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Abstract of the Dissertation

On the route to chaos for two-dimensional modestly area-contracting analytic maps

by

Ying Chi

Doctor of Philosophy

in

Mathematics

Stony Brook University

2015

It has long been conjectured that the two-dimensional dissipative maps, like the one-dimensional
maps, experience the period-doubling cascade to chaos. In [CEK], Collet, Eckmann and Koch
proved this conjecture for highly dissipative families. In this dissertation, we introduce the notion
of nested systems that generalizes Hénon maps, and construct two operators acting on the space
of nested systems based on the idea of the return maps. We use the two operators to show that if
a dissipative nested system satisfies some apriori bounds, then they can be replaced with simpler
but dynamically equivalent nested systems. We prove that the total number of applications of the
operators is bounded by the number of periodic points. When the procedure of the applications
stops, we obtain “little Hénon” maps whose dynamics are well-understood. We then show that
if the first nested system of a family contains finitely many periodic points, then the family only
experiences either saddle-node or periodic-doubling bifurcations. We conclude that if there are
sufficiently many periodic points, then moderate dissipative nested systems can be transformed
into highly dissipative ones so that the results of [CEK] applies.
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Chapter 1

Introduction

In Subsection 1.1, we introduce some general history about chaos theory. In Subsection 1.2 and
1.3, we provide some background and a brief review of important works related to the problem that
we are interested in. We formulate our main results and outline the structure of this dissertation
in Subsection 1.4.

1.1 The birth and rebirth of dynamical system theory

The central theme of dynamical system theory is the notion of chaos, and it was first observed by
H.J. Poincaré [P] in 1889. At the time, the King Oscar II of Sweden sponsored a mathematical
contest. One of the four questions in the contest was the famous n-body problem, and Poincaré
chose to work on a simplified version of it. The simplified problem assumes that one celestial body
is almost massless and the plane in which it moves is entirely defined by the other two bodies.
The simplified problem is to determine the trajectory of the almost massless body.

Poincaré [P] realized that this simplified problem has a special class of solutions, now called
transverse homoclinic trajectories. The mere existence of such solutions would imply that the
series solutions of the equations of motion would diverge. In other words, the trajectory will
be somewhat unpredictable. This unpredictability was later understood and described as the
sensitivity with respect to initial condition, i.e. chaos. This paper [P] was the very first work of
the dynamical system theory. See [Ho] for more details.

In the next half century, the dynamical system theory gradually progressed, but in a rather
slow pace. It was after Edward Lorenz rediscovered the unpredictable behavior in [Lo] in 1963
that the dynamical system theory started to draw a great deal of attention from many scientific
fields, including mathematics.

At the time, Lorenz was trying to mathematically identify the problems which prevent an
accurate long-term weather prediction. He chose to model the conviction motion of fluid as his
starting point. Heuristically speaking, a convection occurs when the fluid is heated from below
and cooled from above: the fluid at the bottom becomes warmer and more buoyant, and then
rises; meanwhile the fluid on the top becomes colder and denser, and then descends. The model
that he worked on assumes a very idealized boundary condition.
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Lorenz was able to approximate the PDEs of the simplified convection motion by a three-
order system of ODEs in time, and then he used a rather rudimentary computer to stimulate the
solution. One day he repeated the simulation that he had done earlier. In order to save time,
he entered the numbers that were in the middle of the printout of his last stimulation. However,
the simulated solution that he received this time was entirely different from that he did earlier.
Lorenz was able to figure out the origin of the difference: while the computer internally processed
numbers to 6 decimal places, the numbers on the printout were rounded off to 3 decimal places.

The story highlights the key characteristic of the chaos: small changes in initial conditions are
able to create disproportionately large changes in the long-term behavior.

It is far beyond our capacity and our intention to give a comprehensive account of the dynamical
ideas. We will hereafter restrict our attention to those ideas that are closely related to our own
interest. We will discuss how chaos is defined and explain why the presence of homoclinic points
implies chaos in the Subsection 1.2. In the following Subsection 1.3 we will discuss the route to
chaos which means intuitively how a family of dynamical systems becomes chaotic. Both will be
discussed in the context of discrete systems.

1.2 The notion of chaos

We work with the map ϕ : M → M of a smooth compact Riemannian manifold M to itself; the
differentiability will be specified each time since the requirements vary.

It was until 1975 that T. Li and J. A. Yorke defined the term chaos mathematically in Period
three implies chaos ([LiY]). In their definition, a continuous map ϕ : M → M is chaotic if there
exists an uncountable subset N ⊂M with the following properties:

1. lim supn→∞ d(ϕn(x), ϕn(y)) > 0 for every x, y ∈ N and x 6= y,

2. lim infn→∞ d(ϕn(x), ϕn(y)) = 0 for every x, y ∈ N and x 6= y,

3. lim supn→∞ d(ϕn(x), ϕn(p)) > 0 for every x ∈ N and periodic point p ∈M ,

4. there is a periodic point in M of period n, for any n ∈ Z+.

Li and Yorke [LiY] proved that if a continuous interval map ϕ has a periodic point with period 3
then ϕ is chaotic in the above sense.

It is worth mentioning that the condition 4 is a special case of Sarkovskii’s theorem discovered
by A.N. Sarkovskii [Sa] in 1964. Sarkovskii’s theorem has extremely weak hypotheses, and a
remarkably elegant conclusion. The statement of Sarkovskii’s theorem is as follows:

If ϕ : R → R is a continuous function that has a periodic point of period n, then ϕ also has
periodic orbits of any period l with nB l in the Sarkovskii-order.

The Sarkovskii-order is an order on the set of positive integers Z+:

3 B 5 B 7 B · · ·B 2 · 3 B 2 · 5 B 2 · 7 B · · ·B 22 · 3 B 22 · 5 B 22 · 7 B . . .

B 23 · 3 B 23 · 5 B 23 · 7 B . . . 23 B 22 B 2 B 1.
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There are different definitions of the notion of chaos and a universally accepted definition has
not yet fully emerged (Li and Yorke’s work was one of the many attempts). However, another no-
tion, called sensitive dependence on initial conditions, is the fundamental characteristic of almost,
if not all, definitions of chaos, and its definition is universally defined.

Let ϕ : M → M be of C0 class. The map ϕ is said to have sensitive dependence on initial
conditions if there exists an ε > 0 such that for any x ∈ M and any δ > 0 there exists a number
y ∈ {z ∈M |dist(x, z) < δ} and a positive integer n ∈ Z+ with dist(ϕn(x), ϕn(y)) > ε.

The definition of sensitivity again reflects the idea of unpredictability: no matter how close
two points initially are, there is always a chance that their orbits get apart by at least ε. Sensitive
dependence on initial conditions is such a fundamental concept that it is often used interchangeably
with chaos. Throughout this dissertation, we will use them interchangeably when the context is
clear.

Various indicators are conceived to detect the sensitivity dependence on initial conditions. One
of them is the notion of topological entropy. We assume that M is a non-empty compact Hausdorff
space and ϕ : M → M a continuous map. The topological entropy is often used to measure
“the degree” of the dynamical system’s sensitivity. The definition was first introduced by Adler,
Konheim and McAndrew in 1965 as follows: for an open cover U of M , let N(U) denote the
smallest cardinality of a sub-cover of U (i.e., a sub-family of U whose union still covers X). By
compactness, N(U) is always finite. If U and V are open covers of M , then

U ∨ V ≡ {U ∩ V : U ∈ U , V ∈ V}

is called their common refinement. Let Un ≡ U ∨ ϕ−1(U) ∨ · · · ∨ ϕ−(n−1)(U), where ϕ−k(U) ≡
{ϕ−k(U) : U ∈ U}. Using the sub-additivity argument, one can show that the limit

limh(U , ϕ) ≡ lim
n→∞

logN(Un)

n

exists for any open cover U and equals infn∈N
logN(Un)

n
. The topological entropy h(ϕ) is defined as

follows:
h(ϕ) ≡ supUh(U , ϕ),

where the supremum ranges over all open covers U of M .
The topological entropy is an important indicator of chaos because of the following fact: the

positive topological entropy implies sensitivity dependence (see [BGKM]). Although the converse
need not hold (see [Sj]), the topological entropy will serve as a primary criterion that distinguishes
non-chaotic maps from chaotic ones.

Another relevant indicator is the non-wandering set. A point x ∈M is a non-wandering point
if for any neighborhood U of x, there is an integer n such that ϕn(U) ∩ U 6= ∅. The union of all
non-wandering points, denoted by Ω(ϕ), is called the non-wandering set. The non-wandering set
captures all the interesting dynamics of ϕ. The following fact will be used in this dissertation: if
Ω(ϕ) consists of finitely many periodic points, then the map ϕ cannot be sensitive dependent on
initial conditions. In other words, finiteness and periodicity of all non-wandering points together
is a sufficient condition of being non-chaotic.
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In many definitions of chaos, recurrence and dense periodic orbits are also considered as the
characteristics of chaos. Recurrence heuristically means that the system will, in finite time, return
to where is very close to the initial state. However, unlike the sensitive dependence, whether the
recurrence and dense periodic points are considered as indispensable properties is under debate.

Having discussed characteristics of chaos, we now turn to examples that exhibit sensitive
dependence on initial conditions. The first example is the dynamical system that has homoclinic
points: the mere presence of a transverse homoclinic point implies chaos.

In the remaining part of this subection, we assume ϕ is a diffeomorphism for simplicity. A
point p ∈ M is a hyperbolic fixed point of ϕ if ϕ(p) = p and (dϕ)p has no eigenvalue of norm 1.
For a hyperbolic fixed point, the stable and unstable manifolds are

W s(p) = {x ∈M |ϕn(x)→ p for n→ +∞},

and
W u(p) = {x ∈M |ϕn(x)→ p for n→ −∞},

respectively.
The Stable Manifold Theorem (also known as the Hadamard-Perron Theorem since it was

discovered by Hadamard and Perron independently in the 1920s) proved that both W s(p) and
W u(p) are injectively immersed submanifolds of M which are as differentiable as ϕ. Moreover,
the dimension of W s(p) (resp., W u(p)) is equal to the number of eigenvalues of (dϕ)p with norms
smaller (resp., greater) than 1. Suppose p is a hyperbolic fixed point of ϕ, q is homoclinic to p if

p 6= q, and q ∈ W s(p) ∩W u(p).

In other words, q 6= p and limn→±∞ ϕ
n(q) = p. The second condition reflects why Poincaré called

them “bi-asymptotic”. We say that q is a transverse homoclinic point if

TqM = TqW
s(p)⊕ TqW u(p).

It is clear that if p has a homoclinic point q, then not all the eigenvalues of (dϕ)p lie inside or
outside the unit disk. Such a fixed point is called of saddle type (if all the eigenvalues lie inside
the unit disk, p is called a sink ; if all lie outside the unit disk, p is a source).

We hereafter assume that M is a Riemann surface and ϕ : M → M is of class C2. Let p be a
saddle fixed point of ϕ. It has two real eigenvalues λ and σ and we can assume 0 < λ < 1 < σ
without loss of generality. P. Hartman [Hp] showed that ϕ admits C1 coordinates (x, y) in a
neighborhood U of p such that p = (0, 0) and ϕ(x, y) = (λ · x, σ · y).

We can extend the domain of the C1 coordinates (x, y) to a somewhat larger domain along
W s(p). Without loss of generality, we assume that cl(U) is the unit square B ≡ [−1, 1]× [−1, 1] in
the C1 linearizing coordinates. Suppose U is a small neighborhood so that ϕ−1((λ, 1]× [−1, 1]) ∩
B = ∅. Then we can extend the (x, y) coordinates to ϕ−1((λ, 1]×[−1, 1]) as follows: let a be a point
in a ∈ ϕ−1((λ, 1]× [−1, 1]) so that ϕ(a) = (x, y), then the point a has coordinate (λ−1 · x, σ−1 · y).

Since the stable manifold W s(p) is not self-intersecting, the extension can be repeated along
W s(p) as many as possible provided that the original domain is small enough. Similarly, the
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domain can be extended along W u(p). However, homoclinic points are obstacles: these two
linearizing coordinates do not coincide with each other near the homoclinic point q.

In the domain of the extended coordinates, we can construct a rectangle R ≡ {x1 ≤ x ≤
x2, y1 ≤ y ≤ y2} along ls, which is an arc in W s(p) containing p and q such that for some N ∈ Z+

1. R ∩ ϕi(R) consists of one rectangle containing p for 0 ≤ i < N ,

2. R ∩ ϕN(R) consists of two rectangles, one containing p and the other containing q,

3. {x = x2, y1 ≤ y ≤ y2} ∩ ϕN(R) = ∅,

4. ϕ({x1 ≤ x ≤ x2, y = y2}) ∩R = ∅.

If the rectangle R is thin enough, the sides of R and ϕN(R) intersect transversely because W s(p)
and W u(p) intersect transversely at q. See [PT, Ch 2] for details.

In order to explain the complicated behavior associated with the homoclinic points, S. Smale
invented the Smale horseshoe map in [Ss] in 1965. The horseshoe map is a diffeomorphism
Q : B → R2 where B = [0, 1]× [0, 1] ⊂ R2 is the unit square; it maps B in such a way that

1. Q is linear on both components of B ∩Q−1(B),

2. 1, 2, 3, 4 are mapped to 1′, 2′, 3′, 4′.

The map is shown in Figure 1.2.1.

Q(B)

1 2

34

1′ 2′ 3′ 4′

B

Figure 1.2.1: Horseshoe Map

The Horseshoe map is an abstraction of ϕN |R. Indeed, it is easy to observe that the map ϕN

is almost a horseshoe map on rectangle R in the linearizing coordinates, except that ϕN is not
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necessarily linear on the component of R ∩ ϕN(R) containing q. However, this difference can be
taken care of by assuming N is sufficiently large (R is sufficiently thin) so that the restriction of
ϕN to the component is roughly (dϕN)q.

For simplicity, we assume that N = 1, i.e. ϕ is a Smale horseshoe map on R. Moreover, ϕ
preserves both vertical and horizontal directions on both components of ϕ(R) ∩ R (as shown in
Figure 1.2.1). The maximal invariant subset of R under ϕ, denoted by Λ ≡

⋂
n∈Z ϕ

n(R), is the
set of points s ∈ R so that ϕn(s) ∈ R for all n ∈ Z; see Figure 1.2.2.

(a) The shaded area is invariant under one iter-
ation of both ϕ and ϕ−1.

(b) The shaded area is invariant under two iter-
ations of both ϕ and ϕ−1.

Figure 1.2.2: The limit set, Λ ≡
⋂
n∈Z ϕ

n(R), is an invariant Cantor set under all forward- and
backward- iterations of ϕ.

Denote by 0̄ the component of ϕ(R) ∩ R which contains the fixed point p and by 1̄ the other
component which contains the homoclinic point q. Therefore we can assign to each point in Λ a
symbolic representation. Put

Σ ≡ {a = (. . . , a−1, a0, a1, . . . )|ai ∈ {0, 1}}.

A map h : Λ→ Σ can be defined as follows: for s ∈ Λ, h(s) = (. . . , s−1, s0, s1, . . . ) so that

sn =

{
0 if ϕn(s) ∈ 0̄,
1 if ϕn(s) ∈ 1̄.

It is obvious that the map h : Λ → Σ is surjective. Smale proved in [Ss] that h : Λ → Σ is a
homeomorphism and the two sets, Λ and Σ, are topologically conjugate by h. More precisely,

h ◦ ϕ = σ ◦ h,

where σ : Σ → Σ is the left shift operation (i.e. σ(ai)i∈Z = (a′i)i∈Z with a′i = ai+1). The
commutation diagram is shown in Figure 1.2.3.

The dynamics of two conjugated maps are the same from the topological point of view. The
chaotic behavior of ϕ when a transverse homoclinic point is present (which was also what Poincare

6



Λ
ϕ−−−→ Λyh yh

Σ −−−→
σ

Σ

Figure 1.2.3: The map ϕ restricted to the invariant set Λ is conjugate to the left shift map on the
space of bi-infinite sequences of two symbols Σ.

observed) can now be fully explained by the behavior of the left shift map on the space of bi-infinite
sequences of two symbols. By studying all possible sequences of symbols, it can be concluded
that ϕ : Λ→ Λ has

1. periodic cycles of any periods,

2. a dense subset of periodic cycles,

3. a dense orbit,

and more importantly,

4. sensitive dependence on initial conditions.

It is worth mentioning that the topological entropy of the horseshoe map is log 2. See [De2, Ch
2] for more detailed analysis. We will use the fact that the existence of homoclinic point implies
chaos many times in our proof.

There are other chaotic dynamical systems. One example is the bizarre figure that Lorenz [Lo]
observed. It was later named as the strange attractor by Belgian physicist D. Ruelle in 1971.

The rigorous definition of an attractor is given by J. Milnor in [Mj]: a set A ⊂M is an attractor
of a continuous map ϕ : M →M if

1. A is forward-invariant under ϕ,

2. the basin of attraction, which consists of points x ∈ M whose limit set of forward orbits -
denoted by ω(x) - is a subset in A, must have strictly positive measure, and

3. no strictly smaller forward-invariant closed set A′ ⊂ A has the same basin of attraction as
does A.

In [Mj], Milnor gives a nice explanation of the last two requirements: the second condition
“says that there is some positive possibility that a randomly chosen point will be attracted to A”,
and the third “says that every part of A plays an essential role”.

Attractors themselves do not necessarily imply sensitivity dependence on initial conditions.
For example, a sink is an attractor and all the points in the basin of attraction move towards the
sink.

7



Regarding the strange attractor, there are also a number of different definitions. Some defi-
nitions do not imply a strange attractor being chaotic either; see [GOPY]. However, we choose
such a definition that requires sensitivity dependence on initial conditions (see [PT, Ch 7]): an
invariant set A ⊂M under map ϕ : M →M is a strange attractor if

1. A is an attractor with basin of attraction B(A),

2. with total probability on B(A) × B(A), ϕ has sensitive dependence on initial conditions
or almost all orbits (total probability) on B(A) are sensitive.

The difference between the invariant chaotic set Λ given by the transverse homoclinic point
and the strange attractor A is clear. Although ϕ is sensitive dependent on initial conditions on
both Λ and A themselves, no knowledge at all for the orbit of any single point in M\Λ can be
inferred by studying Λ while one can conclude that the (forward) orbits of the points in B(A) is
around the set A.

The numerical simulation of Lorenz’s original three-dimensional differential equations suggests
that there is a strange attractor. Based on the numerical data, Guckenheimer and Williams
[GW] built a geometrical model describing the dynamics of the flow and proved the existence of
strange attractors under the conditions of this geometrical model. W. Tucker [W] proved that this
geometrical model is indeed an accurate description of Lorenz’s original equation. Therefore the
Lorenz attractor is a strange attractor.

Another famous example of strange attractor comes from the famous Hénon family of maps :

ϕa,b(x, y) = (1− ax2 + y, bx).

Hénon [Hm] conjectured, based on his computational simulation, that for a = 1.4 and b = 0.3 the
corresponding map exhibits a strange attractor. Benedicks and Carleson [BC] investigate the case
where the parameter a is near 2 and b > 0 is small. For each given b, there is a positive Lebesgue
measure set Eb such that if a ∈ Eb, then ϕa,b has a strange attractor Aa,b which is the closure of
the unstable manifold of some saddle point pa,b.

There is no short of strange attractors despite their strangeness. In fact, Palis conjectured and
L. Mora and M. Viana later [MV] proved that the Benedicks-Carleson’s result can be generalized
as follows: Let {ϕt}t be a C∞ one-parameter family of surface diffeomorphism and suppose that
ϕ0 has a homoclinic tangency associated to some periodic point p0. Then under generic (even
open and dense) assumptions, there is a positive Lebesgue measure set E of parameter values near
t = 0, such that for t ∈ E, the diffeomorphism ϕt exhibits a strange attractor, or repeller (the
attractor of ϕ−1) near the orbit of tangency. The similar results - the abundant existence of strange
attractors - were proved by Mora and Viana [MV] for one-dimensional maps and by M. Viana
[Vm] for higher-dimensional maps. See [PT, Ch 7] for more discussions about strange attractors.

We close this subsection by one remark: although our attention is on the maps of a compact
manifold M , this condition is not essential. If M is non-compact, all the discussions still are valid
by restricting all the notions and theorem to points in M whose positive orbits have compact
closure. In this case, ∞ can be conventionally considered as an attracting fixed point.
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1.3 The route to the chaos

Given a family of maps {ϕt : M → M}t∈[−1,1] where ϕ−1 has a simple dynamics (for example, a
single fixed point that attracts all the orbits) and ϕ1 has a chaotic dynamics, it is natural to ask
how the family evolves from a simple dynamics system to a chaotic one as the index parameter t
varies. The route to chaotic dynamics refers to such a process, and it has been a subject of much
research in the past several decades.

Experiments and theoretical deductions have provided many various routes to chaos. Here
are a few: (a) period-doubling route to chaos, (b) homoclinic bifurcation route to chaos, (c)
period-adding route to chaos, and (d) quasi-periodic (torus) route.

A family of dynamical systems becomes chaotic via the period-doubling route to chaos means
that it undergoes infinitely many period-doubling bifurcations. A period bifurcation happens when
the parameter t passes some critical moment λn in which one eigenvalue of a previously attracting
cycle of period-n becomes −1 so that the cycle of period-n loses stability and gives birth to an
attracting periodic cycle of period-2n. The previously attracting cycle of period-n later becomes a
saddle periodic cycle of period-n, and remains there independent of the change of the parameter t.

The period-doubling route is of special interest because of a remarkable discovery made by
Feigenbaum [Fe] and independently by P. Coullet and C. Tresser [CT2] in mid-1970’s. They
analyzed the “typical” one-parameter families of unimodal interval maps which are at the transition
from simple to chaotic dynamics. An interval map f : I → I is unimodal if it has one and only
one critical point c ∈ I; for example, if I = [−1, 1], the quadratic family fλ(x) → λx(1 − x) is
such a family. The parameter values λn’s at which those successive period-doubling bifurcations
occurred in the route were recorded. They both observed that independent of the choice of the
families (as long as they are unimodal with enough smoothness, say C3), a universal scaling ratio
exists:

λn − λn−1

λn+1 − λn
→ 4.669201609101990 . . . .

Furthermore, the limit map of the sequence of maps fλn , denoted by fλ∞ (where λ∞ = limn λn),
has an invariant Cantor set Λ as its attractor. P. Coullet and C. Tresser [CT2] also found another
“universal scaling” property within the the small scale geometry of the invariant Cantor set of
fλ∞ .

To explain these phenomena, a non-linear operator, called the period-doubling operator R, has
been invented; this operator acts on the space of unimodal maps. A unimodal map f : I → I is
said to be renormalizable if there is a number p > 1 and a family of I0, I1, . . . , Ip = I0 of compact
disjoint intervals in I such that I0 contains the critical point c in its interior, and f(Ij−1) ⊂ Ij for
all 0 ≤ j < p. Then the renormalization R of f is defined as an affinely rescaled version of the
first return map to I0, fp : I0 → I0; specifically

R(f) = φ ◦ fp ◦ φ−1,

where φ : I0 → I is an affine rescaling of I0 to the original inteval I. It can be easily shown that
the R(f) is still a unimodal map. A unimodal map f is said to be infinitely renormalizable if
Rn(f) ≡ (R◦R◦· · ·◦R)(f) is defined for all n ∈ Z+. They then proposed the following conjecture.
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The Renormalization Conjecture: In the proper class of infinitely renormalizable maps, the
period-doubling renormalization operator has a unique fixed point f∗ that is hyperbolic with a one-
dimensional unstable manifold and a co-dimension one stable manifold consisting of the systems
on the route to chaos.

This conjecture would imply both of the above universalities: the universal scaling ratio
4.669 . . . is in fact the unstable eigenvalue of the derivative of the operator at the fixed, i.e.
the unstable eigenvalue of (DR)f∗ ; the universal geometry of the attractor of Λfλ∞

of fλ∞ given
by all proper families can be explained by the attractor Λ∗ of f∗. In this language, the notion of
universality can be rephrased as follows:

Universality: There exists a positive number ρ < 1 so that for any two infinitely renormalizable
maps f and g,

dist(Rnf,Rng) = O(dist(f, g)ρn).

Given the universality, two infinitely renormalizable maps f and g are conjugate with a con-
jugation map h; that is, there exists a homeomorphism h between the domains of the two maps
so that

h ◦ f = g ◦ h.

A priori the conjugation map h may not be smooth. A stronger property called rigidity is defined
as follows.

Rigidity: The conjugation between two infinitely renormalizable maps is differentiable on the
attractors.

A rigorous proof of this conjecture turned out to be very difficult. In about thirty years, many
had contributed towards the final proof. Among them are D. Sullivan (see [S]), C. McMullen
(see [Mc]) and M. Lyubich (see [Ly]). They all considered the holomorphic extensions of the
analytic maps on the interval and exploited the idea of quadratic-like maps defined by Douady
and Hubbard (see [DH]). A quadratic-like map is a holomorphic branched covering F : U → U ′

of degree 2 between two topological disks U and U ′ so that cl(U) ⊂ U ′. A standard example is
Fc(z) = z2 + c. M. Lyubich completed the proof of the Renormalization Conjecture in the space
of analytic interval maps in [Ly].

Later, with the techniques that were developed for the analytic maps, many people investigate
the conjecture in much larger spaces of unimodal maps. M. Martens [M] has the most general
results about the existence of fixed points of the Renormalization operator. He showed that the
renormalization operator, acting on the space of unimodal maps with critical exponent greater
than one, has periodic points of any combinatorial type.

However, both the hyperbolicity of the Renormalization fixed point and the rigidity are very
sensitive to the differentiability of maps. A. Dave proved that the the fixed point is hyperbolic in
the C2+α family of maps for 0 < α < 1; see [Da]. Quite recently, V. Chandramouli, M. Martens,
W. de Melo and C. Tresser in [CMMT] showed that (a) in the space of C2 unimodal maps the
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fixed point is not hyperbolic, (b) in a smoother space called C2+|·| (the map in which is less smooth
than the usual C2+α for 0 < α < 1) the failure of hyperbolicity is tamer than that in C2, and (c)
when the smoothness is less than (but can be very close to) C2, the fixed point is not even unique,
therefore universality and rigidity do not exist.

Nevertheless, it is somewhat safe to assure ourselves that we have a quite clear knowledge of
what happens for a generic one-dimensional dynamic system which is on the route to chaos and
what its boundary of chaos looks like.

The study of route to chaos in higher-dimensional spaces is, however, far more difficult and
far from complete. Many new phenomena can happen and one cannot expect the period-doubling
route to chaos being the generic route as in the one-dimensional case.

Some of them have been confirmed theoretically. For example, we might meet the homoclinic
bifurcation in area-preserving systems. A homoclinic bifurcation is a process of unfolding a ho-
moclinic tangency which leads to the appearance or disappearance of the transverse homoclinic
points. Clearly, the homoclinic bifurcation can create chaos in a sudden burst.

W s

W u

W s

W u

q
W s

W u

Figure 1.3.1: Unfolding a homoclinic tangency

The family of Hénon maps provides an example of homoclinic bifurcation. Hénon maps are
planar maps of the form:

(x, y) 7→ (−x2 − by + c, x)

where b and c are real numbers (this form is slightly different from the one presented in Subsection
1.2, but they are equivalent). When b = 1, the Hénon maps are area-preserving. R. Devaney
showed that (a) when c < −1, Hénon map does not have any periodic point, (b) when c = −1,
there exists a fixed point in [−1, 1] but no other periodic point and (c) for all c > −1, the Hénon
maps admit transverse homoclinic points; see [De]. Therefore, this conservative Hénon family
shows that the chaotic behavior in a conservative system need not arise via a sequence of period
doubling bifurcations as that in the one-dimensional case.

One of the other possibilities is the quasi-periodic route to chaos, which is also called Ruelle-
Takens-Newhouse route as they discovered this phenomenon (see [RT] and [NRT]). They showed
that by two Hopf bifurcations (a Hopf bifurcation occurs when a pair of conjugate eigenvalues
of the periodic points are on the unit circle in complex plane), the system develops a strange
attractor. The quasi-periodic route to chaos is also observed experimentally in chemical systems
(see [Sc]). Another route to chaos is via consecutive period-adding bifurcations. In contrast to
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period-doubling bifurcation by which a period-n cycle directly bifurcates to a period-2n cycle, each
period-adding bifurcation increases the period by a constant d ∈ Z+. This route is also observed
in many biological processes. To summarize, the route to chaos in higher dimensional dynamical
systems is far more complicated than that in the one-dimensional case; this has been confirmed
theoretically as well as experimentally.

However, the period-doubling route to chaos is still of special interest in the high-dimensional
systems for two reasons. The first reason relates to the fact that all systems can be divided in two
categories: conservative and dissipative ones. The conservative systems are friction-free whereas
the dissipative ones are not. As a consequence, the asymptotic behavior of dissipative systems
should resemble one-dimensional case more than that of conservative ones does. J.M. Gambaudo
and C. Tresser in [GT] has conjectured that the dissipative R2 maps on the boundary of positive
topological entropy exhibit a period-doubling cascade; therefore, even though other routes to chaos
might exist in the conservative systems (for example, the homoclinic bifurcation route to chaos,
illustrated in the example of the conservative Hénon family), they should not exist in dissipative
systems. Although this is still an open problem, it seems very plausible. S. Crovisier, E. Pujals and
C. Tresser very recently prove the conjecture assuming some extra conditions on the dissipative
maps. There are similar conjectures for higher-dimensional dynamical systems.

Secondly, the period-doubling phenomenon is still abundantly observed in high-dimensional
(both conservative and dissipative) dynamical systems. Furthermore, the universality is always
observed as well when the family does go through the period-doubling route to chaos. However,
it is worth mentioning that the universalities observed are not necessarily the same universality
that exists in one-dimensional unimodal maps. For example, for the conservative R2 systems in
which the period-doubling route occurs, the universal scaling ratio is about 8.72 other than 4.66.
We will explain such differences in details in the later discussion of conservative R2 maps in this
subsection.

The idea of Feigenbaum-Coullet-Tresser period-doubling renormalization operator is again ap-
plied to prove the universality for the two-dimensional systems. In short, one can introduce a
renormalization operator acting on the class of maps of interest, and an analogue of Renormaliza-
tion Conjecture can be formulated as follows: in the proper class of maps, the specifically-defined
renormalization operator has a unique fixed point that is hyperbolic with a one-dimensional un-
stable manifold and a co-dimension one stable manifold consisting of the systems on the route
to chaos; moreover the universal scaling ratio is the unstable eigenvalue of the derivative of the
operator at the fixed point.

Although the underlying classes of maps are various, the universalities are not the same, and
the renormalization operators are case-by-case defined to suit their own underlying class, it is
worth noting that the wording of the analogue is always a verbatim rephrase of the original
Renormalization Conjecture. More importantly, the analogue and the original Renormalization
Conjecture share the same essence: if the analogue of Renomralization Conjecture of a particular
class of maps can be demonstrated, then the universality of this class of maps follows as that does
in the one-dimensional case.

The R2 maps are the simplest among higher-dimensional maps. In the following part of this
subsection, we discuss the renormalizations (therefore the universality and rigidity behaviors) of
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dissipative and conservative R2 maps. When the context is clear, we will speak of renormalization
operators without explicitly mentioning the underlying classes of maps.

Collet, Eckmann and Koch started the investigation into the dissipative systems. In [CEK],
they defined a renormalization operator for highly dissipative systems and showed that the one-
dimensional period-doubling renormalization fixed point is also a hyperbolic fixed point for highly
dissipative two-dimensional maps of the renormalization operator. Later on, Gambaudo, van
Strien and Tresser [GST] proved that the highly dissipative infinitely renormalizable two-dimensional
maps also have an attracting Cantor set on which the maps act as the adding machine.

However, even for those highly dissipative maps, the geometry is not the same as that of
their one-dimensional counterparts. A. De Carvalho, M. Lyubich, and M. Martens showed in
[CLM] that the geometry of infinitely renormalizable dissipative two-dimensional maps has the
universality property with two-dimensional characteristics and, unlike the one-dimensional case,
does not have the rigidity property. Because of the surprising contrast, here we give a little more
description about these discoveries.

In [CLM], they consider a class of two-dimensional maps that are given by small perturbations
of unimodal maps

F (x, y) 7→ (f(x)− ε(x, y), x) (1.3.1)

where f(x) is a unimodal map satisfying some regularity assumptions. They also assume that
the C1 norm of the perturbation ε is small (therefore the map is highly dissipative).

In [CLM], the renormalization is defined in such a way that if f is period-doubling renormal-
izable, F is CLM-renormalizable. The renormalization operator RCLM is defined by

RCLMF = H−1 ◦ F 2|U ◦H,

where U is a neighborhood of the “tip” point v = (f(0), 0) and H is an explicit non-linear change
of variables.

This renormalization operator has three unique characteristics. First, the “tip” point v can
be viewed as a “critical value”. Put in another way, this renormalization region U is near the
“critical value” rather than near the “critical point” around which other renormalization operators
are defined. The subtle choices like this are crucial to their proof. Second, the renormalization
domain U is defined by its geometric properties. Finally, the rescaling maps are specifically defined
diffeomorphisms based on the renormalization domain instead of universally defined affine maps:
it is shown that one particular change of coordinates can “rescale” F 2 back to the Hénon-like map.

They first showed that the degenerate map F∗(x, y) ≡ (f∗(x), x), where f∗ is the fixed point
of the one-dimensional renormalization operator, is a hyperbolic fixed point for the operator
RCLM with a one-dimensional unstable manifold. They then showed that, for any infinitely
renormalizable Hénon-like map F , there exists a hierarchical family of “pieces” {Bn

σ}, 2n on each
level n, so that the set

O = OF ≡
⋂
n

⋃
σ

Bn
σ

is an attracting Cantor set on which F acts like the dyadic adding machine. Moreover, the
diameters of the pieces Bn

σ shrink exponentially at the rate of O(λ−n), where λ is about 2.6 and is
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the universal scaling ratio of one-dimensional renormalization. This gives the the explicit formula
of RCLM :

Rn
CLMF (x, y) = (fn(x)− b2na(x)y(1 +O(ρn)), x)

where fn is the n-th renormalization of f such that fn → f∗ exponentially fast, b is the average
Jacobian of F , 0 < ρ < 1, and a(x) is a function. That the renormalizations Rn

CLMF of infinitely
renormalizable maps converge at an exponential rate follows directly from this formula. The
universality thus resembles the one-dimensional case.

However, this Cantor set O is not rigid. Indeed, if F and G are two infinitely renormalizable
Hénon-like maps with different average Jacobians bF and bG, then the conjugation h between the
attractor of F and that of G does not admit a differentiable extension to R2. Similar theory has
also been generalized to three dimensional dissipative Henon-like maps by Y. Nam in [Ny].

Finally, the authors of [CLM] show that the Cantor sets of generic infinitely renormalizable
Hénon-like maps, unlike their one-dimensional counterparts, do not have a universal bounded
geometry.

A heuristic explanation of these new features is as follows: near the “tip”of Hénon-like maps,
the renormalization regions are slightly tilted and bent parallelograms instead of rectangles so
that non-linear part plays a role in the two-dimensional case. The geometry of the Cantor sets
therefore is distorted.

There are also many studies about the area-preserving maps as well. Universality has also
been observed in families of area-preserving maps by several authors in the early 1980s (see [Bo],
[EKW] and [CEK2]). For example, it is shown in [Bo] that the area-preserving Hénon family

Fa(x, y) = (−ax2 − y + 1, x)

exhibits the period-doubling cascade to chaos. Maps in this family possess a fixed point(−1 +
√

1 + a

a
,
−1 +

√
1 + a

a

)
which is stable when 1 < a < 3. When a1 = 3 this fixed point becomes unstable, a cycle of period

2 is born. The period-2 periodic points of Fa are (x±, x∓), where x± = (1±
√
a−3)
a

. This cycle is
stable until a2 = 4, and then a cycle of period 4 is born. In general, there exists a sequence of
parametric values ak, at which the cycle of period 2k−1 turns unstable and a cycle of period 2k is
born. The sequence of parameter values ak accumulates to a number a∞. The crucial observation
is that the scaling ratio

lim
k→∞

ak − ak−1

ak+1 − ak
= 8.721 . . .

given by this family is indeed universal for a larger class of families of area-preserving maps.
This scaling ratio sharply distinguishs itself from the Feigenbaum-Coullet-Tresser scaling ratio

that exists in one-dimensional and dissipative two-dimensional systems; the universality in con-
servative systems are therefore conjectured and later proved very different from that in dissipative
systems.
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The authors of [EKW] propose the renormalization operator for a proper class of area-preserving
maps:

REKW (F ) = Λ−1
F ◦ F

2 ◦ ΛF ,

where ΛF is some F -dependent change of coordinates. It has been showed in [CEK2] that ΛF is
a diagonal linear transformation, that is, ΛF (x, y) = (λFx, µFy).

The authors of [EKW] and [EKW2] also proved the existence of a hyperbolic fixed point for
such a period-doubling renormalization operator with the help of the computer.

In stark contrast to dissipative case, the rigidity of such a renormalization operator in area-
preserving systems has been established by D. Gaidashev, T. Johnson, and M. Martens in [GJM]:
the period doubling Cantor sets of area-preserving maps in the universality class of the Eckmann-
Koch-Wittwer renormalization fixed point are smoothly conjugate (more precisely, they are conju-
gated by a C1+α map).

More detailed discussions about the period-doubling route to chaos and renormalizations of
both one-dimensional and two-dimensional maps can be found in [LM].

Nevertheless, as we mentioned earlier, the study of the route to chaos in higher-dimensional
cases is far from complete. First of all, most recent works are about the two dimensional-maps in
Euclidean space other than higher dimensions and other manifolds. With the growth of dimensions,
the complexity of chaos grows as well; the properties of manifolds may also lead to different
behaviors.

Secondly, even the study of two-dimensional maps is nowhere near complete. Take the dissipa-
tive maps for example: few of the works are on the general dissipative families of maps (other than
highly dissipative families). A fundamental question, Gambaudo and Tresser’s Conjecture that
the dissipative R2 maps on the boundary of positive topological entropy exhibit a period-doubling
cascade, remains open; see [GT].

While believing that Gambaudo and Tresser’s Conjecture is true for generic maps, our work
aims at a special (also very large) family of analytic and modestly dissipative (say, the Jacobian
of F is less 1

2
) maps and shows they experience the period-doubling route to chaos under certain

conditions. The frame of our work is discussed in the next subsection.

1.4 Statement of results

The purpose of this dissertation is to present a partial answer to the long-standing conjecture
propose by Gambaudo and Tresser:

The orientation-preserving area-contracting embeddings between two disks in R2 experience
the period-doubling route to chaos.

In this dissertation, we provide a large class of area-contracting maps and show that the route
to chaos of this class of maps is via the period-doubling cascade.

Throughout this dissertation, we assume the maps are real analytic. It seems natural that the
stronger differentiability the maps have, the more likely the conjecture holds. The analytic maps
therefore serve a good starting point. More importantly, the fact that analytic R2 maps have
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holomorphic extensions to an open neighborhood in C2 allows us to take advantage of complex
analysis tools. Indeed, in this dissertation we have our discussion in the complex (C2, or an open
subset of C2) setting rather than in the real (R2, or an open subset of R2) setting. Unless otherwise
specified, all the objects are assumed to be complex in the following discussion.

In addition, we hope that the our analysis in the complex setting sheds light on analytic maps.
Therefore, we assume that all the subsets in C2 are symmetrical about R2 and all the C2 maps
commute with conjugation of complex points. This real symmetry requirement simplifies our
analysis and fits the holomorphic extensions of analytic maps.

The outline of this dissertation is as follows. We start by introducing the notion of a branch,
which is a pair consisting of a specially-structured domain D ⊂ C2, called a strip, and a map
F : D → C2. Branches are generalized Hénon maps. Indeed, they are essentially “little Hénons”
in many ways. Figure 1.4.1 is the projection over R2 of a branch; it highly resembles the Hénon-
maps.

Figure 1.4.1: The projection of a branch onto R2. The white rectangular area bounded by blue
lines is its domain and the shaded area is its image.

The merit of branches is that their compositions are still branches under certain topological
restraints, therefore the class of branches is inclusive enough in such a sense. The preliminary
properties of branches are discussed in Chapter 2.

The main part of this dissertation considers clusters of finite branches whose domains and
ranges are both orderly displayed. Roughly speaking, the member branches have the domains
pairwise inclusive, and their real images mutually “envelop” each other. Moreover, the two inclu-
sivenesses are consistent; see Figure 1.4.2. Such clusters are called nested systems. As branches
are generalizations of the Hénon maps, nested systems are generalizations of the return maps of
Hénon maps. A single branch is the simplest form of a nested system.
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F3(D3) F2(D2) F1(D1)

D3

D2

D1

Figure 1.4.2: A nested system consists of three branches. The domains are pairwise inclusive -
D1 ⊃ D2 ⊃ D3, and the real ranges “envelop” each otherz; F (D1) is “higher” than F (D2) and
F (D2) is “higher ”than F (D3). Two orders are consistent.
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Because it is the route to chaos that we are interested in, it is natural to assume that all the
nested systems in this dissertation have zero topological entropy and finite periodic points (except
the one on the boundary of chaos).

We denote the nested systems containing one branch by simple nested systems, and those
containing two branches by basic nested systems. They are not only the simplest nested systems,
but also the only forms of nested systems that we need to investigate into. Indeed, in Subection
4.2 we show that, under zero topological entropy assumption, a nested systems which contains n
members is equivalent to a family of n either simple or basic nested systems in terms of non-
wandering points. More specifically, we partition the non-wandering set in such a way that each
subset involves at most two consecutive member branches of the original nested system. The
three-member nested system in Figure 1.4.2 is equivalent to a family of one basic nested system
and one simple nested system illustrated in Figure 1.4.3. Since D3 ∩ F3(D3) = ∅, the branch
(D3, F3) does not show at all in the equivalence family. The family contains only one basic nested
system consisting of (D1, F1) and (D2, F2), and one simple nested system consisting of (D2, F2).

F2(D2) F1(D1)

D2

D1

F2(D2)

D2

Figure 1.4.3: The equivalence family of Figure 1.4.2

In Chapter 5, we define the renormalization operator in the family of basic nested systems,
and the renewal operator in the family of simple nested systems. Our renormalization operator is
based on the first return maps of some relevant points and the maximal connected components on
which those first return maps are continuous. The relevant point is chosen based on the following
idea. Suppose there exists a non-wandering point q in D1\D2. As a non-wandering point, it
must return to D1\D2. We further observe that q must be in F−1(D1) and return to F−1(D1)
(otherwise, F 2

1 (q) 6∈ F (D1) = V , therefore it cannot be a non-wandering point). We then apply
this idea inductively to find the most “relevant” region containing all non-wandering points and
use other criteria to refine the “relevant” points. By carefully defining relevant points, we prove
that this operator produces a new “smaller” nested system that still describes all the dynamics
that are of interest. This new nested system is called the renormalization of the original basic
nested system. For simplicity, the renormalization of a simple nested system is defined to be the
simple nested system itself.
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Since a general nested system is equivalent to a family of some either basic or simple nested
systems, its renormalization is naturally defined as the family of renormalizations of those either
basic or simple nested systems. The new family is called the first generation (equivalent renor-
malized) family. The fact that all the members of the first generation family are nested systems
allows an inductive definition of n-th generation (equivalent renormalized) family.

On the other hand, if for some generation family, all of its members are simple nested systems,
then the renormalization simply replace the family by itself without rendering anything new.
Therefore, the inductive process stops.

Generations of nested systems form a (renormalization) tree. A priori, a tree can have finitely
or infinitely many generations. Figure 1.4.4 shows a two-generation tree starting from a three-
member nested system.

+ +

+

Renormalization

+

+ +

+

Figure 1.4.4: Tree of generations of nested systems. Each rectangle represents a branch. After
two generations of renormalizations, the original family is equivalent to a family of simple nested
systems.

However, in Subsection 5.5 we show that the finiteness of generations of a tree is guaranteed
by the finiteness of periodic points. Therefore, any nested system is equivalent to finitely many
simple nested systems. The proof relies on the fact that each renormalization shorts the periods
of periodic points.

If all the periodic points are hyperbolic, the simple nested systems split into two categories: the
ones containing a saddle and an attractor, and the ones containing more than one saddle points.
If a simple nested system is of the first type, it has been shown ([LM2]) that the attractor must
be a global attractor; we consequently understand its dynamics.

The nested systems of the second type have far more mixed dynamics. They are dealt with
by the renewal operator which creates a new and “finer” (non-simple) nested system from the old
one. Roughly speaking, if there are more than one saddle, then at least one of them, denoted by
p1, has sufficiently “bent” stable manifold that does not go straightly into infinity. The foliations
of p1 provide the natural structure that defines a strip. Depending on the return time of the points
of this strip to itself, we can divide this strip into mutually inclusive strips, each of which has its
own return map. Each strip and its associated return map together form a branch. Moreover, the
real images of those branches “envelop” each other. In this way we obtain a new nested system.
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In order to pull off the renewal operator, we need the nested system to be moderately dissipative
(its Jacobians are uniformly less than 1

2
) with an a priori bound. The new nested system is

conveniently called the renewal of the simple nested system (or simply the renewal).
The renewal invokes another round of renormalizations which in turn calls for another renewal.

This is a “cycle” of operations. We show that there are only finitely many such cycles by exploiting
the finiteness of periodic points in Subsection 6.2.

When the cycles stop, all the member branches are “Little Henons” (simple nested systems)
each of which has a global attracting fixed point (and a saddle). To summarize, we have the
following Theorem which we prove in Subsection 6.2.

Theorem 1.4.1. If a nested system has zero entropy and finitely many hyperbolic periodic points,
then all the points are either attracted to these periodic points or escape to infinity.

The case that some of the periodic points are non-hyperbolic has a similar conclusion which
follows the hyperbolic case easily and is shown in Chapter 6. In either case, periodic points control
all dynamics of the nested system that is away from chaos.

Each cycle has its own renormalization tree. In Chapter 7, by putting trees in sequence, we
have a total tree of the nested system. Following the shape of a total tree, we therefore obtain
a “combinatorial” description of a nested system. For a family of nested systems, the route to
chaos is then revealed by its trajectory of combinatorials. Indeed, for a family of nested systems
{NSt}t∈[a,b], if the combinatorial does not change for all t ∈ [a, b], the dynamics does not change
either. Conversely, if the combinatorial changes at some point t1, one of three things can happen
at NSt1 : saddle node bifurcation, periodic-doubling bifurcation, and a formal change due to the
definition of the renormalization operators.

Among the three possibilities, the formal change is innocent: finite such changes do not impact
the dynamics at all, while infinite such changes only accumulate to a saddle node bifurcation. In
short, they alone cannot create a route to chaos.

The saddle node bifurcations present a possible route to chaos, but it can be solved. With
the growth of the number of periodic points, the total tree also grows in both cycles and gen-
erations in each cycles. Both renormalization and renewal operators shrink the Jacobian; more
notably, the renormalization operator shrink the Jacobian at a exponential rate. In other words,
the modest dissipative nested systems are transformed into highly dissipative simple nested sys-
tems. Simple nested systems are a generalization of Hénon maps. Similar to the family of highly
dissipative Hénon maps, the family of highly dissipative simple nested systems must experience
period-doubling cascade to chaos.

We therefore conclude the main theorem in this dissertation:

Theorem 1.4.2. A modest dissipative family of nested systems satisfying an apriori bound expe-
riences period-doubling route to chaos.

Theorem 1.4.2 is proved in Chapter 7. By Theorem 1.4.2, the moderate dissipative family of
Henon maps experiences period-doubling route to chaos.

We here highlight two assumptions in our proof. The first is concerned with a topological
property of nested systems, see Assumption 5.1.4. The second one deals with the renewal oper-
ator. In order to start a renewal operation, the family needs an a priori bound. Although the
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renormalization operator preserves (even improves) the bound, we have not completely shown that
the renewal operator preserves it as well. This is illustrated in the Assumption 6.2.7.
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1.5 Notations

1. Throughout the paper we use z and w to denote points in C, and use x and y to denote
points in R.

2. Throughout the paper, all maps are holomorphic unless otherwise stated.

3. The coordinate projections are denoted by π1,2 : C2 → C.

4. A disc is a homeomorphic copy of the closed unit disc in C.

5. Put
X ≡ {(z, 0) : |z| ≤ 1} and Y ≡ {(0, w) : |w| ≤ 1}.

When there is no confusion, we consider X and Y as discs in C. For example, for g : X → C2

we define g(z) ≡ g(z, 0).

6. For each p = (z, w)∈C2, define its conjugate as p = (z, w).

7. For each subset K ⊂ C2, put

KR ≡ K ∩ R or K ∩ R2

when there is no confusion.

8. Throughout this paper we use I to denote a finite index set and I to denote either a finite
or a countably infinite index set.

9. Put T ≡ [−1, 1].
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Chapter 2

Basic Notions

This dissertation is built on a class of objects called branches. They are introduced by M. Lyubich
and M. Martens in their recent unpublished manuscript [LM2]. In order to provide a complete
picture of our proof, in Subsections 2.1 and 2.2 we recall the definitions, lemmas, and propositions
from [LM2] that are necessary for this dissertation. More precisely, we introduce the notion of
strips and branches in Subsection 2.1, and the notion of scaling ratio which measures the space
between two strips in Subsection 2.2. We then start to discuss real symmetrical strips and branches
and introduce an order ≤R to real symmetrical branches in Subsection 2.3. We will work with the
space of the real symmetrical strips and branches in this dissertation.

2.1 Strips and Branches

Let K ⊂ C be a disc and S ⊂ C2 be a compact set. If u : K → S is an embedding and u(K) ⊂ ∂S,
then u is called a proper embedding and u(K) is a properly embedded disc.

Put γ ≡ ∪nj uj(Kj) where uj(Kj) is a properly embedded disc for every j = 1, . . . , n. In other
words, γ is the union of finite properly embedded discs. If the sets uj(int(Kj)) are pairwise disjoint,

then the sets uj(Kj) are called interior connected components.

Definition 2.1.1 ([LM2]). The connected compact set S ⊂ C2 is a fibration over the disc XS ⊂ C
with the structure map s : U → C, where U is an open neighborhood of S ⊂ U , if

1. s(S) = XS,

2. Rank Ja(s(z)) = 1 for every z ∈ U , where Ja(s(z)) is the Jacobian Matrix of the structure
map s at z,

3. each fibre γz = s−1(z)∩S is a union of finitely many properly embedded discs, each of which
is called a component of the fibre.

Moreover, the s-boundary of S is ∂sS ≡ s−1(∂XS)∩S ⊂ ∂S. An embedding u : K → S is properly
embedded relative to the fibration on S if u(∂K) ⊂ ∂s(S).
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Definition 2.1.2 ([LM2]). A connected compact set S ⊂ C2 is called a strip with the base XS

and the height YS if

1. S is fibered over YS by
π2 : C2 → C,

2. S is fibered over XS by
s : U → C,

3. for each w ∈ YS, the horizontal slice Sw = π−1
2 (y)∩S, called a π2-fibre, is properly embedded

relative to the s-fibration
∂Sw ⊂ ∂sS,

4. for each z ∈ XS, the fibre γz = s−1(z) ∩ S is properly embedded relative to the π2-foliation

∂γz ⊂ ∂horS = ∂π2S,

5.
S = s−1(XS) ∩ π−1

2 (YS).

Strictly speaking, given a strip S, there are two structure maps: s : U → C2 fibers S over
the base XS and π2 : U → C2 fibers over the height YS. However, π2 is a universal structure
map independent of strips. We will hereafter call the map s to be the structure map of S for
simplicity. We will also denote by X and Y the base and the height of any general strip, should no
confusion arise. The horizontal boundary of the strip S given in Definition 2.1.2 is the π2-boundary
∂horS = ∂π2S. The boundary of a strip S satisfies ∂S = ∂sS ∪ ∂horS.

If the two strips S0 ⊂ S1 have the same height, then S0 is called a sub-strip of S1.
Let u : K → S be a properly embedded disc. It is called a vertical disc if

u(∂K) ⊂ ∂horS.

The topological degree deg0(π2 ◦ u : K → Y ) is properly defined. The degree of the vertical disc
u is its topological degree. It is called a horizontal disc if

u(∂K) ⊂ ∂sS.

The topological degree deg0(s ◦ u : K → X) is properly defined. The degree of the horizontal
disc u will be defined later.

Lemma 2.1.3 ([LM2]). Let S be a strip with the base X and the height Y . Then for z ∈ X and
w ∈ Y

deg0(s : Sw → X) = deg0(π2 : γz → Y ),

and independent of z and w. The degree of a strip is defined as

deg(S) = deg0(s : Sw → X).
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Lemma 2.1.4 ([LM2]). Let u : K → S be a horizontal disc and γ : Kγ :→ S a vertical disc in S.
Then

#(γ(Kγ) ∩ u(K)) ≤ deg(S) · deg0(γ) · deg0(u).

Definition 2.1.5 ([LM2]). Let u : K → S be a horizontal disc map in S. For every sub-strip
D ⊂ S let KD = u−1(D). The degree of a horizontal disc u : K → S is defined as

deg(u) = sup
D⊂S

deg0(sD ◦ u : KD → XD)

deg(D)
.

Let D ⊂ V be a substrip and u : K → V a horizontal disc. Define

degD(u) =
deg0(sD ◦ u : KD → XD)

deg(D)
.

Lemma 2.1.6 ([LM2]). Let w be in Y which is the height of the strip V , and let V j
w be an interior

connected components of Vw. Each V j
w is a horizontal disc uw : V j

w → V . For every substrip
D ⊂ V ∑

j

degD(uj) = 1.

In particular, deg(uj) ≤ 1.

Lemma 2.1.7 ([LM2]). Let W ⊂ C2 be a connected compact one-dimensional manifold and Y ⊂ C
be a disc such that

1) ∂W ⊂ π−1
2 (Y ),

2) π2(W ) = Y .

Then W is a disc.

Definition 2.1.8 ([LM2]). A branch is a pair (D,F ) consisting of a strip D whose height is Y
and the structure map is sD : D → XD, and a map F : D → C2 that is defined on an open
neighborhood of D and is diffeomorphic onto its image. The strip D is called the domain of the
branch.

Definition 2.1.9 ([LM2]). A branch (D,F ) wraps around a strip V with height Y if

1. π2 ◦ F (D) ⊂ int(Y ),

2. F (∂sD) ∩ int(V ) = ∅,

3. F (D) ∩ int(V ) 6= ∅.

The map F is called the wrapping map. The branch wraps strictly around V , if F−1(V ) = D, and
sD = sV ◦ F .
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Lemma 2.1.10 ([LM2]). Let S ⊂ V be a sub-strip of V . If a branch F : D → C2 wraps around V
and F (D) ∩ int(S) 6= ∅, then it also wraps around S.

Lemma 2.1.11 ([LM2]). Let S be a strip with the height Y and u : K → C2 be a disc with

1. u(K) ⊂ π−1
2 (Y ),

2. u(∂K) ∩ int(S) = ∅,

3. u(K) ∩ int(S) 6= ∅.

Then
u−1(S) =

⋃
Ki,

where Ki are discs with pairwise disjoint interiors.

Lemma 2.1.12 ([LM2]). Consider a branch F : D → C2 which wraps around V . If γ : K → V
is a vertical disc, then F−1(γ(K)) is a finite union of vertical discs in D:

F−1(γ(K)) =
⋃

γi(Ki),

where γi : Ki → D are vertical discs in D with pairwise disjoint interiors.

Proposition 2.1.13 ([LM2]). Let D1 ⊂ V be a sub-strip of V with the structure map s1 : D1 →
C. If a branch (D,F ) wraps around V and D0 ⊂ D is a non-empty connected component of
F−1(D1) ⊂ D, then D0 ⊂ D is a sub-strip with the induced structure map

s0 = s1 ◦ F : D0 → C.

Moreover, the branch (D0, F ) wraps strictly around D1.

The Proposition 2.1.13 illustrates the main idea behind the notion of strips and branches: the
pre-images of strips are also strips. Therefore, the wrapping map can be assigned a degree as
follows. Let (D,F ) be a branch wrapping around V . By Proposition 2.1.13, for any sub-strip
D′ ⊂ V , each connected component D′j of F−1(D′) ⊂ D is a sub-strip of D.

Definition 2.1.14 ([LM2]). The degree of F is

deg(F ) = sup
D′⊂V

∑
j deg(D′j)

deg(D′)
.

Lemma 2.1.15 ([LM2]). The degree of a branch is a finite positive number.

Lemma 2.1.16 ([LM2]). Let u : K → V0 be a horizontal disc and D ⊂ V0 be a sub-strip.
The branch (D,F ) wraps strictly around V1. Let K0 be the closure of a connected component of
int(u−1(D)), then K0 is a disc. This defines a horizontal disc F ◦ u : K0 → V1 in V1 satisfying

deg(F ◦ u) ≤ deg(F ) · deg(u).
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2.2 Scaling Ratios

In this section we introduce the notion of scaling ratio of a sub-strip D of V . The scaling ratio is
an adaptation of the notion of the extremal length to the context of strips.

Let K ⊂ C be a disc and B ⊂ int(K) be a compact subset. Let Γ(B,K) be the collection
of curves connecting the boundary of K to B, i.e. curves γ : [tK , tB] → K with γ(tK) ∈ ∂K and
γ([tK , tB)) ⊂ K \B, and γ(tB) ∈ B. A non-negative function ρ ∈ L2(K) is K-allowable if

A(ρ) =

∫
K

ρ2dxdy ∈ (0,∞).

If ρ is measurable on γ ∈ Γ(B,K) then

Lγ(ρ) =

∫
γ

ρ|dz|,

otherwise Lγ(ρ) =∞. Furthermore, let

L(ρ) = inf
γ∈Γ(B,K)

Lγ(ρ).

Definition 2.2.1 ([LM2]). The extremal length of the pair B ⊂ K is

λ(B,K) = sup
ρ

L(ρ)2

A(ρ)
.

In [LM2], they use the discs to illustrate the calculation of extremal length. Let Kr1 ⊂ C
and Kr2 ⊂ C be two Euclidean discs centered at the origin with radius r1 and r2 respectively. If
r1 < r2, then

λ(Kr1 , Kr2) =
1

2π
ln
r2

r1

.

Lemma 2.2.2 ([LM2]). If u : K → C is a univalent map, then

λ(B,K) = λ(u(B), u(K)).

Lemma 2.2.3 ([LM2]). Let f : K0 → K1 with f(∂K0) = ∂K1 and B0 = f−1(B1) with B1 ⊂
int(K1). Then

λ(B0, K0) ≥ 1

deg(f)
· λ(B1, K1).

Lemma 2.2.4 ([LM2]). If B1 ⊂ B2 ⊂ int(K), then

λ(B1, K) ≥ λ(B2, K).

Lemma 2.2.5 ([LM2]). Let Di ⊂ K be a collection of pairwise disjoint discs contained in the disc
K. Each Di contains a compact set Ei ⊂ Di. Let D = ∪Di and E = ∪Ei. Then

λ(E,K) ≥ λ(D,K) + inf λ(Ei, Di).
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Lemma 2.2.6 ([LM2]). If int(B) 6= ∅, then λ(B,K) <∞. Moreover, λ(∅, K) =∞.

Although scaling ratios will only be used for sub-strips, the notion is defined for any compact
subset D ⊂ int(V ), where V is a strip and int(D) 6= ∅. Let u : K → V be a horizontal disc in V
and

Bu = u−1(D) ⊂ K.

Definition 2.2.7 ([LM2]). Let D ⊂ V be a compact set with int(D) 6= ∅ and D ⊂ int(V ). The
space around D with respect to v is

[D, V ] = inf
u

deg(u) · λ(Bu, K).

An interior connected component V j
y of a slice Vy of V is a disc. Let D be a sub-strip of V

and Dj
y = D ∩ V j

y . Then, by Lemma 2.1.6,

λ(Dj
y, V

j
y ) ≥ [D, V ].

In particular, [D, V ] measures the worst extremal length in each interior component of slices.

Lemma 2.2.8. For every pair D ⊂ int(V )

0 < [D, V ] <∞.

Definition 2.2.9 ([LM2]). The scaling-ratio of D ⊂ int(V ), where D is compact with int(D) 6= ∅
and D ⊂ int(V ), is

σ(D, V ) = e−2π·[D,V ].

Lemma 2.2.10 ([LM2]). Let D ⊂ V be a sub-strip and E be a compact subset of D with int(E) 6= ∅
and E ⊂ int(D). Then

[E, V ] ≥ [E,D] + [D, V ],

or equivalently
σ(E, V ) ≤ σ(E,D) · σ(D, V ).

Lemma 2.2.11 ([LM2]). Let K1 ⊃ K2 ⊃ K3 ⊃ · · · be a sequence of discs with∑
n

λ(Kn+1, Kn) =∞.

Then ⋂
Kn = {p}.

Lemma 2.2.12 ([LM2]). Let V ⊃ D1 ⊃ D2 ⊃ · · · ⊃ Dn ⊃ Dn+1 ⊃ · · · be a sequence of sub-strips
with ∑

n

[Dn+1, Dn] =∞.

Then for every y ∈ Y
dim(Vy ∩

⋂
Dn) = 0.

In particular,

int(
⋂

Dn) = ∅.
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Lemma 2.2.13 ([LM2]). Let D1 ⊂ V be a sub-strip and (D,F ) be a branch which stritcly wraps
around V and D0 = F−1(D1) ⊂ D.

[D0, D] ≥ 1

deg(F )
· [D1, V ],

or equivalently

σ(D0, D) ≤ σ(D1, V )
1

deg(F ) .

2.3 Real Symmetrical Strips and Branches

A compact set U ⊂ C2 is called a real symmetrical set if for each p ∈ U its conjugate p is also in
U .

Let U ⊂ C2 be a real symmetrical set. If a map F : U → C2 commutes with the standard
conjugation, it is called a real symmetrical map on U . For example, The Henon maps

F : C2 → C2,

(
x
y

)
7→
(
−x2 − by − c

x

)
are real symmetrical on C2 provided that b and c are both real.

Definition 2.3.1. Let S ⊂ C2 be a strip with the base X, the height Y , the structure map
s : S → X, and the projection π2 : S → Y . S is a real symmetrical strip if

1. S is a real symmetrical set and

2. the structure map s is real symmetrical .

Definition 2.3.2. Let (D,F ) be a branch that warps around a real symmetrical strip V . (D,F )
is called a real symmetrical branch if

1. D is a real symmetrical strip and

2. F is a real symmetrical map.

Lemma 2.3.3. If (D,F ) wraps around a real symmetrical strip V and W ⊂ V is a real symmet-
rical substrip with the structure map sW , then F−1(W ) ⊂ D is a real symmetrical strip with the
structure map sW ◦ F .

Proof. For each p ∈ D and q = F (p) ∈ W , we have q ∈ W because W is real symmetrical. Since
(D,F ) is real symmetrical , it follows that p ∈ D and F (p) = q ∈ W . Hence p ∈ F−1(W ). The
structure map of F−1(W ) is sW ◦ F by Proposition 2.1.13 satisfying

sW ◦ F (p) = sW (F (p)) = sW (F (p)).
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Given a real symmetrical map F , its restriction to R2, denoted by F |R2 , is a map from R2 to
R2. The Jacobian matrix of F |R2 is denoted by Jac(F |2R). Let (D,F ) be a real symmetrical branch
that strictly wraps around a real symmetrical strip V . (D,F ) is called a positive branch

Jac(F |R2) ≥ 0;

(D,F ) is called a dissipative branch if there exists some 0 ≤ d < 1 such that

Jac(F |R2) ≤ d.

If F has degree n, (D,F ) is called a degree-n branch for short.
Assume the strip V has degree one. The branch (D,F ) that strictly wraps around V is called

a left-end branch if
F
(
s−1
D (±1)

)
∩ R2 ⊂ s−1

V (−1) ∩ R2;

it is called a right-end branch if

F
(
s−1
D (±1)

)
∩ R2 ⊂ s−1

V (+1) ∩ R2.

For simplicity, this paper assumes that all the branches, if applicable, are left-end. All the argu-
ments are the same if branches are right-end.

Remark 2.3.4. Let (D,F ) be a real symmetrical degree-2 left-end branch that wraps around a real
symmetrical strip V with deg(V ) = 1. Let K ⊂ D be a horizontal disc with deg(K) = 1. Then
F (K) is a horizontal disc in V and deg(F (K)) ≤ deg(F ) · deg(K) = 2 because of Lemma 2.1.16.
For any degree 1 vertical disc Kγ in V ,

#
{
F (K) ∩Kγ} ≤ deg(V ) · deg(Kγ) · deg0(F (K))

≤ deg(V ) · deg(Kγ) · (deg(F (K)) · deg(V )) ≤ 2.

The first inequality follows from Lemma 2.1.4, and the second inequality follows from the definition
of the degree of a horizontal disc.

The vertical slice s−1
V (z) is a degree 1 vertical disc in V for any z ∈ X, hence we have

#
{
F (K) ∩ s−1

V (z)} ≤ 2.

On the other hand, if K is further assumed to be real symmetrical, then it follows the fact that
F is left end, we have

#
{
F (K) ∩ s−1

V (−1) ∩ R2
}
≥ 2.

Thus,
#
{
F (K) ∩ s−1

V (−1)
}

= 2.

The two intersection points are in s−1
V (−1) ∩ R2, therefore they determine a unique path in

s−1
V (−1) ∩ R2 with which F (KR) ≡ F (K ∩ R2) forms a Jordan curve. This type of Jordan

curves is called a left attached Jordan curve associated with F (KR).
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In particular, if deg(D) = 1, then for any y ∈ Y , the horizontal slice π−1
2 (y) ∩D is a degree 1

horizontal real symmetrical disc in D. In this case, we introduce the following notations for later
convenience. For every x ∈ XR and y∈Y R, put

ly ≡ π−1
2 (y) ∩D ∩ R2, ly(x) ≡ ly ∩ s−1

D (x)

γy ≡ F (ly), γy(x) ≡ F (ly(x)).
(2.3.1)

Clearly, for any y∈Y R,
γy(±1) =

{
F (π−1

2 (y) ∩D) ∩ s−1
V (−1)

}
.

The left attached Jordan curve associated with γy is denoted by Jy.

Definition 2.3.5. Let (D,F ) be a real symmetrical degree-2 left-end branch wrapping around a
real symmetrical strip V such that deg(D) = deg(V ) = 1.

1. For a point p∈V R (resp. a set K ⊂ V R), write

p ≤R D (resp. K ≤R D)

if p (resp. K) lies inside Jy for all y∈Y R.

2. For a real symmetrical branch (D̃, F̃ ) that strictly wraps around V , write

D̃ ≤R D

if F̃ (D̃R) lies inside Jy for all y∈Y R.

Lemma 2.3.6. Let (D,F ) and V be as in definition 2.3.5, and K ⊂ D be a real symmetrical hori-
zontal disc with deg(K) = 1. If p ≤R D, then p lies inside the left attached Jordan curve associated
with F (KR).

Proof. Let y1 = inf π2(KR) and y2 = supπ2(KR). The left attached Jordan curve associated with
F (KR) must lie either outside of Jy1 or Jy2 . The Lemma follows.

For later convenience, we introduce the following notations: If in a setting we have (n+ 1) real
symmetrical strips Di, i = 1, ..., n and V ,

1. their structure maps will be denoted by si, i = 1, ..., n and s, respectively, and

2. for i = 1, ..., n, x ∈ X and y ∈ Y

b±c ≡ s−1(±1), b± ≡ b±c|R2 , buc/dc ≡ π−1
2 (±1) ∩ V, bu/d ≡ buc/dc|R2 ,

b±ci = s−1
i (±1), b±i = b±ci |R2 , b

uc/dc
i ≡ π−1

2 (±1) ∩Di, b
u/c
i ≡ b

uc/dc
i |R2 ,

b±(y) ≡ b± ∩ π−1
2 (y), bu/d(x) ≡ bu/d ∩ s−1(x),

b±i (y) ≡ b±i ∩ π−1
2 (y), b

u/d
i (x) ≡ b

u/d
i ∩ s−1(x).

(2.3.2)
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If there are only two strips D and V , the above notations are modified modestly as follows:

1. their structure maps will be denoted by sD and sV , respectively, and

2. b1 is replaced with Db. For example, Db±c ≡ b±c1 .

Using this set of notations, for example, we can rephrase the definition of left-end as follows: Let
(D,F ) strictly wraps around a real symmetrical V which has degree 1. The branch (D,F ) is a
left-end branch if

F
(
Db±)

)
⊂ b−.

Definition 2.3.7 (Vertical Curves). Let V be a strip. l ⊂ V R is called a vertical curve if l is the
graph of a function over YR.

Example 2.3.8. If V is a degree one real symmetrical strip, b± are vertical curves.

Every vertical curve in V intersects with bu and bd once, respectively. Given two disjoint
vertical curves l1 and l2, we therefore have four points pu, pd, qu and qd where

{pu} = l1 ∩ bu, {pd} = l1 ∩ bd, {qu} = l2 ∩ bu and {qd} = l2 ∩ bd.

Suppose the strip V has degree 1. Then pu and qu (resp. pd and qd) determine a unique path in bu

(resp. bd) connecting them. The two paths and the two disjoint vertical curves together are form
a Jordan curve. This Jordan curve is said to be prescribed by the two vertical curves l1 and l2.

Both the Jordan curve and the region (resp. its closure) enclosed by the Jordan curve are
sometimes referred to as a rectangle. Conversely, a region R ⊂ V ∩ R2 (resp. its closure R) is
called a rectangle if ∂R is a Jordan curve prescribed by two vertical curves in V .

Definition 2.3.9. Let V be a degree one real symmetrical strip and l ⊂ V be a vertical curve. A
point p ∈ V or a subset K ⊂ V is said on the left (resp. right) side of l with respect to V if it lies
inside the Jordan curve prescribed by l and b−(resp. b+).

Remark 2.3.10. When π2(b−(y)) < π2(b+(y)), the definition 2.3.9 is consistent with our intuition.
Without loss of generality, we hereafter assume π2(b−(y)) < π2(b+(y)).

Definition 2.3.11 (Holomorphic Vertical Curves). A curve l ⊂ V is called a holomorphic vertical
curve if l is the restriction to R2 of a vertical disc Kγ ⊂ V , where deg(Kγ) = 1. Kγ is called the
containing (vertical) disc of l.

A holomorphic vertical curve is a vertical curve.

Definition 2.3.12. Let V be a strip. A compact set l ⊂ V R is called a horizontal curve if s(l)
is the graph of a function over XR. The curve l is called a holomorphic horizontal curve if l is
the restriction to R2 of a horizontal disc K ⊂ V , where deg(K) = 1. K is called the containing
(horizontal) disc of l.

Similar to the vertical curve case, if deg(V ) = 1, two disjoint horizontal curves c1 and c2 ⊂ V
with part of b± form a Jordan Curve. This Jordan curve is said to be prescribed by two horizontal
curves c1 and c2.
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Chapter 3

The linkage between positive entropy
and orbits of certain points

In this chapter, we show that the existence of certain orbits implies the existence of transverse
homoclinic points; see Figure 3.2.1 and Proposition 3.2.1. This property plays a crucial role in
the following chapters.

3.1 Preliminary Lemmas

Lemma 3.1.1. Let (D,F ) be a branch wrapping around a strip V and Kγ ⊂ V be a vertical disc.
Put K0 ≡ F−1(Kγ). Then K0 is a union of vertical discs in D. Moreover,

deg(F−1(Kγ)) ≤ deg(V ) · deg(F ) · deg(Kγ).

Proof. Lemma 2.1.12 concludes that K0 is a union of vertical discs in D. For every y ∈ Y ,
π−1

2 (y) ∩D is a union of horizontal discs in D, denoted by Kj
y , j = 1, 2, ..., n, where∑

j

degD(Kj
y) = 1.

It follows Lemma 2.1.16 that {F (Kj
y), j = 1, 2, ..., n} is a union of horizontal discs in V, and∑

j

degV F (Kj
y) ≤

∑
j

degD(Kj
y) · deg(F ) = deg(F ) ·

∑
j

degD(Kj
y) = deg(F ).

By the definition of degree of horizontal discs, we therefore have∑
j

deg0 F ((Kj
y)) =

∑
j

degV F ((Kj
y)) · deg(V ) ≤ deg(F ) · deg(V ).

The number of intersection points of a vertical disc and a horizontal disc has an upper bound
given by Lemma 2.1.4, that is

#((Kγ) ∩
⋃
j

F (Kj
y)) ≤ deg(Kγ) ·

∑
j

deg0 F (Kj
y) ≤ deg(Kγ) · deg(F ) · deg(V ).
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Since F is a diffeomorphism,

#(F−1(Kγ) ∩ π−1
2 (y)) ≤ deg(Kγ) · deg(F ) · deg(V ),

the Lemma follows.

Corollary 3.1.2. Let (D,F ) be a branch wrapping around a strip V . Let l ⊂ V be a holomorphic
vertical curve and l0 ≡ F−1(l). For every y ∈ Y R, ly and γy are defined as in Equation 2.3.1.
Then for every y ∈ Y R,

#(ly ∩ l0) = #(γy ∩ l) ≤ deg(F ) · deg(V ).

In particular, if deg(V ) = 1, then

#(ly ∩ l0) = #(γy ∩ l) ≤ deg(F ).

Proof. By definition, the containing disc of l, denoted by Kγ, must be a degree one vertical disc
in V . The corollary follows Lemma 3.1.1 immediately.

Lemma 3.1.3. Let (D,F ) be a real symmetrical degree-2 left-end branch that wraps around a real
symmetrical strip V such that deg(V ) = 1. Let Kγ ⊂ V be a real symmetrical vertical disc with
degree one, and K0 be F−1(Kγ). If K0R consists of two disconnected vertical curves, denoted by
l1 and l2, then K0 consists of two degree one vertical discs in D.

Proof. We have deg(K0) ≤ 2 by Lemma 3.1.1, and deg(K0) ≥ 2 by observing the existence of two
vertical curves. Therefore, K0 either consists of two vertcial discs in D, each of which has degree
one, or consists of a single vertical disc in D with degree two.

Presume K0 is a single vertical disc in D with degree two. Then F (K0) = F (F−1(Kγ)) ⊂ Kγ is
a real symmetrical disc. Since deg(Kγ) = 1, Kγ can be considered as a graph over Y. It follows that
F (K0) can be considered as a graph over a real symmetrical disc W ⊂ Y . Therefore, F (K0) ∩R2

is a nonempty connected component. However,

F (K0) ∩ R2 = F (l1) ∪ F (l2)

is disconnected since l1 and l2 are disconnected. This contradiction indicates that our presumption
is impossible, i.e. K0 must consist of two topological degree one vertical discs in D.

Lemma 3.1.4. Let (D,F ) be a real symmetrical degree-2 left-end branch that wraps around a
real symmetrical strip V . Let S ∈ V be a real symmetrical strip. Assume deg(D) = deg(V ) =
deg(S) = 1. Let K ⊂ D be a real symmetrical horizontal disc with degree one, and K1 ≡ F (K)∩S.
If K1R consists of two disconnected holomorphic horizontal curves (denoted by c1 and c2) in S,
then K1 consists of two degree one horizontal discs in S.

Proof. The proof is almost identical to the proof of Lemma 3.1.3, hence it is omitted.

Lemma 3.1.5. Let (D,F ) be a real symmetrical branch that wraps around a real symmetrical strip
V and Sγ ⊂ V be a real symmetrical strip. Put S0 ≡ F−1(Sγ). If S0R is connected, so is S0.
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Proof. If there were more than one connected componentof S0, then S0R would be disconnected
as well.

Lemma 3.1.6. Let (D,F ) be a real symmetrical degree-2 left-end branch wrapping around a real
symmetrical strip V such that deg(D) = deg(V ) = 1. Let l ⊂ V be a holomorphic vertical curve.
If there exists a point p ∈ V on the right side of l such that p ≤R D, then l0 ≡ F−1(l) consists of
two disconnected vertical curves in D.

Proof. Let JL denote the Jordan curve prescribed by the b− and l. For every y ∈ Y R, let ly, γy,
and Jy be as in Equation 2.3.1. The construction of Jy indicates that either Jy is inside of JL or
Jy ∩JL (especially, γy ∩Db−)is nonempty. Since l is on the right side of b−, p ∈ DR implies that p
lies outside of JL. However, by definition p ≤R D is equivalent to p lying inside Jy. It follows that
γy ∩ l 6= ∅. In particular, #(γy ∩ l) ≥ 2. On the other hand, Corollary 3.1.2 implies #(γy ∩ l) ≤ 2.

Therefore, for every y ∈ Y R, there are two and only two points py and qy∈ ly such that F (py)
and F (qy) belong to l. By continuity, lp ≡ {py : y ∈ Y R} and lq ≡ {qy : y ∈ Y R} each forms a
vertical curve in D. It is obvious they are disconnect.

Let C ⊂ V be consisting of only two disjoint horizontal curves c1 and c2. For simplicity, the
Jordan Curve horizontally prescribed by c1 and c2 is called the Jordan Curve prescribed by C.

Lemma 3.1.7. Let (D,F ) be a real symmetrical degree-2 left-end branch wrapping around a real
symmetrical strip V and S ⊂ V be a real symmetrical strip with the structure map ŝ. Assume
deg(S) = deg(D) = deg(V ) = 1. Put Sb± ≡ ŝ−1(±1). Assume Db− is on the left side of Db+

with respect to V. Let α and β ⊂ D be two holomorphic horizontal curves, and p ∈ D be a point
inside the Jordan Curve horizontally prescribed by α and β. If F (p) is on the right side of Sb+,
then either α1 ≡ F (α) ∩ S or β1 ≡ F (β) ∩ S consists of two disconnected holomorphic horizontal
curves in S. More precisely, let Jα and Jβ be the left attached Jordan curve associated to F (α)
and F (β), respectively. Either Jα is inside Jβ or Jβ is inside Jα. Suppose Jα is inside Jβ, then
α1 must consist of two disconnected horizontal curves in S.

Proof. The proof is almost identical to the proof of Lemma 3.1.6, thus it is omitted.

In Lemma 3.1.7, both α and β ⊂ D are two holomorphic horizontal curves. By definition, α
(resp. β) has a containing horizontal disc Kα (resp. Kβ) in D. Suppose it is α1 that consists
of two disconnected horizontal curves c1 and c2 in S. By Lemma 3.1.4, F (Kα) ∩ S contains two
disconnected horizontal discs in S, each of which has degree one. Moreover, they must be the
containing discs of c1 and c2, respectively.

Lemma 3.1.8. Let (D,F ) be the same as in Lemma 3.1.6. Let Ṽ ⊂ V be a real symmetrical strip.

Assume l ⊂ Ṽ R is a holomorphic vertical curve so that Ṽ R is on the right side of l. If F−1(l)

consists of two disconnected (holomorphic) vertical curves, denoted by lL and lR, then F−1(Ṽ R) ⊂
D is inside the Jordan curve prescribed by lL and lR. Moreover, the left side region in DR of lL,
denoted by RL, and the right side region in DR, denoted by RR, are mapped to the left side of l
in V R.
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Proof. For every y ∈ Y R, we parametrize ly by an orientation preserving diffeomorphism ty :

[0, 1] → ly. (D,F ) is a left-end branch, hence F (ty(0) and F (ty(1) ∈ b−. Since Ṽ R lies on the
right side of l, by definition, it lies outside the Jordan Curve prescribed by l and b−, denoted by
J . For any point p ∈ ly′ so that F (p) ∈ Ṽ R, F (p) lies outside of J . Say p = ty′(t

′) for some t′.
Paths ty′([0, t

′]) and ty′([t
′, 1]) each has one end point inside J and the other endpoint outside of

J . Hence, there exist t′1 ∈ (0, t′) and t′2 ∈ (t′, 1) so that F (t′y(t
′
i) ∈ J, for i = 1, 2. Moreover,

F (D) ∪ bu/d = ∅, therefore F (ty′(t
′
i)) ∈ l, for i = 1, 2. In other words, t−1

y′ (F−1(p)) ∈ (t′1, t
′
2). The

lemma follows.

3.2 Existence of homoclinic points

Let {An}∞n=1 be a family of subsets of C2. A set A is called the limit of An, denoted by

A = lim
n
An,

if A consists of the limit points of all sequence of points {(zn, wn) ∈ An}∞n=1.

D

FN(z)z F i(z)

Figure 3.2.1: The real point z ∈ D lies in the shaded areas (i.e. z ≤R D). If there exists a point
N ∈ Z+ so that FN(z) lies in the crosshatched area (i.e. on the right hand side of D), then there
exists a homoclinic point.

Proposition 3.2.1. Let (D,F ) be a real symmetrical degree-2 left-end branch that wraps around
a real symmetrical strip V such that D ⊂ V and deg(D) = deg(V ) = 1. Assume Db− is on the
left side of Db+ with respect to V, z ∈ DR, and z ≤R D. If there exists an N ∈ Z+ ∪ {0} such
that FN(z) lies on the right side of Db+, then F has a transverse homoclinic point.

Proof. 1) The first step is to prove that there exists a fixed point Pγ ∈ DR that has a stable
manifold. Put

Dm ≡ F−m(D).
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Let b±m be as define in Equation 2.3.2. We prove by induction that for every m ∈ Z+, there exists
a connected component of b−m, denoted by lm, such that

1. lm is a holomorphic vertical curve of which DmR is on the right side, and

2. z is on the right side of lm.

For m = 0, put l0 ≡ b−0 , the above claims are true. Suppose they are true for m < M . Since
z is on the right side of lM−1, the preimage of lM−1 consists of two disconnected (holomorphic)
vertical curves by Lemma 3.1.6. Since lM−1 is the leftmost holomorphic vertical curve in DM−1,
by Lemma 3.1.8, DMR is on the right side of one of them, denoted by lM . On the other hand, if
z were on the left side of lM , by Lemma 3.1.8, F (z) would be on the left side of DM−1R. So by
applying Lemma 3.1.8 M-times, FM(z) would be on the left side of DR. However, this contradicts
the assumption of Theorem 3.2.1 that there exists an N ∈ Z+ such that FN(p) lies on the right
side of Db+. So the claims are true for m = M . This completes the proof of the claim.

The containing disc of l0 (i.e b−0 ) is b−c0 . For every m ∈ Z+, the holomorphic vertical curve
lm ⊂ F−1(lm−1). It follows that the containing disc of lm must be a connected component of
F−m(b−c0 ), denoted by Km

γ . Especially,

Km
γ ⊂ F−1(Km−1

γ ).

For every m ∈ Z+, Km
γ is the graph of a bounded function ψm : Y −→ V . Since {ψm,m ∈ Z+} is

a normal family, it uniformly converges to a biholomorphic fuction

ψ∞ : Y −→ V.

Put
Kγ
∞ ≡ {(z, w)|w ∈ Y, z = ψ∞(w)}.

It is clear that Kγ
∞ = limmK

γ
k .

For every (z, w), there exists a sequence of points {(zm, wm) ∈ Kγ
k}k such that

lim
k

(zm, wm) = (z, w).

For every m ∈ Z+ and every pair (zm, wm), there exists (z′m−1, w
′
m−1) ∈ Kγ

m−1 such that

(zm, wm) = F−1((z′m−1, w
′
m−1)).

Therefore,

F ((z, w)) =F (lim(zm, wm)) = limF ((zm, wm))

= limF (F−1((z′m−1, w
′
m−1)) = lim(z′m−1, w

′
m−1) ∈ limKγ

m−1 = Kγ
∞.

That is,
F (Kγ

∞) ⊂ Kγ
∞.
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Since Kγ
∞ is a holomorphic disc, by Schwartz’ Lemma, there is a fixed point Pγ ∈ Kγ

∞ whose stable
manifold is Kγ

∞.

2) The next goal is to show that there exists a fixed point P ∈ DR with an unstable manifold.
We prove by induction that for every ∈ N, there exists a pair of holomorphic horizontal curves,
denoted by αm ⊂ V and βm ⊂ V . Let Jm be the Jordan curve horizontally prescribed by αm and
βm, and Rm be the closure of the region inside Jm. The following properties are true:

1. z lies inside Jm and

2. F (Rm) ∩D lies inside Jm (i.e. F (Rm) ∩D ⊂ Rm).

Put
α0 ≡ bd and β0 ≡ bu.

The containing horizontal disc of α0 is bdc and that of β0 is buc. Naturally, we have

1. z lies inside J0;

2. F (R0) ∩D lies inside J0.

Suppose the claim is true for every m < M . Because FN(z) is properly defined, FN−1(z) ∈ D.
Moreover, for m < M , F (Rm) ∩D ⊂ Rm, we have

FN−1(z) ∈
(
FN−1(RM−1) ∩D

)
⊂
(
FN−2(RM−1) ∩D

)
⊂ ... ⊂

(
F (RM−1) ∩D

)
⊂ RM−1.

That is, FN−1(z) lies inside the Jordan curve JM−1. By Lemma 3.1.7, either F (αM−1) ∩ D or
F (βM−1)∩D has two disconnected holomorphic horizontal curves. Without loss of generality, we
can assume the left attached Jordan curve associated with F (βM−1) lies inside that associated with
F (αM−1). Lemma 3.1.7 further assures that F (αM−1) ∩D must have two holomorphic horizontal
curves, αM and βM . That is, the second claim is true for m = M , i.e. F (RM) ∩D lies inside JM .
Moreover, Lemma 2.3.6 shows that z is inside the left attached Jordan curve associated F (αM−1).
Combined with the fact that z is in DR, we conclude that z lies inside JM . This completes the
proof of the claim.

For every m, since the containing disc of α0 is bd/c, the containing horizontal disc of holomorphic
horizontal curve αm is a connected component of Fm(bd/c), denoted by Km. Then

deg(Km) = 1 and F (Km) ⊃ Km+1.

Since deg(D) = 1, the map H given by

H : D −→ C2, (z, w) 7→
(
SD(z), π(w)

)
is biholomorphic to its image. H(Km) therefore is the graph of a bounded holomorphic function
φm over X. Since {φm} is a normal family, it uniformly converges to a map

φ∞ : X −→ C2.
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Put
K∞ ≡ {H−1(z, w)|z ∈ X,w = φ∞(z)}.

Since
F (H−1(φm(X))) ⊃ H−1(φm+1(X)),

it follows that
F (H−1(φ∞(X))) ⊃ H−1(φ∞(X)).

Therefore, φ∞(X) has a fixed point P ′ under the map

H ◦ F ◦H−1 : H(D) −→ H(D),

whose unstable manifold is φ∞(X). Since H ◦ F ◦H−1 is a conjugation map of F , F has a fixed
point P = H−1(P ′) whose unstable manifold is K∞ ≡ H−1(φ∞(X)).

3) For each pair of positive integers (n,m), Kγ
n is a degree one vertical disc and K is a degree one

horizontal disc. Say
Pn,m ≡ Kγ

n ∩Km.

{Pn,m} is monotonically increasing with respect to n and m in the following sense: there exists a
homotopy H : D × I −→ D such that for all (n,m) and all q′∈Kγ

n ∪Km,

H(q′, 0) = q′

and

H(q′, 1) ⊂ s−1(Kγ
n ∩ bd) if q′ ∈ Kγ

n and H(q′, 1) ⊂ π−1
2 (Km ∩ b−) if q′ ∈ Km.

Thus,

π2

(
H(Pn,m, 1)

)
≤ π2

(
H(Pn,m+1, 1)

)
and s

(
H(Pn,m, 1)

)
≤ s
(
H(Pn+1,m, 1)

)
.

Therefore,
lim
m

lim
n
Pn,m = lim

m
P∞,m = lim

n
Pn,∞ = P∞,∞.

Observe that P∞,∞ is a fixed point of F , because

lim
n,m

F (Pn,m) = lim
n,m

Pn−1,m+1 = P∞,∞.

On the other hand,
P∞,∞ ⊂ (Kγ∞ ∩K∞),

so P∞,∞ is in the stable manifold of Pγ and the unstable manifold of P . Hence

P∞,∞ = Pγ = P.

For every k, #(F (Kk) ∩ b+
0 ) = 2. So by continuity

1 ≤ #(F (K∞) ∩ b+
0 ) ≤ 2.

Since Kγ
∞ lies on the left side of b+

0 ,

#(F (K∞) ∩Kγ
∞) = 2,

i.e. P has a transverse homoclinic point.
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Chapter 4

Nested Systems

In this chapter, we introduce the notion of nested systems, which are clusters of nicely ordered
branches, and discuss the equivalence in terms of non-wandering points between different nested
systems. We show that every nested system with zero entropy is equivalent to a family of one or
two-branch nested systems; see Proposition 4.2.1.

4.1 Definition of nested systems and equivalence between

nested systems

Definition 4.1.1. Let (Di, Fi) be a real symmetrical degree-2 left-end positive dissipative branch
strictly wrapping around a real symmetrical strip V for i = 1, ..n. {(Di, Fi)i=1,...,n, V } is a pre-
system if

1. Di ⊂ int(Di−1) for any i = 2, . . . , n and D1 ⊂ int(V ),

2. deg(Di) = deg(V ) = 1 for i = 1, ..., n,

3. Fi(Di) ∩ Fj(Dj) = ∅ for i 6= j,

4. Di ≤R Di−1 for i = 2, ..., n,

5. σ(D1, V ) < 1 where σ(D1, V ) is the scaling-ratio of D1 in V ,

6. for i = 1, . . . , n, the left attached Jordan Curve associated with Fi(b
−
i ) lies outside the left

attached Jordan Curve associated with Fi(b
+
i ).

The assumption 6 of Definition 4.1.1 is only needed for simplicity. Without it, all statements
will remain true but the proofs will involve more cases whose arguments will be identical to the
current ones.

Definition 4.1.2. Let {(Di, Fi)
n
i=1, V } be a pre-system. Define

F :
⋃
i

Di −→ V
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by
F (p) = Fi(p) if p ∈ Di\Di+1 for i = 1, ..., n− 1.

Put
NS ≡ {(Di)i=1,...,n, V, F}. (4.1.1)

NS is called a system.

Example 4.1.3. If (D,F ) is a real symmetrical degree-2 left-end positive branch wrapping around
a real symmetrical strip V where deg(D) = deg(V ) = 1, then (D, V, F ) is a system. On the other
hand, if (D, V, F ) is a system, then

1. V must be a real symmetrical strip,

2. (D,F ) must be a real symmetrical degree-2 left-end positive branch wrapping around V ,
and

3. deg(D) = deg(V ) = 1.

We may introduce a system NS = {(Di)i=1,...,n, V, F} without explaining its pre-system ex-
plicitly. When no confusion arises, the map that wraps Di around V is always denoted by Fi.

Notation 4.1.4. For later convenience, if NS = {(Di)
n
i=1, V, F} be a system, put

Jac(NS) ≡ Jac(F ) ≡ sup
i

JacFi.

If NS = {NSj}j∈I is a family of systems where NSj is a systems for every j ∈ I, put

Jac(NS) ≡ sup
j

Jac(NSj).

Lemma 4.1.5. Let I ′ ⊂ I be an index set and NS ≡ {(Di)i∈I , V, F} be a system. Then the
pre-system of SS induces a pre-system

{(Dj, Fj)j∈I′ , V }.

It in turn gives a system
NS ′ ≡ {(Dj)j∈I′ , V, FI′}.

We say NS ′ is a sub-system of NS indexed by I ′.

Proof. The tuple {(Dj, Fj)j∈I′ , V } naturally satisfies all the properties except property 5 in the
Definition 4.1.1. If the sub-index set I ′ contains 1, property 5 holds. If 1 6∈ I ′, by Lemma 2.2.10
property 5 holds.
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Definition 4.1.6. Given a system NS ≡ {(Di)i=1,...,n, V, F}, put

Ωc(NS) ≡ {q ∈ ∪Di, s.t. q is a non-wandering point under F},

Ωc
NS(Di) ≡ {q ∈ Ωc(NS) ∩ (Di\Di+1), s.t. O(q) ∩ (

i−1⋃
j=1

Dj\Di) = ∅},

Ω(NS) ≡ {q ∈ ∪DiR, s.t. q is a non-wandering point under F}, and

ΩNS(Di) ≡ {q ∈ Ω(NS) ∩ (Di\Di+1), s.t. O(q) ∩ (
i−1⋃
j=1

Dj\Di) = ∅}.

By definition

Ω(NS) = Ωc(NS) ∩ R2 and ΩNS(Di) = Ωc
NS(Di) ∩ R2.

In other words, Ω(NS) and ΩNS(Di) are about the real non-wandering points. Since we are
interested in real dynamics, they are the focus of this paper.

Notation 4.1.7. When no confusion arises, for example only one system is involved, we denote
Ωc
NS(Di) by Ωc(Di) and ΩNS(Di) by Ω(Di).

Let NS = {NSj}j∈I be a family of systems. Put

Ωc(NS) ≡
⋃
j

Ωc(NSj) and Ω(NS) ≡
⋃
j

Ω(NSj).

Definition 4.1.8. Let U1 and U2 be two subset of R2. If we have two maps fA : U1 → R2 and
fB : U2 → R2, let Ω(A) and Ω(B) be the non-wandering set of fA and fB, respectively. Given a
point p ∈ U1 (resp. U2), denote the orbit of p under fA (resp. fB) by OA(q) (resp. OB(q)). We
say Ω(A) and Ω(B) have the same orbit space if either of the following is true:

1. Ω(B) ⊂ Ω(A). Moreover, for every p ∈ Ω(A), there is some q ∈ Ω(B) such that OB(q) ⊂
OA(p).

2. Ω(A) ⊂ Ω(B). Moreover, for every q ∈ Ω(B), there is some p ∈ Ω(A) such that OA(p) ⊂
OB(q).

In either cases, p and q are called mirror points.

Definition 4.1.9. Let fA and fB be two maps whose non-wondering sets Ω(A) and Ω(B) respec-
tively have the same orbit space. We say Ω(A) and Ω(B) are essentially the same if for every pair
of mirror points p ∈ Ω(A) and q ∈ Ω(B),

1. if they are periodic points, then they have the same hyperbolicity;

2. there exists some point P ∈ U1 whose α-limit (resp. ω-limit) set under fA contains O(p), if
and only if, there exists some point Q ∈ U2 ∩OA(p) whose α-limit (resp. ω-limit) set under
fB contains OB(q).
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The second property of Definition 4.1.9 shows that if p ∈ Ωc(A) and q ∈ Ωc(B) are periodic
mirror points, then if one of them is an attractor (resp. a saddle point or a repeller) then the
other must as well be an attractor (resp. a saddle point or a repeller).

Remark 4.1.10. The Definitions 4.1.8 and 4.1.9 can be generalized so that every condition is defined
up to conjugation. However, for our purpose, the conjugation is not necessary.

If two maps f : C2 → C2 and g : C2 → C2 are real symmetrical, then the Definition 4.1.8 and
4.1.9 can apply onto its restriction over R2.

Example 4.1.11. In general Ω(NS) 6=
⋃
i Ω(Di). But Ω(NS) is essentially the same as

⋃
i Ω(Di).

Definition 4.1.12. Let NS and NS ′ be two systems, and NS and NS ′ two families of systems.
NS is said to be equivalent to NS ′ if Ω(NS) and Ω(NS ′) are essentially the same. NS is said to
be equivalent to NS ′ if Ω(NS) and Ω(NS ′) are essentially the same. NS is said to be equivalent
to NS if Ω(NS) and Ω(NS) are essentially the same. They are denoted by Ω(NS) ∼ Ω(NS ′),
Ω(NS) ∼ Ω(NS ′), and Ω(NS) ∼ Ω(NS), respectively.

Every strip Di has degree one, thus b±i and b± are all vertical curves. Given a set K ∈ V R, if
K lies inside the Jordan Curve prescribed by b−i and b−, then K ∈ V R is said lying on the left
side of Di; if K lies inside the Jordan Curve prescribed by b+

i and b+, then K ∈ V R is said lying
on the right side of Di.

Definition 4.1.13. Let NS = {(Di)
n
i=1, V, F} be a system. NS is an l-order nested system, if

1. F
−(l−1)
1 (D1) ⊃ D2,

2. F−l1 (D1) lies on the right side of D2, and

3. F−1
i (Di) lies on the right side of Di+1 for i ≥ 2.

The number l is called the order of the nested system.

Definition 4.1.14. Let NS = {NSj}j∈I be a family of systems. The order of each NSj is lj. If

sup
j
lj = l <∞,

then we say the order of NS is l; otherwise, we say the order of NS is +∞.

Notation 4.1.15. Let NS = {(Di)i∈I , V, F} be a system. NS is called a nested system if there
exists a positive integer l so that NS is an l-order nested system.

Lemma 4.1.16. Let NS = {(Di)
n
i=1, V, F} be an l-order nested system. We have

Ωc(D1) ⊂ F
−(l−1)
1 (D1)\D2 and Ω(D1) ⊂ F

−(l−1)
1 (D1R)\D2R.
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Proof. By definition, Ωc(D1) 6⊂ D2 and Ω(D1) 6⊂ D2R. Assume p ∈ D1\F−(l−1)
1 (D1) is a non-

wandering point. Since F
−(l−1)
1 (D1) ⊃ D2,

F (p) = F1(p) ∈ F1(D1)\F−(l−2)
1 (D1).

If F (p) 6∈ D1, p would not be a non-wandering point. That is to say

F (p) ∈ D1\F−(l−2)
1 (D1) ⊂ D1\F−(l−1)

1 (D1).

By induction, we have that for any 1 ≤ j < l − 1,

F j(p) = F j
1 (p) ∈ D1\F−(l−1)+j

1 (D1).

Especially, for j = l − 2,

F l−2 ∈ D1\F−(l−1)+(l−2)
1 (D1) = D1\F−1

1 (D1).

Therefore, F l−1(p) = F (F l−2(p)) ∈ F (D1)\D1, which contradicts the assumption that p is a non-

wandering point. Hence Ωc(D1) ⊂ F
−(l−1)
1 (D1)\D2. Furthermore, since D1, D2, F1, F2 and V are

all real symmetrical, Ω(D1) ⊂ F
−(l−1)
1 (D1R)\D2R.

Corollary 4.1.17. If NS is an l-order nested system, we have

Ωc(D1) ⊂ F−l1 (D1)\D2, and Ω(D1) ⊂ F
−(l)
1 (D1R)\D2R.

Proof. Suppose q ∈ Ωc(D1). By definition, q 6∈ D2, thus F (q) = F1(q). It follows from Lemma

4.1.16 that F (q) ∈ F−(l−1)
1 (D1), i.e. q ∈ F−l1 (D1).

Lemma 4.1.18. Let NS = {(Di)
n
i=1, V, F} be an l-order nested system. For every i = 1, 2, ..., n−1,

Ω(Di) must not lie on the left side of Di+1.

Proof. Since F−l1 (D1) lies on the right side of D2, if q ∈ Ω(D1) lies on the left side of D2, then
q 6∈ D2 ∪ F−l1 (D1). Thus,

F (p) = F1(p) 6∈ F−(l−1)
1 (D1).

Since F
−(l−1)
1 (D1) ⊃ D2, F (p) ∈ Ω(D1). However, this contradicts Lemma 4.1.16. The Lemma

thus is true when i = 1. Suppose q ∈ Ω(Di) for any 1 < i < n so that q lies on the left side
of Di+1. Since F−1

i (Di) lies on the right side of Di+1, Lemma 3.1.8 shows that there exist some
1 ≤ j < i so that F (q) ∈ Dj and F (q) lies on the left side of Dj+1. The lemma then follows by
induction.

Definition 4.1.19. Let NS = {(Di)i∈I , V, F} be a nested system. If |I| = 1, NS is called a
simple nested system. If |I| = 2, NS is called a basic nested system. If NS is a simple nested
system, by convention, it is a zero-order nested system.

Lemma 4.1.20. Let NS = {(Di)i∈I , V, F} be an l-order nested system. If NS ′ ≡ {(Dj)j∈I′ , V, FI′}
is a sub-system of NS indexed by I ′ ⊂ I, then NS ′ is also a nested-system. More precisely, if

1. if |I ′| = 1, NS ′ is a zero-order nested system;

2. if |I ′| 6= 1 and 1 ∈ I ′, NS ′ is an l-order nested system;

3. if |I ′| 6= 1 and 1 /∈ I ′, NS ′ is a one-order nested system.

The proof of Lemma 4.1.20 is straightforward, hence it is omitted.
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4.2 Zeroth equivalent family of zero entropy nested sys-

tems

Proposition 4.2.1. Given an l-order nested system NS = {(Di)i∈I , V, F}, suppose q ∈ Ω(Di) for
i ∈ I. Then either O(q) ∩Di+2 = ∅, or there exists a homoclinic point.

Proof. Suppose q ∈ Ω(Di) so that there exists a positive integerN1 such that FN1(q) ∈ O(q)∩Di+2.
Since Di ≤R Di−1 for every i = 2, ..., n, FN1+1(q) ≤R Di+1. On the other hand, q ∈ Ω(Di) implies
that there exists another positive integer N2 ≥ N1 + 1 such that FN2(q) ∈ Di\Di+1. That is,
FN2(q) ∈ Ω(Di). Lemma 4.1.18 assures that FN2(q) lied on the right side of Di+1. Therefore there
is a homoclinic point by Theorem 3.2.1.

Corollary 4.2.2. Let NS ≡ {(Di)i∈I , V, F} be an l-th nested system. If NS has zero entropy,
then for every q∈Ω(Di), O(q) depends only on (Di, Fi) and (Di+1, Fi+1).

Corollary 4.2.3. Let NS ≡ {(Di)i∈I , V, F} be an l-th nested system with zero entropy. Put

Ii ≡ {i, i+ 1} ⊂ I,

for every i = 1, . . . , n− 1, and
In ≡ {n} ⊂ I.

Denote by NSi the sub-nested system of NS indexed by Ii. Then

ΩNSi(Di) = ΩNS(Di).

Therefore, if we put
CS ≡ {NSi}i∈I ,

then CS is equivalent to NS (i.e. Ω(CS) is essentially the same as Ω(NS) .

Corollary 4.2.2 and 4.2.3 follow from Proposition 4.2.1 immediately.
It is clear that NSi is a basic nested system for any i 6= n and NSn a simple nested system.

We can therefore studying simple and basic nested systems instead of complicated nested system.
Given a basic nested system BS = {Di, Di+1, V, F}, we can further decompose Ω(Di) into two

smaller sets Ω(Di,i) and Ω(Di,i+1) as follows: for every q ∈ Ω(Di),

q ∈
{

Ω(Di,i) if O(q) ∩Di+1 = ∅,
Ω(Di,i+1) if O(q) ∩Di+1 6= ∅.

If Ω(Di,i+1) = ∅, Ω(Di) depends only on one branch (Di, Fi). More precisely, say the pre-system
of BS is {

(Di, Fi) , (Di+1, Fi+1) , V
}
.

Instead of dealing with BS, we only need to work with the two simple sub-nested system SS ′i =
{Di, V, Fi} and SS ′i+1 = {Di+1, V, Fi+1} so as to study Ω(Di).
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Definition 4.2.4. Let BS = {Di, Di+1, V, F} be a basic nested system. If Ω(Di,i+1) 6= ∅, BS is
called a non-reducible basic nested system; otherwise it is called a reducible basic nested system.

If BS = {Di, Di+1, V, F} is a reducible nested system, put

CS ≡
{
{Di, V, Fi}, {Di+1, V, Fi+1}

}
.

CS is equivalent to BS.

Definition 4.2.5. Let SSi = {Di, V, Fi} be a simple nested system. If Ω(Di) 6= ∅, SS is called a
essential simple nested system; otherwise it is called a auxiliary simple nested system.

Definition 4.2.6. Let NS = {(Di)i∈I , V, F} be a nested system. Put

IB ≡ {i ∈ I|BSi is non-reducible basic sub-nested system of NS indexed by Ii}.
IB is called the (non-reducible) basic index set of NS. Put

IS ≡ I\IB.
IS is called the simple index set of NS.

Definition 4.2.7. Let NS = {(Di)i∈I , V, F} be a nested system with zero entropy. Let IB and IS
be the basic and simple index set of NS, respectively. For any i ∈ I, the basic sub-nested system
of NS indexed by Ii is denoted by BSi and the simple sub-nested system of NS indexed by {i}
is denoted by SSi. Put

CS ≡ {BSi|i ∈ IB} ∪ {SSj|j ∈ IS}.
CS is called the (zero-th) equivalent family of NS. Since NS has zero entropy, CS is equivalent
to NS.

Suppose CS is the equivalent family of some nested system. By the definition not all elements
of CS contains interesting dynamics. Precisely, CS contains some auxiliary simple sub-nested
system of NS. This inclusion seems redundant here, however, it is very crucial for us to study a
family of nested systems in Chapter 7.

Definition 4.2.8. Let NS ≡ {NSj|j ∈ I} be a family of nested systems. If for all j ∈ I, NSj
has zero entropy, then NS is called a zero entropy family.

Definition 4.2.9. Let NS ≡ {NSj|j ∈ I} be a zero entropy family of nested systems, where NSj
is an lj-th nested system for j ∈ I. We denote the (zero-th) equivalent family of NSj by CSj.
Then

CNS ≡
⋃
j

CSj

is called the (zero-th) equivalent family of NS.

The equivalent family of either a nested system or a family of nested systems is always a family
of simple and basic nested systems. Moreover, the equivalent family is only defined for nested
systems or families with zero entropy.

For a simple nested system, depending on how many saddle nodes the system contains, we
either conclude that there exist a saddle node and a global attractor (thus no other nonwandering
point exists) or need to renew the simple system. Both cases will be discussed in the following
chapter.
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Chapter 5

Renormalizaiton

In this chapter, we construct the renormalization operator acting on basic nested systems. We
sequentially construct three operators (the pre-renormalization in Subsection 5.1, the quasi-renor-
malization operator in Subsection 5.2, and the basic-renormalization operator in Subsection 5.3).
Each of them refines the previous operator so that the basic-renormalization of a basic nested
system is indeed a nested system.

Given the basic-renormalization operator acting on non-reducible nested systems, we then
define the renormalizable general nested systems and the corresponding renormalization operator
in Subsection 5.4. In the same subsection, we also define the K-th renormalizable nested systems
for K ∈ Z+ by induction. We prove that a nested system with finite periodic points cannot be
infinitely renormalizable in the Subsection 5.5.

5.1 Pre-renormalization acting on basic nested systems

Given a basic nested system BS = {Di, Di+1, V, F}, there is a simple sub-nested system SS of
BS indexed by i+1. We notice that

Ωc(BS) = Ωc
BS(Di) ∪ Ωc(SS).

So only Ωc
BS(Di) needs to be studied. From Corollary 4.1.17 we know Ωc

BS(Di) ⊂ F−li (Di) .

Definition 5.1.1. Let BS be a basic l-th nested system whose pre-system is{
(Di, Fi) , (Di+1, Fi+1) , V

}
.

For every q ∈ F−li (Di), if a positive integer N(q) is the least positive integer such that FN(q) ∈
F−li (Di), then we call N(q) the return time of q. We denote by E(q) the maximal connected
component of Di such that q∈E(q) and FN is continuous on E(q). The procedure of finding out
all such E(q)’s and the associated return maps is called the (first) pre-renormalization of BS. The
map FN is called the return map of q (or E(q)) with respect to the first pre-renormalization.

For simplicity, when the return time is not explicitly required, we denote the map associated
to E(q) by Fq. If a point q ∈ F−li (Di) whose return time is finite, then the point q is called a
pre-relevant point with respect to pre-renormalization.
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Lemma 5.1.2. If q 6∈ F−1
i

(
F−li (Di) ∪Di+1

)
, q is not a pre-relevant point.

Proof. For every pre-relevant point q, q ∈ F−li (Di). Then F (q) = Fi(q). If

q 6∈ F−1
i (F−li (Di) ∪Di+1),

then
F (q) 6∈ F−li (Di) ∪Di+1.

In particular, F 2(q) = F 2
i (q) 6∈ F−(l−1)

i (Di). By induction, we have

F l+1(q) = F l(Fi(q)) = F l−1(F 2
i (q)) = · · · = F l+1

i (q) 6∈ Di,

where we used the fact Di+1 ⊂ F
−(l−1)
i (Di) ⊂ · · · ⊂ Di.

Lemma 5.1.3. Let BS = {Di, Di+1, V, F} be a basic nested system. Put

A ≡ {q |q is a pre-relevant point with respect to pre-renormalization of BS}.

Then
Ωc
BS(Di) ⊂ cl(A) and Ωc

BS(Di) ⊂ cl(A) ∩ R2.

Proof. Let q′ be a point in F−li (Di)\cl(A). There exists a neighborhood U ⊂ F−li (Di) of q′ so that
for any n ∈ Z+, Un ∩ F−li (Di) = ∅. Thus q′ 6∈ Ωc

BS(Di).

Lemma 5.1.3 implies that the pre-renormalization captures all the real important dynamics.
Let BS be as in Definition 5.1.1. For points q1 and q2∈F−li (Di), q1 is said to be equivalent to

q2 with respect to pre-renormalization, denoted by q1 ∼ q2, if

E(q1) = E(q2).

If for any n∈Z+, F n(q) 6∈ Ωc
BS(Di), by convention, we say the return time of q is +∞. q might

belong to some E(q′), but q is not equivalent to q′.

Assumption 5.1.4. Let (D,F ) be a real symmetrical degree-2 left-end branch that wraps around
a real symmetrical strip V and Sγ ⊂ V be a real symmetrical strip. Put S0 ≡ F−1(Sγ). Assume
deg(Sγ) = deg(D) = 1. If S0R consists of two interior disconnected components, then S0 consists
of two degree one strips in D.

Proposition 5.1.5. Let BS be as in Definition 5.1.1. Then

1. the maximal components E(q)’s defined in Definition 5.1.1 are real symmetrical strips,

2. deg(E(q)) = 1 and the associated return map Fq is a degree-2 real symmetrical map, that
wraps E(q) around V , and

3. (E(q), Fq) are positive, dissipative and left-end.
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Proof. Say q has return time N(q) < ∞. Suppose there is some j < N(q) so that F j(q) 6∈ Di+1.

Since N(q) is the least return time, F j(q) 6∈ F−li (Di) either. Then we have F (F j(q)) 6∈ F−(l−1)
i (Di).

It follows induction that FN(q)−j(F j(q)) 6∈ Di. This however contradicts the assumption that
N(q) <∞. Hence for any q, its return map must have the form

Fi+1 ◦ Fi+1 ◦ . . . Fi+1︸ ︷︷ ︸
N(q)−1

◦ Fi. (5.1.1)

1. Since the return map is in form of Equation 5.1.1, the maximal connected component on
which FN(q) is connected has the form{

(F
N(q)−2
i+1 ◦ Fi)−1(Di+1) if N(q) > 1
Di if N(q) = 1

In either case, it is real symmetrical.

2. If N(q) = 1, deg(Di) = 1. If N(q) = 2, F 2(q) = F (F (q)) ∈ F−l(Di). F (q) lies on the right
side of Di+1. Then Lemma 3.1.6 implies that for any holomorphic vertical curve l ∈ Di+1,
F−1
i (l) contains two disconnected holomorphic vertical curves. That is, F−1

i (Di+1R) contains
two disconnected components. Then it follows Assumption 5.1.4 that F−1

i+1(Di+1) has two
degree one strips. Therefore degE(q) = 1 and deg(Fi+1 ◦ Fi) = 2.

A similar argument also holds for any N(q) = n > 2 by noticing that

(a) The connected component of (F n−2
i+1 ◦ Fi)−1(Di+1) that contains q, say Ẽ(q) has degree

one;

(b) F n−1
i+1 ◦ Fi has degree two on Ẽ(q),

where we used induction. Hence deg(E(q)) = 1 and the associated return map deg(Fq) = 2.

3. It follows immediately from Equation 5.1.1, that all Fq’s are positive, dissipative, and left-
end.

For a relevant point q, we sometimes call the set E(q) the associated strip of q.
Let BS = {Di, Di+1, V, F} be a basic nested system. Propositon 5.1.5 shows if there is some

q whose return time is N(q) ≥ 2, then F−1
i (Di+1) contains two disconnected strip, denoted by

S1 and S2. Since deg(S1) = deg(S2) = 1, without loss of generality, we assume S1 lies on the
left side of S2. Because the left attached Jordan Curve associated with b−1 lies outside the left
attached Jordan Curve associated with b+

1 , S2 ≤R S1, for all the branches (E(q), Fq) except where
E(q) = Di, we have E(q) ≤R S1.

Lemma 5.1.6. Let BS = {Di, Di+1, V, F} be a basic nested system with zero entropy. Then

S2 ∩ Ω(D1) = ∅.
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Proof. Suppose there exists some q ∈ S2∩Ω(Di). Hence, there exists some N so that FN(q) ∈ S2.
By the construction of return maps, there exist some pre-relevant points q1, . . . , qn ∈ F−li (Di) so
that

q1 = q, and qk = Fqk−1
◦ · · · ◦ Fq1(q)

for any 2 ≤ k ≤ n, and
FN = Fqn ◦ · · · ◦ Fq1 .

Lemma 5.1.2 implies all the qk ∈ F−1
i

(
F−li (Di) ∪ Di+1

)
. More precisely, for any k > 2, qk ∈

F−1
i (F−li (Di)) ∪ S1 and q1 ∈ S2. Suppose 1 ≤ K ≤ n is the largest integer that qk ∈ F−1

i (Di+1).

qK+1 = FqK ◦ · · · ◦ Fq1(q) ≤R S1.

On the other hand, qK+1 ∈ F−1
i

(
F−li (Di) ∪ Di+1

)
. Hence qK+1 ∈ F−1

i (F−li (Di)) ∪ S2. In either
case qK+1 lies on the right side of S1. Theorem 3.2.1 shows there exists a transverse homoclinic
point which contradicts that BS has zero-entropy.

Corollary 5.1.7. Suppose BS is a basic nested system with zero entropy. For every j ∈ I, if
there exists some pre-relevant point qj whose return time is j, then (F j−2

i+1 ◦ Fi)−1(Di+1) has only
one connected component, denoted by Ej, so that

1. Ej is a strip,

2. deg(Ej) = 1 and

3.
(
(F j−2

i+1 ◦ Fi)−1(Di+1)\Ej
)⋂

Ω(Di) = ∅.

Moreover, given branches (Ej, F
j−1
i+1 ◦ Fi) and (Ek, F

k−1
i+1 ◦ Fi), if k ≤ j

Ej ≤R Ek.

Proof. The corollary follows Lemma 5.1.6 by induction.

Corollary 5.1.7 does not promise that Ej ∩Ω(Di) 6= ∅. On the contrary, this Corollary implies
Ej is the only connected component that we are interested in.

5.2 Quasi-renormalization action on basic nested systems

A nested system by definition consist of only finitely many strips. In this and next subsection, we
attempt to reduce the number of the strips Eq created by the pre-renormalization.

Definition 5.2.1. Let BS be a basic nested system with zero entropy. The quasi-renormalization
of BS is a process that finds all the Ej defined in Corollary 5.1.7. A pre-relevant point qj is
called a quasi-relevant point if its return time is j and qj ∈ Ej. The map associated to each Ej is
renamed as eFj for all j∈Z+.
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We are slightly abusing notations here: q, E(q) and Fq are used in Definitions 5.1.1, 5.2.1 and
5.3.1. However, in different subsections, it is clear which definition we are referring to.

The collection {(Ej, eFj)j=1,2..., V } is almost a pre-system by Propostion 5.1.5 and Corollary
5.1.7. However, it lacks a crucial property: there might exist infinitely many branches. This
problem can be solved. First, we have the following Lemma.

Lemma 5.2.2. If there exists some M ∈ N so that

eFM(int(EM)) ∩ int(EM) ∩ R2 = ∅,

then for any j ≥M , Ej ∩ Ω(Di) = ∅.

Proof. If i < j, by definition, Ej ⊂ Di. On the other hand, Corollary 5.1.7 shows that Ej ≤R Ei.
Thus the lemma follows.

5.3 Basic-renormalization acting on basic nested systems

Intuitively speaking, Lemma 5.2.2 implys that many Ej is irrelevant to the real dynamics. Thus,
we modify quasi-renormalization in the following way in order to obtain basic-renormalization.

Definition 5.3.1. Let BS be an l-order basic nested system. For every q ∈ F−l(Di) if

1. q is a quasi-relevant point and

2. Fq(E(q)) ∩ int(E(q)) 6= ∅,

it is called a relevant point. If there exists some relevant point, we say basic-renormalization exists
and the basic-renormalization of BS is a process that identifies all such relevant points q’s, the
associated E(q)’s and return map Fq’s.

Lemma 5.3.2. Given a basic nested system BS = {Di, Di+1, V, F}, if the basic-renormalization
does not exist, then Ω(Di) = ∅.

Proof. If q ∈ Ω(Di) 6= ∅, then q must have finite return time N(q), q ∈ E(q) contains at least a
non-wandering point q and Fq(E(q) ∩ int(E(q)) 6= ∅ by the definition of a non-wandering point.
Hence, q is a relevant point.

Basic-renormalization differs from pre-renormalization by eliminating certain branches. So
Theorem 5.1.5 holds for basic-renormalization as well. Therefore, {(Ej, eFj)j∈I , V } is properly
defined as well. Although there appear to be infinitely many Ej, the scaling ratio help us handle
this issue.

Lemma 5.3.3. Suppose σ ≡ σ(BS). Then for every j ∈ N,

σ(Ej, Ej+1) ≤ σ
1
2 .
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Proof. For every j ∈ N, eFj strictly wraps around V and deg(eFj) = 2. By Lemma 2.2.13,

σ(Ej, Ej+1) ≤ σ(Di+1, V )
1
2 ≤ σ

1
2 ,

where we used the fact that eFj+1 ⊂ eF−1
j (Di+1).

Lemma 5.3.4. If there are infinitely many branches {(Ej, eFj)j∈Z+ strictly wrapping around V ,
then

int(
⋂
j

Ej) = ∅.

Proof. For every j ∈ Z+, σ(Ej, Ej+1) < σ
1
2 < ρ < 1, hence∏

j

σ(Ej, Ej+1) ≤ lim ρj+1 = 0.

Then this lemma is a direct application of Lemma 2.2.12

Lemma 5.3.5. If there are infinitely many branches {(Ej, eFj)j∈Z+}, then BS has either a trans-
verse or a tangent homoclinic point.

Proof. 1) The first step is to show that there exists a fixed point P ∈ Di+1R with an unstable
manifold. We claim that for every j ∈ N where Ej+1 exists, there exist two holomorphic horizontal
curves in Di+1, denoted by αj and βj so that

1. αj ∪ βj ⊂ Fi+1(βj−1),

2. eFj(Ej) ∩Di+1R is inside the Jordan Curve horizontally prescribed by αj and βj.

Put β0 ≡ bdi . Assume j = 1, eF1 = F . Since E2 exists, there exists some q ∈ E2 so that
F 2(q) ∈ F−l(Di). That is F 2(q) lies on the right side of Di+1. On the other hand, F (q) lies
inside the left attached Jordan Curve associated with Fi(b

−
i ). Then Fi(b

−
i ) ∩ Di+1 contains two

disconnected holomorphic horizontal curves by Lemma 3.1.7, denoted by α1 and β1. Since

eFj(Ej) ∩Di+1R = Fi(Di) ∩Di+1R,

it is clearly that eFj(Ej)∩Di+1R lies inside the Jordan Curve horizontally prescribed by α1 and β1.
Assume the claims are true for all j < j′. Denoted by J j the Jordan Curve horizontally

prescribed by αj and βj. Similarly, since Ej′+1 exists, there exists some q ∈ Ej′+1 so that F j′+1(q) ∈
F−l(Di). That is, F j′+1(q) lies on the right side of Di+1. On the other hand

F j′(q) ∈ Fi+1(F j′−1(q)) ⊂ Fi+1(F j′−1(Ej′−1)).

Since F j′−1(Ej′−1) lies inside J j
′−1, F j′(q) lies inside the left attached Jordan Curve associated

with Fi+1(βj′−1). Lemma 3.1.7 shows Fi+1(βj′−1) ∩ Di+1 contains two disconnected holomor-
phic horizontal curves, denoted by α′j and β′j. Moreover, eF ′j(E

′
j) ∩ Di+1R is inside the Jordan

Curve horizontally prescribed by αj′ and β′j.
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Since there exists infinitely many branches (Ej, eFj), we then have an infinite sequence of
horizontal holomorphic curves, {βj}. Besides, Fi+1(βj) ⊃ βj+1. Then the same argument which
proved existence of a fixed point with an unstable manifold in the proof of Theorem 3.2.1 can be
applied. Hence, there exists a fixed point P ∈ Di+1R with an unstable manifold L.

2) The second step is to prove if a point p ∈
⋂
j Ej,

lim
n
F n(p) = P.

In other words,
⋂
j Ej is part of the stable manifold of P .

Put buj ≡ bu∩Ej and bdj ≡ bd∩Ej. For each j, (Ej, eFj−1) is a degree-1 branch that strictly wraps
around Di+1. Therefore, Luj ≡ eFj−1(buj ) and Ldj ≡ eFj−1(bdj ) are horizontal holomorphic curves,
and eFj−1(Ej) lies inside the Jordan Curve horizontal prescribed by Luj and Ldj . Put Lu ≡ limj L

u
j

and Ld ≡ limj L
d
j . As the limit of bounded horizontal holomorphic curves, Lu and Ld are both

horizontal holomorphic curves in Di+1. Since Luj lies inside the Jordan Curve horizontal prescribed
by Ldj and Ldj+1 for every j, Lu = Ld. Observe Ldj = βj, so Lu = Ld = L. Hence if p ∈

⋂
j Ej,

lim
k
F k
i+1(F (p)) ∈ L.

Since L is an unstable manifold, limk F
k
i+1(F (p)) = P .

We can now prove there is a (transverse or tangent) homoclinic point. By Lemma 2.2.12,
m(
⋂
j Ej) = 0. On the other hand,

⋂
j Ej and

⋂
j EjR are connected.

⋂
j Ej is a vertical curve in

Di, denoted by Lγ. For every j, eFj(EjR) ∩ int(EjR) = ∅. In particular, eFj(b
d
j ) ∩ int(EjR) 6= ∅.

Since eFj(b
d
j ) = Fi+1(Kd

j ), F2(L) ∩ int(EjR) 6= ∅. Hence, F2(L) ∩ Lγ 6= ∅. In other wordss, the
stable manifold and unstable manifold of P have an intersection point other than P . The Lemma
follows.

Notation 5.3.6. Let W denote the space of nested systems which have positive entropy.

Proposition 5.3.7. Let BS be a basic nested system whose basic-renormalization exists. If BS 6∈
cl(W), {(Ej, eFj)j=I , V } is a pre-system, i.e. |I| <∞.

Proof. The proposition follows from the Lemma 5.3.5.

Definition 5.3.8. Let BS be a basic nested system whose basic-renormalization exists. If BS 6∈
cl(W), we have a pre-system {(Ej, eFj)j=I , V }. We define the map

eF :
⋃
j∈I

Ej → V

by
eF (p) = eFj(p), if p ∈ Ej\Ej+1 for j ≥ 1.

Put
ES ≡ {(Ej)j≥1, V, eF}. (5.3.1)

ES is called the basic-renormalized nested system of BS.
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Remark 5.3.9. Hereafter, if a basic nested system BS is said to have its basic-renormalized nested
system, it is implicitly assumed that BS is basic-renormalizable and BS 6∈ cl(W).

Lemma 5.3.10. If ES = {(Ej)j∈I , V, eF} is the basic renormalized nested system of an l-order
basic nested system BS = {Di, Di+1, V, F}, then Ω(ES) is essentially the same as ΩBS(Di). In
particular,

ΩBS(Di) = Ω(ES).

Proof. The renormalization process implies that ΩBS(Di) ⊂
⋃
j∈I Ej

⋂
F−li (Di). Since each eFj is

some iterates of F , if P ∈ Ω(ES), then OeF (P ) ⊂ OF (P ). Moreover, since eFj is the return map
to F−li (Di),

OeF (P ) = OF (P ) ∩ F−li (Di).

The lemma follows.

Proposition 5.3.11. Let BS be a basic l-order nested system and ES be the basic-renormalized
nested system of BS. Then ES is a (l + 1)-order nested system.

Proof. The proposition follows from Corollary 5.1.7 and Propostion 5.3.7.

The Proposition 5.3.11 therefore justifies the Definitionn 5.3.8 where ES has already been
assumed “nested”.

Corollary 5.3.12. Let BS be a reducible nested system and ES = {(Ej)j∈I′ , V, eF} be its basic-
renormalized nested system. Then for any j ≥ 2, Ej does not contain any nonwandering point.

Proof. Let q ∈ BS be a non-wandering point. If q ∈ Ej for some j ≥ 2, then its return map is
of the form Fi+1 ◦ · · · ◦ Fi+1 ◦ Fi. That contradicts the assumption that BS is reducible in which
O(q) ∩Di+1 = ∅.

The above corollary implies that the basic-renormalization of reducible basic nested systems
provides no new information about non-wandering points. Indeed, a reducible basic nested system
is equivalent to two simple nested systems, and the zero-th equivalent family of any nested system
does not contain reducible basic nested systems.

5.4 Renormalization on general nested systems

Let I 6= ∅ and Ĩ be two index sets. For each j∈I, let BSj be a non-reducible basic nested system

whose basic-renormalized nested system exists, denoted by ESj. For each k ∈ Ĩ, let SS ′k be a
simple nested system. Put

CS ≡ {BSj | j ∈ I} ∪ {SS ′k | k ∈ Ĩ}.

If I 6= ∅, then CS is said to be basic-renormalizable and

eCS ≡ {ESj | j ∈ I} ∪ {SS ′k | k ∈ Ĩ}
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is called the basic-renormalized family of CS. Moreover, let ESj be the zero-th equivalent family
of ESj for each j ∈ I. Put

ES ≡ {ESj | j ∈ I} ∪ {SS ′k | k ∈ Ĩ}.

ES is the zero-th equivalent family of eCS. In other wordss, ES is zero-th equivalent family of
basic-renormalized family of CS. If I = ∅, then CS is said to be non-renormalizable.

Definition 5.4.1. Let NS be a nested system and CS be its (zero-th) equivalent family. NS is said
to be renormalizable if CS is basic-renormalizable; otherwise NS is said to be non-renormalizable.
If NS is renormalizable, then the first equivalent family of NS is the zero-th equivalent family
of basic-renormalized family of CS. The procedure of finding the first equivalent family of NS is
called the first renormalization of a nested system NS.

There are differences between basic-renormalizablity and renormalizablity. If a basic nested
system BS is renormalizable, BS must be a non-reducible basic nested system. On the other
hand, even a reducible basic nested system can have basic-renormalization.

Definition 5.4.2. Let NS = {NSj}j∈I be a family of nested systems. If there exists some j ∈ I
where NSj is renormalizable, then NS is said to be renormalizable; otherwise NS is said to be
non-renormalizable. Given NS is renormalizable, there exists an index set I ′ ⊂ I so that for any
j ∈ I ′, NSj is renormalizable. The first equivalent family of NSj for any j ∈ I ′ is denoted by
ESj. The zero-th equivalent family of NSk for any k ∈ I\I ′ is denoted by CSk. Put

ES ≡ {ESj | j ∈ I ′} ∪ {CSk | k ∈ I\I ′}.

ES is called the first equivalent family of NS. The procedure of finding ES is called the first
renormalization of NS.

Notation 5.4.3. Suppose a family of nested system NS = {NSj}j∈I is renormalizable. It might
exist some k ∈ I so that NSk is non-renormalizable itself. However, for later convenience, should
no confusion arises, we may say as if every element in NS were renormalizable. For example, we
may say that the first equivalent family of NSj for any j ∈ I is denoted by ESj and the first
equivalent family of NS is simply {ESj | j ∈ I}.

Lemma 5.4.4. Let NS be a nested system. If NS is non-renormalizable then its zero-th equivalent
family CS is a zero-order family.

Proof. The zero-th equivalent family consists of simple and basic nested systems. If some basic
nested systems, say BS = {D1, D2, V, F} were non-renormalizable, then Ω(D1) = ∅ by Lemma
5.3.2. However, if BS is in the zero-th equivalent family of NS, by definition, Ω(D1) 6= ∅.

Definition 5.4.5. Let NS be a nested system. If the m-th equivalent family of NS is renormal-
izable, the (m+ 1)-th equivalent family of NS is the first equivalent family of m-th equivalent
family of NS. Let NS be a family of nested system. If the m-th equivalent family of NS is
renormalizable, the (m+ 1)-th renormalized family of NS is the first renormalized family of m-th
renormalized family of NS. The procedure of finding the m-th equivalent family is called m-th
renormalization of NS (resp. NS).
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Definition 5.4.6. Let NS (resp. NS) be a nested system (resp. a family of nested system).
If there exists some M < ∞ such that the M -th equivalent family of NS (resp. NS) is non-
renormalizable, then we say the renormalization of NS (resp. NS) stops in M steps and M is
the renormalization stop number of NS (resp. NS).

We say the renormalization of a nested system (resp. a family of nested systems) stops in finite
steps if there exists some M <∞ such that the M -th equivalent family is non-renormalizable.

Corollary 5.4.7. Let NS be a nested system with order l. If m-th equivalent family of NS exists,
then its order is less than (m+ l). Similarly, let NS be a family of nested system with order l. If
the m-th equivalent family of NS exists, then its order is less than (m+ l).

Proof. Say for any j ≤ m, the j-th equivalent family is denoted by kNS. Proposition 5.3.11 shows
j-th equivalent family has order lj, then j + 1-th equivalent family has at most order lj + 1.

5.5 Finiteness of Renormalizations

A priori the renormalizations of a nested system do not necessarily stop in finitely many steps.
In this subsection, we will show two Propositions 5.5.1 and 5.5.2. They link the existence of any
non-wandering point with that of a fixed point. Since the renormalization reduces the period of
periodic points, the two positions imply that the renormalization stops in finite steps provided
finiteness of periodic points. Moreover, if a family of nested systems has only finitely many periodic
points, the cardinality of index set of the family must be finite.

Proposition 5.5.1. Let SS = (D, V, F ) be a simple nested system. If SS has no fixed point, then
Ω(SS) = ∅.

Proof. The Jordan curve J prescribed by Db− and Db+ has four corners P1, P2, P3, and P4.
Then DR is the closure of the region inside J . In this proof, if the context is clear, we may
denote a curve by its two endpoints. For example, P1P2 refers to the curve Db−. Since (D,F ) is
a real symmetrical degree-2 left-end positive branch wrapping around the real symmetrical strip
V , F (P1P2), F (P2P3), F (P3P4) and F (P4P1) are four curves each of which can be thought as a
graph over a connected component of Y R. Especially F (P1P2)∩F (P3P4) ∈ b−, and F (P2P3) and
F (P4P1) are parabola-like in the sense that they have only one critical point. Put

P ′i ≡ F (Pi)

for i = 1, . . . , 4.
Let li : [0, 1) −→ R2\{DR\{∪4

i=1Pi}}, for i = 1, . . . , 4 be four pairwise disjoint curves such
that

1. li(0) = Pi, for i = 1, . . . , 4,

2. putting
Pi,∞ ≡ li(1) ≡ lim

t→1
li(t)
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for i = 1, . . . , 4, then l1 and l4 extend upwards to infinity in the sense that

π2(l1(1)) = π2(l4(1)) = +∞,

while l2 and l3 extend downwards to infinity in the sense that

π2(l2(1)) = π2(l3(1)) = −∞,

and

3. for all i = 1, . . . , 4,
π1(li(1)) > −∞.

We construct a map F :
(
∪ω∈{A,B,C,D} lω

)
∪DR −→ R2 such that

1. F(DR) = F (DR) (In particular, F(li(0)) = P ′i for each i),

2. for i = 1, . . . , 4, li is homeomorphic to F(li),

3. F(li)’s are pairwise disjoint,

4.
(
∪4
i=1 F(li)

)
∩
(
∪4
i=1 li ∪DR

)
= ∅, and

5. for i = 1, . . . , 4, F(li) extends leftwards to infinity in the sense that

π1(F(li(1))) = −∞.

Put
P ′i,∞ ≡ F(li(1))

for i = 1, . . . , 4.
Figure 5.5.1 is an illustration of the construction. By the hypothesis of the theorem, F|DR = F

has no fixed point. Furthermore, the construction of F shows that there exists some d > 0 such
that for all i = 1, . . . , 4 and all point p ∈ li,

dist(F(p), p) > d.

If all li and F(li) are defined carefully, we can construct an orientation preserving homeomor-
phism FL between the region RL bounded by curves P1,∞P1, P1P2 with P2P2,∞ and the region R′L
bounded by P ′1,∞P

′
1, P ′1P

′
2 with P ′2P

′
2,∞ so that

1. FL|P1,∞P1∪P1P2∪P2P2,∞ = F(p)|P1,∞P1∪P1P2∪P2P2,∞ ,

2. FL does not have a fixed point.

Similarly, there is an orientation-preserving homeomorphism FR between the region RD bounded
by curve P2,∞P2, P2P3 with P3P3,∞ and the region R′D bounded by P ′2,∞P

′
2, P ′2P

′
3 with P ′3P

′
3,∞ so

that
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Figure 5.5.1: Extension of a simple nested system
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1. FR|P2,∞P2∪P2P3∪P3P3,∞ = F(p)|P2,∞P2∪P2P3∪P3P3,∞ ,

2. FR does not have a fixed point.

In other words, F can be extended to the larger domain DR∪RL∪RD which is homeomorphic to its
image F(DR)∪R′L∪R′D under the extended map; such extension has no fixed point. It is obvious
that any map whose domain is R2\{DR ∪ Rl ∪ RD} and whose range is R2\{F (DR) ∪ R′l ∪ R′D}
does not have any fixed point. So we can extend F to R2 such that F is an orientation preserving
planar homeomorphism without fixed point.

The Brouwer Translation Theorem states that if an orientation preserving planar homeomor-
phism has no fixed point, then it is conjugate to a planar translation. Therefore, F has no
non-wandering point. Since F|DR = F , F cannot have any non-wandering point either.

Proposition 5.5.2. Let BS = {D1, D2, V, F} be a basic nested system whose pre-nested system
is

{(D1, F1), (D2, F2), V }.

If D1 has no fixed point under F1 and D2 has no fixed point under F2, then Ω(BS) = ∅.

Proof. We extend F as Figure 5.5.2 illustrates. For each i = 1, 2, 3, 4, the extension maps Pi,∞ to
P ′i,∞, and Qi,∞ to Q′i,∞. The regions bounded by those curves are extended accordingly. Similar
argument to the proof of Proposition 5.5.1 shows that the extension F is an orientation preserv-
ing homeomorphism from R2 into R2 without fixed points. The Brouwer Translation Theorem
concludes the Proposition 5.5.2.

Proposition 5.5.1 and 5.5.2 highlight the importance of fixed points. For later use, we introduce
the following notations.

Notation 5.5.3. Let NS = {Di, V, F}i∈I be a nested system. Put

Fix(NS) ≡ {fixed points of F} and P (NS) ≡ {periodic points of F}.

For any i ∈ I,put

FixNS(Di) ≡ Fix(NS) ∩ (Di\Di+1) and PNS(Di) ≡ {q ∈ P (NS)|O(q) ∩ (∪j<iDj) = ∅}.

When no confusion arises, we may use Fix(Di) for FixNS(Di) and P (Di) for PNS(Di). Let NS =
{NSi} be a family of nested systems. Put

Fix(NS) ≡
⋃
i

Fix(NSi) and P (NS) ≡
⋃
i

P (NSi).

Lemma 5.5.4. Let NS be a nested system with zero entropy. If Fix(NS) = ∅, then Ω(NS) = ∅.

Proof. Since NS has zero entropy, its zero-th equivalent family exists and is denoted by CS =
{CSj}. For every j, CSj is either a simple nested system or a basic nested system. Since
Fix(NS) = ∅, Fix(CSj) = ∅. By Propositions 5.5.1 and 5.5.2, Ω(CSj) = ∅.
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Figure 5.5.2: Extension of a basic nested system
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Corollary 5.5.5. Let BS = {D1, D2, V, F} be a basic nested system. BS 6= cl(W). If Ω(D1) does
not contain any periodic point, then Ω(D1) = ∅.

Proof. If BS is reducible, then PBS(D1) = ∅ implies Ω(D1) = ∅. Therefore, if Ω(D1) 6= ∅, then
BS must be non-reducible. Moreover, BS 6= cl(W), its basic-renormalized nested system exists
and is denoted by ES. By Lemma 5.3.10, Ω(ES) is essentially the same as Ω(D1). Therefore,
P (ES) = PBS(D1) = ∅. In particular, ES does not contain any fixed point. The corollary thus
follows from Lemma 5.5.4.

Lemma 5.5.6. Let BS = {D1, D2, V, F} be a basic nested system so that BS 6∈ cl(W). If D2

does not contain periodic points under F , then BS is a reducible basic nested system.

Proof. 1) The first step is to prove that the renormalization of BS must stop in finite steps
assuming that the renormalization did exist.

Suppose the renormalization of BS does not stop in finite steps. Denote the first renormalized
nested system by ES = {(Ej)j∈I , V, eF}. If D2 does not contain any periodic point under F , then
Ej does not contain any periodic point under eFj for j ≥ 2. Hence the zero-th equivalent family
of ES has only one basic nested system, whose pre-system is {(E1, eF1), (E2, eF2), V }. For the
same reason, for every m ∈ N, the m-th equivalent family contains only one basic family, say they
are mES = {mE1,mE2, V,m F}. Since mE1 = D1, put mE = mE2. If q ∈ mE, mF (q) = F2 ◦Fm

1 (q).
The basic renormalization construction implies

mE2 ⊂ F−1
1 (m−1E2) ⊂ · · · ⊂ F−m1 (D2),

for every m. In particular, for every m, there is a connected component of F−m1 (b−2 ), denoted by

mb
− so that mb

− ⊂ F−1
1 (m−1b

−). Because deg(mE2) = 1, mb
− is a vertical holomorphic curve for

every m. Using the same argument as in the proof of Theorem 3.2.1, we obtain a fixed point P
whose real stable manifold is Lγ = limm (mb

−).
For each k ∈ Z+, F k

1 strictly wraps m+kE around mE and the branch (m+kE,F
k
1 ) has degree

one. Put mbd = bd ∩ mE. In particular, F k
1 (m+kbd) is a degree one horizontal holomorphic curve

in mE for any m and k. If we fix m and let j →∞, we then have a horizontal holomorphic curve
Lm = limj F

k
1 (m+kbd).

Since mE lies on the left side of m+1E, limm Lm = Q ∈ Lγ. We now prove P = Q. Observe

F1(Lm+1) = F1(limF k−1
1 (m+kbd)) = limF1(F k−1

1 (m+kbd)) = Lm.

Thus we have
F1(Q) = F1(lim

m
Lm) = lim

m
F1(Lm) = lim

m
Lm−1 = Q.

Moreover, for all m, limk F
−k
1 (Lm) = limk Lm+k = Q = P implies that Lm are part of the unstable

manifold of P
On the other hand, mF (mE) ∩m E 6= ∅ by the definition of basic-renormalization. Since

mF (mE) = F2(Fm−1
1 (mE)) ⊃ F2(Fm−1

1 (F1(m+1E))),

61



then mF (mE) ∩m+k E 6= ∅ for any k ∈ N. Therefore mF (mE) ∩ Lγ 6= ∅. In particular,

mF (mbd) ∩ Lγ = F2(Fm
1 (mbd)) ∩ Lγ 6= ∅,

where we used the fact that mF (mE) lies inside the left attached Jordan Curve associated with

mF (mbd). Since L1 = limm F
m−1
1 (mbd), F2(F1(L1)) ∩ Lγ 6= ∅. This implies there exists either a

transverse homoclinic point or a homoclinic tangency. This contradicts BS 6∈ cl(W).
2) Assume BS is renormalizable. We now have that the renormalization of BS must stop in finite
steps. Say the first renormalized nested system of BS is ES = {Ej, V, eF}. Since for any j ≥ 2,
Ω(Ej) does not contain periodic points, Ω(Ej) = ∅ by Proposition 5.5.1 and 5.5.2. Then we have

Ω(D1) = Ω(ES) =
⋃

ΩES(Ej) = ΩES(E1) ⊂ F
−(l+2)
1 (D1).

Assume the M -th renormalized nested system of BS is no longer renormalizable. By induction,
for any m < M , the m-th equivalent family of BS contains only one basic nested system, denote
by mES = {mE1,mE2, V,mF}, which has non-wandering points. We have

Ω(D1) = ΩES(E1) = · · · = ΩmES(mE1) ⊂ F
−(l+m+1)
1 (D1).

When m = M , the basic nested system MES = {ME1,ME2, V,MF} is reducible. If p ∈
Ω
MES(ME1) = Ω(D1), then O

MF (p) ∩ ME2 = ∅. Hence,

O
MF (p) = OF1(p) = OF (p).

Corollary 5.5.7. Let BS = {D1, D2, V, F} be a basic nested system. If for any priodic point
p ∈ D2, OF (p) ∈ D2, then BS is a reducible basic nested system.

Proof. Suppose BS is non-reducible. Denote the first renormalized nested system by ES =
{(Ej)j∈I , V, eF}. Since OF (p) ∈ D2, the strip Ej does not contain any periodic point under eF
for any j ≥ 2. The nested system ES is reducible by Lemma 5.5.6. The corollary follows from
the fact that Ω(E2) = ∅ because of E2 has no periodic points.

Lemma 5.5.8. Let BS = {(D1, D2), V, F} be an l-order basic nested system whose pre-system
is {(D1, F1), (D2, F2), V }. Let eBS = {(Ej)j≥1, V, eF} be the first renormalized nested system.
p ∈ Ω(D1) is a periodic point of BS under F . Then either the period of p under eF is strictly less
than that under F or OF (p) ⊂ F−(l+1)(D1).

Proof. Since all the relevant points q 6∈ F−(l+1)(D1) have return time longer than 1, the proposition
follows.

Lemma 5.5.9. Let BS = {(D1, D2), V, F} be an l-order basic nested system so that BS 6∈ cl(W).
It has only finitely many fixed point p1, . . . , pn. The BS is a reducible basic nested system.

Proof. Since all pi have period one, their periods cannot be lowered. It follows Proposition 5.5.8
that for every j, either pi ∈ D2 or pi ∈ F−(l+1)(D1). Then Corollary 5.5.7 implies BS is a reducible
basic nested system, which is non-renormalizable.
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Proposition 5.5.10. Let BS = {D1, D2, V, F} be a basic nested system so that BS 6∈ cl(W). If
BS contains only finite periodic points, then exists some M so that the M-th equivalent family of
BS consists of only finitely many simple nested systems (i.e. the renormalization of BS stops in
finite steps).

Proof. If the periodic points have orbits that do not involve D2. The Lemma follows by definition.
Otherwise, the Lemma 5.5.8 shows that the renormalization will lower the periods. Therefore,
after finitely many renormalizations, periods will be lowered to one. This corollary follows from
Lemma 5.5.9.

Proposition 5.5.11. Let NS (resp. NS) be a nested system (resp. a family of nested system) with
only finitely many periodic points. There exists a positive integer M so that the M-th equivalent
family of NS(or NS) contains only finitely many simple nested systems. (i.e. Its renormalization
will stop in finite steps).

Proof. The zero-th equivalent family consists of only simple and basic nested system. Hence, this
proposition follows from Proposition 5.5.10.

Definition 5.5.12. Let NS (resp. NS) be a nested system (resp. a family of nested system). If
there exists a positive integer m so that the m-th equivalent family of NS (resp. NS) consists of
only simple nested system, then the m-th equivalent family is said to be the the zero-th equivalent
simple family of NS.

Before proceeding to the next chapter, we discuss two more things. The first is how their
determinants behave under renormalization.

Lemma 5.5.13. Let NS (resp. NS) be a nested system (resp. a family of nested system). If the
k-th equivalent family of NS (resp. NS) exists, denoted it by kNS (resp. kNS), then

Jac(kNS) ≤ Jac(NS) (resp. Jac(kNS) ≤ Jac(NS)).

Proof. The renormalization map of F is in the form of F n−1
i+1 ◦Fi where n is the return time of the

corresponding relevant points. Since Jac(NS) ≤ d < 1, it is obvious that each renormalization
shrinks the Jacobian by the factor of at least d. The lemma follows.

The second is that we discuss how scaling ratio behaves under renormalization.

Definition 5.5.14. Let NS = {(Di)i∈I , V, F} be a nested system. The scaling ratio of NS is

σ(NS) = σ(D1, V ).

Clearly σ(Di, V ) ≤ σ(NS) for every i ∈ I.

Definition 5.5.15. Let NS = {NSj}j∈I be a family of nested systems. The scaling ratio of NS
is

σ(NS) = sup
j∈I

σ(NS).
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Remark 5.5.16. Let NS be a family of nested system. Then σ(NS) > 0.

Lemma 5.5.17. Let NS (resp. NS) be a nested system (resp. a family of nested system). If
the k-th equivalent family of NS (resp. NS) exists, we denote it by kNS (resp. kNS). We have
σ(kNS) ≤ σ(NS) (resp. σ(kNS) ≤ σ(NS)).

Proof. Let BS = {D1, D2, V, F} be a basic nested system and its first renormalized nested family
ES = {Ej, V, eF}. The scaling ratio of the first equivalent family of BS is

sup
j
σ(Ej, V ) = σ(D1, V ).

For arbitrary nested system NS, their zero-th equivalent family consists of either basic or simple
nested systems, therefore σ(1NS) ≤ σ(NS). For arbitrary k-th equivalent family, the lemma
follows by induction.
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Chapter 6

Renewal

Simple nested systems can be classified into two sub-types based on the numbers of saddle points
that they contain. If a simple nested system contains no more than one saddle, its dynamics is
simple and well-understood; we study such simple nested systems in Subsection 6.1. On the other
hand, if a simple nested system contains more than one saddle and satisfies an apriori bound,
we can construct a refiner nested system on which the renormalization operator can act on (See
Subsection 6.2). In Subsection 6.1, we also define the differentiable one-parameter families of
simple nested systems and study the saddle-node bifurcations in such families.

6.1 Saddle node bifurcation in Simple nested systems

Put
∆ ≡ {(x, x) : x ∈ R}.

∆ is therefore the diagonal of R2.
Let F : R2 −→ R2 be a planar homeomorphism such that F (x, y) 7→ (f(x, y), x). Then F−1(∆)

is can be viewed as an graph of a function over x-axis. In other words, there exists a function
δ : R −→ R so that F−1(∆) = {x, δ(x)}. For later use, we say such δ : R −→ R is the diaganol
function of F .

Lemma 6.1.1. Let F : R2 −→ R2 be an orientation preserving diffeomorphism such that F (x, y) 7→
(f(x, y), x). If F does not have any fixed point then F does not contain any nonwandering point.

Proof. There are two cases based on whether the diagonal function of F is above or below the
diagonal; see Figure 6.1.1. Without loss of generality, we assume the diagonal function of F lies
below the diagonal as in the part (a) of Figure 6.1.1.

Let p = (x, y) be a point in R2, and F (p) = (x1, y1) be its image.
1) Assume p is above the diagonal, i.e. x < y. Since F is orientation preserving, then p′ lies on

the diagonal, i.e. x1 < y1. Therefore, x1 < y1 = x < y. Denote F n(p) = (xn, yn). By induction,
we have

xn < yn = xn−1 < yn−1 < · · · < x1 < yx = x < y.
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Figure 6.1.1: Because there is a positive distance between the diagonal function of F and the
diagonal, the dynamics is clear when F has no fixed point.

Since there is no fixed point, limxn = −∞ and lim yn = −∞. The point p cannot be a non-
wandering point.

2) Assume p is below the diagonal but above F−1(∆). Since F is orientation preserving, then
F (p) lies above the diagonal.

3) Assume p is below F−1(∆). If there exists an N ∈ Z+ so that FN(p) is above the diagonal,
then we are done. Otherwise, we have

xn > yn = xn−1 > yn−1 > · · · > x1 > y1 = x > y.

Since there is no fixed point, limxn =∞ and lim yn =∞. The point p cannot be a non-wandering
point.

The Lemma 6.1.1 is a direct application of Brouwer fixed-point Theorem. However, the tech-
nique we use in the proof is more relevant in our setting.

Lemma 6.1.2. Let F be as in Lemma 6.1.1. If ∆ and F−1(∆) only intersect tangentially, then
Ω(F ) consists of only non-hyperbolic fixed points.

Proof. Suppose p is above the diagonal ∆. the identical argument of the proof of Lemma 6.1.1
shows that

xn < yn = xn−1 < yn−1 < · · · < x1 < yx = x < y.

Hence, we have lim xn = x′ and lim yn = y′. Moreover

F (x′, y′) = F (limxn, lim yn) = limF (xn, yn) = lim(xn+1, yn+1) = (x′, y′).
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The point p is attracted to a fixed point, therefore it cannot be non-wandering point.

Definition 6.1.3. Let {Ft : R2 −→ R2}t∈T be a family of maps. Let F : T × R2 −→ R2 be a
map where F(t, x, y) = Ft(x, y). If F is differentiable with respect to t, then the family is said
differentiable with respect to t.

Lemma 6.1.4. Let {Ft : R2 −→ R2}t be a family of orientation preserving diffeomorphisms
such that Ft(x, y) 7→ (ft(x, y), x). The family is differentiable with respect to t. Let Ω(Ft) be the
nonwandering set of Ft for any t. If for t < 0 Ω(Ft) = ∅ and Ω(F0) 6= ∅, then Ω(F0) consists of
fixed points and all the fixed points are non-hyperbolic.

Proof. Since the family F is differential with respect to t, the diagonal ∆ and F−1
0 (∆) interest

tangentially. The lemma therefore follows from Lemma 6.1.1 and 6.1.2.

If the family {Ft} in Lemma 6.1.4 is of homeomorphisms other than diffeomorphisms, the first
part of conclusion that Ω(F0) only contains fixed points is still valid. However, the second part
that all the fixed points are non-hyperbolic is no longer valid since hyperbolicity is not properly
defined when maps are merely homeomorphisms.

Let {Ft}t be as in Lemma 6.1.4. For any t, let δt be the diagonal function of Ft. Let δ̄ be a
map whose domain is (t, x) plane where δ̄(t, x) = δt(x). For a generic family {Ft}, at any fixed
point p of F0,

1. δ̄′′0(p) 6= 0

2. ∂δ̄
∂t

∣∣∣
t=0

(p) 6= 0.

Therefore, for every p ∈ Ω(F0), the family Ft experiences a saddle node bifurcation at p when
t = 0. In other words, there exists an εp > 0 so that for any Ω(Ft) where t < εp contains one
saddle fixed point pt and one sink fixed point qt where

lim
t→0

pt = lim
t→0

qt = p.

If we further assume that Ω(F0) consists of only n finitely many fixed points, then there exists an
ε > 0 so that Ω(Ft) contains only 2n fixed points for all t < ε.

Remark 6.1.5. Lemma 6.1.1, 6.1.4 and the following remarks are still valid if the map (resp. the
family of maps) is defined only on a subset of R2.

Definition 6.1.6. Let SSt = {Dt, V, Ft}t∈T be a family of simple nested systems. The structure
map for each Dt is st. The family is said differentiable with respect to t, if

1. Let Φ : I × X × Y −→ C2 be a map where Φ(t, z, w) = (s−1
t (z, w), w). Φ is differentiable

with respect to t.

2. Let F : I × X × Y −→ V be a map where F(t, z, w) = Ft ◦ Φ(t, z, w). F is differentiable
with respect to t.
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Remark 6.1.7. Let SSt = {Dt, V, Ft}t∈T be a family of simple nested systems. By continuity, the
followings are clear:

1. If SS0 has a hyperbolic periodic point, then there exists an ε > 0 so that for any t < ε, SSt
has a hyperbolic periodic point with same period.

2. If for any ε > 0 there exists an t < ε so that SSt has a periodic point with period T , then
SS0 has a periodic point with period T .

6.2 Renewal

Definition 6.2.1. Let SS = {D, V, F} be a simple nested system. If there exists a (non-simple)
nested system rSS = {rDi, rV, rF}i∈I so that

1. Ω(SS) w Ω(rSS),

2. for any i ∈ I, Ω(rDi) 6= Ω(SS),

then rSS is said to be the renewal of SS. The zero-th equivalent family of rSS, denoted by rSS,
is called the first renewal equivalent family of SS.

The definition shows the renewal of SS must not be SS itself, therefore it refines the nonwan-
dering set Ω(SS). More precisely, we have the following Lemma.

Lemma 6.2.2. Let SS be a renewable simple nested system and rSS = {BSi}i∈I be its first
renewal equivalent family. For any i ∈ I, Fix(BSi) ( Fix(SS).

Proof. If there existed an i ∈ I so that Fix(BSi) = Fix(SS), then BSj does not have any fixed
point for any j 6= i. Thus BSj does not contain any non-wandering point by Proposition 5.5.1
and 5.5.2.

Definition 6.2.3. Let SS = {SSi}i∈I be a family of simple nested system. If

I ′ = {i ∈ I|SSi is renewable} 6= ∅,

then SS is said to be renewable. Let rSi denote the first renewal equivalent family by SSi for any
i ∈ I ′ and put

rSS ≡ (∪i∈I′rSi)
⋃

(∪j∈I\I′SSj).

rSS is the called first renewal equivalent family of SS.

Definition 6.2.4. Let NS (resp. NS) be a nested system (a family of nested system). If its
zero-th equivalent simple family, denoted by SS, exists and is renewable, then NS (resp. NS) is
said to be renewable and its first renewal equivalent family is the first renewal equivalent family
of SS.
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If a nested system is non-renewable, by definition there are two possible reasons: First, its
zero-th equivalent simple family does not exist. Second its zero-th equivalent simple family is not
renewable. When there is no confusion, we will hereafter say a nested system (a family of nested
systems) renewable without explicitly mentioning the existence of its zero-th equivalent simple
family.

Definition 6.2.5. Let σ be a positive number so that 0 < σ ≤ 1. A positive number b ≡ b(σ)
is called a renewable determinant of σ if for any simple nested system SS with scaling ratio
σ ≡ σ(SS), if Jac(SS) < b then one of the followings happens:

1. Ω(SS) = p where p is a non-hyperbolic fixed point;

2. Ω(SS) = {p, q} where p is a saddle and q a attracting fixed point;

3. Ω(SS) has at least two saddle nodes and SS therefore has a renewal rSS.

Definition 6.2.6. Define a function b : (0, 1) −→ (0,∞) so that for any σ ∈ (0, 1)

b(σ) ≡ sup{b|b is a renewable derminant of σ}.

This function b is called the renewable determinant function.

Let SS be a simple nested system. Suppose its determinant is Jac(SS) and its scaling ratio is
σ(SS). If Jac(SS) < b(σ(SS)), then we say that SS has a renewal compatible pair of determinant
and scaling ratio.

Assumption 6.2.7. Let σ be a positive number so that 0 < σ ≤ 1. There exists a renewable
determinant b(σ) of σ. That is, the renewable determinant function exists. Moreover, if a simple
nested system SS has a renewable compatible pair of determinant Jac(SS) and b(σ) and has at least
two saddle nodes, then its renewal rSS has a renewable compatible pair of determinant Jac(rSS)
and scaling ratio σ(rSS). More precisely, we have

σ(rSS) ≤ σ and Jac(rSS) ≤ Jac(SS).

The function which relates the scaling ratio σ and the determinant b given in above Assumption
6.2.7 is inversely proportional, i.e., the larger the σ is the smaller the b is. From the proof of above
proposition, we have limσ→0 b(σ) < 1/2.

Although the renewal of a nested system is not necessarily unique, if a nested system whose
scaling ratio and determinant satisfy the relation given in Assumption 6.2.7 is renewable, we will
always assume the renewal is that given in the proof of Assumption 6.2.7.

Corollary 6.2.8. Let SS = {SSi ≡ {Di, Vi, Fi}} be a family of simple nested systems. The
number σ ≡ σ(SS) is the scaling ratio of SS. Suppose for any i, Jac(Fi) is less than b(σ) given
in Assumption 6.2.7. Then either of the following happens:

1. For any i, Ω(SSi) either consists of only one non-hyperbolic fixed point or consists of one
saddle and one attracting fixed point.
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2. SS is renewable.

Proof. Because σ(SS) = sup σ(SSi), the corollary follows the Assumption 6.2.7 immediately.

Definition 6.2.9. Let NS (resp. NS) be a nested system (a family of nested system). If the
k-th renewal equivalent family of NS (resp. NS), then the (k + 1)-th renewal equivalent family
of NS (resp. NS) is the first renewal equivalent family of its k-th renewal equivalent family.

Let NS (resp. NS) be a nested system (a family of nested system). If there exists an K ∈ Z+

so that the K-th renewal equivalent family of NS (resp. NS) exists but is not renewable, then
we say the renewal process of NS (resp. NS) stops at K steps.

Let NS (resp. NS) be a nested system (resp. a family of nested system). Given k and
m ∈ Z+, we hereafter denote the m-th equivalent family of its k-the renewal equivalent family of
NS (resp. NS) by k,mNS (resp. k,mNS )provided it exists.

Given a nested system (or a family of nested system), if it is either renormalizable or renewable
then we say it is actionable.

Definition 6.2.10. Let NS (resp. NS) be a nested system (resp. a family of nested system). If
there exist an K and M ∈ Z+ so that K,MNS (resp. K,MNS) exists but K,MNS is not actionable,
then (K,M) is said to be the stop number of NS (resp. NS). Moreover, if (K,M)NS (resp.

K,MNS) is the simple equivalent family of the K-th renewal of NS, then we say NS is fully
actionable and acted at (K,M).

Notation 6.2.11. Let NS (resp. NS) be a nested system (resp. a family of nested system).
Suppose (K,M) is its stop number. For any i < K, we know the k-th renewal equivalent family
has its own simple equivalent family through finitely many renormalizations. Therefore for later
use, we denote the stop number of renormalization for the k-th renewal equivalent family by m(k)
for k < K. If NS (resp. NS) is fully acted, then we can assign m(K) as well. It is clear
m(K) = K.

Lemma 6.2.12. Let SS be a simple nested system whose scaling ratio and determinant satisfy
the relation given in Assumption 6.2.7. Suppose SS is renewable and rS is its first renewal.
Suppose the zero-th equivalent simple family of rS exists, denoted by rS ′ = {rS ′i}. Then one of
the following happens: 1) rS ′ is renewable, and 2) Ω(rS ′i) either contains a non hyperbolic fixed
point or contains one saddle and one sink fixed point for any i ∈ I.

Proof. Assumption 6.2.7 shows that the first renewal rS has a compatible pair of determinant
and scaling ratio. Renormalization operator preserves such compatibility by Lemma 5.5.17. Then
either the zero-th equivalent simple family rS ′ is renewable, or rS ′i satisfies the first two properties
of Definition 6.2.5.

Theorem 6.2.13. Let NS (resp. NS) be a nested system (resp. a family of nested system)
with zero entropy and finitely many periodic points. Suppose its scaling ratio σ and determinant
b ≡ Jac(NS) are compatible. Then there exist K, M ∈ Z+ so that NS is fully acted at the
actionable number (K,M). Moreover, suppose (K,M)NS = {KSi}i∈I , then all KSi are simple
nested systems, with each Ω(KSi) containing either a non-hyperbolic fixed point or one saddle and
one sink fixed point for any i ∈ I.
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Proof. Let rS = {BSi} be the first renewal equivalent family of NS. Lemma 6.2.2 shows that
each BSi inherits strictly less fixed point from NS. Especially, there cannot be more than n times
renewal.

On the other hand, suppose the k-th renewal of NS exists. Proposition 5.5.11 implies (by
finitely many renormalizations) the existence of the k-th equivalent simple family, denoted by

(k,m(k))NS = {kSi}i∈I . Lemma 6.2.12 shows that either the k + 1-th renewal exists or each Ω(Si)
contains either a non-hyperbolic fixed point or one saddle and one sink fixed point.

The above theorem has a straightforward but important corollary as follows:

Corollary 6.2.14. Let NS (resp. NS) be a nested system (resp. a family of nested system) as
in Theorem 6.2.13. Then Ω(NS) (resp. Ω(NS)) contains and only contains periodic points.

Proof. For every pair of positive integers k ≤ K and m ≤ M , the (k,m)-th equivalent family
of NS has the same real non-wandering set as that of NS. The corollary follows from Theorem
6.2.13.
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Chapter 7

A family of nested systems on the route
to chaos

In this chapter, we study the route to chaos of nested systems. We first construct a combina-
torial representation of nested systems based on the renormalization and the renewal operation
in Subsection 7.1. Then we study what dynamical change of a one-parameter family of nested
systems we can infer from the change of the combinatorial representations. More precisely, we
show that 1) if the dynamics does not change, the combinatorial representation does not change
(except a possible formal change; see Definition 7.2.3), and 2) if the dynamics does change, the
combinatorial must change correspondingly.

With the the combinatorial representation, we conclude that a nested system can only ex-
perience saddle-node bifurcations and period-doubling bifurcations (see Propositions 7.2.12 and
7.2.15). We then conclude our main theorem that a nested system has the period-doubling cascade
as its route to chaos.

7.1 Combinatorial representation of a nested system

Notation 7.1.1. Hereafter, we denote

1. L ≡ {B, S,O, •}.

2. Map(Z+,L) is the space of all maps Ψ : Z+ −→ L.

Definition 7.1.2. Let NS = {Di, V, F}i∈I be a nested system and CS be its zero-th equivalent
family. Define a map (0,0)Ψ : Z+ −→ L by

(0,0)Ψ(i) =


B, if CS contains the basic sub-nested systems of NS indexed by {i, i+ 1}
S, if CS contains the essential simple sub-nested systems of NS indexed by {i}
O, if CS contains the auxiliary simple sub-nested systems of NS indexed by {i}
•, otherwise

0,0Ψ is called the the (0, 0)-th representation map of NS.
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A nested system must consist of finitely many branches. In other wordss, there must exist a
positive integer k ≤ |I| so that (0,0)Ψ(k) 6= • and for all j > k, (0,0)Ψ(j) = •. The number k is
called the cardinality of (0,0)Ψ.

Example 7.1.3. If NS = {D, V, F} is a simple nested system with a periodic point, then

(0,0)Ψ(i) =

{
S, if i = 1,
•, i > 1.

The cardinality of (0,0)Ψ(i) is 1.

Lemma 7.1.4. The map (0,0)Ψ as given in Definition 7.1.2 is well-defined.

Proof. Since CS is the zero-th equivalent family of NS, it cannot contain both the basic sub-
nested systems of NS indexed by {i, i+ 1} and the simple sub-nested systems of NS indexed by
{i}. Moreover, the simple nested system cannot be both essential and auxiliary at the same time
by definition.

Definition 7.1.5. LetBS be a basic nested system and ES be its first renormalized nested system.
A map µ : Z+ −→ L is called the modeling map of BS if it is the the (0, 0)-th representation map
of ES. The cardinality of µ is the cardinality of the (0, 0)-th representation map of ES.

Let SS be a simple nested system. The modeling map µ : Z+ −→ L is the the (0, 0)-th repre-
sentation map of SS itself. The cardinality of µ is the cardinality of the (0, 0)-th representation
map of SS.

Definition 7.1.6. Let NS, CS, and (0,0)Ψ(i) be as in Definition 7.1.2. If CS ′ ∈ CS is the sub-
nested system of NS indexed by i or {i, i + 1}, then it is called the (i)-position nested system
with respect to NS. The modeling map of CS ′, denoted by µ(i), is called the (i)-position modeling
map.

Definition 7.1.7. Let SS be a renewable simple nested system and the nested system RS be its
renewal. The remodeling map of SS, denoted by ρ : Z+ −→ L, is the (0, 0)-th representation map
of RS. The cardinality of ρ is the cardinality of the (0, 0)-th representation map of RS.

Let SS ′ be a non-renewable simpled nested system. The remodeling map of SS ′, denoted
by ρ : Z+ −→ L, is the (0, 0)-th representation map of SS ′ itself. The cardinality of ρ is the
cardinality of the (0, 0)-th representation map of SS ′.

Definition 7.1.8. The bullet map µ• : Z+ −→ L is defined by

µ•(i) = • for all i ∈ Z+.

Definition 7.1.9. Let NS be a nested system. For a pair of numbers (k,m) ∈ Z+ × Z+, if NS
is (k,m)-th actionable, then we define (k,m)-th location number of NS, denoted by p(k,m), as
follows:

p(k,m) ≡ Σk−1
i=0M(i) + k +m, (7.1.1)

where M(i) is the renormalization stop number of the i-th renewal equivalent family of NS for
each 0 ≤ i < k.
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Definition 7.1.10. Let NS be a nested system. For any pair (k,m) ∈ Z+ × Z+ so that NS is
(k,m)-th actionable, we then have the (k,m)-th location number ofNS, denoted by p(k,m). Given
the (0, 0)-th representation of NS as in Definition 7.1.2, we define the (k,m)-th representation
map of NS

(k,m)Ψ : Np(k,m) −→ Map(Z+,L)

inductively on p(k,m) as follows:

(k,m)Ψ(a1, . . . , ap(k,m)) =


ρ(a1,...,ap(k,m)), if m = 0 and (a1, . . . , ap(k,m))-position

nested system exists
µ(a1,...,ap(k,m)), if m 6= 0 and (a1, . . . , ap(k,m))-position

nested system exists
µ•, otherwise

If a nested system NS ′ is the ap(k,m)+1-th position nested system with respect to (a1, . . . , ap(k,m))-th
position nested system with respect to NS, NS ′ is called the (a1, . . . , ap(k,m)+1)-position nested
system with respect to NS. Furthermore, the modeling map of NS ′, denoted by µ(a1,...,ap(k,m)+1),
is called the (a1, . . . , ap(k,m)+1)-position modeling map; if m = M(k) the remodeling map of NS ′,
denoted by ρ(a1,...,ap(k,m)+1), is called the (a1, . . . , ap(k,m)+1)-position remodeling map.

7.2 Dynamical equivalent windows, Bifurcation moment

and Route to chaos

Let {NSt}t∈T = {(Dti)i∈I , V, Ft}t∈T be a family of nested systems. Put

SStj ≡ {Dtj, V, Ft}t∈T

for every j ∈ I. SStj is called the sub-family of NSt indexed by j.

Definition 7.2.1. Let {NSt} = {(Dti)i∈I , V, Ft}t∈T be a family of nested systems and SStj be
the sub-family of NSt indexed by j. The family is said to be differentiable with respect to t, if
SStj is differentiable with respect to t for any j ∈ I.

Let {NSt} = {(Dti)i∈I , V, Ft}t∈T be a family of nested systems which is differentiable with
respect to t. We may say {NSt} is differentiable for t ∈ T for simplicity.

Moreover, assume the (a1, . . . , am)-th position nested system of NSt, denoted by NS ′t, exists
for any t ∈ T ′ where T ′ ⊂ T is an interval. If there exists a T ′′ ⊂ T ′ so that the family {NS ′t}t∈T ′′
is differentiable with respect to t, we say for simplicity the family of (a1, . . . , am)-th position nested
system of NSt is differentiable for t ∈ T ′′.

Lemma 7.2.2. Let {BSt} = {(Dti)i=1,2, V, Ft}t∈T be a family of basic nested systems with respect
to t. Denote the basic-renormalization of BSt by {(Eti, eFti)}i∈It. Given a positive integer j ≤ |I0|,
there exists some ε > 0 so that for all |t| < ε and for all i = 1, . . . , j, (Eti, eFti) exist. Moreover,
for every i < j, the family of {Eti, V, eFti} is differentiable with respect to t when |t| < ε.
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Proof. Let q ∈ D01 be a relevant point, E(q) be its associated strip, and F0q be its associated
return map. By definition of basic-renormalization, F0q(E(q)) ∩ int(E(q)) 6= ∅. Also F0q = F i for
some i ∈ Z+. The lemma holds by from continuity.

If BS0 6∈ (cl)(W), then its renormalized nested family has only finite branches. Lemma 5.2.2
shows for all i = 1, . . . , n,

eF0i(E0iR) ∩ int(E0iR) 6= ∅.
On the other hand, the quasi-renormalization of BS0 might have more than n elements, i.e. the
(n+ 1)-th element (E0(n+1), eF0(n+1)) exists. Especially, there might exist a boundary case:

eF0(n+1)(E0(n+1)R) ∩ E0(n+1)R 6= ∅ but eF0(n+1)(E0(n+1)R) ∩ int(E0(n+1)R) = ∅.

Definition 7.2.3. Let {BSt} = {(Dti)i=1,2, V, Ft}t∈T be a family of basic nested systems and
{(Eti, eFti)}i∈It be their respective quasi-renormalization. Suppose the renormalized nested sys-
tem of BS0 is ES0 = {(E0i)i=1,...,n, V, eF0}. The family is said to have a renormalization strip
transformation at t = 0 if there exists an ε > 0, so that

1. for all i ≤ n+ 1, the family of {Eti, V, eFti} is differentiable with respect to t for all t ∈ (−ε, 0)
(or for all t ∈ (0, ε)), and

2. eF0(n+1)(E0(n+1)R) ∩ E0(n+1)R 6= ∅.

Renormalization strip transformation is a formal change which does not imply any dynamical
change. In fact, Lemma 5.2.2 shows that unless eF0(n+1)(E0(n+1)R) ∩ int(E0(n+1)R) 6= ∅, the
strip E0(n+1)R does not contain any non-wandering point. Lemma 5.2.2 further guarantees that
eF0j(E0jR)∩ int(E0jR) = ∅ for any positive integer j > n+ 1. Nevertheless, such transformations
can affect the combinatorial representations as is explained in the following corollary.

Corollary 7.2.4. Let {BSt} = {(Dti)i=1,2, V, Ft}t∈T be a family of basic nested systems. If BS0

is renormalizable, then there exists an ε > 0 so that BSt is also renormalizable for all |t| < ε.
Moreover, suppose ESt is the renormalized nested system of BSt for respective t, then either there
exists a renormalization strip transformation at t = 0 or {ESt}|t|<ε is differentiable with respect
to t.

Proof. By the definition of renormalization strip transformation, this corollary holds.

On the other hand, the renormalization strip transformation is also the only non-dynamical
change that affects the combinatorial presentation. In the following part of this subsection, we will
show that all other changes that affect the combinatorial representation are dynamical changes.
More precisely, combinatorial representation changes if and only if there exists either a saddle-node
bifurcation or period-doubling bifurcation or renormalization strip transformation; see Proposition
7.2.19.

Let {NSt}t∈T be a family of nested systems. We assume that for all t ∈ [−1, 1), NSt 6∈ cl(W)
hereafter. We denote the zeroth-equivalent family of NSt by CSt = {CSti} (for respective t).
Without loss of generality, we can also assume the i-position nested system of NSt is CSti which
is either CSti = {Dti, Dt(i+1), V, F} or CSti = {Dti, V, F}.
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Lemma 7.2.5. Let NSt = {(Dti)i∈I , V, Ft}t∈T be a family of nested systems which is differentiable
with respect to t. Denote the (0, 0)-th representation map of NSt by Ψt : N −→ L. Then for all
t ∈ T ,

Ψt(i) = • ⇐⇒ Ψ0(i) = •.

Proof. For all t ∈ T , NSt has |I| many branches.

Lemma 7.2.6. Let NSt and Ψt be as in Lemma 7.2.5. Assume all the periodic points of NS0 are
hyperbolic. Then

Ψt(i) = O, for all t ∈ (−ε, ε)

for some ε > 0 if and only if Ψ0(i) = O.

Proof. 1) Assume there exists an ε > 0 so that for any |t| < ε, Ψt(i) = O. If Ψ0(i) 6= O, then
Ψ0(i) = S/B (Ψ0(i) 6= • because of Lemma 7.2.5). Proposition 5.5.1 and 5.5.2 conclude that
CS0i must have hyperbolic fixed points in either case (hyperbolicity follows from the assumption
of the lemma). The fact that hyperbolic fixed points continue to exist in a short period of time
contradicts Ψ0(i) = • for all t < ε.

2) Assume Ψ0(i) = O. If there exists a sequence {tj} so that tj → 0 and Ψtj(i) = S/B, then
for each j, CStji has at leas a fixed point, denoted by Pj. The accumulation point of {Pj}i→∞
must be a fixed point of CS0i, i.e. Ψ0(i) 6= O.

Corollary 7.2.7. Let NSt and Ψt be as in Lemma 7.2.5. Suppose Ψ0(i) 6= O and there exists an
ε > 0 so that Ψt(i) = O for any 0 < t < ε. Then {NSt} goes through saddle-node bifurcations
when t = ε in Dεi.

Proof. The proof of Lemma 7.2.6 shows that if for some i Ψ0(i) 6= O and there exists an ε > 0 so
that Ψt(i) = O for any 0 < t < ε, then the fixed points in Di must be non-hyperbolic. Therefore,
{NSt} goes through saddle-node bifurcations when t = ε in Dεi.

Generally speaking, {NSt} goes through only one saddle-node bifurcation.

Lemma 7.2.8. Let NSt and Ψt be as in Lemma 7.2.6. Then there exists an ε > 0 so that for any
t < ε

Ψt(i) =

{
S, if Ψ0(i) = S,
B, if Ψ0(i) = B.

In other wordss, The existence of an ε > 0 so that Ψt(i) = S (resp. Ψt(i) = B) for any |t| < ε is
equivalent to that Ψ0(i) = S (resp. Ψt(i) = B).

Proof. Suppose Ψ0(i) = S. If i 6= maxj∈Ij, let BSt be the basic sub-nested system of NSt
indexed by {i, i + 1}. It is clear that the family {BSt}t∈T is differentiable with respect to t.
Since NS0 6∈ cl(W), BS0 6∈ cl(W) either. Corollary 7.2.4 shows there exists an ε′ so that for any
0 ≤ t < ε′, the first renormalized nested system of BSt, denoted by ESt = {Etj, V, eFt}j∈I′ , exists
and {ESt}0≤t<ε′ is differentiable with respect to t. Since Ψ0(i) = S, BS0 is a reducible basic
nested system. By Corollary 5.3.12, E0j does not contain any nonwandering point, especially any
periodic points for any j > 1. Remark 6.1.7 indicates that there exists an ε < ε′ so that for any
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0 ≤ t < ε, Etj does not contain any periodic point for any j > 2. Corollary 5.5.7 therefore implies
that BSt is a reducible basic nested system for any 0 ≤ t < ε. In other words, the basic sub-nested
sytem of NSt indexed by {i, i+1} is not in the zero-th equivalent family of NSt for any 0 ≤ t < ε.
Hence Ψt(i) 6= B for any 0 ≤ t < ε. If we further make ε small enough so that Lemma 7.2.6
applies, then Ψt(i) = S for any 0 ≤ t < ε. If however, i = maxj∈Ij, then Ψt(i) 6= B naturally.
Thus if the ε satisfies Lemma 7.2.6, we have Ψt(i) = S for 0 ≤ t < ε.

Similarly, suppose Ψ0(i) = B. Let BSt be the basic sub-nested system of NSt indexed by
{i, i + 1}. There exists an ε′ so that for any 0 ≤ t < ε′, BSt has its first renormalized nested
system ESt = {Etj, V, eFt}j∈I′ , where {ESt}0≤t<ε′ is differentiable with respect to t. Moreover,
there must exist an j ∈ I ′ so that E0j contains an periodic point P . Since P is hyperbolic, there
exists an ε < ε′ so that Etj has a periodic point as well. By Lemma 5.3.12, BSt is a non-reducible
basic nested system. Thus Ψt(i) = B for any 0 < t < ε.

Corollary 7.2.9. Let {NSt}, Ψt and ε be as in Lemma 7.2.8. Suppose there exists some i ∈ Itε
so that

either Ψε(i) 6= S where Ψ0(i) = S, or Ψε(i) 6= B where Ψ0(i) = B,

then the family {NSt} goes through a saddle-node bifurcation at t = ε.

Proof. If Ψε(i) = O when Ψ0(i) = S/B, then the corollary follows from Corollary 7.2.7.
Suppose Ψε(i) = B when Ψ0(i) = S. Let BSt and ESt = {Etj, V, eFt}j∈I′ be as in the proof

of Lemma 7.2.8. The proof of Lemma 7.2.8 shows that for all 0 ≤ t < ε, Etj does not contain
any periodic point for any j > 2. On the other hand, Lemma 5.5.6 concludes that if Eεj did not
contain any periodic point for any j > 2, then BSε is reducible basic nested system. Therefore,
there exists an integer j > 2, so that ESt goes through a saddle-node bifurcation in Etj at t = ε.

A similar argument applies if we assume Ψε(i) = S when Ψ0(i) = B.

Lemma 7.2.10. Let NSt = {(Dti)i∈I , V, Ft}t∈T be a family of nested systems which is differen-
tiable with respect to t. Assume all the periodic points of NS0 are hyperbolic and NS0 6∈ cl(W).
Then there exists an ε > 0 so that

1. for any t < ε, NSt has the same (0, 0)-th representation map as NS0 does, and

2. for any i ∈ I, the family of i-th nested system of NSt is differentiable in 0 ≤ t < ε.

Proof. Proposition follows from Lemma 7.2.5, 7.2.6 and 7.2.8.

Lemma 7.2.11. Let {NSt}t∈T be a family of nested systems which is differentiable with respect
to t. Assume all the periodic points of NS0 are hyperbolic and NS0 is renormalizable. Then there
exists an ε > 0 so that for any t < ε and i ∈ I

1. the i-th postition modeling map of NSt, denoted by µti, exists,

2. µti = µ0
i , denote the cardinality of µti by Ii, and
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3. for any 0 < j ≤ Ii, the family of (i, j)-th position nested systems is differentiable for 0 ≤
t < ε.

Proof. Corollary 7.2.7 implies there exists an ε′ > 0 so that for any t < ε′ NSt is renormalizable.
Therefore, for any t < ε′ and i ∈ I, the modeling map of i-th position nested system of NSt exists.
Lemma 7.2.10 shows there exists an 0 < ε′′ < ε′ so that for any t < ε′′ NSt has the same (0, 0)-th
representation map. Denote the representation map of NSt by Ψt. If Ψ0(i) = S, then Ψt(i) = S
too. Since the modeling map of a simple nested system is the (0, 0)-th representation of itself, for
any t < ε′′ we have

µti(j) ≡ µ0
i (j) =

{
S, j = 1,
•, j > 1.

Thus, the proposition follows. Similarly, if Ψ0(i) = O, we also have µti = µ0
i for for any t < ε′′.

Suppose Ψ0(i) = Ψt(i) = B for t < ε′′. Denote the i-th position nested system of NSt by CSti for
any t ∈ T and i ∈ I. Lemma 7.2.8 implies if we take ε′′ to be small enough, we have the family
of basic nested systems, {CSti}0≤t<ε′′ , is differentiable with respect to t. By Corollary 7.2.7, we
obtain an ε̄ < ε′′ so that for 0 ≤ t < ε̄ the first renormalized nested system of CSti exists, denoted
by ESti. Moreover, {ESti}0≤t<ε is a differentiable family of nested system. By definition, µti is
the (0, 0)-th representation map of ESti, hence it follows from Lemma 7.2.10 that there exists an
0 < ε < ε̄ so that

µti = µ0
i

for any 0 ≤ t < ε and i ∈ I.

If a number ε is the largest number that satisfies the three properties in Lemma 7.2.11, then
there exists some i, so that either

µεi 6= µ0
i ,

or
µεi = µ0

i ,

but there exists some δ > 0 so that for any 0 < t < δ.

µε+δi 6= µ0
i .

In either case, we will have the following corollary.

Corollary 7.2.12. Let {NSt}, µti and ε be as in Lemma 7.2.11. If we further assume that ε is
the largest number that satisfies the three properties in Lemma 7.2.11, then there exists some i, so
that {NSt} either goes through a saddle-node bifurcation at t = ε in Di or has a renormalization
strip transformation at t = ε in Di.

Proof. If µεi 6= µ0
i , then by Lemma 7.2.5, 7.2.6 and 7.2.8, there exists some j so that one of the

following happens:

1. µ0
i (j) = O and µεi(j) = S,

2. µ0
i (j) = O and µεi(j) = B,
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3. µ0
i (j) = B and µεi(j) = o

4. µ0
i (j) = S and µεi(j) = B,

5. µ0
i (j) = B and µεi(j) = S.

When the first case happens, there exists a non-hyperbolic periodic point Dεi which does not exist
in Dti for all t < ε. Therefore NSt experiences a saddle-node bifurcation at t = ε. The rest cases
follows from the definition of renormalization strip transformation. If µεi = µ0

i but there exists
some δ > 0 so that for any 0 < t < δ µε+δi 6= µ0

i , the corollary holds by similar arguments.

Proposition 7.2.13. Let {NSt}t∈T be a family of nested systems which is differentiable with
respect to t. Assume all the periodic points of NS0 are hyperbolic. If there exists an integer M <∞
so that NS0 is M-th renormalizable, then there exists an ε > 0, so that for any 0 ≤ m ≤ M and
any t < ε the (0,m)-th representation map of NSt is the same as the (0,m)-th representation map
of NS0.

Proof. This proposition follows from Lemma 7.2.11 by applying it inductively on m.

Lemma 7.2.14. Let {SSt}t∈T be a family of simple nested systems which is differentiable with
respect to t. Denote the remodeling map of SSt by ρt and its cardinality of ρt by I. Assume all
the periodic points of SS0 are hyperbolic. Then there exists an ε > 0 so that for any t < ε

1. ρt = ρ0, and

2. for any 0 < j ≤ I, the family of (1, j)-th position nested systems of SSt is differentiable for
0 ≤ t < ε.

Proof. The construction of the renewal operator on the space of simple nested systems implies
that the renewal of SSt′ is differentiable with respect to t in a neighborhood of t′ when all the
periodic points of SSt′ are hyperbolic.

Corollary 7.2.15. Let {SSt} and ρt be as in Lemma 7.2.14. We further assume that for any
t ∈ T , SSt has a renewal compatible pair of determinant and scaling ratio. If the ε given in 7.2.14
is the largest number that satisfies the two conditions in Lemma 7.2.14, then {SSt} either goes
through a period doubling bifurcation or a saddle-node bifurcation at t = ε.

Proof. The corollary follows from the construction of the renewal operator.

Proposition 7.2.16. Let {NSt}t∈T be a family of nested systems which is differentiable with
respect to t. Assume all the periodic points of NS0 are hyperbolic. Moreover there exist a K ∈ Z+

and an M ∈ Z+ so that NS0 is (K,M)-th actionable. Then there exists an ε > 0, so that for any
0 ≤ k ≤ K, 0 ≤ m ≤ M and 0 ≤ t < ε, the (k,m)-th representation map of NSt is the same as
the (k,m)-th representation map of NS0.

Proof. It follows from Propostion 7.2.13 and Lemma 7.2.14.
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Let {NSt}t∈T be a family of nested systems which is differentiable with respect to t. Denote the
(k,m)-th representation map of NSt by (k,m)Ψt. Suppose the stop number for NSt0 is (Kt0 ,Mt0) ∈
Z+ × Z+. Let U ⊂ T be the maximal open connected component containing t0 so that

(Kt0 ,Mt0 )Ψt =(Kt0 ,Mt0 ) Ψt0

for any t ∈ U . Then U is called the dynamical equivalent window containing t0 in T .

Corollary 7.2.17. Let {NSt}t∈T be a family of nested systems which is differentiable with respect
to t. If U ≡ (a′, b′) ⊂ T is a dynamical equivalent window, then the family {NSt} goes through
one of the followings at t = a′ and t = b′, respectively:

1. a saddle-node bifurcation,

2. a period-doubling bifurcation, or

3. a renormalization strip transformation.

Proof. It follows from the Corollary 7.2.12 and 7.2.15.

Proposition 7.2.18. Let {NSt}t∈T be a family of nested systems which is differentiable with
respect to t. Suppose the stop number for NS0 is (K,M) ∈ Z+×Z+. Furthermore, we assume for
all t ∈ [− 1, 1),

1. NSt has a renewal compatible pair of determinant and scaling ratio, and

2. (K,M)Ψt =(K,M) Ψ0.

Then for all t ∈ [−1, 1),
Ω(NSt) = P (NSt).

Moreover, for any t1 and t2 ∈ T ,
P (NSt1) = P (NSt2)

up to a set of degenerate non-hyperbolic periodic points. In other words, if

p ∈ P (NSt1)\P (NSt2)
⋃

P (NSt2)\P (NSt1),

then p must be a degenerate non-hyperbolic periodic point.

Proof. Because NSt cannot contain any non-wandering points which are not periodic by Corollary
6.2.14, if a point p is in P (NSt1) or P (NSt2), then p must be a periodic point. Moreover, the
periodic point p cannot be non-degenerate non-hyperbolic by the definition of dynamical equivalent
window.

Suppose the periodic point p ∈ P (NSt1)\P (NSt2) is hyperbolic. Then there exists a interval
T ′ about t1 and a neighborhood U about p and a smooth function p : T → C2 such that p(t1) = p
and F n(pt) = pt′ = pt where n is the period of p under Ft. Without loss of generality, we can
assume t1 < t2. Put t′ ≡ sup T ′. By continuity, t′ ∈ T ′ and pt′ must be a non-hyperbolic periodic
point. If pt′ is non-degenerate, then either {NSt} has a saddle-node bifurcation or a periodic-
bifurcation at t′. If NSt′ has a saddle-node bifurcation, then either there exists a pair of numbers
(k,m) so that two possibilities can happen in (k,m)-th renormalized equivalent family of NSt′ :
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• an auxiliary simple nested system becomes an essential nested system, or vice versa,

• a reducible basic nested system becomes a non-reducible nested system, or vice versa,

or there exists a number k so that two possibilities can happen in the k-th equivalent simple family
of NSt′ :

• a non-renewable auxiliary simple nested system becomes an essential non-renewable simple
nested syste, or vice versa,

• a non-renewable simple nested system becomes renewable, or vice versa.

Each of the first two possibilities will affect (k,m)Ψt′ and each of the last two will affect (k,m(k))Ψt′

where m(k) is the stop number of renormalization for the k-th renewal equivalent family. The
argument is similar if the family {NSt} has a period-doubling bifurcation at time t′. Therefore,
T cannot be a dynamical equivalent window.

Corollary 7.2.17 explains why a dynamical equivalent window must be open and Proposition
7.2.18 further justifies what the “equivalent” means.

Proposition 7.2.19. Let {NSt}t∈T be a family of nested systems which is differentiable with
respect to t. The family {NSt} satisfies the following conditions:

1. for any t ∈ [−1, 1), NSt 6∈ cl(W),

2. NSa has only finitely many hyperbolic periodic points, and

3. for any t ∈ T , NSt has a renewal compatible pair of determinant and scaling ratio.

Then

1. the family {NSt} can only go through three types of dynamical changes: saddle-node bifur-
cation, period-doubling bifurcation, and renormalization strip transformation; moreover

2. those bifurcations/transformations are isolated.

Proof. Dynamical changes at the boundary of a dynamical equivalent window are either a saddle-
node bifurcation or a period-doubling bifurcation which only increases or decreases the number of
periodic points by finitely many, therefore the proposition follows from the Corollary 7.2.17 and
Proposition 7.2.18.

Renormalization strip transformations do not change the dynamics.

Lemma 7.2.20. Let {NSt} be a family of nested systems as in Proposition 7.2.19. If there does
not exist any saddle-node or period-doubling bifurcations, then NSb 6∈ cl(W).
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Proof. If there are only finitely many renormalization strip transformations, the lemma holds by
definition.

Suppose infinitely many renormalization strip transformations occur at t = ti consecutively
and lim ti → b. For each i, we assume that the (ai1, . . . , a

i
n(i))-th position nested system of NSti

has different modeling map from that of NSt′ for ti−1 < t′ < ti. If for any integer i, there exists
an integer j > i, so that (ai1, . . . , a

i
n(i)) is not the same as the first ain(i) elements in (aj1, . . . , a

j
n(j)),

then there is no dynamical change at t = b. Otherwise, NSt has a saddle-node bifurcation at
t = b. That is, NSb 6∈ cl(W).

Theorem 7.2.21. Let {NSt} be the family of nested system as in Proposition 7.2.19. If there
exists a number ρ ∈ (0, 1) so that Jac(NSt) ≤ ρ for all t ∈ T , then the family {NSt} experiences
period-doubling cascade to chaos.

Proof. We first observe that the family NSt must have infinitely many saddle-node or period-
doubling bifurcation moments in [−1, 1) by applying Lemma 7.2.20.

A saddle-node bifurcation or period-doubling bifurcation increases the number of periodic
points. With the increase of the number of periodic points, the number of renormalizations also
increases. Equation 5.1.1 implies that renormalizations reduce the Jacobian exponentially. In
other wordss, if the Jacobian of the (kt,mt)-th equivalent family equivalent family of NSt exists,
denoted by (k,m)NSt, then

Jac((k,m)NSt) ≤ Jac(NS − t))p(k,m),

where p(k,m) is as in Equation 7.1.1. Assume NSt is fully actioned at (Kt,Mt). Since there are
infinitely saddle-node or period-doubling bifurcations in [−1, 1), there must exist a number t′ < b
so that NSt has sufficiently many periodic points and (Kt,Mt)NSt is a highly dissipative family of
nested systems for all t > t′. Our family experiences period-doubling cascade to chaos because
highly dissipative two-dimensional maps must experience period-doubling cascade to chaos.
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Chapter 8

Appendix

8.1 One-dimensional piecewise continuous functions

In this subsection, we consider a special type of piecewise continuous functions. We show that
if such a function does not possess a stable fixed point, then the only non-wandering points are
period-two periodic points.

Throughout the argument, for all interval A we denote by lA and rA the left and right end
points of Cl(A), respectively.

Definition 8.1.1. A map f from a subset of I = [0, 1] to Int(I) = (0, 1) is of MCV type if it
satisfies all of the following conditions.

1. f is defined on the union of a collection of open intervals {B̃i}∞i=0 of (0, 1) such m(∪iB̃i) = 1
and

B̃i ∩ B̃j = ∅ ∀i 6= j.

Such a B̃i is called a branch.

2. f |B̃i is continuous and maps intervals to intervals.

3. For each i, f |B̃i extends continuously to Bd(B̃i) such that

f(lB̃i) ≡ lim
x→l

B̃i
+
f |B̃i(x) and f(rB̃i) ≡ lim

x→r
B̃i
−
f |B̃i(x) ∈ {0, 1}.

Remark 8.1.2. Condition 2 in Definition 8.1.1 implies that no interval is mapped to a single point.
Condition 3 in general does not guarantee that f extends to Cl(∪iB̃i) = I continuously.

Lemma 8.1.3. If f is of MCV type, so is fn for every n > 0.

Proof. Put Bn
ij ≡ f−n(Bi)∩Bj. For each i and j, the set Bn

ij is a branch of fn which satisfies the
Definition 8.1.1.
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Definition 8.1.4. A family of functions {ft}−1≤t≤1 of MCV type is said to be continuous with

respect to t, if for every t0, B̃j(t0), and ε > 0, there exists some δ > 0 such that for all t ∈
(t0 − δ, t0 + δ), there is a branch B̃j(t) of ft such that∣∣χB̃j(t0) − χB̃j(t)

∣∣ < ε and
∣∣ft0 ◦ χB̃j(t0) − ft ◦ χB̃j(t)

∣∣ < ε,

where χΩ is the characteristic function of each set Ω.

Definition 8.1.5. Let f0 be a function of MCV type. A periodic point p of f0 is said to be stable
if there is some ε0 > 0 so that for all positive ε < ε0, there exists a δ such that for all t∈ (−δ, δ),
ft has a periodic point pt∈(p− ε, p+ ε) of ft with the same period.

Lemma 8.1.6. Let {ft}−1≤t≤1 be a family of MCV type, continuous with respect to t. If A is a

closed interval such that A ⊂ Cl(B̃0), where B̃0 is a branch of fk0 for some k > 0, and

fk0 (ClA) ⊃ ClA and Bd(fk0 (ClA)) ∩ BdA = ∅, (8.1.1)

then there exists a stable periodic point p of fk0 in IntA.

Proof. Put Nx(r) ≡ [x − r, x + r]. Without loss of generality, we may assume k = 1. By the
boundary condition (8.1.1), every periodic point of f0 must be in IntA. In particular, there exists
a p∈ IntA and a closed neighborhood W ⊂ A such that either

f(x) < x if x ∈ [lW , p]

f(x) > x if x ∈ [p, rW ],
(8.1.2)

or

f(x) > x if x ∈ [lW , p]

f(x) < x if x ∈ [p, rW ],

The above inequalities are all strict, because f0 maps intervals to intervals. Without loss of
generality, we assume (8.1.2) is the case. Put

d = min{p− lW , rW − p}.

For all ε∈(0, d/2), there exists δ1 such that for all t∈N0(δ1), there exists B̃(t) so that∣∣χB̃(t) − χB̃(0)

∣∣ < ε.

Since
lNp(ε) − lB̃(t) > (lNp(ε) − lB̃(0))− |lB̃(0) − lB̃(t)| ≥ d− ε > ε
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and rB̃(t) − rNp(ε) > ε likewise, we have

Np(ε) ⊂
⋂

t∈N0(δ1)

B̃(t).

Hence ft|Np(ε) is continuous for all t∈N0(δ1). Now fix Np(ε) and put

λ =
1

2
min

{
f0(rNp(ε))− rNp(ε), lNp(ε) − f0(lNp(ε))

}
.

For the given λ, there exists δ2∈(0, δ1) such that for all t∈N0(δ2),∣∣ft ◦ χNp(ε) − f0 ◦ χNp(ε)

∣∣ < λ.

Hence

ft(rNp(ε))− rNp(ε) ≥
(
f0(rNp(ε))− rNp(ε)

)
−
∣∣f0(rNp(ε))− ft(rNp(ε))

∣∣ ≥ 2λ− λ = λ.

Similarly lNp(ε) − ft(lNp(ε)) ≥ λ. Therefore,

ft(Np(ε)) ⊃ Np(ε),

which implies that ft has a fixed point pt∈Np(ε). In other wordss, ∀ε small enough, we find δ = δ2

such that for each t∈N0(δ2), ft has a fixed point pt∈Np(ε). The periods are obviously all 1.

Definition 8.1.7. Let f be of MCV type such that f has no periodic points. A branch A is a
high branch of f if f(lA) = f(rA) = 1, while a low branch of f if f(lA) = f(rA) = 0.

Remark 8.1.8. If f is of MCV type such that f has no periodic points, every branch of f is either
a high branch or a low branch.

Theorem 8.1.9. If f is of MCV type such that there are no (stable) periodic points, then there
are no other non-wandering points either.

Corollary 8.1.10. Let {ft}t∈(−1,1) be a family of MCV functions such that ft has no non-wandering
points for all t < 0. Then all of the non-wandering points of f0, if there is any, are (non-stable)
periodic points.

Proof of Theorem 8.1.9. Since f has no fixed points,

f(lB̃i) = f(rB̃i) ∀i.

Hence each B̃i is either a high branch or a low branch of f . Without loss of generality, suppose

B̃0 is a low branch (8.1.3)

and q∈ B̃0 is a non-wandering point. If q∈ Int(B̃0), there exist a neighborhood W ⊂ B̃0 of q and
T � 1 such that

fT (W ) ∩W 6= ∅ and f r(W ) ∩W = ∅ ∀ 0 < r < T. (8.1.4)
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Claim 8.1.11. For the neighborhood W given by (8.1.4), there exists a branch B0 ⊂ B̃0 such that

1. B0 is a branch of fT ,

2. fT (B0 ∩W ) ∩W 6= ∅, and

3. fT |−1
B0
{0, 1} = {lB0 , rB0}.

Proof of Claim 8.1.11. By (8.1.4), there exists some p0∈W such that fT (p0)∈W . Hence f r(p0) /∈
∪i{lB̃i , rB̃i} for all 0 ≤ r ≤ T . The claim then follows by taking the branch B0 of fT that contains
p0.

For B0 given by Claim 8.1.11, put

Bk ≡ fk(B0) ∀k ≥ 0. (8.1.5)

Claim 8.1.12. As in (8.1.3), if B̃0 is a low branch of f , the branch B0 defined in Claim 8.1.11
is then a high branch of fT for some T � 1.

Proof of Claim 8.1.12. For T given by (8.1.4), denote by C1 the branch containing B1,on which
fT−1 is continuous. If B0 were a low branch of fT , then C1 would also be a low branch of fT−1.
Therefore,

sup fT−1
(
f(B0 ∩W )

)
≤ sup f(B0 ∩W ). (8.1.6)

Since B̃0 is a branch of f , sup f(B0∩W ) ≤ supW . So the second part of (8.1.4) implies sup f(B0∩
W ) ≤ inf W . By (8.1.6),

sup fT (B0 ∩W ) ∩W ≤ inf W.

Since W is open,
fT (B0 ∩W ) ∩W = ∅,

which contradicts the second condition of Claim 8.1.11. Therefore, B0 is a high branch of fT .

Claim 8.1.13. For T defined in (8.1.4) and {Bk}k≥0 defined in (8.1.5),

Int(Bk) ∩ Int(Bk+1) = ∅ and sup(Bk+1) ≤ inf(Bk)

for all 0 ≤ k ≤ T − 2.

Proof of Claim 8.1.13. Claim 8.1.13 is proved by induction.
(1) We show the claim for k = 0. Presume

Int(B0) ∩ Int(B1) = ∅ (8.1.7)

were not true. Note that fT−1|B1 being continuous implies that f |B1 is continuous. Were (8.1.7)

not true, B0 ∪B1 is an interval such that f |B0∪B1 is continuous. So B0 ∪B1 ⊂ B̃ by the definition

of B̃0. Moreover, (8.1.7) being not true implies that

Int(Bk) ∩ Int(Bk+1) 6= ∅ ∀0 ≤ k ≤ T − 1.
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Hence by the same argument, we obtain

T−1⋃
k=0

Bk ⊂ B̃.

Since B̃0 is a low branch,
f(x) < x ∀x ∈ B̃.

Besides, since f − id|B̃0
is continuous and B̃0 is precompact,

inf
∣∣f(x)− x

∣∣ > ε > 0 (8.1.8)

for some ε. Thus,

sup fT (B0 ∩W ) < sup fT−1(B0 ∩W ) < · · · < sup f(B0 ∩W ). (8.1.9)

By (8.1.4), f(B0 ∩W ) ∩W = ∅. Hence sup f(B0 ∩W ) ≤ supW implies sup f(B0 ∩W ) ≤ inf W .
By (8.1.9),

sup fT (B0 ∩W ) < inf W. (8.1.10)

Since W is open, (8.1.10) implies that fT (B0 ∩ W ) ∩ W = ∅, which contradicts Claim 8.1.11.

Hence (8.1.7) holds. Since B̃0 is a low branch, supB1 ≤ supB0. By (8.1.7), we obtain supB1 ≤
inf B0, which completes the k = 0 case.

(2) Now assume Claim 8.1.13 is true up to k − 1. First we show

Int(Bk) ∩ Int(Bk+1) = ∅. (8.1.11)

By the same reasoning as in part (1), (8.1.11) is true for all k < T − 1. Presume (8.1.11) were not
true for k = T − 1. If Bk is in a low branch of f , by induction {Bl}k−1

l=0 are all in the low branches
of f . Thus, by (8.1.8) and the second part of (8.1.4),

sup fT (B0 ∩W ) < sup fT−1(B0 ∩W ) < · · · < sup fk(B0 ∩W ) < sup f(B0 ∩W ) ≤ inf W.

Since W is open, once again we obtain fT (B0 ∩W ) ∩W = ∅, which contradicts Claim 8.1.11.

If Bk is in a high branch of f , say, B̃k, then B̃k 6= B̃0. Since supBk ≤ inf B0, consider the branch
C0 of fk+1 such that B0 ⊂ C0 ⊂ B̃0. The same argument as in the proof of Claim 8.1.11 implies

fk+1(lC0) = fk+1(rC0) ∈ {0, 1}.

However, fk(lC0) and fk(rC0) are either lB̃k or rB̃k . Hence

fk+1(lC0) = fk+1(rC0) = 1.

Therefore,
fk+1(C0) ⊃ [rBk , 1] ⊃ [rB̃k , 1] ⊃ [lB̃0

, rB̃0
] = ClB̃0 ⊃ C0. (8.1.12)
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It is clear that lC0 6= 1. Indeed, rC0 6= 1, for otherwise B̃ would then be a high branch. By (8.1.12),
there exists a stable fixed point, which contradicts our assumption (8.1.3). This shows that (8.1.11)
is also true for k = T − 1.

(3) Next we prove
supBk+1 ≤ inf Bk. (8.1.13)

Suppose otherwise. By (8.1.11), (8.1.13) being not true implies that

supBk ≤ inf Bk+1.

So the branch B̃k of f that contains Bk is a high branch of f . Hence there exists a branch C0 of
fk+1 such that

B0 ∩W ⊂ B0 ⊂ C0 ⊂ B̃0.

Since fk+1(C0) = f(fk(B0)) ⊂ f(B̃0), C0 is a high branch of fk+1. Note that Bk+1\W has at
most two connected components. Denote by L the component with supL ≤ inf W and by R the
component with inf R ≥ supW (one of L or R may not exists). Then either

1. fk+1(B0 ∩W ) ⊂ L or

2. fk+1(B0 ∩W ) ⊂ R.

In Case 1, C0 being a high branch of fk+1 implies that fk+1(rC0) = 1. Since there exists some
x0∈B0 ∩W such that fk+1(x0) < inf W ,

fk+1[x0, rC0 ] ⊃ [fk+1(x0), 1] ) [inf W, 1] ⊃ [x0, rC0 ].

If rC0 = 1, the fact that f is fixed-point-free implies B̃0 is a high branch of f , which contradicts
the assumption (8.1.3). Hence

rC0 < 1. (8.1.14)

Moreover,
fk+1(x0) 6= x0. (8.1.15)

Hence by Lemma 8.1.6 there exists a stable periodic point Q, which is a contradiction.

In Case 2 (i.e. fk+1(B0 ∩W ) ⊂ R), there exists y0∈fk+1(B0 ∩W ) ⊂ Bk+1 such that

fk+1(y0) < supW ≤ inf fk+1(B0 ∩W ) < y0.

Consider the branch DT−(k+1) of fT−(k+1) that contains Bk+1. By Claim 8.1.12, B0 is a high branch
of fT . Consequently

1 = fT−(k+1) ◦ fk+1(lB0) = fT−(k+1) ◦ fk+1(rB0)

∈ Cl
(
fT−(k+1) ◦ fk+1(B0)

)
⊂ Cl

(
fT−(k+1)(DT−(k+1))

)
.
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This implies that DT−(k+1) is a high branch of fT−(k+1). Thus,

fT−(k+1)[y0, rDT−(k+1)
] ) [supW, 1] ) [y0, rDT−(k+1)

],

As in the proof of Case 1, there exists a stable periodic point Q′∈ [y0, DT−(k+1)] by Lemma 8.1.6,
which is a contradiction. In sum, neither Case 1 nor Case 2 can happen, so (8.1.13) holds. This
completes the induction of the proof.

By Claim 8.1.13, each Bi lies on the left of Bi−1, 1 ≤ i ≤ T1. By Claim 8.1.12, B0 is a high branch
of fT , hence 1∈BT . Note that T � 1, so we may assume T > 2. Since f |B̃0

is continuous and

f(rB̃) = 0, there exists an interval K ⊂ B̃0 such that

inf K ≥ supB0 and f(K) = B2.

Since W ∩B − 0 6= ∅, inf W < inf K. Put

K1 ≡ K ∩W and K2 ≡ K ∩W c.

By (8.1.4)
fT−1(K1) ∩W = fT1(K ∩W ) ∩W = ∅.

Thus,
supW < supK and fT−1(K2) ∩W 6= ∅. (8.1.16)

By (8.1.16), there exists z0∈K2 such that

supW ≤ z0 and fT−1(z0) ≤ supW. (8.1.17)

Denote by E the branch of fT−1 such that K ⊂ E ⊂ B̃0. Then by (8.1.17),

fT−1[z0, rE] ) [supW, 1] ) [z0, rE],

Since z0 and rE are not periodic points, by Lemma 8.1.6, there exists a stable periodic point
Q′′∈ [z0, rE], which is a contradiction. This completes the proof of Theorem 8.1.9.
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