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Abstract of the Dissertation 

Application of Risk Analysis based on Advanced Probabilistic Models 

by 

Naoshi Tsuchida 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Quantitative Finance) 

Stony Brook University 

2013 

 

Risk analysis is one of the central parts of modern finance theory. It covers various topics: 
modeling, measuring, managing, and forecasting risk and returns. The purpose of this dissertation 
is to describe the recent methodology of risk analysis and to show its practical applications. 

Chapter 1 is dedicated to review the quantitative methodology of recent risk analysis, in which 
three components are presented in order to discuss its nature. The first component is the modeling 
of marginal distribution: The flaws of the Gaussian distribution and the alternative distributions 
based on the theory of the Levy process are discussed. The second component is the modeling of 
joint distribution: A copula model, a factor model, and independent component analysis are 
discussed. The third component is the definition of risk and its measurements: The idea of value 
at risk (VaR) is introduced. 

In Chapter 2, we present a practical example of how to construct a portfolio based on the return 
model and risk measure. The result is tested by the method of backtesting. Consequently, it is 
found that (1) the ARMA-GARCH model with classical tempered stable (CTS) distribution 
provides better prediction than that with the normal and Student-t distribution, and (2) average 
VaR (AVaR) provides a better risk measure than variance. It is also suggested that the number of 
universe has effect on the portfolio return, and that it is effective to reduce stock universe to large 
capitalization stocks. 

In Chapter 3, we analyze the distribution of returns on seven major Eurozone sovereign bonds 
(France, Germany, Greece, Ireland, Italy, Portugal, and Spain) and their co-movement.  We 
investigate the ARMA-GARCH models based on different assumptions about the innovations: 
Gaussian, Student-t, CTS, normal tempered stable (NTS), and -stable. For each of the five 
models, we apply four copula functions, and assess the forecasting performance of combinations 



 

iv 
 

of these models. In addition, to find a forward-looking measure to detect the financial crisis of 
Greece, we analyze the evolution of the tail parameter over time. 

In Chapter 4, we discusses the goodness of fitting of independent component analysis (ICA) 
using the sovereign CDS premiums of 11 Eurozone countries (Austria, Belgium, Finland, France, 
Germany, Greece, Ireland, Italy, Netherlands, Portugal, and Spain). Based on the log-likelihood, 
the Akaike information criterion and the Bayesian information criterion, we first show the fitness 
of ICA is as good as more complicated models such as the ARMA-GARCH and Student-t copula 
model. Also, using the structural default model based on CDS premium, we found that the 
characteristics of joint defaults based on ICA seem different from those based on copula. 

 



 

v 
 

 

 

 

 

 

 

To Mariko Tsuchida 

  



Contents

1 Introduction:
Basic Concepts 1
1.1 Heavy-tailed distribution . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Gaussian distribution . . . . . . . . . . . . . . . . . . . 4
1.1.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 α-stable distribution . . . . . . . . . . . . . . . . . . . 6
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Chapter 1

Introduction:
Basic Concepts

Risk analysis is one of the central parts of modern finance theory. It covers
various topics: modeling, measuring, managing, and forecasting risk and re-
turns. Since the history of finance is the history of big losses, risk control
has been one of the most important topics for both practitioners and re-
searchers. The purpose of risk analysis is to understand the risk in a specific
investment. However, the analysis is not limited to investment, but it is re-
lated to the other fields of finance such as asset and option pricing, economic
analysis, regulations, and so on. This is because the effect of risk is not only
limited to investors, but also involves all participants in the market and all
participants of the global economy. Conversely, a specific investment cannot
be separated from the effect of global trends. These interactions are easily
seen in historical situations such as the Great Depression and the Lehman
collapse. Ultimately, the purpose of risk analysis is to understand the entire
of finance and economy, and might be to understand the world.

In finance, risk is usually classified into several categories. For example,
the Basel II accord adopts three categories, namely, market risk (included
to trading book issues), credit risk, and operational risk (Basel Committee
of Banking Supervision, 2006). Among them, the market risk is related to
the fluctuations of market prices, and its analysis is one of the major topics
in quantitative finance, since huge amount of quantitative data is available.
Meanwhile, credit risk and operational risk are defined as non-market risk,
containing non-quantitative risk such as legal risk. However, a great part of
these risks is now available to be analyzed by quantitative approaches. For
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example, credit risk was not traded in the market before, but quantitative
approaches enable market-traded credit products such as collateralized debt
obligation (CDO) or credit default swap (CDS). Using these developments,
it is now usual to estimate credit risk by quantitative approaches.

For quantitative understanding of risk in finance, we need to understand
the distribution of returns at first. The Gaussian distribution is the primary
candidate for this purpose, since it has many good properties such as com-
putational simplicity and the central limit theory. However, many preceding
studies reject this idea. The major reason is because the number of extreme
losses is more frequent than that which Gaussian distribution predicts. This
fact means that the empirical distribution has tail heaviness and skewness
toward downside. The α-stable distribution is one of the distributions to
describe the tail heaviness and skewness, and was the first non-Gaussian dis-
tribution which was adopted as the return distribution in early 1960s (Man-
delbrot, 1962). Many distributions have been suggested since then. Among
them, a classical tempered stable (CTS) distribution has the advantage that
the option pricing based on the distribution is available (Boyarchenko and
Levendorskĭi, 2000).

The second step of risk analysis is to incorporate the dependency be-
tween assets. A joint distribution can completely describe dependency. The
simplest joint distribution is the multivariate Gaussian distribution, which
is used widely by practitioners. However, it is reported that asset returns
increase their dependency under a market stress, referred to as tail depen-
dency, and it is pointed out that the Gaussian distribution cannot capture
such increasing dependency (For example, see Demarta and McNeil, 2005).
After the financial crisis at the end of 2000s, it is proposed to use other joint
distributions in order to avoid the flaw of tail dependency. A copula function
is a standard method to incorporate the dependency of variables.

The factor analysis is an alternative to direct modeling of dependency by
joint distribution. It is the great advantage of the factor analysis that it can
reduce the number of dimensions (factors) and that we can easily impose
meaning on each factor. The capital asset pricing model (CAPM; Sharpe,
1964; Lintner, 1965; Mossin, 1966), the arbitrage pricing theory (APT; Ross,
1976) and Fama-French three factor model (Fama and French, 1992, 1993)
are the important factor models in finance. The mathematical background of
these factor models is very classical, but recently novel methodology for these
models has been proposed by information science. Independent component
analysis comes from such new methodology, and can be a powerful tool to

2



analyze financial markets.
The third topic of risk measure is to provide measures for risk and ways to

manage it, which is the central part of risk analysis. For example, volatility
of returns is usually used practically. Value at risk (VaR) is also a common
measure widespread in financial industry. VaR was originally developed by
RiskMetrics, a division of J.P. Morgan, in order to grasp the whole risk of
the portfolio at a glance. For its simplicity in computation and easiness in
interpretation, VaR has been adopted as a regulation criterion by the Basel
accord (Basel Committee of Banking Supervision, 1996). However, VaR has
a flaw that it does not take the extent of loss into account. In order to avoid
this problem, an idea of coherent risk measure is proposed (Artzner et al.,
1999), and average value at risk (AVaR) is proposed to incorporate the extent
of loss.

These three topics are just the basics of risk analysis, and a further re-
search is necessary. For investors, it is necessary to determine the best port-
folio based on these analysis. For economists and analysts, it is important
to draw the strategy from risk analysis. For researchers and all participants
in finance, modeling the actual market based on these models is important.
In this dissertation, I have tried to tackle with a part of these problems.

In the rest of this chapter, the basic concepts related to the three topics
aforementioned are introduced. In Section 1.1, the marginal distribution and
its tail heaviness are discussed, which is the first topic. We also introduce the
concept of Lévy process, which is an important class of distribution appearing
in financial modeling. In Section 1.2, the measurement of risk is discussed,
which is the second topic. We introduce the concept of VaR there. In Section
1.3, we discuss modeling of joint distribution directly by introducing the idea
of copula there, which corresponds to the second topic. In Section 1.4, we
discuss the representation of random vector, which also corresponds to the
second topic. We there introduce the recent idea referred to as independent
component analysis.

The following chapters are consisted as follows: In Chapter 2, I introduce
the example of construction of actual portfolio, showing the examples of
modeling and risk measures. This chapter is the revised version of Tsuchida,
Zhou and Rachev (2012), whose first author is the author of this dissertation.
Chapter 3 introduces the application of time-series models and copula ap-
proaches to European sovereign bonds market. Chapter 4 shows the empirical
result that the ICA-based dependency model is as good as the copula-based
dependency model, and compute the joint default probability of Eurozone

3



sovereign default based on the CDS premium. Finally, Chapter 5 is devoted
to conclusion.

1.1 Heavy-tailed distribution

1.1.1 Gaussian distribution

The Gaussian distribution is the most important among all distributions in fi-
nance, for both theoretical and practical reasons, since 1900 in which its first
application in finance was proposed by Louis Bachelier (Bachelier, 1900).
There are several advantage in the Gaussian distribution. For financial ap-
plications, especially, it is an important advantage that the average of many
observations can be approximated by the Gaussian distribution whatever
the original distribution is. This is referred to as the central limit theorem
(CLT):1

Theorem 1 (Classical central limit theorem) Suppose a scalar distri-
bution with finite variance and independent random variables Xt, t = 1, . . . , N
obeying the distribution. Let μ = EXt and σ2 = E[(X −μ)2] < ∞. Then the
average of X1, . . . , XN converges to the Gaussian distribution2 with mean μ
and variance σ2/N in distribution, that is,

√
N

{
1

N

N∑
t=1

Xt − μ

}
→ N(0, σ2) in dist. (1.1)

Conversely, the central limit theorem can be interpreted as a Gaussian
random variable is the infinite sum of independent and identically distributed
(i.i.d.) random variables. Of course, we can consider that these infinite
variables are another Gaussian variables. Then, we can have an intuitive
image that a Gaussian random variable is consisted of infinite numbers of
infinitesimal Gaussian random variables. This image is also true in the case
that the summation is finite: A Gaussian variable can be represented as the
sum of any number of Gaussian variables. This property is summarized as
infinitely divisibility and stability, which are later explained in Section 1.1.4.

1Also referred to as the classical CLT or the Lindeberg-Lévy CLT (Rachev et al.,2008)
2Hereafter we denote the Gaussian distribution of average μ and variance σ2 by

N(μ, σ2). This notation is sometimes extended to the multivariate Gaussian random vari-
able.
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1.1.2 Brownian motion

As we see, a Gaussian variable can be viewed as the finite or infinite sum
of another Gaussian variables. Let us consider a single Gaussian random
variable r ∼ N(0, 1). Suppose that we do not know its value at time t = 0, and
we observe the value at time t = 1. Suppose we divide this into two identical
Gaussian variables r21 and r22. Assume the value of r21 can be observed at
time t = 1/2, and the value of r22 can be observed at time r = 2/2 = 1.
For consistency, we impose the condition that r and r1 + r2 has the same
distribution, that is, r1 + r2 ∼ N(0, 1). Then we obtain r21, r

2
2 ∼ N(0, 1/2)

Next, let us divide r into four Gaussian variables r41, r
4
2, r

4
3, and r44, and

they can be observed at times t = 1/4, 2/4, 3/4, 4/4, respectively. Then we
obtain r41, r

4
2, r

4
3, r

4
4 ∼ N(0, 1/4). This result matches the twofold case by

defining r21 = r41 + r42 and r22 = r43 + r44.
In this way, we can increase the number of divisions. These divisions

are not limited to twofold but can be threefold or any other numbers, and
they are consistent with each other. From these examples, it is intuitively
straightforward that rt ∼ N(0, t) where rt is the sum of these divisions up to
time t. Also, it is intuitively clear that rt and rs − rt is independent where
s > t > 0, since each division is independent.

This intuition can be formalized to the definition of Brownian motion.3

Definition 2 (Brownian motion) Suppose a scalar continuous stochastic
process Bt defined over the probability space (Ω,F , P ). If Bt satisfies the
following conditions, then Bt is referred to as a Brownian motion:

1. B0 = 0 almost surely (a.s.),

2. Independence of increments: For any 0 ≤ u ≤ t < s, Bs − Bt is
independent of Bu,

3. Sample continuity: For any ω ∈ Ω, the sample path Bt(ω) is continu-
ous, and

4. Normality of increments: For any 0 ≤ t < s, Bs − Bt ∼ N(0, s− t).

Along with the Gaussian distribution, the Brownian motion is an impor-
tant building block of mathematical finance. For example, a cumulative log

3This definition is equivalent to that based on a Wiener measure, which is also common.
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return up to time t is frequently modeled as

Xt = μt+ σBt, (1.2)

whose distribution (with the information up to time t = 0) is a Gaussian
distribution N(μt, σ2t). In this equation, the first and the second terms
of the right hand side are referred to as the drift and the diffusion terms,
respectively. Suppose a infinitesimal time period Δt starting at time t, then
the instantaneous return during the period is ΔXt = μΔt + σΔBt, and its
distribution is N(μΔt, σ2Δt). This is formally written as

dXt = μdt+ σdBt. (1.3)

This is what is referred to as a stochastic differential equation, and its solution
is given by eq.(1.2) almost surely. The theory of stochastic equations is a
great field of mathematics, and its application is not only in finance but in a
variety of sciences (Itô et al., 2012).

1.1.3 α-stable distribution

Regardless of its popularity, the Gaussian distribution is not a good approx-
imation of the actual market. This was pointed out as early as in 1960s
(Mandelbrot, 1962). There are several reasons for that. This is primar-
ily because extreme large losses or profits occur more frequently in reality
than in the Gaussian approximation. Secondarily, in addition, losses occur
more frequently than profits. In mathematical terms, these two reasons are
summarized as: The actual return distribution has heavy tails and negative
skewness.

A heavy tail means that the tail values of the probability distribution
function (PDF) is larger than those of the Gaussian distribution. The heav-
iness of both tails is measured by the value referred to as a kurtosis k, which
is the standardized fourth moment minus three4 as for the average, that is,

k = E

(
X − μ

σ

)4

− 3, (1.4)

where μ = EX and σ =
√
varX. Since the Gaussian distribution has the

value of zero as its kurtosis, a heavy-tailed distribution is usually defined by

4It is also common to define the kurtosis as the standardized fourth moment itself.
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positive kurtosis. Such a distribution is also said to be fat-tailed, leptokurtosis
or leptokurtic.5

Meanwhile, the skewness means that the PDF is asymmetric as for the
average. Mathematically , its value s is defined as the third moment as for
its average:

s = E

(
X − μ

σ

)3

. (1.5)

If the skewness is positive or s > 0, then the tail in the positive direction is
heavier than that in the negative direction, which is said to be right-skewed.
If the skewness is negative or s < 0, then the tail in the negative direction is
heavier than that in the positive direction, which is said to be left-skewed.
The latter is the case in asset returns.

The α-stable distribution, also referred to as the stable Paretian distri-
bution (named after Vilfredo Pareto) or the Lévy distribution (named after
Paul Lévy), was used as the model of asset returns by Bunôıt Mandelbrot
in 1962 (Mandelbrot, 1962, 1963; Fama, 1963) at first. Its definition is as
follows:

Definition 3 (α-stable distribution) Suppose a scalar random variable
X and constants α ∈ (0, 2], −1 ≤ β ≤ 1, σ ∈ R+, and μ ∈ R. If the
characteristic function φX(u) has the following form,

φX(u) = E exp(iuX) (1.6)

=

{
exp {−σα|u|α[1− iβsign(u) tan(πα/2)] + iμu} if α �= 1,

exp {−σ|u|[1 + iβ(2/π)sign(u) log |u|] + iμu} if α = 1,
(1.7)

then X is said to have an α-stable distribution.

It has four parameters, and is commonly denoted as Sα(σ, β, μ). Among
these parameters, μ (location parameter) and σ (scale parameter) are just
for parallel and linear transformations of distribution. Parameter α controls
the shape of both tails, referred to as the the index, characteristic exponent,
or tail exponent, explained later in Section 1.1.4. Parameter β, or skewness
parameter, controls the asymmetry of distribution. If α = 2, then the distri-
bution recovers the Gaussian distribution with mean μ and variance 2σ2 (β

5In opposition, a negative-kurtosis distribution is said to be platykurtosis or platykurtic.
A zero-kurtosis distribution is said to be mesokurtosis or mesokurtic.

7



disappears in this case). As α decreases from two, the tails of this distribu-
tion becomes heavier, meaning that extreme returns occur more frequently.
Also, when α �= 0, parameter β appears in the expression. The distribution
is symmetric if β = 0, and gets skewed to the right or left side according to
β < 0 or > 0.

Figure 1.1 demonstrates an example of the α-stable distribution. In this
figure, we fit a Gaussian distribution and an α-stable distribution to the
daily returns of the Standard and Poor’s 500 Index from 2008 to 2012. The
first two charts show the cumulative distribution functions (CDF) of these
two distributions. In addition, the empirical CDF (defined in eq.(1.23)) is
shown as the circles. From these charts, it can be seen that the Gaussian
distribution does not match the empirical distribution at all the levels of
CDF. The α-stable distribution matches the empirical distribution well at
the bottom half, even though it is as bad as the Gaussian at the upper
half of the distribution. The third chart of Figure 1.1 shows the probability
distribution functions (PDF) of the Gaussian and the α-stable distribution,
and it also shows the histogram of the empirical distribution. From this
chart, it can be confirmed that the α-stable distribution has heavier tails
than the Gaussian distribution, and is closer to the empirical distribution.
In this way, the stable distribution can describe heavier tails and skewed
distribution, and this is the primary reason for its utilization for returns. It
is shown by statistical approaches that the fitting of α-stable distribution to
the empirical return data is better than that of Gaussian; for example, see
Rachev and Mittnik (2000).

The α-stable distribution has further preferable features. For example, it
can be an approximation of an unknown distribution with infinite variances.
This is because the average of independent and identically distributed (i.i.d.)
random variables with infinite variance tends to an α-stable distribution,
which is referred to as the generalized central limit theorem (Shiryaev, 1996).
This is similar to the case that the Gaussian distribution can be used as the
approximation of unknown distributions because of the central limit theory.

On the other hand, the α-stable distribution has an disadvantage that its
variance becomes infinity except the Gaussian case (α = 2). In more detail,
given that X is a α-stable distribution, then EXp < ∞ if and only if p ≤ α.
Practically, this is undesirable since the variance of empirical distribution is
always finite. The classical tempered stable distribution discussed in Section
1.1.5 can avoid this problem.
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Figure 1.1: Cumulative and probability distribution functions of the α-stable
distribution, compared to the empirical and the Gaussian distribution. The
data is the daily returns of the Standard and Poor’s 500 index from 2008 to
2012. The bars in the PDF chart show the empirical histogram. It can be
seen that the lower tail of the α-stable distribution is heavier and closer to
the empirical distribution than that of the Gaussian.
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1.1.4 Lévy process

The α-stable distribution is not coming from a stand-alone argument, but
from the context of the study of stochastic processes. In Section 1.1.2 we
gave the conditions of Brownian motion. By relaxing these conditions, we
obtain the Lévy process:

Definition 4 (Lévy process) Suppose a scalar stochastic process Xt de-
fined over the probability space (Ω,F , P ). If Xt satisfies the following condi-
tions, then Xt is referred to as a Lévy process:

1. X0 = 0 a.s.,

2. Independence of increments: For any 0 ≤ u ≤ t < s, Xs − Xt is
independent of Xu,

3. Càd-làg sample path:6 For any ω ∈ Ω, the sample path Xt(ω) is right
side continuous and has a left limit, and

4. Stationarity of increments:7 For any s ≥ 0, Xt+s −Xt is independent
of t.

Comparing Definition 2 in Section 1.1.2 and Definition 4 above, we can
find that the continuity of sample paths in Brownian motion is replaced with
the càd-làg condition of sample paths, and the normality of increments is
replaced with the stationarity. Since all continuous sample paths are càd-làg
and the normality of Brownian motion increments satisfies stationarity, the
Brownian motion is also the Lévy process.

The Lévy process includes a wide variety of stochastic processes other
than the Brownian motion. For example, a Poisson process is also a Lévy
process. A Poisson process Xt (t > 0) with parameter λ > 0 is defined as the
number of jumps which obey the exponential distribution with parameter
λ. Note that jumps do not occur simultaneously. Then, Xt+s − Xt (s > 0)
represents the number of jumps between time t and t+s. Xt+s−Xt (s > 0) is
dependent on the interval s, but is independent of the data prior to time t, due
to the memoryless property of the exponential distribution. Therefore the
independence and stationarity of increments are satisfied, so Xt satisfies the

6”Càd-làg” originally stands for a French word ”continu à droite, limites à gauche.” It
is now common to use this terminology.

7Without stationarity, the process is what is referred to as the additive process.
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conditions of the Lévy process. Likewise, it can be shown that the compound
Poisson process is the Lévy process.

Infinitely divisible If Xt is a Lévy process, then we can divide Xt for each
t into the following finite sum, using the independence and the stationarity
of increments:

Xt = Xt/n + (X2t/n −Xt/n) + · · ·+ (Xt −Xt(n−1)/n). (1.8)

where n is any integer. This shows that Xt is infinitely divisible for each t.
The definition of being infinite divisible is that a random variable X can

be represented as the sum of i.i.d random variables Yn, that is, X = Σ1≤i≤nYn

in distribution, for any given n. Let φ denote the characteristic function of
X, then this definition is equivalent to that, for any given n, φ has the n-th
root psin, that is, φ = ψn

n.
Conversely, suppose a infinitely divisible random variable X is given.

Then, it can be shown that there exist a Lévy process Xt where X1 = X in
distribution, and such a distribution is unique in distribution (Sato, 1999).
Therefore, we can have a one-to-one mapping between the set of Lévy pro-
cesses and the set of infinitely divisible distributions. For example, a stan-
dard Gaussian distribution X ∼ N(0, 1) corresponds to a standard Brownian
motion Xt ∼ N(0, t). A Poisson distribution with parameter λ, denoted as
X ∼ Po(λ), corresponds to a Poisson process with parameter λ, which holds
Xt ∼ Po(λt).

Lévy -Khintchine representation An infinitely divisible variable X has
the following standard form of characteristic function:

φX(z) = exp

[
iμz − 1

2
σ2z2 +

∫
R
(eizx − 1− izx · 1|x|≤1)ν(dx)

]
, (1.9)

where σ and μ are scalar parameters and ν(dx) is a measure satisfying∫
R min(|x|2, 1)ν(dx) < ∞. The set of parameters (σ, ν, μ), referred to as
a Lévy triplet or a generating triplet, has one-to-one correspondence to the
set of infinitely divisible distributions, and their relation is given by eq.(1.9).
For example, a standard Gaussian distribution corresponds to the triplet
(1, ν ≡ 0, 0), and a Poisson distribution with parameter λ corresponds to the
triplet (0, λδ(x−1), 0). This representation is called as the Lévy -Khintchine
representation, which was found by Lévy (1934) and Khintchine (1937).
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Stability of distribution In Section 1.1.3, we define the α-stable distri-
bution. This name is derived since the distribution is stable. Being stable is
defined as follows:

Definition 5 (Stability of distribution) Suppose a random variable X
and independent random variables X1, . . . , Xn are generated from the same
distribution. The distribution is said to have the property of stability or to
be stable if the following relation holds for all n:

an(X1 + · · ·+Xn) + bn = X, in distribution, (1.10)

where an and bn are constants. If bn=0, then the distribution is said to be
strictly stable.

It is shown that a stable distribution is infinitely divisible (Feller, 1971).
Therefore, there exists the corresponding Lévy process, which is referred to
as a stable process. Likewise, the Lévy process corresponding to a strictly
stable distribution is referred to as the strictly stable process.

Let Xt (t > 0) denote a stable process. It can be shown that Xt and
t1/αX1 + bt has the same distribution where α is a constant independent of
t and bt is a constant dependent on t. The constant α is referred to as the
index of the stable process, consistent with that of the α-stable distribution.
Especially, if Xt is a strictly stable process, bt = 0 and Xt is 1/α-self-similar.8

From these properties, it can be shown that a stable distribution has a char-
acteristic function shown in eq.(1.7). For details, see Sato (1999) or Rachev
(2000).

1.1.5 Classical tempered stable distribution

As we noted, infinite variance is a problem of the α-stable distribution. It
is proposed by Mantegna and Stanley (1994) to avoid infinite variance by
truncating a given distribution. However, this prescription breaks the in-
finite divisibility. Instead, a infinitely divisible distribution referred to as
the classical tempered stable distribution (CTS) is proposed (Koponen 1995;
Rosiński, 2007).9 This distribution is obtained from the stable distribution

8A stochastic process Xt is referred to as a H-self-similar process if and only if, for all
a > 0, there exists b > 0 such that Xat and bXt has the same distribution.

9In the literature different names are used for this distribution: Lévy process by Ko-
ponen, KoBoL by Boyarchenko and Levendorskĭi, and CGMY by Carr et al. The name
CTS is adapted from Kim et al. (2008)
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by changing Lévy measure (referred to as tempering), and it has both skew-
ness and heavy-tails. Actually, Carr et al. (2002) and Kim et al. (2008)
shows that the CTS distribution has a good fit to asset prices, better than
that of the stable distribution. Interestingly, Boyarchenko and Levendorskĭi
(2000) option pricing formula for this distribution.

A CTS distribution is defined as a scalar random variable X whose char-
acteristic function φX(u) is represented as follows:

φX(u) = φX(u;α,C1, C2, λ+, λ−,m)

= exp[ium+ C1Γ(−α){(λ+ − iu)α − λα
+} (1.11)

+ C2Γ(−α){(λ− + iu)α − λα
−}].

It has five scalar parameters, and they satisfy C1, C2, λ+, λ− > 0 and α ∈
(0, 2). Parameter α is again referred to as an index, controlling the heaviness
of tails. Especially, when parameters satisfy the following conditions, the
random variable X has zero mean and unit variance:

C = C1 = C2 = [Γ(2− α)(λα−2
+ + λα−2

− )]−1,
m = −Γ(1− α)(C1λ

α−1
+ − C2λ

α−1
− ).

(1.12)

In this case, X is referred to as a standard CTS, which has three parameters
α, λ+, and λ−.

Figure 1.2 shows the CDF of CTS fit to the empirical returns. The data
is same with Figure 1.1, and the CDF of Gaussian and α-stable distributions
are shown again for comparison. As shown, the CTS has better fitting than
the other two distributions.

1.1.6 Normal tempered stable distribution

A normal tempered stable distribution (NTS) distribution is an infinitely-
divisible distribution introduced and applied in Barndorff-Nielsen and Lev-
endorskĭi (2001) and Barndorff-Nielsen and Shephard (2001). It is defined as
a scalar random variable X whose characteristic function φX(u) is as follows:

φX(u) = φX(u;α, θ, μ, β, γ)

= exp

[
i(μ− β)u− 2θ1−α/2

α

((
θ − iβu+ γ2u2/2

)α/2 − θα/2
)]

, (1.13)
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Figure 1.2: Cumulative distribution function of the CTS distribution, com-
pared to the α-stable, the Gaussian, and the empirical distribution. The
data is the daily S&P 500 index return from 2008 to 2012. It can be seen
that the CTS provides the best fit to the empirical distribution.
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where 0 < α < 2, θ > 0, and γ > 0. Parameter α controls the heaviness
of tails. The average is given by E[X] = μ and the variance by var(X) =
γ2 + β2(2 − α)/2θ. By setting these values to zero and unity respectively,
we obtain the standard NTS. The standard NTS has three parameters: α, θ,
and β.

The NTS distribution can be also obtained from the Brownian motion
by replacing time t with another random variable. Suppose a Brownian
motion Xt with drift β and diffusion γ starting at X0 = μ − β, then Xt =
μ + β(t − 1) + γBt. Bt can be rewritten by a standard Gaussian variable ε
as Bt =

√
tε. Replacing time t with a Lévy process Tt, we obtain

Xt = μ+ β(Tt − 1) + γ
√

Ttε, (1.14)

which is referred to as the subordinated expression. Since time t is always
increasing, the Lévy process Tt should be increasing as t increases. Such
a Lévy process is referred to as an increasing Lévy process or a subordina-
tor. Especially, a subordinator Tt is referred to as a CTS subordinator if its
characteristic function is given as

φTt(u) = exp

[
−2θ1−α/2

α
((θ − iu)α/2 − θα/2)

]
. (1.15)

In this case, and the distribution Xt is then a NTS. One of the advantages
of NTS is that the subordinator expression eq.(1.14) can be easily extended
to a multivariate case, as explained in Section 1.3.8.

1.2 Risk measurement

1.2.1 Volatility

Volatility plays a central role in finance. It is defined as the standard devi-
ation of asset return, and considered as the extent of uncertainty in future.
Volatility is classified as a dispersion measure. Given a random variable X
representing return, the dispersion measure D(X) satisfies (Rachev, 2008),

Positive shift D(X + C) ≤ D(X) for all X and constant C ≥ 0,

Positive homogeneity D(0) = 0 and D(λX) = λD(X) for all X and
constant λ > 0, also referred to as convexity, and
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Positivity D(X) ≥ 0 for all X, D(X) > 0 for all nonconstant X.

Generally, the central absolute moment of order k, that is,

E[|X − EX|k] (1.16)

satisfies the requirements for dispersion measure. The standard deviation
corresponds to k = 2, and the case of k = 1 is referred to as the mean
absolute deviation (MAD). The other example of dispersion measure is the
colog measure, which is defined as EX log(X)− EX E logX.

It should be noted that volatility is a measure for uncertainty, not for
risk. If the average return of an investment is high enough to compensate
its high volatility, then the investment should not be described as risky, even
though it can be described as uncertain. More importantly, the notion of
risk should incorporate the asymmetry of return. For example, buying a
call option has large uncertainty since its maximum profit is infinite, but its
downside uncertainty is limited. On the other hand, selling the same call
option has large downside uncertainty since its maximum loss is infinite. In
this case, apparently, selling is much riskier than buying.

The semi-standard deviation can be used to measure this kind of asym-
metric return. This is also a dispersion measure, and defined as

σ±
X = [E(X − EX)2±]

1/2, (1.17)

(a)+ = max(0, a), (a)− = min(0, a). (1.18)

1.2.2 Value at risk

The value at risk (VaR) is a risk measure which incorporates asymmetry of
returns.

Definition 6 (Value at risk (VaR)) Suppose a random variable X repre-
senting the return of an investment. A value at risk (VaR) at confidence level
α (usually set to 95% or 99%) is defined as the minimum (inferior) loss10

whose probability of realization is less than 1− α, that is,

VaRα(X) = inf{−x ∈ R|P (X ≤ x) ≤ 1− α}. (1.19)

10It is also common to define the VaR in the opposite sign, that is, the maximum return
whose probability of realization is less that 1− α.
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If X is a continuous random variable, then the VaR matches the sign
change of the (1− α)-quantile of X:

VaRα(X) = −F−1
X (1− α), (1.20)

where FX(x) is the cumulative distribution function (CDF) of X, as shown
in Figure 1.3. Note that VaR sometimes takes a negative value, that is,
it breaks the property of positivity, which appears in dispersion measures,
shown in subsection 1.2.1. Theoretically, the major properties of VaR are
threefold:

Monotonicity ρ(X) ≤ ρ(Y ) if X ≤ Y for almost sure, where Y represents
the another return,

Invariance ρ(X + C) = ρ(X)− C for all X and constant C ∈ R,

Positive homogeneity ρ(0) = 0 and ρ(λX) = λρ(X) for all X and con-
stant λ > 0.

However, the VaR does not satisfy the following property:

Subadditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X and Y .

The combination of these four properties is the requirements for what is re-
ferred to as a coherent risk measure, introduced by Artzner (1999). It should
be mentioned that subadditivity of the VaR holds for the finite-variance
distribution in the elliptic distribution family (Embrechts et al, 2001), which
includes major practical distributions such as the Gaussian and the Student-t
distributions. The detailed discussion of a coherent risk measure is in Section
1.2.6.

1.2.3 Practical computation of VaR

From its definition, the computation of VaR needs the knowledge about
the distribution of X. Statistically, X can be modeled both parametrically
and non-parametrically. Given a parametric model, the distribution can
be computed both analytically and numerically. Consequently, the com-
putation of VaR can be practically classified into three approaches: the
parametric-analytical approach, the parametric-numerical approach, and the
non-parametric approach. These approaches correspond to the covariance
approach, the Monte-Carlo simulation, and the historical method, respec-
tively.
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resents −VaR. The area of the shaded region is 0.05.
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Covariance approach Due to its simplicity, the most important approach
among these three is the parametric and analytical approach. This approach
is referred to as the covariance approach, named after its utilization of co-
variance, or the approach of RiskMetrics, named after the group of its first
publication.

In this method, the joint distribution of assets is usually assumed to
have the multivariate Gaussian distribution, which is completely specified by
its mean vector and covariance matrix. Since the linear transformation of
the Gaussian distribution is also the Gaussian distribution, the return of the
portfolio consisted of the assets also has the univariate Gaussian distribution.
Let X denote the portfolio return, μ denote its mean, and σ2 denote its
variance, then the VaR of X is given as

VaRα(X) = −μ+ kασ, (1.21)

kα = −Φ−1(1− α) = Φ−1(α) > 0 (1.22)

where Φ(x) is the CDF of the standard Gaussian distribution. Note that
k0.95 = 1.64 for 95% VaR and k0.99 = 2.33 for 99% VaR, respectively.

What is necessary in this computation is only the mean and variance of
X, which leads to the simplicity of this approach. Meanwhile, a major flaw of
this approach is that the Gaussian distribution is not appropriate as return
distribution, both in marginal and joint. To fix this problem, alternative
distributions such as the multivariate Student-t distribution are investigated
(Lamantia et al., 2006a; Lamantia et al., 2006b). However, these alternative
distributions generally requires computational resources, and their analytical
expressions are difficult to be obtained in general cases.

Historical method The historical method does not impose any distri-
butional assumptions, but draws the distribution from the observations in
past. The empirical distribution, defined as follows, is usually used as the
distribution in future:

FX,emp(x) =
1

N

N∑
t=1

1xt<x, (1.23)

where xt is the t-th observed value of X in past. The historical method
inherits both the advantages and the disadvantages from non-parametric
models. For example, the historical method is more robust than a parametric
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model in the sense that it can capture the irregular shape of distribution
which parametric distributions may miss out, which is an advantage. The
other advantage is its computational lightness as long as we use a simple
formulation such as eq.(1.23). On the other hand, the followings are the
major obstacles of the historical method:

• It assumes that past trend can be applied to future. In reality, it is
possible to observe unprecedented events in future, and these events
may be extreme.

• It assumes that return distributions are i.i.d. between observations.
This assumption is usually rejected since return series has autocorrela-
tion and volatility clustering. This problem can be avoided by trans-
forming the original return series into a stationary series via time series
model, which is discussed in section 1.2.4.

• It sometimes faces data insufficiency. For daily observations, for ex-
ample, one-year comprises only about 250 observations, which is sta-
tistically not enough to decide the 1% quantile (99% VaR). Prolonging
the observation period may solve this problem, but in turn faces the
problem of chronological shift of return distribution itself.

Monte Carlo simulation The Monte Carlo simulation is a numerical so-
lution for parametric approaches. It consists of the following steps:

1. Select a statistical model: For instance, suppose a multivariate Gaussian
distribution for asset returns.

2. Estimate parameters of the model: In the above instance, determine
the mean vector and covariance matrix of the multivariate Gaussian
distribution based on the observations in past.

3. Generate return scenarios from the estimated model: In the above in-
stance, draw a sample value from the obtained multivariate Gaussian
model, and compute the sample return of the portfolio. Repeat this
drawing and computing many times, for example, 10,000 times. Each
time corresponds to one scenario, and afterward 10,000 simulated re-
turns can be obtained. Let r(s), s = 1, . . . , 10, 000 denote the return of
scenario s.
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4. Construct a portfolio distribution: Construct the distribution of portfo-
lio return from the 10,000 scenarios using eq.(1.23), and then compute
the VaR.

The Monte Carlo simulation has several advantages over the other two
approaches. Compared to the covariance approach, it has more flexibility in
selection of statistical model. Compared to the historical method, it requires
less data for proper estimation of distribution, and it allows unprecedented
extreme events as long as the model indicates. Especially, as for the derivative
securities, the Monte Carlo simulation is practically the only method for risk
evaluation, since they have strong non-linearity of risk and unprecedented
risk events play an important role in their pricing. Meanwhile, the Monte
Carlo simulation has the disadvantages of its heavy computational burden
and possible estimation errors. The latter problem can be mitigated by
increasing the number of scenarios.

1.2.4 Time series model

Return distribution is not generally i.i.d., but has the following stylized facts,
reportedly (for example, McNeil et al, 2005, pp.117):

• Series of returns show weak autocorrelation,

• Series of squared returns shows strong autocorrelation,

• Volatility varies over time, which is referred to as volatility clustering,

• Return series is heavy-tailed, and

• Extreme returns tends to continue during a specific period.

These facts indicate the necessity to incorporate a time series model which
describes chronological shift of return distribution. As for serial correlation,
the autoregressive moving average (ARMA) model is a standard model in
order to incorporate serial correlation. Let Xt (t = 1, 2, . . . ) represents a
time series data, and then the ARMA model of order (p, q), denoted as
ARMA(p, q), is defined as follows:

Xt = c+

p∑
i=1

φiXt−i +

q∑
j=1

ψjut−j + ut. (1.24)
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where c, φi (i = 1, . . . , p), and ψj (j = 1, . . . , q) are constants. Variable ut is a
random variable referred to as a white noise, a innovation term or a residual
term. The distribution of ut is usually assumed to be i.i.d. with zero mean.

Volatility clustering is also referred to as the heteroscedasticity. The sim-
plest model to describe this feature is the generalized autoregressive condi-
tional heteroscedasticity (GARCH) model, which is defined as follows. Sup-
pose the random variable ut can be factorized as

ut = σtεt. (1.25)

In this expression, σt is assumed to be a non-random variable (filtered by the
information up to time t), and εt is assumed to be an i.i.d. random variable.
Usually, εt is assumed to have the standardized Gaussian or the Student-t
distribution, and referred to as the residual term (so the meaning of ”residual
terms” depends on the context; it may be ut or εt). The GARCH model of
order (p, q) is defined as follows:

σ2
t = K +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αju
2
t−j, (1.26)

where K, αj and βi are constant parameters. Note that σt is a constant after
the information up to time (t− 1) is revealed.11

The combination of these two models is referred to as the ARMA-GARCH
model. If the model is appropriate, the original source of randomness Xt is
now converted to a stationary and standardized series of εt, which makes
it easy to analyze the return series. Given the order (p, q), the parameters
are decided by the ML estimation. The order is generally determined by a
correlogram or information criteria (IC).

Once the ARMA-GARCH model is determined, it is possible to predict
the return distribution in future according to the model. This prediction
is generally done by a Monte Carlo simulation using eqs.(1.24), (1.25), and
(1.26). If εt is assumed to be a simple distribution such as the Gaussian, Xt

can be computed analytically.
It is possible that the residuals εt based on the actual data do not obey the

Gaussian distribution. One solution for this problem is to use non-Gaussian

11Meanwhile, volatility clustering is also modeled by the stochastic volatility (SV) model,
in which the process {σt}t is an adapted stochastic process, that is, the value of σt is
unknown until time t.
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distribution of εt for prediction purpose, and the other is to use the empirical
distribution of εt in past. The former solution is usually accompanied with
the Monte Carlo simulation due to analytical intractability of non-Gaussian
distribution. The latter solution is proposed by Barone-Adesi et al. (1999)
and referred to as the filtered historical simulation (FHS).

Time series model has various topics. To see the details of these problems,
see major text books such as Hamilton (1994). Among them, we introduce
two major problems related to risk analysis. The first is the goodness of
fitting (g-o-f) of the ARMA-GARCH to the actual data. Usually, the g-o-f is
measured as for the in-sample data primarily, and then measured as for the
out-of-sample data by methods like cross validation. In risk analysis, how-
ever, modeling is usually for the prediction of future returns, and therefore it
is important to see the g-o-f based on the out-of-sample data in the direction
of future. Therefore, it is common to adopt a method which is referred to as
backtesting, which is explained in Section 1.2.5.

The second problem is how to introduce a time series model of multiple
variables. We have at least two approaches for this problem. One is to
introduce a multivariate time series model such as the vector autoregressive
model (VAR), and the other is to use a joint distribution of residual series εt
between different time series.

1.2.5 Backtesting

We need to check if the VaR reflects risk in future. For this purpose, we can
use the past data. This process is referred to as backtesting. It is consisted
of the following steps:

1. Decide a time period for backtesting. Let T denote the number of days
included to the period.

2. For each day t on the period, compute the VaR using the data up to
the day t. Let VaRα,t+1 denote the VaR. Note that the subscript is
(t + 1) since this VaR is the estimate of the loss on the following day,
(t+ 1).

3. Observe the return on the day t+1, compute the loss Lt+1, and compare
the loss Lt+1 withVaRα,t+1. If Lt+1 > VaRα,t+1, then this is the case of
an exceedance.
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4. Count the number of exceedances, and compare the number with its
expected number, (1− α)T .

If there are too many exceedances, then it indicates that the VaR is not
correctly computed, and consequently it signifies that the return model is
not appropriate. More precisely, the number of exceedances can be modeled
by the following way: Let It denote if an exceedance occurs (It = 1) or not
(It = 0) at the observation at time t. By the definition of VaR, it is expected
that P (It = 1) = 1−α and P (It = 0) = α. This means It obeys the Bernoulli
distribution with parameter (1−α). LetX denote the number of exceedances
during T observations, then X =

∑
1≤t≤T It. If series {It}t is i.i.d., then the

distribution of X is the binomial distribution B(T, 1− α), that is,

P (X = x) =
T !

x!(T − x)!
(1− α)xαT−x. (1.27)

The example of P (X ≤ x) is shown in Table 1.1, which is excerpted
from the official publication by the Basel Committee on Banking Supervision
(1996). This is the case of T = 250 observations and 99% VaR, (1 − α) =
0.01. For example, we can see 95.88% at the last column in the Table,
and the corresponding number at the second column is 5. This means that
the probability of five or less exceedances is 95.88%, or equivalently, the
probability of 6 or more exceedances is 4.12%. Therefore, if we have six or
more exceedances with 5% significance level (note that this significance level
can be different from the confidence level of the VaR), then we can reject the
null hypothesis that the VaR captures 99% loss, that is, we can reject that
the VaR is valid.

For regulation purposes, the Committee defines the case of five to nine
exceptions (exceedances) as the ”yellow zone” and that of ten or more as
the ”red zone.” Financial institution with these numbers of exceedances is
punished by the additional requirement for its capital, and the extent of
punishment increases as the number of exceptions increases.

The flaw of the previous model is that it neglects the effect of dependency
between exceedances, that is, the series {It}t is assumed to be identical and
independent. If a return model were precisely specified, that is, if a true re-
turn model were available, then the time series effect of return series would be
completely included into the return model itself. In this case, the exceedance
series {It}t would have no autocorrelation and be completely modeled by the
series of Bernoulli trials. In reality, however, such a complete specification

24



Table 1.1: The cumulative probability P (X ≤ x) (fourth column) according
to x, the number of exceptions (exceedances; second column) against the
99% VaR. The first column is the ”zones” indicating the level of exceptions,
and the third column is the level of additional capital requirement. This
table is excerpted from the official publication by the the Basel Committee
on Banking Supervision (1996).

of return is never reached, neither a completely precise computation of VaR
is. Consequently, consecutive exceedances of VaR sometimes occur. Recog-
nition of this dependency is practically important because consecutive large
losses lead to a precipitous decline in asset value. Even if the same number of
large losses is given, it is practically more difficult to recover from the large
consecutive losses than from the large but interspersed losses.

The test proposed by Christoffersen (1998) is one of the statistical tests to
evaluate the serial correlation of VaR, consisted of three steps. The first step
is the likelihood ratio (LR) version of eq.(1.27), which is initially proposed
by Kupiec (1995). Let n1 denote the number of exceedances and n0 that
of non-exceedances. In other words, ni = n(It = i), i = 0, 1 where n(A) is
the number of set A. Suppose π = P (It = 1), then the likelihood function is
L1(π) = πn1(1−π)n0 . Especially, if π = 1−α, then L1(1−α) = (1−α)n1αn0 .
According to the LR test, the LR between L1(1−α) and L1(π) asymptotically
obeys the χ2-distribution of parameter 1,

LRu = −2 log
L1(1− α)

supπ L1(π)
= −2 log

L1(1− α)

L1(π̂)
∼ χ2(1), (1.28)
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where π̂ = n1/n, n = n0 + n1. This is an approximation version of the test
based on eq.(1.27). The second step is the test of independence. Let us
assume that the series {It}t is a two-state, first-order Markov chain whose
transition matrix is given as

Π =

(
p00 p01
p10 p11

)
=

(
1− p01 p01
1− p11 p11

)
, (1.29)

where pij = P (It = j|It−1 = i). Note that p00 + p01 = p10 + p11 = 1. Then
the approximate likelihood is

L2(Π) = (1− p01)
n00pn01

01 (1− p11)
n10pn11

11 , (1.30)

where nij = n{(It−1, It) = (i, j)}. In this notation, independence of It from
It−1 means p01 = p11 = π, and the likelihood function is

L2(π) = (1− π)n10+n00πn01+n11 . (1.31)

Since the difference of degree of freedom is 1, the limiting distribution of LR
between L2(π) and L2(Π) obeys the χ2(1)-distribution,

LRi = −2 log
L2(π)

supΠ L2(Π)
= −2 log

L2(π)

L2(Π̂)
∼ χ2(1), (1.32)

where

Π̂ =

(
n00/(n00 + n01) n01/(n01 + n01)
n10/(n10 + n11) n11/(n10 + n11)

)
. (1.33)

This test can be used to test if the series {It}t is independent or not. Finally,
the third step is the joint test of π = 1− α and p01 = p11 = π. The LR is

LRc = −2 log
L1(1− α)

supΠ L2(Π)
. (1.34)

The following approximation is shown by Christoffersen:

LRc ≈ LRu + LRi ∼ χ2(2). (1.35)

Equation (1.35) can be used in order to test if the estimated VaR correctly
reflects tail risk.

There are other tests to evaluate VaR exceedances. The conditional
autoregressive value at risk (CAViaR), proposed by Engle ang Manganelli
(2004), is one of them. Berkowitz et al. (2009) comprehensively review
various tests for this purpose using the actual trading desk data.
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1.2.6 Average value at risk

The VaR has a flaw that it does not take the extent of loss into account. This
can be problematic in actual situations. For example, suppose two ventures
whose expected VaRs are the same but maximum losses are different. In this
case, the one with the lower maximum loss will be preferred to the other by
risk averse investors, given other conditions are the same. In other words,
the theory of VaR does not explain the extent of loss conditional to the case
that the large loss comes into reality.

This line of discussion is theoretically detailed as follows (Rachev, 2008).
As we discussed in section 1.2.2, the VaR does not satisfy the subadditivity
in general. This fact leads to the following situation: Suppose two ventures
whose returns are represented by random variables X and Y . According to
the discussion of the second order stochastic dominance (SSD), the following
inequalities can stand together:

VaRα(X) ≤ VaRα(Y ), and (1.36)

E[−X| −X < VaRα(X)] ≥ E[−Y | − Y < VaRα(X)]. (1.37)

The first inequality shows that X is less risky than Y according to the mea-
sure of VaR. On the other hand, the second inequality shows that the extent
of loss in extreme cases is larger in X than in Y , which intuitively means
that X is riskier than Y . Even though it is a rare case, this is a contradiction
in the definition of risk measure. If the subadditivity holds, then the SSD
assures that these inequalities are exclusive each other. This shows the im-
portance of coherent risk measure (Artzner et al., 1999), which includes the
subadditivity property in addition to the other three properties in section
1.2.2.

The average value at risk (AVaR) is the risk measure to solve such an
incoherency problem of VaR. Its definition is as follows:

Definition 7 (Average value at risk (AVaR))

AVaR1−α(X) =
1

1− α

∫ 1

1−α

VaR1−p(X)dp. (1.38)

The AVaR is the average of VaR conditional to the case that the loss over
VaR is observed. The synonyms of AVaR are the conditional value at risk
(CVaR) or the expected shortfall (ES). Also, if X is continuous distribution,
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Figure 1.4: The AVaR at 95% confidence level. The two vertical lines corre-
spond to the AVaR and the VaR, respectively. The AVaR is the average loss
conditional that the loss is larger than the VaR.

it is shown that

AVaR1−α(X) = −E[X|X < −VaR1−α(X)], (1.39)

which is referred to as the expected tail loss (ETL), while this equation
does not hold if X has a discrete distribution or mass points. Figure 1.4
demonstrates the AVaR. Since it is the average of VaR conditional to the
case that the loss over VaR is observed, the value of AVaR is larger than that
of the VaR.

The practical computation of AVaR is similar to the case of VaR. The
Monte Carlo simulation is available to compute the AVaR. The covariance
approach is available if we assume the return distribution X is the Gaussian
distribution. Given EX = μ and varX = σ2, the AVaR is

AVaRα(X) = −μ+ Cασ, (1.40)

Cα =
exp(−(Φ−1(α))2/2)

(1− α)
√

(2π)
> 0. (1.41)

This has the same form with the case VaR in eqs.(1.21) and (1.22) except the
magnitude of the constant depending on α. Especially, Cα takes C0.95 = 2.06
and C0.99 = 2.67 for the 95% and 99% AVaR, respectively.
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As for the historical method, the data insufficiency becomes a severe
problem compared to the case of VaR, since the AVaR uses the shape of the
distribution below VaR. For example, given 250 daily observations, which
corresponds to one year, the expected number of exceedances is only two or
three, which is apparently insufficient. Therefore, it is usual to use modifi-
cations of the historical method, such as weighting of extreme scenarios or
bootstrapping.

Similar to the mean-variance portfolio introduced by Markowitz (1952),
it is possible to obtain the optimal portfolio based on the AVaR. The opti-
mization problem is shown to be convex and easy to be computed (Bertsimas
et al., 2004).

The backtesting of AVaR is as follows. For example, let Yt denote the
loss over AVaR, that is, Yt = −Xt − AVaRα,t. If we assume the distribution
is continuous and eq.(1.39), eq.(1.39) is equivalent to

E[Yt|Lt > VaRα,t] = 0. (1.42)

Let Ŷt denote the observed value of Yt. This value can be used to estimate the
difference between the realized loss and the AVaR. If Ŷt > 0, then it means
that the realized loss is larger than the expected by the model, implying the
model does not capture the tail risk properly.

However, it is usually difficult to conduct a statistical test to validate the
AVaR for several reasons. First, if we use time series model, the distribution
of Yt depends on time t. In addition, even if we know the distribution of
Yt, it is possible that data is not enough to conduct a statistical test. In
the case of 250 observations, the probability of no observation of 99% VaR
exceedance is 0.99250 = 8.1%. It is quite possible that we do not observe
any exceedances, and we cannot consider the extent of large loss in this case.
The detailed discussion about these problems is introduced by Rachev et al.
(2008).

1.2.7 Backtesting revisit

The purpose of backtesting is to test if a model can correctly predict the
out-of-sample data. For example, the 99% VaR backtesting tests a return
model by seeing if the lower 1% quantile of return is correctly predicted by
the return model. The backtesting of AVaR should be, if available, a test of
the return model using the PDF below the lower 1% quantile.
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If we drop the constraint of ”below 1% quantile,” several statistical tests
are available. Let Ft(xt) denote the CDF of Xt, and suppose a random
variable Zt = Ft(Xt). Then Zt is expected to be a uniform random variable
over (0, 1) being independent of different t, that is,

Zt ∼ U(0, 1), i.i.d. (1.43)

In realistic situation, the true distribution Ft(xt) is unknown, and replaced
with the model distribution F̂t(xt). Then we obtain the following:

Ẑt = F̂t(X̂t). (1.44)

It is not assured that this series satisfies the uniformity condition eq.(1.43).
Therefore, the uniformity of Ẑt over (0,1) can be tested to see if F̂t(xt) is a
proper estimation of Ft(xt).

This approach is referred to as the multiple α model by Campbell (2005),
since it is equivalent to utilize all the levels of VaR confidence. The advan-
tage of the above approach is that it is more sensitive to the return model
misspecification. In addition, by introducing all the data available, the test
can be improved for small numbers of exceedances (Berkowitz, 2001).

On the other hand there is a criticism that this approach implicitly broad-
ens the scope of risk, since the loss less than the VaR has conceptually nothing
to do with the risk. For example, the current regulatory guidelines dictate
that the risk should be measured by 99% VaR, and the test for the entire re-
turn distribution is not required. In addition to such a conceptual criticism,
this approach has a practical problem that we cannot use the extreme value
theory (EVT) model, since the EVT focuses on just large losses and have
nothing to do with usual returns. For detailed discussions, see Haas (2001)
and Campbell (2005).

1.3 Copula model

The copula function can be used to describe the joint distribution. Its defi-
nition is as follows:

Definition 8 (Copula function) Suppose a d-dimensional continuous ran-
dom vector X = (X1, X2, . . . , Xd)

T whose joint cumulative distribution is
F (x1, . . . , xd) and marginal cumulative distribution is Fi(xi), i = 1, . . . , d.
Let ui = Fi(xi), then, according to the Sklar’s theorem of representation
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(Sklar, 1959; Nelsen, 1999, Theorem 2.10.9), there exists a unique function
C : (0, 1)d → (0, 1) satisfying

C = C(u1, . . . , ud) = F (x1, . . . , xd). (1.45)

Then the function C = C(u1, . . . , un) is referred to as a copula function.

In other words, a copula function is the cumulative distribution func-
tion of the random vector U = (U1, . . . , Ud)

T, where Ui = Fi(Xi) is the
uniformly-distributed random variable over (0,1). The joint distribution
function F = F (x1, . . . , xd) can be then separated into the marginal dis-
tributions {Fi}i=1,...,d and the dependency structure C. C is considered to
represent dependency structure of d variables; for example, rank correlation
such as the Kendall’s tau12 can be computed only from the copula func-
tion, being independent of the marginal distribution (Nelsen, 1999, pp. 127;
Embrechts et al., 2001). This separation is the advantage of copula models.

The major examples of copulas are: The Gaussian copula, the Student-
t copula, and the Archimedean copula family. Given any continuous joint
distributions, it is possible to construct a copula function from the distribu-
tion. For example, the Student-t copula is constructed from the multivariate
Student-t distribution. It should be noted that a marginal distribution can
be different from the joint distribution on which the copula is based. For ex-
ample, it is possible to combine the univariate Gaussian distribution as the
marginal distributions and the Student-t copula as the copula distribution.

1.3.1 Gaussian copula

The Gaussian copula is one of the easiest copula, which is also referred to as
the normal copula. Its copula function satisfies

∂d

∂u1 · · · ∂ud

C(u1, . . . , ud) =
1

|Σ|1/2 exp
(
−ωT(Σ−1 − I)ω

2

)
, (1.46)

where

ω = (ω1, . . . , ωd)
T (1.47)

= (Φ−1(u1), . . . ,Φ
−1(ud))

T. (1.48)

12Also referred to as the Kendall’s rank correlation.
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and Φ−1(u) is the inverse CDF of the standard Gaussian distribution. Pa-
rameter Σ, a d-by-d matrix, is referred to as a correlation matrix, since
it is positive definite and its diagonal elements are unity. The d-th-order
derivative at the left hand side of eq.(1.46) is referred to as the probability
distribution function (PDF) of the copula, denoted as c(u1, . . . , ud).

The Gaussian copula is constructed from a multivariate Gaussian distri-
bution. Under the notation of Definition 8, suppose X = (X1, . . . , Xd) ∼
N(0,Σ) and Ui = Φ(Xi). Then the copula function is given by eq.(1.45), and
its derivative by x1, . . . , xd yields

c(u1, . . . , ud)
d∏

i=1

fXi
(xi) = fX(x1, . . . , xd), (1.49)

where fXi
(xi) is the marginal PDF of Xi and fX is the joint PDF of X. In

this case, since X ∼ N(0,Σ),

fX(x) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
xTΣ−1x

)
, (1.50)

where x = (x1, . . . , xd)
T. In addition, since the diagonal elements of Σ are

unity, Xi ∼ N(0, 1), and fXi
(xi) = exp(−x2

i /2)/
√
2π. Combining these equa-

tions, we obtain eq.(1.46).
The simple PDF formula given by eq.(1.46) enables easy parameter es-

timation in high dimensions. Owing to this computational tractability, the
Gaussian copula is widely used in finance; for example, Li (2000) used it in
his famous paper evaluating the price of CDO.

1.3.2 Tail dependency

A criticism against the Gaussian copula is that it cannot capture what is
referred to as the tail dependency. The following is an explanation by the
other literatures (Coles et al., 1999; Demarta and McNeil, 2005). Let us
define the coefficient of upper tail dependence of X1 and X2 as

λU = lim
u→1−

P (X2 > F−1
2 (u)|X1 > F−1

1 (u)). (1.51)

where F1(x1) and F2(x2) are the CDFs ofX1 andX2. Likewise, the coefficient
of lower tail dependence is defined as

λL = lim
u→0+

P (X2 < F−1
2 (u)|X1 < F−1

1 (u)). (1.52)
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Let us introduce the two-dimensional copula C(u1, u2), then these coefficients
are shown to be dependent only on the copula function, as

λU = lim
u→1−

1− 2u+ C(u, u)

1− u
, (1.53)

λL = lim
u→0+

C(u, u)

u
. (1.54)

These coefficients satisfy λU , λL ∈ [0, 1]. If λL = 0 (or λU = 0), then X1 and
X2 are independent of each other at the limit of u → 0+ (u → 1−). On the
other hand, if λL = 1 (or λU = 1), then X1 and X2 are completely dependent
on each other at the limit of u → 0+ (u → 1−).

Suppose C is a Gaussian copula with parameter ρ (which is the off-
diagonal element of Σ). Except the case of complete dependency (ρ = 1),
the coefficients of upper and lower tail dependence13 are

λU = λL = 2 lim
x→∞

(
1− Φ(x

√
(1− ρ)/(1 + ρ)

)
= 0. (1.55)

This implicates that components of a multivariate Gaussian distribution are
virtually independent each other in tails, regardless of their correlation ma-
trix. In a practical context, this means that the Gaussian copula cannot de-
scribe the tail dependent events such as the simultaneous defaults of bonds
or market crash of stocks. Since such events are possible in reality, it is bet-
ter to find another copula which has positive values of these tail dependence
coefficients.

1.3.3 Student-t copula

The Student-t copula is the copula based on the multivariate Student-t distri-
bution. Demarta and McNeil (2005) provide its comprehensive explanation.
The copula is characterized by a correlation matrix (positive definite and unit
diagonal elements) Σ and degree of freedom ν > 0. Its PDF is represented
as

c(u1, . . . , ud; Σ, ν) =
Γ(ν+d

2
)[Γ(ν

2
)]d(1 + 1

ν
ωTΣ−1ω)−(ν+d)/2√|Σ|Γ(ν

2
)[Γ(ν+1

2
)]d

∏d
i=1(1 +

ω2
i

ν
)−(ν+1)/2

, (1.56)

13The upper and lower coefficients of tail dependence coincides with each other if the
copula distribution belongs to the elliptically symmetric distribution.
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where Γ(x) is the Gamma function,

ω = (ω1, . . . , ωd)
T = (t−1

ν (u1), . . . , t
−1
ν (ud))

T, (1.57)

and t−1
ν (x) is the inverse CDF of the univariate Student-t distribution with

degree of freedom ν.
The tail dependence coefficient of a two-dimensional Student-t copula is

given as

λL = λU = 2tν+1

(
−
√

(1− ρ)(ν + 1)

1 + ρ

)
, (1.58)

where ρ is the off-diagonal element of Σ. These coefficients take finite values,
which is preferable feature for financial assets with tail dependency.

The parameters of Student-t copula is usually estimated by the maximum
likelihood (ML) method. There are two parameters to be estimated: Σ and
ν. Given the value of ν, the optimal Σ = Σν based on the ML satisfies

Σν =
ν + n

N

∑
1≤t≤N ωtωtT

ν +
∑

1≤t≤N ωtTΣ−1
ν ωt

, (1.59)

where ωt is t-th sample of ω given ν.
Suppose two random variables are connected with a Student-t copula

whose correlation matrix is ρ (off-diagonal element). Then, the Kendall’s
tau of these two variables is

τ =
2

π
arcsin ρ. (1.60)

This equation can be used to estimate ρ.

1.3.4 Estimation of copula parameters

Suppose a parametric copula such as the Gaussian copula is given. In order
to fit the model parameters to the samples (ut

1, . . . , u
t
d), t = 1, . . . , N , it is

the most standard to use the maximizing likelihood (ML) method.
However, the samples (ut

1, . . . , u
t
d) cannot be observed directly, usually.

Instead, they are computed from the observations of Xt, denoted as X̂t =
(x̂1

t, . . . , x̂d
t), and the marginal distribution Fi(xi) ,i = 1, . . . , d, as ut

i =
F−1
i (x̂i

t). If Fi(xi) is the true marginal distribution, then ut
i is the true value
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of the sample. However, we usually do not know Fi(xi), and assume a model
distribution F̂i(xi) instead. Therefore, what we obtain is not ut

i = Fi(x̂i
t)

but ûi
t = F̂i(x̂i

t), which depends both on the observed data and the model
assumption. As a result, we cannot separate the problems of parameter
estimation into the marginal and the copula, but need to consider them
simultaneously, abandoning the advantage of copula.

The inference functions for marginals (IFM), introduced by Joe (1997),
partly recovers the advantage of copula model. In the IFM, marginal param-
eters are first estimated by the ML estimation, and then copula parameters
are estimated by the ML, the marginal likelihoods being plugged into the
copula likelihood. This approach is close to the true ML, but has an disad-
vantage that it depends on the selection of parametric marginal distribution.

An alternative approach is called as the pseudo-likelihood method by
Demarta and McNeil (2005) or the canonical maximum likelihood (CML)
method by Romano (2002). It is extensively investigated by Genest et al.
(1995). When we estimate parameters, the pseudo-likelihood method ap-
proximates the marginal cumulative distribution (CDF) as

F̂i(xi) =
1

N + 1

N∑
t=1

1
x̂t
i<xi

. (1.61)

This is similar to the empirical distribution defined in eq.(1.23), but the
normalized factor is replaced with 1/(N + 1), in order to assure F̂j(xj) < 1.

In the case of the Gaussian copula, the ML estimation can be easily com-
puted. However, in the case of Student-t copula, the computational burden
of parameter estimation rapidly increases as the dimension d increases. Gen-
erally, in high dimensions, the ML usually has the problem of computational
intractability.

An alternative parameter estimation for the case of Student-t copula is
to use eq.(1.60) instead. We can compute the Kendall’s tau τ̂ directly from
the observation.14 Then, it is possible to estimate the value of ρ from τ̂ using
eq.(1.60). If the dimension is larger than 2, it is possible to estimate each

14In two dimensions, it is computed as follows: First, draw a scatter plot of two variables.
Suppose there are N points. For each point, we count up the number of points located
at the up-and-right side of the point, and count down the number of points located at
the down-and-left side of the point (ignoring points located at the up-and-left and down-
and-right side). Sum up these numbers and divide by N(N − 1)/2, then we obtain the
Kendall’s tau.

35



element of Σ from the pairwise taus, and then we can obtain the estimation
of the correlation matrix Σ̂. After that, we can compute ν using the ML,
which is easy to solve since it is one-dimensional optimization. This idea is
similar to the momentum method of parameter estimation in the sense that
we just match some descriptive statistics.

1.3.5 Empirical copula

Another important copula is an empirical copula, usually defined by

Cemp(u1, . . . , ud) =
1

N

N∑
t=1

1u1<ut
1,...,un<ut

d
, (1.62)

where (ut
1, . . . , u

t
d) (t = 1, . . . , N) stands for the t-th sample. Given a model

copula and the empirical copula, we can compute the ”distance” between
them, in order to measure how well the model copula fit the empirical one.
An example is the copula version of the Cramér-von Mises statistics,

S =

∫
[0,1]N

N{Cemp(u1, . . . , ud)− C(u1, . . . , ud)}2dCemp(u1, . . . , ud) (1.63)

=
N∑
t=1

{Cemp(û1
t, . . . , ûd

t)− C(û1
t, . . . , ûd

t)}2, (1.64)

where C is the model copula. It is also possible to compute a p-value of
the null hypothesis that the model copula matches the empirical copula.
However, the computation is generally numerically burdensome. For details
of discussion about copula fitness, see Genest et al. (2009) and Berg (2009).

1.3.6 Archimedean copula

The Archimedean copula is a major copula class. We do not refer this kind
of copula in this dissertation, but quickly review this copula in the case of
two dimensions, since it is frequently used in practice,

Let us consider a scalar function φ = φθ(u) satisfying φ(1) = 0 and
parameterized by θ ∈ Θ. Assume that φ(u) is strictly decreasing and convex,
that is, φ′(u) < 0, and φ′′(u) ≥ 0.15 Then, we define a copula C(u1, u2) as

C(u1, u2) = φ[−1](φ(u1) + φ(u2)), (1.65)
15If the number of dimensions is d, these conditions are replaced with, over the support
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where φ[−1](v) is the pseudo-inverse function of φ(u), which matches φ−1(v)
over v ∈ [0, φ(1)] but takes 0 otherwise. The function φ(u) is referred to as the
Archimedean generator. The follwing are the examples of the Archimedean
generators:

• Clayton copula, φθ(u) =
1
θ
(u−θ − 1),

• Ali-Milhail-Haq copula, φθ(u) = log((1− θ(1− u))/u),

• Gumbel copula, φθ(u) = (− log u)θ,

• Frank copula, φθ(u) = −log
(

exp(−θu)−1
exp(−θ)−1

)
, and

• Joe copula,φθ(u) = 1− (1− exp(−u))1/θ.

The advantage of the Archimedean copulas is that it has only one scalar pa-
rameter, which leads computational simplicity. Also, Some of these models
have tail dependency; for example, the Clayton copula has lower tail de-
pendency λL = 2−1/θ. The disadvantage is that it is too simple to denote
a complicated dependency. Especially, an Archemedean copula treats each
dimension equally, ignoring the different dependency among pairs of dimen-
sions.

1.3.7 Skewed Student-t distribution

The multivariate Student-t distribution is classified to the class of normal
mixture distribution, since a d-dimensional Student-t random variableX with
correlation Σ and degree of freedom ν has the following representation:

X =
√
WZ, (1.66)

where W and Z are independent random variables such that ν/W ∼ χ2
ν and

Z ∼ N(0,Σ). This expression simplify the generation of random samples
obeying the multivariate Student-t distribution and its copula. A larger class
of multivariate normal mixture is the mean-variance mixtures, obtained by

X = μ+ γg(W ) +
√
WZ, (1.67)

of φ(u), 1) φ(u) is (d−2)-times differentiable, 2) (−1)kφ(k−2)(u) ≥ 0 for k = 0, 1, . . . , d−2,
and 3) (−1)d−2φ(d−2)(u) ≥ 0 is non-increasing and convex. These conditions are referred
to as d-monotone, whose definition is given by McNeil and Nes̆lehova (2009).
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for some g : [0,∞) → [0,∞) and d-dimensional parameters μ and γ (Demarta
and McNeil, 2005). A preferable feature of this class is that it has skewness
due to the term γg(W ), while it is not elliptically symmetric for the same
reason. It is also preferable that generation of random samples is easy based
on eq.(1.67).

Suppose the case that g(W ) = W and W has an inverse gamma distri-
bution IG(ν/2, ν/2). Then, a random variable

X = μ+ γW + Z
√
W, (1.68)

is said to have a multivariate skewed-t distribution, which is denoted as
td(ν, μ,Σ, γ) (Demarta and McNeil, 2005). Its PDF function has the fol-
lowing form:

ftd(x; ν, μ,Σ, γ) = c× K(ν+d)/2(
√

(ν + a)b) exp((x− μ)TΣ−1γ)

(
√
(ν + a)b)−(ν+d)/2(1 + a/ν)(ν+d)/d

, (1.69)

a = a(x;μ,Σ) = (x− μ)TΣ−1(x− μ), (1.70)

b = γTΣ−1γ, (1.71)

c =
2[2−(ν+d)]/2

Γ(ν/2)(πν)d/2|Σ|1/2 , (1.72)

where Kλ denotes the modified Bessel function of the third kind. According
to this formula, it is possible to estimate parameters by maximizing the
likelihood. The distribution recovers the Student-t distribution when μ = 0
and γ → 0. Its expected value and covariance are

EX = μ+
ν

ν − 2
γ, (1.73)

covX =
ν

ν − 2
Σ +

2ν2

(ν − 2)2(ν − 4)
γγT. (1.74)

The copula dependency of the multivariate Student-t distribution is re-
ferred to as the skewed t copula. Especially, a copula of td(ν, 0,Σ, γ) distri-
bution is denoted as Ct

ν,Σ,γ . In order to convert the skewed-t distribution to
the skewed-t copula, the following formula about the marginal distribution
of skewed-t distribution is useful:

Xi ∼ td(ν, 0, 1, γi), i = 1, . . . , n. (1.75)
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1.3.8 Multivariate normal tempered stable distribu-
tion

In the subordinated expression of the NTS distribution eq.(1.14), suppose
that μ, β and γ are d-dimensional vectors and ε is a d-dimensional multivari-
ate standardized Gaussian distribution ε ∼ N(0,Σ), where Σ is a correlation
matrix. Then, we obtain a d-dimensional random variable X:

X = μ+ β(Tt − 1) + γ
√
Ttε, (1.76)

The distribution of X is referred to as the multivariate NTS (MNTS) distri-
bution.

The MNTS model has five scalar or vector parameters: α, θ, μ, β, and
γ. The number of parameter variables is then 3d + 2. This seems too much
to estimate. To estimate these parameters, we first decide the values of
parameters as for the CTS subordinator in eq.(1.15), that is, α and θ. This
can be done by considering the average of d variables or by referring market
index. In addition, if we assume that EXi = 0 and varXi = 1, we can
set μ = 0 and β =

√
1− γ2(2− α)/(2θ). Then the parameter estimation

becomes feasible for higher dimensions. Kim et al. (2012) apply the MNTS
to the Dow Jones Industrial Average and obtain a good fitting.

1.4 Independent component analysis

1.4.1 Factor analysis in finance

The factor model is generally defined as

X = AY + ε. (1.77)

Variable X is a d-dimensional random vector representing observable vari-
ables, and Y is a q-dimensional random vector representing unobservable
or latent variables. Each component of Y is referred to as a factor. A is
a d-by-q constant matrix which is referred to as factor loadings. ε is a d-
dimensional random vector representing noise or factors not included in Y.
For simplicity, the averages of X, Y and ε are assumed to be zero. Also,
we usually assume Y is standardized and non-correlated as covY = Iq, since
the covariance structure can be moved to A or ε. As a result, we obtain the
covariance of X as

covX = CX = AAT +Q, (1.78)
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where Q = covε. Since CX can be obtained by the sample covariance matrix,
it is an important problem to determine A and Q given CX. There are a lot
of works as for this problem, and this field of research is referred to as factor
analysis. For details, see Harman (1967), for example.

In the field of finance, the most famous factor model will be the capital
asset pricing model (CAPM), which was proposed in 1960s independently by
several studies (Sharpe, 1964; Lintner, 1965; Mossin, 1966). According to
the model, the return of asset r follows

r = rf + β(rM − rf ) + ε, (1.79)

where rf is the return of risk-free asset, rM is the return of the market, and
ε is the return specific to the asset. It is usually assumed as E ε = 0 since it
can be derived from the CAPM theory.16 The parenthesis term (rM − rf ) is
usually referred to as a risk premium. β is a constant specific to the asset,
and is considered to represent the sensitivity to the risk premium. Given the
volatility of the market as σM , the volatility of the asset σ satisfies

σ2 = β2σ2
M + varε. (1.80)

Equations (1.79) and (1.80) are the q = 1 case of eqs. (1.77) and (1.78).
Later in 1976, Ross proposed the arbitrage pricing theory (APT), in which

the asset return r is assumed to be

r = a+ β1f1 + β2f2 + · · ·+ βqfq + ε. (1.81)

In this equation, random variables fj, j = 1, . . . , q, are considered to repre-
sent fundamental factors such as the risk premium or economic indicators,
and the coefficients βj are the factor loadings for these variables. Ignoring the
constant term a, this equation corresponds to the general case of eq.(1.77),
and it is more flexible compared to the CAPM. On the other hand, the APT
does not give how to decide factors fj. So its implication and implementation
are not as clear as in the case of the CAPM.

In early 1990s, Fama and French proposed their three factor model as for
stock returns (Fama and French, 1992, 1993). As the name indicates, it is a
three-factor model as

r = βMrM + βHMLHML + βSMBSMB + ε. (1.82)

16If it is not assumed to be zero, then the term alpha is commonly used to show the
non-zero average of return specific to the asset.
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Here, HML is the difference of the book-to-price (BP) ratios between stocks
of large BP and those of small BP in the market. The word HML stands for
”High Minus Low.” Meanwhile, SMB stands for ”Small Minus Big,” which is
defined as the difference of the returns between stocks of small capitalization
and those of large capitalization. These two plus the market return (rM) are
the three factors of the Fama-French model, and the coefficients β and the
noise term ε are specific to the asset.

The primary advantage of these factor models is the reduction of the
number of parameters. For example, suppose the return of d assets. If
we model them by the Gaussian distribution, the number of parameters is
d(d + 1)/2 for the covariance matrix and d for the average return. On the
other hand, if we model them by the CAPM and the Gaussian distribution
of rM and ε, then the number of parameters is only 2d+ 3 (d for β, d for σ,
two for the average and variance of rM , and one for rf ).

The secondary advantage is clearness in interpretation. For example, in
the case of CAPM, the factor is simply interpreted as the market trend, and
the model can be interpreted as the separation of returns into the common
and the specific part. On the other hand, the APT model does not seem
clear, since the model itself does not give what are the factors. Even though,
it is clear in the sense that it assumes some hidden factors which have effect
on returns.

1.4.2 Principal component analysis

These factor models assume the existence of latent variables affecting on
returns. On the other hand, the principal component analysis (PCA) does
not assume the existence of such variables, and find the most influential
component just from the data.

Suppose a d-dimensional random vector X = (X1, . . . , Xd). For simplic-
ity, assume EX = 0. The first principal component (PC) P1 is defined as
P1 = w1 ·X where

w1 = argmax||w||=1 var(w · X), (1.83)

that is, the first PC is the linear transformation of X whose variance is
maximized. The second PC P2 is defined

w2 = argmax||w||=1,w1⊥w var(w · X). (1.84)
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This is similar to (1.83), but the direction of linear transformation is re-
stricted to the direction orthogonal to w1. Likewise, the third and the fol-
lowing PCs are defined as the linear transformation of X whose variance is
maximized under the condition that the transformation is orthogonal to the
preceding PCs.

It is known that the result of these maximizing steps is given by the
eigenvalues of the covariance matrix. If the covariance matrix CX is diago-
nalizable, we can find a d-by-d unitary matrix U and characteristic values λi,
i = 1, . . . , d, satisfying

λ1 ≥ λ2 ≥ · · · ≥ λ1 > 0, (1.85)

D = diag(λ1, . . . , λd), (1.86)

CX = UTDU. (1.87)

On the other hand, CX = covXXT. Combining this and eq.(1.87), we obtain
covXXT = UTDU . Multiplying U and UT from the left and the right of this
equation, respectively, we obtain

covPPT = D, (1.88)

where P = (P1, . . . , Pd)
T = UX. Pi, i = 1, . . . , d, are the principal compo-

nents obtained by eqs.(1.83) and (1.84), and the i-th row of U corresponds
to wi. Conversely, we can write as

X = UTP = P1w1 + · · ·+ Pdwd. (1.89)

The characteristic value λi represents the variance explained by Pi, that is,
varPi = λi. The explanatory power of the i-th PC is defined as λi/Σ1≤j≤dλj.
By picking up the first q PCs and ignoring the last (d− q) PCs in eq.(1.89),
we obtain the model

X = APT + ε. (1.90)

In this equation, the first q PCs are summarized as PT = (P1, . . . , Pq)
T,

and A = [w1, . . . ,wq] is a d-by-q constant matrix. The other (d − q) PCs
are combined into the error term ε = Pq+1wq+1 + · · · + Pdwd. Note that
varε = λq+1 + · · ·+ λd.

Equation (1.90) has the same form with eq.(1.77). The difference of
these two equations is that the former, PCA, does not assume any latent
variables, while the latter, factor analysis, assumes some latent variables.
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This is actually a large difference, since PCA does not mean the existence of
any fundamental factors, but just summarize the data. However, the purpose
of these models is the same, that is, to reduce the dimension of variables and
to find the important factors or components affecting on the result. Recently,
the independent component analysis is proposed as a novel method to find
the important linear component similar to eqs.(1.77) and (1.90).

1.4.3 Independent component analysis

Suppose a d-dimensional random vector X = (X1, . . . , Xd) representing the
observable variables, and assume EX = 0. The independent component
analysis (ICA) is the following model of X:

X = AS, (1.91)

where S = (S1, . . . , Sq)
T is a q-dimensional random variable and A is a d-by-q

constant matrix. Sj, j = 1, . . . , q, is referred to as the independent component
(IC).

Equation (1.91) has the same form with the PCA, eq.(1.89). In fact,
both the PCA and the ICA are the linear transformation technique, and the
difference is just how to determine the matrix A. In the PCA, A is decided
so that the PCs has no correlation with each other. In the ICA, A is decided
so that ICs are independent of each other, that is,

fS(s) = fS1(s1) · · · fSq(sq), (1.92)

where fS and fsj, j = 1, . . . , q, are the joint and marginal PDF of s =
(s1, . . . , sq) and sj, respectively.

Independence is a much stronger property than no correlation, and has a
great advantage. For example, if the variables are independent, the modeling
of multiple variables is reduced to that of univariate random variables. In
addition, if independent, it is easier to distinguish the sources of variables,
which can be used as a tool to find factors in factor analysis.

On the other hand, the ICA cannot determine the variance of each com-
ponent, while the PCA can. This is because A is restricted to a unitary
matrix in the PCA but not in the ICA. Due to its ambiguity, the variances
of ICs are conventionally set to unity:

covS = Iq. (1.93)
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Consequently, the ICA cannot evaluate the importance of each component,
while the PCA can pick up the most important one according to its variance.
This is a disadvantage of the ICA.

There are many applications of the ICA. The most famous example is
what is referred to as the blind source separation, which is to find a separated
sound sources from the recorded sound waves. Since the recorded waves are
the mixture of different sources and noises, it is important to reconstruct the
original sources.

In finance, the earliest application of the ICA will be the stock market
analysis by Back and Weigend (1997). Mălăroiu et al. (2000) applied the
ICA to the foreign exchange market and obtained good forecasting results.
More recently, Kumiega et al. (2011) found that the IC of the S&P sectorial
indexes can be interpreted as the proxy of the energy, financial and the other
sectors.

For details of further properties and applications of the ICA, see Hyväreinen
et al. (2001) and Hyvärinen (2013).

1.4.4 Theoretical background of ICA

In this subsection, we explain how to obtainA in eq.(1.91) based on Hyväreinen
et al. (2001). For simplicity, we assume d = q hereafter.

Entropy The entropy is the fundamental idea of information theory. It is
also referred to as the Shannon entropy. Given a discrete random variable
X, its entropy H is defined as

H = −
∑
i

P (X = ai) logP (X = ai), (1.94)

where ai is a possible value of X. The value H is considered to measure the
uncertainty of the random variable X. For a continuous random variable X,
we define the differential entropy

H(X) = −
∫

fX(ξ) log fX(ξ)dξ, (1.95)

where fX(ξ) is the PDF of X. Equation (1.95) can be extended to a random
vector. Note that a transformation of variables changes the value of entropy.
Especially, for a linear transformation Y = MX,

H(Y ) = H(X) + log | detM |. (1.96)
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On the other hand, note that H(X) = H(Y ) for a parallel transformation
Y = X + A.

Negentropy The smallest differential entropy is negative infinity, consider-
ing the localized distribution such as a delta distribution (the term log fX(ξ)
approaches to negative infinity as ξ approaches to the localized point).17 We
consider the problem what distribution gives the largest differential entropy.
According to eq.(1.96), we can increase the entropy as much as we want by
rescaling, so we impose the condition that the variance (or the diagonal ele-
ments of the covariance matrix) of X is set to unity. Under this constraint, it
can be proved by functional derivative that the Gaussian distribution max-
imizes the differential entropy compared to the other distributions. The
maximum entropy is (1 + log 2π)/2 if it is one-dimensional. If the variance
is σ2, the maximum entropy is (1 + log 2πσ2)/2, according to eq.(1.96).

Therefore, the following quantity is assured to be non-negative:

J(X) = H(XG)−H(X) ≥ 0, (1.97)

where HG is the Gaussian distribution whose variance (or covariance) is set
to varX (covX). Equation holds in the case that X is also a Gaussian
distribution. This J is defined as the negentropy, which measures the non-
Gaussianity, that is, how different the distribution is from the Gaussian dis-
tribution. It can be shown from eqs.(1.96) and (1.97) that the negentropy is
invariant as for a linear transformation, that is,

J(MX) = J(X). (1.98)

Mutual information Let X = (X1, . . . , Xq)
T denote a q-dimensional ran-

dom vector. We can obtain the joint entropy H(X) and the marginal en-
tropies H(Xj), j = 1, . . . , q. Then it is natural to define the mutual infor-
mation I(X1, . . . , Xq) as

I(X1, . . . , Xq) =

q∑
j=1

H(Xj)−H(X). (1.99)

It is shown that the mutual information always takes a non-negative value,
and takes zero if and only if Xj, j = 1, . . . , q are independent of each other.

17In the case of discrete random variable, H is always non-negative since 0 < P (X =
ai) ≤ 1 and (− logP (X = ai)) is always non-negative.
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Therefore, in order to obtain independent variables by a change of variables,
it is a natural idea to minimize the mutual information. The ICA is based
on this idea.

Suppose a change of variable from X to Y = MX. From eqs.(1.96), the
mutual information is transformed to

I(Y1, . . . , Yq) =

q∑
j=1

H(Yj)−H(X)− log | detM |. (1.100)

Using the negentropies J(Yj), j = 1, . . . , q, we obtain

I(Y1, . . . , Yq) = C −
∑
j

J(Yj), (1.101)

C =
∑
j

H(Yj,G)−H(X)− log | detM |. (1.102)

The value of H(X) is fixed since the distribution of X is given. Con-
sider an additional constraint that covY = Iq, that is, Y is standard-
ized and non-correlated. Under this constraint, H(Yj,G) takes a constant
(1 + log 2π)/2)since Yj,G is a standard Gaussian distribution. In addition,

detM is a constant since detM =
√

det covY/ det covX =constant. There-
fore, C is a constant under the constraint.

According to (1.101), minimizing of the mutual information is equivalent
to maximizing the negentropy. This means that the ICA can also be formal-
ized as the maximization of negentropy. The constraint covY = Iq is allowed
by eq.(1.93). As for maximizing the negentropy, Hyvärinen (2000) proposed
a quick algorithm with the fixed point method, which is referred to as the
fastICA. The algorithm is as quick as the usual PCA.

Note that it is not assured that the mutual information can be minimized
to zero. Even after minimization, we still have a positive mutual informa-
tion, that is, dependency structure. Note also that the maximization of
negentropy is effective only for non-Gaussian distributions. For a Gaussian
distribution, the negentropy is zero, so we cannot consider the maximization
problem. These facts shows the fundamental importance of non-Gaussianity
considering independent component analysis; for details, see Hyvärinen et al.
(2001).
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Chapter 2

Mean-ETL Portfolio Selection
under Maximum Weight and
Turnover Constraints based on
Fundamental Security Factors

In this chapter, we model stock returns using fundamental data, minimiz-
ing AVaR, and multi-period portfolio selection with weight and turnover
constraints. Equity returns are decomposed into returns explained by funda-
mental factors and non-fundamental factors. While the former are found to
be independent, the latter factors are found to be highly dependent among
various stocks. Based on this fact, we construct return forecast models us-
ing the ARMA-GARCH models with different innovation distributions. In
addition, we compare the objective functions of portfolio optimization, not
only the mean-variance approach but also the mean-AVaR approach and so
on. As results, we find that (1) the ARMA-GARCH model with classical
tempered stable distribution provides better prediction than the normal and
Student-t distribution and (2) the AVaR is a better risk measure than the
variance. We also see how portfolio performance changes under weight and
turnover constraints, and suggest it is effective to reduce the trading universe
to large capitalization stocks.
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2.1 Introduction

Since Markowitz introduced mean-variance portfolio selection in his cele-
brated paper in 1952, several ways have been suggested to enhance the frame-
work and/or inputs employed.

First is improved modeling of mean and variance. For example, the sam-
ple mean and variance have been proven to be poor choices in the high-
dimensional settings, especially when the available sample size is close to
or even smaller than the number of instruments in the portfolio. More
fundamentally, off-sample distribution in future is generally different from
in-sample distribution in past.

Second is dealing with tail risk. Usually, the normal distribution of re-
turns is assumed, and variance (or covariance matrix in multidimensional
cases) is used as a risk measure. If the normal distribution is assumed, all
risk can be captured by variance. However, empirical evidence suggests that
return distributions are not normal.

Finally, incorporating constraints and multiple investment periods into
the portfolio selection model have been proposed. Practically, all investors
confront weight constraint, turnover constraint and multiperiod investment.
For example, most investors are not allowed to make short positions due to
investment policy or regulatory constraints. Also, maximum weight for a
single asset is usually introduced in order to diversify the risk. These weight
constraints reduce feasible set of portfolio selection. In addition, since the
investment environment itself has uncertainty in future, multiperiod invest-
ment should be considered. Multiperiod investment also confronts the prob-
lem of transaction cost and turnover constraint.

In this chapter, we take these enhancements into account, suggesting a
practical example of portfolio construction. First, in order to predict future
returns, we introduce a return forecast model based on monthly fundamental
financial data and ARMA-GARCH model with non-normal innovation terms.
In this model, we first do regression of returns over 21 fundamental factors
such as earnings and momentum indices, divide returns into two parts: Re-
turns explained by these 21 factors, which is defined as ”factor returns,” and
returns explained as residuals, defined as ”non-factor returns.” Second, since
factor returns are approximately independent, we apply ARMA-GARCH
model to factor returns in order to obtain out-of-sample forecast. Third,
since non-factor returns are dependent among stocks, we extract principal
components (PC) of non-factor returns, and do regressions of non-factor re-
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turns by these PCs. Fourth, we apply ARMA-GARCH model into these PCs
and residuals to get forecast of out-of-sample values. This method of fore-
casting is shown to result in much better performance than simple sample
return and covariance by constructing actual portfolios.

Second, when applying ARMA-GARCH, we use heavy-tailed innovations
such as the Student-t distribution and classical tempered stable (CTS) distri-
bution (Kim et al., 2008; Rosiński, 2007) in addition to normal distribution,
since it is supposed that return distribution is not normal. Furthermore, we
do not only estimate parameters of these distributions, but also generate large
number of scenarios of out-of-sample returns for Monte Carlo simulation,
which enables various optimizations of risk measures without any presump-
tions on the joint distribution of returns. In addition, we use both variance
and average value at risk, AVaR as risk measure to be minimized for portfolio
selection. This is a generalization of Markowitz framework consistent with
the expected utility maximization, and it is a convex optimization problem
which can be solved efficiently (Bertsimas et al., 2004; Rachev, 2008). Fi-
nally, we see that minimizing AVaR with CTS innovations gives better result
than other cases.

Third, we check how our portfolio performance changes under weight and
turnover constraints. First, we see the performance under no short selling is
allowed. Next, we add the maximum weight constraint of 4%, which does
not have big effect. Finally, we consider turnover constraint whose maximum
turnover is 8% monthly. We adopt the strategy to reduce the number of
stock universe and trade large capitalization securities. It is shown that the
strategy gives better performance.

The rest of this chapter is structured as follows. First, we describe the
data we use, introduce the forecasting method of returns we adopt, and dis-
cuss optimization approaches. Next, we investigate the efficiency of various
forecasts and approaches by constructing actual portfolio, and discuss how
to construct portfolio within turnover constraint.

2.2 Data

We use the monthly data from December 1979 to November 2009 provided
McKinley Capital. The original data is provided by Wharton Research Data
Service, WRDS. We extract fundamental financial data such as earnings per
share and forecast of these fundamental data as fundamental factors. We also
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use momentum indices such as USER, which is introduced and explained by
Guerard et al. (2009), as fundamental factors. We finally obtain 21 factors
for each stock for each month.

The database provides returns of about 15,000 stocks. However, about
half of these stocks do not have their data more than 60 months, and only 310
stocks exist for the entire period, or 360 months. In order to apply statistical
method discussed later, we have to exclude some stocks which seldom appear.

Our exclusion is as follows: first, we set the number of regression period
length T . Next, for each month t0, we select stocks which have successive
monthly data from month (t0 − T + 1) to month t0. We call the set of
these stocks as the universe Ut0 of month t0. In other words, Ut0 consists
of stocks which have more than T successive entries in the past. We adopt
T = 201 until November 1999 and 240 from December 1999 due to data
constraint. Since we focus on not factors themselves but their changes, we
add one to our desired period length, 200 and 240. Then, the number of
stocks in Nt0 = n(Ut0) distributes mostly between 300 and 400 with average
347.

Let rit denote return and F̃ i
t,k factor values where t denotes month, k =

1, 2, ..., K is the index of factor (K = 21) and i ∈ Ut0 is the index of individual
stock. Hereafter, we focus on changes of factors F i

t,k = F̃ i
t,k − F̃ i

t−1,k where
1 ≤ t ≤ 359, or from January 1980 to November 2009. Note that t0 moves
in the range 200 ≤ t0 ≤ 359, or from August 1996 to November 2009.

2.3 Forecasting model

The estimation of mean return and covariance matrix is very important.
The method of our model consists of following three parts: (1) Constructing
factor model, (2) applying time series model and estimating parameters, and
(3) simulating scenarios of one-step-ahead returns via simulating factors and
noise terms. In this section, for notation simplicity, let t (1 ≤ t ≤ T ) denote
the in-sample period, and t = T + 1 denote out-of-sample month to be
forecasted.

2.3.1 Factor model

First, in order to extract the predictable trends out of the returns, we do
regression of the monthly returns of each company with respect on the afore-
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Figure 2.1: Explanatory power of 21 fundamental factors, according to R2

and adjusted R2 of eq. (2.1). About 60% of returns can be explained by
these factors.

mentioned K = 21 fundamental factors:

rit = αi
0 +

K∑
k=1

βi
kF

i
k,t + εit, (2.1)

where 1 ≤ t ≤ T , 1 ≤ i ≤ N , and εit represents noise terms. The coefficient
parameters αi

0 and βi
k are estimated via least square method.

Figure 2.1 shows both R2 and adjusted R2 are around 0.6 in averages
when we do regression of returns rit over factor changes F

i
t,k for each stock i

in each universe Ut0 based on eq. (2.1). Note that month t0 is from December
1997 to November 2009 and that T = 200 or 240 according to month t0.

We define F i
t :=

∑
k βkF

i
k,t as a factor return of stock i at time t. We
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Figure 2.2: Sample correlation of factor and non-factor returns. While cor-
relation between factor returns is weak, that between nonfactor returns is
considerable, which may imply hidden factors in nonfactor returns.

also define εit as a non-factor return. Figure 2.2 shows the sample correlation
coefficient of factor and nonfactor returns among 50 stocks randomly selected.
It is shown that factor returns F i

t are close to independent while non-factor
returns εit have dependency.

The dependency of non-factor returns εit is not expected since they stand
for random noises. This dependency is partly because there exist hidden
factors not chosen in the regression model in eq. (2.1). In order to model
this dependence parsimoniously, we extract principal components Hm,t (1 <
m < N) of the non-factor returns εit (1 ≤ i ≤ N). Then, we adopt the top
M components of Hm,t (M ≈ 30), and regress εit with regard to Hm,t:

εit = αi
ε +

M∑
m=1

γi
mHm,t + ηit, (2.2)

where ηit are independent. Note that this regression is done for each stock i
(1 ≤ i ≤ N).

Figure 2.3 shows the relation between the explanatory power of eq. (2.2)
and the number of principal componentsM . It is shown that the explanatory
power increase much faster with respect to the increase of M . In our model,
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Figure 2.3: Explanatory power with respect to the number of principal com-
ponents. The explanatory power increase much faster with respect to the
increase of M . In our model, we choose the number of components such that
the explanatory power is greater than 80%, approximately M ≈ 30 factors.

we choose the number of components such that the explanatory power is
greater than 80%, approximately M ≈ 30 factors.

Note that it is possible to consider that principal components Hm,t corre-
spond to macroeconomic factors, which do not appear in our model explic-
itly. Our K = 21 factors aforementioned are corporate specific factors such
as earning per share, which is why our factor returns F i

t show weak correla-
tion. If we adopt this idea, we can use the knowledge of macro environment
to forecast Hm,t. In this chapter, however, we do not consider this problem.

2.3.2 Time series model

Factor returns F i
t are returns explained by factors. Since these returns

have several stylized facts such as volatility clustering, it is natural to apply
ARMA(1,1)-GARCH(1,1) model to these returns.

In addition, we apply ARMA-GARCH model into Hm,t and ηit. Note that
we apply the model into each principal component m and each stock i.
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Figure 2.4: Simulated scenarios of the first hidden factors by normal (top),
Student-t (middle) and CTS (bottom) distributions. It is seen that normal
distribution underestimates the downside risk, while Student-t and CTS dis-
tributions capture the downside risk. However, Student-t distribution has a
disadvantage that it is symmetric, which is not typical in return distribution.
CTS distribution has both tail risk and asymmetric downside risk.

To express the fat-tailedness and skewness of the return distribution,
Student-t and classical tempered stable (CTS) distribution are introduced
for innovation terms in addition to normal (Gaussian) distribution. Figure
2.4 shows the simulated scenarios (values) of Hm=1,t. It is seen that normal
distribution underestimates the downside risk, while Student-t and CTS dis-
tributions capture the downside risk. However, Student-t distribution has a
disadvantage that it is symmetric, which is not typical in return distribution.
CTS distribution has both tail risk and asymmetric downside risk.

2.3.3 Simulation

At this point, we obtain the return distribution of time T + 1 by combining
factor model and ARMA-GARCH models. However, this combination is not
analytically tractable, generally. In addition, the portfolio VaR or AVaR is
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generally not obtainable or too complicated in an analytical form. Therefore,
Monte Carlo simulation is used to generate a large number of scenarios, based
on which the portfolio VaR and AVaR are easily computed via historical
simulation method. The method is as follows:

1. Generate S scenarios of F i
T+1, η

i
T+1 (1 ≤ i ≤ N) and Hm,T+1(1 ≤ m ≤

M).

2. Make S scenarios of εiT+1 by substituting ηiT+1 and Hm,T+1 into eq.
(2.2),

εiT+1 = αi
ε +

M∑
m=1

γi
mHm,T+1 + ηiT+1. (2.3)

3. Make S scenarios of riT+1 by substituting εiT+1 and F i
T+1 into eq. (2.1),

riT+1 = αi
0 + F i

T+1 + εiT+1. (2.4)

We use S = 10, 000. Figure 2.5 shows the historical correlations and
simulated correlations among 50 stocks randomly selected. There is a slight
reduction of our simulated covariance compared with the sample covariance
due to possibly: (1) loss of the rest 20% variance in the residuals; (2) overlook
of the dependence of fundamental factors. However, to simplify our model,
we do not consider these at the present, which could be improved by allowing
more explanatory power or applying copula model or PCA on the combined
factors as well.

2.4 Optimization approaches

In mean-variance approach, the first step of optimization is obtaining an
efficient frontier, on which variance of portfolio is minimized for a given level
of return. Variance here is used as a measure of risk. Under the assumption of
normal distribution of returns, variance is the only and the enough measure
of risk. Variance has also a practical advantage that it can be easily obtained
by a single covariance matrix without knowledge of return distribution.

However, if the distribution is other than normal, variance is just one
of statistics which describes risk structure. The disadvantage of variance is
that it cannot capture the tail risk. Candidates of well-known risk measures
other than variance are VaR and ETL, or usually equivalently, AVaR. These
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Figure 2.5: Correlation of sample returns and correlation of simulated next
month’s returns. There is a slight reduction of our simulated covariance
compared with the sample covariance due to possibly: (1) loss of the rest
20% variance in the residuals; (2) overlook of the dependence of fundamental
factors.
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measures are expected to reflect tail-risk better than variance. Minimizing
these risk measures for a given level of return gives an alternative of efficient
frontier in mean-variance approach. Especially, the substitution of AVaR
into variance is called mean-ETL.

In addition, to obtain a specific portfolio, the desired return level r should
be specified. Within the return range of the efficient frontier, r is a free
parameter. Therefore, we have to give some criteria in order to decide r.
One idea is to maximize u = μ/σ, the return for a unit volatility where μ
is the average return and σ is the volatility. We call u a risk utility. Under
the existence of risk-free asset, however, r can be decided as it maximizes
Sharpe ratio, u = μe/σ, where μe is the average excess return of portfolio
over risk-free asset. One natural extension of this idea to our situation is to
substitute VaR or AVaR into the volatility in the expression of Sharpe ratio.
Especially, u = μe/AVaR, the substitution by AVaR, is called STARR, stable
tail-adjusted return ratio. We also call these ratios risk utilities.

In summary, two variables, risk measure s and risk utility u, specify our
portfolio selection approach. In formulae, the approach has two steps. The
first step is to minimize s,

w(r) = arg min
w∈W (r)

s(w) (2.5)

where W (r) = {w;w ∈ WC ∧ μ · w = r}, WC is a set of portfolios satisfying
constraints and μ is a vector representing the expected return of stocks in
the universe. The second step is to maximize u,

w = w(arg max
r

u(w(r))). (2.6)

Note that the most standard setup of modern portfolio theory corresponds
to use standard deviation as a risk measure and Sharpe ratio as a risk utility.
Under the expected utility hypothesis, our approach is the natural general-
ization of the standard mean-variance approach, which initially introduced
by Markowitz.

2.5 Comparison of forecasts and approaches

Next, we compare portfolio selection approaches discussed by constructing
actual portfolio. In addition, we also compare return forecasts obtained
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in the previous section by making actual portfolio. Then, we can select
the best combination of the forecast and approach by comparison. There
are four available forecasts: Historical average and covariance (referred as
”historical” hereafter), forecast based on ARMA-GARCH-Normal (AGNor-
mal) model, forecast based on ARMA-GARCH-T (AGT) model, and fore-
cast based on ARMA-GARCH-CTS (AGCTS) model. We examine two risk
measures: Variance and AVaR at 95% significance level. We examine three
risk utilities: Sharpe ratio (Sharpe), return/volatility ratio (Ret/Vol) and
STARR (STARR). For each combination, we computed various statistics
such as historical volatility or beta. We adopted U.S. TB 3M rate from
Bloomberg (USGG3M Index) as risk-free rate and Russell 3000 Growth In-
dex with dividends as market index. All assets are invested into stocks and
investing to risk-free asset is prohibited. We use numerical search function
fmincon of MATLAB for portfolio optimization. At this point, we do not
impose constraints other than no-short constraint, since we want to see the
characteristics of forecast and approach.

The result is shown in Table 2.1. For reference, statistics of the risk-
free rate (TB 3M, TB3M) and the market index (Russell 3000 Growth with
dividends, R3KGD) are shown. In addition, statistics of S&P 500 (SPX) is
shown for comparison purpose. Note that the cumulative return of R3KGD
is lower than that of TB3M, while the monthly average of R3KGD is higher
than that of TB3M. This is due to a high volatility and large drawbacks of
R3KGD.
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The fourth line (historical data, variance as risk measure and Sharpe
ratio as risk utility, denoted as ”Historical-Variance-Sharpe” hereafter) cor-
responds to the standard setup. This combination is better than the market
index in many aspects: Higher in mean and cumulative return, lower volatil-
ity, and lower maximum loss. In Table 2.1 all portfolio selections based on
historical data give better results than investment on the market index.

Comparing ARMA-GARCH forecasts (AGNormal, AGT, and AGCTS)
and historical, portfolios based on ARMA-GARCH forecasts give much higher
average and cumulative returns than those based on historical data. As for
volatility and maximum loss, ARMA-GARCH forecasts give higher values
than historical data. Using regression, most of ARMA-GARCH forecasts
give significant positive alpha with confidence level 95%, while historical
data give no significant positive alpha. Sharpe and Treynor ratios are also
higher in ARMA-GARCH forecasts than in historical data. In summary,
ARMA-GARCH forecasts are better than historical data in many aspects
other than volatility and maximum loss.

Comparing variance and AVaR as risk measure, AVaR gives higher re-
alized returns than variance in many cases using ARMA-GARCH forecasts.
For example, comparing AGNormal-Variance-Sharpe and AGNormal-AVaR-
Sharpe, the average and cumulative returns of the latter are higher than
those of the former by 0.4% and 21%, respectively. Among nine cases of such
comparisons (three cases of ARMA-GARCH forecasts and three cases of risk
utility), seven cases report higher returns in AVaR risk measure than in vari-
ance risk measure. There are two exceptions: the AGCTS-AVaR-Sharpe
case reports lower cumulative return by 8% compared to AGCTS-Variance-
Sharpe, and the case of AGCTS-AVaR-STARR reports lower average and
cumulative returns by 0.10% and 60% respectively compared to AGCTS-
Variance-STARR. However, in total, we consider that AVaR is better as risk
measure than variance in general.

Comparing ARMA-GARCH forecasts, AGT case has less average return,
cumulative return, alpha, Sharpe ratio, and Treynor ratio than AGNormal
and AGCTS, generally. On the other hand, volatilities and maximum loss of
AGT tend to be higher than AGNormal and AGCTS. In addition, in some
combinations using AGT data, p-values of null hypothesis that α=0 is higher
than the significance level (5%). For these reasons, we reject AGT forecast.

Comparing AGNormal and AGCTS, they resemble each other. As for re-
turns, AGNormal reports higher values than AGCTS. However, as for max-
imum loss, AGCTS reports lower values than AGNormal in all cases. Since
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this is a favorable property for portfolio selection in order to avoid market
collapse such as 2001 or 2008, we adopt AGCTS forecast model.

At this point, we have selected AGCTS as forecast and AVaR as risk
measure, equivalent to mean-ETL. Our last selection of approaches is risk
utility: Sharpe, Ret/Vol, and STARR. Among these three, Sharpe seems
to be the best in the sense that it reports highest average and cumulative
returns, lowest drawback. However, in this chapter, we adopt STARR ratio,
since it is more consistent with using AVaR as risk measure.

2.6 Portfolio selection with turnover constraint

In our portfolio selection, we have two constraints: turnover condition (less
than 8% monthly or 100% annually) and weight range condition (between
zero and 4%). Weight condition does not affect so much on portfolio return.
Figure 2.6 shows the development of cumulative returns with weight maxi-
mum of 4% and without weight maximum. Hereafter, we use AGCTS-AVaR-
STARR in order to obtain an optimized portfolio, following the discussion in
the previous subsection.

On the other hand, turnover constraint causes an important change on
our portfolio selection. Since it restricts changes between successive months,
portfolio selection becomes path dependent. Especially, the selection of the
initial month is important. If we select stocks which can contribute portfolio
return in the initial month but cannot at all after the following months, it
becomes difficult to obtain a good result. In order to avoid this situation,
we have to know future returns not only one month ahead but also many
months ahead. However, it is practically impossible.

Another idea is to restrict stocks universe into those which appear most
frequently in top n% in portfolio selection without turnover constraints. We
call n as the selection level. As a result, the possibility is avoided that the
portfolio is trapped into meaningless stocks. The problem here is how to find
such a universe of stocks. One idea is to use the universe of stocks which
appear frequently in portfolio selection without turnover constraint in past.
The members of the universe are replaced slightly every month according to
the portfolio selection of the latest months. Namely, this is a rolling selection
based on historical data.

We use n = 5 and 10 as selection levels, in which case the universe
is consisted of 99 and 127 stocks, respectively. As for restriction of the
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Figure 2.6: Cumulative returns with weight constraint, without turnover
constraint. The portfolio with the maximum weight constraint (0 < w < 4%,
solid slight line) is slightly lower than that without the constraint (w > 0,
solid bold line), but its performance is significantly much better than that of
market indices. Note that we use AGCTS-AVaR-STARR in order to obtain
an optimized portfolio, following the discussion in the previous subsection.
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universe, we adopt the stocks based on no turnover results from December
1996 to December 2009, instead of rolling selection. Strictly speaking, this
selection uses information of future portfolio selection, which is infeasible in
practical situation.

We also set the initial month of portfolio selection as December 1996
based on the data of November 1996. This purpose is to avoid the effect
of initial selection. Since no turnover constraint is imposed on the initial
selection, it is possible that the return of the initial selection is relatively
high compared to other months.

2.7 Large market capitalization securities

Here, we consider tracking of stock index by holding large market capital-
ization securities representing the market. This is also expected to reduce
turnover.

We first select three stocks: IBM (IBM, CUSIP:459200101), Johnson and
Johnson (JNJ, 478160104), Exxon Mobil (XOM, 30231G102, from January
2000). Before 2000, we use GE (GE, 369604103) instead of Exxon, since our
data lacks the data before the merger of Exxon and Mobil in 1999. We call
these three stocks LCS, large capitalization securities.

Next, we decide weights of these stocks according to the following rule:

1. If USER (see Guerard et al. [2009]) value of a stock becomes larger
than 70, its weight is increased to 4%.

2. If USER value of a stock becomes smaller than 40, its weight is de-
creased to 0%.

Therefore, the maximum weight of these three stocks is up to 12%. Here,
the variable we refer to decide the weight of LCS is USER value only. The
weight of LCS in the stock index is not referred.

The selection of LCS is basically heuristic, but has some reasons. First,
these stocks are selected because they are steady members of top market
capitalization stocks. The average rank of GE from 1980 to 2009 is 2.1, IBM
5.5, Johnson and Johnson 11.5. The average of Exxon and Mobil is 2.4 from
2000 to 2009. Second, these companies are representative in industries they
belong to.
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2.8 Result

In summary, our portfolio selection has three steps:

1. First, we decide the universe of stocks according to the result with
weight and without turnover constraints.

2. Second, we decide the weight of LCS according to their USER.

3. Third, we optimize the portfolio with weight and turnover constraints.
Here, the sum of portfolio weights is decided by the weights of LCS,
which means its sum is not always one.

Figure 2.7 shows the cumulative return for n = 5 and 10 cases and Table
2.2 shows statistics of these cases. It is shown that turnover constraints
decrease the average and cumulative return, but they are still much higher
than the market index, Russell 3000 Growth with dividends.

It is also shown that the n = 10 case provides less return compared to the
n = 5 case. In addition, positive alpha of n = 10 case is not significant at
95% confidence interval. This reason is unknown. One possible explanation
is that the necessary turnover to achieve the best portfolio may become
larger when the number of stocks in the universe is large. In this case, for a
fixed turnover level, the gap between the best and feasible portfolios becomes
larger, causing decrease of average return.

Finally, we select n = 5 case. In this case, we obtain 0.95% average
return and 213% cumulative return. The historical volatility is 5.67%, which
is lower than that of the market index, 5.70%. Its beta is 0.70 and alpha is
0.57 in 95% confidence level.

2.9 Conclusion

Our portfolio selection is divided into two parts: Forecast part and portfolio
selection part. In the forecast part, we first do regression of stock returns with
respect to fundamental factors of each company, define factor and non-factor
returns, and find that the main dependence comes from nonfactor returns.
Then, principal component analysis is used to extract the hidden factors out
of the non-factor returns and to approximate the covariance. The factor and
nonfactor returns are modeled by ARMA-GARCH, which gives scenarios of
future returns.
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Figure 2.7: Cumulative returns with weight and turnover constraint. It is
shown that turnover constraints decrease the average and cumulative return,
but they are still much higher than the market index, Russell 3000 Growth
with dividends.
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Table 2.2: Comparison of selection levels

# Constraints
Average

return
Volatility Skew

1 TB3M 0.26  NaN  NaN

2 R3KGD 0.31 5.70 -0.67

3 0<w<4% TO<8% n=5 0.95 5.52 -0.39

4 0<w<4% TO<8% n=10 0.86 5.67 -0.28

# Kurtosis
Upside

months

Downside

months

Maximum

drawdown

Cumulative

return
Beta

1  NaN 144 0 0.00 45 0.00

2 3.65 79 65 -17.93 23 1.00

3 5.94 84 60 -23.21 213 0.70

4 5.72 83 61 -23.32 174 0.71

# Alpha p(H) Specific error Sharpe ratio Treynor ratio
Information

ratio
1 0.00 1.00 0.00 0.0000  NaN  NaN

2 0.00 1.00 0.00 0.0091 0.05  NaN

3 0.66 0.02 3.82 0.1259 0.99 0.15

4 0.57 0.06 3.98 0.1075 0.86 0.13

Notes: w is weight of each stock, TO is turnover of each month, and n is selection

level. The AGCTS-AVaR-STARR approach is selected.
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In portfolio selection part, we first construct portfolios combining two risk
measures, three risk utilities and four forecasts, and find that using ARMA-
GARCH-CTS forecast model and AVaR risk measure gives the relatively best
result. Next, we discuss restricting of the universe of stocks and introducing
of large capitalization securities. Finally, we obtain a portfolio which is better
than Russell 3000 Growth Index with dividends, the market index.
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Chapter 3

Time Series and Copula
Dependency Analysis for
Eurozone Sovereign Bond
Returns

In this chapter, we analyze the distribution of returns on seven major Eu-
rozone sovereign bonds (France, Germany, Greece, Ireland, Italy, Portugal,
and Spain) and their co-movement. To obtain a good forecast for the return
distribution, it is necessary to forecast future market volatility. We empiri-
cally investigate five ARMA-GARCH models for forecasting market volatility
based on different assumptions about the innovations: Gaussian, Student-t,
classical tempered stable, normal tempered stable, and α-stable. For each of
the five models, we apply the relative copula dependence structure. Finally,
we assess the forecasting performance of these models. Daily returns from
2001 to 2011 for the Barclays Capital Index are used, with backtesting based
on returns from 2006 to 2011. To investigate the extent to which the models
studied can provide a forward-looking measure to detect the exacerbating of
the financial crisis of Greece, we analyze the evolution of the tail parameter
over time.
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3.1 Introduction

Recent turmoil in the European sovereign bond market demonstrated that
these debt obligations exhibit the same type of tail risk as other investment
instruments such as equities. It has been the failure to properly model tail
risk that market observers identify as one of the reasons for the recent global
financial crisis. More specifically, it is alleged that risk models prior to 2007
failed to properly assess the risks associated with large adverse price behav-
ior. The forecasting of price behavior of financial instruments is an essential
activity in the implementation of risk management and portfolio allocation.

In modelling price behavior, there exist two distinguishing characteristics
which have been observed. First is the effect of returns in the near past on
returns in near future. Empirically, this observation can be captured using an
autoregressive and moving average (ARMA) model. The other is volatility
clustering, which is the tendency that volatility remains high in near future
if it is high in near past and remains low if it is low. The autoregressive con-
ditional heteroscedasticity (ARCH) model and its generalization (GARCH)
are examples of econometric models for capturing volatility clustering. The
combination of these models, referred to as ARMA-GARCH models, is one of
the simplest models which can capture price behavior that has been observed
in markets.

The problem remains, however, that the ARMA-GARCH model cannot
completely capture tail risk, although it works better in capturing tail risk
compared to many other models. This problem is partly attributed to the
failure of the Gaussian assumption to properly account for random variables
in financial time series. Kim et al. (2011) have demonstrated how apply-
ing heavier-tailed innovations improve the situation and for that reason we
incorporate their methods in this chapter.

The other aspect of the risk problem is attributed to systemic risk and has
been dealt with by some researchers by papers focusing on macroeconomic
factor shocks that tend to affect all institutions/countries in an economy. A
macro shock causes an increase in correlated default losses, with detrimental
effects on intermediaries and thus financial stability. Aikman et al. (2009)
propose a model to assess the impact of macroeconomic and financial shocks
on the banking system. Giesecke and Kim (2011) define systemic risk as the
conditional probability of failure of a large number of financial institutions,
based on a dynamic hazard rate model with macroeconomic covariates. A
related study using a large number of macroeconomic and financial covari-
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ates by Schwaab et al. (2011) derives measures and early signal indicators
of distress using a mixed dynamic factor model approach. Longstaff et al.
(2011) show that the credit spreads for Mexico, Turkey, and Korea share
a strong common relation to U.S. stock market volatility as measured by
the volatility index (VIX) index. Such a common dependence could induce
significant correlations among sovereign credit spreads.

There are studies in the literature recognizing that the cross sectional na-
ture of systemic risk largely results from multivariate tail dependence. Ap-
plying principal components analysis and predictive causality tests, Billio et.
al. (2010) capture dependence between intermediaries through. Hartmann
et al. (2005) use multivariate extreme value theory to estimate the systemic
risk in the international banking system using equity data. Similarly, De
Jonghe (2010) presents estimates of tail betas for European financial firms
as their systemic risk measure.

In line with the idea that non-Gaussianity is essential for marginal mod-
eling and that increasing dependency between common factors is related to
tail dependency of returns particularly during financial crises, in this chapter
we investigate which model offers a more reliable risk assessment for the Eu-
rozone sovereign market. In particular, we try a set of marginal distributions
with different degrees of heaviness in the tail (Gaussian, Student-t, classical
tempered stable, normal tempered stable, and α-stable) and different depen-
dence structure (Gaussian copula, multivariate Student-t copula, skewed-t
copula, and multivariate normal tempered stable copula). We use ARMA-
GARCH model plus heavy-tailed residual distribution the as marginal dis-
tribution, showing finding that our model is better than that which uses
the normal distribution. Also, we show that the Gaussian copula fails to
incorporate dependence structure, and heavy-tailed dependence structure
provides better results. In addition, we discuss the parameters indicating
heavy-tailedness, and then try to forecast the Greek sovereign debt crisis by
combining these parameters. The reason why we focus on Greece is that its
rating was downgraded faster than any of the other Eurozone countries.1

The rest of this chapter is structured as follows. In Section 3.2, we in-
troduce the data we use. Section 3.3 describes our methodology. The fitting
results of the model are presented in Section 3.4. Based on the fitting re-

1For example, Standard and Poor’s downgraded Greece (Hellenic Republic) to BB+
in April 2010. Greece is the first Eurozone sovereign to receive this non-investment grade
rating after 2007.
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sult, we consider the heavy-tail property of returns and try to apply them to
predict future risk. Our conclusions are provided in the final section.

3.2 Data

Performance indices of bonds measuring total return are constructed and
disseminated by major banks. In this chapter, we use selected bond indices
published by Barclays Capital Index (previously published by Lehman Broth-
ers).2 The total return includes both price changes and interest payments.
Because they have a long and continuous history, the Barclays Capital major
sovereign bond indices are followed by institutional investors and often used
by clients as benchmarks. For this reason, we use this bond index for each
of our seven countries.

We use both daily and weekly (returns between weekends) frequencies in
our analysis. In order to avoid the effects of non-synchronous trading and
day-of-week effect, some researchers adopt weekly returns. Because of recent
events in the sovereign bond market, however, significant price changes within
a week call for the use of daily data in addition to weekly data in order to
capture these rapid price movements.

For our analysis, we select seven countries in the Eurozone – France,
Germany, Greece, Ireland, Italy, Portugal, and Spain – for the 11-year pe-
riod from January 2001 to December 2011. The daily data consist of 2,818
observations and the weekly data 573 observations. Each observation is a
seven-dimensional vector representing returns of seven countries. We denote
observation at time t as rt = (r1t , . . . , r

7
t )

T where t = 1, . . . , 2, 818 in daily or
t = 1, . . . , 573 in weekly.

In order to reduce the number of dimension and therefore reduce the
amount of computation, we have selected seven countries. The selected coun-
tries include both major economic powers in the Eurozone (France, Germany)
and peripheral countries in crisis (Greece, Ireland, Italy, Portugal, and Spain)
and represent the characteristics of the entire Eurozone during the financial
crisis. During the period of analysis, the ratings of France and Germany
were not downgraded, while those of the other peripheral countries were
downgraded. France was downgraded after the analysis period. The amount
outstanding of debt securities of these countries is more than 80% of that

2At http://www.barcap.com/indices.
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of the 17 countries consisting of the entire Eurozone.3 The correlation coef-
ficient between the weighted daily returns of the entire Eurozone and that
of the selected seven countries (in which the weights are proportional to the
amount of debt outstanding) is 0.98.

3.3 Methodology

In this chapter, we employ the following methodology:

Step 1: Fit the ARMA-GARCH model to the return series and then
compute the residuals.

Step 2:Fit marginal distribution models to the residual series.

Step 3:Fit a joint copulae to the cumulative distribution function (CDF)
of the residuals.

For the backtesting period, the three steps are repeated.

3.3.1 Calculating the residuals from the ARMA-GARCH
model

In Step 1 the ARMA-GARCH model is used to compute the residuals be-
cause this model captures two stylized facts about financial time series: au-
toregressive nature of returns and volatility clustering. In particular, we use
the ARMA(1,1)-GARCH(1,1) model given by

rit+1 = μi + φirt + ψiui
t + ui

t+1,

ui
t = σi

tε
i
t, (3.1)

(σi
t+1)

2 = Ki + βi(σi
t)

2 + αi(ui
t)

2,

where εit is n independent and identically distributed (i.i.d.) random stan-
dardized (zero mean and unit variance) variables called a residual. The
distribution of residuals is assumed to be the standard Gaussian or the stan-
dard Student-t. We apply this model to index returns rit for each country i
independently. Correlation between country index returns is not considered
here and will be introduced later.

3As of July 2012, computed from statistics available from the European Central Bank.
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3.3.2 Fitting the marginal distribution to the residuals

As noted in the introduction, Kim et al. (2011) have demonstrated that
heavier-tailed innovations improve the ARMA-GARCH fitting. For this rea-
son in Step 2 we fit the following five marginal distributions to the residuals:
standard Gaussian, standard Student-t, standard classical tempered stable
(CTS), standard normal tempered stable (NTS), and α-stable. With the
exception of the standard Gaussian marginal distribution, these distribu-
tions have parameters. The estimation of these parameters is done using
the maximum likelihood estimation (MLE) method. That is, the estimated
parameters are the values that maximize the joint probability of the time
series of the residuals obtained from the ARMA-GARCH model. For the
CTS, NTS, and α-stable distributions, the residuals are obtained from the
ARMA-GARCH fitting using the Student-t distribution as explained in Sec-
tion 3.3.1.

The Student-t distribution has degree-of-freedom parameter νi > 0. As
for the standard CTS, the standard NTS, and the α-stable distributions,
the most important parameter is αi ∈ (0, 2) among all parameters. This
is because parameters νi and αi indicate how the distribution differs from
the Gaussian. In the case of νi, smaller values mean heavier tails than the
Gaussian, and the distribution tends to the Gaussian when ν → ∞. In the
case of αi, smaller values mean heavier tails than the Gaussian, and α → 2
corresponds to the Gaussian.

A goodness-of-fit test must be performed in order to check if these model
distributions and fitted parameters are close to the empirical distribution.
We employ the Kolmogorov-Smirnov (KS) test and the Anderson-Darling
(AD) test for this purpose.4 The null hypothesis is that the empirical distri-
bution matches the model distribution. The p-value is defined as the proba-
bility that the null hypothesis holds. Therefore, if the p-value is less than ε
(0 < ε < 1), then the null hypothesis is rejected with 1− ε confidence level,
suggesting that the empirical distribution is different from the model distri-
bution tested. While both of these tests can be used as a goodness-of-fit test,
the AD statistic has an advantage in that it is more sensitive to the tail part
of the distribution, a desirable feature in testing heavy-tail distributions.

4We use the limiting distribution of these test functions, that is, the distribution for
the case n → ∞ where n is the number of observations.
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3.3.3 Applying the joint copula to the CDF of the
residuals

The degree of capital market integration between sovereign bond markets is
an important topic. For this purpose, we describe the relation by analyzing
the residuals. We use residuals instead of returns because residuals are in-
dependent and identically distributed while returns are not due to volatility
clustering and mean reversion. Let F = F (ε1, . . . , ε7) be the joint cumulative
distribution function of the residuals where the superscript denotes the i-th
sovereign bond market (i = 1, . . . , 7). Then, a copula function is defined as
follows:

C(u1, . . . , u7) = F (ε1, . . . , ε7),
ui = Fi(ε

i),
(3.2)

where Fi(ε
i) is the marginal CDF of residual εi (therefore, variable ui has a

uniform distribution over (0, 1)). The copula function can separate the joint
distribution F into the copula function C and the marginal part Fi .

As for copula function C, in order to capture tail dependency, we use four
different functions: multivariate Gaussian, multivariate Student-t, skewed-t,
and multivariate NTS (MNTS). Fitting to these copulae is based on the
maximum likelihood method. As for the marginal part Fi, the empirical
distribution is the best description of empirical tail-heaviness. Therefore, we
first use the empirical marginal distribution in the copula model. However,
to see how the marginal mismatch between the theoretical and marginal
distributions affect the joint mismatch between them, we also use theoretical
marginal distributions in the copula model for comparison purposes. Since
they are a natural combination, we use the Gaussian marginal distribution
for the Gaussian copula, the Student-t for the multivariate Student-t, the
CTS for the skewed-t, and the NTS for the MNTS.

In order to measure the distance from the theoretical copula model and
the empirical joint distribution, we use the Cramér-von Mises statistic.5 This
statistic takes the value of zero if the theoretical copula completely matches
the empirical one, and gets larger positive values as the difference between
the empirical and the model distribution increases.

5It is also possible to obtain p-values from the statistic; see Genest et al. (2009)
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3.3.4 Backtesting

The three-step methodology described above provides an analysis for a single
period. To check the efficiency of a given model, backtesting of each model is
required. We conduct backtesting for each observation during the six years
from 2006 to 2011. For each observation in this period, we use five-year
data prior to the backtested observation day, and then follow the three steps
described above. That is, we backtest based on the recent six years using
five-year rolling data. By doing so, we obtain a time series of p-values of
the null hypothesis for each country and for each model that are used to
test whether the empirical distribution matches the given model. Also, we
compute a time series of Cramér-von Mises statistics for the multivariate
Gaussian and multivariate Student-t copulae.6

In our backtesting, we investigate how each model predicts the risk mea-
sure endorsed by bank regulators, value at risk (VaR). VaR, which is a kind
of out-of-sample interval forecast, is defined as

VaRε(R) = −Infx{x|Prob(R ≤ x) ≥ ε}, (3.3)

where R is a random variable representing return and ε is a given confidence
level. For example, for a 99% VaR, violation against VaR should be realized
for only 1% of the total observations.

Therefore, in order to test if VaR violations are within the expected num-
bers given the confidence level, the number of realized violations is important.
In addition, there is a statistical test introduced by Christoffersen (1998) that
can be employed. By using the likelihood ratio test, Christoffersen’s method
tests the null hypothesis that the probability of violations against the given
interval forecast (for example, 99% VaR) matches the probability the fore-
cast assumes (for example, 1%). If the test fails, the probability of the event
is higher or lower than the given value. An advantage of Christoffersen’s
method is that it can incorporate the tendency of consecutive occurrence of
VaR violations (i.e., VaR violations tends to continue once they occur). This
tendency has been observed in markets during periods of financial turmoil.

VaR has, however, a flaw: it does not consider the heavy-tail effect. Even
if two distributions have the same VaR, the heavier-tailed distribution is
riskier since it may result in a larger loss compared to the less heavier-tailed

6We omit the cases of the skewed-t and MNTS copulae, because it is shown in Section
3.4 that the fitting of these copulae is worse than the multivariate Student-t copula.
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one. In order to measure this heavy-tail effect, the average VaR (AVaR7) can
be used. AVaR is expressed mathematically by

AVaRε(R) =
1

ε

∫ ε

0

VaRp(R)dp. (3.4)

The following equation holds if the distribution is continuous:

AVaR(R) = E[−R| − R > VaR(R)] = 0. (3.5)

3.4 Empirical results

In this section, we discuss the results from fitting the ARMA-GARCH model
to each country’s bond return series. The goodness-of-fit test results for each
country’s marginal distribution models are shown in Tables 3.1 and 3.2. More
specifically, the table reports the p-values based on the KS and AD statistics.
If a model has a p-value below ε, it means that the model is rejected with
(1 − ε) confidence. A high p-value does not mean that the model is correct
but means that the model is not rejected.

In the daily analysis, the p-values based on the KS statistic are be-
low 5% for the following combinations: Gaussian-Greece, Gaussian-Ireland,
Gaussian-Italy, Gaussian-Portugal, CTS-Greece, NTS-Greece, α-stable-Ireland,
and α-stable-Italy. The p-values based on the daily data and the AD statis-
tics give similar results; that is, Gaussian-Spain also gives p < 0.05 in addi-
tion to the combinations in the KS. As a result, the Student-t distribution
is the only distribution which is not rejected for any of the seven countries
included in this study. For the weekly return analysis, the CTS distribution
is not rejected for any of the countries for both the KS and AD statistics.

In Table 3.3, we show the Cramér-von Mises statistics of four different
models of joint copulae. The multivariate Student-t model is closest to the
empirical distribution. Except for the case between the Gaussian marginal
and the empirical marginal distributions under the Gaussian copula, there is
no large difference between the empirical and the model cases in the marginal
distributions. This shows that the model distributions can capture well the
tails in the marginal distribution. The major difference in the Gaussian case
may be due to the poor fitting of the marginal Gaussian distribution reported
in Tables 3.1 and 3.2.

7AVaR coincides with expected shortfall or conditional VaR (CVaR) if return distribu-
tion is continuous. See Rachev et al. (2008), p. 210.
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Table 3.1: The p-values for each marginal distribution and each country,
using KS statistic.
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Table 3.2: The p-values for each marginal distribution and each country,
using AD statistic.
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Table 3.3: Cramér-von Mises statistics for each joint copula.

Marginal Copula distribution

dist. Gaussian Multivariatet Skewed-t MNTS

Residuals from daily data

Empirical 7.92 4.53 9.96 10.46

Model Gaussian t CTS NTS

11.75 4.19 9.87 10.48

Residuals from weekly data

Empirical 1.53 0.94 2.07 2.09

Model Gaussian t CTS NTS

1.99 1.30 2.05 2.11

In Tables 3.4 and 3.5, the number of backtesting days on which the model
distribution is rejected is reported, as for each model distribution and coun-
try, using both the KS and AD statistics and 95% confidence level. From
these tables, it can be seen that the Gaussian and α-stable distributions are
rejected in most countries and backtesting days. With daily residuals, the
Student-t and the CTS distributions have the least number of rejections.
With weekly residuals, the CTS distribution has the least number of re-
jections, followed by the Student-t and the NTS distributions. From these
results, a fair conclusion is that CTS distribution has the best fit, while the
fitting of Student-t and NTS distributions is comparable to the CTS distri-
butions.

In Figure 3.1, the time series of the Cramér-von Mises statistics for the
Gaussain and Student-t copulae for the seven countries is presented. These
two copulae are selected since based on the results reported on Table 3.3, they
generally give a better fit. The multivariate Student-t model is generally less
than the multivariate Gaussian distribution.

In Tables 3.6 and 3.7, we show the forecasting results based on each
model. The tables show (1) the number of violations of VaR, (2) p-values
for the conditional Christoffersen test assuming the tendency of consecutive
VaR violations, (3) p-values for the unconditional Christoffersen test ignoring
the consecutive tendency of VaR violations, and (4) the average loss minus
AVaR in the case of VaR violations. For the Christoffersen tests, for example,
p-values less than 5% suggest that the probability of VaR violation is not 1%
with 95% confidence level.
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Table 3.4: Number of rejected days in backtesting of each marginal model,
using KS statistic.
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Table 3.5: Number of rejected days in backtesting of each marginal model,
using AD statistic.
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Figure 3.1: Time series of Cramér-von Mises statistics. In most observations,
the multivariate Student-t model gives lower statistic values than the multi-
variate Gaussian distribution, which means that the multivariate Student-t
model has a better fit than the multivariate Gaussian. Note that daily results
are computed at each month-end in order to reduce the computational load.
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Table 3.6: VaR violations, Christoffersen test, and average loss over AVaR:
Daily result.
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Table 3.7: VaR violations, Christoffersen test, and average loss over AVaR:
Weekly result.
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The number of violations always exceeds the expected value – 15 for
daily data and three for weekly data. Comparing models, however, the least
number of violations occurs for the CTS model, while the largest is for the
Gaussian model.

Based on Christoffersen’s test with 95% confidence, for the daily analysis
the null hypothesis of 1% VaR violation is rejected for five countries for the
Gaussian and α-stable distributions both in the conditional and uncondi-
tional cases. Likewise, in the daily analysis, the null hypothesis is rejected
for four countries in the case of the Student-t distribution and for three coun-
tries in the cases of the CTS and NTS distributions. Turning to the weekly
analysis, the null hypothesis is rejected for four countries for all distributions
except the CTS distribution, while it is rejected for three countries for the
CTS distribution. Therefore, our findings suggest that VaR forecasts based
on the CTS model generate less errors than the other models.

There is no big difference in the average loss minus AVaR among models.
which should be zero according to equation (3.5). This means that the ex-
pected loss in the case of VaR violations does not differ based on the model
used. However, Gaussian distribution has a tendency to have a positive de-
viation from zero, indicating that this model has a tendency to predict lower
losses, which is an undesirable feature in return prediction.

Overall, based on the empirical evidence described above, the CTS distri-
bution seems to be the best-fit model, while the Gaussian distribution does
not have sufficient empirical support to use it as a marginal model in mod-
eling sovereign bond returns. Although not the best-fit models, Student-t,
NTS, and α-stable models have more empirical support for their use than
the Gaussian model.

3.5 Tail heaviness and its application to risk

prediction

3.5.1 Tail parameters

The evidence presented in Section 3.4 suggests that the residual distribution
is not Gaussian. In order to measure how different the actual distribution is
from the Gaussian distribution, we will look at the estimated parameters to
assess the deviation from that distribution.

There exist two parameters measuring non-Gaussianity: (1) the degree
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Table 3.8: Tail parameters for the entire period.

�� �������� 	��
�� 
����
� 
����� �����
� ����� �������� ����
�

�� �������������������������

�����
��� 
� ����� � �!" #�"# ��"$ %�#$ $�!# %�!�

&'� ���(� ��) ���) �� ) )�!# ��#$ )� � �� )

*'� ���(� )��� ��#� ��## �� " ��$% ��$% ��$$

���+�� ���(� ��"$ ��"� ��!� ��!� ��!" ��!� ��!"

�� ���������������,��-�������

�����
��� 
� .�)) .�)) #��# $�)� !��) ��!# !�#�

&'� ���(� ���" ���$ )��) /)�� /)�� )� ! /)�� 

*'� ���(� ��)) ��)) /)��� /)��� /)��� ��)# ��%"

���+�� ���(� ��"" ��"" ��!) ��!# ��" ��!$ ��"�

Note: Inequality (> 200, < 0.13 and < 0.25) means that computation is stopped

due to hitting boundary.

of freedom ν in the Student-t distribution, and (2) parameter α in the CTS,
NTS, and α-stable distributions. These parameters for the entire period are
shown in Table 3.8, and the time series is shown in Figure 3.2. In Figure
3.2, we create three groups of the seven countries in the analysis based on a
country’s credit rating: (1) Greece, (2) Ireland, Italy, Portugal, and Spain,
and (3) France and Germany. The first group is the country whose rating
was downgraded most rapidly, the second group consists of the countries
whose ratings were downgraded during the analysis period, and the third
group includes the countries which were not downgraded during the analysis
period. The vertical scale of ν in the Student-t is cut at ν = 25. The weekly
time series of ν for France and Germany always exceeds 25. The vertical
scale of α in the CTS, NTS, and α-stable is in the range of α, (0,2).

If degree of freedom ν decreases, the tail of the Student-t distribution
becomes heavier. From Table 3.8, peripheral countries such as Greece have
a tendency to have heavier tails. From Figure 3.2 it can be seen that the
heaviness of the tail of the peripheral countries measured in ν increases after
the middle of 2010, the time when the Greek sovereign debt problem emerged.

The parameter α for the CTS, NTS, and α-stable models takes the value
between 0 and 2, with α equal to 2 corresponding to the Gaussian case.
From the table, α is less than 2 for all countries. In Figure 3.2, α of the
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Figure 3.2: Time series of tail-heaviness parameters. The distributions have
heavier tails as parameters ν and α decrease. In the Student-t and α-stable
models, these parameters in peripheral countries such as Greece decrease
after the Greek crisis. In the CTS model, the parameter α in Greece is much
less than 2 in almost all observations, showing that the model has much
heavier tails than the Gaussian.
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peripheral countries for the CTS model is always much less than 2, and α
of these countries for the α-stable model decreases from 2 subsequent to the
commencement of the Greek crisis.

3.5.2 VaR spread

As can be seen in the case of Greece, the heaviness of the tail has a tendency
to increase when a crisis starts. Therefore, there is the potential to use this
parameter as a signal of forthcoming turmoil in a market.8

In order to relate the heaviness of a tail to risk, we compare the VaR
based on both Gaussian and non-Gaussian distributions. If the market is
under duress, heaviness of its tail is likely to increase as more attention
will be paid toward tail risk, and the difference between the VaR based on
Gaussian and the VaR based on non-Gaussian becomes larger. We refer to
this difference as VaR spread.

In Figure 3.3, we show the realized return and daily VaR spread for
Greek debt around May 2010 when Greek government bond prices dropped
and then recovered sharply.9 It can be seen that the VaR spread exhibited
a tendency to increase since the beginning of April 2010, reflecting increased
anxiety regarding the tail risk for Greek government bonds. In fact, Greek
bond returns began oscillating in larger amplitude since then.

In the figure, we show two VaR spreads: Gaussian-Student-t and Gaussian-
CTS. For the latter, the spread is larger than the former. This is because
the heaviness of the return distribution is better captured by the CTS dis-
tribution.

8A commonly used measure to proxy for market tension is volatility. However, it is
sometimes a lagging indicator which goes behind the market turmoil. The advantage of
VaR spread is that it captures the risk which has not appeared but is expected to appear
in the near future.

9Reflecting bad news such as unreported debt, downgrading, strikes and discord of
international rescue packages, the Greek bond market had been under considerable tension
since the end of 2009. The total return index of Greek bonds dropped by 14% for five
consecutive business days from April 30 to May 7, 2010 and then recovered by more than
26% on May 10, 2010.
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Figure 3.3: Daily VaR spread of Greece from March to May 2010. Units are
percentages in both VaR spreads and returns. VaR spread is defined as the
difference between the VaR based on the Gaussian model and the VaR based
on the non-Gaussian model. The daily VaR spread exhibited a tendency
to increase since the beginning of April 2010, reflecting increased anxiety
regarding the tail risk for Greek government bonds.
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3.6 Conclusion

In this chapter, we use alternative statistical models in an attempt to identify
the best performing model to describe sovereign bond returns for seven gov-
ernments in the Eurozone. These returns exhibit autocorrelation effect and
volatility clustering effect. We apply the ARMA(1,1)-GARCH(1,1) model
to returns for each of the seven countries, and apply five marginal distribu-
tion models to ARMA-GARCH generated residuals. We find that Gaussian
distribution cannot describe the empirical distribution well, suggesting that
heaviness of tails in return distributions cannot be ignored in model develop-
ment. Our empirical analysis suggests that the CTS distribution is the distri-
bution that most closely matches the empirical. As for the joint distribution,
the multivariate Student-t distribution gives the best fit to the empirical one.
The heaviness of the return distribution changes over time, reflecting future
risk. We compute VaR based on different heavy-tailed models, and compute
their spread over Gaussian VaR. These spreads signals forthcoming risk in
the case of the financial crisis in Greece around May 2010.
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Chapter 4

ICA-GARCH Analysis of Joint
Default Probability of
Eurozone Sovereigns

In this chapter, we provide an empirical application of the independent com-
ponent analysis (ICA) based on the Eurozone sovereign CDS. First, we fit
the data to the various ICA models, and compare their goodness-of-fitting
based on the log-likelihood, the Akaike information criterion and the Bayesian
information criterion. The data is the sovereign CDS premiums of 11 Eu-
rozone countries (Austria, Belgium, Finland, France, Germany, Greece, Ire-
land, Italy, Netherlands, Portugal, and Spain) from 2007 to 2013. The result
shows that the ICA model is as good as the direct modeling of joint distri-
bution via copula functions. Especially, the ICA model with the GARCH
postprocess model is as better as the ARMA-GARCH model with the copula
postprocess model. Based on this result, we introduce a structural sovereign
default model with CDS premium, and compute the joint default probability
of sovereigns based on the ICA models and copula models. Accordingly, the
ICA model reports higher joint probability of defaults compared to the cop-
ula models. Consequently the instability of Eurozone sovereigns shown by
ICA has increased before 2010, in which year the Eurozone crisis occurred,
and is generally larger than that shown by copula model.
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4.1 Introduction

Modeling of a multivariate random variable is an important topic for risk
analysis. Movements of a specific asset is affected by that of another asset.
Especially, in the period of turmoil, we can observe the increased dependency
of different assets – not only among the same asset class, but across the asset
classes, markets, or countries. In order to avoid a precipitous decline in asset
value, it is important to capture the dependency structure of variables.

For this purpose, a joint distribution of all variables mathematically pro-
vides all the information of the dependency. For example, the multivariate
Gaussian distribution can express all the pairwise correlations. If the num-
ber of variables is limited to two or three, it is efficient and exact to use the
Gaussian joint distribution, as long as the model is correct. However, as the
number of variable increases, the number of pairwise correlations increases
rapidly (quadratically), creating the problem of parameter estimation. In
addition, in the modeling of asset returns, such a number of parameters is
usually unnecessary, since assets are characterized by fewer number of pa-
rameters, such as industry or capitalization.

For these reasons, it becomes an important problem to find an appropriate
representation of a high-dimensional random vector. Such a representation
should be in the way that we can easily understand and see the nature of
the variable. Especially, if the representation is given by a linear transfor-
mation, then it becomes quite easy to interpret and compute the variable.
Conventionally, factor analysis and principal component analysis (PCA) are
used for this purpose.

Independent component analysis is a novel method to obtain the repre-
sentation of a random vector. It is a linear transformation similar to PCA.
However, different from PCA, it discovers the most independent variables
of the original variables based on the information theory. It is a powerful
property for modeling and interpretation. The research about ICA and its
applications has been rapidly developing recently (Hyvärinen et al., 2001).

The first application of ICA to finance dates back to 1997, as long as we
investigate (Back and Weigend, 1997). The authors of the paper applied ICA
to the daily returns, finding that these returns are separated into frequent and
non-frequent components. Mălăroiu et al. (2000) applied ICA to a preprocess
of AR model. They showed the forecast of ten foreign exchange rates can
be predicted more accurately using ICA compared to the case without ICA.
More recently, Kumiega et al. (2011) applied ICA to the S&P sectorial
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indexes consisted of 10 time series, and they showed that the independent
components can be interpreted as the proxy of the energy index, financial
sector index, and the index of other sectors.

For the modeling of return series, it is well known that the series has
volatility clustering. In order to model it, recent works combine ICA with
stochastic volatility or GARCH models. Especially, Garcia-Ferrer et al.
(2008), Xu and Wirjanto (2009) and Kumiega et al. (2011) investigate the
combination of ICA and GARCH

Default correlation is an important field of research into which depen-
dency analysis should be applied. Especially, since the financial and sovereign
crisis from 2008, the analysis of joint default of banks or sovereigns has been
an important topic; for example, Ang and Longstaff (2013) and Caporin et
al. (2013). In this chapter, we are trying to explain the joint default prob-
ability based on the CDS data and ICA. We adopt the structural model
of sovereign defaults based on the CDS premium proposed by Lucas et al.
(2011). Combining the CDS model and their definition of defaults, we can
compute the joint distribution of defaults.

This chapter is constructed as follows. Section 4.2 explains the data.
Section 4.3 explains the ICA models and show the fitting results based on
the data. Section 4.4 explains both how to construct a joint default model
from the CDS data and how to define the statistics indicating the level of
joint default. The results are also shown in the section. Section 4.5 is devoted
to the conclusion.

4.2 Data

The CDS premium used in this research is the maturity of five-years and
denominated by USD. The data is sourced from the CMA and downloaded
from the Bloomberg terminal. Its period is from April 30, 2007 to March 8,
2013. We use daily data and convert them into daily log returns. We use
11 Eurozone sovereigns: Austria (AT), Belgium (BE), Finland (FI), France
(FR), Germany (DE), Greece (GE), Ireland (IE), Italy (IT), Netherlands
(NE), Portugal (PT), and Spain (ES).

During the data period, the collapse of Lehman Brothers and the Euro-
zone sovereign crisis occurred. It is expected that the market conditions are
not uniform during the period. Therefore, we divide the entire period into
three subperiods:
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Table 4.1: Data periods and countries for each period. All the eleven coun-
tries are included by Period 2: Austria Belgium, Finland, France, Germany,
Greece, Ireland, Italy, Netherland, Portugal, and Spain. Some of them are
excluded from the other periods.
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1. From April 30, 2007 to January 28, 2009,

2. From January 29, 2009 to September 9, 2011, and

3. From September 2011 to March 8, 2013.

We decided these subperiods mainly for the data availability. For ex-
ample, we identified Period 1 since the data of Finland and Ireland is not
available during the period. However, we also give an interpretation for this
decision. Period 1 corresponds to the period prior to the Lehman Brothers
collapse, and the level of the bid-ask spread was much lower than that of later
periods (For example, see Calice et al., 2012). So it is natural to separate
Period 1 from the others.

On the other hand, Period 3 is decided since the continuity of Greek CDS
premium is lost during the period. In the third quarter of 2011, the Greek
premium increased to the level that conventional quotation is impossible and
’upfront basis’ quotation of premium is required (CMA, 2011), which is the
fundamental reason we set the end of Period 2 in September 2011.

For these reasons, we define the three periods above, and some of the
countries are excluded from 11 countries. However, as a result, the length
of data is shortened. In order to mitigate this disadvantage, we also define
Period 4 from the beginning and to the end of the data. During this period,
three countries (Finland, Greece and Ireland) are excluded due to the data
unavailability. The summary of the periods and the countries is shown in
Table 4.1.
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4.3 CDS return model based on ICA

4.3.1 ICA model

Our major interest is to apply the ICA model and ICA-GARCH model into
the CDS. Let rt = (r1t, . . . , rdt), t = 1, . . . , T denote the log-return of d
sovereign CDS premiums on day t. The independent component analysis
(ICA) converts rt into st as

rt = μ+ Ast, (4.1)

st = (s1t, . . . , sqt)
T: independent components, (4.2)

vartstj = 1, j = 1, . . . , q (4.3)

μ: constant vector, and (4.4)

A: d× q-constant matrix. (4.5)

Parameter μ is set to the sample mean μ̂ = Σtrt/T . Matrix A is estimated
by the fastICA algorithm. Hereafter, for simplicity, we assume d = q.

The series of {sjt}1≤t≤T , is referred to as a independent component (IC).
The sign of an IC is arbitrary, so we set it as it shows negative skewness. Due
to the definition of the ICA, we expect that time series {sjt}t, j = 1, . . . , d,
are independent and standardized, that is,

covts = Iq, (4.6)

fst(st) = f1t(s1t)f2t(s2t) · · · fqt(sqt), (4.7)

where fst(st) and fjt(sjt) are the PDF of st and sjt, respectively.
We still have to model the marginal distribution of sjt. In our analysis, we

define Model 1 by assuming that they have a Gaussian distribution. Also,
Model 2 assumes that sjt has a standardized Student-t distribution with
degree-of-freedom (dof) νj.

1

In Models 1 and 2, the PDFs of St and Sjt are independent of t. Let
fs(St) and fj(Sjt) denote their PDFs, respectively. Due to eq.(4.1), we can

1A Student-t distribution multiplied by factor
√

(ν − 2)/ν in order to set its variance
unity.
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define the PDF of rt, fr(rt) from fs(st) and fj(sjt), as

fr(rt) = |∂st
∂rt

|fs(st) (4.8)

=
1

| detA|f1(s1t) · · · fd(sdt). (4.9)

By taking the logarithm of eq.(4.9) and summing them as for t = 1, . . . , T ,
we obtain the log-likelihood of ICA model.

4.3.2 ICA-GARCH model

Since ICs are a linear transformation of returns, ICs are also expected to
inherit the properties of serial correlation and volatility clustering, which re-
turns usually have. In order to model volatility clustering, we apply GARCH(1,1)
model to sjt:

sjt = σjtεjt, (4.10)

σ2
j,t+1 = ωj + ajs

2
jt + bjσ

2
jt. (4.11)

εjt is a random variable whose variance is unity. We use the Gaussian dis-
tribution in Model 3 and the standardized Student-t distribution in model
4.

In addition, since returns have skewness, ICs are also expected to have
skewness. In order to express this property, we can use EGARCH(1,1) model
(Nelson, 1991) as Model 5 and GJR-GARCH(1,1) model (Glosten et al.,
1993) as Model 6. These models replaces eq.(4.11) with

log σ2
jt = ωjbj log σ

2
jt + ajεjt + cj(|εjt − E |εjt|), (4.12)

in EGARCH and

σ2
jt = ωj + (aj − 1sjt<0cj)s

2
jt + bjσ

2
jt. (4.13)

in GJR-GARCH.
Let us consider the likelihood of these models. In these models, the PDF

of sj,t+1 is conditional to the data up to time t. Let fj,t+1|t(sj,t+1) denote the
conditional PDF. Therefore the joint PDF fj(sj1, sj2, . . . , sjT ) is represented
as

fj(sj1, sj2, . . . , sjT ) = fj1(sj1)fj2|1(sj2) · · · fjT |T−1(sjT ). (4.14)
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where fjt|t−1(sjt) is the PDF of sjt conditional to the information up to
time t− 1. The parameters in eqs.(4.11), (4.12), and (4.13) are obtained by
maximizing (4.14).

The PDF of rt+1 is also conditional to the past data up to time t. The
distribution of rt+1 is

fr,t+1|t(rt+1) =
1

| detA|fs,t+1|t(st+1). (4.15)

Therefore, the PDF of all rt is

f(r1, . . . , rT ) =
T∏
t=1

frt|t−1(rt) (4.16)

=
1

| detA|T
T∏
t=1

fst|t−1(st) (4.17)

=
1

| detA|T
T∏
t=1

q∏
j=1

fjt|t−1(sjt) (4.18)

=
1

| detA|T
q∏

j=1

fj(sj1, sj2, . . . , sjT ), (4.19)

where fr1|0(r1) = fr1(r1) and fj1|0(sj1) = fj1(sj1). From eqs.(4.14) and (4.19),
we can define the model PDF and likelihood.

4.3.3 AR-ICA-GARCH model

It is known that return series usually has a weak autocorrelation. In order
to express this effect, we also try to use AR(1) or ARMA(1,1) models. Let
us consider to replace eq.(4.1) with

ri,t+1 = μi + φirit + ui,t+1, i = 1, . . . , q, (4.20)

and define (ui1, . . . , uiq)
T = AS, then we obtain an AR(1)-ICA model. We

define Model 7 as the AR-ICA-GARCH model and Model 8 as the AR-ICA-
EGARCH model. Likewise, let us consider to replace eq.(4.1) with

ri,t+1 = μi + φirit + ψiuit + ui,t+1, i = 1, . . . , q, (4.21)

then we obtain an ARMA(1,1)-ICA model. We define Models 9 and 10 as the
ARMA-ICA-GARCH and the ARMA-ICA-EGARCH models, respectively.
The computation of likelihood is similar to eq.(4.19).
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4.3.4 ARMA-GARCH and copula model

We use the ARMA-GARCH and copula model as a reference case. It is fre-
quently used in order to capture return autocorrelation and volatility cluster-
ing. First, we use the ARMA-GARCH model for each marginal distribution:

rit+1 = μi + φirt + ψiui
t + ui

t+1,

ui
t = σi

tε
i
t, (4.22)

(σi
t+1)

2 = Ki + βi(σi
t)

2 + αi(ui
t)

2,

where εit is n independent and identically distributed (i.i.d.) random stan-
dardized (zero mean and unit variance) variables called a residual. Next, in
order to capture the joint distribution, we assume that the residual vector
(εit, . . . , ε

i
t)

T obeys copula dependency. Models 11 and 12 use the Gaussian
distribution for εit, while Models 12 and 13 use the standardized Student-t
distribution. Models 11 and 13 use the Gaussian copula for the dependency
structure of ε, while Models 12 and 14 use the Student-t copula.

4.3.5 Empirical results of fitting

In summary, we consider 14 models shown in Table 4.2. The log-likelihood
for each model and each period and its ranking among the 14 models are
shown in Table 4.3. Also, the values of and the rankings based on Akaike
and Bayesian information criteria (AIC and BIC) are shown in Tables 4.4
and 4.5.

According to these tables, it can be seen that Model 14 (ARMA-GARCH-
T and T copula model) is almost always the best in almost all periods and
measures (likelihood, AIC or BIC). The second best models seems to be
Models 4 or 5 (ICA-GARCH or ICA-EGARCH models) according to the
likelihood and the AIC, and seems to be Model 13 (ARMA-GARCH-T and
Gaussian copula model) according to the BIC.

In order to see the differences of these best models (Models 4, 5, 13 and
14) in detail, we then do a rolling analysis. For every five day, we pick up the
252 consecutive days prior to the day, and fit the models to the data of these
252 days. The result is shown in Figures 4.1 and 4.2. Figure 4.1 is as for 11
countries and Figure 4.2 is as for 8 countries. Note that the former includes
Greece but the latter does not. From these figures, the order of goodness
of these four models depends on time. For example, based on Figure 4.1,
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Table 4.2: The list of models we consider. For details, see the main text.
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Table 4.3: The list of log-likelihood for each model and period. The numbers
in parentheses are the ranking of goodness-of-fitting, in which 1 shows the
best fit and 14 the worst. According to these rankings, Model 14 is the best,
and Models 4-5 are the second best.
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Table 4.4: The list of AIC for each model and period. The numbers in
parentheses are the ranking of goodness-of-fitting, in which 1 shows the best
fit and 14 the worst. According to these rankings, Model 14 is the best, and
Models 4-5 are the second best.
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Table 4.5: The list of BIC for each model and period. The numbers in
parentheses are the ranking of goodness-of-fitting, in which 1 shows the best
fit and 14 the worst. According to these rankings, Model 14 is the best, and
Model 13 is the second best.
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the ICA-based models are better than the copula-based models both around
March 2010 and July 2011, while the copula-based models are better around
September 2010. Figure 4.2 shows the interesting feature that the fitness
of ICA models is much worse than that of copula models before 2009. The
reason is not clear, but it is possible from this figure that the market structure
is completely changed at around 2009. This timing of change matches the
beginning of the European sovereign crisis.

4.4 Joint default model

4.4.1 Default probability of single country

There are two sources of the default probability (DP) of sovereign entities.
One is that based on credit ratings, and the other is that implied in the CDS.
A rating is a discrete variable issuedby credit agencies. For example, Stan-
dard and Poor’s adopts 17 levels2 of credit worthiness, ranging from AAA to
D. These rating are provided by major credit agencies. These agencies decide
the rating basing on a wide range of information available, both quantita-
tive and qualitative. There are preceding empirical studies which converts
these ratings into the default probability. For example, these agencies them-
selves publish the transition probability to default based on their definition
of ratings; for example, see the report by Standard and Poor’s (Standard and
Poor’s, 2013).

On the other hand, a CDS premium is a virtually continuous variable,
compared with a rating.3 Its value is decided by market participants, who are
supposed to use all the public information available up to the trading time.
A CDS premium can be theoretically connected to the default probability.
Especially, ignoring the risk premium or counter party risk and assuming
continuous payments of premium, the relation becomes simple (Hull and
White, 2000), according to which the default probability (DP) p implied in
a CDS preimum c is

p = c× 1 + rf
1−R

, (4.23)

where rf is the risk-free rate and R the recovery rate. For example, the

2Ignoring positive/negative outlooks.
3Strictly, a CDS premium is also a discrete value since it is a multiplication of price

tick.
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Figure 4.1: Time series of log-likelihood, AIC and BIC during Period 2.
The order of goodness of these four models depends on time. For example,
the ICA-based models are better than the copula-based models both around
March 2010 and July 2011, while the copula-based models are better around
September 2010.
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Figure 4.2: Time series of log-likelihood, AIC and BIC during Period 4. The
fitness of ICA models is much worse than that of copula models before 2009.
The reason is not clear, but it is possible from this figure that the mar-
ket structure is completely changed at around 2009. This timing of change
matches the beginning of the European sovereign crisis.
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Figure 4.3: Semiannual default probability of each country during Period 2.
Based on CDS premium of five year maturity, six month LIBOR, and 40%
recovery rate.

example of semiannual default probability based on eq.(4.23) is shown in
Figure 4.3. In this figure, the semiannual default probabilities of 11 countries
during Period 2 are shown, based on the five-year maturity CDS premium
provided by CMA, the six-month USD LIBOR as the risk-free rate, and 40%
as the recovery rate. Equation (4.23) assumes a continuous constant premium
applied in all maturities. There are more sophisticated default probability
models incorporating maturity structure or risk premium, but we simply uses
the relation 4.23 since our purpose is to check the effect of ICA.

These two sources have both advantages and disadvantages. For example,
changes of credit ratings are not so frequent. Greek has experienced frequent
changes of its rating due to recent turmoil, but the number of changes is
around ten since 2000. On the other hand, a CDS premium is updated daily,
hourly, or even at every seconds in the market. From the viewpoint of up-to-
date information, a CDS premium is better since it reflects the newest news.
On the other hand, a CDS premium is affected by not only the situation
of the reference entity itself but the situation of the market. As a result, it
contains a lot of erroneous information.
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4.4.2 Connecting default probability with CDS

A default of an corporate is often modeled as the event that the asset value
of the corporate falls below the debt amount at the time of measurement. In
another words, a default is defined as the asset deficit at the measurement
time. A default model based on this idea is usually referred to as a structural
model of default. For example, Merton model is a structural model importing
the geometric Brownian motion as the asset value process (Merton, 1974).
Black Cox model is same with the Merton model except that the measure-
ment time is not limited to discrete times but all time t (Black and Cox,
1976). Based on this idea, it is natural to link defaults of a set of corporates
via a vector stochastic process representing their asset values (McNeil, Frey
and Embrechts, 2005).

In the case of sovereign default, it is not common to extend the idea of
asset deficit. The alternative idea to use the cost and benefit of default, and
define a default as the case the benefit surpasses the cost (Calvo, 1988). Es-
pecially, by regarding the CDS premium as the difference between the benefit
and the cost, a default model similar to the structural model is obtained; for
details, see Lucas et al. (2011). The only difference is the direction of in-
equality; since larger CDS premium is closer to default, it is natural to define
a default event as the CDS premium goes over some threshold value.

Let us define a default model based on the CDS premium pricing. Suppose
we have the market information up to time t, and let pt,t+τ denote the DP of
a country by time t+ τ . Let At,t+τ denote the set of default events between
time t and t+ τ . By definition,

pt,t+τ = Pt(At,t+τ ), (4.24)

where Pt means the probability filtered by the information up to time t.
Let Ct denote the CDS premium at time t. As we noted, the fundamental

idea of connecting CDS with default is to define a default event as the case
that CDS spread goes over some threshold value. In equation,

At,t+τ = {Ct+τ > C0
t,t+τ}, (4.25)

where C0
t,t+τ is the threshold.

Combining eqs.(4.24) and (4.25), we obtain

pt,t+τ = Pt(Ct+τ > C0
t,t+τ ). (4.26)
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Let Ft,t+τ (C) denote the cumulative distribution function (CDF) of Ct+τ ,
that is, Ft,t+τ (C) = Pt(Ct+τ < C). Then, eq.(4.26) is rewritten as pt,t+τ =
1− Ft,t+τ (c

0
t,t+τ ), or equivalently,

c0t,t+τ = F−1
t,t+τ (1− pt,t+τ ). (4.27)

4.4.3 Joint default probability

The discussion above can be easily extended to multiple entities. Suppose
we have only two entities (entity 1 and entity 2), and identify a variable by
subscripting, such as, F1,t,t+τ (Ci) for the CDF of entity 1. Let us consider
the joint DP of the entities 1 and 2. The event sets of entity 1 default is
defined by A1,t,t+τ , and that as for entity 2 is A2,t,t+τ . Therefore, the set of
events where both entity 1 and 2 default during t ∼ t+ τ is A1,t,t+τ ∩A2,t,t+τ .
From eq.(4.25),

{Entity 1 and 2 default simultaneously}
= A1,t,t+τ ∩ A2,t,t+τ (4.28)

= {C1,t+τ > C0
1,t,t+τ and C2,t+τ > C0

2,t,t+τ}. (4.29)

Therefore,

Pt(Entity 1 and 2 default simultaneously)

= Pt(C1,t+τ > C0
1,t,t+τ and C2,t+τ > C0

2,t,t+τ ) (4.30)

= 1− F12,t,t+τ (C
0
1,t+τ , C

0
2,t+τ ), (4.31)

where F12,t,t+τ (C1, C2) is the joint CDF of (C1,t+τ , C2,t+τ ) filtered by time t.
According to eq.(4.31), in order to obtain the joint default probability, we
need the joint distribution of CDS. The threshold values C1,t+τ and C2,t+τ are
given by eq.(4.27). Likewise, it can be easily shown that the probability that
entity 1 defaults but entity 2 does not is Pt(C1,t+τ > C0

1,t,t+τ and C2,t+τ <
C0

2,t,t+τ ), and so on.
It is clear how to extend this discussion for larger numbers of entities.

The probability of defaults of q entities during t ∼ t + τ is given as the
joint probability that the CDSs of these entities go over their corresponding
thresholds at time t+ τ , and these thresholds can be given by the marginal
distribution function of CDS and the default probability. If there exist (d−q)
another entities which do not default, then the probability is the probability
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that q CDS go over their thresholds and another (d − q) go below their
thresholds.

Based on these discussions, it is enough to know the joint distribution
of CDS and the marginal probability of default, in order to obtain the joint
probability of defaults. In this chapter, we use the return model described
in Section 4.3 in order to obtain the joint distribution.

4.4.4 Joint default statistics

Based on the previous discussion, we can define the joint default probability.
However, for intuitive understanding, we need to invent an indicator showing
dependency. For simplicity, let Ii = 1 denote default event Ci,t+τ > C0

i,t,t+τ

and Ii = 0 denote non-default Ci,t+τ < C0
i,t,t+τ

First, we consider the probability of one or more defaults D≥1, the prob-
ability of only one default D1, and the probability of two or more defaults
D≥2. Apparently, D≥1 = D1 +D≥2.

Then we can define the conditional probability of simultaneous defaults
(CPSD). It is defined as the probability of two or more defaults conditional
to one or more defaults. Apparently,

CPSD =
D≥2

D≥1

= 1− D1

D≥1

(4.32)

This indicates the risk of simultaneous default.
Similar to CPSD, we define the stability index (SI). This is originally

defined by Huang (1992). Segoviano and Goodhart (2009) name it as the
banking stability index since they discuss the stability of banking sectors. It
is defined as

SI =
P (I1 = 1) + · · ·+ P (Id = 1)

1− P (I1 = 0, . . . , Id = 0)
. (4.33)

SI takes a value in the range from 1 (all defaults are independent) to d (all
defaults are completely correlated).

4.4.5 Joint default results

In order to see the joint default statistics in detail, we do backtesting similar
to the rolling analysis in Section 4.3.5. For each backtesting day, we pick up
the 252 consecutive days prior to the day, fit the models to the data of these
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252 days, and compute the joint default probability in six months from the
day. The backtesting days are every five days. We pick up Model 4 (ICA-
GARCH-T) and 14 (ARMA-GARCH-T and T copula). We show the results
based on the data of Period 4 in order to see longer time series, but have the
similar results based on Period 2.

Figure 4.4 shows the time series of D≥1, D1, and D≥2. It can be seen that
the ICA model reports lower probability of any defaults, D≥1, compared to
the copula model. On the other hand, it can be seen that the probability of
multiple defaults D≥2 based on ICA is about the same with that based on
copula. The difference is considered to come from the probability of only one
default, D1. The copula model reports larger probability of single default
than the ICA model.

Figure 4.5 shows the time series of the CPSD and the SI. It can be seen
that these values based on ICA are generally larger than those based on
copula, especially in the early period of analysis. This is because that the
ICA model reports lower single default probability D1. As a result, the
conditional probability of eq.(4.32) gets larger. The increased probability of
joint defaults pushes the SI up, making the system unstable.

It is interesting that these values based on ICA increased earlier than
those based on copula before 2009. This means that the ICA model was
more sensitive to the increased joint risk of sovereigns occurring in 2010.
Also, these values based on ICA have decreased since 2011, while those based
on copula have not. This means that, based on ICA, the stress of Eurozone
sovereign has been relaxed since 2011. This is an interesting results since
the consecutive rescue programs of Eurozone countries such as the European
Financial Stability Facility (EFSF) did have effect on the market, while it
did not decreased the risk of the system dramatically by a single shot.

4.5 Conclusion

In this chapter, we provide an empirical application of the independent com-
ponent analysis (ICA) based on the Eurozone sovereign CDS. According to
the result, the ICA-based models are as good as the copula-based models.

Based on this result, we introduce a structural sovereign default model
with CDS premium, and compute the joint default probability of sovereigns
based on the ICA models and copula models. Accordingly, the ICA model
reports higher conditional probability of joint defaults compared to the cop-
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Figure 4.4: Time series of D≥1, D1, and D≥2 during Period 4. It can be seen
that the ICA model reports lower probability of D≥1, compared to the copula
model. On the other hand, it can be seen that the probability of multiple
defaults D≥2 based on ICA is about the same with that based on copula.
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Figure 4.5: Time series of the conditional probability of simultaneous default
(CPSD) and the stability index (SI) during Period 4. It can be seen that
these values based on ICA are generally larger than those based on copula,
especially in the early period of analysis. This is because that the ICA model
reports lower single default probability D1. The increased probability of joint
defaults means that the system is unstable.
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ula models. Consequently the instability of Eurozone sovereigns shown by
ICA is larger than that shown by copula.

In this research, we combined two models; ICA model and joint default
model. The advantage of ICA is that it is easy to interpret and compute. For
further researches, it should be considered to relate ICs to external economic
indicator. Also, it is interesting to apply ICA into higher dimensions, in
which the maximum likelihood estimation of Student-t copula parameters
becomes computationally intractable. Analysis of joint default in Eurozone
sovereigns is an ongoing hot topic at the time we write this chapter. Our
research is just an example how to compute the joint risk of Eurozone, and
it should be necessary to carefully evaluate it using a wide variety of models
and indicators.
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Chapter 5

Conclusion

In this dissertation, we discussed the practical applications of risk analysis
based on advanced probabilistic models.

In Chapter 1, we summarized the methodology from the three impor-
tant viewpoints: univariate modeling, multivariate modeling, and definition
of risk. As for univariate modeling, we introduced the α-stable distribution
and its modifications such as the classical tempered distribution, and we saw
that these distributions are connected by the concept of Lévy process. As
for multivariate modeling, we introduced two concepts. One is the copula
function, which is widely used in pricing of multiple assets. The other is the
factor analysis, the principal component analysis and the independent com-
ponent analysis, which are the basic tool to summarize the multivariate data
by single of few number of variables. As for definition of risk, we introduced
the concept of Value at Risk, and discussed related topics.

In Chapter 2, we presented a practical example of how to construct a port-
folio based on the return model and risk measure. The result was tested by
the method of backtesting. Consequently, it was found that (1) the ARMA-
GARCH model with classical tempered stable (CTS) distribution provides a
superior prediction than the normal and Student-t distribution and (2) AVaR
provides a better risk measure than variance. It was also suggested that the
number of universe has effect on the portfolio return, and that it is effective
to reduce stock universe to large capitalization stocks.

In Chapter 3, we analyzed the distribution of returns on seven major Eu-
rozone sovereign bonds (France, Germany, Greece, Ireland, Italy, Portugal,
and Spain) and their co-movement. We investigated the ARMA-GARCH
models based on different assumptions about the innovations: Gaussian,
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Student-t, CTS, normal tempered stable (NTS), and -stable. For each
of the five models, we applied four copula functions, and assessed the fore-
casting performance of combinations of these models. In addition, to find a
forward-looking measure to detect the exacerbating of the financial crisis of
Greece, we analyzed the evolution of the tail parameter over time.

In Chapter 4, we discussed the goodness of fitting of the independent
component analysis (ICA) using the sovereign CDS premiums of 11 Euro-
zone countries (Austria, Belgium, Finland, France, Germany, Greece, Ire-
land, Italy, Netherlands, Portugal, and Spain). Based on the log-likelihood,
the Akaike information criterion and the Bayesian information criterion, we
first showed the fitness of the ICA is as good as more complicated models
such as the ARMA-GARCH and Student-t copula model. Also, we intro-
duced the joint default probability model based on the CDS prediction model
and the marginal default probability, and discussed that the ICA-based joint
default indicates the European sovereign crisis earlier than that based on the
ARMA-GARCH and copula.

As we discussed at the beginning of Chapter 1, analyzing risk in finance
is an important topic for all participants of finance and economy. I hope
that the results shown in this dissertation can help improving risk analysis
in future.
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