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Abstract of the Dissertation
Refined Convergence for Genus-Two Pseudo-Holomorphic Maps
by
Jingchen Niu
Doctor of Philosophy
in
Mathematics
Stony Brook University
2016
The moduli spaces of pseudo-holomorphic maps into an almost Kéhler manifold are fundamental
to Gromov-Witten theory. It has been speculated since the early days of Gromov-Witten theory
that these moduli spaces contain natural closed subspaces, whenever the genus is positive, that
also give rise to curve-counting invariants. This speculation was confirmed in genus 1 over a decade
ago. In this dissertation, we describe a natural subspace of every moduli space of genus 2 pseudo-
holomorphic maps that has strata of the correct virtual dimension to give rise to curve-counting

invariants. We establish most of the convergence statements for sequences of such maps needed to
show that this subspace is closed.
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1 Introduction

The theory of Gromov-Witten invariants arises from Gromov’s work [4] on pseudo-holomorphic
curves and Witten’s work [14] on o-models in physics and plays prominent roles in symplectic
topology and algebraic geometry. These invariants count J-holomorphic maps from closed, possi-
bly nodal, Riemann surfaces to a compact symplectic manifold (X, w) with a fixed almost complex
structure J tamed by w. The main object of interest in this theory is the moduli space M, (X, 4; J)
of stable J-holomorphic maps from genus g Riemann surfaces with k¥ marked points in the homol-
ogy class A€ Ho(X;Z). This space is often singular and is stratified by smooth orbifolds. The
subspace M, (X, A; J) of maps from smooth domains is of special interest because it corresponds
to irreducible (and often smooth) curves in X. Even though 9, x(X, A;.J) is conventionally re-
ferred to as Gromov’s compactification of M, (X, A;J), in general M, (X, A; J) is not dense in
M, (X, A; J). The subspace M, (X, 4; J) is dense in M, x(X, A; J) if g=0 and J is sufficiently
regular, but this is not the case if g > 1; see [18, Section 1.1]. In this paper, we investigate this
deficiency in the g=2 case in detail.

1.1 Background and overview

It was speculated back in [12] that there exists a natural closed subspace
My (X, A J) < My (X, A;.7) (1.1)

containing M, (X, A; J) such that M, (X, A;J) is dense in ﬁg’k(X, A; J) whenever J is suffi-
ciently regular. The naturality condition should include

(Ng1) for every compact almost Kéhler submanifold Y of (X, w, J),

My (Y, As J) = Mg 4 (X, A; T) 0 Dy (Y, A3 T); (12)

(Ny42) the pre-image of ﬁS(X, A; J) Eﬁ;O(X, A; J) under the forgetful morphism
fr k(XA T) — My (X, A; T)=M,0(X, A5 J)
is M 1, (X, A; J).

The first property is closely related to the existence of a sufficiently nice deformation theory for
ﬁ(g)?k(X , A; J) so that this subspace carries a natural virtual fundamental class as in [7]. The sec-

ond property determines ﬁg’k(X, A; J) with k>0 from ﬁg(X,A; J) so that the marked moduli

space satisfies (1.2) if the unmarked one does. It is thus sufficient to consider the k=0 case of the
speculation in [12].

A closed subspace with the desired properties in the g=1 case is constructed in [18]. It is described
by splitting the elements of 901 (X, A; J) into two types and describing the conditions for these ele-
ments to be inside of ﬁ?(X ,A; J). No condition is imposed for one of the types; the corresponding
g =2 type is Type 0 on page 5. A simple first-order condition is imposed for the other type; its
closest g = 2 analogue is Type 1, though Types la and 1b exhibit similar features as well. The
construction of ﬁ‘f (X, A;J) in [18] is the most fundamental step eventually leading to the proof



of the mirror symmetry prediction of [1] for the genus 1 Gromov-Witten invariants of the quintic
threefold in [20].

In this dissertation, we establish most convergence statements for genus 2 pseudo-holomorphic
maps needed to confirm the speculation of [12] in the g =2 case; see Section 1.5. This involves
splitting the elements of 92(X, A;.J) into five types at the first stage; see page 5. The first-stage
splitting is the direct analogue of the splitting in the g =1 case and is based on how the genus of
the domain can be split up. All elements of Type 0 are contained in ﬁg(X ,A;J). An element of
Type 1, 1a, or 1b is contained in ﬁg(X , A; J) if and only if it satisfies a first-order condition directly
analogous to the condition in the g=1 case. An element of Type 2 is contained in ﬁg(X VA J) if
and only if it satisfies a similar first-order condition and a more elaborate second-order condition
which depends on how the first-order condition is satisfied. This second-stage splitting takes into
account the Weierstrass and conjugate points on genus 2 Riemann surfaces.

While the precise description of ﬁg(X , A; J) is rather involved, its explicit nature sets the stage
for further applications. These include enumerative geometry in genus 2, construction of reduced
genus 2 GW-invariants (in the spirit of [19]), comparison between standard and reduced GW-
invariants (in the spirit of [17]), Quantum Lefschetz Hyperplane Theorem for reduced genus 2 GW-
invariants of complete intersections (in the spirit of [16, 8]), partial desingularization of ﬁgk(ﬂ””, d)
with specification of the associated equivariant localization data (in the spirit of [13]), and proof
of mirror symmetry for genus 2 GW-invariants of complete intersections (in the spirit of [20, 11]).
An algebro-geometric approach to studying the structure of My (P", d) is presented in [5, 6].

1.2 Genus 2 curves

Throughout this work, a Riemann surface and complex curve mean a closed connected complex
manifold of complex dimension 1 with some disjoint pairs of points identified. If ¥ is a Riemann
surface and ¥’ < ¥ is a union of irreducible components, we denote the closure of ¥ —3 in ¥
by (X')¢. Given a finite set D;: L;—> V', i€ S, of C-linear homomorphisms of vector spaces with
the same target and keZ>", we write

c({Di}ics) =k if dimg Spang (Djv;: vi€ Ly, i€S) < |S|—k.

For every smooth (closed, connected) genus 2 Riemann surface ¥, the holomorphic sections of the
canonical line bundle s, determine a double cover

Y — P(H(%5K5)%), = — {peH"(%5Ks)*: p(n)=0 VneH"(S;Ks) s.t. nl.=0}, (1.3)

with 6 branched points; see [3, p253]. We denote by WP (X) the set of these 6 Weierstrass points
of 3. The deck transformation of the double cover ¥ — P! determines a holomorphic involution
Ky on X. For x1,x9€ 3, we write x1 ~x9 if 1 =kx(x2).

For ¢€Z>9, define

[(]=A{1,....¢} and  PZ2(0)={Ic[(]: |I|>2}.



Denote by My the Deligne-Mumford moduli space of genus 2 stable curves with ¢ marked points
and by My < My, the subspace of smooth curves. Let

E, L; — My

be the Hodge vector bundle of holomorphic differentials and the universal tangent line bundle for
the i-th marked point, respectively. Let

For each i€ [{], denote by m.;: F;—L; the projection map.
For /=1, let
Way = {[Z; T1,..., x| €EMay: x4 EWP(E)}, W, =CI(W27Z) < My,
where Cl denotes the closure. For £>2, let
Coy = {[Z,:pl, o EMogr T~ xg}, Coy = CI(CM) < May.
For ¢>2, define

4
7TIP’F53 ]P’Fg = P(@ Li) —> M27g, POFg = {[vi]iE[[Zﬂe]P)Fsz,e*Cz,e: 1)1,1)27’50} c PF@,
i=1

po: PUF, — Gr(2;0),  o([v]=[viliegq) = Span@{(n(vl)v () : HEEWWE[U]}-
The closure of the graph of ¢y,
V, = Cl{([v], oulv]) [U]EIP’OF@} c PE;xGr(2;0),
is a subvariety of PFyx Gr(2;¢) with a projection map to ﬂu.

1.3 Pseudo-holomorphic maps and derivatives

Let (X,w,J) be an almost Kahler manifold, i.e. (X,w) is a symplectic manifold and J is an almost
complex structure on X tamed by w, and V be a connection on (TX,.J). For a smooth map
u: Y —> X from a possibly nodal Riemann surface and m e Z", denote by V¥ the connection on
(T*2)®"@u*T X induced by the pull-back of V by u and a fixed connection on 3. For a smooth
point xe X, let

xT

D(m)u(v®m) = {{V"}mfldu}(&. . ,_/v) € Ty X Vvel,X (1.4)

m

+

and write Dyu = Dg(cl)u. For a node x = (%, 27) between the irreducible components X and X

of ¥ so that ¥ e¥E, we define D,+u and Dgf_f)u likewise. If u is J-holomorphic near x and Dyu =0,



(2)

then neither Dg(f)u nor the span of Dy ’u and Dg’)u depends on the choice of the connections. If a
finite tuple (u;, x;)ies of one-marked J-holomorphic maps and v; €T, 3; are such that

ui(z;) = uj(xj) Vi, jeS  and ZDmluz(vl) =0€ Ty @)X
€S
then

SpanC<ZDg)ui(vl®2),{Dmiui(TmiZ}i): ieS}) < Ty (a) X
€S

is also independent of this choice; see Appendix A.
For Ae Hy(X;Z)—0, let
evltﬁo71(X, A; J) —_— X, evl([E,u,xl]) = u(ml), and 21 —>ﬁ071(X,A;J)

be the evaluation map and the universal tangent line bundle, respectively, at the marked point.
For an element

[u] = [2,u,21] € Mo 1 (X, 4; ), (1.5)

we denote by Xp X the irreducible component containing z; and by D™ u and Du the homo-

m)

morphisms D( u and D, u, respectively, described above. Let

931871(X,A; J) = {[u]eﬁoyl(X,A; J):uls, # const.}

and -
DeT (M1 (X, A;J); £i®eviTX)

be the bundle section induced by the homomorphisms Du. If ﬂ—»ﬁo’l(X , A; J) is the universal
curve and ev: 4 — X is the natural evaluation map, then D is the restriction of d,,ev to the
vertical tangent bundle of .

For fe Z™T, let

l
M1 = || {(wl, . ue]) e[ [0 1 (X, Ass J) s evi[wi, | =evi[w;,] iy, ipe[(]},
Ai,...,AgeH2(X;2)—0 i=1
Ayt Ag=A
ev: zmé,l — X, ev([ui],..., [ug]) = evi(uy).

For each i€ [/(], let
T MG, — MY (X, Az J)

be the component projection map.
For eZ™ and i€ [¢], define

Z(()QZ)Z. = {([ul],. [ ])e,‘)ﬁg : Du; =0, C(Dul,...,Dug,D(Q)ui) =2},

(1.6)
0“ ={([u w])eMG 1 : Du;=0, ¢(Duy, ..., Duy, DPu;, DO ;) =2},



respectively. For £>=2, define

0:612 = {([ul], o [w])emE ¢ o(Duy, Dug) =1,

(1.7)
C(Dul, ..., Duy, {D(2)u1 +D(2)u2}|(ker{Du1+Duz})®2) = 2}
The subspaces Zé?e);l c Zé;“?;l, Zé;zé);w are closed in Emé’l.
Denote by o o
Prp,pry: Mo x MG | —> Mo, M
the component projections. For each i€ [¢], define
Dy € F(ﬂz,g x9ﬁ€71; prm; >1“(>§H01rn((c€,plf*B(—:-v"‘TX)),
{Dg;i(vi)}(al, PPN ag) = CLZ'DUZ‘.
For /=2, let
o l
Zyy = {([E]» [u]) € Moo x MG 12 > Dyii(v)|p =0 € Hom (P, Ty () X)
=1 , (1.8)
for some Pe V|5, (vi)iepq E@(£l|m(u)_0)}'
i=1
1.4 A smaller moduli space
For Ae Hy(X;7Z)—0, we abbreviate
ﬁEﬁQ,O(XaA;J)a mEmQ,O(XaA;J)'
An element
[u] = [Z,u] e M (1.9)

is the equivalence class of a pair consisting of a closed connected, possibly nodal, Riemann surface
(or simply a curve) ¥ of (arithmetic) genus 2 and a J-holomorphic map u: ¥— X.

A (maximal) contracted curve of u= (3, u) as in (1.9) is a (maximal) connected union ¥y of the
irreducible components of ¥ so that u|y, is constant. Let x(X¢) be the set of nodes connecting ¥
with (X0)¢ A primary contracted curve of u is a maximal contracted curve ¥y with g,(Xo)=>1. We
denote by PC(u) the set of of primary contracted curves of u.

We define an element [u] of M to be of
e Type 0 if PC(u)=;
e Type 1 if PC(u)={X0} and (X()° contains one connected component of arithmetic genus 1;

e Type laif PC(u) ={Xo} with g,(X0) =1 and every connected component of (X) is of arithmetic
genus 0;



%] le— : 16

Type 0 Type 1 Type 1a
10/ \01 ‘20

Type 1b
P Type 2

Figure 1: Genus 2 map types and the associated primary contracted graphs

e Type 1b if ‘PC(u)’=2;
e Type 2 if PC(u) = {2} with g,(Zg)=2.

This notion is independent of the choice of representative u for [u]. The five types are illustrated
in Figure 1. The unshaded components correspond to the contracted ones. Shown next to each
diagram is the dual graph of the primary contracted component(s), indicating the number of prin-
cipal nodes on each component; see Section 2.1.

For {0, 1, 1a, 1b,2}, let
Mo = {[u] € M: uis of Type o }.

By definition, 91, contains 9. The subspaces 9, are pairwise disjoint, but they are generally
not closed, except for M. Figure 2 shows the possible limits of sequences of elements in subspaces.
In particular, the intersection of the closures of 9,1, and 2,1, is contained in M o.

Let [u]eM be as in (1.9) and ¥ge PC(u). For zex(o), let u,: ¥ —> X be the restriction of u
to the irreducible component ¥, (£y)¢ containing = and

Dzu= Dzux: Tx(zo)c —> Tu(x)X = Tu(EO)X .
For ¢ = 0,1, 1a, 1b, define
zm?, = {[u]eimT.: c({Dxu: xex(Eo)}) =1 VZOGPC(u)} < M. (1.10)

In particular, zmQO = M,o. These definitions are analogous to the genus 1 counterparts of these
subspaces in [18, Definition 1.1(b)].

For each £eZ™, let
Ly MQ’g X Dﬁg,l — m»rz



Mg~ My > My,

\

Mryp ——— M

Figure 2: Possible limits of sequences of elements of M,

be the standard node-identifying map. Define

MYy = | (Mo x 235 0 Waux 250,) 0 | 10(Corx 2015 U Z2),
=1 =2 (1.11)

My o(X, A3 J) = M 0 M2, LMY, LMY, LM, < AN,

As described in Section 1.5, most steps needed to establish the following statements are completed
in this dissertation.

Theorem 1.1. If (X,w) is a compact symplectic manifold, J is an w-compatible almost complex
structure on X, and Ae Hyo(X;Z)—0, then ﬁg(X, A; J) is closed in Ma(X, A; J) and satisfies the
(9,k)=1(2,0) case of (Ng1) on page 1. Furthermore,

dim}" (ﬁg(x, A3 J)— My (X, A; J)) — dim¥T My (X, A; J) — 2. (1.12)

Remark 1.2. The assumption that the almost complex structure J is w-compatible, not just w-
tame, is made for technical reasons and may not be essential. It implies that the torsion tensor of
the J-linear connection of the Levi-Civita connection on X is proportional to the Nijenhuis tensor.

1.5 Outline of the proof

We first justify the last statement of Theorem 1.1. Let 2n be the (real) dimension of X. For every
stratum M 5 of MY,

dimy" M5 = 2((c1(X), A) + n—3 — |[Edg(.7)|) = dimp* Mo (X, 4; J) — 2|Edg(.7)|,
where |[Edg(.7)| is the number of nodes of the maps in MY,. By (1.10),

dim* M7 < 2((er(X), A+ n—3 — [Edg(Z)]) + 2n|PC()| —2 3 (n+1~[x(%0)])
EOEPC(U)
= 2(¢er(X), 4) +n—3 — (|Edg(7) = 3 [x(Z0)]) ) - 2IPC(u)|
EOGPC(u)
< dimf" My (X, A; J) — 2
for any stratum M5 of MY, MY, . and mglb and any element [u] € M4, disregarding the ob-

Tla’
struction bundle over the primary contracted curves (i.e. only the non-constant maps are to be

deformed). We also disregard this bundle in computing the virtual dimensions below.



By the first equation in (1.6),

dimp" Mo < 2(¢e1(X), Ay + n—3 — |Edg(7)|) +4n — 2(n + (n+1-1))
- 2<<c1(X),A> +n—3— (yEdg(y)y—e)) — 2 < diml" My(X, A; J) — 2

for any stratum 9T of ¢y (ﬂz,g X ZO(,QZ)J). By the second equation in (1.6),

((e1(X), A) + n—3 — |Edg(7)]) + 4n — 2 = 2(n + (n—1))

dim}* M 7 < 2
< dim¥r My (X, A; J) — 2

for any stratum 974 of Lg(W“x ég)l) By (1.7),

Vlr

2((01( ),Ay+n—3— |Edg(§)\) +4n —2 — 2((n—1) + (n+1—€))
dim{ My (X, A; J) — 2

dimpy 7 <
<

for any stratum 914 of Lg(C” x Z (gz)u) By (1.8),

Vlr

7 <2({c1(X),A) + n—3 — |Edg(7)]) + 4n + 2(£—1) — 2(2n — L+1) — 2(L—1)
< dimf" My (X, A; J) — 2

dimp

for any stratum M s of ¢(Z2,r). Along with (1.11), this establishes (1.12).

We next turn to the main statement of Theorem 1.1. Since 9)?70 = Mo, 93?90 is closed in Mq.
By (1.10) and [18, Proposition 5.1], MY, is also closed in 9M,, for @ = 1,1a,1b. For the same
reasons, the subspaces

Te

gﬁol UmTla < My UMr1a, m?—l Ugﬁglb < M UMe1s,
ULZ(ZQ;e), ULE((CZéXZ(();g);u)UZQ;Z)’ Uée(Mu X Z ((]g)l) U ULE(ZM) < Mo,

=2 (=2 =1 (=2
S 3 — 2
and ULg (WQ,K X Zé;f);l) U ULg((CU X Z(();K);M) UZQ;[) c Mo
>1 =2
are closed.

The convergence of sequences of elements of 91, for e=1, 1a, 1bis about the behaviors of derivatives
of genus 0 and 1 J-holomorphic maps in sequences of such maps. We will establish the necessary
statements, which are the analogues of [18, Propositions 5.1, 5.2] in the present situation, in a
separate paper. They imply that the subspaces

m 1a Y UL@ (ng X 25?2,1) U UL@((@M X Z(();QZ);H) UZQ;@) C ,‘Jﬁﬂau,‘mﬂ,

=1 £=2
z(2) 7 (2)
le U UL[ Mg ¥ X Z 0:4; 1) U ULZ((CQI X 20;8;12)UZZ;£) c mleumTQ,
=1 £=2

0 0 0
and M v Dﬁﬂa UMy UMy My U Mg U Mgy U N



are closed.

The next two propositions address the remaining possibilities for the convergence of sequences of

clements of 9 inside of . Along with the last two paragraphs, they imply the main statement
of Theorem 1.1.

Proposition 1.3. If [u,] is a sequence of elements of M2y = Mo converging to [u] € M,y with
e=1, la, or 1b, then [u]eIM?,.

Proposition 1.4. If [u,] is a sequence of elements of MO, =M,o converging to [u] € M2, then
[u]em?,.

The proof of Proposition 1.3 is a straightforward adaptation of the proof of [18, Proposition 5.3];
see Section 5.3. The proof of Proposition 1.4 is far more intricate. It sharpens the analytic esti-
mates obtained in [18], obtains estimates on the behavior on holomorphic differentials on families
of genus 2 curves that have no parallels in [18], modifies the gluing setup to deal with bubbles
attached at conjugate points of a contracted principal component, and introduces a bootstrapping
argument to estimate the size of a solution of the ¢ deformation equation on different regions of
the domain.

As the description of 93?92 in (1.11) might suggest, the proof of Proposition 1.4 requires considering
a significant number of cases. These are distinguished by the type of the limiting map [u] € Mo
and by how the sequence [u, | approaches [u]. The former distinction is described by the split into
Propositions 6.1-6.4. The latter distinction involves the 4 cases on page 69 and further sub-cases
described on page 72.

In Section 2, we set up much of the necessary notation and terminology and describe a gluing con-
struction for J-holomorphic maps that smooths out the nodes away from the primary contracted
curves. Section 3 smooths out the remaining nodes and obtains estimates on the solutions of the ¢
deformation equation on different regions of the domain. Section 4 concerns the behavior of holo-
morphic differentials under smoothings of the domains. Obstructions to completely solving the ¢
deformation equation are computed in Section 5. The main conclusions of Sections 3-5 are applied
in Section 5.3 to obtain Proposition 1.3 and in Section 6 to establish many of the convergence
statements behind Proposition 1.4.

The bootstrapping estimate of Proposition 5.5 is used to obtain sharp bounds on the quadratic error
term in the ¢ deformation equation (5.4). This term can be entirely avoided for Kihler targets.
Restricting to such targets would significantly simplify the arguments, especially in relation to
Section 3, but would still require many of the estimates on holomorphic differentials obtained in
Section 4. The Kahler case of Theorem 1.1 would suffice for studying genus 2 Gromov-Witten
invariants of complete intersections, but it would say little in regards to the speculation concerning
the fundamental structure of Ma(X, A; J) raised in [12].

2 Analytic setup

For the remainder of this dissertation, we assume that (X,w) is a symplectic manifold, J is an
w-compatible almost complex structure on X, gx(-,-)=w(-,J-), and V* is the J-linear connection



induced by the Levi-Civita connection V of gx. The w-compatibility of J implies that the torsion
tensor Ty of V7’ and the Nijenhuis tensor N satisfy

Ty (&), € (2))

(vgg’—véf—[5,5’])|m=—§NJ(£<x),f’<x>) VeeX, £,€el(X;TX); (2.1)

see [10, Section 2.1]. We denote by exp the exponential map induced by V7. For every z€ X and
veT, X, let II, be the parallel transport with respect to the connection V’ along the geodesic

Yo - [07 1] - X> t— expm(tv)‘

A genus g X-valued map, or simply a genus g map, is a tuple
u= (%, u) (2.2)

consisting of a curve X of arithmetic genus g and a smooth map u : ¥ — X. For every irreducible
component ¥, of X, let
u, = (Ew, Uy =u|zw).

Given a constant p> 2, define
F(u)=L{(Z;u*TX), o)=L (3 (T*2)" @cu*TX).

By [10, Section 3.1],

1 1
Dy, : T(uy) — I'%'(uy,), Duw§=§(VJ’““’§+JOVJ’“w50ij)Jr*NJ(aJUw,f)» (2.3)

w * 4

is a linearization of the 0 -operator at u,, with respect to the connection V7, the exponential map
exp, and the parallel transport II,. Let

Dy: T'(u) — T%(u) (2.4)

be the corresponding linearization at u.

2.1 Maps and dual graphs

A graph (Ver, Edg) is pair consisting of a finite set Ver of vertices and an element
Edg € Sym™ (Sym?Ver)

for some m e ZZ°. We will view Edg as a collection of two-element subsets of Ver, called edges,
but some of these subsets may contain the same element of Ver twice and Edg may contain several
copies of the same two-element subset. An edge is called separating if its removal from the graph
(Ver, Edg) disconnect the graph; otherwise it called non-separating. Hereafter we use w and e to

denote vertices and edges, respectively. Every edge e will be oriented and written as (w, w;,).
An S-marked decorated graph or simply decorated graph
T = (Ver,Edg, S, g, m) (2.5)
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consists of a graph (Ver, Edg), a finite set S, and maps

=0

g: Ver — Z and m: S — Ver.

We define the arithmetic genus ¢,(7) of 7 as in (2.5) by

ga(T) = pa(T) + Z g(w),

weVer

where p,(7) is the arithmetic genus of the graph (Ver, Edg).

A decorated subgraph or simply subgraph of a decorated graph 7 as in (2.5) is a decorated graph
T'=(Ver',Edg’, S, ¢/, m) (2.6)

such that Ver’ < Ver and

e Edg’ cEdg is the subcollection of the edges with both vertices in Ver’,

e S’ is the disjoint union of m~!(Ver’) and the subcollection Edg, = Edg of the edges with one
vertex in Ver’ and the other in Ver—Ver/,

¢ g/ = g|Ver’7
o |1 (ver') = M1 (very and m’(e) =w if ee Edg, and en Ver' = {w}.

Thus, we choose the vertices Ver’  Ver to be contained in 7’ and then cut the edges connecting Ver’
with Ver —Ver’ in half and thus convert them to marked points. We define the complement of a
decorated subgraph 7 as in (2.6) to be the decorated subgraph

(T,)c = (Ver/c, Edglcv Slc) g/c’ m/c) (27)

of 7 with Ver’®=Ver— Ver'.

Let 7 be a connected decorated graph as in (2.5) with g,(7)>1. The principal subgraph
Tp = (Verp,Eng,Sp,gp,mp) (2.8)

of T is the minimal connected decorated subgraph satisfying g,(7p) = ¢4(7). Elements of Verp
and Edgp are called principal vertices and principal edges, respectively. Every principal vertex w
with gp(w)=0 belongs to at least 2 principal edges.

For a curve ¥ with marked points labeled by a finite set S, its dual graph 7y is a decorated
graph. A vertex and an edge correspond to an irreducible component and a node, respectively.
A separating (resp. non-separating) node corresponds to a separating (resp. non-separating) edge.
For e= (w},w;), let X = ¥,¢ and denote by ¥ e ¥ ¥ the corresponding nodal points. The map
m assigns the marked point labeled by s€S to the irreducible component ¥,y of X containing it,
while the map g labels each vertex with the genus of the corresponding component. The arithmetic
genus ¢,(2) of ¥ is g, (7-2) If go(X) =1, the principal curve X p of ¥ is the union of the irreducible

components of ¥ whose dual graph is 7x.p.
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o = =X

Types 1,1b 1'—0 Types 1, 1a,1b O—O Types 1,1a,1b

Figure 3: Genus 2 principal curves, their dual graphs, and compatible bubble types other than 0
and 2; each node can be replaced with a chain of spheres

For every g€ Z7° and every finite set S satisfying 2g+|S| > 3, we denote by M, s the Deligne-
Mumford moduli space of S-marked genus g curves. If 7 is the dual graph of an element of Mg,s,
let

Mg = { [XleM,s: TE:T} cMgys.

Such M7’s decompose M, g into strata.

Let ¥ be a connected curve, not necessarily stable. If g,(3) =1, then ¥p is either a smooth torus
with a complex structure or a circle of spheres. If g,(X) > 2, however, the topological structure
of ¥p can be rather complicated. A (maximal) chain C of spheres is a (maximal) connected union
of irreducible components of ¥p so that g,(C) =0 and each irreducible component of C contains
exactly 2 nodes of Xp. In Figure 3, the topological types of unmarked genus 2 principal curves
and their dual graphs are listed; the labeling g(w) is omitted if it is 0. Each node in Figure 3 can
be replaced with a chain of spheres.

The general structure of genus g maps is described by bubble types
= (T ;0:Ver—>Hy(X;7Z)), (2.9)

where T is a decorated graph as in (2.5). A (maximal) contracted subgraph of a bubble type .7 is
a (maximal) connected decorated subgraph

76 = (Ver07Eng7SO)907m0) (210)

of 7 such that d(w) =0 for all we Verg. Let x(7o) be the set of the edges connecting 7o with its
complement 7 in 7. We assume the edges of 7 are oriented so that

w, €Verg Veex(Tp). (2.11)
Define - -
Verg = Verg U {w:: eex(’]ﬁ)} ) Edg, = Edg, u x(7o) - (2.12)
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A primary contracted subgraph of .7 is a maximal contracted subgraph 7y with g,(79) = 1. We
denote by PC(.7) the set of primary contracted subgraphs of .7. For each Toe PC(.7) as in (2.10),
let

To;p = (Vero,p, Edgg, p, So;p, 9o;p, mo;p) (2.13)

be the principal subgraph of 7o and x(7o.p) be the set of the edges connecting 7p.p with its com-
plement in 7.

We define a genus 2 bubble type .7 to be of

Type 0 if PC(.7) = &;

Type 1 if PC(7) ={To} with g4(To) =1 and |x(70) "Edgp|=1;
Type 1a if PC(7) = {To} with ga(To) =1 and |x(To) nEdgp| =2
Type 1b if [PC(.7)|=2;

Type 2 if PC(.7) ={To} with g,(Tp) =2.
Every curve in Figure 3 can be the principal curve of some maps of Types 0 and 2. We note below

each principal curve in Figure 3 the remaining possibilities for the compatible bubble types.

For a genus g X-valued map u=(Xy,u), the dual graph T of ¥, together with the map
Ou: Very — Hy(X;7Z), V(W) = {tw b [ Zww]s

determines a bubble type Z,. A (primary) contracted curve Xy of u corresponds to a (primary)
contracted subgraph 7o ="Ts, ., of Z,. For =0, 1, 1a, 1b, and 2, an element [u] of 9 belongs to
the subspace M, if and only if .7, is of Type eo.

2.2 A two-step pregluing construction
We call a triple (.7, 7o, To.p) a graph framing if
e 7 =(T,0) is a genus g bubble type as in (2.9),
e 7y is a contracted subgraph of 7 as in (2.10),

e To.p is the principal subgraph of 7y as in (2.13) if g,(79) > 1 and is a connected subgraph of 7
if ga(%) =0,

and m(S) < Verg,p. Let (7, 7o, To.p) be a graph framing. We describe a two-step pregluing con-
struction. We first smooth out the nodes contained in 7. After this unobstructed step, we obtain
J-holomorphic maps from the original contracted curve ¥y with the remaining irreducible compo-
nents attached directly to ¥g. In the second step, we smooth out the remaining nodes and obtain
an approximately J-holomorphic map.

Let X 7(X) be the configuration space of genus g X-valued maps whose bubble types are .7 (not
of the equivalence classes of such maps). For ue X 7(X), we denote by ¥y.0.p € Xy,0 the unions of
irreducible components of 3, corresponding to 7o.p and 7o, respectively, and by

wp = (Buop,uop)  and g = (Tuo, uo)
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the restrictions of u to these domains. For ee Edg, we denote by E:{;e the irreducible components
of the domain ¥ of u corresponding to wE. Let

Le — X7(X)
be the complex line bundle so that
Lo = T, S4,8T, S5 Y ueXs(X),
Let

Wﬁ!ﬁz @ie —>§Z9(X)
ecEdg

be the bundle of gluing parameters. Define

|| =max {|ve|: ecEdg} sz(ve)eeEdgeﬁ, ﬁgz{veﬁ: lve| >0 VeeEdg}.
For every subset E of Edg, define

F7(E)=PL. c 7. (2.14)
eel

In particular, 7.7 = F7 (Edg). For every ve F.7, we denote by v(E) its projection to F7 (E). For
each ee Edg, we define v =v(Edg—{e}). Let

F7y=F7 (Bdg,), F71=F7(Bdg), FZ0=F7 (EdgyuEdg). (2.15)

For every Ue]-"?, we denote by vg, v1, and vgy the projections of v onto j—"?o, ]-"?1, and j—"?m,
respectively.

Let u=(Xy, u) be an element of X 7(X) so that u is J-holomorphic. We choose finite-dimensional
linear subspaces

I% (w; P) € T (Suo,p x X; 75 (T S0,p) "' ®@c 3 TX)  and

N (2.16)
I uyw) @ T(Spw x X; 75 (T ) " Qe i TX VY we Ver
5 1 ) 2 0

with the following properties:

(B1) every element of f‘gl(u; P) vanishes on a neighborhood of every nodal point of 3, contained
in Yy0;p and

' (wg,p) = {Dug o€ €€ (upp)} @ {{idxuop} n: nel® (w P}y (217)

(B2) every element of I'”!(u; w) with w € Ver§ vanishes on a neighborhood of every nodal point
contained in ¥, and

T () = { Dy, &: €€T(uy) st £(z:) =0 Vesw} + {{idxu,}*n: nel 2 (w;w)}.  (2.18)
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Let
I (u) c T(Ex X; 73(T*) " ®cmiTX) (2.19)

be the finite-dimensional subspace obtained by extending the elements of I'"*(u; P) and ' (u; w)
with we Ver§ by zero outside of ¥y,0,p and Xy, respectively.

Let 8l —> X7(X) be the unlversal curve and U c %q( ) be a small neighborhood of u. For
we Verg, the vector space I'%! (u; w) can be extended to il 7|y so that every element of I (u;w)
still vanishes on a neighborhood of all nodal points of the irreducible component labeled by w.
Therefore, we obtain subspaces

() c D (Zw x X; 7 (T"5w) " @cmiTX),  deD. (2.20)
Set R B R N
Ur(X; ) = {0 =Sy, v)eXr(X): o5/ elidxu/} TV (W)} € Xz (X).
By the Implicit Function Theorem, U (X;J) is a smooth manifold near u. For every u’ el (X;J),
the subspace of Tywid7(X;J) corresponding to the deformation with X fixed is described by
= {€eT(W): Dytefidxu/} T (u') }. (2.21)

By (2.17), u(,p=1'ls, , , is a constant map.

Fix a small precompact open neighborhood Uofuinid y(X J). Let A be a small neighborhood of
the zero section of .7-",7 7> 4= A be a family of deformations of the domains of the elements of U,
and A9 = Am}"ﬂ . The fiber of Y over ve A is a nodal curve X,,. Its bubble type .7, is obtained
from 7 by deleting the edges corresponding to the non-zero components of v and identifying the
vertices of each deleted edge. We fix a Riemannian metric on 4 and denote its restriction to 3,
by g,. For any smooth map f: ¥, — X, the metrics g, and gx determine the modified Sobolev
norms | -« lyp1 on T'(Ey, f) and | - [y on T@Y(E,, £) as in [7, Section 3]. By [15, Lemma 3.5(3)],
there exists a constant C'=C/(f) such that

[€lo,co < Clgllopr  VEET (X0, f). (2.22)

There is a collection

QEl;E2: u|Amﬁ(E2) —)u|Amﬁ(E1)’ E1CE2CEdg,

of continuous fiber-preserving retractions such that the diagrams

TW“M%?(EQ) iy HanFz e (2.23)
A ANFT (Bs) ANFT (B)
commute. For every ve A, we denote by
Qo(Br)so(Ba) ¢ Do(Es) — Yo(Ey) (2.24)
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the restriction of gg,;p, to Xy,(g,) and call it a basic gluing map. If Fy = Edg and Ey = &, the
corresponding basic gluing map is simply denoted by q,.

For every 6eR, ec Edg, u’eﬁ, and ve Aly, denote by 3y..(6) © X, the closed gy-ball of radius §
centered at z.(u’) and let

Ev;e((s) = q;1 (Eu’;e((s))a Zi@(a) = Ev;e((s) N q;l (Elilf;e)'

If ve=0, let
ze(v) = (w7 (W), 77 (1)) € a5 (Sh, x O

u’se u ;e)

be the node corresponding to e.
After possibly shrinking A, the Riemannian metric on 4 and the maps ¢g,.r, can be chosen so that
(ql) every map gg,.r, is smooth on each stratum of M|Am]?§(E2);
(q2) for every vEA, qy(g,);(E) is biholomorphic on the complement of the subspaces
" (= 2V|ve])) =
q’U(El);’U(EQ) v(E1)ze € v(E2)
with ee Fo— Fq and v, #0;

(q3) there exists a constant d, =d,(u) eR™ such that every restriction (2.24) is a (gU(E2),gU(E1))—

isometry on the complement of the subspaces q;(lEl),U(EQ) (EU(El);e(éq)) with e€ Fs— E1 and
Ve #0;

(q4) there exist a constant 03 =03(u)€R" and holomorphic functions
zgv,ze_ﬂ): Y:e(803) — C, ecEdg, u'eU, vVEA|w,

such that z} , are unitary coordinates centered at 2 (u’) and

_ 0 0 _
(#v2e0) |20 37— - =ver [zl @yl = el ol
5 ) vie o aze;u, $2—(u/) aze;u, :ve_(u’) ’ ) e ’ v e
+ _ :
Ze;v‘23;6(853)*2v;e(2\/|ve|) - ze;u’qu‘zg;e(saé)fzu;e(z,/|ve\)v (2.25)

(gb) if g(Z:f,_e) =0, the function 2=, extends to a meromorphic function on X,  such that 2F(u’)
is the only zero of zei,u/.

By (2.25), (2.23), (q2), and 2%, being holomorphic,

e

2o () (®) = 2oy (Qo(Bn)w(E) (@) (2.26)
Ve zj%);e(g&g) — Som)e(2V/|ve])  if e€e E3—Ey and ve #0;
Yo(Ba)e(803) otherwise.
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+
e

for all ee Edg, E1 < E» c Edg, and ve A. A choice of the functions z
veAly with a tuple

associates every element

0 0
. CPds .t. e=Ve 221
(U )eeEdg € S v v aZ;u/ ;1;2'(u’()>§ aZ;u/ ze (u') ( )

We can assume that 1+640; is less than the minimal distance between the nodal and marked points
of ¥y for every u'eU. We can also assume that 0, <d3<1,

16lv] <62 VweA, (2.28)
and every element of ' (u) vanishes on Yw.e(3203) for every eeEdg and every u’ elU.

For u’e(j’, let ¥,v,0 be the contracted curve corresponding to 7. For ve Al and §eR, let

0= q;l (Eu/;o)a Y;0(0) =Xp0U U e (9), evo(v) = u/(zu’;o) eX. (2.29)
eex(To)

With vy as defined immediately after (2.15), let

[(vy) = F(Zvl,u’oqvl).

By (2.18), the family of the deformations

u|Amﬁl —> Aﬁ]:gl

of the domains of elements of U extends to a continuous family of maps
Up1: By — X, VEA, st Uy (Do) =evo(v), sl €{qux o} ). (2.30)
For every ve Aly, the map @,,; determines an element
Cu;1 € T'(v1) s.t. Cuitlg, 0 =0 and  Ty;1 =expyoq, Cuit (2.31)

and a smooth map

~

gv;l: Yu50(805) — Tevo(v)X by Uy;1 = €XPevy (v) vl - (2.32)

By continuity of the family of %,.;, there exist a continuous function € = ¢,: (R,0) — (R,0) and
CeR™ such that

”Cv;l

v (i), duilup <C VueA. (2.33)

Let 8: RT —]0, 1] be a smooth cutoff function such that

5(7‘)—{17 1f7'<1/2; 6/(7”)<0 VT’E(l 1) (234)

0, ifr=>1; 27
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AL (55)
AZ)(85)
VToel
ol /5
/! s 1, 1/8
7 f Nakal
AL (55) s
- Aco(83)
\ 6é
E;’;e
—————— > Que <> cireles that are identified in X3,
Figure 4: The modified gluing map g, for ve A,y and eecEdg
For 6eR™, we define 856 C®(R;R) by Bs(r)=[8(r/d). Let
L, if xEZWO_Ueex(%) ZU§6(6<_9);
Bu: Ly — [0,1], Bo(x) = 1 Bus (|28, (2)]),  if 2€X4,e(853), eex(To); (2.35)
0, otherwise.

for every ve A.

For eeEdg, w'eU, and veAly, define
q~v;53 Ev;e(253) - 2})5;6(265) by

{Z;vg (av;e( )) = 555("2611 ) if |Z;U($)’ gdé; (236)
2ot (@ore(@)) = (1= B, (12 >|/2)) o@), i 2, (@) 0.

The map Gy is equivalent to the modified gluing map §,,;2 of [18, Section 4.2] near z.(v¢); see
Figure 4. Let

A7 (65) = {2€80,e(205): 105< |20 ()| <83} < By (2.37)
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Lemma 2.1. The map Gu,e is biholomorphic on X, (2s) — Az, (03) for every ee Edg. For every
qe[1,2), there exists CyeR such that

Hdav%e“CO < Cr, "dav;e"c*o(j;u(éé)) < Cifvel, (2.38)
- _ _ _ q
[ (vl + Izl < Cilol < [ |z;U|Q|dzew|q) <Clu,  (239)
Soie(63) Sure (86
J e lldz0| < Calvel n(jve) (2.40)
Eu;e ]

for allve A.

Proof. The first statement follows from (2.36), (2.34), and the property (q4) of the basic gluing
maps. The inequalities in (2.38) are the analogues of [18, (4.6),(4.7)] in the current setting. The
inequalities in (2.39) and (2.40) follow from (2.36) and (q4). O

Lemma 2.2. Let eeEdg, veA, and
f: E;rg;e((%) — X

be J-holomorphic. Then f = fodue : Duie(d3) — X is J-holomorphic on S.e(d3) —/ng;v(d;;).
Moreover, there exists a constant C€R such that

105514z,

p—2
lve| »
vé,p

|'U,p

<Claflss s

for allve A.

Lemma 2.2 is a restatement of the second bound in [18, (4.8)].

Given a collection E of (oriented) edges, the maps G, with e€ E' determine a single map

av;E': Yy — E’U(Edng) s.t.
G (2) = VzeXy — | |Sue(265 (2.41)
QU;E(Z) qv(Edg—E);v(z) Z€ 2y |_| U;e( 0)'
ecE
We call g,z a modified gluing map. Let
a“ - av%x(%): EU - 2fum'
For w'eU and veA|y, define
u, = (EU, Uy = U310 Guys001 © c}v) , ['(v) =T(uy), % (p) = 1% (u,). (2.42)

By the first bound in [18, (4.8)] and (2.33), there exists a constant C'€R such that

[duyv,p < C VveA. (2.43)
Since Uy;1 S0 18 constant,
U, = const. on Y0 — |_|Ev;e(55). (2.44)
eex(7To)

We denote by V¥ = V7% the J-linear connection on u*TX induced by V” and by D, the lin-
earization D, of the 0j-operator at u, with respect to the connection V7.
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3 Multi-step gluing constructions

We call a graph framing (.7, 7o, To,p) a pseudo-tree framing if every connected component 7., of
T contains a unique element ¢’ of x(7p). If a pseudo-tree framing (.7, Ty, To.p) satisfies |S| =1,
9a(T0) =0, and |Verg,p| =1, then Verg.p consists of a unique vertex

wo = m(S)
We denote such (7, 7o, To,p) by (7, To) and call it a tree framing.
For every tree framing (7, 7)), the graph (\/fe\ro,ETd\go) as in (2.12) is a tree; we call wg € Verg.p

its root. There is no obstruction to completing the pregluing construction of Section 2.2 for a tree
framing. We do so in this section by smoothing out the nodes inductively towards the root.

For every pseudo-tree framing (.7, 7o, To,p) and e€x(7To.p), let
7. = (o= (Ver., Edg,. S.. e, me), ol7,)
be the bubble type associated with the connected component of the complement of 7o.p in 7. Let
Tes0= (Vere0, Edg,.q, Se;0, Ge:0, Mey0)

be the contracted subgraph containing a marked point in x (7o) if e€ x(7o0.p) —x(70). The corre-
sponding pair (7, Te;0) is then a tree framing. If ee x(To.p) N x(7o), define Te,o to be the empty
subgraph. We first smooth out the nodes of each 7. as in the previous paragraph, and then smooth
out the remaining nodes in various ways according to the topological types of the principal curves.
The key properties for the resulting nearly J-holomorphic maps are summarized in Section 3.1 and
proved in Section 3.3.

3.1 Main statements

Let (7, 7o) be a tree framing. For we\//e\rg—{wo}, let
ew € Edg, (3.1)

be the edge containing w and separating it from wq (i.e. the removal of e,, from the tree (\//&0, E@O)
splits it into two connected components with the vertices wy and w lying on different components).
We define e, to be the unique element of Sop—x(7p) and

+
’wewO = Wg.

Denote by < the prefix order on \//e\ro so that w<w/’\if w#w' and either w=wq or e, separates w’
from wy. The prefix (i.e. the minimal element) of Ver( is the root wy. We assume that the chosen
orientations of the edges in Edg, satisty

w, < w) v 66%0.
Such a choice of orientations is consistent with (2.11). For every we Very, let

Ef = {eeETd\gO: w, =w}, V= {w’e\/fa"oz ew €ESY}. (3.2)
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For u'eU and & eR, denote by Eu/;ewo(é) C Xwiw, the gw-ball of radius 0 centered at the marked

+

point zp(u’) =, (1'). We choose a continuous family of meromorphic functions 2
wo

su’ on EUIHUO

with u’'eU so that zo(u’) is the only zero of z ., and this zero is simple. For ve Aly, let
wo

al

Yview, (0)=q;" (EU’;ewO (5)), Z:wo;v = z:wo;u, oqy: Ev;ew0(853) —C,

Evmygj = q;l <Eu’;w_ |_| Eu’;e(65)> Y we Verg. (3.3)
ecEdg
esw
We assume that the functions z;—:u, of (q4) in Section 2.2 with ee Edg, and z;O;u, satisfy
2o (T) = (z:w;u,)_l(:c) - (z;w;u,)_l(xe_(u’)) Y weVerg, ee B}, e, ,(05). (3.4)

By (2.18), the family of the deformations # —> A of the domains of elements of U extends to a
continuous family of maps

Upy: By — X, vVEA, s.t. (3.5)
Uy, (a:o(v)) = evg(v), 0yl € {qvx &U}* f%l(u’) Vu'eﬁ, VEA|y .
For every ve Aly, the map @, determines an element £, €I'(v) by
Uy = exp,, &u. (3.6)
Let 1, Cui1, and Ty be as in (2.30), (2.31), and (2.1), respectively.

Proposition 3.1. Let (7, Ty) be a tree framing and ue%y(X) be a J-holomorphic map. If A

s a sufficiently small neighborhood of u in j:?/?, the family (3.6) can be chosen so that there exist
CeR>,

o €RZY, Dy €Toyy X ¥ weVerg, veA,  with Dy = dyy (0l (%) (3.7)
e ;v
Yuse € ok (Ev;e(g(sé)) v GEEng‘—'{ewo}v vEA,
such that

(M1) for all we Verg— Very,

= O3

w! <w

fow=1, Dyw=d + (Ul)ﬂv;l (L), H§U|Ev;ew(86;7)

+
ew 0Zew ;U1

(M2) for all we Very,

Evw < C Z (|Dv;w’”vew/ | +5U;w’|vew/ |2) ) ‘Dv;w - Z er/DU;w’ < Cepuw Z |er/| )
w’EVJ ’LU’EVJ ’LU/EVJ
H5U|Egl,?u ||U,p,1 <C 2 Evuw’ 5
w' <w

21



(M3) for all ee EdggLi{ey,} and xeX,..(833),

6ol < C(IDyu 2 @) + 2t |20 @) + 3 € ),
+

w!' <wg

[dato] < C((1Dy it 142t 1760 (@) [daie] + (@), Tusello < 3 2
:

w’! <w¢

and

+ ’Yv;e) ng;w’

+
w!' <wg

1Dt | (1D 148 s Vil ) 1225 (@) 2+ 2 22, ()P

006 (00 )] <O (1P, 14,0 20Dl

€

+ <|D“?we+Hzetv(l‘”+Ev;wj|Z;v(‘r)|2)'ﬁ);e>~

Let (.7, 7o, To.p) be a graph framing. Define

Verg, p = Verg— Verg,p = |_| Ver.g < Ver, Edgg.p= |_| Edg,., c Edg,
eex(To;p) eex(To;p) (38)

Edgy,p = Edgy—Edgy,p=Edgf,pu (x(To,,) —x(70)),  Edgy,p=Edgypux(To) < Edg.

The prefix orders < on Vere, for e€ x(7o,p) determine a prefix order < on Verj, p and extend to a
prefix order < on {P}uVerg p so that P is the minimal element. Define

(w,w"y = max {w”e{P}u\//'e\rg;P: w’ < w,w'} (3.9)
for all w,w'e{P}u Ver p.
We assume that the chosen orientations of the edges satisfy
—C
w, < w; Ve e Edg.p.

The assumption is consistent with (2.11). The prefix order < on Verg; p induces a prefix order on
Ed\g(c]; p so that

e<e — wl,w;eVerfp, wl <w, Ve,e/eETd\g(c);P.
For every eeﬁcﬂ;g;]g, we denote by (e) the element of x(7o,p) satisfying (e) <e. For all e, e’elid\gg;P

with {e)={(e’), we define
(e, e’y = min {e”eEng;P: e"<e, €'}

With (w}, w}) as in (3.9),

le €'y = €t Ve,e’eﬁd\gg;p s.t. {ey={e".
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Suppose the graph framing (.7, To, To.p) is in addition a pseudo-tree framing. Define
\//(;8;13 = Verf.p u {wS: eex(To)}.

The prefix order < extends from {P}uVerj p to {P}u\//&& p so that the elements of \//&8; p—Verg.p
are maximal. Define
—c
Ef = x(To.p), Vy = {weVerO;P: ew€E}}.

For a graph framing (.7, 7o, 7o.p), define

Pe(v) = Hvez eC, Pe(vV) = v¢eype(v) € C. (3.10)

{e)<e'<e

for all ve A and eeETd\gg;P and

Pe, (V) if weVer(. p;
puw(v) = . P (3.11)
1 if we Vero.p.
for all ve A and we Verg. If in addition, (.7, 7o, To,p) is a pseudo-tree framing, we define
pw,w’(v) = Hvew// eC, Pw(U> = pP,’w(U) eC (312)

w<w"<w’

for all ve A and w,w’ € {P} u\//'e\rg;P. In particular, py (v)=1. The second definition in (3.12) is
consistent with (3.11).

Let (7,70, 70,p) be a pseudo-tree framing and ue %y(X) be a J-holomorphic map. For ve A,
define
P = q" <Zu’;0;P - |_| EU’;e((Sé))-
eex(To,p)

By (2.17) and (2.18), the family of the deformations $f — A of the domains of elements of U
extends to a continuous family of maps

Up: By—>X, veEA st Jsiiye{quxi,} TO (u) VYu'el, velly. (3.13)
For every ve Aly, the map 1, determines an element &,€T'(v) by
Uy = expy, o (3.14)

Corollary 3.2. Let (7,70, To.p) be a pseudo-tree framing and u € Z%y(X) be a J-holomorphic

map. If A is a sufficiently small neighborhood of u in j—"\ﬁ, the family (3.14) can be chosen so that
there exist CeR>9,

ow€RZ® ¥ we{PyuVeryp, vEA, Dy € Toyo() X ¥ weVery,p, veA,

Yore € C¥(Buse(805)) ¥ eeBdgyp, vEA,
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such that (M1) holds for all w € Verg — Very, the first and last inequalities in (M2) hold for all
w € {P}uVerg p, the second inequality in (M2) holds for all w € Verg p, and (M3) holds for

all eeﬁcﬂgg;]p.

By Corollary 3.2, the first two equations in (M1) of Proposition 3.1, and the continuity of the
family @, in (2.30), there exists a constant C'€R such that

e
Dowl, €viw < C Vwe Ver,. p— Verg, p.

By Corollary 3.2, the first two statements in (M2) of Proposition 3.1, and induction, there thus
exists a constant C'eR such that

—c
|Doswls €vw < C Z‘pww (v)] VweVergp, evp <C Z‘pe (3.15)
eex(To) eex(7o)
exeyw
In particular,
——cC
Do <O Ppuismr (V)] VweVergp. (3.16)
w' <w eex (7o)

By the last inequality in (M1) in Proposition 3.1 and (3.15), there exists a constant C' € R such that

60155550 b < € ( D P ayans )] +20ip)  Feex(To):

S @1
e'>(ey
By (3.12), (3.15)-(3.17), and (2.22), there exists a constant C' €R such that
Z ’pw‘j’we Z ’p<we, w U)|’ EusPs I€w v,p,1s I€lco < Clvl (3.18)

e'ex(7o) e'ex(To)
e'>e e'>(ey

for all ve A and eeE\]d/gg;P.

3.2 Further implications

Suppose (7, 7o, To.p) is a pseudo-tree framing so that 7o.p contains connected subgraphs 7Tp+,
Tp-, and T¢ satisfying

Ver(.p = Verp- LiVercu Verp+, 9a(Tp+)+9a(Tp-) = 94(To.pP)- (3.19)

The subgraph 7¢ may be empty. For u as in Corollary 3.2, ¥y,0.p thus consists of two principal
curves ¥,,.p+ and a maximal chain of spheres C; see Figure 5. Let eieEng; p be so that

Sp+ N Se = {e*} if Vere# ; Spr N Sp- ={et} ={e"} if Verc=.

Define
Ver = {P*, P~} L Vere U Verg. p, Edgb = {et, e} U Edg, b E\Jd/gg,P, ( )
’ ' 3.20
—b — ——b —
Ver = {P* P~} u Verc u Verg;P, Edg ={e",e } uEdg, u Edgg;P.
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()
S200&>

ew=e" eW=e¢; et=el

<e >e

Figure 5: A pseudo-tree framing satisfying the sentence containing (3.19)

The prefix orders < extend from Verg; p and Edgg; p to Ver and Edg , respectively, so that P~

is the minimal element of Ver and all minimal elements of Edg contain P~. We assume that
w, <w for every eeEdg?. For we {P*}uVerc, define e, e Edg® as in (3.1).

Choose
I (u; PF) € T (Sype x X 7F (T* Sy p2 ) @i TX) (3.21)
so that every element of fgl(u; P*) vanishes on a neighborhood of every nodal point of Yy p= and
T (ups)={Du,, &: e (ups)} @ {{idxups }*n: nel' (u; P*)}.
These two spaces determine I'_ (u; P) as in (2.16) so that (B1) is satisfied.

Corollary 3.3. Let (7, Ty, To,p) be as in the sentence containing (3.19) and u e X7(X) be a

J-holomorphic map. If A is a sufficiently small neighborhood of u in f?, the family (3.14) can
be chosen so that there exist CeR>Y,

—b —b
eow€RZY YV weVer , veA, Dy € Ty X ¥V weVer —{P~}, veA,
Yoe € CV(Z0e(853)) YV eeEdg’, veA,

such that (M1) in Proposition 3.1 holds for all we\/fe\rg—Vero, the first and last inequalities in (M2)
hold for all weVer®, the second inequality in (M2) holds for all weVer®—{P* P~},

|Dy.p+| < Ceyp+ YV veA, (3.22)
and (M3) holds for all ecEdg®.

Suppose (7, To, To;p) is a pseudo-tree framing satisfying the sentence containing (3.19). Suppose
in addition C contains a distinguished vertex w,. Denote by e} and e, the edges containing we so
that the removal of el separates w, from 7Tp+; see Figure 5.

— —b
The prefix order < on Verg; p extends to a partial order <, on Ver so that P, P~ are the minimal

—b
elements of Ver , w, is the maximal element of {P*, P~} Vere, and the restriction of <, to each

—b
of the two connected components of Verec—{w,} is a prefix order. For each we Ver , let

(wy = max {w' e {P*, P~} uVerc: w'<,w}.
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_— —— b
The prefix order < on Edgg; p extends to a partial order <, on Edg similarly. We assume that

——b
w, <ew] for every eeEdg . Define

+

eweBdg® by w=w,, VY we Verg —{w.},

eYeEdg® by w=w_, Vwe{P*, P~}u(Verc—{w.}).

The restriction of <, to {PT, P~} Verc extends to a total order. Along with the original partial
—b —b
order <, on Ver , this determines a new partial order <, on Ver .

For we{P*, P~}uVerc, W' eU, and vEA|y, let

200 = Lo0(85) 0 a5 (U B ).

w eVer

(wh=w
E( o)is _ Z(w') . (EZI (455)u2—1‘e+(453))’ Z(P+) _ E(

v1;0 v1;0 v1;0 v1;0

o UL (463),

s(w)is _ (fof)ouzil ow(407)) — X . (465) YV we Ver.

v1;0

Corollary 3.4. Let (7, Ty, To,p) be as in the sentence containing (3.19) and u e X7(X) be a

J-holomorphic map. If A is a sufficiently small neighborhood of u in ]??/7, the family (3.14) can
be chosen so that there exist

CeR>, E e (Sy; U5 TX) YV veAly, u'el,
—b —
5U;weR>0 VY weVer , veEA, Dy € Tovy()X Y weVerg;P, vEA,

Due| eRZY Y eefe, e JuEdge, vEA, e € CV(X1e(805)) V ecEdg’, veA,
such that
(M'0) for all ve Aly, & is locally constant on Y.,,0 outside of ¥f .(d5) with e€ {e*, e} LEdge

and satisfies

Héf}”cl(z(“’?és) < 2 Evyw’ vwe{PJr,Pi}l_IVerc;
o w'e{PT P~ }uVerc
w'>ew

(M'1) for all we Vero— Verg,

Evw =1, ’Dv;w - dl,;u(vl)a’u;l(az )’ C Z v’
o w/ <eqw
H(gv_gf;o%n;vm Oav)|2u;ew(8§;) Hv,p,l <C Z v’ 3
w' <qw

(M'2) for all weVer?,

ev;ww( S (Dol [ve, | +2vsurlve,, P) + Z(mu;enve+rve|225v;w/)), (3.23)

¢ 4
w' eV nVerg. p eeEy, nEdgy. p w<ew <ewd
s ~
H(gv_gvo%)l;vmo%}ﬂﬁlﬂ?u ”U,p,l <C § Evw’
w' <ow

and the second inequality in (M2) of Proposition 3.1 holds if we Verg p;
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(M'3) for all eeﬁagg;p, the inequalities in (M3) of Proposition 3.1 hold with (&,,<) replaced by
(60 =& 0 v 00), <o )

(M'}) for all ee{et,e” }LEdg.,
Duel <C ) v (3.24)

Wy <ew'<owy

and the first three inequalities in (M3) of Proposition 3.1 hold with ( \Dv,w: l, v, <) replaced
by ( ’Dv;e|7 (év_fvjo%}uvm O&v% <e ) .

Suppose (.7, To, To.p) is a pseudo-tree framing so that 7o.p contains connected subgraphs 7p, and
Tc. satisfying

VeI'O;PZVGI'P+ LIVGI'C+, ga(TP+)+1:ga(76;P)’ ga(%+) =0, (325)

and T¢, is a maximal subgraph of 7o.p so that (3.25) holds. Let 7p_ be the principal subgraph of
Tp,. Since Tc, is maximal, the complement 7c_ of Tp_ in Tp, is connected and may be empty.
For u as in Corollary 3.2, ¥y.0.p thus contains a maximal non-separating chain of spheres C.; see
Figure 6. Let e, e;eEng;P be so that

Sp, N Se, ={el,e5}.

A
Define
Ver® = {P_}uVerc_uVere, uiVerg,p, Edg® = Edg,—Edgp |, (3.26)
-_——a /\c7 ——Qa — 326
Ver = {P_}uVerc_uVerc, uVery p, Edg = Edg,—Edgp .

Suppose in addition C contains a distinguished vertex we. Let €s1,€e2 € Edgy.p be the edges
containing w, so that either e, ; =ej or e, ; separates w, from ej for i=1,2.

Py

I
~

X

-

X

c_
<e=<

Figure 6: A pseudo-tree framing satisfying the sentence containing (3.25)

The prefix order < on \//e\r& p extends to a partial order < on {P_}uVerc_ u\/fe;"(c); p so that P_ is the
minimal element. Denote by w_ the maximal element of { P_} 1 Verc_. This order further extends
to a partial order <, on Ver” so that w, is the maximal element of {P_}LVere LiVere, and the

restriction of <, to
{P_}uVere_ L (Vere, —{w.})
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is a prefix order. The prefix order < on ]fd\gg; p extends to a partial order <, on lfciga similarly.

We assume that w, <, w/ for every ee]*id\ga and define

ew€Bdg® by w=w] Vwe Vere_ i (Vere, —{w.}),
e’eEdg® by w=w_w Vwe Verc, —{w.}.

The restriction of <, to Verc, extends to a total order. Along with the original partial order <,
on Vera, this determines a new partial order <, on Vera.

Choose I'”! (u; P_) as in the sentence containing (3.21). Choose
I (w;Cy) € T(Bue, x X; 78 (T*Sue, ) QcmiTX) (3.27)
so that every element of f‘(l’l(u; C.) is supported on Xy, away from the nodal points of ¥y, and
I (ue, ) ={Duc,&: €€l (uc,), &(w s (w) =0, i=1,2} @ {{idxuc, }*n: nel%!(w;cp)}.

These two spaces determine I'_ (u; P) as in (2.16) so that (B1) is satisfied.

Corollary 3.5. Let (7, Ty, To.p) be as in the sentence containing (3.25) and u e X7(X) be a

J-holomorphic map. If A is a sufficiently small neighborhood of u in ]??/7, the family (3.14) can
be chosen so that there exist CeR>Y,

—a —c
€u;w€R>0 V weVer , veA, Dy € Teyg() X ¥V we Very.p, vEA,

Yose € C¥(Suie(803))  V e€Edg?, veA,  Dye€TpymX V ecEdgyp—Edgp , veA,
such that

e (M1) in Proposition 3.1 with < replaced by <+ holds for all we Verg— Very,

the first and last inequalities in (M2) with < replaced by <o hold for all we Verg pLi{w.},

the second inequality in (M2) holds for all we Verg p,

(M3) with < replaced by <o holds for all eeE\)d/gS;P,

for all we {P_}uVerc_uVerc, —{w.}, (3.23) and the last inequality in (M2) with < replaced
by <e hold, and

e for all eeEdgy p—Edgp , (3.24) and (M3) with (‘Du;wj’v <) replaced by (|Dyiel, <o ) hold.

3.3 Proofs of main statements

Proof of Proposition 3.1. We first smooth out the nodes corresponding to Edgj and obtain
the maps U, and u, as in (2.30) and (2.42), respectively. We then continue to smooth out the
remaining nodes as described below.
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For u'eU, ve Ay, and we Very, let

Xw={eex(To): wl >w}, sz{wle\/fe;o:w'Zw}uUVer&e, E; ={ecEdg: w, €V},

eEXw

U; = U(E”Z)’ Eiw = U q;% (Eu’;w/)v Ef};w = (Evi _Ziw) u{zo (U;)}a (3.28)

weViy
5 (vy) = {Ce0(wg): (g, =0}
with I'(v) as in (2.42). For we Verg, we define
v =v(E,; —E}), T'p (vh7) = {CEF(U$’>) 2 ¢(z)=0 VIZEq - (35.0) UEU:;»;w}. (3.29)
There is a natural injective homomorphism
I(vy,) — T(vh”) (3.30)

rey+
for every w' eV, .

For w'eU, let I'!(u') be as in (2.20). For ve Ay and we Verg, we will inductively construct

gv;wer‘B(U;)a 5v;w€R>0 s.t. ||§v;w|‘v5m71 < Ol (3.31)
(_9J expy, . §osw € {‘JUE X exp, . Evrw }*f‘(l’l (u’). .
Every such &,.,, determines
’av;w =6XPy, - €U§w: EU; — X, DU;w = dx;rw (ui)ﬁv;w (ﬁ) € Tevo(v)X' (332)

Cw;Vy

We will construct &,y so that ., depends on v continuously. When the induction terminates,
we obtain a vector field

& = &y €T(V) s.t. &o (zo(v)) =0. (3.33)
This vector field £, determines a family @, =1y, as in (3.6) satisfying Proposition 3.1.
Define
fow=0, cuw=1  YweVerg—Ver. (3.34)

By (2.30), this &, satisfies (3.31). Suppose w € Very and for every w' eV, we have constructed
Sy €T'B(v),) and €,y € RT so that @,y depends on v continuously and (3.34), (3.31), and
Lemmas 3.7 and 3.8 with w replaced by w’ are satisfied. By (3.30), every such &,.,» can be treated
as an element of fB(U$’>). Define

& w= Zgww,erB(Ug»), U = expuv+,>§;:w. (3.35)

w'eVy"
By the first equation in (3.35), the first property in (3.31) for w'eV,, and (2.22),

[€w vz p.1s 1€5wllco < Clo| (3.36)
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for some C'eR. Since U, satisfies (3.31) for every w'eV,},

OIS € { Q- XUy } T (). (3.37)
Let
6v;w = avi;EJ: EUE —>EU$,>, ﬁv;w = ﬂ{;woav;w. (338)
We note that
Uy, Upy = const. on Y q;% (Eu/;w— |_|Eu/;e(5(§)>, (3.39)
eEElf
Uy = Uyt OGusw,s Uy = €XPy, (&0 quiw)- (3.40)

With I'_(u’) as in (2.21), define
Ip_(u') = {€eT_(u'): &|yom)=0}. (3.41)
Since o’ |gu,; , is constant, every element of I'p _(u’) vanishes on ¥,0. Let
L (@) = {CeT @) Gl =0} T (@) = 1T @ur)s 1l —0),
T (o) = {(llg;w((ngmgoqm)qu;,>))oau;w: serB,_<u’>} CTp(iva).  (342)
We denote by I'p (ﬁv;w) the L?-orthogonal complement of I'p— (ﬁu;w) in'p (ﬁv;w).
For Cel'p(typ), let
TS (o ©) = T ({0 xexpa,,, (T (W) © T (@) (3.43)
Let F%}Jr (ﬂv;w; C) be the L?-orthogonal complement of F%}_ (Upyw; €) in I‘%’l (ﬁv;w). We denote by
71%’;1;?—;”;(: F(J)él (av;w) - F%,li (ﬁu;w; C) (3.44)
the associated L?-projections. It is straightforward that there exists a constant C'€R such that
nht ) = w5 e < CIC—C izl (3.45)
for all Ty (fly; ¢) and sufficiently small ¢, (€T p (fyuw).-
We denote by V¥ =V/@uw the J-linear connection on Uy, TX and by
Dpwiw: T (tivw) — g (o)

the restriction of the linearization Dy, of the 0j-operator at Uy With respect to V7. Similar
to [15, Lemma 3.16(1)], there exists a constant C'€R such that

ICvz p1 < CIDB wwlllvz p VweA, (el'p+ (av;w)- (3.46)
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Let f%i (@) be the image of T'g ;. (@y;w) under Dp,yyp. For sufficiently small ¢ € Dp 4 (Guw),

0,1;+

.. ~0,1 [~ . . . o
the restriction of T B wsC to B, +(uv;w) is an isomorphism. The norm of its inverse

fg;v;w;( : F%,l-&- (av;w; C) - f‘%}-&- (aviw) (3'47)
is bounded by a constant C'eR; see [15, Lemma 3.16(3)]. Let

~0,14+ e+ 01+ . 0,1/~ ~01 [~
Bvsw;¢ T fB;U;w;COﬂ-B;U;w;C‘ 1-‘B (uv;w) - FB,+ (Uv;w)-

By the boundedness of (3.44) and of (3.47), there exists a constant C'€R such that

¥ty < Clnlozp ¥ 0eTH (fuw)- (3.48)

The restriction of 7?%1;;} ¢ to f%’l 4 (@U;w) is the identity map by definition.

The Contraction Principle as used in the proof of [15, Lemma 3.18] implies that the equation

Pt (11 (07 exp5,,€) ) = 0 (3.49)

has a unique small solution R
Cv;w € FB,-i— (av;w); (350)

see the proof of Lemma 3.6 for more details. We define €, as in (3.31) and &,., by

Evyw = HCU;w ’v;,p,lv eXp%g gfu;w = expav;va;w‘ (351)

By the second equation in (3.51), (3.39), and (3.50), &,.w € I'p(v,,). By (3.49) with ¢ = &,;w

w
and (3.43), &, satisfies (3.31). By the continuity argument in [15, Section 4.1], (y.p and &pu
depend on v continuously in the sense of [15, (4.2)].

The two equalities in (M1) follow from (3.34) and (3.32), respectively. The last property in (M1)
follows from (3.33) and Lemma 3.7 below. The first property in (M2) follows from (3.51) and
Lemma 3.6 below. By the proof of the r=1 case of [18, Lemma 3.5(2a)],

Do = D (Do + Eour) Ve, With  [Epur| < ClCuwlloz pa (3.52)

w'eVyh

for some C'eR. Along with (3.51), this implies the second property in (M2). The last property
n (M2) follows from (3.33) and Lemma 3.7.

For ee Edgyui{ew, }, we define

Vet Yue(8d3) — R, Vose(®) = Z ‘Vv;wfv;w'

w' <wd

(3.53)

.

By the first equation in (3.51), 7y satisfies the third property in (M3). The remaining three
properties in (M3) follow from (3.33) and Lemma 3.8 below. O
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Proof of Corollary 3.2. Denote by vo and vgy the projections of ve A to
Ap=An %T?(Edg— (Edgg.pu X(To;p))), Agy = A~ F7 (Edg—x(To.p)), (3.54)

respectively. By Proposition 3.1, the family of the deformations {|a, — Ag of the domains of
elements of U extends to a continuous family of maps

QNLU;Q = eXpuUQfU;Q: sz — X, UQEAQ, (355)
such that
av;Z (EUQ;O;P) = eVO(UZ)v aJav;Q € {q’UQX 271};2}* Fgl(u/) v u'eU, U26A2‘u/’

and for every ee x(7o.p) the restriction ﬂfje)Z of .2 to the curve ¥,,.. corresponding to (7, Te.0)

satisfies the conclusions of Proposition 3.1.

(e)

The objects associated in Proposition 3.1 with all such ﬁU;Q determine
€vpws Doy Vwe\//&g;lg, Yvase VeeETd/gg;P,
satisfying Corollary 3.2 with v=1wvs. Define
gv;Q: Yie(803) — eVQ(’Ug)X st Uy = eXpeV()(’UQ)E'U;2 Veex('ﬁ);p). (3.56)
We note that there exists a constant C'eR such that
[€v2loept < Ceyy s Veex(Top). (3.57)

If ee x(To.p) N x(7o), this equality holds by the continuity of the family ﬁge)Q and the first property

in (M1) in Proposition 3.1. If ee x(7o.p)—x (7o), then the restriction of u,, to X,,..(8d3) is constant
and hence the restrictions of &,,2 and &2 are the same. The inequality in (3.57) then holds by the
last bound in (M2) in Proposition 3.1.

For every ve A, let

vp2 = U(Edg—X(%;P)), Uy = av;Qoqw;Umoqu;X(To;P): Yy — X,
L (o) = { <H§v;2<(HCv;1 (§oqul)> Oq”2>>oqu;vp2oav;x(%m): §eF_(u’)} < I(fi2), (3.58)
ot (ﬁv;g; C) = Hgl ({qv2>< expﬁmg“}*f‘(l’l(u’» 1ot (ﬁv;z) v CeI‘(ﬁvg).

Denote by T', (ﬁv;g) and Fg’l (ﬁv;g; C) the L2-orthogonal complements of I'_ (ﬁv;z) and T (ﬁug; C)
in F(ﬁv;g) and 91 (av;z), respectively. Let

W%lviz L0 (Gu2) — T (i Q)

be the associated L2-projections.
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By the same reasoning as in the proof of Lemma 3.6, the equation
~0,1; —1/3
i (17! (@ expa, ,€) ) = 0 (3.59)

has a unique small solution EU;26F+ (@U;g) and

ol < € X (el i) (360)
eex(To;p)
We take

~ = Uy ~ T

Uy = eXan;QCv;% Yve = 7U2;e+‘vuu’2Cv;2‘ veEEng;Pv (3-61)
. Cor , ifw=P;
Dyw = Doy VweVerg.P, Evw = HCU’QHU’p’l . —c (3.62)
’ Evasw) if we Ver.p.

Since @, solves (3.59), it satisfies (3.13). The two equalities in (M1) and the second inequality
in (M2) for we Ver§ p follow from the corresponding statements for (7, 7e,0). The last properties
in (M1) and (M2) are obtained as in the proof of Lemma 3.7. The first property in (M2) follows
from (3.60) as in the proof of Lemma 3.6. The last property in (M3) holds by the definitions of
Yose and €,y and by the corresponding statements for (7, 7e;0). The first two properties in (M3)
are obtained as in the proof of Lemma 3.8. O

Proof of Corollary 3.3. We apply the proof of Corollary 3.2 with 7y.p replaced by 7Tp-. One
of the tree framings (7, Te;0) to which we apply the proof of Proposition 3.1 in this case contains
Yu.p+, a union of irreducible components of 3. We treat it in a single inductive step as it

—b
corresponds to a single element of Ver . The only statement in the proof of Proposition 3.1 that
does not apply to this vertex is (3.52); it yields the second bound in (M2). On the other hand,

Uy p+ = eXpuU> gv;P+ = eXpﬁv'PJr CU;P+
Pt ’

is J-holomorphic on XY, . (883) and @, p+ is constant there. Thus, the bound in (3.22) on
pt ’

D o = % __ 90
v; P+ dx; (U;+)UU,P+ s

e+"U>
w7y
follows from Lemma A.8 and the first equation in (3.91) with w=P*. O

Proof of Corollary 3.4. The following proof applies as long as there is a total order on a parti-
tion of the irreducible components of ¥,y.o. p into connected unions. In particular, this proof applies
to the setting of Corollary 3.3, although it would lead to weaker conclusions.

For w e {P*, P~} u (Verc —{w.}), let w+1€ {PT, P~} Vere be the immediate successor of w
with respect to <o. For each we {P*, P~}uVere, let (J; Two) be the tree framing determined
by the vertex w and the sets V.5 with w'e \//Y;"g;p and e,y 3 w; see (3.28) for the notation. We
denote the corresponding graphs of .7, and Ty.0 by (Viy, Ew) and (Viy.0, Ewso), respectively. Denote
by 7,7 the bubble type corresponding to the graphs of .7, with w’ € {P*, P~ }uVerc and v’ >, w,

33



by EZ* cEdg its edges, and by Eﬁ,‘,w C X the union of the irreducible components corresponding
to 72+, For veA, let

v =v(EZ), S = q>,(2/-) 3, >, uzl, =1 e lsze Sow—X VwveA

Vw yw

Let u(y,) = (Z(w); Uw)) be the component of

uel c H Uz, (X,J)
we{P+,P~}uVerc

corresponding to .7, and (Nf(w) be a small neighborhood of u,, in Uz, (X,J). By (2.17) and (2.18),
the evaluation map N
evp: U(w) — X

at the primary contracted component Ty, of .7, is a submersion. Thus, there exist §e RT and a
smooth map

eViTX — Uz (X,J), Y —uly

~ 3.63
s.t. uy, =u Yu'ely, evo(uy) =expey, ) Y VY €T X, [Y]<0. (3.63)

u

For every u},, we smooth out the nodes of .7, contained in Edgfj and obtain a map @y ., as in (2.30).

Applying Corollary 3.2 with P = w, to (Z,, Tw.:0), we obtain a continuous family of nearly J-
holomorphic maps

ai;u. = expuf;gu. v; w. E;;u. — X
as in (3.6). It satisfies all requirements of Corollary 3.4 for (ﬂw%',ﬂi’;o) =(Twes Twe:0)-

Suppose we{P*, P~} (Verc—{w.}) and we have constructed a continuous family of maps

ai;u+1 = expui' . gv ;w1 Ev ;u+1 — X (364)
as in (3.6) satisfying all requirements of Corollary 3.4 for (7,7, 7.2 +1 o) Define
Yv;weTevo( )X by eXpeVO(U) Q75w+1 (.’I):w (Ui-.‘rl)) VU€A| , u/eﬁ
fi;wer( (w);v;lTX) by eXpﬂ(w);mgv;w: (w);Yoswivs;1 o

By the smoothness of (3.63) and the assumptions on (3.64),

0(853) S ClYpw| = C‘fu w+1( ( w+1 < Z v’ - (3.65)

w'e{PT,P~}uVerc
w'>ew

7p717

Ze

For each ve Aly, let u/"o be the map obtained by identifying 2 uv +,+1 at the marked point z % (v2%,)
With @(y);y,.,:0;1 at the marked point Zw(v1). Define

o« _ ,,=e0 ~ . >

w T uvﬂu © q'U(Ei. _Ew;O);U(Ei. —X(Tw;0)) © qvi'§x(7~w;0) : E/UVLU — X
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We apply the proof of Proposition 3.1 with wg=w if we Verc or Corollary 3.2 with P =w if w= P*
to this family of maps. It provides a family of maps

NZe — Ze __ . Ze
Upy = €XPyze £50) = expﬁmjfv;(w). Yo — X

satisfying the conclusions of Proposition 3.1 for (Ei;u,fv;(w)) if w e Verg or the conclusions of
Corollary 3.2 for (473, & (w)) if w=P*. Along the way, we obtain

D e

v;w’ ﬁ(w);Yv;w;u;l(we_w (Ul))

X VeV
as in (3.32). Define

Dv;w,:(n;j;wpgw),) € TouyX Yw'eVin,  Due, =TIyL dos (o0)To0

Jw Y'U;’LU Leqy (vw

Since
20;0 jovd
Uy (qv(Ei’—Ew;o);v(E5°—x(Tw;o)) (qvi‘;x(Tw;O)(x)»

s ~ -1
= expui;u(x) (é’u;w (qU(Eio _Ew;o);U(Ei' _X(Tw;O)) (qvia ;x(Tw;o) («T))>> Vxe qvi. ( UZu/;w/) ’

w'eVy,

Lemma A.3 and (3.65) imply that &3, satisfies the requirement of Corollary 3.4 for (7,7 =

)

).
We patch &, with £, over X, ., (49), which does not affect any bounds over E:}L 9). O

u/;ew =e ;ew (

Proof of Corollary 3.5. We apply the proof of Corollary 3.4 to the tree framings (7, Tu0) in-
ductively over we Vere, , with respect to the total order <, on Verc, . By the choice of f’%l(u; Cy)
as in the sentence containing (3.27), we can assume Yy, =0 and &, for every weC. Thus, the
proof is much simpler in this case. We denote by 1,.c, the resulting map. In particular, the values
of Uy, at the nodes corresponding to e}, e are equal to evg(v).

When the above induction terminates, the resulting bubble type does not form a pseudo-tree
framing. On the other hand, the maximal chain of spheres C; attaches either directly to 7p_ or to
a single irreducible component of C_. Thus, the proof of Corollary 3.2 for P= P_ still applies. [

3.4 Technical lemmas

Lemma 3.6. There exists a constant C€R such that

[Gosul 1 < € X (1ol |+ v, )

w'eVy
for allve A and we Very.

Proof. Consider the quadratic expansion
ng(gj CXPiiyw Cv;w) = éJav;w + DB;vswCow + NBww (Cvﬂv)’ (3.66)
where Np.,.p is @ quadratic term. Analogous to [18, (4.27)], there exists C'€R such that

NB;v;w(O) =0, ‘|NB;v;w(o_NB;u;w(€/)|| < C(HCHvz,p,l"‘HC/Hvz,p,l)”C_C/va,p,l (3'67)

>
VP
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for all ¢, ('€l g(Ty;w) sufficiently small. By (3.49) with ¢ replaced by Ev;w and (3.66),

%%};tufv’w (éJaU?w + DBW;wCU;w + NB;U;w (CU;uJ)) =0. (368)

Therefore, there exist constants C, C’'€R such that

Hgv;w ”v;,p,l < C”DB;U;wEUWH%,p = C“%%.I;.tu.ng (DB;U;wgv;w)Hv;,p

Cl (‘ N?glv-‘;, Ev;w éﬂ%; Hv; P

2
w1 )

The first inequality above follows from (3.46), the equality there is due to the sentence after (3.48),
and the last inequality above follows from (3.68), (3.48), and (3.67). Since (pyp is small, we
conclude that

~0,1;+ 2 A~
HCU w”Uqu!l <C ‘ B W Ev;wa‘]uvi Hv;,p

(3.69)

for some CeR.

By (3.38), (q2) in Section 2.2 with (E4, FE2) = (E;, —E}, E;), (3.37), and the assumption be-
low (2.28),

supp (05 Uusw) © ( |_|Ae . ) (Buz —Z0z:0(803)); (3.70)

6€E+

see (2.37) and (2.29) for the notation. The restrictions of 0., to each Ae o (03) and to
v> 0(856) _Zvi;O(&sé)
extend to X,> by zero.

By (3.38), (2.41), and (q2) in Section 2.2 with (E1, E2)=(E,, —E}, E.)),

a(e0n) D (EJ““w|quw( 35;0(865))) = (205 (3.71)

Along with (3.37) and (3.43), this implies that

(saa)eqvw<{Q+>><uUw}F )) T% (G 0).

By the definition of the operator 77%;1;;;0, this means that
im0 (008 (8%)) — 0. (3.72)
By the boundedness of the operator f};v;w;:};w in (3.47), (3.45), and (3.72), there exists a constant
CeR such that
P, (ol ), < Clmnlbana[0rtumnlse ], 5.73
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Combining (3.73), (3.71), and (3.35), we obtain

~O,1§+ [ A~ ~ =~
HWBE’UVLU?ZU;w( ixo(&sé)) (T2 ) < CHCU;wHUi’p’I 2 HaJUU;w/HUZ”p. (374)
v v w'eVy
Since 0yu=0, there exists a continuous function €, : (A, u) — (R,0) such that
1.5 0 loxp < €wlv) ¥ w' eVl (3.75)
By (3.70), (3.74), (3.75), and (3.48),
~0,1; ~0,1; A A~
‘FB;v:u;Ew S s < 2 H B &J;w(a’“ww}ﬁ; )H + O €w(V)Goswlv po1
ec R (3.76)
<O % [ortulic oy, oGl
ecEd wP
After shrinking U and A if necessary, from (3.69) and (3.76) we obtain
H vy,p,1 <C Z Ha‘]uUw|A_ >((5 Mo (3'77)
ecE
for some CeR.
By (3.38), (3.37), (3.35), and Lemma 2.2, there exists a constant C'€R such that
PN ~ P—2 +
Ha"“”%m;ug Gz p < Ol |2$>+;e<2|ve\/6a>”vn,p“)e' v VeeE,. (3.78)

We

By the first equation in (3.32) with w replaced by wf, (2.44), and Lemma 3.8 for the pair (w],e),
there exists a constant C'eR such that

2 pt2
|z, w |E+ (z\vel/ég)Hv>+ p S C(|Dv;w:||ve|1ﬂ +E Ve ) VeeE! nEdg,. (3.79)
+ We

we

By (2.33), Corollary A.9, the second equation in (3.32) with w replaced by w/, and (3.34), there
exists a constant C'eR such that

Hdu

viwd |E

2 pt2
ol p < CODellvel? Heyelud ) VeeBfax(T).  (3:580)
T

e
we

Lemma 3.6 follows from (3.77)-(3.80). O
Lemma 3.7. There exists a constant C R such that

va;w|21}5;e(86;)|‘v5,p, 0250 w’ Hgv;w E:g;m Hvi,p,l <C Z Evsw!

w<w'<wd w=<w' <w;

for all ve A, we\//aro, eex (7o), and wj € Very.
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Proof. By (3.31) and (3.28), it suffices to prove Lemma 3.8 for e€ x,, and w; >w. Let
€l = Ew0ow € T (v]). (3.81)
By (3.81), (3.40), and (3.51),

~ - o _ o
Upw = eXPuUE gv;w’ eXpuvi év;w = eXPexpu >£$va;w- (382)
Yw

By (3.35), (3.29), and (3.34),

Chw(@) =0 Vaeguw(EiR,) S X oy
) ( ) NUw( w ) :er 3 (383)
f;w(:r) =0 V € Qo (Ev;;e<863))7 ee B nx(To).

By (2.41) and (g3) in Section 2.2 with (Ey, Ey) = (E,, —E;, E;), the restriction of ., to

( vz0(863) — | [Zuz: 5a> (Uw( Yol |G (Sus: (&sa))) < oz = JZuze(26;) (3.84)

ecEdg eeEJr ~x(To) ecE

is an isometry onto its image.

By the second equality in (3.82), (3.81), (3.36), and Lemma A.3, there exists a constant C'eR such
that

o () = &y (For(2))] < C |Corw(2)],
‘vvwfv;w_vv (fv;woqv;w)‘x (385)

(19, + (ot 19 (6ot ) (€l + ) )
By (3.85) and (3.36),

‘§U§w‘$ < C(’é:'::w ’av;w(fc) T ’EU;w,Jj) ’

> > ~ ~ (3-86)
VY% €| < C(|V% (&t 0Tusw) |, + |V Cosl, + |dxuvi|(|g;w|qw(x)+|<v;w|x))

for all ze¥,>. By (3.86), (3.83), the sentence containing (3.84), (2.43), and (2.22),

Hgv w‘zl vy ,p,1 S (Hgv W|QU sw (E) [l p,1+ HCU;va;,pJ) (387)
YV open Y Yoz — Uzvi;e(‘sé)'
ecEdg,
By (3.87) with ¥/ = Yo the first line of (3.83), and the first equation in (3.51),

va%wbﬁ%;wuv;,m S CHC’WHvz,p,l = Cevu- (3.88)

This establishes the second bound in Lemma 3.7 for w;=w
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For wy € Verp with wy > w, let w’' eV} be such that w' <w;. By (3.87) with ¥’ =" " and the

W1

fact that (71);11)(21“;l> wl) Evmn/ jw?
eolse g pa < C(Jeuartone Ly ool ) (3.80)

The second bound in Lemma 3.7 follows from (3.89), the second bound in Lemma 3.7 with w
replaced by w’, and the first equation in (3.51).

For e€ xy, let w'eV,} be such that w'<w;}. From (3.87) with X' =3,>..(803) and

(711?10 (Z’L%;e(S(Sé)) = EU;,;6(855)7

it follows that

ozt + [l L) (3.90)

Hgv;wbvi:e(&;@) vg,pl\ (HSUW b v e (863)

The first bound in Lemma 3.7 follows from (3.90), the first bound in Lemma 3.7 with w replaced
by w’, and the first equation in (3.51). O

Lemma 3.8. There exists a constant CeR such that

ol < O(IP e 12 ()] + 2 2 |2+Zevw)

w=<w’ <w

‘dmfv;w’ < C((’DU;w§|+EU;w§|Z;’ug ('T)D‘dma W3¢

)

w=w <wg

and

w

)ZEUw

w<w’ <’LU

0 (a0, 0oo)| < € (Pt 6t (DI

w=<w' <wg

Hm%mmwﬂ%%%mﬁ%ﬁmw<W+%@mmmw

4 (1Dt 1o (@) 2yt 12 (@) X9 )

’LU<1,U <’LU
Proof. By (3.31) and (3.28), it suffices to prove Lemma 3.8 for every e with w} >w. Let Jy,, be
the almost complex structure on a neighborhood V' of 0€T¢y,(,,)X given by

for all ve A, we Verg, eeEdgyui{ey, }, and 1€X,>..(867).

JO;v(y)(Y) = {dy expevo(v)}_1<J(eXpevo ) <{d expevo( )}(Y))> Ver, YETevo(fu)X'
By the second equation in (3.51) and (3.39),

o (0) =Con(@) €Ty X ¥z e 5 (320) € a2 (Sww— | [Swee(8)). (391)

eeE{E
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By (3.91), (3.31), and the sentence containing (2.28), the map
C’U;w: U> ew (3258) - evo(v)

is thus Jp,,-holomorphic and smooth. Shrinking U and A if necessary, we conclude from Lemma 3.6
that CU . 1s small. By Lemma A.8 and &, w| L) = =0, there thus exists C'eR such that

dx(v;w d zd (U>)<v w’ C“(v w”’uw,p,l’ €u; vz (-73)’,
‘ (3.92)

~ OCos ~ 2
Cogw () — aﬁi Dy, wz;:‘,;u; (m)’ < C‘|Cv;w||vi,p,1"z:w;u; (@’

z +
ew;'u,i zew

ew K

for all er;L;ew(&Sg). Since ‘d@vi;ew‘ =1on E;Z;GW(S%), the three bounds in Lemma 3.8 for e=e,,
and er:};ew(&S;) follow from (3.91), (3.92), (3.32), and the first equation in (3.51).

Suppose e € Edg, with w >w. Let w’' €V, be such that v’ <w. By (3.85), the first equation
1 (3.35), and (2.44),

o) ~ Eut () < C ol
‘dx&];w N dm(&’?wloav?w)’ < C(‘vv;wé\v;w‘x + ‘dr(gu;w’oau;w)‘ (’51);10/‘&‘”;71}(;13) +‘Zv;w‘m>>

for all z€X,>..(803). By the first bounds in (3.86) and in Lemma 3.8 for the pair (w’,e), (2.22),
and the first equation in (3.51),

‘gv;w|a: < Cl (|€U;w’ |¢71,;w(m) + |Cv;w’:r;)

(1D, ll2

qv ol ‘ i ZEU w”) (3.93)

+

/((Yvw )‘+€Uwe

w=w"” <we

By the second bounds in (3.86) and in Lemma 3.8 for the pair (', e),
et < € (|da (om0 + [ Coul,.)

3.94
¢ <(|Dv;w;' | +€U;w;' "Z;_U;/(a’u w ) ’) ‘dQU w( aUZﬂe ) . ( )

can!
) xr

|dxa'u;w

w<w’<wd

For every z€X,>..(803), let

a:)ZEU;wN

wiw” <wd

2 (@ (@)

e R>Y,

BU;w (m) = <<|D + ‘ +€U we Z;U;,(’qvv?w (.%')) D ‘dl?v;w(af)(z}z/ie‘ ’dxav;w‘ + Z ‘vv;w//&\v;w”

w<w"<wd

‘szUwD’zeU (Q’uw )| +é? +

Vi;wWe

dg

Go; w(z‘)qv /e

Z;U;/(CIU;M; . ) Z’V%w Cv;w” x

w=w <wg

+ ‘DU we ’(’D’U ’LU+ |2+6’U ’LUe

+ (\Dv wt |7

/(quw )‘+€Uwe

By the last four inequalities and the last bound in Lemma 3.8 for the pair (v’ e),

|Tws (bvsw (@), deosw)| < Bow(z) V2 €X,=.0(855). (3.95)
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For every x€X,>..(803),

’Z;v;,(a“§w($))| < ]z;% ()| if w=w}, Z;U>/(§U;w(x)) = Z;u; (x) if w'<wl. (3.96)

w

The inequality above follows from (2.36) and (2.34), while the equality above follows from (2.41),
(2.25), and (q2) in Section 2.2 with (E1, F2)=(E;, —E;}, E.;). Since

|dqv;w(;v)(7uz,;e| =1, |dzav;w| = |dxq~v5;e| vxezv;;e(&sé)a GEE;Ea
|d(7U;w(:v)(7UZ,;e| = |dm(7v5;e|a \dxgv;w| =1 vxezvi;e(853)a GEEng—E{L_,

we conclude that

|dzGow| = [dzGoz el Vrel,-.(863). (3.97)

‘dqv;w(x)qUZ/?e

Combining (3.93)-(3.95) with (3.96) and (3.97), we obtain all bounds in Lemma 3.8. O

4 Extensions of meromorphic differentials

We continue with the notation and setup of Sections 2 and 3. In Section 4.1, we describe exten-
sions of meromorphic differentials under smoothings of the nodes of Riemann surfaces. Sections 4.2
and 4.3 present properties of these extensions that are used in Sections 5 and 6. The main state-
ments are proved in Section 4.4.

4.1 Main statements

Let (7, 7o, To.p) be a graph framing and ue%g(X) be a J-holomorphic map. By the definition
of To,p, 9(Xw;w) =0 for all u'eU and weVerg p. By (g5) in Section 2.2, the functions

o 1
Zg! = —— Sww—{zl (0)} — C, we Ver. p, (4.1)

ew;u’
are thus holomorphic coordinates. Let
Tew = Zww (2, (U)) € C, V weVerf.p, e E;. (4.2)
By (4.1), (q4) in Section 2.2, and the sentence after (2.27),
|Zww (2)], [Zeyw | < 65_1 V weVerg.p, e€ B, 1€Xyww—Sue, (7). (4.3)

Analogous to (3.4), we can assume

2, (®) = Zpw (%) — Teaw YV weVerp, ecES, xeX, (853). (4.4)

We denote by vg.p, vo, and vg, the images of v in

Ao.p = Amj—"\?(Edgo;P), Ag = Amj%?, and  Agy = Amﬁ(Edgoux(’ﬁ))),
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respectively. In particular,
puw (V) = pw(vo) YV we Very. (4.5)

For ve A, denote by
H (200(803)) and  HG'(Suo)

the (infinite-dimensional) vector spaces of meromorphic differentials on X,,0(8Jz) and X, respec-
tively, having at worst the following two types of poles:

e simple poles at the nodes of X9 with the residues adding up to 0 at each node;
e poles at the marked points z(v) with se€S.

Let Eo.g — Ap be the vector bundle with fibers
Eo.slvy = He'(Zug0) Vo€,
It S=J, Eo.s is the vector bundle induced by the relative dualizing sheaf of the family
UpcU|a,— Ao

of deformations of the contracted curves X,..o of the elements of U. Every Eo.g|y, determines a
subspace of ”Hé’o (S00:0(803)), which is still denoted by Eq,s|v,. Since g(Suw;w)=0 for all we Ver( p
and m(S) < Ver.p,

suppn < Q’LTO{P (Zu’;O;P) VWGEO;S|UO;p- (4'6)

Let 3, be asin (2.35). For every element 7,, of 7—[}9’0 (20;0(883)), we view By, as a smooth differential
on Y, —{zs(v)}ses that satisfies the same properties as the elements of ’Hklg’o (Z0:0(803)).

Proposition 4.1. Let (7,79, To.p) be a graph framing and ue%y(X) be a J-holomorphic map.
If A is a sufficiently small neighborhood of u in FT , there exists a continuous family of injective
homomorphisms

Ry: ES’W}_\?(U) - HAIS"O (ZU;O(S(Sé))v vEA,
such that

(E1) for all u'el, VEA|w, and YeEg|w,
Ru/d}:w'

Moreover, if u’eﬁ', veAly, YveEs|w, esex(To.p), and

o0
k
{R’UO;Pw}x = Cé’f?v(w) (ze_.;vo;p(x)> dze_.;vo;P vxez;o;p;e. (853) (47)
k=0

for some cé’f?v(@z))ec with ke Z>°, then
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(E2) for all eeﬁd\gap with () =eqs and x€X,,:c(803),

0 k
{Roto}, = e (0) D il (v) (@(m)pwe (W) + D Ferwpy, <v>) s

k=0 ce<e/'<e

(E3) for all weVerg p with {ey)=es and x5

VW)

8/

0 k
{va}x = pw(v) Z Cgf?v(iﬂ) (Zw;u’ (QU(x))pw(U) + Z fe’;u’pw* (U)> d(zw;u’OQU)'
k=0

ce<e€/<ey

Corollary 4.2. Let 5, be as in (2.35) and R, be as in Proposition 4.1. There ezists a constant
CeR such that for allu'eU, veAly, and YeEg|y,

supp (BoRot) € Suo(43),  supp (308, Ruth)) < | (1 (405) — 51, (255)),
egx(7o)

oo < Cl(Ro¥)|sis 45wt s loo Yeex(To).

| (OB Rut)) 55, (455) - 263)

Proof. By (2.35),

supp (8u) € Su:0(455),  supp (08u) < | (e (405) —5750(263)),  |0Bufco < C (4.8)
eex (7o)

for some C' € R. The first statement in Corollary 4.2 follows from the first statement in (4.8).
Since vaeH}g’O (EU;O(S(S;)), the last two statements in Corollary 4.2 then follow from the last two
statements in (4.8), respectively. O

4.2 Further implications
For all keZ>, w'el, ve Alw, ¥eEg|w, and eex(Tg), define et (1)eC by

{Rut}, = 3 B0 (rey @) A2y VeSy, (85)). (4.9)
k=0

By Cauchy’s Integral Formula and the assumption that the nodes, there exists Cj = Cx(u) such
that

[ESACOIRS ckHRUOwHCO(ZEO;E(%_)) VkeZ, eex(To), veA, heEolr__ (). (4.10)

5
For ee x(7o) nx(7To.p), (4.9) agrees with (4.7).

Corollary 4.3. Suppose (7,70, To.p), u, A, and R,, are as in Proposition 4.1 and ¢ is as in (4.9).
If veA and e* € x(Ty) satisfy

ve 0 Y eeﬁd/gap with e>{e®), (4.11)

then
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(E'2) for all eelfd\gg;p with {ey={e*) and x€X,..(803),

& ciely () ¢
{RUT/J}I :pw; (U)E 2-‘;—11 (’U) < Zesw +Z$e s’ Py ¥ er u’p )
k=0 Pw—. <e ey<e'<e <e ey<e'<e®

e

(E'3) for all weVery.p with {e,)={e*) and xe¥yy,

{Rov},
2 b (W) K

= Pw (U) Z k+,1 <'\Z/w;u/( + er u/p Z$e u pw o > (Zw;u’OQU)-
k=0 pwe_. (U) <e Jewy<e/<eqy <e ewy<e'<e®

Proof. By (4.9) and (E2) in Proposition 4.1,

cgk) () = pktl( )i (k;_£> <IZ+>€)} ( erup ) Vkez?". (4.12)

£=0 (e*)<exe®
This implies that
1V, )] <ClR
|p’“+1( )l k” Vo; p¢||co picesy(883))7
Ve Vkez?". 4.13
@) CulullR )
pk-tl(v) <e >'U \ k‘v|” Vo; PwHCU 0>(866))

e®

The sums in (E’2) and (E’3) thus converge. Substituting (4.12) into the expressions in (E’2)
and (E’3), we obtain the expressions in (E2) and (E3) in Proposition 4.1, respectively. O

Fix e*ex(7p) and w*e\/f(;"(c);P with w} >w*. For we{P}u\//'(;";;P, ' el, veA|y satisfying (4.11),
and Y eEgly, define

el @)l ~0
ww,>|ipﬂﬂwwmmweR. (4.14)
In particular,
Crep(30') < Cie, (1h;0) if (w*, w') = (w*, w);
|2t oy (V)] . (4.15)

5;*;U(¢'w ) C’l:)*;v(w;w) if <w*7w,>$<w*vw>

[P wy (V)]
for all w’, we\/fa‘g;p. By the k=1 case of the first bound in (4.13), there exists C'eR such that

Cov(h;w) < ClY|  YveA, we{P}uVergp. (4.16)
Without loss of generality, we hereafter assume

> 1603 VeeEdgh.pu (x(7T0)—x(To.p)), uel. (4.17)

~
‘xe;u’
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Corollary 4.4. Suppose (7 ,To, To.p), W, A, and R, are as in Proposition 4.1, 1 € Egly is as
in (4.9), and ve A and e*, e’ ex(To) satisfy (4.11). Then, there exists C€R such that

(E"2) for all eeﬁd\gg;p with e<e’ and x€X,,..(803),

{Ruv}, (a ;U) — s o, ()] < C(Pie(U)|<|Ue|+|ze_w(x)|)6~’;u*w(w;w:)
5 @l (joc+ ] 1)

(E"3) for all we{P}uVerg p with w<w, and zeX3

viw?

< C|p%u(v) |C~Y;}*,’U (wa w)

(Ruts), ( 0 ) B Pw(U)) Cg);)v(w)

(Zw w Oqv) P, (v

Proof. Suppose first that (¢/y={e*>. The bound in (E”2) with C?. »(¥; w) replaced by

e + |C(1) ("/’
Cot o Wiw0e) = Tr + 19110007, ) (V)] (4.18)

|p+

then follows from the values of R,¢» and R,,,%) in (E’2) in Corollary 4.3 at = and x_, (vg), respectively,
and (4.13). Since w] >w*,

w -7U(w7 ) - ;*;u(i/);w:)

and the bound in (E”2) follows from (4.18). The bound in (E”3) follows from the value of R,
in (E’3) in Corollary 4.3 at x similarly.

If ('Y #{e*), then
p(w Wa >( ) p(w*,w)(v) = PP(’U) =1 Ve<e

The claims (E”2) and (E”3) thus follow from the corresponding bounds for (e®,w*) = (¢/,w})

and (4.13) for (k,e®)=(1,¢).
For each we{P}u\//e\rg;P, fix e(w) e x(To) with w:(w) >w. For each eeETd\g(c);P, let e=e(w]).

Corollary 4.5. Suppose (7,70, To.p), W', A, Ry, ¥, e*, and w* are as in Corollary 4.4. Then,
there exists CeR such that

(R1) for all eeliid\gg;]g and x€X,..(803),

[Pz (V)

o v||

[Rutls < ( )] + 102 )] (Il + 250 (@)]) G (055 07)

2
+\pig(v)!<\ve|+|zg;v(:n)y) wD\dxz;Uy;
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(R2) for every e€x(Ty),

IRl o (s, (855)) < |9 ()] + C|va; (0)[Co (5w, )3

(R3) for every we{P}uVerg p,

Pw (U ~e
I blonsmsy < TP ()] + ClA Gy (i),
we(w)

Proof. The bound in (R1) follows from (E”2) in Corollary 4.4 with ¢’ =€ and (4.15). The bound
in (R2) is a consequence of (R1). The bound in (R3) follows from (E”3) in Corollary 4.4 with
e/ =e(w) and (4.15). O

Corollary 4.6. Suppose (7,70, To.p), W, A, Ry, ¥ are as in Corollary 4.4 andve A and e® € x (7o)
satisfy (4.11). Then, there exists CeR such that

1 1 ~
SR S PR S () .
pw; (U) Ce;v(w) Pw*( )(’U) Ce(w);v(w) <C ‘p<w,w§>(v)’ Cw*;v (% <U), We >)

for all ee x(To) and we{P}uVerg p.

Proof. Choose zeX™) ... By (E”3) in Corollary 4.4 with w replaced by (w, wl) and € replaced

<w7w€ >
by e, e(w),
1 1 ~,
m {Ru}, (‘9(5@ wi-u/oqv)) T () )] < C’P<w,we+>(’0)‘cw*;v (103 (w, we ),
1 2 L) Pie
pmmt () (i) - o) Cetwn )| < Cloa ity W Clmy (95 Cwswl)).
W, We We /3 W)
The claim follows from these inequalities. O

By Corollary 4.6 with (w, e) replaced by (w_ ,€) and (4.15),

|:0w; (v)] (0) |Pw; (v)] (0) 2 o _ e
m‘Cg;v(¢)’ < m‘ce(wg);v(¢)‘ + C‘pw; ('U)‘Cw*;,u(w7we ) VeeEng;p. (419)
¢ e(we )

4.3 Some applications

We continue with the notation of Subsection 4.2. This subsection provides estimates that are
applied to the computation of the obstructions in Section 5.

Corollary 4.7. Suppose (7, To, To.p), u, and A are as in Proposition 4.1 and e*,e®€ x(To) satisfy
e #e* and (e°y={e*). Let p=1)p,€Eo|lw—{0} for veAly, u'eU, be a continuous family such that

0 (¥)=0 VYwveA, c§2>;u(¢) #0. (4.20)

e®;v
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Then, there exists CeR such that

(0)
[9], Cope (3 wF) < Clo |M
peo(v)’

for all ee x(To) and ve A satisfying (4.11).

Proof. By the inequality in (4.20) and the k =1 case of the second bound in (4.13), there exist
C,C"eR such that

1 ()]
[ <l ()] < 'S yyeA.
Cletemyn @ P2 _(0)]

e

By (E’2) in Corollary 4.3 with (v,z) = (vo, 2. (vo)), the equality in (4.20), and the first bound
n (4.13),

)
cen W _
[pee (W)llocer ey (V)75 < C(Joes e, @)+ ol lpe (@)oo s @ [0])  Vwed
for some C'eR. The claim for |+ follows from the above two inequalities; combined with (4.16),

this in turn implies the claim for Cy.., (15w ). O

Corollary 4.8. Suppose (7,70, To.p), u, and A are as in Proposition 4.1 and ey, e2€ x(To) and
w* e Ver(.p satisfy

’{6.,61,62}’ =3, (e*y={e1)y={ea), (e1,e9)y>{e® e1)=C_e*, ea)y=eymr. (4.21)
Let =1, €Eg|ly—{0} for ve Aly, w'eU, be a continuous family such that
QL (W)=0 VuveA, D (1) £0. (4.22)
Then, there exists CeR such that

C.*. (¢w+) < C‘U’ <’U50€ U(/l/} ’ ’UEICg?3U(¢)‘ ‘/UCZnggv(/l/})’>

A | A ]
for all ee x(Tp) with (ey={e*) and veA satisfying (4.11).

Proof. Given distinct e, e’ x (7o) with {e)={¢’), define Z. . (v), & ¥ eC— {0} by

:Ee,e’ (U) = Z :Ee/’ u p // Z I’e” u/'O //

{e,e’y<e<e <e e/y<e'<e!
fi/e = Tty Tty with et et e ng o et <e, ¢T<e.
e W e/
In particular,
/
|$e,e’ (U) - :Ef;/ep<e,e’>(v)| < C|U‘|p<e,e’>(’u)|' (4'23)
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By (E’2) in Corollary 4.3 for v = vy and z =z (vp), the equality in (4.22), and the first bound
n (4.13), there exists C€R such that

vedDw) AW et )
pe()Feer () P2_(0) Y PP _(v)

we. ’LUG.

Pees ey (V)] < Cl N[0l pgen e (V)] (4.24)

for all e € x(7y) —{e*} with {(e) = (e*). By (E’2) in Corollary 4.3 for v = vy, e = ey, es, and
r=ux_ (vo),x,(vo), there similarly exists C'€R such that

(2
Vey Cg?% (1/}) . Vesy Cég);v (w) ~e€1,e2 Ce.)v (1/})

Per(V)Tey e0 (V) P@(U)k/eme'(v)_ o ow(v)

c®

Plereay (V)] < Cl[[[0l]pgey eay (V)] (4.25)

for e, e satisfying the assumptions of the corollary.
By (4.13) and the last two assumptions in (4.22),

12 ()
H¢H C|C<e >U )’ < C p : (U)

for some C,C’",C"eR. By (4.23) and the last property in (4.21),

Clpwr (V)] < [Fey o2 (V)]s [Feper (V)] < C'pue (V)]
for some C,C’eR". By (4.25) and (4.26), there thus exist C, C’€R™ such that

)< C" ||| VueA (4.26)

3
w;

2
)] o C ( oD@, el @) )
3 9 ~= ~
) |¢er 25V \ [ Per(V)Tey eo (V)] |pes(v) Ty e (V)] (427
e <rvelcé?2v<w+\v@cé2? w)r)
lpwr ()X [p2,(v)] [p2,(v)]
Combined with (4.24) for e=eq, (4.23) for (e, e’) = (e1, e*), and the last property in (4.21), this gives
1) (0) (0) (0)
Coorn(¥) < Ve, Ceyw (¥) [vey Cerrw (V)] | [veyCeriv (V)]
5 < C €1 1, + |¢| p e U) > < C/< €1 1 + €2 ~€e2;v > 4.28
2 )| = e @penen@)| 1M 0) 2@l T o) ) 4

e

for some C,C’ € R. Combining (4.27) with (4.28), we obtain the claim of the corollary for all
eex(To) with w} >w*.

Suppose e€ x(To) with (e)={e*) and w }w*. By (4.26), (4.24), and (4.28),

2) (0) (1)
Ceo:v (¢) VeCe;v ('¢) Ceo:v (17[})
Y[ pryr iy ()] < C | = ‘p.ﬁev <C"< : : >
Pt OIS s~y et S O e ) pgu,.@)
<o ( [oeckd (V)] |, Joes el ()] \v@céS?U(w)r)_
pé(v))] [pe® (V)] [p2,(v)]
Along with (4.28) again, this completes the proof of the corollary. O
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Corollary 4.9. Suppose (7, To, To.p) is a pseudo-tree framing and ', A, Ry, 9, e*, and w* are

as in Corollary 4.6. Let we{P}u\Verj p and e€ x(To). There exists CeR such that

o if (wl wy#{w*, w), then

21) w
G ('p 0 O+ 0050

107 o (O 1P,

< c(|ve|2|cg?3<w>| +1020)| e (050 )
o if {wr,w)y<(w*, w), then

2U
Jee(v)l ('pw( el O 50 )

’p<w*,w>(v>| ’qu ( )
|e('U)‘ 21 (0) 9 ~. ' '
< C(|pz. ol Pl @l + PR(0)| G (50 )
o if wh >=(w*, wy, then
1070 s ()] p2 (V)] N
e ( 'pw | ey w>|+|p%u<v>|c;*w<w;w))
p(w*,w>(v)| | |

< C (0l w)] + 102 Caern (5 07) )
Proof. Tf (w},w)#{(w*, w), then

w > {w* wh, w* wy, (w* {wt,wyy > (w* wh).

The first inequality in the corollary follows from Corollary 4.6 and the first inequality in (4.15).
Since

<w*’ <w:‘7w:>> = <w*v w:>7
the second inequality in the corollary follows from Corollary 4.6 with e =¢e® and the first inequality
n (4.15).

If w >{w*, w), then
(w,wh, (w*,wh) > (w*,w)y = <w*, <w,w;”>>.

Along with the second inequality in (4.15), this implies that

100w s (V)] ~ N
) G (hyw) < Ot (13w,
[P wy (V)] w(93w) ol )

Combined with Corollary 4.6 and the first inequality in (4.15), this establishes the last inequality
in the corollary. O

Corollary 4.10. Suppose (7 ,To, To.p), W, A, Ry, ¥, e*, and w* are as in Corollary 4.9. Let
eeEdg(c);P. There exists C'eR such that
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o if wl Xw*, then

2 v v
% i (L] + 120G w50

e/ex(%)‘pe (U)‘ ’pr (

e/>e

<0 3 (1w 010 052)):

e’'ex(To)

o if wl <w*, then

P2 @) ( lpev) o e
Z ( )|‘ ’+|pe )‘Cw*;v('lpv e))

192NN\, (v

e'ex(To

e)f’e

Z( e P 0412 0 wi00));

'ex(To)

and

o2 IR,
Ipaa <|“’e( 0]+ 1520 P 1)

ST 1) pur V)

e/>e

(|vef\2|cg?;,<w>|+rpz(v)\é;ww;w;))-

6’6)((76

Proof. If wl xw* and €'ex(Ty) with ¢’ >e, then
whwt) =wl > W, wh).
If wl <w* and € €x(Ty) with €’ >e, then
wl, > wl = (w,wl).

The first and the third inequalities in the corollary thus follow from the corresponding bounds in
Corollary 4.9 with (w, e) replaced by (w},e’). If wS <w* and €'€x(Ty) with ¢’ }e, then

<’LU*,U}:;> =< we_ = <w*,w€_>, C;*;v(¢; we_) < Ct.u*;v(w; w;ﬁ)
Combined with the second bound in Corollary 4.9 with (w, e) replaced by (wZ,€’), this implies the
second inequality in the corollary. O
4.4 Proof of Proposition 4.1

The Taylor series expansion (4.7) implies that Y, ckz" converges if |z| < 853. By (q4) in Sec-
tion 2.2, ey
|20 ()] < 853 VeeEdg.p, 2€%(803). (4.29)

50



By (4.29) and (3.11),

2 ()P ()] + )Z TPy (v)] < 805+0 = 86 (4.30)

eg<e'<e

for all ee x(7o,p) and x€3,,.(803). By (4.29), (3.11), the sentence containing (2.28), and (4.3),

_ - 1 |U’ (53
oo (@)py (v)] + ‘ D ety @)] < 8dglol+ 51 < 4+ <85 (4.31)

ep<e/<e

for all ee]fd\gap—x(’ﬁ);p) and € X,.¢(803). The series in (E2) thus converges. By (4.3), (3.11),
and the sentence containing (2.28),
vl _ % %

% 1% _ gs, 4.32
1—jo] S16 78 =°% (432)

o o 1 1
Fuvs @) pu®)] + | 3 Ferwn, 0] < ol

ep<e'<eyw

for all w € Verfp and z € ¢, (Bwiw) = Suien (63). Since L% < ¢ (Swiw) — Suie,, (07), the series
in (E3) also converges.

Let < be a (strict) total order on ]fd\gg; p extending <. For every eeﬁd\gg; p, let

e

ES = Edgyp v {e’eﬁd\gS;P: ¢<e}, EF=EFufe}, vS=v(ES), vS=uv(ES).

By (3.11),
— ¢
puw(US) = pu(vs) V eeEdgy.p, WEVGTS;P—{U’:L (4.33)
~C .
Pt (V) =Ve py - (V5) ¥ e Edgg,p-
—~c
For ee Edg. p, we will inductively construct injective homorphisms
Rys: Eglw — Hg"(S,2,0(807),  u'el, veAly, (4.34)

so that (E1), (E2), and (E3) with v=vS are satisfied.

Fix a continuous family of isomorphisms
Ryt Eslw — Eslugp © Hg' (Supp0(807)),  w'el, vopeoplw,
so that (E1) holds for v=wvg,p. By the first equation in (3.11),
pw(vo,p) =0 V vo,p€ Ao, p, we Verg, p.
Combined with the second equation in (3.11) and (4.6), this gives (E2) and (E3) with v=uvy.p.
Suppose eeﬁd\g& p and we have constructed a continuous family of isomorphisms

Rve<: E5|u/ — HE’O(ZU§;0(85(§)), u/eﬁ, ’UEA’UI,

o1



so that (E1), (E2), and (E3) with v=v; are satisfied. Given Y eEg|y as in (4.7) with eg={e), let
k—cgg? (v). By (E2) with v=v7,

{vaw}m :pwe Z ( e; v< Z Le'su p > dze vE (4‘35)

k=0 ep<e/'<e

for all z€X,=,(853). We define a holomorphic 1-form R, (Ry=%) on ¥, 5..(803) by

0 k
{R.. (R u<1l)) Z ck< s P (Ve Zme WPy ) dz~ oS (4.36)

€
ep<e'<e

for all ze ¥, < (855). By (4.30) or (4.31), the infinite sum converges. By (2.26),

(R (R}~ (e (Rr0)], VoeSo (9)-S3 (480
If in addition v, =0, i.e. vS=v7, then
{SRUQ (RU(§¢) }m:{Rvjw}r Vxezves;e(&;g). (4.38)

Suppose e€x(7o). Define R < in (4.34) by

{R <1/}} _ {q:e<;1)§ (R’Ue<¢)};v’ if v € Eu§;0(853)_ (Z_f, (6&) :5;6(855)); (439)
T R (Ros) ), ifae s (865).

By (4.37), the two expressions above agree on the overlap. By the target space of R,<%, (q2) in
Section 2.2, and R,, (Rye< w) being holomorphic,

Rzt e HE(2,20(865)). (1.0

By (4.38), the right-hand side of (4.39) reduces to R,z if v.=0. Thus, (E1) with v =05 follows
from the same equation with v=v;.

By the first case of (4.39), (E2) with v =10v7, (2.26), and (4.33), (E2) with v =05 holds for all

= Efd\gap with ¢’ # e. By the second case of (4.39), (4.36), and (4.33), the property (E2) with
v=0F holds for the edge e. By the first case of (4.39), (E3) with v=v7, (2.23), and (4.33), (E3)
with v=v5 holds for all we Verf p.

Suppose eelid/g(c);p. By (g4) in Section 2.2 and (4.1),
Z s (x) = 2t (qv§ (2)) ve VmeE:eg;e(Ség)—E%;e(ég).

Along with (4.36) and (4.33), this implies that

{R (Rozv) },
0 k
= Vep,- (V) Z Ch (510;;“/ (4uz (2))vep - (V) + D e Py (g > A2 0s)
k=0 ep<e'<e (441)
0 k
Z (w u’/ qv ( Z$e up f)d( “wdu s )
k=0 ep<e'<e
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for all xe 2;’5;6(865)—2%;6(53). By (4.32), the infinite sum above converges on

EO = ;fl (Eu’;wi) _Evf;e((sé)'

vwe

Thus, Ry, (Rve< 1/1) extends to a holomorphic differential on X°_ .

e yWe

If e Edgy, p, we define R, < in (4.34) by

(R0} — {0 oz (Roz¥) ), i € Zs0(805) = (4,2 (S0t ) U B0z e (62));
v P Sy {i)‘{ve (RUE<¢) }I, if x€qU§ (Zu,;w;) U;;e(863).

By (4.37), the two expressions above agree on the overlap. By the reasoning below (4.39), (4.42)
satisfies (4.40), (E1) with v=0vF, (E2) with (v, e) replaced by (vS,€’) and e ¢E++, and (E3) with
v=vS and w#w.. By the second case of (4.42) and (4.41), (E3) with v=v5 holds for w = wl.

(4.42)

For every e* eE:;+7
wh = wg, (V5 )ex, (V) ex=0. (4.43)

e

By the second case of (4.42), (4.41), (4.4), and the first equation in (4.43),

0 k
{Rugv}, =y (05) ), o (Zﬁws@)%;(vf )+ Forar g (05) + D Ferrp, (02 ) Vo oe
k=0 ep<e'<e
0 k
:pw_* (Uf) Z Ck (Ze_*;v ( )P * Ve Z Le/; u/p §)> dze* S
€ k=0 eg<e/<e*

for every zeX _ . (805). This establishes (E2) with (v, ) replaced by (vS,e*) and zeX - (805).
By the second equations in (4.43) and (q4) in Section 2.2,

=0, dz,

e*iuS ‘z:ge* (865) — 0. (4.44)

dz,
et o< |E;re<;c* (863)

Combined with the first case of (4.42) and (E2) with v=v7, (4.44) implies

0 k
(Rozt}, = 0=, (0) X e (s @, (09 + X Fuwn, () 0

k=0 eg<e/<e*

for all a:eE <. (803).

If e* is the maximal element of E/d\g(c); p with respect to <, then v, =wvg,. When the above induction
terminates, we thus obtain a continuous family of isomorphisms

Rug: Eslw — Hg" (Zu00(833)), W eU, voy € Agy|w, (4.45)
so that (E1), (E2), and (E3) with v=1yg, are satisfied. Define
Ry = ¢y 0 Rugy t Eslw — Hg" (B00(855))  Vu'el, veA|y.
(E1) then follows from the same equation with v=wg, and ¢y,w =id. By (3.11),
puw(Voy) = pw(v) Vwe Verg, veA.

Therefore, (E2) follows from (E2) with v =1y, and (2.26), while (E3) follows from (E3) with v =1y,
and (2.23).
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5 Computation of obstructions

Let (7,70, To;p) be a graph framing; see the beginning of Section 2.2. With Eg = Eg,s as in
Section 4.1 and evg as in (2.29), let

ObSO = Emﬁ ®J ev(’-_’)‘TX — (7 (5.1)

be the obstruction bundle of the two-step pregluing construction of Section 2.2 with a fixed norm |-|.
Let R, be as in Proposition 4.1. With 3, as in (2.35) and .1 as in (2.32), we define a homomor-
phism

@U: Fo’l(v) — ObSo‘ﬂ.N(U)

(Outm}o = oo | (BoRv) A (1

(5.2)
77) VweEolﬂ.},}g(v)

év 110qQuy; UOIOQU

By (2.32) and the first statement in Corollary 4.2, gv;l is defined on the support of 5, R,. Since
BuRy1 has at worst simple poles at the nodes of ¥, the integral in (5.2) is well-defined. By
Holder’s Inequality and (E1) in Proposition 4.1,

[©u(m] < Clnlvy — ¥ner®(v) (5-3)

for some C'eRR.

In Section 5, we consider the quadratic expansion
11 (37 xbu€) = 2yt + Db + Nol€)  VEET(v) (5.4)

of the 0j-operator, where D,, is the linear term as in (2.4) and N, is a quadratic term. Analyzing
the image of each term of the right-hand side of (5.4) under the homomorphism ©,, and introducing
a bootstrapping mechanism, we obtain estimates in Sections 5.1 and 5.2 that play crucial roles in
Section 6.

5.1 Terms of the quadratic expansion
For ee x(Ty), veAlw, VeEg|w, and wel, let

k+1 5k+1§~u1 N e
VO0eZT, Do) = Do (5.5)

w Z k+1 '6( )k+1 zd (v1)

Lemma 5.1. For every LeZ*, there exists C€R such that

{Ou@rm}y - 178w,

eex (7o)

< C Y IRl cos:;

Ve
eex (7o)

~ 2 e /—
(859))‘%’2(‘dxi(vl)uv%l‘ +|‘§U;1’Zjl;e(863) ,p,1(\ve!2+!ve\ 1)>

for allveAly, veEg|y, and wel.
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Proof. Similarly to the proof of Lemma 3.8, Ewl is Jo.p-holomorphic. By the Mean Value Inequality
[10, Lemma 4.3.1] and Holder’s Inequality, there exists C'eR such that

|da;;"(v1)aw1| < C‘|£U,1|2$1;e(85é)”’Ul,p,l VeEX(%)- (5.6)
By Lemma A.8, there exists C'eR such that

|dxav;l - dr:(m)av'l‘ CH&’U 1|E+

vise

(855 H'Ul ;1 |Z;U1 ($)|

5.7)
R g (
Gon(@) ~T (220,@))| < Cléualys, , soplonpalzd, @I, teZ?
for all ze ¥ .. (863) and eex(7o). Therefore,

e (2lvel/s thp, |UE|p(’d Fw uv 1’ + |U6‘H§v 1|zfr (855) thp, )

(2[vel/d5) 1) (5.8)

( vl;e(2|Ue|/5{9)) < C|Ue|<|d$g—(vl)uv;l| + |Ue|Hgv,l|231;€(859)Hu1,p,1)
for all ee x (7).

By the proof of [18, (4.23), (4.25)],

okt
’{@ (Oyup) btp — o Z Z jg fu;lcg’fg(i/))wd 28,

eex(To) k=0 az:“1 e(2lvel/d3)

CZHRUM/JHCO So0:e(833)) Hgv 1”00 (Z35e(2vel/83)
eex(7o)

Hd§u1\2+ 2\U€|/5a)“m,p

for every 1€ Eg|y. By the second inequality in (5.7) and Cauchy’s Integral Formula, there exists
CeR such that

k+1
Ve

E (K) (o) —2 (f)
’27(1 %az (2lve/53) gv;lce;v(w) ( + )k+2 e U1 -@ ¢
’U1 € €

Ze;vy
& ¢
CHRvowHCO(E;O;e(gsé))H€U71|231;6(855)Hv1,p,1|ve‘ o
for every ¢ eEq|y. The claim follows from the last two inequalities along with (5.8) and (5.6). [

Lemma 5.2. There exists CeR such that

(00D} | < C 3 | Rugth s

eex (7o)

(835) plélco., o lvel

vpie

for all ve Alw, W' eU, YeEo|w, and E€T(v).

Proof. By (E2) in Proposition 4.1, (4.5), and the ¢=1 case of the second bound in (2.39),

+
ng|mme,La( (Rob| < Cloel| Rugt o s

e 855)_23;6(5{3) voie

(855)) (5.9)

0
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for all eelid\gap, ¢el(v), and Y eEgy|y. By [21, Corollary 3.3] and Integration by Parts as in the
proof of [18, Lemma 4.4(7)], there exists C'€R such that

o <eS (| mawlzie s Rllel) (510
eex(To) Eie(465) X550 (205)
for all {€I'(v) and ¥ eEq|y. Combining (5.10) with (5.9), we obtain the claim. O

For all ve A and we{P} u\/fe\rap, let &, and €, be as in (3.14) and Corollary 3.2, respectively.
Lemma 5.3. There exists CeR such that

{Ou(Nu(&) }o | < Clllv] Y lpe(v)

eex(7o)
for allve Alw, W' eU, and YeFo|y.
Proof. By [21, Proposition 3.13], the quadratic term N,, satisfies
No(0) =0, [Nu(Q)=No(¢N)],,, < C>ICHopa +1¢ Top1) I€=C o pa (5.11)

for some C'eR and for all small ¢, ('el'(v). By Lemma A.2, there exists C€R such that
N, < O(|Tos (€@) AV7Ehe)| + (Idotwa] +[VVEL)IE@)  VaeSy, ved,  (512)
where T is the torsion tensor of V7 as in (2.1).

By the first property in Corollary 4.2, there exists C'€R such that
{Ou(Nu(©))}v| < C _— )}Nv(g)HRmy VEel (v), weRy|y. (5.13)
v;0 Fl

By Holder’s Inequality, (5.11), and the last property in (M1) in Proposition 3.1, there exists CeR

such that
D L N[ Rutt] < C D (IRutlleo s, s, D5 (5.14)

cex(To)” >vie(3%) eex(To) w=wg
Combined with (R2) in Corollary 4.5, (4.13) for e®* =e, (4.16), and (3.16), this implies that
2
5 oy NI < 100 5 e a0

eex (7o) e,e’ex(To) (515)

< C9[[lv] Y lpe(v)

eex (7o)

Similarly, the last property in (M2) in Proposition 3.1 and (R3) in Corollary 4.5 imply that

Z J ‘N @Ry] < C Z(HRUM/JHCO er;r;ﬂ)ZE%;w,)

we{P}uVer we{P}uVerO p w!' <w
2 (5.16)
< OOl X 0@l s 0 < O 00101 Y0
we{P}uVerg p eex(7o)
e'ex (7o)
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By (5.12), (R1) in Corollary 4.5, (3.15), and the third bound in (M3) in Proposition 3.1,
o[ Rl < Cloliel Sledw)
eeﬁd/gg;}; vierto eex(7o)
Along with (5.13), (5.15), and (5.16), this establishes the claim. O

Corollary 5.4. There exists a continuous function e: (R,0)— (R,0) with the property that

| vl (Pl (55)) | < €vl) 101 3 e o)

eex(7o) eex (7o)

for all YeEy|yw and veAly with w'eU such that the map exp,, & as in (8.14) is J-holomorphic.
Proof. By the =1 case of Lemma 5.1, Lemma 5.2, (2.22), and (M1) in Proposition 3.1, there exist
C,C"eR such that

‘{@v(aJUU‘Fvav)}w - Z -@v;e¢ ‘ <C 2 ”RvaHCO(E;O;e(B(;g)) (|U6‘ + H£U|Zv;e(865) ”U,p,l) |U6|
eex (7o) eex(To)

(5.17)
<C 2 HRvowHCO(E;O;e(&;é)) (’Ue‘ + va;w) ”Ue‘
eex(To) w<we
for all ¢ €Eq|y and veAly with w'eU. Along with (3.18), this gives
‘{@v(éJ“ijDvgv)}w —Z-@u;dﬁ ‘ < Clvl Z HRUWHCO(E;O;E(&SE))’“€| (5.18)
eex(7o) eex(70)
for some C'eR.
Since exp,, &y is J-holomorphic,
a]uu + Dy&o + Nv(fv) =0. (5~19)

By (5.19), (5.18), and Lemma 5.3,

Zgju;ei/}’ < C|U|Z (|Ue’“R“0¢‘}CO(E;0;E(86;))+ |pe(U)HW’H)

eex(To eex(7o)

By the /=1 case of (5.5), this implies that

‘ Zve (0) ( (Ul)ﬂv;l(%)ﬂ < C|U|Z (|U€|HRU017ZJ||CO(2;0;6(8§3))+ |pe(v)|H¢H)

ex (7o) eex (7o)

By the continuity of the family %,,;, there exists a continuous function e: (R,0) — (R, 0) such that

| e clw) (P (55) )| < ellvl) 5 (1ol IRt ooy sy + eI,

eex (7o) eex (7o)

Combined with (R2) in Corollary 4.5 and the k=0, 1 cases in (4.13), this establishes the claim. [
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5.2 A bootstrapping estimate and applications

Let Uy;2 and EU;Q be as in (3.59), &, be as in (3.14), and €., Dy, and 7, be as in Corollary 3.2.
The following proposition is the main statement of this section.

Proposition 5.5. Suppose e, € x(7To.p) is such that |
exists CeR with the property that

Euy;P = |‘€U2’|Up1\ <Z|pe | +E +.|Ue.|2> (520)

eex(To)
(e)#es

Xa 0 for some ¥ € Eg|ly. Then there

Zey (U

for all ve A such that the map expamcfv;g is J-holomorphic. If in addition

w*e\//e\r(c];P, (eyr)=¢€a, Ve #0 Vee]id\gg;}p, (5.21)
fher s (@) 196 0)
e pw* wi U)]|Pe(V
sv;w<0< 3 |’p ((U))” + Y= ’fZ( T ) (5.22)
eex (7o) Pl eex(To) PuwlV
w:kw w;f'zw

for all we {P}u\//&&p with w<w* and

(v ety @)le0)]
Pl < O 3, 2205+ ol 3D ) 529

eex (7o) eex(To)

wd Fw wy =w

——c .
for all we Very p with w<w*.

Proposition 5.5 improves the bounds in (3.15) arising from Corollary 3.2. For example, suppose [u]
is of the bubble type of the last diagram in Figure 1 and all assumptions in Proposition 5.5 are
satisfied. Then

X(To.p)=x(To) =Edg={e.},  Verg,p={wl}={w"}.

By (3.15), €y,;p is then bounded by C|v| (even if expy , @,;2 is not J-holomorphic); there is no small
a priori bound for D,.,». On the other hand, Proposition 3.1 implies that

Ev;p < C|’U|2 and |Dv;w*

< Clv|.

Corollary 5.6. Suppose e, and w* are as in Proposition 5.5 and e* € x(To) satisfies wle > w*.
Then there exists CeR with the property that

| S (o) < 02(( o P20 20 B0

eex (7o) eex (7o) e'ex( 76

for all eEo|w and veAly with o' €U such that (5.21) holds and the map exp,, &v as in (8.14)
s J-holomorphic.

Proof. Analogous to the proof of Corollary 5.4, the claim follows from the equation (5.19) and
Lemmas 5.8 and 5.9 below. O
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Lemma 5.7. There exists CeR with the property that

| )Py | < CIL Y (1D 6l vl 2, e ?)

Ce;
eex(To;p) eex(To;p)

for all YeEy|w and veAly with w'eU such that the map exp,, & as in (3.14) is J-holomorphic.
Proof. By (3.60) and (2.22),

Collon < O (1D ll0el + 2 [0el?). (5.24)
eex(To,p)

HE'UQ Hv,p,l’

Consider the quadratic expansion of the 0 -operator
02" (07 exPg, ,Cu2) = Orflusa + Do + Ny (Gur2)-

Let fp,, and Rp, be as in (2.35) and Proposition 4.1, respectively, but with the contracted
subgraph 7o chosen to be 7y.p. Define

@P;U: 1—10,1(,&”;2) - ObSO‘ﬂ»}}g/(vﬁ

{@P;U(ﬁ)}w:;f (BpwRpw) A (TI! n) VYeEolr ()

fv 120Gug ;v OGy; X(TO P)

(5.25)

with EU;Q as in (3.56) and vy and vp2 as in the sentence containing (3.54). Along with (3.57)
and (3.62), the proof of the /=1 case of Lemma 5.1 implies that there exist C,C’€R such that

{Or0(@si2)}y = ) D W)ueDy s | < C N Illve (1D 1+ Il s luam )

eex(To;P) eex(To;p) (5.26)
<Ol D e (1P, i | +e ) VERq|w.
eex(To;p)
By the proof of Lemma 5.2 and (5.24),
‘{@P;U(Dﬁv;Qé\v§2)}¢‘ <C Z |ve|
eex(To;p) (5.27)
C/WH|U|Z(|DW+|\U€|+5 +|ve|2) Ve Eo|u-
eex(To.p)
By (5.3) with ©,, replaced by ©p.,, (5.11), and (5.24),
\{@P;U(Nam@m)}wj <Cly| ), (IDU i Plvel? +€2 +|ve|4) VeRolw.  (5.28)
eex(To;p)
Since the map expavﬂfwg =exp,, v is J-holomorphic,
aﬂ’zv;z + ngaé\v;g + N@U;2 (Z’U;Q) = 0. (5.29)
Combined with (5.26)-(5.28), this establishes the claim. O

99



Proof of Proposition 5.5. By the first assumption of the proposition, there exist C' e R and a
continuous family ¢ =1 |y €Eg|y with u’eU such that

Cle® ()] > [¢]  VYveA.

Combined with Lemma 5.7 and (3.15) for w=w/ with e€ x(7o.p) —{es}, this implies that

|U60| < C(Z(’Dvwe |+£ )|U€’+€U;w;|veo ) C,(Z|p€ |+Ev w;r.|/U€o|2)

eex(To;p) eex(7o)
e#ee {e)#ee

D

vswd,

(5.30)

for some C,C” € R. The bound in (5.20) follows from (3.62), (5.24), (5.30), and the first bound
n (3.15).

Suppose in addition (5.21) holds. We claim that there exists C'€R such that

Dy < C( D ”ZE((Z))|’ + ay;w\vewo ¥ we Verg,p s.t. w, <w=w*. (5.31)
eex (7o) w
wd Fw

By (5.30), this is indeed the case for w = w/,. Suppose w}, < w < w* and (5.31) holds with w
replaced by w™ =w, . Combining this with the first two bounds in (M2) in Proposition 3.1 for
w=w" and (3.15) for w' eV —{w}, we obtain (5.31) itself.

By (3.15), (5.22) holds for w=w*. Suppose w}, <w <w* and (5.22) holds for this w. Combining
it with (5.31), we obtain (5.23) for the same w. Suppose w < w* and (5.22) and (5.23) hold for
wt eV, such that w™ <w*. Combining them with the first inequality in (M2) in Proposition 3.1,
(3.15) for w' eV,  —{w™}, and the fact that

(w*,wly < wt Veex(To) st. wl>w, wfFwt, w>w", (5.32)
we obtain (5.22) for this w. O

Lemma 5.8. Suppose e,,e® € lid\gg;P and w* € \//e\rg;p satisfy the assumptions in Corollary 5.6.
Then there exists CeR such that

\@A%%+a@%¢—29wﬂ

eex(To)
| / ~Ne
C 2 (( |Z (U )|Ue‘2’02%(1/1)‘HP?(U)’CW;U("L/’;w:))
eex (7o) ~e’ex(To)

for all YeEBo|w and ve Alw with W' €U such that (5.21) holds.
Proof. By (5.22) and (5.32), there exists C'eR such that
. [P ity (O] [Pe()]
Seww <0 3P0 SR
w'<w eex(To)"" eex(To) v
w:j:w w;,"zw
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for all we {P}uVerf p with w <w*. Combined with (3.15), this implies that

Z Evw’ = Z Evw’ + Z Evw’

w' <w (w* wy<w'<w  w {w*r,w)

<0< IR 0 [ Z|p<w*,w;+><v>||pe<v>|) (5.33)

GEX(%) ‘p<w7w;r>(v)| EEX(%) ‘p<w*,w><v)| eex(%) |p<w*7w>(v)’
(wawd S-(w*w) (w*wd H=(wrw) wd =(w*w)

for all we {P}uVerg p. By (5.33) and Corollary 4.9, there exists C'eéR such that

|pw (v O) 2 .
we{P}%:Ver ((‘p B ( )“ w>‘+‘pw w v ¢7 )Z vw)

We(w) w' <w

(5.34)
| /U e
<o Y (S )|ve|2\c£?3<w>|+|p3<v>|cw*w<w;wz>).
eex(To) eex(To)
y (R2) and (R3) in Corollary 4.5 and by (5.34),
D (IRuslooqseessn 2aiw) + 2 (1Rt l oo et
eex (7o) w=wy we{P}uVer§ p w' <w
(5.35)

<0 3 (( X ) P 4120 Co 10

eex (7o)~ e’ex(To)
Along with the Cauchy-Schwarz Inequality and (R2) in Corollary 4.5, this implies that

3 (IRuoBloo(s.e sy (1vel+ Yev) lvel ) < 2, (erwcomw(s%)) (\ve|2+2fsi;w))

eex (7o) w=Lwe eex (7o) w<Lwe

<0 3 (( X 1) e P 4120 Ca )

eex(7o) ~e’ex(To)

Combined with (5.17), this establishes the claim. O

Lemma 5.9. Suppose e, e® € ET(FgE;P and w* € \//'e\rg;p satisfy the assumptions in Corollary 5.6.
Then there exists CeR such that

{0 (N () }o | < 2(( e o)+ )] Ca (500

eex(7o) ~e'ex(To)

for all veEo|w and ve Aly with ' €U such that (5.21) holds.
Proof. By (5.14), the first inequality in (5.16), and (5.35),

> L N ()| R+ ) f |N (€0)|| Rutd|

eex(To)" Zvie (892) we{P}oVers, (5.36)
12, U)l ~e '
<oy <( fs o e e )|+|p§(v)|Cw*w(1jz;w:))
eex(7o) eex(%)
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for some CeR.

Suppose eeET(igg; p- By (2.40) and the Cauchy-Schwarz Inequality (CSI),

(. 102l40) 2y S < (12, Pl + T ).

vielto w' <wg w' <we

By the first bound in (2.39) and CSI,

([ el o i) Py | v € 1Dy Pl + T ).

v;e(03 w' <wg w' <we

By (2.38), the g=1 case of the second bound in (2.39), and CSI,

~ _ 5 ) )
(J;] (5*)yzggv| ’dqv;e| |dZ€?“ ) gv;wiz Ev’ S C<€v;wg' |U6| + Z 5v;w/> .
v;el03

w!' <wg w' <we

By (q4) in Section 2.2, the g=1 case of the second bound in (2.39), (2.40), and CSI,

(L (6)|Z;fv||dq~lu;e|(|ve|+|ze;v|)]dze;v|>av;we+z Epr < O<€i;w;|ve’3 n ZE%;w/)
v;el0g

w' <wy w Lwe

By (q4) in Section 2.2 and the ¢=1 case of the second bound in (2.39),

_ YA _
( [ apQod+izz |dze;v) (1D |40 ) Dyt | < CDy s |42yt ) Dy el

(%

with £=0,1. By (q4) in Section 2.2, the first bound in (2.39), and CSI,
( f. arz;v|2|dav;e|(\ve|+|zew\)21dze;v)|Dv;w;|ew; < O(1D, s Pl +e2 o fuel?).
By (g4) in Section 2.2 and the ¢=1 case of the second bound in (2.39),
<J |zé§v3(|Ue|+|ze;v|)€|dze;v|> si;w: < Cai;w:|ve|é+1, £=0,1,2.
vie (5

By Hélder’s Inequality and the third bound in (M3) in Proposition 3.1,

vse v S C 12)‘11/'
Jiofted) Do <0 2%

w' <wg w' <we

By Holder’s Inequality, the third bound in (M3) in Proposition 3.1, the second bound in (2.39),
and CSI,

(L (5)|Z@+;”|2|%;€Hdzav’>5u;w: < C(Si;w;’UeF n Z E%;w’)'
v;e\95

w!' <we
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Along with (q4) in Section 2.2, the same reasoning gives

_ l _
(J;: 6 )|Ze+;v’(|U€’+’Ze;v|) |’7U;€Hdze;v|>‘pv;we+| < C<|Dv;w(j‘2|ve‘2 + Zgzzj;w/>7 6207
v;e\03

w' <we

N _
|zgv|2(|ve|+|ze;v|) |7’U§€||dze;v| Ev-w‘*' <C 52. +|U6|4+ eg;w’ ) 621
Soie(85) yWe ViWe
v;e\0p

w' <we

In the above estimates, C' refers to a sufficiently large constant.

By (5.12), (2.44), and (M3) in Proposition 3.1, there exists C'€R such that

‘N’U(é-v)‘x < C<€i;w;‘zgv(m‘)’3 + (|Dv;w$”z;’u(:€)’+€u;w3’z;;_v('rﬂg—’—zzgw’w’)’ywe

w' <wd

(5.37)
(1t |+t 12250 (@)1 ) [daisel Y v + 1D, (1D, +|+ev;w;|dxav;e|)|z,;tv<x>|2)

w'<wd

for all ve A, x€X,,.,.(807), and eeE\)(igg;P.

Combining (5.37), (R1) in Corollary 4.5, (4.19), and the bounds in the paragraph before (5.37), we
find that

j N (60)|[Rut <0(|Du.w;|2+ei.w+)<"’e“ 0 >|+|p§<v>|€*;*w<w;w:>)
e (63) ’ e\ Py (V)]

+CID i P10z ()19 ()9 (5.38)
|pw N. J—

+ C(,pe‘\ © <w>\ + 102 - (0)| O (W50 )) et
wﬂ(w ) W' <ws

for all eeE\)(?gg;P. Along with (3.15) and the fact that

|- (V)] < |p<w*’w:>(v)| V eeEdgy.p s.t. wi Xw”,

this gives

L LACY Hvaka P2 (v) <|pe(v>| ycgﬁ(wﬂ+|p§<v)!5;*w<w;w:>>

2 o P @) \lp,- (V)]
e>e| (5.39)
+C<<|p:ji_ue || ((] (7/))|+|Pfue—(v)|(7 v (3w )ngw>

e(we ) w' <we
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for all eeﬁd/g(c);P with w xw*. Along with (5.22) and (5.23), (5.38) gives

[ melral <o 3y OO0 4 0Py, )

vie 6(7) EGX 76 |p6 U)‘ ’pr ( )
e'}e
107 s P2 (V)]
{wrw’,) € U) 9
+ C 2 ] < ‘ ){ + ’pe('U)| CL*;U(WU)J)) (540)
O] ]
e'>e
o N
+C We + Crow. (5w, 512),w,>
<(|pw_( K LT AIRe A OOl Cy >Z% ,

for all e € ﬁd/g(c];P with w} < w*. Combining (5.39) for w £ w* and (5.40) for w} < w* with
Corollary 4.10 and (5.34), we obtain

> j Nl

eeEng P (5 41)
| / (V)] ~e
<C Z << p (v) \>| 6| ’ ( )|+|PE(U)|Cw*;U(¢§w:)>
eex(To) e Ex(%)
for some C'eR. The claim follows from (5.13), (5.36), and (5.41). ]

5.3 Proof of Proposition 1.3

For the purpose of establishing Propositions 1.3 and 1.4, it is sufficient to assume that [u] and [u,]
are so that

(A1) [u] is an element of M, (X, A; J) of the bubble type 7 =(T,0) of genus geZ",
(A2) {[uT]}:O:1 is a sequence of elements of 9, (X, 4; J) converging to [u], and
(A3) all [u,]’s are of the same bubble type .77 = (71,01) with

By (A3), every contracted subgraph 76T of T satisfies ga(%T) =0. An example of such 7T is the
last diagram on the first row in Figure 3 with one of the two irreducible components forming a
maximal contracted subgraph. By the stability condition on [u,]’s, ’7BT does not correspond to a
contracted chain of spheres (with only 2 points shared with other components of the domain), due
to the stability conditions on [u,]’s.

For every maximal contracted subgraph 7Ty of .7, let

Deu/:Dwi(U’)u/:dx:(u’)u,7 DI =D v eex(To), u,€(77 meZ";

e xj(u’)

see (1.4) for notation. Lemma 5.11 below is the main statement of this section. By (1.10), it
implies Proposition 1.3.
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Lemma 5.10. Suppose g=1. If [u] and all [u,]’s satisfy (A1)-(A83), then
c({Deu: ee;d%)}) =1 V ToePC(7).

Proof. By (A3), Xy, either is a smooth genus 1 curve or consists of a circle of spheres. The
reasoning after (A3) implies that the restriction of w, to each irreducible component of 3, is
non-constant. Lemma 5.10 then follows from [18, Propositions 5.3, 5.2]. O

Lemma 5.11. Suppose g=2 and 7 is of Type 1, la, or 1b. If [u] and all [u,]’s satisfy (A1)-(A3),
then
c({Deu: eex(%)}) —1 ¥ TePC(7). (5.42)

Proof. Fix ToePC(.7). Since .7 is of Type 1, la, or 1b, g,(7o) =1.

Suppose Edg' contains a separating edge e, i.e. 71 is represented by one of the diagrams in the
second row in Figure 3. The limiting map u then has a distinguished separating node; see the
second diagram in the first row in Figure 1. Since g,(77) =2, the removal of e from 77 gives two
genus 1 curves consisting of irreducible components of ¥,,.. One of these two curves converges to
a genus 1 curve containing all irreducible components of X,,o. We denote the corresponding stable
maps by [U,] and [1]. Since these maps satisfy the assumptions of Lemma 5.10, we obtain (5.42).

Suppose Edgl contains a non-separating edge e so that the node ze(u,) converges to some node
ze(u) € Xy which is not a principal node of ¥, i.e. a node not intrinsic to the principal curve .0, p
of Yyu,0. In this case, TT corresponds to either one of the last three diagrams in the top row of
Figure 3 or one of the last two diagrams in the bottom row. The removal of e from 7T deter-
mines a sequence of genus 1 maps [0, ] converging to a genus 1 map [u] with a bubble type (%, 2).
Since z(u) is not a node of Xy.0.p, To.p is contained in a primary contracted graph ’76 of T. Thus,
x(75) is non-empty and can be identified with a subset of x(75). Since [Ui,] and [Ui] satisfy the
assumptions of Lemma 5.10, this establishes the statement of Lemma 5.11.

Suppose Edg! contains no edges of the first two kinds. We can then assume that

(A4) every e Edg' is a non-separating edge and the corresponding node z.(u,) converges to a
principal node z.(u) of Xy.0.

In Section 2.2, 7y denotes an arbitrary contracted subgraph, not necessarily a primary contracted
subgraph. We apply the setup of Section 2.2 with 7 chosen to be the principal subgraph 7o.p of 7o
fixed above. The subbundles in (2.15) then become

FT0=F7 (Bdggp), F71=F7 (Edg—(Edgo,pox(Tor))), FTo1=F7 (Edg—x(Tor)):

Following (3.54), let
Ao = AnFT, AP =AP~F7,

and denote the projections of veFT to FT 1 and ]-"?01 by ve and wgo, respectively. Section 2.2
provides a modified gluing map

v = (7'U§X(7B;P): Ly = Yugy = gy VoeA
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and two continuous families of nearly J-holomorphic maps ;2 =,;1 and
Uy = Up;2°9Qug;002°Gu - Yy — X;

see (2.41), (2.30), and (2.42), respectively. Let Ev;g EEM be as in (2.32) and p.(v) and p(v) be as
n (3.10).

By the proof of the r=1 case of [18, Lemma 3.5(2a)], there exist continuous functions

o (AU)— (eviTX,0),  eex(T) st

ot (iivz(5252) = 3 (d Lt (52 +§e/(v))ﬁe/(v) (5.43)
2 6/<€?(>(;76) e’

for all ee x(7o.p), w'eU, and veAly. By [18, Corollary 3.8(2b),(2¢)], there exists C€R such that

0ozl (s50) |1y < O D P, [Eoa@)] < Cled, ()] Y Pe ()] (5.44)
A A

for all ee x(7o.p) and xze X . (833). By Lemma 2.2 with (f, f) replaced by (uy, Uy;2), Lemma A.8,

va;e

(5.43), and the first inequality in (5.44),

<C D llpev Veex(To.p) (5.45)
e'ex(7o)
(e/)=e

||9J“v|Aev(

for some CeR.

With I'_(u’) as in (2.21) and (1 as in (2.31), we define

I_(v) = {(HCU;I(goqle oG,: £eT_(u )} cT(v) Vu'el, veAly.
Denote by I';(v) the L2-complement of I'_(v) in I'(v). Similar to [15, Lemma 3.16(1)],
[¢lop1 < ClDuCllop VwveA, (el't(v) (5.46)

for some CeR.

Since [u,] converges to [u], for sufficiently large r there exist v, € A with v, — 0 and small
Cv,2€T 4 (vy) such that [u,] is represented by

Up = €XPy, Cups2 + Lo, — X.

Since every w, is J-holomorphic, (5.29) with %,.2 = u,, holds. By the same reasoning as in the
proof of (3.77), there exists a constant C'eR such that

|vr,p,1 <C Z HEJUUJA;UT(%)HU’;D- (5.47)
eex(To;p)

” C’U'r ;2
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Combining (5.47) with (5.45), we obtain

HCU’I‘;2

ol < C Y |pe(v)] (5.48)
eex(To)

for some C'eRR.

By the {=1 case of Lemma 5.1 with ©,, replaced by ©p.,, (5.43), and (5.44), there exist C,C’'eR
such that

’{GP;UT‘ (ét]uvr)}d) - Z -@vT;ew ‘
eex(To;p)

< C Z HwH |UT'76|2 < dIg(UT;2)ﬁUT;2 (ﬁ) ‘ + ‘|£UT;2|E’UT;2§€(865) U'r;27p,1> < C/”w” |’UT| Z |p€/ (/UT)|
eex(To;p) " e’ex (7o)

(5.49)

for all ¢y €Eg|y,. By Lemma 5.2 with ©,, replaced by ©p,,, (2.22), and (5.48),

HGP;vr (DUT6UT§2)|‘ < CH@UT;QHUmp,l‘UT’ < 'y Z‘Pe’ (vr)]- (5.50)
e’ex(To)

By (5.3) with ©,, replaced by ©p.,, (5.11), and (5.48),

12)r7p,1 < C/Z|pe’(vr)|2~ (5.51)
e’ex(To)

H@P;’UT (N'Ur (6”7";2)) H < CHE’UT;Q‘

By (5.29) for Uy,2 =u,, and (5.49)-(5.51), there exists C'€R such that

‘ Z@UT;ew‘ < CH¢‘|‘U’/‘| Z|pe’(vr)| V¢€E0|u;-

eex(To;p) e'ex(To)

By the £=1 case of (5.5), this gives

D e, () (A T (5722) )| < Clellond Yo (@)l YeeEolg.  (559)

eex(To;p) ' e’ex(To)

By (5.43) and (5.52), there exists a continuous function e: (A, ) — (R, 0) such that

> per(wr) eh, () (Do (22=) )| < Wl e(wn) Ylpewn)] ¥ eEolu.

0z
e'ex(To) e'ex(To)

By the assumption (A4), pe(vy) # 0 for all €’ € x(7p). Since go(To,p) = 1, there exists CeR*t
such that N N
[ < Clef)w)|  VYu'el, peEolw, veAlw, eex(To.p).

Since rk(Eg) =0, |v,| —0, and u]. —u, the last two inequalities establish (5.42). O
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6 On the proof of Proposition 1.4

We continue with the setup of Section 5.3 and the assumptions (A1)-(A3). We now also assume
that g =2 and that .7 is of Type 2. Thus, PC(.7) contains a unique element Ty with g, (7o) = 2.
The triple (.7, 7o, To.p) forms a pseudo-tree framing, and the pair (7, Te.0) with e€ x(7o.p) forms
a tree framing; see Section 3.1 for the notation and terminology.

Suppose Edg' contains a separating edge e. The removal of e from 7T then determines two
sequences ﬁ&l) and ﬁ£2) of genus 1 maps with one marked point each that converge to genus 1 maps
™M and U@ of bubble types 71 and .7 3. The latter maps are obtained by removing the node
corresponding to e from Xy. Thus, PC(Z ™M) and PC(.7®)) consist of one element 76(1) and ’76(2)

each and

X(T0) = X (T ux (T, x(T), X(T?) # 0, Elu = Elgoy ® Elge-

Applying Lemma 5.10 to ﬁfnl) and ﬁ?) each, we obtain

c({Dew: eex(T)}) =1 =12,

This implies that
[l € | el Za) = 0y, (6.1)
=2

see (1.8) for the notation.

In the remainder of this section, we assume that Edg’ contains no separating edge and thus [u]
and [u,] satisfy the assumptions (A1)-(A4). Since [u,] converges to [u], for sufficiently large r
there exists a sequence {v,} of elements of A such that v, —0 and every [u,]| can be represented
by a J-holomorphic map

u, = (EUT, Uy, = €xPy, &v, X, —>X) (6.2)

as in (3.6). By (A3),
Upse 7 0 VeeEdg—Edg.p. (6.3)

Replacing v, by a subsequence if necessary, we can assume there exists a non-empty subset x*°
of x(7To) such that

lim pe(vr) e C*, lim per(vr)
=0 pe(vr) =0 pe(UT)

=0 Ve,e'ex®, e"ex(To)—x"- (6.4)

The elements of x* are called dominant directions. Let

Xo = {(&): eex*} < x(To;p)-

Along with (1.11) and (6.1), the next four propositions imply Proposition 1.4. If [u] is as in
Propositions 6.1 or 6.2, then
(] € 11 (Mo x 2001 0 Wax Z435) it [x(70)|=1:

[u] € Lg(ﬂuxz(fg);l v WQ,ZXZ(g?g);l U Zay) if £=[x(To)|=2.
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If [u] is as in Propositions 6.3 or 6.4, then
[u] € te(Z20 L Coex 2(7,1)
with £=|x (7o)l
Proposition 6.1. If x*={e} and [Su,0; ze(u)] is not in Wa 1, then either [u] satisfies (6.1) or
Deu=0, c({De/u: eex(To)}u {Dg)u}) =2.
Proposition 6.2. If x*={e} and [Su.0;Te(u)] is in Wa 1, then
Deu=0, c({De/u: ¢'ex(To)} u {DP)y, pg3>u}) —2.
Proposition 6.3. If either |x*|>3 or
x* = {e1, ea} and [Zu;o; Zey (1), xeg(u)] ¢ 62,2,
then [u] satisfies (6.1).

Proposition 6.4. If x*={e1,e2} and [Su0; e, (1), Te,(0)]€Caya, then either [u] satisfies (6.1) or

¢(Deyu, Deyu) =1, c<{De/u: ¢'ex(To)} U { (PP u+DPu) |(ker{peluw€2u})®2}) —9.

Denote by X3, . p the minimal connected union of the irreducible components of Yy;0;p containing
all z¢(u) with e€ yo and by Z;;;%;P the complement of X}, o p in Zy,p. Let gg(u) be the sum of
the arithmetic genera of the topological components of E:l’;co; p- There are four primary possibilities
for 3, . p that are similar to the five types in Figure 1:

Case (0): go(u)

a

Case (2): g.(u)

a

07 Case (1a): QS(U) = 17 ’Ea;O;PmE:l;;CO;P‘ :2’
27 Case (1b) gc(u):1> ‘Z;;O;szsﬁ);lj =1.

a
A secondary characterization for Yh.0.p is used in the proof of Proposition 6.3; see page 72.
Suppose =1, €Egly —{0} for veAly, W eU, is a continuous family such that

(0 €8,()) ser ) # 0 € CXT (6.5)
for all reZ* sufficiently large. Then,
L, () = [0r i ()] ey () € B(CHT)

is a well-defined element. After passing to a subsequence, we can assume that £,(¢) converges
to some line L(v)) € IP’(CX(TO)). If ¢ and n are two families satisfying (6.5) and L(¢) # L(n), we
denote by

P(¥,n) € Gr(2;x(To)) (6.6)
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the 2-plane generated by 1 and 7.

By the assumptions (A1)-(A3), there always exists a continuous family ¢ =1, € Eg such that (6.5)
holds. If in addition

IX(To)|=3  or  x(To)={e1,ea} with [Sy0;xe,(u),ze,(u)]¢Ca2,
then (6.5) holds for every family v, with 1, #0.
Lemma 6.5. Suppose 1) = 1, € Eglw for ve Aly, u' € (,7, is a continuous family such that
¢u,mg () 70 for some es€x.. Then,
Qes #0 V (ae)eey(10) EL(Y) {0}, e*ex(To) s.t. {e*)=e.,

2 Qe Deu(%) =0 v (ae)eex('ﬁ)) Gﬁ(w) (67)
eex(To) ’

Proof. By the assumption on v, there exists C'€R such that
Iy < Ol ()] VoveA. (6.8)

Let e® € x* be such that (e*)=e,. By (6.8) and the k=0 case of the second inequality of (4.13),
there exist C’, C'eR such that
[][pes ()] < el ()]l per (v)] < C Jvescd), (¥)]  VweA. (6.9)
By the first inequality in (4.13), (6.4), and (6.9),
2lvrecld )] < Clell lpevr)l < C[llpe (vr)]
eex (7o) eex (7o)

< C””Ur;e’cig);vr (7/))| < C”Z |Ur3ecg?1)fr(w)|'
eex(To)

(6.10)

This establishes the first claim.

Since every map in (6.2) is J-holomorphic, Corollary 5.4 applies. By the continuity of D.u’ in u’e U,
it implies that there exists a continuous function e: (A, U) — (R, 0) such that

Y vre e, () (Peu(52) )| < elwr) 3 (Jore e @)+ ellpewn)]). (611)
eex(To) ’ eex(To)
The second claim follows from (6.10) and (6.11). O

Lemma 6.6. Suppose e*,e°€x® are such that e®* #e° and {e®*)={e®). If n=n,€Ep|w for veA|y,
u' €U, is a continuous family such that

<2, ()=0 YuveA, el () #0, (6.12)

then vr;eocgvr (n)#0 for all reZ* sufficiently large and

> ac Deu(ﬁ) =0 V(ae)eex(7s)€LM). (6.13)
eex(To) ‘
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Proof. Let eq={e*) and w*=wy,. By Corollary 4.7 for ¢»=n and (6.3),

[V é% ()]
2 (vr)|

for all ee x(7p) and reZ™ sufficiently large. Along with (6.3), this establishes the first claim.

Il Coe, (m50F) < Cluy | (6.14)

By (6.4), there exists C'eR such that

2 2
|pe(vr)| . 2 |pe(vr)| S < C. (6.15)
eex(To) |pes (r)] cex(To |peo (vr)]
By (6.14) and (6.15),
Z‘pe (vr | w* ;UT(77§we+) < C/|UT||UT§EOC((323’UT(,’7)‘ < C/|Ur| Z ‘Ur;ecf(z?z))r(n” (6.16)
eex(To) eex(7o)

for some C’eR.

/

Since every map in (6.2) is J-holomorphic, Corollary 5.6 applies. Along with the continuity of Deu
in w'eU, it implies that there exist C€R and a continuous function e: (A, U)— (R, 0) such that

| Dol 00 (Pen(5)|

eex (7o)
" (6.17)
€3 ((ctor)+Horel X 000 el (4162000 Co ()
)

eex(To e’ex(To)

By (6.15) and (6.16), there thus exist C'€ R and continuous functions €, ¢ : (A, U) — (R, 0)
such that

| D onec®, () (Peu(35)) | < cg(w o, (n >|+|p§<vr>|é;*;w<n;w:>)

eex(To) eex To> (6.18)
2 }UT ece vr
eex(To)
The second claim of the lemma follows from the first claim and (6.18). O

Lemma 6.7. Suppose e*,eq,es€Xx® are such that
et er e[ =3, (ef)=Cerp=Ce2),  {er,e2)y>{e" ery={e" e2). (6.19)
If n=nyeBoly for veAly, w'eU, is a continuous family such that

cg?v(n) =0 VweA, cgiz>;u(7])=0, 22>u( ) #0, (6.20)

then (vr;elcg(fzw (n), UT;GQCQUT (1)) #(0,0) for all reZ* sufficiently large and (6.13) holds.
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Proof. Let eq={(e*) and w*=w} By Corollary 4.8 for ¢)=n, (6.3), and (4.14),

{e®e1)”
(0) (0) (0)
~ |Ur;eCe;vr(77)’ ’vT§€1Cel;UT(n)| |UT§€2C€2?“T(77)‘
77 pw*w U’I” 9 Cw JUr 777 C/UT + +
12 iy (0r)] () < € '( 02(0)] 102, (vy)] 2, (vy)]

for all ee x(7p) such that (e)=e,. Taking e=e* above and using (6.3), we obtain the first claim.

Along with (6.15) with e° replaced by e; and eg, the inequality above gives

|Pg(vr)|éz:;*;vr (n; w:) < Cloy| (|Ur;ecgovr |+|v7« 61Cg?)fur )|+|UT§6QCSQ)2'UT (77)|> (6.21)
for all ee x (7o) such that (e) =e,. By the first two assumptions in (6.20), nu] ~ () 70 for every

eex (7o) with (e)#e,. By (4.16) and (6.9) with (¢, e*) replaced by (n, e), there thus ex1st C,C'eR
such that

|PZ(UT)’5;;*;UT (n; w:) < C|PZ(UT)’H77H C/‘UTHUT eCeOQ)JT (77)‘ (6.22)

for all ee x(7p) such that {(e)#e,. By (6.21) and (6.22),

Z|Pe UT | w* ;v /'77 ) C|U7" 2 ’Ur§ecg?"))r(n)‘ (623)

eex (7o) eex (7o)

for some CeR.

Since every map in (6.2) is J-holomorphic, Corollary 5.6 applies and so (6.17) holds. By (6.15)
and (6.23), there thus exist C€R and continuous functions €, €;: (A, U) — (R, 0) such that

| Yvne e ) (Pea(z5))| < € X (elwn)foreel, )| +1p2wn|Ca, (10

eex(To) eex(To) (6.24)
(vr Z }Ur;ecg)?jr (n)
eex(7o)
The second claim of the lemma follows from the first claim and (6.24). O

Proof of Proposition 6.3, Case (0). We split the proof based on a secondary characterization
of [u] and [u,]:

(.2): xe 3 e1,62 with €1 #ez and [Sy0.p; Te, (), e, (0)]£Ca 2

(.1g): xe={e1,e2} with e; #e9 and [El&p;mel(u),x@(u)]e@g or
Xeo = {60} with [EU;O;P; Le, (ll)] ¢W2,1;

(1w): xe={ee} With [Su.0.p; e, (0)]€W2 ;.

In Case (0), let x, consist of all elements of y, for which the map (1.3) is well-defined and S, be
the corresponding set of marked points. In the first sub-case above, the image of S, under this
map contains at least 2 points. In the second sub-case, it consists of a single regular point. In the
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last sub-case, this image is a single branched point.

Suppose x. is as in Case (0.2). There then exist continuous families 1 =1y, 12 = Yo €E|y for
u'eU such that . . . .
G () €02 #0, Q) (W), €0, (1) =0.

By the k=0 case of the second inequality in (4.13), the first assumption in (6.4), (6.8), and (6.9),
there thus exist C,C’€R and a continuous function e: (A, U)— (R, 0) such that

0
v e8) o @0)] < Cloey @I (Jel)_, (00)|+ ol
< (V)] e (V)Xo (0)] < Ce()[ve, ()] ¥ veA, i=1,2.
Along with the first statement of Lemma 6.5, this implies that

L(;) € {[ae]eex(%): ae,#0, ae:,ﬂ.:O}, 1=1,2.

These lines are thus distinct. By the second statement of Lemma 6.5 for @ =11, 19,

> ae Deu(ﬁ) =0 V(te)eex(r) EP (1, 2)
eex (7o) 7

This establishes (6.1).

Suppose X. is as in Case (0.1g). By the assumptions of Proposition 6.3, there exist distinct
e®, e’ € x* such that (e*) =<{e°) and [Su.0,p; Te, (0)] ¢ Wa,1. Thus, there exist continuous families
Y =y € Eg|y for u’ e U and n=mny € Ey|ly for ve Aly, u' € U, satisfying the assumptions of
Lemmas 6.5 and 6.6, respectively. By the first statement of Lemma 6.5 and the equality in (6.12),

L(Y) € {[ae]eey(T): Ges#0} and L(n) € {[aeleex(Ts): aes=0}. (6.25)

These lines are thus distinct. By the second statements of Lemmas 6.5 and 6.6,

Z Qe Deu(%) =0 v (ae>eex(76) E,P(dﬂ 77) . (626)
eex(To) ’

This establishes (6.1).

Suppose X, is as in Case (0.1w). Then, |x*|>3. Choose e®, e, ea€ x* satisfying (6.19). There then
exist continuous families ¢ = €Kyl for u'e U and =1, €Ep|w for veAly, u'e U, satisfying
the assumptions of Lemmas 6.5 and 6.7, respectively. By the first statement of Lemma 6.5 and the
first equality in (6.20),

L) € {[acleex(7s): aee#0}  and  L(n) € {[ae]eey(r) ae=0}-

These lines are thus distinct. The second statements of Lemmas 6.5 and 6.7 imply (6.26) and
consequently (6.1). O
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Suppose [u] and [u,] are as in Case (1a) or (1b). In the first case, illustrated in Figure 6, the prin-
cipal subgraph 7o.p of [u] satisfies the sentence containing (3.25). In the second case, illustrated
in Figure 5, 7o.p satisfies the sentence containing (3.19). In either case, there exists a continuous
family ¢y € Eg|y for u'e U to which Corollary 5.6 and Lemma 6.5 apply. The latter provides a
line £ (1)) c CX(70) gsatisfying (6.7) and (6.25).

In order to obtain a second vanishing condition in Cases (1a) and (1b), fix e*ex®. Let

EO = {UEED|U T]| v)—O UEAO p} — Aop

This line subbundle of Eg|a,,, extends to a line subbundle E§ of Eo|a, such that 5[ - =0 for all

nekyl, and ve A. A section 7, of this subbundle such that 7|, #0 gives rise to a second vanishing
condition; the latter depends on the proposition in question (6.1, 6.2, 6.3, or 6.4).

In the case of Proposition 6.3, the above family 7, determines a line £(n) satisfying (6.25). In
order to show that L£(n) also satisfies (6.13), the estimate of Corollary 5.6 with v, replaced by
7» needs to be improved to incorporate the nodes of ¥,.0.p not in ZuO .p- This will be done in
a separate paper by combining Corollaries 3.3 and 3.5 in Cases (1b) and (1la), respectively, with
suitable estimates for 7, on different regions of the domain ¥, with ve Ag. The required estimates
are the analogues of those in Corollaries 4.5-4.10.

In Propositions 6.1 and 6.2, x* consists of a single element e®. The settings of these propositions
correspond to the secondary characterizations (.1w) and (.1g), respectively, while (.2) does not
occur. The vanishing condition on Deeu in Cases (0), (1a), and (1b) follows directly from (5.23)
with w* =wJ; it is also the second conclusion of Lemma 6.5. In Case (0), the properties in (1.6)
involving Dg)u and Dg)u follow from the ¢ = 2,3 cases of Lemma 5.1 and a refined version of
Corollary 5.6. In Cases (1a) and (1b), estimates on the section 7, as in the previous paragraph are

needed as well.

In Proposition 6.4, x* consists of two elements e; and e3. The set x, may consist of one or two
elements, corresponding to the secondary characterizations (.1w) and (.1g); (.2) again does not
occur. The setting of Proposition 6.4 is the most delicate of the four propositions. In Cases (0),
(la), and (1b), the first degeneration condition in (1.7) follows from Corollary 5.4 by an argument
similar to the proof of Corollary 5.6. However, the second vanishing condition in (1.7) requires a
modification of the spaces I'y (v) below (3.42) and (3.58) to distinguish the one-dimensional linear
span of D, u and D,,u (if both vanish, then the second condition in (1.7) automatically holds).
This modification suffices to establish Proposition 6.4 in Case (0). In Cases (1a) and (1b), Propo-
sition 6.4 is obtained by combining this modification with estimates on the section 7, as above.

In Case 2, 9|,
into two line bundles E; and Eg. It can be extended to a splitting of Eg|a, so that n| U)— 0 for

“()= =0 for all € Eg|a,,, and e€ xo,. There is then a natural splitting of Eg|a,,

all nelEy, ve Ay, and for some fixed e® € x*. An analogue of Corollary 5.6 in this settlng is then
obtained using estimates on a nonzero section 1, of E; analogous to those of Corollaries 4.5-4.10.
It yields one condition on the derivatives of u. A second vanishing condition is obtained by using
a nonzero section 7, of Es.
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A Appendix

In the remainder of this dissertation, we collect a few basic observations.

A.1 Exponential maps and differentiation

If f: M — X is a smooth map between smooth manifolds and F— X is a smooth vector bundle,
let
U(f;E)=T(M; f*E),  T'(f;E)=T(M;T*"M®f*E).

A connection V induces a connection V/ on f*E— M. If a: (a,b) — X is a smooth curve and
¢eT(a; E), let

D D' D /(D!
—£=V4§ I'a; E — &= — =2,
dtg vatge (a7 )a dtgf dt <dt€ 1§> Ve

where 0; is the standard unit vector field on R.

For a Riemmanian metric gx on X and a gy-compatible connection V, let exp be the exponential
map, Ry the curvature tensor, and Ty the torsion tensor for V. For every x € X and ve T, X,
denote by II, the parallel transport with respect to the connection V along the geodesic

Y [0,1] — X, t — exp,(tv).
Lemma A.1. For every xe X, woeT, X, and smooth map £ : (—e, ) — T, X,

D! d’e

dtﬂ twof( ) W(O) A €€Z+.

Proof. Let {¢;} be a basis for T, X and (;(t) = IT}y,¢;. Then

dtCi(t) =0 Vte(—e,e€). (A.1)
Suppose &(t) =, fi(t)G. Then Iy, &(t) =2, fi(t)G(t). By (A.1),
Df D¢ d@fZ deg
dté ngoé( ) dte (Z fz Cz ) ZZ: G = W(O) 0]

We next refine the estimate of [21, Lemma 3.9]. Given z€ X and v, wp, w1 €T, X, let a: (—¢,e) — X
be a smooth curve and €' («; TX) such that

a(0) =z, O/(O) =, £(0) = wy, %5(5)‘570 = wjy. (A.2)
Put
D, (v;wp, wy) = (0)( dS|S Oexp(f(s))) eT, X,

N (A.3)
P, (v; wo, w1) = Py (v; wo, w1) — (v + w1 — Ty (v, wp));

these definitions are independent of the choices of « and ¢ satisfying (A.2). Let

A(Ul,vg,vg) = %(Rv(vl,vz)vg — (VvlTv)(Ug,Ug) + TV (Tv(vl,vg),vg)) Vvl,vg,vgeTJ;X, rzeX.

75



Lemma A.2. There exists Ce C*(TX;R) such that

~

| @ (v;wo, wi) + 5Tv (w1, wo) — A(wo, v, wo) | < C(wo) (Jv]wol* + |wol*|wi])
for all te X and v, wg, w1 €T, X.
Proof. Let o and € be as in (A.2). Put u(s,t) = expys) (t£(s)),
Fv,wo,wl (t) :Us(Ovt)a and
H = *(3
vawo,wr (1) =i, (v + t(w1 — Tv(v,wo)) +t (2Tv(wg,w1)+A(w0,v,wo))).
Since
0,0)= 0) = Duy=0, 2 = D —w —T¢ A4
Us( ) ) v, ut(s, ) 5(3)7 T ut s ds‘(0,0)ut w1, ds’(070)u5 w1 V(U7w0)7 ( : )
we find that

Fo wo w1 0)=v= Hy o, (0),

(A.5)
%‘tzo Fo o w1 (t) = w1 — Ty (v,wo) = %‘tzo Hey w,un (t).
From (A.4), we also obtain

D2
de2

o Franan(®) = (B Bus) ) = (8 R = B (To s, u))

= (8B + Rl ualue — (VuTe) o) = ToBuarue) ~ T, Fun))

(0,0)

(0,0)
= Ty (wo, w1)+2A(wo, v, wp).

Along with Lemma A.1, this implies that

£ | Fowoun (V) = Fz| _ Howoun (1) (A.6)
As in the proof of [21, Lemma 3.9],

F o, (t) = H. . (t) € Hom (T X DT X5 T (1) X ) -
By (A.5) and (A.6),

|Fv,w0,wl(t) — Hy wo,un (t)| < C’(wo,t)t3(|vl+|w1|),

where C' is a smooth function on T'X xR. Since

Fo o,y (8) = Huwo,w (£) = Fo,two,tw, (1) = Fo,two,tw, (1),
there exists C'e C*(TX;R) such that

|Fv,w0,w1(1) - HU,'lUOJUl (1)| = |Fv,w0/\wo|,w1/\wo|(|w0|) - Hv,w0/|w0|,w1/|wo|(|w0‘)|
< C(wo)(|v\|w0|3+]w0]2|w1|). Il
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Lemma A.3. Suppose X is a compact Riemannian manifold, o:: [—e,e]—> X is a smooth curve,
§,Tel(;TX), and (T (exp &7 TX). If €F and ¢ are small and satisfy

eXPy € = eXPosp_¢+ (A7)

then there exists CeR such that
€ —¢" =TI, < ClETCle, (A.8)
[ fe - Ber —ngthcl < o (1], + 1R, + 18,) (71 + k) (4.9)

for all te(—e,e).

Proof. Since the difference in (A.8) is a smooth function of £ and ¢ and vanishes if £+ =0 or (=0,
(A.8) holds. Differentiating both sides of (A.7) and taking the parallel transports, we obtain

I, 'dexp, & = IT; oIl (Hgldexpexpa£+c>. (A.10)
By Lemma A 2,
I 'dexp,§ — da — V|, < C(|dale+|V€) €] (A.11)
)Hgldexpexpa§+ﬁ Tl (da+7o6+) = veradc|
< C(Jdale+ Vo€ |+ [P, ) (1€F | +Cle)- (A.12)
By (A.7),
(11 eTlcollg: —id) (da+V7€*)| < C(ldale V7 [1) 6ol s
(g ol =TT (Vo2e70)| | < CToee” ] Je* Il |
The inequality (A.9) follows from (A.10)-(A.13) and (A.8). O

A.2 Derivatives of J-holomorphic maps

Let E— X be a complex vector bundle over a smooth manifold and AcC be a disk around the
origin 0. If V, V’ are (complex) connections in E, there exists

0T (X;T*XQ®rEndc(E)) st. Vis=Vys+0(v)s(z) Vel X, zeX, seI(X;E). (A.14)
Any C®-map u: A— X induces connections V¥, V" in v*F— A and
V" =V*+u*0 =V" + 0 odu.

A (holomorphic) connection V in TA — A induces a (holomorphic) connection in T*A — A,
which we still denote by V. If V' is another (holomorphic) connection in T'A, there exists a
(holomorphic) one-form

feD(A;T*A) st Via=Vea+0walp) YoeT,A, pel, acl(A;T*A). (A.15)
The pairs (V,V) and (V’, V') induce connections D* and D’* in the bundles
T* AP @pu*E — A,
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Lemma A.4. If £ e D(A;T*AQgru*E) is such that £(0) =0, then (D"€)o € T§ APR2Qp B, is
independent of the choices of V and V.

Proof. By (A.14) and (A.15), there exists

¥ e F(A,T*A@)REHdR(T*A@RU*E)) S.t.
Dltée = DY + 9(v)E(p) VoeT,A, peA, (eT(A; T*AQru*E);

in fact, 9 =0 @g id + id®ru*6. Since £(0)=0, the above identity implies the claim. O
Lemma A.5. Suppose dgu=0 and veTyA. If EeT(A; T*AQru*E) is such that £(0)=0 and

D*¢: ToA ®r ToA — Ey), (v1,v2) —> {Dy, £} (v2), (A.16)
1s C-bilinear, then the space

Spanc{ {DIE} (), {{DY(D")}(0)} (v)} (A17)
is independent of the choices of V and V.
Proof. By the proof of Lemma A .4,
D'"(D"¢) = D" (D¢ + {I@rid+id@ru*0}€)
= DY(D"¢) + {I@Rid@rid+ id®@r IQrid +id®rid@ru*0} (D E) + D™ ({I@grid +id@ru*0}E).

Thus, by the vanishing assumptions on dpu and £(0) and Lemma A .4,

{D (D"} () }Hv)} = {Dy(D"E)}H(v) )}

+{Dy,, EHw) + {1} (B(v)v) + {Die} (O(w)v). (A.18)

By the C-bilinearity assumption,

{Dfy @) {DE} (B(0)v) = 6(v) - (D€} (v).

Thus, the terms on the last line in (A.18) are in the C-span of {D{¢}(v) = {D*¢}(v), which implies
the claim. O

If in addition
DuDufi T()A ®R T()A ®R T()A — Eu(0)7 (Ul, V2, 1)3) —> {{Dgl (Duf)}(’l)g)}(’vg), (A19)

is C-trilinear (at least modulo the image of the map (A.16)) for some choice of (V, V), then the
property (A.17) is independent of the choice of veT*A—0 (since any such two choices differ by
the multiplication by an element of C*).

We apply this to & = du for a J-holomorphic map u such that dou=0. First we show the following
lemma.

Lemma A.6. The map D"du is C-bilinear.
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Proof. Since the map is R-bilinear, it suffices to show

{Dy,, du}(ve), { Dy, du}(juz) = J{Dy du}(ve) Yovi, vaeTpA. (A.20)

Ju1

Extend vy to a vector around 0 on A. Since u is J-holomorphic, dpu = 0 and V (and hence V*)
is J-linear,

{Dy, du}(jv2) = Vi, {duljvz) } — dou(Vy,jua)
= JVi {du(ve)} = J{D}; du}(vs).

This establishes the second statement in (A.20) holds.
By the R-linearity of D", the first statement in (A.20) holds if and only if
&, (du(ds))lo = V5 (du(d)}lo, V3, (du(ds))lo = =V, (du())lo, (A.21)

where 05 and 0; are the standard coordinate vector fields on A. Let ({;}1<i<2n) be a coordinate
chart in X around u(0). With u; =z;0u,

0
oxt

du = Zdui Qr u*

on a neighborhood of 0 in A. Since dou=0,
dou' =0 Vi, (A.22)

By Lemma A.4, the first and second identities in (A.21) are thus equivalent to

(72ui (72u2- aQUZ‘ (9211,1‘
_ - _ A2
83(%( ) 8t03(0)’ 8303(0) otot (0), (A.23)
respectively; this establishes the first identity in (A.21). Since u is J-holomorphic,
du(ds) + J(u)du(dy) = 0. (A.24)
Thus,
Vé (du(0s)) + (V§ u* J)du(0r) + J(uw) V3, (du(dy)) (A.25)

= 0= J(u)(V5 (du(ds)) + (V& u*J)du(;) + J(u)VE (du(dy)).

Evaluating this at 0 and using dpu =0 and the first identity in (A.21), we obtain the second identity
in (A.21). O

Now we are ready to show the following result.
Lemma A.7. The map D"D"du is C-trilinear.

Proof. By Lemma A.5, it suffices to work with the Eucleadian connection V on A. Denote s and
t by s' and s?, respectively. Notice that

ul « © _ 0
Vo <“ axi)lo = Vaou(w) (ax)
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for any veTpA and 1 < i < 2n. Taking (A.22) into account, we see that

, 0
D*(D" I @p ds* ! — A2
{ ) Zz: 1; 108988’“881 (0) ds” @ ds” @ ds' @r u" 7 5 (A.26)

By the bilinearity of the map (A.16), the C-linearity of the map (A.19) in the third component is
equivalent to

63ui 6 53’&1 0
757505 V7t hie) T 7O 2 55555 Vg ey =
Z 03, 0 l OB, 0 (A-27)
> gsatar ezl T MO 2 e O e =

By (A.25),

Vi (V5 (du(0s))) + (V& (Vs u*J))du(dy)
+2(VEu*T)VE (du(dy)) + J(w)VE (V4 (du(d))) = 0.

Evaluating this at 0 and using dpu =0 and V*u*J|p = 0, we obtain the first identity in (A.27).
The second holds by symmetry. O

A.3 Local properties of J-holomorphic maps

For ne Z* and ReR", denote by B} < C" the open ball of radius R centered at the origin. If
n=1, we simply write Br= B1 For zeC, let

0 - 0
0= — d 0= —.
02 0z
For each a = (my,m2)eZ>° @ Z>°, define
ol = mylms!, la| = mq+mo, D® = gmogm2. C° — (O, 2% = MM

with D@9 =id. If f is a function differentiable to order k with keZ>°, denote by

k

k Dy f
Thoe) = 3 ="
|| =0 ’
the k-th order Taylor polynomial at z=0 and let
IDFfl= YD fl.
|a|=k

Lemma A.8. Let §, ¢, pe RT with p>2, {€Z™", and J be an almost complex structure on C" such
that J(0) is the standard complex structure Jen. There exists CoeRY such that

J4
| dou—dou| < Collulpplzl,  [u(z)-Tig(2)] < Cellulp|e*t v zeBs

for every J-holomorphic map w: Byey15—> C™ with u(0) =0 and |dulLr <e. Furthermore, Cy can
be chosen to depend continuously on 8, €, p, and J with respect to the C**1-topology.
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Proof. By [21, Corollary 4.3], there exists Cj,€R" depending on ¢ and p continuously such that

I fllow <Cs,p fHL£+1’ k=0,1,....,¢, fECOO(B2e+17k5;(Cn). (A.28)
By Taylor’s Theorem, it is thus sufficient to show that there exists CeR* such that
lullzz_,Bs) < Clulre (A.29)

£4+2

for every J-holomorphic map u: Byer15—> C™ with w(0) =0 and ||du|z» <e.
By (A.28), there exists Cj, ,€R™ such that
flev € Chey ¥ FEC®(Byarss C) with £(0)=0, [df] 10 <e. (4.30)
By (A.28) and (A.30), there exists C eR™ such that
7). <O<1+HfHL£) ¥ ke[0+1], feC® (Byarg;C") with f(0)=0, |df|Le<e. (A.31)
By [10, Proposition B.4.9] and (A.31), there exists C€R™ such that

By) < Clulrr (B <--- < CZ-HHUHL{’(B = CEHH“HL? (A.32)

Jal o

e+2( 2“16)

for every J-holomorphic map u: Byer15— C" with «(0) =0 and ||du| z» <e. This establishes (A.29).
O

Corollary A.9. Let 6, ¢, pe RT with p>2, £€Z™*, and J be an almost complex structure on a
compact Riemannian manifold X. There exists Coe R™ such that

l
[ dou—dou| < Celulpplzl,  [u(z)-TH ()] < Cellul gl ¥ zeBs

for every J-holomorphic map w: Bys— X with |du|rr <e.
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