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Abstract of the Dissertation

Monotonicity Properties of Stochastic Kriging Metamodels

and Related Applications

by

Bing Wang

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Concentration - Operations Research)

Stony Brook University

2016

Stochastic kriging (SK) and stochastic kriging with gradient estimators

(SKG) are popular approaches to approximate complex simulation models

because of their ability to replace the expensive simulation outputs by meta-

model values. Obtaining an accurate SK/SKG metamodel is highly desirable

in practice. This dissertation studies the monotonicity properties of the mean

squared error (MSE) of optimal SK and SKG predictors. In particular, we

show that in both SK and SKG, the MSEs of the corresponding optimal pre-

dictors are non-increasing functions of the numbers of design points. Based

on these findings, we design an adaptive sequential sampling approach to
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obtain SK/SKG predictors with a pre-defined level of accuracy. In each step,

our approach selects the point that achieves the maximum reduction in the

current integrated MSE (IMSE) and adaptively allocates the number of sim-

ulation replications. Theoretical analysis is also provided to guarantee that a

desired performance can be achieved. We run numerical examples to justify

the monotonicity properties of the predictors under both SK and SKG frame-

works, and illustrate the effectiveness of the proposed approach by comparing

its performance with two other existing methods. The comparison results in-

dicate that our approach can be more efficient both in terms of the number

of design points used and the simulation efforts expended.
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1 Kriging Metamodeling in Simulation

1.1 Background

In many real life problems, evaluating the performance of an objective

function may be computationally expensive and time consuming. For some

complicated simulation systems, it may take days or weeks to finish a single

simulation run. For example, it is reported that it takes Ford Motor Company

about 36-160 hours to run one crash simulation [1]. Suppose on average

50 iterations are needed to solve an optimization problem, and assume each

iteration needs one crash simulation, the total computation time would be 75

days to 11 months, which is unacceptable in practice [2]. Similar problems

that involve complex and heavy computational tasks are also common in

the area of geo-information inference, stock price prediction and computer

design experiments. Consequently, obtaining an accurate simulation output

in a computationally efficient manner is highly desirable.

Metamodeling, or surrogate model, is a well recognized solution to ad-

dress the above-mentioned challenge. A metamodel aims at approximating

the response of a simulation model based on limited evaluations of the model.

It is considered as a model of the simulation model. Metamodels usually fo-
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cus on studying the the input and output relationships. By fitting the correct

metamodel, a computationally expensive simulation model can be replaced

by its metamodel, and the common statistical analysis can be applied. Com-

monly used metamodels include radial basis functions, neural networks and

kriging, etc. In this dissertation, we focus on one of the most popular meta-

models, kriging. Kriging and its related methods are advantageous for the

efficient usage of simulation computational resources. Specifically, they are

capable of obtaining accurate estimates of performance measures with rela-

tively small amount of design points, which is particularly important when

the cost of obtaining sample data is high. Kriging and its related methods

have been widely used in environmental science, mining, natural resources

and engineering ([3], [4], [5], [6], [7]).

Kriging was originally proposed in geostatistics studies by the South

African mining engineer Krige. The mathematical mechanism was later de-

veloped by Matheron[8] in 1963. It is an interpolation-based metamodeling

technique to mimic the behavior of an unknown objective function. Orig-

inally kriging models were applied in deterministic simulation models; see

Sacks et al.’s 1989 article [9] and recent publications [10],[11],[12]. Recently,

kriging has been extended to stochastic settings. Stochastic kriging (SK)
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considers sampling noise which is inherent to stochastic simulation systems

[13]. In adddition, it is well known in the community of design and analysis

of computer experiments (DACE) that gradient information are valuable in

smoothing the response surface [10]. In order to incorporate gradient infor-

mation into the original stochastic kriging model, a new stochastic kriging

with gradient estimators (SKG) method was developed by Chen et al. [14].

SKG was able to achieve better prediction performance as the expense of

using additional computational efforts in obtaining gradient estimates.

1.2 Kriging

1.2.1 Problem Setting

Consider the problem of describing the response surface of an unknown

function f(x), x ∈ X , where x is a vector of design variables and X is a

compact full-dimensional subset of Rd. The goal is to model the unknown

response surface f(x). Different assumptions on f(x) will lead to different

forms of kriging metamodels. For example, when the response f(x) can be

evaluated exactly, universal and simple kriging models can be fitted. On

the other hand, when f(x) can only be estimated in a path-wise manner

through stochastic simulations, stochastic kriging models can be applied. In

3



this section, three types of kriging models in deterministic setting will be

introduced.

1.2.2 Universal Kriging

In deterministic computer experiments, the response f(x) can be ob-

served without noise and a metamodel can be developed after observing f(x)

at several design points. A successful approach is to formulate this problem

into statistical framework by representing the unknown response surface as

Y (x) = f(x)⊺β +M(x) (1.1)

where f(x) ⊆ Rp is a known vector of user specified basis functions, β ⊆ Rp

is an unknown parameter vector that needs to be estimated. This form of

model is called “universal kriging”.

In (1.1),M is a realization of a zero mean second-order stationary Gaus-

sian random field. A random field is a generalization of a stochastic process

such that the underlying parameter need no longer be a simple real or in-

teger valued “time”, but can instead take values that are multidimensional

vectors, or points on some manifold, see [15]. In general, the random field

can be thought of as a “function valued” random variable. The values in a
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random field are usually spatially correlated in some way. It is often assumed

that values with adjacent design points do not differ as much as values that

are further apart. In other words, the values M(x1) and M(x2) will be sim-

ilar if x1 and x2 are close to each other in Rd. A Gaussian random field

(GRF) is a random field involving Gaussian probability density functions of

the variables. In particular, a one-dimensional GRF is also called a Gaussian

process.

Thus, the response Y (x) is modeled using a trend term f(x)⊺β repre-

senting the mean response value and a noise term M(x) quantifying our un-

certainty about the unknown true response at x. This kind of uncertainty is

referred to as extrinsic uncertainty [13]. With this type of metamodel, many

statistical concepts like mean square error (MSE) of prediction estimation

can be analyzed rigorously.

Suppose that we have selected a set of design points {x1, . . . ,xk} and run

the simulation experiments on these points. A set of deterministic response

yd = (y(x1), y(x2), . . . , y(xk))
⊺ is observed. To provided more technical de-

tails about the model, let ΣM be a k × k covariance matrix across all design

points x1, . . . ,xk with its (i, j)th element given by Cov[M(xi),M(xj)]. Let

ΣM(x, ·) = (Cov[M(x),M(x1)], . . . ,Cov[M(x),M(xk)])
⊺ represent the spa-
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tial covariances between (un-explored point) x and all design points. We

also let F = (f(x1), . . . , f(xk))
⊺ be the k × p matrix of user defined basis

functions. It is assumed that ΣM and ΣM(x, ·) are completely known in the

following analysis. However, it is almost impossible to get such information

in practice. Thus, they have to be estimated statistically. This issue will be

discussed later.

Consider the linear predictor

ŷd(x) =
k

∑

i=1

λi(x) · y(xi)

= λ⊺ · yd (1.2)

of f(x) at a unexplored point x, where λ = (λ1(x), λ2(x), . . . , λk(x))
⊺ is a

weight vector. The predictor ŷd(x) is a weighted linear combination of ob-

served values. We can replace yd by the corresponding random quantity

Yd = (Y (x1), Y (x2), . . . , Y (xk))
⊺ and then compute the MSE of the esti-

mated predictor. By minimizing

MSE(ŷd(x)) = E[λ⊺ ·Yd − Y (x)]2, (1.3)
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we can get the best linear unbiased predictor (BLUP)

ŷd(x) = f(x)⊺β̂ + ΣM(x, ·)⊺Σ−1
M (yd − Fβ̂), (1.4)

where β̂ = (F⊺(ΣM + Σǫ)
−1F)−1F⊺Σ−1

M yd, and the optimal MSE is

MSE(ŷd(x)) = ΣM(x,x)− ΣM(x, ·)⊺Σ−1
M ΣM(x, ·) + η⊺

(

F⊺Σ−1
M F

)−1
η, (1.5)

where η = f(x)− F⊺Σ−1
M ΣM(x, ·). See [9],[13],[14] and [16] for more details.

1.2.3 Simple Kriging

Simple kriging can be viewed as a special case of universal kriging. In

particular, if the trend term f(x)⊺β is simplified as a known constant β,

then the model (1.1) is called simple kriging. The linear predictor and its

corresponding MSE estimator can be derived as (see [17] for more details)

ŷd(x) = β + ΣM(x, ·)⊺Σ−1
M (yd − β)

MSE(ŷd(x)) = ΣM(x,x)− ΣM(x, ·)⊺Σ−1
M ΣM(x, ·). (1.6)
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Although the model is greatly simplified, simple kriging is not widely used

because obtaining the constant trend information is intractable in most cases.

On the other hand, specifying basis functions in advance and applying uni-

versal kriging require extensive computation effort and prior knowledge. Or-

dinary kriging helps to overcome these difficulties and has been widely used

in real life problems.

1.2.4 Ordinary Kriging

Similar to simple kriging, ordinary kriging also assumes that the trend

term in (1.1) is replaced by a constant β. However, the constant β in ordinary

kriging is unknown and thus needs to be estimated. Based on the similar

idea as introduced in universal kriging, it is not difficult to derive the linear

predictor and its corresponding MSE estimator as follows (see [8], [9], [17]

and [18]).

ŷd(x) = β̂ + ΣM(x, ·)⊺Σ−1
M (yd − β̂),

MSE(ŷd(x)) = ΣM(x,x)− ΣM(x, ·)⊺Σ−1
M ΣM(x, ·) + η⊺

(

1⊺
kΣ

−1
M 1k

)−1
η,

(1.7)

where β̂ = (1⊺
kΣ

−1
M 1k)

−11⊺
kΣ

−1
M yd, and η = 1− 1⊺

kΣ
−1
M ΣM(x, ·).
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By comparing (1.4), (1.5) with (1.7), it is not difficult to observe that

the basis function in the trend term can be simplified to f(x)⊺β = β (i.e.,

p = 1, f(x) = 1 ∀x and F = 1k). Please see [9],[13],[14],[16] and [18] for more

details.

In general, ordinary kriging is the most commonly used method among

the kriging family. However, it is limited to deterministic settings. A more

general stochastic kriging (SK) method was proposed by Ankenman et al.

[13] to handle the situation when the observed response is random.

1.3 Stochastic Kriging

In stochastic settings, it is assumed that the true response f(x) at each

point x cannot be observed exactly but can be estimated in a path-wise

manner through stochastic simulations.

Suppose that there is a set of design points {x1, . . . ,xk}, after we repli-

cate ni simulations at each point xi, i = 1, . . . , k, the performance measures

at these k design points can be estimated by the vector ȳ = (ȳ(x1), ȳ(x2), . . . , ȳ(xk))
⊺,

where ȳ(xi) =
1
ni

∑ni

j=1 yj(xi) and yj(xi) is the simulation output at xi ob-

tained on the jth replication run. Stochastic kriging assumes yj(xi) to be of
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the following form:

yj(xi) = f(xi)
⊺β +M(xi) + ǫj(xi)

= Y (xi) + ǫj(xi), (1.8)

where f(xi) ⊆ Rp, β ⊆ Rp andM are defined exactly the same as in universal

kriging. Different from universal kriging, an additional term ǫj(xi) is used in

Equation (1.8). It is interpreted as the intrinsic noise and is primarily used

in stochastic kriging to model the simulation noise in the jth replication run

at xi.

To provide the predictor and MSE estimator in stochastic settings, we as-

sume that ΣM , ΣM(x, ·) and F are defined the same as that in universal krig-

ing. Let Σǫ be the k×k covariance matrix associated with the intrinsic simula-

tion noise with (i, j)th element Cov[ǭ(xi), ǭ(xj)], where ǭ(xi) =
1
ni

∑ni

j=1 ǫj(xi)

for all i = 1, . . . , k.

Under the above notation, it has been shown in [13] that when β,ΣM(x, ·)

and ΣM are known, the MSE-optimal predictor is of the form

ŷ(x) = f(x)⊺β + ΣM(x, ·)⊺(ΣM + Σǫ)
−1(ȳ − Fβ) (1.9)
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and the corresponding optimal MSE is given by

MSE(ŷ(x)) = ΣM(x,x)− ΣM(x, ·)⊺(ΣM + Σǫ)
−1ΣM(x, ·). (1.10)

On the other hand, when ΣM(x, ·) and ΣM are known, but β is estimated via

the generalized least squares estimator, the MSE-optimal predictor becomes

(see, e.g., [19])

ŷ(x) = f(x)⊺β̂ + ΣM(x, ·)⊺(ΣM + Σǫ)
−1(ȳ − Fβ̂), (1.11)

where β̂ = (F⊺(ΣM + Σǫ)
−1F)−1F⊺(ΣM + Σǫ)

−1ȳ, and the optimal MSE is

MSE(ŷ(x)) = ΣM(x,x)−ΣM(x, ·)⊺(ΣM+Σǫ)
−1ΣM(x, ·)+η⊺

(

F⊺(ΣM+Σǫ)
−1F

)−1
η,

(1.12)

where η = f(x)− F⊺(ΣM + Σǫ)
−1ΣM(x, ·).

Throughout the thesis, we make the following assumption on the intrin-

sic and extrinsic noises in stochastic kriging metamodel.

Assumption 1: The random fieldM is a zero mean second-order stationary

Gaussian random field, and the intrinsic simulation noises ǫ1(xi), ǫ2(xi), . . .

are i.i.d. N(0, V (xi)), independent of ǫj(xh) for all j and h 6= i, and inde-
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pendent of M .

Assumption 1 indicates that the covariance between M(xi) and M(xj) can

be expressed in the form Cov[M(xi),M(xj)] = τ 2RM(d(xi,xj);θ), where

τ 2 > 0 is the bounded variance of M(x) at all x, and RM is the correla-

tion function that depends on the distance d(xi,xj) between xi and xj and

an unknown parameter vector θ that needs to be estimated. The indepen-

dence of the simulation noise across all design points excludes the use of

common random numbers; it implies that the covariance matrix Σǫ is a pos-

itive semi-definite diagonal matrix. We assume that the correlation function

RM(d,θ) is continuous in its first argument d and satisfies RM(0,θ) = 1 and

limd→∞RM(d,θ) = 0. In addition, we also assume that the variance function

V (x) is uniformly bounded for all x ∈ X .

1.4 Stochastic Kriging with Gradient Information

Based on the SK model, suppose in addition to simulation outputs

yj(xi), we can also obtain their unbiased gradient estimatesDj(xi) =
(

D1
j (xi),

. . . ,Dd
j (xi)

)⊺
at xi on the jth replication run. For such a setting, [14] has

introduced an augmented kriging model called stochastic kriging with gradi-

ent estimators that explicitly incorporates gradient estimators in construct-
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ing an SK predictor. Specifically, each (partial) gradient estimator Dr
j (xi),

r = 1, . . . , d, is assumed to take the form

Dr
j (xi) =

∂Y (xi)

∂xr
+ζrj (xi) =

(

∂f(xi)

∂xr

)⊺

β+
∂M(xi)

∂xr
+ζrj (xi) = Dr(xi)+ζ

r
j (xi),

(1.13)

where ζrj (xi), r = 1, . . . , d are the simulation noises associated with gradient

estimators at xi. The following assumption of ζrj is made through the thesis.

Assumption 2: The simulation noises associated with the gradient esti-

mators ζr1(xi), . . . , ζ
r
ni
(xi) are i.i.d. with mean zero and variance Vr(xi) ,

V ar(ζrj (xi)) for r = 1, . . . , d, independent of the random process M and its

derivative processes. In addition, Vr(x) is uniformly bounded on X for all r,

and the noises ǫk(xi) and ζ
r
h(xj) are independent for all i 6= j and k 6= h.

Under the Assumptions 1 and 2, noise terms with different replication

indices or design points are assumed to be independent, and correlation only

exists between ǫj(xi) and ζ
r
j (xi) at the same design point xi within the same

replication j.

When gradient information is available, the notation used in SK should

be augmented to the SKG version by incorporating the derivative informa-

tion. We use the “+” symbol to distinguish any quantity that is related to

13



SKG. In particular, the augmented response vector ȳ+ is written as

ȳ+ = (ȳ(x1), . . . , ȳ(xk))
⊺ + (D̄1(x1), . . . , D̄1(xk), . . . , D̄d(x1), . . . , D̄d(xk)

)⊺

= (ȳ⊺, D̄⊺)⊺ (1.14)

where D̄r(xi) =
∑ni

j=1 Dr
j (xi), r = 1, . . . , d and j = 1, . . . , ni. In addition, the

augmented spatial covariance matrix Σ+
M can be written explicitly as

Σ+
M =

















































CM
0,0(1, 1) · · · CM

0,0(1, k) · · · CM
0,d(1, 1) · · · CM

0,d(1, k)

...
...

...
...

...
...

...

CM
0,0(k, 1) · · · CM

0,0(k, k) · · · CM
0,d(k, 1) · · · CM

0,d(k, k)

...
...

...
...

...
...

...

CM
d,0(1, 1) · · · CM

d,0(1, k) · · · CM
d,d(1, 1) · · · CM

d,d(1, k)

...
...

...
...

...
...

...

CM
d,0(k, 1) · · · CM

d,0(k, k) · · · CM
d,d(k, 1) · · · CM

d,d(k, k)

















































and

CM
0,0(i, h) = Cov(Y (xi), Y (xh)), C

M
0,r(i, h) = Cov(Y (xi), D

r(xh))

CM
r,0(i, h) = Cov(Dr(xi), Y (xh)), C

M
r,g(i, h) = Cov(Dr(xi), D

g(xh))

CM
r,r(i, h) = Cov(Dr(xi), D

r(xh)) (1.15)
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where r, g = 1, . . . , d and i, h = 1, . . . , k. Moreover, let

V ar[ǫj(xi)] = σ2
i0,V ar[ζ

r
j (xi)] = σ2

ir

Corr[ǫj(xi), ζ
r
j (xi)] = ̺

(0,r)
i ,Corr[ζrj (xi), ζ

s
j (xi)] = ̺

(r,s)
i (1.16)

where r, s = 1, . . . , d and r 6= s. So the augmented intrinsic noise covariance

matrix Σ+
ǫ is changed to a k(d+1)× k(d+1) matrix with elements specified

as

Σ+
ǫ [rk + i, sk + i] =

̺
(r,s)
i σirσis
ni

r, s = 0, . . . , d, r 6= s, i = 1, . . . , k

Σ+
ǫ [rk + l, sk + h] = 0 l 6= h (1.17)

Finally, the augmented covariance vector between a given point x and all

design points is given as

Σ+
M(x, ·) = (ΣM(x, ·)⊺,ΣM,d(x, ·)⊺)⊺

= (Cov[Y (x), Y (x1)], . . . ,Cov[Y (x), Y (xk)])
⊺ + (Cov[Y (x), D1(x1)], . . . ,

Cov[Y (x), D1(xk)], . . . ,Cov[Y (x), Dd(x1)], . . . ,Cov[Y (x), Dd(xk)])
⊺

(1.18)
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and let the augmented vector of basis functions be F+ = (F⊺,F⊺
d)

⊺, where

Fd =
(

∂f(x1)
∂x11

, . . . , ∂f(xk)
∂xk1

, . . . , ∂f(x1)
∂x1d

, . . . , ∂f(xk)
∂xkd

)⊺
.

It has been shown in [14] that when β is known, the MSE-optimal pre-

dictor is given as

ŷ+(x) = f(x)⊺β + Σ+
M(x, ·)⊺(Σ+

M + Σ+
ǫ )

−1(ȳ − F+β) (1.19)

and the corresponding optimal MSE is given by

MSE(ŷ+(x)) = ΣM(x,x)− Σ+
M(x, ·)⊺(Σ+

M + Σ+
ǫ )

−1Σ+
M(x, ·). (1.20)

On the other hand, when Σ+
M(x, ·) and Σ+

M are known, but β is estimated via

the generalized least squares estimator, the MSE-optimal predictor becomes

(see, e.g., [14] and [19])

ŷ+(x) = f(x)⊺β̂ + Σ+
M(x, ·)⊺(Σ+

M + Σ+
ǫ )

−1(ȳ+ − F+β̂), (1.21)

where β̂ = (F+⊺(Σ+
M + Σ+

ǫ )
−1F+)−1F+⊺(Σ+

M + Σ+
ǫ )

−1ȳ+, and the optimal
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MSE is

MSE(ŷ+(x)) = ΣM(x,x)−Σ+
M(x, ·)⊺(Σ+

M+Σ+
ǫ )

−1Σ+
M(x, ·)+η+⊺

(

F+⊺(Σ+
M+Σ+

ǫ )
−1F+

)−1
η+,

(1.22)

where η+ = f(x)− F+⊺(Σ+
M + Σ+

ǫ )
−1Σ+

M(x, ·).

To estimate the gradient estimator of simulation outputs, many methods

such as infinitesimal perturbation analysis (IPA), the likelihood ratio/score

function, finite difference gradient estimation and simultaneous perturbation

gradient estimation ([20], [21], [22], [23] and [24]) can be applied; see, e.g.,

Chen et al. [14].

1.5 Parameter Estimation in SK and SKG

To apply SK/SKG metamodels in practice, it is crucial to obtain accu-

rate estimates of the model parameters. In SK/SKG metamodels, two types

of parameters need to be estimated: the parameters in the trend term, like

β; and the parameters in the kriging correlation model, like τ 2,θ. There are

multiple choices of the correlation model as long as they satisfy Assumption

1. In practice, a common choice of the correlation model is RM(xi,xj) =

exp{−∑d

r=1 θr(xir−xjr)
2}. A constant trend model f(x)⊺β = β (i.e., p = 1,
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f(x) = 1 ∀x and F = 1k) is also suggested [13]. These selections of correlation

model and trend term will be used in Sections 3 and 4.

To estimate the parameters in SK/SKG metamodels, a common ap-

proach is to search for the maximum likelihood estimator. In particular, the

log-likelihood function for the SK metamodel is derived in ([13]) as follows.

l(β, τ 2,θ) = −ln((2π) k
2 )− 1

2
ln[‖ΣM + Σǫ‖]−

1

2
(ȳ − β1k)

⊺[ΣM + Σǫ]
−1(ȳ − β1k)

(1.23)

The log-likelihood function for the SKG metamodel has almost the same form

of (1.24), except that ΣM ,Σǫ, ȳ are needed to be replaced by Σ+
M ,Σ

+
ǫ , ȳ

+

([14]).

l(β, τ 2,θ) =− ln((2π)
k
2 )− 1

2
ln[‖Σ+

M + Σ+
ǫ ‖]−

1

2
(ȳ+ − β1k(d+1))

⊺[Σ+
M + Σ+

ǫ ]
−1(ȳ+ − β1k(d+1)) (1.24)

A number of numerical methods are recommended in [25] to search for

the MLEs (β̂, τ̂ 2, θ̂). In general, the procedure of fitting a SK/SKG meta-

model is as follows:

1. Decide a set of design points {x1, . . . ,xk} and obtain the simulation
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outputs on each design point.

2. Estimate the variance of intrinsic noise V̂ (x) and then obtain Σ̂ǫ.

3. Use the Σ̂ǫ instead of Σǫ, and maximize the log-likelihood function

(1.24) or (1.23).

4. Plug β̂, τ̂ 2, θ̂ into the corresponding predictors.

More details about the estimation of intrinsic noise are available in [13]

and [14]. When choosing the metamodel parameters, several issues, as dis-

cussed below, should be addressed ([13], [26] and [27]).

First, it may be helpful to normalize the design points in some special

situations, especially when different components have different variabilities.

The design points should be normalized by transforming each component

separately, like mapping xih to
xih−minj=1,...,kxjh

maxj=1,...,kxjh−minj=1,...,kxjh
. This kind of affine

transformation merely changes the scale of each component of θ. The nor-

malization trick can be neglected if θ is set as a scalar.

Second, when searching for the MLEs (β̂, τ̂ 2, θ̂), many nonlinear solvers

require a starting point. Although there is not a strict rule about how to

choose a starting point, it is suggested to start with a moderate value for

(β̂, τ̂ 2, θ̂). For example, initialize β, τ 2 to be the sample mean and sample
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variance of the output measures {ȳ(x1), . . . , ȳ(xk)} and set the initial rth

component of θ, θr as the value that solves the equation 0.5 = (RM(d̄, θr))
p,

where d̄ denotes the average distance among all design points, such as d̄ =

2
∑k

i=1

∑k
j=i+1

‖xir−xjr‖
k(k−1)

.

Another issue is how to avoid numerical instability when optimizing the

log-likelihood function. Numerical instabilities may happen when some rows

of ΣM + Σǫ are nearly zero or collinear. These situations can be avoided

by special experimental designs. One solution is to avoid selecting repeated

design points. Another solution is to add constraints such as
∑p

r=1 θr > v0

for a small v0. Besides, it is also important to include the constraint τ 2 > 0 in

the optimization. Many spatial correlation models also require the constraint

θ > 0 as well.

Under the stochastic kriging framework, it has been shown in [27] that

the estimator θ̂ can be affected by the intrinsic noises. When the variance

of both intrinsic and extrinsic noise are known, the additional prediction

error caused by the uncertainty of parameter estimation increases as the

variance of intrinsic noise increases. Therefore, it is important to locate

sufficient simulation efforts on each design point in order to obtain a well-

built metamodel.
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1.6 Applications of Kriging Related Methods

As we have introduced in previous sections, kriging-related methods

present several interesting properties that make them popular in various

disciplines. First of all, the simple/ordinary/universal kriging is an exact

interpolation method. That is, the points of the design of experiments are

interpolated. This makes kriging very popular in mechanical design of exper-

iments. Besides, the uncertainty on the prediction (the MSE of the predictor)

provided by kriging can be used to identify the least reliable prediction among

a population. As a result, developing sequential learning methods based on

this characteristic is possible because the metamodel can be refined step by

step. Stochastic kriging extends the area of application by accounting for

both intrinsic and extrinsic noises. Many non-deterministic models can be

approximated and replaced by SK metamodels. Recently, the theory of SK

metamodel is further developed by incorporating the gradient information.

The work of Chen et.al in [14] indicates that adding gradient information may

lead to more accurate prediction performance under some ideal assumptions.

With well-developed theories on gradient estimation, SKG may become pop-

ular in certain situations.

In general, the kriging family are mainly applied for two different pur-
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poses: prediction and optimization. A brief review of applications on each

purpose is provided as follows.

1.6.1 Application in Prediction

The most intuitive and important application of kriging-related models

is the approximation of a specific model. Since kriging is originally proposed

in geostatistics, it has been widely used in geostatistical spatial analysis and

environmental research. Its popularity in geostatistics depends on its ability

of successfully expressing statistical relationships among spatially distributed

data. So kriging is a good choice to solve many practical problems, for

example, the mapping and control of soil variation [4], [5] and [28] the air

pollution exposure assessment [7] and the regional ground water investigation

[6].

Besides the popularity in geostatistics and environmental science, kriging

is also a productive tool for performance prediction in finance and computer

science. For example, SK metamodel can be employed to estimate the risks

and their sensitivities in asset portfolios because it can avoid time consuming

calculations of risk measures, see Chen et.al in [29] and Liu et.al in [30].

In addition, Baysal et.al designed a method for simulating the hedging and
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trading strategy based on SK metamodel [31]. Another example is the pricing

of securities with SK metamodels [32].

1.6.2 Application in Simulation Optimization

Optimizing a simulated system via kriging related methods is a promis-

ing and fast-developing research topic in the recent decade, because of its

ability to accurately approximate a response surface [33], [34]. One of the

most popular algorithms is the efficient global optimization (EGO) algorithm

proposed by Jones et.al in [11]. In this algorithm, kriging is used to model

the nonlinear and multimodal response surface. The key of using kriging in

global optimization lies in balancing the need of exploiting the approximated

surface with the need of improving the quality of approximation. Huang et.al

[35] extended EGO to address stochastic black-box systems by proposing an

augmented expected improvement function as the new sample selection cri-

terion. A sequential kriging optimization method based on this criterion is

also developed [12].
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2 Monotonicity Property of SK and SKG Pre-

dictors

2.1 Motivation

Obtaining accurate SK or SKG predictors requires careful selection of

design points. A commonly used method in practice is to generate design

points all at once according to predefined space-filling design. However, it has

been shown in [9] and [36] that fitting the metamodel in a sequential manner,

which chooses one design point each time, has the advantage of adaptively

and sequentially updating the metamodel. As a result, a new design point

can be selected based on the updated metamodel and the information carried

by previous design points. A lot of sequential sampling approaches have

been introduced and found demonstrating better performance than space-

filling design in deterministic kriging models. However, it is suspectable that

these approaches can be applied with SK/SKG metamodel because of the

intrinsic noise embedded in SK/SKG models. More fundamentally, it is not

clear whether the information carried by new design points will result in

improvement of the predictive performance.

In this section, we focus on investigating the performance of SK/SKG
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predictors in a sequential way when only one design point is added at a time.

Our main results show that when the SK/SKG parameters are known or

estimated, the MSE of SK/SKG predictor is monotonically non-increasing as

the number of design points increases. In particular, we consider both cases

when the trend terms are known or estimated and provide the reduction of the

MSE estimators. It is interesting to see whether the prediction performance

of SK/SKG metamodel can always be improved by adding new design points.

Besides, we would like to compare the SK and SKG metamodels. We want

to see if it will be helpful to incorporate the gradient information in SK. We

also want to check how to quantify the benefaction of doing so. All of the

problems mentioned above will be investigated in this section.

2.2 Monotonic Performance of SK Predictors

In this section, we use the subscript k to denote the quantities obtained

based on a given set of k design points {x1, . . . ,xk}. Similarly, if a new design

point xk+1 is added to an SK (SKG) model, we will use the subscript k + 1

to denote any quantity that applies to the set {x1, . . . ,xk,xk+1}.

To show the monotonicity of SK predictors, we need the following inter-

mediate result.
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Lemma 2.1. If Assumption 1 holds, then the matrix (ΣMk
+Σǫk)

−1 is positive

definite for all k.

Proof of Theorem 2.1. Since ΣMk
is the covariance matrix of the unknown

responses Y (x1), . . . , Y (xk), Assumption 1 implies that it is positive definite.

On the other hand, the covariance matrix Σǫk associated with the intrinsic

noise is positive semi-definite. Thus, ΣMk
+ Σǫk is positive definite. This

shows that (ΣMk
+ Σǫk)

−1 is also positive definite.

Let x0 be a prediction point, ŷk(x0) be the SK predictor constructed

using Equation (1.9) based on a set of k design points {x1,x2, . . . ,xk}, and

ŷk+1(x0) be the resulting predictor when a new design point xk+1 is included

in the set. The following result shows that the MSE of ŷk+1(x0) cannot be

greater than the MSE of ŷk(x0).

Theorem 2.1. Suppose that xk+1 /∈ {x1, . . . ,xk}. For any prediction point

x0 ∈ X , let MSE(ŷk(x0)) and MSE(ŷk+1(x0)) denote the MSEs of the pre-

dictors ŷk(x0) and ŷk+1(x0) constructed using Equation (1.9). If Assumption

1 holds, then MSE(ŷk(x0)) ≥MSE(ŷk+1(x0)).

Proof of Theorem 2.1. We shall prove the result when the optimal MSE is

given by (1.10). In particular, the MSE of ŷk can be written asMSE(ŷk(x0)) =
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τ 2 − ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·). After a new design point xk+1 is

included in the model, the covariance vector between the prediction point

x0 and all k + 1 design points can be expressed in terms of ΣMk
(x0, ·) as

ΣMk+1
(x0, ·) = (ΣMk

(x0, ·)⊺,ΣM(x0,xk+1))
⊺, where ΣM(x0,xk+1) =

Cov(Y (x0), Y (xk+1)). Similarly, it is not difficult to verify that the sum of

the covariance matrices ΣMk+1
+ Σǫk+1

can be written in the form

ΣMk+1
+ Σǫk+1

=









ΣMk
+ Σǫk Σk×1

Σ⊺
k×1 τ 2 + Σǫ(xk+1,xk+1)









,

where Σk×1 is a k × 1 matrix with its ith element given by ΣM(xi,xk+1)

and Σǫ(xk+1,xk+1) = Cov[ǭ(xk+1), ǭ(xk+1)]. By Lemma 2.1, ΣMk+1
+ Σǫk+1

is positive definite and thus invertible. Its inverse, denoted by A, can be

calculated using the block matrix inversion formula as follows:

A =









A11 −(ΣMk
+ Σǫk)

−1Σk×1Φ

−ΦΣ⊺
k×1(ΣMk

+ Σǫk)
−1 Φ









,
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where

A11 = (ΣMk
+ Σǫk)

−1 + (ΣMk
+ Σǫk)

−1Σk×1ΦΣ
⊺
k×1(ΣMk

+ Σǫk)
−1

Φ =
(

τ 2 − Σ⊺
k×1(ΣMk

+ Σǫk)
−1Σk×1 + Σǫ(xk+1,xk+1)

)−1

=
(

MSE(ŷk(xk+1)) + Σǫ(xk+1,xk+1)
)−1

.

Thus, it follows that

MSE(ŷk+1(x0)) = τ 2 − ΣMk+1
(x0, ·)⊺(ΣMk+1

+ Σǫk+1
)−1ΣMk+1

(x0, ·)

= τ 2 − (ΣMk
(x0, ·)⊺,ΣM(x0,xk+1))









ΣMk
+ Σǫk Σk×1

Σ⊺
k×1 τ 2 + Σǫ(xk+1,xk+1)









−1 







ΣMk
(x0, ·)

ΣM(x0,xk+1)









= τ 2 − (ΣMk
(x0, ·)⊺,ΣM(x0,xk+1))A









ΣMk
(x0, ·)

ΣM(x0,xk+1)









= τ 2 −
[

ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)

+ ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1Σk×1ΦΣ

⊺
k×1(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)

− ΣM(x0,xk+1)ΦΣ
⊺
k×1(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)

− ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1Σk×1ΦΣM(x0,xk+1) + ΣM(x0,xk+1)ΦΣM(x0,xk+1)

]
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= τ 2 − ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)−
(

ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1Σk×1

− ΣM(x0,xk+1)
⊺
)

Φ
(

Σ⊺
k×1(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)− ΣM(x0,xk+1)
)

=MSE(ŷk(x0))− φ(x0)
2Φ,

where we have defined φ(x0) = Σ⊺
k×1(ΣMk

+Σǫk)
−1ΣMk

(x0, ·)−ΣM(x0,xk+1).

Finally, since φ(x0)
2 ≥ 0 and Φ is a positive scalar, we have MSE(ŷk(x0)) ≥

MSE(ŷk+1(x0)).

The next result shows that the conclusion of Theorem 2.1 still holds true

when the predictors are constructed using Equation (1.11).

Theorem 2.2. Suppose that xk+1 /∈ {x1, . . . ,xk}. For any prediction point

x0 ∈ X , let MSE(ŷk(x0)) and MSE(ŷk+1(x0)) denote the MSEs of the pre-

dictors ŷk(x0) and ŷk+1(x0) constructed using Equation (1.11). If Assump-

tion 1 holds and Fk has full column rank, thenMSE(ŷk(x0)) ≥MSE(ŷk+1(x0)).

Proof of Theorem 2.2. We use the same shorthand notation A,Φ, and φ(x0)

as in the proof of Theorem 2.1. When ŷk+1(x0) is constructed using (1.11),
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its associated MSE becomes

MSE(ŷk+1(x0)) = τ 2 − ΣMk+1
(x0, ·)⊺(ΣMk+1

+ Σǫk+1
)−1ΣMk+1

(x0, ·)

+ ηk+1(x0)
⊺(F⊺

k+1(ΣMk+1
+ Σǫk+1

)−1Fk+1)
−1ηk+1(x0),

(2.1)

where ηk+1(x0) = f(x0)−F⊺
k+1(ΣMk+1

+Σǫk+1
)−1ΣMk+1

(x0, ·). From the proof

of Theorem 2.1, it is easy to see that ΣMk+1
(x0, ·)⊺(ΣMk+1

+Σǫk+1
)−1ΣMk+1

(x0, ·) =

ΣMk
(x0, ·)⊺(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·) + φ(x0)
2Φ. Thus, the right-hand-side of

(2.1) can be written in terms of MSE(ŷk(x0)) as

MSE(ŷk+1(x0)) =

MSE(ŷk(x0))− φ(x0)
2Φ− ηk(x0)

⊺(F⊺
k(ΣMk

+ Σǫk)
−1Fk)

−1ηk(x0)

+ ηk+1(x0)
⊺(F⊺

k+1(ΣMk+1
+ Σǫk+1

)−1Fk+1)
−1ηk+1(x0). (2.2)

Regarding the last term in (2.2), we have

F⊺
k+1(ΣMk+1

+ Σǫk+1
)−1Fk+1

= (F⊺
k, f(xk+1))A









Fk

f(xk+1)
⊺








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= F⊺
k(ΣMk

+ Σǫk)
−1Fk+

(

F⊺
k(ΣMk

+ Σǫk)
−1Σk×1 − f(xk+1)

)

Φ
(

Σ⊺
k×1(ΣMk

+ Σǫk)
−1Fk − f(xk+1)

⊺
)

= F⊺
k(ΣMk

+ Σǫk)
−1Fk + ψ⊺Φψ, (2.3)

where ψ = Σ⊺
k×1(ΣMk

+ Σǫk)
−1Fk − f(xk+1)

⊺. On the other hand,

ηk+1(x0) = f(x0)− F⊺
k+1(ΣMk+1

+ Σǫk+1
)−1ΣMk+1

(x0, ·)

= f(x0)− (F⊺
k, f(xk+1))A









ΣMk
(x0, ·)

ΣM(x0,xk+1)









= f(x0)− F⊺
k(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)

−
(

F⊺
k(ΣMk

+ Σǫk)
−1Σk×1 − f(xk+1)

)

Φ

(

Σ⊺
k×1(ΣMk

+ Σǫk)
−1ΣMk

(x0, ·)− ΣM(x0,xk+1)
)

= ηk(x0)− ψ⊺Φφ(x0) (2.4)
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Substituting (2.3) and (2.4) into (2.2), we obtain

MSE(ŷk+1(x0)) =

MSE(ŷk(x0))− φ(x0)
2Φ− ηk(x0)

⊺(F⊺
k(ΣMk

+ Σǫk)
−1Fk)

−1ηk(x0)+

(ηk(x0)− ψ⊺Φφ(x0))
⊺(F⊺

k(ΣMk
+ Σǫk)

−1Fk + ψ⊺Φψ)−1(ηk(x0)− ψ⊺Φφ(x0)).

(2.5)

Next, define W = F⊺
k(ΣMk

+ Σǫk)
−1Fk. Since Fk is assumed to have full

column rank and (ΣMk
+Σǫk)

−1 is positive definite, it follows that W is also

positive definite and its inverse W−1 exists. Therefore, by the Sherman-

Morrison-Woodbury formula, we have

(F⊺
k(ΣMk

+ Σǫk)
−1Fk + ψ⊺Φψ)−1 = (W + ψ⊺Φψ)−1 = W−1 − W−1ψ⊺ψW−1

Φ−1 + ψWψ⊺
.

(2.6)

Finally, substituting (2.6) into (2.5), we get

MSE(ŷk+1(x0)) =MSE(ŷk(x0))− φ(x0)
2Φ− ηk(x0)

⊺W−1ηk(x0)

+ (ηk(x0)− ψ⊺Φφ(x0))
⊺
(

W−1 − W−1ψ⊺ψW−1

Φ−1 + ψW−1ψ⊺

)

(ηk(x0)− ψ⊺Φφ(x0))

=MSE(ŷk(x0))− φ(x0)
2Φ− ηk(x0)

⊺ W−1ψ⊺ψW−1

Φ−1 + ψW−1ψ⊺
ηk(x0)
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− ηk(x0)
⊺W−1ψ⊺Φφ(x0) + ηk(x0)

⊺ W−1ψ⊺ψW−1

Φ−1 + ψW−1ψ⊺
ψ⊺Φφ(x0)

− φ(x0)ΦψW
−1ηk(x0) + φ(x0)Φψ

W−1ψ⊺ψW−1

Φ−1 + ψW−1ψ⊺
ηk(x0)

+ φ(x0)ΦψW
−1ψ⊺Φφ(x0)− φ(x0)Φψ

W−1ψ⊺ψW−1

Φ−1 + ψW−1ψ⊺
ψ⊺Φφ(x0)

=MSE(ŷk(x0))− φ(x0)
2Φ− (ηk(x0)

⊺W−1ψ⊺)2

Φ−1 + ψW−1ψ⊺
− 2φ(x0)(ηk(x0)

⊺W−1ψ⊺)

Φ−1 + ψW−1ψ⊺

+
φ(x0)

2ΦψW−1ψ⊺

Φ−1 + ψW−1ψ⊺

=MSE(ŷk(x0))−
(φ(x0) + ηk(x0)

⊺W−1ψ⊺)2

Φ−1 + ψW−1ψ⊺

≤MSE(ŷk(x0)).

This completes the proof of the Theorem 2.

To summarize, we have shown that under the SK framework, no matter

the parameter vector β is known or estimated, the MSE of the corresponding

predictor is monotonically non-increasing as the number of design points

increases.

2.3 Monotonic Performance of SKG Predictors

In this section, we investigate the monotonicity property for the MSE

of predictors under the SKG setting. In addition, we compare the mono-
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tonicity properties between SK framework and SKG framework. We validate

the hypothesis that additional gradient information is helpful to improve

the prediction accuracy in general cases. In addition, we will quantify the

improvement and amount of reduction in the prediction under this setting.

Before going into detailed proofs, the following notation is needed. Let

Σy,d = E[(ȳ − E[ȳ])(D̄ − E[D̄])⊺] be the k × kd cross-covariance matrix

between the averaged simulation responses and gradient estimators. Let

Σd,d = E[(D̄ − E[D̄])(D̄ − E[D̄])⊺] be the kd × kd covariance matrix of the

averaged gradient estimators at all design points. Based on the introduction

of Section 1.4 and the following assumptions, we will show the monotonicity

properties for SKG model.

Assumption 3: The mean function f(x)⊺β is differentiable and the second-

order mixed derivative of RM(d(xi,xj), θ) exists and is continuous.

Assumption 3 guarantees that the Gaussian process M has differentiable

sample paths and ensures the validity of (1.13). By the linearity of the

differential operator, the first order partial derivative process Dr(xi), r =

1, . . . , d of Y (xi) is also Gaussian; see e.g., [14]. Thus, it is natural to also

assume the following condition:
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Assumption 4: The vector (Y (x1), . . . , Y (xk), D
1(x1), . . . , D

1(xk), . . . ,

Dd(x1), . . . , D
d(xk))

⊺ has a joint normal distribution with covariance matrix

Σ+
Mk

.

The main results of this section are given in Theorems 2.3 and 2.4,

which state that a k-point predictor constructed under the SKG framework

performs at least as well as the standard SK predictor based on the same

design points. Since the comparison is made with respect to the same set of

points, for simplicity we omit the subscript k in these theorems.

Theorem 2.3. Let ŷ(x) be the SK predictor constructed using (1.9) and

ŷ+(x) be the SKG predictor obtained by substituting ȳ+,Σ+
M ,Σ

+
ǫ ,Σ

+
M(x, ·),

and F+ for ȳ,ΣM ,Σǫ,ΣM(x, ·), and F in Equation (1.9). If Assumptions 1,

2, 3 and 4 hold, then MSE(ŷ(x)) ≥MSE(ŷ+(x)) for any x ∈ X .

Proof. Proof of Theorem 3. Under Assumptions 1 and 2, it is not diffi-

cult to verify that Σ+
M + Σ+

ǫ can be written in the block form Σ+
M + Σ+

ǫ =








ΣM + Σǫ Σy,d

Σ⊺
y,d Σd,d









. Moreover, Assumptions 1, 2, 3 and 4 imply that both

ΣM+Σǫ and Σd,d are invertible. As a result, the symmetric matrix Σ+
M+Σ+

ǫ is

invertible and its inverse J can be calculated using the block matrix inversion
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formula as follows:

J =









(ΣM + Σǫ)
−1 + (ΣM + Σǫ)

−1Σy,dQΣ
⊺
y,d(ΣM + Σǫ)

−1 −(ΣM + Σǫ)
−1Σy,dQ

−QΣ⊺
y,d(ΣM + Σǫ)

−1 Q









,

where Q = (Σd,d − Σ⊺
y,d(ΣM + Σǫ)

−1Σy,d)
−1.

Next we show that Q is positive definite. To proceed, note that As-

sumption 3 and 4 imply that Σ+
M is positive definite. This, together with

the positive semi-definiteness of the covariance matrix Σ+
ǫ , indicates that the

sum Σ+
M + Σ+

ǫ is also positive definite. In addition, we note that








I 0

−((ΣM + Σǫ)
−1Σy,d)

⊺ I

















ΣM + Σǫ Σy,d

Σ⊺
y,d Σd,d

















I −(ΣM + Σǫ)
−1Σy,d

0 I









=









ΣM + Σǫ 0

0 Q−1









. Since the matrix









I −(ΣM + Σǫ)
−1Σy,d

0 I









has full

column rank and Σ+
M+Σ+

ǫ is positive definite, the matrix









ΣM + Σǫ 0

0 Q−1









must be positive definite. This shows that the principal submatrix Q−1 (and

hence Q) is positive definite.

The MSE of the SKG predictor ŷ+(x) can be obtained via (1.10) by

replacing the corresponding quantities in the equation with their augmented
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counterparts. Specifically, we have

MSE(ŷ+(x)) = τ 2 − Σ+
M(x, ·)⊺(Σ+

M + Σ+
ǫ )

−1Σ+
M(x, ·)

= τ 2 − (ΣM(x, ·)⊺,ΣM,d(x, ·)⊺)









ΣM + Σǫ Σy,d

Σ⊺
y,d Σd,d









−1 







ΣM(x, ·)

ΣM,d(x, ·)









= τ 2 − (ΣM(x, ·)⊺,ΣM,d(x, ·)⊺)J









ΣM(x, ·)

ΣM,d(x, ·)









= τ 2 − ΣM(x, ·)⊺(ΣM + Σǫ)
−1ΣM(x, ·)

− ΣM(x, ·)⊺(ΣM + Σǫ)
−1Σy,dQΣ

⊺
y,d(ΣM + Σǫ)

−1ΣM(x, ·)

+ ΣM,d(x, ·)QΣ⊺
y,d(ΣM + Σǫ)

−1ΣM(x, ·) + ΣM(x, ·)⊺(ΣM + Σǫ)
−1Σy,dQΣM,d(x, ·)

− ΣM,d(x, ·)⊺QΣM,d(x, ·)

=MSE(ŷ(x))− κ⊺Qκ,

where we have defined κ = Σ⊺
y,d(ΣM + Σǫ)

−1ΣM(x, ·) − ΣM,d(x, ·). Conse-

quently, the desired claim follows from the positive definiteness of Q.

The following result shows that the conclusion of Theorem 2.3 still holds

true when SKG predictors are constructed using Equation (1.11).

Theorem 2.4. Let ŷ(x) be the SK predictor constructed using (1.11) and
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ŷ+(x) be the SKG predictor obtained by substituting ȳ+,Σ+
M ,Σ

+
ǫ ,Σ

+
M(x, ·),

and F+ for ȳ,ΣM ,Σǫ,ΣM(x, ·), and F in Equation (1.11). If F has full col-

umn rank and Assumptions 1, 2, 3 and 4 hold, thenMSE(ŷ(x)) ≥MSE(ŷ+(x))

for any x ∈ X .

Proof. Proof of Theorem 4. We follow the same notation J , Q, and κ used

in the proof of Theorem 2.3. When ŷ+(x) is constructed using (1.11), its

associated MSE becomes

MSE(ŷ+(x)) = τ 2 − Σ+
M(x, ·)⊺(Σ+

M + Σ+
ǫ )

−1Σ+
M(x, ·)

+ η+(x)⊺(F+⊺
(Σ+

M + Σ+
ǫ )

−1F+)−1η+(x), (2.7)

where η+(x) = f(x) − F+⊺
(Σ+

M + Σ+
ǫ )

−1Σ+
M(x, ·). From the proof of Theo-

rem 2.3, it is easy to see that τ 2 − Σ+
M(x, ·)⊺(Σ+

M + Σ+
ǫ )

−1Σ+
M(x, ·) = τ 2 −

ΣM(x, ·)⊺(ΣM+Σǫ)
−1ΣM(x, ·)−κ⊺Qκ. Thus, the right-hand-side of (2.7) can

be written in terms of MSE(ŷ(x)) as

MSE(ŷ+(x)) =MSE(ŷ(x))− κ⊺Qκ− η(x)⊺(F⊺(ΣM + Σǫ)
−1F)−1η(x)

+ η+(x)⊺(F+⊺
(Σ+

M + Σ+
ǫ )

−1F+)−1η+(x). (2.8)

38



Regarding the last term in (2.8), we have

F+⊺
(Σ+

M + Σ+
ǫ )

−1F+

= (F⊺,F⊺
d)J









F

Fd









= F⊺(ΣM + Σǫ)
−1F+ F⊺(ΣM + Σǫ)

−1Σy,dQΣ
⊺
y,d(ΣM + Σǫ)

−1F

− F⊺
dQΣ

⊺
y,d(ΣM + Σǫ)

−1F− F⊺(ΣM + Σǫ)
−1Σy,dQFd + F⊺

dQFd

= F⊺(ΣM + Σǫ)
−1F+ γ⊺Qγ, (2.9)

where γ = Σ⊺
y,d(ΣM + Σǫ)

−1F− Fd. On the other hand,

η+(x) = f(x)− F+⊺
(Σ+

M + Σ+
ǫ )

−1Σ+
M(x, ·)

= f(x)− (F⊺,F⊺
d)J









ΣM(x, ·)

ΣM,d(x, ·)









= f(x)− F⊺(ΣM + Σǫ)
−1Σy,dQΣ

⊺
y,d(ΣM + Σǫ)

−1ΣM(x, ·)

− F⊺(ΣM + Σǫ)
−1ΣM(x, ·) + F⊺

dQΣy,d(ΣM + Σǫ)
−1ΣM(x, ·)

+ F⊺(ΣM + Σǫ)
−1Σy,dQΣM,d(x, ·)− F⊺

dQΣM,d(x, ·)

= η(x)− γ⊺Qκ (2.10)
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Substituting (2.9) and (2.10) into (2.8), we obtain

MSE(ŷ+(x))

=MSE(ŷ(x))− κ⊺Qκ+ (η(x)− η(x)⊺(F⊺(ΣM + Σǫ)
−1F)−1η(x)

− γ⊺Qκ)⊺(F⊺(ΣM + Σǫ)
−1F+ γ⊺Qγ)−1(η(x)− γ⊺Qκ) (2.11)

Now define S = F⊺(ΣM + Σǫ)
−1F. Since F is assumed to have full column

rank and (ΣM + Σǫ)
−1 is positive definite by Lemma 2.1, it follows that S

is positive definite and S−1 exists. Therefore, by the Sherman-Morrison-

Woodbury formula, we have

(F⊺(ΣM + Σǫ)
−1F+ γ⊺Qγ)−1

=(S + γ⊺Qγ)−1

=S−1 − S−1γ⊺(Q−1 + γS−1γ⊺)−1γS−1. (2.12)
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Combining (2.12) and (2.11), we get

MSE(ŷ+(x))

=MSE(ŷ(x))− κ⊺Qκ− η(x)⊺S−1γ⊺Qκ− η(x)⊺S−1γ⊺(Q−1 + γS−1γ⊺)−1γS−1η(x)

+ η(x)⊺S−1γ⊺(Q−1 + γS−1γ⊺)−1γS−1γ⊺Qκ− κ⊺QγS−1η(x) + κ⊺QγS−1γ⊺Qκ

+ κ⊺QγS−1γ⊺(Q−1 + γS−1γ⊺)−1γS−1η(x)− κ⊺QγS−1γ⊺(Q−1 + γS−1γ⊺)−1γS−1γ⊺Qκ

=MSE(ŷ(x))− κ⊺Qκ− η(x)⊺S−1γ⊺(Ikd×kd − (Q−1 + γS−1γ⊺)−1γS−1γ⊺)Qκ

− κ⊺Q(Ikd×kd − γS−1γ⊺(Q−1 + γS−1γ⊺)−1)γS−1η(x)

+ κ⊺QγS−1γ⊺(Ikd×kd − (Q−1 + γS−1γ⊺)−1γS−1γ⊺)Qκ

− η(x)⊺S−1γ⊺(Q−1 + γS−1γ⊺)−1γS−1η(x) (2.13)

Since Q and S are positive definite, the symmetric matrix (Q−1+ γS−1γ⊺)−1

is also positive definite. Therefore, there exists an orthogonal matrix P

and a diagonal matrix Λ with positive diagonal entries such that (Q−1 +

γS−1γ⊺)−1 = PΛP ⊺ and γS−1γ⊺ = PΛ−1P ⊺ −Q−1. Substituting these equa-

tions into (2.13), it follows that

MSE(ŷ+(x)) =MSE(ŷ(x))− η(x)⊺S−1γ⊺(Ikd×kd − PΛP ⊺(PΛ−1P ⊺ −Q−1))Qκ

− κ⊺Q(Ikd×kd − (PΛ−1P ⊺ −Q−1)PΛP ⊺)γS−1η(x)
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+ κ⊺Q(PΛ−1P ⊺ −Q−1)(Ikd×kd − PΛP ⊺(PΛ−1P ⊺ −Q−1))Qκ− κ⊺Qκ−

η(x)⊺S−1γ⊺PΛP ⊺γS−1η(x)

=MSE(ŷ(x))− η(x)⊺S−1γ⊺(PΛP ⊺Q−1)Qκ− κ⊺Q(Q−1PΛP ⊺)γS−1η(x)

+ κ⊺Q(PΛ−1P ⊺ −Q−1)(PΛP ⊺Q−1)Qκ− κ⊺Qκ− η(x)⊺S−1γ⊺PΛP ⊺γS−1η(x)

=MSE(ŷ(x))− η(x)⊺S−1γ⊺PΛP ⊺κ− κ⊺PΛP ⊺γS−1η(x) + κ⊺Qκ− κPΛP ⊺κ− κ⊺Qκ

− η(x)⊺S−1γ⊺PΛP ⊺γS−1η(x)

=MSE(ŷ(x))− (κ+ γ(S)−1η(x))⊺((Q)−1 + γ(S)−1γ⊺)−1(κ+ γ(S)−1η(x))

≤MSE(ŷ(x)), (2.14)

Given a set of design points {x1, . . . ,xk}, consider a prediction point

x0 /∈ {x1, . . . ,xk}. Let ŷ+k (x0) be the SKG predictor constructed using Equa-

tion (1.9) based on the set of k design points {x1, . . . ,xk} and ŷ+k+1(x0) be the

resulting predictor when a new design point xk+1 is included in the set. We

now establish the monotonic performance of the SKG predictor by showing

that ŷ+k+1(x0) has smaller MSE than ŷ+k (x0).

Similar to Section 2.2, let ȳ+
k+1 be the augmented response vector when

k+1 design points are available. In ȳ+
k+1, we separate the averaged response
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and gradient estimators at xk+1 from those of the rest k design points. In

particular, we define ȳ+
1 = (ȳ(xk+1), D̄1(xk+1), . . . , D̄d(xk+1))

⊺ and write

ȳ+
k+1 = (ȳ(x1), . . . , ȳ(xk+1), D̄1(x1), . . . , D̄1(xk+1), . . . , D̄d(x1), . . . , D̄d(xk+1))

⊺

= (ȳ(x1), . . . , ȳ(xk), D̄1(x1), . . . , D̄d(xk), ȳ(xk+1), D̄1(xk+1), . . . , D̄d(xk+1))
⊺

= (ȳk
+⊺
, ȳ1

+⊺
)⊺

For brevity, we also define:

Σ+
Mk+1

+ Σ+
ǫk+1

= E[(ȳ+
k+1 − E[ȳ+

k+1])(ȳ
+
k+1 − E[ȳ+

k+1])
⊺],

Σ+
Mk

+ Σ+
ǫk
= E[(ȳ+

k − E[ȳ+
k ])(ȳ

+
k − E[ȳ+

k ])
⊺],

Σ+
k,1 = E[(ȳ+

k − E[ȳ+
k ])(ȳ

+
1 − E[ȳ+

1 ])
⊺],

Σ+
1,1 = E[(ȳ+

1 − E[ȳ+
1 ])(ȳ

+
1 − E[ȳ+

1 ])
⊺],

Σ+
Mk+1

(x, ·) = (Cov(Y (x), Y (x1)), . . . ,Cov(Y (x), Y (xk)),

Cov(Y (x), D1(x1)), . . . ,Cov(Y (x), D1(xk)),

. . . ,Cov(Y (x), Dd(x1)), . . . ,Cov(Y (x), Dd(xk)),

Cov(Y (x), Y (xk+1)),Cov(Y (x), D1(xk+1)), . . . ,Cov(Y (x), Dd(xk+1)))
⊺

, (Σ+
Mk

(x, ·)⊺,Σ+
M1

(x, ·)⊺)⊺, (2.15)
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F+
k+1 = (f(x1), . . . , f(xk+1),

∂f(x1)

∂x1
, . . . ,

∂f(xk+1)

∂x1
, . . . ,

∂f(x1)

∂xd
, . . . ,

∂f(xk+1)

∂xd
)⊺

= (f(x1), . . . , f(xk),
∂f(x1)

∂x1
, . . . ,

∂f(xk)

∂x1
, . . . ,

∂f(x1)

∂xd
, . . . ,

∂f(xk)

∂xd
,

f(xk+1),
∂f(xk+1)

∂x1
, . . . ,

∂f(xk+1)

∂xd
)⊺

, (F+
k

⊺
,F+

1
⊺
)⊺. (2.16)

Note that in (2.15), Σ+
Mk

(x, ·) is a k(d + 1) × 1 vector and Σ+
M1

(x, ·) is a

(d + 1) × 1 vector, and in (2.16), F+
k is a k(d + 1) × p matrix and F+

1 is a

(d+ 1)× p matrix.

Corollary 2.1. Suppose that xk+1 /∈ {x1, . . . ,xk}. For any prediction point

x0 ∈ X , let ŷ+k (x0) and ŷ
+
k+1(x0) be SKG predictors constructed using Equa-

tion (1.9). If assumption 1, 2, 3 and 4 hold, thenMSE(ŷ+k (x0)) ≥MSE(ŷ+k+1(x0)).

Proof. Proof of Corollary 1. The proof follows straightforwardly by replac-

ing MSE(ŷ(x)), MSE(ŷ+(x)), (Σ+
M +Σ+

ǫ ), (ΣM +Σǫ), Σy,d, Σd,d, Σ
+
M(x, ·),

ΣM(x, ·), and ΣM,d(x, ·) in the proof of Theorem 2.3 with MSE(ŷ+k (x0)),

MSE(ŷ+k+1(x0)), (Σ
+
Mk+1

+Σ+
ǫk+1

), (Σ+
Mk

+Σ+
ǫk
), Σ+

k,1, Σ
+
1,1, Σ

+
Mk+1

(x0, ·), Σ+
Mk

(x0, ·),

and Σ+
M1

(x0, ·), respectively. We omit the details.

Similarly, when SKG predictors are constructed by applying Equation

(1.11), we have the same monotonicity property.
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Corollary 2.2. Suppose that xk+1 /∈ {x1, . . . ,xk}. For any prediction point

x0 ∈ X , let ŷ+k (x0) and ŷ
+
k+1(x0) be SKG predictors constructed using Equa-

tion (1.11). If Assumptions 1, 2, 3 and 4 hold and F+
k has full column rank,

then MSE(ŷ+k (x0)) ≥MSE(ŷ+k+1(x0)).

Proof. Proof of Corollary 2.The proof is identical to the proof of Theorem 2.4

withMSE(ŷ+k (x0)),MSE(ŷ+k+1(x0)), (Σ
+
Mk+1

+Σ+
ǫk+1

), (Σ+
Mk

+Σ+
ǫk
), Σ+

k,1, Σ
+
1,1,

Σ+
Mk+1

(x0, ·), Σ+
Mk

(x0, ·), Σ+
M1

(x0, ·), F+
k+1, F+

k , F+
1 replacing MSE(ŷ(x)),

MSE(ŷ+(x)), (Σ+
M+Σ+

ǫ ), (ΣM+Σǫ), Σy,d, Σd,d, Σ
+
M(x, ·), ΣM(x, ·), ΣM,d(x, ·),

F+, F, Fd.
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3 An Adaptive Sequential Kriging Approach

3.1 Motivation

In general, the experiment design for kriging metamodels can be clas-

sified into three categories: single-stage method, simple sequential methods

without adaption, and sequential methods with adaption to data. Single-

stage experiment design fixes the number of design points n in advance, then

collects the output performance measures and optimizes all n design points

simultaneously according to the chosen criteria. The single-stage method is

easy to implement and computationally efficient. However, there is not a

rigorous rule about how to determine the predefined n design points. The

most commonly used method is Latin hypercube sampling(LHS). In this

method, a very large number of design points n may be required when the

sample space is large and continuous. The drawback of such type of sampling

method is that it fails to consider the specific characteristics of the response

surface. Therefore it is possible that too much computation budget is wasted

on regions that have little or no additional information about the response

surface. On the other hand, there may exist crucial characteristics and useful

information of the response surface in the unsampled regions.
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Different from single-stage method, sequential methods do not predefine

the number of design points at the beginning. Instead, only a small set of

initial design points need to be specified in advance. Then at each stage, a

new design point is selected based on a certain chosen criteria. The sequential

method’s adaptability depends on the selection criteria. If the criteria do

not depend on information of the unknown response surface, it is a simple

sequential design and it can be stopped as soon as either the prediction

performance is satisfied or computational resources run out. If the selection

criteria contain updated information of the response surface, it is a sequential

sampling method with adaption to the metamodel. It is not surprising that

sequential methods with adaption usually have better performance due to

their ability of adaptively updating the parameters in a metamodel. However,

sometimes it can be time consuming to select new design points sequentially.

In addition, the validity of sequential methods is more difficult to be justified

theoretically.

Developing sequential adaptive methods for simulation metamodels is

still an open question and more effort is needed in this topic. Several se-

quential methods have been proposed in recent years ([9], [13], [36], [37], [38]

and [39]). Among all these methods, only two dynamic approaches are com-

47



parable to our work: sequential sampling maximum MSE of the predictor

([9], [10]) and sequential exploration in the sample space ([39]). The first

approach designs selection criteria solely based on metrics of uncertainty of

the predictor, like MSE or IMSE. It was claimed that the prediction ac-

curacy can be improved by selecting design points that can reduce both the

intrinsic and extrinsic quantity of uncertainty of the metamodel. For the sec-

ond approach, the underlying philosophy relies on balancing the exploration

and exploitation tradeoff of the simulation budget allocation. However, for

both approaches, little rigorous theoretical results on either the quantity of

uncertainty reduction or prediction accuracy are available.

To better accommodate the theoretical foundation of sequential sam-

pling design in SK/SKG, we propose a novel sequential sampling algorithm

based on the monotonicity properties of SK/SKG established in the previ-

ous sections. In our proposed algorithm, we consider both the strategy of

design point selection and simulation budget allocation. Moreover, in order

to guarantee the overall model prediction accuracy of our algorithm, a de-

tailed theoretical proof is provided in the idealized setting when the number

of design points goes to infinity.
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3.2 Existing Sequential Design Algorithms

3.2.1 Sequential Adaptive Approaches based on MSE or IMSE

Under the deterministic kriging metamodels, it has been stated in [9]

that the most widely-used criteria for sequential experiment design are the

Integrated Mean Square Error (IMSE)

IMSE(k) ,

∫

x∈X
MSE(ỹk(x))dx (3.1)

and the Maximum Mean Square Error

maxx∈XMSE(ỹk(x))dx. (3.2)

One typical sequential algorithm based on IMSE in ordinary or universal

kriging is to use simple one-step look-ahead schemes ([9]). This sequential

approach simply searches the design point that attains the largest reduction

in IMSE over the whole region. However, to our best knowledge, little the-

oretical analyses, such as convergence analysis and performance guarantee

when the number of design points goes to infinity, are available for such se-

quential algorithm. In particular, it is not clear how much uncertainty has
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been reduced when an optimal design point is and whether such sequential

algorithm can be applied in stochastic settings.

The basic idea of sequential approaches based on MSE is to select the

design point that maximizes the current MSE estimate. Some variations

of MSE are also used as a selection criterion, like the confidence interval

proposed in [37] and the relative error proposed in [38]. However, when the

space of design points is continuous, multiple maximum MSE estimators may

exist in the early stage of a sequential fitting procedure, making it impossible

to select a unique design point. The following example is an illustration of

such a scenario.

Consider the unknown response surface as a deterministic function with

artificial noise. We use stochastic kriging with gradient estimators to model

its surface. Let

y(x) = exp(−1.4x)cos(
7πx

2
) + ǫ,−3 ≤ x ≤ 0,

where the noise ǫ ∼ N (0, 1). Assume the gradient can be estimated with
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noise, identified by

g(x) = y′(x) + ζ,

where ζ ∼ N (0, 1), and the initial design points are given by Latin hypercube

designs (LHD) with good space-filling properties, i.e. I = {−3,−2.5,−2,−1.5,

−1,−0.5, 0}. The number of replications for simulations at each design point

is 30.

Figure 1: Comparisons between the fitted response surface and the true
surface

It can be seen from Figure 1 that the fitted surface is only close to

the true surface in the neighbourhood of the design points. However, the

fitted surface is almost flat in the area between any of two consecutive design
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Figure 2: The MSE estimator of the fitted predictor

points. This is because no information from the true response surface is

available from the initial design points. Figure 2 shows the MSE estimator

of the predictor as a function of the design points. The MSEs of the predictor

at the initial design points are reduced to zero. While the MSE estimators are

relatively high in the unexplored area. It is interesting to see that the MSEs

achieve almost the same maximum value in the unexplored area between two

consecutive points. Therefore, it is not clear how to sample a unique point

that maximize the MSE estimator.

In general, the sequential procedures based on MSE and IMSE criteria

are intuitively easy to understand. However, few theoretical analyses have

been conducted with regard to the explicit reduction of MSE/IMSE, the role
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of intrinsic/extrinsic noise and the uncertainty measure performance for such

procedures.

3.2.2 Adaptive Exploration-Exploitation Sampling Algorithm

Different from traditional sequential approaches based on MSE and

IMSE criterion, the adaptive exploration-exploitation sampling algorithm

(AEES) proposed by Ajdari and Mahlooji ([39]) focuses on decomposing the

sample space and then select a new design point according to the principle of

balancing the exploration and exploitation. The philosophy of exploration is

to focus on covering the entire search space with the least possible unsampled

regions. One typical example is space-filling design. However, exploitative

methods primarily focus on regions with more interesting characteristics than

others. These exploitative methods attempt to skip regions that contain no

significant information about characteristics of the surface but in favor of

those that are considered to be more informative. Thus it is not surprising

to see that there is a conflict between exploration and exploitation meth-

ods due to the limitation of simulation budgets. One of the disadvantages

associated with exploitation-based methods is that the sample points may

become clustered in some regions while other parts remain unsampled. On
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the other hand, another disadvantage of exploration-based methods is that

the simulation efforts may be spent in regions that are not informative of

interest. The method proposed by Ajdari and Mahlooji combines the capa-

bilities of both exploration and exploitation methods. It aims at using the

advantage of both the exploration and exploitation methods while avoiding

the drawbacks associated with each one of them.

The novelty of the proposed algorithm in [39] lies in its method for se-

lecting the next design point, called Delaunay-Hybrid Adaptive Sequential

Design (DHASD). In particular, when selecting the new design point, the

sample space is decomposed into a mesh of triangles upon the current de-

sign points by the Delaunay Triangulation algorithm. The interior of each

triangle is treated as an unsampled region. Then two criteria are considered

to represent the potential of each triangle for the subsequent investigation

based on exploration and exploitation capabilities. One criterion denoted

by the exploration score is related to the space-filling characteristic of the

experiment design and guaranties a good coverage of the sample space. On

the other hand, the exploitation criterion represents the degree of capturing

the response surface’s information and thus improving the accuracy of the

metamodel. Finally the two criteria are combined in an adaptive manner so
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that the triangle that maximize the total score is the most potential region.

As a result, the centroid of the triangle is selected as the new design point.

The idea of AEES is creative. However, one main concern about AEES

algorithm is that no characteristic of the metamodel is involved in the selec-

tion criteria. The next point is only selected based on the information of the

unknown response surface. In other words, we may change the metamodel

to any other appropriate ones but keep the same selection criteria. The al-

gorithm will still work. Therefore, the AEES is general to various kinds of

metamodels but probably is not the optimal adaptive sequential sampling ap-

proach for SK/SKG metamodels. In the next section, we will propose a novel

adaptive sequential sampling approach that combines both the structural in-

formation of the metamodel and the philosophy of exportation-exploitation.

3.3 Adaptive Sequential Algorithm Design

Based on the monotonicity analysis of the MSE estimators in SK/SKG

metamodels, we propose an adaptive sequential sampling method for the

SK/SKG metamodeling. Suppose we have selected a set of design points

{x1, . . . ,xk} and a set of the numbers of simulation replications {n1, . . . , nk}

allocated to each point, let ỹk(x) be the SK predictor (i.e., ỹk(x) , ŷk(x))
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or SKG predictor (i.e., ỹk(x) , ŷ+k (x)) constructed using (1.11). Our goal

is to provide a global fit of an unknown response surface. Therefore it is

hoped that ỹk(x) would be more accurate to represent the true surface after

updating the parameters in SK/SKG metamodels iteratively. To evaluate

the overall quality of the prediction of the model over the design space, the

integrated MSE (IMSE)

IMSE(k) ,

∫

x∈X
MSE(ỹk(x))dx (3.3)

serves as a useful criterion and a small IMSE is expected for an accurate

SK/SKG predictor.

When the total simulation budget N is fixed and the number of design

points K is specified, a two-stage sequential design is proposed by Ankenman

et al. (2010) under the assumption that model parameters are known. In the

beginning, a small number m of design points are determined for SK model

fitting in advance. The remaining K − m number of design points and al-

location of replications are selected subsequently to minimize the estimated

IMSE. Claiming that choosing the remaining design points in a space-filling

way would avoid solving a high-dimensional non-linear optimization prob-
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lem, the authors focused their research on how to allocate the simulation

replications.

However, when the model parameters are unknown, the underlying as-

sumption of the two-stage sequential design is violated. Thus, the superiority

of the two-stage design can not be attained under general circumstances. In

order to develop an more efficient strategy, the model parameters should be

estimated via the information carried by the design points and the corre-

sponding simulation outputs. Taking these into consideration, a truly opti-

mal design should: (1) sequentially estimate model parameters incorporating

simulation outputs at all previously generated points, and (2) minimize the

estimated IMSE after all of the budget N has been allocated. However, de-

veloping such an optimal strategy would involve solving a stochastic dynamic

programming problem, which is computationally expensive.

Motivated by the monotonicity results derived in Section 2, we consider

an adaptive sequential approach that myopically maximizes the difference

between successive IMSEs at each iteration. Instead of trying to derive

a N -step bellman equation, we focused on researching the changes of the

model predictor’s uncertainty by looking one step ahead. In particular, let

{x1, . . . ,xk} be the set of design points and let {n1, . . . , nk} be the set of sim-
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ulation replications on each design point. To tackle the problem of selecting

the next iteration design point, we consider the point xk+1 and allocation of

replications nk+1 that achieve the maximum reduction in the IMSE at each

iteration:

(xk+1, nk+1) = argmax
x∈X , n≥1

(

IMSE(k)− IMSE(k + 1)
)

= argmax
x∈X , n≥1

∫

x0∈X

(

MSE(ỹk(x0))−MSE(ỹk+1(x0))
)

dx0, (3.4)

where MSE(ỹk+1(x)) is considered as a function of the new location x given

that the kriging parameters are estimated in the (k)th iteration and the num-

ber of replications n allocated to x. The IMSE(k + 1) is interpreted as the

overall uncertainty of the metamodel with the (k + 1)th randomly selected

design point added under the parameters settings of the (k)th iteration. So

there is no need to estimate the IMSEs directly in (3.4) because the differ-

ence between MSEs is given in the proofs of Theorem 2.2 and Corollary 2.2.

In particular, the reduction in MSE estimator when a new point is added

into SK/SKG metamodel are quantified with the formulas. Therefore, we

are able to calculate the difference of IMSEs in (3.4). The explicit formulas

of the difference in IMSEs are given as follows. We list the difference for SK
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and SKG metamodels, respectively.

xk+1 ,











































argmax
x∈X

∫

x0∈X
(φ(x0)+ηk(x0)⊺W−1ψ⊺)2

Φ−1+ψW−1ψ⊺ dx0 SK metamodel

argmax
x∈X

∫

x0∈X (κ
+ + γ+(S+)−1η+)⊺((Q+)−1 + γ+(S+)−1γ+

⊺
)−1

(κ+ + γ+(S+)−1η+)dx0 SKG metamodel

(3.5)

where κ+, γ+, S+, η+, Q+ are given as follows.

κ+ = Σ+
k,1

⊺(Σ+
Mk

+ Σ+
ǫk
)−1Σ+

Mk
(x0, ·)− Σ+

M1
(x0, ·)

γ+ = Σ+
k,1

⊺(Σ+
Mk

+ Σ+
ǫk
)−1F+

k − F+
1

S+ = Fk
+⊺

(Σ+
Mk

+ Σ+
ǫk
)−1F+

k

η+ = f(x0)− Fk
+⊺

(Σ+
Mk

+ Σ+
ǫk
)−1Σ+

Mk
(x0, ·)

Q+ = (Σ+
1,1 − Σ+

k,1
⊺(Σ+

Mk
+ Σ+

ǫk
)−1Σ+

k,1)
−1 (3.6)

The main benefit here is that it allows the model parameters (and hence

the IMSE in (3.4)) to be estimated incrementally using all data collected up

to the current iteration. However, a difficulty associated with (3.4) is that

we can no longer maintain the budget constraint
∑K

k=1 nk = N , because the
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optimal nk+1 that solves (3.4) is always given by nk+1 = ∞ by looking into

the proof in Theorem 2.2 (Corollary 2.2). Therefore, we instead consider the

alternative setting of attaining a desired IMSE target ε > 0. In Section 3.4,

we show that in both the SK and SKG frameworks, the optimal predictor

MSE at a design point xi is dominated by the variance of the averaged

intrinsic noise at xi, the number of simulation replications at xi and the

intrinsic-extrinsic noise variance ratio V (xi)
τ2

MSE(ỹk(xi)) ≤
V (xi)

ni +
V (xi)
τ2

. (3.7)

In addition, the MSE is continuous in the sense that MSE(ỹk(x)) will stay

close to MSE(ỹk(xi)) as long as the new location x is sufficiently close to

xi. Consequently, if MSE(ỹk(xi)) <
ε

|X | at all sampled design points xi,

where |X | is the volume of the design space X , then it is able to ensure the

overall IMSE to fall below a given threshold ε (as the number of design points

increases). This, together with (3.7), leads to the condition ni >
V (xi)(τ

2|X |−ε)
ετ2

,

suggesting that ni should be chosen proportional to the intrinsic variance at

xi.

It is assumed in the above discussion that the intrinsic variance func-
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tion V (x) should be known. However when it is unknown in practice, two

approaches are usually recommended to estimate the intrinsic variance. One

is introducing a second SK metamodel to account for both extrinsic and in-

trinsic uncertainty in estimating V , the other is to apply an ordinary kriging

metamodel. When introducing a second SK metamodel, suppose we have

obtained ni simulation replications at design points xi, i.i.d. noisy obser-

vations of V (xi) can be obtained via a batch means method (e.g., [40]) by

splitting the ni output performance measures yj(xi) into mi batches of equal

size and then computing the sample variance for each batch (alternatively,

a bootstrap resampling approach can be applied when ni is small; see, e.g.,

[41]). Then the mi estimates of V (xi) can be used in (1.12) to construct an

optimal MSE predictor V̂ (x). By using a new SK model, it is able to con-

sider the intrinsic noise when estimating the measures of V (xi). As a result,

it can provide a relatively more accurate estimate of the intrinsic variance.

However, fitting a second SK metamodel that accounts for V (x) sometimes

may be overqualified. Another difficulty in using batch mean method is that

it is not easy to choose a suitable batch size because the ni may vary at

design points. Such issues can be avoided by using an ordinary kriging at

the price of getting a less accurate estimation.
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In our computational results reported in Section 4, we use the approach

outlined in [13]. Different from incorporating another SK metamodel, it uses

the standard (deterministic) kriging method to fit a spatial correlation model

of the form V (x) = σ2 + Z(x), with Z being another mean zero stationary

random field that is independent ofM . Since V (x) is not directly observable,

the intrinsic variance V (xi) at a point xi is replaced by its sample variance

computed using the ni simulation replications at xi. The estimates of V (xi)

are then used in (1.7) to construct an optimal MSE predictor V̂ (x) by simply

ignoring the intrinsic noise.

Once V̂ (x) is obtained, the rest of the parameters (β, τ 2, θ) can be esti-

mated in the way described in [13] by constructing the log-likelihood function

and then applying a standard non-linear optimization algorithm to search for

the maximum likelihood estimators of (β, τ 2, θ). The same techniques can

also be used to estimate the model parameters in the SKG framework; we

refer the readers to [14] for more details.

To summarize, we propose the following sampling strategy, which we re-

fer to as adaptive sequential kriging (ASK), for obtaining experiment designs

in constructing an SK (SKG) predictor with a predefined level of accuracy:
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Step 0: Specify an IMSE target ε > 0, a set of initial space-filling design

points {x1, . . . ,xm}, and numbers of simulation replications {n1, . . . , nm}.

Collect output performance measures (including gradient information if us-

ing SKG) at each xi. Set k = 0.

Step 1: Fit V̂ (and V̂r) and construct MLEs (β̂k, τ̂
2
k , θ̂k) using all perfor-

mance measures collected thus far.

Step 2: Choose the next design point xk+1 as

xk+1 = argmax
x∈X

ÎMSE(k)− ÎMSE(k + 1),

where ÎMSE(k) is an estimator of IMSE(k) when (unknown) model pa-

rameters are replaced by their corresponding estimators. Note that there is

no need to estimate ÎMSE(k+1) in the kth iteration, we solve the candidate

point xk+1 through (3.5).

Step 3: Allocate nk+1 >
V (xk+1)(τ

2|X |−ε)
ετ2

replications to xk+1 and collect out-

put performance measures at xk+1.

Step 4: If ÎMSE(k + 1) ≤ ε, then terminate; otherwise set k = k + 1 and

go to step 1.

We remark that during the initialization step of ASK, the desired ac-
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curacy ε could instead be specified using the average IMSE (AIMSE), i.e.,

IMSE normalized by the volume of the domain |X |, in which case the choice

of nk+1 at Step 3 becomes nk+1 >
V (xk+1)(τ

2−ε)
ετ2

.

3.4 Theoretical Results

In this section, we justify the validity of the proposed ASK algorithm in

an ideal setting. Suppose that all the model parameters are known, based on

the monotonicity properties derived in Section 2, the IMSE of the resulting

predictor can be smaller than a given threshold if the design points and the

simulation replications are sequentially determined by the ASK procedure.

We state a list of lemmas and corollaries to establish our main result.

In particular, we will show that under both the SK and SKG frameworks

and when either β is known or estimated, the optimal predictor MSE at a

sampled design point xi is always upper bounded by the right hand side of

(3.7); moreover, for a design point xi with a small MSE value, the MSE at any

point in the vicinity of xi will also stay small. Not surprisingly, these results

are consistent with our understanding of deterministic kriging models, where

it is well known that the predictor variance is zero at all design locations.

Lemma 3.1. Given a set of design points {x1, . . . ,xk}, let ŷ(x) be the SK
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predictor constructed using (1.9). Let Br(x) be an open ball centered at x

with radius r > 0. For any xi ∈ {x1, . . . ,xk} and ε > 0, if Assumption 1

holds and ni >
V (xi)(τ

2−ε)
ετ2

, then (a) MSE(ŷ(xi)) < ε; (b) there exists an

ri > 0 such that MSE(ŷ(x)) < ε for all x ∈ Bri(xi) ∩ X .

To prove claim (a), We consider there are k > 1 design points in kriging

model. Let ŷ−i(x) be the predictor obtained from the set of k−1 design points

{x1, . . . ,xk} by excluding xi. Thus, it follows from the proof of Theorem 2.1

that

MSE(ŷ(xi)) =MSE(ŷ−i(xi))−
φ(xi)

2

MSE(ŷ−i(xi)) + Σǫ(xi,xi)

=MSE(ŷ−i(xi))−
MSE(ŷ−i(xi))

2

MSE(ŷ−i(xi)) + Σǫ(xi,xi)

=
MSE(ŷ−i(xi))Σǫ(xi,xi)

MSE(ŷ−i(xi)) + Σǫ(xi,xi)

≤ τ 2Σǫ(xi,xi)

τ 2 + Σǫ(xi,xi)
(3.8)

which, when combined with the fact ni >
V (xi)(τ

2−ε)
τ2ε

, shows that

MSE(ŷ(xi)) ≤
τ 2Σǫ(xi,xi)

τ 2 + Σǫ(xi,xi)
< ε. (3.9)

Now define ε′ , τ2Σǫ(xi,xi)
τ2+Σǫ(xi,xi)

< ε and consider a prediction point in the
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vicinity of xi, i.e., x ∈ Bri(xi)∩X for some ri > 0. The MSE of ŷ(x) can be

expressed as

MSE(ŷ(x)) = τ 2 − ΣM(x, ·)⊺(ΣM + Σǫ)
−1ΣM(x, ·)

= τ 2 − (ΣM(x, ·)− ΣM(xi, ·) + ΣM(xi, ·))⊺(ΣM + Σǫ)
−1

(ΣM(x, ·)− ΣM(xi, ·) + ΣM(xi, ·))

= τ 2 − (ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1(ΣM(x, ·)− ΣM(xi, ·))−

2(ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1ΣM(xi, ·)−

ΣM(xi, ·)⊺(ΣM + Σǫ)
−1ΣM(xi, ·)

=MSE(ŷ(xi))− (ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1(ΣM(x, ·)− ΣM(xi, ·))−

2(ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1ΣM(xi, ·) (3.10)

≤MSE(ŷ(xi))− 2(ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1ΣM(xi, ·), (3.11)

≤MSE(ŷ(xi)) + 2‖ΣM(x, ·)− ΣM(xi, ·)‖‖(ΣM + Σǫ)
−1ΣM(xi, ·)‖,

(3.12)

where inequality (3.11) follows because the second term in (3.10) is non-

negative (due to the positive definiteness of (ΣM + Σǫ)
−1), and the last in-

equality (3.12) follows from the Cauchy-Schwarz inequality. From the dis-

cussion after Assumption 1, we know that (ΣM + Σǫ)
−1ΣM(xi, ·) is a k × 1
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vector with bounded Euclidean norm Lk , ‖(ΣM + Σǫ)
−1ΣM(xi, ·)‖. In

addition, the jth element of the vector ΣM(x, ·) − ΣM(xi, ·) can be writ-

ten as τ 2(R(d(x,xj),θ) − R(d(xi,xj),θ)). Thus, since (ε − ε′)/2 > 0, the

continuity of the correlation R(d,θ), together with the triangle inequality

|d(x,xj) − d(xi,xj)| ≤ d(x,xi), suggests there exists an ri (depending on

k) such that |d(x,xj)− d(xi,xj)| ≤ d(x,xi) < ri implies τ 2(R(d(x,xj),θ)−

R(d(xi,xj),θ)) ≤ ε−ε′
4Lk

√
k
. This shows that the second term on the right-hand-

side of (3.12) is bounded from above by (ε − ε′)/2 for all x ∈ Bri(xi) ∩ X .

Finally, the proof is completed by noting thatMSE(ŷ(xi)) ≤ τ2Σǫ(xi,xi)
τ2+Σǫ(xi,xi)

= ε′

(see (3.9)).

Corollary 3.1. Given a set of design points {x1, . . . ,xk}, let ŷ(x) be the SK

predictor constructed using (1.11). For any xi ∈ {x1, . . . ,xk} and ε > 0, if

Assumption 1 holds and ni >
V (xi)(τ

2−ε)
ετ2

, then (a) MSE(ŷ(xi)) < ε; (b) there

exists an ri > 0 such that MSE(ŷ(x)) < ε for all x ∈ Bri(xi) ∩ X .

As in the proof of Lemma 3.1, part (a) amounts to showing thatMSE(ŷ(xi))

at a given design point xi is bounded by the variance of the averaged intrin-

sic noises at xi. Consider that there are k > 1 design points in kriging

model, a closer inspection of the proof of Theorem 2.2 shows that (3.8)

still holds when the MSE is given in form of (1.12). In particular, let

67



ŷ−i(x) be the SK constructed from (1.11) by using the set of design points

{x1, . . . ,xi−1,xi+1, . . . ,xk}, we have

MSE(ŷ(xi)) =
MSE(ŷ−i(xi))Σǫ(xi,xi)

MSE(ŷ−i(xi)) + Σǫ(xi,xi)

≤ τ 2Σǫ(xi,xi)

τ 2 + Σǫ(xi,xi)
< ε.

To show part (b), we consider a prediction point x contained in the open

ball Bri(xi) ∩ X and write the MSE of the predictor at x as

MSE(ŷ(x))

= τ 2 − ΣM(x, ·)⊺(ΣM + Σǫ)
−1ΣM(x, ·) + η(x)⊺(1⊺

k(ΣM + Σǫ)
−11k)

−1η(x)

= τ 2 − (ΣM(x, ·)− ΣM(xi, ·) + ΣM(xi, ·))⊺(ΣM + Σǫ)
−1(ΣM(x, ·)− ΣM(xi, ·) + ΣM(xi, ·))

+ (η(xi)− 1⊺
k(ΣM + Σǫ)

−1(ΣM(x, ·)− ΣM(xi, ·)))⊺(1⊺
k(ΣM + Σǫ)

−11k)
−1

(η(xi)− 1⊺
k(ΣM + Σǫ)

−1(ΣM(x, ·)− ΣM(xi, ·)))

= τ 2 − ΣM(xi, ·)⊺(ΣM + Σǫ)
−1ΣM(xi, ·) + η(xi)

⊺(1⊺
k(ΣM + Σǫ)

−11k)
−1η(xi)

− 2(ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1ΣM(xi, ·)

− (ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1(ΣM(x, ·)− ΣM(xi, ·))

− 2η(xi)
⊺(1⊺

k(ΣM + Σǫ)
−11k)

−11⊺
k(ΣM + Σǫ)

−1(ΣM(x, ·)− ΣM(xi, ·))
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+ (ΣM(x, ·)− ΣM(xi, ·))⊺Uk(ΣM(x, ·)− ΣM(xi, ·))

=MSE(ŷ(xi))− (ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1(ΣM(x, ·)− ΣM(xi, ·))

− 2(ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1ΣM(xi, ·)

− 2η(xi)
⊺(1⊺

k(ΣM + Σǫ)
−11k)

−11⊺
k(ΣM + Σǫ)

−1(ΣM(x, ·)− ΣM(xi, ·))

+ (ΣM(x, ·)− ΣM(xi, ·))⊺Uk(ΣM(x, ·)− ΣM(xi, ·))

≤MSE(ŷ(xi))− 2(ΣM(x, ·)− ΣM(xi, ·))⊺(ΣM + Σǫ)
−1ΣM(xi, ·)

− 2η(xi)
⊺(1⊺

k(ΣM + Σǫ)
−11k)

−11⊺
k(ΣM + Σǫ)

−1(ΣM(x, ·)− ΣM(xi, ·))

+ (ΣM(x, ·)− ΣM(xi, ·))⊺Uk(ΣM(x, ·)− ΣM(xi, ·)), (3.13)

where we have defined Uk = (ΣM + Σǫ)
−11k(1

⊺
k(ΣM + Σǫ)

−11k)
−11⊺

k(ΣM +

Σǫ)
−1, and the last inequality holds because (ΣM +Σǫ)

−1 is positive definite

by Lemma 2.1. It is easy to observe that Uk is a symmetric positive semi-

definite matrix. Therefore, the last term on the right-hand-side of (3.13) is

bounded from above by λUk

∑k

j=1(ΣM(x,xj)−ΣM(xi,xj))
2, where λUk

≥ 0

is the largest eigenvalue ofUk. The rest of the proof follows straightforwardly

by invoking the continuity of R(d,θ) and the triangle inequality, and then

employing a similar argument as given in the proof of Lemma 3.1; we omit

the details.
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Lemma 3.2. Given a set of design points {x1, . . . ,xk}, let ŷ+(x) be the SKG

predictor constructed using (1.9). For any xi ∈ {x1, . . . ,xk} and ε > 0, if

Assumptions 1, 2, 3, 4 hold and ni >
V (xi)(τ

2−ε)
ετ2

, then (a) MSE(ŷ+(xi)) < ε;

(b) there exists an ri > 0 such that MSE(ŷ+(x)) < ε for all x ∈ Bri(xi)∩X .

Proof. Proof of Lemma 3. Let ŷ(x) be the SK predictor constructed using

(1.9) based on {x1, . . . ,xk}. Lemma 3.1 shows that for any given ε > 0,

MSE(ŷ(xi)) < ε and there exists an ri > 0 such that MSE(ŷ(x)) < ǫ for

all x ∈ Bri(xi) ∩ X . When gradient information is available, Theorem 2.3

shows that ŷ+(x) always improves the performance of ŷ(x) in the sense that

MSE(ŷ+(x)) ≤ MSE(ŷ(x)). Consequently, we obtain MSE(ŷ+(xi)) < ε

and MSE(ŷ+(x)) < ε for all x ∈ Bri(xi) ∩ X .

Corollary 3.2. Given a set of design points {x1, . . . ,xk}, let ŷ+(x) be the

SKG predictor constructed using (1.11). For any xi ∈ {x1, . . . ,xk} and ε >

0, if Assumptions 1, 2, 3, 4 hold and ni >
V (xi)(τ

2−ε)
ετ2

, then (a)MSE(ŷ+(xi)) <

ε; (b) there exists an ri > 0 such that MSE(ŷ+(x)) < ε for all x ∈

Bri(xi) ∩ X .

Proof. Proof of Corollary 4. Follows directly from Corollary 3.1 and Theorem

2.4.
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The previous results indicate that for every design point xi generated by

ASK, there exists an open ball Bri(xi) so that the MSE at any point in the

ball can be made very small. Intuitively, since ASK minimizes IMSE at each

step, new design points should be chosen in the complement of the union of

these open balls. Thus, as new points are generated, the collection of open

balls increases and will cover the entire (compact) design space in finite time,

at which point the desired IMSE target is attained. This intuition leads to

the following theorem:

Theorem 3.1. Let x1,x2, . . . be the sequence of design points generated by the

ASK algorithm and ε > 0 be a given tolerance. Suppose that Assumptions 1,

2, 3, and 4 hold and the number of simulation replications ni >
V (xi)(τ

2|X |−ε)
ετ2

for all i, then limk→∞ IMSE(k) ≤ ε.

Proof. Proof of Theorem 5. We only consider the SK framework when the

predictor ŷk(x) is obtained using (1.11); the same result can be seen to hold

in the SKG case by applying Theorem 2.4.

For a given sequence {ni}, the sequence of design points x1,x2, . . . is

completely determined by the ASK method. From Theorem 2.2, it is easy to

see that the sequence of IMSEs of the optimal predictors ŷk(x) is monoton-

ically non-increasing. Therefore, it follows from the monotone convergence
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theorem that limk→∞ IMSE(k) = c for some constant c ≥ 0.

We now proceed by contradiction and assume limk→∞ IMSE(k) = c >

ε. This hypothesis, together with the monotonicity ofMSE(ŷk(x)) (Theorem

2.2), implies there exists a subset Ω ⊆ X with positive Lebesgue measure and

non-empty interior (due to the continuity of MSE) such that

MSE(ŷk(x)) >
c+ ε

2|X | ∀x ∈ Ω and ∀ k. (3.14)

Let x∗ ∈ Ω be such that Br(x
∗) ⊆ Ω for some r > 0. Clearly, x∗ has

never been generated by the algorithm, i.e, x∗ /∈ {x1,x2, . . .}; otherwise the

condition that ni >
V (xi)(τ

2|X |−ε)
ετ2

and Corollary 3.1 part (a) would lead to

MSE(ŷk(x
∗)) < ε

|X | <
c+ε
2|X | , which contradicts (3.14).

Fix an iteration k ≥ 1, and let {x1, . . . ,xk} be the set of current design

points. Let ŷ∗k(x) be the optimal SK predictor constructed using the design

points {x1, . . . ,xk,x
∗} with n∗ > V (x∗)(τ2|X |−ε)

ετ2
simulation replications allo-

cated to x∗. We have from Corollary 3.1 that there exists an r′ such that

MSE(ŷ∗k(x)) <
ε

|X | for all x ∈ Br∗(x
∗), where r∗ = min{r, r′}.

Since limk→∞ IMSE(k) = c, there exist an N ′ > 0 such that c ≤

IMSE(k′) ≤ c + c−ε
4|X | |Br∗(x

∗)| whenever k′ ≥ max{N ′, k}. Given the set of
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design points generated by ASK up to the k′th iteration, i.e., {x1, . . . ,xk′},

let xk′+1 be the next design point chosen by the algorithm and ŷ∗k′+1(x) be the

optimal SK predictor constructed using points {x1, . . . ,xk′ ,x
∗} with n∗ simu-

lation replications at x∗. Note that since {x1, . . . ,xk,x
∗} ⊆ {x1, . . . ,xk′ ,x

∗},

a repeated application of the monotonicity property Theorem 2.2 indicates

that

MSE(ŷ∗k′+1(x)) ≤MSE(ŷ∗k(x)) <
ε

|X | ∀x ∈ Br∗(x
∗). (3.15)

Let IMSE∗(k′ + 1) be the integrated MSE of ŷ∗k′+1(x). Since xk′+1

minimizes IMSE(k′ + 1), we have

IMSE(k′ + 1) ≤ IMSE∗(k′ + 1)

=

∫

Br∗ (x
∗)

MSE(ŷ∗k′+1(x))dx+

∫

X\Br∗ (x
∗)

MSE(ŷ∗k′+1(x))dx

<
ε|Br∗(x

∗)|
|X | +

∫

X\Br∗ (x
∗)

MSE(ŷk′(x))dx by (3.15) and Theorem 2.2

=
ε|Br∗(x

∗)|
|X | + IMSE(k′)−

∫

Br∗ (x
∗)

MSE(ŷk′(x))dx

<
ε|Br∗(x

∗)|
|X | + c+

c− ε

4|X | |Br∗(x
∗)| − c+ ε

2|X | |Br∗(x
∗)| by (3.14)

= c− c− ε

4|X | |Br∗(x
∗)|
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< c.

This contradicts the fact limk→∞IMSE(k) = c. Hence, we must have

limk→∞ IMSE(k) ≤ ε.

So far, we have introduced all of our main theoretical results. In the next

section, we will justify the monotonicity property of SK/SKG metamodels

and the validity of ASK by running the model fitting process on several

numerical examples.
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4 Numerical Experiments and Comparisons

4.1 Introduction

The main work in this section is to test our theoretical results in Section

2 and Subsection 3.4. In the first place, the monotonicity properties of the

MSE estimators in the SK/SKG metamodels is tested through numerical

examples. We show that under the setting of fixed model parameters, the

IMSE estimator of the SK/SKG predictor is a monotone decreasing function

of the number of design points, which is theoretically proved in the theorems

and corollaries of Section 2. In addition, we also test the effectiveness of the

proposed ASK procedure. It is interesting to see how the true uncertainty

measure changes when the model parameters are updated in each iteration.

To illustrate the monotonicity properties and the effectiveness of ASK,

we prepared two sets of examples: an M/M/1 queue and four determinis-

tic functions with added noise. In all of the numerical experiments, the SK

(SKG) predictors are constructed using an (unknown) constant trend model

with a Gaussian correlation function RM(d(xi,xj), θ) = exp(−θ(xi − xj)
2).

The variance functions V and Vr are fitted using the ordinary kriging model

assuming the same model structure. We will introduce the two sets of exam-
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ples before providing further details of the experiments design.

4.1.1 Example A: M/M/1 queue

This example is taken from [13]. Consider an M/M/1 queue with ser-

vice rate 1 and arrival rate x ∈ (0, 1). Let f(x) be the long run expected

number of customers in system. Clearly, the elementary queueing theory

shows that f(x) = x
1−x . Our goal is to model the response surface f(x)

over the domain [0.05, 0.95] in a stochastic simulation setting. For a given

arrival rate x, the response value f(x) can be estimated via the time-average

f̄(x) = 1
t

∫ t

0
Ns(x)ds by performing a single (but very long) simulation run,

where Ns is the number of observed customers in system at time s. The

variance of the estimator can be approximated by V ar[f̄(x)] ≈ 2x(1+x)
t(1−x)4 when

t is large (see, e.g., [13]).

4.1.2 Example B: Deterministic Functions with Added Noise

The following benchmark functions, which have been previously studied

in e.g., [42] and [43], are used in our experiments:

(1) y(x) = Y (x) + ǫ(x), x = (x1, x2)
⊺ ∈ [−1, 1] × [−1, 1], where Y (x) =

4x21 − 2.1x41 +
x6
1

3
+ x1x2 − 4x22 + 4x42 and ǫ(x) ∼ N (0, V (x)).
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(2) y(x) = Y (x) + ǫ(x), x = (x1, x2)
⊺ ∈ [−1, 1] × [−1, 1], where Y (x) =

x1sin(πx2) + x2sin(πx1) and ǫ(x) ∼ N (0, V (x)).

(3) y(x) = Y (x) + ǫ(x), x = (x1, x2)
⊺ ∈ [−1, 1] × [−1, 1], where Y (x) =

3(1 − x1)
2exp(−x21 − (x2 + 1)2) − 10(x1

5
− x31 − x52)exp(−x21 − x22) −

1
3
exp(−(x1 + 1)2 − x22) and ǫ(x) ∼ N (0, V (x)).

(4) y(x) = Y (x) + ǫ(x), x = (x1, x2)
⊺ ∈ [−4, 4] × [−4, 4], where Y (x) =

1 +
x2
1

4000
+

x2
2

4000
− cos(x1)cos(

x2√
(2)

) and ǫ(x) ∼ N (0, V (x)).

In all examples, we assume that noisy gradient estimates Dr
j (x) = ∂Y (x)

∂xr
+

ζrj (x) are available at x on the jth simulation replication, where ζrj (x) ∼

N (0, V (x)) for r = 1, . . . , d and d is the problem dimension. Note that for

simplicity, the same variance function V (x) is used for both ǫ and ζ.

4.2 Test the Monotonicity Properties of the MSE Es-

timator in SK/SKG Metamodel

To quantify the overall quality of a SK/SKG predictor over the entire

domain, we use the IMSE (3.3) as the measure of performance. We con-

sider the following simple sequential version of a space-filling scheme based

on quasi-Monte Carlo sampling to test the monotonicity properties.
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Step 0: Specify the total number of design points N , a set of initial space-

filling design points {x1, . . . ,xk} over X (k < N), and the number of simula-

tion replications n0 at each design point.

Step 1: Collect output performance measures (including gradient estimator

when using the SKG) at each xi. Fit an initial SK/SKG model as discussed

in Ankenman, Nelson, and Staum (2010) and fix the parameters of the model.

Step 2: Choose a new design point xk+1 based on quasi-Monte Carlo sam-

pling. Perform n0 independent simulation runs at xk+1 and collect output

performance measures (including gradient performance measure when using

SKG). Compute the IMSE of the SK/SKG predictor with k+1 design points.

Step 3: If the current number of design points exceeds N , then terminate;

otherwise set k = k + 1 and go to step 2.

Note that in all examples of this section, we set N = 15, the number of

initial points to 5, and the number of simulation replications n0 = 30. We

also run 30 simulation replications to estimate the gradient information in

deterministic examples with added noise. Also, 30 replicates of the above

procedure are run to ensure the influence of variation will be minimized. To

examine the performance of IMSE, we plot the mean IMSE (averaged over
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30 independent runs) versus the number of added design points.

4.2.1 Performance of Monotonicity in M/M/1 Queue Example

Figure 3: Validate the monotonicity property in M/M/1 queueing example
with SK metamodel

In Figure 3, the mean IMSE in logarithm scale is plotted against the

number of added design points. Apparently, the IMSE measure monotoni-

cally decreases as the number of design points increases, which conforms well

with our expectation based on the established theoretical proofs. Notice that

since these results are based on space-filling designs, the difference between

two consecutive IMSEs does not achieve the maximum amount of reduction.

If a more sophisticated selection of design points is applied, e.g., the selection
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criteria in ASK procedure, better performance shall be expected.

4.2.2 Performance of Monotonicity in the Deterministic Exam-

ples

Both SK and SKG metamodels are applied for each deterministic ex-

ample in this section. Moreover, we consider two types of the intrinsic noise

variance functions: (i) V (x) = 1, and (ii) V (x) = 2(x⊺x+ 1)

In each of the test examples, we can see from Figure 4 to Figure 7

that the mean IMSE curve (of log scale) is monotonically decreasing as the

number of new design points increases. Notice that in each plot, although

the two mean IMSE curves show similar shapes and trends, curve obtained

with type II noise consistently has larger IMSEs compare to those obtained

with type I noise. This suggests that the intrinsic variance probably plays a

crucial rule on the prediction performance of SK models when design points

are fixed. Besides, by comparing the two plots in each figure, we can see that

the mean IMSE obtained in SKG model is smaller than that obtained in SK

model when they use the same type of intrinsic noise. It indicates that the

MSE/IMSE of the predictor can be decreased when the gradient information

is available, which conforms with the results in Theorem 2.3 and 2.4.
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Figure 4: Validate the monotonicity property of Example 1 with SK and
SKG metamodels
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Figure 5: Validate the monotonicity property of Example 2 with SK and
SKG metamodels
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Figure 6: Validate the monotonicity property of Example 3 with SK and
SKG metamodels
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Figure 7: Validate the monotonicity property of Example 4 with SK and
SKG metamodels
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4.3 Test the Effectiveness of the ASK procedure

To illustrate the effectiveness of the ASK procedure, we also consider the

M/M/1 queue example and the deterministic examples. In both cases, the

performance of ASK is compared with those of the sequential MSE (SMSE)

approach and the AEES approach which are introduced in Section 3.2. We

use the same simulation replication rule in SMSE and ASK. The global opti-

mization algorithm proposed in [44] is used to solve the new point selection

problem in both SMSE and ASK procedure.

Since the true response curves of the test functions are known, the true

average integrated square error (AISE) is employed to test the practical ac-

curacy of the predictor in this section, defined by

AISE =

∫

x∈X (f(x)− ŷ(x))2dx

|X | (4.1)

The AISE is a measure aiming at compareing the true response value with

the estimated response value in a metamodel predictor. The integral in AISE

is estimated using standard Gaussian quadrature in our implementation.
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4.3.1 Comparisons in the M/M/1 Queueing Example

In the implementation of ASK for M/M/1 example, the following set-

tings are used:

• IMSE target: ε = 0.1|X |

• Initial space-filling design points: 5 points over [0.05, 0.95]

• Independent simulation runs on initial design points: 30

• Length of time units: t = 1000 (assuming that f̄(x) is unbiased with

the large t)

For each of the three procedures, 30 independent replicates are run. All the

comparisons about the three algorithms are based on the same number of

design points.

Figure 8 shows the mean AISE (in log scale) obtained in each procedure

as a function of the number of added design points. Figure 9 plots the mean

response surface (measured in log scale) predicted by the SK predictor when

the procedure is terminated for all three algorithms. As it is shown in Figure

8, the sequential procedure is stopped when the number of design points

reaches 13. The means and standard errors of AISE values obtained from
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Figure 8: Sequential AISEs obtained by ASK, AEES and SMSE procedures
in M/M/1 queueing example

30 independent runs are listed in Table 1. The total number of simulation

replications associated with each procedure is provided in Table 2.

It is shown in Figure 8 that both AEES and SMSE receive a larger initial

reduction in AISE than ASK. A possible reason behind this is that the initial

estimates of model parameters are not accurate, making ASK not able to

locate the point that achieves the maximum reduction in the true IMSE.

However, as the number of design points increases, the estimates of model
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Figure 9: The final fitted response surfaces obtained by ASK, AEES and
SMSE procedures for the M/M/1 queueing example

parameters are more accurate and thus making the AISE of ASK consistently

decreasing. After adding 5 design points, the performance of ASK is superior

to AEES’s and SMSE’s. Figure 8 shows that, among all the three sequential

procedures, only the mean AISE curve of ASK is monotonically decreasing.

There is a temporary increase in SMSE with 2 added design points. A long

period of irregular rising and falling are shown in the curve of AEES. We

believe that it is because the model parameters are constantly estimated
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and updated in each iteration based on the current information. Since the

selection rule of ASK is derived to maximize the reduction in estimated IMSE,

it also tends to minimize the true IMSE. However, both SMSE and AEES are

not designed to optimize IMSE. So, it is no wonder that updating the model

parameter results in a temporary increase in the actual AISE estimated by

SMSE and AEES.

In the final output, ASK achieves the minimum AISE, followed by SMSE

and then AEES. It is worth mentioning that both ASK and SMSE share the

same simulation replication rules. The difference lies in the way of choosing

new design points. It can be seen from Table 1 and 2 that ASK achieves a

smaller AISE and less number of simulation replications than SMSE when

they terminate. Therefore, although simulation replication relocation rule is

of great importance, a sophisticated selection of design points is crucial since

it may help significantly elevate the quality of the predictor in SK models.

Table 1: AISE (mean ± standard error) obtained by ASK, AEES, and SMSE
on the M/M/1 queueing example. All results are based on 30 independent
runs.

ASK AEES SMSE
0.12 ± 0.02 1.27 ± 0.39 0.19 ± 0.02
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Table 2: The number of function evaluations (mean ± standard error) ob-
tained by ASK, AEES, and SMSE on the M/M/1 queueing example. All
results are based on 30 independent runs.

ASK AEES SMSE
894.43 ± 26.41 1193.32 ± 23.34 1011.12 ± 46.22

4.3.2 Comparisons in the Deterministic Examples

When implementing ASK, AEES and SMSE in both SK and SKG set-

tings, we have the following settings:

• Type of intrinsic noise variance: V (x) = 0.1|f(x)|

• IMSE target: ǫ = 0.01|X | (AISE target 0.01)

• Number of initial space-filling design points: 10 under SK model and

5 under SKG model

We use the AISE as a stopping criterion and continue running each

algorithm before the AISE drops below 0.01. The sequential performance of

these algorithms are represented by the mean AISE curves (in log scale) and

are plotted in Figure 10 to Figure 13. The obtained AISE and the number of

additional design points required by all three algorithms are listed in Table

3. The number of simulation replications for each test example when the

algorithm attains the desired AISE level is reported in Table 4.
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We find that the AISEs obtained by the three algorithms are reasonably

close to the prescribed AIMSE threshold in all cases. In particular, the

actual mean AISEs calculated by ASK are smaller than 0.01 in most cases

and those AISE values that are larger than the AIMSE threshold are more

likely to occur when the number of design points is small. Therefore, we

suggest that as long as the number of design points is not too small, there is

no significant difference in using estimated IMSE as a stopping criterion to

evaluate the performance of predictor.

Based on the plots and tables, the ASK procedure is able to attain the

target AISE level with fewer numbers of design points compared with the two

competing methods in all test cases. In particular, under the SK framework,

ASK demonstrates superior performances over AEES and SMSE in terms of

both the number of simulation replications required and the number of design

points used. In the scenarios when gradient information is employed, ASK

generally demonstrates similar or better performance compared with AEES

and SMSE. In addition, we see that under the SKG framework, the number

of design points required by ASK to attain the AISE target is dramatically

smaller that in the SK cases (8 to 12 in SKG v.s. 21 to 27 in SK). The result

explicitly demonstrates the advantage of incorporating gradient information
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for prediction performance enhancement of stochastic kriging metamodels.

To conclude, we claim that the proposed ASK procedure outperforms

the other two algorithms since ASK reaches the target accuracy threshold

with the least number of design points and the almost the least number of

simulation replications in almost all test cases.
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Figure 10: Sequential logarithmic scaled AISE comparisons obtained by
ASK, AEES and SMSE procedures for deterministic example 1
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Figure 11: Sequential logarithmic scaled AISE comparisons obtained by
ASK, AEES and SMSE procedures for deterministic example 2
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Figure 12: Sequential logarithmic scaled AISE comparisons obtained by
ASK, AEES and SMSE procedures for deterministic example 3
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Figure 13: Sequential logarithmic scaled AISE comparisons obtained by
ASK, AEES and SMSE procedures for deterministic example 4
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5 Summary and Future Work

In our research, we focus on investigating the performance of SK/SKG

metamodels in a sequential setting. To do this, we first conducted theo-

retical analyses about how the MSE of SK/SKG predictor is changing in a

sequential procedure. Our findings indicate that the MSE measure is mono-

tonically non-increasing as we keep adding the number of design points when

the model parameters are either fixed or given. In addition, under the same

parameters setting, the availability of gradient information can lead to a sig-

nificant decrease in the MSE measure. With these findings, we can not only

complement existing results in the (stochastic) kriging literature, but also de-

velop sequential sampling procedures under both SK and SKG frameworks.

Motivated by this work, we designed a novel adaptive sequential kriging

method for adaptively selecting the design point and simulation replications.

We also developed the theory to justify our proposed algorithm when all

model parameters are known. Our numerical experiments not only justified

the monotonicity properties of the MSE estimator of SK/SKG predictor, but

also indicate the superiority of ASK among several existing methods in terms

of achieving the same level of accuracy with fewer design points and number

of simulation replications.
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Our work can be extended in the following directions. First of all, our

theoretical analyses are performed under the assumption that the model pa-

rameters are given. We expect to obtain similar results when the model pa-

rameters are updated in each iteration. To do this, more complicated statis-

tical analyses regarding to the updated information about model parameters

may be involved. Another promising research topic is to develop sequential

optimization algorithm using the SK/SKG framework. Successful methods

like EGO developed such sequential optimization algorithm based on ordi-

nary kriging. Compared with ordinary kriging, SK/SKG is a more power-

ful tool that can accurately approximate the response surface in stochastic

framework. Therefore, with our theoretical analyses of SK/SKGmetamodels,

we expect to combine them with existing stochastic simulation optimization

algorithms in the future.
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