
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Learning Mixed Sparse Factor Networks Structure: a Latent Variable Approach

A Dissertation presented

by

Ruofeng Wen

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

May 2015



Stony Brook University

The Graduate School

Ruofeng Wen

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Wei Zhu - Dissertation Advisor
Professor, Department of Applied Mathematics and Statistics

Song Wu - Chairperson of Defense
Assistant Professor, Department of Applied Mathematics and Statistics

Xuefeng Wang - Faculty Committee Member
Assistant Professor, Department of Applied Mathematics and Statistics

Yuanyuan Yang - Outside Committee Member
Professor, Department of Electrical and Computer Engineering and Computer Science

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Learning Mixed Sparse Factor Networks Structure:

a Latent Variable Approach

by

Ruofeng Wen

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

Learning and visualizing complex causal or dependence structure among
various variables is of great interest in applied science. Probabilistic Graphical
Models, including Bayesian Networks and Markov Random Field, are well-
developed tools for such problems, particularly when variables are either all
categorical or continuous. In the first and major part of this text, we pro-
posed a novel graphical structure learning approach, the MIxed Sparse FAc-
tor Network (MISFAN), to accommodate categorical and continuous variables
seamlessly in one sparse Probit latent factor model. Such a network bridges
the gap among latent variable models, traditional multivariate analysis and
graphical models, can visualize the underlying interaction and clustering in a
more extensive and succinct way, and simultaneously presents certain causal
hypothesis as in a Bayesian Network, along with local conditional dependence
structure as in a Markov Random Field.

Another independent application of latent variable models is from the
Error-in-Variable (EIV) perspective. EIV considers the intrinsic and mostly
inevitable measurement error affecting the latent true predictors of a regression
model. Although proved to be inconsistent and biased on data with measure-
ment error, Ordinary Least Square still dominates for its simple computation
and interpretation, while the EIV models seem to be daunting and confusing
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for its diverse formulations. We intend to give a clear, systematic and unified
description with novel geometric insight for the common EIV models in the
second part of the text. Additionally, model caveats, parameter specification
and alternative estimation approaches are discussed for practical interests.
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Preface

This dissertation is an original, unpublished and independent work by the
author, Ruofeng Wen, and consists of two self-contained papers with their own
abstracts, introductions and main texts. The numbered lists of Figures, Tables
and Bibliographies are in a combined format.

The thesis includes selected results regarding to the theoretical aspect of
Statistics, accomplished during the Ph.D. study of the author at Stony Brook
University, New York. It mainly discusses the proposed derivative of latent
variable models on learning the network structure of a Probabilistic Graphical
Model with both continuous and discrete variables. It also summarizes a uni-
fied geometric perspective of another latent variable setting: Error-in-Variable
models. The two parts can be read individually.
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Learning Mixed Sparse Factor Networks
Structure: a Latent Variable Approach

Ruofeng Wen

05/05/2015

Abstract

Learning and visualizing complex causal or dependence structure
among various variables is of great interest in applied science. Prob-
abilistic Graphical Models, including Bayesian Networks and Markov
Random Field, are well-developed tools for such problems, particularly
when variables are either all categorical or continuous. We proposed
a novel graphical structure learning approach, the MIxed Sparse FAc-
tor Network (MISFAN), to accommodate categorical and continuous
variables seamlessly in one sparse Probit latent factor model. Such a
network bridges the gap between traditional multivariate analysis and
graphical models, can visualize the underlying interaction and cluster-
ing in a more extensive and succinct way, and simultaneously presents
certain causal hypothesis as in a Bayesian Network, along with local
conditional dependence structure as in a Markov Random Field.

Keywords. Graphical Model, Bayesian Network, Latent Variable, Mixed
Network, Probit Factor Model, Conditional Dependence

1 Introduction
In the field of economics, engineering, finance, social sciences and bioin-

fomatics, processing high dimensional data with various types of variables is
routine, and a computationally efficient and comprehensive model is needed
to discover and present significant association of all the possible factors at
once. Probabilistic Graphical Model (PGM), including Bayesian Networks
(BN), Markov Random Field (MRF), and some traditional approaches, e.g.
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Structure Equation Modeling (SEM), have been thriving in the past decade,
for their ability to model complex interaction among numerous variables while
retaining the interpretability.

Bayesian Networks, essentially a directed acyclic graph (DAG) with causal
variables as the starting nodes, and outcome variables as the ending ones,
were originally exclusively designed for categorical variables and the network
is built on the assumption of multinomial joint distribution, estimated by the
co-occurrence frequency of the random variables. Subsequently, similar model
structure has been investigated on the so-called Gaussian Bayesian Network
(GBN), a graph where all nodes are continuous and normally distributed.
The undirected version of such networks is referred to as Markov Random
Field (MRF), or sometimes Markov Networks, where an edge indicates cer-
tain mutual probabilistic association. Both BN and MRF aim to present the
conditional independence structure of the variables through directed and undi-
rected graphs, respectively. These PGMs give a parsimonious description of
the underlying complex association among many variables, visualize it with a
graph and thus enable qualitative and quantitative inference. Numerous sta-
tistical models fall in such categories, with either all Gaussian variables or dis-
crete variables: Principle Component Analysis, Factor Analysis and Structural
Equation Modeling as GBN; Naive Bayes Classifier, Hidden Markov Model
and State Space Model as BN; Ising Model and Gaussian Graphical Model as
MRF.

A network model for both continuous (numeric) and categorical (discrete)
variables, commonly referred to as Mixed Graphical Model or Hybrid Net-
works, is of practical interest since mixed variables co-exist in many sophisti-
cated system. One direct approach to accommodate both types of variables is
to simply categorize the continuous variable into ordinal levels, see Neil et al.
(2008) and Monti and Cooper (1998) for examples. This makes full use of
the mature discrete BN framework, but distribution assumptions are gener-
ally subjective and hard to justify. Another popular approach is to use the
conditional Gaussian distribution to model the directed relationship between
a pair of continuous and categorical variables, e.g. Lauritzen (1996), Murphy
(1998), and Bø ttcher (2001). The downside is that the parameter space is pro-
hibitively large, and the causal direction can only be from the categorical to the
continuous variables due to its innate limitation of distribution assumption.
By simply using the Generalized Linear Model, Skrondal and Rabe-hesketh
(2005) showed that SEM can accommodate both discrete and continuous fac-
tors at ease, however SEM is usually used as a confirmatory model to learn
linear parameters among a small group of variables, so learning a sparse and
consistent network structure from data is necessarily a prerequisite. As for
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the undirected graph, Friedman, Hastie, and Tibshirani (2008) proposed a l1-
penalized precision matrix estimation, the Graphical Lasso, for learning partial
correlation structures for a multivariate normal distribution and thus building
a GMRF. A different but equivalent perspective is on learning a precision ma-
trix through the estimation of a set of joint sparse linear regression models,
as described in Peng et al. (2008), from which Cheng, Levina, and Zhu (2013)
further modeled the mixed network case using a set of joint logistic/linear
regression models with Group Lasso regulation, called the Mixed Graphical
Model (MGM). Lee and Hastie (2013) independently proposed an equivalent
formulation of MGM, but estimated as a convex optimization problem.

Causal networks is of great interest as a fundamental model to describe
the interaction among variables. BN does not uniquely learns the true causal
structure, but answers part of the question by giving hypothetical causal pro-
cess with appropriate conditional independence structure, though the latter
is NP-hard for the discrete case, as discussed in Chickering, Heckerman, and
Meek (2004). MRF, on the other hand, shows the local conditional dependence
instead of causality. The different possible mapping and tedious translation
of causal, directed or undirected graphs makes the interpretation restricted,
and bird-viewing all possible patterns at once difficult. Another type of graph
named Factor Graph adds additional ’factors’ into the node list which ab-
stractly represents a factored part of the joint density function, as elaborated
in Loeliger (2004) and Kschischang, Frey, and Loeliger (2001). Although Fac-
tor Graph delivers the general merged representation of BN and MRF, the am-
biguous definition of ’factors’ and the mixing of nodes and edges is bewildering
and in fact limited because it shows neither causal relation nor conditional in-
dependence on the graph. A more succinct and comprehensive visualization
is desirable, to unify both the causal implication and conditional dependence
patterns.

In this paper, we pursued the merits of the mentioned missing properties
and proposed a novel MIxed Sparse FActor Networks (MISFAN) model to
learn and present the conditional dependence graphical structure. It assumes
latent Gaussian variables with a multinomial Probit link to model the categor-
ical variables, builds l1-penalized sparse latent factors as the origin of the low
dimensional causal information source, and detects sparse conditional depen-
dence as the network structure, yielding both stronger visual interpretability
and more coherent formulation. With the mature framework of traditional
factor analysis, it also enables plenty of extensions for graphical models. In
Section 2 we introduced some background concepts of PGM network analysis
that is relevant to our work. We presented the MISFAN model, its strong
interpretive power supported by a so-called Factor Network, and some of its
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features in Section 3, followed by its estimation via a Monte Carlo Expecta-
tion Conditional Maximization Either (MC-ECME) algorithm. In Section 4
we conducted an intense simulation experiment to assess the behaviors and
properties of our fitting algorithm, and designed another series of simulated
Bayesian Networks to demonstrate the superior performance of MISFAN com-
pared to its competitors in different settings. Then in Section 5, an analysis of
the World Development and Value data serves as a practical example for the
application of MISFAN. Conclusion and possible future work were discussed
in Section 6.

2 Background
In this section we introduce some background theory related to our pro-

posed method.

2.1 Probabilistic Graphical Model
The fundamental structure among a series of random variables is depicted

by their joint probability distribution. Probabilistic Graphical Models (PGM)
is used to describe the conditional independence or dependence structure im-
plied by the joint distribution with a graph-induced decomposition of the joint
density function. In such a graph or network, a node is a random variable,
and an edge between two nodes indicates certain stochastic association. Given
a set of random variables S and their joint distribution P , the set of its con-
ditional independence structure is denoted as I(P) = {(x, y, C)|x, y ∈ S, C ⊆
S \ {x, y}, x ⊥⊥ y|C} and a PGM graph G aims to model such structure. If
I(G) ⊆ I(P), G is said to be an I-map of P . If deleting any edge makes G
no longer an I-map, G is called a minimal I-map. If I(G) = I(P), G is then
a perfect map of P . Here we briefly introduce the basic theory of Bayesian
Networks, Markov Random Field and Factor Graph, while all details could be
found in Bishop (2006) and Koller and Friedman (2009).

A Bayesian Network (BN) is defined to be a PGM represented by a directed
acyclic graph (DAG), where each directed edge starts from a cause random
variables and ends with a result random variable. See Figure 1(A) for an
example of BN. The joint density function, according to the example, can be
decomposed to a series of conditional density function of result given cause:

f(x, y, z, w, u) = f(u|w, z)f(w|z)f(z|x, y)f(y)f(x) (2.1)

This decomposition describes conditional independence structure among
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Figure 1: (A): an example of Bayesian Network. The outlined orange part
is a V-structure. (B): an example of Markov Random Field. The outlined
green part is a maximal clique. (C): an example of a Factor Graph. The solid
squares are the abstract representation of factored potential functions.

the variables, e.g. x ⊥⊥ u|{w, z} thus the first term on the right hand side
of (2.1) does not include x. It also specifies a conjectured generative causal
process among the variables. The node of cause is called a parent while the
result is called a child. Formally, a BN G specifies the joint distribution P of
a random vector X = (X1, . . . , Xp)ᵀ by assuming the density function can be
decomposed according to the graph:

f(x) =
p∏
i=1

f(xi|pai) (2.2)

where pai is the set of all parents of xi. If P can factor according to G, then
G is proved to be a minimal I-map, namely all its conditional independence
claims are true for P . BN commonly assumes all variables are discrete, thus
each follows a multinomial distribution and forms an expanded grid of a joint
contingency table, whose parameter size grows exponentially with the num-
ber of variables. Probability of falling into certain slots in such grid can be
decomposed according to (2.2) to reduce parameter size. Another class of
BN assumes all variables are normally distributed and their relationship is
conditionally linear:

Xi|pai ∼ N(αi +
∑

Xj∈pai

βijXj, σ
2
i ) (2.3)

which is often referred to as a Gaussian Bayesian Network (GBN). It has been
proved that for every GBN G there exists an equivalent multivariate normal
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distribution P that I(P) = I(G), and for every such P we can find a minimal
I-map GBN as well.

A Markov Random Field (MRF) is a PGM with undirected graph, where
each edge directly implies conditional dependence given all other nodes. In an
undirected graph, a clique is defined as a subset of nodes that are pairwisely
connected, and a maximal clique is a clique that will no longer be a clique if we
add any nodes into the subset. A maximal clique in a graph is equivalent to
a non-factorable function in the joint density. See Figure 1(B) for an example
of MRF, where the subset bounded by green outline is a maximal clique. The
joint density function can be factored according to the maximal cliques:

f(x, y, z, w, u) = Kψ1(x, z)ψ2(y, z)ψ3(z, w, u) (2.4)

where ψi is a function of the members of a clique, commonly referred to as the
potential function, and K is a normalization constant to make the right hand
side a valid density function. Generally, a MRF specifies the joint distribution
P of a random vector X = (X1, . . . , Xp)ᵀ by decomposing the density function:

f(x) = K
∏
c∈Cm

ψc(xc) (2.5)

where c is a clique, Xc and ψc are the corresponding nodes and potential
functions, and Cm is the set of all maximal cliques. Similarly, if P can factor
according to such MRF G, then G is proved to be a minimal I-map for P .

The most appealing feature of a PGM is that the clear and sparse con-
ditional dependence relationship can be visually inferred from the graph, for
further quantitative and qualitative analysis. For a MRF:

• Consider all nodes that have been conditioned on becoming ’blocks’ on
the network paths, then two nodes are conditionally dependent, if and
only if there is a clear path between them.

In Figure 1(B), if we condition on z, then x ⊥⊥ y because there is no longer a
path between them, but w 6⊥ u since they are still connected. Simply setting z
to a constant in (2.4) can be an alternative algebraic justification. Conditional
dependence in BN is trickier. In Figure 1(A), if we condition on z, then x and
y are dependent. This is due to the fact that the joint distribution of these
three variables is f(z|x, y)f(y)f(x), and by setting z to a constant, the first
term is still non-factorable regarding to x and y. In fact, the shape x→ z ← y
, called a V-structure, is the only exception we need to consider in a BN.

• Consider all nodes that have been conditioned on becoming ’blocks’ on
the network paths. And for every such V-structure, if the center node
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and all of its descendants are not conditioned on, we block it; otherwise
we add an edge between the parents. We then have that two nodes
are conditionally dependent, if and only if there is a clear path between
them.

This property is called the d-separation of a BN (d for directed). Note that BN
and MRF are mutually convertible, with possible loss of structure. In fact, the
conditional independence that BN and MRF can handle are two intersecting
subsets of the universal set.

Factor Graph was proposed to have a comparatively more general decom-
position, as shown in Figure 1(C):

f(x, y, z, w, u) = f1(x, z)f2(y, z)f3(z, w, u)f4(x) (2.6)

The four functions are the so-called factors and are explicitly shown as
nodes in the undirected graph. Factor Graph is said to be bipartite because it
has two kinds of nodes: variables and factors. The edges can only be drawn
between a variable and a factor, according to the decomposition (2.6). The
factors are abstract nodes to mediate the effects among variable nodes, and
such representation is not unique, e.g. f4(x) can be merged into f1(x, z) and
thus omitted. Generally, a Factor Graph has the form

f(x) =
∏
s

fs(xs) (2.7)

where s is the index for a subset of the variables. Note both (2.2) and (2.5)
can be seen as special cases of (2.7), therefore converting a BN or MRF to a
Factor Graph is trivial. Factor Graph is flexible, can deal with directed and
undirected models in the same framework and also can be constructed based
on the possible prior information of the application. However the decompo-
sition is subjective and does not indicate conditional independence or causal
suggestion. The Factor graph is mainly used as an abstract tool to facili-
tate the inference and estimation of a BN or MRF, e.g. via sum-product and
max-sum algorithm. More details could be found in Kschischang, Frey, and
Loeliger (2001). In Section 3, we proposed a more straight-forward variation of
the Factor Graph, that has better interpretability and retains the informative
structure of both a Bayesian Network and a Markov Random Field.

2.2 Learning Sparse Gaussian Networks
The graphical structure of the networks, or equivalently the decomposition

of joint distribution, is assumed to be known in the previous subsection, which
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is not practical when we start to explore in a new territory. Learning an
optimal BN for a set of discrete random variables is NP-hard and is thus usually
performed via certain greedy searching algorithms, which we do not discuss
further in this text. Interested readers are referred to Koller and Friedman
(2009). GBN and GMRF (a.k.a. Gaussian Graphical Model), on the other
hand, could be learned by computing the partial correlation coefficients of
the random vector, since lack of partial correlation is equivalent to lack of
conditional dependence given all others, for normal random variables.

For the data matrix Xn×p = (x1, . . . , xn)ᵀ containing i.i.d. samples of a p-
dimensional multivariate normal random vector X = (X1, . . . , Xp)ᵀ with mean
0 and covariance matrix Σ, the partial correlation coefficient between random
variables Xi and Xj given all other variables is

ρ?ij = − ωij√
ωiiωjj

(2.8)

where Ω = Σ−1 = {ωij} is the precision matrix. Since zero entries in Ω
indicate conditional independence between corresponding variable pairs, given
all other variables, we can maximize the following log-likelihood with sparsity
restriction as described in Friedman, Hastie, and Tibshirani (2008):

log det(Ω)− tr(SΩ)− λ||Ω||1 (2.9)

where S is the sample covariance matrix and here || · ||1 of a matrix is defined
as the l1-norm of its vectorized form. Such model is named Graphical Lasso,
since it directly estimates a sparse GMRF, i.e. an undirected graph, by putting
an edge between Xi and Xj if ωij 6= 0.

Another equivalent form was proposed by Peng et al. (2008), which is
simply a set of linear regressions of one variable on all others:

Xi =
∑
j 6=i

βijXj + εi (2.10)

given cor(εi, X−i) = 0. And it can be shown that βij = ρ?ij
√
ωjj/ωii and thus

ρ?ij = sign(βij)
√
βijβji, therefore testing whether partial correlation coefficients

equal zero, testing conditional independence, and variable selection of a set of
regression models are all equivalent. The following loss function is used to
estimate the joint regression models:

Ln(ρ, θ,X) =
n∑
k=1

p∑
i=1

(xik −
∑
j 6=i

ρ?ij

√
ωjj
ωii

xjk)2 + λ||ρ?||1 (2.11)
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where ρ? = {ρ?ij|i < j},ω = (ω11, . . . , ωpp). The structure of GMRF is de-
termined by examining whether ρ?ij = 0 likewise, and the directed version
could be obtained by the conversion from GMRF to GBN as mentioned in the
previous subsection.

2.3 Learning Mixed Networks
In the case of both continuous and categorical variables, apart from the

heuristic discretization methods which we do not discuss in this text, Lau-
ritzen (1996) described the first sound framework called Conditional Gaussian
Bayesian Network. For a continuous random vector X and a categorical one
Y , the joint probability distribution is factored into

f(x, y) =
∏
j∈∆

P (yj|dpaj)
∏
i∈Γ

f(xi|dpai, cpai) (2.12)

where ∆ and Γ are the index sets of discrete and continuous variables, dpai and
cpai are the sets of discrete and continuous parents of the variable of index i.
Apparently, the model does not allow continuous parents for a discrete variable,
since the mixed part of joint distribution can only be Gaussian, conditioning
on the values of the discrete variables:

Xi|dpai, cpai ∼ N(µi|dpai + (βᵀ
i |dpai) ·Xcpai

, σ2|dpai) (2.13)
where all the parameters are conditioned on the discrete parents. The discrete
part of joint distribution is simply the right hand side first term of (2.12). The
joint distribution can be rewritten in a clear form in the exponential family

f(x, y) = exp(gy + hᵀyx−
1
2x

ᵀKyx) (2.14)

and here gy, hy, Ky are the canonical parameters conditioning on the dis-
crete Y . It is straight forward to see that, the number of parameters grows
exponentially as the number of possible combinations of levels within the cat-
egorical variables explodes. Bø ttcher (2001) presented a Bayesian method
to learn the structure of such networks with Dirichlet and Inverse Gaussian
priors respectively for discrete and continuous distribution parameters. The
conditional Gaussian network was then simplified and applied to learning a
mixed MRF, or a Mixed Graphical Model, by Cheng, Levina, and Zhu (2013).
The exponential part in (2.14) was written in linear and pairwise quadratic
forms of the variables, and it was shown that the coefficients can be obtained
by solving a series of conditional likelihood problems, i.e. a set of general-
ized linear regression models, similar to Peng et al. (2008). The conditional
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distribution of continuous variables are still Gaussian as in (2.13), while the
category probability of a binary discrete variables is depicted by a Logistic
regression on others variables:

log P (Yj = 1|X, Y−j)
P (Yj = 0|X, Y−j)

= g(Y−j, X,XXᵀ|θ) (2.15)

where g(·) is a linear equation with coefficients θ, and XXᵀ denotes all the
cross-product terms of X. A weighted Lasso penalty is then imposed to assure
the identification and sparsity of the model. Lee and Hastie (2013) indepen-
dently developed an equivalent setting with minor difference, e.g. the direct
use of the general form of multinomial Logistic regression, Group Lasso penalty
and convex optimization form. MRF does not have the concern of continuous-
parent-discrete-child problem because it has no implication on a generative
causal model. The regression sets, each with its own penalty, are solved sep-
arately but still assuming one common tuning parameter for computational
feasibility. The regression coefficients are at least estimated twice during the
process due to parameter overlapping, but only the largest is suggested to be
taken, and the grouped coefficients are coarse to model the complex inter-
category interaction among discrete variables. These complications cost the
model to lose the simplicity of processing a Gaussian Network as in the previ-
ous subsection.

2.4 Multinomial Probit Latent Factor Model
Here we briefly introduce the Probit latent factor model that inspired

our work. Consider a categorical random variable Y with possible values
{0, 1, . . . , K} to indicate the K + 1 levels (categories), we assume

Y =

0 if max(U) ≤ 0
k if max(U) = Uk > 0, k = 1, . . . , K

(2.16)

where U = (U1, . . . , UK) is the latent continuous normal random variables,
sometimes called the utilities in decision theory, that models the underlying
intention or priority for Y to fall in a certain category. Further more, we build
the following multivariate linear model

U = BX + LF + ε (2.17)
where X is the p × 1 covariates vector, F the d × 1 unobserved latent fac-
tor, B and L the corresponding linear coefficients and loading matrices and
ε is the zero-mean error term. We usually assume uncorrelated latent factors
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F ∼ N(0, I) and error ε ∼ N(0,Ψ) where Ψ is a diagonal matrix, then the
model is identifiable up to a rotation matrix multiplying L, and can be esti-
mated via Maximum Likelihood. An example can be found in Zhou and Liu
(2007). Particularly, the distribution of a binary variable Y ∈ {0, 1} is actually
modeled by:

P (Y = 1) = Φ(BX + LF ) (2.18)

where Φ is the standard normal cumulative distribution function. For a multi-
class Y , the probability structure can be similarly interpreted on each of its
binary dummy variables.

Without the factor term F , (2.16) and (2.17) is simply a Generalized Lin-
ear Model with a multinomial Probit link, a not-so-popular alternative of the
multinomial Logistic regression, also known as the Max-Entropy or Softmax
regression, to describe the relationship between a categorical response and a
series of predictors. Probit model is less used mainly because the estimation
involves computing the integral of a multivariate truncated normal density
function, which is often intractable and needs Monte Carlo integration. Clas-
sical Logistic model is by contrast easy to fit using analytical iterations, but
often accused for its unjustified assumption of independence of irrelevant al-
ternatives (IIA). IIA states that the probabilistic preference of one category
over another does not change in the presence or absence of other possible
categories. This is often undesirable because categories of a discrete random
variable could have more complex association, such as hierarchy. For instance,
given the choice of taking a blue bus, a red bus and a car to work, the probabil-
ity of choosing either is the same. IIA leads to an unrealistic argument that,
if we remove the red bus from the alternatives, the probability of choosing
the blue bus is still equal to that of choosing the car. Consequently, Probit
model can accommodate much more complex categorical variables at a cost
of time efficiency. Another advantage of Probit link is that the latent utilities
are Gaussian, which greatly facilitates its natural incorporation into Gaussian
Networks as shown in the next section.

3 Main Results
We here propose the MIxed Sparse FActor Network (MISFAN) model, and

unveil its interpretation and estimation. Unlike the above methods, MISFAN
starts from another perspective by transforming the mixed network into a
latent Gaussian Network with Probit links, and the association among vari-
ables is modeled by some sparse latent factors as the fundamental source of a
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generative process.

3.1 Model
Suppose we have p continuous variables, and m nominal categorical vari-

ables each with nj + 1 levels, j = 1, . . . ,m, the MISFAN of such a set of
variables is defined as:

W :=
(
X
Z

)
= µ+ LF + ε (3.1)

Yj =

0 if max(Zj) ≤ 0
k if max(Zj) = Zk

j > 0, k = 1, . . . , nj
, j = 1, . . . ,m (3.2)

where X is a p-dimensional random vector denoting the observed continu-
ous variables, Z = (Z1

1 , . . . , Z
n1
1 , . . . , Z1

m, . . . Z
nm
m )ᵀ is a random q-vector de-

noting the latent utilities, Y is a random m-vector with each entry Yj ∈
{0, . . . , nj}, j = 1, . . . ,m as a categorical variable indicating among the nj +
1 levels which it takes. Each such Yj is determined by nj latent utilities,
namely (Z1

j , . . . , Z
nj

j )ᵀ,thus q = ∑m
j=1 nj. X and Z are combined into W for

notation convenience, and assumed to have a low-dimensional linear struc-
ture represented by the d independent Gaussian latent factors F ∼ Nd(0, I)
(d ≤ p + q) with a loading matrix L, and corrupted by some Gaussian error
ε ∼ Np+q(0,Ψ), where Ψ = diag{ψ1, . . . , ψp+q} allows different error vari-
ance for each random variable. The error variance ψj is sometimes called
the uniqueness since it is the part of individual variation of a variable other
than the common part shared with other variables. The formulation terms
seem complex for its rigorousness, and the Bayesian Network representation
of MISFAN in Figure 2 might be more intuitive.

From Figure 2 we can observe the following properties, from left to right:

• Each latent factor Fj is an independent root of the Bayesian Network,
and portrays the low-dimensional true structure within the multivariate
normal distribution. The number of factors d can be interpreted as the
degree of freedom.

• The underlying dependence structure relies on the linear transformation
between the first two columns, namely, on the loading matrix L. A non-
zero term lij indicates an edge from Fj to W̄i, and Fj can mediate this
effect to W̄k if lkj 6= 0. Two variables that share the same factor are
correlated.
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Figure 2: MISFAN illustrated as a Bayesian Network. The first column con-
sists of the latent factors, and the second column is the p + q true linear
combinations (denoted by W̄ := µ+ LF instead of W ) of such factors with a
set of links. Independent Gaussian errors (yellow) are then added to the vari-
ables. For the q latent utilities (green), there is an additional step to convert
them into observable categorical variables (shown as squares) via the Probit
link. In this example, Ym−1 is a binary variable while Ym has 3 unordered
levels. As for the p continuous variables (blue), the error corrupted result is
directly observable. For more details see text.
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• The model can deal with heterogeneous error corruption, which almost
always exists in application. Such error could be interpreted as either
model error or measurement error.

• Both continuous and categorical variables are treated indistinguishably
as latent normal random variables, and thus the dependence structure of
a mixed network is simplified into the form of a latent multivariate nor-
mal distribution, i.e. a latent Gaussian Network. In this sense MISFAN
directly applies to the all-discrete or all-continuous cases.

• A categorical variable is manifested by its latent utilities with the pow-
erful Probit link, so its association to other variables is decomposed into
the more sophisticated correlations between each of its utility component
and other variables. The ambiguous relationship between a multi-level
categorical variable with another variable can only be thoroughly inves-
tigated through the connection to its individual utilities.

The joint distribution of a MISFAN is

f(x, y) =
ˆ
z∈Z(y)

f(x, z)dz (3.3)

where Z(y) is the set of z that satisfies a given y in the sense of (3.2). It is
clear that the factorization of (3.3) can be conducted directly through the mul-
tivariate normal density f(w) = f(x, z), i.e. the latent Gaussian Network, and
the conditional independence structure then depends on the precision matrix
Ω = (LLᵀ +Ψ)−1. Therefore, we do not distinguish the structure of the latent
Gaussian Network and MISFAN here after. Classically speaking, MISFAN is a
variation of an exploratory multivariate multinomial Probit plus multivariate
Gaussian mixed response latent factor model, and to the best our knowledge,
this is also the first literature on details of the subject. For inference, the
conditional distribution of a continuous variable is a normal distribution and
can be represented in a linear regression model; the conditional distribution
of a categorical variable is given by a multinomial Probit regression. Notably,
MISFAN has a different model coverage from the Conditional Gaussian Net-
work for mixed variables as in Lauritzen (1996), specifically on how variables
interact. As a result, it gains certain better explanatory advantage. In the
next subsection we build a better visualized graph and discuss how to interpret
our results and compare it with other PGMs.
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3.2 Interpretation
With a model as in (3.1), we might wonder how the parameters are asso-

ciated with the underlying parsimonious graphical structure.
The number of factors d indicates a means of dimension reduction to filter

out the noise and reveal a cleaner linear pattern. It also serves as the degree
of freedom, i.e. the factors can be treated as independent roots of cause and
all variables are the consequences. This interpretation does not limit its appli-
cation when actually one variable is the true root, since switch the direction
of a single edge between a factor and the variable does not change the BN’s
conditional independence structure, namely the resulting BNs are I-equivalent
to the original one. Therefore d can be determined through domain knowledge
regarding to the possible latent causal factors, for the sake of interpretation.

The loading matrix L is the connection between the factors and the vari-
ables and indicates the range of effect of a certain factor. In real life application
with numerous variables, it is sensible and desirable that a particular latent
cause only affects the system locally, instead of directly covering the whole
realm. So sparsity in L is helpful to obtain an interpretable and also unique
model, since L is identifiable up to a rotation matrix in the original factor
model but becomes unique with a specific sparsity penalty added. As men-
tioned in the previous paragraph, within the group of variables connected to a
certain factor, any of them could actually be the root cause. These sibling vari-
ables are undoubtedly correlated but with unknown conditional dependence
structure, at least for the moment. Nodes that have more than one parent
factor are at the intersection of the causal flow, i.e. they are affected by more
than one cause. This observation naturally assigns hierarchical labels to the
variables: nodes with only one parent are close to the hypothetical cause (the
latent factor or one of its siblings), while multi-parent nodes are at the fam-
ily boundary shared with others factors, if we assume factor influence tends
to be local. In this paper we consider only exploratory factor analysis and
estimate the whole loading matrix, but confirmatory factor model with prior
restrictions and preference on L can be incorporated with ease.

The diagonal error covariance matrix Ψ allows heteroskedasticity across
variables. It can be considered as the variation of measurement error and thus
incorporate an Error-in-Variable model framework, or the unique information
the variable carries regardless of others. With such a general diagonal covari-
ance matrix, MISFAN can model any multivariate normal distribution and
thus equivalently any induced Bayesian Networks. If the true variables are
on similar scales with assumedly equal measurement error, than the value of
ψj would contain the equation error. Note in a Bayesian Network variables
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are sequentially generated from roots to leaves via linear equations and such
a process will make error accumulates. Thus with proper assumption, the
relative scale of ψj could be used to infer causal sequence as well.

In summary, the Bayesian Network with factors implies possible causal
structure and plenty of other information like node clustering by family bound-
aries. See the first column in Figure 3 for some examples. The factors serve as
the hubs among a set of nodes, so we put no care on a single isolated factor or
variable. The plots resemble the Factor Graph, especially like the first row of
Figure 3, where each factor and its neighbors actually indicate a clique in the
Markov Random Field version (elaborated later). However the factor here is
for a latent Gaussian variable, instead of a part of a joint distribution func-
tion, and the resemblance is not general because the underlying causal and
dependence structure could be much more complex, yet we only have at most
p+ q factors for such description as in a Factor Graph.

The only disadvantage, in fact a deal breaker, of such BN with factors is
that it does not indicate conditional independence in the graph among the vari-
ables, just like Factor Graph, due to the existence of non-conditionable factors.
As shown in the second column of Figure 3, the underlying dependence struc-
ture can be substantially different for seemly similar factor connections. Since
MISFAN assumes an underlying Gaussian Network, obtaining conditional in-
dependence structure simply depends on computing the precision matrix and
build a GMRF.

Counter-intuitively, the sparsity in the factor model does not induce spar-
sity in the conditional dependence. This can be algebraically justified: the
off-diagonal elements of (LLᵀ + Ψ)−1 do not necessarily vanish for a sparse
L, even though a sparse L leads to a somewhat sparse Σ. This is because
the inverse of a sparse matrix is not generally sparse. Therefore, another
constraint is needed, and the best candidate is, of course, on Ω itself. As
mentioned, the sparsity of L controls the number of nodes that are connected
in a subgraph, and the complexity of this connection is then controlled by
the sparsity of Ω. For instance, Figure 3 (A) (B) and (C) rows are for the
pairs of (sparse L, dense Ω), (sparse L, sparse Ω) and (dense L, sparse Ω) re-
spectively.

To deal with the seemly separated generative process and conditional inde-
pendence network structure, we design a Factor Network as the graphical part
of MISFAN, to visualize the possible causal process as a Bayesian Network, a
straight-forward conditional dependence structure as a Markov Random Field,
and additionally the effect of variables clustering. Factor Network examples
are shown in the third column of Figure 3. It basically combines the notation
of the previous two plots. The graph edges comes from the MRF, and the
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Figure 3: Two aspects of MISFAN and the combined Factor Network, with
three typical examples. The left column consists of Bayesian Networks where
an edge always goes from a latent factor (red) to a variable (blue). The mid-
dle column displays the Markov Random Field determined by the underlying
multivariate normal distribution. The Factor Network combines both features
and is listed in the right column. Nodes Color denotes different proportion
of factor influence and can either determine variable clusters or provide sug-
gestion for possible causal chain: nodes with a purer color combination are
closer to the source of cause. Edges are the same as in the middle column.
The three examples show some typical structures of interest, i.e. (A) isolated
node groups with dense inner connection (e.g. cliques), (B) locally connected
groups with simple structure (e.g. chains), and (C) globally connected graph
with a more complex structure.
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nodes are colored pie charts by the proportion of influence (absolute weights
in L) from the factors according to the first column. The clustering by factors
coverage, causal flow by color impurity and conditional independence structure
by edges are self-explanatory in the graph. Note since the two sparsity repre-
sentation are partially independent, the factor coverage and path connection
might not exactly agree with each other. Originally un-connected grouped
latent utilities are here connected by a dashed grey edge, and originally con-
nected ones a solid grey edge, just for visual convenience to show a categorical
variable coherently. We next turn to the algorithm of learning such Factor
Network structure from data, namely estimating the MISFAN.

3.3 Estimation
Let the parameter set θ = (µ,L,Ψ), and precision matrix Ω = (LLᵀ +

Ψ)−1. An observed i.i.d. sample of size n is denoted by Xn×p = (x1, . . . , xn)ᵀ,
Yn×m = (y1, . . . , yn)ᵀ, corresponding unobserved latent variables and factors
are denoted by Zn×q = (z1, . . . , zn)ᵀ and Fn×d = (f1, . . . , fn)ᵀ. Likewise we
have Wn×(p+q) = (w1, . . . , wn)ᵀ = (X,Z). Ideally, as the discussion of spar-
sity in the previous subsection indicates, the actual log-likelihood should be
maximized with the dual sparsity penalty:

max
θ
`(θ|X,Y)− λP (L)− ρP (Ω) (3.4)

where P (L) and P (Ω) are the penalty functions to ensure sparse factor load-
ings and precision matrix respectively. Inspired by Hirose and Yamamoto
(2014), Zhou and Liu (2007), Liu and Rubin (1998) and Zhao, Yu, and Jiang
(2008), we use a Monte Carlo Expectation Conditional Maximization Either
(MC-ECME) approach to solve (3.4).

Assuming latent variables are observed, the complete penalized log likeli-
hood function is

˜̀(θ|W,F) = `(θ|W,F)− λP (L)− ρP (Ω)
= `(θ,F|W) + `(θ|F)− λP (L)− ρP (Ω)

= −(p+ q)n
2 log(2π)− n

2 log |Ψ| (3.5)

−1
2
∑
i

(wi − µ− Lfi)ᵀΨ−1(wi − µ− Lfi)

−dn2 log(2π)− 1
2
∑
i

fᵀ
i fi − λP (L)− ρP (Ω)

We derive the ECME steps as below.
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E-step

E[˜̀(θ|W,F)|X,Y, θ̂] = const + n

2 log det(Ψ−1)− λP (L)− ρP (Ω) (3.6)

−1
2
∑
i

tr(Ψ−1E[(wi − µ− Lfi)(wi − µ− Lfi)ᵀ|X,Y, θ̂])

For convenience, we later on use a star notation for the conditional expec-
tation: w? = E[w|X,Y, θ̂]. We have

[(wi − µ− Lfi)(wi − µ− Lfi)ᵀ]? = L(fifᵀ
i )?Lᵀ − L((fiwᵀ

i )? − f ?i µᵀ)
−((fiwᵀ

i )? − f ?i µᵀ)ᵀLᵀ

+((wi − µ)(wi − µ)ᵀ)? (3.7)

Analytical expression of each star term above on the right hand side is
necessary. Note (

W
F

)
∼ Np+q+d(

(
µ
0

)
,

(
Σ L
Lᵀ I

)
) (3.8)

where Σ = LLᵀ + Ψ. Then

f ?i = E[fi|X,Y, θ̂] = E[E[fi|W]|X,Y, θ̂]
= E[L̂ᵀΣ̂

−1(wi − µ̂)|X,Y, θ̂]
= L̂ᵀΣ̂

−1(w?i − µ̂)
(fifᵀ

i )? = E[E[fifᵀ
i |W]|X,Y, θ̂]

= I− L̂ᵀΣ̂
−1

L̂ + L̂ᵀΣ̂
−1[(wi − µ̂)(wi − µ̂)ᵀ]?Σ̂−1

L̂
(fiwᵀ

i )? = E[E[fi|W]wᵀ
i |X,Y, θ̂]

= L̂ᵀΣ̂
−1((wiwᵀ

i )? − µ̂w
?ᵀ
i ) (3.9)

Also note θ̂ in (3.9) is the estimate from the previous iteration. From above
we know that the E-step depends on finding w?i and (wiwᵀ

i )?. Since w?i =
(xᵀi , z

?ᵀ
i )ᵀ, essentially we need to compute the sufficient statistics z?i and (zizᵀi )?.

Getting the conditional distribution of Z involves computing integral over a
rectangle region of a multivariate normal density function, and the estimation
is usually obtained by a Monte Carlo simulation:

z?i = 1
K

K∑
k=1

z
(k)
i

(zizᵀi )? = 1
K

K∑
k=1

z
(k)
i z

(k)ᵀ
i (3.10)
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where z(k)
i is sampled from f(z|xi, yi, θ), a multivariate truncated normal dis-

tribution with mean µz + ΣzxΣ−1
xx (xi− µx) and covariance Σzz −ΣzxΣ−1

xxΣxz,
where we decompose µ = (µᵀ

x, µ
ᵀ
z)ᵀ and Σ to the corresponding block matrices

likewise. The normal distribution is truncated so that z(k)
i ∈ Z(yi). It’s worth

mentioning that we here avoid computing Σ−1
xx directly but apply Woodbury

formula:

ΣzxΣ−1
xx = LzLᵀ

x(LxLᵀ
x + Ψxx)−1

= Lz(I + Lᵀ
xΨ−1

xxLx)−1Lᵀ
xΨ−1

xx (3.11)

where all block matrices are from the decomposition similarly as before. This
trick makes the estimation feasible even if Σxx is singular, i.e. the p > n case.

CME-steps:
The optimization problem is

arg max
θ

E[˜̀(θ|W,F)|X,Y, θ̂] (3.12)

and from (3.6) (3.7) (3.9):

E[˜̀(θ|W,F)|X,Y, θ̂] = const + n

2 log det(Ψ−1)− λP (L)− ρP (Ω)

−n2 tr(Ψ
−1(LALᵀ − LB−BᵀLᵀ + C)) (3.13)

with

A = 1
n

∑
i

(fifᵀ
i )?

= I− L̂ᵀΣ̂
−1

L̂ + L̂ᵀΣ̂
−1

CΣ̂
−1

L̂
= M−1 + M−1L̂ᵀΨ̂

−1
CΨ̂

−1
L̂M−1

B = 1
n

∑
i

[(fiwᵀ
i )? − f ?i µᵀ] (3.14)

= L̂ᵀΣ̂
−1

C
= M−1L̂ᵀΨ̂

−1
C

C = 1
n

∑
i

[(wi − µ)(wi − µ)ᵀ]?

where we define M = I + L̂ᵀΨ̂
−1

L̂. Woodbury formula is used again as in
(3.11). Next we sequentially obtain estimate of each component of θ by Con-
ditional Maximization. Let the partial derivative of (3.13) regarding to µ
equals 0, and simple calculus gives the CM step 1:

µ̂new = 1
n

∑
i

(w?i − L̂ f ?i ) (3.15)
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and L̂ is estimated from the previous iteration. Then we estimate L with the
updated µ ← µ̂new plugged into (3.14) by solving the following optimization
problem:

max
L
− n

2 tr(Ψ
−1(LALᵀ − LB−BᵀLᵀ + C))− λP (L) (3.16)

and here we use P (L) = n
2 ||L||1 as an example, namely a Lasso penalty for

a columnwisely vectorized matrix, with a constant factor for notation conve-
nience. Alternatives exist, e.g. Adaptive Lasso in Zou (2006) or SCAD in Fan
and Li (2001). Note the trace function in (3.16) can be decomposed into p+ q
independent components for each diagonal entry:

max
L
− n

2

p+q∑
j=1

[ 1
ψj

(lᵀjAlj − 2lᵀj bj + cjj)− λ||lj||1] (3.17)

where lj, bj and cjj are respectively the jth row of L, the jth column of B and
the (j, j) element of C. Now the problem has been reduced to a series of indi-
vidual standard Lasso optimization problems. Let A = RᵀR be the Cholesky
decomposition and b̃j = Rᵀ−1bj then we have standard Lasso problem-(j),
j = 1, . . . , (p+ q) in the form of:

min
lj
||Rlj − b̃j||22 + λψj||lj||1 (3.18)

We then use the standard generalized coordinate descent method to solve
(3.17). The solutions l̂j (j = 1, . . . , p + q) of problem-(1) to problem-(p + q)
can be merged to complete the CM step 2:

L̂new = (l̂1
ᵀ
, . . . , l̂j

ᵀ
, . . . , ˆlp+q

ᵀ)ᵀ (3.19)

because the problems are independent from each other . For the final up-
date of Ψ, we no longer use same expected conditional maximization but use
a variation of Liu and Rubin (1998): maximizing the penalized likelihood
marginalized on F

˜̀(θ|W) = `(θ|W)− ρP (Ω)

= −(p+ q)n
2 log(2π) + n

2 log |Ω| (3.20)

−1
2
∑
i

(wi − µ)ᵀΩ(wi − µ)− ρP (Ω)
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and P (Ω) = n
2 ||Ω||1 as well. Take expectation then the optimization problem

is

max
Ψ

log |Ω| − tr(Σ̂Ω)− ρ||Ω||1 (3.21)

where Σ̂ is the estimated covariance matrix by L̂new and previous Ψ̂. Note this
is exactly the same as the Graphical Lasso problem described in the previous
section, except we need to estimate Ψ based on L̂new. After obtaining the
estimated sparse precision matrix Ω̂new and simultaneously Σ̂new, we reach
the final CME step 3:

Ψ̂new = diag{Σ̂new − LLᵀ}+ (3.22)

with the previous update L ← L̂new. Here diag{M}+ is a diagonal matrix
whose entries are those of M thresholded to be non-negative. The individ-
ual optimization problems are all convex thus the ECME algorithm should
converge to global maximum. In practice, R package tmvtnorm by Wilhelm
and G (2014), glmnet by Friedman, Hastie, and Tibshirani (2010) and glasso
by Friedman, Hastie, and Tibshirani (2008) are used to solve corresponding
subproblems in this algorithm.

Some additional details are worth noting: the model is not identifiable,
because for each categorical variable, its latent utilities have their own mean
and variance, which are both connected to the choice of levels, and multiplying
any constant to the mean and standard deviation does not affect the likelihood
of the data. Therefore we restrict the diagonal elements of the covariance
matrices of all groups of latent utilities to be 1, by adjusting a constant factor
within each group of latent variables. Another quick fact about identification
is, the originally estimate of L up to a rotation matrix has become uniquely
identifiable after adding the Lasso penalty, because `1-norm is not invariant to
rotation. Therefore a MISFAN is altogether uniquely identifiable given three
parameters: d the degree of freedom or information sources, λ the locality of
the factor influence, and ρ the sparsity of conditional dependence or neighbor
density, which are actually features of the graph from different perspectives.
These parameters could be determined empirically, by Akaike and Bayesian
information criteria, or by using Cross Validation if sample size is moderate.
We will describe some strategies to substantially reduce the parameter grid in
the next subsection.
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3.4 Miscellaneous
For the initial values of parameters for ECME, we simply use the scaled

0/1 dummy variables as the latent utilities and fit the multivariate normal
distribution accordingly. The following example can justify this decision, yet
also points to some interesting connection with other statistical models.

Let Y and X be two nominal variables with corresponding possible values
{0, . . . , K}and {0, . . . , L}. We specify two multivariate normal latent random
vectors U = (U1, . . . , UK)ᵀand V = (V1, . . . , VL)ᵀ as the utilities of Y and X
respectively. The linear association between Y andX is thus solely determined
by the cross-covariance matrix of U and V . Assuming such association is
indeed linear and nontrivial, we have

U |F ∼ NK(µ1 + L1F,Ψ1)
V |F ∼ NL(µ2 + L2F,Ψ2) (3.23)
F ∼ Nd(0, I)

where the Gaussian factor F is used to model the underlying linear relation-
ship between the two random vectors. This is one of the simplest examples of
a MISFAN, namely a multinomial Probit latent factor model to represent the
correlation between two categorical variables. Another perspective of interpre-
tation for this model is from Canonical Correlation Analysis (CCA). Bach and
Jordan (2006) placed CCA in a probabilistic formulation and derived the Max-
imum Likelihood Estimation, in terms of Canonical direction and correlation
coefficients between U and V , for all the parameters in (3.23), therefore it is
equivalently modeling the canonical correlation between two sets of variables.
They also proved equivalence between Linear Discriminant Analysis (LDA)
and CCA, simply by replacing U with an indexing dummy vector T , such that
T = (0(1), . . . , 1(k), . . . , 0(K))ᵀ ⇐⇒ Y = k, therefore CCA between (T, V ) is
equivalent to LDA with Y as the response and V as the predictor. This obser-
vation implies that using CCA directly between dummy variables, instead of
latent utilities, can achieve comparable performance of LDA in classification.
We employ this observation to start the iteration in estimating MISFAN by
setting the scaled dummy variables as the initial values for the latent utilities.

The focus of this text is on learning the network structure, from the ex-
ponentially growing possibilities. The Markov Blanket, i.e. the neighbors in a
MRF, of a variable is a naturally selected set of regressors and more accurate
predictive models could be fitted accordingly. The network itself could be val-
idated with further data and confirmatory analysis, e.g. Structural Equation
Modeling. If cross validation is desirable for tuning parameters, the standard
inference method of GMRF could be applied to give crude prediction:
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Ŵi − µi = 1
ωii

∑
j∈MB(i)

ωji(Wj − µj) (3.24)

whereMB(i) is the set of Markov Blanket of Wj. This form is equivalent to
(2.10). For latent variables on the right hand side, their Monte Carlo simulated
conditional expectation w? can be used, just as in the estimation algorithm.
The obtained ŵ can then be translated into (x̂, ŷ).

Finally, we discuss about parameter tuning. In the unfortunate case when
there is no prior information about the system, tuning a fine grid of (d, λ, ρ)
by cross-validation could be computationally prohibitive. We later show in
the simulation section that MISFAN is robust against over-specified d, mainly
because sparsity in L can automatically reduce the number of actual effective
factors by giving all-zero columns. As mentioned in previous text, λ controls
the number of nodes that are connected, while the structure of each group
could be from a clique to a chain and ρ governs this complexity. Empirically,
we also found that when λ is fixed, the variation in ρ hardly changes the factor
coverage structure, but edges between colored nodes can vanish. Therefore,
we heuristically suggest choosing a ρ that filters the conditional dependence
structure as simple as possible, while majority (say 90%) of the colored nodes
still have at least one edge to other nodes, i.e. connected in both sense of
L and Ω. This agreement of connection in the sense of BN with factors and
MRF is defined as the consistency. Computing the whole consistency grid by
parameters still requires fitting the some models but can substantially lower
the burden in the case of cross-validation. Additionally we can further lower
the computation by stepwisely increasing the parameter value and stop when
inconsistency is first detected. This strategy will be validated in the first
example of Section 4.

4 Simulation
In this section we first conduct a numerical experiment to evaluate the es-

timation algorithm on a simulated dataset generated from a MISFAN model
and analyze its behavior. Then we compare performance with Mixed Bayesian
Network (MBN) by Bø ttcher (2001) and Mixed Graphical Model (MGM) by
Lee and Hastie (2013) on another simulated dataset generated from a toy
Bayesian Network with either a latent Gaussian Network with Probit link or
a conditional Gaussian Network as the underlying model, in order to put the
models on the same page regardless of their distinct assumptions. MISFAN,
data simulation, analysis and visualization are implemented in R 3.1.2. Com-
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peting models are fitted using R package deal for MBG, and the officially
provided MATLAB scripts for MGM.

The assessment is mainly on the reconstruction of conditional independence
structure of the network, and, for MISFAN model only, the root mean square
error (RMSE) between estimated and true parameters. The reconstruction
goodness of fit is measured by True Positive Rate (TPR) and False Positive
Rate (FPR) on detection of an edge. The two quantities can be calculated by:

TPR = # of estimated edges that agrees with true edges
# of true edges between pairs

FPR = # of estimated edges that does not agree with true edges
# of pairs that have no edge between them (4.1)

4.1 MISFAN Model
Generating an arbitrarily sparse Ω and L simultaneous has no straight-

forward analytical process, so we use the following two-step simulation:

1. Given Ψ and a sparse L, compute Ω. Randomly assign zeros to the non-
zero off-diagonal entries in Ω to make it sparse, and rescale the diagonal
elements accordingly. Discard almost-zero entries.

2. Fit an Exploratory Factor Analysis on Ω−1, get new Ψ and L. Discard
almost-zero entries in L. Along with a pre-specified µ, we can then
generate data from MISFAN as in (3.1) and (3.2).

The above procedure guarantees dual sparsity, and have two parameters to
tweak, i.e. original sparsity in L and probability to assign non-zero off-diagonal
entries of Ω to zero, in order to get networks with different densities.

The dataset used in this section consists of p = 20 continuous variables and
m = 18 categorical variables, and the degree of freedom d = 4. The categorical
variables includes 11 binary, 5 three-level and 2 four-level variables, so there
are q = 27 latent utilities in total. µ is uniformly distributed on [−1, 1]. For
the first-step Ψ and L, we sample ψj uniformly from [0, 1], and L with 85% of
zeros and 15% of ±2. Then 85% of non-zero entries in Ω are randomly selected
and set to zero with certain rescaling. After the Factor Analysis, we rescale
the data so that the covariance matrix of latent utilities is standardized, as
discussed in Section 3.3. The final parameter value distributions are shown
in Figure 4 (A). Note the partial correlation coefficients (−ωij/

√
ωiiωjj) are

mostly within [−0.5, 0.5] and some are close to 0, namely moderate to small
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Figure 4: (Caption continues on the next page).
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Figure 4: (continued from the previous page) Setting and results of the MIS-
FAN dataset. (A) Histograms of the true non-zero correlation and partial
correlation coefficients. Percentage of zeros is 87.9% and 95.8%, respectively.
(B) Error heatmap of RMSE of Σ, stratified by n and d (set in estimation)
with grid of λ vs ρ. Black dot indicates the consistency of 90% of nodes. (C)
ROC curve for detecting edges in Ω. Each point is a result from a consistent
(d, λ, ρ) pair, averaged on 10 replicates, and the LOWESS smoothing curve
for each d is drawn separately. Note (B) and (C) of the same n share the same
color scale as shown in the two distinct colorbars.

correlations, so this dataset is by design pretty noisy. The network structure
of this dataset is similar to row (B) of Figure 3.

We generated two datasets, with n = 100 and n = 300 respectively. MIS-
FAN is fitted with the grid of d ⊗ λ ⊗ ρ, with d ∈ {3, 4, 5, 10}, λ ∈ [0, 0.25]
and ρ ∈ [0, 0.1]. Empirically we found that setting maximum iteration number
as 20 is sufficient in most cases, and Monte Carlo sampling of size 50 is more
than enough to reach a stable estimate of the truncated normal expectation.
After fitting all the models, we test if the proportion of consistently connected
nodes, namely it has an edge in sense of both L and Ω, is over 90%. Since the
rotation-free feature of L will cause instability in the assessment of parameter
fit, we only look at the root mean squared error (RMSE) of the covariance
matrix Σ (estimation result of µ is more than satisfactory, not shown here).
The error heatmap of Σ and Receiver Operation Characteristics (ROC) curves
of detecting non-zero entries in Ω are shown in Figure 4 (B) and (C). Note
that here we have two free parameters which have overlapping influence on the
estimation, so monotonicity of false positive versus true positive in common
ROC plot does not hold for MISFAN, and we use Locally Weighted Scatterplot
Smoothing (LOWESS) curves for visual resemblance.

From Figure 4 (B), it can be seen that the result is robust against different
choice of d, since sparser L sometimes leads to all 0 in one column and auto-
matically reduces d. This can also be observed in Figure 4 (C), where different
curves of d basically overlap. The consistent combination, shown with a black
dot, can always cover the optimal cases and thus using the consistency criterion
to filter the grid is beneficial and can greatly reduce the computation intensity.
The well shaped minimum valley of RMSE, especially with the large sample
size case, indicates the stable convex behavior of parameter error of MISFAN.
Asymptotic consistency is suggested by the reducing error (see the scale of
the two colorbars) and higher ROC curves. The color correspondence between
parameter error and ROC curve position gives some heuristics on choice of
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FPR and TPR combination, to lower parameter error. This result of MISFAN
on the noisy dataset is promising, and we then carry out the comparison with
other methods in different model settings.

4.2 Comparison on Bayesian Networks
Here we compare the performance of MISFAN, MBN and MGM. The model

assumptions for the three methods are in fact different, so we designed a se-
ries of simulated toy Bayesian networks for both cases, as a fair competition.
MISFAN assumes a latent Gaussian Network with Probit link, while MBN
and MGM assume a conditional Gaussian Network. We build 4 continuous, 2
binary and 1 three-level variables generated by 6 Bayesian Networks shown in
Figure 5. The latent Gaussian Network in (A) is generated step-by-step: first
generate roots from normal distributions, and simply plug them into the linear
equations indicated by edges to get other nodes. Then categorical variables are
computed by the Probit link. The conditional Gaussian Network in (B) works
similarly, with categorical roots sampled from a multinomial distribution. If
parents and child are both discrete, child is sampled from a joint multinomial
distribution given the level taken by parents; if child is continuous, then it
follows a conditional Gaussian model with linear transformation of its con-
tinuous parents while coefficients are determined by each level-combination of
its discrete parents. For each model, we design 3 structures to represent the
typical cases that practitioners might encounter in real life, as already shown
in Figure 3 with some larger networks. The 3 structures are coded by different
combination of solid, dashed or dotted edges, as described in the caption. For
convenience, we later call these true models from (A1), (A2), ... , (B3), where
1 ∼ 3 denotes (1) only solid edges exist, (2) solid and dashed edges exist, and
(3) all edges exist except those connected with Z6, Z7, X67 or X8. For model
parameters, we set:

• Continuous nodes have mean 0; latent utilities have mean ±0.5; root
nodes have standard deviation 10; linear equations have coefficients ±1
or ±0.5, and are corrupted by Gaussian noise with standard deviation
of 1 or 2.

• Discrete root nodes in conditional Gaussian Network take levels with
probability randomly set at p = 0.3, 0.4 or 0.5, and the corresponding
1 − p; the mean of each Gaussian linear equation are ±10 or 0, and
standard deviation 1 or 2, depending on the value of discrete parents;
two discrete parents have no interaction on their child.

29



The three models being compared here do not give the same kind of output,
and we only demonstrate their ability of learning conditional independence
structure. The simulated Bayesian Networks are translated into undirected
graphs, so is the result fromMBN, and we evaluate the performance by plotting
the ROC curve of edge detection. Unlike the ROC in the previous subsection,
here the edge is between variables, and we do not consider latent utility any
more since it’s not comparable. Therefore utility nodes of a categorical variable
in a MISFAN are combined into one group with an edge denoting at least one
edge to this nodes group. Sample size n = 100 with 10 replicates is used in
this numeric experiment.

In MISFAN we set d = 3 (d = 4 or 5 gives indistinguishable results, not
shown), ρ ∈ [0, 0.5] with 8 cutting points, and λ is set as {0, 0.01} for network
(A1) (A2) (B1) (B2) and {0.05, 0.1} for (A3) (B3). Fewer λ improves the
monotonicity of ROC curve, and as a result a smoothing line is no longer
necessary. For MGM, we set tuning parameter λ′ ∈ [0, 1.5] with 14 cutting
points. This interval is computed as suggested in their paper. MBN does not
have a simple parameter to control the network density, so for simplicity and
fairness we do not get in to the trouble of setting all possible prior distributions
and initial network structures, but use the default non-informative setting
as presented in the example section of their paper. The search algorithm
of MBN is heuristic and only guarantees local minima, so we perturb the
initial null network by switching the existence and direction of edges for k ∈
{30, 100, 1000} times and for each k we have 10 replicates. The results are
then averaged and presented by only one point per setting as the default, and
connected with (0, 0) and (1, 1) only to show visual resemblance with the other
two methods for intuitive reference. See results in Figure 6.

From the plot we can infer that: for (1) the simple isolated structure
case, MISFAN (AUCA1 = 0.88, AUCB1 = 0.87) greatly outperforms the other
two if it gets the right model, and only slightly lags behind on their home
court; MGM (AUCA1 = 0.69, AUCB1 = 0.95) and MBN (AUCA1 = 0.67,
AUCB1 = 0.83, note that this is an under-estimate with only one point) have
comparable results. For (2) the more complex connected structure covering
all points, MGM (AUCA2 = 0.69, AUCB2 = 0.87) stands out by breaking even
with MISFAN (AUCA2 = 0.69, AUCB2 = 0.72) on latent Gaussian model, and
gets even better result for the conditional Gaussian; MBN (AUCA2 = 0.58,
AUCB2 = 0.56) has poorest performance for this setting. Finally, for (3) the
densely connected but isolated subgraphs, MISFAN (AUCA3 = 0.96, AUCB3 =
0.96) gets nearly perfect result, MBN (AUCA3 = 0.72, AUCB3 = 0.94) has
similar performance only for its own model, while MGM (AUCA3 = 0.74,
AUCB3 = 0.69) fails on both comparatively. From these observation we can
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Figure 5: The Second Simulation Setting. (A) Latent Gaussian Network with 4
continuous variables (Xi in blue) and 4 latent utilities (Zi in green). Z6 and Z7
form a three-level variable, others binary. Each edge denotes a Gaussian linear
equation. (B) Conditional Gaussian Network with 4 continuous variables and
3 categorical variables (as squares). Edges are changed so that discrete nodes
do not have continuous parents, and each edge denotes either a conditional
Gaussian linear equation or a joint multinomial distribution, depending on
nodes continuous or discrete. Each graph implies 3 networks: (1) only solid
edges exist, (2) solid and dashed edges exist, and (3) all edges exist except those
connected with Z6, Z7, X67 or X8. These are 3 typical examples corresponding
to those in Figure 3 B, C and A respectively, to provide representability for
general applications. Notably, the 3 networks in (A) is designed to share the
same conditional dependence structure with the corrsponding ones in (B),
namely they are I-equivalent.
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Figure 6: ROC curve for edge detection, stratified by latent Gaussian Network
(A, assumed by MISFAN) or conditional Gaussian Network (B, assumed by
MGM and MBN), and the three structures described in Figure 5. Each point
on the curves is an average of 10 replicates using the same parameter setting,
except that MBN has only one averaged point plus (0, 0) and (1, 1) and the
broken line is just for reference.
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Method Model
Assumption Free Parameters Estimation Resulting

Network

MISFAN
Latent

Gaussian with
Probit link

Effectively 2 MC-ECME Factor Network

MGM Conditional
Gaussian 1 Proximal

Gradient
Markov

Random Field

MBN Conditional
Gaussian Prior/Structure Bayesian Bayesian

Network

Table 1: Model Comparison of MISFAN, MGM and MBN. The Factor Net-
work, as described in Section 3, contains a full Markov Random Field and
partial causal indication of a Bayesian Network.

summarize:

• MISFAN can learn with high accuracy on isolated subgraphs wherever
locally simple or complex, thanks to its flexible two-parameter setting,
and also it is robust on model violations in these cases

• MGM excels on connected graph with many edges evenly spread, instead
of densely clustered

• MBN has good performance only if model assumption is satisfied and
the network has not too many edges

Besides the numeric performance, their model difference is also summarized
in Table 1. With different domain knowledge and expertise, these network
models can be chosen accordingly.

5 World Development and Value Data
Every year The World Bank collects and compiles a series of World Devel-

opment Indicators across different nations and regions. The dataset describes
the global development from various perspectives, including education, envi-
ronment, economy, health, infrastructure etc. In 2014, 112 indicators across
214 countries and regions are available. Another comprehensive dataset is
from the World Values Survey Association, an international network of social
scientists, who periodically gather data for over 300 survey questions and have
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received over 400,000 of response from subjects across nations since 1981. The
questions are mainly related to the belief, value and motivation of the subjects,
including topics as political view, religion, gender values, life satisfaction etc.
From 2010 to 2014, about one thousand responses were received from each of
the 60 country and regions and aggregated into the so-called Wave 6 data.
Both datasets contain numerous variables, continuous or discrete, and limited
sample size on the country level.

The World Development Indicators data have been well-analyzed mainly
for the interest of interaction among political, educational and social-economical
development, while the World Value Survey is often cited in cross-cultural
organization and comparison studies. Combining the two datasets, it is in-
triguing to investigate whether people’s belief and opinion, often subjective
and abstract, is directly correlated with the quantifiable concrete development
status of their region of residence, controlling all other observed confounding
factors. For instance, can the dominance of a certain religion/political ideol-
ogy/convention statistically explain (or be explained by) the current business
environment of that nation? Here we apply the MISFAN model on the data
to explore the underlying association.

The 2014 World Development Indicators and 2010-2014 World Value Sur-
vey dataset can be downloaded from their websites (data.worldbank.org and
www.worldvaluessurvey.org). Assuming life values were stable during the 4-
year interval, the two datasets are then combined, and samples with missing
values are either removed or imputed, depending on the proportion of missing
entries. The survey data is summarized into country-level, and a couple of se-
lected questions are included in the analysis for their representability. Finally
we have a cleaned dataset, consisting of 55 countries and 48 variables. 42 of
the variables are numeric (including ordinal discrete variables), and 6 of them
are categorical with in total 25 levels, then for MISFAN there are altogether 61
continuous or latent/dummy variables thus a p > n case. By empirically set-
ting d = 9, λ = 0.001, ρ = 0.33, the resulting conditional dependence network
structure is shown in Figure 7.

The network successfully illustrates the complex association structure among
the variables, some of them can be validated by common sense, and some are
worth noting. The cluster on the right mainly includes natural and geograph-
ical factors. The human population directly affects the number of endangered
mammal, bird and fish species, but not (or less) the plants. Labor tax is
negatively correlated with the area of the region, and this might be due to
the confounding effect of overall population availability of workforce. Tax rate
then connects to the industrial administrative efficiency, indicated by the time
and procedures to register a business. The hub contains two important factors,
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Figure 7: Conditional dependence network of the variables. Nodes are colored
by artificial categories to show the variable clustering effect. Each node is ei-
ther a continuous variable or a latent utility, and an edge indicates conditional
dependence given all other variables. Single isolated nodes are not shown. See
text for variable meanings and analysis.
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one is the overall ease of doing business, which is basically the summary of
most business factors. And similarly, the other one is the distance to the best
(frontier) performance of business related indicators. The densely connected
cluster, actually a clique, next to the hub is related to import, export and lo-
gistics. On the far left, the number of children is connected with the location
of the region at the level of continent. The Europe/Africa notation means this
node is the latent utility of the Europe level of the categorical variable conti-
nent, with Africa as the reference level. Apparently the difference of birthrate
on these two continents is the most outstanding.

The interaction of beliefs and values (in purple) with other development
factors are of particular interest. Positive attitude to Science leads to less
threatened bird species. The importance.in.life.2 indicator is about the second
popular ’most importance thing in life’ that subjects chose (all regions have
family as the first choice, except religion in Libya). Work over leisure leads to
reduction of time to prepare for a start-up company, and religion over leisure
gives more births and correlates with higher prevalence of credit system and
better legal rights. The membership variable gives the most prevalent kind
of communities that subjects actively join in, and political over consumer is
negatively correlated with ease of doing business and positively associated with
the distance to best business performance, and thus have large impact on the
whole business indicators group. Finally the second most important aim of a
country or state (the first choice is unanimously to develop better economy)
to be promoting people to feel socially involved in the community, over better
military defense ability, is negatively correlated with percentage of adults that
has credit history record in a private institution, and it might be due to the
confounding of preference of institutionalization for certain cultural groups.

This exploratory analysis of the joint dataset demonstrated the power of
MISFAN model, on detecting conditional dependence for a large group of
mixed variables with limited sample size. The network is built mainly for
illustration and the parameters are set with preference on readability. Smaller
values of ρ could reveal the weaker association, and larger λ gives disconnected
subgraphs. For this dataset, a slightly larger λ would isolate the tax group, the
right geographic cluster and left major cluster, which eliminates some possible
spurious edges, e.g. the edge between the number of days to prepare tax report
and the number of endangered bird species.
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6 Discussion
We presented a novel approach of learning the sparse structure of a Prob-

abilistic Graphical Model with a latent factor network, to accommodate both
continuous and categorical variables, named MIxed Sparse FActor Network
(MISFAN). Its ability to take advantage of both Bayesian Networks and Markov
Random Field is demonstrated in both theory and visualization. An ECME
algorithm to fit the model is proposed and validated by simulation. Another
simulation experiment compared the performance to two state-of-the-art meth-
ods, and MISFAN shows superior or comparable result in different cases. Real
life data with small sample size and high dimension, from The World Bank
and World Value Survey, is analyzed as an example to illustrate the use of
MISFAN in practice.

Future work of this framework could be extensive. MISFAN has a com-
paratively low computational performance, mainly due to the Monte Carlo
sampling from a multivariate truncated normal distribution in each EM step.
Bayesian Estimation has been thriving in the area of Probit models, with ex-
amples like Imai and Dyk (2005) and Talhouk, Doucet, and Murphy (2012),
and usually considered to have faster computation with appropriate chosen
priors. Ordinal categorical variable in this paper is treated as a continuous
one, as shown in Section 5, but could be extend to one binned latent Gaussian
variable with ease and achieve possibly better performance. Another imme-
diate direction is the extension to non-linear cases. Factor analysis with the
kernel trick, as discussed in Guo-En and Pei-Ji (2009) and the incorporation of
the similar Independent Component Analysis could be some quick candidates.
In plenty of application, including the datasets used in Section 5, the network
could change with time. Dynamic Bayesian Network, e.g. Hidden Markov
Model, has been well developed to describe such a system. In the work of
Song, Kolar, and Xing (2009) and Tucker and Liu (2008), network structure
could be changing smoothly and the model is essentially a linear dynamic
model, or a Vector Autoregression (VAR) with time-varying coefficients. At
the same time, dynamic factor models have long been popular in finance and
economics, and MISFAN is compatible with such frameworks and could be
extended to model multivariate time series.

37



Part II

A Unified Geometry of
Error-in-Variable Models
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A Unified Geometric Perspective of
Error-in-Variabless Models

Ruofeng Wen

04/06/2015

Abstract

Error-in-Variabless (EIV) models consider the intrinsic error noise
in the independent variables of a regression model. Measurement errors
exist in virtually all observed variables - be it independent or dependent.
However, although proven to be inconsistent and inefficient, simple lin-
ear model estimated by the ordinary least square still dominates for
its simple computation and interpretation, while the EIV models seem
to be daunting and confusing due to its diverse formulations. In this
text, we intend to give a clear, systematic and unified description with
novel geometric insight for the common EIV models in a non-parametric
way: all these models are equivalent in terms of minimizing the sum
of a general squared metric between the sample points and the pro-
posed model. This perspective is then naturally generalized to higher
dimensions for multiple regression. In light of this geometric perspec-
tive, model caveats, parameter specification and alternative estimation
approaches are discussed for both theoretical and practical interests.
Finally, the performance of EIV models are numerically compared with
simulation datasets.

Keywords. Deming Regression, Error-in-Variables, Measurement error, Total
Least Square

1 Introduction
In real-life applications, most measured variables are inevitably subject to

a certain degree of error. Dealing with such error has became a fundamental
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component of nearly every applied research areas. However, due to the lack of
communications across disciplines, we often have multiple formulations of the
same problem developed in different areas, causing confusions. Discussion can
be found in Carroll and Ruppert (1996) and Ludbrook (2010). Meanwhile,
linear regression with ordinary least square (OLS) estimation is still widely
adapted when we have errors in independent variables, even if it would yield
biased and inefficient estimates of the model parameters, as validated and
compared in Linnet (1993).

Error-in-Variables (EIV) models can date back to the 1800’s, when Adcock
(1878) developed the Orthogonal Regression (OR) by minimizing the sum of
the squared orthogonal distances from points to the regression line. The more
general univariate EIV model has since then been well discussed:

yi = ηi + εi

xi = ξi + δi (1.1)
ηi = α + βξi

where (xi, yi), i = 1, · · · , n, are the ovserved independent sample points, with
(ξi, ηi) being their corresponding true values, and (δi, εi) the measurement
errors. Furthermore if (ξi, ηi) are treated as random variables, we have the
structure EIV models, otherwise the functional EIV models.

It is well known that the slope parameter β estimated in (1.1) is between
the OLS of y on x and the OLS of x on y. Based on this observation, another
model, commonly known as Geometric Mean Regression (GMR), simply takes
the geometric mean of the two OLS estimates of the slope parameter.

As OR and GMR were criticized for their implicit, and often unjustified
assumptions, the majority of the literature on EIV has taken on the maximum
likelihood approach (MLE), by assuming that δ and ε in (1.1) are normally
distributed. The model is unfortunately not identifiable for this 2-dimensional
case, and needs further information supplied. Despite several alternatives,
Lindley (1947) argued that assuming the error ratio λ = σ2

ε/σ
2
δ as known

would be the most convenient. This formulation is also known as Deming’s
Regression, since Deming (1931) mentioned the same specification of λ, with-
out assuming normal distribution.

It turned out that by setting λ to different values, we could obtain estimates
of OR, GMR, OLS(y on x) and OLS(x on y) as special cases, when λ =
1, Syy/Sxx,∞, 0 respectively, where Sab = 1

n

∑n
i=1(ai − ā)(bi − b̄). Although a

seemly good property, it as well reveals the suffer of choosing and justifying λ
from all the possible values, if no reliable prior information can be provided.
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An independent development to deal with the same problem emerged in
the field of computational mathematics, known as the Total Lease Square
(TLS) (Markovsky and Van Huffel (2007)). TLS is in nature a low rank ma-
trix approximation problem, and has later been proved to be equivalent to
OR, and also a special case of Principal Component Analysis (PCA). Unlike
the previous examples, TLS is intrinsically multidimensional, and can accom-
modate heteroscedasticity and autocorrelation. If λ (or the weight matrix in
multivariate case, elaborated in later sections) is known, the dataset could be
normalized accordingly so that TLS or PCA can be applied directly.

The statistical multivariate form of (1.1) is in fact the well-known Ex-
ploratory Factor Analysis (EFA), if we restrict the model to be structural
with normal distributions. With some restriction on the number of variables,
the model becomes identifiable and thus the suffering of choosing λ is no longer
necessary in certain multivariate cases.

In this text, we illustrated that all the methods above, as diverse and irrel-
evant as it seems in their original formulation, can all be considered as a form
of minimizing the sum of area of a series of ellipses/ellipsoids, or a certain
squared geometric weighted distance between the data points and the regres-
sion line/hyperplane. This systematic non-parametric perspective is by nature
multidimensional, can easily accommodate non-linear relationships, bridging
the existing gap of Deming’s regression (i.e. univariate EIV MLE), TLS, EFA,
design with replicates and other general models, and thus revealing the un-
derlying essence of EIV models for better comprehension. We also discuss
the means of choosing or by-passing λ or weight matrix, the popular alter-
native Method of Moments estimation with no requirement for λ, and other
guidelines for practical use.

In Section 2, we describe the details of the mentioned methods. Their as-
sociation is revealed in Section 3 by first investigating two intuitive approaches
that are similar, but not equivalent, to Deming’s regression, and then we pro-
pose our geometric framework inspired by these two step stones. Some practi-
cal model specification and extension are also discussed and summarized. The
paper ends with a simulation study in Section 4 and a conclusion in Section 5.

2 Background
In this section we elaborate some common EIV models. These methods,

either commonly recognized as EIV models or not, are organized in a way that
their intrinsic equivalence could be conveniently unveiled.
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2.1 Orthogonal Regression, Total Least Square and Ge-
ometric Mean Regression

We first introduce methods that were not originally designed or treated as
EIV models, but later turned out to be a special case. The well-known model
of OLS of y on x is:

yi = α + βxi + εi (2.1)

and we minimize a loss function to obtain estimates of parameters:

min
β

n∑
i=1

(yi − βxi − α)2 (2.2)

We will focus on slope β, since estimating the intercept is usually trivial
and avoidable if data are centered. The minimal loss in (2.2) can also be
interpreted as minimizing the sum of the squared vertical distance from the
data point (xi, yi) to the estimated point on the model line (xi, α+ βxi). The
estimated slope is simply:

β̂ls(x) = Sxy
Sxx

(2.3)

where Sab = 1
n

∑n
i=1(ai − ā)(bi − b̄).

Orthogonal regression instead minimizes the sum of the squared perpen-
dicular distance from the data point to the line:

min
β

1
1 + β2

n∑
i=1

(yi − βxi − α)2 (2.4)

Note the use of the equation to calculate distance between a point (xi, yi)
and a line α + βx − y = 0 in elementary geometry. Take derivative of (2.4)
regarding to β, the minima is given by:

β̂or =
Syy − Sxx +

√
(Syy − Sxx)2 + 4Sxy
2Sxy

(2.5)

Total Least Square gives exactly the same solution from another aspect.
With the centered data matrix (or vector, if the number of independent vari-
ables p = 1) Xn×p = (x1, . . . , xn)ᵀ where xi is now a p-vector and yn×1 =
(y1, . . . , yn)ᵀ, Markovsky, Kukush, and Huffel (2006) described multiple TLS
problem as:
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min
β,X̂,ŷ

||[X− X̂,y− ŷ]||F s.t. ŷ = X̂β (2.6)

where || · ||F is the Frobenius norm of a matrix. Suppose [X,y] is of full rank
k = min(p + 1, n), then (2.6) is to find a rank-deficient matrix [X̂, ŷ], i.e. a
low rank matrix, to best approximate [X,y] in the sense of Frobenius norm.
According to Eckart-Young-Mirsky theorem, the best rank k − 1 matrix of
such approximation is by setting the smallest singular value to zero, in the
sense of the following singular value decomposition (SVD):

[X,y] = USVᵀ (2.7)
Here S = diag(s1, . . . , sk) is the matrix with singular values on the diag-

onal, in descending order. The low rank matrix estimate could be [X̂, ŷ] =
Udiag(s1, . . . , sk−1, 0)Vᵀ, and the corresponding slope estimate is

β̂tls = − 1
vkk

(v1k, . . . , v(k−1)k)ᵀ (2.8)

where vk = (v1k, . . . , vkk)ᵀ is the right singular vector with the least singular
value. In fact, with some simple algebra, (2.8) would degenerate to (2.5) when
p = 1, which proves the equivalence between TLS and OR.

One important observation is that TLS, like OR, is symmetric to all vari-
ables, which means the linear equation do not distinguish predictors and re-
sponses, and the use of y and X here is just to keep the notation consistent.

Another quick catch is that (2.7) (2.8) is actually extracting the kth prin-
cipal component (PC) of the augmented data matrix, and the low rank ap-
proximation can be seen as dimension reduction. In the 2-dimensional case,
the second PC is the normal vector, i.e. the coefficients of the line equation,
of the first PC direction, which is apparently the natural line to represent the
dataset. Another argument is, Principal Component Analysis (PCA) manages
to get rid of dimensions of the least variation that are also orthogonal to the
remaining, and thus is doing the same work as the geometric definition of OR.
Thus TLS and OR are both special cases of PCA. See Figure 8 for illustration.

As Figure 8 shows, the regression line of OR is always across the center of
the data, and between the lines of OLS on y and OLS on x. Geometric Mean
Regression (GMR) is proposed based on such observation as well, and literally
takes the geometric mean of the one slope and the reciprocal of the other. By
using (2.3) and β̂−1

ls(y) = Sxy

Syy
, we have

β̂gm = sign(Sxy)
√
Syy
Sxx

(2.9)
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Figure 8: Left: the geometric squared distance/area to be minimized. OLS:
vertical or horizontal distance, OR: orthogonal distance, GMR: area of the
triangle. Right: estimated regression lines for each approach.

Like OR, the estimate of GMR is also symmetric of both variables. However
two things are different: first it does not naturally generalize to the high
dimensional case; but good thing is that it’s scale-free, i.e. invariant under
linear transformation of original data, while OR is not. Thus GMR is popular
in certain applied areas where statistical analysis is mainly about univariate
regression models. Barker, Soh, and Evans (1988) derived another view of
GMR: it is actually a least-triangle approach, i.e. minimizing the sum of area
of the right triangles surrounded by the regression line, a vertical line across
a data point and a horizontal line across the data point.

As we will see in the next subsection, GMR, along with direct use of OR
and TLS, has some implicit assumption which is usually unnoticed while also
hard to justify.

2.2 Error-in-Variables Models and Maximum Likelihood
Estimation

In this subsection we describe the formal Error-in-Variables model for both
univariate and multivariate cases.
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2.2.1 Univariate: Deming’s Regression

We write down the parametric EIV model again as the same form in (1.1)

yi = ηi + εi

xi = ξi + δi (2.10)
ηi = α + βξi

where ε ∼ N(0, σ2
ε ), δ ∼ N(0, σ2

δ ), with i.i.d. samples, ξ = {ξ1, . . . , ξn} in a
function model, or ξ ∼ N(µ, σ2) in a structural model. We take the func-
tional model for convenience, but note the MLE of α and β are the same in
both cases. (2.10) is not identifiable, therefore different assumptions or prior
knowledge is necessary for learning the parameters. Here we follow Deming’s
Regression approach, by assuming λ = σ2

ε/σ
2
δ is known. Then we can estimate

the parameters by solving maxL(α, β, σ2
δ , ξ|λ), or

max 1
(2π)n

λ−n/2

σ2n
δ

exp[−
n∑
i=1

(xi − ξi)2 + (yi − α− βξi)2/λ

2σ2
δ

] (2.11)

Take log-transform and we can find MLE of ξi first: ξ̂i = λxi+β(yi−α)
λ+β2 . Plug

it back and we have

max 1
(2π)n

λ−n/2

σ2n
δ

exp{− 1
2σ2

δ

[ 1
λ+ β2

n∑
i=1

(yi − α− βxi)2]} (2.12)

It can be shown that MLE of α is simply ȳ− β̂x̄. We then pursue β in the
following minimization of the exponential term

min
β

1
λ+ β2

n∑
i=1

(yi − α− βxi)2 (2.13)

And in fact we can reach a closed form solution

β̂mle =
Syy − λSxx +

√
(Syy − λSxx)2 + 4λS2

xy

2Sxy
(2.14)

Immediately we observed resemblance between (2.13) and (2.4). The so-
lution of OR can be achieved by setting the error variance ratio to 1. If we
define λ−1 = 0 when σ2

δ = 0, from (2.14) we can also obtain the solution of
OLS on x or OLS on y, by plugging in λ−1 = 0 or λ = 0 respectively. These
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two extreme cases are for σ2
δ = 0 or σ2

ε = 0, when (2.10) degenerate to ordinary
linear model, with no error in the independent variable.

For GMR, it is not that straight forward but still achievable. Note in (2.9),
the GMR estimator should be consistent so that

β̂gm = sign(Sxy)
√
Syy
Sxx
→ sign(ρxy)

√√√√Var(y)
Var(x) = sign(ρxy)

√√√√β2
gmVar(ξ) + σ2

ε

Var(ξ) + σ2
δ

(2.15)
when n → ∞. To make (2.15) an identity, λ = σ2

ε/σ
2
δ = β2

gm must be true,
namely the error variance ratio is the same as the observation variance ratio.
For validation, simply plug λ = β2 into (2.13) and then we get the solution of
GMR (2.9) once again.

It has been shown that all the univariate models described in the previous
section are special cases of Deming’s Regression, namely the EIV Gaussian
model with preset error variance ratio λ. Given the geometric significance
depicted in Figure 8, we managed to reveal a universal geometric framework
with arbitrary λ, multivariate cases, non-linear equations and other general
and complicated models.

2.2.2 Multivariate: Factor Analysis

Although usually not recognized as an EIV model, Factor Analysis, also
known as Exploratory Factor Analysis (EFA, in contrast to Confirmatory Fac-
tor Analysis), is indeed the multivariate extension of structural Deming’s Re-
gression.

Consider a centered random p-vector X, EFA assume the following model:

X = LF + ε (2.16)
where L is a p × q matrix with q ≤ p, also known as the loading matrix,
F is a latent random q-vector known as the factor and indicates the low
dimensional linear structure of the manifest variable X. We further assume
that F ∼ Nq(0, Iq), ε ∼ Np(0,Φ) and Φ = diag(φ1, . . . , φp).

Set p = 2, q = 1 then (2.16) degenerates to (2.10) with X = (yi, xi)ᵀ,
ε = (εi, δi)ᵀ, Φ = diag{σ2

ε , σ
2
δ}, L = (1, β)ᵀ,F = ξ. Apparently the λ-equivalent

parameter in EFA should be Λ = diag( 1
φ1

(φ2, . . . , φp)). p and q can be inter-
preted as the number of variables and the number of linear relationships for
them.

Tipping and Bishop (1999) pointed out the equivalence between PCA and
EFA when Φ = σIp, and thus built up a parametric model for PCA called
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probabilistic PCA (also known as maximum likelihood PCA in Wentzell and
Andrews (1997), another independent work). In this case, the singular value
decomposition (SVD) gives the MLE of EFA. Note Φ = σIp or Λ = Ip−1 gives
an extended condition of λ = 1 in OR, and once again the equivalence among
PCA, OR and TLS in the multivariate case is shown.

For the general situation when Φ 6= σIp, MLE of (2.16) no longer has an
analytical solution as all the methods previously described. Also note L is
identifiable up to a rotation matrix, i.e. LR is also an MLE for any q-by-q
orthogonal matrix R. This is due to the fact that the low dimensional factor
F has no practical meaning and only important for its q degrees of freedom,
and thus can be arbitrarily rotated. In practice, a rotation is usually used
to assign meanings to the factors, by either making them sparse, or satisfy
domain-specific indicators. Estimation is usually carried out by an iterative
algorithm like Expectation Maximization (EM).

Although (2.16) is the high dimension generalization of (2.10), there are
two features essentially different:

1. Unlike Deming’s regression, EFA can accommodate distributions other
than Gaussian.

2. We usually do not need prior knowledge about Λ if there aren’t too many
linear restrictions, because Φ can be estimated if certain condition is
satisfied.

To explain the second point, we first assume Var(F ) = Ψ is an arbitrary
covariance matrix that needs to be estimated. Note L has pq parameters, Ψ
has 1

2q(q+1) free parameters (for its symmetry) and Φ has p parameters, then
we totally have pq+ 1

2q(q+1)+p covariance parameters to estimate. But note
that we can construct an arbitrary q-by-q matrix G such that F̃ = Var(G−1F )
and set the new L̃ = LG−1, and this new estimate also fits the data as well as
before. This observation means the real number of free covariance parameters
we need to estimate is pq + 1

2q(q + 1) + p− q2, because q2 parameters cannot
be uniquely estimated due to the presence of the arbitrary G. In practice we
usually let Var(G−1F ) = Iq as specified in (2.16). Next we note the sample
covariance matrix is the only data we have, and it provides 1

2p(p+1) estimation
equations. The number of equations should be no less than the number of free
parameters, so the condition for identifiability is

(p− q)2 ≥ p+ q (2.17)
Therefore, for p = 2, q = 1, the inequality does not hold, so Deming’s

regression is not identifiable and addition information about λ is needed.
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2.2.3 Replicates

Perhaps the most direct solution for the existence of unknown measurement
error is to simply estimate it by repeatedly measuring the same (group of)
samples, i.e. to have replicates. With this information, we can naturally
estimate the error variance first and then remove some free parameters. Instead
of this naive two-step estimation, a direct maximum likelihood estimation of
functional Deming’s regression with replicates was well-discussed in Barnett
(1970).

yij = ηi + εij

xij = ξi + δij (2.18)
ηi = α + βξi

where i = 1, . . . ,m indicates different observations grouped by underlying
true values, and j = 1, . . . , ni is the number of replicates in each group. εij ∼
N(0, σ2

εi) and δ ∼ N(0, σ2
δi) allow heterogeneous variance of the error for each

group. λ = σ2
εi/σ

2
δi is still assumed fixed across all groups, but unknown and

estimatable. The log-likelihood function is:

l(α, β, σ2
δ , ξ, λ) = const−

m∑
i=1

ni log(σ2
δi

√
λ)

−1
2

m∑
i=1

ni∑
j=1

(xij − ξi)2σ−2
δi (2.19)

−1
2

m∑
i=1

ni∑
j=1

(yij − α− βξi)2λ−1σ−2
δi

Maximizing (2.19) does not have a close-form solution, but some implicit
estimation equations can be obtained for iterative computation.

2.3 Method of Moments
We have showed that all the methods above can be derived from the MLE

of Deming’s regression or EFA, assuming normal distributions. The Deming’s
regression and certain cases in EFA are not identifiable and thus extra informa-
tion, usually in the form of assumption on λ or replicated samples, is needed.
Apart from adding replicates, another popular approach is to use Method of
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Moments to obtain the distribution-free estimation by making use of higher-
order moments of the data. As discussed in Gillard and Iles (2005),we consider
using the first and second moments of the structural model (2.10):

x̄ = µ

ȳ = α + βµ

Sxx = σ2 + σ2
δ (2.20)

Syy = β2σ2 + σ2
ε

Sxy = βσ2

where Sab is the sample covariance of a and b. In (2.20) there are 6 free
parameters and five equations, making it unidentifiable. However it will be a
different picture if we utilize higher moments, e.g. the third moments:

Sxxx = µ(3) + µ
(3)
δ

Sxxy = βµ(3)

Sxyy = β2µ(3) (2.21)
Syyy = β3µ(3) + µ(3)

ε

where Sabc = ∑(ai−ā)(bi−b̄)(ci−c̄)/n and µ(3)
a is the population third moment

of a, namely the non-standardized skewness. Together (2.18) and (2.19) have
9 parameters and 9 equations. To estimate β, we need these equations to be
nontrivial, so the assumption µ(3) 6= 0 should hold. Asking for enough skewness
for the underlying true variable or factor is not always reasonable, since any
symmetric including normal distribution has zero skewness. However, using
high moments for estimation remains a good alternative to solve Deming’s
regression without assumption of λ, when data is not normal, strongly skewed
and has large sample size. Note the higher order moments need more samples
to accurately estimate, fourth order moments and above should be used with
care. Some further discussion can be found in Dagenais and Dagenais (1997).

Sometimes we might have extra instrumental variables at hand, then Gen-
eralized Method of Moments (GMM) can be used to achieve an asymptotically
efficient estimator. The topic is out of the scope of this paper, and we refer
readers to Hall (2005), Erickson and Whited (2002) and Lewbel (1997) for
details.
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3 Geometric Perspective of the General EIV
Model

We have described some common EIV models in the previous section, for
both univariate and multivariate cases. Figure 8 gives some intuition about
the geometry of EIV models. OLS and OR are minimizing the sum of squared
vertical/horizontal and orthogonal Euclidean distance, while GMR is mini-
mizing the sum of area of the triangle. Inspired by the relationship between
these regression, and λ in Deming’s regression, we might suspect that as λ
slides from 0 to ∞, the squared distance that the corresponding regression is
minimizing is from the data point to an arbitrary point on the hypotenuse
part of that triangle.

This naive speculation turns out to be incorrect, but nevertheless leads to
another kind of regression, which will be immediately be introduced. After
that we can then uncover the actual general distance that is being minimized
and extend it to higher dimensions.

3.1 Slant Regression
We refer to this naive approach as Slant Regression, with respect to Orthog-

onal Regression. And we show that such model is close to Deming’s regression,
but not equivalent.

See Figure 9 left. Instead of minimizing any special distance, we draw
a general line from a data point to the hypotenuse, with a parameter θ =
|AD|/|AB|. Some elementary geometry can help here: ~|CA| = |yi − α −
βxi|, ~|CB| = |xi − (yi − α)/β|, then ~CD = θ ~CB + (1 − θ) ~CA, ~|CD|

2
=

θ2 ~|CB|
2

+ (1− θ)2 ~|CA|
2
.

Therefore, slant regression is to solve

min
β
θ2∑

i

[xi − (yi − α)/β]2 + (1− θ)2∑
i

[yi − α− βxi]2 (3.1)

Now how do we choose θ ∈ [0, 1], or equivalently, how do we choose the
position of true point D for each sample point? In the functional EIV model,
when a true point (ξi, α+ βξi) is given, the sample follows a bivariate normal
distribution (

xi
yi

)
∼ N2(

(
ξi

α + βξi

)
,

(
σ2
δ 0

0 λσ2
δ

)
) (3.2)

50



Figure 9: Left: the arbitrary oblique distance |CD| with density contours of
error distribution around the true point. Right: the choice of the correct, i.e.
smallest, ellipse and thus infer the true point of a corresponding sample point.

So sample points around the true point could be considered as the realiza-
tions, with confidence quantified by the joint probability density function, of
the bivariate normal.

See Figure 9 left, the probability density contours of the bivariate normal
are shown in blue. Note that the contour of a bivariate normal is actually an
ellipse (x− ξ)2/σ2

δ + (y − α− βξ)2/λσ2
δ = c0, or

(x− ξ)2 + (y − α− βξ)2

λ
= c (3.3)

Different values of c generate larger or smaller ellipse contours, while con-
tours with larger c indicate less probability coverage (shown with lighter color).
In order to find an appropriate true value for the sample, we use the idea of
maximum likelihood, i.e. we try to find the smallest ellipse contour (or the
largest probability density value) that covers the sample. See Figure 9 right.
It is straight forward to show that the smallest ellipse is the one which has the
red line (parallel to the true line) across the sample as its tangent line. Then
the center of the ellipse (ξi, α + βξi) is the true value of the sample.

Therefore, we see c(ξ) = (xi − ξ)2 + (yi − α − βξ)2/λ is minimized when
ξ = ξi. Take dc(ξ)/dξ = 0, we have

λ(xi − ξi) + β(yi − α− βξi) = 0 (3.4)
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With some simple triangle geometry, we can find the relationship between
θ, β and λ

θ = |AD|
|AB|

= |xi − ξi|
|xi − yi−α

β
|

= β
|xi − ξi|

|β(xi − ξi) + βξi − yi − α|
= β2

λ+ β2 (3.5)

The last equality comes from (3.4). Substitute back to (3.1), then Slant
Regression is equivalent to the following problem:

min
β

[ λ
2 + β2

(λ+ β2)2

n∑
i=1

(yi − α− βxi)2] (3.6)

Note this is different from the MLE (2.13). We can also get estimates of ξi
from (3.4), and they agree with the MLE solutions, which is natural, since the
idea to find true point is exactly an intuitive version of maximum likelihood.
A 4-degree polynomial equation can be found by let the derivative of (3.6) to
be 0 and β̂sr is its real root with the same sign of Sxy:

Sxyβ
4 + ((2λ− λ2)Sxx − Syy)β3 + 3(λ2 − λ)Sxyβ2

+((λ− 2λ2)Syy + λ3Sxx)β − λ3Sxy = 0 (3.7)

OLS and OR are still special cases of Slant Regression, by assuming λ =
∞, 0, 1. However this is not the case for an arbitrary λ. By substituting
βGMR = sign(Sxy)

√
Syy/Sxx to the above 4-degree polynomial equation of β

and solve the resulting 4-degree polynomial equation of λ, we can find the
extreme case when GMR and Slant Regression gives the same answer.

Slant Regression is an alternative to EIV MLE and can easily extend to
high dimensional case. In later sections we argue why it is comparatively not
desirable.

3.2 Ellipse Area and Mahalanobis Distance
Based on the observation from the previous two subsections, especially the

derivation of Slant Regression, we obtained some insights about the geometry
of the EIV model.

3.2.1 Minimizing Ellipse Area

Counter-intuitively, Slant Regression is actually not equivalent to MLE,
for its main idea is quite straight-forward in the sense of maximum likelihood.
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Under the same framework of Slant Regression as shown in Figure 9, we still
first locate the true point in the ellipse fashion, but this time instead of min-
imizing the sum of squared distance between the true and sample points, we
minimize the area of that ellipse:

β̂elli = arg min
β

∑
i

Si (3.8)

where Si is the area of the smallest ellipse (3.3) covering the ith sample point.
The area can be calculated

Si = π × (MajorSemiAxis)× (MinorSemiAxis)
= π × ci ×

√
λci

=
√
λπ[(xi − ξi)2 + (yi − α− βξi)2

λ
] (3.9)

=
√
λπ

λ+ β2 (yi − α− βxi)2

and therefore

β̂elli = arg min
β

[
√
λπ

λ+ β2

∑
i

(yi − α− βxi)2] (3.10)

Note there’s only a constant difference between (3.11) and the MLE solu-
tion (2.13), so equivalence is shown. Thus the MLE of EIV functional model
can be interpreted as minimizing the sum of area of the smallest possible el-
lipse centered at true values and covering the sample points, with the shape
of the ellipse given by λ. This ellipse represents the error cloud covering the
true underlying data point.

This geometric interpretation is universal to Deming’s regression with all
possible values of λ. For OLS on x or y, the area of the ellipse is degenerated
to the square of Major Semi-axis or Minor Semi-axis of the ellipse. For OR,
since λ = 1, the ellipse degenerates to a circle and the area of the circle is
just proportional to the square of its radius. For GMR, we have λ = β2,
θ = β2/(λ + β2) = 0.5, then D is the midpoint of AB, also A and B are
actually on the ellipse. Simple calculation shows that the area of ellipse is in
fact Si = πS4ABC , which agree with the triangle minimization interpretation
of GMR. See Figure 10 upper row for all these special cases in 2-dimension.

This geometric view can be extended to high dimensions, i.e. EFA, with
ease. One change is from error ellipse to error (hyper-)ellipsoid, the shape of
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Figure 10: Illustration of ellipse view. Upper: special cases; Middle: for EFA
and WTLS, based on the shape of the error ellipse, data points are considered
as transformed to a space with even error in each axis, and then the regression
line/low dimension structure is extracted, similar to PCA. Lower: nonlinear
and replicated model could be explained in the same fashion.
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which given by the usually estimatable Λ or Φ. Note the original 1-dimensional
line is now extended to a q-dimensional hyperplane, spanned by the factor F .
The ellipsoid is the contour of a multivariate normal distribution, but can
also be seen as determined by the second moment of the arbitrary error joint
distribution, and indicate the signal-to-noise density of each variable axis in
a non-parametric way. Accordingly, if second moments is not sufficient to
describe the error cloud, other complex shapes could be used, correspond-
ing to higher order method of moments. Another observation is that this is
also applicable to non-linear EIV, since the non-linear part is only in the low
dimensional manifold as opposed to hyperplane, but the measurement error
cloud covering it is usually still assumed linear.

The geometric perspective also works for replicated samples. Each group
of samples are covered by some concentric small ellipses, shaped by λ and
centered at (ξi, α + βξi). We maximize the overall likelihood, i.e. making the
sum of the area of these ellipses as small as possible. See Figure 10 middle
and lower for illustration.

Note if Λ is known, we can simply re-normalize the data so that the ellipse
becomes a circle, i.e. Λ→ I, and then use OR, TLS or PCA for their simpler
computation. When Λ is not known with an identifiable model, some iterative
algorithms can be used to reach the optimal solution.

3.2.2 Minimizing Squared Mahalanobis Distance

This ellipse view might at first seem confusing: why area of ellipse? In
fact, the area of the ellipse is simply a special squared weighted distance.
From (3.1) and (3.8) we have a new formulation of the minimization prob-
lem: decomposing the loss function into multiple parts (two in this case) and
assigning different weight to each of them. Actually Deming’s regression can
also be written in such a format, as to minimize:

SSresidual =
n∑
i=1

( ε
2
i

σ2
ε

+ δ2
i

σ2
δ

) = 1
σ2
δ

n∑
i=1

[(xi − ξi)2 + (yi − α− βξi)2/λ] (3.11)

which agrees with the exponential term of likelihood function (2.11). The right
hand side is also proportional to the third line of (3.10), which means the area
of the ellipse can be seen as the squared weighted residual/distance multiplied
by a constant. To reveal the connection between the algebraic relationship and
ellipsoid interpretation, we further investigate the form of multivariate TLS.

TLS has some more general formulation, commonly known as Weighted
TLS and Generalized TLS as reviewed in Markovsky and Van Huffel (2007).
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Method Dim To minimize sum of (squared) Assumptions

OLS(y) 1 vertical distance no error in x
OLS(x) 1 horizontal distance no error in y
OR/TLS 1/n orthogonal distance/Frobenius norm λ = 1 or Λ = I

GMR 1 area of the triangle λ = Syy/Sxx

Slant 1/n Euclidean distance to ellipse center λ known
Deming 1 area of the ellipse/Mahalanobis dist. λ known
Replicates 1 area of the concentric ellipses λ = σ2

εi/σ
2
δi ∀i

Moments 1/n none Skewed distribu.
WTLS n weighted matrix norm/Mahalanobis W known
EFA n area of the ellipsoid/Mahalanobis (p− q)2 ≥ p+ q

Table 2: Summary of EIV models. For all except Slant Regression and Method
of Moments, assuming normal distribution leads to MLE.

Consider the multivariate case of WTLS: the data matrices are X ∈ Rn×p

and Y ∈Rn×q, with n sample points as rows. Linear coefficient B ∈ Rp×q is
unknown. The WTLS problem is

min
B,X̂,Ŷ

||[X− X̂,Y − Ŷ]||W s.t. Ŷ = X̂B (3.12)

If ‖ · ‖W = ‖ · ‖F , Frobenius norm treat every entry in the matrix equally,
thus give the natural result of OR/PCA/TLS. WTLS instead applies a weighted
matrix norm

‖A‖W =
√
vec(A)ᵀWvec(A) (3.13)

where vec(A) is the vector induced by the matrix column-wisely, and W ∈
Rn(p+q)×n(p+q) is the weight matrix. It is straight-forward to show that W = I
gives Frobenius norm and thus OR/PCA/TLS, W = diag{λIn, In} for p = q =
1 gives Deming Regression, W = diag{In, λ−1

1 In, . . . λ−1
p+q−1In} gives multivari-

ate EIV with known Λ. General diagonal W gives solution for heteroscedas-
ticity EIV, i.e. errors do not have the same variance, and non-diagonal W
assume correlation among errors, e.g. autocorrelation. Estimation of (3.14)
needs special care and further details can be found in Markovsky and Van
Huffel (2007) and Huffel and Vandewalle (1989). In certain aspect, WTLS is
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more general than EFA since it can deal with non-i.i.d. dataset. However, it
still assumes the weights are known while EFA can estimate weight if condition
satisfied. To make it worse, the computation of the more general cases, like
non-diagonal W, is usually extremely ill-conditioned and not computationally
practical.

The above notation is based on data matrix, [X− X̂,Y − Ŷ], the residual
matrix, represents all the distance from the sample to the true model and
|| · ||W sums them together with weights. By writing it down sample-wise, we
can see WTLS is actually minimizing the sum of distances from a particular
sample point to its true value. This distance is known as the Mahalanobis
Distance. The Mahalanobis distance between a vector x and a random vector
Y with mean µ and covariance matrix Σ is defined as

dM(x, Y ) =
√

(x− µ)ᵀΣ−1(x− µ) (3.14)

Simple derivation from (3.13) to (3.14) shows that WTLS is equivalent
to minimizing the sum of squared Mahalanobis distance from the samples to
the underlying model, by setting W accordingly regarding to the assumedly
known precision matrix Σ−1 of the error ellipsoid cloud:

min
∑
i

[(xi, yi)− (x̂i,Bx̂i)]ᵀΣ−1[(xi, yi)− (x̂i,Bx̂i)] (3.15)

To connect with the geometric view, it is easy to show that squared Ma-
halanobis distance is proportional to the area/volume of an ellipse/ellipsoid,
and can be the exact area if we rescale the covariance matrix. Consider the
simple case when Σ is diagonal in (3.15), then we have

dM(x, Y ) =

√√√√ d∑
i=1

(xi − µi)2

σ2
i

(3.16)

when d = 2. Note the similarity to (3.12). If we rescale {σ2
1, σ

2
2, . . . } to

{1, λ1, . . . }, they will be the same. When Σ is not diagonal, the ellipse/ellipsoid
is oblique, namely the major/minor axis is not parallel to the coordinate sys-
tem, indicating correlated error in the model.

Mahalanobis distance is well developed in the clustering and classification
models. Training points in each cluster can be used to calculate the mean
and covariance matrix of the cluster, and distance between unclassified points
and each cluster is calculated in the sense of Mahalanobis distance. Fisher’s
Discriminant Analysis is one classic example.
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We come to the conclusion that, in general, all above EIV models could be
interpreted as minimizing ellipsoid area or squared Mahalanobis distance. See
Table 2 for summary.

4 Simulation
In this section we conduct a numerical experiment on the simple y =

α + βx model to validate and analyze the superior performance of EIV MLE
or Deming’s regression over all other univariate methods, when measurement
error exists. The simulation settings are listed as below:

• ξi is generated from a χ2
10 distribution as the underlying factor of the

system

• εi and δi are sampled from N(0, λσ2
δ ) and N(0, σ2

δ ) respectively as the
noise terms

• (α, β) = (1, 0.8)

• (yi, xi) are then computed according to (1.1)

• n ∈ {100, 1000} for analysis of small and large sample size effect

• σδ ∈ [1, 5] with 8 equal-distance points; note Var(ξi) = 20, so noise
variance ranges from 5% ~ 125% of signal variance

• λ ∈ [1/3, 3] with 7 equal-distance points, more extreme λ values along
with large σδ will have trivially huge estimation error

We build the parameter grid (n, σδ, λ), and randomly simulate 100 datasets for
each combination. Then we apply the univariate regression models: OLS(x),
OLS(y), GMR, OR/TLS, Slant Regression, Method of Moments, and MLE
(Deming regression). For Slant regression and MLE, we assume λ is known.
The 100 regression models give the mean and standard deviation of β̂, and we
summarize the results in Figure 11.

Firstly, as σδ increase, the signal-noise ratio decrease and worse estimation
is expected. OLS on x is constantly biased and inconsistent for its underesti-
mated slope, while OLS on y is the opposite: inconsistent overestimation. In-
creasing n does not help, only to reduce variance of the inconsistent estimator.
GMR has the most robust and stable behavior to error increase, but neverthe-
less biased and inconsistent when λ moves to extreme values. OR/TLS has
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Figure 11: Error-bar plot for the simulation results on the parameter grid. For
each subplot, y-axis is for β̂ in log-scale, with true β as a black horizontal line,
x-axis is σδ. A point denotes the mean β̂, with an error-bar showing 2 standard
deviation upper and lower bound. Error bar extended to the boundary of
the subplot indicates further error but ignored for readability. n = 100 and
n = 1000 are distinguished by red and green color. For the whole grid plot,
each column is a result from a specific regression method, and each row is a
particular value of λ. See text for analysis.
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good performance near λ = 1 as expected, but will overestimate or underesti-
mate the slope as λ gets larger or smaller, respectively. Slant regression has a
similar behavior as OR/TLS but with more variance in the estimator. Method
of Moments utilizes third moments to estimate β and achieve an unbiased and
consistent estimate, but higher moments consume much more samples in order
to be accurately estimated, so method of moment estimator has the largest
variance and practically not desirable unless sample size is huge. Finally EIV
MLE/Deming’s Regression gives an unbiased, consistent and low-variance es-
timator at a cost of the necessity of a known λ. In practice, such λ can be
determined by replicates, regression inefficiencies or cross-validation, if no prior
information is present.

5 Summary
We have reviewed a family of Error-in-Variables regression models with

seemly diverse formulation, and unified the underlying concepts via a novel
and intuitive geometric interpretation. We show both algebraically and geo-
metrically that this family of EIV models is equivalent and extensive to mul-
tivariate or nonlinear cases, in order to reduce the confusion and hesitation
that practitioners might experience when facing real life data with unignor-
able measurement error. The superiority of EIV models is then validated in a
simple simulation experiment, with helpful notes for application.
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