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Abstract of the Dissertation
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with bounded combinatorics
by
Joseph Adams
Doctor of Philosophy
in
Mathematics
Stony Brook University

2016

Infinitely renormalizable quadratic polynomials have been heavily studied.
In the context of quadratic-like renormalization, one may try to prove the ex-
istence of a priori bounds, a definite thickness for the annuli corresponding
to the renormalizations. In 1997, M. Lyubich showed that a priori bounds
imply local connectivity of the Julia set and combinatorial rigidity for the
corresponding quadratic polynomial [Lyu97]. In a paper from 2006, J. Kahn
showed that infinitely renormalizable quadratic polynomials of bounded prim-
itive type admit a priori bounds [Kah06]. In 2002, H. Inou generalized some
of the polynomial-like renormalization theory to polynomials of higher degree
with several critical points [Ino02]. In my thesis, I generalize Kahn’s theorem
to the context of polynomials of higher degree admitting infinitely many prim-
itive renormalizations of bounded type around each of their critical points.
These a priori bounds imply local connectivity and rigidity.
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Chapter 1

Introduction

In recent years, the theory of renormalization, which involves looking at a small
piece of a dynamical system and rescaling to obtain a new dynamical system
of the same type, has been established as a powerful tool in many different
situations. In my thesis, I prove the following theorems about renormalization
in the dynamics of complex polynomials:

1. Complex polynomials admitting infinitely many bounded-type, primitive
renormalizations around each critical point have a prior: bounds, which
means that all of the renormalizations lie in a compact space. (Actu-
ally, we prove the existence of beau bounds, a stronger form of a priori

bounds.)

2. The Julia sets of such polynomials are locally connected, which means
that there is a topological model for the dynamics.

3. The dynamical systems arising from such polynomials are rigid: Combi-
natorial equivalence implies conformal equivalence.

My thesis is among the first steps toward understanding infinitely renor-
malizable complex polynomials of degree > 3 with more than one critical
point. The existence of a priori bounds in the context of polynomials hav-
ing more than one critical point is new, generalizing a result of Jeremy Kahn
for polynomials having exactly one critical point [Kah06]. Furthermore, my
local connectivity result is the first among infinitely renormalizable complex
polynomials that are not real and have more than one critical point, and my
approach to combinatorial rigidity furnishes a new proof in the case where
there is exactly one critical point.

The existence of more than one critical point creates additional combina-
torial difficulties, which are overcome by using certain decompositions of the



relevant domains. When there is exactly one critical point, the parameter
space is one-dimensional, and there are well-known compactness properties
involving wakes, limbs, and ray portraits. When there is more than one criti-
cal point, the parameter space is much more complicated, necessitating a new
approach to the rigidity problem that does not rely on the one-dimensional
properties.

1 Selected historical background

The study of holomorphic dynamics originated with the analysis of P. Fatou
and G. Julia in the early 1900s. Afterward, L. Ahlfors and L. Bers applied the
theory of quasiconformal maps to the study of Kleinian groups, dynamical sys-
tems generated by groups of Mobius transformations of the Riemann sphere.
The field of rational dynamics was then dormant until the 1980s, when D. Sul-
livan rejuvenated the field by using quasiconformal deformations to prove his
“no wandering domains” theorem [Sul85]. Around the same time, A. Douady
and J. Hubbard offered a systematic treatment of the dynamics of complex
quadratic polynomials in their Orsay notes [DH].

Complex quadratic polynomials f.(z) = 2% + ¢, with ¢ € C, provide the
easiest examples of holomorphic dynamical systems having critical points, but
as of 2016, they are still not completely understood. Understanding their
dynamics amounts to understanding the corresponding parameter space, the
Mandelbrot set, and the central conjecture in this field is that the Mandelbrot
set is locally connected. Local connectivity of the Mandelbrot set at c is
equivalent to combinatorial rigidity of f.. One important tool used to study
local connectivity is the puzzle decomposition, which first appeared in the work
of Branner and Hubbard in the context of cubic polynomials [BH88, BH92].
By applying puzzle techniques to quadratic polynomials with connected Julia
sets, J. C. Yoccoz proved that if f. does not have neutral periodic points
and admits at most finitely many renormalizations, then the corresponding
Julia set is locally connected, and the Mandelbrot set is locally connected at
¢ [Hub93, Mil00, Roe00]. The remaining parameters consist of those ¢ such
that f. admits infinitely many renormalizations.

The results obtained by Yoccoz have been generalized in a number of ways.
Using the quasi-additivity law, Kahn and Lyubich showed that if a complex
polynomial z ++ 2% + ¢, with d > 2, admits at most finitely many renormal-
izations, and if every periodic point is repelling, then the Julia set is locally
connected [KL09a]. Avila, Kahn, Lyubich, and Shen showed that under the
same conditions, the polynomial is combinatorially rigid [AKLS09]. Yarring-



ton showed that for a polynomial of degree > 3 with at least two critical
points, a certain combinatorial condition implies local connectivity of the Ju-
lia set, provided the Julia set is connected, every periodic point is repelling,
each fixed ray lands at a distinct fixed point, and no critical point admits a
renormalization [Yar95).

To help put the results of my thesis in context, some results from the theory
of infinite renormalization, a priori bounds, local connectivity, and rigidity are
summarized below.

A priori bounds

Sullivan obtained complex a prior: bounds for real quadratic polynomials
admitting infinitely many renormalizations of bounded type [Sul88§].

Lyubich obtained a priori bounds for complex quadratic polynomials
that satisfy the secondary limbs condition and have sufficiently big com-
binatorial depth [Lyu97].

Lyubich and Yampolsky obtained complex a priori bounds for the cases
not covered by [Sul88] and [Lyu97|, real quadratic polynomials admit-
ting infinitely many renormalizations of “essentially bounded but un-
bounded” type, completing the study of complex a prior: bounds for real
quadratic polynomials [LY97]. These complex a priori bounds were also
obtained independently, using essentially different methods, by Graczyk
and Swiatek and by Levin and van Strien in [GS96, LvS98].

Kahn obtained a prior: bounds for quadratic polynomials admitting in-
finitely many primitive renormalizations of bounded type [Kah06]. While
Sullivan’s proof in the context of real quadratic polynomials exploits the
real symmetry, Kahn’s proof for complex quadratic polynomials relies on
two very general tools: the canonical weighted arc diagram and the quasi-
additivity law. Kahn’s proof is valid without any significant changes in
the case of complex polynomials z — 2% + ¢, with d > 2.

Kahn and Lyubich obtained a prior: bounds for quadratic polynomials
that admit infinitely many primitive renormalizations and satisfy the
decoration condition or the molecule condition [KL0O8, KL09b]. These
conditions allow certain unbounded combinatorics.



Local connectivity

e Hu and Jiang showed that the Feigenbaum quadratic polynomial has a
locally connected Julia set [HJ98|.

e Jiang showed that if a quadratic polynomial admits infinitely many
renormalizations, the existence of unbranched a priori bounds implies
local connectivity of the Julia set [Jia00]. See also theorem VT in [Lyu97]
and proposition 4.14 in [McM96].

e Lyubich showed that if a quadratic polynomial satisfies the secondary
limbs condition, the existence of a priori bounds implies the existence
of unbranched a priori bounds [Lyu97]. Consequently, for any quadratic
polynomial satisfying the secondary limbs condition, the existence of a
priori bounds implies local connectivity of the Julia set.

e Levin and van Strien showed that the Julia set of a polynomial z —
224 4 ¢, where d is an integer and c is real, is either locally connected
or totally disconnected [LvS98]. Independently, Lyubich and Yampolsky
observed that theorem 1.1 in [LY97] remains valid for real polynomials
2 — 2% + ¢, which implies that the corresponding Julia sets are locally
connected.

Rigidity
e McMullen proved that robust infinitely renormalizable quadratic poly-
nomials do not admit invariant line fields on their Julia sets [McM94].

e Lyubich showed that if a quadratic polynomial satisfies the secondary
limbs condition, the existence of a prior:i bounds implies combinatorial
rigidity [Lyu97]. In particular, real quadratic polynomials satisfying the
secondary limbs condition are combinatorially rigid.

e Inou proved that robust infinitely renormalizable complex polynomials
with more than one critical point do not admit invariant line fields on
their Julia sets [Ino02].

e Kozlovski, Shen, and van Strien showed that for a real polynomial of
degree > 2 with connected Julia set, if every critical point is real and
nondegenerate, and if there are no neutral periodic points, then topolog-
ical conjugacy on R implies quasiconformal conjugacy on C [KSvS07].



e Cheraghi showed that if a complex polynomial z — 2% + ¢, with d > 2,
satisfies the secondary limbs condition, then the existence of a prior:
bounds implies combinatorial rigidity [Chel0)].

2 The results

A polynomial-like map f : U — V is a holomorphic branched covering map of
degree d > 2, where U and V' are topological disks properly contained in C,
and U is a compact subset of V. The Julia set of f is

K(f)= ().

The Julia set is compact, perfect, and full. If a set W is chosen such that
K(f) ¢ W and f|W is a polynomial-like map of degree d, then K(f|W) =
K(f).

Let f : U — V be a polynomial-like map, and let ¢ be a critical point of
f. We say that f is primitively renormalizable around ¢ with period p > 2 if
there are topological disks U’ and V' containing ¢ such that f? : U’ — V' is
a polynomial-like map, K (f?|U’) is connected, and U’, f(U'), ..., fF"Y(U’) are
pairwise disjoint. We call the polynomial-like map f? : U — V' a primitive
renormalization of f.

Let R(c) = {pn} denote the set of periods p, such that f admits a primitive
renormalization fP» : U™ — V™ around c. If |R(c)| = oo, then we say that
f is infinitely primitively renormalizable around ¢; in this case, if there is a
positive number B such that p,.1/p, < B for each n, then we say that the
infinitely many primitive renormalizations around c are of bounded type or
have bounded combinatorics. The main theorem is that such maps enjoy a
compactness condition called a priori bounds.

Theorem A. If a polynomial-like map f admits infinitely many primitive
renormalizations of bounded type around each of its critical points, then it has
a priort bounds.

This theorem is a generalization of a theorem due to Jeremy Kahn for maps
of degree 2, which necessarily have only one critical point [Kah06]. Kahn’s
proof remains valid for polynomial-like maps of degree > 3 having exactly one
critical point, so the heart of A is the case where there is more than one critical
point. The a priori bounds condition implies that we can choose the domains
associated with the renormalizations in such a way that the annuli V™ \ U"



have modulus bounded away from 0. This allows us to prove the following
theorem.

Theorem B. The Julia set K(f) is locally connected.

Local connectivity is more than just an arcane topological property. Let
F : C — C be a complex polynomial of degree d > 2. Assume that F is
monic and that its polynomial-like restriction to a disk of large radius admits
infinitely many primitive renormalizations of bounded type around each of its
critical points. The Julia set Kg of this restriction of F' coincides with the
set of z in C such that F™(z) /4 oo as n — oo. Since K is connected and
full, the Riemann mapping theorem implies that there is a unique conformal
isomorphism ®; : C\ D — C\ Ky normalized such that ®r(z)/z — 1 as
2z — 00. By the classical theorem of Carathéodory, local connectivity of Kg
implies that @ extends continuously to a map C\D — C. In this case, Douady
showed that Kp is homeomorphic to the quotient space obtained from D by
collapsing to single points the convex hulls of points in 0D mapped to the
same point by ® [Dou93].

Let G : C — C be another complex polynomial of degree d. Assume that
G is monic and that G is combinatorially equivalent to F'. By combinatorial
equivalence, we mean that if ¢ : C\ D — C\ K is the unique normalized
conformal isomorphism, then ®g o &' : C\ Kr — C\ K¢ extends to a
homeomorphism C — C. The following theorem says that F' is combinatorially
rigid.

Theorem C. The homeomorphism ®g o &' : C — C is holomorphic.

Hence, F' = G.

3 The proofs

The first step in proving theorem A is to implement Jeremy Kahn’s “improve-
ment of life” philosophy in the context of polynomial-like maps of degree d > 2
with more than one critical point. To this end, we need a notion of renormal-
ization that respects geometry, and this requires us to work in a larger space
of maps, the space of pseudo-polynomial-like maps. These maps restrict to
polynomial-like maps.

Let f : (V,K) — (V,K) be a pseudo-polynomial-like map, and assume
that its polynomial-like restriction admits a primitive renormalization of period
p around one of its critical points. Then there is a little Julia set Ky associated



with this renormalization, and there is the associated cycle of little Julia sets
of f,

p—1

K= U K j C K.

j=0
If f has exactly one critical point, then K contains the critical value. However,
when there is more than one critical point, it can happen that some critical
values of f are outside of . For now, we will assume that the critical values
of f are contained in /.

For each j =0,...,p—1, we can define the pseudo-polynomial-like canon-
ical renormalization R;f : V; — V; of £ around K of period p. Let «; be
the hyperbolic geodesic in V \ K homotopic to K;. The special property of
R;f is that the Julia set of the polynomial-like restriction of R;f is canonically
identified with Kj, and the hyperbolic length of the core geodesic in the an-
nulus V; \ Kj is equal to the hyperbolic length of ;. We prove the following
“improvement of life” theorem.

Theorem D. There exists a threshold pn > 0, depending only on certain com-
binatorial data, such that if £ is a canonical renormalization of a pseudo-
polynomial-like map £ (with the specified combinatorics), then mod(f’) < pu
implies mod(f) < /2.

Now, assume that the polynomial-like restriction of f admits infinitely
many primitive renormalizations of bounded type around each critical point.
A deceptively strong assumption about the critical points of f, which we will
not discuss further, allows us to consider the “tree of renormalizations” grow-
ing from f, consisting of the canonical renormalizations of f, the canonical
renormalizations of the canonical renormalizations of f, and so on. Theorem
D implies that the moduli of these pseudo-polynomial-like renormalizations
are bounded away from 0.

Proving theorem A now amounts to removing the combinatorial assump-
tions we made on the critical points of f. This follows from decomposing f into
small “pieces” that do satisfy the assumptions, so we obtain a lower bound
for the moduli of all maps in the “forest” of trees of renormalizations for a
general pseudo-polynomial-like map whose polynomial-like restriction admits
infinitely many primitive renormalizations of bounded type around each of its
critical points.

This implies that for a sufficiently deep level of renormalization, there are
definitely thick annuli separating the little Julia sets of each deeper level of
renormalization, which is the key component in the proof of theorem B. We



finish the proof by appealing to the theory of Yoccoz puzzles and compactness
theorems for univalent maps.

The proof of the rigidity theorem, theorem C, amounts to building a quasi-
conformal map C — C that is homotopic, relative the postcritical set of F', to
a homeomorphism conjugating F' and GG. We do this by splicing together qua-
siconformal maps, defined on finitely connected planar domains with bounded
geometry, in such a way that the resulting quasiconformal map is in the desired
homotopy class.

To this end, we consider a compact space X of pseudo-polynomial-like
maps with specified combinatorial data and geometric bounds. We associate
toany f : V — Vin X a planar Riemann surface S(f) without cusps that is
homeomorphic to R?\ {1,...,p}. Let T be the core geodesic in the annulus
V \ K. There is a unique cycle of little Julia sets K = Ko U --- U K,_; for f.
For each j =0,...,p—1, let 7; be the hyperbolic geodesic in V \ I homotopic
to K;. The Riemann surface S(f) is the domain bounded by I' and certain
equidistant curves for the geodesics | J ;7j- The renormalization combinatorics
of the polynomial-like restriction of f determine a “marking” of the domain
S(f).

Pick a basepoint f, in X. Let Teich(f,) denote the reduced Teichmiiller
space of S(f,). The key step in the proof of theorem C is the following theorem.

Theorem E. The map ¥ : X — Teich(f,), associating to a map £ in X the
marked domain S(f), is continuous.

Then ¥(X) is a compact subspace of Teich(f,). The fact that our renor-
malizations have uniformly bounded combinatorics allows us to decompose
the domain of F', our starting polynomial, as the union of the postcritical set
of F' and countably many domains with bounded geometry. This gives us a
quasiconformal map C — C that sends the postcritical set of F' to the post-
critical set of GG, but this map is probably not in the right homotopy class. A
construction similar to the one for S(f) allows us to adjust our map so that it
is in the correct homotopy class, and the proof is finished.

4 The structure of the chapters

There are three chapters following the introduction and background material.

In chapter 3, we generalize Kahn’s improvement of life theorem to the
context of pseudo-polynomial-like maps with more than one critical point.
First, we use a combinatorial model to study the combinatorics of arcs joining
the little Julia sets to each other and to co. There is an exponential growth of



certain canonical weights, which is encapsulated in the main inequality. We use
the canonical arc diagram to relate hyperbolic geometry and combinatorics.
The covering lemma of Kahn and Lyubich [KL09c| gives us a threshold allowing
us to control degenerating geometry. At the end of the chapter, we prove the
existence of a prior: bounds, theorem A. Actually, we obtain beau bounds.

In chapter 4, we describe a decomposition that allows us to apply theorem
A to a polynomial admitting infinitely many primitive renormalizations, with
bounded combinatorics, around one of its critical points. This amounts to the
observation that after throwing away the first few levels of renormalization, the
subsequent renormalizations always involve the same set of critical points of
the original map. Using this decomposition, we prove a priori bounds around
the relevant critical points. Then we prove local connectivity of the Julia set,
theorem B. At the end of the chapter, we cycle trees to label the little Julia
sets according to their nested structure. This simplifies notation for the proof
of rigidity.

In chapter 5, we prove the rigidity theorem, theorem C. We begin by de-
scribing some geometric objects associated with simple, closed geodesics in a
hyperbolic Riemann surface. Then we describe a compact space containing all
of the renormalizations of the polynomials under consideration. This allows
us to prove that the domains associated with one level of renormalization have
bounded geometry. Next, we describe another compact space controlling the
geometry of the domains associated with two consecutive levels of renormal-
ization. The proof of rigidity amounts to building a quasiconformal map in the
wrong homotopy class and fixing it. Building the wrong map relies on bounded
geometry for the domains associated with one level of renormalization. Fixing
the homotopy class relies on bounded geometry for the domains associated
with two consecutive levels of renormalization. The proof of rigidity also relies
on two intuitively obvious topology theorems, which we prove at the end of
the chapter.



Chapter 2

Background

5 Notation and terminology

We will use the following basic definitions:
e A topological disk is a simply connected domain in a Riemann surface.

e A topological annulus is a doubly connected domain, with finite modulus,
in a Riemann surface.

e A (non-degenerate) continuum is a compact, connected subset of C con-
taining at least two points. A continuum K is full if C\ K is connected.

e A component of a topological space means a connected component.
We will use the following notations:
e Crit(f) denotes the set of critical points of a smooth map f.

e Dil(h) denotes the quasiconformal dilatation of the quasiconformal map
h.

diamx (V') denotes the diameter of a subset Y of a metric space X.

distx (a, b) denotes the distance, in a metric space X, between points a
and b.

e f denotes a pseudo-polynomial-like map.

o f:(V,U) = (V',U') means that U C V, U’ C V', f: V — V', and
flU:U—=U"

10



f™ denotes the n-th iterate of f, when n > 0 is an integer.

G = (V, E) denotes the graph with vertices V' and edges E.

mod(A) and mod(f) denote the modulus of the annulus A and the mod-
ulus of the pseudo-polynomial-like map f, respectively.

|7|x denotes the length of curve curve with respect to the metric on X.
e L(I') denotes the extremal length of the path family T

e W(I') denotes the extremal width of the path family I

Let X and Y be topological spaces, and let f: X — X andg:Y — Y
be continuous maps. We say that f and g are topologically conjugate, denoted
f ~top g, if there is a homeomorphism h : X — Y such that ho f = go h.
Suppose that X and Y are Riemann surfaces and that f and g are holomorphic
maps. We say that f and g are quasiconformally conjugate, denoted f ~c g,
if there is a quasiconformal map h : X — Y such that ho f = g o h. We say
that f and g are conformally conjugate if there is a conformal isomorphism
h: X — Y such that ho f =goh.

6 Polynomials

Let f:C — C, f(z) = 24+ ag_12%71 + -+ + ap, be a polynomial of degree
d > 2. The filled Julia set of f is the set K = K(f) ={z € C: f*(z) / oc}.
We call C\ K(f) the basin of co.

Let g : C — C be another polynomial. We say that f and g are hybrid
conjugate, denoted f ~iyp g, if there is a quasiconformal conjugacy b : C — C
with Dil(h) = 0 almost everywhere on K.

Theorem 6.1. The filled Julia set K is compact and full. It is connected if
and only if Crit(f) C K.

We will only consider polynomials with connected Julia sets. In this case,
there is a unique conformal isomorphism B = B; : C\ K — C \ D such that
B(z)/z — 1 as z — oo. The map B satisfies B(f(2)) = (f(2))%.

Consider the foliations of the domain C\ D by radial line segments {re
r € (1,+00)}, for all & € R/Z, and by circles {z € C : |z] = e}, for all
r € (1,+00). We call R = R%(f) = B~1(e*™(0,+00)) the external ray of
angle § € R/Z. We say that R’ lands on a point a € 9K if R? C C is equal
to ROU {a}. We call E" = E"(f) = B™*({z € C : |z] = €"}) the equipotential
of level r.

2mif .
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Theorem 6.2. (Assume that K is connected.) Let a € OK be a repelling
periodic point. Then there is a finite, positive number of external rays landing
on a.

Let a € 0K be a repelling p-periodic point. Let R(a) = Ry(a) be the
union of external rays landing on a. Let @ = {a = ay, ..., a,—1} be the p-cycle
containing a. Let R(@) = Rs(a) = J,c; R(a). Let E" be an equipotential, and
let D be the bounded component of C\ E”. Let I" be the set (0D)UR(a) N D.
For each integer n > 0, let Y™ be the set consisting of P C C, where P C C
is a bounded component of f~"(I'). We call Y™ the set of Yoccoz puzzle
pieces of depth n. The construction of these pieces depends on the choice of
equipotential E” and the repelling periodic cycle @, but our notation will not
reflect this.

7 Polynomial-like maps

For a thorough introduction to the theory of polynomial-like map, the reader
is invited to consult [DH85]. The following theorem says that polynomial-like
maps behave like polynomials.

Theorem 7.1 (Straightening theorem). Let f : U — V be a polynomial-
like map (with connected K ) of degree d. Then f is hybrid conjugate to a
polynomial of degree d, unique up to affine conjugacy. If mod(V\U) > p > 0,
then the dilatation of the quasiconformal map providing the hybrid conjugacy
15 controlled by .

Proof. See [DHS85]. O

Strictly speaking, polynomials are not polynomial-like maps. However, for
the following theorem, let us adopt the convention that a polynomial of degree
d, with connected Julia set, is also called a polynomial-like map.

Theorem 7.2. Fiz an integer d > 2 and a real number u > 0. The space
of polynomial-like maps f : U — V of degree d, with K(f) connected and
mod(V \ U) > pu, is compact, up to affine conjugation.

Proof. See theorem 5.8 in [McM94]. O

12



8 Pseudo-polynomial-like maps

The theory of pseudo-polynomial-like maps is developed in [Kah06]. We dis-
cuss here only the theory necessary for our results.
A pseudo-polynomial-like map f consists of the following objects:

e topological disks U’ and U properly contained in C,

e a holomorphic branched covering map f : U — U of degree d > 2,
e a holomorphic immersion i : U’ — U, and

e compact, connected, and full sets K € U and K’ c U".

We require that K’ = f~1(K) = i7!(K). Abusing notation, we will call
f:(U,K) — (U,K) a pseudo-polynomial-like map of degree d. We call K the
filled Julia set of £f. The modulus of f is defined to be mod(f) = mod(U \ K).

The following theorem says that pseudo-polynomial-like maps behave like
polynomial-like maps.

Theorem 8.1. Let f : (U,K) — (U,K) be a pseudo-polynomial-like map
of degree d. Then 1 restricts to an embedding near K. There exist domains
U,V C U such that foi~t: U — V is a polynomial-like map of degree d, and
K(foi YU) =K. If mod(f) > p > 0, then the domains U and V can be
chosen so that mod(V \ U) > ¢, where € = e(d, j1) > 0.

Proof. See lemma 2.4 in [Kah06]. O

We call foi™!:U — V a polynomial-like restriction of f.

We equip the set of pseudo-polynomial-like maps of degree d > 2 with a
topology: The domains are given the Carathéodory topology, and the maps are
given the topology of uniform convergence on compact sets. For the following
theorem, let us also call 7, f : C — C a pseudo-polynomial-like map of degree
d when 7 € Aut(C), f is a polynomial of degree d, and foi~! is a polynomial
with connected Julia set.

Theorem 8.2. Fix an integer d > 2 and a real number pn > 0. The space of
pseudo-polynomial-like maps £ of degree d, with mod(f) > u, is compact, up
to pre- and post-composition by two independent affine maps.

For the proof of this theorem, we will need the following estimate.

13



Lemma 8.3. Let A C C be an annulus, with core geodesic v C A and
mod(A) > pu > 0. Let D C C denote the bounded component of C \ A.
There exists v = r(p) > 0 such that

diste(y, D) > r - diame(7y).
Proof. See theorem 2.5 in [McM94]. O

Proof of theorem 8.2. Let {in, fn : (Un, K)) = (Vo, K;)}n be a sequence of
pseudo-polynomial-like maps, where each i, is a holomorphic immersion, and
each f, is a holomorphic branched covering map of degree d. Pre- and post-
composing by two affine maps of the form z — Az + B, where (A, B) €
(C\ {0}) x C, we can assume that {0,1} ¢ K/, ¢ D, {0,1} C K,, C D, and
in(0) = 0. Passing to a subsequence, we can assume that there are compact,
connected sets K’ and K of Euclidean diameter 1 such that K] — K’ and
K,, — K in the Hausdorff topology.

Let v, C V, \ K, be the core geodesic. Let A, C V,, \ K, denote the
hyperbolic collar around +,,. Since mod(V,,\K,,) > u, we know that |y, |v,\x, <
L, where L = L(pu) > 0. Then mod(A,) > m, where m = m(L) > 0. Let
D,, C V,, be the topological disk bounded by 7,,. Lemma 8.3 implies that

diSt@(avn, 0) > diStc(’}/n, Dn) > dlamC('Y) >,

where r = r(m) > 0. This shows that each topological disk V,, contains the
round disk of radius r around 0. Then by passing to a subsequence, we can
assume that there is a topological disk V' C C such that (V,,,0) — (V,0) in
the Carathéodory topology. Clearly, mod(V \ K) > p.

Since f,, : U, — V, is a branched covering map of degree d with critical
values in K,, C V, we know that mod(U, \ K},) = mod(V,, \ K,,)/d > p/d.
By an argument similar to the one in the paragraph above, we can assume
that there is a topological disk U C C such that (U,,0) — (U,0) in the
Carathéodory topology. Then mod(U \ K') > p/d.

Let X,, =i,'({0,1}). Passing again to a subsequence, we can assume that
there is a finite set X such that X,, — X in the Hausdorff topology. Then
{in)Un \ Xp}n is a normal family, because it consists of functions omitting the
values 0 and 1. Then this family is uniformly bounded on compact subsets of
U\ X. Our normalization implies that {i,|U, \ K}, is uniformly bounded, so
in fact, {i,}, is uniformly bounded on compact subsets of U. Passing again to
a subsequence, we can assume that there is a holomorphic function 7 : U — V
such that 7,, — ¢ uniformly on compact subsets of U. Since ¢ must assume the
values 0 and 1, it is non-constant, and as a non-constant limit of holomorphic
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immersions, Hurwitz’ theorem implies that i is a holomorphic immersion. (In
the case where U = C, we know that i is an entire immersion, i }(K) = K,
and 17 is bijective on a neighborhood of K’. It follows that ¢ is affine.)

Now, let us consider the maps {f,},. Theorem 5.6 in [McM94| asserts
that by passing to a subsequence, we can assume that there is a holomorphic
branched covering map f : (U,0) — (V,0) of degree < d such that f, — f
uniformly on compact subsets of U. Since mod(U,\ K)) > p/d, we can assume,
by passing to a subsequence, that Crit(f,) — Crit(f) C U in the Hausdorff
topology. Then deg(f) = d, and we are finished. O

There is a notion of iteration of pseudo-polynomial-like maps. (Iteration
is defined as for holomorphic correspondences. See [Kah06].) We will briefly
describe the construction of f2 : U — U, the second iterate of a pseudo-
polynomial-like map f : U — U consisting of the maps 7, f : U! — U. The
fibered product

U? = {(z,y) € U' x U': f(x) = i(y)}

is a Riemann surface, because the derivative of i is non-vanishing. Consider
the diagram,

where ey, and g1 denote the projections to the left and right factors. One
checks that U? is a topological disk, 75 := i 0 Mg is a holomorphic immersion,
and fy := foTygne is a holomorphic branched covering map of degree d*. Then
f2 consists of the maps iy, fo : U? — U.

For any integer n > 1, we have the n-th iterate of f, denoted f* : U — U,
which consists of the following data:

VN

U U.
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The filled Julia set K is embedded in each U™. Abusing notation, we identify
K with its image under the embedding. We can also consider the restriction
of f to U", which consists of the following data:

VAN

Unfl Unfl'

9 Renormalization

9.1 Polynomial-like renormalization

Let f: U — V be a polynomial-like map of degree d, and let ¢ € Crit(f).
Given an integer p > 2, we say that f is primitively renormalizable around c,
with period p, if there are domains U’ and V' such that

l.celU cU,
2. fP:U — V'is a polynomial-like map with K (f?|U’) connected, and

3. the topological disks U} = f2(U"), for each j = 0,...,p— 1, are pairwise
disjoint.

We say that the polynomial-like map fP|U’ is a primitive renormalization of
period p. For each j = 0,...,p— 1, let K; = fI(K(f?|U")). Each set K; is
a little filled Julia set, and K = U?;(l] K is the cycle of little Julia sets. It is
known that f(K) = K.

Each little Julia set K; has a neighborhood on which f? restricts to a
polynomial-like map with filled Julia set K;. If K; contains a critical point of f,
then any such polynomial-like restriction is a polynomial-like renormalization.

If ' is a polynomial-like renormalization of a quadratic-like map f, then
deg(f") = 2. If f"is a polynomial-like renormalization of a polynomial-like
map f, with deg(f) > 3, then it is possible that deg(f’) > deg(f).

Lemma 9.1. deg(f?|U’) < 241,
To prove this lemma, we will use the following fact:

Lemma 9.2. Fiz an integer d > 2. If a set positive integers {Tj}j»v:l satisfies
Sorj=d—1, then T](1+r;) <2471,
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Proof. First, we observe that if each r; = 1, then N = > r; = d — 1, and
[T1(1 + r;) = 2V = 2971, Otherwise, there is an index n such that r, > 2.
In this case, N < d — 2, because 2+ (N —1) <r, + >, 17 =d—1. We
modify the positive integers r;, 7 = 1,..., N, to obtain positive integers s;,
Jj=1,...,N+1, as follows: s, =r,—1, sny1 = 1, and s; = 1;, j # n. Clearly,
> s;=>,r;=d—1. Since r, > 2, we know that (1 + sy41)(1+ s,) = 2r,, >
1+ r,. We compute

[[a+r) =0+ <H(1+rj)>:(1+rn)( 11 (1+sj)>

j#n j#n.N+1

< (14 sn1)(1+ sn) ( IT a+ Sj)) =[J1+5))

j#n,N+1

[terating this process, we see that the largest product is obtained when each
T’j =1. ]

Proof of lemma 9.1. We will apply the Riemann-Hurwitz formula to the holo-
morphic branched covering map f : U — V of degree d. We obtain x(U) =
d-x(V)—>.(d; — 1), where d; denotes the local degree of f near the critical
point ¢;, and j indexes all of the critical critical points of f. This reduces
to > r; = d — 1, where r; = d; — 1. By the lemma above, we see that
deg(fP|U") < T]d; < 2% O

We will say that the polynomial-like renormalization fP|U’ is good, or that
f admits a good renormalization, if f(Crit(f)) C K. The planar domain V' \
is a hyperbolic Riemann surface. For each j =0,...,p — 1, there is a unique,
peripheral, simple, closed geodesic v; C V' \ K going around Kj.
Lemma 9.3. If f : U — V admits a good renormalization fP|U’, then
27 Dol < Iyl < 297 ol
Proof. Using the fact that fP|U’ is good, we know that f: U\ f~1(K) = V\K
is a covering map. Consider the index j + 1 of ;41 as an element of Z/pZ.
Let f*v;41 denote the connected component of f~*(v;41) homotopic to ~; in
fH(V\K)=U\ f1(K). By the Schwarz lemma, we know that if d; is the
local degree of f near K, then

1 *
b = vl
J
Since U \ f~!(K) is contained in V' \ K, the Schwarz lemma also tells us that
[F vitlovro0 2 1 vl
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Since the geodesic v; is homotopic to f*v;41 in V' \ K, we know that

| Vil 2 vl

[terating these three inequalities, we see that

1 1
> ; D — .
\’YO\V\/C =z dp,ldp,Q---djm’V\K = dpil.”do\%h/\/c

To finish the proof, we apply lemma 9.1. O

Remark 9.1. One problem with polynomial-like renormalization is that there
is too much freedom in the choice of domains. Even if a renormalizable
polynomial-like map has large modulus, we can choose domains such that
a polynomial-like renormalization has small modulus. Consequently, we want
to define a renormalization that takes advantage of all the modulus available.
This leads us to canonical renormalization, defined below.

9.2 Canonical renormalization

Let f : U — U be a pseudo-polynomial-like map of degree d, consisting of the

following data:

U U.

Let g := foi~!:U — V be a polynomial-like restriction of f. Suppose that
g admits a primitive renormalization, with period p, around one of its critical
points. Let I = |J K be the corresponding cycle of little Julia sets. Suppose
that ¢(Crit(g)) € K. Under these conditions, we say that f is primitively
renormalizable with period p.

Choose a little Julia set K; C K. We will define the canonial renormal-
ization of £ around K;. The domain U \ K is a hyperbolic Riemann surface.
Let v € U\ K denote the geodesic homotopic to K; C K. Let D C U be the
topological disk bounded by ~.

Let A= A,(U\ K) be the annulus covering space for U\ K corresponding
to 7y, and let 7 : A — U \ K be a covering map. (See figure 2.1.) Identify
with the core geodesic in A, and let Ag C A\ v be the component on which 7
is injective. Gluing A and D by the conformal isomorphism 7 : Ay — D\ Kj,
we obtain a topological disk V.
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Figure 2.1: The annulus A covers U \ K. The red geodesic in A maps isomet-
rically to the red geodesic in U \ K. The portion of A on the inside of the
red geodesic maps bijectively to the portion of U \ K on the inside of the red
geodesic.

Let 7 : UP? — UP be the p-th iterate of f. It consists of the following data:

ur
N
U U.

Define K? = f,*(K) € UP. Let ' C UP \ K” be the geodesic homotopic to
K;. Let D" C UP be the topological disk bounded by .

Let A" = A, (UP\ K?) be the annulus covering space for UP \ K7, and let
7'+ A — UP\ KP be a covering map. Identify + with the core geodesic in A’,
and let Aj C A"\« be the component on which 7’ is injective. Gluing A" and
D' by the conformal isomorphism 7’ : Ay — D"\ K, we obtain a topological
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disk V.

The holomorphic branched covering map f, : U? — U restricts to a cov-
ering map f, : UP\ K? — U\ £ and an isometry f, : ¥/ — v. The covering
map f, : UP\ P — U\ L lifts to a covering map f': A" — A. Similarly, the
holomorphic immersion 4, : UP\ K? — U\ K lifts to an immersion ¢’ : A’ — A.

o

U\ kP —L5 U\ K.

Abusing notation, let f’ and ' denote the maps V' — V obtained by gluing
the maps f/,i' : A” - A with f,7: UP\KP — U\ K by m and 7. Let f’ denote
the pseudo-polynomial-like map consisting of the following data:

VRN

AY Vv

We call f' the canonical renormalization of £ around K. By construction, we
have mod(f') = m/|v|u\k-

Lemma 9.4. Suppose that £ : U — U admits a good renormalization of
period p, with little Julia sets K = Uj K;. Let {v;}; denote the corresponding

peripheral geodesics in U \ K. Then 2*(d*1)|70|U\K; < yiloe <29 Hyluke

Proof. The pseudo-polynomial-like map consists of a holomorphic branched
covering map f and a holomorphic immersion i. The proof of this lemma
parallels that of lemma 9.3, with the immersion ¢ taking the place of the
inclusion map. O

10 Quasisymmetric extensions and quasicon-
formal interpolations

Lemma 10.1. Let C be a quasicircle, and let A C C be a topological annulus
such that C' is the inner boundary component of A. Let C' and A" be defined
similarly. Let f: A — A’ be a quasiconformal map. Then there is a quasicon-
formal map F : C — C such that F|C = f. If mod A > p > 0, then Dil F' is
bounded in terms of i and the dilatations of C and C'.
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Proof. Let G be the component of C\ C containing A. Let G’ be defined
similarly. Theorem 6.4 in [LV73] asserts that there exists a quasiconformal
map F': G — G’ with F|C = f and Dil F' controlled by p and Dil f. Quasi-
conformal reflection across C' and C’ completes the lemma. n

Lemma 10.2. Let A C C be a topological annulus bounded by quasicir-
cles, with m = mod A. Let A" and m' be defined similarly. Suppose that
f: 0A — 0A' restricts to a quasisymmetric homeomorphism between the in-
ner (respectively, outer) boundary components of A and A’. Then there is a
quasiconformal map F : A — A" with F|0A = f and Dil F' controlled by the
dilatations of the quasicircle boundaries, Dil f, and max{m/m',m’'/m}.

Proof. See proposition 2.30(b) in [BF14]. O

11 Extremal length

Two good references for the topic of extremal length are [Ahl10] and [Oht70].
Given a path family I' on a Riemann surface X, we let £(I') denote the ex-
tremal length of I'. The extremal width of I is W(I') = 1/ L(I).

Lemma 11.1. Let I’ and I be path families on a Riemann surface X. If each
v € I' contains some ~" € I, then L(I') > L(I").

Proof. See theorem 4-1 in [AhlI10]. O

Lemma 11.2. Let f : X — Y be a non-constant holomorphic map. Let I' be
a path family on X. Then L(f(I')) > L(T).

Proof. See theorem 2.11 and the remark preceeding theorem 2.14 in [Oht70].
Alternatively, see lemma 4.3 in [KLO09c]. O

Lemma 11.3. Let f : X — Y be a K-quasiconformal map. Let T" be a path
family on X. Then K~' L(T) < L(f(T")) < K L(T).

Proof. See Theorem 2.2.1 in [FMO07] for a proof when f is C''. The same proof
holds in general by Fuglede’s theorem. O]

12 Weighted arc diagrams

The study of weighted arc diagrams first appeared in [Kah06].
Let S be a hyperbolic Riemann surface of finite type, without cusps. As-
sume that S is not homeomorphic to an annulus and that the ideal boundary

of S, 0'S, is non-empty. We define S = S Ud'S.

21



A path v : (0,1) — S is proper (in ) if it admits a continuous extension
v : [0,1] — S such that v(0) and (1) belong to 9'S. A homotopy
H:(0,1) x [0,1] — S is proper if for each t, v, : s — H(s,t) is a proper
path. We denote by [y] = [v]s the proper homotopy class of a proper
path ~.

An arc in S is the proper homotopy class of a proper path. We say that
a is trivial if for any compact set F' C S, there exists 7 € a such that
vy CS\F.

Let A = A(S) be the set of nontrivial arcs in S.

An arc diagram X on S is a subset of A consisting of non-crossing arcs:
For any o and 8 in X, there exist v € a and 0 € 3 such that yNd = 0.

A weighted arc diagram W on S is a function A(S) — [0, +00) such that
supp(W) = {a € A(S) : W(a) > 0}

is an arc diagram on S. If f : R — S is a proper, holomorphic map, then
we define a weighted arc diagram f*W on R by (f*W)(a) = W(f.a).

Let X and Y be weighted arc diagrams on S. Given ¢ € [0,+00), we
write X <Y + ¢ if for every a € supp(X), we have X(a) < Y(a) + c.
Consequently, the set of weighted arc diagrams on S is partially ordered
with respect to <.

We define a norm on the set of weighted arc diagrams:

X =2 X(a).

acA

The canonical weighted arc diagram W.,, on S is defined in the following
way. Choose a holomorphic covering map 7 : D — S. Let I' be the
group of deck transformations of 7, and let A C 0D be the limit set of I'.
Then S is conformally isomorphic to D/T", and 7 extends continuously
to a covering map 7 : D\ A — S. We can lift a representative 7 of
an arc « in A(S) to obtain a proper path 7 in . The proper path
~ joins two connected components, I and J, of (OD) \ A, and there is
a conformal map ¢ : D — (0,a + 2) x (0,1) C R? = C such that ¢
extends to a homeomorphism (D, I, .J) — ([0,a + 2] x [0,1],[0,a + 2] x
{0},[0,a + 2] x {1}). We define Wean(a) = max{0,a}. If Wean(a) > 0,
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the conformal rectangle ¢~*((1,a + 1) x (0,1)) embeds into S via ,
and we call R(a) = 7(¢7'((1,a + 1) x (0,1))) the canonical rectangle
corresponding to «. It can be shown that We.,(«) and R(«) are well-
defined, independent of the choice of m and 7. There is an obvious
foliation of R(«) induced by the vertical foliation of (1,a+1) x (0,1). If
« and [ belong to supp(Wean), then « # 8 implies that R(«) and R(f)

are disjoint.

e A Borel set F is called a proper lamination on S if there are disjoint
proper paths L, : (0,1) — S such that F = J_ L,((0,1)). We can write
F = Uaeas) F (@), where F(a) = {L, : @ = [Ly]|}. By associating to
« the extremal width W(F(«)), we see that the proper lamination F
induces a weighted arc diagram Wx. Weighted arc diagrams induced
by proper laminations are called valid. If f : R — S is a holomorphic
covering map, then f*F is a proper lamination on R, and Wgr = f*Wg.

Lemma 12.1. If X is an arc diagram on S, then | X| < —3x(S). In particular,
if S is homeomorphic to a disk minus N points, then |X| < 3N.

Proof. Complete X to a triangulation, and use the fact that each triangle
meets 3 edges, and each edge meets 2 triangles. O]

12.1 Domination

Let U and V, with U C V, be hyperbolic Riemann surfaces of finite type,
without cusps. Assume that U and V have non-empty ideal boundary and
that neither U nor V' is homeomorphic to an annulus.

Let v C V be a proper path. Then at most finitely many components
of y N U are proper paths in U. Let (y1,...,7,) be the ordered set of these
components. The itinerary of ~ is the ordered set I(y) = ([vi])i, where []
denotes the proper homotopy class of v; C U. Given a proper arc # in V and
an ordered set («;); of proper arcs in U, we write («;); — [ if there exists
v € (B such that I(y) = (a;);.

Let X be a weighted arc diagram on U, and let Y be a weighted arc diagram
on V. We say that X dominates Y, denoted X —o Y| if we can write

X =D wijai
(2]
Y < Zviﬁu
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where for each 4, we have (;;); — £; and > _; w; jl < v;'. We will not deal
directly with the definition of domination. Instead, domination will be appear
as a hypothesis or conclusion of some of our lemmas and theorems.

The next two lemmas follow trivially from the definitions.

Lemma 12.2. If X + B — Y, then X — Y — || B|.
Lemma 12.3. If X —Y > 7, then X — Z.

12.2 Properties

Lemma 12.4. Let W be a valid weighted arc diagram on S. Then for any arc
a in A(S),

W(a) < W(a) < Wean(a) + 2.
Proof. See lemma 3.2 in [Kah06]. O

Lemma 12.5. If f : U — V is a holomorphic covering map of finite degree,
then Wean(U) = f*(Wean(V)).

Proof. See lemma 3.3 in [Kah06]. O

Let &€ denote the set consisting of connected components of 95, and let
&' be a subset of £. An arc A(S) that joins elements of £’ is called horizontal.
An arc in A(S) that joins an element of £ and an element of £ \ £ is called
vertical. We let A"(S) denote the subset of A(S) consisting of horizontal arcs,
and we define a weighted arc diagram W = W_,,|A"S). We define A"(S)

can
v .
and W/} in the corresponding way.

Lemma 12.6. If f : U — V is a holomorphic map such that f.(AU)) C
ANV, then Wi, (U) < f*(Weu(V)).

can

Proof. See lemma 3.4 in [Kah06]. O

Lemma 12.7. If U C V (and 7 (U) < w1 (V) is surjective), then Wean (U) —o
Wcan(v) - 6|X(U)‘
Proof. See corollary 3.10 in [Kah06]. O

12.3 Hyperbolic geometry

Let W = Wean(S), and let v C S be a peripheral geodesic. We let (W,~) =
ZaeSupp(W) W(a)(v, a), where (, @) denotes the geometric intersection num-
ber of v with «a.

Lemma 12.8. If v is a peripheral geodesic in S, then
[y = (W, 7) + O(p).
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13 Moduli space and Teichmailler space

Let S be a hyperbolic Riemann surface. As a set, the moduli space of S,
denoted Mod(S), consists of all hyperbolic Riemann surfaces quasiconformally
equivalent to S, modulo conformal equivalence. Abusing notation, we identify
a representative X with its conformal equivalence class [X] € Mod(S). We
equip Mod(S) with a metric: Given X and Y in Mod(5), we define

dist(X,Y) = inf % log Dil(¢),

where the infimum is taken over all quasiconformal maps ¢ : X — Y.

As a set, the reduced Teichmiiller space of S, denoted Teich#(S ), consists
of all pairs (X, f), where f : S — X is a quasiconformal map, modulo the
equivalence ~ defined in the following way: (X, f) ~ (Y,g) if and only if
g o f~! is homotopic to a conformal isomorphism X — Y. Sometimes we
will abuse notation by identifying (X, f) with its equivalence class [ X, f]. We
equip Teich™(S) with a metric: Given [X, f] and [Y, g] in Teich™(S), we define

1
Aist([X, ], [V, g)) = inf 5 1og Dil(6),
where the infimum is taken over all quasiconformal maps ¢ : X — Y homotopic
to go f~1. If S has finite topology, then Teich”(S) is a contractible manifold

of finite dimension. A standard reference for reduced Teichmiiller spaces is
[Ear67].
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Chapter 3

Improvement of life

14 The improvement of life theorem

In this chapter, our goal is to prove an “improvement of life” theorem in the
context of pseudo-polynomial-like maps with several critical points, generaliz-
ing theorem 9.1 in [Kah06].

Definition 14.1. Let f : U — V be a polynomial-like map admitting a
primitive renormalization of period p around a critical point ¢ € Crit(f).
Let £ = J K denote the corresponding cycle of little Julia sets. We say
that the p-renormalization of f under consideration is good, or that f ad-
mits a good renormalization of period p, if f(Crit(f)) C K. We say that a
pseudo-polynomial-like map admits a good renormalization of period p if its
polynomial-like restriction does.

Remark 14.1. This condition is automatically satisfied when there is only one
critical point. It will be clear that this condition is reasonable after we prove
lemma 22.2.

Theorem 14.1. For any A > 1 and any integer d > 2, there exists an integer
p = p(A,d) > 2 such that for any integer D > p, there exists p = p(d,p) > 0
such that the following property holds: Let £ be a pseudo-polynomial-like map
of degree d admitting a good renormalization £ of period p, with p < p < p; if
mod(f') < p, then mod(f) < A~ mod(f’). -

15 Combinatorics of arcs

In this section, let f : U — V be a polynomial-like map of degree d admitting
a good renormalization of period p. Let K = U?;é K denote the cycle of little
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Julia sets corresponding to p, where for each j € Z/pZ, K;+1 = f(K;).

15.1 Swuperattracting model F of f

By the straightening theorem, there is a hybrid conjugacy between f and a
polynomial-like restriction of a polynomial P : C — C of degree d. Collapsing
each little Julia set of P to a single point, we obtain a topological sphere, and
P descends to a continuous map F, of degree d. The map F, has exactly one
p-cycle that contains topological critical points, and except for the topological
critical point at oo, the remaining topological critical points land in this p-
cycle after one iteration of Fy. By theorem B.1 in [McM94|, P, is Thurston
equivalent to a polynomial F' : C — C of degree d. This polynomial is unique,
up to affine conjugacy.

The map F' has exactly one superattracting p-cycle, O = {c¢;},cz/pz, and
the finite critical points of I are either contained in this p-cycle or land in this
p-cycle after one iteration of F'. Let D C C denote the closure of the immediate
basin of O, and let D; denote the connected component of D containing c;.
Let d; denote the local degree of F' near c;.

15.2 The tree associated with a good renormalization

Since F' is hyperbolic, K = K(F') is locally connected. In this case, the
classical Hubbard tree of F' is the legal hull of the critical points of F' and
their forward orbits. We will consider a slightly different tree, the legal hull
H of O. Let H be the corresponding finite, disked tree H U D. We think of
the components of D as the vertices of H. Each component Hj of H \ Dis a
contractible 1-complex.

Remark 15.1. See [DH] or [Dou93] for a detailed discussion of legal hulls and
Hubbard trees.

Lemma 15.1. F(H) = H.

Proof. We can write H as a union of closed legal arcs [a, b, where a,b €
OU(HNCrit(F)), and the open legal arc (a, b)k satisfies (a, b) x NCrit(F) = 0.
Then F([a,blx) = [F(a), F(b)]k is the legal arc containing F'(a) and F(b).
Being a union of such legal arcs, F(H) is contained in the legal hull of F(O U
(HNCrit(F))) = O. Since F(H) is a legally-convex set containing ©, it must
contain the legal hull of ©. Hence, F(H) = H. It is obvious that F(D) = D,
so F(H)=H. O
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Definition 15.1. Given a disked tree H and a disk D C H, the valence of D
in H, denoted v(D, H), is the number of branches of H attached to D.

Lemma 15.2. For each j € Z/pZ, v(D;, H) < d; - v(Dj11, H).

Proof. Since F has finite degree, we know that F~'(H) is a finite, disked
tree. We know that H C F~'(H), because F(H) = H. Tt follows that
v(Dj, H) < v(Dj, F7Y(H)) = d;j - v(Djs1, H). O

Lemma 15.3. 1O properly contains O.

Proof. Since F(O) = O, it is obvious that O C F~*(O). Then we need only
show that this containment is proper. Note that p = |O|, and set r = |[F~1(O)].
The Euler characteristic of C\ O is x = 1 — p, and the Euler characteristic of
C\F1O)isx'=1—r. Since F: C\ F}(O) — C\ O is a covering map of
degree d, we have x' = d - x. It follows that r = d(p — 1) + 1. Observing that
d > 2 and p > 2, we see that r > p. O

15.3 Pulling back arcs

A path v C H \ D is aligned with H if its endpoints belong to distinct com-
ponents of D. A proper arc o in C\ D is aligned with H if it is represented
by a path aligned with H. Since any aligned arc is represented by exactly one
aligned path, there is a bijection between the set of aligned paths and the set
of aligned arcs. We let H denote the set of arcs (or paths, when it is more
convenient) aligned with H.

Let S be a hyperbolic Riemann surface with finite topology. If v and " are
paths in S, let (y,v) = [yN~+/| € [0, +0o0]. Given proper arcs @ and o in S,
define (a, o) = inf(y,+’), where the infimum is taken over all proper paths
and v in S representing o and o/, respectively. If A and A’ are sets of proper
arcs in S, we define (A, A') =37 s vcala, ).

The horizontal paths and arcs in C \ D are those having their endpoints
in D, and the vertical paths and arcs in C\ D are those having one endpoint
in D and one endpoint at co € C. (We will ignore paths and arcs that are
neither horizontal nor vertical. Such paths and arcs connect oo to itself.) We
denote by H* the set of vertical arcs a in C\ D such that («, H) = 0. Clearly,
H consists of the horizontal arcs « in C \ D such that (o, Ht) = 0.

Let v be a proper path in C\ D. A [ift of y is a component of F'~(y). Any
lift of v is a proper path in C\ F~}(D). Since C\ F~1(D) c C\ D, we can
view any lift of v as a path in C\ D, where it is possibly not proper. We will
only be concerned with proper paths that represent non-trivial arcs in C \ D:
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If v represents a non-trivial arc, we let F* denote the union of proper (in
C\ D) lifts of 7 representing non-trivial arcs.

Let a = [7] be a non-trivial, proper arc in C \ D. We define F*a = [J[7/],
where the union is taken over all lifts v/ C F*v of «v. By the homotopy lifting
property, F*« is independent of the choice of representative v € a. It is
possible that F*« is the empty set. We say that « is periodic if there is an
integer £ > 1 such that (F*)a D a.

Remark 15.2. The following lemma is called Pilgrim’s lemma in several papers.
(For an example, see [Kah06], from which the proof below was taken.)

Lemma 15.4 (Pilgrim’s lemma). Let o be a horizontal arc in C\ D. Then «
1s not periodic.

Proof. Suppose that « is periodic. Then there is an integer ¢ > 1 such that
(F*)*a D a. Let v be the proper path in C \ D representing o such that
7 is geodesic for the hyperbolic metric of C\ O. Since (F*)'a D a, we can
find an iterated lift v/ C (F*)%y that also represents a. The covering map
F':C\ FY0O) — C\ O, which is a local isometry, restricts to an isometry
~v" — 7. Together with lemma 15.3 and the fact that a proper arc contains a
unique geodesic, we have

Vlevo = 17 levr-to > 1V cvo = Ylevo,
which is a contradiction. O
Lemma 15.5. Let a be a vertical arc in C\ D. If a is periodic, then o € H*.

This lemma corresponds to lemma 4.6 in [Kah06], and the proof there
applies in our case with no meaningful changes.

Proof. The vertical arc a is represented by proper paths in C\D joining D; and
0o. We know that for a vertical arc «, the statement that o € H is equivalent
to (o, H) > 1. Consequently, if a ¢ H*, then every v € « intersects a path
aligned with H. In particular, v N K(F) # (.

Any v € a can be decomposed as a concatenation of two sub-paths, one of
which, 4/, is the maximal segment of v whose endpoints belong to K (F'). More
explicitly, v/ C v begins with the endpoint of v in some D; and terminates at
the last point where v meets K(F), after which the remaining segment of
trails off to co € C without returning to K (F). Let o/ = {7 : v € a}.

Since « is periodic, there is an integer £ > 1 such that (F*)‘a D a. Given
v € a, the containment (F*)‘a D « implies that we can choose a component
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§ C (F*)*ysuch that a = [§]. Then ¢’ € «’. The covering map F* : C\F~*O —
C \ O restricts to an isometry §' — /.

Let o = inf{|7'|c\0 : @ = [y]}. Suppose that p > 0, and let 7 be a geodesic
such that = |[y'|c\o. Let ¢ be the lift of 4" described in the paragraph above.
Then

Y levo = 18 levr-c0) > 18'lcvo

but this contradicts the fact that 4’ has minimal length. This contradiction
implies that © = 0, so a has a representative that does not return to K(F)
after first leaving D. It follows that (a, H)c\p = 0. O

Lemma 15.6. Let a be a vertical arc in C\ D. Then there exists an integer
N > 0 such that

N
PI0a0Ng=) :
n=0
This corresponds to lemma 4.7 in [Kah06], and again, there are no mean-
ingful changes.

Proof. The proof has two steps. First, we show that by repeatedly pulling
back a vertical arc, we can find a periodic arc. The previous lemma implies
that this arc belongs to H-. Next, we show that by pulling back such an arc,
we obtain all of H*.

We begin with the first step of the proof, pulling o back to an arc in H*.
Let v € a be a proper path in C\ D realizing (o, H)c\p. Let 7' be a lift of
7. The covering map F : C\ F~'D — C \ D restricts to a homeomorphism
F:~ —=~, so

(Y, F"'H)c\p1p = (7, H)evp.

Since F~'H D H, we see that the number of points of intersection between +/
and H is at most the number of points of intersection between ~' and F~1H.
Since F~'D D D, these points of intersection belong to C \ D. It follows that
(v, H)evp < (', F7'H)c\p-1p. We obtain a vertical arc o/ = [y/] such that
<O/> H>(C\D < <Oé, H>C\D'

Set g = . The procedure in the paragraph above provides us with a
sequence of vertical arcs {«,} such that for each integer n > 0, a1 1 C F*ay,
and (ap41, H)evp < {0y, H)evp. The sequence { (v, H)c\p},, must eventually
stabilize, so there exist integers & > 0 and ng > 0 such that (a,,, H)c\p = k
whenever n > ng. If k = 0, then a,,, € H+. Otherwise, k > 0, and we use the
fact that there are only finitely many vertical arcs 3 such that (3, H)c\p = k.
By the pigeon-hole principle, there exists n > ng such that «,, is periodic, but
by lemma 15.5, o, € H*.
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Now we proceed to the second step of the proof, showing that we can obtain
all of H* by pulling back any one arc in H+. Suppose that for some j € Z/pZ,
we have already obtained the maximal number of arcs in H' emanating from
Dj; the reasoning in the proof of lemma 15.2 implies that these arcs pull back
to the maximal number of arcs in H* emanating from D; ;. Any arc in H*+
can be pulled back to an arc in H*+ emanating from a vertex of valence one.
Since this is the maximal number of arcs emanating from that vertex, we will
be finished after pulling this arc back p — 1 more times. O]

16 'Trees of complete graphs

Let G = ({D;},H) be the graph whose vertices are the disks of D = (J D;
and whose edges are the paths of H. For each integer n > 0, we define

e the union of disks D" = F~"(D) = |J, D}, where we have enumerated
the components of D" by D},

e the finite disked tree H" = F~"(H),
e the set H"” of paths aligned with H", and

o the graph G" = ({D}}«, H").

Figure 3.1: The disked tree H has a tripod on the left.

Remark 16.1. The “edges” in the tree H™ are simply connected, proper 1-
complexes in C \ D". These are not the same as the edges in the graph G™.
The edges in the graph G™ are obtained by opening up the 1-complexes joining
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Figure 3.2: This is the abstract graph G, where the tripod has been opened
up.

disks of D™. (See figures 3.1 and 3.2.) For example, a tripod opens up to a
triangle.

Definition 16.1. A tree of complete graphs is defined inductively in the fol-
lowing way:

e Any complete graph G is a tree of complete graphs.

o Let Gy = (V4, Ey) and Gy = (Vi, Es) be trees of complete graphs. Given
vertices v; € Vi and vy € V3, the one-point union G U Gy/(v1 ~ v9) is a
tree of complete graphs.

Remark. The “tree” structure in a tree of complete graphs is as follows: We
can think of a tree of complete graphs as a tree, in the usual sense, whose
vertices are complete graphs.

Lemma 16.1. For each integer n > 0, G™ is a tree of complete graphs.
Proof. See the proof of lemma 4.1 in [Kah06]. O

Definition 16.2. Let G = (V,E) be a tree of complete graphs obtained
through one-point unions of finitely many complete graphs Gy. Let z,y € V.
Let P be the union of {x,y} and the set of v € V such that G\ {v} is discon-
nected, and x and y belong to distinct components of G\ {v}. By lemma 11.10
in [Kah06], there is a unique ordering on the set S such that as an ordered
set, P = (z = vp,v1,..., oy = ¥), and

e for each integer j € {0,...,N — 1}, v; and v;;; belong to the same
complete graph Gy,
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e cach graph in {Gy;)}; meets at least one, but at most two, other graphs

in {Gj)};, and
e any vertex in |J; Gi(;) C G belongs to at most two graphs in {Gy(;)};-
We call the ordered set P the chain of vertices in G between x and y.

Now consider the tree of complete graphs G™. Any path v aligned with H
joins two distinct disks D, D’ C D. By the paragraph above, there is a unique
chain (D = D{,..., D% = D') in the complete graph G™ between D and D’.

Lemma 16.2. For any integer r > 1 and any path v aligned with H, the chain
(Dyfs ..., DY) in D'? in G™ between 0y := {D’, DY} C D contains at least
271 disks belonging to D™\ DU—1P,

Proof. We claim that for any integer r > 0, if ~ is aligned with H"”, then ~
crosses a disk of DU+VUP\ DP. Consider 7 = 0. Let « be a path aligned with H.
Then FP(vy) C H. Then F? maps 7 over a disk of D, because if this were not
the case, then v would represent a horizontal arc of period p. Since v C C\ D,
v must cross a disk of D? \ D. We will now show that the statement holds for
any r > 1. Let v be aligned with H"”. Then ~ joins disks of D"?. If v does not
cross any disk of DU +p \ D'P| then F"P~ does not cross any disk of DP \ D.
Since [P~ is aligned with H, this is a contradiction for the case r = 0.

The argument in the paragraph above, shows that, when r > 1 is an integer,
between any two disks of D"~1P| there is a disk of D™\ DU"~VP_ This implies
that there is at least one disk of DP \ D between 0. An obvious induction
implies that there are at least 2"~! disks of D™ \ DU"~VP between 0. O

17 Restrictions of one pseudo-polynomial-like
map

17.1 Restrictions of WY th

can

Let us return to the discussion of improvement of life: We have a pseudo-
polynomial-like map f : (U,K) — (U, K) admitting a good renormalization
of period p, with cycle of little Julia sets K C U. For any integer n > 1, we
have the n-th iterate of f, " which consists of the following data:

Un
VRN
U U.
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We have the restriction of £ to U", which consists of the following data:

ur
Un—l Un_l.

Define K = f~1(K). We have the following diagram:

U\ K — U"\ K

I |

U\ K U™\ K.

In the diagram above, f is a covering map, so it is proper. The map ¢ is proper
on K. The horizontal map is proper on U oU™.

Lemma 17.1. For any integern > 1, |[WYE(U\K)|| < [[WEE(U™\K) || +6p.

can can

Proof. The immersion i, : U"\  — U\ K is proper on K. Any vertical
path in U \ K touching K contains a path that lifts by 4,, to a vertical path
in U™ \ K touching K. Any horizontal path touching K either lifts to itself
or contains a path that lifts to a vertical path touching K;. Consequently,
the proper foliation I'V;! overflows a family of paths in U\ K that lifts by i,
to a proper foliation I" on U \ K consisting of horizontal and vertical paths.
Applying lemma 11.1 and lemma 11.2, we obtain £(I') < L(i,(T)) < L(T%).
Then
IWeR (U K| = W) < W(D).

can can

Since T is a proper foliation on U™\ K, lemma 12.4, together with the fact that
| supp WY B(U™\ K)| < 3p, tells us that W(T) < ||[Wri(U™\ K)||+2-3p. O

can can

17.2 The pulled-back W"

can

is aligned with H

Let U = U. Let ¢y = 0, and for each integer n > 1, define Gnt1 = 6d(p—1) +
3pq,. For each integer n > 0, let X" = W (U"\ K), and let X" = X" — q,,.

Lemma 17.2. X"+ < j* X",

Proof. Since i : U™\ £ — U"\ K is proper on K, lemma 12.6 implies
Xt < * X", Since ¢,41 > ¢, we are finished. O
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Lemma 17.3. f*X" —o X1,

Proof. Since f : Untl\ K — un \ K is a covering map of degree d, we have
x (U K) = d-x(U"\K) = d(1-p), and Wean (UM K) = f*Wean (U™\ K).
By lemma 12.7, U™\ £ C U™\ K implies

Wean (U ) —0 Wean (UM N\ K) — 6 - d(p — 1).

Observing that horizontal arcs in U™\ K restrict to horizontal arcs in U™\
IC, we obtain

Wean (UM K) — Wi, (UM K) =6 - d(p — 1).
Since f preserves the property of an arc being horizontal or vertical, we know

that W2 (U1 \ K) = f*X". Applying lemma 12.3 to
X" 4 gy = X" — X" —6-d(p— 1),
we obtain
FRP o X =6 d(p—1) — lgall > X" — 6+ d(p — 1)  3pg, = X"
[

Invariant horizontal arc diagrams are aligned with H

Definition 17.1. Let U and V' be Riemann surfaces, with U C V. Let A and
B be multiarcs on U and V', respectively. We say that A ~» B if for every arc
p € B, there is a set of arcs {ay} C A such that (o) — S.

We say that a horizontal arc diagram A on C\ D is aligned with H if
(A,H') = 0. We say that A is F-invariant if F*A ~» A.

Lemma 17.4. Let A be an F-invariant horizontal arc diagram. Then A is
aligned with H.

Proof. Represent the arcs of A by the corresponding unique proper paths in
C \ D that are geodesic for the hyperbolic metric of C\ O, and let A be the
set of these geodesic segments. Observing that the paths of A are disjoint and
that the endpoints in 9D of two different paths of A are disjoint, we see that
there is a vertical path 7 in C\ D such that (y, A) = 0.

Let v C F*y be a component. The covering map F': C\ F~'D — C\ D
restricts to a homeomorphism F : 4" — ~. It follows that (F*y, F~1(A\ D)) =
0. Since F*A — A, we have (F*y, A) = 0.

Repeating the procedure in the paragraph above, we find that for each
integer n > 0, ((F*)"y,A) = 0. By lemma 15.6, all of H* is obtained as
U,.(F*)"[7lc\p, so we see that (H-, A) = 0. O
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Lemma 17.5. For each integer n > 3p, supp X" s aligned with H .

Proof. For each integer n > 0, set A™ = supp X", Then lemma 17.3 implies
f*A™ ~» A" and lemma 17.2 implies A" € A"[U ™\ K. Since |[AY| < 3p,
there must be an integer m, with 0 < m < 3p, such that A"+ = A™ U1\ K,
in which case A™ is f-invariant. Then A" is f-invariant for each integer n > m.
Applying lemma 17.4, we obtain the result. [

17.3 The main inequality

In this section, we will need a superficial amount of the theory of electric
circuits developed in [Kah06].

An unplugged electric circuit C = (G, W) consists of a graph G = (V, F)
and a function W : E — [0,4+00) weighting the edges E. Given v € V', we
define Wjv =", W({v,v'}), where the sum is taken over all vertices v € V'
joined to v by an edge {v,v'} € E. We will consider the unplugged electric
circuits obtained in the following way. Let H be a disked tree, and let Y be a
weighted arc diagram such that supp(Y’) is aligned with H. Let H be the set
of paths aligned with H, and let G be the associated tree of complete graphs.
We obtain an unplugged electric circuit Cy = (G,Y’), by letting the weight of
an edge e € H be Y(e). (See sections 6.1 and 11.1 in [Kah06].)

Given two unplugged electric circuits C and C’, there is a notion of when
C' dominates C, denoted C' —o C. In what follows, we will mostly rely on
theorems that either yield domination as a consequence or exploit domination
as a hypothesis. In addition to these theorems, we will only need one inequality
that appears in the definition of domination.

Before we state the definition of domination for unplugged electric circuits,
we point out that there is the notion of an electric circuit that is not unplugged;
in other words, it is an unplugged electric circuit C = (G, W) equipped with
a battery, which is a choice of two vertices of G. Having equipped C with
a battery, there is a notion of the total conductance W(C) € [0,+0o0) of C.
(See section 11.6 in [Kah06] for the definition of total conductance.) For
our purposes, it suffices to know the inequality that appears in the following
definition.

Definition 17.2. Let C = (G, W) be an unplugged electric circuit. Let C' =
(G',W') be an unplugged electric circuit, where G’ is a graph obtained from
G by replacing some of its edges e € E(G) with graphs G'(e) C G’. Given an
edge e C E(G), let C'(e) denote the restriction of C’ to e, viewed as an electric
circuit with battery de. We say that C' dominates C, denoted C" —o C, if for

36



each edge e € E(G), we have
W(C'(e)) > W (e).

Lemma 17.6. Let H and H' be disked trees, with H > H, and let Y and
Y’ be weighted arc diagrams aligned with H and H', respectively. If Y — Y,
then Cy/ —0 Cy.

Proof. See lemma 6.1 in [Kah06]. O

Lemma 17.7. Let C = (G,W) and C' = (G',W') be unplugged electric cir-
cuits. If C' — C, then for any D € V(G), W'|D > W|D.

Proof. See lemma 11.9 in [Kah06]. O

Lemma 17.8. Let G be a tree of complete graphs. Let C be an electric
circuit based on G = (V,E), equipped with a battery {a,b} C V, and let

(a = xo,x1,...,xn_1,xy = b) be the chain of vertices connecting a and b.
Then
N
W < P Wlax.
k=1

Proof. Note that in the inequality above, we have taken the sum from 1 to N
rather than from 0 to N. See lemma 11.11 in [Kah06]. O

Having discussed the necessary theory of electric circuits, we can begin
working toward the main inequality.

Lemma 17.9. Let Y and Z be weighted arc diagrams aligned with H such
that F*Y — Z. If D and D' are disks of H, then Z|D < 2¢-1Y|D’.

Compare with lemma 6.2 in [Kah06].

Proof. Assume that j, k € Z/pZ with j < k. By lemma 17.6, Cpsy — Cy.
Then lemma 17.7 implies Z|D; < F*Y|D;. Observing that

F*YlD] = deg(F : Dj — Dj+1)Y‘Dj+1,
and
Y|Dj1 < (F*)UY|D; 4 = deg(F*U) : Dy — Dy)Y|Dy,

we obtain F*Y|D; < deg(F*7 : D; — Dy)Y|D;, < 2%7'Y|Dy, which is the
desired inequality. O
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The corollary below will be used in lemma 18.1.

Corollary 17.10. Let Y and Z be weighted arc diagrams aligned with H such

that F*Y — Z. Then .

2
max(Z|D;) < —||Y].
J p
Proof. From lemma 17.9, we deduce that for each k € Z/pZ,

max(Z|D;) < 297Y | Dy.
J

Summing these inequalities over k, we obtain

p—1
p-max(Z|D;) <271Y YD, =21 2|y
k=0

]

Lemma 17.11 (The main inequality). Let Y and Z be weighted arc diagrams
aligned with H. If r > 2 is an integer such that (F*)"?Y — Z, then for any
a€H, Z(a) < 29" max,; Y|D;.

Proof. Since Y is aligned with H, the weighted arc diagram (F"?)*Y is aligned
with the disked tree F~"PH. Since H is forward invariant under F', F~"PH D
H. By lemma 17.6, C(p«y»y —o Cz. By definition of domination for electric
circuits, we have for each a € supp Z,

Z (o) < W (Cipeymy ().

Let (D{’,..., DY) be the chain of disks in D'? C G" connecting daw =
{Dg?, DY}, By lemma 17.8, we have

2

W (Cproy <Py D,
k=1

Let I be the set of k € {1,..., N} such that D;? is a disk of D7\ DU~Lp,
Then

N
1
*\ T rp *\ T rp *\T rp
k@l (F*)*Y|Di? < @QF")Y|D? < i ngax(F )Y | DP.

kel | |
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By lemma 16.2, we know that |I| > 2"7! so 1/|I| < 1/2""'. Combining all of
these inequalities, we obtain

1 *\T T
1 R T IDE

Z(a) <

Observe that F™? = FP o F~UP maps disks of D' \ D"~1P onto disks of
D, passing over the critical orbit @ at most one time. More precisely, F(—1»
maps any disk of D' \ D~VP bijectively to a disk of D? \ D. Applying F?,
we we pass over the cycle of disks D D O at most once. Hence, if

e D7 € DP\ DU—p,
e D; €D, and
e [P : sz — Dj,

then
(F*)?Y|D}? = deg(F™ : D;? — D;)Y|D; < 27'Y|D;.

The desired inequality follows. O]

18 The restricted vertical weight controls to-
tal weight

Lemma 18.1. For any integer n > 5, we have | X™|| < 3. 224-n+4|| X|.

Proof. It follows from lemma 17.3 that if £ and m are nonnegative integers such
that ¢ < m, then (F*)" ‘X! — X™. In particular, (F*)"=P X% — X",
Applying the main inequality (lemma 17.11), we see that for any o € H, we
have

X™(a) < 270 max(X*|D;).

J
Applying corollary 17.10 to F *X% —o X% we obtain

R od
max(X|D;) < —[| X,
J p

and combining these inequalities, we see that

22d—n+4

X(a) < 1X°7].

p
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Summing over all a € supp X" and using the fact that | supp Xnp | < 3p, we
compute
2d—n+4

A 2 . N
X" < 3p- IXPP] < 3 - 22 X

It follows from lemma 17.2 that || X?|| < || X||, and we are finished. O

Corollary 18.2. For any integer n > bd, we have
. 3 .
X7 < 2%

Proof. Obviously, 3 - 22¢-"*4 < 3/4 is equivalent to 2d + 6 < n. Since d > 2,
the latter condition is satisfied when n > 5d. O

Lemma 18.3. Fiz an integer n > 5d. There is a constant Q)1 = Q1(n,p) >0
such that if |[WYB(U\ K)|| > @, then

can

1
W (UK < [Weu (U™ A L))

can

Proof. Recalling that X" = W2 (U™ \ K) — ¢, and |supp X™| < 3p, we see
that W, (UP\K)||=3pgny < [|X7P|. Similarly, | X|| < [W, (U\K)[I+3pgo.
Together with corollary 18.2, these inequalities imply

i

an

(U R)] < 2 WA\ K] + Cln,p), (1)

where C'(n,p) > 0 is a constant depending only on n and p. Combining lemma
17.1 with (1), we see that

Wt (UK < [WERHU™\ K)| + 6p

can can

= [Wen (U \ K| + [[Wea (U™) \ K) | + 6p

v n 3
< WAL + 7 IWean(UA K| + C'(n,p),
where C’(n,p) > 0 is a constant depending only on n and p. Then

1 3
WER AL < WEH UK = 7 [Wean (T L)
< [Wen(UPA K| + T (n, p).-

The result follows by taking |[WYE(U \ K)|| > 20C"(n, p) =: Q. O

can
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19 Vertical weight controls total weight

19.1 The covering lemma

Let S be a topological disk in C. Given a compact set K contained in S, let
['(S, K) denote the set of proper paths in S\ K joining K and 05S.

Let Aj, j =1,..., N, be disjoint islands in S. (See section 7.1 in [Kah06]
for the definition of an island. For us, it suffices to know that the little Julia
sets are islands.) We define X = WI'(S,J4;), Y = > WI(S, A4;), and
Z =3 ;WI(S\ Uy Ak, 4;). Clearly,

X<Y < Z

Lemma 19.1. Let S be a hyperbolic Riemann surface of finite topology, with-
out cusps, having a distinguished outer boundary. Then X = |[WY_(S)| +

O(Ix(9)])-
Proof. Write I'y = I'(S,|JA4;). It obvious that FY C I'x. Then L(F),

can Can) —

L(Tx), 50 [Wa(S)]| = W(F) < W(T'x) = X.

Let T" denote the geodesic of S homotopic to the outer boundary. Let
m @ Ap(S) — S be the annulus cover of S associated with I'. Then one
component C' of 9’ Ap(S) maps homeomorphically to the outer component
of 9'S. Let T’y denote the set of all lifts by 7 of curves in I'y to curves in
Ar(S) that start from C. Then curves of I''y necessarily join the boundary
components of Ap(S). Let Iy denote the set of all curves connecting the
boundary components of Ar(.S).

Since holomorphic maps do not decrease extremal length, £(I"y) < L(I'x).
Since I'g D I'y, L(T'y) < L(I''y). Combining the inequalities, we have L(I'y) <
L(T'x), which gives

X = W(Tx) W) = 0] = [W5,(8)] + Ofp).

]

The following lemma is a special case of the quasi-additivity law, which is
the main theorem in [KL09c].

Lemma 19.2 (Covering lemma). Fiz a number £ > 1, and let p, d, and A be
integers such thatp > 2 and d > A > 2. There is a constant L = L(d,p, A) >
0 satisfying the following property: Assume that

e U and U’ are topological disks;
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e Ky,...,K, CU and Ki,...,K, CU" are disjoint F.J-sets;

9:(U,UK;) = (U, UK;) is a branched covering map;

deg(g: U = U') =d;

° UKJ’ contains the critical values of g;

e for each j € Z/pZ, K; is a component of g~ (K);

e for each j € Z/pZ, deg(g : K; — K}) < A;

e X <Y < Zand X' <Y' < Z are the conformal moduli associated with

(U,UK;) and (U',|J K3}), respectively;

can

o and [|[WyiM(U \ UK))|| < €Y;
if Y > L(d,p,A), then X < 4EA%X.
Proof. See the Covering Lemma in [Kah06]. ]

19.2 Applying the covering lemma

Lemma 19.3. There are constants M = M(d) > 1 and Q2 = Q2(d,p) > 0
such that if |[WYB(U\ K)|| > Qo, then

can

Wt (UN K < MW, (UK.

Compare lemma 7.1 in [Kah06].

Proof. Let X <Y < Z and X' <Y’ < Z' be the conformal moduli associ-
ated with (U K) and (U, K), respectively. In this proof, we will only be
concerned with X, Y, and X’. Observe that deg(f*® : U® — U) = d°%
and deg((fP)* : K — K) < (2¢71)5%. By lemma 19.1, there is a constant
L = L(p) > 0 such that

W

an

(UP\Q)|-L<X (2)
and
X' < Wea (UK + L. (3)

Taking n = 5d in lemma 18.3, we find a constant @); = @Q1(5d, p) such that if
Wi (U K)|| > Qi then

can

can

%||Wv+h(U\’C)|| < W (U ). (4)
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Combining (2) and (4), we have
Y2 X 2 [We, (UK - L
1 v
> Z[Wait (UK = L.

can

If |[WYHB(U \ K)|| > 30L, then the above inequality gives us

can

1
Y > S WE (UK.

Now we can apply the covering lemma (lemma 19.2) with £ = 6 to see that
X S 4-6- ((2d71)5d>2X/'
Let C'=4-6-((2971)59)2. Together with (2) and (3), this implies

IWe

an

(UP\K)| < X+L<CX'+L
< CIWen(UN K[+ (C +1)L.

Combining this inequality with (4), we obtain

can

IO K] < CIWE, U\ K] +(C + 1L

If WU\ K)]] > 30 - (C + 1)L, then

can

1 v A%
EHWcaﬁh(U \ IC)H < OHWcan(U \ IC)H
Defining M = 6C, we obtain the desired inequality.
In order to obtain this inequality, we required ||[WYE(U\K)| to be at l