
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 
 

Threading Dislocation Characterization and Stress Mapping Depth Profiling  

via Ray Tracing Technique 

A Thesis Presented 

by 

Tianyi Zhou 

to 

The Graduate School 

in Partial Fulfillment of the 

Requirements 

for the Degree of 

Master of Science 

in 

Materials Science and Engineering 

 

 

 

 

Stony Brook University 

 

May, 2013 

 

 



ii 
 

Stony Brook University 

The Graduate School 

 

Tianyi Zhou 

 

We, the thesis committee for the above candidate for the 

Master of Science degree, hereby recommend 

acceptance of this thesis. 

 

Michael Dudley – Thesis Advisor 

Professor, Department of Materials Science and Engineering 

 

 

Balaji Raghothamachar– Second Reader 

Research Professor, Department of Materials Science and Engineering 

 

 

T. A. Venkatesh– Third Reader 

Assistant Professor, Department of Materials Science and Engineering 

 

 

This thesis is accepted by the Graduate School 

 

 

Charles Taber 

Interim Dean of the Graduate School 

 

 

 



iii 
 

Abstract of the Thesis 

Threading Dislocation Characterization and Stress Mapping Depth Profiling  

via Ray Tracing Technique 

by 

Tianyi Zhou 

Master of Science 

in 

Materials Science and Engineering 

Stony Brook University 

2013 

 

Zinc oxide (ZnO) has been well known as a transparent, dielectric, piezoelectric and 

wide band gap material. The potential capabilities have been demonstrated for a wide range 

of applications such as piezoelectric transducer, gas sensor, optical waveguides and 

transparent electrode. It could also be applied as a substrate material for GaN-based devices. 

However, while some applications have already been realized, issues relating to crystalline 

defects remain a barrier to the successful realization of several others. In this thesis, the 

central focus of Chapter II is to characterize threading dislocations in hydrothermal grown 

ZnO substrates through simulation work as well as other techniques. The goal of this study is 

to find the origin of threading dislocations and design strategies to mitigate their negative 

effects by either reducing their densities or completely eliminating them. 

 

    In Chapter III, the technique of SMART (stress mapping analysis via ray tracing) is 

discussed in detail to measure residue stress in packaged silicon circuits. Residual stress plays 

an important role in the performance and lifetime of single crystal device material. There are 

mainly two advantages of SMART compared with other techniques: (a) all six components of 

the stress tensor could be evaluated; (b) it is non-destructive and no damaging trace will be 

left on the sample. In this study, our goal is to build a relationship between stress distribution 

and depth. The concept of penetration depth is critically important in this study and its value 

may cause great changes for real space stress distribution. A new function is applied to get 

better fitting curves. Data in this study is obtained from various penetration depth, which 

represents exponentially decaying weighted average of actual stress value or in other words 

this stress profile is Laplace transform of real stress profile. Mathematical procedure is 

described to determine real stress profile from Laplace profile. Experiment procedure, 

detailed penetration depth calculation, accurate positioning of film and sample and error 

analysis is introduced in this study. 
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Chapter I. Introduction 

1.1 Fundamentals of X-ray Diffraction Topography 

 

X-ray diffraction topography (XRT) has been a powerful non-destructive imaging 

technique based on Bragg’s Law, by the means of X-ray diffraction to identify 

micrometer-sized and centimeter-sized defects inside crystals and to determine the crystalline 

structure for over 50 years. An X-ray topographic image is a two dimensional image obtained 

by projecting the distribution of diffracted intensity in an area-filling diffracted beam, 

produced by a low-divergence area-filling X-ray beam incident on a single crystal set at the 

Bragg angle, onto a two dimensional detector. This intensity mapping reflects the distribution 

of scattering power inside the crystal; topographs therefore reveal the irregularities in a 

crystal lattice. The technique is not sensitive to the surface topograph; it is the topography of 

crystal lattice planes that are examined. 

 

X-ray was first found by Wilhelm Röntgen in 1895; and it still took several decades for 

the benefits of X-ray diffraction images to be fully recognized after Laue and the Braggs 

family has built the basic principles of X-ray diffraction. Early works by Schulz and Guinier 

and Tennevin, which mainly recorded the intensity distribution of Laue spots could not tell 

much information about individual dislocations. Most of these early works rely on 

characteristic X-rays from laboratory source. The development of synchrotron source has 

further advanced this technique by enabling white beam topography and enhancing 

monochromatic X-ray technique.  

 

Kinematical and dynamical theories of X-ray diffraction are employed to explain x-ray 

diffraction phenomena in crystalline materials. Laue’s kinematical theory
1
 provides good 

approximation when X-rays interact with relatively small imperfect crystal, whereas 

dynamical theory proposed by Ewald and Darwin is useful for large and highly perfect crystal. 

Nonetheless kinematical theory plays an important role in interpreting topographic contrasts 

and is discussed latter in this chapter. In the kinematical theory, X-rays are assumed to be 

scattered by atom only once, and re-scattering is negligible. Dynamical theory considers 

re-scattering of X-rays in the lattice. 

 

    In X-ray topography, the crystal sample is illuminated by an X-ray beam and images of 

the diffracted beams are recorded. These images are generally formed from X-ray wave fields 

interfering with one another inside the crystal. The image from a perfect crystal is usually 

completely homogeneous. Changes in the image contrast are seen if there are imperfections 

in the crystal which cause deviations from perfect long-range atomic order. In most cases, the 

defects themselves are not visible in the image, but rather the lattice deformations 

surrounding the defects are seen. The image contrast mechanism will be discussed later.  

 

In general, there are three geometries in XRT, transmission, back reflection and grazing 

http://en.wikipedia.org/wiki/Wilhelm_R%C3%B6ntgen
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geometry for synchrotron white x-ray beam. Grazing Geometry could be view as one kind of 

reflection in small incident angel. In transmission geometry, x-ray beam passes through the 

whole crystal and therefore, it reflects the information of bulk material; in grazing geometry, 

due to its low penetration depth, defect information on the sample surface could be collected. 

In this study, these two geometries are commonly used. 

 

 

Figure 1: Schematic of three geometries used in XRT, 

(A) transmission, (B) back reflection and (c) grazing 

 

    Synchrotron radiation is especially suitable for x-ray topography because of the high 

brightness and low divergence of the x-ray beam. The vertical divergence angle of 

synchrotron radiation is given approximately by m0c2/E, where m0 is the electron rest mass, c 

is the velocity of light and E is the electron energy. This value is typically 10-4 rad. The 

topographic resolution (Rx) is decided by the source size in the incidence plane (Sx), 

source-specimen distance (D) and the specimen-film distance (d) and it can be given by
2
 

 

𝑅𝑥 = 𝑑𝑆𝑥/𝐷 

 

The theoretical resolution so obtained is ~0.4 μm for Beamline X19C at National 

Synchrotron Light Source and ~0.06 μm for Beamline XOR-33BM /UNI-CAT at Advanced 

Photon Source if D=10 cm is used (vertical reflection geometry). 

 

 

1.2 Contrast Mechanism of X-ray Diffraction Topography 

 

Contrast, which means the point to point variation in diffracted intensity, is generally 

understood in terms of two mechanisms: orientation contrast and extinction contrast. 

Basically the topographic contrast arises due to changes in the of x-ray wave-fields in the 

crystals and may or may not be associated with strain in the crystals. Orientation contrast 

arises when parts of the sample are oriented such that they do not satisfy the Bragg condition. 

Thus there is an undarkened patch on the film. To understand orientation contrast, one can 

imagine a monochromatic X-ray beam incident on a sample composed of areas that are 

crystallographically misoriented compared to the rest of the crystal. If these areas are 

misoriented sufficiently such that they are outside the reflection range of the crystal, they 
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cannot satisfy the Bragg condition and therefore they will not diffract. For areas that are less 

misoriented, the diffracted intensity can take on any value from negligible to nearly the 

intensity diffracted by the surrounding crystal. Schematic of orientation contrast form 

monochromatic x-ray is shown in Fig.2. Orientation contrast usually associates with twins, 

sub-grains and where sudden orientation change happens. Under the low absorption 

conditions used in our study, orientation contrast dominates contrast contributions to the 

image. Ray tracing simulation work is based on this mechanism. Another type of orientation 

contrast arises when continuous radiation is being used. It is common in synchrotron 

radiation. Simple images occur where the crystal contains discrete mosaic blocks, but when 

the lattice distortion is continuous, the resulting contrast can be very complex and difficult to 

interpret. 

 

Figure 2: Schematic of orientation contrast from monochromatic x-ray 

 

    Extinction contrast is described by means of dynamical and kinematical x-ray diffraction 

theories. The distortion of the lattice around a defect gives rise to a different scattering power 

from that of the surrounding matrix. In all cases, it arises from a breakdown or change of the 

dynamical diffraction in the perfect crystal. In classical structure analysis, the name 

extinction was used to describe the observation that the integrated intensity was less than that 

predicted by the kinematical theory. Around the defect, enhanced scattering was observed and 

this ‘loss of extinction’ is the origin of the name. In this study, dislocations appear as white 

lines or dots in grazing topographic images. 

 

 

1.3 Penetration Depth 

 

The concept of penetration depth is very important in this study. It gives information 

about the crystal volume imaged and thus helps in the understanding of the defect 

configurations. In stress mapping, the relationship between stress and depth is built based on 

penetration depth. Penetration depth is defined as the depth (t) at which intensity drops to 1/e.  
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Figure 3: Schematic of penetration depth 

 

As shown in Fig. 3, AO is incident beam, OB is exit beam, plane AB is the surface of 

crystal and t is penetration depth. From the picture, the value of AO and BO could be written 

as,  

AO =
𝑡

sin 𝑎
,   OB =

𝑡

sin 𝛽
 

 

Total path lengths that x-ray go through the crystal: 

τ = OA + OB =
𝑡

sin 𝑎
+

𝑡

sin 𝛽
 

By the definition of absorption effect of x-ray 

𝐼

𝐼0
= 𝑒−𝜇𝜏 

By the definition of penetration depth 

𝑒−𝜇𝜏 =
1

𝑒
 

Therefore,  

 τ = 1, 

 (
𝑡

sin 𝑎
+

𝑡

sin 𝛽
) = 1 

t =
1

𝜇(
1

sin𝛼 +
1

sin 𝛽
)
 

where 𝜇 is the absorption coefficient, α is the incident angel, β is the exit angel. 

 

This equation, which is based on photoelectric absorption, could be used for ordinary 

penetration depth calculation. For nearly defect free crystal, penetration depth is governed by 

extinction distance. Penetration depth 𝑧𝑒 in this situation is given by, 

𝑧𝑒 =
Λ

2𝜋√1 − 𝜂2
,       

where Λ is the extinction distance, η is deviation parameter (the deviation from the rocking 
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curve peak). 

 

 

1.4 Proof of �⃗⃗� = 𝒏𝟎⃗⃗ ⃗⃗ − 𝛁(𝒏𝟎⃗⃗ ⃗⃗ ∙ �⃗⃗� ) 

 

As mentioned above, it is the topography of crystal lattice planes that are examined. 

Therefore, if the crystal plane is distorted by stress, the plane normal after distortion �⃗�  could 

be calculated using the equation �⃗� = 𝑛0⃗⃗⃗⃗ − ∇(𝑛0⃗⃗⃗⃗ ∙ �⃗� ), where 𝑛0⃗⃗⃗⃗  is the plane normal before 

distortion and �⃗�  is the stress field that applied onto the plane. This equation acts as the 

fundamental of two techniques associated with XRT: stress mapping via x-ray topography 

(SMART) and ray tracing simulation. The equation could be proved as the following
3
. 

 

Consider a crystallographic plane occupy the coordination as shown in Fig.4: 

 

Figure 4: Schematic of the crystal plane normal before and 

after distortion at an arbitrary position
3
 

 

Assume the equation of the surface as 

z=f(x, y)                                                    Equation 1.4.1 

or, F(x, y, z)=f(x, y)-z=0                                            Equation 1.4.2 

Plane normal vector at any general location can be written as: 

�⃗� (𝑥, 𝑦, 𝑧) = ∇[𝐹 (𝑥, 𝑦, 𝑧)]                                      Equation 1.4.3 

Applying Taylor’s expansion to function f, we can get 

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) + (
𝜕𝑓(𝑥0,𝑦0)

𝜕𝑥
(𝑥 − 𝑥0) +

𝜕𝑓(𝑥0,𝑦0)

𝜕𝑦
(𝑦 − 𝑦0))         Equation 1.4.4 

The displacement could be written as 
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𝑟 = (𝑥 − 𝑥0)𝑖 + (𝑦 − 𝑦0)𝑗                                      Equation 1.4.5 

Now, consider the term of 𝑟 ∙ ∇[𝑓(𝑥0, 𝑦0) − 𝑧], 

𝑟 ∙ ∇[𝑓(𝑥0, 𝑦0) − 𝑧] = [(𝑥 − 𝑥0)𝑖 + (𝑦 − 𝑦0)𝑗 ] [
∂f(𝑥0, 𝑦0)

∂x
𝑖 +

∂f(𝑥0, 𝑦0)

∂y
𝑗 − 𝑘] 

                      =
𝜕𝑓(𝑥0,𝑦0)

𝜕𝑥
(𝑥 − 𝑥0) +

𝜕𝑓(𝑥0,𝑦0)

𝜕𝑦
(𝑦 − 𝑦0) 

Substitute the result into Equation 1.4.4, we have 

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) + 𝑟 ∙ 𝛻[𝑓(𝑥0, 𝑦0) − 𝑧]                         Equation 1.4.6 

or, 𝑓(𝑥, 𝑦) − 𝑧 = 𝑓(𝑥0, 𝑦0) − 𝑧 + 𝑟 ∙ 𝛻[𝑓(𝑥0, 𝑦0) − 𝑧] 

or, 𝛻[𝑓(𝑥, 𝑦) − 𝑧] = 𝛻[𝑓(𝑥0, 𝑦0) − 𝑧] + 𝛻[𝑟 ∙ 𝛻[𝑓(𝑥0, 𝑦0) − 𝑧]] 

or, �⃗� = 𝑛0⃗⃗⃗⃗ − 𝛻(𝑛0⃗⃗⃗⃗ ∙ 𝑟 )                                        Equation 1.4.7 

𝑟  is the displacement in the equation which has the same meaning with �⃗� . 

 

This equation gives us a straightforward way to calculate the plane normal after the 

distortion associated with the dislocation, by knowing the displacement field of the 

dislocation. The displacement fields for different dislocations will be shown in the next 

chapter. 

 

 

 

1.5 Solid Mechanics 

 

To better understand the mechanism of stress mapping in this study, basic solid 

mechanic background knowledge will be introduced here. Stress is defined as the average 

force per unit area that some particle of a body exerts on an adjacent particle, across an 

imaginary surface that separates them. According to Hooke’s law, the relationship between 

stress and strain can be written in contracted notation as 

 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙        𝑖, 𝑗 = 1,2, … ,6                                    Equation 1.5.1 

 

where 𝜎𝑖 are the stress components shown in Fig. 5, 𝐶𝑖𝑗 is the stiffness matrix, and 𝜀𝑗 are 

the strain components. 
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Figure 5: Stress on an Element
4
 

 

In general, stress tensor has nine components where i and j can have value 1, 2 or 3. It 

can be shown that 𝜎𝑖𝑗 = 𝜎𝑗𝑖, therefore total number of independent stress components 

reduces to six. It could be written as: 

𝜎𝑖𝑗 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

] 

where 𝜎12 = 𝜎21, 𝜎13 = 𝜎31, 𝜎31 = 𝜎32. 

 

As for stain, it is defined as a normalized measure of deformation representing the 

displacement between particles in the body relative to a reference length. It is a tensor as 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑗
+

𝜕𝑢𝑗

𝜕𝑖
) = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

] =

[
 
 
 
 

𝜕𝑢𝑥

𝜕𝑥

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)

1

2
(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
)

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)

𝜕𝑢𝑦

𝜕𝑦

1

2
(
𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
)

1

2
(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
)

1

2
(
𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
)

𝜕𝑢𝑧

𝜕𝑧 ]
 
 
 
 

, 

where u is the displacement. 

 

In general, there are a total of 34 = 81 constants in stiffness matrix, but there is 

relation between the components which leads to fewer numbers of elastic constants. It has 

been proved that 𝜀𝑘𝑙 = 𝜀𝑙𝑘 and 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙. With the foregoing reduction from 36 to 21 

independent constants, the stress-strain relations are 

[
 
 
 
 
 

𝜎1
𝜎2
𝜎3

𝜎4 = 𝜎23
𝜎5 = 𝜎31
𝜎6 = 𝜎12]

 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34
𝐶15 𝐶25 𝐶35
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶65
𝐶46 𝐶56 𝐶66]

 
 
 
 
 

[
 
 
 
 
 

𝜀1
𝜀2
𝜀3

𝛾23 = 2𝜀23
𝛾31 = 2𝜀31
𝛾12 = 2𝜀12]

 
 
 
 
 

. 
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Expand this matrix: 

𝜎1 = 𝐶11𝜀1 + 𝐶12𝜀2 + 𝐶13𝜀3 + 2𝐶14𝜀23 + 2𝐶15𝜀31 + 2𝐶16𝜀12 

𝜎2 = 𝐶12𝜀1 + 𝐶22𝜀2 + 𝐶23𝜀3 + 2𝐶24𝜀23 + 2𝐶25𝜀31 + 2𝐶26𝜀12 

𝜎3 = 𝐶13𝜀1 + 𝐶23𝜀2 + 𝐶33𝜀3 + 2𝐶34𝜀23 + 2𝐶35𝜀31 + 2𝐶36𝜀12 

𝜎4 = 𝐶14𝜀1 + 𝐶24𝜀2 + 𝐶34𝜀3 + 2𝐶44𝜀23 + 2𝐶45𝜀31 + 2𝐶46𝜀12 

𝜎5 = 𝐶15𝜀1 + 𝐶25𝜀2 + 𝐶35𝜀3 + 2𝐶45𝜀23 + 2𝐶55𝜀31 + 2𝐶65𝜀12 

𝜎6 = 𝐶16𝜀1 + 𝐶26𝜀2 + 𝐶36𝜀3 + 2𝐶46𝜀23 + 2𝐶56𝜀31 + 2𝐶66𝜀12 

 

This is the most general expression within the framework of linear elasticity, which 

means, in a general crystal, having least crystallographic symmetry elements with arbitrary 

orientation, total number of independent elastic constant is 21. Actually, the relations in above 

matrix are referred to as characterizing anisotropic material for there are no planes of 

symmetry for the material properties. As the symmetry elements in the crystal increases, the 

total number of independent elastic constants decreases. If there is one plane of material 

property symmetry, such material is termed as monoclinic and has 13 independent elastic 

constants. If there are two orthogonal planes of material property symmetry for a material, 

symmetry will exist relative to a third mutually orthogonal plane and only 9 independent 

constants in the stiffness matrix. If at every point of material there is one plane in which the 

mechanical properties are equal in all directions, 5 independent constants exist in this 

so-called transversely isotropic material.  

 

As for isotropic material which is defined as a material where exist an infinite number of 

planes of property symmetry, the foregoing relations get simplified with only 2 independent 

constants in the stiffness matrix: 

 

[
 
 
 
 
 

𝜎1
𝜎2
𝜎3

𝜎4 = 𝜎23
𝜎5 = 𝜎31
𝜎6 = 𝜎12]

 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶12
𝐶12 𝐶11 𝐶12
𝐶12 𝐶12 𝐶11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

(𝐶11 − 𝐶12)/2 0 0
0 (𝐶11 − 𝐶12)/2 0
0 0 (𝐶11 − 𝐶12)/2]

 
 
 
 
 

[
 
 
 
 
 

𝜀1
𝜀2
𝜀3

𝛾23 = 2𝜀23
𝛾31 = 2𝜀31
𝛾12 = 2𝜀12]

 
 
 
 
 

. 

 

 

As we know, the value of 𝐶11, 𝐶12 and some other elastic constants are set in some 

certain crystalline direction in the sample, and the coordination system inside the crystal is 

not always the same as the actual coordination system. Therefore, the process of tensor 

transformation has to be conducted here. Elastic constants could be transformed to new axes 

by applying standard tensor transformation equation: 
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𝐶𝑖𝑗𝑘𝑙
′ = 𝑎𝑖𝑚𝑎𝑗𝑛𝑎𝑘𝑜𝑎𝑙𝑝𝐶𝑚𝑛𝑜𝑝 

where 𝑎𝑖𝑗 is the cosine value of the angel between x-axis and x’-axis. 

 

In the calculation process, the relationship between two coordinate systems could be 

written as: 

[
𝑥′
𝑦′

𝑧′

] = [

cos 𝑥′𝑥 cos 𝑥′𝑦 cos 𝑥′𝑧

cos 𝑦′𝑥 cos 𝑦′𝑦 cos 𝑦′𝑧

cos 𝑧′𝑥 cos 𝑧′𝑦 cos 𝑧′𝑧

] . [
𝑥
𝑦
𝑧
] 

     

If the rotation angle of each axis is determined, the relationship could be written as: 

 

[
𝑥′
𝑦′

𝑧′

] = [
cos 𝑐 − sin 𝑐 0
sin 𝑐 cos 𝑐 0
0 0 1

] . [
cos 𝑏 0 sin 𝑏
0 1 0

− sin 𝑏 0 cos 𝑏
] . [

1 0 0
0 cos 𝑎 sin 𝑎
0 − sin 𝑎 cos 𝑎

] . [
𝑥
𝑦
𝑧
] 

where c, b and a are rotation angle of z-axis, y-axis and x-axis. 

 

In this study, silicon sample is tested. Elastic constants of silicon are: 

 

𝐶11 = 165.7, 𝐶22 = 63.9, 𝐶33 = 79.6Gpa 

    

These constants represent when the crystal is oriented such that crystallographic 

direction [100], [010] and [001]. But in this study, the coordinate system in the experiment is 

not the same as the one inside crystal. Therefore, elastic constants here could be calculated 

using the following codes: 

 

A={{1/Sqrt[2],0,-1/Sqrt[2]},{-(1/Sqrt[2]),0,-(1/Sqrt[2])},{0,1,0}}; 

stiffness=Table[0,{i,1,3},{j,1,3},{k,1,3},{l,1,3}]; 

stiffness[[1]][[1]][[1]][[1]]=stiffness[[2]][[2]][[2]][[2]]=stiffness[[3]][[3]][[3]][[3]]=16

5.7; 

stiffness[[1]][[1]][[2]][[2]]=stiffness[[2]][[2]][[3]][[3]]=stiffness[[3]][[3]][[1]][[1]]=stif

fness[[2]][[2]][[1]][[1]]=stiffness[[3]][[3]][[2]][[2]]=stiffness[[1]][[1]][[3]][[3]]=63.9; 

stiffness[[3]][[2]][[3]][[2]]=stiffness[[3]][[2]][[2]][[3]]=stiffness[[2]][[3]][[3]][[2]]=stif

fness[[2]][[3]][[2]][[3]]=stiffness[[3]][[1]][[3]][[1]]=stiffness[[3]][[1]][[1]][[3]]=stiffne

ss[[1]][[3]][[3]][[1]]=stiffness[[1]][[3]][[1]][[3]]=stiffness[[2]][[1]][[2]][[1]]=stiffness[

[2]][[1]][[1]][[2]]=stiffness[[1]][[2]][[2]][[1]]=stiffness[[1]][[2]][[1]][[2]]=79.6; 

Cstiff=Table[Sum[A[[m]][[i]] A[[n]][[j]] A[[o]][[k]] A[[p]][[l]] 

stiffness[[i]][[j]][[k]][[l]],{i,1,3},{j,1,3},{k,1,3},{l,1,3}],{m,1,3},{n,1,3},{o,1,3},{p,1,3}]; 

c11=Cstiff[[1,1,1,1]];c22=Cstiff[[2,2,2,2]]; 

c33=Cstiff[[3,3,3,3]];c44=Cstiff[[2,3,2,3]]; 

c55=Cstiff[[1,3,1,3]];c66=Cstiff[[2,1,2,1]]; 

c12=Cstiff[[1,1,2,2]];c13=Cstiff[[1,1,3,3]]; 

c23=Cstiff[[2,2,3,3]]; 
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Chapter II. Characterization of Threading Dislocation in Hydrothermal 

Grown ZnO Substrates 

2.1 Introduction of ZnO 

    Zinc oxide is a promising semiconductor of the II-VI semiconductor group with many 

desirable properties, including good transparency, strong room temperature luminescence, 

high electron mobility, wide band gap (3.37ev) and large extinction energy (60mev) at room 

temperature
5,6

, which could make it highly suitable for transparent electrodes in-liquid crystal 

displays, energy-saving or heat-protecting windows, electronics as 

thin-film transistors, light-emitting diodes and as a substrate material for GaN-based devices. 

ZnO single crystal substrate is also perfect for homo-epitaxy of ZnO active layers for its 

perfect lattice matching and relative low dislocation density. 

  

Figure 6: Schematic of wurtzite structure
7
 

 

Actually, there are two main crystalline structures for zinc oxide: wurtzite and 

zincblende. The former one is most common for it is stable at ambient conditions. The 

samples we have in this study adopt the wurtzite structure. Wurtzite structure, as shown in 

Fig. 6, could be view as two hexagonal structures interpenetrating into each other. It has a 

point group 6 mm, and the space group is P63mc. The lattice parameters are a= 3.252 Å, c = 

5.313 Å and the c/a ration is close to the ideal value for hexagonal structure (1.633). The 

atom position in the crystal lattice is shown in table 1 and some properties of zinc oxide are 

listed in table 2. 

 

 

 

 

 

http://en.wikipedia.org/wiki/List_of_semiconductor_materials#Group_II-VI
http://en.wikipedia.org/wiki/Luminescence
http://en.wikipedia.org/wiki/Electrode
http://en.wikipedia.org/wiki/Liquid_crystal_display
http://en.wikipedia.org/wiki/Liquid_crystal_display
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Light-emitting_diode
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 Atom X Y Z Occupancy 

1 Zn 0 0 0 1 

2 Zn 0.3333 0.6667 0.5 1 

3 O 0 0 0.375 1 

4 O 0.3333 0.6667 0.875 1 

Table 1: Atom positions in the crystal 

 

 

Molar 

Mass 
Density 

Meltin

g Point 

Boilin

g 

Point 

Solubility in Water ∆𝑯𝟐𝟗𝟖
𝜽  𝐒𝟐𝟗𝟖

𝜽  

81.408g/m

ol 

5.606g/cm
3
 

1975℃ 
1975

℃ 

0.16mg/100ml(30

℃) 

-348kJ/m

ol 

43.9JK
-1

mol
-1

 

Table 2: Some properties of zinc oxide 

 

Generally speaking, the most closely packed crystallographic planes are slip planes in 

most crystals. In wurtzite structure, (0001) planes are the most closely packed planes. Thus, 

the first type prismatic planes are of the form {101̅0}, while the second type prismatic planes 

are of the form {1̅21̅0}. From the dislocation theory, we have: 

E(screw) =
𝐺𝑏2

4𝜋
ln
𝑅

𝑟0
                                                                 Equation 2.1.1 

E(edge) =
𝐺𝑏2

4𝜋(1 − 𝜗)
ln
𝑅

𝑟0
                                                        Equation 2.1.2 

 

where R is the outer radius, 𝑟0is the center radius, 𝜗 is poisson’s ration and b is the burger’s 

vector. 

 

From the equations above, the elastic energy of dislocation is proportional to b
2
, the 

shortest lattice translation vectors are Burger’s vectors of lowest energy dislocations. 

Therefore, the slip directions in wurtzite are 1/3[112̅0] and [0001]. The slip system in 

wurtzite is a little complex. Energetically, most preferred slip system is (0001) with <112̅0>. 

Other slip systems are also found in wurtzite structure, such as (0001) with <101̅0>, {101̅0} 

with <112̅0>, {101̅0} with [0001] and {1̅21̅0} with <101̅0>. 

 

The wurtzite structure consists of triangularly arranged alternating bi-atomic 

close-packed (0001) planes, for example, Zn and O pairs, thus the stacking sequence of the 

(0001) plane is AaBbAaBb… in the [0001] direction, which is usually the growth direction.  
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2.2 Hydrothermal Method 

  

Hydrothermal growth is defined as a method of synthesis of single crystals that depends 

on the solubility of minerals in hot water under high pressure. The crystal growth is 

performed in an apparatus consisting of a steel pressure vessel called autoclave, in which a 

nutrient is supplied along with water. A gradient of temperature is maintained at the opposite 

ends of the growth chamber so that the hotter end dissolves the nutrient and the cooler end 

causes seeds to take additional growth. Note that the sample in this study is grown by Tokyo 

Denpa. 

 

In 1905, Spezia got success in synthetizing quartz crystals, and it marked that the 

technique of hydrothermal synthesis has come into truth. The epoch-making achievement 

spent him about six months and finally, the man-made crystal could be found to grow on the 

crystal seed. But at that time, not enough fundamental knowledge has been built thus 

scientists could not fully understand the mechanism of hydrothermal synthesis. During World 

War II, a great shortage of piezoelectric quartz, which is a kind of strategic supply material, 

stimulate a large amount of investments into hydrothermal synthesis. Therefore, the technique 

got development after that. In recent years, Nathan Jonann Nicholas
8
 has found the 

mechanism for hydrothermal growth of zinc oxide and they proved that in hydrothermal 

process, the final zinc oxide crystal adopts the wurtzite structure. 

 

 

Figure 7: Schematic of hydrothermal method in this study 

 

There are some features for hydrothermal method: (1) the process is performed in an 

in-closed system with adjustable temperature and pressure; (2) temperature here is relatively 

lower than molten salt growth; (3) temperature gradient is quite small in the growth area; (4) 

the solution has a low viscosity. 

 

Possible advantages of the hydrothermal method over other types of crystal growth 

include the ability to create crystalline phases which are not stable at the melting point. Also, 

http://en.wikipedia.org/wiki/Crystal_growth
http://en.wikipedia.org/wiki/Autoclave
http://en.wikipedia.org/wiki/Water
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materials which have a high vapor pressure near their melting points can also be grown by the 

hydrothermal method. The method is also particularly suitable for the growth of large 

good-quality crystals while maintaining good control over their composition. Disadvantages 

of the method include the need of expensive autoclaves, and the impossibility of observing 

the crystal as it grows. 

 

 

2.3 Fundamentals Aspects of Dislocation Theory 

 

    There are various dislocations in zinc oxide single crystal, including edge dislocations, 

screw dislocations, mixed dislocations, basal plane dislocations. Threading dislocations are 

those propagate throughout the crystal in growth direction or with some tilts, which is 

<0001>. Actually, stacking faults are not observed in this sample. In general, there are mainly 

three types of threading dislocations: threading edge dislocation (TED), threading screw 

dislocation (TSD) and c+a (mixed) dislocation. Threading screw dislocations are growth 

dislocations in screw orientation with line direction along [0001] and Burger’s vector n<0001> 

(n is an integer); if n is greater or equal to 2, the dislocations are called Micro-pipe; they are 

considered to be empty core screw dislocations with larger strain energy. TEDs are 

dislocations with line direction roughly parallel to c-axis and Burger’s vector in c-plane. 

Mixed dislocations have features of both TEDs and TSDs. Its Burger’s vector equals the 

vector sum of its edge component and screw component. Basal plane dislocations (BPD) are 

glissile dislocations with both line direction and Burger’s vector in c-plane. The presence of 

these defects will strongly influence the performance, lifetime, reliability of the devices that 

grown on these substrates. Threading dislocations, which will propagate into devices, have 

much more damage to the devices; while BPDs, which mainly lie on the basal plane beneath 

the surface, do not intend to perform negative influences. Thus it is of great importance to 

conduct detailed characterization on the threading dislocations in zinc oxide. An overview of 

threading dislocations is shown in the following table. 

                

 Line Direction Burger’s vector 

TED Roughly parallel to growth direction[0001] 1/3<11-20>(3.426Å) 

TSD Roughly parallel to growth direction[0001] n<0001>(5.313nÅ) 

MPs Parallel to growth direction[0001] n<0001> 

c+a Roughly parallel to growth direction[0001] 1/3<11-20>+n<0001> 

n is an integer 

Table 3. Details of Threading Dislocations 

     

    To fully understand the mechanism of XRT and the contrast in simulated images, the 

displacement of each type of threading dislocations will be discussed here. Furthermore, in 

order to release stress on the free surface for threading screw dislocations, surface relaxation 

effect will be introduced latter. 
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Figure 8: (a) schematic of u and b in TED (general case)   (b) displacement transformation 

 

The relationship between TED’s dislocation line direction and Burger’s vector is shown 

in Fig.8 (a). According to dislocation theory, the stress field of threading edge dislocation is
9
: 

 

𝑢𝑥 =
𝑏1
2𝜋

[tan−1
𝑦

𝑥
+

𝑥𝑦

2(1 −  )(𝑥2 + 𝑦2)
] ,                                                                                 Equation 2.3.1 

 𝑢𝑦 = −
𝑏1
2𝜋

[
1 − 2 

4(1 −  )
ln(𝑥2 + 𝑦2) +

𝑥2 − 𝑦2

4(1 −  )(𝑥2 + 𝑦2)
] ,                                                  Equation 2.3.2 

where   is the Poisson’s ration of ZnO (0.351 without porosity);  1 is Burger’s vector of 

TED. 

 

In this study, x-axis here is set to have the same direction with [11-20]; the term 𝑢𝑥 

means the displacement in [11-20]. Actually, in general conditions, the x-axis is not always 

parallel to the direction of [11-20]; therefore, a coordinate with 𝑢𝑥
′  and 𝑢𝑦

′  is built, which is 

going to be used in simulating the TED images in grazing incidence geometry. It is set 

parallel to the projection of the reflection vector on the basal plane. The transformation is as 

follows: 

 

𝑢𝑥
, = 𝑢𝑥cos  − 𝑢𝑦 sin                                                                                                Equation 2.3.3 

𝑢𝑦
′ = 𝑢𝑥 sin  + 𝑢𝑦 cos                                                                                                Equation 2.3.4  

where   is the angle between two coordinates. 
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Figure 9:(a) schematic of threading screw dislocation (b) distortion produced by screw 

dislocation 

 

Situation for threading screw dislocations and MPs is much more complicated. TSDs 

and MPs are screw dislocations with different magnitude. They are shown in Fig. 9. 

According to basic dislocation theory, the displacement only has c-component
10

: 

 

𝑢𝑧 =
𝑏2
2𝜋

tan−1
𝑦

𝑥
,                                                                                                                             Equation 2.3.5 

𝑢𝑥 = 𝑢𝑦 = 0                                                                                                                             Equation 2.3.6 

where 𝑏2 is the Burger’s vector of threading screw dislocations. 

 

When TSDs are close to the surface, the strain component perpendicular to the crystal 

surface has to be zero in order to satisfy the free surface condition. An additional in-plane 

(c-plane) displacement is thus resulted due to such surface relaxation effect, which was 

deduced by Yoffe
11

. To illustrate surface relaxation effect, a semi-infinite surface model is 

introduced here. 

 

Figure 10: Semi-infinite surface model 
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Assume there is a dislocation locates near the surface area with Burger’s vector b, which 

could be divided into 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧. Therefore, the displacement associated with 𝑏𝑥 

component could be written as, 

2𝜇𝑢𝑥 = 𝑧
𝜕2𝜑

𝜕𝑥𝜕𝑧
+ (1 − 2𝑣)

∂φ

∂𝑥 
  , 

                    

2𝜇𝑢𝑦 = 𝑧
𝜕2𝜑

𝜕𝑦𝜕𝑧
+ (1 − 2𝑣)

∂φ

∂𝑦 
  , 

 

2𝜇𝑢𝑥 = 𝑧
𝜕2𝜑

𝜕2𝑧
+ 2(1 − 𝑣)

∂φ

∂𝑧 
  , 

where 

 

φ =
𝜇𝑏𝑥 cot𝑎

2𝜋(1−𝑣)
{ζ log(𝑟 − ζ) + 2(1 − 𝑣)𝑟 + (1 − 2𝑣)𝑧 log(𝑟 − 𝑧) + 2(1 − v) cot 𝑎 [𝜂 log(𝑟 −

𝜁) − 𝑦 log(𝑟 − 𝑧) − 𝑥 (tan−1
𝑦

𝑥
− tan−1

𝜂

𝑥
+ tan−1

𝑥𝑟 sin𝑎

𝑥2 cos𝑎+𝑦𝜂
)]}, 

r = √𝑥2 + 𝑦2 + 𝑧2
2

, 

η = y cos 𝑎 − 𝑧 sin 𝑎, 

ζ = y sin 𝑎 + 𝑧 cos 𝑎, 

𝜂′ = −𝑦 cos 𝑎 − 𝑧 sin 𝑎, 

𝜁′ = 𝑦 sin 𝑎 − 𝑧 cos 𝑎. 

 

    The displacement field associated with the Burgers vector component by is: 

2u𝑢𝑥 =
𝑢𝑏𝑦

4𝜋(1 − 𝑣)
cos 𝑎 [−

𝑥2

𝑟(𝑟 − 𝜁)
−

𝑥2

𝑟(𝑟 − 𝜁)
+ (1 − 2𝑣) log(𝑟 − 𝜁) (𝑟 − 𝜁′)] + 𝑧

𝜕2𝜑

𝜕𝑥𝜕𝑧

+ (1 − 2𝑣)
𝜕𝜑

𝜕𝑥
, 

2u𝑢𝑦 =
𝜇𝑏𝑦

4𝜋
(tan−1

𝜂

𝑥
− tan−1

𝜂′

𝑥
+ tan−1

𝑥𝑟 sin 2𝑎

𝜂𝜂′−𝑥2 cos 2𝑎
)

+
𝜇𝑏𝑦

4𝜋(1 − 𝑣)
[
sin 𝑎 cos 𝑎

𝑟 − 𝜁
+
sin 𝑎 cos 𝑎

𝑟 − 𝜁′
−

𝑦 cos 𝑎

𝑟(𝑟 − 𝜁)
−

𝑦 cos 𝑎

𝑟(𝑟 − 𝜁′)
] + z

𝜕2𝜑

𝜕𝑦𝜕𝑧

+ (1 − 2𝑣)
𝜕𝜑

𝜕𝑦
 , 

2u𝑢𝑧 =
𝜇𝑏𝑦

4𝜋(1 − 𝑣)
[
𝑐𝑜𝑠2𝑎

𝑟 − 𝜁
+
𝑐𝑜𝑠2𝑎

𝑟 − 𝜁′
−

𝑧 cos 𝑎

𝑟(𝑟 − 𝜁)
−

𝑧 cos 𝑎

𝑟(𝑟 − 𝜁′)
] + 𝑧

𝜕2𝜑

𝜕𝑧2
− 2(1 − 𝑣)

𝜕𝜑

𝜕𝑧
 , 

where φ =
𝑣𝑢𝑏𝑦

2𝜋(1−𝑣)
[
𝑥𝑧

𝑟−𝑧
𝑥 log(𝑟 − 𝑧)],  

 

    The displacement field associated with the Burgers vector component bz is: 
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2u𝑢𝑥 =
𝑢𝑏𝑧 sin 𝑎

4𝜋(1 − 𝑣)
[(1 − 2𝑣) log(𝑟 − 𝜁)(𝑟 − 𝜁′) −

𝑥2

𝑟(𝑟 − 𝜁)
−

𝑥2

𝑟(𝑟 − 𝜁′)
] +

𝑢𝑏𝑧𝑦

𝜋(𝑟 − 𝑧)

+ 𝑧
𝜕2𝜑

𝜕𝑥𝜕𝑧
+ (1 − 2𝑣)

𝜕𝜑

𝜕𝑥
 , 

2u𝑢𝑦 =
𝑢𝑏𝑧𝑥 sin 𝑎

4𝜋(1 − 𝑣)
[
sin 𝑎

𝑟 − 𝜁
+
sin 𝑎

𝑟 − 𝜁′
−

𝑦

𝑟(𝑟 − 𝜁)
−

𝑦

𝑟(𝑟 − 𝜁′)
] −

𝑢𝑏𝑧𝑥

𝜋(𝑟 − 𝑧)
+ 𝑧

𝜕2𝜑

𝜕𝑦𝜕𝑧

+ (1 − 2𝑣)
𝜕𝜑

𝜕𝑦
, 

  2u𝑢𝑧 =
𝑢𝑏𝑧
2𝜋

(tan−1
𝜂

𝑥
− tan−1

𝜂′

𝑥
+ tan−1

𝑥𝑟 sin 2𝑎

𝜂𝜂′ − 𝑥2 cos 2𝑎
)

+
𝑢𝑏𝑧𝑥 sin 𝑎

4𝜋(1 − 𝑣)
[
cos 𝑎

𝑟 − 𝜁
+
cos 𝑎

𝑟 − 𝜁′
−

𝑧

𝑟(𝑟 − 𝜁)
−

𝑧

𝑟(𝑟 − 𝜁′)
] + z

𝜕2𝜑

𝜕𝑧2

− 2(1 − 𝑣)
𝜕𝜑

𝜕𝑧
, 

where  

φ =
𝑢𝑏𝑧

2𝜋(1 − 𝑣)
[−𝑥 sin 𝑎 log(𝑟 − 𝜁) + 𝑧 (tan−1

𝑦

𝑥
− tan−1

𝜂

𝑥
+ tan−1

𝑥𝑟 sin 𝑎

𝑥2 cos 𝑎 + 𝑦𝜂
)]. 

 

Displacement fields resulted from surface relaxation effect could be calculated in 

simulation work using the above equations. In this study, the infinite plate/disc type surface 

relaxation obtained by Eshelby and Stroh
12

 is used. Therefore, stress field in TSDs and MPs 

is given by, 

 

𝑢𝑥 = 𝑢 
−𝑦

√𝑥2 + 𝑦2
,                                                                                                        Equation 2.3.7   

𝑢𝑦 = 𝑢 
𝑥

√𝑥2 + 𝑦2
,                                                                                                        Equation 2.3.8 

𝑢𝑧 =
𝑏2
2𝜋

tan−1
𝑦

𝑥
 .                                                                                                           Equation 2.3.9 

𝑢 =
−𝑏2
2𝜋

∑(−1)𝑛
 

𝑛 0

{
√𝑥2 + 𝑦2

(2𝑛 + 1)𝑡 − (𝑧 + 𝑡) + √[(2𝑛 + 1)𝑡 − 𝑧]2 + (𝑥2 + 𝑦2)

−
√𝑥2 + 𝑦2

(2𝑛 + 1)𝑡 + (𝑧 + 𝑡) + √[(2𝑛 + 1)𝑡 + 𝑧]2 + (𝑥2 + 𝑦2)
}    Equation 2.3.10 

where t is the half thickness of the sample,  2 is Burger’s vector of threading screw 

dislocation. 

 

    As for c+a dislocation, its stress field could be considered that the stress field is the sum 

of a-component and c-component
9
. Burger’s vector has to be carefully calculated for c+a 



18 
 

dislocations.  

 

 

 

2.4 Simulation Process 

Ray tracing simulation work is extremely useful in characterization of threading 

dislocations when not enough reflections are accessible. As mentioned before, threading 

dislocations are dislocations that could run through the crystal in growth direction. Therefore, 

a hollow-like feature will be left when a threading dislocation ends on crystal surface. In this 

study, due to the high absorption effect of zinc oxide, which means x-ray intensity will 

decrease a lot in traversing the crystal, few topographic images with high contrast could be 

get in transmission geometry; and in grazing geometry, the images blurs when synchrotron 

white x-ray beam is applied. For crystals with high absorption coefficient like zinc oxide, 

monochromatic x-ray beam is used to taken topographic images in grazing geometry. 

Monochromatic XRT means, if the white synchrotron beam passes through a monochromator, 

an X-ray topograph is created when the sample crystal is set to the Bragg angle for a specific 

set of lattice planes for the selected X-ray energy. Images from different atomic planes are 

acquired by orienting the sample to satisfy the Bragg condition for those planes and orienting 

the detector to the new scattering angle to record the image. With monochromatic radiation 

only one topograph is recorded at a time, but the experimenter controls the energy or 

wavelength of the X-ray beam, the X-ray collimation, the energy or wavelength spread of the 

X-ray beam, and the size of the incident beam on the sample crystal. However, it is very 

difficult to interpret the x-ray topographs merely by information gathered by monochromatic 

x-ray beam. Ray tracing simulation has shown to be a very straightforward yet powerful way 

to interpret threading dislocation features in grazing geometry. Extensive comparisons 

between experiment and simulation have indicated that orientation contrast is dominant in 

topographs of zinc oxide. Therefore, ray-tracing simulation based on orientation contrast 

mechanism provides an excellent model to qualitatively and quantitatively interpret the 

topographic observations of dislocations in zinc oxide. 

 

The technique was firstly proposed by X. Huang and got further development by Y. 

Chen and F. Wu
13

 for various dislocations in SiC. The schematic of ray-tracing simulation is 

shown in Fig. 11. 
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Figure 11: Schematic of ray tracing simulation
14

  Figure 12: Coordinate system in 

simulation work 

 

The simulation work is carried out using Wolfram Mathematica 8.0 software. In the 

simulation process, an appropriate coordinate system could not only simplify calculation 

process but also accelerate program efficiency; therefore, it is of great importance to select 

the coordinate system. In this study, the coordinate origin is set in the dislocation center; 

x-axis is set to be parallel to [11-20]; z-axis is set to be parallel to [0001]; y-axis is set to have 

the direction of [-1100], which points inward the paper-plane. The system is shown in Fig. 

12. 

 

Once the coordinate system is settled, vectors of reflection plane, incident beam, plane 

normal, exit beam and film plane have to be carefully calculated. For example, as we have 

already known that there is no off-cut in the sample and the surface plane is (0001) and 

incident angle is 2 degree, the vector of incident beam 𝑠0⃗⃗  ⃗ is [-cos2°,0,-sin2°]. (11-24) 

reflection is the plane we choose to find the features of each dislocation for zinc oxide’s 2H 

structure. The angle between the surface plane (0001) and plane (11-24) could be calculated 

from the codes: 

 

𝑃𝑙𝑒𝑎𝑠𝑒 𝑖𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑡𝑡𝑖𝑐𝑒  

𝑎 = 3.2426 𝑏 = 3.2426 𝑐 = 5.1948  

𝛼 = 𝜋 2⁄  𝛽 = 𝜋 2⁄  𝛾 = 2𝜋 3⁄   

𝑃𝑙𝑒𝑎𝑠𝑒 𝑖𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒𝑠  

𝐻1 = 0 𝐾1 = 0 𝐿1 = 1  

𝐻2 = 1 𝐾2 = 1 𝐿2 = 4  

𝑉 = 𝑎 ∗ 𝑏 ∗ 𝑐 ∗ (1 − (𝐶𝑜𝑠[𝛼])2 − (𝐶𝑜𝑠[𝛽])2 − (𝐶𝑜𝑠[𝛾])2 + 2 ∗ 𝐶𝑜𝑠[𝛼] ∗ 𝐶𝑜𝑠[𝛽]

∗ 𝐶𝑜𝑠[𝛾])0.5  

𝑑 = 𝑏 ∗ 𝑐 ∗ 𝑆𝑖𝑛[𝛼] 𝑉⁄   

𝑒 = 𝑐 ∗ 𝑎 ∗ 𝑆𝑖𝑛[𝛽] 𝑉⁄   

𝑓 = 𝑎 ∗ 𝑏 ∗ 𝑆𝑖𝑛[𝛾] 𝑉⁄   

𝐴 = (𝐶𝑜𝑠[𝛽] ∗ 𝐶𝑜𝑠[𝛾] − 𝐶𝑜𝑠[𝛼]) (𝑆𝑖𝑛[𝛽] ∗ 𝑆𝑖𝑛[𝛾])⁄   
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𝐵 = (𝐶𝑜𝑠[𝛾] ∗ 𝐶𝑜𝑠[𝛼] − 𝐶𝑜𝑠[𝛽]) (𝑆𝑖𝑛[𝛾] ∗ 𝑆𝑖𝑛[𝛼])⁄   

𝐹 = (𝐶𝑜𝑠[𝛼] ∗ 𝐶𝑜𝑠[𝛽] − 𝐶𝑜𝑠[𝛾]) (𝑆𝑖𝑛[𝛼] ∗ 𝑆𝑖𝑛[𝛽])⁄   

𝑋 = 𝑉−1 ∗ (𝐻1^2 ∗ 𝑏^2 ∗ 𝑐^2 ∗ (𝑆𝑖𝑛[𝛼])^2 + 𝐾1^2 ∗ 𝑐^2 ∗ 𝑎^2 ∗ (𝑆𝑖𝑛[𝛽])^2 + 𝐿1^2

∗ 𝑎^2 ∗ 𝑏^2 ∗ (𝑆𝑖𝑛[𝛾])^2 + 2 ∗ 𝐾1 ∗ 𝐿1 ∗ 𝑎^2 ∗ 𝑏 ∗ 𝑐 ∗ (𝐶𝑜𝑠[𝛽] ∗ 𝐶𝑜𝑠[𝛾]

− 𝐶𝑜𝑠[𝛼]) + 2 ∗ 𝐿1 ∗ 𝐻1 ∗ 𝑎 ∗ 𝑏^2 ∗ 𝑐 ∗ (𝐶𝑜𝑠[𝛾] ∗ 𝐶𝑜𝑠[𝛼] − 𝐶𝑜𝑠[𝛽]) + 2

∗ 𝐻1 ∗ 𝐾1 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐^2 ∗ (𝐶𝑜𝑠[𝛼] ∗ 𝐶𝑜𝑠[𝛽] − 𝐶𝑜𝑠[𝛾]))^0.5  

𝑌 = 𝑉−1 ∗ (𝐻22 ∗ 𝑏2 ∗ 𝑐2 ∗ (𝑆𝑖𝑛[𝛼])2 + 𝐾22 ∗ 𝑐2 ∗ 𝑎2 ∗ (𝑆𝑖𝑛[𝛽])2 + 𝐿22 ∗ 𝑎2 ∗ 𝑏2

∗ (𝑆𝑖𝑛[𝛾])2 + 2 ∗ 𝐾2 ∗ 𝐿2 ∗ 𝑎2 ∗ 𝑏 ∗ 𝑐 ∗ (𝐶𝑜𝑠[𝛽] ∗ 𝐶𝑜𝑠[𝛾] − 𝐶𝑜𝑠[𝛼]) + 2

∗ 𝐿2 ∗ 𝐻2 ∗ 𝑎 ∗ 𝑏2 ∗ 𝑐 ∗ (𝐶𝑜𝑠[𝛾] ∗ 𝐶𝑜𝑠[𝛼] − 𝐶𝑜𝑠[𝛽]) + 2 ∗ 𝐻2 ∗ 𝐾2 ∗ 𝑎 ∗ 𝑏

∗ 𝑐2 ∗ (𝐶𝑜𝑠[𝛼] ∗ 𝐶𝑜𝑠[𝛽] − 𝐶𝑜𝑠[𝛾]))
0.5
  

𝜑 = 𝐴𝑟𝑐𝐶𝑜𝑠 [𝑋−1 ∗ 𝑌−1

∗ (

𝐻1 ∗ 𝐻2 ∗ 𝑑2 + 𝐾1 ∗ 𝐾2 ∗ 𝑒2 + 𝐿1 ∗ 𝐿2 ∗ 𝑓2 +
(𝐾1 ∗ 𝐿2 + 𝐾2 ∗ 𝐿1) ∗ 𝑒 ∗ 𝑓 ∗ 𝐴 + (𝐻1 ∗ 𝐿2 + 𝐻2 ∗ 𝐿1) ∗ 𝑓 ∗ 𝑑 ∗ 𝐵 +

(𝐻1 ∗ 𝐾2 + 𝐻2 ∗ 𝐾1) ∗ 𝑑 ∗ 𝑐 ∗ 𝐹

)] 

 

 

The film is set to be perpendicular to the exit beam before distortion, and the distance 

between film and sample is about 15-20cm. The distance value would not play an important 

role in simulation. The next step is to set up a matrix to store the intensity map of the 

diffracted beam. In the simulation process, the sample surface is divided into small squares 

with constant area, as shown in Fig.11. Also, the area division for film is applied. In 

Mathematica, the idea of matrix is introduced to make those area divisions come into truth. 

The number of diffracted beam that hits onto each square on film is counted and therefore, a 

matrix with the stress information on sample is generated. The number of elements in this 

matrix decides the resolution of the simulated image. The resolution is selected in such a way 

that a) the resolution is not too low and b) there are not too many elements in the matrix so 

that the simulation takes extremely long. Normally a 500 × 500 matrix is used. Note that the 

matrix density map has to be set in the same orientation as we view the film.  

     

We have proved the truth of �⃗� = 𝑛0⃗⃗⃗⃗ − ∇(𝑛0⃗⃗⃗⃗ ∙ �⃗� ), which could be used to get plane 

normal after distortion �⃗�  once the displacement field �⃗�  is known. The diffracted beam 

vector can be calculated based on the equation 𝑠0⃗⃗  ⃗ × �⃗� = −�⃗� × 𝑠 , where 𝑠0⃗⃗  ⃗ is the incident 

beam vector. The equation 𝑠0⃗⃗  ⃗ × �⃗� = −�⃗� × 𝑠  could be easily deduced from the diffraction 

geometry. In our simulation, we assume an ideal plane wave and the wave vector of the 

incidence beam is fixed. The intensity distribution on the x-ray film can be mapped by 

calculating the wave vector of each diffracted beam from each small area defined on the 

crystal surface. Therefore, the dislocation image, which is actually a mapping of the 

diffracted beam intensity, can be simulated. 

 

 



21 
 

2.5 Experiment 

Commercial c-plane ZnO wafers grown by the hydrothermal method were initially 

imaged in the transmission geometry to characterize defects in the bulk. 11-24 reflection was 

recorded in grazing geometry with 2° incident angle to image threading defects. Synchrotron 

white beam X-ray topography experiments were carried out at the Stony Brook Synchrotron 

Topography Station, Beamline X-19C, at the National Synchrotron Light Source while 

synchrotron monochromatic X-ray topography experiments were carried out at the Advanced 

Photon Source, Beamline XOR-33BM/UNI-CAT. The direct white beam from the storage 

ring is used at the NSLS and the maximum beam size at the sample is approximately 7 × 40 

mm2. The vertical divergence angle is mc2/E ≈ 0.18 mrad (m is the mass of the electron, c is 

the velocity of the light and E is the electron energy). In APS, the white beam is 

mono-chromatized by two cooled parallel Si(111) crystals and the x-ray energy is tunable 

between 2.4 – 40 keV. All images were recorded on Agfa Structurix D3-SC films. Ray 

tracing simulation work is carried out using Wolfram Mathematica 8.0 software. Settings in 

BNL and APS are illustrated in Fig. 9. 

 

Figure 13: Schematics of experimental setting-ups at NSLS (a) and APS (b) 

 

 

 

2.6 Results and Discussion 

    An overview of defects in hydrothermal grown zinc oxide substrates is shown in Fig. 10. 

In general, there are mainly two kinds of dislocations: growth dislocation and stress induced 

dislocation. Growth dislocations are observed in crystals grown from vapor, melt, solution 

and flux. They are formed during the growth process. Multiple growth dislocation origins 

have been observed: (a) the continuation of dislocations already present in the seed; (b) the 

relaxation of stresses arising from handling damage on the surface of the seed; (c) the 

Storage ring

X-ray beam

sample

Beam shutter

~ 25 m

Storage ring

X-ray beamsample

Beam shutter

~ 50 m

Si monochromator

(a)

(b)



22 
 

relaxation of stresses arising from the incorporation of inclusions of solvent or impurity 

which can occur on the seed surface or later during growth which can equivalently be viewed 

as imperfect lattice closure around such inclusions; (d) the relaxation of stresses arising from 

coalescence between two or more mis-oriented growth centers. As for stress-induced 

dislocations in this study, they are usually formed on basal plane (0001) or on prismatic 

planes nucleating from boule edges due to thermal gradient stress, with Burger’s vector 

1/3<11-20>. Also, there exist some dislocations pairs nucleated from inclusions incorporated 

into crystals. 

 
Figure 14: Overview of defects in hydrothermal grown ZnO substrates, seed is in the center 

of boule; red dashed lines are dislocations propagated from seed; dislocation loops on (0001) 

basal plane and prismatic planes are stress-induced dislocations; sample in this study is one 

part of (0001) plane cut wafer, without offcuts (may contain seed). 

 

Theoretically, there are 2 possible threading screw dislocations (assume n equal 1), 6 

possible threading edge dislocations and 12 possible c+a dislocations for the basal plane cut 

wurtzite ZnO crystal. The diffraction vector for all these dislocations is [112̅4], pointing 

upwards in simulated images. The a-component is defined in such way that 1/3[1-20] is the 

reference direction, referred to as 0°a which is 0° to the g vector, 1/3[21̅1̅0] is 60°a which is 

60° to the g vector, and so on, as shown in Fig. 9. For example, c+0°a means, the 

c-component’s Burgers vector is [0001] and the a-component’s Burgers vector is 1/3[112̅0]. 

Simulation results of the contrast of all 20 threading dislocations with c-component or 

a-component of Burgers vector in 11-24 grazing-incidence topographs are shown in Fig. 

16-18. 
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Figure 15: Directions of Burgers vectors of a-components. 

 

Two possible threading screw dislocations: 

 [0001]      [0001̅] 

Figure 16: Simulated threading screw dislocations 

 

Twelve possible c+a dislocations: 

 c+0°a    c+60°a     c+120°a 

  c+180°a   c+240°a    c+300°a 

  -c+0°a     -c+60°a    -c+120°a 

   -c+180°a   -c+240°a   -c+300°a 

Figure 17: Simulated c+a dislocations 

G=11-24 
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Six Possible Threading edge dislocations: 

 

  1/3[112̅0]   1/3[21̅1̅0]   1/3[12̅10] 

  1/3[1̅1̅20]   1/3[2̅110]   1/3[1̅21̅0] 

Figure 18: Simulated threading edge dislocations 

     

    Generally speaking, the contrast pattern contains a white and tilted elliptical spot in the 

center and a black perimeter surrounding the spot. The contrast pattern can be divided into 

two groups according to the tilt direction of the ellipse. When the c-component of Burgers 

vector is positive, the ellipses are tilted to the right; when the c-component of Burgers vector 

is negative, the ellipses are tilted to the left. For threading edge dislocations, the contrast 

pattern seems to contain two dislocation cores, tilting different angels to each other; and in 

two cases, the two cores get separated.  

 

 

(a) 

 

(b) 

 

 

(c) 

Figure 19: Monochromatic grazing incidence X-ray topograph showing contrast from chiefly 

two types of TEDs with Burgers vectors 1 3⁄ [12̅10] (b) and  1 3⁄ [21̅1̅0] (c). 

 

Detailed studies of grazing incidence monochromatic X-ray topographs from multiple 
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ZnO wafers reveal no contrast features matched to TSD or c+a simulated images. This means, 

few c-component dislocations are present in this sample. Most dislocation features we 

observed in this study are TEDs with Burgers vector of either 1 3⁄ [21̅1̅0] or 1 3⁄ [12̅10], 

while very few other type TEDs could be found from the topographic images (see Fig. 19). 

 

X-ray topography in the transmission geometry on these ZnO wafers reveal defects in 

the entire bulk of the crystal wafers. Topograph from a typical wafer (Fig. 20(a)) reveals 

criss-crossed patterns of prismatic slip bands (S) running along the 〈112̅0〉 directions and 

inhomogeneously scattered inclusions (I). Prismatic slip on all three prism planes is observed 

but predominantly of the [12̅10] on (101̅0) and [21̅1̅0] on (011̅0) types. The slip bands 

are composed of dislocation half-loops with long screw segments (horizontal red dashed lines) 

extending into the wafer with short edge segments (vertical red dashed lines) at the ends (see 

Fig. 22(a) for schematic). The prismatic slip dislocations exhibit the phenomenon of 

cross-slip (see Fig.20(b)) where the screw segments of dislocation half-loops lying in the 

prismatic planes have cross-slipped onto the basal plane. Fig. 21 shows the detailed process 

of cross slip. 

 

 
(a) 

 

(b) 

 

 (d) 

 

(c) 

Figure 20: (a) White beam transmission topograph of a typical ZnO wafer showing prismatic 

slip bands (S), inclusions (I) and surface artifacts (A); (b) & (c) High magnification 

topographs showing the cross-slip of screw segments on to the basal plane (inside circle); (d) 

Monochromatic topograph showing TED images at the end of prismatic slip bands (inside 

circle) and BPD loops nucleated from wafer edge. 

 

Closer examination of the wafer edges reveals a dense concentration of basal plane 

dislocation half-loops nucleated from the edges. High magnification monochromatic 

topograph (Fig. 20(d)) reveals these loops in greater detail. These loops are most likely 

produced during the cutting process, while the prismatic loops are mainly post-growth 

thermal-stress induced dislocations. The monochromatic topograph also reveals that the ends 

S 

A 

I 
BPD 
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of the prismatic slip bands are associated with a TED contrast (Fig. 20(d)). 

                     

Figure 21: Schematic of cross slip on basal planes 

 

From these observations, a clear picture of the origin of TED contrast is obtained. When 

the c-plane wafer is cut from the boule, the predominantly [12̅10] and [21̅1̅0] prismatic 

dislocation loops can be cut in the middle perpendicular to the edge segments. Therefore, the 

edge segments intersect the surface nearly along c-axis and appear as TEDs on the 

intersection plane which is the surface plane in this study (see Fig. 22 for schematic). 

 

The dislocation density of these two TED types is approximately 2.88×10
4
/cm

2
 near the 

wafer edges, and they take up about 50% of all threading dislocations in the 112̅4 reflection. 

In the central part, the minimum dislocation density is about 800/cm
2
. The remaining features 

on the grazing incidence topographic images are BPDs basal plane dislocations, which appear 

as a light straight white line, and inclusions which appear as circles of white contrast. Their 

density is 4.89×10
4
/cm

2
. Note that the BPDs usually do not terminate on the crystal surface; 

therefore, they will not strongly influence the structural quality of the epilayer grown on it; 

while threading dislocations which will propagate into the device grown on the substrates are 

more damaging. 

 

(a)                (b)  

Figure 22: Schematic of the origin of TEDs on c-plane cut wafer (a) Prismatic loops 

generated in boule due to thermal gradient induced stresses. (b) Wafer slicing perpendicular 

to edge segments resulting in TEDs on surface. 

 

Moreover, if we blow up the edge part of the transmission image in Fig. 20(a), large 

quantity of dislocation loops are observed in this area. Detailed characterization shows that 

they are stress induced screw dislocations with the burgers vector of 1/3<11-20> and they 

slip on the basal plane, which is (0001) plane. Usually, this kind of dislocations will 

dissociated into Shockley partials separated by a Shockley fault; but it did not happen in this 

(0001) plane cut 

TEDs 
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study. These dislocations nucleate primarily in the highly strained outer regions of the boule 

and become mobile and expand toward the interior of the boule under the action of shear 

stresses on the basal plane. The dislocation originates from the outer regions most probably 

arises from differential thermal expansion effects between polycrystalline and polytype 

inclusions leading to the generation of further shear stress concentrations. Figure 23(a) and (b) 

show a transmission topograph recorded with synchrotron radiation. Analysis of the white 

contrast associated with all of the approximately concentric half-loops expanding towards the 

interior of the wafer (based on the ray-tracing principle) demonstrates that they are all of the 

same sign, consistent with the prediction before. 

                

   (a)                 (b)                             (c) 

Figure 23: Dislocation loops nucleating in the edge region in two different samples (a) and 

(b); schematic of dislocation loops (c) 

 

 

 

2.7 Conclusions 

ZnO substrates grown by hydrothermal method are characterized by prismatic slip bands 

and inclusions with basal dislocations concentrated near edges. Ray tracing simulation is 

successfully used in interpreting the Burgers vectors of threading dislocations in 112̅4 

grazing incidence reflection topographs. TEDs whose Burgers vectors are 1 3⁄ [21̅1̅0] and 

1 3⁄ [12̅10]are generally found. These are edge segments of prismatic loops. Threading screw 

dislocations or c+a dislocations are not observed. The overall dislocation density for 

hydrothermal grown ZnO is 5000/cm
2
. To minimize threading dislocations in the sample, 

prismatic slip must be eliminated by minimizing thermal gradient stresses. 
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Chapter III. Residue Stress Mapping and Depth Profiling via Ray Tracing 

in Packaged Silicon Circuits 

3.1 Introduction 

   Semiconductor devices are becoming increasingly more complex as the number of 

transistors increases in the same Integrated Circuit (IC) area. Due to the complexity in design; 

processing and packaging of the device plays a crucial role in the IC fabrication. Package 

induced residual stress are Residual stresses are known to cause instability in electrical 

performance and eventually kill the device if the material yields to produce dislocation
15,16

. 

Various techniques have been used to determine residue stress in crystals
17,18,19

. V. Sarkar and 

Y. Chen have developed a novel technique (SMART) based on ray tracing to 

non-destructively and non-invasively map the complete stress tensor as a function of three 

dimensional positions in any single crystal bulk material. This method uses the technique of 

x-ray topography in combination with a fine-scale mesh/grating/reticule, otherwise referred 

to as synchrotron white beam x-ray reticulography (SWBXR), followed by detailed image 

analysis and calculation enabling determination of all stress components. 

 

As shown in Chaper I, there exists a relationship between the stress state in a crystal and 

the local lattice plane orientation, which is �⃗� = 𝑛0⃗⃗⃗⃗ − ∇(𝑛0⃗⃗⃗⃗ ∙ �⃗� ), and that this relationship can 

be exploited in order to determine the full strain tensor as a function of position inside the 

crystal. Then, the elastic constants of the sample could be utilized to convert strain into stress 

values. A grid is used to trace exit x-ray beams from the sample. The grid essentially breaks 

the area-filling X-ray beam into an array of micro-beams, each micro-beam is then traced 

separately. The results of such measurements carried out using three independent x-ray 

reflections can be input into the mathematical relationship between the strain tensor and the 

local lattice plane orientation allowing calculation of the complete strain tensor as a function 

of lateral position in the crystal. Vish
20

 has successfully applied this technique to silicon 

circuits in transmission geometry to get stress values in bulk material. This method has a 

unique advantage compared with other stress measurement technique in that it can evaluate 

all six components of the complete stress tensor in a nondestructive way. In this study, stress 

and depth profiling is measured with SMART, associated with penetration depth, in grazing 

geometry; and 3D stress map is generated. 

 

Vish also conducted a lot of research on depth profiling
21

, but there exist some errors in 

his assumption. In this study, we try to correct those assumptions to get stress values which 

are closest to the real ones. 
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3.2 Proof of SMART 

The equation �⃗� = 𝑛0⃗⃗⃗⃗ − ∇(𝑛0⃗⃗⃗⃗ ∙ �⃗� ) provides the theoretical basis for SMART. This 

provides the analysis methodology which enables the determination of the full stress tensor as 

a function of 3D position in the crystal. The schematic of strain measurement in this study is 

shown in Fig. 24. D is the position where diffracted beam hits on the film under stress free 

situation; D’ is the position where diffracted beam hits on the film in experiment. Therefore, 

plane normal before and after distortion could be calculated. Using the equation �⃗� = 𝑛0⃗⃗⃗⃗ −

∇(𝑛0⃗⃗⃗⃗ ∙ �⃗� ), strain distribution on the sample is generated. According to Hooke’s law, the 

relationship between stress and strain can be written in contracted notation as 

 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙        𝑖, 𝑗 = 1,2, … ,6 

where 𝜎𝑖 are the stress components, 𝐶𝑖𝑗 is the stiffness matrix, and 𝜀𝑗 are the strain 

components. 

 

 

Figure 24: Strain measurement in SMART 

 

In 3-dimension situations, the equation �⃗� = 𝑛0⃗⃗⃗⃗ − ∇(𝑛0⃗⃗⃗⃗ ∙ �⃗� ) is written as: 

 

�⃗� (𝑥, 𝑦, 𝑧) = 𝑛0⃗⃗⃗⃗ (𝑥, 𝑦, 𝑧) − ∇[𝑛0⃗⃗⃗⃗ (𝑥, 𝑦, 𝑧) ∙ �⃗� (𝑥, 𝑦, 𝑧)] 

where �⃗� (𝑥, 𝑦, 𝑧) = 𝑛𝑥𝑖 + 𝑛𝑦𝑗 + 𝑛𝑧�⃗�  is the plane normal at (𝑥, 𝑦, 𝑧) after distortion; 

      𝑛0⃗⃗⃗⃗ (𝑥, 𝑦, 𝑧) = 𝑛0𝑥𝑖 + 𝑛0𝑦𝑗 + 𝑛0𝑧�⃗�  is the plane normal at (𝑥, 𝑦, 𝑧) before distortion; 

      �⃗� (𝑥, 𝑦, 𝑧) = 𝑢𝑥𝑖 + 𝑢𝑦𝑗 + 𝑢𝑧�⃗�  is the displacement at (𝑥, 𝑦, 𝑧). 

 

Also, at point (𝑥, 𝑦, 𝑧), the equation could be split into 3 sub-equations: 

𝑛𝑥 = 𝑛𝑥
0 − (𝑛𝑥

0
𝜕𝑢𝑥
𝜕𝑥

+ 𝑛𝑦
0
𝜕𝑢𝑦

𝜕𝑥
+ 𝑛𝑧

0
𝜕𝑢𝑧
𝜕𝑥

) 

𝑛𝑦 = 𝑛𝑦
0 − (𝑛𝑥

0
𝜕𝑢𝑥
𝜕𝑦

+ 𝑛𝑦
0
𝜕𝑢𝑦

𝜕𝑦
+ 𝑛𝑧

0
𝜕𝑢𝑧
𝜕𝑦

) 
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𝑛𝑧 = 𝑛𝑧
0 − (𝑛𝑥

0
𝜕𝑢𝑥
𝜕𝑧

+ 𝑛𝑦
0
𝜕𝑢𝑦

𝜕𝑧
+ 𝑛𝑧

0
𝜕𝑢𝑧
𝜕𝑧

) 

 

To solve one equation like 𝑛𝑥 = 𝑛𝑥
0 − (𝑛𝑥

0 𝜕𝑢𝑥

𝜕𝑥
+ 𝑛𝑦

0 𝜕𝑢𝑦

𝜕𝑥
+ 𝑛𝑧

0 𝜕𝑢𝑧

𝜕𝑥
), three groups of 𝑛𝑥, 

𝑛𝑥
0, 𝑛𝑦

0 , 𝑛𝑧
0 have to be provided for there are three undetermined parameters in the equations. 

Therefore, in SMART, information from three diffraction spot has to be collected. A set of 

equations are: 

 

 

𝑛𝑥1 = 𝑛𝑥1
0 − (𝑛𝑥1

0
𝜕𝑢𝑥
𝜕𝑥

+ 𝑛𝑦1
0
𝜕𝑢𝑦

𝜕𝑥
+ 𝑛𝑧1

0
𝜕𝑢𝑧
𝜕𝑥

) 

𝑛𝑥2 = 𝑛𝑥2
0 − (𝑛𝑥2

0
𝜕𝑢𝑥
𝜕𝑥

+ 𝑛𝑦2
0
𝜕𝑢𝑦

𝜕𝑥
+ 𝑛𝑧2

0
𝜕𝑢𝑧
𝜕𝑥

) 

𝑛𝑥3 = 𝑛𝑥3
0 − (𝑛𝑥3

0
𝜕𝑢𝑥
𝜕𝑥

+ 𝑛𝑦3
0
𝜕𝑢𝑦

𝜕𝑥
+ 𝑛𝑧3

0
𝜕𝑢𝑧
𝜕𝑥

) 

From these three equations, we can get the value of 
𝜕𝑢𝑥

𝜕𝑥
, 
𝜕𝑢𝑦

𝜕𝑥
, 
𝜕𝑢𝑧

𝜕𝑥
. 

 

𝑛𝑦1 = 𝑛𝑦1
0 − (𝑛𝑥1

0
𝜕𝑢𝑥
𝜕𝑦

+ 𝑛𝑦1
0
𝜕𝑢𝑦

𝜕𝑦
+ 𝑛𝑧1

0
𝜕𝑢𝑧
𝜕𝑦

) 

𝑛𝑦2 = 𝑛𝑦2
0 − (𝑛𝑥2

0
𝜕𝑢𝑥
𝜕𝑦

+ 𝑛𝑦2
0
𝜕𝑢𝑦

𝜕𝑦
+ 𝑛𝑧2

0
𝜕𝑢𝑧
𝜕𝑦

) 

𝑛𝑦3 = 𝑛𝑦3
0 − (𝑛𝑥3

0
𝜕𝑢𝑥
𝜕𝑦

+ 𝑛𝑦3
0
𝜕𝑢𝑦

𝜕𝑦
+ 𝑛𝑧3

0
𝜕𝑢𝑧
𝜕𝑦

) 

From these three equations, we can get the value of 
𝜕𝑢𝑥

𝜕𝑦
, 
𝜕𝑢𝑦

𝜕𝑦
, 
𝜕𝑢𝑧

𝜕𝑦
. 

 

𝑛𝑧1 = 𝑛𝑧1
0 − (𝑛𝑥1

0
𝜕𝑢𝑥
𝜕𝑧

+ 𝑛𝑦1
0
𝜕𝑢𝑦

𝜕𝑧
+ 𝑛𝑧1

0
𝜕𝑢𝑧
𝜕𝑧

) 

𝑛𝑧2 = 𝑛𝑧2
0 − (𝑛𝑥2

0
𝜕𝑢𝑥
𝜕𝑧

+ 𝑛𝑦2
0
𝜕𝑢𝑦

𝜕𝑧
+ 𝑛𝑧2

0
𝜕𝑢𝑧
𝜕𝑧

) 

𝑛𝑧3 = 𝑛𝑧3
0 − (𝑛𝑥3

0
𝜕𝑢𝑥
𝜕𝑧

+ 𝑛𝑦3
0
𝜕𝑢𝑦

𝜕𝑧
+ 𝑛𝑧3

0
𝜕𝑢𝑧
𝜕𝑧

) 

From these three equations, we can get the value of 
𝜕𝑢𝑥

𝜕𝑧
, 
𝜕𝑢𝑦

𝜕𝑧
, 
𝜕𝑢𝑧

𝜕𝑧
. 

 

As the value of 
𝜕𝑢𝑥

𝜕𝑥
, 
𝜕𝑢𝑦

𝜕𝑥
, 
𝜕𝑢𝑧

𝜕𝑥
, 
𝜕𝑢𝑥

𝜕𝑦
, 
𝜕𝑢𝑦

𝜕𝑦
, 
𝜕𝑢𝑧

𝜕𝑦
, 
𝜕𝑢𝑥

𝜕𝑧
, 
𝜕𝑢𝑦

𝜕𝑧
, 
𝜕𝑢𝑧

𝜕𝑧
 are obtained, pure strain 

tensor could be derived as: 
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𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑗

+
𝜕𝑢𝑗

𝜕𝑖
) = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

]

=

[
 
 
 
 
 
 

𝜕𝑢𝑥
𝜕𝑥

1

2
(
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
)

1

2
(
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥

)

1

2
(
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
)

𝜕𝑢𝑦

𝜕𝑦

1

2
(
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦

)

1

2
(
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥

)
1

2
(
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦

)
𝜕𝑢𝑧
𝜕𝑧 ]

 
 
 
 
 
 

 

Subsequently, the strains can be converted to stresses using the crystal’s elastic 

constants. 

 

Vish has proved that in transmission geometry, same results are obtained by choice of 

any three randomly selected reticulographs. But in this study, because the concept of 

penetration depth is commonly used, which is strongly influenced by different reticulographs, 

we cannot select three diffraction spot randomly. We have to choose three diffraction spots 

with the closest penetration depth to minimize errors. 

 

Note that penetration depth is defined as the depth (t) at which intensity drops to 1/e. 

The direct calculation result from SMART technique is a weighted average value, which is of 

little use than the actual stress distributions. The reason that the stress value is weighted 

average and not a simple average is that the diffraction data has more information from 

volume which is near the surface rather than further deep into the crystal because X-ray 

intensity reduces exponentially as it penetrates into the crystal. In general any diffraction 

technique in the reflection geometry will result in a stress value which is Laplace transform 

of real space stress distribution given by the following equation
22,23,24

: 

 

𝜎(𝜏) =
1

𝜏
 [𝜎(𝑧),

1

𝜏
] =

1

𝜏
∫ 𝜎(𝑧)𝑒−

𝑧
𝜏𝑑𝑧

 

0

 

where 𝜏 is the penetration depth, z is the depth from the surface, 𝜎(𝜏) is the weighted 

average stress value which is equal to the experimentally determined stress value, 𝜎(𝑧) is 

the real stress depth function.  

 

Assume s=
1

𝜏
,  

𝜎 (
1

𝑠
) = 𝑠∫ 𝜎(𝑧)𝑒−𝑧 𝑑𝑧

 

0

 

1

𝑠
𝜎 (

1

𝑠
) = ∫ 𝜎(𝑧)𝑒−𝑧 𝑑𝑧

 

0

 

𝜎(𝑧) =  −1 [
1

𝑠
𝜎 (

1

𝑠
) , 𝑠] 

All the Laplace transform and reverse Laplace transform in this study are operated by 

Mathematica. 
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3.3 Experiment 

    Commercial silicon sample from Intel was studied by synchrotron white beam x-ray 

topography in grazing geometry in National Synchrotron Light Source X19C located at 

Brookhaven National Laboratory. Multiple images were recorded by varying the incident 

angle in steps of 1 degree. A fine scale tungsten grid, described in Fig. 26, is placed just 

above and parallel to the sample surface. Spacing between the bars in the grid is 508μm and 

bar width is 102μm. Depth profiles are calculated at locations beneath the surface of the 

crystal at points defined by the grid-bar intersection locations. It should be noted here that the 

spatial resolution of this technique is solely depends on the spacing between the bars in the 

grid. A finer grid (having higher price) will provide better spatial resolution. Incident X-ray 

beam after interacting with the crystal up to certain depth (penetration depth) diffracts in 

certain direction governed by Bragg’s law. Diffracted beam after passing through the tungsten 

grid forms an image on the photographic film (Agfa structurix D3-SC) which essentially is 

the shadow or the inverse image of the grid. Reticulographic images were recorded using 

Agfa Structurix D3-SC photographic film. The schematic of this study is shown in the 

following: 

 
Figure 25: Schematic of SMART (lead in the center) 

 
Figure 26: Engineering drawing of X-ray absorption grid used for SMART, by Vish Sarkar

25
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A small piece of lead, which has the enough size to cover one unit cell, is used to 

roughly locate the position of reticulographic images in the selected coordinate system. The 

lead should be put near the center area on the grid. Because of the strong absorption efficient 

of lead, the x-ray that originally goes through the unit cell now is blocked by lead. Thus on 

the film, a blank area could be observed, as shown in Fig. 27 

. 

    

Figure 27: Blank area caused by lead in one reticulographic image 

 

Assume the lead is set as the origin of the coordinate system on the sample; its position 

is therefore (0, 0, 0). Generally, we have to select three diffraction spot, and one of them is on 

the center axis (y-axis in this study). The blank area’s position on x-axis in this 

reticulographic image is zero and its value on y-axis is  

 

𝑦 = 𝑑 tan 2(𝛼 + 𝛽) 

where d is the distance between sample and film in z-axis, 𝛼 is the diffraction angel and 𝛽 

is the rotation angel of x-axis on the sample. 

 

 

Figure 28: Scan of X-ray topography film with x-axis rotating 2.3 degree 
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Film recorded with x-axis rotating 2.3 degrees is illustrated above. After exposure to 

X-rays, films are processed by developing, fixing rinsing and followed by drying. Films are 

scanned at a resolution of 2400 dots per inches (dpi). An electronic image file (.tiff) is 

generated. Image recognition software is used to detect the grid corner points in the three 

chosen reticulograph. 

 

Note that in this study, the plane normal before distortion is defined instead of calculated 

the same way as distorted plane normal. As the angle relations are determined, the vector of 

one certain plane normal is also determined. Plane normal for (-22-8) reflection is defined as: 

Normal=[
cos 𝑐 − sin 𝑐 0
sin 𝑐 cos 𝑐 0
0 0 1

] . [
cos 𝑏 0 sin 𝑏
0 1 0

− sin 𝑏 0 cos 𝑏
] . [

1 0 0
0 cos 𝑎 sin 𝑎
0 − sin 𝑎 cos 𝑎

] . [
0
8

−2^1.5
] 

 

3.4 Penetration Depth Calculation  

In transmission geometry, which is used to generate stress map for bulk material, three 

reticulographic images could be randomly selected and it is unnecessary to index every 

diffraction spot and it is also unnecessary to determine the wavelength or the penetration 

depth of a particular reticulograph. Vish has proved the truth of this assumption. But in this 

study, the concept of penetration depth plays extremely important role in depth profiling; its 

values have to be carefully calculated. Note that penetration depth in this study is based on 

photoelectric absorption. 

 

According to the program of LauePattern written by X. Huang
26

, information of pattern 

index and geometrical location of the spot on the film could be found. These data are required 

for penetration depth calculation. The following picture shows the diffraction patterns which 

could correlate with Fig. 29. 

 

Figure 29: Diffraction patterns from LauePattern(three selected diffraction spot are marked 
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with red circles) 

 

To determine the penetration depth for each reticulograph, we have to know the value of 

exit angel. In this study, incident angel varies from 2.3 degree to 8.3 degree with the step of 1 

degree. The value of exit angle could be calculated from LauePattern. In Chapter I, we have 

introduced the equation for penetration depth: 

t =
1

𝜇(
1

sin𝛼 +
1

sin 𝛽
)
 

where 𝜇 is the absorption coefficient, 𝛼 is the incident angle, 𝛽 is the exit angle. 

 

Assume for certain diffraction spot: 

a= X coordinate of diffraction spot, 

b= Y coordinate of diffraction spot, 

 

The exit angle could be written as: 

𝜙ℎ = tan−1[
𝑏

√𝑎2 + 𝑠𝑓𝑑2
] − 𝜙0 

where sfd is the distance between lead and film on z-axis direction, 𝜙0 is the incident angle. 

 

The above equation can be readily derived using geometry. All the variables on the right 

side of equation are known and therefore exit angle can be calculated. From LauePattern, 

wavelength of each diffraction spot is determined. For (-228), its wavelength is 0.4267 Å; for 

(-20-6) and (02-6), the value is 0.384 Å. 

 

Mass absorption coefficient  /ρ of silicon for the range of wavelengths 0.30~1.85 Å, 

with the step of 0.05Å is shown in Table. 4: 

 

wavelength 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

𝛍/𝛒 0.657 0.941 1.32 1.79 2.39 3.11 3.97 4.99 6.16 7.52 

wavelength 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 

𝛍/𝛒 9.05 10.8 12.7 14.9 17.3 19.9 22.8 25.9 29.3 33.0 

wavelength 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.85 

𝛍/𝛒 37.0 41.3 45.9 50.8 56.0 61.6 67.5 73.8 80.4 87.4 

Table 4: Mass absorption coefficient of silicon 

 

Using polynomial fitting method, the relation between absorption coefficient (assume 

silicon’s density ρ = 2.3290 g · 𝑐𝑚−3) and wavelength (𝜆) for silicon could be determined 

through Mathematica: 

 

u = −0.1508𝜆6 + 1.3684𝜆5 − 7.2723𝜆4 + 50.179𝜆3 − 6.6116𝜆2 + 2.775𝜆 − 0.0166 

 

Therefore, penetration depth for three selected diffraction spot at different incident angle 
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could be calculated: 

 

degree -22-8 02-6 -20-6 average 

2 72.1893 84.6983 85.52 80.80253 

3 94.61 105.78 106.82 102.4033 

4 110.848 118.39 119.64 116.2927 

4.7 119.271 123.7 125.03 122.667 

6 129.95 128.156 129.588 129.2313 

7 134.94 128.38 129.822 131.0473 

8 137.74 126.74 128.167 130.8823 

9 138.98 123.91 125.3 129.3967 

Table 5: Penetration depth in this study (in micrometer) 

 

For each reticulographs penetration depth increases continuously with increasing 

incident angle and reaches a maximum. Fig. 30 shows the variation of penetration depth with 

respect to tilt angle of (0 2 -6) reflection in the crystal. Intuitively, penetration depth should 

increase as the tilt is increased, but this is not the case as it can be seen from Fig. 13. The 

reason being, we are tracking the same reflection as the crystal is tilted, by further tilting the 

sample Bragg’s angle increases which implies longer wavelength is required to satisfy the 

Bragg’s law λ = 2d sin θ. Longer wavelength (lower the X-ray energy) have higher mass 

absorption coefficient which results in lower penetration depth at higher tilt angle. 

 

 
Figure 30: variation of penetration depth with respect to tilt angle of (02-6) reflection in the 

crystal; x-axis means the tile angle, y axis means the penetration depth. 
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3.5 Accurate Positioning Calculation of Films and Sample 

    Theoretically, the experiments should be conducted with b=0 degree (y-axis rotation 

angle) and c=0 degree (z-axis rotation angle); and the distance between lead and film (sfd) 

should be measured carefully in micrometer. But actually, these conditions are impossible to 

achieve during the experiment process. It is hard to get a diffraction pattern with perfect 

symmetry; and the length measuring tool in this study is a ruler in millimeter. These factors 

are critically important to the stress calculation process, especially the value of sfd, which I 

will talk about in the error analysis part. Therefore, accurate positioning of films and the 

sample is necessary.  

 

    In general, there are two ways to get the value of b, c and sfd. The first method is to 

compare the diffraction pattern from films with the one from LauePattern. This method could 

roughly tell the information of b, c and sfd, but it is time-consuming and of low accuracy. The 

second method, which is based on the relation of the distance between two reticulographic 

images, is highly accurate and scientific. 

 

We know that for two diffraction spots, which are symmetrical about y-axis in this study, 

their distance in x-axis is in direct proportion to sfd if b=0 and c=0; and they are of the same 

height. Due to the influence of b and c, the two originally symmetrical diffraction spots’ 

locations get changed and there will be discrepancy in both x-coordinates and y-coordinates. 

The discrepancy could reveal the information of sfd, b and c. Here, we select (-2 0 -6), (0 2 

-6), (-4 0 -8) and (0 4 -8) diffractions for positioning process. 

 

 

Figure 31: Four selected diffractions (a=2 degree) 

 

-4 0 -8 
0 4 -8 

-2 0 -6 
0 2 -6 
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For (-2 0 -6) and (0 2 -6), their plane normals could be written as: 

�̅�−20−6(𝑥, 𝑦, 𝑧)

= [
cos 𝑐 − sin 𝑐 0
sin 𝑐 cos 𝑐 0
0 0 1

] . [
cos 𝑏 0 sin 𝑏
0 1 0

− sin 𝑏 0 cos 𝑏
] . [

1 0 0
0 cos 𝑎 sin 𝑎
0 − sin 𝑎 cos 𝑎

] . [
−2^0.5

6
−2^0.5

] 

 

�̅�02−6(𝑥, 𝑦, 𝑧)

=  [
cos 𝑐 − sin 𝑐 0
sin 𝑐 cos 𝑐 0
0 0 1

] . [
cos 𝑏 0 sin 𝑏
0 1 0

− sin 𝑏 0 cos 𝑏
] . [

1 0 0
0 cos 𝑎 sin 𝑎
0 − sin 𝑎 cos 𝑎

] . [
2^0.5
6

−2^0.5
] 

 

    Using the equation 𝑠0⃗⃗  ⃗ × �⃗� = −�⃗� × 𝑠 , where 𝑠0⃗⃗  ⃗= [0,0,1], the vector of diffracted beam 

𝑠  could be calculated. We know that the two diffraction spots on the film have the same Z 

coordinate. Assume the (-2 0 -6) diffraction coordinate is (m1, n1, z0), (0 2 -6) is (m2, n2, z0). 

𝑛1 − 𝑛2 = 𝑠𝑦1
𝑧0

𝑠𝑧1
− 𝑠𝑦2

𝑧0

𝑠𝑧2
  

𝑚1−𝑚2 = 𝑠𝑥1
𝑧0

𝑠𝑧1
− 𝑠𝑥2

𝑧0

𝑠𝑧2
  

where z0 has the same value as sfd, which is also undetermined. 

     

In the above two equations, the value of m1, m2, n1and n2 could be recorded from the 

film; 𝑠𝑥1, 𝑠𝑥2, 𝑠𝑦1, 𝑠𝑦2, 𝑠𝑧1 and 𝑠𝑧2 could be written as a function of sfd, a and b.  

 

If the first equation divides the second one, we can get: 

𝑛1 − 𝑛2

𝑚1 −𝑚2
=
𝑠𝑧2 ∗ 𝑠𝑦1 − 𝑠𝑧1 ∗ 𝑠𝑦2

𝑠𝑧2 ∗ 𝑠𝑥1 − 𝑠𝑧1 ∗ 𝑠𝑥2
  

     

There are two undetermined factors in the above equation, b and c. Therefore, another 

equation with these two undetermined factors is necessary to solve the equations. The same 

processes are applied for (-4 0 -8) and (0 4 -8). Another equation is illustrated below: 

𝑛3 − 𝑛4

𝑚3 −𝑚4
=
𝑠𝑧4 ∗ 𝑠𝑦3 − 𝑠𝑧3 ∗ 𝑠𝑦4

𝑠𝑧4 ∗ 𝑠𝑥3 − 𝑠𝑧3 ∗ 𝑠𝑥4
  

 

With the above two equations, the value of b and c could be get. All calculation work is 

done by Mathematica. The code is shown below: 

 

A=[
𝑐𝑜𝑠 𝑐 − 𝑠𝑖𝑛 𝑐 0
𝑠𝑖𝑛 𝑐 𝑐𝑜𝑠 𝑐 0
0 0 1

] . [
𝑐𝑜𝑠 𝑏 0 𝑠𝑖𝑛 𝑏
0 1 0

−𝑠𝑖𝑛 𝑏 0 𝑐𝑜𝑠 𝑏
] . [

1 0 0
0 𝑐𝑜𝑠 𝑎 𝑠𝑖𝑛 𝑎
0 −𝑠𝑖𝑛 𝑎 𝑐𝑜𝑠 𝑎

] 

n1=A.{-2^0.5,6,-2^0.5}; n2=A.{2^0.5,6,-2^0.5}; 

x1=-2*n1[[1]]*n1[[3]]; 

y1=-2*n1[[2]]*n1[[3]]; 

z1=1-2*n1[[3]]^2; 

x2=-2*n2[[1]]*n2[[3]]; 
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y2=-2*n2[[2]]*n2[[3]]; 

z2=1-2*n2[[3]]^2; 

n3=A.{-2^0.5,4,-2^0.5}; n4=A.{2^0.5,4,-2^0.5}; 

x3=-2*n3[[1]]*n3[[3]]; 

y3=-2*n3[[2]]*n3[[3]]; 

z3=1-2*n3[[3]]^2; 

x4=-2*n4[[1]]*n4[[3]]; 

y4=-2*n4[[2]]*n4[[3]]; 

z4=1-2*n4[[3]]^2; 

a=2 Degree; 

NSolve[{(z2*y1-z1*y2)/(z2*x1-z1*x2)==-1/10,(z4*y3-z3*y4)/(z4*x3-z3*x4)==-11/100},

{b,c}] 

 

As b and care determined, the sfd could be calculated by: 

𝑠𝑓𝑑 =
𝑠𝑧1𝑠𝑧2(𝑛1 − 𝑛2)

𝑠𝑦1𝑠𝑧2 − 𝑠𝑦2𝑠𝑧1
 

 

When the value of a, b,c and sfd are determined, the coordinate of each diffraction spot 

could be get from LauePattern. Here, we assume that the 𝜎𝑥𝑥 in the fifth area equals zero to 

correct the coordinate of other points. The length of a unit cell in the grid is about 48 pixels 

for a stress free sample, which is almost the same as the length of the fifth square on the film; 

and the discrepancy in length is directly associated with 𝜎𝑥𝑥 .Therefore, we use this 

assumption to locate the film. 

3.6 Result and Discussion 

To roughly calculate stress distribution, the sample was divided into nine areas. Each 

area is measured individually. Generally, the displacement information is recorded from the 

center of each area. In formation from highly distorted area is avoided. 

 

              
(a)                                       (b) 

Figure 32: 9 areas on the sample (a) and reticulographic images (b) 

 

Direct calculation result from SMART technique is a weighted average value and it is of 

1 2 3 

4 5 6 

7 8 9 

[-1-120] 

1 2 3 

4 5 6 

7 8 9 
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little use. Weighted average stress value at depth of 122   is illustrated in the following 

table: 

 

  1 2 3 4 5 6 7 8 9 

xx -2.763 -2.819 -2.635 -6.544 -6.382 -6.380 -1.233 -1.044 -0.878 

yy -1.842 -2.121 -1.923 -2.046 -2.033 -1.866 -0.066 0.153 0.139 

zz -4.195 -4.711 -4.388 -5.715 -5.636 -5.355 -0.580 -0.201 -0.239 

xy -1.133 -1.170 -1.210 -1.070 -0.971 -0.895 -0.593 -0.738 -0.873 

xz -5.602 -5.782 -5.978 -5.172 -4.695 -4.322 -2.796 -3.494 -4.140 

yz -1.040 -1.257 -1.128 -0.494 -0.512 -0.380 0.153 0.293 0.249 

Table 6: weighted average stress value at depth on 122   

 

Note that x, y and z here is the same as Fig. 8 in the experiment part. In order to 

calculate stress depth profile at an arbitrary location, we first plot calculated weighted 

average stress versus penetration depth and generate a best fit curve. This weighted average 

stress function is then transformed in order to reduce the equation into standard Laplace 

transform. Inverse Laplace Transform of this function will give the stress as a function of 

depth (z). 

 

The mathematical transformation of weighted average stress into real space stress is 

pretty difficult. In Vish’s study, he assumes the function of stress distribution in Laplace 

space as: 

     σ̅(τ)=
a

τ
+  + cτ + dτ2 + eτ3 + fτ4 

where the value of a, b, c, d, e and f could be calculated if enough information is provided. 

 

Another restrictive condition has to be applied here to control the function tendency, that 

is, σ̅(0) = 0. Otherwise, the real space stress value may be magnified 100 times of the one in 

Laplace space after Inverse Laplace transformation. This assumption is not reasonable.  

 

Therefore, in this study, the evaluation of the stress depth distribution σ̅(τ) and 𝜎(𝑧) 

is performed by fitting the experimental data by means of an exponentially damped polynom 

as successfully used by I. A. Denks and Hauk
27,28

. The functions are shown below: 

𝜎(𝜏) =
1

𝜏
∑𝑎𝑛

𝑛!

(𝑎𝑁+1 +
1
𝜏)

𝑛+1

𝑁

𝑛 0

 

σ(Z) = [∑𝑎𝑛𝑍
𝑛

𝑁

𝑛 0

]𝑒−𝑎𝑁+1𝑍 

 

Take 𝜎𝑥𝑥 as an example; in area 1, experimentally determined weighted average 

stresses at various penetration depths are given in the table below. We only choose 

experimental data with few scattering here to minimize errors:   
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Penetration 

depth (𝛍𝐦) 

80.80253 102.4033 116.2927 122.667 129.2313 

Average stress 

(GPa) 

-2.22 -2.88 -2.86 -3.00 -3.00 

Table 7: Average stress value at area #1 (𝜎𝑥𝑥) 

     

Using the equation above, the stress in Laplace space is: 

𝜎(𝜏) =
1

𝜏
[

1.08

−0.0075 +
1
𝜏

+
0.0011

(−0.0075 +
1
𝜏)

2 +
−3.504 ∗ 10−7

(−0.0075 +
1
𝜏)

3] 

 

The fitting diagram is: 

 

 
Figure 33: Fitting diagram of 𝜎𝑥𝑥, 𝜏 ∈ (80,120) 

 

The inverse Laplace transformation is achieved by the following codes: 

 

curve1=(1/s)*(y[x]/.x->1/s); 

curve1; 

sigmaxx=InverseLaplaceTransform[curve1,s,t] 

Plot[y[x],{x,80,120},Mesh->True,AxesLabel->{depth,stress},PlotStyle->Thick,GridLine

s->Automatic,Frame->True] 

Plot[sigmaxx,{t,80,120},Mesh->True,AxesLabel->{depth,stress},PlotStyle->Thick,Grid

Lines->Automatic,Frame->True] 

 

Using Mathematica, the inverse Laplace transformation could be easily calculated as: 

 

σ(𝑍) = −1.0801𝑒0.007545∗𝑍 + 0.001101𝑒0.007545∗𝑍 ∗ 𝑍 − 1.7523𝑒0.007545∗𝑍 ∗ 𝑍2 

where Z is the depth from surface. 

 

Thus the function curve is: 
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Figure 34: Real space 𝜎𝑥𝑥 stress in area #1, Z∈ (80,120) 

 

The real space stress value in area #1 with depth from 80 to 120 micrometers is shown 

in the following table: 

 

Depth (𝛍𝐦) 𝝈𝒙𝒙 in real space (GPa) 

80 −1.81 

90 −1.93 

100 −2.06 

110 −2.2 

120 −2.35 

Table 8: 𝜎𝑥𝑥 values in real space, with depth of 80, 90, 100, 110 and 120   

 

We have repeated this calculation over the crystal area in order to determine the full state 

of stress determined at each point within the crystal. Using the stress depth profiles we have 

generated stress maps at a depth below the surface, such as 80, 90, 100, 110 and 120  . 

They are shown in the following: 

 

 1 2 3 4 5 6 7 8 9 

𝝈𝒙𝒙 −1.81 −1.71 −1.28 −0.35 0 0.2 −0.52 −1.08 −0.45 

𝝈𝒚𝒚 −2.79 −2.91 −2.55 −2.24 −2.1 −1.97 −0.34 −0.34 −0.31 

𝝈𝒛𝒛 −4.92 −4.82 −4.42 −2.77 −2.42 −2.19 −1.86 −1.46 −1.24 

𝝈𝒙𝒚 −0.54 −0.56 −0.59 −0.42 −0.46 −0.54 −0.33 −0.37 −0.36 

𝝈𝒙𝒛 −3.58 −3.72 −3.98 −2.68 −3.03 −3.62 −2.18 −2.49 −2.45 

𝝈𝒚𝒛 −1.66 −1.63 −1.57 −1.16 −1.1 −1.05 −0.15 −0.1 −0.06 

Table 9:Real space stress at 9 areas in the crystal in depth of 80  , GPa 
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 1 2 3 4 5 6 7 8 9 

𝝈𝒙𝒙 −1.93 −1.83 −1.38 −0.37 0 0.21 −0.62 −1.29 −0.63 

𝝈𝒚𝒚 −2.94 −3.04 −2.69 −2.38 −2.23 −2.1 −0.38 −0.38 −0.35 

𝝈𝒛𝒛 −5.2 −5.1 −4.68 −2.92 −2.55 −2.31 −1.99 −1.58 −1.35 

𝝈𝒙𝒚 −0.57 −0.58 −0.62 −0.44 −0.48 −0.57 −0.34 −0.39 −0.38 

𝝈𝒙𝒛 −3.79 −3.93 −4.21 −2.83 −3.21 −3.83 −2.31 −2.64 −2.59 

𝝈𝒚𝒛 −1.74 −1.71 −1.65 −1.21 −1.16 −1.1 −0.17 −0.11 −0.07 

Table 10: Real space stress at 9 areas in the crystal in depth of 90  , GPa 

 

 1 2 3 4 5 6 7 8 9 

𝝈𝒙𝒙 −2.06 −1.95 −1.48 −0.39 0 0.22 −0.73 −1.52 −0.83 

𝝈𝒚𝒚 −3.09 −3.17 −2.84 −2.52 −2.37 −2.24 −0.42 −0.42 −0.39 

𝝈𝒛𝒛 −5.5 −5.39 −4.95 −3.08 −2.69 −2.43 −2.13 −1.7 −1.46 

𝝈𝒙𝒚 −0.59 −0.61 −0.65 −0.46 −0.51 −0.6 −0.36 −0.41 −0.40 

𝝈𝒙𝒛 −4 −4.14 −4.44 −2.98 −3.39 −4.05 −2.45 −2.79 −2.74 

𝝈𝒚𝒛 −1.83 −1.79 −1.73 −1.27 −1.21 −1.15 −0.18 −0.12 −0.08 

Table 11: Real space stress at 9 areas in the crystal in depth of 100  , GPa 

 

 1 2 3 4 5 6 7 8 9 

𝝈𝒙𝒙 −2.2 −2.09 −1.59 −0.41 0 0.23 −0.85 −1.77 −1.05 

𝝈𝒚𝒚 −3.26 −3.31 −3.00 −2.67 −2.52 −2.39 −0.48 −0.47 −0.43 

𝝈𝒛𝒛 −5.82 −5.7 −5.24 −3.24 −2.83 −2.57 −2.28 −1.83 −1.59 

𝝈𝒙𝒚 −0.62 −0.64 −0.68 −0.48 −0.53 −0.62 −0.38 −0.43 −0.42 

𝝈𝒙𝒛 −4.22 −4.36 −4.69 −3.14 −3.59 −4.28 −2.6 −2.95 −2.9 

𝝈𝒚𝒛 −1.91 −1.88 −1.81 −1.33 −1.27 −1.2 −0.2 −0.13 −0.09 

Table 12: Real space stress at 9 areas in the crystal in depth of 110  , GPa 
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 1 2 3 4 5 6 7 8 9 

𝝈𝒙𝒙 −2.35 −2.23 −1.7 −0.43 0 0.24 −0.98 −2.04 −1.28 

𝝈𝒚𝒚 −3.43 −3.46 −3.16 −2.83 −2.68 −2.55 −0.53 −0.52 −0.48 

𝝈𝒛𝒛 −6.15 −6.03 −5.54 −3.41 −2.98 −2.7 −2.44 −1.98 −1.72 

𝝈𝒙𝒚 −0.65 −0.67 −0.71 −0.5 −0.56 −0.65 −0.4 −0.45 −0.44 

𝝈𝒙𝒛 −4.46 −4.6 −4.95 −3.31 −3.79 −4.52 −2.76 −3.13 −3.06 

𝝈𝒚𝒛 −2.01 −1.97 −1.9 −1.38 −1.33 −1.26 −0.22 −0.14 −0.10 

Table 13: Real space stress at 9 areas in the crystal in depth of 120  , GPa 

 

Note that area1~9 in the above tables correspond with Figure 32(b). 

 

Theoretically, this technique could be applied to predict stress distribution in any depth 

inside the crystal by extrapolating the curve, in the condition that enough experimental data is 

collected. The surface stress distribution of the sample is shown in the following, which is 

measured by Raman spectroscopy. Its principle is shown in Appendix III.  

 

 

Figure 35: Surface stress values measured by Raman spectroscopy (MPa) 

 

Actually, the stress distribution from Raman spectroscopy is not the same as the result if 

we extrapolate the curve to z=0. It does not mean that the technique of SMART is 

unreasonable. From figure 34, we can find that the real space stress value is almost linear to 

depth between 80 and 120  . If we extrapolate the curve, the assumption that this tendency 

will continue to the surface area has to be made. In fact, the gradient changes a lot for the 

near-surface regions, which is illustrated in figure 36: 
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Figure 36: Schematic plot of depth profile showing error associated in determining surface 

stress.
20

 

 

Assume the stress distribution in this study is between C and D in figure 36. It shows that 

the curve may changes a lot for depth from 0 to 80  . Therefore, the discrepancy may exist 

if we simply extrapolate the curve. 

 

 

3.7 Error Analysis 

    There are two kinds of errors exist in the experimental measurement: random error and 

system error. Random errors could be minimized while system errors cannot. The concept of 

precision is related to random error. Minimizing the random error in measurement increases 

the precision of the result whereby increasing the repeatability and reproducibility. The 

concept of accuracy is related to systematic error. Systematic error is the bias in the 

experimental system which pushes the results in the same direction. Both errors will be 

discussed here. 

 

The first error, which is also one main error in depth profiling, arises from the way we 

select three diffraction spot. In this technique, the vector of diffracted beam is defined as: 

𝑠 = 𝐴(𝑥1, 𝑦1, 𝑧1) − 𝐵(𝑥2, 𝑦2, 𝑧2) 

 

where 𝐴(𝑥1, 𝑦1, 𝑧1) is the coordinate of one certain point on the film, 𝐵(𝑥2, 𝑦2, 𝑧2) is the 

coordinate of the correspondent point on the grid. 

 

    The origin of diffracted beam is set on the grid instead of sample for its measurability. 
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As mentioned before, we have to select 3 different diffraction spots to solve the equation. 

However, the grazing geometry restricts that there has to be a distance between sample and 

grid to allow the incident beam covering the sample, which is shown in the following figure. 

Due to this restriction, the stress values we get from three different diffraction spots do not 

reflect stress distribution of that certain point on the sample. The discrepancy increases as the 

distance increases. To minimize this error, we have to select diffraction spots that are closest 

to the center axis. 

 

Figure 37: Schematic of errors from the grazing geometry restriction 

 

Also, the process of taking average value of penetration depth of three diffraction spots 

can cause errors by influencing fitting functions. Take stresses in area #1 as an example. As 

shown in the former part, if we take the average penetration depth in the calculation, real 

space stress distribution and stress-depth function curve are shown in Figure 34 and Table 8. 

Repeat the calculation for the circumstance that penetration depth is set the same as (-2 2 -8). 

The results are shown in below: 

 

Depth  𝐱𝐱 𝐲𝐲 𝐳𝐳 𝐱𝐲 𝐱𝐳 𝐲𝐳  

80 −2.00 −3.01 −6.51 −0.6 −3.29 −1.92  

90 −2.14 −3.16 −6.82 −0.66 −3.68 −2.01  

Table 14: Stress distribution with depth of 80 and 90   if penetration depth is set the same 

as (-2 2 -8) reflection 

 

 

Stress values when penetration depth is set as the average are: 

Depth  𝐱𝐱 𝐲𝐲 𝐳𝐳 𝐱𝐲 𝐱𝐳 𝐲𝐳  

80 −1.81 −2.79 −4.92 −0.54 −3.58 −1.66  

90 −1.93 −2.94 −5.2 −0.57 −3.79 −1.74  

 

Table 15: Stress distribution with depth of 80 and 90   if penetration depth is set as the 

average 

 

    From the above two tables, we find that the definition of penetration depth has strong 

influence to the real space stress value. Each 1   will cause changes of 15MPa in xx stress, 

27MPa in yy stress, 200MPa in zz stress, 7MPa in xy stress, 30MPa in xz stress and 30MPa in 

yz stress. Anyway, the tendency of the real space stress function will not change with 

penetration depth. 
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    Errors come from the uncertainty of film position and film distance is corrected in the 

former part. Another error in this study is due to the shape change of the sample. Assume a 

rectangular shaped crystal before packaging. After processing at higher temperature and 

subsequent cooling of the package leads to bending of the packaged assembly (shown on Fig. 

36 ). As a result of this bending in-plane normal stress are maximum at the top (tensile) and 

minimum (compressive) at the bottom. Shape of the crystal itself does not play a role in stress 

determination using SMART technique. However, bending of crystallographic plane will 

occur if the crystal changes shape due to bending. The bending of crystallographic planes is 

incorporated in the smart technique and no special consideration is required for change in 

shape. 

 

Figure 38: Schematic of a silicon die (A) before packing (B) after packing
21

 

     

3.8 Conclusion 

A novel non-destructive technique based on ray tracing and x-ray reticulography to 

determine all six stress components is discussed in detail in this study. Residue strain is 

calculated by the equation �⃗� = 𝑛0⃗⃗⃗⃗ − 𝛻(𝑛0⃗⃗⃗⃗ ∙ �⃗� ). Stress directly derived from strains 

represents the stress values in Laplace space. Inverse Laplace transformation has to be 

applied to get the real space stress information, which is of much more importance. This 

calculation is repeated for each array points on the crystal surface defined by the grid and 

complete stress profile is generated for the crystal up to penetration depth. Error origins are 

evaluated. Stress distribution measured by Raman spectroscopy is listed here. 

 

3.9 Future Work 

To get better results, the experiment could get improvements in the following aspects: (a) 

get rid of the assumption that 𝜎𝑥𝑥 in the fifth area equals zero; this assumption could 

influence the absolute stress values but will not have effects on the curve tendency; (b) 3 

different diffraction spots have to be selected to solve the equations and this process will 

cause discrepancy in penetration depth calculation; its influence has been discussed in the 

error analysis part; this kind of error is unavoidable in this model, which means, better 

models have to be introduced here. 
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Appendix I. Codes for Threading Dislocations 

Codes for Threading Edge Dislocation 

 

{𝑏, 𝑡, 𝑑, 𝛼, 𝛩, Θ0, agnification,  }

= {0.0003624,500,170000,10.608Degree, 0Degree, 0Degree, 10,0.351}  

rx = −Cos[2Degree]  

ry = 0  

rz = −Sin[2Degree]  

nx0 = Cos[51.3044Degree]  

ny0 = 0  

nz0 = Sin[51.3044Degree]  

uxTED =
1

8𝜋(−1 +  )(x02 + y02)
𝑏(−2x0y0Cos[𝛩] + 4(−1 +  )(x02

+ y02)ArcTan[
y0Cos[𝛩] − x0Sin[𝛩]

x0Cos[𝛩] + y0Sin[𝛩]
]Cos[𝛩] + (x02 − y02 + (−1

+ 2 )(x02 + y02)Log[x02 + y02])Sin[𝛩])  

uyTED =
1

8𝜋(−1 +  )(x02 + y02)
𝑏(Cos[𝛩](x02 − y02 − (−1 + 2 )(x02 + y02)Log[x02

+ y02]) + 2x0y0Sin[𝛩] + 4(−1 +  )(x02

+ y02)ArcTan[
y0Cos[𝛩] − x0Sin[𝛩]

x0Cos[𝛩] + y0Sin[𝛩]
]Sin[𝛩])  

ux[x0_, y0_, z0_] = uxTED uy[x0_, y0_, z0_] = uyTED uxDx = 𝐷[ux[x0, y0, z0], x0] uxDy

= 𝐷[ux[x0, y0, z0], y0] uxDz = 𝐷[ux[x0, y0, z0], z0] uyDx

= 𝐷[uy[x0, y0, z0], x0] uyDy = 𝐷[uy[x0, y0, z0], y0] uyDz

= 𝐷[uy[x0, y0, z0], z0] uzDx = 0 uzDy = 0 uzDz = 0  

fil Density = Ta le[0, {𝑖, 1,500}, {𝑗, 1,500}]  

Do[ 

If[x0 == 0&&y0 == 0, Continue[ ]]  

z0 = x0 ∗ Tan[Θ0]  

nx = nx0 − nx0 ∗ uxDx − ny0 ∗ uyDx − nz0 ∗ uzDx  

ny = ny0 − nx0 ∗ uxDy − ny0 ∗ uyDy − nz0 ∗ uzDy  

nz = nz0 − nx0 ∗ uxDz − ny0 ∗ uyDz − nz0 ∗ uzDz  

rx1 =
−nx2rx + ny2rx + nz2rx − 2nxnyry − 2nxnzrz

nx2 + ny2 + nz2
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ry1 =
−2nxnyrx + nx2ry − ny2ry + nz2ry − 2nynzrz

nx2 + ny2 + nz2
  

rz1 =
−2nxnzrx − 2nynzry + nx2rz + ny2rz − nz2rz

nx2 + ny2 + nz2
  

x1 =
rz1x0 − rx1z0 + 𝑑rx1Cos[𝛼] + 𝑑rz1Sin[𝛼]

rz1Cos[𝛼] − rx1Sin[𝛼]
∗  agnification  

y1 

=
𝑑ry1 + rz1y0Cos[𝛼] − ry1z0Cos[𝛼] + ry1x0Sin[𝛼] − rx1y0Sin[𝛼]

rz1Cos[𝛼] − rx1Sin[𝛼]
 

∗  agnification  

𝑚 = Floor[x1] 𝑛 = Floor[y1]  

If[𝑚 ≥ −249&&𝑚 ≤ 250&&𝑛 ≥ −249&&𝑛 ≤ 250, fil Density[[𝑚 + 250, 𝑛 + 250]]+

= 1], 

{x0, −25,25,0.035}, 

{y0, −25,25,0.035}] 

ListDensityPlot[fil Density,Mesh → None] 

ColorNegate[ListDensityPlot[fil Density,Mesh → None, I ageSize

 

 

Codes for Threading Screw Dislocation 

{𝑏, 𝑡, 𝑑, 𝛼,  agnification, Θ0} 

= {−0.00051948,500,150000,10.6088Degree, 10,0Degree}  

rx = −Cos[2Degree]  

ry = 0  

rz = −Sin[2Degree]  

nx0 = Cos[51.3044Degree]  

ny0 = 0  

nz0 = Sin[51.3044Degree]  
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uΘ =
−𝑏

2Pi
∗∑((−1)𝑛

3

𝑛 0

∗ (
√x02 + y02

(2𝑛 + 1)𝑡 − (z0 + 𝑡) + √((2𝑛 + 1)𝑡 − (z0 + 𝑡))2 + (x02 + y02)

−
√x02 + y02

(2𝑛 + 1)𝑡 + (z0 + 𝑡) + √((2𝑛 + 1)𝑡 + (z0 + 𝑡))2 + (x02 + y02)
))   

ux[x0_, y0_, z0_] = uΘ ∗
−y0

√x02 + y02
  

uy[x0_, y0_, z0_] = uΘ ∗
x0

√x02 + y02
  

uz[x0_, y0_, z0_] =
𝑏

2Pi
ArcTan[

y0

x0
]  

uxDx = 𝐷[ux[x0, y0, z0], x0]  

uxDy = 𝐷[ux[x0, y0, z0], y0]  

uxDz = 𝐷[ux[x0, y0, z0], z0]  

uyDx = 𝐷[uy[x0, y0, z0], x0]  

uyDy = 𝐷[uy[x0, y0, z0], y0]  

uyDz = 𝐷[uy[x0, y0, z0], z0]  

uzDx = 𝐷[uz[x0, y0, z0], x0]  

uzDy = 𝐷[uz[x0, y0, z0], y0]  

uzDz = 0  

fil Density = Ta le[0, {𝑖, 1,500}, {𝑗, 1,500}]  

Do[ 

If[𝑥 == 0&&𝑦 == 0, Continue[]]  

z0 = 0  

nx = nx0 − nx0 ∗ uxDx − ny0 ∗ uyDx − nz0 ∗ uzDx  

ny = ny0 − nx0 ∗ uxDy − ny0 ∗ uyDy − nz0 ∗ uzDy  

nz = nz0 − nx0 ∗ uxDz − ny0 ∗ uyDz − nz0 ∗ uzDz  

rx1 =
−nx2rx + ny2rx + nz2rx − 2nxnyry − 2nxnzrz

nx2 + ny2 + nz2
  

ry1 =
−2nxnyrx + nx2ry − ny2ry + nz2ry − 2nynzrz

nx2 + ny2 + nz2
  

rz1 =
−2nxnzrx − 2nynzry + nx2rz + ny2rz − nz2rz

nx2 + ny2 + nz2
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x1 =
rz1x0 − rx1z0 + 𝑑rx1Cos[𝛼] + 𝑑rz1Sin[𝛼]

rz1Cos[𝛼] − rx1Sin[𝛼]
∗  agnification  

y1 

=
𝑑ry1 + rz1y0Cos[𝛼] − ry1z0Cos[𝛼] + ry1x0Sin[𝛼] − rx1y0Sin[𝛼]

rz1Cos[𝛼] − rx1Sin[𝛼]
 

∗  agnification  

𝑚 = Floor[x1] 𝑛 = Floor[y1]  

If[𝑚 ≥ −249&&𝑚 ≤ 250&&𝑛 ≥ −249&&𝑛 ≤ 250, fil Density[[𝑚 + 250, 𝑛 + 250]]+

= 1], 

{x0, −25,25,0.035}, 

{y0, −25,25,0.035}] 

ListDensityPlot[fil Density,Mesh → None] 

ColorNegate[ListDensityPlot[fil Density,Mesh → None, I ageSize 

 

 

Codes for Mixed Dislocations 

{ 1,  2, 𝑡, 𝑑, 𝛼, 𝛩, Θ0, agnification,  }

= {−0.0005,0.0003426,500,170000,10.608Degree, 0Degree, 0Degree, 10,0.351}  

n1 = 1 n2 = 1  

rx = −Cos[2Degree]  

ry = 0  

rz = −Sin[2Degree]  

nx0 = Cos[51.3044Degree]  

ny0 = 0  

nz0 = Sin[51.3044Degree]  

us

=
− 1

2Pi
∑((−1)^𝑛(

(x0^2 + y0^2)^0.5

(2𝑛 + 1)𝑡 − (z0 + 𝑡) + √((2𝑛 + 1)𝑡 − (z0 + 𝑡))^2 + (x0^2 + y0^2)

3

𝑛 0

−
(x0^2 + y0^2)^0.5

(2𝑛 + 1)𝑡 + (z0 + 𝑡) + √((2𝑛 + 1)𝑡 + (z0 + 𝑡))^2 + (x0^2 + y0^2)
))   

uxs[x0_, y0_, z0_] =
−y0

√x02 + y02
∗ us  
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uys[x0_, y0_, z0_] =
x0

√x02 + y02
∗ us  

uzs[x0_, y0_, z0_] =
 1

2Pi
∗ ArcTan[

y0

x0
]  

uxT[x0_, y0_, z0_] =
 2

2𝜋
(ArcTan[

y0

x0
] +

x0y0

2(1 −  )(x0^2 + y0^2)
)  

uyT[x0_, y0_, z0_] 

= −
 2

2𝜋
(
1 − 2 

4(1 −  )
Log[x02 + y02] +

x02 − y02

4(1 −  )(x02 + y02)
)   

uxt[x0_, y0_, z0_] = Cos[𝛩] ∗ uxT[x0, y0, z0] − Sin[𝛩] ∗ uyT[x0, y0, z0]  

uyt[x0_, y0_, z0_] = Cos[𝛩] ∗ uyT[x0, y0, z0] + Sin[𝛩] ∗ uxT[x0, y0, z0]  

ux[x0_, y0_, z0_] = n2 ∗ uxt[x0, y0, z0] + n1 ∗ uxs[x0, y0, z0]  

uy[x0_, y0_, z0_] = n2 ∗ uyt[x0, y0, z0] + n1 ∗ uys[x0, y0, z0]  

uz[x0_, y0_, z0_] = n1 ∗ uzs[x0, y0, z0]  

uxDx = 𝐷[ux[x0, y0, z0], x0]  

uxDy = 𝐷[ux[x0, y0, z0], y0]  

uxDz = 𝐷[ux[x0, y0, z0], z0]  

uyDx = 𝐷[uy[x0, y0, z0], x0]  

uyDy = 𝐷[uy[x0, y0, z0], y0]  

uyDz = 𝐷[uy[x0, y0, z0], z0]  

uzDx = 𝐷[uz[x0, y0, z0], x0]  

uzDy = 𝐷[uz[x0, y0, z0], y0]  

uzDz = 0  

fil Density = Ta le[0, {𝑖, 1,500}, {𝑗, 1,500}]  

Do[ 

If[x0 == 0&&y0 == 0, Continue[ ]]  

z0 = x0 ∗ Tan[Θ0]  

nx = nx0 − nx0 ∗ uxDx − ny0 ∗ uyDx − nz0 ∗ uzDx  

ny = ny0 − nx0 ∗ uxDy − ny0 ∗ uyDy − nz0 ∗ uzDy  

nz = nz0 − nx0 ∗ uxDz − ny0 ∗ uyDz − nz0 ∗ uzDz  

rx1 =
−nx2rx + ny2rx + nz2rx − 2nxnyry − 2nxnzrz

nx2 + ny2 + nz2
  

ry1 =
−2nxnyrx + nx2ry − ny2ry + nz2ry − 2nynzrz

nx2 + ny2 + nz2
  

rz1 =
−2nxnzrx − 2nynzry + nx2rz + ny2rz − nz2rz

nx2 + ny2 + nz2
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x1 =
rz1x0 − rx1z0 + 𝑑rx1Cos[𝛼] + 𝑑rz1Sin[𝛼]

rz1Cos[𝛼] − rx1Sin[𝛼]
∗  agnification  

y1 

=
𝑑ry1 + rz1y0Cos[𝛼] − ry1z0Cos[𝛼] + ry1x0Sin[𝛼] − rx1y0Sin[𝛼]

rz1Cos[𝛼] − rx1Sin[𝛼]
 

∗  agnification  

𝑚 = Floor[x1] 𝑛 = Floor[y1]  

If[𝑚 ≥ −249&&𝑚 ≤ 250&&𝑛 ≥ −249&&𝑛 ≤ 250, fil Density[[𝑚 + 250, 𝑛 + 250]]+

= 1], 

{x0, −25,25,0.035}, 

{y0, −25,25,0.035}] 

ListDensityPlot[fil Density,Mesh → None] 

ColorNegate[ListDensityPlot[fil Density,Mesh → None, I ageSize 
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Appendix II. Codes For SMART 

Refraction1x = Ta le[0, {3}, {3}]  

Refraction1y = Ta le[0, {3}, {3}]  

Refraction2x = Ta le[0, {3}, {3}]  

Refraction2y = Ta le[0, {3}, {3}]  

Refraction3x = Ta le[0, {3}, {3}]  

Refraction3y = Ta le[0, {3}, {3}]  

Sa plex = Ta le[0, {3}, {3}]  

Sa pley = Ta le[0, {3}, {3}]  

Sa plez = Ta le[0, {3}, {3}]  

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\stress field test 2\data\2degree228x.txt] 𝑘 = 1  

Do[Refraction1x[[𝑖, 𝑗]] = 254 24⁄ ∗ Bridge[[𝑘]] + 𝑥 𝑘

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\stress field test 2\data\2degree228y.txt] 𝑘 = 1  

Do[Refraction1y[[𝑖, 𝑗]] = 254 24⁄ ∗ Bridge[[𝑘]] + 𝑦 𝑘 = 𝑘 + 1, {𝑖, 1,3}, {𝑗, 1,3}]  

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\stress field test 2\data\2degree206x.txt] 𝑘 = 1  

Do[Refraction2x[[𝑖, 𝑗]] = 254 24⁄ ∗ Bridge[[𝑘]] + 𝑥 𝑘

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\stress field test 2\data\2degree206y.txt] 𝑘 = 1  

Do[Refraction2y[[𝑖, 𝑗]] = 254 24⁄ ∗ Bridge[[𝑘]] + 𝑦 𝑘 = 𝑘 + 1, {𝑖, 1,3}, {𝑗, 1,3}]  

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\stress field test 2\data\2degree026x.txt] 𝑘 = 1  

Do[Refraction3x[[𝑖, 𝑗]] = 254 24⁄ ∗ Bridge[[𝑘]] + 𝑥 𝑘

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\stress field test 2\data\2degree026y.txt] 𝑘 = 1  

Do[Refraction3y[[𝑖, 𝑗]] = 254 24⁄ ∗ Bridge[[𝑘]] + 𝑦 𝑘 = 𝑘 + 1, {𝑖, 1,3}, {𝑗, 1,3}]  

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\Final Test\samplex.txt] 𝑘 = 1  

Do[Sa plex[[𝑖, 𝑗]] = Bridge[[𝑘]] 𝑘 = 𝑘 + 1, {𝑖, 1,3}, {𝑗, 1,3}]  

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\Final Test\sampley.txt] 𝑘 = 1  

Do[Sa pley[[𝑖, 𝑗]] = Bridge[[𝑘]] 𝑘 = 𝑘 + 1, {𝑖, 1,3}, {𝑗, 1,3}]  

Bridge = Array[𝑏, 9]  

Bridge = ReadList[C:\Final Test\samplez.txt] 𝑘 = 1  

Do[Sa plez[[𝑖, 𝑗]] = Bridge[[𝑘]] 𝑘 = 𝑘 + 1, {𝑖, 1,3}, {𝑗, 1,3}]  

IncidentBea = {0,0,1}  

uxx atr = Ta le[0, {3}, {3}] uxy atr = Ta le[0, {3}, {3}]  
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uxz atr = Ta le[0, {3}, {3}] uyx atr = Ta le[0, {3}, {3}]  

uyy atr = Ta le[0, {3}, {3}] uyz atr = Ta le[0, {3}, {3}]  

uzx atr = Ta le[0, {3}, {3}] uzy atr = Ta le[0, {3}, {3}]  

uzz atr = Ta le[0, {3}, {3}] exx atr = Ta le[0, {3}, {3}]  

exy atr = Ta le[0, {3}, {3}] exz atr = Ta le[0, {3}, {3}]  

eyx atr = Ta le[0, {3}, {3}] eyy atr = Ta le[0, {3}, {3}]  

eyz atr = Ta le[0, {3}, {3}] ezx atr = Ta le[0, {3}, {3}]  

ezy atr = Ta le[0, {3}, {3}] ezz atr = Ta le[0, {3}, {3}]  

 

N01 

= (
Cos[𝑐] −Sin[𝑐] 0
Sin[𝑐] Cos[𝑐] 0
0 0 1

) . (
Cos[𝑏] 0 Sin[𝑏]
0 1 0

−Sin[𝑏] 0 Cos[𝑏]
) . (

1 0 0
0 Cos[𝑎] −Sin[𝑎]

0 Sin[𝑎] Cos[𝑎]
) . {0,8, −21.5}  

N01 = Nor alize[N01]  

N02 

= (
Cos[𝑐] −Sin[𝑐] 0
Sin[𝑐] Cos[𝑐] 0
0 0 1

) . (
Cos[𝑏] 0 Sin[𝑏]
0 1 0

−Sin[𝑏] 0 Cos[𝑏]
) . (

1 0 0
0 Cos[𝑎] −Sin[𝑎]

0 Sin[𝑎] Cos[𝑎]
) . {−2^0.5,6, −2^0.5}  

N02 = Nor alize[N02]  

N03 

= (
Cos[𝑐] −Sin[𝑐] 0
Sin[𝑐] Cos[𝑐] 0
0 0 1

) . (
Cos[𝑏] 0 Sin[𝑏]
0 1 0

−Sin[𝑏] 0 Cos[𝑏]
) . (

1 0 0
0 Cos[𝑎] −Sin[𝑎]

0 Sin[𝑎] Cos[𝑎]
) . {2^0.5,6, −2^0.5}  

N03 = Nor alize[N03]  

Sa ple = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

Sa ple[[𝑖, 𝑗, 1]]

= (Sa plex[[𝑖, 𝑗]] − Sa plex[[2,2]]) ∗ Cos[𝛽]

− (Sa plez[[𝑖, 𝑗]] − Sa plez[[2,2]]) ∗ Sin[𝛽]  

Sa ple[[𝑖, 𝑗, 3]]

= (Sa plex[[𝑖, 𝑗]] − Sa plex[[2,2]]) ∗ Sin[𝛽]

+ (Sa plez[[𝑖, 𝑗]] − Sa plez[[2,2]]) ∗ Cos[𝛽]  

Sa ple[[𝑖, 𝑗, 2]] = Sa pley[[𝑖, 𝑗]] ]]  

ORII 
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= ((
Cos[𝛾] −Sin[𝛾] 0
Sin[𝛾] Cos[𝛾] 0
0 0 1

). (
Cos[𝑏] 0 Sin[𝑏]
0 1 0

−Sin[𝑏] 0 Cos[𝑏]
). (

1 0 0
0 Cos[𝛼] −Sin[𝛼]
0 Sin[𝛼] Cos[𝛼]

)). Sa ple  

OR = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

OR[[𝑖, 𝑗, 1]] = ORII[[𝑖, 𝑗, 1]] OR[[𝑖, 𝑗, 2]] = ORII[[𝑖, 𝑗, 2]] − 14000 OR[[𝑖, 𝑗, 3]]

= ORII[[𝑖, 𝑗, 3]] − 𝑧]]  

Do[ 

S1 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

S1[[𝑖, 𝑗, 1]] = Refraction1x[[𝑖, 𝑗]] S1[[𝑖, 𝑗, 2]] = Refraction1y[[𝑖, 𝑗]] S1[[𝑖, 𝑗, 3]] = 0]]  

S2 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

S2[[𝑖, 𝑗, 1]] = Refraction2x[[𝑖, 𝑗]] S2[[𝑖, 𝑗, 2]] = Refraction2y[[𝑖, 𝑗]] S2[[𝑖, 𝑗, 3]] = 0]]  

S3 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

S3[[𝑖, 𝑗, 1]] = Refraction3x[[𝑖, 𝑗]] S3[[𝑖, 𝑗, 2]] = Refraction3y[[𝑖, 𝑗]] S3[[𝑖, 𝑗, 3]] = 0]]  

IncidentBea = {0,0,1}  

DiffractBea 1 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

DiffractBea 1[[𝑖, 𝑗]] = S1[[𝑖, 𝑗]] − OR[[𝑖, 𝑗]]  

DiffractBea 1[[𝑖, 𝑗]] = DiffractBea 1[[𝑖, 𝑗]] Nor [DiffractBea 1[[𝑖, 𝑗]]]⁄ ]]  

DiffractBea 2 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

DiffractBea 2[[𝑖, 𝑗]] = S2[[𝑖, 𝑗]] − OR[[𝑖, 𝑗]]  

DiffractBea 2[[𝑖, 𝑗]] = DiffractBea 2[[𝑖, 𝑗]] Nor [DiffractBea 2[[𝑖, 𝑗]]]⁄ ]]  

DiffractBea 3 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

DiffractBea 3[[𝑖, 𝑗]] = S3[[𝑖, 𝑗]] − OR[[𝑖, 𝑗]]  

DiffractBea 3[[𝑖, 𝑗]] = DiffractBea 3[[𝑖, 𝑗]] Nor [DiffractBea 3[[𝑖, 𝑗]]]⁄ ]]  

N1 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 
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N1[[𝑖, 𝑗]] = DiffractBea 1[[𝑖, 𝑗]] − IncidentBea   

N1[[𝑖, 𝑗]] = Nor alize[N1[[𝑖, 𝑗]]]]]  

N2 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

N2[[𝑖, 𝑗]] = DiffractBea 2[[𝑖, 𝑗]] − IncidentBea   

N2[[𝑖, 𝑗]] = N2[[𝑖, 𝑗]] Nor [N2[[𝑖, 𝑗]]]⁄ ]]  

N3 = Ta le[0, {3}, {3}, {3}]  

For[𝑖 = 1, 𝑖 ≤ 3, 𝑖 + +, 

For[𝑗 = 1, 𝑗 ≤ 3, 𝑗 + +, 

N3[[𝑖, 𝑗]] = DiffractBea 3[[𝑖, 𝑗]] − IncidentBea   

N3[[𝑖, 𝑗]] = N3[[𝑖, 𝑗]] Nor [N3[[𝑖, 𝑗]]]⁄ ]]  

Sol = NSolve[{N01[[1]] − N01[[1]] ∗ uxx − N01[[2]] ∗ uyx − N01[[3]] ∗ uzx =

= N1[[i1, j1,1]], 

N02[[1]] − N02[[1]] ∗ uxx − N02[[2]] ∗ uyx − N02[[3]] ∗ uzx =

N03[[1]] − N03[[1]] ∗ uxx − N03[[2]] ∗ uyx − N03[[3]] ∗ uzx =

= N3[[i1, j1,1]]}, {uxx, uyx, uzx}]  

{uxx atr[[i1, j1]]} = uxx/. Sol {uyx atr[[i1, j1]]} = uyx/. Sol {uzx atr[[i1, j1]]}

= uzx/. Sol  

Sol = NSolve[{N01[[2]] − N01[[1]] ∗ uxy − N01[[2]] ∗ uyy − N01[[3]] ∗ uzy =

= N1[[i1, j1,2]], 

N02[[2]] − N02[[1]] ∗ uxy − N02[[2]] ∗ uyy − N02[[3]] ∗ uzy == N2[[i1, j1,2]], 

N03[[2]] − N03[[1]] ∗ uxy − N03[[2]] ∗ uyy − N03[[3]] ∗ uzy =

= N3[[i1, j1,2]]}, {uxy, uyy, uzy}]  

{uxy atr[[i1, j1]]} = uxy/. Sol {uyy atr[[i1, j1]]} = uyy/. Sol {uzy atr[[i1, j1]]}

= uzy/. Sol  

Sol = NSolve[{N01[[3]] − N01[[1]] ∗ uxz − N01[[2]] ∗ uyz − N01[[3]] ∗ uzz =

= N1[[i1, j1,3]], 

N02[[3]] − N02[[1]] ∗ uxz − N02[[2]] ∗ uyz − N02[[3]] ∗ uzz =

N03[[3]] − N03[[1]] ∗ uxz − N03[[2]] ∗ uyz − N03[[3]] ∗ uzz =

= N3[[i1, j1,3]]}, {uxz, uyz, uzz}]  

{uxz atr[[i1, j1]]} = uxz/. Sol {uyz atr[[i1, j1]]} = uyz/. Sol {uzz atr[[i1, j1]]}

= uzz/. Sol, 

{i1,1,3}, {j1,1,3}]  

Do[Extract[uxx atr, {𝑖, 𝑗}] ≫> 9xx. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uxy atr, {𝑖, 𝑗}] ≫> 9xy. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uxz atr, {𝑖, 𝑗}] ≫> 9xz. txt, {𝑖, 1,3}, {𝑗, 1,3}]  
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Do[Extract[uyx atr, {𝑖, 𝑗}] ≫> 9yx. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uyy atr, {𝑖, 𝑗}] ≫> 9yy. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uyz atr, {𝑖, 𝑗}] ≫> 9yz. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uzx atr, {𝑖, 𝑗}] ≫> 9zx. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uzy atr, {𝑖, 𝑗}] ≫> 9zy. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

Do[Extract[uzz atr, {𝑖, 𝑗}] >>> 9zz. txt, {𝑖, 1,3}, {𝑗, 1,3}]  

𝑖 = 9  

xx = Array[xx, 6]  

xx 

= ReadList[D:\Documents and Settings\Tianyi Zhou\My Documents\9xx.txt]  

yy = Array[yy, 6]  

yy 

= ReadList[D:\Documents and Settings\Tianyi Zhou\My Documents\9yy.txt]  

zz = Array[zz, 6]  

zz = ReadList["D:\Docu ents and Settings\Tianyi Zhou\My Docu ents\9zz. txt"]  

xy = Array[xy, 6]  

xy 

= ReadList[D:\Documents and Settings\Tianyi Zhou\My Documents\9xy.txt]  

yz = Array[yz, 6]  

yz 

= ReadList[D:\Documents and Settings\Tianyi Zhou\My Documents\9yz.txt]  

xz = Array[xz, 6]  

xz = ReadList["D:\Docu ents and Settings\Tianyi Zhou\My Docu ents\9xz. txt"]  

yx = Array[yx, 6]  

yx = ReadList[D:\Documents and Settings\Tianyi Zhou\My Documents\9yx.txt]; 

zy = Array[yx, 6]  

zy 

= ReadList[D:\Documents and Settings\Tianyi Zhou\My Documents\9zy.txt]  

zx = Array[yx, 6]  

zx = ReadList["D:\Docu ents and Settings\Tianyi Zhou\My Docu ents\9zx. txt"]  

strain = Ta le[0, {3}, {3}]  

strain[[1,1]] = xx[[𝑖]] strain[[1,2]] = xy[[𝑖]] strain[[1,3]] = xz[[𝑖]] strain[[2,1]]

= yx[[𝑖]]  

strain[[2,2]] = yy[[𝑖]] strain[[2,3]] = yz[[𝑖]] strain[[3,1]] = zx[[𝑖]]  

strain[[3,2]] = zy[[𝑖]] strain[[3,3]] = zz[[𝑖]]  

𝐴 = {{
1

√2
, 0,

−1

√2
}, {−

1

√2
, 0, −

1

√2
}, {0,1,0}}  

stiffness = Ta le[0, {𝑖, 1,3}, {𝑗, 1,3}, {𝑘, 1,3}, {𝑙, 1,3}]  

stiffness[[1]][[1]][[1]][[1]] = stiffness[[2]][[2]][[2]][[2]] = stiffness[[3]][[3]][[3]][[3]]

= 165.7  
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stiffness[[1]][[1]][[2]][[2]] = stiffness[[2]][[2]][[3]][[3]] = stiffness[[3]][[3]][[1]][[1]]

= stiffness[[2]][[2]][[1]][[1]] = stiffness[[3]][[3]][[2]][[2]]

= stiffness[[1]][[1]][[3]][[3]] = 63.9  

stiffness[[3]][[2]][[3]][[2]] = stiffness[[3]][[2]][[2]][[3]] = stiffness[[2]][[3]][[3]][[2]]

= stiffness[[2]][[3]][[2]][[3]] = stiffness[[3]][[1]][[3]][[1]]

= stiffness[[3]][[1]][[1]][[3]] = stiffness[[1]][[3]][[3]][[1]]

= stiffness[[1]][[3]][[1]][[3]] = stiffness[[2]][[1]][[2]][[1]]

= stiffness[[2]][[1]][[1]][[2]] = stiffness[[1]][[2]][[2]][[1]]

= stiffness[[1]][[2]][[1]][[2]] = 79.6  

Cstiff = Ta le[Su [𝐴[[𝑚]][[𝑖]]𝐴[[𝑛]][[𝑗]]𝐴[[𝑜]][[𝑘]]𝐴[[𝑝]][[𝑙]]stiffness[[𝑖]][[𝑗]][[𝑘]][[𝑙]], 

{𝑖, 1,3}, {𝑗, 1,3}, {𝑘, 1,3}, {𝑙, 1,3}], {𝑚, 1,3}, {𝑛, 1,3}, {𝑜, 1,3}, {𝑝, 1,3}]  

c11 = Cstiff[[1,1,1,1]] c22 = Cstiff[[2,2,2,2]] c33 = Cstiff[[3,3,3,3]]  

c44 = Cstiff[[2,3,2,3]] c55 = Cstiff[[1,3,1,3]] c66 = Cstiff[[2,1,2,1]]  

c12 = Cstiff[[1,1,2,2]] c13 = Cstiff[[1,1,3,3]] c23 = Cstiff[[2,2,3,3]]  

Do[ 

exx atr[[i1, j1]] = uxx atr[[i1, j1]]  

exy atr[[i1, j1]] = 1 2⁄ (uxy atr[[i1, j1]] + uyx atr[[i1, j1]])  

exz atr[[i1, j1]] = 1 2⁄ (uxz atr[[i1, j1]] + uzx atr[[i1, j1]])  

eyy atr[[i1, j1]] = uyy atr[[i1, j1]]  

eyz atr[[i1, j1]] = 1 2⁄ (uyz atr[[i1, j1]] + uzy atr[[i1, j1]])  

ezz atr[[i1, j1]] = uzz atr[[i1, j1]], 

{i1,1,3}, {j1,1,3}]  

sig axx = c11 ∗ exx atr + c12 ∗ eyy atr + c13 ∗ ezz atr 

sig ayy = c12 ∗ exx atr + c22 ∗ eyy atr + c23 ∗ ezz atr 

sig azz = c13 ∗ exx atr + c23 ∗ eyy atr + c33 ∗ ezz atr 

sig ayz = c44 ∗ 2 ∗ eyz atrsig axz = c55 ∗ 2 ∗ exz atr 

sig axy = c66 ∗ 2 ∗ exy atr 

stress = Array[stress, 6]  

stress[[1]] = sig axx stress[[2]] = sig ayy stress[[3]] = sig azz  

stress[[4]] = sig axy stress[[5]] = sig axz stress[[6]] = sig ayz  

Do[Extract[stress, {𝑖}] >>> 9g9. txt, {𝑖, 1,6}]  

𝑘 = 9  
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Pointx = Array[pointx, 5] Bridge = Array[ ridge, 5]  

Bridge = ReadList["C:\Final Test\x. txt"] Do[Pointx[[𝑖]] = Bridge[[𝑖]], {𝑖, 1,5}] 

Pointy = Array[pointy, 6]  

Bridge = Array[ ridge, 9]  

Bridge = ReadList[C:\Final Test\average stress\2yy.txt]  

Pointy[[1]] = Bridge[[𝑘]]  

Bridge = Array[ ridge, 9]  

Bridge = ReadList[C:\Final Test\average stress\3yy.txt]  

Pointy[[2]] = Bridge[[𝑘]]  

Bridge = Array[ ridge, 9]  

Bridge = ReadList[C:\Final Test\average stress\4yy.txt]  

Pointy[[3]] = Bridge[[𝑘]]  

Bridge = Array[ ridge, 9]  

Bridge = ReadList[C:\Final Test\average stress\47yy.txt]  

Pointy[[4]] = Bridge[[𝑘]]  

Bridge = Array[ ridge, 9]  

Bridge = ReadList[C:\Final Test\average stress\8yy.txt]  

Pointy[[5]] = Bridge[[𝑘]]  

data = Ta le[0, {5}, {2}]  

Do[data[[𝑖, 1]] = Pointx[[𝑖]], {𝑖, 1,5}] Do[data[[𝑖, 2]] = Pointy[[𝑖]], {𝑖, 1,5}] data 

NSolve[ 

{Pointy[[1]] =

= 1 Pointx[[1]]⁄ ∗ (
a0

a3 + 1 Pointx[[1]]⁄
+

a1

(a3 + 1 Pointx[[1]]⁄ )
2

+
2 ∗ a2

(a3 + 1 Pointx[[1]]⁄ )
3), 

Pointy[[2]] == 1 Pointx[[2]]⁄  

∗ (
a0

a3 + 1 Pointx[[2]]⁄
+

a1

(a3 + 1 Pointx[[2]]⁄ )
2 +

2 ∗ a2

(a3 + 1 Pointx[[2]]⁄ )
3), 

Pointy[[3]] == 1 Pointx[[3]]⁄

∗ (
a0

a3 + 1 Pointx[[3]]⁄
+

a1

(a3 + 1 Pointx[[3]]⁄ )
2 +

2 ∗ a2

(a3 + 1 Pointx[[3]]⁄ )
3), 
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Pointy[[4]] == 1 Pointx[[4]]⁄ ∗ (
a0

a3 + 1 Pointx[[4]]⁄
+

a1

(a3 + 1 Pointx[[4]]⁄ )^2

+
2 ∗ a2

(a3 + 1 Pointx[[4]]⁄ )^3
)}, {a0, a1, a2, a3}] 

𝑦[x−] = 1 𝑥⁄ ∗ (
a0

a3 + 1 𝑥⁄
+

a1

(a3 + 1 𝑥⁄ )2
+

2 ∗ a2

(a3 + 1 𝑥⁄ )3
) 

curve1 = (1 𝑠⁄ ) ∗ (𝑦[𝑥]/. 𝑥 → 1 𝑠⁄ ) curve1  

sig axx = InverseLaplaceTransfor [curve1, 𝑠, 𝑡] 

Plot[𝑦[𝑥], {𝑥, 80,120},Mesh → True, AxesLa el → {depth, stress}, PlotStyle

→ Thick, GridLines → Auto atic, Fra e → True] 

Plot[sig axx, {𝑡, 80,120},Mesh → True, AxesLa el → {depth, stress}, PlotStyle

→ Thick, GridLines → Auto atic, Fra e → True] 
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Appendix III. Principle of Raman Spectroscopy Residue Stress 

Measurement 

 
 

Shift = sum of stress components 

Strain(ε) = 
𝑎−𝑎𝑆𝑖

𝑎𝑆𝑖
 

Biaxial Stress: 

𝜎𝑋𝑋 + 𝜎𝑌𝑌 = −
𝑆ℎ𝑖𝑓𝑡(𝑐𝑚−1)

1.92𝑐𝑚−1/𝐺𝑃𝑎
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


