  

Definition 2.1 A mapping ( ) : ( , , )t tF L F P Lρ ∞ ∞⋅ Ω → is a conditional risk measure if it 

satisfies the following three axioms. 

• Monotonicity: if ( ) ( )t tX F Y Fρ ρ≥  for all X, Y ( , , )L F P∞∈ Ω  with X ≤ Y, 

• Conditional Translation Invariance: ( ) ( )t tX H F X F Hρ ρ+ ≥ − for X ( ,L∞∈ Ω , )F P

and H ( , , )tL F P∞∈ Ω .     

    Definition 2.2 A conditional risk measure ( ) : ( , , )t tF L F P Lρ ∞ ∞⋅ Ω → is coherent if it 

satisfies the following properties: 

• Subadditivity: ( ) ( ) ( )t t tX Y F X F Y Fρ ρ ρ+ ≤ + for X,Y ( , , )L F P∞∈ Ω , 

• Conditional positive homogeneity: ( ) ( )t tX F X Fρ ρΛ =Λ if ( , , )L F P∞Λ∈ Ω and X

( , , )L F P∞∈ Ω . 
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    Definition 2.3 A conditional risk measure ( ) : ( , , )t tF L F P Lρ ∞ ∞⋅ Ω → is convex if for 

all X, Y ( , , )L F P∞∈ Ω such that 0 1≤ Λ ≤  it holds that  

• Convexity: ( (1 ) ) ( ) (1 ) ( )t t tX Y F X F Y Fρ ρ ρΛ + −Λ ≤ Λ − −Λ . 

     The static risk measure we investigated in the previous section is actually a trivial 

case of the conditional one. Assume that there is no additional information about risk 

available at the time of risk assessment at time t, that is, { , }tF ∅ Ω , then for every X ,χ∈

( )Xρ is tF -measurable as a constant, and thus ( )tFρ ρ= ⋅ .  

 In a conditional setting, we can also define an acceptance set A of all bounded adapted 

stochastic processes that are `acceptable'. In order to be `acceptable', X should feature a non-

positive conditional risk measure. Formally,     

 { ( ) 0}t tA X L X Fρ∞= ∈ ≤               (12) 

By construction, tρ can be uniquely determined as 

 ( ) inf{ }
t

A
t tX Y L X Y Aρ ∞= ∈ + ∈         (13) 

The minimal penalty function 𝛼!"# 𝑄  for each Q 1( )P∈Μ can be written as,  

                                 
( ) Q-ess sup [ ]

t

min
t

X
t

A
FQ E Xα

∈
−=                                                  

(14) 

A conditional convex risk measure tρ takes the robust representation in the form of 

                                  
( )( ) sup( [ ] )t Q t

Q

min
tX ess E X F Q

ς
ρ α

∈
= − −                                   (15) 

For simplicity, we will denote ( )tX Fρ  as ( )t Xρ in the following dynamical work. 
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2.3.2    Continuous Time Dynamic Risk Measure for Final Payments 

 

Dynamic risk measure is a sequence of conditional risk measures adapted to the 

underlying filtration. Therefore, the positions we are going to rate now are stochastic 

processes ( )t t TX ∈ rather than random variables. We first restrict ourselves to ones with final 

payments only, that is, 0tX = for t T≠ . Under this circumstances ( )t t TX ∈  can actually be 

identified with the random variable TX , such that nothing changed from a practical point of 

view and the set of positons χ  is a subset of 0 ( , , )L F PΩ . Define [0, 1)T− = −T . 

Definition 2.4 A mapping ( ) ( ): , , , , ( )( )tT t tρ χ ω ρ ω ρ ω−Ω× × Χ Χ = Χ ∈a °∋  (

: { , }= −∞ +∞° ° U ) is called a dynamic risk measure for final payments if the following 

conditions are met: 

•  the process ( ( ))t tρ
−∈Χ T  is ( )t tF

−∈T -adapted, 

• ρ  is monotone: ( ) ( ), ,t tX Y tρ ρ −< ∈T  if ,X Y χ∈  and X Y> , 

• ρ  is dynamic translation invariant: it holds that ( ) ( )t tX Y X Yρ ρ+ = −  for 

, ,t Y χ−∈ Χ ∈T  such that Y  is tF -measurable. 

    Definition 2.5 A dynamic risk measure for final payments : Tρ χ−Ω× × → °  is 

coherent if it satisfies the following properties: 

• Subadditivity: ( ) ( ) ( )t t tX Y X Yρ ρ ρ+ ≤ +  if ,and ,t Y χ−∈ Χ ∈T ,  

• Dynamic positive homogeneity: ( ) ( )t tρ ρΛΧ = Λ Χ  for ,t χ−∈ Χ∈T  and tF -

measurable χΛ∈  with 0Λ ≥ . 

    Definition 2.6 A dynamic risk measure for final payments : Tρ χ−Ω× × → °  is called 

convex if for t −∈T  and tF -measurable random variable χΛ∈  such that 0 1≤ Λ ≤  we have 



 

 15  

 

 ( (1 ) ) ( ) (1 ) ( ),  , .t t tX Y X Y X Yρ ρ ρ χΛ + −Λ ≤ Λ + −Λ ∈  (16) 

    Suppose that : Tρ χ−Ω× × → °  is a dynamic risk measure. Fix t −∈T , we can then write 

the acceptance set as 

 { | ( ) 0}t t
ρ χ ρΑ = Χ∈ Χ ≤  (17) 

    The following two theorems define the penalty functions for dynamic convex and coherent 

risk measures. 

     Theorem 2.7 Let p and q be such that [ )1,p∈ +∞ and 1/ 1/ 1p q+ = . If 

: ( , , )pT L Fρ −Ω× × Ω →° ° is a convex dynamic risk measure for final payments, then there 

exists a mapping ( ]: ,qα ς−Ω× × → −∞ +∞T such that 

 ( ) sup( ( | ) ( )), ( , , ).
q

p
t Q t tX ess E F Q L F P

ς
ρ α

∈
= −Χ − Χ∈ Ω

§
 (18) 

where { | / ( , , )}p
q Q P dQ dP L F Pς = ∈ Ω= . More precisely, α is given by  

 ( ) sup ( | ).
p
t

t Q t
A

Q ess E X Fα
Χ∈

= −  (19) 

    Theorem 2.8 Let p and q be such that [ )1,p∈ +∞ and 1/ 1/ 1p q+ = . If 

: ( , , )pT L Fρ −Ω× × Ω →° °  is a coherent dynamic risk measure for final payments, then for 

every t −∈T , there exists a convex ( )qL P -closed set t
qς  such that  

 ( ) sup ( | ), ( , , ).
t
q

p
t Q t

Q
X ess E F L F P

ς

ρ
∈

= −Χ Χ∈ Ω  (20) 

More precisely, the set t
qς  is the Legendre-Fenchel transform of tρ  given by  

 ( ) sup ( | ).
p
t

t Q t
A

Q ess E X Fα
Χ∈

= −  (21) 
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2.3.3 Discrete Time Dynamic Risk Measure for processes 

 

Have knowledge about the dynamic risk measure for final payments, we are are ready to 

consider that for general random cash balance processes. We mainly focus on a dynamic and 

consistent approach of risk measurement for random processes. The definitions are actually a 

generalization of that in subsection 3.2. Here we set {0,1,..., 1}T− = −T . 

    Definition 2.9 A mapping ( ) ( ): , , , , ( )( )tT t tρ χ ω ρ ω ρ ω−Ω× × Χ Χ = Χ ∈a °∋  is 

called a dynamic risk measure if the following conditions are met: 

• the process ( ( ))t tρ
−∈Χ T  is ( )t tF

−∈T -adapted, 

• ρ  is independent of the past: for t −∈T  and , ( )tχ ρΧ∈ Χ  does not depend on 

0 1 1, ,..., ,tX X X −  

• ρ  is monotone: ( ) ( ), ,t tX Y tρ ρ −≤ ∈T   if ,X Y χ∈  and X Y≥ , 

• ρ  is dynamic translation invariant: it holds that 

 ( ) ( )
(1 )

T
n

t t n t
n t

YX Y X
r

ρ ρ
−

=

+ = −
+∑  (22) 

 for , ,t Y χ−∈ Χ ∈T  such that (0,...,0, ,..., )t TY Y Y=  and / (1 )T n t
nn t

Y r −

=
+∑  is  tF -

measurable. 

Definition 2.10 A dynamic risk measure : Tρ χ−Ω× × → °  is called coherent if it satisfies 

the following properties: 

• Subadditivity:   ( ) ( ) ( ), , , ,t t tX Y X Y X Y tρ ρ ρ χ −+ ≤ + ∈ ∈T   

• Dynamic positive homogeneity: ( ) ( )t tρ ρΛΧ = Λ Χ  for χΧ∈  and tF -measurable 

χΛ∈  with 0Λ ≥ . 
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 Definition 2.11  A dynamic risk measure : Tρ χ−Ω× × → °  is convex if 

 ( (1 ) ) ( ) (1 ) ( ),t t tY Yρ ρ ρΛΧ+ −Λ ≤ Λ Χ + −Λ  (23) 

for , ,Y t Tχ −Χ ∈ ∈  and ( , , )L F P∞Λ∈ Ω  with 0 1≤ Λ ≤ . 

   The only property that needs a comment is the independence of the past. For any fixed 

t −∈T  and a position ,  ( )tρΧ Χ  is evaluated at time t , so all payments 0 1 1, ,..., ,tX X X −  which 

have already passed, cannot influence the value of ( )tρ Χ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18  

 

2.3.4 Time Consistent Property 

 

    A crucial question in the dynamical framework is how risk evaluations at different 

times are interrelated. Proposition 3.12 summarize the conditional a dynamic convext risk 

measure should meet.  

    Proposition 2.12 A dynamic convex risk measure ( )t t
ρ

∈T
is time consistent if and only if 

any of the following conditions holds: 

1) For all t∈T such that 𝑡 < 𝑇, and for all 𝑋,𝑌 ∈ 𝐿!: 

( ) ( )1 1t tX Yρ ρ+ +≤  P - a.s. ⇒     ( ) ( )t tX Yρ ρ≤  P - a.s.                      (24) 

2) For all t∈T such that 𝑡 < 𝑇 and for all 𝑋,𝑌 ∈ 𝐿!: 

( ) ( )1 1t tX Yρ ρ+ += P - a.s. ⇒     ( ) ( )t tX Yρ ρ=  P - a.s.                     (25) 

3) ( )t t
ρ

∈T
 is recursive, i.e., for all 𝑡, 𝑠 ≥ 0 such that 𝑡, 𝑡 + 𝑠∈T , 

( )t t t sρ ρ ρ += −  P - a.s.                                                    (26) 

1) explains that if a position at some future time (ex. t+1) is preferable to the other one, it 

is also preferable at time t. This directly implies 2). By translation invariance we can verify 

the one step excursiveness, and the reclusiveness property follows the induction hypothesis 

on s. There are many ways to characterize time consistency. In this work we follow strong 

time consistency characterized by the additivity of the acceptance sets and penalty functions. 

If we restrict a conditional convex risk measure 𝑝! to the space 𝐿!!!!  for some 𝑠 ≥0, the 

corresponding acceptance set is given by 

, : { ( ) 0 P - a.s. }tt t s t sA X L Xρ∞
+ +∈= ≤                                     (27) 

and the minimal penalty function by 

( )
,

, 1: - ess sup  [ | ],     ( )
t t s

min
t t s Q t

X A
Q Q E X F Q M Pα

+

+
∈

= − ∈                           (28) 
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Theorem 2.13 Let p and q be such that [ )1,p∈ +∞ and 1/ 1/ 1p q+ = . Then 

: pTρ χ−Ω× × → °  is a time-consistent convex dynamic risk measure that has the pL -Fatou 

property if and only if it is of the form 

 ( ) sup( ( | ) ( )),
(1 )q

T
n

t Q t tn t
Q n t

X ess E F Q
rς

ρ α
−

∈ =

Χ
= − −

+∑  (29) 

where 

       ( ) sup ( ( ) | ),
(1 )p

T
n

t Q t tn t
n t

Q ess E X F
rχ

α ρ
−

Χ∈ =

Χ
= − −

+∑  (30) 

                                                       
{ | ( , , )}p

q
dQQ P L F P
dP

ς = ∈ Ω=                               (31) 
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2.4 Illustration: Entropic Risk Measures 

     This section is designed to illustrate the theories presented in Section 3. The pension fund 

exercise demonstrates the performance of dynamic risk measure in continuous time setting 

for final payments and in discrete time for random processes. 
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2.4.1 Dynamic Entropic Risk Measures 

 

        The entropic risk measure is one of the most appealing convex risk measures due to its 

explicit characterization. It is a convex risk measure related to the exponential utility function 

( ) 1 xu x e γ−= −  and defined on L∞ . Such a measure admits a representation under P. That is, 

given two probability measures Q and P such that Q<<P, The relative entropy (or Kullback-

Leibler divergence) of a probability measure Q with respect to a reference probability 

measure P is given by: 

𝐻(𝑄 𝑃 = 𝐸! log !"
!!

= 𝐸 !"
!!
log !"

!!
,                              (32) 

 where  !"
!!

  is a Radon-Nikodym derivative. If the absolute continuity condition is not 

satisfied, 𝐻(𝑄 𝑃   is then defined to be  ∞. 

    The relative entropy demonstrates the distance from a probability measure Q to a 

reference probability measure P. The non-negative function ( )H Q P  could be a well-suited 

candidate for a penalty function as it is minimal for the measure that is closest to P. We take

1 ( ) ( )H Q P Qα
γ

= . When risk preferences are characterized by an exponential utility 

function, γ  is a coefficient to account for risk aversion; otherwise, γ  measures the degree of 

distrust the agent puts in P.  

The static entropic risk measure is written as:  

ρ ! 𝑥 = sup
!∈!

[ ] [ ]1 |QE X H Q P
γ

⎧ ⎫
− −⎨ ⎬

⎩ ⎭
                               (33) 

In this setting, eρ is a collection of mappings from 𝐿! 𝐹! → ℝ. For any probability 

measure Q,  

( ) [ ]1 1| sup l g e( ) o X
Q

x L
H Q P E X EQ γα

γ γ∞

−

∈

⎛ ⎞
⎡ ⎤= − −⎜ ⎣ ⎦

⎝
= ⎟

⎠
                     (34) 
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The supermum is attained by letting 𝑋 = − !
!
𝑙𝑜𝑔 !"

!!
 if𝑄 ≪ 𝑃 , and the corresponding 

risk measure thus takes the form of: 

       ( )e 1 log X
QX E e γρ

γ
−⎡ ⎤= ⎣ ⎦                                       (35) 

Given time horizon {0,1,..., }T=T , the conditional entropic risk measure is a family of 

mappings from  𝐿! 𝐹! → 𝐿! 𝐹! . Naturally, we define 

( ) 1 log [e | ]
Xe

t tX E Fγρ
γ

−=                                     (36) 

    The dynamic entropic risk measure is a family of successive conditional entropic risk 

measures, which is strongly time-consistent.   

Proof.   

ρ
!
! − ρ

!!!
! 𝑋 =

1
𝛾 log𝐸 𝑒!

!
!!"#$ !!!! !!!! 𝐹!  

                                                          = !
!
log𝐸 𝐸[𝑒!!! 𝐹!!! 𝐹!  

By the law of iterated expectations, this reduces to 

1
𝛾 log𝐸 𝐸[𝑒!!! 𝐹!!! 𝐹! =

1
𝛾 log𝐸 𝑒!!! 𝐹! = ρ

!
! 𝑋    
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2.4.2 Dynamic Entropic Risk Measure for Random Processes 

 

    Define the entropy of a density process ,tk θ∈¢ . We aim to investigate the conditional 

entropic risk measure for bounded discrete-time random processes, i.e. : ( )e
t tp L L F∞ ∞→  

Definition 2.1 The entropy 𝐻! 𝑎 𝑜𝑓  𝑎   ∈ 𝑄!  𝑖𝑠  𝑔𝑖𝑣𝑒𝑛  𝑏𝑦 

𝐻! 𝑎 = 𝐸[ 𝛥𝑎! log( 𝑇 + 1− 𝑡 𝛥𝑎!)]     
!
!!! ,                       (37) 

for all t=S,…,T. 

    For any density process 𝑎 ∈ 𝑄!, 

!
!
𝐻! 𝑎 = sup

!∈!!
!
{ −𝑋,𝑎 − !

!
log( !

!!!!!
𝐸[𝑒!!!|𝐹!])}                                      !

!!! (38) 

    The supremum is attained by letting 𝑋! = − !
!
log  ( 𝑇 + 1− 𝑡 𝛥𝑎!). The 

corresponding risk measure takes thus the form of: 

ρ
!
! 𝑋 = !

!
log( !

!!!!!
𝐸[𝑒!!!!

!!! |𝐹!])                                               (39) 

    The dynamic entropy risk measure for random processes is also strongly time-

consistent. 

Proof. ( )1
e
tX p X+−  

( )
( )1,

1
1 1 ) log | |

1 1
(

e XX te e
t t t t

T tX X E e F E e F
T t T t

ρ
γ γρ ρ

γ
+−

+

−⎛ ⎞⎡ ⎤⎡ ⎤− = +⎜ ⎟⎢ ⎥⎣ ⎦+ − + − ⎣ ⎦⎝ ⎠
 

Substitution yields 

                          1
1

1log( [ | ])1 1 1log | |
1 1

T
Xs

t
t s t

E e F
T tX

t tE e F E e F
T t T t

γ

γ

γ

−
+

= +
−−

⎛ ⎞⎡ ⎤∑⎜ ⎟⎢ ⎥⎡ ⎤ +⎣ ⎦⎜ ⎟⎢ ⎥+ − + −⎜ ⎟⎣ ⎦⎝ ⎠

 

This finally reduces to 

1
𝛾 log(

1
𝑇 + 1− 𝑡 𝐸 𝑒!!!! 𝐹! +

1
𝑇 + 1− 𝑡 𝐸[𝑒!!!!|𝐹!])

!

!!!!!

=   
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1
𝛾 log(

1
𝑇 + 1− 𝑡 𝐸[𝑒!!!!|𝐹!])

!

!!!

=    ρ
!
!(𝑋) 
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2.4.3 Entropic Risk Measure with Brownian Motion 

   

  In this work we consider the discrete time dynamic entropic risk measure adapted to the 

filtration ( )t T
t t sF =

= that is generated by a random walk process; and the continuous-time entropic 

risk measure adapted to the augmented continuous-time filtration [ , ]( )t t s TF ∈ that is generated 

by Brownian motion W( ( , )sW s tσ ≤  and the P-null sets of F). It is well-known that under the 

assumption of Brownian filtration, the dynamic entropic risk measure arises as a solution to 

backward stochastic differential equations (BSDE). Recall the definition of a BSDE 

Definitions 2.2 Let ( ) [ ],t t S T
W W=

Ú
be a d-dimensional Brownian motion defined on 

𝛺,𝐹, 𝐹! !∈ !,! ,𝑃 .   Further, let 𝑋 ∈ 𝐿! 𝐹!  be a terminal condition and 𝑔  be a 𝑃⊗

𝐵(ℝ)⊗ 𝐵(ℝ!)-measurable coefficient, where 𝑃 denotes the predictable 𝜎-algebra and 𝐵(ℝ) 

and 𝐵(ℝ!) are the Borel 𝜎-algebras on ℝ and ℝ!, respectively. An adapted solution for the 

BSDE associated with (𝑔,𝑋) is a pair of progressively measurable processes (𝑌! ,𝑍!)!!! with 

values in ℝ×ℝ! such that 2[sup ]t
t T

E Y
≤

<∞, and 2[ ]
T

s
s

E Z ds < ∞∫ , 𝑠 ≤ 𝑡 ≤ 𝑇, 

( ), ,
T T

t s s s s
t

Y X g s Y Z ds Z dW
τ

= + −∫ ∫                                        (40) 

    The uniqueness and existence of a solution is formulated in terms of conditions on the 

coefficient or driver g. The dynamic entropic risk measure under Brownian filtration 

assumption arises as a solution to BSDE is summarized below. 

Theorem 2.3 The dynamic entropic risk measure (𝑝!! 𝑋 )!∈[!,!] is a solution of the 

following BSDE with quadratic coefficient 𝑔 𝑡,𝑍! = !
!
𝑍! !  and terminal bounded 

condition 𝑋𝜖𝐿! 𝐹! . With 𝛾 > 0 and (𝑊!)!∈[!,!] a d-dimensional Brownian motion, 
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                                  ( ) 2

2
e
t t t td X Z dt Z dWγ
ρ− = − ,  ( )e

T X Xρ = −                   (41) 

The g-coefficient associated with the dynamic entropic risk measure is of the quadratic 

growth type, i.e.:𝑔 𝑡,𝑍! = !
!
𝑍! ! ≤ 𝐾 1+ 𝑍! ! 𝑑P×𝑑𝑡  𝑎. 𝑠.,for some constant K. Under 

the additional condition !" !,!!
!!!

≤ 𝐾 1+ 𝑍! 𝑑P×𝑑𝑡  𝑎. 𝑠.  for some constant 𝐾 , 

Kobylanski (2000) proved that there exists a unique solution of (41) such that Y is bounded.  

Table 1 summarize the numerical scheme to solve the case d=1. 

 

Table 1 Numerical scheme for the case d=1 (Peng, 2009) 

Suppose that a discretization 𝑋!!,… ,𝑋!!  of 𝑋! is given. 

1. Let 𝑛 ∈ ℕ.  Simulate a sequence {∈!!}!!!,…,! of Bernoulli variables such that  

ℙ ∈!!= 1 = ℙ ∈!!= −1 =   
1
2 

2. Compute 𝑊!
! =    !

!
𝜖!!!

!!!  and 𝛥𝑊!
! =𝑊!!!

! −𝑊!
!. 

3.  𝜉!  is 𝐹!! -measurable and there exists some function 𝜙!  such that 

𝜉! = 𝜙!(∈!!,∈!!,… ,∈!!).  

     Put 𝑌!! = 𝜉! and 𝑍!! = 0. 

4. Consider now the following equation: 

𝑌!!!! = 𝑌!! + 𝑔!!!! 𝑛 − 1,𝑋!!!! ,𝑌!!!! ,𝑍!!!! !
!
− 𝑍!!!! 𝛥𝑊!!. 

a) We describe a procedure to solve for 𝑍!!!! .  First, define 𝑌!! and 𝑌!! as 

follows:  

𝑌!! =   𝜙!(∈!!,… ,∈!!!! , 1)  and 𝑌!! = 𝜙!(∈!!,… ,∈!!!! ,−1). 

b)   𝑍!!!!  is now the unique solution of the following set of equations: 

𝑌!!!! = 𝑌!! + 𝑔!!!! 𝑛 − 1,𝑋!!!! ,𝑌!!!! ,𝑍!!!! 1
𝑛 − 𝑍!!!

! 1
𝑛
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𝑌!!!! = 𝑌!! + 𝑔!!!! 𝑛 − 1,𝑋!!!! ,𝑌!!!! ,𝑍!!!! 1
𝑛 + 𝑍!!!

! 1
𝑛

 

     c)     This yields 𝑍!!!! = 𝑛   !!
!!!!!

!
    .  (I don’t know how to make that middle dot) 

5. Solve for 𝑌!!!!  

6. Consider now the following equation for 𝑘 = 𝑛 − 2,… , 1 

𝑌!! = 𝑌!!!! + 𝑔!! 𝑘,𝑋!!,𝑌!!,𝑍!!
1
𝑛 − 𝑍!

!𝛥𝑊!
! 

a) Solve for 𝑍!! by defining (same procedure as under 4): 

𝑌!!!! =   𝜙!(∈!!,… ,∈!!, 1) and 𝑌!!!! =   𝜙!(∈!!,… ,∈!!,−1) 

b)  Solve for 𝑌!! 

Remark 7.1 

1. 𝑊! →𝑊 as 𝑛 → ∞ 

2. 𝑔! 𝑘,𝑋!,𝑌!,𝑍! → 𝑔(𝑡,𝑋,𝑌,𝑍) as 𝑛 → ∞ 

3. Convergence result (provided that Y is bounded): 

(Y!, 𝑍!!𝑑𝑊!!) → (𝑌, 𝑍!𝑑𝑊!)
!
!

!
!  as 𝑛 → ∞ 

 

    In what follows, we setup a numerical example to illustrate the ideas of the entropic risk 

measure we just discussed. 
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2.5 Numerical Example: A Pension Fund 

    Consider a pension fund setting.  Let 1
N

tF +  denote the nominal funding level, which 

reflects the relative value of the pension fund assets and nominal liabilities in one year; and 

1
N
tS + be the pension fund surplus ratio, 1 1 1N N

t tS F+ += − . We have the following restriction,                      

                                 1 1( 1) 2.5% ( 0) 2.5%N N
t tp F P S+ +< ≤ ⇒ < ≤  

which states that the probability of underfunding in one year from now is less than 2.5%. 

While the nominal funding level is commonly employed as a supervisory monitoring ratio, 

we formulate our supervision rule in terms of the surplus ratio 1
N
tS + .  The reason is that in such 

a way we do not need to worry about the impact of future indexation on the risk assessment, 

because the liabilities are modelled as if they are fully indexed to price inflation. The 

indexation buffer is the difference between the nominal funding level and the real funding 

level. It seems reasonable to define the surplus ration in terms of real liabilities since the 

participants’ main concern is the purchasing power of the pension plan. The risk measure is 

then the smallest amount of money that need to be put aside to make next period’s surplus 

ration acceptable. 

    For simplicity, we assume that the model of the surplus ration only has one source of 

time-independent uncertain, for instance, stock market movements; any other sources of 

uncertainty are fully hedged, absent or reinsure. Suppose that the uncertainty is fully driven 

by a one-dimensional Brownian motion. That is, 

t t tdF FdWσ= ,   sF h=  

Where  

tF : real funding level at time t 

σ : standard deviation of the real funding level 
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tW : one-dimensional standard Brownian motion at time t. 

The constant σ can be considered as an abstract number that captures uncertainty in a 

very simple way, which summarizes the pension fund exposure to the Brownian motion. Its 

value very much depends on the pension fund characteristics. We somehow set σ=10%. 

  According to Ito’s Lemma, the dynamics of tdS  are given by tdF , so the surplus ration 

process [ , ]( )t t S TS ∈  we are interested in is given by [ , ] [ , ]( ) 1t t S T S TF ∈ − .  

Given the model of the surplus ratio, we try to measure its risk dynamically. The risk is 

considered as a valuation of the final surplus ratio and the surplus ratio process. We consider 

a simulation run length of one year and 5000 trajectories of Brownian motion. 
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2.5.1 Risk measurement for the Final Surplus Ratio 

 

The final ratio TS  is described by a simple diffusion process. The dynamic entropic risk 

measure is given by the solution of a one-dimensional BSDE.  In order to employ (41) we 

need the dynamics of  

21 [ , ]
2

t t tS S S
t t tde e dS e d S Sγ γ γγ γ− − −= − +  

    The entropic risk measure for the final payment occurred at time T is given by 

1 log [ ]ST
T TE e F Sγ

γ
− = − , and the remaining measures are obtained by means of a BSDE with 

𝑔 𝑡,𝑍! = !
!
𝑍! !.  This BSDE is Markovian and its g-coefficient grows less than 

quadratically in 𝑍! . We implement this one-dimensional BSED by following Table 1. By 

taking risk aversion parameter γ=8, we obtain the following figure 1-3. 

 

Figure 1   
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Figure 2 

 

From Figure 1 we observe that the expected risk measure process is strongly time 

consistent, and satisfies a supermartingale property; that is, for every t, we have

1[ ( )] ( )t T t TE S Sρ ρ+ ≤ . Figure 2 plot a particular trajectory of the surplus ratio process and its 

associated risk measure process. It can be observed that they follow the same pattern but with 

different directions. The risk assessment goes downwards when the incoming information is 

positive. 
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Figure 3 

 

Figure 3 plots the expected risk measure based on the negative of the quantile function of 

1S , i.e. 1 2
1 1( ) inf{ ( )}F q S L q F S− = ∈ ≤ , where F is the cumulative distribution function of 1S

. We can see that the VaR is not as robust as the entropic risk measure. 
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2.5.2 Risk Measurement for the Surplus Ratio Process 

 

In the case of dynamic risk measurement for the surplus ratio process, we use the 

dynamic risk measure (39) in section 4.2, which values the surplus ratio at each time when 

the new information arrives. For simplicity, let us assume that the dynamic entropic risk 

measure assigns a uniform weight to each 𝐸 𝑒!!!! 𝐹! ;   one can alternatively vary the 

weights for different time instances by considering that some time periods are more important 

than the others. The value of the dynamic risk measure for random processes is then obtained 

by taking the natural logarithm (scaled by 1
γ

) of the average value of 
s

tYe γ− , where 

1 log |sSs
t tE e FY γ

γ
−= ⎡ ⎤⎣ ⎦ can be computed by means of a suitable BSDE. By taking σ=10% and 

γ= 8, we generate Figure 4-5. 

 

Figure 4 
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Figure 5 

 

Figure 4 and Figure 5 plot dynamic risk measurement of the surplus ratio process, where 

the surplus ratio is evaluated at each point t in time when new information arrives. As it can 

be observed, the expected risk measure for the whole process is smaller than the expected risk 

measure of the final surplus ratio only. The reason is that 1 [ ] [ ]
1

s s

T
S S

t t
s t

E e F E e F
T t

γ γ− −

=

≤
+ − ∑

. In 

addition, the measurement of the process is more stable than only measuring the final surplus 

ratio when new information is gathered; this can be evident from the standard deviation of the 

risk measurement. For the risk measure process of a particular trajectory of the surplus ratio 

in Figure 5, we see that due to the less volatility of the measurement for the surplus ratio 

process, the risk measure of the final surplus ratio is almost shifted upwards. 
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3. Partial Hedging 
 

       Typically a perfect hedge will not be admitted with a contingent claim in an 

incomplete financial market model. In order to stay on the safe side, we can use 

superhedging. However, both from a practical and from a theoretical point of view, the 

required cost is usually too high. Thus, relaxing the requirements would be natural 

To stay on the safe side with high probability, let us consider the strategies of partial 

hedging. In other words, the purpose is to find the optimal hedging strategies, while subject to 

a given cost constraint. For a given claim H, we are going to reduce the construction of the 

strategies to a optimization problem of superhedging for another modified claim H. It would 

be the solution to a static optimization problem, which is Neyman-Pearson type. H will 

typically have the form H = H ⋅ I!, which is the form of a knock-out option. At current stage, 

we only take into account the probability that a shortfall occurs. The size of the shortfall if it 

does occur is not considered here. 

Different partial hedging approaches have been proposed and examined in the literature. 

For example, quadratic hedging, which minimizes the expectation of a quadratic error ( 2L ). 

Such a measure has been criticized for the consequence of penalizing both loss and profit 

equally, also for not being able to capture the heavy-tailness phenomena in the financial 

market. Quantile hedging based on a dynamic version of VaR is probably the most-known 

approach. Recently Melnikov proposed CVaR partial hedging. In this section, we will discuss 

partial hedging more comprehensively and quantify the downside risk with respect to an 

acceptance set for positions that are suitably hedged. If the acceptability above is defined by 

shortfall risk, we need to solve the problem of constructing efficient strategies. That is, to 

minimize the risk subject to a given cost constraint. 
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3.1  Problem Setup 

 

Consider a portfolio consists of a risky asset S  and a default-free bond R . Let 

[0, ]{ ( )}t TS t ∈  represents the price of the asset S  at time index t , and [0, ]{ ( )}t TR t ∈  represents the 

price of the bond R  at time t . We assume that both ( )S t  and ( )R t  are tF  measurable. 

Define ( )S tξ  and ( )R tξ  as the number of shares held on S  and R  at time [0, ]t T∈ . The 

value of the portfolio is given by: 

( ) ( ) ( ) ( ) ( ), [0, ].S RV t t S t t R t t Tξ ξ= + ∈  

Let ( ) : ( ( ), ( ))S Bt t tξ ξ ξ=  be a self-financing strategy, then ( )V t  satisfies the following 

stochastic differential equation: 

0 0
( ) (0) ( ) ( ) ( ) ( ), [0, ].

t t

S RV t V s dS s s dR s t Tξ ξ= + + ∈∫ ∫  

A strategy [0, ]{ }t t Tξ ∈  is admissible if 

( ) 0, for all [0, ], . .V t t T a s≥ ∈ −P  

In the context of a complete market, every contingent claim can be replicated by a self-

financing strategy *
[0, ]{ ( )}t Ttξ ∈ . Let ( )H T , ( ( ) 0)H T ≥ , be the payoff of a contingent claim at 

time T ; ( )H T  is a TF  measurable random variable. The cost of the replication defines the 

price of the contingent claim: let §  be the unique equivalent martingale measure, the value 

of the claim can be replicated by *
[0, ]{ ( )}t Ttξ ∈  which requires an initial amount of 

* * * 1(0) (0) (0) (0) (0) [ ( ) ( )].S BV S B E R T H Tξ ξ −= + = §  

Such a strategy is served as a perfect hedge for the claim ( )H T . In the case of partial hedging 

it only  requires a smaller initial amount (0)V  of no larger than ν , that is, 

1(0) [ ( ) ( )].V E R T H Tν −≤ < §  
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What would be the optimal partial hedge that can be achieved? 

An investor who shorts the contingent claim ( )H T  wants to construct a portfolio 

[0, ]{ ( )}t TV t ∈  with a purpose of hedging the potential loss ( ) ( )L H T V T= −  at maturity time T . 

Note that in a complete market if the initial value (0)V  is smaller than the price of the claim, 

then 0L ≠ . Our goal is to find the most efficient strategy such that the risk is controlled. 
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3.2 Quantile Hedging 

        Quantile hedging is probably the most studied approach. The first papers appearing in 

this research area were Follmer (1999,2000) and Krutchenko (2001). Later Melnikov 

(2004,2005,2008) applied the quantile hedging technique on pricing equity-linked life 

insurance products.  

         Quantile hedging maximizes the probability that a hedge is successful by applying a 

dynamic version of the static Varlue-at-Risk (VaR). VaR has been adopted as a standard risk 

measure in the financial industry. It has a number of deficiencies recognized by financial 

professionals. More recently, 

Efficient Hedging 

          Suppose in an arbitrage-free market model, and denote a discounted European claim as 

H such that 

π!"# H = 𝑠𝑢𝑝!∗∈𝒫𝐸∗ 𝐻 < ∞ 

there exists a self-financing trading strategy. The value process V↑ of the strategy satisfies 

V!↑ ≥ H          P− a. s 

There exists obligation from sale of H. However, the seller of H can cover almost any 

possible obligation by using the superhedging strategy above. Thus, the seller can eliminate 

the corresponding risk completely. π!"#(H) is the smallest amount for such a superhedging 

strategy to be available. From a practical point of view, this cost is often too high. Moreover, 

from a theoretical point of view, if H is not attainable then π!"#(H), which is the price for H, 

is too high because it would permit arbitrage. Even if H is attainable, by using a replicating 

strategy for H, a complete elimination of risk will consume the whole proceeds from the sale 

of H, and we will lost any opportunity of making a profit along with the elimination of risk. 
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  Therefore, let us consider the case that the seller is unwilling to put up the initial capital 

which is required by a superhedge. In this case, the seller is ready to accept some risk. Then 

the question is: what is the optimal partial hedge strategy that can be used under a given 

smaller amount of capital constraint? In order to make this more precisely, the seller’s 

attitude towards risk should be expressed by some criterions. In the following sections, we 

will study several of such criteria. 

In this section, our goal is to construct a optimal strategy which maximizes the 

probability of a successful hedge, while statisfies a given constraint on the initial capital. 

  Let us fix an initial amount of capital 

υ < π!"#(H) 

We need to construct a self-financing trading strategy, and the value process would maximize 

the probability 

P[V! ≥ H] 

among all those strategies which have initial investment V! bounded by υ and subject to the 

bounds V! ≥ 0 for t = 0,… ,T. The second constraint amounts to admissibility as follows[?]: 

 

Definition 3.1. A self-financing trading strategy is called an admissible strategy if its 

value process satisfies V! ≥ 0. 

  Let V∗ be the value process of an admissible strategy ξ∗ and satisfies 

P V!∗ ≥ H =   max  P[V! ≥ H] 

the maximum here is taken over all value processes V of all possible admissible strategies 

under the constraint 

V! ≤ υ 

Note that without the constraint of admissibility the problem above is well posed 



 

 40  

 

  Now let us take a look at the idea of quantile hedging with respect to a Value at Risk 

criterion: we only take into account the probability of a shortfall, not the size of the loss when 

a shortfall actually occurs. The shortfall probability is mainly focused here and may be 

reasonable in cases where we are trying to avoid a loss by any means. In the next section, we 

consider other optimality criteria which, from an economic point of view, are usually more 

appropriate. However, some central ideas are expressed quite clearly in the present context in 

term s of the mathematical techniques. 

First, before passing to the general incomplete case, let us consider the particularly 

transparent case for a complete market model. The set 

{V! ≥ H} 

is called the success set corresponding to the value process V with respect to an admissible 

strategy. As a first preliminary step, we reduce the problem to another problem which 

constructs a success set of maximal probability. 

Proposition 2. [] Let P∗ denote the unique equivalent martingale measure in a complete 

market model, and assume that A∗ ∈ ℱ! maximizes the probability P[A] among all sets 

A ∈ ℱ! satisfying the constraint 

E∗ H ⋅ I! ≤ υ 

Then the replicating strategy ξ∗ of the knock-out option 

H∗ ≔ H ⋅ I!∗ 

sovles the optimization problem defined by 

P V!∗ ≥ H =   max  P[V! ≥ H] 

and 

V! ≤ υ 

and A∗ coincides up to P-null sets with the success set of ξ∗. 
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Proof. As a first step, let V be the value process of any admissible strategy such that V! ≤ υ. 

We denote by A≔ {V! ≥ H} the corresponding success set. Admissibility yields that 

V! ≥ H ⋅ I!. Moreover, the results of Section 5.3 imply that V is a P∗-martingale. Hence, we 

obtain that 

E∗ H ⋅ I! ≤ E∗ V! = V! ≤ υ 

Therefore, A fulfills the constraints E∗ H ⋅ I! ≤ υ and it follows that 

P A ≤ P[A∗] 

  As a second step, we consider the trading strategy ξ∗ and its value process V∗. Clearly, ξ∗ is 

admissible, and its success set satisfies 

V!∗ ≥ H = {H ⋅ I!∗ ≥ H} ⊇ A∗ 

On the other hand, the first part of the proof yields that 

P V!∗ ≥ H ≤ P[A∗] 

It follows that the two sets A∗ and {V!∗ ≥ H} coincide up to P-null stes. In particular, ξ∗ is an 

optimal strategy. 

 Next, we will construct the optimal success set A∗. The existence of A∗ was assumed in 

the proposition above. To solve this problem we use the Neyman-Pearson lemma. To this 

end, let us introduce the measure Q∗ that is given by 

dQ∗

dP∗ ≔
H

E∗[H] 

and write the constraint E∗ H ⋅ I! ≤ υ as 

Q∗ A ≤ α≔
υ

E∗[H] 

under the constraint Q∗ A ≤ α, an optimal success set would maximize the probability P A . 

Let us denote the generalized density of P with respect to Q∗ as dP/dQ∗, in terms of the 

Lebesgue decomposition as constructed above. Hence, we can defined the level as follows: 
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c∗ ≔ inf c ≥ 0   Q∗
dP
dQ∗ > 𝑐 ⋅ E∗ H ≤ α} 

and the set 

A∗ ≔
dP
dQ∗ > c∗ ⋅ E∗ H = {

dP
dP∗ > c∗ ⋅ H} 

Proposition 3. (Follmer,2000) If the set A∗ in 

A∗ ≔
dP
dQ∗ > c∗ ⋅ E∗ H = {

dP
dP∗ > c∗ ⋅ H} 

Satisfies 

Q∗ A∗ = α 

then A∗ maximizes the probability P[A] over all A ∈ ℱ! satisfying the constraint 

E∗ H ⋅ I! ≤ υ 

Proof. The condition E∗ H ⋅ I! ≤ υ is equivalent to Q∗ A ≤ α = Q∗[A∗]. Thus, the 

particular form of the set A∗ in A∗ ≔ !"
!!∗

> c∗ ⋅ E∗ H = { !"
!!∗

> c∗ ⋅ H} and the Neyman-

Pearson lemma in the form of Proposition A.28 imply that P A ≤ P[A∗]. 

  Therefore, we have the following result (Follmer, 2000): 

Corollary 3.4. Denote by P∗ the unique equivalent martingale measure in a complete 

market model, and assume that the set A∗ of A∗ ≔ !"
!!∗

> c∗ ⋅ E∗ H = { !"
!!∗

> c∗ ⋅ H} 

satisfies 

Q∗ A∗ = α 

Then the optimal strategy solving 

P V!∗ ≥ H =   max  P[V! ≥ H] 

and 

V! ≤ υ 

is given by the replicating strategy of the knock-out option H∗ = H ⋅ I!∗. 
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        The solution to the optimization problem 

P V!∗ ≥ H =   max  P[V! ≥ H] 

and 

V! ≤ υ 

still have the assumption that the set A∗ satisfies Q∗ A∗ = α. Clearly, if 

P
dP
dP∗ = c∗ ⋅ H = 0 

then this condition is satisfied. However, in general it would not be possible to construct any 

set A whose Q∗-probability is α exactly. In such a case, we can replace the indicator function 

I!∗ of the critical region A∗ by a randomized test according to the Neyman-Pearson theorem. 

That is, by an ℱ!-measurable [0,1]-valued function ψ. Let us denote ℛ the class of all 

randomized tests. Consider the following optimization problem: 

E ψ∗ = max  {E[ψ]|ψ ∈ ℛ  and  E!∗ ψ ≤ α} 

where Q∗ is the measure given by !!
∗

!!∗
≔ !

!∗[!]
 , α = υ/E∗[H] as in Q∗ A ≤ α≔ !

!∗[!]
. 

According to the generalized Neyman-Pearson lemma, the solution is given by 

ψ∗ = I
{ !"!!∗!!

∗⋅!}
+ γ ⋅ I

{ !"!!∗!!
∗⋅!}

 

where c∗ is defined by c∗ ≔ inf c ≥ 0   Q∗ !"
!!∗

> 𝑐 ⋅ E∗ H ≤ α} and γ is chosen in a way 

such that E!∗ ψ∗ = α satiesfies, i.e., 

γ =
α− Q∗[ dPdP∗ > c∗ ⋅ H]

Q∗[ dPdP∗ = c∗ ⋅ H]
  in  case  P[

dP
dP∗ = c∗ ⋅ H] ≠ 0 

Definition 3.5. (Follmer, 2000) Let V be the value process of an admissible strategy ξ. 

The success ration of ξ is defined as the randomized test 
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ψ! = I{!!!!} +
V!
H ⋅ I{!!!!} 

 

  The success set {V! ≥ H} of V coincides with the set {ψ! = 1}. In the original problem’s 

extended version , now we are constructing a strategy which will maximize the expected 

success ration E[ψ!] subject to the cost constraint V! ≤ υ under the measure P: 

Theorem 6 (Follmer, 2000)  Suppose that P∗ is the unique equivalent martingale 

measure in a complete market model. Let ψ∗ be given by ψ∗ = I !"
!!∗!!

∗⋅! + γ ⋅ I !"
!!∗!!

∗⋅! , 

and denote by ξ∗ a replicating strategy for the discounted claim H∗ = H ⋅ ψ∗. Then the 

success ration ψ!∗ of ξ∗ maximizes the expected success ratio E ψ!  among all admissible 

strategies with initial investment V! ≤ υ. Moreover, the optimal success ration ψ!∗ is P-a.s. 

equal to ψ∗. 

Here we do not prove this theorem, since it is a special case of the theorem introduced 

below. Once the optimal randomized test ψ∗ is determined by using the generalized Neyman-

Pearson lemma, the proof would be similar to one of Corollary 4. The condition 

P
dP
dP∗ = c∗ ⋅ H = 0 

means that ψ∗ = I!∗ with A∗ as in A∗ ≔ !"
!!∗

> c∗ ⋅ E∗ H = { !"
!!∗

> c∗ ⋅ H}. In this case, the 

strategy ξ∗ reduces to the strategy described in Corollary 3.4. 

Let us now consider the general case of an arbitrage-free model which is possibly in 

incomplete market, that is, the set 𝒫 of equivalent martingale measures is no longer assumed 

to consist of a single element. It is assumed only that 

𝒫 ≠ ∅ 

In this setting, our goal is to look for an admissible strategy and the success ration ψ!∗ 

satisfies the following condition 
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E ψ!∗ = maxE[ψ!] 

where on the right-hand side we maximize over all admissible strategies under an initial 

investment constraint 

V! ≤ υ 

 

Theorem 7. (Follmer, 2000)  There exists a randomized test ψ∗ such that 

sup!∗∈𝒫E∗ H ⋅ ψ∗ = υ 

and which maximizes E[ψ] among all ψ ∈ ℛ subject to the constraints 

E∗ H ⋅ ψ ≤ υ  for  all  P∗ ∈ 𝒫 

Moreover, the superhedging strategy for the modified claim 

H∗ =   H ⋅ ψ∗ 

with initial investment π!"# H∗  solves the problem 

E ψ!∗ = maxE[ψ!] 

and  

V! ≤ υ 

Proof. Denote by ℛ! the set of all ψ ∈ ℛ which satisfy the constraints E∗ H ⋅ ψ ≤ υ for 

all P∗ ∈ 𝒫, and take a sequence ψ! ∈ ℛ! such that 

E ψ! ⟶ sup!∈ℛ!E ψ     as    n ↑ ∞ 

we have a sequence of convex combinations ψ! ∈ conv{ψ!,ψ!!!,… } converging P-a.s. to a 

function ψ ∈ ℛ. Clearly, ψ! ∈ ℛ! for each n. Hence, Fatou’s lemma yields that 

E∗ Hψ ≤ lim!↑! infE∗ Hψ! ≤ υ  for  all  P∗ ∈ 𝒫 

and it follows that ψ ∈ ℛ!. Moreover, 

E ψ = lim!↑!E ψ! = lim!↑!E ψ! = sup!∈ℛ!E[ψ] 

So ψ∗ ≔ ψ is the desired maximize. 
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  We must also show that sup!∗∈𝒫E∗ H ⋅ ψ∗ = υ holds. To this end, note first that 

P ψ∗ = 1 = 1 is impossible due to our assumption υ < π!"#(H). Hence, if sup!∗∈𝒫E∗ H ∙

ψ∗ < 𝜐, then we can find some ε > 0 such that ψ! ≔ ε+ 1− ε ψ∗ ∈ ℛ!, and the 

expectation E[ψ!] must be strictly larger than E[ψ∗]. This, however, contradicts the 

maximality of E[ψ∗]. 

  Now let ξ be any admissible strategy whose value process V satisfies V! ≤ υ. If ψ! 

denotes the corresponding success ratio, then 

H ⋅ ψ! = H ∧ V! ≤ V! 

The 𝒫-martingale property of V yields that for all P∗ ∈ 𝒫, 

E∗ H ⋅ ψ! ≤ E∗ V! = V! ≤ υ 

Therefore, ψ! is contained in ℛ!  and  it  follows  that   

E ψ! ≤ E[ψ∗] 

  Consider the superhedging strategy ξ∗ of H∗ = H ⋅ ψ∗ and denote by V∗ its value 

process. Clearly, ξ∗ is an admissible strategy. Moreover, 

V!∗ = π!"# H∗ = sup!∗∈𝒫E∗ H ⋅ ψ∗ = υ 

Thus, E ψ! ≤ E[ψ∗] yields that ψ!∗ satisfies 

E ψ!∗ ≤ E[ψ∗] 

On the other hand, V!∗ dominates H∗, so 

H ⋅ ψ!∗ = H ∧ V!∗ ≥ H ∧ H∗ = H ⋅ ψ∗ 

Therefore, ψ!∗ dominates ψ∗ on the set {H > 0}. Moreover, any success ratio is equal to 

one on {H = 0}, and we obtain that ψ!∗ ≥ ψ∗ P-almost surely. According to E ψ!∗ ≤ E[ψ∗], 

this can only happen if the two randomized tests ψ!∗ and ψ∗ coincide P-almost everywhere. 

This proves that ξ∗ solves the hedging problem 

E ψ!∗ = maxE[ψ!] 
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and  

V! ≤ υ. 
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3.3 CVaR Hedging 

       Conditional Value-at-Risk (CVaR) has attracted much attention in recent years. It is is a 

risk measure that is a superior alternative to VaR in that it conveys information about the 

average loss exceeds the VaR level and also satisfies the sub-additive property. Melnikov 

(2012) suggested addressing partial hedging problem by employing conditional Varlue-at-

Risk (CVaR).  

          Let [0, ]( ,{ } , , )t t T∈Ω F F P  be a standard probability space and L  be a F -measurable 

random variable characterizing the loss. Assume that [ ]E L <∞P . 

Recall that the VaR of the loss L  at a confidence level ε ∈ (0,1)  is defined as: 

VaRε (L) = inf{x :ε(L > x) ≤1−ε},  

and CVaR at a confidence level ε ∈ (0,1)  is defined as: 

CVaRε (L) = 1
1−ε

[EΡ[L1{L≥VaRε (L)}]+VaRε (L)(1−ε −Ρ(L ≥VaRε (L)))].  

If the cumulative distribution function ( ) : ( )LF l L l= ≤P  is continuous, VaR is simply the 

inverse function of LF , and CVaR can be rewritten as: 

CVaRε (L) = E[L | L ≥VaRε (L)],  

which equals to the expected shortfall (ES), and 

CVaRε (L) = 1
1−ε

V
ε

1
∫ aRε (L)du,  

which equals to the average value-at-risk (AVaR). 

      There are convenient methods of computing and estimating CVaR. Rockafellar (2000) 

showed the possibility of computing both VaR and CVaR simultaneously by introducing an 

auxiliary function: 
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Fε (z) = z + 1
1−ε

Eε[(L− z)+].  

         CVaR of the loss L  is the solution of the minimization problem: 

CVaRε (L) =min z∈! Fε (x, z)  

 

         Consider a portfolio consists of a risky asset S  and a default-free bond R . Let 

[0, ]{ ( )}t TS t ∈  represents the price of the asset S  at time index t , and [0, ]{ ( )}t TR t ∈  represents the 

price of the bond R  at time t . We assume that both ( )S t  and ( )R t  are tF  measurable. 

Define ( )S tξ  and ( )R tξ  as the number of shares held on S  and R  at time [0, ]t T∈ . The 

value of the portfolio is given by: 

( ) ( ) ( ) ( ) ( ), [0, ].S RV t t S t t R t t Tξ ξ= + ∈  

       Let ( ) : ( ( ), ( ))S Bt t tξ ξ ξ=  be a self-financing strategy, then ( )V t  satisfies the following 

stochastic differential equation: 

0 0
( ) (0) ( ) ( ) ( ) ( ), [0, ].

t t

S RV t V s dS s s dR s t Tξ ξ= + + ∈∫ ∫  

       A strategy [0, ]{ }t t Tξ ∈  is admissible if 

( ) 0, for all [0, ], . .V t t T a s≥ ∈ −P  

       In the context of a complete market, every contingent claim can be replicated by a self-

financing strategy *
[0, ]{ ( )}t Ttξ ∈ . Let ( )H T , ( ( ) 0)H T ≥ , be the payoff of a contingent claim at 

time T ; ( )H T  is a TF  measurable random variable. The cost of the replication defines the 

price of the contingent claim: let §  be the unique equivalent martingale measure, the value 

of the claim can be replicated by *
[0, ]{ ( )}t Ttξ ∈  which requires an initial amount of 

* * * 1(0) (0) (0) (0) (0) [ ( ) ( )].S BV S B E R T H Tξ ξ −= + = §  
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Such a strategy is served as a perfect hedge for the claim ( )H T . In the case of partial hedging 

it only  requires a smaller initial amount (0)V  of no larger than ν , that is, 

1(0) [ ( ) ( )].V E R T H Tν −≤ < §  

What would be the optimal partial hedge that can be achieved? 

        An investor who shorts the contingent claim ( )H T  wants to construct a portfolio 

[0, ]{ ( )}t TV t ∈  with a purpose of hedging the potential loss ( ) ( )L H T V T= −  at maturity time T . 

Note that in a complete market if the initial value (0)V  is smaller than the price of the claim, 

then 0L ≠ . Our goal is to find the most efficient strategy such that the risk is controlled. This 

paper takes two issues in locating optimal strategy: one is to minimize the CVaR of the loss 

L , with respect to the constraint that the initial cost (0)V  is smaller than some number ν : 

minV (0),ξ CVaRε (H (T )−V (T ))

s.t.  V (0) ≤ν
 

where ν < E![R(T )−1H (T )]; the other one is to minimize the hedging cost (0)V  so that the 

CVaR is less than or equal to a number c : 

minV (0),ξV (0) = E![R(T )−1V (T )]

s.t.  CVaRε (H (T )−V (T )) ≤ c
 

These two problems are discussed in the following sections. 
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3.3.1 Minimizing CVaR 

 

We first consider the CVaR minimizing problem. According to the CVaR representation 

we have 

minV (0),ξ min z∈! z + 1
1−ε

E P[(H (T )−V (T )− z)+]

s.t.  V (0) ≤ν
 

 Melnikov (2012) shows that we can interchange the order of two minimization problems: 

min z∈! z + 1
1−ε

minV (0),ξ E p[(H (T )−V (T )− z)+]

s.t.  V (0) ≤ν
 

For 0z ≥ , we have ( ( ) ( ) ) (( ( ) ) ( ))H T V T z H T z V T+ + +− − = − − ; then we can write (5) to be 

(0),min [(( ( ) ) ( )) ]

s.t.  (0)
V E H T z V T
V

ξ

ν

+ +− −

≤

P

 

In this work we quantify the loss of an undiscounted portfolio. This is different from 

Follmer (1999), Gao (2011) and Melnikov (2012). Despite the fact that we want to control 

the risk of a hedging portfolio at maturity T  rather than its current value, dealing with CVaR 

of a discounted portfolio would result in computational inefficiency. To see this, take a call 

option ( ) ( ( ) )H T S T K += −  as an example, which we will see later: by taking the discount 

factor into account,  ( ( ) )H T z +−  is replaced by  

1 1 1( ( ) ( ) ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))R T H T z R T H T zR T R T S T K zR T− + − + − +− = − = − − , 

where ( ) ( )S T zR T−  is a linear combination of two log normal random variables, and difficult 

to generate a closed solution. 

To solve the optimization problem, we suggest applying the measure transformation 

method to the discounted problem before addressing the undiscounted one. The discounted 

problem was well-studied by Follmer and Leukert (2000): 
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Theorem 3.3.1. Let ( )H T  be the payoff of a contingent claim, then the optimal hedging 

strategy * *( (0), )V ξ  of the shortfall minimization problem: 

minV (0),ξ E p[R(T )−1(H (T )−V (T ))+]

s.t.  V (0) ≤ν < E![R(T )−1 H (T )]
 

is the perfect hedge for the claim * *( ) ( )H T H T ψ= , where 

ψ* =1
{ dΡ

d!
>a*}

+γ1
{ dΡ

d!
=a*}

a* = inf{a ≥ 0 : E![R(T )−1H (T )1
{ dΡ

d!
>a}

]≤ν}

γ =

ν − E![R(T )−1H (T )1
{ dΡ

d!
>a*}

]

E![R(T )−1H (T )1
{ dΡ

d!
=a*}

]

 

By Theorem 1, we can generate the following theorem for the undiscounted process: 

Theorem 3.3.2. Let ( )H T  be the payoff of a contingent claim, then the optimal hedging 

strategy * *( (0), )V ξ  of the shortfall minimization problem: 

(0),

1

min [( ( ) ( )) ]

s.t.  (0) [ ( ) ( )]
V E H T V T

V E R T H T
ξ

ν

+

−

−

≤ < §

P

 

is the perfect hedge for the claim * *( ) ( )H T H T ψ= , where 

* *

*

*

*

{ ( ) } { ( ) }

* 1

{ ( ) }

1

{ ( ) }

1

{ ( ) }

1 1

inf{ 0 : [ ( ) ( )1 ] }

[ ( ) ( )1 ]

[ ( ) ( )1 ]

d dR T a R T a
d d

dR T a
d

dR T a
d

dR T a
d

a a E R T H T

E R T H T

E R T H T

ψ γ

ν

ν

γ

> =

−

>

−

>

−

=

= +

= ≥ ≤

−

=

§ §

§

§

§

§
§

§

P P

P

P

P

Proof 

Define 

* ( ) ,
[ ( )]

d R T
d E R T

= P
P
P

 

then 
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* 1[( ( ) ( )) ] [ ( )] [ ( ) ( ( ) ( )) ].E H T V T E R T E R T H T V T+ − +− = −P P  

To minimize (\ref{eq: shortfall p*}) we apply Theorem 1, then 

dΡ*

d!
=

R(T )
EΡ[R(T )]

dΡ
d!

,  

finishes the proof. 

We can apply Theorem 2 to solve problem (5) by letting !H (T ) := (H (T )− z)+ ; and that 

gives the solution to (2). Based on the result in Melnikov (2012), we conclude that: 

Theorem 3.3.3. The optimal strategy * *( (0) , )V ξ  for the CVaR minimization problem is 

a perfect hedge for the contingent claim * * *( ) ( )H z zψ+− , where *( )zψ  is given by 

ψ*(z) =1
{R(T ) dΡ

d!
>a* ( z )}

+γ (z)1
{R(T ) dΡ

d!
=a* ( z )}

a*(z) = inf{a ≥ 0 : E![R(T )−1(H (T )− z)+1
{R(T ) dΡ

d!
>a}

]≤ν}

γ (z) =
ν − E![R(T )−1(H (T )− z)+1

{R(T ) dΡ
d!

>a* ( z )}
]

E![R(T )−1(H (T )− z)+1
{R(T ) dΡ

d!
=a* ( z )}

]

 

and *z  is the solution of minimization problem: 

min z>0 c(z) =  z + 1
1−ε

EΡ[(H (T )− z)+(1−ψ*(z))]

z

if 0 ≤ z < ẑ
if z ≥ ẑ

%

&
'

(
'

 

ẑ  is the solution of 

E![R(T )−1(H (T )− z)+]=ν  

Note that only when 0z ≥  can we use the result of (5) to solve (2). Nonethless, we do 

not need to worry about the case when 0z <  because we assume that for any Ú that is close 

enough to 1,  the optimal ẑ  that equals to the VaRε  of the portfolio is always nonnegative. 
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3.3.2 Minimizing hedging costs 

 

     In this subsection we address the hedging costs minimization problem. Let us take the 

shortfall optimization problem as the point of departure. 

Theorem 3.3.4. Let ( )H T  be the payoff of a contingent claim, then the optimal hedging 

strategy * *( (0), )V ξ  of the shortfall minimization problem: 

1
(0),min (0) [ ( ) ( )]

s.t.  [( ( ) ( )) ] [ ( )]
V V E R T V T

E H T V T c E H T
ξ

−

+

=

− ≤ <

§

P P
 

is the perfect hedge for the claim * *( ) ( )(1 )H T H T ψ= − , where 

ψ* =1
{R(T )−1 d!

dP
>a*}

+γ1
{R(T )−1 d!

dP
=a*}

a* = inf{a ≥ 0 : E p[H (T )1
{R(T )−1 d!

dP
>a}

]≤ c}

γ =

c− E P[H (T )1
{R(T )−1 d!

dP
>a*}

]

E P[H (T )1
{R(T )−1 d!

dP
=a*}

]

 

Proof 

Follow the proof of Theorem 3.3.3, we reformulate the problem to be: 

minV (0),ξV (0) = E![R(T )−1V (T )]

s.t.  E p*

[R(T )−1(H (T )−V (T ))+]≤ c
E p[R(T )]

 

where 

* ( )
[ ( )]

d R T
d E R T

= P
P
P

 

As in (Follmer, 1999} and (Follmer, 2004), we rewrite the problem by employing a 

random test ψ : 
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minψ∈ f [0,1] E![R(T )−1 H (T )(1−ψ)]

s.t.  E P*

[R(T )−1 H (T )ψ]≤ c
E P[R(T )]

 

To see this, first we assume that ˆ ( )V T  is the solution of problem(\ref{eq:minHC 3}) and 

!ψ  is the solution of problem (\ref{eq:minHC 4}), then !V (T ) := H (T )(1− !ψ)  satisfies the 

constraint. Thus, we have 

E![R(T )−1H (T )(1− !ψ)]= E![R(T )−1 !V (T )]≥ E![R(T )−1V̂ (T )].  

On the other side ˆ{ ( ) ( )}
ˆˆ : (1 ( ) / ( ))1 [0,1]V T H TV T H Tψ

≤
= − ∈  satisfies the original constraint 

and 

E![R(T )−1H (T )(1− !ψ)]≤ E![R(T )−1H (T )(1−ψ̂)]≤ E![R(T )−1V̂ (T )].  

       Apply Neyman-Pearson's lemma we can solve the shall fall minimization problem. See 

(follmer, 2004) for details. The solution is given by *ψ . 

By following lemma 2.5 and lemma 2.6 in \cite{melnikov2012dynamic} we have 

Theorem 5. If E P[H ]> c(1−ε)  and [( ) ] 0E H c +− >P , 

then the optimal strategy * *( (0) , )V ξ  for the hedging costs minimization problem 

(\ref{eq:minHC 1}) is a perfect hedge for the contingent claim * * *( ) (1 ( ))H z zψ+− − , where 

*( )zψ  is given by 

ψ*(z) =1
{R(T )−1 d!

dP
>a* ( z )}

+γ (z)1
{R(T )−1 d!

dP
=a* ( z )}

a*(z) = inf{a ≥ 0 : E P[(H (T )− z)+1
{R(T )−1 d!

dP
>a}

]≤ (c− z)(1−ε)}

γ (z) =
(c− z)(1−ε)− E P[(H (T )− z)+1

{R(T )−1 d!
d!

>a* ( z )}
]

E P[(H (T )− z)+1
{R(T )−1 d!

dP
=a* ( z )}

]

 

and *z  is the solution of 

min z∈[0,c] E![R(T )−1(H − z)+(1−ψ*(z))].  
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3.4 Option Pricing under HJM 

       HJM is widely accepted as the most general framework derived by directly modeling the 

dynamics of instantaneous forward-rates. In this subsection we tackle the option pricing 

problem under HJM framework. Take a European call option as an example, the objective 

function for pricing the option is formulated as: 

V (0) = E![R(T )−1(S(T )− K )+],  

where T  is the maturity and K  is the strike price of the option. We start by introducing the 

basic assumptions concerning the financial setup. 

The setup is similar to (amin,1992) and (gao2011). Fix a complete probability space 

[0, ]( ,{ } , , )t t T∈Ω F F P  where P  is the real-world probability measure. Let 1 [0, ]{ ( )}t TB t ∈
P  be a 

standard Brownian motion defined on [0, ]( ,{ } , , )t t T∈Ω F F P .  For a given continuous initial 

forward rate curve [0, ]{ (0, )}t Tf t ∈ , we assume that the forward rate process follows Itô’s 

formula dynamics 

10 0
( , ) (0, ) ( , ) ( , ) ( ),

t t
f t T f T u T du u T dB uα σ= + +∫ ∫ P  

where ( , )t Tα  and ( , )t Tσ  are drift and volatility processes, respectively. 

         The spot interest rate at time t, [0, ]{ ( )}t Tr t ∈  is given by the instantaneous forward rate of 

a forward contract, i.e., 

10 0
( ) ( , ) (0, ) ( , ) ( , ) ( ).

t t
r t f t t f t u t du u t dB uα σ= = + +∫ ∫ P  

For every maturity time T , the forward price [0, ]{ ( , )}t TP t T ∈  can be written as 

* * 2 *
10 0

( , ) exp ( , )

1(0, ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ) ( ),
2

( )
( )

T

t

t t

P t T f t u du

P T P u T r u u T u T du P u T u T dB uα σ σ

= −

= + − + −

∫

∫ ∫ P
 

where, 
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*

*

( , ) ( , ) ,

( , ) ( , ) .

T

t
T

t

t T t u du

t T t u du

σ σ

α α

=

=

∫

∫
 

The dynamic of the price process [0, ]{ ( )}t TR t ∈  for a zero-coupon bond is described by 

0

* *
10 0

( ) exp ( )

1 exp ( , ) ( , ) ( ) .
(0, )

( )
( )

t

t t

R t r u du

s t ds s t dB s
P t

α σ

=

= +

∫

∫ ∫ P
 

Consider the return process of the risky-asset S . Given the probability space 

[0, ]( ,{ } , , )t t T∈Ω F F P , where [0, ]{ }t t T∈F  is the augmented filtration driven by two independent 

Brownian motions 1 2 [0, ]{( ( ), ( ))}t TB t B t ∈
P P  initialized at zero. The dynamic of the asset price is 

governed by the stochastic differential equation: 

1 1 2 20 0 0
( ) (0) ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

t t t
S t S u r u S u du u S u dB u u S u dB uµ σ σ= + + + +∫ ∫ ∫P P  

where [0, ]{ ( )}t Ttµ ∈  denotes the excess return process without randomness. The summation of 

µ  and r  represents the expected growth rate. 

        Let !  be a probability measure equivalent to P . The Radon-Nikodym derivative d!
dP

 

transforms the real-world measure P  into the risk-neutral measure !  with the assumption of 

no-arbitrage, i.e., 

d!
dP

= exp(− 1
2

θ10

T
∫ (u)2 du− 1

2
θ20

T
∫ (u)2 du+ θ10

T
∫ (u)dB1

p (u)+ θ20

T
∫ (u)dB2

p (u)).  

By Girsanov's theorem, the processes: 

1 1 10

2 2 20

( ) ( ) ( ) ,

( ) ( ) ( ) ,

t

t

B t B t u du

B t B t u du

θ

θ

= −

= −

∫

∫

§

§

P

P
 

are two independent ! -Brownian motions. 
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As both 1
[0, ]{ ( ) ( )}t TB t S t−
∈  and 1

[0, ]{ ( ) ( , )}t TB t P t T−
∈  are martingales under ! , we have 

* * 2 *
1

1 1 2 2

1( , ) ( , ) ( , ) ( ) 0,
2

( ) ( ) ( ) ( ) ( ) 0.

t T t T t T t

t t t t t

α σ σ θ

µ σ θ σ θ

− + − =

+ + =
 

Thus, 

* * 2

1 *

* * * 2
1 1

2 *
2

1( , ) ( , )
2( ) ,

( , )
1( ) ( , ) ( ) ( , ) ( ) ( , )
2( ) .

( ) ( , )

t T t T
t

t T

t t T t t T t t T
t

t t T

α σ
θ

σ

µ σ σ α σ σ
θ

σ σ

− +
=

− + −
=

 

From the preceding we obtain the explicit representations of ( )S t  and ( )R t  under ! : 

2 2
1 2 1 1 2 20 0 0

* 2 *
10 0

1( ) (0) ( )exp ( ( ) ( )) ( ) ( ) ( ) ( ) ,
2

1 1( ) exp ( , ) ( , ) ( ) .
(0, ) 2

( )

( )

t t t

T T

S t S R t u u du u B u u B u

R T u T du u T dB u
P T

σ σ σ σ

σ σ

= − + + +

= +

∫ ∫ ∫

∫ ∫

§ §

§
 

Recall the option pricing problem: 

1
0 [ ( ) ( ( ) ) ],V E R T S T K− += −§  

Based on (\ref{eq:QS}) and (\ref{eq:QR}), we derive the following solution: 

1
1 2[ ( ) ( ( ) ) ] (0) ( ) (0, ) ( ),E R T S T K S N d KP T N d− +− = −§  

where 

* 2 2
1 20

1
* 2 2

1 20

* 2 2
1 20

2
* 2 2

1 20

(0) 1log ( , ) ( ) ( )
(0, ) 2 ,

( , ) ( ) ( )

(0) 1log ( , ) ( ) ( )
(0, ) 2 .

( , ) ( ) ( )

( ) (( ) )

(( ) )

( ) (( ) )

(( ) )

T

T

T

T

S u T u u du
P T Kd

u T u u du

S u T u u du
P T Kd

u T u u du

σ σ σ

σ σ σ

σ σ σ

σ σ σ

+ + +
=

+ +

− + +
=

+ +

∫

∫

∫

∫
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3.5 CVaR Hedging Under HJM Framework 

 In this subsection we integrate HJM methodology and CVaR hedging results from 

Chapter 2. Again, take the European call option as an example, whose payoff is given by 

( ) ( ( ) )H T S T K += − , where K  is the strike price. The problem formulation is as discussed in 

the section 3.4. 

We assume that the probability measures are atomless; this implies that the component 

*{ ( ) ( )}
1 dR T a z

d
=

§
P  in Theorem 3 and Theorem 5 can be ignored. To apply Theorem 3 and Theorem 

5 we need to compute the following three functions: 

f1(z,a) = E![R(T )−1(H (T )− z)+1
{R(T ) dP

d!
>a}

],

f2 (z,a) = E p[(H (T )− z)+1
{R(T ) dP

d!
≤a}

],

f3(z) = E![R(T )−1(H (T )− z)+].

 

The optimization problem in theorem 3 can be rewritten as: 

min z>0 c(z) =  z + 1
1−ε

f2 (z,a*(z)) 

z

!

"
#

$
#

if 0 ≤ z < ẑ
if z ≥ ẑ

 

where 

*
1( ) inf{ 0 : ( , ) },a z a f z a ν= ≥ ≤  

and 

ẑ  is the solution of 3( ) .f z ν= Theorem 5 can be reformulated as: 

* 1
[0, ] 1min ( , ( ) ),z c f z a z −
∈  

where 

a*(z) = inf{a ≥ 0 : f2 (z,a−1) ≤ (c− z)(1−ε)}.  
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We assume that 0z > , therefore (( ( ) ) ) ( ( ) )S T K z S T K z+ + +− − = − − . Then for a call 

option we have 

f1
call (z,a) = E![R(T )−1(S(T )− K − z)+1

{R(T ) dP
d!

>a}
],

f2
call (z,a) = E P[(S(T )− K − z)+1

{R(T ) dP
d!

≤a}
],

f3
call (z) = E![R(T )−1(S(T )− K − z)+].

 

Recall that 3 ( )callf z  is the option pricing formula which has already been studied in section 

3.4: 

3 1 2( ) (0) ( ( )) ( ) (0, ) ( ( ))callf z S N d z K z P T N d z= − +  

where 

* 2 2
1 20

1
* 2 2

1 20

* 2 2
1 20

2
* 2 2

1 20

(0) 1log ( , ) ( ) ( )
(0, )( ) 2( )

( , ) ( ) ( )

(0) 1log ( , ) ( ) ( )
(0, )( ) 2( )

( , ) ( ) ( )

( ) (( ) )

(( ) )

( ) (( ) )

(( ) )

T

T

T

T

S u T u u du
P T K zd z

u T u u du

S u T u u du
P T K zd z

u T u u du

σ σ σ

σ σ σ

σ σ σ

σ σ σ

+ + +
+

=
+ +

− + +
+

=
+ +

∫

∫

∫

∫

 

Similarly, we can obtain the closed form solution for 1f  and 2f . Let 2 ( , ) : ( ) ( )N x y N x N y=  

be the distribution function of two independent standard normal random variables, we have 

1/2 1/2
1 2 1 2 2( , ) (0) ( ( , )) ( ) (0, ) ( ( , )),callf z a S N z a K z P T N z aη η− −= Σ − + Σ  

where 

12 11

1

22

11

2

22

1log( (0, ))
2( , ) ,(0) 1log

(0, )( ) 2

1log( (0, ))
2( , ) ,(0) 1log

(0, )( ) 2

( )

( )

aP T
z a S

P T K z

aP T
z a S

P T K z

η

η

⎛ ⎞− +Σ − Σ⎜ ⎟
⎜ ⎟=
⎜ ⎟+ Σ⎜ ⎟+⎝ ⎠

⎛ ⎞− − Σ⎜ ⎟
⎜ ⎟=
⎜ ⎟− Σ⎜ ⎟+⎝ ⎠

 



 

 61  

 

Σ  is a 2 2×  positive definite matrix given by 

* 2 2
11 1 20

* 2 2
22 1 20

* *
12 21 1 1 2 20 0

(( ( ) ( , )) ( ) )

( ( , ) ( )) ( )

( ( ) ( , ))( ( , ) ( )) ( ) ( ) .

T

T

T T

u u T u du

u T u u dun

u u T u T u du u u du

θ σ θ

σ σ σ

θ σ σ σ θ σ

Σ = − +

Σ = + +

Σ = Σ = − − + −

∫

∫

∫ ∫

 

And 

f2
call (z,a) = S(0)

P(0,T )
eAN2 ( !Σ−1/2ζ1(z,a))− (K + z)N2 ( !Σ−1/2ζ2 (z,a)),  

where 

ζ1(z,a) =
log(aP(0,T ))− A− 1

2
Σ11

log( S(0)
P(0,T )(K + z)

)+ A+ 1
2
Σ22

"

#

$
$
$
$$

%

&

'
'
'
''

,

ζ2 (z,a) =
log(aP(0,T ))− (

0

T
∫ α*(u,T )+ 1

2
(θ1(u)2 +θ2 (u)2 ))du

log( S(0)
P(0,T )(K + z)

)+ (
0

T
∫ µ(u)+α*(u,T )− 1

2
(σ1(u)2 +σ 2 (u)2 ))du

!

"

#
#
#
##

$

%

&
&
&
&&

,

 

 

       
A= (

0

T
∫ µ(u)+α*(u,T )+ 1

2
σ *(u,T )2 +σ *(u,T )σ1(u))du  

and 

         

!Σ :=
Σ11 −Σ12

−Σ21 Σ22

#

$

%
%

&

'

(
(
.  
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3.6 Numerical Example 

In this section we apply our results from previous sections to the one factor Hull-White 

model in which the short rate dynamic is modeled by 

1( ) ( ( ) ( )) ( ),fdr t b t ar t dt dB tσ= − + P  

where a  and fσ  are the parameters regulating mean reverting and volatility respectively, and 

( )b t  is determined by: 

2
2(0, )( ) (0, ) (1 ).

2
f atf tb t af t e

t a
σ −∂

= + + −
∂

 

By solving the differential equation we obtain 

2
2 ( )

10
( ) (0, ) (1 ) ( ).

2
tat a u t

fr t f t e e dB u
a

σ
σ− −= + − + ∫ P  

         Note that (0, )f t  is generally fitted by an initial yield curve. In this example since we 

consider 3-month short term option,  (0, )f t  can be simplify assumed to be a constant. For 

the spot rate data we download overnight ICE LIBOR rate for US dollar from Bloomberg, 

ranging from 3/11/2012 to 3/10/2013. The generalized method of moments (GMM) is 

adopted to fit a  and fσ , see (park, 2004) for detail. For the stock price, we download the 

daily returns of S\&P 500 index from 'Yahoo! finance', ranging from 3/11/2012 to 3/10/2013. 

Maximum likelihood method is employed to estimate both µ  and 2 2 2
1 2σ σ σ= + . The 

correlation between the two Brownian motions is assumed to be 0.5. 

        For the call option of S\&P 500 index of three different maturities: 30,60,90T = , given 

the strike price 0K S= , we tackle the CVaR minimization problem and the hedging costs 

minimization problem based on the results in section \ref{sec: 3.1} and \ref{sec: 3.2}. The 

results are shown in figure \ref{fig:1} and figure \ref{fig:2}. 
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Figure 6 
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Figure 7 

 

     Figure 6 plots the optimal CVaRs with respect to the constraint on the initial costs ν , 

which is given by the fraction of the risk neutral price. One can observe that the optimal 

CVaRs decrease to zero when ν  equals to the risk neutral price, meaning that the call option 

is hedged perfectly. CVaRs reach to the maximum values when the fraction equals to zero, 

implying that the investor is exposed to the full risk. The optimal CVaR comes near zero 

when the allocation of initial wealth approaches to the risk neutral price in the case of perfect 

hedging. The optimal CVaRs also increases as the the maturity T  increases, showing that the 

risk is larger for portfolios held longer. 

Figure 7 plots the optimal hedging costs according to the constraint c  on CVaR. We can 

see that figure \ref{fig:2} demonstrates similar trends as in figure \ref{fig:1}. When c  

reaches to 350, the resulting risk is close the the maximum CVaR, and its corresponding 
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optimal hedging cost equals to zero. When the CVaR value is fixed at zero, we obtain the 

perfect hedging. The minimal optimal hedge equals to the risk neutral price. 

 

 

Figure 8 

 

  Figure 8 plots the optimal CVaRs with respect to the constraint on the initial costs ν for 

options with various price. We can observe that the optimal CVaRs decrease to zero when ν  

equals to the risk neutral price. CVaRs reach to the maximum values when the fraction equals 

to zero. When the strike price is extreme high, the optimal CVaR comes near zero as such an 

call option is very unlikely to be exercised. Also, options with higher price become less 

sensitive to the amount of initial capital being available. 
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Figure 9 

 

Figure 9 plots the optimal hedging costs of optional with difference strike price, 

according to the constraint c  on CVaR. We can see that When c  is approaching to 0, the 

resulting hedging cost get close to the maximum CVaR. When the CVaR value is fixed at 

zero, we obtain the perfect hedging. The minimal optimal hedge equals to the risk neutral 

price. 

 

0
50

100
150

200
250

300

1100

1200

1300

1400

1500

0

20

40

60

80

100

120

140

CVaR constraint
Strike price

O
pt

im
al

 c
os

t



 

 67  

 

 

Figure 10 

 

Figure 10 shows the relationship between the original contingent claim and the fractional 

claim we perform perfect hedge on. Each colour corresponds to a particular risk budget. We 

see that when the risk budge is close to the amount required by perfect hedge, the distribution 

of the fractional claim concentrates to that of H(T). 
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3.7 The Neyman – Pearson Lemma 

Neyman-Pearson Lemma plays an important rule in deriving theorems in Chater 3.  Let 

P  and Q be two probability measures on (Ω,   ℱ) such that 

P A =   P A   ∩ N +   
dP
dQdQ!

,      A ∈ ℱ 

The following theorem (Follmer, 2000) shows the Lebesgue decomposition of P  with 

respect to Q . 

Theorem  𝟏. For any two probability measures Q and P on (Ω,   ℱ), there exists a set 

N ∈ F with Q   N = 0 and a ℱ– measurable function φ ≥ 0 such that 

P A = P A   ∩ N +    φdQ  
!

  for  all  A ∈ ℱ 

One writes 

dP
dQ ∶=   

          φ                      on  Ν!
+∞                    on  Ν  

 

 

For fixed c ≥ 0, we have 

A! ∶=
dP
dQ > 𝑐    

here we use !"
!"
= ∞ on N. 

 

The Neyman-Pearson lemma is stated as follows(Follmer, 2000): 

Proposition 𝟏 (Neyman – Pearson lemma). If A ∈ ℱ is such that Q A ≤ Q[A!], then 

P A ≤ P[A!]. 

Proof. Let F ∶=    I!! − I!. Then F ≥ 0 on N, and F ∙ !"
!"
−   c ≥ 0. Hence 
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P A! −   P A =    FdP =   F
!

dP+    F
dP
dQdQ ≥ c   FdQ =   c Q A! −   Q A  

the proposition is proved. 

 

Remark 1. From statistical test theory, A! can be viewed as the likelihood quotient test 

of Q (the null hypothesis) against P (the alternative hypothesis). That is, the null hypothesis Q 

is rejected if the outcome ω of an test is in A!. In such a statistical test, there are two kinds of 

error that can occur. An error is called type 1 error if the null hypotheses is rejected, although 

the true probability is Q. Similarly, an error is called type 2 error if the null hypothesis is not 

rejected, despite that the true probability is P. Q[A!] is the probability of a type 1 error and is 

usually called the significance level or the size of the statistical test A!. Then P A! !  is the 

probability of a type 2 error. The power of the test A! is given by the complementary 

probability P A! =   1− P A! ! . Therefore, we can compare the likelihood quotient test to 

the set A in the above proposition, which can be viewed as another statistical test. Hence, we 

can restate the proposition as follows: the maximal power of a likelihood quotient test can be 

obtained on its significance level. 

 Indicator functions of sets have only two values: 0 and 1. The proposition stated above 

can be generalized by considering ℱ-measurable function ψ:Ω→ 0, 1  and Let ℛ be the set 

which contains all such functions. 

Theorem 𝟐. (Follmer, 2000)  Let Π≔ !
!
(P+ Q), and define the density φ≔ dP/dQ as 

above. 

(a) Take c ≥ 0, and suppose that ψ! ∈ ℛ satisfies Π- a.s. 

ψ! = 1        on  {φ > 𝑐}
0        on  {φ < 𝑐} 

Then for any ψ ∈ ℛ, 
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ψdQ ≤ ψ!dQ  ⟹ ψdP ≤ ψ! dP 

b  For any α! ∈ 0, 1  there is some ψ! ∈ ℛ of the form  

ψ! = 1        on  {φ > 𝑐}
0        on  {φ < 𝑐} 

    such that ψ! dQ = α!. More precisely, if c is an (1− α!)-quantile of φ under Q, we can 

define ψ! by 

ψ! = I{!!!} + κI{!!!} 

Where κ is defined as 

κ≔
0                                                                      if  Q φ = c = 0
α! − Q φ > 𝑐
Q φ = c

                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

(c) Any ψ! ∈ ℛ satisfying  

ψdQ ≤ ψ!dQ  ⟹ ψdP ≤ ψ! dP 

       is of the form 

ψ! = 1        on  {φ > 𝑐}
0        on  {φ < 𝑐} 

       For some c ≥ 0. 

 

Proof. (a): Take F≔ ψ! − ψ and repeat the proof of Proposition A. 28. 

(b): Let F denote the distribution function of φ under Q. Then Q φ > 𝑐 = 1− F c ≤ α! 

and 

Q φ = c =   F c − F c− ≥ F c − 1+ α! = α! − Q[φ > 𝑐] 

Hence 0 ≤ κ ≤ 1 and ψ! belongs to ℛ. The fact that ψ!dQ = α! is obvious. 

(c): Suppose that ψ∗ satisfies 

ψ dQ ≤ ψ∗ dQ⟹ ψ dP ≤ ψ∗ dP 
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The case in which α! ≔ ψ∗dQ equals 0 or 1 are trivial. For 0 < α! < 1, we can take 

ψ! as in part (b). Then α! ≔ ψ∗dQ = ψ!dQ. One also has that ψ∗ dP = ψ! dP, as 

can be seen by applying  

ψdQ ≤ ψ!dQ  ⟹ ψdP ≤ ψ! dP 

to both ψ∗ and ψ! with reversed roles. Hence, for f≔ ψ! − ψ∗ and N = φ = ∞ , 

0 = fdP− c fdQ = fdP
!

+ f ⋅ (φ− c)dQ 

But  

ψ! = 1        on  {φ > 𝑐}
0        on  {φ < 𝑐} 

implies that both f ≥ 0 P-a.s. on N, and f ⋅ φ− c ≥ 0 Q-a.s. Hence f vanishes Π-a.s. on 

{φ ≠ c}. 

 

Remark 𝟐. In Remark 1, a randomized statistical test is given by an element ψ of ℛ. Let 

ω be the outcome of a statistical test, and denote the probability p≔ ψ ω , which is the 

probability of rejection of the null hypothesis. Power and significant level of a randomized 

test are given. We call a test of the following form  

ψ! = 1        on  {φ > 𝑐}
0        on  {φ < 𝑐} 

a generalized likelihood quotient test. Hence, we can state the general Neyman-Pearson 

lemma in Theorem 2 as follows: On the significance level a randomized test will have its 

maximal power, and it is satisfied if and only if the randomized test is a generalized 

likelihood quotient test. 
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3.8 Concluding Remarks 

       The purpose of this section is to construct CVaR hedging strategies under stochastic 

interest rate environment. We first generalize the results presented by (melnikov, 2012) and 

then add the stochastic interest rate component. Modeling the stochastic movements of 

interest rates is essential in pricing and hedging interest-rate-sensitive price; the result of this 

paper can be applied on pricing a variety of equity-linked life insurance products, for 

example. The Neyman Pearson lemma shows that the optimal strategy of CVaR hedging is a 

perfect hedge for an adjusted claim. 

        To illustrate this hedging technique we consider a European call option, explicit 

formulas for solving CVaR minimization problems under HJM framework are derived. Note 

that the geometric Brownian motion is employed in monitoring the asset dynamics. As the 

risk of Brownian motion is completely determined by its variance, the advantage of CVaR is 

not shown in this thin-tailed model. For future work we consider improving CVaR hedging 

by adopting heavy-tailed models and adding jump components. 
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4. Nominal and Robust Portfolio Optimization 
 

    Conditional Value-at-Risk (CVaR) has attracted much attention in recent years. 

Rockafellar and Uryasev (2000, 2002) formulated CVaR minimization problem, which can 

be solved by minimizing a more tractable auxiliary function without predetermining the 

corresponding VaR, and VaR can be calculated as a by-product at the same time.  Such a 

formulation usually results in convex programs, and even linear programs; since then CVaR 

is becoming more and more popular in financial management. Konno, Waki and Yuuki 

(2002) explained the significance of using CVaR in reducing downside risk in portfolio 

optimization.  

Recently, many researchers have paid more attention to the issue of lack of robustness of 

CVaR optimization. It is well-known that the portfolio decision is very sensitive to the mean 

and the covariance matrix, thus one cannot neglect the modelling risk arises due to the 

uncertainty of the underlying probability distribution. The distribution uncertainty occurs in 

many situations, for example, when there are limited data samples possessed or the data 

samples are not stable. Therefore, instead of the precise information on the mean and the 

covariance matrix of asset returns, some types of uncertainties are introduced, such as 

polytopic uncertainty, box uncertainty and ellipsoidal uncertainty, in the parameters involved 

in the mean and the covariance matrix, and then translated the problem into semidefinite 

programs that can be solved by interior-point algorithms developed in recent years. El Ghaoui 

(2003) studied the robust portfolio optimization using worst-case VaR.  

This section introduces the concept of worst-case CVaR and followed by investigating 

the minimization of worst-case CVaR associated with mixture distribution uncertainty. At the 

end of this section we present the application of worst-case CVaR to robust portfolio 

optimization together with an illustrative numerical example. 
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4.1 Worst-Case Conditional Value-at-Risk 

          The Average Value at Risk (AVaR), also called conditional value-at-risk or expected 

shortfall, has become very popular and displaced the traditional VaR due to its coherence. 

AVaR represents the information about the magnitude of the losses larger than the VaR level. 

The AVaR at tail probability ε is defined as the average of the VaRs which are larger than the 

VaR at tail probability α . Refer to Chapter Three for formal definition. 

  Let x denotes a decision vector ( x∈Χ ), and ( , )l x y represents the loss with random 

vector y . Assume that y follows a continuous distribution with its density function denoted 

as ( )f ⋅ . We also assume ( ( , )E l x y <∞for each x∈Χ , so that CVaR and worst-case CVaR 

are probably defined. The probability of ( , )l x y , for any given x  , not exceeding a threshold 

α is given as  

WCVaRβ (x) ! sup
p(⋅)∈P

CVaRβ (x) =min
α∈R

max
λ∈Λ

Σ
i=1

3

λiFβ
i (x,α)                           

       iFβ  is the axillary function in calculating CVaR,  i denotes the ith likelihood function 

with weight iλ .   

        As we pointed out that the coherent risk measure CVaR is a coherent risk measure, so 

does worst-case CVaR.  
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4.2 Numerical Example 

        In this subsection, we consider a numerical example to illustrate the robust portfolio 

optimization problems. We select fifty tickers from S&P 500, and sample the data for the 

frequency of 5 minute. 

       Plot a sample return data as in figure 11, we roughly observed that the behavior of 

returns is not consistent among different time periods. The return behaviours of other tickers 

are very similar.  If we divide our observations into three sub-intervals, the expected mean 

and variance of returns of one period are very different from the others. Therefore, we 

assume that uncertain vector y is sampled by three corresponding likelihood function, i.e., 

rather than using a nominal distribution, we use a mixture distribution (f1, f2, f3, each with 

corresponding normalized weights (using sample days of sub-interval)). 

          Consequently, we might consider CVaR not reliable since the underlying assumption 

that the probability distribution is precisely known to be a nominal one is violated. We 

therefore perform a worst-case CVaR minimization, which will lead to robust portfolio 

optimization. Letµ is the minimum expected portfolio return, iy  denotes the expected value 

of y with respect to its interval-likelihood distribution; f(x,y) denote the loss associated with 

decision vector x and random vector y. 

          Let θ be the solution of formula (1.1), our task is: 

                                       

3

( , ) 1
min { : ( , ) , }i

iR R i
F xβα θ

θ λ α θ λ
∈ × =

Σ ≤ ∀ ∈Λ  (1.1) 

s.t.   

                                            e^T* r= Wo;  

( 1,..., 1) (1,...,1)X X X= − − ≤ ≤ ; 

T iX y µ≥ , 
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1 ( )
1

i T iuα θ
β

+ Π ≤
−

 

where 1( ,..., )i i i
sΠ = Π Π , i

kΠ is the probability according to the k---th sample with 

respect to the i-th likelihood distribution.; we introduce iu  as the auxiliary vector; 

( , )i i
k ku f x y α≥ − ; 6) 0i

ku ≥ ,k=1,2,3.  For minimum expected return μ=0. 0055, and 

CI level (β)=95%, we obtain the following equity curves. 

 

 

 

 

Figure 11 
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Figure 12 

 

The above figure illustrates the evolution of the values of the robust optimal 

portfolio (via WCVaR) and the nominal optimal portfolio (via CVaR). It shows that 

the robust optimal portfolio almost always outperforms the nominal optimal portfolio.  
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Appendix 
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Appendix 1 

Fix X χ∈  such that ( ) .Xρ < +∞  By translation invariance one has 

 ( ( )) ( ) ( ) 0.X X X Xρ ρ ρ ρ+ = − =   

If ρ is positive homogeneous, then (0) ( 0) (0)n nρ ρ ρ= ⋅ = , so (0) 0ρ = , 

Therefore, ( ) (0)c c cρ ρ= − = − ,c∈ °  since ( ( )) 0X Xρ ρ+ = .  
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Appendix 2 

(a) a) is straightforward. 

(b) cash invariance implies that for χΧ∈ , 

                          

inf{ | } inf{ | ( ) 0}

inf{ | ( ) }
( )

pm m m m X
m X m

X

ρ

ρ
ρ

∈ +Χ∈Α = ∈ + ≤

= ∈ ≤

=

° °
°   

(c) Α is clearly convex if ρ is a convex measure of risk. The converse will follow from 

Proposition 2.6 together with (0.6). 

(d) Clearly, positive homogeneity of ρ implies that Α is a cone. The converse follows as 

in (c). 
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Appendix 3 

 

(a) It is straightforward to verify that ρΑ  satisfies cash invariance and monotonicity. We 

show next that ρΑ  takes only finite valures.  To this end, fix some Y in the non-

empty set Α . For χΧ∈ given, there exists a finite number m  with m Y+Χ > , for Χ  

and Y  are both bounded. Then 

( ) ( ) ( ) 0X m m X Yρ ρ ρΑ Α Α− = + ≤ ≤ , 

           and hence ( )X mρΑ ≤ <∞. Note that (2) is equivalent to (0)ρΑ > −∞.  

           To show that ( )ρΑ Χ > −∞ for arbitrary χΧ∈ , we take mʹ′  such that 0mʹ′Χ + ≤  and 

conclude by monotonicity and cash invariance that ( ) (0) mρ ρΑ Α ʹ′Χ ≥ + > −∞ . 

(b) Suppose that 1 2, χΧ Χ ∈  and that 1 2,m m ∈°  are such that i im +Χ ∈Α . If [ ]0,1λ∈ , 

then the convexity of Α  implies that 1 1 2 2( ) (1 )( )m mλ λ+Χ + − +Χ ∈Α. Thus, by the 

cash invariance of ρΑ ,  

1 1 2 2

1 2 1 2

0 ( ( ) (1 )( ))
( (1 ) ) ( (1 ) ),

m m
m m

ρ λ λ

ρ λ λ λ λ
Α

Α

≥ +Χ + − +Χ

= Χ + − Χ − + −
 

and the convexity of ρΑ  follows. 

(c) As in the proof of convexity, we obtain that ( ) ( )ρ λ λρΑ ΑΧ ≤ Χ  for 0λ ≥  if Α  is a 

cone. To prove the converse inequality, let ( )m ρΑ< Χ . Then m +Χ∉Α . Thus,

( )mλ ρ λΑ< Χ , and (c) follows. 

(d) The inclusion ρΑΑ∈Α  is obvious, and Proposition 1.5 implies that Α  is closed⋅ −  

as soon as ρΑΑ = Α . Conversely, assume that  Α  is closed⋅ − . We have to show 
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that Χ∉Α , there is some ( )0,1λ∈  such that (1 )mλ λ+ − Χ∉Α . Thus, 

0 ( (1 ) ) ((1 ) )m mρ λ λ ρ λ λΑ Α≤ + − Χ = − Χ − .      Since ρΑ  is a monetary measure of 

risk, we have  

((1 ) ) ( )ρ λ ρ λΑ Α− Χ − Χ ≤ Χ . 

     Hence, 

( ) ((1 ) ) ( ) 0mρ ρ λ λ λΑ ΑΧ ≥ − Χ − Χ ≥ − Χ >  
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Appendix 4 

Here we review the valuation of European call option under HJM model. Recall that the price 

of the option is given by: 

1
0

1 1
{ ( ) } { ( ) }

[ ( ) ( ( ) ) ]

[ ( ) ( )1 ] [ ( ) 1 ].S T K S T K

V E R T S T K

E R T S T E R T K

− +

− −
> >

= −

= −

§

§ §
 

First define 

2 21
1 2 1 1 2 20 0 0

1: exp ( ( ) ( ) ) ( ) ( ) ( ) ( ) ,
2

( )T T Td u u du u dB u u dB u
d

σ σ σ σ= − + + +∫ ∫ ∫§ §§
§

 

then under we have 

1

1

1 1 10

2 2 20

( ) ( ) ( ) ,

( ) ( ) ( ) ,

t

t

B t B t u du

B t B t u du

σ

σ

= +

= +

∫

∫

§§

§§
 

where 1
1B§  and 1

2B§  are two independent Brownian motions under 1§ . 

Thus 

1 1

2 2
1 2 1 1 2 20 0 0

* 2 2 *
1 2 1 1 2 20 0 0

1( ) (0) ( )exp ( ( ) ( ) ) ( ) ( ) ( ) ( )
2

(0) 1exp ( , ) ( ) ( ) ( ( , ) ( )) ( ) ( ) ( ) .
(0, ) 2

( )

( (( ) ) )

T T T

T T T

S T S R T u u du u dB u u dB u

S u T u u du u T u dB u u dB u
P T

σ σ σ σ

σ σ σ σ σ σ

= − + + +

= + + + + +

∫ ∫ ∫

∫ ∫ ∫

§ §

§ §

 

The event ( )S T K>  implies that 

1 1*
1 1 2 20 0

* 2 2
1 20

( ( , ) ( )) ( ) ( ) ( )

(0, ) 1log ( , ) ( ) ( ) .
(0) 2

( ) (( ) )

T T

T

u T u dB u u dB u

P T K u T u u du
S

σ σ σ

σ σ σ

+ +

> − + +

∫ ∫

∫

§ §

 

Thus we have 

11
{ ( ) } { ( ) } 1[ ( ) ( )1 ] (0) [1 ] (0) ( ),S T K S T KE R T S T S E S N d−

> >= =§§  

 

On the other side, define 



 

 84  

 

* * 22
10 0

1: exp ( , ) ( ) ( , ) ,
2

( )T Td u T dB u u T du
d

σ σ= − −∫ ∫§§
§

 

Then we have 

2

2

*
1 1 0

2 2

( ) ( ) ( , )

( ) ( )

t
B t B t u T du

B t B t

σ= −

=

∫§§

§§
 

where 2
1B§  and 2

2B§  are two independent Brownian motions under 2§ . Thus 

2 2

* 2 2 2 *
1 2 1 1 2 20 0 0

* 2 2 *
1 2 1 1 2 20 0 0

(0) 1( ) exp ( ( , ) ( ) ( ) ) ( ( , ) ( )) ( ) ( ) ( )
(0, ) 2

(0) 1exp ( , ) ( ) ( ) ( ( , ) ( )) ( ) ( ) ( ) .
(0, ) 2

( )

( (( ) ) )

T t t

T t t

SS T u T u u du u T u dB u u dB u
P T

S u T u u du u T u dB u u dB u
P T

σ σ σ σ σ σ

σ σ σ σ σ σ

= − − + + +

= − + + + + +

∫ ∫ ∫

∫ ∫ ∫

§ §

§ §The event ( )S T K>  implies that 

2 2*
1 1 2 20 0

* 2 2
1 20

( ( , ) ( )) ( ) ( ) ( )

(0, ) 1log ( , ) ( ) ( ) .
(0) 2

( ) (( ) )

T T

T

u T u dB u u dB u

P T K u T u u du
S

σ σ σ

σ σ σ

+ +

> + + +

∫ ∫

∫

§ §

 

Then 

1
{ ( ) } 2[ ( ) 1 ] (0, ) ( )S T KE R T K KP T N d−

> =§  
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Appendix 5 

We can decompose 1
callf  to be: 

1 2

1
1 { ( ) }

{ ( ) } ( ){ ( ) } { ( ) }

( , ) [ ( ) ( ( ) ) 1 ]

(0) [1 1 ] ( ) (0, ) 1 1 ],[

call
dR T a
d

S T K z d S T K z dR T a R T a
d d

f z a E R T S T K z

S E K z P T E

− +

>

> + > +
> >

= − −

= − +

§

§

§ §

§ §

P

P P

 

where 1§  and 2§  are defined in the previous section. Then apply (\ref{eq:Q1B1}) and 

(\ref{eq:Q1B2}) we obtain the dynamic of ( ) /R T d d§P  under 1§ : 

* 2 2 2
1 20

*
1 1 2 20 0

12 11 1

1 1( ) exp ( ( , ) ( ) ( ) )
(0, ) 2

( ( , ) ( )) ( ) ( ) ( )

1 1exp ,
(0, ) 2

(

)
( )

T

T T

dR T u T u u du
d P T

u T u dB u u dB u

W
P T

σ θ θ

σ θ θ

= − −

+ − −

= Σ − Σ −

∫

∫ ∫§ §

§
P

 

where 11Σ , 12Σ  are given by (\ref{eq:Sigma11}), (\ref{eq:Sigma12}), and 

1 1
( )

*
1 1 1 2 20 0

* 2 2 2 *
1 2 1 1 2 20

: ( ( ) ( , )) ( ) ( ) ( )

1log( (0, )) ( ( , ) ( ) ( ) 2( ( , ) ( )) ( ) 2 ( ) ( )) .
2

d T T

T

W u u T dB u u dB u

aP T u T u u u T u u u u du

θ σ θ

σ θ θ σ θ σ θ σ

= − +

< − + − − + − −

∫ ∫

∫

§ §

 

Therefore ( ) /R T d d a>§P  implies 

1 12 11
1log( (0, )) .
2

W aP T< − +Σ − Σ  

On the other side, recall ( )S T K z> +  implies 

1 1
( )

*
2 1 1 2 20 0

* 2 2
1 2 220

: ( ( , ) ( )) ( ) ( ) ( )

(0) 1 (0) 1log ( , ) ( ) ( ) log ,
(0, )( ) 2 (0, )( ) 2

( ) (( ) ) ( )

d T T

T

W u T u dB u u dB u

S Su T u u du
P T K z P T K z

σ σ σ

σ σ σ

=− + −

< + + + = + Σ
+ +

∫ ∫

∫

§ §
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Note that 1 2( , )W W  are binormal distributed with zero mean and covariance matrix Σ . It is 

easy to compute that the entries of Σ  

2 * 2 2
11 1 1 20

2 * 2 2
22 2 1 20

* *
12 21 1 2 1 1 2 20 0

[ ] (( ( ) ( , )) ( ) ) ,

[ ] ( ( , ) ( )) ( ) ,

[ ] ( ( ) ( , ))( ( , ) ( )) ( ) ( ) .

T

T

T T

E W u u T u du

E W u T u u du

E WW u u T u T u du u u du

θ σ θ

σ σ σ

θ σ σ σ θ σ

Σ = = − +

Σ = = + +

Σ = Σ = = − − + −

∫

∫

∫ ∫

 

Thus we have: 

1 1/2
( ) 2 1{ ( ) }

(0) [1 1 ] (0) ( ( , )),S T K z dR T c
d

S E S N z aη−
> +

>
= Σ§

§
P  

where 1( , )z aη  is given by (\ref{eq:eta1}). Similarly under 2§  we have 

2 2

* 2 2
1 20

*
1 1 2 20 0

11 1

1 1( ) exp (( ( ) ( , )) ( ) )
(0, ) 2

( ( , ) ( )) ( ) ( ) ( )

1 1exp ,
(0, ) 2

(

)
( )

T

T T

dR T u u T u du
d P T

u T u dB u u dB u

W
P T

θ σ θ

σ θ θ

= − − + +

− −

= − Σ −

∫

∫ ∫§ §

§
P

 

and that 

( ) /R T d d a>§P  implies 

1 11
1log( (0, )) .
2

W aP T< − − Σ And recall that ( )S T K z> +  implies 

* 2 2
2 1 20

22

(0) 1log ( , ) ( ) ( )
(0, )( ) 2

(0) 1log .
(0, )( ) 2

( ) (( ) )

( )

TSW u T u u du
P T K z

S
P T K z

σ σ σ< − + +
+

= − Σ
+

∫
 

Note that here we keep use 1 2( , )W W  to denote a bivariate normal random vector under 2§  

instead of 1§  for simplicity. Thus we have 

2 1/2
( ) 2 2{ ( ) }

( ) (0, ) 1 1 ] ( ) (0, ) ( ( , )),[ S T K z dR T c
d

K z P T E K z P T N z aη−
> +

>
+ = + Σ§

§
P  
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Appendix 6 

Recall that the dynamic of stock price process under market measure P  is given by 

2 2
1 2 1 1 2 20 0 0

* 2 2 *
1 2 1 1 2 20 0 0

1( ) (0) ( )exp ( ) ( ( ) ( ) ) ( ) ( ) ( ) ( )
2

(0) 1exp ( ) ( , ) ( ( ) ( ) ) ( ( , ) ( )) ( ) ( ) ( ) .
(0, ) 2

( ( ) )

( ( ) )

t t t

t t t

S t S R t u u u du u dB u u B u

S u u t u u du u t u dB u u B u
P t

µ σ σ σ σ

µ α σ σ σ σ σ

= − + + +

= + − + + + +

∫ ∫ ∫

∫ ∫ ∫

P P

P P

 

Consider the decomposition of 2
callf : 

2 { ( ) } { ( ) }{ ( ) } { ( ) }
( , ) ( )1 1 ( ) 1 1 .[ ] [ ]call

S T K z d S T K z dR T a R T a
d d

f z a E S T K z E> + > +
≤ ≤

= − +
§ §

P P
P P  

Here to define a new measure ∞P : 

∞
* * 2 2

1 1 2 2 1 20 0 0

1: exp ( ( , ) ( )) ( ) ( ) ( ) ( ( , ) ( )) ( ) ) .
2

( )T T Td u T u dB u u B u u T u u du
d

σ σ σ σ σ σ= + + − + +∫ ∫ ∫P PP
P

 

Then we have 

∞ ∞

* * 2 *
{ ( ) } 10{ ( ) }

( ) { ( ) }{ ( ) } { ( ) }

(0) 1( )1 1 exp ( ) ( , ) ( , ) ( , ) ( )
(0, ) 2

(0)1 1 1 1 ,
(0, )

[ ] ( ( ) )

[ ] [ ]

T

S T K z dR T a
d

A
S T K z d S T K z dR T a R T a

d d

SE S T u u T u T u T u du
P T

SE e E
P T

µ α σ σ σ> +
≤

> + > +
≤ ≤

= + + +

=

∫
§

§ §

P
P

P P
P P

 

where A  is given by (\ref{eq:constA}). 

By Girsanov theorem we have 

∞

∞

*
1 1 10

2 2 20

( ) ( ) ( ( , ) ( )) ,

( ) ( ) ( ) .

t

t

B t B t u T u du

B t B t u du

σ σ

σ

= + +

= +

∫

∫

P P

P P
 

where ∞
1BP  and ∞

2BP  are two independent Brownian motions under ∞P . Then ( )S T  and 

( ) /R T d §P  becomes: 
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* 2 2
1 20

*
1 1 2 20 0

22 2

(0) 1( ) exp ( ) ( , ) ( ( ) ( ) )
(0, ) 2

( ( , ) ( )) ( ) ( ) ( )

(0) 1exp ,
(0, ) 2

( ( )

)
( )

T

T T

SS T u u T u u du
P T

u T u dB u u B u

S A W
P T

µ α σ σ

σ σ σ

= + − +

+ + +

= + Σ −

∫

∫ ∫P P  

and 

* 2 2
1 20

*
1 1 2 20 0

11 1

1 1( ) exp ( , ) ( ( ) ( ) )
(0, ) 2

( ( ) ( , )) ( ) ( ) ( )

1 1exp
(0, ) 2

( ( )

)
( )

T

T T

dR T u T u u du
d P T

u u T dB u u dB u

A W
P T

α θ θ

θ σ θ

= + +

− − −

= + Σ −

∫

∫ ∫

§
P P

P

 

Thus ( ) /R T d d a≤§P  implies 

1 11
1log( (0, )) ,
2

W aP T A− ≤ − − Σ  

and ( )S T K z> +  implies 

2 22
(0) 1log .

(0, )( ) 2
( )SW A

P T K z
< + + Σ

+
 

It is easy to see that (W1,W2 ) ~ N (0, !Σ) . 

Then we have 

1/2
( ) 2 1{ ( ) }

(0)( )1 1 ( ( , )),
(0, )

[ ] A
S T K z dR T a

d

SE S T e N z a
P T

ζ−
> +

≤
= Σ

§

%P
P  

where 1( , )z aζ  is given by (\ref{eq:zeta1}). On the other side we do not need to change the 

measure. For { ( ) / }R T d d a≤§P  we have 

* 2 2
1 1 20

1log( (0, )) ( , ) ( ( ) ( ) ) ,
2

( )T
W aP T u T u u duα θ θ− ≤ − + +∫  

and for ( )S T K z> +  we have 

* 2 2
2 1 20

(0) 1log ( ) ( , ) ( ( ) ( ) ) .
(0, )( ) 2

( ) ( )TSW u u T u u du
P T K z

µ α σ σ< + + − +
+ ∫  
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Finally we will get 

(K + z)E p[1S (T )>K+z1{R(T ) dp
d!

≤a}
]= (K + z)N2 ( !Σ−1/2ζ2 (z,a)),  
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