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2013 

 

Recent development of ultra-high-throughput sequencing of the transcriptome (mRNA-Seq) 

provides a means of profiling RNA splicing events at unprecedented depth. On the other hand, 

the ultra-high coverage and the complexity brought by mRNA-Seq data also create big 

challenges for computational analysis.  My Ph.D. work focuses on developing algorithms to 

detect, quantify and characterize alternative splicing (AS) from mRNA-Seq data. These 

algorithms include:  

(1) OLego, a fast and sensitive splice mapping program for mRNA-Seq data. The most 

important features of OLego include strategic and efficient searches with very small seeds 

(12~14 nt), and a built-in regression model to score exon junctions.  In addition, OLego does 

not require any external mapper, and is implemented in C++ with full support of 
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multithreading. As a consequence, OLego has improved sensitivity on junction and exon 

discovery while keeping high accuracy and speed.   

(2) In-house scripts to identify AS events from alignment results of mRNA-Seq data. Instead of 

constructing full structures of the transcripts, this approach identifies exons and AS events 

from the junction reads directly to achieve lower complexity and higher sensitivity of 

splicing events.  

(3) SpliceTrap, a method to quantify exon inclusion ratios from paired end mRNA-Seq data 

using a Bayesian model.  The algorithm solves the splicing problem by looking at local 

splicing events instead of the whole transcripts, which enables quantification of exon 

inclusion ratios without knowing the complete transcript structure. It also utilizes prior 

information including fragment size distribution and inclusion ratio models from highly 

covered AS events.  

All of the programs above are splicing-centric tools and can be used to study AS events with 

high resolution and sensitivity.  We have applied this pipeline on many real dataset including the 

BodyMap 2.0 data, in which we identified 120,110 cassette exons in human genome, including 

82,528 novel cassette exon events.  Strikingly, we identified over 2,000 cassette micro-exons 

smaller than 27 nt, 105 of them have a length of 6 nt.  Because of the minimal information that 

can be possibly encoded in this set of exons, they serve as an excellent model to study their 

functional significance and mechanism of AS regulation. 
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Chapter 1 : 

 

Introduction 

 

 

 

 

 

In the year of 1953, James Watson and Francis Crick proposed the double helix structure 

of deoxyribonucleic acids (DNA)(1). And four years later, Francis Crick stated the theory 

of the central dogma of molecular biology, in which the sequential information flows 

from DNA to RNA and then protein (2). For decades since then, researchers have been 

working hard to understand the mechanism behind the central dogma. Most recently, 

along with the completion of human genome project (3), people started to focus more on 

the -omics study, using rapidly evolving sequencing techniques. In this Chapter, I will 

briefly describe the biological background and the techniques related to my Ph.D. study, 

including brief introduction of RNA splicing, next generation sequencing (NGS) 

technique and associated bioinformatics methods.  

The central dogma of molecular biology and RNA splicing 

The sequence information encoded in the genome, or DNA, is first transferred to RNA 

(transcription), which is later translated to protein (translation). It is also known that the 

information can be copied from DNA to DNA, or RNA to RNA, in the process of DNA 

or RNA replication, and flow backwards from RNA to DNA in reverse transcription. 

This is so called “the central dogma of molecular biology”.  In this dissertation, I only 

focus on part of the process of transcription.  
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In the transcription of DNA, segments in DNA are read by RNA polymerases and 

complementary RNA strands are synthesized. In eukaryotic cells, the RNA must be 

processed with further steps, including 5’ capping, polyadenylation and splicing. In the 

RNA splicing step, the introns are spliced out and the exons are joined to form the final 

mature messenger RNAs (mRNA), which contain coding information for protein 

synthesis.  

Mechanism of RNA splicing 

The RNA splicing was first discovered in the 1970’s (4). Through these decades, the 

mechanism of splicing has been studied in many organisms and is now relatively well 

characterized. The introns are removed by cleavage at conserved sequences at both ends 

of the intron, which are called 5’ and 3’ splice sites. It is well known that these sites 

consist of conserved di-nucleotide sequences (GU at the 5’ splice site and AG at the 3’ 

splice site). And other conserved sequence found in the intron is the “branch point” 

located 18-40 nucleotide (nt) upstream of the 3’ splice site, which always has an adenine 

(A) in the middle (5).   

RNA splicing is coordinated by a complex consist of RNAs and proteins 

(spliceosome)(6), In the beginning of the splicing process, a small nuclear 

ribonucleoproteins (snRNPs) called U1 attaches to the 5’ splice site, followed by the 

cleavage of the pre-mRNA at this position. This cut end then binds to the branch point in 

the intron and forms a loop called lariat, Afterwards, in the coordination with other 

snRNPs (U2, U4/U6 and U5), the two flanking exons are joined with covalent bond and 

the lariat is released (5). 

Alternative splicing and different splice patterns 

The splice pattern can be altered in different ways (5,7). In most cases, the pattern 

determines whether a portion of sequence region included or excluded from the final 

transcript, thus affecting the amino acid sequence of the translated proteins. This 

phenomenon, so called alternative splicing (AS), allows the genome to encode more 

proteins with limited number of protein-coding genes. For example, it has been reported 
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that more than 90% of human genes are undergoing AS, which largely increase the 

protein diversity in human (8,9).  

The most common AS in eukaryotic is cassette exon (7). While some of the exons 

are constitutively spliced in the RNA splicing process and included in the final mRNA 

(constitutive exons), there are some exons which are regulated and can be either included 

or excluded in the final transcript. More than 40% of the AS events can be categorized 

into this group (7,10). There are also other types of AS events. Sometimes, the exons 

have variant lengths by using different 5’ or 3’ splice sites (alternative 5’ splice site or 

alternative 3’ splice site). In some other events, the introns fail to be removed by the 

spliceosome, hence included in the mRNA, which is called intron retention.  More details 

about the different modes of AS can be found in Chapter 4.  

Regulation of alternative splicing 

Alternative splicing can be regulated by many elements (enhancer or silencer) located in 

both exons and introns. These elements can be bound by RNA binding proteins (RBPs), 

which act as activators or inhibitors of the splicing of the exons. For example, the SR 

(serine and arginine enriched) protein family consists of many well studied splicing 

factors (5,11). They can bind to exonic splicing enhancers (ESEs) and activate the 

splicing process. There are also negative regulatory elements in exons -- exonic splicing 

silencers (ESSs). The best characterized ones can bind to hnRNP proteins (heterogeneous 

nuclear ribonucleoproteins), which are splicing inhibitors (12).  

There are many elements present in the intron region in addition to those in the 

exons. Some of them can even act from hundreds of nucleotides away from the splice 

sites. Like the regulatory elements in the exons, these elements are called intronic 

splicing enhancer (ISE) or intronic splicing silencers (ISS). These elements are usually 

conserved and can be identified by alignments of sequences between different species, 

but their functions are less characterized compared to exonic elements (5).  
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RNA splicing and sequence conservation  

Many studies have shown a lifted conservation in the intron sequences adjacent to splice 

sites, due to the presence of ISE and ISS elements which regulate the splicing process. It 

is also noted that alternative spliced exons have higher conservation scores in both exons 

and flanking introns (13). The sequence conservation usually indicates functional 

alternative splicing events, and is correlated with tissue specificity (14).  

Nonsense-mediated mRNA decay 

Nonsense-mediated mRNA decay (NMD) is a pathway which can degrade mis-spliced or 

non-functional isoforms that contain pre-mature stop codons (PTCs) (15,16). In the 

process of mRNA splicing, a complex named exon-junction complex (EJC) is attached to 

the location of a removed intron. In the later translation process, when the ribosome goes 

through the mRNA to translate the sequence into protein, any proteins (including the EJC) 

in its path will be displaced. Upon its arrival at the stop codon, the ribosome will release 

factors with remaining EJCs (if any), which will trigger the degradation of the transcript. 

Generally, NMD triggering isoforms follow the 50-nt rule, which is, the stop codon 

should be at least 50 nt away from a downstream exon junction.  

In some occasions, alternative splicing can introduce PTC to generate NMD 

triggering isoforms. For example, inclusion of an exon may shift the coding frame of a 

transcript and generate a PTC before 50 nt of an exon junction. This regulation is termed 

regulated unproductive splicing and translation (RUST), which is a means of indirect 

regulation of transcription by splicing factors (17). This aspect of regulation will be 

further discussed in Chapter 5.  

Traditional techniques and methods for genome-wide alternative 

splicing study 

Global insights into AS were initially achieved largely from analysis of expressed 

sequence tag (EST) data (18). Alternative splicing events can be identified by comparing 

different EST sequences. Generally, EST data are low coverage, expensive and have 

limited capability for quantifying exon-inclusion level, especially in specific conditions, 
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such as in different tissues.  Other tag based methods were developed to overcome the 

limitations: including SAGE (serial analysis of gene expression), CAGE (cap analysis of 

gene expression) and MPSS (massively parallel signature sequencing). These techniques 

are high-throughput, however, most of them are based on Sanger sequencing technology 

and thus still expensive and the short tags sequenced cannot be uniquely mapped to the 

genome (19).  

Another category of traditional methods is array based method, such as exon-

junction arrays (20,21) or exon arrays (22). These methods take advantages of known 

gene structures and AS events observed in ESTs and other sequenced transcript data, and 

were designed to target the exon junctions or exon bodies.  However, microarrays are 

largely restricted to studies of annotated AS events, and their signal-to-noise ratio is also 

limited by issues such as cross-hybridization.  In addition, the dynamic detection range is 

limited due to both background and saturation of signals, and the normalization between 

samples can be difficult and need complicated methods.  

Next generation sequencing technology and mRNA-Seq 

Deep mRNA sequencing (mRNA-Seq) technology is a recently developed approach 

which uses the next generation sequencing to profile transcriptome at an unprecedented 

depth. Generally, the mRNAs are reverse transcribed into a library of cDNA fragments. 

Adaptors are attached to the fragments on one or both ends. Then the cDNA library is 

sequenced on a NGS platform. And millions of short reads are obtained from either one 

end (single end reads) or both ends (paired end reads) of the fragments.  

The most important feature of mRNA-Seq technique is its ability to obtain ultra-

high coverage of the trascriptome. Taking Hi-Seq 2000 from Illumina as an example, up 

to 55 Gb of nucleotides can be sequenced in a single day with the paired end 100 basepair 

(bp) run. This makes mRNA-Seq an ideal technique to profile transcriptome, especially 

to discover those lowly expressed isoforms which are relatively harder to detect with 

traditional methods. Of note, unlike microarray based methods, mRNA-Seq is able to 

detect novel gene structures which are not annotated in reference, providing opportunities 

to discover novel exon junctions and isoforms.  



 

6 

 

Another advantage of mRNA-Seq is the low background noise compared to 

microarrays. The dynamic detection range is much broader in mRNA-Seq since there is 

no upper limit of the quantification and it is able to observe either extremely abundant or 

lowly expressed transcripts (19).  

There are also challenges brought by some of these features, for example, the 

RNA-Seq reads are relatively shorter than the tags in Sanger sequencing, and makes it 

hard to identify junctions from the reads. These challenges will be discussed in the 

following section.  

Current methods to analyze mRNA-Seq data 

Alignment of the exon junction reads 

The first step to analyze mRNA-Seq data is the mapping of the reads back to the genome 

to locate exon body reads or exon junction reads. On one hand, shorter reads increase the 

possibility of getting multiple hits on the genome, and also makes it harder to identify 

exon junctions due to the lacking of sequence overlaps in the exons. On the other hand, 

the large amount of data requires optimizations in the algorithm to make sure that the 

alignments can be done in a reasonable time frame.  

Exon body reads are relatively easier to map, because there is presumably no 

large gaps (introns) in the reads. There are many programs developed for this purpose. 

The first generation of the aligners (Eland, Maq, SOAP, RMAP, ZOOM, and 

SHRiMP)(23-26) use hashing table to store the reads or the reference, which is 

computational expensive. Later, Burrows-Wheeler transform (BWT) and the FM 

index(27) were introduced into NGS data alignment by BWA, Bowtie and SOAP2(28-

30).  The BWT algorithm enables efficient backward search with small memory footprint 

when there are few mismatches between the read and the reference. However, all these 

algorithms are designed for continuous alignment without big gaps, hence are not suitable 

for splicing study.  

Compared to exon body reads, exon junction reads are more difficult to identify, 

however, they are direct evidence of splice sites and are important for AS study.  There 
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were many algorithms developed in the recent years to specifically align spliced reads to 

exon junctions, these include earlier methods which constructed databases of known 

junction sequences, e.g. ERANGE (31), and later methods which can identify novel exon 

junctions using different heuristics, such as TopHat, MapSplice, SpliceMap, SOAPsplice, 

PASSION, HMMsplicer and GSNAP(32-38). To locate exon junction reads, a common 

approach used by most of the programs here is the seed-and-extend method. Using this 

method, the programs first split the read into two or more segments (seeds) and align 

them onto the genome separately. Then the junction searching is performed between two 

aligned seeds (double-anchor search) or around a single seed alignment (single-anchor 

search) . However, most of these methods require external mappers (like Bowtie) and 

limit the use of short seeds, because they need to control the temporary files within an 

acceptable size. This limits their sensitivity on exon junction detection. To overcome this 

drawback, we designed a novel algorithm and program named OLego(39) for fast and 

sensitive mapping of mRNA-Seq reads, which will be further described in Chapter 2.  

Reconstruction of gene structures 

Although a number of transcriptomes from many species (like human and mouse) have 

been extensively studied in the past decades, which can be used as reference for 

quantification, there are still many transcripts that are not annotated in databases. Hence, 

a major task after the mapping of mRNA-Seq reads is the reconstruction of the gene 

structures.  In this stage, the reads are assembled back to transcriptome to find the 

different mRNA isoforms.   There are many reasons making the transcriptome 

reconstruction a difficult problem(40). First of all, the reads are relatively short, making it 

a challenge to allocate the reads to an isoform, since many isoforms may share the same 

region. Secondly, some transcripts are very low abundant, giving little evidence of their 

structures. Thirdly, there are noises coming from the pre-mRNAs, which might fall into 

both introns and exons, further increasing the complexity of the problem.  

There are two categories of methods developed to reconstruct the transcriptome 

from the reads. One category is the genome-dependent method, like Cufflinks and 

Scripture (41,42), both of which use the genome sequence as a reference to do the 

reconstruction. And the other category is genome-independent method, e.g. Trans-
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ABySS(43), which assembles transcriptome without requiring reference genome. 

Obviously, genome-dependent methods are preferred when the reference genome is 

available, e.g. human and mouse, since the genome-independent methods are more 

computational expensive and less sensitive in this case. But this also depends on the 

biological questions focused.  

Generally, these reconstruction methods aim to find a balance between accuracy 

and sensitivity. On one hand, they want to recover as many as isoforms to make the 

prediction as close as possible to the truth, while on the other hand, they try to explain the 

reads with as few transcripts as possible. For example, Cufflinks and Scripture, both of 

which are popular algorithms designed to build assembly graphs based on the alignments, 

while they differ in how to report the isoforms: Cufflinks reports the minimum isoform 

sets to explain the reads (maximum precision), and Scripture reports all possible isoforms 

based on the reads (maximum sensitivity).  There are also other programs developed in 

the recent years, such as IsoLasso, SLIDE and NSMAP (44-46), which use LASSO-

based (LASSO: Least Absolute Shrinkage and Selection Operator) approaches to find 

major isoforms of a gene.  

For AS study, it is not always necessary to reconstruct the whole transcripts to 

identify the splice events. In most occasions, the local information of the reads around the 

exons is enough for recovering the AS events involving the exons. Typically, due to the 

complexity of the transcriptome, the local structures are shared by multiple transcripts. 

To reconstruct the transcripts, people need to further connect these local structures to 

recover the whole structure. But for splicing study, we can ignore the distant information 

and identify AS events solely with local structures. This will be the major topic of 

Chapter 3. 

Expression quantification from mRNA-Seq 

There are two levels of expression quantification from mRNA-Seq. The first level is the 

gene expression, which does not consider the different isoforms expressed at each gene 

locus but rather the whole gene. The first and intuitive method is the RPKM (reads per 

kilobase of transcript per million mapped reads) approach (31), which normalizes the 



 

9 

 

read counts at a certain locus by both gene length and the total number of mapped reads 

in the experiment. The second level of the quantification is the transcript expression, in 

which the reads are assigned to different isoforms of a gene for more detailed expression 

measurement. This type of quantification is more useful for researchers working on the 

splicing level.  

The simplest way to quantify isoforms from mRNA-Seq reads is the count based 

method. For example, ALEXA-seq(47) is an approach only using uniquely mapped reads 

which can be located into a single isoform, this largely limits the reads used in the 

estimation and also misses transcripts without uniquely mappable regions. More 

sophisticated methods solve the problem in more decent ways by modeling different 

properties of RNA-Seq data, such as insert size distribution for paired-end data, non-

uniformity of the reads along the transcripts, and sequence bias at both ends of the reads. 

The statistical models then allocate the reads into different isoforms to estimate the 

abundance of each isoform, e.g. Cufflinks(41) and MISO (mixture of isoforms)(48). 

Comprehensive discussion and comparison of the models can be found in a review 

written by Lior Pachter (49).  

For AS study, a natural next step would be the measurement of splicing from the 

expression profile of the transcriptome. For example, to estimate the inclusion ratio of a 

certain exon, we can use the expression level of the isoforms containing this exon and the 

expression level of those without this exon to compute the ratio. However, there is a 

conflict between sensitivity and accuracy, since sometimes some lowly expressed 

isoforms are either ignored or quantified with low accuracy. To measure AS in a more 

accurate and sensitive way, we developed SpliceTrap(10), which works in local regions 

to estimate exon inclusion ratios. This will be discussed in Chapter 4 in more details.  

  



 

10 

 

Organization of the dissertation 

The rest of the dissertation is organized in the order of the steps in data analysis: 

Chapter 2: OLego: fast and sensitive mapping of spliced mRNA-Seq reads using 

small seeds. This chapter describes the first step to analyze RNA-Seq data to find the 

locations of the reads, especially those reads crossing exon junctions, which are essential 

to RNA splicing study.  

Chapter 3: Identification of exons and splicing events from alignment results. This 

chapter briefly describes our scripts to extract alternative splicing events directly from the 

mapping results.  

Chapter 4: SpliceTrap: a method to quantify alternative splicing under single 

cellular conditions. This chapter shows a method to quantify alternative splicing based on 

the splicing events discovered from the data using a Bayesian model.  

Chapter 5: Systematically discovery of conserved alternative spliced exons in the 

mammalian genome, which demonstrates an application of the whole pipeline on a real 

data, together with a set of post analysis.  

Author contributions 

This dissertation describes my major work during my Ph.D. study, while there are other 

people who contributed significantly to the projects. Martin Akerman is co-first author of 

the SpliceTrap paper. He worked closely with me on improving the program, carrying out 

the simulation study, presenting the data and writing the paper. Shuying Sun generated 

the RNA-Seq data used by SpliceTrap paper. The OLego project was first initiated by 

Chaolin Zhang, who also advised me in the whole project. Olga Anczuków helped to 

carry out the RT-PCR validations of the micro-exons identified in the mouse retina RNA-

Seq data. The BodyMap project (Chapter 5) was based on Chaolin Zhang’s previous 

work about conservation of alternative splicing and is under his supervision.  



Chapter 2 : 

 

OLego: Fast and Sensitive Mapping of Spliced mRNA-Seq 

Reads Using Small Seeds 

 

 

 

 

Abstract 

A crucial step in analyzing mRNA-Seq data is to accurately and efficiently map hundreds 

of millions of reads to the reference genome and exon junctions.  Here we present OLego, 

an algorithm specifically designed for de novo mapping of spliced mRNA-Seq reads.  

OLego adopts a multiple-seed-and-extend scheme, and does not rely on a separate 

external aligner.  It achieves high sensitivity of junction detection by strategic searches 

with very small seeds (~14 nt for mammalian genomes).  To improve accuracy and 

resolve ambiguous mapping at junctions, OLego uses a built-in statistical model to score 

exon junctions by splice-site strength and intron size.  Burrows-Wheeler transform (BWT) 

is used in multiple steps of the algorithm to efficiently map seeds, locate junctions, and 

identify very small exons.  OLego is implemented in C++ with fully multi-threaded 

execution, and allows fast processing of large-scale data.  We systematically evaluated 

the performance of OLego in comparison with published tools using both simulated and 

real data. OLego demonstrated better sensitivity, higher or comparable accuracy, and 

substantially improved speed.  OLego also identified hundreds of novel micro-exons (< 

30 nt) in the mouse transcriptome, many of which are phylogenetically conserved and can 

be validated experimentally in vivo.  OLego is freely available at 

http://zhanglab.c2b2.columbia.edu/index.php/OLego.  
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Introduction 

In eukaryotes, alternative splicing (AS) is critical for amplifying genomic complexity by 

generating multiple mRNA isoforms from a single gene (5,50).  More than 90% of 

human multi-exon genes express transcripts that potentially undergo AS (8,9).  Besides 

the extent of AS, decades of research have revealed the key roles of this process in post-

transcriptional gene-expression regulation, and how its disruption can cause various 

genetic diseases (51,52) 

Global insights into AS were initially achieved largely from analysis of expressed 

sequence tag (EST) data, which provide a means of cataloguing AS events at the 

genome-wide scale (18).  In general, EST data have low coverage and limited capability 

for quantifying exon-inclusion level, especially in specific conditions, such as in different 

tissues.  This issue was later addressed by splicing-sensitive microarrays, such as exon-

junction arrays (20,21) or exon arrays (22), which were designed based on gene 

structures and AS events observed in ESTs and other sequenced transcript data.  However, 

microarrays are largely restricted to studies of annotated AS events, and their signal-to-

noise ratio is also limited by issues such as cross-hybridization.  Recently, ultra-high 

throughput mRNA sequencing (mRNA-Seq) provided a powerful alternative to profile 

the transcriptome at unprecedented depth and resolution, with the advantages of being 

highly quantitative, sensitive, and able to discover novel splice junctions and exons (19).   

A key step in analyzing mRNA-Seq data is to map hundreds of millions of reads, 

currently of size 50-150 nucleotides (nt), back to the reference genome, and to detect 

known or novel splice junctions.  Various algorithms have been developed in the past few 

years for this purpose, with specific consideration to mapping speed and to short read 

lengths (32-35,38,53,54).  The early versions of TopHat (32) first align all exon-body 

reads to the genome using an external aligner, Bowtie (29), and all aligned reads are 

clustered and counted to locate potential exons based on read coverage (exon islands).  

Potential splice sites are then searched locally, and nearby exons are paired in silico to 

generate a database of candidate exon junctions, followed by alignment of unmapped 

reads in the first stage against this junction database.  This procedure is relatively fast and 

reliable, because exon identification prior to junction search largely limits the search 
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space, despite the caveat that junctions spanning exons at low levels might be missed.  To 

overcome this limitation, several other programs turned to more exhaustive searches by 

using double- or multiple-seed-and-extend approaches to find exon junctions de novo.  

For example, SpliceMap (35) splits each read of ~50 nt in the middle and maps each part 

(seed) to the genome separately, again relying on an external aligner for genomic 

mapping, and then it extends the alignments to find junctions. To handle longer reads that 

can span multiple junctions—obtained with more recent technologies—MapSplice (33) 

and later versions of TopHat (32) segment each read into multiple seeds to detect splice 

junctions.  

Although different heuristics are used in each algorithm, an important limitation 

shared by these tools is their use of relatively long seeds (~25 nt).  This is due in part to 

their dependence on an external aligner for seed mapping, whose output is then parsed to 

detect exon junctions.  As a consequence, the number of hits for each seed has to be small, 

which constrains the choice of seed size and limits the resolution in locating potential 

exon positions.  This constraint increases the chance that one or more seeds will fail to 

align, because they span exon junctions, reducing the sensitivity of junction detection.  

This issue becomes more severe for reads spanning small exons, which are frequently 

alternatively spliced and regulated to have variable inclusion levels in specific conditions.  

As sequencing technologies keep evolving, the throughput and read length are 

increasing very rapidly, which imposes even greater challenges for mRNA-Seq data 

processing.  For example, a single sequencing lane from the Illumina HiSeq 2000 can 

currently produce over 200 million paired-end reads, with read lengths up to 150 nt. 

Therefore, mapping speed, without sacrificing accuracy, becomes more critical.  In 

addition, longer reads tend to span more exon junctions and have more complex 

structures, especially when they cover small exons or exons expressed at a low level.  

Here we address these challenges and present a new program named OLego, which is 

designed for very fast, de novo mapping of spliced mRNA-Seq reads with both high 

specificity and sensitivity.  
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Materials and methods 

Overview of mRNA-Seq read mapping 

Analysis of mRNA-Seq data typically starts from mapping a set of N relatively short 

reads of length L nt to the reference genome.  For higher eukaryotes, and mammals in 

particular, the vast majority of genes consist of multiple exons and introns.  Therefore, a 

read can be mapped continuously to a single exon (exonic alignment), or to multiple 

exons that span one or more exon junctions (junction alignment).  Due to sequencing 

errors or polymorphisms in the sequenced sample, compared to the reference genome, a 

read alignment has to tolerate a certain number of substitutions or small insertions and 

deletions (indels)—collectively denoted as mismatches here—as measured by an editing 

distance of M nt between the query reads and the target reference genome sequences. 

OLego finds junction alignments using a multiple-seed-and-extend approach, 

which is also used by several other programs, such as MapSplice (33), but with several 

distinct and important features (Figure 1).  In essence, each read is processed 

independently in a series of steps, without relying on an external aligner.  Reads can 

therefore be processed in parallel when multiple threading is enabled.  OLego performs 

more exhaustive and yet efficient searches using very small seeds (12-14 nt; 14 nt for this 

study), whose hits are clustered, ranked, and refined to find the best alignment.  This 

greatly improves the sensitivity for de novo discovery of splice junctions and small exons.  

In addition, particular attention is paid when a small unaligned segment of a read is 

flanked by aligned regions on both ends in the presence of large genomic gaps, typically 

due to the presence of a very small exon (<30 nt) or micro-exon (55).  To ensure the 

efficiency of this exhaustive procedure in terms of both time and memory usage, 

Burrows-Wheeler transform (BWT) and FM-index (56) are used in multiple steps to map 

seeds and discover junctions and small exons with a small memory footprint (< 4Gb in 

general for mammalian genomes).   More details of the algorithm are described below. 
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Figure 1. Overview of OLego. Each read is processed independently by OLego. (1) 

Continuous mapping to the genome or exonic alignment is attempted first. If no hits are 

found within the allowed number of mismatches, junction alignment is searched through 

steps starting from (2) seeding (3) seed mapping and hit clustering into candidate 

alignments, and (4) candidate-exon identification and extension. (5) Junctions are then 

searched between two consecutive candidate exons and at the end of the read, and small 

exons are searched when necessary. (6) Finally, exons and junctions are connected and 

ranked to identify the optimal alignment for the whole read.  
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The workflow of OLego 

1. Exonic mapping of reads.  For each read, continuous mapping to the genome 

with BWT and FM-index is first attempted, using essentially the same approach as in 

BWA (28), with minor modifications.  At most M’ nt (currently M’= min{2,M}, where M 

is the number of mismatches allowed for the whole read) mismatches are allowed in this 

step.  If an exonic alignment is found, the read will be reported as an exon-body read, and 

the algorithm turns to the next read.  Otherwise, it will be processed in the following 

steps to search for a junction alignment.  Note that a smaller number of mismatches are 

allowed here to avoid promiscuous exonic alignment with mismatches near the end of a 

read, when it actually spans an exon junction with a small anchor at the end.  Exonic 

alignment with >M’ mismatches (but ≤ M mismatches) will be recovered later (step 4 

below). 

2. Seeding.  Each unmapped read subject to junction search is segmented into 

multiple seeds of a specified size w.  Spaces are allowed between seeds if the read length 

is not a multiple of the seed size, such that the read can be evenly covered by seeds.  

Since the boundaries of seeds relative to exon junctions are random, an exon of size ≥2w 

is guaranteed to have at least one seed inside the exon, assuming a sufficient sequencing 

depth.  The default seed size w in OLego is 14 nt, considering the balance between 

sensitivity and speed to deal with mammalian-sized genomes.  The use of a smaller seed 

size in OLego greatly increases the chance of finding hits of one or more seeds in each 

exon, especially for small exons ≤50 nt. 

3. Seed mapping and hit clustering.  Each seed is mapped independently to the 

genome by querying BWT and FM-index, allowing ≤m mismatches (default: m=0).  Due 

to the small seed size, each seed is expected to have a substantial number of hits.  For 

example, at a seed size of 14 nt, the average number of hits for each seed is estimated to 

be W=11 for a mammalian genome (3×10
9
/4

14
), although this number varies for different 

seeds.  If a seed has an exceedingly large number of hits (W>1000), it is considered as 

repetitive and all its hits are discarded; otherwise, we keep all W hits of a seed, and 

recover their original genomic coordinates from the BWT index.  The hits of all kept 

seeds are then clustered head-to-tail to locate potential alignments of the complete read 

according to their genomic coordinates, so that the distances between any two neighbor 
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hits in each potential alignment are less than twice the specified maximum intron size I 

(default: I=500,000 nt).  We require 2I in the clustering of hits, because there might be a 

missing internal exon between two neighbor hits (see below).  Each potential alignment is 

scored and ranked according to an “E-value” estimated from the number of aligned seeds 

and their uniqueness , where oi is the total occurrence in the whole 

genome for seed i in the potential alignment, and G is the size of the genome.  Only the 

top 100 potential alignments with E<10 are examined further. 

To maximize the speed, we do not allow mismatches in seed mapping by default, 

given the small seed size and low sequencing errors that minimize the chance of failure in 

seed mapping.  In addition, even if no hits are found or kept for some seeds, due to 

sequencing errors, polymorphisms, or their repetitive nature, such parts can still be 

recovered in the following hole-filling and candidate-exon-extension step.  Each potential 

alignment is treated separately in the following steps.   

4. Candidate-exon identification and extension.  In each potential alignment, the 

hits are further grouped into individual candidate exons, using more stringent criteria.  

This is done using the diagonal coordinates of the hits, which are calculated by 

subtracting the start coordinates of the corresponding seeds in the query read from the 

genomic start coordinates of the hits (57).  The hits whose diagonal coordinates are 

within M’ nt differences are considered to be in the same candidate exon, which tolerates 

potential indels in mRNA-Seq reads.  After this step, holes between hits within each 

candidate exon are filled in by realigning the orthologous sequences in the query read and 

the reference genome using banded dynamic programming, which allows substitutions 

and small indels.  In addition, each candidate exon is also extended on both ends by 

allowing ≤M’ mismatches to find potential exon boundaries.  If a candidate exon already 

covers the whole read with ≤M mismatches at this point, a candidate exonic alignment is 

recorded. 

5. Junction and small-exon search.  There are two types of junction searches: 

double-anchor and single-anchor.  Double-anchor search is performed between each pair 

of neighboring candidate exons.  Candidate splice sites are searched locally around the 

exon boundaries (default: ±6 nt).  At the same time, the match of sequences between the 

reference genome and the query read around exon boundaries are examined.  If 

( )ii
E G o G 
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nucleotides near exon boundaries are aligned properly (≤M’ mismatches), a candidate 

exon junction is recorded.  Otherwise, if a gap remains in the query read after local search 

of exon boundaries according to the candidate splice sites, this typically suggests a 

missing internal exon without any hits of seed sequences in the exon, as discussed above.  

In this case, further searching for the missing internal exon is carried out.  The sequence 

in the gap region of the read, flanked by the dinucleotides (AG/GT) of the two splice sites, 

is queried against the reference genome using BWT and FM-index to find the missing 

internal exon, requiring a minimum exon size (default: 9 nt) and proper intron size 

(default: 20 nt ~ 500,000 nt).  This gives a chance of approximately 5.8×10
-5

 

(2×500,000/4
9+8

, 8 nt are dinucleotides for four splice sites) to find a random match. 

Single-anchor search is performed at the ends of the first and last candidate exons 

if they do not reach the boundaries of the read.  Candidate 5  ́or 3  ́splice sites are 

searched locally (default: ±6 nt) near the exon boundary, and the unaligned part of the 

read after this local adjustment, flanked by the 3  ́or 5  ́splice site dinucleotide, is 

searched against the reference genome with BWT and FM-index.  The size of the match 

at the end has to be larger than the minimum size (default: a=8 nt), and the intron size is 

restricted in the proper range as well.  This gives approximately a chance of 0.03 

(500,000/4
8+4

, 4 nt are splice site dinucleotides) to find a random match. 

6. Connecting junctions and reporting the final alignment.  All candidate 

junctions are connected along the read to find the optimal path that represents the 

complete alignment of the whole read.  If multiple candidate alignments can be found 

within the desired number of mismatches, all candidate alignments are first ranked 

according to the number of mismatches.  If the top two or more alignments have the same 

number of mismatches, they are further ranked to resolve ambiguity by an additional 

criterion that takes into consideration splice-site strength and intron size.  This criterion is 

also used to filter out potential false positives in de novo junction search (details are 

given below).  

A regression model to score exon junctions 

Splice sites show extended consensus sequences beyond the strictly required GT/AG 

dinucleotides (for canonical splice sites), which are crucial for accurate and efficient exon 
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recognition by the splicing machinery (58,59).  These motifs have been used previously 

for bioinformatic splice-site prediction in several methods, such as GeneSplicer (60) and 

SplicePort (61).  In addition, intron size also affects the efficiency of splicing, and shows 

a distinct distribution in the mammalian genome (62).   

When multiple alignments with the same number of mismatches exist, they are 

further ranked to prioritize the most reliable alignments according to the strength of exon 

junctions, using a regression model that combines splice-site motif score and intron size.  

To this end, we collected true splice sites from annotated gene models.  For example, for 

mouse data, NCBI37/mm9 Ensembl (63) gene annotations were downloaded from the 

UCSC genome browser (64); all the splice-site pairs (242,141 pairs) were then retrieved 

as a true-positive training dataset.  We also randomly selected the same number of pairs 

of GT/AG sites separated by 20-500,000 nt from the mouse genome to generate the 

training dataset of false splice sites.  

The splice-site score for each exon junction is calculated using ±15 nt sequences 

around the 5  ́and 3  ́splice sites, respectively (65).  Therefore, for each pair of splice sites 

corresponding to an exon junction, 60 nt are taken into account. We define the splice-site 

score S of an exon junction as: 

      
   (1) 

where Bi is the nucleotide (A, C, G or T) at position i , 
 
is the probability of 

observing Bi at position i of the 60-nt splice-site motif derived from the true dataset, and 

 is the probability of observing Bi in the background intronic sequences.  Junction 

splice-site scores are calculated for all the entries in both true and false training datasets.  

Meanwhile, the corresponding intron sizes are recorded.  

Splice-site score and intron size are combined by a logistic function: 

                (2) 

and 

                                                                            (3) 

Here x1 and x2 are splice-site score and intron size, respectively, and the 

coefficients are determined by fitting the true and false training datasets.  We have 
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provided the regression models for mouse and human in the package, and the parameters 

of these models, including the coefficients and their statistical significance, are 

summarized in Supplementary Table 1).  Scripts are also included to allow users to 

generate their own models for other species and gene annotations.  

For every candidate junction identified by single- or double-anchor de novo 

junction search, we calculate the logistic probability with Equation 2.  At the “junction 

connection” stage, logistic probabilities of all junctions in a candidate alignment are 

averaged for final ranking.  Those de novo alignments with low logistic probabilities 

(default: ≤0.5) are regarded as low confidence and filtered out.  

Practical considerations in implementation 

OLego can either perform de novo junction searches or work with a database of annotated 

splice junctions.  For de novo junction search, we currently require the canonical GT/AG 

splice sites, because they account for ~99% of all known introns in mammals (66).  To 

further reduce false-positive detection of splice sites, we also require an average logistic 

probability of >0.5 for each alignment.  When OLego is provided with a database of 

annotated splice junctions, several special considerations are given for alignment to 

known splice sites, because they define a much smaller search space.  Specifically, we 

allow non-canonical splice sites, a less stringent threshold on the minimum anchor size (5 

nt vs. 8 nt for single-anchor search), and no constraint on intron size. 

OLego takes FASTA or FASTQ files as input, and outputs alignments in SAM 

format (67).  The junctions from the best alignments are collected and reported in BED 

format.  It loads mRNA-Seq reads in batches, and in each batch the reads are assigned 

randomly to different threads, when multiple threading is enabled.  Therefore, OLego 

supports multiple threading in the whole alignment workflow.  This is distinct from many 

available tools, for which multiple threading is only supported at the stages when an 

external aligner is involved.  For paired-end mRNA-Seq data, each end is first mapped 

independently, and the results for both ends are then combined according to their distance 

and orientations on the reference genome, to help resolve possible ambiguity in 

alignments of single-end reads.  Different types of mRNA-Seq libraries with or without 

strand information can be handled properly. 
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OLego is an open source code project.  It is released under GPLv3 and is freely 

available online at http://zhanglab.c2b2.columbia.edu/index.php/OLego.   It was 

implemented in C++ and relied heavily on the source code library of BWA (version 

0.5.9rc1) (28).   

Evaluation on simulated datasets 

We generated simulated mRNA-Seq reads using the program BEERS from the RUM 

package (53).  For mouse (mm9), BEERS uses gene models derived from 11 annotation 

tracks (AceView, Ensembl, Geneid, Genscan, NSCAN, Other RefSeq, RefSeq, SGP, 

Transcriptome, UCSC, and Vega) in the UCSC genome browser to avoid bias towards or 

against any particular set of gene annotations.  It is also capable of simulating 

polymorphisms and random sequencing errors (at a default rate of 0.5%) with positional 

biases (e.g., higher error rate towards the end of reads) that mimic real mRNA-Seq data 

produced by the Illumina platform.  We carried out two sets of simulations with default 

parameters, each consisting of 10 million paired-end reads, but with different read lengths 

(100 and 150 nt, respectively); three replicates were generated for each set.   

We compared OLego (v1.0.0) with three other published programs: TopHat 

(version 1.4.0), MapSplice (version 1.15.2) and PASSion (version 1.2.1).  TopHat and 

MapSplice use seed-and-extend approaches, as described above.  Alternatively, PASSion 

(34) uses a different strategy, called pattern growth, which does not require segmentation 

of reads, to find exon junction reads in paired-end mRNA-Seq data.  For all these 

programs, default parameters were used for mapping, except that the size of introns was 

restricted in the range of 20-500,000 nt for OLego, TopHat and MapSplice, and 20-

409,600 nt for PASSion due to its discrete choices for the maximum intron size.  In 

addition, up to 4 mismatches were allowed by OLego (-M 4).  In this setting, OLego 

searches with a seed size of 14 nt (-w 14), allowing no mismatches in the seed; de novo 

single-anchor junction search is enabled and a minimum anchor size of 8 nt is required (-

a 8).  For MapSplice, the configuration file paired.cfg included in the package was used 

to maximize the sensitivity (see Discussion).  Both MapSplice and Tophat used a seed 

size of 25 nt and minimum anchor size of 8 nt, and they tolerated 1 and 2 mismatches in 
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the seed, respectively.  The reads were mapped onto the reference mouse genome (mm9) 

without any exon junction annotations provided.  Up to 16 Intel Xeon CPU cores (2.0 

GHz) on a Linux server were used for mapping.  The BED format junction output files 

from these programs were used to evaluate discovery of unique exon junctions, and the 

alignment outputs (in SAM or BAM format) were used to evaluate the accuracy of 

junction alignment and small-exon discovery. 

Evaluation on real mRNA-Seq data 

We downloaded mRNA-Seq data (accession: SRX088978) used in a previous study (53) 

from the NCBI Sequence Read Archive (SRA) (68).  This mouse retina mRNA-Seq 

library was originally prepared with a 350 nt (±25 nt) average insert size, and sequenced 

on an Illumina Genome Analyzer IIx, with 120 nt paired-end reads (53).  One lane of 

reads (~26 million reads) was extracted and used in our study.   Parameters used in 

OLego for read alignment were the same as those used in simulation, as described above. 

RT-PCR validation of novel micro-exons 

Retinal tissues from three two-month-old female C57BL/6J mice were purchased from 

The Jackson Laboratory.  Total RNA was extracted using Trizol (Invitrogen), followed 

by DNAse I digestion (Promega), phenol-chloroform extraction, and ethanol precipitation. 

1 µg of RNA was reverse-transcribed with Improm-II reverse transcriptase (Promega) 

and oligo dT primers. 

Radioactive touchdown PCR with [α-32P]-dCTP and Taq Gold polymerase 

(Invitrogen) was used to amplify endogenous transcripts with primers described in 

Supplementary Table 4 and Figure 7A.  PCR products were separated by 8% native 

PAGE, visualized by autoradiography, and quantified on a phosphorimager (Fuji Image 

Reader FLA-5100) using Multi Gauge software Version 2.3.  The inclusion ratio of each 

exon was then calculated by normalizing the signal intensity of the inclusion isoform to 

the total intensity of both isoforms, and expressed as a percentage. 
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Results 

Exon junction discovery in simulated datasets 

We first evaluated the performance of OLego for de novo exon junction discovery using 

two sets of simulated mRNA-Seq data.  We also carried out a comparison of OLego with 

two other widely used seed-and-extend programs, TopHat (32) and MapSplice (33), and a 

recently published program, PASSion, which is based on a pattern-growth algorithm to 

search exon junctions in paired-end data (34).  All of the compared programs were 

previously benchmarked and demonstrated good performance (34,53).  In each 

simulation set, we generated 10 million 100-nt or 150-nt paired-end reads, which were 

aligned by the four programs.  Unique exon junctions reported by each program were 

used to estimate the positive predictive value (PPV) as a measure of accuracy, and false 

negative rate (FNR) as a measure of sensitivity, and this process was repeated in three 

replicates to average the results (Table 1A).  In these tests, a slightly higher PPV was 

achieved by Tophat and OLego (97.7-98.4%), compared to PASSion (96.3% for both 

100-nt and 150-nt reads) and MapSplice (95.1% for 100-nt reads; 97.1% for 150-nt 

reads).  In terms of sensitivity, OLego discovered substantially more true junctions than 

the other programs.  OLego’s FNR (8.2% for 100-nt reads and 6.8% for 150-nt reads) 

almost halved the FNRs of TopHat (15.4% for 100-nt reads and 12.8% for 150-nt reads) 

and PASSion (14.8% for 100-nt reads and 15.5% for 150-nt reads), whereas MapSplice 

had an intermediate FNR (10.3% for 100-nt reads and 9% for 150-nt reads).  Therefore, 

OLego achieved both high sensitivity and specificity, suggesting the benefit of more 

exhaustive searches using very small seeds, combined with quantitative modeling of 

exon-junction strength and alignment quality.  As expected, all seed-and-extend based 

tools achieved better sensitivity when the read size increased; interestingly, PASSion’s 

sensitivity decreased slightly with longer reads.  
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Table 1. Exon junction discovery by OLego, MapSplice, TopHat and PASSion on 

simulated data. 

A. The number of exon junctions identified by each program.  

  100-nt reads (178,449 junctions) 

 

150-nt reads (189,106 junctions) 

  OLego MapSplice TopHat PASSion 

 

OLego MapSplice TopHat PASSion 

Found junctions total 166,954 168,219 153,446 157,967 

 

180,410 177,142 167,707 165,871 

Found true junctions 163,740 159,984 151,013 152,094 

 

176,172 172,052 164,847 159,773 

Missed true junctions 14,708 18,464 27,436 26,355 

 

12,934 17,054 24,259 29,333 

PPV 0.981 0.951 0.984 0.963 

 

0.977 0.971 0.983 0.963 

FNR 0.082 0.103 0.154 0.148 

 

0.068 0.090 0.128 0.155 

 

B. The observed (upper diagonal; shaded) and expected (lower diagonal) overlap of is covered 

true exon junctions between each pair of programs. 

  100-nt reads (178,449 junctions)   150-nt reads (189,106 junctions) 

  OLego MapSplice TopHat PASSion 

 

OLego MapSplice TopHat PASSion 

OLego 163,740 156,654 147,731 147,266 

 

176,172 169,122 161,421 155,259 

MapSplice 146,798 159,984 148,671 146,290 

 

160,285 172,052 162,297 154,520 

TopHat 138,566 135,387 151,013 139,992 

 

153,573 149,981 164,847 150,239 

PASSion 139,558 136,357 128,710 152,094 

 

148,845 145,364 139,277 159,773 

PPV: positive predictive value or precision; FNR: false negative rate. 

 

We then assessed the extent of overlap among the four programs with regard to 

the true junctions they identified.  In all pairwise comparisons, the number of common 

junctions identified by the programs was higher than expected by chance (Table 1B, 

upper diagonal vs. lower diagonal).  For example, in 100-nt reads, OLego identified most 

true junctions found by MapSplice (97.9% or 156,654/159,984), TopHat (97.8% or 

147,731/151,013), and PASSion (96.8% or 147,266/152,094) whereas only 91.1%~91.8% 

(146,798/159,984, 138,566/151,013, and 138,558/152,094, respectively) were expected 

(P<2.2×10
-16

, Fisher’s exact test).  The striking statistical significance of the overlap 

suggests that some junction reads are easier to align, whereas others are more difficult for 

all four programs.  This observation can be interpreted in several ways, including 
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multiple hits of read sequences in the transcriptome (e.g., introduced by paralogous 

genes), ambiguity of sequence alignment at exon junctions, short anchors on either side 

of some exon junctions, or complications introduced by simulated sequencing errors in 

some mRNA-Seq reads. 

We also compared how read coverage affected each program in sensitivity of 

exon-junction detection.  For this purpose, we binned the simulated junctions according 

to their ground-truth read coverage, and for each program, we estimated the sensitivity of 

junction discovery separately for each bin (Figure 2).  As expected, all programs had 

higher sensitivity when the coverage increased.  OLego achieved higher or comparable 

sensitivity in all bins, relative to the other three programs.  For example, for 100-nt reads, 

OLego had a sensitivity of 95.7% for junctions supported by >4 reads, which was 

comparable to MapSplice (95.8%), despite more specific junction identifications by 

OLego.  OLego performed best in all other bins, with sensitivity between 74.8% (for 

junctions supported by only 1 read) and 93.9% (for junctions supported by 4 reads).  On 

the other hand, TopHat and PASSion had relatively lower sensitivity, as observed from 

all bins.  Importantly, the advantage of OLego in sensitivity was particularly clear for 

exon junctions with low coverage, compared to the other three programs (63.7%, 48.3% 

and 54.1% for junctions supported by only 1 read for MapSplice, TopHat and PASSion, 

respectively; Figure 2), again suggesting the benefit of more exhaustive searches using 

very short seeds.  
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Figure 2. Sensitivity of junction detection at different coverages. (A) Tests on 10 

million 2×100-nt simulated reads; (B) Tests on 10 million 2×150-nt simulated reads.  For 

each panel, the simulated junctions were binned according to their coverage, from 1 read 

per junction to >4 reads per junction. The true numbers of junctions in the simulation are 

shown by lines with markers on the right axis, and the sensitivity of OLego, MapSplice, 

TopHat and PASSion are indicated by bars on the left axis. 

Mapping speed 

We next compared OLego, MapSplice, TopHat and PASSion in terms of mapping speed, 

because this becomes increasingly critical as the throughput of mRNA-Seq technologies 

increases dramatically.  OLego supports multiple threading in the whole cycle of 

mapping individual reads, whereas the other three programs support multiple threading in 

a limited number of steps.  Therefore, we first ran all programs with multiple threading 

enabled using 16 CPU cores (2.0 G Hz per core).  It took OLego, TopHat, MapSplice and 

PASSion 0.8, 2, 5.5, and 6.8 hours, respectively, to align the 10 million 2×100-nt reads, 

and 1.4, 3.3, 10.5 and 9.3 hours, respectively, to align the 10 million 2×150-nt reads.  

OLego was faster than TopHat by more than 2-fold, whereas MapSplice and PASSion 

were substantially slower than OLego by about 7-fold.  To further compare read-mapping 

speed and the benefit of multiple threading, we ran OLego and TopHat using different 

numbers of CPU cores (1, 4, 8 and 16) on both sets of simulated data (Figure 3).  When a 

single CPU core was used, OLego and TopHat had similar mapping speeds, despite the 

fact that OLego performed more exhaustive searches using much smaller seeds.  When 

more CPU cores were used, the mapping speed of OLego increased linearly as a function 

of the number of CPU cores.  The mapping speed of TopHat also increased, but at a 
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slower rate.  This is presumably because TopHat supports multiple threading only in 

steps that involve the external aligner Bowtie.  When ≥8 CPU cores were used for 

alignment, OLego used half as much or even less time, compared to TopHat.  These 

comparisons suggest that OLego not only achieved high sensitivity and specificity, but 

also substantially improved the mapping speed.   

\ 

 

Figure 3. Comparisons of mapping speed. (A) Tests on 2×100-nt simulated reads; (B) 

Tests on 2×150-nt simulated reads.  Running time (wall time) of TopHat (square) and 

OLego (triangle) on 10 million simulated paired-end reads with different numbers of 

CPU cores is shown. The values were averaged across three replicates for each test, with 

error bars indicating standard deviations. 
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Figure 4. Discovery of small and micro-exons in simulated mRNA-Seq data. (A) 

2×100-nt simulated reads; (B) 2×150-nt simulated reads.  In each panel, internal exons 

within mapped reads were counted.  The numbers of true (open columns) and false (solid 

columns) exons of different sizes, compared to the ground truth (horizontal bar) are 

shown for OLego, TopHat,  MapSplice  and PASSion, respectively. The overall 

sensitivity (SN9-39) and the sensitivity for exons of size 9-15 nt (SN9-15) are indicated on 

each plot.  

Small or micro-exon discovery in simulated datasets 

Alternatively spliced exons are generally shorter than exons that undergo constitutive 

splicing (69), and some are extremely small [e.g., 6 nt (70)].  Due to the limited 

information content encoded in such short sequences, micro-exons (<30 nt) (55) and their 

alternative splicing are intriguing with respect to their functional significance and 

underlying regulatory mechanisms.  However, these exons are more likely to be missed 

in de novo searches, because they are much less likely to have seed sequences completely 

within the exon.  Therefore, we evaluated the performance of OLego, TopHat, MapSplice 

and PASSion in finding small exons or micro-exons (9-39 nt).  OLego consistently 

performed best in both sensitivity and specificity, compared to the other three programs 

(Figure 4).  In terms of specificity, OLego achieved a PPV of 96.5% for 100-nt reads and 

95.7% for 150-nt reads, respectively, compared to 91.7~93.6% for TopHat, 88.3%~93.3% 

for MapSplice, and 90.7%~91.8% for PASSion.  OLego achieved an overall sensitivity of 

86.6% for 100-nt reads and 90.8% for 150-nt reads, respectively, which was much higher 

than TopHat (63.9%~ 68.5%), MapSplice (75.9%~80.6%), and PASSion (67.7%~78.7%).  
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We further grouped exons according to their sizes to evaluate the sensitivity of each 

program.  For exons of size 27-39 nt, MapSplice discovered a smaller number of exons 

than OLego (83.3% vs. 88.4% for 100 nt reads and 87.2% vs. 92.3% for 150 nt reads), 

and gave a lower PPV (91.3% vs. 96.6% for 100 nt reads, and 94.5% vs. 95.9% for 150 

nt reads).  TopHat and PASSion had the lowest sensitivity among the four programs (75.8% 

~ 80.6% for TopHat, and 69.8%~80.1% for PASSion).  Again, the advantage of OLego 

was most prominent in detecting extremely short micro-exons.  For example, in detecting 

micro-exons of size 9-15 nt, OLego had a sensitivity of 75.7% for 100-nt reads and 78.4% 

for 150-nt reads, respectively, which was substantially higher compared to TopHat (6.1% 

and 9.3%, respectively),  MapSplice (27.8% and 33.8%, respectively) and PASSion (47.4% 

and 38.4%, respectively).  

Exon junction discovery in real data 

After systematic evaluation of OLego using simulated data, we proceeded to analyze an 

mRNA-Seq dataset prepared from mouse retina RNA, which consisted of ~26 million 

120 nt paired-end reads (68).  We first examined known and novel exon junctions 

identified de novo by OLego.  In total, mapping of these reads identified 234,440 unique 

exon junctions.  Among them, 159,938 junctions (68.2%) were previously annotated, 

based on a comprehensive database of gene models derived from multiple sources 

(denoted as inclusive gene models; see Methods for more details) (53); more strictly, 

137,606 (58.7%) junctions were annotated in RefSeq genes.  We next binned all 

identified junctions according to the number of supporting reads, and categorized 

junctions in each bin into annotated junctions and three classes of novel junctions: novel 

junctions in which both splice sites are annotated separately, but the intron itself is not 

annotated (class I); novel junctions with only one site annotated (class II); and novel 

junctions with neither site annotated (class III) (Figure 5A).  This analysis suggested that 

for exon junctions supported by >4 reads, 96.9% junctions were previously annotated, 

and an additional 0.69% exon junctions were class I novel junctions.  On the other hand, 

for exon junctions supported by a single read, only 24.4% were previously annotated, and 

39.8% were class III novel junctions.  This trend is not surprising, because more 

abundant exon junctions are more likely to be known from previous data.  As sequencing 
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depth increases, it becomes more likely to observe novel, rare splicing events, which are, 

however, complicated by sequencing and alignment errors.   

Distinguishing novel exon junctions from artifacts introduced by alignment errors 

in real mRNA-Seq data is difficult.  Nevertheless, we reasoned that there are two major 

sources of mapping errors that can introduce false exon junction detection.  The first type 

is ambiguous determination of splice sites, due to repetitive sequences in double-anchor 

junction search; and the second type is errors introduced in single-anchor search when the 

number of matched nucleotides at the other end of the junction (anchor size) is limited.  

Manual examination of unannotated junctions suggested that the latter might be dominant.  

To study the relationship between anchor size and false junction detection, we binned all 

the aligned junction reads by the anchor size (Figure 5B).  The rationale here is that the 

boundaries of mRNA/cDNA fragments in library preparation are random relative to the 

position of the splice sites, which is what we actually observed (Figure 5B, black curve).  

If all reads were aligned perfectly, the percentage of junction reads sampled from 

annotated (real) junctions should not vary as a function of anchor size.  On the other hand, 

it is clear that a higher error rate is expected to occur when the anchor size is small, due 

to an increase in the chance of random matches.  Therefore, examining the percentage of 

reads sampled from known junctions as a function of anchor size provides an 

independent method of estimating the bound of mapping errors.  Specifically, with an 

anchor size >12 nt, 98.8% of splicing events in reads were mapped to annotated exon 

junctions, and an additional 0.23% were mapped to class I novel junctions.  On the other 

hand, for junction reads with an anchor size of 8 nt, 86.4% of splices were mapped to 

annotated junctions, and an additional 0.3% were mapped to class I novel junctions.  

Therefore, we estimated that the false mapping rate of an exon junction read with anchor 

size of 8 nt could be as high as 12.3-13.3%, although these alignments represented a 

minor proportion of all junction alignments (1.86%).  Similarly, the false mapping rate of 

an exon junction read with anchor size of 10 nt was estimated to be 1.9-2.9%.  By 

requiring a more stringent anchor size of 10 nt, we identified 208,567 unique exon 

junctions, among which 76.4% were annotated previously in inclusive gene models.  The 

proportion was 97.1% and 35.3% for junctions supported by >4 reads and by a single 

read, respectively. 
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Figure 5. Distributions of exon junctions discovered in mouse retina mRNA-Seq 

data. . (A) The junctions found by OLego were binned according to the numbers of 

supporting reads. Different patterns indicate categories of junctions in the bar plot:  

annotated junctions; junctions with both splice sites annotated (Class I novel); junctions 

with only one splice site annotated (Class II novel); and junctions without any splice site 

annotation (Class III novel).  The total number of junctions discovered in each bin is 

shown by the solid line with axis on the right. (B) The junction alignments were grouped 

according to their anchor sizes. The categories of the junctions are shown in the same 

way as in panel (A), and the numbers of junction alignments are shown by the solid line 

with the y-axis on the right.  

Micro-exon discovery in real data 

Our evaluation on simulated datasets suggested that OLego is particularly sensitive 

and accurate for micro-exon discovery.  In this real mRNA-Seq dataset, we identified 

1,665 micro-exons between 9 nt and 27 nt (Figure 6A and Supplementary Table 2), after 

requiring a minimal match of 10 nt at both ends for junctions flanking the micro-exon.  

Among these, 1,035 exons (62.2%) were annotated in inclusive gene models (53), and 

more restrictively, 715 (42.9%) were annotated in RefSeq genes.  Among the remaining 

630 exons that lack any evidence in current gene models, we examined the 5  ́splice site 

of the upstream intron and the 3  ́splice site of the downstream intron flanking each 

micro-exon.  We found that 417 exons (66.2% out of 630 or 25% out of 1,665) had both 

the upstream and downstream constitutive splice sites annotated in the current gene 

models, as well as supporting reads that connect them to the micro-exon on both sides.   
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Figure 6. Discovery of micro-exons in mouse retina mRNA-Seq data.  (A) Number of 

micro-exons identified by OLego. Exons are binned by their sizes (9~27nt), and in each 

bin, they are classified into three groups: annotated micro-exons in previous gene models 

(black), high-confidence novel micro-exons (exons with both flanking constitutive splice 

sites annotated; gray), and other (blank).  (B) Cumulative distribution of exon inclusion 

level for annotated and high-confidence novel micro-exons; only those cassette exons 

with ≥10 reads that support either isoform were included for this analysis.  (C) The 

distribution of total splice-site score (3  ́+ 5  ́splice sites) for each group of micro-exons is 

shown as a boxplot.  (D) The pyrimidine (C/U) content in the upstream 100-nt intronic 

sequences, calculated using 10-nt sliding windows.  (E) Cross-species conservation 

around the micro-exons. The medians of phastCons scores across 30 vertebrate species in 

the intronic regions immediately upstream and downstream of the annotated and high-

confidence novel micro-exons are shown.  (F) An example of a 9-nt novel micro-exon in 

the Kcnn2 gene is shown.  This exon is missing in current gene models (e.g., RefSeq) or 

cDNA/EST data (not shown), but both isoforms are abundant in the mouse retina (the 

two tracks on the top).  The micro-exon is embedded in a longer stretch of conserved 

sequences. 
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This subset is expected to have a higher reliability, and we refer to it as high-confidence 

novel micro-exons.  As a comparison, TopHat, MapSplice, and PASSion found 790, 713 

and 1,242 micro-exons with the same criteria, respectively, among which 81, 85 and 163 

exons are of high confidence with the same criteria (Supplementary Figure 1).  Compared 

to OLego, very short micro-exons are under-represented in the results of all three 

programs, consistent with observations from simulation data.  

A large proportion (988/1,665 or 59.3%) of the micro-exons have a size that is a 

multiple of three (Figure 6A).  This is a prominent feature of regulated alternative 

splicing (71) and is consistent with our results on simulated data (Figure 4).  Indeed, 42.2% 

(437/1,035) of annotated exons and 67.9% (283/417) of high-confidence novel exons are 

cassette exons, for which both inclusion and skipping were observed in these mRNA-Seq 

data.  For these cassette micro-exons, novel exons tend to have much lower inclusion 

levels, compared to annotated exons (Figure 6B).  The difference between annotated and 

novel exons can be explained in part by their difference in splice signals.  Compared to 

the annotated micro-exons, novel exons have weaker summed 3  ́and 5  ́splice site scores 

(9.12 vs. 11.89, median; Figure 6C) and polypyrimidine tract (Figure 6D), although their 

scores are still clearly above background.  Another not mutually exclusive possibility is 

that inclusion of novel cassette micro-exons shifts the reading frame more frequently, 

compared to annotated cassette micro-exons (47.7% vs. 16%), which would likely 

introduce premature stop codons (PTCs) and thereby trigger nonsense-mediated mRNA 

decay (NMD) to reduce the apparent inclusion level (72).     

To assess the functional significance of the novel micro-exons, we examined their 

sequence conservation in vertebrate species (73).  For both annotated and high-

confidence novel micro-exons, we observed a high level of sequence conservation in 

flanking intronic regions (Figure 6E).  For example, a 9-nt cassette exon in the Kcnn2 

gene is located in a long stretch of highly conserved sequences, and both isoforms were 

abundantly detected by mRNA-Seq, but not in previous cDNA/EST data (Figure 6F).  

Presumably, these regions harbor conserved cis-regulatory elements, which might be 

important for regulated splicing of these micro-exons and are thus under evolutionary 

selection pressure.  
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Figure 7. Experimental in vivo validation of micro-exons discovered by OLego. (A,C) 

Primers were designed either in the flanking exons to detect both micro-exon inclusion 

and skipping isoforms (A), or at the exon junction to specifically detect micro-exon 

expression (C). Primers positions and structure of each isoform are indicated (not to 

scale). (B,D) RT-PCR analysis of micro-exon expression in mouse retina using primers 

described in (A,C).  Micro-exon included and skipped isoforms are indicated next to the 

corresponding bands by solid and empty arrowheads, respectively. (E) Correlation of 

micro-exon inclusion ratios estimated from mRNA-Seq data and those measured by 

radioactive PCR, as described in (B) (n=3). 

In vivo validation of the micro-exons discovered by OLego 

To assess the accuracy of OLego’s micro-exon predictions, we experimentally tested the 

expression and inclusion ratios of micro-exons in mouse retina.  We ranked the high-

confidence novel micro-exons by the number of supporting reads for the inclusion 

isoform, and selected 15 exons for PCR validations (Supplementary Table 3 and 

Supplementary Figure 2).  Two sets of primers were designed to validate each micro-

exon: (i) primers were positioned in the flanking exons of the micro-exon to detect both 

exon inclusion and exclusion; and (ii) one of the primers was positioned on the exon 

junction spanning the micro-exon and a flanking exon, while the other primer was 

positioned in a flanking exon (Figure 7A, C; Supplementary Table 4).  This ensured that 

we would both quantify the inclusion ratios and specifically detect the micro-exon, 

respectively. For all tested exons, we detected two isoforms with a size corresponding to 

the inclusion and exclusion of the micro-exon, respectively (Figure 7B).  In addition, 

amplification with primers specific to the micro-exon junction confirmed the identity of 

the included/skipped micro-exon (Figure 7D).  Therefore, OLego performs very well in 

micro-exon discovery, as we were able to validate15 out of 15 predicted novel micro-

exons.  This is further supported by the observation that the inclusion ratios estimated 
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from the RNA-Seq data and those measured in the PCR validation are highly correlated 

(Pearson correlation coefficient R=0.85; Figure 7B, E, Supplementary Table 3). 

Discussion 

Here we present OLego, a program designed for fast mapping of hundreds of millions of 

mRNA-Seq reads to the reference genome with high specificity and sensitivity, which 

allows identification of known and novel exon junctions.   Since the first publication of 

mRNA-Seq studies (19), the technologies have evolved very rapidly, with the most 

prominent features including increases in read length and throughput, and a reduction in 

sequencing errors. 

The first generation of tools that align RNA-seq reads to the genome is based on 

the construction of a database of known or predicted exon junction sequences (8,74,75), 

so that junction reads can be mapped against this junction sequence database without 

alignment gaps.  This strategy is fast and accurate for alignments to annotated exon 

junctions.  However, it relies on the fact that reads are short (~36 nt), so that they rarely 

span more than one junction, and another important caveat is that this approach does not 

allow the discovery of exon junctions de novo.  As the read length increases, it becomes 

more and more frequent for a read to span three or more exons, but it is difficult to build 

a sequence database of alternative isoforms that span many exons, while preserving the 

“uniqueness” of sequences that can potentially match mRNA-Seq reads.  Algorithms 

designed specifically to map spliced mRNA-Seq reads were subsequently developed, 

with TopHat being one of the first (76), followed by several others, such as SpliceMap 

(35), GSNAP (38), MapSplice (33) and PASSion (34).   

Although different heuristics were employed in each of these programs, most of 

them use a seed-and-extend strategy, which was also used in programs developed earlier 

to map traditional cDNA/EST sequences to genomic DNA sequences, such as sim4 (77), 

BLAT (57) and exonerate (78).  With this strategy, the size and position of the seeds are 

critical determinants of mapping sensitivity.  In general, a match of at least one seed in 

each exon is critical for successful alignment of a read, although tricks like single-anchor 

junction search can be used to match sequences near the ends of a read.  To achieve 

sensitivity, these earlier programs typically used short seeds of size 11-12 nt.  BLAT is 
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one of the first programs to allow fast mapping of cDNA/EST sequences to the whole 

genome, by hashing the whole genome using non-overlapping seeds or tiles (default=11 

nt).   However, speed is a bottleneck in processing ultrahigh-throughput mRNA-Seq data. 

To improve the speed of genome-wide mapping of large numbers of short reads, 

various schemes have been used to index the reference genome sequences to enable faster 

querying.  For example, GSNAP uses a hash table indexing all the k-mers (k typically in 

the range from 11 to 15 nt) every 3 nt in the reference genome.  The overlapping 3-nt 

spaced seed hashing scheme is necessary to reduce the memory footprint to around 4 GB.  

An alternative approach to hashing is the BWT- and FM-index-based method employed 

by many programs, including Bowtie, which is integrated into TopHat and MapSplice.  

This invertible full-text indexing scheme is more memory-efficient, and allows fast query 

of sequences of varying length, in contrast to the fixed size of seed sequences in hashing-

based methods.  This flexibility makes it possible to align different types of reads with 

different granularity, e.g., fast alignment of exon-body reads without requiring seed 

partitioning, followed by alignment of spliced reads using short seeds, and very short or 

micro-exons of varying sizes.   

Most currently available mRNA-Seq read splice-mapping tools typically segment 

reads into non-overlapping, relative long (~25 nt) seeds, which are mapped to the genome 

without gaps by an external mapper.  The relatively long seeds restrict the number of hits, 

so that the temporary results generated by the external mapper are manageable in post-

processing steps to produce final junction alignments.  However, even with relative long 

seeds, the pipeline-based methods still generate temporary files of enormous size, which 

can be a significant concern regarding both space and speed when these files are parsed 

to produce final results.  For example, with the basic configuration (paired.cfg), 

MapSplice required about 140 and 200 GB of disk space to store temporary files to align 

the 10 million paired-end 100- or 150-nt reads, respectively, in our simulation.  In the 

more exhaustive mode (Try_hard.cfg in the package), the disk usage of MapSplice 

increased to over 500 GB for 100-nt reads and 800 GB for 150-nt reads, respectively.   

Interestingly, with this mode we did not observe an increase in sensitivity, but did 

observe a dramatic drop in accuracy (data not shown). 
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The relatively long seeds increase the chance that the seeds themselves span exon 

junctions, reducing the number of seeds mapped to exonic sequences, which are critical 

for final sensitivity.  For example, the median size of mammalian exons is ~120 nt.  In 

this case, ~21% (25/120) of 25-nt sliding windows overlap with exon junctions.  This 

problem gets worse for alternative exons, especially those regulated to have variable 

inclusion levels in different conditions, such as different tissues.  For example, the 

median size of cassette exons regulated by the neuron-specific splicing factor Nova is 

~80 nt (79), so that ~31% (25/80) of 25-nt sliding windows overlap with exon junctions.  

Smaller seeds greatly reduce the chance of overlaps with exon junctions in seed 

sequences.  With the ~14-nt seeds used in OLego, a read covering an exon of ≥28 nt is 

guaranteed to have at least one seed inside the exon, which increases the sensitivity of 

mapping reads sampled from these relatively small exons.  Instead of using a smaller 

seed size, PASSion (34) uses a different strategy, based on a pattern-growth algorithm.  

This method can only be applied in paired-end mRNA-Seq data when one exonic read is 

aligned in the first pass without allowing large gaps, while the other read, which spans 

one or two exon junctions, is missed in the first pass and is to be refined in later steps.  In 

this scenario, the aligned read in a pair is used as an anchor, and local searches of the 

(maximum) unique substrings starting from the ends of the other read are performed 

using a pattern-growth algorithm, constrained by the maximum intron size.  This process 

can continue iteratively until the substrings cover the whole read.  The advantage of 

PASSion in eliminating the read-segmentation step is attractive, and this algorithm was 

reported to show competitive performance compared to several other programs.  

However, it is unclear how this algorithm handles sequencing errors, the repetitive nature 

of substrings, and longer mRNA-Seq reads in which both reads in a pair span exon 

junctions.  In practice, OLego achieved both higher sensitivity and accuracy in discovery 

of exon junctions and micro-exons using realistic simulated data. 

OLego aligns each read independently in one pass, without filtering of junctions 

based on their summary statistics derived from all reads, such as the uniformity of the 

positions of reads mapped to the junction used by MapSplice and the read coverage 

around the junction used by TopHat and PASSion.  To ensure the accuracy of junction 

mapping, OLego limits the de novo search to canonical GT/AG splice sites, and uses a 
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built-in model of exon-junction strength that combines splice-site scores and intron size.  

This intentional choice is due to the fact that canonical splice sites account for ~99% 

mammalian introns (66).  The exon-junction scoring is effective to find the real splice site 

in a single-anchor junction search, in which multiple hits flanked by splice-site 

dinucleotides can be found when the anchor sequence is short.  It also improves the 

accuracy in a double-anchor junction search, when ambiguity exists due to repetitive 

sequences near the splice sites.  As a result, OLego achieved an accuracy comparable to 

that of TopHat and better than those of MapSplice and PASSion, while at the same time 

having a much lower FNR.  The advantage of OLego compared to the other programs is 

particularly prominent for exon junctions of low abundance, as demonstrated in 

simulations.  Nevertheless, the default parameters are chosen to balance accuracy and 

sensitivity, which is suitable for many applications of mRNA-Seq to quantify splicing 

levels.  For efforts focusing on the discovery of novel junctions, including those of low 

abundance, filtering of junctions based on supporting evidence and anchor size can 

certainly improve the accuracy further. 

While this paper was under revision, another program named TrueSight was 

published (80).  TrueSight also used splice site motifs together with other features to 

build a regression model to distinguish true vs. false positive exon junctions, and reported 

improved PPV and sensitivity compared to TopHat, MapSplice and PASSion.  One 

difference between TrueSight and OLego is that the former builds exon junction models 

on the fly, using junction reads already mapped, and updates the model and the alignment 

iteratively using an EM algorithm.   The benefit of the EM algorithm is not very clear, 

given that a large number of exon junctions from reads mapped in previous steps (or in 

annotated gene models) is already available, and logistic regression is in general not very 

sensitive to some noises.  In our experiment, we were able to use 10% of training data to 

derive our logistic regression model and obtain essentially the same results (data not 

shown).  On the other hand, the iterative procedure in TrueSight appears to be 

computationally expensive, so that TrueSight is significantly slower than all the other 

programs the original authors compared and has a relatively large memory footprint 

(10Gb memory per 30 million reads).   Another important limitation of TrueSight is that 
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it also relies on an external mapper for seed mapping, sharing the same limitation on seed 

size as TopHat and MapSplice, for which OLego aims to improve. 

We employed several strategies to achieve fast mapping with small seeds to the 

mammalian-sized genome.  First, we require perfect matches in seed sequences, given the 

fact that sequencing errors in typical mRNA-Seq data are as low as 0.5%.  Mismatches, 

including substitutions and indels, are handled when the alignments are refined for each 

exon.  Second, after hits of seeds are clustered, candidate alignments are ranked and 

filtered by the number and uniqueness of matched seeds.  Therefore, the later time-

consuming steps to locate exon junctions are only applied to the most promising 

candidate alignments.  Third, BWT- and FM-index-based querying in the genome is not 

only applied in the step of seed mapping, but also in the later steps to locate splice sites 

(single-anchor junction search) and micro-exons.  The capability of fast querying of 

sequences of different sizes using BWT is particularly helpful.  Finally, we do not need to 

filter the alignments according to the abundance of each junction, so that each read can be 

mapped independently in one pass.  This makes it possible to support multiple threading 

in the whole cycle of alignment.  Indeed, although OLego performed more exhaustive 

searches than TopHat, the speeds of these two programs were still comparable, even with 

a single CPU core.  Furthermore, the speed of OLego increased faster than that of TopHat 

as the number of CPU cores increased, such that with ≥8 CPU cores, OLego used half or 

less time, compared to TopHat.  The other two programs, MapSplice and PASSion, were 

substantially slower in our comparison.  We estimate that on 8 CPU cores, OLego can 

map a typical lane of 200 million paired-end mRNA-Seq reads of 100 nt and 150 nt to the 

mammalian genome in ~29 and ~46 hours, respectively.  Combined with its small 

memory footprint, OLego can efficiently run on desktop workstations.  It is also worth 

noting that increasing the seed size will further improve OLego’s mapping speed, despite 

the risk of potential decrease in sensitivity of exon junction detection, especially for those 

flanking small or micro-exons.  

We paid special consideration to searches of very small or micro-exons.  Even 

with the small seeds used in this study, these exons might still lack internal seed 

sequences without overlap with exon junctions.  However, these exons can be recovered 

when matches to sequences in the flanking upstream or downstream exons are found, and 
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the micro-exon sequences can be determined accordingly, so that they can be effectively 

searched against the indexed genome together with the flanking splice sites.  As 

demonstrated by simulation, OLego was successful in identifying most of the extremely 

small exons of size 9-15 nt (75.7- 78.4%), whereas TopHat and MapSplice missed most 

of them (only 6.1-33.8% identified).  PASSion identified more exons in this range 

(38.4%~47.4%) than TopHat and MapSplice, but the numbers were still much smaller 

than OLego’s.  TopHat provided an optional “micro-exon-search”, which is supposed to 

improve the sensitivity of micro-exon search.  However, even with this option enabled, 

TopHat only found 12% of these extremely small exons in the 100-nt dataset, as 

compared to 75.7% by OLego.  Finally, we were able to identify over 400 high-

confidence novel micro-exons in a single mRNA-Seq library of moderate depth (~26 

million paired-end reads) prepared from mouse retina RNA.  The inclusion level of these 

exons is lower than that of annotated ones, which is likely why they were not previously 

identified, and this can be explained by their weak splicing signals.  However, we were 

able to validate 100% of the novel micro-exons tested by RT-PCR, demonstrating 

OLego’s high sensitivity and accuracy.  Some of these micro-exons likely have 

functional significance, as judged from their deep phylogenetic conservation (see also 

Supplementary Figure 2).   

With its high sensitivity and accuracy and fast mapping speed, OLego can be used 

for efficient alignment of large-scale mRNA-Seq data being generated at unprecedented 

rate and depth.  It can be combined with downstream analysis tools for transcript 

reconstruction and quantification to facilitate the process of revealing the transcriptomic 

complexity of mammals and other species.  

 

Acknowledgements 

We would like to thank Michael Schatz and Martin Akerman for critical reading of 

the manuscript, and members of the Krainer, Zhang, and Robert Darnell labs for helpful 

discussion. C.Z. would also like to thank the Darnell lab for computing resources and 

support. 

  



 

41 

 

Funding 

This work was supported in part by National Institutes of Health (GM74688 to M.Q.Z. 

and A.R.K., K99GM95713 to C.Z.); and National Basic Research Program of China 

(2012CB316503 to M.Q.Z.). 

 

 



Supplementary Figures 

 

Supplementary Figure 1. Number of micro-exons identified by OLego and the other 

three programs.   Exons are binned by their sizes (9~27nt), and in each bin, they are 

classified into three groups: annotated micro-exons in previous gene models (blue), high-

confidence novel micro-exons (exons with both flanking constitutive splice sites 

annotated; green), and other exons (red).  
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Supplementary Figure 2. UCSC genome browser screenshots of the validated micro-

exons.  Structures of the inclusion and exclusion isoforms are shown in the user supplied 

track. The number of supporting reads is indicated to the left of each isoform. Known 

transcript structures ( UCSC genes, RefSeq genes and ESTs ) are also shown in the 

screenshots. The micro-exons are in the same order as they are listed in Supplementary 

Table 2.  

(There are 15 figures so they are not included, please find at NAR online 

http://nar.oxfordjournals.org/content/41/10/5149/suppl/DC1 )  
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Supplementary Tables 

  

Supplementary Table 1. Details of the coefficients obtained from logistic regression.  

 

Species 

 

Estimate Std. Error z value Pr(>|z|) 

 

mm9 

Intercept 1.13E+00 1.26E-02 89.11 <2e-16 

 Intron size -4.81E-05 2.79E-07 -172.15 <2e-16 

 Splice-site score 2.77E-01 1.37E-03 202.28 <2e-16 

 

hg18 

Intercept 1.63E+00 1.16E-02 141.4 <2e-16 

 Intron size -5.35E-05 2.89E-07 -185 <2e-16 

 Splice-site score 2.18E-01 1.14E-03 191.9 <2e-16 

 

       Regression were done using glm() in R, z values were given by Wald statistic. 
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Supplementary Table 2. Micro-exons identified in mouse retina RNA-seq data.  

(This table is not included due to its size, please find at NAR online 

http://nar.oxfordjournals.org/content/41/10/5149/suppl/DC1 ) 

  



Supplementary Table 3. List of the validated novel micro-exons. 

      

          Gene symbol Exon size (nt) Upstream exon pos Exon pos Downstream exon pos Strand In reads Ex reads In% (RNA-seq) In% (RT-PCR) 

Madd 9 chr2:91013270-91013350 chr2:91012484-91012492 chr2:91010842-91010904 - 270 63 81.1 80.61 

Cadps 15 chr14:13282236-13282383 chr14:13274366-13274380 chr14:13273355-13273429 - 60 115 34.3 39.44 

Amph 9 chr13:19192441-19192523 chr13:19193771-19193779 chr13:19194741-19194879 + 46 108 29.9 43.30 

Ank3 12 chr10:69390443-69390566 chr10:69392195-69392206 chr10:69395157-69395236 + 42 27 60.9 77.84 

Doc2b 27 chr11:75599595-75599674 chr11:75599019-75599045 chr11:75595123-75595197 - 32 2 94.1 86.05 

Ykt6 15 chr11:5859309-5859382 chr11:5860430-5860444 chr11:5861191-5861291 + 29 113 20.4 38.79 

Heg1 24 chr16:33720735-33721088 chr16:33722365-33722388 chr16:33725511-33725729 + 29 53 35.4 33.56 

Mll3 23 chr5:24810496-24810559 chr5:24809915-24809937 chr5:24808524-24808756 - 29 31 48.3 42.02 

Fermt2 21 chr14:46084399-46084620 chr14:46082390-46082410 chr14:46081791-46081915 - 28 7 80.0 57.14 

Rab3gap1 21 chr1:129835623-129835725 chr1:129838171-129838191 chr1:129838951-129839155 + 27 29 48.2 57.04 

Elmod1 24 chr9:53772207-53772275 chr9:53771749-53771772 chr9:53769130-53769180 - 25 149 14.4 34.03 

Kif21a 12 chr15:90779437-90779475 chr15:90778755-90778766 chr15:90774196-90774332 - 23 0 100.0 61.78 

Cd9912 18 chrX:68682222-68682341 chrX:68678590-68678607 chrX:68677199-68677264 - 23 63 26.7 40.49 

Ubr5 27 chr15:37900017-37900102 chr15:37898682-37898708 chr15:37898093-37898260 - 21 232 8.3 10.57 

Rims2 12 chr15:39123648-39123858 chr15:39137638-39137649 chr15:39176856-39177166 + 19 8 70.4 74.20 
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Supplementary Table 4. Primers designed to detect the micro-exons and the splice events. 

        

Gene Name 

Primer Sequence 5'-->3' 
PCR product length for 

specific primer pairs (nt) 

 Micro-exon flanking primer Micro-exon junction specific primer F1/R1 

F2/R1 

or 

F1/R2 

F1 R1 F2 R2 

 exon 

inclusi

on 

exon 

skippi

ng 

exon 

inclusi

on 

Madd 
CCACCAATGCAG

AAGTGCTA 

TTAAGAATGGGCTGG

GTGTT  

GGCTAAGGCCTTCAG

GAACT 
121 112 89 

Cadps 
CCCACAGTCAAT

ATGCACCA 

CTTTGCCACCAAAAG

TGTGA 

CCAAGAGTTTGCTAAAG

AGTGGC  
178 163 97 

Amph 
GTGATGACGAAA

CTCGGTGA 

TGCAGGTGCTAATGT

GTGGT 

CCAGAGCGAGGTGTGAC

TC  
174 165 116 

Ank3 
TCACAGGGGACA

CTGACAAG 

CCTTGCGTAGGAGCT

TCTGT  

CCGAACTTATCTTGG

GACTGG 
167 155 129 

Doc2b 
ACGCTGGACTTC

AGTCTGCT 

CAGGCAGCAGGTGTA

GTTTG 

CAAGGTGCCAAAGCTGA

TG  
160 133 95 

Ykt6 
CAAGTCAACTGA

TTGTGGAACG 

AGGCCACTCTGGAAG

GGTAT 

GAACAAGCTCCATAAAC

AAGAGAG  
159 144 106 
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Heg1 
GTGGGAGGAGTT

ACGCAGAG 

GACATTGCAGACGTG

TGAGG 

GAGCATTCTCTGCTTCAC

CG  
205 181 122 

Mll3 
AAATTTTGGTCC

AGGCTTTG 

GCTGTGCGCTGTTTA

GCTG 

CTTTGTCAAAACCAGAA

AGGC  
185 162 170 

Fermt2 
CCGCGGTACCTG

AAGAAGTA 

AGTGTGTGATGCCGA

ACTCA 

GAGCAAACAGCCAGGCT

G  
169 148 146 

Rab3gap1 
CTGGAGCAGCCT

GAGGTATC 

CTGGGCAGCCTGATT

TCTTA 

CTCAGCGGCTGACTGAA

TC  
160 139 81 

Elmod1 
CTCTCCGACTCTG

TCCATCC 

CCAATGGCTTTATCC

ATCTTTT 

CATCCAAAATGCAGGGA

TATC  
104 80 89 

Kif21a 
ACTCCTCTTTGTC

CGAGGTG 

GGTGTGCCCTTCAGC

TATGT 

GTGCACAGATCCACCAG

AAG  
119 107 102 

Cd9912 
GACAGAAACTGG

CACCATTG 

CCCCTTCACGTAGTCT

GCAT  

CTGCATTGAGGCCCT

CTG 
160 142 146 

Ubr5 
GCTGAGAAGCTC

CTCCAGTTC 

TGTTGGTCATCTGGT

GGTCT 
GACCTGCCTCCCTTGCTC 

 
200 173 128 

Rims2 
GCAAGAGCAGAA

GGGTGATG 

TTCTTGTTGTTTTCGG

CACA  

CCACTTTGTCCTCCTT

GTTTG 
193 181 155 
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Chapter 3 : 

 

Identification of Exons and Splicing Events from Alignment 

Results 

 

 

 

 

 

Introduction 

An important feature of RNA-Seq is its ability to sequence the transcriptome at an 

unprecedented depth, hence makes it possible to observe rare transcripts which cannot be 

observed previously with traditional techniques (like EST). This also enables us to 

discover novel structure elements from the data, including novel exons and junctions, and 

furthermore, novel AS events.  

Transcriptome reconstruction is the process to find the structures of transcripts 

expressed in the data. There are many tools developed in the last few years to reconstruct 

transcriptome from RNA-Seq experiments, as described in Chapter 1. Since AS events 

are variance of local transcript structures, a straightforward approach to recover AS 

events from RNA-Seq data is to extract the information from the results of methods like 

Cufflinks or Scripture (41,42).  

However, unnecessary complexity has been introduced by this indirect approach, 

because AS events are local structural alternations which can be identified with local 

evidence directly without knowing the full structures of the transcripts.  The 

transcriptome reconstruction itself is a complex problem. On one hand, the reads from 
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RNA-Seq data are relatively short, and only cover short regions in the transcripts, giving 

little evidence of the full structure. On the other hand, the complexity of the 

transcriptome and the noise from pre-mRNA make the reconstruction even harder, 

leading to a number of non-identifiable gene models (81).  

To reduce the complexity, some of the transcriptome reconstruction programs 

only report the minimum set of isoforms which can explain the reads at a gene locus. 

Although this strategy can presumably remove some noise, it discards some signals and 

results in a low sensitivity on rare AS events.  

In our study, instead of using transcriptome reconstruction programs to identify 

AS events, we use in-house scripts to connect the evidences in the data, e.g., junction 

reads, to recover AS events. We did a simulated test to benchmark the performances of 

different programs when identifying exons from RNA-Seq data. And we demonstrated 

how many exons could be missed by traditional transcriptome reconstruction methods, 

and “simple connection” method is able to recover more exons than these transcript-

based methods.  

Methods 

Simulated dataset 

We generated simulated mRNA-Seq reads using the program BEERS from the RUM 

package (53).  For mouse (mm9), BEERS uses gene models derived from 11 annotation 

tracks (AceView, Ensembl, Geneid, Genscan, NSCAN, Other RefSeq, RefSeq, SGP, 

Transcriptome, UCSC, and Vega) in the UCSC genome browser to avoid bias towards or 

against any particular set of gene annotations.  30,000 gene models were selected 

randomly from the pool and 10 million 100-nt paired-end reads were sampled, with an 

expression profile which mimics patterns in real data.  

Recovery of the exons with the programs 

The simulated reads were first mapped to reference genome sequence (mm9) with OLego 

(39) using default options. Then Cufflinks (1.3.0) and Scripture (beta2) were run to 
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reconstruct the transcripts without any transcript annotation. For Cufflinks, -F=0 and --

min-frags-per-transfrag=0 were used to output all isoforms it could find. While for 

Scripture, paired end mode was used and only segmentation task was done to re-construct 

the transcriptome.  Afterwards, the exons were extracted from their results to evaluate 

their performances.  

Simple connection method 

To recover the exons directly from the read mapping results without transcript 

reconstruction, we first identified the reliable set of junctions by requiring at least 3 

supporting reads on each junction. Then we connect nearby 3’ and 5’ splice sites to 

identify exons, allowing a maximum exon length up to 1000 nt. If there is potential intron 

in the region of an exon (supported by junction reads), we check the coverage of the 

“intron” and only report the exon if 90% of this “intron” is covered, which might indicate 

an intron retention event. BEDTools was used in this step(82). Since the transcript start 

and end sites cannot be interpreted by junction reads, known transcript boundaries were 

used as reference.   

Results 

Comparison of the exon recovery 

We binned the exons identified by different methods according to their coverage in the 

simulation and compared the numbers between the methods, shown in Figure 1.  All the 

approaches had low sensitivity for lowly covered exons. For exons with higher coverage, 

Cufflinks and Scripture had a maximum discovery rate around 60%, and Scripture had a 

better sensitivity than Cufflinks, especially for exons with medium coverage. The simple 

connection method did best at all coverages, and was able to identify nearly 100% of the 

highly covered exons in the simulated dataset. These results showed that transcript-based 

methods have a bottle neck when they are used to identify exons, while a simpler method 

based on local structures can outperform in this specific task. It is also striking to see that 

the simple connection method achieved a comparable or higher accuracy compared to the 

other two methods.  
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Figure 1. Exon recovery by different approaches. Exons were binned according to 

their coverage in the simulation (x-axis). Percentage of exons recovered from the data 

(left y-axis ) were shown in different colors for Cufflinks, Scripture and SimpleConnect 

(the simple connection method). Total numbers of exons in each bin (right y-axis) are 

shown by the black curve.  

Discussion 

With a simulated test, we showed that a simple connection method has advantage on 

identifying exons from RNA-Seq alignment results. Compared to transcript-based 

methods like Cufflinks or Scripture, it demonstrated better sensitivity on exon discovery 

and comparable prediction accuracy.  

The method proposed was initially developed to extract splicing events from 

alignment results from RNA-Seq data. This is to generate a database for later 

quantification of the events with SpliceTrap(10) (Chapter 4). Although there are 

potentially a large number of false positives in the recovered exons, we can further filter 

out those unreliable exons with SpliceTrap, which has a built-in dynamic cutoff model 

based on both exon coverage and exon length.  

The proposed method here is local structure based, which grantees a much faster 

speed compared to transcript based methods. This is due to its low complexity and not 

requiring any statistical model.   
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Chapter 4 : 

 

SpliceTrap: a Method to Quantify Alternative Splicing under 

Single Cellular Conditions 

 

 

 

 

 

Abstract 

Alternative Splicing (AS) is a pre-mRNA maturation process leading to the expression of 

multiple mRNA variants from the same primary transcript. More than 90% of human 

genes are expressed via alternative splicing. Therefore, quantifying the inclusion level of 

every exon is crucial for generating accurate transcriptomic maps and studying the 

regulation of alternative splicing.  

Here we introduce SpliceTrap, a method to quantify exon inclusion levels using 

paired-end RNA-seq data. Unlike other tools, which focus on full-length transcript 

isoforms, SpliceTrap approaches the expression-level estimation of each exon as an 

independent Bayesian inference problem. In addition, SpliceTrap can identify alternative 

splicing events under a single cellular condition, without requiring a background set of 

reads to estimate relative splicing changes. We tested SpliceTrap both by simulation and 

real data analysis, and compared it to state-of-the-art tools for transcript quantification. 

SpliceTrap demonstrated improved accuracy, robustness, and reliability in quantifying 

exon-inclusion ratios.  
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SpliceTrap is a useful tool to study alternative splicing regulation, and can be used 

in combination with full-transcript quantification tools, to generate high-resolution 

transcriptomic maps.  

Availability and implementation: SpliceTrap can be implemented online through 

the CSH Galaxy server http://cancan.cshl.edu/splicetrap  and is also available for 

download and installation at http://rulai.cshl.edu/splicetrap/. 

Introduction  

In higher eukaryotes, a given transcribed locus can generate several mature mRNA 

isoforms via the process of alternative splicing (AS). AS is frequently a regulated 

mechanism that coordinates the removal of the internal non-coding portions of the 

transcripts (introns) with the differential joining of the coding and 5’/3’ untranslated 

portions (exons). As a result, proteins with similar, different, or antagonistic activities can 

be generated from a single genomic locus (83,84). In addition, AS can lead to 

downregulation of gene expression by diverting some of the mRNA isoforms to the 

nonsense-mediated mRNA decay pathway (17).  

More than 90% of human genes express primary transcripts that undergo AS (8,9). 

Owing to the regulatory power of this process, an increasing number of studies are being 

directed at understanding AS regulation at the single-exon level (17,85-87). In general, 

researchers in the splicing regulation field have utilized comparative approaches to reveal 

tissue-specific (88,89) or disease-related (90) AS events. However, such methodologies 

have not been used to generate maps of AS activity within one cellular condition. The 

completion of such maps would add a higher level of resolution to transcriptome analysis, 

allowing precise quantification of exon inclusion levels within a population of related 

isoforms.  

Until recently, systematic analysis of AS was done using expressed sequence tags 

(EST) (91-93) or specialized microarrays (8,85,86,94). These techniques facilitated the 

discovery of a large number of alternative transcripts, and the extraction of distinctive 

features of alternatively spliced exons. Nevertheless, these techniques suffer from several 

http://cancan.cshl.edu/publicgalaxy/root?tool_id=wuj1
http://rulai.cshl.edu/splicetrap/
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limitations. ESTs are subject to cloning biases—especially towards the 3’ end of 

transcripts—low coverage, and insufficient robustness to allow reliable quantification. 

Likewise, the specificity of splicing microarrays is negatively affected by cross-

hybridization with related mRNA molecules.  

The development of deep-sequencing technologies provided an alternative to 

ESTs and microarrays for transcriptomic quantification. Recent studies by Pan et. al. and 

Wang et. al. utilized single-end RNA-seq to analyze a series of human tissues. In Pan et. 

al., the inclusion level of alternative exons was quantified as the % of the number of reads 

that match the two splice junctions formed by exon inclusion, over the splice junction 

formed by exon skipping. Wang et. al. also utilized splice-junction reads for 

quantification of minor isoforms with different frequencies, as a function of the read 

coverage or RPKM (reads per kilobase of exon per million mapped reads) (9). Although 

both studies demonstrated improved coverage relative to microarrays and ESTs, they 

utilized only isoform-specific reads, leaving out the majority of reads, which map to 

common exons of different isoforms. 

An improved version of the deep-sequencing technique utilizes paired-end tags 

(95), which allows a significant gain of coverage and a reduction in read ambiguity 

through the generation of linked tag pairs that span longer stretches of sequenced 

template. This technology is especially suitable for AS profiling, because many exon-

mapped tags are expected to span splice junctions, and these can be exploited to improve 

AS quantification.  

Two recent methods exploit paired-end sequencing information for transcript 

quantification: Cufflinks (32), which is based on a previous RNA-seq model for single-

end reads (96) and Scripture (42).  Both can reconstruct transcript structures using 

directed graphs, and assign FPKM (fragment per kilobase of exon per million mapped 

reads) or RPKM values to every transcript, without relying on a reference genome. 

Cufflinks uses a rigorous mathematical model to identify alternatively regulated 

transcripts at each locus. Scripture employs a statistical segmentation model to 

distinguish expressed loci, and filters out experimental noise. Both methods perform very 
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well in identifying and quantifying full transcript levels, and can be used to deduce 

isoform changes between two cellular conditions. However, neither method aims to 

quantify the inclusion ratio of every exon under single cellular conditions, as required to 

generate maps of AS regulation. 

Here we introduce SpliceTrap, a method to quantify exon inclusion levels in 

paired-end RNA-seq data. SpliceTrap generates alternative splicing profiles for different 

splicing patterns, such as exon skipping, alternative 5’ or 3’ splice sites, and intron 

retention. SpliceTrap utilizes a comprehensive human exon database called TXdb (see 

Methods) to estimate the expression level of every exon as an independent Bayesian 

inference problem.  

We tested SpliceTrap both by simulation and real data analysis. Compared to 

Cufflinks and Scripture, it demonstrated improved accuracy, robustness, and reliability in 

quantifying splicing activity. In summary, SpliceTrap is suitable for studying AS patterns 

and constructing high-resolution transcriptomic maps, when used in combination with 

gene-expression profiling tools. SpliceTrap can be implemented online through the CSH 

Galaxy(97) server http://cancan.cshl.edu/splicetrap and is also available for download 

and installation at http://rulai.cshl.edu/splicetrap/. 

Methods 

Database construction 

To quantify exon-inclusion levels, we designed an exon-trio database called TXdb. First, 

we captured all known transcripts encoded by every human gene (Figure 1A,B), using 

annotations from RefSeq (98) (downloaded from the UCSC genome browser, hg18) and 

the EST-based AS database dbCASE (99). Second, to account for every possible exon-

skipping event, we subdivided each transcript set (i.e., encoded by the same gene) into 

exon trios, by sliding a 3-exon window along the transcript (Figure 1C). In particular 

cases in which an exon was flanked by more than one assembly of flanking exons, every 

possible combination was represented in TXdb as a separate case. About 20% of the 

exons in TXdb are represented by more than one assembly of flanking exons (i.e., trios or 

http://cancan.cshl.edu/publicgalaxy/root?tool_id=wuj1
http://rulai.cshl.edu/splicetrap/
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duos). The pie charts in Supplementary Figure 1 show the types and numbers of exons 

represented by one or multiple assemblies. 

      Next, we formatted the database to allow quantification of exon skipping (CA: 

cassette exon). We assumed that the middle exon was a cassette exon (E2) (regardless of 

whether it is annotated as alternatively or constitutively spliced) and the flanking exons  

Figure 1. TXdb assembly.  (A)  From a given gene expression locus (blue strip) (B) we 

extracted all the known transcript isoforms using available transcriptome annotations. (C) 

Using a 3-exon sliding window, we subdivided the transcript isoform population into 

exon trios, accounting for all known transcriptomic variability. Every exon trio is used as 

an independent mappable unit, wherein the middle exon (red block) is queried for 

alternative splicing activity and the flanking exons (blue blocks) are treated as 

constitutive exons. (D) Two isoforms are constructed for each trio. Every exon-skipping 

event is represented by an inclusion isoform (f1) and a skipping isoform (f2) which 

comprise a pair of flanking exons (E1, E3) and an alternative exon (E2) present in f1 but 

not in f2. To examine additional types of alternative splicing, such as (E) alternative 5’ 

splice sites, (F) alternative 3’ splice sites, and (G) intron retention, we generated exon 

duos to compare extended isoforms to shortened isoforms. (H) SpliceTrap can detect 

consecutive alternative exons. When the alternative exon a or b is used as a flanking exon 

in an exon trio (f1a, f2a, f1b and f2b), if it is skipped, the exon trio will not pass the coverage 

cutoff, and thus will not be considered to be reliable. However, if substitute exon trios are 

present in TXdb (f1a’, f2a’, f1b’ and f2b’), when f1a’> f2a’ and f1b’< f2b’ or vice-versa 

(referring to their expression levels), exon a and b are mutually exclusive. Or, if f1a’< f2a’ 

and f1b’< f2b’, they are skipped together. 
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(E1 and E3) are constitutive exons. Accordingly, each exon trio in TXdb was represented 

by two sequences (Figure 1D): an inclusion isoform (f1) with all three exons; and a 

skipping isoform (f2) comprising the flanking exons only. The first and last exons from 

every transcript were filtered out, because transcriptomic variability in these areas is 

primarily due to alternative transcription initiation or polyadenylation, rather than to AS 

per se. By using TXdb as a mapping database, we can approach every exon as an 

independent case to estimate its AS level.  

Based on this concept, we adapted TXdb for detecting other types of AS (AA: 

alternative 3’ splice site, AD: alternative 5’ splice site. IR: intron retention). To analyze 

AD (Figure 1E) and AA (Figure 1F) we compiled exon duos (rather than trios), setting f1 

as the extended isoform (spliced via the proximal splice site), and f2 as the shortened 

isoform (spliced via the distal splice site). In addition, to account for IR (Figure 1G), we 

defined f1 as the intron-retaining isoform, and f2 as the spliced isoform. 

To estimate the extent to which the trio/duo assemblies can capture AS 

variability, we downloaded the compendium of AS events from the AStalavista website 

(http://genome.crg.es/astalavista/) (7). Using the RefSeq (hg18) AStalavista database, we 

counted the numbers of events that could be represented in the format of exon trio/duo. 

74.14% of the data in AStalavista accounted for single-exon AS events, all of which were 

covered by TXdb with a single exon trio/duo.  9.82% of the events could be described by 

combining two entries in TXdb (e.g., consecutive CAs), and 2.9% corresponded to 

assemblies of three or more exon trios/duos. The rest (13.14%) corresponded to more 

complex AS events that could not be handled by TXdb. 

To characterize complex AS events represented by combinations of multiple exon 

trios/duos, or overlapping AS events at the same locus, post-analysis would be necessary. 

For example, Figure 1H illustrates two consecutive exons that are alternatively spliced. If 

either of them is skipped, the respective exon trios would not pass the coverage cutoff 

(see Section 2.3 for details). However, if annotations exist, the inclusion ratio may be 

quantified based on substitute exon trios available in TXdb (Figure S1). By comparing 

the inclusion ratios of both exons, one may detect if they are mutually exclusive or 

http://genome.crg.es/astalavista/
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skipped together. It is important to note that the ability of SpliceTrap to detect complex 

AS events is limited, and depends on the availability of AS annotations to generate 

several trios/duos for each examined exon. For this reason, we recognize that some AS 

events may be overlooked, especially if they involve more than two consecutive 

alternative exons. 

The final assembly of TXdb for hg18 comprises a total of 167,445 cassette-exon 

(CA) candidates, of which 11,812 have CA annotation, and the remaining 155,633 are 

annotated as constitutive exons (CS, to be examined whether they are in fact skipped). In 

addition, TXdb comprises 8,667 AA, 4,838 AD, and 1,170 IR candidates, based on 

annotations from dbCASE or RefSeq. All together, SpliceTrap contains 224,995 exon 

trios (or duos) embodying transcript variability from 182,560 human exons 

(Supplementary Table  1).   

Finally, we wish to bring to the reader’s attention that since ~6% of the exons in 

TXdb are uniquely annotated in dbCASE, a slight bias towards the 3’ end of the 

transcript may exist, especially for AAs, ADs, and IRs, which are generally unique to 

dbCASE (Supplementary Table  1). TXdb is available on-line as part of the SpliceTrap 

package at http://rulai.cshl.edu/splicetrap/. 

A Bayesian model to estimate inclusion ratios 

In a paired-end RNA-seq experiment, a fragment is defined as a sequence segment 

encompassed between the first and last nucleotides of a read-pair. We assume that for 

each exon trio/duo, the positions of the mapped fragments follow a uniform distribution, 

and that their sizes follow a nearly normal distribution that depends upon the 

experimental protocol. Based on these assumptions, a fragment j can be described as a 

vector           , where    and    denote the beginning position and size of the fragment, 

respectively.  

Then, for every exon trio (or exon duo), we define the set of all possible isoforms 

as          , where f1 is an inclusion (or extended) isoform, and f2 is a skipping (or 

shortened) isoform (Figure 1). The lengths and the relative expression levels of these 

http://rulai.cshl.edu/splicetrap/
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isoforms are           and          . Accordingly, the probability of observing an 

isoform i, given the expression level E, can be written as: 

1 1 2 2

( | ) i i
i

e L
P f E

e L e L




          (1) 

Let m be the number of fragments  { , 1,2, , }jR r j m   that can be mapped to F. 

Given that for each fragment           ,    and    are independent, the probability of 

observing   , given an isoform   , is: 

( | , ) ( | , ) ( | , )j i j i j iP r f E P b f E P s f E ( | , ) ( )j i jP b f E P s  
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( )j
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where il  is the effective length of if ( j +1i il L s  ), and ( )jP s is the probability of 

observing a fragment size js  in the experiment. Note that if only one end can be mapped 

to
if , then ( )jP s is set as 1 to ignore fragment-size information.  

For all isoforms in F, we can write ( | )jP r E  as: 
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So for the whole data, we can write:  

( | ) P( | )
j

j

r R

P R E r E


                                   (4) 

Provided the prior distribution of E  (see Section 2.4), a Bayesian posterior 

function can be written as: 

( | ) P( | ) ( )
j

j

r R

P E R r E P E


                             (5) 

Then, we can maximize ( | )P E R  to estimate the inclusion ratio 1e for every exon.  

Note that throughout the text we refer to ( )jP s  as FSM (Fragment-Size 

distribution Model), and to ( )P E as IRM (Inclusion-Ratio distribution Model), both of 

which are prior distributions and will be further described in Section 2.4. 
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Pipeline design 

We designed a simple pipeline to run SpliceTrap (Figure 2). We started by mapping the 

read-pairs onto TXdb. For this purpose, we independently aligned every read to the 

inclusion/skipping isoforms in TXdb using Bowtie (29). Then, the fragments 

unambiguously mapped to single exons were used to build a FSM (Section 2.4).  

 

 

 

 

 

Figure 2. SpliceTrap Pipeline.  This chart illustrates the order and interrelation among 

the different tasks performed by SpliceTrap. Squares represent mapping steps; diamonds 

are filtering steps; ellipses are prior-information models; rounded-corner rectangles 

represent steps in the Bayesian model.  

To filter out poorly covered exon trios, we applied a dynamic, exon-size-

dependent cutoff strategy (Supplementary Figure 2 and Section 3.1). Basically, we 

applied different coverage thresholds to every exon, such that the size of the exon and the 

coverage are inversely correlated. As an extreme example, an exon that is shorter than a 

read would need to be covered several times to be reliable. However, very long exons 

may be partially covered and still be reliable. Accordingly, we filtered exon trios with 

poorly covered flanking exons E1 and E3, but we did not require minimal coverage for 

exon E2 (i.e., the exon under consideration). This filtering method is intended to reduce 

noise resulting from rarely expressed transcripts, truncated transcripts, DNA 

contamination, wrongly mapped reads, etc., while avoiding unnecessary loss of 

information from exons with good coverage (details in Section 3.1). 
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Next, we maximized eq. 4 for every exon trio, utilizing all the mapped reads and 

the FSM to estimate the exon inclusion ratios. Finally, to reduce variability noise, we 

corrected the results with an inclusion-ratio distribution model (IRM) derived from high-

confidence data (see Section 2.4). 

Prior information models (FSM and IRM) 

To generate FSMs, we took all the fragments uniquely mapped within the boundaries of 

constitutive exons (i.e., not spanning across splice junctions) and extracted the fragment 

sizes according to the positions of the reads. Finally, the occurrence of each fragment size 

was recorded to generate the distribution. The FSM distribution can be affected by 

variations in the experimental protocols. In previous studies, it was approximated as a 

normal distribution (100); however, to increase prediction accuracy, we chose to derive 

the FSMs directly from the dataset under study. 

We generated IRMs for every type of splicing pattern separately (Supplementary 

Figure 3). Essentially, after mapping RNA-seq data onto TXdb, we selected the highest 

covered exon trios (FPKM>10) and estimated their inclusion ratios using eq. 4 

(Supplementary Figure 3A-D). As a control, we also generated IRMs with Cufflinks 

(Supplementary Figure 3E-H). Notably, the distributions were very similar with both 

methods. To avoid overfitting, we smoothed the IRMs by fitting beta distributions 

(Supplementary Figure 3I-L) to the histograms, which were then used in subsequent 

correction steps. Note that there is no specific IRM for CS, because every CS is examined 

as a potential CA with a CA IRM.  

Metrics for accuracy testing 

To test the ability of SpliceTrap to discriminate alternative from constitutive exons with 

inclusion ratios, we designed a series of metrics based on TXdb annotations. The 

assumption is that exons annotated as CA are enriched within the fraction of exons with 

inclusion ratio ir <1, and conversely, exons annotated as CS are included at 

approximately ir =1. 

Cassette exon discovery rate (CAD): This metric is analogous to the Positive 

Predictive Value (PPV). Given an ir <1 , all cassette exons above this ir are true positives (
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irCA denotes the number), whereas all constitutive exons above the same ir are false 

positives (
irCS ); then, 

ir

ir

ir ir

CA
CAD

CA CS



     (6) 

Constitutive exon discovery rate (CSD): By analogy to the False Positive Rate, 

above a certain ir ( ir < 1), all constitutive exons are false positives (the number of which 

is denoted by 1irCS  ), whereas all constitutive exons at ir 1  are true negatives ( 1irCS  ), 

because these are reported as constitutively spliced, then 
irCSD can be written as: 

1

1 1

ir

ir

ir ir

CS
CSD

CS CS



 




                        (7) 

Specificity (SP): Using the definitions above, we calculate the specificity, which 

is nearly the converse case of CSD:  

1

1 1

ir

ir

ir ir

CS
SP

CS CS



 




                                  (8) 

Results 

SpliceTrap is a tool specifically designed to detect alternative splicing and quantify exon-

inclusion ratios. Below, we present both simulations and data analysis demonstrating that 

SpliceTrap is highly accurate, reliable, and robust, and we also compare it to state-of-the-

art RNAseq analysis tools. 

Simulation of inclusion-ratio quantification 

We carried out a simulation in order to test the accuracy of SpliceTrap compared to other 

methods. A series of exon trios was generated by analogy to TXdb. For every exon trio, 

the flanking exons (E1 and E3) were fixed to a size of 120 nt (the average exon size in 

TXdb) whereas the middle exons (E2) varied in size from 9 to 500 nt. For these isoforms, 

we set expression levels based on the distribution of inclusion ratios. We selected the 

IRM for cassette-exon events (CA), which is the most common AS type (Supplementary 

Figure 3I).  
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To simulate an RNA-seq experiment, we randomly fragmented the isoforms into 

overlapping fragments of sizes following a 2(200,15 )N distribution (by analogy to typical 

paired-end datasets), and preserved only the 75 (or 36) nt ends of each fragment as read-

pairs. For every exon trio, the number of reads was adjusted to achieve exon coverage 

between 0 and 10. All together, we ran a total of 5555 simulations with different 

combinations of middle-exon size and coverage per tested method. For each simulation, 

1000 repeats were made, and then the Pearson correlation coefficient (PCC) and the mean 

absolute error between the predicted and expected inclusion ratios were calculated for 

accuracy evaluation.  

Table 1. Simulation Averages and Standard Deviations 

Method correlation coefficient mean absolute error 

 36 nt 75 nt 36 nt 75 nt 

RPKM 0.76±(0.18) 0.75±(0.14) 0.16±(0.11) 0.17±(0.06) 

Cufflinks 0.83±(0.13) 0.78±(0.12) 0.11±(0.03) 0.16±(0.03) 

Scripture 0.72±(0.22) 0.61±(0.19) 0.18±(0.10) 0.25±(0.09) 

MLE 0.84±(0.14) 0.79±(0.12) 0.10±(0.05) 0.15±(0.03) 

SpliceTrap 0.87±(0.14) 0.83±(0.12) 0.11±(0.05) 0.13±(0.04) 

 

We evaluated five different methods (Table 1): A naïve method based on RPKM 

counts alone (87); Cufflinks (101) ; Scripture (42); a maximum likelihood estimation 

model (MLE) (SpliceTrap using uniform IRM and FSM models); and SpliceTrap. (see 

Supplementary Method 1.2 for the implementations of Cufflinks and Scripture). Our 

simulation demonstrated that SpliceTrap can outperform all the other methods, with 

higher PCCs and lower mean errors (Table 1). We observed that using 36nt or 75nt reads, 

the average PCC of SpliceTrap was the highest (0.83-0.87) compared to RPKM (0.75-

0.76), Cufflinks (0.78-0.83) and Scripture (0.61-0.72). In addition, we noticed that by 

using prior information along with the MLE model (i.e., the full Bayesian model) we 

obtained better results compared to MLE alone (0.79-0.84) providing evidence for the 

contribution of the prior-information models to the estimations. A similar pattern can be 

found in the mean absolute errors, where SpliceTrap attained the lowest errors (0.11-

0.13) compared to the rest of the tools (0.11-0.25).  
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Next, we carried out simulations for other types of AS patterns (Supplementary 

Table 3). We kept the same parameters, except for the IRM models, which were adjusted 

to each splicing type (Supplementary Figure 3). In all cases, the error means and PCCs 

obtained were similar to those calculated using a CA IRM with 36nt and 75nt reads. 

(Supplementary Table 3), indicating that SpliceTrap can be used to investigate different 

splicing patterns.  

Notably, these simulations revealed a general association between the prediction 

accuracy, the size and the coverage of the exons (Supplementary Figure 4). Specifically, 

whereas smaller exons required higher coverages, low-coverage but larger exons 

achieved comparable accuracies. This resulted in a power-law-shaped surface, both for 

the mean error and the PCC, which was independent of the method used (Supplementary 

Figure 4). We took advantage of this observation and designed a dynamic-cutoff strategy 

accordingly. From the simulation results shown in Supplementary Figure 4A, curves 

were derived at different PCCs ranging from 0.1 to 0.9 (Supplementary Figure 2). In 

other words, the minimal coverage required to achieve corresponding PCCs for different 

exon sizes was recorded. For convenience, these dynamic cutoff curves are referred to as 

0.1dc to 0.9dc throughout the text. Basically, for every exon in the data, we required a 

minimum coverage, depending on its size. Smaller exons required higher coverage, and 

larger exons required lower coverage. In short, this procedure should filter out most of 

the noise, and yet avoid unnecessary loss of exons that are partially covered, albeit by a 

sufficient number of reads.  

Running SpliceTrap with RNA-seq data 

To experimentally test SpliceTrap and compare it to other methods, we generated more 

than 60 million 36 nt paired-end reads using HeLa cell RNA (see Supplementary 

Methods 1.1). We applied SpliceTrap to these data, using dynamic cutoffs from 0.1dc to 

0.9dc (Figures 3 and S2). We noticed that in general, the distributions of the inclusion 

ratios had a “U” shape (Figure 3A) which was also observed using Cufflinks 

(Supplementary Figure 3E-H) and in other studies based on ESTs (102). This means that 

in the sample analyzed, the exons tended to be highly included (i.e., constitutive) or fully 
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skipped from the transcripts. Nevertheless, a substantial proportion of the exons showed 

intermediate inclusion levels, regardless of the stringency of the dynamic cutoff.  

In addition, we noticed that the number of selected exon trios did not vary 

dramatically within the range of lower dynamic cutoffs (0.1dc-0.6dc) although it dropped 

considerably above 0.7dc. This could be explained by the rapidly growing distances 

between the curves shown in Supplementary Figure 2. Based on these observations, we 

selected low (0.6dc), medium (0.7dc) and high (0.8dc) stringency dynamic cutoffs for 

further analysis.  

 

Figure 3. Distribution of inclusion ratios. (A) and number of detected exon trios (B) 

based on RNA-seq data from HeLa cells (36 nt paired-end). The colors correspond to 

dynamic cutoffs from 0.1dc to 0.9dc. 

We ran Cufflinks and Scripture on the same datasets (provided with TXdb 

annotations), then we used three different cutoffs: FPKM=1, FPKM=2, FPKM=10 for 

Cufflinks; and RPKM=1, RPKM=2, RPKM=10 for Scripture. For every AS candidate, 

Cufflinks and Scripture reported the expression levels of the inclusion and skipping 

isoforms. We used these numbers to calculate inclusion ratios (See Supplementary 

Methods 1.2 for details).  
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Predicting known splicing patterns 

We first tested the ability of SpliceTrap and other methods to detect known splicing 

events. In TXdb, every exon is assigned an annotation based on high-confidence ESTs 

and/or cDNAs (Supplementary Table  1). Our assumption is that exons annotated as 

cassette (CA) should be predominantly skipped (ir<1), whereas exons annotated as 

constitutive (CS) should be highly included at approximately ir =1.  

Based on this premise, we extracted all the exons (CA and CS) and their inclusion 

ratios from the above results. CS exons were examined in SpliceTrap as potential CAs 

with a CA IRM. Therefore, in this assay, SpliceTrap was “blind” to the annotations in 

TXdb (CS or CA). To test the abilities of the different methods to discriminate between 

CA and CS, we calculated the CA discovery rate (CAD), CS discovery rate (CSD) and 

prediction specificity (SP) (see Section 2.5). Notably, for any selected threshold, 

SpliceTrap performed better at detecting low-included CAs, compared to the other tools 

(Figure 4A). Whereas Cufflinks and Scripture detected CAs in any ir range to a similar 

extent, SpliceTrap was more efficient at identifying known CAs as the ir decreased. For 

example, at ir=0.5, the SpliceTrap CAD value was ~0.6, and at ir=0.1, it was almost 1. 

On the other hand, SpliceTrap detected CSs almost exclusively at low inclusion ratios 

(Figure 4B), with CSD values below 0.1 at ir=0.5 and ~0 at ir=0.1. Accordingly, 

SpliceTrap exhibited higher specificity than Cufflinks and Scripture (Figure 4C), 

achieving levels above 0.5 for ir<0.5.  

In summary, SpliceTrap quantifications appear to be consistent with previous AS 

annotations; that is, most annotated CSs are included at around ir=1, whereas CAs are 

spread through the whole range of inclusion ratios (Figure 4). Using a U-shaped CA IRM 

(Supplementary Figure 3I) as prior information may have contributed to the prediction 

accuracy of SpliceTrap. Also, wrongly annotated CAs/CSs in TXdb or novel AS events 

might have affected the accuracy of the metrics.  

Robustness and reliability of SpliceTrap  

We evaluated the robustness of SpliceTrap estimations to technical variability among 

different replicates of the same experiment. To this end, we compared the results 
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obtained from two independent RNA-seq lanes from the same dataset (36 nt paired-end), 

generated under the same condition. The plots comparing both lanes, using SpliceTrap, 

Cufflinks, or Scripture with different thresholds, are shown in Figure 5. 

    Similar to Figure 4, SpliceTrap predicts most exons to be constitutively spliced 

(Figure 5A-C). Using the stringent cutoff, 78% of the exons were included at ir≥0.9 in 

both experimental replicates. In contrast, only 30% of the exons for Cufflinks (Figure 

5D-F) and 23% for Scripture (Figure 5G-I) showed ir≥0.9 in both replicates. Correlations 

between inclusion ratios reported by different methods can be found in Supplementary 

Figure 8. 

      

Figure 4. Predicting known splicing patterns using 36 nt paired-end reads from 

HeLa cells. (A) The cassette exon discovery rate, (B) constitutive exon discovery rate 

and (C) prediction specificity are shown as a function of the inclusion ratios (x axis) for 

SpliceTrap (black lines), Cufflinks (grey lines) and Scripture (dashed lines). Each method 

was applied using low (circles), mid (squares) and high (triangles) cutoffs. (0.6dc, 0.7dc, 

and 0.8dc for SpliceTrap, FPKM=1, FPKM=2, and FPKM=10 for Cufflinks; RPKM=1, 

RPKM=2, and RPKM=10 for Scripture).  

Notably, SpliceTrap can reliably reproduce the results with increasing PCCs (0.74 

to 0.77) depending on the threshold. In contrast, Cufflinks achieved a maximum PCC of 

0.7 (Table 2), but only when using a high threshold (FPKM=10). This means that it can 

achieve levels similar to SpliceTrap at the expense of the number of results: whereas 

SpliceTrap reported 97,068 exons at PCC=0.74, Cufflinks reported only 11,606 exons at 

PCC=0.7. Scripture performed with high PCCs, although the predicted scores suggested 

that the majority of human exons are alternatively spliced (Figure 5), which is not in 
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agreement with previous transcript annotations. Note that the correlation values here 

concern the reproducibility, which is not neccesarily related to the accuracy presented in 

Table 1.  

Of note, Cufflinks achieved a high PCC in reproducing the expression levels of 

the inclusion (0.91) and skipping (0.81) isoforms (Supplementary Figure 7), suggesting 

that Cufflinks has a higher robustness in detecting full transcript expression than AS. 

 

Figure 5. Robustness of the inclusion ratio estimations. The charts illustrate the 

correlations between the inclusion ratios calculated in two independent RNA-seq lanes 

(36 nt paired-end data from HeLa cells). (A-C) SpliceTrap at 0.6dc, 0.7dc, and 0.8dc, (D-

F) Cufflinks at FPKM=1, FPKM=2 and FPKM=10, (G-I) Scripture at RPKM=1, 

RPKM=2 and RPKM=10. 

Finally, we wanted to rule out dependencies between the net expression levels and 

the inclusion ratios detected by SpliceTrap and the other tools. To this end, we ranked all 

calculated inclusion ratios from one lane in Figure 5(A,D,G) according to the expression 
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levels of the full-length exon trios reported by Cufflinks. We smoothed the inclusion 

ratios with a sliding window of size 970 for SpliceTrap, 522 for Cufflinks, and 704 for 

Scripture, corresponding to the number of exons analyzed divided by 100 (see the exon 

numbers for the lowest cutoffs in Table 2).  

We observed that the inclusion ratios calculated with SpliceTrap were 

independent of the expression levels, with a constant average rate of ~0.95 

(Supplementary Figure 5). In contrast, the inclusion ratios calculated with Cufflinks 

decreased proportionally to the expression levels. The inclusion ratios calculated with 

Scripture were also constant; however, they averaged around 0.5, meaning that most 

exons in the data are viewed as alternatively spliced.  

 

Table.2. Comparison of two replicates (36 nt paired-end reads) 

Method Cutoff Exons PCC 

Cufflinks  FPKM=1  52243 0.41 

Cufflinks  FPKM=2  38140 0.49 

Cufflinks  FPKM=10  11606 0.7 

SpliceTrap  0.6dc 97068 0.74 

SpliceTrap  0.7dc  90896 0.75 

SpliceTrap  0.8dc  80052 0.77 

Scripture  RPKM=1 70466 0.83 

Scripture  RPKM=2 49816 0.87 

Scripture  RPKM=10  14022 0.92 

   

    In conclusion, SpliceTrap can detect AS events in a reliable and reproducible 

way, compared to Cufflinks and Scripture, which can be adapted to identify AS events, 

albeit with lower accuracy.  
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Discussion 

SpliceTrap is a computational tool fully dedicated to mapping AS activity based on 

paired-end RNA-seq data. Unlike other available tools, SpliceTrap can quantify splicing 

ratios under single cellular conditions, because it does not require a background. Rather 

than reporting background-based read densities, SpliceTrap utilizes Bayesian statistics to 

summarize inclusion probabilities derived from every single read-pair. For this reason, 

SpliceTrap is also insensitive to transcript expression levels. 

SpliceTrap was specifically designed to accurately quantify alternative splicing at 

the single exon level. To achieve this goal, we started by describing the problem with a 

statistical model based on exon trios/duos, instead of full transcripts. To reduce the 

number of false positives and yet minimize the loss of information, we applied dynamic 

cutoffs derived from simulation, rather than using fixed cutoffs. Finally, we adjusted the 

results using specific inclusion-ratio models for different AS patterns. In theory, full-

transcript tools like Cufflinks and Scripture can also be adapted to calculate inclusion 

ratios with TXdb annotations (Supplementary Method 1.2), However, these tools were 

originally designed and optimized for transcript-level estimation, and our analysis 

indicates that they are less accurate than SpliceTrap for the specific problem of 

calculating inclusion ratios. 

We have shown that it is possible to approach every exon as a separate problem, 

and yet quantify its inclusion ratio without knowledge of the full transcript structure. 

Given that our quantitative units are the exons, we can disregard this information, though 

it is certainly important for transcript-level quantification. 

SpliceTrap can detect different splicing patterns. Even though the algorithm was 

developed to detect single cassette exons, we could adapt it to other types of AS, such as 

alternative 3’/5’ splice sites and intron retention. In combination, these patterns account 

for ~75% of all known AS in eukaryotes (Sammeth, et al., 2008). Additionally, some of 

the complex AS patterns involving multiple exon trios/duos are also 

detectable(Supplementary Figure 6). However, this ability is limited and depends on the 

availability of TXdb annotations. To resolve complex or overlapping AS events, it is 
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necessary to combine and compare inclusion ratios from different exon trios/duos. And 

one may need to focus on exon trios/duos supported by junction reads to improve the 

detection specificity. These post-analysis steps can filter out possible bias and 

differentiate true events. However, this process is case-specific and may not always give 

a solution. Also, some of the complex events cannot be handled by exon trios/duos, as 

mentioned in Section 2.1. 

At this stage, SpliceTrap does not offer an option for ab initio exon prediction. 

We chose to focus on a set of ~200,000 well characterized exons, and designed a 

transcript database (TXdb) as a mapping reference. In this way, we sought to reduce 

ambiguities generated by rarely expressed isoforms, especially during the mapping 

procedure. Because TXdb is a collection of exon trios/duos, in the future it can be 

expanded by adding newly discovered or predicted splice juctions, such as those derived 

by de novo mapping software like TopHat, or novel exons predicted by gene-prediction 

tools, e.g., GENSCAN (103). In this way, the depth and sensitivity of SpliceTrap can be 

enhanced.  

SpliceTrap is based on the assumption that the reads are uniformly distributed 

within the exon trio/duo. Although the uniformity in a small region is presumably a better 

assumption than in a full transcript, this factor will still bias the results and should be 

considered in future versions of the model.  

     SpliceTrap can be implemented on-line through the CSH Galaxy server 

(http://cancan.cshl.edu/splicetrap) or downloaded at http://rulai.cshl.edu/splicetrap/. Both 

versions are easy to operate and require a small number of input parameters, considerably 

reducing the setup time. The running time of SpliceTrap is about 3 hours for one lane of 

reads (20×2 million 36 nt paired-end reads),  and approximately 12 hours for three lanes 

(60×2 million 36 nt paired-end reads). These measurements were taken on a single AMD 

CPU of 2GHz, with 8GB usable memory. Less than 500MB memory was used during the 

runs, although large hard-disk space was needed (10GB to 30GB). The running time is 

approximately linearly dependent on the number of mapped reads and database size, but 

http://cancan.cshl.edu/publicgalaxy/root?tool_id=wuj1
http://rulai.cshl.edu/splicetrap/
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it is not affected by the read size. Also, SUN Grid engine(SGE) qsub is supported for 

parallel computing. 
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Supplementary Methods 

RNA-Seq dataset preparation 

To evaluate the ability of SpliceTrap to detect known alternative splicing events, we 

generated a dataset of more than 60 million mRNA paired-end reads of length 36 nt per 

end (3 lanes), using Illumina GAIIx paired-end sequencers (Supplementary Table 2).  

We obtained cytoplasmic mRNA from HeLa cells by gentle fractionation in lysis 

buffer (10 mM HEPES pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.5 % (v/v) NP-40). We 

pelleted the nuclei at 2300 g for 5 min and extracted cytoplasmic RNA from the 

supernatant using Trizol, followed by treatment with DNase I (Promega). This procedure 

enriches for cytoplasmatic mRNA, reducing the amount of nuclear splicing precursors 

and intermediates.   

We used 4 µg of cytoplasmic RNA from each sample to prepare paired-end 

mRNA-seq libraries, following the manufacturer’s instructions (Illumina). Briefly 

For each sample, cDNA was prepared and sequencing adapters were ligated. The 

DNA was then separated on a 2% agarose TBE gel, and a band around 250 nt 

(corresponding to a fragment size of 185 nt plus adaptors) was excised and subjected to 

15 cycles of PCR amplification to increase the amount of material.  

The amplified DNA was then added to an Illumina flow cell and cluster 

generation was carried out on an Illumina station. Flow cells were then subjected to 

paired-end sequencing on an Illumina GA IIx sequencer with chemistry version 2 or 3.   

The datasets are available at http://rulai.cshl.edu/splicetrap/.  

Estimating inclusion ratios with Cufflinks and Scripture 

For RNA-seq data, we first mapped the reads with TopHat (32) providing the known 

junction database derived from TXdb. The expected mean inner distance between mate 

pairs was set as 100nt, which is the property of our data, and all the other parameters 

were kept as default. After that, we ran either Cufflinks or Scripture on the accepted hits. 

http://rulai.cshl.edu/splicetrap/


 

76 

 

In both software, TXdb annotations were provided in GTF format for quantification 

purposes, and default parameters were used in the running. Because these tools can report 

read-density values for inclusion ( Ie ) and skipping ( Se ) isoforms separately, we can 

calculate the inclusion ratios (ir) with its definition: 

I

I S

e
ir

e e



 

In the simulation, TopHat was not used because the mapping results were produced by 

the simulations. Simulated gene structures were provided to Cufflinks and Scripture as 

well.  
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Supplementary figures 

 

 

 

Supplementary Figure 1. Number of trio or duo assemblies per exon in TXdb . 

Absolute values are shown in the chart for exons annotated as constitutive (CS), cassette 

(CA), alternative 3’ splice sites (AA), alternative 5’ splice sites (AD) and intron retention 

(IR). 
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Supplementary Figure 2. Dynamic cutoff curves. The curves were generated according 

to Pearson correlation coefficients (PCC) ranging from 0.1 to 0.9 in Supplementary 

Figure 4A. The minimal coverage required to achieve corresponding PCCs for different 

exon sizes is recorded. Throughout the text, these cutoff curves are referred to as 0.1dc to 

0.9dc.  
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Supplementary Figure 3. IRM models from RNA-Seq data (36 nt paired-end reads). 

Inclusion-ratio histograms for exon isoforms with FPKM>10 are illustrated for (A-D) 

SpliceTrap and (E-H) Cufflinks. Beta distributions were fitted to histograms A-D and 

used as IRMs (I-L); for every curve, the beta distribution parameters are shown. In the 

illustration, A,E,I  represent cassette exons; B,F,J alternative 3’ splice sites; C,G,K 

alternative 5’ splice sites; and D,H,L intron retention events. 
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Supplementary Figure 4. Estimation accuracy is related to both coverage and exon 

size in the simulations. The contour images represent the correlation coefficients (A,C) 

and mean absolute errors (B,D) for (A,B) SpliceTrap and (C,D) Cufflinks. Y axes denote 

the exon sizes, and X axes represent the coverage. The color bars represent either Pearson 

correlation coefficients (upper) or mean absolute errors (lower). All the panels are from 

the simulation with 36 nt paired-end reads. 
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Supplementary Figure 5. Correlation between inclusion ratios and transcript 

expression.  Expression levels were shown in upper panel: SpliceTrap (black), Cufflinks 

(grey) and Scripture (dashed). We ranked all calculated inclusion ratios from one lane (36 

nt paired-end reads) in Figure 5(A,D,G) according to the expression levels of the full-

length exon trios reported by Cufflinks (FPKM values shown in lower panel). 100 

windows were used to smooth the curves. 
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Supplementary Figure 6. Correlation of inclusion ratios among double cassette 

exons (DCA, dashed line) and constitutive/cassette pairs (CSCA, full line). 

SpliceTrap was used to calculate inclusion ratios on the 36 nt paired-end RNA-Seq 

dataset from HeLa cells (Supplementary Method 1.1). Subsequently,  2603 DCAs and 

27557 CSCA pairs were extracted from TXdb. After analyzing the data only 637 DCAs 

and 5266 CSCAs passed the dynamic cutoff 0.6dc. We defined that if inclusion ratios of 

both exons in an exon pair are lower than a certain threshold value (x-axis), then this 

exon pair is considered as co-skipped. The percentages of co-skipped exon pairs (y-axis) 

were then recorded for different thresholds. For example, 5% of DCAs were co-skipped 

at a 0.5 inclusion ratio or less (31 cases), whereas only 0.15% of CSCA pairs presented 

this behavior.  
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Supplementary Figure 7. Reproducibility of transcript expression level results using 

Cufflinks. (A) the long isoform, or (B) the short isoform. X and Y axes stand for FPKM values 

in two independent lanes of data (36 nt paired-end RNAseq data from HeLa cells; see 

Supplementary Method 1.1 for details). The PCCs are 0.91(A) and 0.81(B). 
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Supplementary Table 1. TXdb composition 

Type of splicing event Refseq only dbCASE 
only 

both total 

CS 155633 0 0 155633 

CA 2213 3835 5764 11812 

AA 868 4180 3619 8667 

AD 591 2419 1828 4838 

IR 0 1170 0 1170 

total 159305 11604 11211 182560 

CS:constitutive exons 

CA:cassette exons 

AA:alternative 3’ splice sites 

AD:alternative 5’ splice sites 

IR:intron retention 
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Supplementary Table 2. Quality of the RNA-seq data 

Total reads 60025808×2 

Low quality 11230674 

ambiguous 38213976 

Paired 28798084 

Unpaired 16338575 

Used in estimation 45136659 
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Supplementary Table 3. Pearson correlation coefficients for simulations done using 

36nt (A) and 75nt (B) paired-end reads, and absolute mean errors for different AS event 

types with 36nt (C) and 75nt (D) paired-end reads.  Simulation results for CA are in the 

main text. 

(A) 

Method AD AA IR 

RPKM 0.76±(0.18) 0.75±(0.16) 0.78±(0.17) 

Cufflinks 0.84±(0.13) 0.82±(0.15) 0.85±(0.12) 

Scripture 0.72±(0.22) 0.72±(0.22) 0.76±(0.21) 

SpliceTrap 0.88±(0.13) 0.86±(0.16) 0.89±(0.12) 

 

(B) 

Method AD AA IR 

RPKM 0.77±(0.14) 0.76±(0.14) 0.78±(0.14) 

Cufflinks 0.79±(0.11) 0.78±(0.11) 0.80±(0.10) 

Scripture 0.66±(0.18) 0.63±(0.19) 0.68±(0.18) 

SpliceTrap 0.85±(0.12) 0.84±(0.12) 0.86±(0.11) 

 

(C) 

Method AD AA IR 

RPKM 0.16±(0.12) 0.16±(0.13) 0.16±(0.12) 

Cufflinks 0.11±(0.03) 0.12±(0.04) 0.11±(0.03) 

Scripture 0.18±(0.10) 0.18±(0.10) 0.16±(0.07) 

SpliceTrap 0.10±(0.05) 0.11±(0.06) 0.10±(0.04) 
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(D) 

Method AD AA IR 

RPKM 0.18±(0.07) 0.17±(0.06) 0.17±(0.07) 

Cufflinks 0.17±(0.03) 0.16±(0.03) 0.16±(0.03) 

Scripture 0.24±(0.07) 0.25±(0.08) 0.23±(0.07) 

SpliceTrap 0.12±(0.04) 0.13±(0.04) 0.12±(0.04) 

 

CA:cassette exons 

AA:alternative 3’ splice sites 

AD:alternative 5’ splice sites 

IR:intron retention 
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Chapter 5 : 

 

Systematically Discovery of Conserved Alternative Spliced 

Exons in the Mammalian Genome 

 

 

 

 

 

So far, a pipeline to detect and quantify AS events from RNA-Seq data has been 

established. It has three major components: (1) A fast and sensitive splice mapping 

algorithm: OLego, which is able to use very small seeds to achieve high sensitivity on 

detecting exon junctions and small exons; (2) A set of in-house scripts to discover novel 

exons and novel splicing events from alignment results; and (3), SpliceTrap, an accurate 

method to estimate exon inclusion ratio from the data. This pipeline is a combination of 

splicing-centric tools. In this Chapter, the pipeline will be applied on a public RNA-Seq 

dataset for a systematical study of alternative splicing in mammalian genome.  

Abstract 

Alternative spliced (AS) exons in mammalian transcripts can either increase the diversity 

of protein products, or lead to non-sense mediated mRNA decay (NMD) of the transcripts.  

Recent technological advances in high-throughput mRNA sequencing (mRNA-Seq) give 

us an opportunity to investigate the mammalian transcriptome in an unprecedented depth 

and resolution, leading to the discovery of many novel exons, including low abundance 
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AS exons frequently subject to NMD.  It is still unclear how many exons remain to be 

discovered and importantly, how many of those are likely to be functional.  To address 

these questions, we aligned 3.7 billion mRNA-Seq reads from the BodyMap 2.0 data 

sequenced from 16 human tissues, using OLego, a program we developed recently to 

improve the sensitivity and accuracy in mapping exon-junction reads.  This is followed 

by a pipeline that allows us to discover novel alternative exons, evaluate evolutionary 

selection pressure, and detect NMD isoforms.  As a result, we identified 120,110 cassette 

exons in the human genome, including 45,687 exons without previous evidence of 

inclusion and 36,841 exons without previous evidence of exclusion.  Using a mixture 

model to characterize sequence conservation across vertebrate species, we estimate that 

~16% of these cassette exons are under significant purifying selection pressure. 

Strikingly, we identified over 3,000 cassette micro-exons smaller than 30 nt, including 

105 exons with a length of 6 nt.  Because of the minimal information that can be possibly 

encoded in this set of exons, they serve as an excellent model to study their functional 

significance and mechanism of AS regulation. 

Introduction 

For a majority of alternative splicing events, especially those newly identified in deep 

sequencing, the minor isoform is rare (104), frame-shifting, unproductive in terms of 

protein coding, and frequently coupled with NMD (105-108).  These exons are predicted 

to be weakly deleterious, and a majority of them are expected to be eliminated during 

evolution (109). 

In Drosophila, NMD is critical for sex determination  (110,111),.   In mammals, 

NMD is important to clear aberrant splicing products, but the global picture regarding the 

function of regulated AS events coupled with NMD is unclear (112).  For a majority of 

NMD-coupled AS events, the NMD-isoform is low independent of the action of NMD 

(113), which is consistent with the idea that they are not regulated.  An emerging idea is 

that while alternative splicing provides evolutionary plasticity, aberrant splicing could 

also cause various genetic diseases and be a burden of health. 
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In general it is difficult to distinguish regulated AS events from splicing errors.  

One measure is the conservation of splicing pattern between different species.  However, 

as sequencing depth increases, it is more and more likely to detect the low abundant 

isoforms in both species by chance (107,114), and does not provide strong evidence for 

function.  

Individual examples of regulated AS events coupled with NMD have been 

identified, and they overlap with very conserved exons and flanking intronic sequences, 

similar to regulated AS exons that produce alternative protein products (79,115,116).  

Most prominent examples are those in splicing factors, and in particular SR proteins and 

hnRNP proteins, which are important to maintain homeostasis of these proteins (106,117).  

 In this study, we mapped 3.7 billion of RNA-Seq reads from BodyMap 2.0 data 

with OLego, and used a pipeline to discover novel alternative exons, evaluate 

evolutionary selection pressure, and detect NMD isoforms.  As a result, we identified 

more than 80,000 novel cassette exons. We then employed a Gaussian mixture model to 

characterize sequence conservation across vertebrate species. We estimate that ~20% of 

these cassette exons are under significant purifying selection pressure. We also identified 

over 3,000 cassette micro-exons smaller than 30 nt, which can serve as an excellent 

model to study their functional significance and mechanism of AS regulation. 

Methods and Materials 

BodyMap 2.0 data 

The BodyMap 2.0 RNA-Seq data were sequenced from 16 human tissues (adrenal, 

adipose, brain, breast, colon, heart, kidney, liver, lung, lymph, ovary, prostate, skeletal 

muscle, testes, thyroid, and white blood cells) in 2010 by Illumina (ArrayExpress ID: E-

MTAB-513). 1,278,683,163 reads were sequenced with 50 nt paired end tags (2x50 reads) 

and 1,263,636,284 reads were sequenced with 75 nt single end tags (1x75 reads).  In 

other words, there were ~160 million reads sequenced for each tissue. In addition, 16 

lanes of stranded 100 nt single end data (1x100 reads) were sequenced for 16-tissue 
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mixtures (1,194,539,556 reads). The numbers for each sample can be found in 

Supplementary Table 1. All the reads were used in this study.  

Mapping the data with OLego 

We first mapped the reads to the reference genome (hg19) using OLego (v1.1.1), a fast 

and sensitive tool to map spliced reads (39). To maximize the sensitivity, a 

comprehensive exon junction database was provided to OLego. The database was 

collected from mouse, human, and rat according to alignment of RefSeq transcripts, 

mRNAs and ESTs (79).  Totally 356,777 unique exon junctions were included.  

To take advantage of OLego’s ability to detect ultra-small exons, we used option 

“–e 6” to allow identification of exons as short as 6 nt. For stranded libraries, “--strand-

mode 1” was used. For paired end data, each end was mapped separately. Then both ends 

were merged according to their distance and orientations to eliminate ambiguities.  

Identification of exons and AS events 

Unique junction reads were extracted from the SAM format(67) alignment output, and all 

junction reads from 36 experiments were merged for a maximum set of novel junctions. 

Afterwards, these junctions, together with known junctions and alignment of known 

transcripts from Refseq, mRNAs and ESTs, were used to identify alternative splicing 

events using a similar splicing graph-based approach described previously (79). 

Specifically, to detect novel alternative splicing events, we used information from 

mRNA-Seq data.   First novel exons were predicted by pairs of 3’ and 5’ splice sites 

separated by ≤ 300 nt. Previously defined exons and introns were combined with novel 

exon and introns to generate splice graphs and detecting alternative splicing events.   

Different from detection of AS events from ESTs and mRNAs, mRNA-seq reads in 

general do not span whole exons or multiple junctions.   Therefore, we define novel AS 

events if each exon or intron involved in the AS is supported by either mRNA/ESTs or 

mRNA-seq reads.  For the AS events analyzed in this study, we require each intron to be 

supported by ≥ 1 mRNA/ESTs, or two mRNA-seq junction reads, or both.  Cassette 

exons, tandem cassette exons, alternative 5’ and 3’ splice sites, mutually exclusive exons, 

and retained introns were extracted from the data, and only cassette exons were used in 
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the next steps. Compared to transcript based reconstruction methods, this local approach 

can identify exons and AS events with higher sensitivity.  

Estimation of the inclusion ratios 

TXdb was constructed with all cassette exons identified from the data using the TXdbgen 

script provided in the SpliceTrap (v0.90.5) package (10). Both inclusion and exclusion 

isoforms for every exons were stored in this database so that SpliceTrap can use the 

information to estimate inclusion ratios for all detected cassette exons in each of the 32 

samples (the tissue specific samples). Default options were used for SpliceTrap.  

Detection of AS events that trigger NMD 

A transcript is predicted to be targeted by the NMD pathway if it harbors a premature 

stop codon (PTC) ≥50 nt from the last exon junction.  Conceptually, we define that an 

alternative splicing event is able to “trigger” NMD if (i) a pair of transcripts that differ 

only in the AS region but the same in other regions; and (ii) the transcript supporting one 

isoform is subject to NMD, while the transcript supporting the other isoform is not.   

AS coupled with NMD has been studied previously (106,114).   Annotations of 

NMD in these studies are generally incomplete because they rely on sequenced 

transcripts (mRNAs and ESTs).  However, the current mRNA/EST sequence database is 

highly incomplete in terms of full-length transcript, as suggested by many novel 

alternative splicing events defined in mRNA-Seq data (this study and (74)).  In addition, 

the current methods require both isoforms observed in transcripts with complete ORF.  

However, the NMD isoform in general has low abundance.  Furthermore, the current 

methods did not formally distinguish AS events that “trigger” NMD from those related to 

NMD transcripts.  An NMD exon detected by these approaches might be actually 

triggered by an upstream exon. 

Therefore, we implemented a pipeline to evaluate AS events and whether they can 

“trigger” NMD with two treatments important for high accuracy and sensitivity. (i) For 

each transcript supporting one isoform of the AS event, we generate the transcript 

supporting the other isoform in silico, and predict if the AS triggers the NMD of the 
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transcript. (ii) In current methods, PTCs are typically determined by searching the longest 

ORF. This can result in false negative predictions when NMD-triggering AS events 

produce downstream PTCs which are not far away from the start codon, because  an 

alternative AUG can frequently be used to predict the longest ORF, and the NMD-

triggering events can be mistakenly classified as affecting 5’ UTR, which do not trigger 

NMD by definition.  In general, the ribosome initiates translation at the 5’ most AUG of 

an mRNA, but sometimes it can skip one or more AUGs (118).  In this study, to 

determine the open reading frame (ORF) of translation, we start translation of each 

transcript from the first overlapping start codon according to RefSeq and UCSC 

transcripts, rather than using the longest ORF. 

For each AS event, we then count  

i) Number of transcripts that will be targeted by NMD when the exon is 

included, but not if the exon is excluded (NIn).    

ii) Number of transcripts that will be targeted by NMD when the exon is 

excluded, but not if the exon is included (NEx). 

iii) Number of transcripts that encodes protein product for both isoforms (Nc). 

 

An AS event is defined as 

i) NMD upon inclusion (NMD_in), if NIn >0, NEx =0, and NIn > 2× Nc,  

ii) NMD upon exclusion (NMD_ex), if NIn =0, NEx >0, and NEx >2× Nc. 

iii) coding if Nin=0, NIn =0, and Nc >0 

iv) other, for all remaining cases. 

Identification of AS events under purifying selection 

We note that alternative splicing events that trigger NMD upon exon inclusion are not 

under selection pressure of protein coding.  Therefore, alternative splicing of these exons 

are presumably functional if they are conserved between different species (i.e. human and 

mouse).  We obtained 161 NMD_in cassette exons with conserved splicing patterns as a 

positive control dataset for regulated AS events. These exons are required to present in 

both human and mouse and have no overlap with CDS regions. To get a negative control 
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set, we get a set of 2,244 exons that are constitutively spliced in both human and mouse 

(≥10 supporting transcripts). For a better interpretation of the intronic conservation, we 

also require that their flanking ±200 nt intronic sequences have no overlap with other 

exons. The selection pressure of each exon is measured by the average 46-way vertebrate 

phyloP score in flanking intronic sequences (±200 nt).  Since phyloP score measures 

selection pressure of individual nucleotides (in contrast to phastCons score )(73,119), it is 

possible to distinguish the selection pressure of different codon positions in exons.   

We also inferred the wobble position of exons using two approaches. In the first 

approach, we directly inferred the open reading frame from supporting transcripts, and 

inferred the reading frame of the cassette exon (ORF inferred).  In the second approach, 

we calculated the average phyloP score for the three reading frames, and inferred the 

frame with the smallest score as the wobble position (for most constitutive exons, this 

position can be very easily identified (phylogenetically inferred).  These two approaches 

agree on 93.4% of exons with orthologous sequences in mouse and human (when the 

reading frame can be inferred directly from coding transcripts), but the phylogenetic 

approach is not limited to transcripts with known ORF, and is able to give a direct 

comparison between coding and noncoding exons. We therefore use the average phyloP 

score of the phylogenetically inferred wobble position as an approximation of selection 

pressure driven by splicing regulation.  In cases where the two approaches do not agree, 

the phyloP score of the ORF inferred wobble position is typically very close to that of the 

phylogenetically inferred wobble position.   

We assume all cassette exons represent a mixture of those under functional 

selection, and those produced by splicing errors (in the time scale of evolutionary 

processes, although they could be reproducibly detected in cells).  We decompose the two 

groups by a Gaussian mixture model (GMM) using an expectation-maximization (EM) 

algorithm.  More specifically, denote an exon k as xk = (si, sw). 

P(xk |Q) =anP(xk |qn )+acP(xk |qc ). 



 

95 

 

The first component represents noise, and the second component represents conserved 

AS events.  q = (m,S) denotes the mean and covariance matrix of exons in each group, 

and 

 P(xk |q ) =
1

2p S
1 2
e

-
1

2
(xk-m )

T
S

-1
(xk-m )

 

When we fit the data, we fixed qn ( [0.107,0.698]n  , and 
0.054 0.057

0.057 0.261
n

 
   

 
), 

which is estimated from constitutive exons.  Parameters of the second component qc is 

estimated by EM ( [0.616,0.767]c  , and 
0.313 0.326

0.326 0.896
c

 
   

 
).  The prior is estimated 

to be αn=0.704, and αc=0.296. 

Each exon is then ranked by the posterior probability:    

   P(n | xk,q ) =
anP(xk |qn )

anP(xk |qn )+acP(xk |qc )
  

and the false discovery rate (FDR) of top M predictions is P(n | xk,q )
k=1

M

å /M  by 

definition. 

Results 

Mapping of the RNA-Seq reads 

For the 2x50 reads, 78.3% can be mapped to the exons or exon junctions uniquely, while 

for 1x75 reads, the percentage is 80.2%. The reads from 16-tissue mixture (1x100 reads) 

have low mapping rate (30.0%), partly due to the short insert lengths, which are 

frequently shorter than the read size. Among the uniquely mapped reads, 9.33%, 17.4% 

and 31.5% are exon junction reads for 2x50, 1x75 and 1x100 reads, respectively 

(Supplementary Table 1). This agrees on the fact that longer reads have more chance to 

cross exon junctions. After merging the reads from all 36 experiments, totally 758,281 

junctions were identified, including 488,356 novel junctions.  
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Figure 1. Classification of alternative splicing events based on protein coding 

(cassette exons). (a). Possible outcomes of alternative exons in terms of protein coding. 

NMD_in: transcript is degraded by NMD upon exon inclusion; NMD_ex: transcript is 

degraded by NMD upon exon exclusion; Alternative coding: both isoforms produce 

protein products; Other: All other exons that cannot be classified into the first three 

categories (ambiguous, or no ORF-containing transcripts observed). (b,c). Inclusion level 

of known and novel cassette exons observed in the data.  Only those in annotated protein 

coding genes were included.  The events which passed SpliceTrap cutoffs were used here 

and the inclusion ratios were averaged across different tissues. Exons were binned 

according to the inclusion level.  For each bin, the percentage of exons in each category 

was plotted in different colors (left axis).  The total number of exons in each bin was 

shown in black curve (right axis). The exons were then grouped into three catergories 

according to the inclusion ratios (0~0.33, 0.33~0.67, 0.67~1).  
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Identification of exons and AS events 

After combining the junction reads and previous evidence of AS events in RefSeq 

transcripts, mRNAs and ESTs, we identified 120,110 cassette exons in the human 

genome, including 45,687 exons without previous evidence of inclusion and 36,841 

exons without previous evidence of exclusion. Strikingly, we identified 3,069 exons 

smaller than 30 nt, of which 2,091 are novel. These include 105 exons with a length of 6 

nt. Distribution of these cassette exons can be found in Supplementary Figure 1.  

Discovery of NMD-triggering and alternative coding AS events 

33.6% of the annotated cassette exon events are predicted to trigger NMD, which is 

consistent with previous studies (106), although our dataset include many folds of more 

events.  For novel cassette exon events identified from the data, 23.1% were predicted as 

NMD triggering events.  

We then examined a subset of known and novel cassette exons for which their 

inclusion ratios can be estimated reliably, according to the dynamic cutoff from 

SpliceTrap. We also required the exons to be located in protein coding genes. For both 

known and novel exons, we observed a lower abundance of the NMD isoforms (Figure 1).  

Identification of AS events under strong selection pressure 

A powerful method to evaluate the functional significance of AS events in a genome-

wide scale is conservation.   Conserved alternative splicing events are associated with a 

higher level of sequence conservation in the alternative exon and flanking intronic 

sequences, suggesting the selection pressure to preserve cis splicing elements (RBP 

binding sites, secondary RNA structures, etc) that are important for splicing regulation.   

Computational methods have been used to predict exons with conserved splicing 

using sequence conservation levels, reading-frame preservation, exon and intron size, 

splice site strength, and additional sequence features  (120-122).  These methods typically 

used pairwise alignment (human and mouse) to measure sequence conservation, which is 

limited in statistical power, and also used features that favor protein-coding exons.  

Another study (123) detect the ratio of synonymous mutations versus non-synonymous 
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mutations in exons as a measure of selection pressure for splicing regulation, which is 

unsuitable for noncoding exons, and also has limited statistical power, because it did not 

consider signals in introns. 

We note that different groups of cassette exons have different conservation 

features, when we examine a subset of exons which present in both human and mouse 

(Figure 2).  Specifically, for NMD_in cassette exons, we also filter out those overlapping 

with protein coding exons, and thus have no selection pressure for protein-coding. The 

existence of orthologous sequences is very suggestive for their function.  Indeed these 

exons are associated with the most elevated level of conservation in flanking introns, as 

measured by 46-way phastCons scores, when they are compared with exons spliced 

constitutively in human and mouse, and alternative coding exons in which both isoforms 

are relatively abundant, or those with relatively low inclusion level.  In contrast, for 

NMD_ex exons, it is more difficult to distinguish them from constitutive exons due to the 

superimposition of selection pressure for protein coding and splicing.  Nevertheless a 

higher conservation level is also observed when the exclusion isoform (targets of NMD) 

is relatively abundant.  We also examined the conservation of the three codon position 

separately, using 46-way phyloP score (which measures the conservation of individual 

bases, as opposed to phastCons scores, which take neighboring sequences into 

consideration), and observed a lowest purifying selection pressure in the wobble positions 

of constitutive exons and NMD_ex_major, coding_major exons (see definition of major, 

medium, minor in Figure. 1), and higher conservation in the wobble position of 

NMD_ex_minor, NMD_ex_medium, coding_medium, and coding_minor, consistent 

with and extend previous studies (115,123,124).   

The similarity of coding_major, NMD_ex_major, and constitutive exons suggest 

that as the sequencing depth increases in human and mouse, aberrant splicing products 

(the rare exclusion isoform) can be sampled and sequenced by chance in both human and 

mouse, so that the apparent conservation of splicing pattern is not a sufficient indicator of 

their functional importance (114).  
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Figure 2. Sequence conservation of ancestral cassette exons.  (a) Conservation 

profile (46 way phastCons scores) in 30 nt exonic sequences and 200 nt intronic 

sequences flanking the 3’ and 5’ splice sites of different groups of cassette exons. 

Alternative coding exons and NMD_ex exons are included only if the inclusion level can 

be estimated robustly from mRNA-Seq data and they are grouped further by their 

inclusion ratio  (see Fig. 1b).  NMD_in exons are required to have no overlap with any 

coding sequences from mouse, human and rat (coding sequences as defined by RefSeq 

and UCSC known genes), so that the included NMD_in exons have no section pressure 

for protein coding. Constitutive exons are those constitutively spliced in both mouse and 

human (≥20 supporting transcripts in each species, but no alternative splicing observed in 

this region).  (b) The average conservation (46-way phyloP score) of the three different 

codon positions.  For each exon the reading frame was phylogenetically inferred from the 

strength of selection, and the codon position with the smallest phyloP score is considered 

as the wobble position.   
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Figure 3. Sequence conservation to predict exons under significant selection using a 

Gaussian mixture model. (a) Scatter plot of ancestral NMD_ex, noncoding NMD_in, and 

constitutive exons (the same exons shown in Figure 2).  X-axis is the average conservation score 

(46way phyloP score) of upstream and downstream introns.  Y-axis is the conservation score of 

the phylogenetically inferred wobble position. (b) The number of selected exons defined by 

varying FDR reflecting varying stringency of conservation.  Each category of exons was plotted 

separately.  At FDR<0.05, we predicted 14,782 cassette exons under strong selection. 
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We find the conservation in the wobble positions in exons and flanking intronic 

sequences (200 nt each side) in many different species provide sufficient discriminative 

power to distinguish individual exons under strong selection to preserve regulated 

alternative splicing and those representing random sampling.  Importantly, this method is 

suitable to measure selection pressure in exons whose sequences are subject to 

superimposed selection pressure for protein-coding and those that are not.  We also 

avoided using features related to splicing, but do not reflect selection pressure (like exon 

size, splice site score, splicing regulatory elements). 

Figure 3a shows scatterplots of noncoding NMD_in exons (positive control), 

which are largely separated from constitutive exons (negative control).  NMD_ex exons 

are a mixture of both populations. We therefore studied all 91,010 cassette exons with 

conserved splice sites between human and mouse using a two-component Gaussian 

mixture model (GMM), assuming each exon belongs to either a population of exons 

under significant selection pressure to maintain regulated alternative splicing, or those 

that are not (similar to constitutive exons per se).  Using this method, we estimated that 

29.6% of all cassette exons are under selection.  At the false discovery rate (FDR) of 5%, 

we were able to predict 14,782 cassette exons (16.2%) under significant selection 

pressure. This set included 94 of 161 (58.3%) stringently defined ancestral noncoding 

NMD_in exons.  Overall, it included 2,554 NMD_in exons (1,663 are noncoding), 1,363 

NMD_ex exons, 3,657 alternative coding exons, and 7,208 remaining exons for which we 

cannot reliable classify according to sequenced transcripts in the mouse genome. 

Evolutionary history of NMD and alternative coding exons 

We examined the origin of NMD_in exons (only those without overlapping coding 

exons), NMD_ex exons, and alternative coding exons, using constitutive exons as a 

control. The exons under strong selection are mostly conserved in mammals, due in part 

to the stringency of selection pressure we require (Figure 3). However, the pattern of 

conservation shows interesting difference between different groups.  A majority of the 

noncoding NMD_in exons are conserved only in mammals, with some extending into 

non-mammal vertebrates.  A small group of exons are conserved in all vertebrates.  In 

contrast, for NMD_ex exons, a majority of exons are conserved in all vertebrates and a 
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small set of exons are missing in non-mammal vertebrates or fish.  This suggested that 

the NMD_in exons were created during and before mammals and other vertebrate species 

split from the common ancestors (Figure 4)  

Conclusions 

This Chapter demonstrated an application of our pipeline on BodyMap 2.0 data, in which 

we discovered more than 80,000 novel cassette exon events. We further characterized the 

exons using a GMM model combining conservation features in both exons and flanking 

introns, and predicted a subset of conserved cassette exons under purifying selection 

pressure driven my splicing regulation.  

 This study also discovered more than 3,000 micro-exons smaller than 30 nt, 

including 105 exons as short as 6 nt. Compared to previous study of micro-exons using 

cDNA sequences, in which 170 novel micro-exons (≤25 nt) were detected in human (55), 

this study greatly extends our knowledge about this particular group of exons. Due to 

minimum information encoded in the exons, they can be used as excellent models for 

intronic splicing regulation study, and their functions also need careful examination.  
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Figure 4. Evolutionary history of different groups of alternative and constitutive 

exons. (a) Heatmap showing conservation of each exon in each of the 46 vertebrate 

species  (black means presence of the exon). (b) The percentage of conserved exons in 

each of the species, together with the phylogenetic tree of the species.       
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Supplementary Information 

 

 
Supplementary Figure 1. Distribution of exon lengths. Blue color indicates that the 

exons are annotated cassette exons, green color indicates that the exons are annotated as 

constitutive exons, but in this study are defined as cassette exons, red color means the 

exons are novel cassette exons without any previous annotation.  
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Supplementary Table 1. Statistics of the BodyMap 2.0 data 

ID Tissue Protocol Stranded Number of reads Uniquely mapped reads Uniquely mapped Junction reads 

ERR030872 thyroid Paired end No 81912887 133256910 14223563 

ERR030873 testes Paired end No 81836199 131902636 13854685 

ERR030874 ovary Paired end No 80946260 129998453 12266841 

ERR030875 whilte blood cells Paired end No 81217148 131638941 14515932 

ERR030876 skeletal muscle Paired end No 82111139 126810111 13568084 

ERR030877 prostate Paired end No 82334076 134915700 13118461 

ERR030878 lymph node Paired end No 82078157 120943906 10760627 

ERR030879 lung Paired end No 79296905 127582952 12013686 

ERR030880 adipose Paired end No 77300072 118104527 10876840 

ERR030881 adrenal Paired end No 74472871 116990320 9200490 

ERR030882 brain Paired end No 73513047 116230657 8402795 

ERR030883 breast Paired end No 75862215 117327162 9718513 

ERR030884 colon Paired end No 82437443 121308021 10812500 

ERR030885 kidney Paired end No 80397337 121617424 9297878 

ERR030886 heart Paired end No 82918784 127337438 10658561 

ERR030887 liver Paired end No 80048623 127044947 13531303 

ERR030888 adipose Single end No 76269225 59522642 10168932 

ERR030889 adrenal Single end No 76171569 61065046 9118598 

ERR030890 brain Single end No 64313204 51975049 7106826 

ERR030891 breast Single end No 77195260 61050977 9398524 

ERR030892 colon Single end No 80257757 59759122 9937990 

ERR030893 kidney Single end No 79772393 61151286 8532407 

ERR030894 heart Single end No 76766862 58501236 8980570 

ERR030895 liver Single end No 77453877 62260763 12286525 

ERR030896 lung Single end No 81255438 67272296 11728192 
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ERR030897 lymph node Single end No 81916460 63737795 10743915 

ERR030898 prostate Single end No 83319902 69938426 12786295 

ERR030899 skeletal muscle Single end No 82864636 67087458 13061637 

ERR030900 whilte blood cells Single end No 82785673 69060333 14375482 

ERR030901 ovary Single end No 81003052 66580199 12063690 

ERR030902 testes Single end No 82044319 67768811 13101912 

ERR030903 thyroid Single end No 80246657 66850153 13145701 

ERR030856 16 tissue mixture Single end Yes 76447153 28045330 9018894 

ERR030857 16 tissue mixture Single end Yes 78243019 28279244 9162686 

ERR030858 16 tissue mixture Single end Yes 77229855 27612881 8943117 

ERR030859 16 tissue mixture Single end Yes 76274508 30287933 10178253 

ERR030860 16 tissue mixture Single end Yes 75929029 30427363 10206931 

ERR030861 16 tissue mixture Single end Yes 74756517 29860648 9964336 

ERR030862 16 tissue mixture Single end Yes 73420952 11868079 3121051 

ERR030863 16 tissue mixture Single end Yes 73520276 11812901 3108561 

ERR030864 16 tissue mixture Single end Yes 77258890 27999364 9015398 

ERR030865 16 tissue mixture Single end Yes 75982104 26952093 8638523 

ERR030866 16 tissue mixture Single end Yes 74249497 28570554 9454276 

ERR030867 16 tissue mixture Single end Yes 73773895 28399493 9374281 

ERR030868 16 tissue mixture Single end Yes 72451624 11927186 3094006 

ERR030869 16 tissue mixture Single end Yes 70743680 11812056 3057393 

ERR030870 16 tissue mixture Single end Yes 71937539 11671839 3049014 

ERR030871 16 tissue mixture Single end Yes 72321018 11748662 3063826 

 

 

  



 

107 

 

 

Chapter 6 : 

 

Conclusions and Perspectives 

 

 

 

 

 

This dissertation described the major work I have done in my Ph.D. study: a set of 

programs to detect, quantify and characterize alternative splicing from RNA-Seq data. 

This framework includes a sensitive mapping program (OLego) to align the reads to 

reference genome at a high resolution, a set of scripts to extract alternative splicing 

events from the mapping results, and an alternative splicing quantification method 

(SpliceTrap) to measure the splicing events in the data. All the programs are specifically 

designed for splicing study, hence the sensitivity and accuracy were particularly 

optimized for this specific biological problem. For example, OLego uses ultra-small 

seeds which enable detection of exons and exon junctions at a high resolution; SpliceTrap 

analyzes the splicing events and estimates splicing ratios by looking at the reads around 

the local regions instead of the whole transcripts, such that the complexity is reduced 

largely.   

These programs and methods have been tested in simulations and later applied to 

real problems. The analysis demonstrated the sensitivity of our mapping program, 

especially for the ultra-small exons. In the BodyMap 2.0 data, we identified thousands of 

micro-exons (<30 nt).  We also validated 15 out of 15 (100%) novel micro-exons 

discovered from mouse retina with RT-PCR, with a high correlation of the inclusion 
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ratios between RNA-Seq and RT-PCR. Due to the limited information encoded in these 

exons, they can serve as an excellent model for alternative splicing regulation study, 

which could be a very exciting follow-up project. The analysis also revealed our ability to 

detect and measure alternative splicing events from the data.  In the BodyMap 2.0 data, 

we discovered more than 120,000 cassette exons in the human genome, 

including >80,000 exons without previous evidence of alternative splicing.  

An immediate follow-up work would be more analysis with real data to explore 

specific biological problems, including characterizing functions of RNA binding proteins. 

Krainer Lab has generated many RNA-Seq data to investigate the functions of different 

splicing factors, e.g., Fox2 and SRSF1. SpliceTrap identified hundreds of alternative 

splicing events regulated by these factors, for example, 98 out of 124 targets of SRSF1 

were validated by RT-PCR in Krainer Lab. The whole pipeline can be applied to 

investigate the data in more details.  

There are many aspects which can be improved in these programs and algorithms. 

Some of them are on the programming level, e.g. optimization of the speed and 

calibration of the parameters.  Particularly, we have optimized the speed of OLego by 

using longer seeds with overlaps in a later version (v1.1.2), such that a similar sensitivity 

can be achieved compared to using shorter seeds, while the speed is greatly improved. 

For example, using 15 nt seeds with 1 nt overlap speeds up the alignment process for 

three times, compared to using 14 nt non-overlapping seeds.  Some other improvements 

need more profound changes to the models. For instance, SpliceTrap can be extended in 

the future to quantify more complex alternative splicing patterns, like mutually exclusive 

exons, which involves more than 2 isoforms. This will require a more general TXdb 

annotation format and an extended statistic model to describe more types of AS events.  It 

is also practical to extend the alternative splicing discovery scripts to assemble the 

transcripts present in the data. The alternative splicing events along the transcripts can be 

used as features to construct a linear system, which can be solved to find out the major 

transcripts.  This “local-to-global” approach is able to combine information along the 

gene locus and result in a different view of isoform de-convolution.  
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In Chapter 2 and 4, we compared OLego and SpliceTrap with other splice 

mappers and quantification tools to evaluate the performances. For these comparisons, 

we selected the most popular and recognized tools. However, there are other algorithms 

which are worth to mention. For example, STAR (125) (Spliced Transcripts Alignment to 

a Reference) is an ultrafast algorithm for RNA-Seq data alignment. It achieves a high 

speed by using uncompressed suffix arrays, which also results in huge memory 

consumption.  MISO (48) (Mixture-of-isoforms) is an algorithm employing a similar 

exon-centric concept to estimate the exon expression levels from RNA-Seq data, albeit 

with different model and heuristic compared to SpliceTrap. To explore more differences 

between the methods, systematic tests in both simulation and real data should be carried 

out in the future.  

Next generation sequencing technique is evolving rapidly. Longer sequences and 

higher through-put can largely increase the complexity of the problems. These brought 

more challenges to algorithms analyzing the huge data. In addition to necessary 

adjustments of the parameters, some occasions need to be considered carefully. One of 

them is the increase of read length and fragment size. When the read length is around 100 

nt, most of the reads are shorter than the exon trios/duos used in the model of SpliceTrap. 

However, when this length increases, more reads could be missed, because SpliceTrap 

maps the reads to the exon trios/duos instead of the transcripts.  Similar problem will 

occur to fragment size as well, because longer fragments means it is more likely that only 

one end of the read can be mapped to the exon trios/duos, and the information from the 

other half of the read is discarded and is not used in the estimation. These problems can 

be solved by extending the exon trios by including the flanking regions, e.g., the 

immediate neighbor exons. 

More components can be added into this framework. For example, differential 

splicing detection can be done after quantification of splicing events in different 

conditions. This can be done with either simple t-tests or more profound models. With the 

inclusion ratio of each event, tissue specific splicing events can also be identified, which 

can contribute to functional analysis. The study of AS should not be limited to a single 

type of data. Together with the diverse data from different platforms and techniques, such 
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as microarrays, ESTs and CLIP-Seq, more sophisticated models can be built to take 

advantage of the sea of data.   

Another potential direction is to construct a comprehensive splicing events 

database based on RNA-Seq data. In the BodyMap 2.0 data, we identified >80,000 novel 

cassette exon events, the most high confidence ones can be collected into a database for 

later alignment of other data. In this way, the cumulated alternative splicing events, 

together with the novel junctions, can be used as annotations for alignments and 

evaluation of other data.  
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