Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
(C) All Rights Reserved by Author.

Algebraic Methods in Topology and Applications

A Dissertation presented by
Nissim Ranade to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in
\section*{Mathematics}
Stony Brook University

May 2017

Copyright by
Nissim Ranade
2017

Stony Brook University

The Graduate School

Nissim Ranade

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend acceptance of this dissertation

Dennis Sullivan - Dissertation Advisor Distinguished Professor, Department of Mathematics

Christopher Bishop - Chairperson of Defense

Professor, Department of Mathematics

Allen Tannenbaum
 Distinguished Professor, Department of Computer Sciences

Scott Wilson
Associate Professor, Queens College, Department of Mathematics

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

To my parents, Roshan and Milind Ranade

Acknowledgements

Thanking everyone who has positively influenced my personal and academic life and hence this thesis is at least a daunting task, if not an impossible one. However hard this might be, gratitude must be expressed where it is due.

The first most obvious thank you goes to my advisor, Dennis Sullivan for being a wonderful teacher and a mentor, for teaching me mot just Mathematics but also how to teach about Mathematics. I wouldn't have pursued this subject let alone be writing this thesis without encouragement and support from my wonderful parents. From encouraging me to be a curious child to being curious about mathematics I do, they have provided me with a rock solid support system for which I am eternally grateful. Besides my parents I would like to also thank so many in my extended family and friends of our family who provided me with remarkable role-models. Thanks Rashmi and Gunjan for being more than just friends, for being my sisters. An extra thank you to Rashmi for not letting trivialities like distance and time zones get in the way of our study hangouts. Thanks to all my friends from the undergraduate years for being my very first Math friends, especially Arghya, Sourav (Dada), Sandeepan, and Saumya. Thanks Vaidehee, for making me coffee whenever my courage wavered back in those crazy times.

Thanks to all the wonderful people I met in the Mathematics department at Stony Brook. Thanks to Chandrika and Cam for being my home away from home. Thanks Moira for all the very useful life advice and for welcoming all of us into your mathematical family. Thanks Raquel for the art parties. Thanks Max, Yury, Matt, Joe, Lloyd, and Jimmy for being fun Math and life friends. Thanks Silvia, Michael, Cristian, and David for being another generation of fun math and life friends. Thanks Aradhana, Anibal and Manuel for being friends and colleagues with valuable insights.

The process of Math thesis writing would have been too discouraging and frustrating had it not been for all my friends from outside the Math department who kept me firmly grounded in reality. Thanks Andrea, Abhishodh, and Naveen for the reading group. Thanks Michael Richardson for all the frolicking. Thanks Samira for making me dance. Thanks Tapti for putting up with a mildly crazy housemate like me. Thanks Celeste for insights into driving like a pro. Thanks Iris for being an awesome study buddy and for reminding me to be awesome. Thanks Sean for proof reading a lot of my nonmathematical writing. Thanks Iris, Sean, Grace, Sergiy, Anna, and Andrew first for $\mathrm{D} \& \mathrm{D}$ and then for everything else besides $\mathrm{D} \& \mathrm{D}$.

It is because of everyone mentioned here and several others that I look forward to the rest of my life with optimism. The great memories from my graduate school days will stay with me and positively influence the rest of my life.

Abstract of the Dissertation

Algebraic Methods in Topology and Applications

by

Nissim Ranade
Doctor of Philosophy

in

Mathematics

Stony Brook University

2017

In statistics cumulants are defined to be functions that measure the linear independence of random variables. Cumulants can be described as functions that measure deviation of a map between algebras from being an algebra morphism. In Algebraic topology maps that are homotopic to being algebra morphisms are studied using the theory of A_{∞} and C_{∞} algebras. In this thesis we will explore the link between these two points of views on maps between algebras that are not algebra maps.

Contents

1 Introduction 1
$2 \quad A_{\infty}$ and C_{∞} algebras 4
2.1 Differential graded algebas and coalgebras 4
$2.2 \quad A_{\infty}$ algebras and morphisms 7
$2.3 C_{\infty}$ algebras and morphisms 11
3 Cumulants 15
3.1 Commutative Cumulants vs. Boolean Cumulants 15
3.2 Boolean cumulants for A_{∞} algebras 17
4 Transfer of the A_{∞} and C_{∞} structure 19
4.1 Transferring associative structure 19
4.2 Transferring A_{∞} or C_{∞} structures 23
4.3 Extending a quasi-isomorphism to an A_{∞} morphism 24
5 Special case of the integration Example 27
5.1 Transferring structure to cochains 27
$5.2 \quad A_{\infty}$ morphism from differential forms to the associative cochains 30
6 Main Results 32
6.1 Structure of an A_{∞} morphism between dgas 32
$6.2 \quad C_{\infty}$ morphism between dgcas 39
6.3 Structure of a general A_{∞} morphism 41
6.4 Revisiting the A_{∞} morphism between forms and associative cochains 45
6.5 Conclusion: Associating CW-complexes to cumulants and maps 45

Chapter 1

Introduction

In statistics cumulants are defined to be functions that measure dependence of random variables. If the random variables are independent the cumulants are zero. These cumulants can be defined in general for linear maps between commutative algebras which do not respect the algebraic structure.

The first few cumulants for a map e between two commutative algebras are defined as follows.

$$
\begin{gathered}
k_{1}(a)=e(a) \\
k_{2}(a, b)=e(a b)-e(a) e(b) \\
k_{3}(a, b, c)=e(a b c)-e(a b) e(c)-e(a) e(b c)-e(c a) e(b)+2 e(a) e(b) e(c)
\end{gathered}
$$

In general, k_{n} is defined as follows.

$$
k_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi}(|\pi|-1)!(-1)^{|\pi|-1} \prod_{b \in \pi} e\left(\prod_{i \in b} a_{i}\right)
$$

The sum is taken over all partitions of $\{1, \ldots, n\}$. Knowing the cumulants allows you to calculate the expectations of products. For example

$$
e(a b)=k_{2}(a, b)+k_{1}(a) k_{1}(b)
$$

$e(a b c)=k_{3}(a, b, c)+k_{2}(a, b) k_{1}(c)+k_{2}(b, c) k_{1}(a)+k_{2}(c, a) k_{1}(b)+k_{1}(a) k_{1}(b) k_{1}(c)$
For a linear maps e between associative algebras we define Boolean cumulants to measure the deviation of e from being an algebra map [11]. The Boolean cumulants are a family of maps $K_{n}: V^{\otimes n} \rightarrow \mathbb{K}$ defined as follows.

$$
\begin{gathered}
K_{1}(a)=e(a) \\
K_{2}(a, b)=e(a b)-e(a) e(b)
\end{gathered}
$$

$$
K_{3}(a, b, c)=e(a b c)-e(a) e(b c)-e(a b) e(c)+e(a) e(b) e(c)
$$

K_{n} in general is given by the following formula.

$$
K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum \pm e\left(a_{1}, \ldots, a_{i}\right) e\left(a_{i+1}, \ldots\right) \ldots e\left(\ldots, a_{n}\right)
$$

The above sum is taken over all ordered partitions of n. The even partitions occur with negative signs and the odd partitions occur with positive signs. Expectations of products can also be computed using Boolean cumulants. If e is a map of algebras then the cumulants are all zero.

More generally cumulants can be defined using the above formulas for chain maps between differential graded algebras. Furthermore for linear maps between A_{∞} algebras Boolean cumulants can be defined up to homotopy and for maps between C_{∞} algebras the usual cumulants can be defined up to homotopy.

For instance, consider the differential forms $\Omega(M)$ on a manifold M and the cochains $C^{*}(M)$ on a discrete simplicial structure on the manifold. There is a chain map I from $\Omega(M)$ to $C^{*}(M)$ given by integrating forms on the simplices. This map induces an isomorphism on the cohomologies of the two complexes. The differential forms have an algebra structure given by the wedge product. An associative cup product can be defined on $C^{*}(M)$ but I is not a map of algebras for this product. Both the products however induce products on cohomology and the isomorphism induced by I on cohomology respects the induced products. Thus while the cumulants exist at the level of cochain complexes they vanish on cohomology.

Alternatively, the algebra structure of differential forms can be transferred to an A_{∞} algebra structure on $C^{*}(M)$. This implies $C^{*}(M)$ has a product m_{2} which is (infinitely) homotopic to being associative. This transfer depends on several choices including an appropriate choice of a homotopy inverse to I. For this A_{∞} structure on $C^{*}(M), I$ is the first term of an A_{∞} map. We can define Boolean cumulants of I up to homotopy. In fact for appropriate choices of homotopies, the transferred structure is C_{∞} and I is the first term of a C_{∞} morphism. Thus regular cumulants are defined up to homotopy. All of the above mentioned cumulants vanish for the isomorphism that is induced on cohomology.

We have the following two theorems which relate the Boolean cumulants to A_{∞} morphisms and regular cumulants to C_{∞} morphisms.

Theorem 1. Let A and B be two A_{∞} algebras. Let p be a chain map from A to B. Let K_{2}, K_{3} and so on be the Boolean cumulants of p defined up to homotopy. Suppose p is the first term of an A_{∞} morphism (p, p_{2}, p_{3}, \ldots) where $p_{n}: A^{\otimes n} \rightarrow B$. Then the following statements hold.
i) p_{2} gives a homotopy from the second Boolean cumulant K_{2} to zero. All the different ways of defining the higher Boolean cumulants K_{n} are also homotopic to zero using maps created by p_{2} and p_{1}.
ii) p_{3} gives a homotopy between different ways of making K_{3} homotopic to zero. For all the higher Boolean cumulants, homotopies between the multiple different ways of making them homotopic to zero are homotopic to each other using p_{3}, p_{2} and p_{1}.
iii) In general any cycles that are created using the homotopies $\left\{p_{j}\right\}_{j=1}^{n}$ are made homotopic to zero using maps made by $\left\{p_{j}\right\}_{j=1}^{n+1}$.

The above theorem means that if p is the first term of an A_{∞} morphism then the cumulants of p completely collapse. That is, they are not only homotopic to zero, multiple homotopies are homotopic to each other. In particular, the above statement holds when A and B are differential graded associative algebras and p is a chain map which does not respect the algebra structure but is the first term of an A_{∞} morphism. A similar theorem holds in case of C_{∞} algebras and the regular cumulants.

Theorem 2. Let A and B be two C_{∞} algebras. Let p be a chain map from A to B. Let k_{2}, k_{3} and so on be the regular cumulants of p defined up to homotopy. Suppose p is the first term of an C_{∞} morphism (p, p_{2}, p_{3}, \ldots) where $p_{n}: A^{\otimes n} \rightarrow B$. Then the following statements hold.
i) p_{2} gives a homotopy from the second cumulant k_{2} to zero. All the different ways of defining the higher cumulants k_{n} are also homotopic to zero using maps created by p_{2} and p_{1}.
ii) p_{3} gives a homotopy between different ways of making k_{3} homotopic to zero. For all the higher cumulants, homotopies between the multiple different ways of making them homotopic to zero are homotopic to each other using p_{3}, p_{2} and p_{1}.
iii) In general any cycles that are created using the homotopies $\left\{p_{j}\right\}_{j=1}^{n}$ are made homotopic to zero by maps made using $\left\{p_{j}\right\}_{j=1}^{n+1}$.

Chapter 2

A_{∞} and C_{∞} algebras

2.1 Differential graded algebas and coalgebras

Definition 1. A differential graded associative algebra or a dga is a triple (A, d, m) such that
i) $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ is a graded vector space.
ii) $m: A \otimes A \rightarrow A$ is an associative product of degree zero. That is m is associative and for $a \in A_{n}$ and $b \in A_{m}, m(a \otimes b)$ is in A_{n+m}.
iii) $d: A \rightarrow A$ is a linear map of degree 1 (for $a \in A_{n}, d(a) \in A_{n+1}$) such that $d^{2}=0$.
iv) (Leibniz Rule) d and m satisfy the following compatibility relationship

$$
d(m(a \otimes b))=m(d(a) \otimes b)+(-1)^{|a|} m(a \otimes d(b))
$$

Definition 2. An differential graded commutative algebra or a dgca is a dga (A, d, m) such that m is graded commutative. That is

$$
m(a \otimes b)=(-1)^{|a||b|} m(b \otimes a)
$$

Remark 1 (Koszul sign convention). Given two linear maps f and g of graded vector space we can define the $f \otimes g$ to be a map from the tensor product of the domain to the tensor product of the range. We use the Koszul sign convention when applying tensor products of linear maps. That is

$$
f \otimes g(x \otimes y)=(-1)^{|x||g|}(f(x) \otimes g(y))
$$

Definition 3. A differential graded coalgebra or a dg-coalgebra is a triple (C, δ, Δ) where
i) $C=\bigoplus_{n \in \mathbb{Z}} C_{n}$ is a graded vector space.
ii) $\Delta: C \rightarrow C \otimes C$ is a co-associative coproduct of degree zero. Coassociativity implies that

$$
(\Delta \otimes 1) \circ \Delta=(1 \otimes \Delta) \circ \Delta
$$

iii) $\delta: C \rightarrow C$ is a linear map of degree -1 (for $a \in C_{n}, \delta(a) \in C_{n-1}$) such that $\delta^{2}=0$.
iv) (Leibniz Rule) δ and Δ satisfy the following compatibility relationship

$$
(\delta \otimes 1+1 \otimes \delta) \circ \Delta=\Delta \circ \delta
$$

Remark 2. Sweedler's notation for coalgebras is a way of describing the coproduct Δ on an element c of C.

$$
\Delta(c)=\sum_{(c)} c_{(1)} \otimes c_{(2)}
$$

Definition 4. A differential graded commutative coalgebra or a dgc-coalgebra is a dg-coalgebra (C, δ, Δ) such that Δ is graded co-commutative. In the Sweedler notation this means

$$
\Delta(c)=\sum_{(c)} c_{(1)} \otimes c_{(2)}=\sum_{(c)} c_{(2)} \otimes c_{(1)}
$$

Definition 5. Let $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ be two differential graded complexes. A chain map of degree i is a linear map $f: A \rightarrow B$ such that $f\left(A_{n}\right) \subseteq B_{n+i}$ and $f \circ d_{A}=(-1)^{i} d_{B} \circ f$.

Remark 3. A dga (or a dgca) is in particular a cochain complex (degree 1 differential) with some additional product structure while a $d g$-coalgebra or a $d g c$-coalgebra is a chain complex (degree -1 differential) with an additional coproduct structure. For a cochain complex (A, d) the cohomology groups are defined to be

$$
H^{n}(A)=\left(\operatorname{ker}(d) \cap A_{n}\right) /\left(\operatorname{Im}(d) \cap A_{n}\right)
$$

Similarly the homology groups for a chain complex (C, δ) are defined to be

$$
H_{n}(C)=\left(\operatorname{ker}(\delta) \cap C_{n}\right) /\left(\operatorname{Im}(\delta) \cap C_{n}\right)
$$

A chain map of complexes induces a map of the same degree on the cohomology or the homology.

Remark 4 (Tensor product of $d g$-complexes is a $d g$-complex). Suppose $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ are non-negatively graded differential cochain (or chain) complexes. That is for $n<0, A_{n}$ and B_{n} are zero. Then $A \otimes B$ is also a differential graded complex. The nth grading of $A \otimes B$ is

$$
(A \otimes B)_{n}=\bigoplus_{i+j=n} A_{i} \otimes B_{j}
$$

The differential on this complex is given by $d_{A} \otimes 1+1 \otimes d_{B}$. Note that the Leibniz rule condition in the definition of a $d g a$ (or a $d g$-coalgebra) is equivalent to saying that the product (or the co-product) is a degree zero chain map of the two complexes.
Remark 5 (Hom-complex). Suppose $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ are two cochain (or chain) complexes. Then the complex of graded linear maps from A to B, $\operatorname{Hom}(A, B)$ is also a differential graded complex. The grading on the complex is given by the linear maps being graded and the differential ∂ acts on a map p as

$$
\partial(p)=d_{B} \circ p+(-1)^{|p|} p \circ d_{A}
$$

Example 1. One of the first non-trivial example of a dgca is the algebra of differential forms on $\Omega^{*}(M)$ on a manifold M. The differential d has degree one as d of an n form is an $n+1$ form. The product m is the wedge product which has degree zero as the wedge product of an m-form with an n-form is a $(m+n)$-form. This algebra is also graded commutative as give two forms ω and η,

$$
\omega \wedge \eta=(-1)^{|\omega||\eta|} \eta \wedge \omega
$$

The wedge product induces the graded commutative cup product on the cohomology of the manifold.
Example 2. Consider the chains C_{*} on a finite simplicial decomposition of a space X. There is a coproduct map $\Delta: C_{*} \rightarrow C_{*} \otimes C_{*}$ called the AlexanderWhitney map which is given by the following formula on a simplex $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$.

$$
\Delta\left(\left[v_{0}, v_{1}, \ldots, v_{n}\right]\right)=\sum_{i}\left[v_{0}, v_{1}, \ldots, v_{i}\right] \otimes\left[v_{i}, \ldots, v_{n}\right]
$$

This product dualizes to an associative product μ on the cochains C^{*}. The associativity follows from the fact that the coproduct Δ is coassociative. Also the coproduct satisfies the co-Leibniz property with respect to the boundary operator ∂. That is, for a simplex σ

$$
\Delta(\partial(\sigma))=(1 \otimes \partial+\partial \otimes 1)(\Delta(\sigma))
$$

This implies that the co-boundary map δ is a derivation of the dual product μ on the cochains C^{*}. Thus $\left(C^{*}, \delta, \mu\right)$ is a differential graded algebra. Unlike the differential forms the cochains are not graded commutative, but the product μ also induces a graded commutative product on the cohomology of the space.

$2.2 A_{\infty}$ algebras and morphisms

In 1963 James Stasheff defined a notion of an algebra that was associative up to 'infinite homotopy'.

Definition 6. An A_{∞} algebra is a graded vector space A with a collection of linear maps

$$
m_{n}: A[1]^{\otimes n} \rightarrow A[1]
$$

such that m_{n} have degree 1 on and they satisfy the following equations for every n

$$
\begin{equation*}
\sum_{i+j=n} m_{i}\left(1 \otimes 1 \otimes \ldots m_{j} \ldots \otimes 1\right)=0 \tag{2.1}
\end{equation*}
$$

The equations in 2.1 imply the following statements.

- m_{1} is a linear map of degree 1 that squares to zero. Thus m_{1} is a differential on A.
- m_{2} is a binary product and m_{1} is a derivation of this binary product.
- Since m_{2} is not associative, that associator $m_{2}\left(m_{2} \otimes 1\right)-m_{2}\left(1 \otimes m_{2}\right)$ is not zero. m_{3} is a map whose boundary is the associator. That is m_{3} makes m_{2} homotopic to being associative.
- m_{n}, for n larger than 3 , makes cycles created by m_{k}, for k less than n, homotopic to zero.

The homotopies given by m_{n} can be described using polyhedrons described by Stasheff. For instance m_{3} is a homotopy between the two terms of the associator and is described by a line. There are five different ways of combining four terms using a binary product and they correspond to five vertices of a pentagon that is used to describe m_{4}. The first three associahedra are described as follows.

Figure 2.1:
Definition 7. For a differential graded complex V we define the cofree conilpotent coalgebra without a co-unit as follows.

$$
T(V)=\bigoplus_{n=1}^{\infty} V^{\otimes n}
$$

The coproduct of the coalgebra is defined on monomials as

$$
\Delta\left(x_{1} \otimes \ldots \otimes x_{n}\right)=\sum_{j=0}^{n} x_{1} \otimes \ldots x_{j} \bigotimes x_{j+1} \otimes \ldots x_{n}
$$

From this point onward, in order to avoid confusion between the two different kinds of tensor signs, we will use a comma instead of \otimes. For example, $x \otimes y$ in $T(V)$ will be denoted by (x, y) and

$$
\Delta(x, y)=1 \otimes(x, y)+x \otimes y+(x, y) \otimes 1
$$

The grading on V gives a grading on $T(V)$. The degree of a monomial $\left(x_{1}, \ldots, x_{n}\right)$ is $\left|x_{1}\right|+\ldots+\left|x_{n}\right| . T(V)$ has the universal property that given any linear map f from a conilpotent coalgebra C to V there exists a unique non-counital coalgebra map \tilde{f} from C to $T(V)$ such that the following diagram commutes.

In the above diagram π, is the projection from $T(V)$ to V. Any linear map $l: V^{\otimes k} \rightarrow V$ can be extended to a coderivation \tilde{l} on $T(V)$ given by the following formula.

$$
\tilde{l}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{n-k} \pm\left(x_{1}, \ldots, d\left(x_{i+1}, \ldots, x_{i+k}\right), \ldots, x_{n}\right)
$$

where the sign of the i th term is $(-1)^{\left(\left|x_{1}\right|+\ldots+\left|x_{i}\right|\right)(|l|)}$. The degree of \tilde{l} is equal to the degree of l. Thus if V is a differential graded complex with a derivation $d: V \otimes V$ where the degree of d id 1 and $d^{2}=0, \tilde{d}$ is a coderivation of degree 1 on $T(V) . d^{2}=0$ implies \tilde{d}^{2}. Thus $(T(V), \tilde{d})$ is a differential graded coalgebra.

Let (A, d, m) be a differential graded algebra (dga). Consider the complex $A[1]$ which is A shifted down by 1 . A product $m[1]$ is defined on A using the follwoing formula.

$$
m[1](x[1], y[1])=(-1)^{|x|} m(x, y)
$$

$m[1]$ has a degree 1 when m has degree 0 . The map d and $m[1]$ can both be lifted to coderivations \tilde{d} and $\tilde{m}[1]$ on $T(A[1])$ and together give a coderivation $D=\tilde{d}+\tilde{m}[1]$. Consider the following equation.

$$
D^{2}=\tilde{d}^{2}+\tilde{d} \circ \tilde{m}[1]+\tilde{m}[1] \circ \tilde{d}+\tilde{m}[1]^{2}
$$

The following observations follow from straight forward computations.
i) $d^{2}=0$ if and only if $\tilde{d}^{2}=0$.
ii) d is the derivation of the product m if and only if $\tilde{d} \circ \tilde{m}[1]+\tilde{m}[1] \circ \tilde{d}$.
iii) m is associative if and only if $\tilde{m}[1]^{2}=0$.

These imply that $D^{2}=0$. Also note that \tilde{d} preserves the monomial grading of $T(A[1])$ and $\tilde{m}[1]$ reduces it by 1 . Thus the above three conditions have to be true if $D^{2}=0$.

In general for a graded complex V any coderivation D_{V} on $T(V)$ is of the form

$$
D_{V}=\tilde{d}_{1}+\tilde{d}_{2}+\tilde{d}_{3} \ldots
$$

where d_{n} is a linear map from $V^{\otimes n}$ to V and \tilde{d}_{n} are their lifts. The maps d_{n} are called the Taylor coefficients of D_{V}. The above discussion shows that a differential graded algebra is a graded complex A with a coderivation D of degree 1 on $T(A[1])$, where only the first two Taylor coefficients of D are non-zero. An A_{∞} algebra is the generalization of a differential graded algebra in the following way.

Definition 8. An A_{∞} algebra (A, D) is a graded vector space A with a coderivation D of degree 1 on $T(A[1])$ such that $D^{2}=0$. The differential graded coalgebra $(T(A[1], D)$ is called the bar construction of A.

A morphism of A_{∞} algebras is a map that preserves this structure.
Definition 9. An A_{∞} morphism from an A_{∞} algebra $\left(A, D_{A}\right)$ to an A_{∞} algebra $\left(B, D_{B}\right)$ is a map of differential graded coalgebras from $\left(T^{c} A[1], D_{A}\right)$ to $\left(T^{c} B[1], D_{B}\right)$.

Suppose $D=\tilde{m}_{1}+\tilde{m}_{2}+\tilde{m}_{3}+\ldots$, where $m_{n}: A[1]^{\otimes n} \rightarrow A[1]$ are the Taylor coefficients of D. Then squaring D gives us

$$
D^{2}=\tilde{m}_{1}^{2}+\tilde{m}_{1} \circ \tilde{m}_{2}+\tilde{m}_{2} \circ \tilde{m}_{1}+\tilde{m}_{2}^{2}+\tilde{m}_{1} \circ \tilde{m}_{3}+\tilde{m}_{3} \circ \tilde{m}_{1}+\ldots
$$

From monomial degree considerations we get that if $D^{2}=0$ then the following equations must hold.

$$
\begin{gathered}
\tilde{m}_{1}^{2}=0 \\
\tilde{m}_{1} \circ \tilde{m}_{2}+\tilde{m}_{2} \circ \tilde{m}_{1}=0 \\
\tilde{m}_{2}^{2}+\tilde{m}_{1} \circ \tilde{m}_{3}+\tilde{m}_{3} \circ \tilde{m}_{1}=0
\end{gathered}
$$

and so on. In general we have

$$
\sum_{i+j=n} \tilde{m}_{i} \circ \tilde{m}_{j}=0
$$

Thus we get the following equivalent definition of an A_{∞} algebra.
Now consider an A_{∞} morphisms $P:\left(T^{c} A[1], D_{A}\right) \rightarrow\left(T^{c} B[1], D_{B}\right)$. Let $p_{n}: A[1]^{\otimes n} \rightarrow B[1]$ be a map given by restriction of P to $A[1]^{\otimes n}$ followed by a projection from $T^{c} B[1]$ to $B[1]$. As P is a map of coalgebras, it is completely determined by the maps $\left\{p_{n}\right\}$. For monomials of lengths one, two and three P is given using p_{1}, p_{2} and p_{3} using the following formulas.

$$
\begin{gathered}
P(x)=p_{1}(x) \\
P(x, y)=p_{2}(x, y)+\left(p_{1}(x), p_{1}(y)\right) \\
P(x, y, z)=p_{3}(x, y, z)+\left(p_{2}(x, y), p_{1}(z)\right)+\left(p_{1}(x), p_{2}(y, z)\right)+\left(p_{1}(x), p_{1}(y), p_{1}(z)\right)
\end{gathered}
$$

In general for a monomial of length n

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum\left(p_{i_{i}}\left(x_{1}, \ldots, x_{i_{1}}\right), p_{i_{2}}(\ldots), \ldots, p_{i_{k}}(\ldots)\right)
$$

where the sum is taken over all ordered partitions of n. Since P is an A_{∞} morphism P commutes with the differentials on $T^{c} A[1]$ and $T^{c} B[1]$. This relation induces certain relations between p_{n} and m_{n} and we get the following equivalent defination for A_{∞} morphisms.

Definition 10. An A_{∞} morphism P between A_{∞} algebras $\left(A, m_{1}^{A}, m_{2}^{A}, \ldots\right)$ and $\left(B, m_{1}^{B}, m_{2}^{B}, \ldots\right)$ is a collection of linear maps

$$
p_{n}: A^{\otimes n} \rightarrow B
$$

such that

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{n_{1}+\ldots+n_{k}=n} m_{k}^{B}\left(p_{n_{1}} \otimes \ldots \otimes p_{n_{k}}\right) \\
& =\sum_{k=1}^{n} \sum_{j=0}^{n-k} p_{n-k+1}\left(1 \otimes \ldots m_{k}^{A} \ldots \otimes 1\right)
\end{aligned}
$$

$2.3 C_{\infty}$ algebras and morphisms

An A_{∞} algebra is a generalization of an associative algebra and an A_{∞} morphism is a generalization of an algebra morphism. One way to generalize commutative associative algebras is to define C_{∞} algebras and morphisms. A C_{∞} algebra is an A_{∞} algebra such that the maps m_{n} satisfy certain equations involving (q, r)-shuffles, where $q+r=n$.

Definition 11. A (q, r)-shuffle is a permutation σ of $(1,2, \ldots, q+r)$ such that

- if $1 \leq i \leq j \leq q$, then $\sigma(i) \leq \sigma(j)$
- if $q+1 \leq i \leq j \leq q+r$, then $\sigma(i) \leq \sigma(j)$

For any vector space V, the tensor coalgebra $T(V)$ also has a product μ on it called the shuffle product defined as follows.
$\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)=\sum_{\sigma \in(q, r)-\text { shuffles }} \pm\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)$
The sign of each term is determined by the degrees of x_{i} and the permutation σ. For just two terms x and y

$$
\mu(x \otimes y)=(x, y)+(-1)^{|x| y \mid}(y, x)
$$

$T(V)$ with the shuffle product and the coproduct Δ defined earlier is a Hopf algebra.

Suppose (A, d, m) is a differential graded associative algebra. Then since m is an associative product A is in particular an A_{∞} algebra. This implies $D=\tilde{d}+\tilde{m}[1]$ is a coderivation of the coproduct on the bar construction $T(A[1])$.

Lemma 1. A dga A is also a dgca (that is the product m is graded commutative) if and only if $D=\tilde{d}+\tilde{m}[1]$ is a derivation of the shuffle product.

Proof. Note that \tilde{d} is already a derivation of the shuffle product. Thus if D is a derivation of the shuffle product then so is $\tilde{m}[1]$. This implies for all x and y in A

$$
\begin{gathered}
\tilde{m}[1](\mu(x[1] \otimes y[1])=0 \\
\Longrightarrow \tilde{m}[1]\left((x[1], y[1])+(-1)^{(|x|-1)(|y|-1)}(y[1], x[1])=0\right. \\
\Longrightarrow(-1)^{|x|} m(x, y)+(-1)^{|x| y|-|x|-1} m(y, x)=0 \\
\Longrightarrow m(x, y)=(-1)^{|x| y \mid} m(y, x)
\end{gathered}
$$

Which implies that m is graded commutative.
Conversely, suppose m is graded commutative then

$$
\begin{gathered}
\tilde{m}[1]\left(\left(\mu\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)\right. \\
=\tilde{m}[1]\left(\sum_{\sigma \in(q, r) \text {-shuffles }} \pm\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)\right)
\end{gathered}
$$

Note that since m is graded commutative

$$
\begin{aligned}
& \left(x_{\sigma^{-1}(1)}, \ldots, \tilde{m}[1]\left(x_{\sigma^{-1}(i)}, x_{\sigma^{-1}(i+1)}\right), \ldots, x_{\sigma^{-1}(q+r)}\right) \\
= & \pm\left(x_{\sigma^{-1}(1)}, \ldots, \tilde{m}[1]\left(x_{\sigma^{-1}(i+1)}, x_{\sigma^{-1}(i)}\right), \ldots, x_{\sigma^{-1}(q+r)}\right)
\end{aligned}
$$

If $\sigma^{-1}(i) \in 1, \ldots, q$ and $\sigma^{-1}(i+1) \in q+1, \ldots, q+r$ then both the terms in the above equality occur in $\tilde{m}[1]$ of the shuffle product and cancel out. Otherwise, since σ is a (q, r)-shuffle, $\sigma^{-1}(i+1)=\sigma^{-1}(i)+1$. Thus

$$
\left(x_{\sigma^{-1}(1)}, \ldots, \tilde{m}[1]\left(x_{\sigma^{-1}(i)}, x_{\sigma^{-1}(i+1)}\right), \ldots, x_{\sigma^{-1}(q+r)}\right)
$$

is a term in $\mu(\tilde{m}[1] \otimes 1+1 \otimes \tilde{m}[1])\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)$ and we have

$$
\begin{gathered}
\tilde{m}[1]\left(\left(\mu\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)=\right. \\
\mu(\tilde{m}[1] \otimes 1+1 \otimes \tilde{m}[1])\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)
\end{gathered}
$$

and $\tilde{m}[1]$ is a derivation of the shuffle product μ which in turn means that D is a derivation of the shuffle product.

The above proposition motivates the following definition of a C_{∞} algebra.

Definition 12. A C_{∞} algebra is an A_{∞} algebra (A, D) where D is also a derivation of the shuffle product on $T(A[1])$. Thus $(T(A[1]), D, \Delta, \mu)$ is a differential graded Hopf Algebra.

For the above definition of a C_{∞} morphisms are defined as follows.
Definition 13. A C_{∞} morphism from a C_{∞} algebra $\left(A, D_{A}\right)$ to a C_{∞} algebra $\left(B, D_{B}\right)$ is a map of differential graded Hopf algebras from $\left(T^{c} A[1], D_{A}\right)$ to $\left(T^{c} B[1], D_{B}\right)$.
Lemma 2. Let (A, D) be an A_{∞} algebra where $D=\tilde{m}_{1}+\tilde{m}_{2}+\ldots$ Then D is a derivation of the shuffle product on $T(A[1])$ if and only if for every pair (q, r) of positive integers and $x_{1}, x_{2}, \ldots, x_{q+r} \in A[1]$

$$
m_{q+r}\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)=0\right.
$$

Proof. Suppose D is a derivation of the product. Then

$$
\begin{gathered}
D\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)\right) \\
=\mu \circ(D \otimes 1+1 \otimes D)\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)
\end{gathered}
$$

Then by taking the projection to $A[1]$ on both sides we get

$$
m_{q+r}\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)\right)=0
$$

Conversely, suppose the above statement is true for all pairs (q, r) of positive integers and $x_{1}, x_{2}, \ldots, x_{q+r} \in A[1]$. For a fixed (q, r), and a (q, r) shuffle σ, consider $\left(\sigma^{-1}(i), \sigma^{-1}(i+1), \ldots, \sigma^{-1}(i+k)\right)$. This is either a string of k consecutive intergers in $\{1,2, \ldots, q\}$ or in $\{q+1, \ldots, q+r\}$, or it is a shuffle of a subset of $\{1,2, \ldots, q\}$ and a susset of $\{q+1, \ldots, q+r\}$. By definition of $\tilde{m_{k}}$

$$
\begin{gathered}
\tilde{m}_{k}\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)\right) \\
=\tilde{m}_{k}\left(\sum_{\sigma \in(q, r) \text {-shuffles }} \pm\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)\right) \\
=\sum_{\sigma \in(q, r) \text {-shuffles }} \pm\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, m_{k}(\ldots), \ldots, x_{\sigma^{-1}(q+r)}\right)
\end{gathered}
$$

The above sum contains m_{k} applied to (q_{1}, r_{1})-shuffles where $q_{1}+r_{1}=k$ which are zero by hypothesis. All the other terms that occur, also occur in

$$
\mu \circ\left(\tilde{m_{k}} \otimes 1+1 \otimes \tilde{m_{k}}\right)\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)
$$

Thus \tilde{m}_{k} is a derivation of μ for every k. This implies D is a derivation of μ.

Lemma 3. Let A and B be two C_{∞} algebras and let $P=\left(p_{1}, p_{2}, \ldots\right)$ be an A_{∞} morphism from A to B. Then P is also a C_{∞} morphism if and only if every pair (q, r) of positive integers and $x_{1}, x_{2}, \ldots, x_{q+r} \in A[1]$

$$
p_{q+r}\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)=0\right.
$$

Proof. Suppose P respects the shuffle product μ. Then

$$
P\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)\right)=\mu\left(P\left(x_{1}, \ldots, x_{q}\right) \otimes P\left(x_{q+1}, \ldots, x_{q+r}\right)\right)
$$

Then by taking the projection to $A[1]$ on both sides we get

$$
p_{q+r}\left(\mu\left(\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)\right)=0
$$

The proof of the converse is similar to the proof of the previous lemma. The expression

$$
P\left(\sum_{\sigma \in(q, r) \text {-shuffles }} \pm\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)\right)
$$

contains terms which contain p_{k} applied to shorter shuffles which add up to zero by hypothesis. All the other terms also appear in $\mu\left(P\left(x_{1}, \ldots, x_{q}\right) \otimes\right.$ $\left.P\left(x_{q+1}, \ldots, x_{q+r}\right)\right)$. This imples that P is a map of algebras.

The above Lemmas motivate the following alternate definitions for a C_{∞} algebra and a C_{∞} morphism.

Definition 14. A C_{∞} algebra is an A_{∞} algebra $\left(A, m_{1}, m_{2}, \ldots\right)$ such that for every ordered pair of positive integers (q, r) and $\left(x_{1}, x_{2}, \ldots, x_{q+r}\right)$ where $x_{i} \in A$

$$
m_{q+r}\left(\sum_{\sigma \in(q, r)-\text { shuffles }}\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)\right)=0
$$

Definition 15. A C_{∞} morphism is an A_{∞} morphism $P=\left(p_{1}, p_{2}, \ldots\right)$ such that for every ordered pair of positive integers (q, r) and $\left(x_{1}, x_{2}, \ldots, x_{q+r}\right)$ where $x_{i} \in A$

$$
p_{q+r}\left(\sum_{\sigma \in(q, r) \text {-shuffles }}\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, a_{\sigma^{-1}(q+r)}\right)\right)=0
$$

Chapter 3

Cumulants

3.1 Commutative Cumulants vs. Boolean Cumulants

Definition 16. A probability space is a commutative algebra C over a field \mathbb{K} and a linear function e called the expectation to the base field.

The expectation function does not necessarily respect the product and is not an algebra map. The cumulants of e are a family of functions k_{n} which can measure the deviation of e from being an algebra map. k_{n} takes n inputs and gives an output in the base field. These functions can be used to calculate the expectations of products of the variables. They are defined using the following recursive formulas.

$$
\begin{gathered}
e(a)=k_{1}(a) \\
e(a b)=k_{2}(a, b)+k_{1}(a) k_{1}(b) \\
e(a b c)=k_{3}(a, b, c)+k_{2}(a, b) k_{1}(c)+k_{1}(a) k_{2}(b, c)+k_{1}(b) k_{2}(c, a)+k_{1}(a) k_{1}(b) k_{1}(c)
\end{gathered}
$$

In general the expectation of the product of n variables is given by

$$
e\left(a_{1} a_{2} \ldots a_{n}\right)=\sum_{\pi} \prod_{B \in \pi} k_{|B|}(B)
$$

where the sum is taken over all the partitions π of $1,2, \ldots, n$. As the product on C is commutative, it can be inductively shown that $k_{|B|}(B)$ is well defined. This is because the value of k_{n} is independent of the order of the inputs.

The first few cumulants for a map e between two commutative algebras can be computed using the following formulas.

$$
\begin{gathered}
k_{1}(a)=e(a) \\
k_{2}(a, b)=e(a b)-e(a) e(b) \\
k_{3}(a, b, c)=e(a b c)-e(a b) e(c)-e(a) e(b c)-e(c a) e(b)+2 e(a) e(b) e(c)
\end{gathered}
$$

In general the k_{n} is given by the following formula.

$$
k_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi}(|\pi|-1)!(-1)^{|\pi|-1} \prod_{b \in \pi} e\left(\prod_{i \in b} a_{i}\right)
$$

The cumulants vanish when e is a map of algebras. When the product of the space is not commutative, the cumulants cannot be defined as above.

Definition 17. An associative probability space is a vector space V over a field \mathbb{K} with an associative product and a function E called the expectation.

Just like in the commutative case, the expectation is not required to satisfy any compatibility with the product m. This incompatibility can be measured using the Boolean cumulants of E which are a family of maps $K_{n}: V^{\otimes n} \rightarrow \mathbb{K}$. The first three Boolean cumulants can be defined.

$$
\begin{gathered}
K_{1}(a)=E(a) \\
K_{2}(a, b)=E(a b)-E(a) E(b) \\
K_{3}(a, b, c)=E(a b c)-E(a) E(b c)-E(a b) E(c)+E(a) E(b) E(c)
\end{gathered}
$$

K_{n} in general is given by the following formula.

$$
K_{n}\left(a_{1}, a_{2},, a_{n}\right)=\sum \pm E\left(a_{1}, \ldots, a_{i}\right) E\left(a_{i+1}, \ldots\right) \ldots E\left(\ldots, a_{n}\right)
$$

The above sum is taken over all ordered partitions of n. The even partitions occur with negative signs and the odd partitions occur with positive signs. If E is a map of algebras then the cumulants are all zero.

Knowing the Boolean cumulants allows us to compute the expectation of products. For example

$$
\begin{gathered}
E(a b)=K_{2}(a, b)+K_{1}(a) K_{2}(b) \\
E(a b c)=K_{3}(a, b, c)+K_{1}(a) K_{2}(b, c)+K_{2}(a, b) K_{1}(c)+3 K_{1}(a) K_{2}(b) K_{1}(c)
\end{gathered}
$$

Example 3. Let V be the algebra of $n \times n$ matrices over \mathbb{R} and E be the trace map from V to \mathbb{R}. Then the trace map does not respect matrix multiplication m. (V, m, E) is a probability space and the cumulants of E are non-zero.

The Boolean cumulants can be defined even in the case where the target of the expectation function is another vector space with an associative product instead of the base field. Also the vector spaces can have more structure like a differential.

Example 4. Consider the algebra of differential forms Ω^{*} on a manifold M and the cochains C^{*} on a finite simplicial decomposition of M. The differential forms are a $d g c a$ and the cochains have the Alexander-Whitney cup product which makes them a dga. Consider the map $I: \Omega^{*} \rightarrow C^{*}$ defined as follows. For a differential for ω and a simplex σ

$$
I(\omega)(\sigma)=\int_{\sigma} \omega
$$

From Stoke's theorem it follows that I is a chain map. This map induces an isomorphism on cohomology of the complexes. It does not respect the product structure at the level of complexes. However, by the de Rahm's theorem I induces an isomorphism on cohomology. The induced isomorphism is in fact a map of the algebra structures. Thus the Boolean cumulants of I are defined on chains, but they vanish on cohomology since the induced map is an algebra map.

3.2 Boolean cumulants for A_{∞} algebras

The Boolean cumulants can be defined for A_{∞} algebras in multiple ways up to homotopy. Suppose A and B are A_{∞} algebras and E is a chain map between them. In an A_{∞} algebra products of three or more variables are not well defined thus $(a b c)$ can be defined as $(a b) c$ or $a(b c)$. Thus while there is only one way to define K_{1} and K_{2}, there are four different ways of defining K_{3}. All the four ways of defining K_{3} are homotopic to each other since $E((a b) c)$ is homotopic to $E(a(b c))$ and $E(a)(E(b) E(c))$ is homotopic to $(E(a) E(b)) E(c)$.

Lemma 4. Suppose A and B are A_{∞} algebras. The different ways of defining the cumulants are homotopic to each other via the maps m_{2}. Multiple homotopies given in this manner are all homotopic to each other, the homotopies of such homotopies are homotopic to each other and so on

Proof. The terms of the cumulants that are defined only up to homotopy correspond to the vertices of Stasheff associahedra. The different ways of
defining the cumulants are homotopic to each other via the edges. The two cells correspond to the homotopies of such homotopies and so on. Since the associahedra are contractible, the above lemma follows.

Chapter 4

Transfer of the A_{∞} and C_{∞} structure

Given an isomorphism of cochain (or chain) complexes where one of the cochain (or chain) complexes is a $d g a$ (or a $d g c a$), the multiplicative structure can be transferred and the chain complexes are indeed both algebras and the isomorphism is an isomorphism of algebras. In Algebraic topology we often encounter situations where a map between chain complexes is not an isomorphism but it induces an isomorphism on cohomology (homology). Since we are working over field coefficients such a map has in inverse up to homotopy. Such a map is called a quasi-isomorphisms. In this chapter we will discuss how the multiplicative structure transfers over quasi-isomorphisms.

4.1 Transferring associative structure

Suppose $\left(A, d_{A}, \wedge\right)$ is a $d g a$ and $\left(B, d_{B}\right)$ is a cochain complex. Suppose p : $A \rightarrow B$ is a map that induces an isomorphism on cohomology. Since we are working over field coefficients, there exists a map i from B to A such that $p \circ i$ is homotopic to identity on A and $i \circ p$ is homotopic to identity on B. When p is surjective the map i can be picked so that it is injective and $p \circ i$ is equal to identity. If p is injective then i can be picked to be surjective so that $i \circ p$ is equal to identity.

Example 5. Suppose $A=\Omega^{*}(M)$ is the algebra of differential forms on a smooth manifold M and suppose $B=C^{*}(M)$ is the cochain complex corresponding to a certain fixed regular cell decomposition of M. Consider the map I defined as follows. For a differential for ω and a cell σ of the cell
decomposition

$$
I(\omega)(\sigma)=\int_{\sigma} \omega
$$

The cochains $C^{*}(M)$ have a canonical basis given by the cells of the decomposition. A basis element σ^{*} corresponding to a cell σ is a map such that

$$
\begin{aligned}
\sigma^{*}(\sigma) & =1 \\
\sigma^{*}(\tau) & =0
\end{aligned}
$$

for every cell $\tau \neq \sigma$.
A map i from $C^{*}(M)$ to $\Omega^{*}(M)$ can be constructed to have the following properties.

1) $i\left(\sigma^{*}\right)$ integrates to 1 on σ.
2) $i\left(\sigma^{*}\right)$ is supported only in a small neighborhood of the interior of σ.
3) $i\left(\sigma^{*}\right)$ integrates to zero on all cells that have the same dimension as σ but are not σ.

The map i is an inclusion of the cochains into differential forms. The map $I \circ i$ is equal to identity on $C^{*}(M)$ and $i \circ I$ is homotopic to identity on $\Omega^{*}(M)$. The homotopy h is a map of degree -1 on $\Omega^{*}(M)$ such that

$$
d h+h d=i \circ I-i d
$$

h can be constructed inductively on cells and then glued together on the whole manifold.

Example 6. Suppose (A, d, \wedge) is a dga and $B=H^{*}(A)$ is it's cohomology. B can be considered to be a cochain complex with the zero differential. Then since $H^{*}(A)=\operatorname{ker}(d) / \operatorname{Im}(d)$ and we are working over field coefficients,

$$
\operatorname{ker}(d) \cong H^{*}(A) \oplus \operatorname{Im}(d)
$$

Also, since $\operatorname{ker}(d) \subseteq A$, there exists a subspace of $\operatorname{ker}(d)^{\perp}$ so that

$$
A \cong \operatorname{ker}(d) \oplus \operatorname{ker}(d)^{\perp}
$$

Thus we have a decomposition for A

$$
A \cong H^{*}(A) \oplus \operatorname{Im}(d) \oplus \operatorname{ker}(d)^{\perp}
$$

For a fixed decomposition, there is an inclusion i of B into A and a projection p from A to B. Since B is actually the cohomology of A with the zero differential, both of these maps induce an isomorphism on cohomology. $p \circ i$ is identity on $B . i \circ p$ is homotopic to identity via a homotopy h that can be constructed inductively.

In both of the above examples, the composition $p \circ i$ is exactly equal to the identity, while $i \circ p$ it is homotopic to identity. We will first consider this case.

$$
{ }_{h} \subset A \underset{i}{\stackrel{p}{\longleftrightarrow}} B
$$

where $p \circ i$ is identity on B and $i \circ p-i d_{A}=d h+h d$.
We define a binary product m_{2} on B by first including the elements of B into A and then taking the product and then projecting them back on B. Thus for a and b in B

$$
m_{2}(a, b)=p \circ \wedge(i(a), i(b))
$$

The map m_{2} is not associative since. Consider the associater of m_{2}

$$
m_{2}\left(m_{2}(a, b), c\right)-m_{2}\left(a, m_{2}(b, c)\right)
$$

can be diagrammatically expressed as follows.

Figure 4.1:
Even though the associator is not zero it is homotopic to zero since $i \circ p$ is homotopic to identity and \wedge is an associative product on A. We define the map m_{3} as follows.

Figure 4.2:

$$
\begin{gathered}
m_{3}=p \circ \wedge \circ(h \otimes i d) \circ(\wedge \otimes i d) \circ(i \otimes i \otimes i) \\
\quad-p \circ \wedge \circ(i d \otimes h) \circ(\wedge \otimes i d) \circ(i \otimes i \otimes i)
\end{gathered}
$$

d_{B}, m_{2}, and m_{3} satisfy the first three equations for an A_{∞} algebra.
In general we can define m_{n} by taking a signed sum over rooted planer binary trees with n leaves (inputs) labeled by i, the nodes are labeled by \wedge, the internal edges are labeled by h, and the root is labeled by p.

Figure 4.3:

Theorem 3 (T. V. Kadeisvili, 1980). Suppose maps $m_{n}: B^{\otimes n} \rightarrow B$ are defined by the above formulas using a surjective quasi-isomorphism $p: A \rightarrow B$, an associative produce \wedge on A which makes (A, d, \wedge) a $d g a$, a right inverse $i: B \rightarrow A$ of p, and a homotopy $h: A \rightarrow A$. Then $\left(B, d_{B}, m_{2}, m_{3}, \ldots\right)$ is an A_{∞} algebra. [8]

Let us consider the case of Example 6 where A is $d g a$ and B is the cohomology of $A . m_{2}$ defined on B by according to the above formula is homotopic to being associative via the map m_{3} defined as above. The differential on the complex $B=H^{*}(A)$ is zero which implies, that the associator of m_{2} is zero.

$$
m_{2}\left(m_{2}(a, b), c\right)-m_{2}\left(a, m_{2}(b, c)\right)=m_{3} \circ 0+0 \circ m_{3}
$$

m_{2} is in fact the associative cup product on the cohomology of M. Even though m_{2} is associative, m_{3}, m_{4} and so on are maps that can still be defined and are usually non-zero. The definitions of these maps depend on the choice of an inclusion i of the cohomology into the differential forms and a choice of a homotopy h which makes the $i \circ p$ homotopic to identity. It is not always possible to make a choice for i and h which makes the higher products m_{n} zero. The products m_{n} serve as higher invariants of the space. These products are called the A_{∞} Massey products on cohomology.

In case of the Example 5, the map I transfers the associative structure on differential forms $\Omega^{*}(M)$ to an A_{∞} structure on the cochains $C^{*}(M)$. Since $\Omega^{*}(M)$ is also graded commutative the transferred m_{2} is also graded commutative. However it is not associative and there are higher products m_{3}, m_{4} and so on which make it A_{∞}. Suppose the cell decomposition that $C^{*}(M)$ corresponds to, is a simplicial decomposition then there is an associative product on $C^{*}(M)$ as described in Chapter 1 which is also an A_{∞} structure. This product is associative but not graded commutative. Thus the two A_{∞} structures on $C^{*}(M)$ are not the same however they induce the same cup product on the cohomology of M.

4.2 Transferring A_{∞} or C_{∞} structures

The formulas above transfer the associative product structure on A to an A_{∞} structure on B across a quasi-isomorphism. This can be generalized to give formulas that transfer an A_{∞} structure on A to an A_{∞} structure on B. Suppose $\left(A, d_{A}, \wedge_{2}, \wedge_{3}, \ldots\right)$ is an A_{∞} algebra and p is a quasi-isomorphism from A to a cochain complex $\left(B, d_{B}\right)$. Just like in the previous section we pick a map $i: B \rightarrow A$ which is a homotopy inverse to p and a map $h: A \rightarrow A$ which makes
$i \circ p$ homotopic to identity. We define $m_{n}: B^{\otimes n} \rightarrow B$ using rooted planer trees with n leaves. The leaves are labeled by i, internal edges are labeled by h, and the root is labeled with p. An n-valent vertex of this tree corresponds to the map m_{n}.

Figure 4.4:
The above formulas give us a generalization of Theorem 3.
Theorem 4 (Konstevich, Soibelman). Suppose maps $m_{n}: B^{\otimes n} \rightarrow B$ are defined by the above formulas using a quasi-isomorphism $p: A \rightarrow B$, the maps $\wedge_{n}: A^{\otimes n} \rightarrow A$, which make A an A_{∞} algebra, a right inverse $i: B \rightarrow A$ of p, and a homotopy $h: A \rightarrow A$. Then $\left(B, d_{B}, m_{2}, m_{3}, \ldots\right)$ is an A_{∞} algebra. (9] [13]

In the example of differential forms, the algebra is in fact graded commutative. In this case the transferred structure defined using planer trees is in fact C_{∞}.

Theorem 5 (Cheng, Getzler). Suppose A is a C_{∞} algebra and $p: A \rightarrow B$ is a quasi-isomorphism. The transferred A_{∞} structure defined on B by the Theorem of Kostevich and Soibelman is in fact a C_{∞} structure. [5]

4.3 Extending a quasi-isomorphism to an A_{∞} morphism

In all our examples so far the map i also has the property that $p \circ i$ is identity (homotopy retract). In this situation, starting from $i_{1}=i$ we can define maps
$i_{n}: B^{\otimes} \rightarrow A$ using formulas that are very similar to the formulas for m_{n} in the figure 5.1. The sum is taken over planer trees with n leaves, the leaves are labeled by i, the internal n valent vertices correspond to the map \wedge_{n}, internal edges labeled by h and the root is also labeled by h.

Figure 4.5:
i_{n} are actually the terms of an A_{∞} morphism.
Theorem 6. (Konstevich and Soibelmann) Suppose A, B, p, i, and h are as in theorem 4. Further suppose that $p \circ i$ is identity on B. Then the $\left(i, i_{1}, i_{2}, \ldots\right)$ as defined by figure 4.5 is an A_{∞} morphism from B with the transferred A_{∞} structure to A. 9]

In fact the quasi-isomorphism p extends to an A_{∞} morphism $P=\left(p, p_{2}, p_{3}, \ldots\right)$ from A to B that is an inverse of $I=\left(i, i_{2}, i_{3}, \ldots\right)$.

Theorem 7. (K. Lefevre-Hasegawa, 2003) Every A_{∞} quasi isomorphism admits an inverse A_{∞} quasi-isomorphism up to homotopy.

Remark 6 (constructing P in the special case of deformation retracts). In the special case where $p \circ i=i d$ we can construct P such that $P \circ I=i d$. This can be done since $p \circ i=i d$ The inclusion of B into A gives a decomposition of A

$$
A=\operatorname{ker}(p) \oplus i(B)
$$

Thus it is enough to define $p_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where a_{i} are either in $\operatorname{ker}(p)$ or in $i(B)$. We define p_{n} to be zero whenever any a_{i} are in $\operatorname{ker}(p)$. On elements
of $i(B)$ we can define p_{n} inductively. Recall that

$$
\begin{gathered}
P \circ I\left(b_{1}, b_{2}\right)=P\left(i_{2}\left(b_{1}, b_{2}\right)+\left(i\left(b_{1}\right), i\left(b_{2}\right)\right)=\right. \\
p\left(i_{2}\left(b_{1}, b_{2}\right)\right)+p_{2}\left(i\left(b_{1}\right), i\left(b_{2}\right)\right)+\left(p \circ i\left(b_{1}\right), p \circ i\left(b_{2}\right)\right)
\end{gathered}
$$

Since $P \circ I=i d$ the right hand side of the above equation should be equal to $\left(b_{1}, b_{2}\right)$. Since we know what p is, since i is an inclusion, and since $p \circ i$ is identity p_{2} is well-defined by the above equation. In general

$$
P \circ I\left(b_{1}, b_{2}, \ldots b_{n}\right)=p_{n}\left(i\left(b_{1}\right), \ldots, i\left(b_{n}\right)\right)
$$

+ terms involving p_{k} and i_{k} for k smaller than n

$$
+\left(b_{1}, b_{2}, \ldots b_{n}\right)
$$

Thus p_{n} is inductively defined.

Chapter 5

Special case of the integration Example

5.1 Transferring structure to cochains

Suppose $C^{*}(M)$ is a cochain complex corresponding to a regular cell decomposition and $D^{*}(M)$ is a cochain complex corresponding to another finer cell decomposition. Every cell of the original cell decomposition can be written as a union of cells of the finer cell decomposition. Thus there is a map p from $D^{*}(M)$ to $C^{*}(M)$. There are projections p_{D} and p_{C} from the differential forms to $D^{*}(M)$ and $C^{*}(M)$ respectively given by integrating the forms of the cells of the complexes.

We can pick inclusions (right inverses) of $D^{*}(M)$ and $C *(M)$ into the differential forms. However, the transfer maps for the transferred structure might not necessarily commute. For the maps to commute it is necessary to pick the inclusions and the homotopies appropriately. We first transfer the multiplicative structure of $\Omega^{*}(M)$ to an A_{∞} structure on $D^{*}(M)$. For this we pick an inclusion i_{D} and a homotopy h_{D} such that $d h_{D}+h_{D} d=i_{D} \circ p_{D}-i d$

Since the map p is a quasi-isomorphism and since we are working over field coefficients there is an inverse quasi-isomorphism i up to homotopy. Also since p is a projection i can be picked to be an inclusion such that $p \circ i$ is identity on $C^{*}(M)$. For this inclusion we can pick a homotopy h on $D^{*}(M)$ such that $d h+h d=i \circ p$. We can transfer the structure from $D^{*}(M)$ to $C^{*}(M)$ using i and h.

Consider the map $i_{C}=i_{D} \circ i$ which is an inclusion of $C^{*}(M)$ into the differential forms Ω.

Lemma 5. $h_{C}=i_{D} \circ h \circ p_{D}+h_{D}$ is a homotopy from $i \circ p$ to identity. That is $d h_{C}+h_{C} d=i \circ p+i d$.

Proof.

$$
d h_{C}+h_{C} d=d\left(i_{D} \circ h \circ p_{D}\right)+\left(i_{D} \circ h \circ p_{D}\right) d+d h_{D}+h_{D} d
$$

Since p_{D} and i_{D} are chain maps this is equal to

$$
i_{D} \circ d h \circ p_{D}+i_{D} \circ h d \circ p_{D}+d h_{D}+h_{D} d
$$

Since h and h_{D} are homotopies this is equal to

$$
\begin{gathered}
i_{D} \circ i \circ p \circ p_{D}-i_{D} \circ p_{D}+i_{D} \circ p_{D}-i d \\
=i_{C} \circ p_{C}-i d
\end{gathered}
$$

Thus we can transfer the structure from the differential forms directly to $C^{*}(M)$.

Lemma 6. The A_{∞} structure on $C^{*}(M)$ that is transferred from $\Omega^{*}(M)$ is the same as the one transferred from $D^{*}(M)$.

Proof. Recall that the formula for the transferred structure using i and h is as follows.

Figure 5.1:

In the above diagram the nodes of the trees correspond to the maps m_{n} in the structure transferred on $D^{*}(M)$ from the differential forms. The formulas for these are given by

Figure 5.2:

Similarly the formulas for the transferred structure on $C^{*}(M)$ from the differential forms is

Figure 5.3:
Since $h_{C}=i_{D} \circ h \circ p_{D}+h_{D}$ and $i_{C}=i \circ i_{D}$, and also since $p_{D} \circ i_{D}=i d$ we get that the above sum is obtained by replacing the nodes in the first diagram by the trees in the second diagram.

Thus given a finite set of cochain complexes $C_{1}^{*}(M), C_{2}^{*}(M)$, and so on, where $C_{n}^{*}(M)$ correspond to a finer cell decomposition than $C_{n-1}^{*}(M)$ we can transfer the associative structure from the differential forms in a compatible way.

5.2 A_{∞} morphism from differential forms to the associative cochains

Suppose $C^{*}(M)$ are simplicial cochains on M. Then there is an associative product on $C^{*}(M)$ which is not commutative. The map p as described in the previous example given by integrating the forms on the cells is not an algebra map for this product either. In 1978 V. K. A. M. Gugenheim constructed an A_{∞} morphism whose first Taylor coefficient is p [7]. This construction uses iterated integrals as defined by Kuo-Tsai Chen [2]. We will consider the special case of forms and cochains on the interval $[0,1]$. The details of the case are worked out in the paper by Ruggero Bandiera and Florian Schaetz [1]

The 0 cochains on $[0,1]$ are functions on the set $\{0,1\}$ and 1 cochains are given by one generator corresponding to the one cell. We will call this generator $d t$. Thus a 1 cochain is of the form $r d t$ where r is in \mathbb{R}. The map p
is given for a zero form by taking the restriction of the function to the points 0 and 1 . On the one forms it is given as follows.

$$
p(f(x) d x)=\left(\int_{0}^{1} f(x) d x\right) d t
$$

Recall that the associative cup product on the cochains is defined as follows. For two zero forms the cup product is the product of the two functions. For a zero form F and a one form $r d t$ we have

$$
\begin{gathered}
F \cup r d t=F(0) r d t \\
r d t \cup F=0
\end{gathered}
$$

and the cup product of two one forms is zero. Note that this product is not associative and the map p is not a map of algebras. We define the map $p_{n}: \Omega([0,1])^{\otimes n} \rightarrow C^{*}\left([0,1]\right.$ as follows. If any of the inputs of p_{n} is a zero form then p_{n} is zero. For n one forms

$$
\begin{gathered}
p_{n}\left(f_{1}(x) d x, f_{2}(x) d x \ldots, f_{n}(x) d x\right) \\
=\left(\int_{t_{1} \leq t_{2} \leq \ldots \leq t_{n}} f_{1}\left(t_{1}\right) f_{2}\left(t_{2}\right) \ldots f_{n}\left(t_{n}\right) d t_{1} d t_{2} \ldots d t_{n}\right) d t
\end{gathered}
$$

$\left(p, p_{2}, p_{3}, \ldots\right)$ is an A_{∞} morphism from the differential forms to the cochains.
For a general simplex Δ^{n} of dimension n, and the map $p: \Omega\left(\Delta^{n}\right) \rightarrow C^{*}\left(\Delta^{n}\right)$ maps p_{n} can by defined using iterated integrals in a manner very similar to the case of $[0,1]$. For a simplicial decomposition of a manifold, the maps are locally defined on each simplex and can be glued together to extend the integral map to an A_{∞} morphism.

Chapter 6

Main Results

6.1 Structure of an A_{∞} morphism between $\boldsymbol{d g a s}$

Recall that between associative algebras without differentials, every A_{∞} morphism is in fact an algebra morphism. This is however not necessarily the case when we consider A_{∞} morphisms between dgas.

Suppose $\left(A, d_{A}, \wedge_{A}\right)$ and $\left(B, d_{B}, \wedge_{B}\right)$ are two differential graded algebra. Recall that by definition an A_{∞} morphism is a collection of maps $\left(p_{1}, p_{2}, \ldots\right)$, $p_{n}: A^{\otimes n} \rightarrow B$ where which satisfy the following compatibility relations for every n.

$$
\sum_{i+j=n} \wedge_{B}\left(p_{i} \otimes p_{j}\right)+d_{B} \circ p_{n}=\sum p_{n-1}\left(1 \otimes \ldots \wedge_{A} \ldots 1\right)+p_{n}\left(1 \otimes \ldots d_{A} \ldots \otimes 1\right)
$$

In particular for $n=1$ the compatibility relation is as follows.

$$
\begin{equation*}
\wedge_{B}\left(p_{1} \otimes p_{1}\right)+d_{B} \circ p_{2}=p_{1} \circ \wedge_{A}+p_{2}\left(d_{A} \otimes 1+1 \otimes d_{A}\right) \tag{6.1}
\end{equation*}
$$

Also recall that for a map $p_{n}: A^{\otimes n} \rightarrow B$, the differential of p_{n} in the space $\operatorname{Hom}\left(A^{\otimes n}, B\right)$ and is defines as

$$
\begin{equation*}
\left(p_{n}\right)=d_{B} \circ p_{n}+(-1)^{n+1} p_{n}\left(1 \otimes \ldots d_{A} \ldots \otimes 1\right) \tag{6.2}
\end{equation*}
$$

We call this the boundary of the map p_{n}. Note that since $\partial\left(p_{1}\right)=0$ which implies p_{1} is a chain map.

Lemma 7. The Boolean cumulants K_{2}, K_{3} and so on of the map $p_{1}: A \rightarrow B$ are boundaries of maps that can be constructed using the map p_{2}.

Proof. We will prove this lemma by induction. For a and b in A,

$$
K_{2}(a, b)=p_{1}\left(\wedge_{A}(a, b)-\wedge_{B}\left(p_{1}(a), p_{1}(b)\right)\right)
$$

For simplicity of notation we will suppress \wedge_{A} and \wedge_{B}. Thus the formula for the cumulants is now more familiar.

$$
K_{2}(a, b)=p_{1}(a b)-p_{1}(a) p_{1}(b)
$$

Thus from equations 6.1 and 6.2 we have that

$$
\partial\left(p_{2}\right)(a, b)=K_{2}(a, b)
$$

In general we know that

$$
K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\text {ordered partitions of } n} \pm p_{1}\left(a_{1} \ldots a_{i}\right) p_{1}\left(a_{i+1} \ldots\right) \ldots p_{1}\left(\ldots a_{n}\right)
$$

In general we can describe K_{n} in terms of K_{n-1} and p_{1} as follows.

$$
K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=K_{n-1}\left(a_{1} a_{2}, a_{3}, \ldots, a_{n}\right)-p_{1}(a) K_{n-1}\left(a_{2}, \ldots, a_{n}\right)
$$

Since K_{n-1} can be written as a boundary of some map f and $\partial\left(p_{1}\right)=0$ we have

$$
K_{n}=\partial\left(f \circ\left(\wedge_{A} \otimes i d\right)\right)-p_{1} \otimes \partial(f)=\partial\left(f \circ\left(\wedge_{A} \otimes i d\right)-p_{1} \otimes f\right)
$$

This proves that all the cumulants are boundaries in the Hom-complex.

Note that for K_{3}, K_{4} and so on there is not a unique way to write K_{n} as a boundary of a map. Given that K_{2} is the boundary of p_{2}, K_{3} can be describes as the boundary of two different maps.

$$
\begin{gathered}
K_{3}(a, b, c)=\partial\left(p_{2}(a b, c)-p_{1}(a) p_{2}(b, c)\right) \\
=\partial\left(p_{2}(a, b c)-p_{2}(a, b) p_{1}(c)\right)
\end{gathered}
$$

Similarly K_{4} can be described as a boundary of multiple different maps.
The terms of the nth cumulant correspond the the ordered partitions of n. We associate a graph G_{n} to K_{n}. The vertices of G_{n} correspond to terms of K_{n} (or equivalently to ordered partitions of n). Two vertices are connected to each other via an edge for the corresponding partitions, one partition can be obtained from the other by splitting one of the sub strings. Note that the
vertices of G_{n} correspond to all the different ways of combining $n-1$ ordered inputs from A using p and the binary products to give exactly one output in B. If p were an algebra map all of these ways would be equal.

Figure 6.1:
Lemma 8. The graph G_{n} is the one skeleton of an $n-1$-cube.
Proof. We will prove this by induction. Note that K_{3} is a square and recall

$$
K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=K_{n-1}\left(a_{1} a_{2}, a_{3}, \ldots, a_{n}\right)-p_{1}\left(a_{1}\right) K_{n-1}\left(a_{2}, \ldots, a_{n}\right)
$$

By induction hypothesis the subgraphs of G_{n} corresponding to the above two terms are a $n-2$-cubes (as G_{n-1} is an $n-2$ cube. Edges that go between these subgraphs correspond to splitting sub-strings of the form $a_{1} a_{2} \ldots a_{i}$ into a_{1} and $a_{2} \ldots a_{i}$. Thus for these edges give a one to one correspondence between the vertices of the two $n-2$ cubes. It is easy to check that the adjacent vertices in the first cube go to adjacent vertices in the second cube. Thus the graph of G_{n} is an $n-1$ cube.

If two vertices of G_{n} are connected by an edge then they occur with opposite signs in K_{n}. Also, the corresponding terms of the cumulant are the boundary of a map involving p_{1} and p_{2}. For instance $p_{1}(a b) p_{1}(c)-p_{1}(a) p_{1}(b) p_{1}(c)$ is the boundary of the map $p_{2}(a, b) p_{1}(c)$ and $p_{1}(a b c)-p_{1}(a) p_{1}(b c)$ is the boundary of $p_{2}(a, b c)$. This is true because the differentials are derivations of the binary product and p_{1} is a chain map. Thus we can label the edges of G_{n} with the corresponding maps involving p_{2}. Thus cycles in G_{n} correspond to cycles
in $\operatorname{Hom}\left(A^{\otimes n}, B\right)$. For instance the following map is the sum of the maps corresponding to the four edges of G_{3}.

$$
p_{2}(a b, c)-p_{1}(a) p_{2}(b, c)-p_{2}(a, b c)+p_{2}(a, b) p_{1}(c)
$$

This map is a cycle.
Note that this map is essentially all the ways of composing the maps p_{2} and p_{1} withe the binary products. From the compatibility relation for p_{3} we get that

$$
\partial\left(p_{3}\right)(a, b, c)=p_{2}(a b, c)-p_{1}(a) p_{2}(b, c)-p_{2}(a, b c)+p_{2}(a, b) p_{1}(c)
$$

Lemma 9. The cycle corresponding to the squares in the cubes G_{n} are boundaries of maps constructed using p_{3}, p_{2} and p_{1}.

Proof. In general a square in G_{n} is made with four vertices which differ in partitions added at two positions. There are two cases to consider. First is when a single substring is split into three in two different ways. Both these cases and the maps that give the homotopies to zero are shown in the following diagrams

Figure 6.2:

Figure 6.3:

Let g_{n} be an $n-2$-dimensional solid cube such that G_{n} is its one skeleton. Then from the above lemma we can associate to the 2 -cells of g_{n} maps made using p_{3} and p_{2}. We are now ready to state and prove our theorem in the context of associative algebras.

Theorem 8. Let $\left(A, \wedge_{A}, d_{A}\right)$ and $\left(B, \wedge_{B}, d_{B}\right)$ be two dgas. Let p be a chain map from A to B. Let K_{2}, K_{3} and so on be the Boolean cumulants of p. Suppose p is the first term of an A_{∞} morphism (p, p_{2}, p_{3}, \ldots) where $p_{n}: A^{\otimes n} \rightarrow$ B. Then the following statements hold.
i) p_{2} gives a homotopy from the second Boolean cumulant K_{2} to zero. All the higher Boolean cumulants K_{n} are also homotopic to zero using maps created by p_{2} and p_{1}.
ii) p_{3} gives a homotopy between different ways of making K_{3} homotopic to zero. For all the higher Boolean cumulants, homotopies between the multiple different ways of making them homotopic to zero are homotopic to each other using p_{3}, p_{2} and p_{1}.
iii) In general any cycles that are created using the homotopies $\left\{p_{j}\right\}_{j=1}^{n}$ are made homotopic to zero using maps made by $\left\{p_{j}\right\}_{j=1}^{n+1}$.

Proof. The previously proved lemmas prove the first two parts of this theorem. In general 2 cycles created by p_{2} and p_{3} correspond to 2 cycles in g_{n}. Consider
the boundary of p_{n} in general. Recall that from by definition p_{n} satisfies the equation.

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{n_{1}+\ldots+n_{k}=n} m_{k}^{B}\left(p_{n_{1}} \otimes \ldots \otimes p_{n_{k}}\right) \\
& =\sum_{k=1}^{n} \sum_{j=0}^{n-k} p_{n-k+1}\left(1 \otimes \ldots m_{k}^{A} \ldots \otimes 1\right)
\end{aligned}
$$

Since in this case m_{k} are all zero except for $k=1$ and $k=2$ we get

$$
\begin{gathered}
d\left(p_{n}\right)+\sum_{n_{1}+n_{2}=n} \wedge_{B}\left(p_{n_{1}} \otimes p_{n_{2}}\right) \\
=\sum_{k=1}^{n} p_{n}(1 \otimes \ldots d \ldots \otimes 1)+\sum_{k=1}^{n-1} p_{n-1}\left(1 \otimes \ldots \wedge_{A} \ldots \otimes 1\right)
\end{gathered}
$$

By rearranging the terms of the above equation we find $\partial\left(p_{n}\right)$.

$$
\begin{gathered}
d\left(p_{n}\right)-\sum_{k=1}^{n} p_{n}(1 \otimes \ldots d \ldots \otimes 1) \\
=\sum_{k=1}^{n-1} p_{n-1}\left(1 \otimes \ldots \wedge_{A} \ldots \otimes 1\right)-\sum_{n_{1}+n_{2}=n} \wedge_{B}\left(p_{n_{1}} \otimes p_{n_{2}}\right)
\end{gathered}
$$

Also

$$
\partial\left(\wedge_{B}\left(p_{n_{1}} \otimes p_{n_{2}}\right)\right)=\wedge_{B}\left(\partial\left(p_{n_{1}}\right) \otimes \partial\left(p_{n_{2}}\right)\right)
$$

Thus in general to a map of the type $p_{j_{1}} p_{j_{2}} \ldots p_{j_{m}}$ we associate a cell of dimension $j_{1}+j_{2} \ldots j_{m}-m$ which is attached in g_{n} to the cycle corresponding to its boundary.

Figure 6.4: p_{2} and p_{3}

Figure 6.5: p_{4}
Since g_{n} are solid cubes, they are contractible. Also, all the cells of g_{n} correspond to either a function of the form $p_{1} \ldots p_{k} \ldots p_{1}$ or a function of the form $p\left(a_{1}\right) \ldots p_{k} \ldots p_{l} \ldots p\left(a_{n}\right)$. Thus we have that all cycles created by $\left\{p_{k}\right\}$ are contractible.

6.2 C_{∞} morphism between dgcas

Suppose A and B are also graded commutative and $\left(p_{1}, p_{2}, \ldots\right)$ is a C_{∞} morphism from A to B. Recall that the commutative cumulants are defined as follows.

$$
k_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi}(|\pi|-1)!(-1)^{|\pi|-1} \prod_{b \in \pi} p\left(\prod_{i \in b} a_{i}\right)
$$

Recall that k_{2} is the same as the Boolean cumulant K_{2} and thus from the previous section it follows that k_{2} is the boundary of the map p_{2}.

Lemma 10. The commutative cumulants can be describes as boundaries of maps described using p_{2}

Proof. Note that the coefficients of k_{n} are integers that must add up to zero. Also each term in k_{n} corresponds to all partitions of n. Like in the previous section we associate a graph G_{n} whose vertices correspond to the terms of k_{n} with multiplicities. Edges go between a vertex α and β is the partition corresponding to β can be obtained from the partition corresponding to α by splitting one of its subsets into two. Note that since the coefficients of k_{n} add up to zero, G_{n} has even number of vertices. Also note that it is a connected graph. Any two terms corresponding to adjacent vertices in G_{n} are homotopic to each other via p_{2} and occur in k_{n} with opposite signs. Thus we can take pairs of terms with opposite signs in k_{n} that are homotopic to each other and use that to describe k_{n} as a boundary.

The third cumulant k_{3} is given by the formula

$$
k_{3}(a, b, c)=p(a b c)-p(a b) p(c)-p(b c) p(a)-p(c a) p(b)+2 p(a) p(b) p(c)
$$

Thus the corresponding graph is

Figure 6.6:
We can now state the following theorem.
Theorem 9. Let $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ be two dgcas. Let p be a chain map from A to B. Let k_{2}, k_{3} and so on be the cumulants of p. Suppose p is the first term of a C_{∞} morphism $\left(p, p_{2}, p_{3}, \ldots\right)$ where $p_{n}: A^{\otimes n} \rightarrow B$. Then the following statements hold.
i) p_{2} gives a homotopy from the second commutative cumulant k_{2} to zero. All the higher cumulants k_{n} are also homotopic to zero using maps created by p_{2} and p_{1}.
ii) p_{3} gives a homotopy between different ways of making K_{3} homotopic to zero. For all the higher Boolean cumulants, homotopies between the multiple different ways of making them homotopic to zero are homotopic to each other using p_{3}, p_{2} and p_{1}.
iii) In general any cycles that are created using the homotopies $\left\{p_{j}\right\}_{j=1}^{n}$ are made homotopic to zero using maps made by $\left\{p_{j}\right\}_{j=1}^{j+1}$.

Proof. We will construct an $n-1$ dimensional cube complex c_{n} corresponding to k_{n} whose one skeleton is G_{n}. We first attach two cells corresponding to maps of the types that are described in figures 6.2 and 6.3 . The boundaries of those maps correspond to 2-cycles in G_{n} since the edges in G_{n}. For every j less then n we attach a j-cube corresponding to maps of the form $p_{1} \ldots p_{k+1} \ldots p_{1}$ and $p_{1} \ldots p_{j_{1}} \ldots p_{j_{2}} \ldots p_{1}$ attached along the cells corresponding to their boundaries. Recall that

$$
\begin{gathered}
\partial\left(p_{n}\right)=d\left(p_{n}\right)-\sum_{k=1}^{n} p_{n}(1 \otimes \ldots d \ldots \otimes 1) \\
=\sum_{k=1}^{n-1} p_{n-1}\left(1 \otimes \ldots \wedge_{A} \ldots \otimes 1\right)-\sum_{n_{1}+n_{2}=n} \wedge_{B}\left(p_{n_{1}} \otimes p_{n_{2}}\right)
\end{gathered}
$$

and

$$
\partial\left(\wedge_{B}\left(p_{n_{1}} \otimes p_{n_{2}}\right)\right)=\wedge_{B}\left(\partial\left(p_{n_{1}}\right) \otimes \partial\left(p_{n_{2}}\right)\right)
$$

Thus the boundaries of the cubes correspond to the sum of lower dimensional cubes.

The complex c_{n} is constructed similarly to the complex g_{n} constructed in the previous section. Since the terms of k_{n} include all permutations of the inputs, c_{n} consists of $n-1$ cubes corresponding to p_{n} with permuted inputs, glued together in a certain way. Thus for some subset of permutations of j elements, we have cycles of the form

$$
\ldots p_{j}\left(\sum\left(a_{\sigma(1)}, a_{\sigma(2)} \ldots a_{\sigma(j)}\right) \ldots\right.
$$

Recall that by the definition of a C_{∞} morphism p_{j} vanishes over the sum of all shuffle permutations adding up to length j. Thus the map corresponding to the above sums is zero.

6.3 Structure of a general A_{∞} morphism

Suppose A and B are A_{∞} algebras. The compatibility equation still implies that p_{2} gives a homotopy between $p_{1}(a b)$ and $p_{1}(a) p_{1}(b)$. However we now have

$$
\begin{aligned}
p_{1}((a b) c) & \neq p_{1}(a(b c)) \\
\left\{p_{1}(a) p_{1}(b)\right\} p_{1}(c) & \neq p_{1}(a)\left\{p_{1}(b) p_{1}(c)\right\}
\end{aligned}
$$

There are a triple products m_{3}^{A} and m_{3}^{B} on A and B respectively, which makes terms homotopic to each other. When A and B were associative, there were four different ways of combining three inputs from A using p_{1} and the binary products to give one output from B. When A and B are A_{∞} algebras there are six different ways that are now homotopic to each other via maps involving p_{2}, p_{1}, m_{2} and m_{3}.

Lemma 11. The cycle created by various homotopies between the several ways of combining three inputs is homotopic to zero via the homotopy p_{3}.

Proof. Thus if we made a graph G_{3} with six vertices each corresponding to ways of combining n inputs, and edges corresponding to appropriate homotopies, we get a hexagon. Recall that the equation the p_{3} satisfies gives the value of $\partial\left(p_{3}\right)$ to be

$$
\begin{gathered}
d\left(p_{3}\right)-p_{3}(\tilde{d}) \\
=p_{2}\left(m_{2} \otimes 1+1 \otimes m_{2}\right)-m_{2}\left(p_{1} \otimes p_{2}+p_{2} \otimes p_{1}\right) \\
+p_{1}\left(m_{3}\right)-m_{3}\left(p_{1} \otimes p_{1}\right) \otimes p_{1}
\end{gathered}
$$

Note that the six terms of the boundary p_{3} correspond to homotopies between adjacent vertices of hexagon G_{3}.

Figure 6.7:

Similarly for k_{4} we get the following polyhedron

Figure 6.8:
In the context of A_{∞} algebras the Boolean cumulants are only defined up to homotopy. In general for every k_{n} there is an $n-1$ dimensional polyhedron whose cells correspond to maps which take n inputs that are compositions of maps p_{j} 's and m_{j} 's.

The Boolean cumulants are defined in the context of A_{∞} algebras only up to homotopy. Since the Stasheff associahedra make these different ways homotopic to each other and indeed different homotopies are homotopic to each other and so on, we have the following theorem in the context of A_{∞} cumulants.

Theorem 10. Let A and B be two A_{∞} algebras. Let p be a chain map from A to B. Let K_{2}, K_{3} and so on be the Boolean cumulants of p defined up to homotopy. Suppose p is the first term of an A_{∞} morphism (p, p_{2}, p_{3}, \ldots) where $p_{n}: A^{\otimes n} \rightarrow B$. Then the following statements hold.
i) p_{2} gives a homotopy from the second Boolean cumulant K_{2} to zero. All the different ways of defining the higher Boolean cumulants K_{n} are also homotopic to zero using maps created by p_{2} and p_{1}.
ii) p_{3} gives a homotopy between different ways of making K_{3} homotopic to zero. For all the higher Boolean cumulants, homotopies between the multiple different ways of making them homotopic to zero are homotopic to each other using p_{3}, p_{2} and p_{1}.
iii) In general any cycles that are created using the homotopies $\left\{p_{j}\right\}_{j=1}^{n}$ are made homotopic to zero using maps made by $\left\{p_{j}\right\}_{j=1}^{n+1}$.

Proof. The proof of this theorem follows from the fact that the polyhedrons corresponding to each p_{n} are contractible. The cells of the polyhedrons correspond to concrete maps constructed using p_{j} and m_{j} for smaller j.

The theorem in the case of C_{∞} algebras is as follows.
Theorem 11. Let A and B be two C_{∞} algebras. Let p be a chain map from A to B. Let k_{2}, k_{3} and so on be the Boolean cumulants of p defined up to homotopy. Suppose p is the first term of an C_{∞} morphism (p, p_{2}, p_{3}, \ldots) where $p_{n}: A^{\otimes n} \rightarrow B$. Then the following statements hold.
i) p_{2} gives a homotopy from the second cumulant k_{2} to zero. All the different ways of defining the higher cumulants k_{n} are also homotopic to zero using maps created by p_{2} and p_{1}.
ii) p_{3} gives a homotopy between different ways of making k_{3} homotopic to zero. For all the higher Boolean cumulants, homotopies between the multiple different ways of making them homotopic to zero are homotopic to each other using p_{3}, p_{2} and p_{1}.
iii) In general any cycles that are created using the homotopies $\left\{p_{j}\right\}_{j=1}^{n}$ are made homotopic to zero using maps made by $\left\{p_{j}\right\}_{j=1}^{n+1}$.

Proof. Much like in the previous cases we construct a CW-complex for every n. In the case of a C_{∞} morphism between C_{∞} algebras the nth complex is made of the $n-1$ dimensional polyhedrons corresponding to the Boolean cumulants in the A_{∞} case. The cycles that aren't boundaries in this complex correspond to sums of p_{j} and m_{j} with permuted inputs. Recall that by the definition of C_{∞} algebras we have

$$
m_{q+r}\left(\sum_{\sigma \in(q, r)-\text { shuffles }}\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)\right)=0
$$

and

$$
p_{q+r}\left(\sum_{\sigma \in(q, r)-\text { shuffles }}\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(q+r)}\right)\right)=0
$$

where μ is the shuffle product. Thus sums of cells corresponding to m_{q+r} and p_{q+r} applied to shuffle products are cycles in the CW-complex. However these maps are also boundaries since they are indeed equal to zero. Thus we can add cells corresponding to the zero map whose boundaries are the above cycles. Thus the CW-complex is indeed contractible and the corresponding maps are boundaries.

6.4 Revisiting the A_{∞} morphism between forms and associative cochains

Recall that the map $p: \Omega([0,1]) \rightarrow C^{*}([0,1])$ is actually the first term of an A_{∞} morphism from the differential forms to the associative cochains. The maps p_{n} are defined by the following formula.

$$
\begin{gathered}
p_{n}\left(f_{1}(x) d x, f_{2}(x) d x \ldots, f_{n}(x) d x\right) \\
=\left(\int_{t_{1} \leq t_{2} \leq \ldots \leq t_{n}} f_{1}\left(t_{1}\right) f_{2}\left(t_{2}\right) \ldots f_{n}\left(t_{n}\right) d t_{1} d t_{2} \ldots d t_{n}\right) d t
\end{gathered}
$$

Note that all the one forms on the interval are exact. Suppose $d f_{1}$ and $d f_{2}$ are exact forms then

$$
p_{2}\left(d f_{1}, d f_{2}\right)=p_{2}\left(d\left(f_{1}, d f_{2}\right)\right)=\partial\left(p_{2}\right)\left(f_{1}, d f_{2}\right)=K_{2}\left(f_{1}, d f_{2}\right)
$$

In general for forms $d f_{1}, d f_{2}, d f_{3}$ and so on we have

$$
p_{n}\left(d f_{1}, d f_{2}, \ldots, d f_{n}\right)=p_{n}\left(d\left(f_{1}, d f_{2}, \ldots, d f_{n}\right)\right)=\partial\left(p_{n}\right)\left(f_{1}, d f_{2}, \ldots, d f_{n}\right)
$$

The above expression is equal to

$$
p_{1}\left(f_{1}\right) p_{n-1}\left(d f_{2}, \ldots, d f_{n}\right) \pm p_{n-1}\left(f_{1} d f_{2}, \ldots, d f_{n}\right)
$$

We can compute these quantities by induction on n. Similar analysis can be made of the A_{∞} morphism between the differential forms and the cochains on an n dimensional simplex. Fewer terms would be zero in higher dimensions but we can use induction on n to compute each p_{n}

6.5 Conclusion: Associating CW-complexes to cumulants and maps

In the proofs of the above theorems we associated cell complexes to the cumulants of maps that were a part of some kind of a higher structure. The vertices of such cell complexes corresponded to the terms of the cumulants. The edges and faces correspond to maps provided by the higher structure, which provide appropriate homotopies. In the above theorems the cell complexes end up being contractible. However, one can imagine situations where the cell complexes have a homotopy type. Further there are several inclusions of the cell complexes associated with the nth cumulant into the cell complex
associated with the $n+1$ th cumulant. There are also inclusions of products of smaller dimensional cell complexes into a celcomplex corresponding to a higher dimension. Thus we have a directed system of cell complexes and we can take the direct limit of such a system.

For instance, suppose A and B are dgcas. Suppose $\left(p_{1}, p_{2}, \ldots\right)$ is an A_{∞} morphism from A to B (not necessarily a C_{∞} morphism). In this situation there are cycles in the cell complex which correspond to the maps

$$
p_{n}\left(\mu\left(x_{1}, \ldots, x_{q}\right) \otimes\left(x_{q+1}, \ldots, x_{q+r}\right)\right)
$$

where $q+r=n$ and μ is the shuffle product. The corresponding cells in the cell complex create a cycle that is in fact a sphere. The homotopy type of this cell complex is not trivial. These cycles will continue to exist through the directed system of cell complexes. The direct limit of the system of cell complexes will have a non-trivial homotopy type. Thus while the cumulants themselves are homotopic to zero and can be expressed as boundaries, there is a homotopy type associated to the cumulants which is not trivial.

Bibliography

[1] Ruggero Bandiera and Florian Schaetz. How to discretize the differential forms on the interval. arXiv preprint arXiv:1607.03654v2, 2016.
[2] Kuo-Tsai Chen. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831-879, 091977.
[3] Gabriel C. Drummond-Cole, Jae-Suk Park, and John Terilla. Homotopy probability theory i. Journal of Homotopy and Related Structures, 10(3):425-435, 2015.
[4] Gabriel C. Drummond-Cole, Jae-Suk Park, and John Terilla. Homotopy probability theory ii. Journal of Homotopy and Related Structures, 10(3):623-635, 2015.
[5] Erza Getzler and Cheng Xue Zhi. Transferring homotopy commutative structures. arXiv preprint arXiv:math/0610912v2, 2008.
[6] V. K. A. M. Gugenheim. On Chen's iterated integrals. Illinois J. Math., 21(3):703-715, 091977.
[7] V. K. A. M. Gugenheim. On the multiplicative structure of the de rham cohomology of induced fibrations. Illinois J. Math., 22(4):604-609, 12 1978.
[8] T.V. Kadeishvili. On the homology theory of fibre spaces. Uspekhi Mat. Nauk, 35(3(213)):183-188, 1980.
[9] Maxim Kontsevich and Yan Soibelman. Notes on a-infinity algebras, a-infinity categories and non-commutative geometry. i. arXiv:math/0606241v2, 2006.
[10] Kenji Lefèvre-Hasegawa. Sur les a-infini catégories. arXiv preprint arXiv:arXiv:math/0310337v1, 2003.
[11] Franz Lehner. Cumulants in noncommutative probability theory i. noncommutative exchangeability systems. Mathematische Zeitschrift, 248(1):67-100, 2004.
[12] Jean-Louis Loday and Bruno Vallette. Algebraic Operads, volume 346 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 1 edition, 2012.
[13] S. A. Merkulov. Strong homotopy algebras of a kähler manifold. International Mathematics Research Notices, 1999(3):153, 1999.
[14] Rimhak Ree. Lie elements and an algebra associated with shuffles. Annals of Mathematics, 68(2):210-220, 1958.
[15] James Dillon Stasheff. Homotopy associativity of h-spaces. i. Transactions of the American Mathematical Society, 108(2):275-292, 1963.
[16] James Dillon Stasheff. Homotopy associativity of h-spaces. ii. Transactions of the American Mathematical Society, 108(2):293-312, 1963.
[17] Bruno Vallette. Algebra+ homotopy= operad. arXiv preprint arXiv:1202.3245, 2012.

