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Abstract of the Dissertation

Holomorphic Twistor Spaces and Bihermitian Geometry

by

Steven Michael Gindi

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

Ever since the 1970’s, holomorphic twistor spaces have been used to study the geometry

and analysis of their base manifolds. In this dissertation, I will introduce integrable complex

structures on twistor spaces fibered over complex manifolds that are equipped with certain

geometrical data. The importance of these spaces will be shown to lie, for instance, in their

applications to bihermitian geometry, also known as generalized Kahler geometry. (This is

part of the generalized geometry program initiated by Nigel Hitchin.) By analyzing their

twistor spaces, I will develop a new approach to studying bihermitian manifolds. In fact,

I will demonstrate that the twistor space of a bihermitian manifold is equipped with two

complex structures and natural holomorphic sections as well. This will allow me to construct

tools from the twistor space that will lead, in particular, to new insights into the real and

holomorphic Poisson structures on the manifold.
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Chapter 1

Introduction

In the 1970’s, Atiyah, Hitchin and Singer introduced a tautological complex structure
on a certain twistor space fibered over an anti-selfdual four manifold that has had, until
today, a major impact on differential and complex geometry [3, 22]. It was generalized in
the 1980’s to the almost complex structure J∇taut on the twistor space of any even dimensional
manifold [4, 21] (see Section 2.3 for the definition). Although J∇taut has led to many advances
in geometry, it is nonetheless almost never integrable and its applications have consequently
been limited to results about four dimensional manifolds or those of special type.

The purpose of this dissertation is to introduce other almost complex structures on twistor
spaces that are not only widely integrable but also rich in their applications to various fields
of geometry. The twistor spaces that we consider are the bundles of complex structures
associated to even rank real vector bundles that are fibered over complex manifolds (Section
2.1). The complex structures that we build depend on connections that satisfy certain
curvature conditions (Theorem 2.4.1). As these conditions are in fact easy to satisfy, our
holomorphic twistor spaces exist in abundance. For instance, we demonstrate in Section
3.3 that the twistor spaces of well known Hermitian manifolds—SKT, bihermitian, as well
as Calabi-Yau manifolds [7, 9, 1]—all admit complex structures that depend on the given
geometrical data. More examples of holomorphic twistor spaces are given throughout Part
1 (Chapters 2-4) of this dissertation.

The focus of Part 2 (Chapters 5-8) is to demonstrate how to use these twistor spaces
to derive results about the complex geometries of the base manifolds. In particular, we
develop a new way of thinking about bihermitian manifolds—also known as generalized
Kahler manifolds—that leads to insights into their real and holomorphic Poisson structures.

To give more details, our first application of holomorphic twistor spaces is given in Chap-
ter 5. There we use their holomorphic sections to decompose the base manifold into different
types of holomorphic subvarieties, denoted by M δ (Theorem 5.1.1). The main idea behind
this construction is that the holomorphic sections of twistor space not only induce holomor-
phic bundles over the base manifold but different types of holomorphic bundle maps as well.
Some of the M δ then correspond to the degeneracy loci of these maps while others refine
their structure.

We then establish in Section 7.1 a twistor point of view of the M δ by realizing them
as intersections of different complex submanifolds and holomorphic subvarieties in twistor
space. This allows us to develop tools to study the M δ inside this space and leads us to
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derive a number of results about them. Our first result is given in Section 7.2 where we
establish lower bounds on their dimensions. Secondly we determine necessary conditions for
there to exist curves in the base manifold that lie in certain M δ (Propositions 7.3.1 and
7.3.3). As described in Section 7.3, these conditions lead to upper bounds on the dimensions
of the subvarieties.

To demonstrate the importance of these results, we will now describe two of our major
classes of examples of a holomorphic twistor space equipped with holomorphic sections—
when the base manifold is a bihermitian manifold and holomorphic twistor space. As part of
the second example, we will provide more details as to how we used twistor spaces to derive
the above results.

1.1 Bihermitian and Generalized Kahler Manifolds

A bihermitian manifold is a Riemannian manifold equipped with a pair of complex struc-
tures that satisfy certain relations (Section 3.3.2). These manifolds were first introduced by
physicists in [9], as the target spaces of supersymmetric sigma models, and were later found to
be equivalent to (twisted) generalized Kahler manifolds [13, 16] (see also [1]). Consequently,
there are several approaches in the literature that are used to study these manifolds; and in
this paper, we introduce yet another—we study them via their twistor spaces.

Indeed, one of our major results of Sections 3.3 and 3.4 is that the twistor space of
a bihermitian manifold not only admits two complex structures but natural holomorphic
sections as well. By then applying Theorem 5.1.1 to this case, we decompose the bihermitian
manifold in Chapter 8 into holomorphic subvarieties that are new to the literature.

The importance of these subvarieties lies in their connection to known Poisson structures
on the manifold: Some of the subvarieties are the degeneracy loci of a holomorphic Poisson
structure while the ones that are new to the literature are surprisingly the loci of real Poisson
structures. At the same time, there are others that refine the structure of both of these loci.
As a consequence, we can now study the Poisson structures on a bihermitian manifold by
using the new tools from twistor spaces that were described above.

For instance, by applying the general bounds of Theorem 7.2.6, we derive in Section
8.3 an existence result about the subvarieties in bihermitian manifolds. More precisely,
we demonstrate that there are classes of bihermitian structures on CP3 that cannot admit
certain M δ. As these subvarieties refine the degeneracy loci of the corresponding holomorphic
Poisson structures on CP3, our result provides new information about the structure of these
loci.

Along with these results, we derive in Section 8.2 additional bounds on the dimensions of
the subvarieties in a bihermitian manifold by using Poisson geometry. Before we do so, we
apply the general existence conditions of Proposition 7.3.3, to show that it would be natural
to expect these bounds just by knowing a few simple relations.

1.2 Stratifications of Twistor Spaces

Our second major class of examples of a twistor space that is equipped with holomorphic
sections is when the base manifold is itself a holomorphic twistor space (Chapter 6). In
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this case, we not only produce different stratifications of twistor spaces, whose strata are
complex submanifolds and holomorphic subvarieties, but also use these structures to derive
the results about the general M δ of Chapter 7.

As we show in Chapter 6, some of the complex submanifolds that we produce in twistor
space can be viewed as Schubert cells in a certain Grassmannian space. By using this
correspondence and defining special charts for the twistor space, we determine the dimensions
of these submanifolds (as well as the dimensions of the other subvarieties) and describe their
tangent bundles.

These properties are in fact important in our derivation of the results about the M δ

given in Chapter 7. The way that we derive them is to first holomorphically embed the
base manifold into its twistor space and then, as mentioned above, to realize the M δ as
intersections of the different complex submanifolds and holomorphic subvarieties (Section
7.1). One advantage of this point of view is that the codimension of the intersection of any
two holomorphic subvarieties is always bounded from above by the sum of their codimensions.
Being that we have already determined the dimensions of the subvarieties in twistor space in
Section 6.2, we arrive at the bounds on the M δ given in Section 7.2. Moreover, we also apply
the description of the tangent bundles given in Section 6.2 to derive the necessary conditions
for there to exist curves that lie in certain M δ as specified in Propositions 7.3.1 and 7.3.3.

Having explored some applications of holomorphic twistor spaces to bihermitian man-
ifolds as well as twistor spaces, in our forthcoming paper [12] we will use them to derive
results about Lie groups that admit, what we call, twistor holomorphic representations.

Let us now turn to the task of defining integrable complex structures on twistor spaces.
We begin with the following preliminaries.

3
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Holomorphic Twistor Spaces
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Chapter 2

Complex Structures on Twistor
Spaces

2.1 Preliminaries

Let V be a 2n dimensional real vector space and let C(V ) = {J ∈ EndV | J2 = −1} be
one of its twistor spaces. To describe some of the properties of C(V ), consider the action
of GL(V ) on EndV via conjugation: B · A = BAB−1. As C(V ) is a particular orbit of this
action, it is isomorphic to

GL(V )/GL(V, I),

where I ∈ C(V ) and GL(V, I) = {B ∈ GL(V )| [B, I] = 0} ∼= GL(n,C). It then follows that
the dimension of C(V ) is 2n2 and that if we consider C(V ) as a submanifold of EndV then

TJC = [EndV, J ] = {A ∈ EndV | {A, J} = 0}.

With this, we may define a natural almost complex structure on C(V ) that is well known to
be integrable:

ICA = JA, for A ∈ TJC.

If we now equip V with a positive definite metric g then another twistor space that we will
consider is T (V, g) = {J ∈ C(V )| g(J ·, J ·) = g(·, ·)}. In this case, T is an orbit of the action
of O(V, g) on EndV by conjugation, and is thus isomorphic to the Hermitian symmetric
space O(V, g)/U(I), where I ∈ T and U(I) ∼= U(n). It then follows that the dimension of
T is n(n− 1) and that if we consider T as a submanifold of EndV then

TJT = [o(V, g), J ] = {A ∈ o(V, g)| {A, J} = 0}.

As IC naturally restricts to TJT , T is a complex submanifold of C.

2.1.1 Twistors of Bundles

Let now E −→M be an even dimensional vector bundle fibered over an even dimensional
manifold. Generalizing the previous discussion to vector bundles, we will define C(E) =
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{J ∈ EndE| J2 = −1}, which is a fiber subbundle of the total space of π : EndE −→ M
with general fiber C(Ex), for x ∈ M . Since the fibers of πC : C(E) −→ M are complex
manifolds, C(E) naturally admits the complex vertical distribution V C ⊂ TC(E), where
VJC = TJC(Eπ(J)) ∼= [EndE|π(J), J ]. Using the section φ ∈ Γ(π∗CEndE) defined by φ|J = J ,
we will then identify V C with the subbundle [π∗CEndE, φ] of π∗CEndE.

Letting g be a positive definite metric on E, we will also consider T (E, g) = {J ∈
C(E)| g(J ·, J ·) = g(·, ·)}. Similar to the case of C(E), T (E, g) naturally admits the complex
vertical distribution V T , defined by VJT = TJT (Eπ(J)) ∼= [o(Eπ(J), g), J ]. If we denote the
projection map from T (E, g) to M by πT then we will identify V T with the subbundle
[π∗T o(E, g), φ] of π∗TEndE, where now φ ∈ Γ(π∗TEndE).

Notation 2.1.1. As was done above and will be continued below, we will at times denote
C(E) by C and T (E, g) by T (E), T (g) or just T . Moreover, there are also times when we
will denote πC or πT by just π.

2.2 Horizontal Distributions and Splittings

With this background at hand, we will now take the first steps in defining integrable
complex structures on C(E) and T (E, g) in the case when M is a complex manifold. Given
a connection ∇ on E we will define the horizontal distribution H∇C in TC, so that this
latter bundle splits into V C ⊕H∇C. Similarly, in the case when g is a metric on E and ∇
is a metric connection, we will describe how to split TT into V T ⊕ H∇T . Once we have
described these splittings we will define the desired complex structures on the above twistor
spaces in Section 2.3.

To begin, let, as above, E −→M be a vector bundle, though the base manifold is not yet
assumed to be a complex manifold, and let ∇ be any connection. As C is a fiber subbundle
of the total space of π : EndE −→ M , we will find it convenient to split its tangent bundle
by first splitting TEndE.

Although there are other ways to define this splitting the basic idea here is to use parallel
translation with respect to ∇. First, if A ∈ EndE and γ : R −→ M satisfies γ(0) = π(A)
then the parallel translate of A along γ will be denoted by A(t). The horizontal distribution
H∇EndE in TEndE is then defined as follows.

Definition 2.2.1. Let H∇AEndE = {dA(t)
dt
|t=0| for all γ, γ(0) = π(A)}.

It is straightforward to show that H∇EndE is a complement to the vertical distribution:

Lemma 2.2.2. TEndE = V EndE ⊕H∇EndE.

Remark 2.2.3. The above procedure can actually be used to split the tangent bundle of any
vector bundle with a connection. Another way to define such a splitting is to consider the
bundle as associated to its frame bundle and then use the standard theory of connections.
These two methods yield the same splittings and are essentially equivalent.

Now if J ∈ C ⊂ EndE and γ : R −→ M is a curve that satisfies γ(0) = π(J) then it is
clear that the associated parallel translate J(t) lies in C for all relevant t ∈ R. It then follows
that H∇J EndE lies in TJC, so that we have:
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Lemma 2.2.4. TJC = VJC ⊕H∇J C, where H∇J C = H∇J EndE.

Similarly, if g is a metric on E and ∇g = 0 then the parallel translate of J ∈ T along γ
lies in T . We thus have

Lemma 2.2.5. TJT = VJT ⊕H∇J T , where H∇J T = H∇J EndE.

With the above splittings, it will be useful for later calculations to derive a certain
formula for the vertical projection operator P∇ : TEndE −→ V EndE ∼= π∗EndE, which,
upon suitable restriction, will also be valid for the corresponding projection operators for TC
and TT . The formula will depend on the tautological section φ of π∗EndE that is defined
by φ|A = A:

Proposition 2.2.6. Let X ∈ TAEndE, then

P∇(X) = (π∗∇)Xφ,

where we are considering P∇ to be a section of T ∗EndE ⊗ π∗EndE.

Proof of Proposition 2.2.6. Let {ei} be a local frame for E over some open set U ⊂M about
the point π(A), where A ∈ EndE, and let {ei ⊗ ej} be the corresponding frame for EndE.
Then for X ∈ TAEndE,

(π∗∇)Xφ = (π∗∇)Xφ
i
jπ
∗(ei ⊗ ej) (2.2.1)

= dφij(X)ei ⊗ ej|π(A) + Aij∇π∗Xei ⊗ ej. (2.2.2)

Let us now consider the following two cases.
A) Let X be an element of VAEndE, which for the moment is not identified with

EndE|π(A), so that π∗X = 0. Also let A(t) be a curve in EndE|π(A) such that A(0) = A

and dA(t)
dt
|t=0 = X. Then by Equation 2.2.2, (π∗∇)Xφ =

dA(t)ij
dt
|t=0ei ⊗ ej|π(A) = P∇(X) ∈

EndE|π(A).
B) Let X ∈ H∇AEndE so that it equals d

dt
A(t)|t=0, where A(t) is the parallel translate

of A along some curve γ : R −→ M that satisfies γ(0) = π(A). As dφij(X) = d
dt
A(t)ij|t=0,

Equation 2.2.2 becomes d
dt
A(t)ij|t=0ei ⊗ ej|π(A) +Aij∇ dγ

dt
|t=0

ei ⊗ ej, which is zero since A(t) is

parallel.

If we consider the corresponding projection operator P∇ : TC −→ V C then it follows from
the above proposition that P∇(X) = (π∗C∇)Xφ, where φ is now a section of π∗CEndE −→ C.
Note that since φ2 = −1, (π∗C∇)Xφ, for X ∈ TJC, is indeed contained in VJC = {A ∈
EndE|π(J)| {A, J} = 0}. In the case when g is a metric on E and ∇g = 0, an analogous
formula holds for P∇ : TT −→ V T .

Remark 2.2.7. We respectfully report that similar formulas for the projection operators for
TC and TT were derived in [21] but with a small error.
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2.3 The Complex Structures

Now let E −→ (M, I) be an even dimensional bundle that is fibered over an almost com-
plex manifold and let ∇ be a connection on E. We will define the following almost complex
structure on the total space of π : C(E) −→ M and explore its integrability conditions in
the next section.

Definition 2.3.1. J (∇,I) : First use ∇ to split

TC = V C ⊕H∇C,

and then let

(1) J (∇,I)A = JA

(2) J (∇,I)v∇ = (Iv)∇,

where A ∈ VJC ⊂ EndE|π(J) and v∇ ∈ H∇J C is the horizontal lift of v ∈ Tπ(J)M.

In other words, J (∇,I) on V C ⊕H∇C equals φ⊕ π∗I, where we have identified V C with
[π∗EndE, φ] and H∇C with π∗TM .

It then follows from the definition of J (∇,I) that π is pseudoholomorphic:

Proposition 2.3.2. π : (C,J (∇,I)) −→ (M, I) is a pseudoholomorphic submersion.

In the case when g is a metric on E and ∇ is a metric connection, the claim is that J (∇,I)

on C restricts to T , so that T ⊂ (C,J (∇,I)) is an almost complex submanifold. The reason
is that TJT splits into VJT ⊕H∇J T , where H∇J T = H∇J C = H∇J EndE, as explained in the
previous section.

Remark 2.3.3. It should be noted that J (∇,I) has not yet been studied in this generality in
the literature. In [24], Vaisman did study J (∇,I) only in the special case when E = TM and
∇I = 0 and only on certain submanifolds of C(TM). However, for our applications we do
not want to restrict ourselves to E = TM and we especially do not want to require ∇I = 0.

With J (∇,I) defined, let us now compare it to the tautological almost complex structures
on twistor spaces that are usually considered in the literature [3, 21, 4]. If ∇′ is a connection
on TM −→M , where here M is any even dimensional manifold, then based on the splitting
of TC into V C ⊕H∇′C, we define J ∇′taut on C(TM) as follows.

Definition 2.3.4. Let J ∇′taut = φ⊕ φ, where we have identified V C with [π∗EndTM, φ] and
H∇

′C with π∗TM , and where the first φ factor acts by left multiplication.

To compare it to J (∇,I), note that J ∇′taut does not require M to admit an almost complex
structure, while the former one does. On the other hand, J ∇′taut is only defined for the
bundle E = TM whereas J (∇,I) is defined for any even dimensional vector bundle. Also,
given (M, I), the projection map (C(TM),J ∇′taut) −→ (M, I) is never pseudoholomorphic,
whereas (C(E),J (∇,I)) −→ (M, I) is always so. Lastly, J ∇′taut is rarely integrable– except in
special cases such as when M is an anti-selfdual four manifold [3]– whereas the integrability
conditions of J (∇,I) are very natural to be fulfilled, as we will show below.
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Although J (∇,I) and J ∇′taut are defined quite differently and have opposite properties, they
are still related holomorphically. Indeed, given (M, I) and a connection∇ on TM and letting
C = C(TM), we will show in Section 3.4.2 that J ∇taut, which is almost never integrable, is
always a pseudoholomorphic section of (C(TC),J ) −→ (C,J (∇,I)) for some appropriately
chosen J .

Having compared the above almost complex structures, let us now return to the general
setup of a vector bundle E −→ (M, I) that is fibered over an almost complex manifold and
that is equipped with a connection ∇. The goal is to determine the conditions on I and the
curvature of ∇, R∇, that are equivalent to the integrability of J (∇,I) not just on C but on
other almost complex submanifolds C ′ as well. Although these conditions can be worked out
for any C ′, we will focus on the case when the corresponding projection map πC′ : C ′ −→M
is a surjective submersion. If g is a metric on E and ∇g = 0 then as an example we can take
C ′ = T (g). We will describe other examples below in Section 2.5.

The method that we will use to explore the integrability conditions of J (∇,I) on C ′ is to
calculate its Nijenhuis tensor on C.

2.3.1 Nijenhuis Tensor

In this section, let π : C(E) −→ M be the projection map and define J := J (∇,I)

and P := P∇ : TC −→ V C ⊂ π∗EndE, as in Section 2.2. We will presently compute the
Nijenhuis tensor, NJ , of J that is given by

NJ (X, Y ) = [JX,J Y ]− J [JX, Y ]− J [X,J Y ]− [X, Y ],

in terms of the Nijenhuis tensor of I and the curvature of ∇, R∇.

Proposition 2.3.5. Let X, Y ∈ TJC and let v = π∗X and w = π∗Y . Then

1) π∗N
J (X, Y ) = N I(v, w)

2) PNJ (X, Y ) = [R∇(v, w)−R∇(Iv, Iw), J ] + J [R∇(Iv, w) +R∇(v, Iw), J ].

Proof of Proposition 2.3.5, Part 1). This easily follows from the fact that if X ∈ Γ(TC) is
π-related to v ∈ Γ(TM) then JX is π-related to Iv.

Letting, as above, φ ∈ Γ(π∗EndE) be defined by φ|J = J , the proof of Part 2 of the
proposition, will be based on the following lemma.

Lemma 2.3.6. Let X, Y ∈ Γ(TC). Then

P∇([X, Y ]) = −[Rπ∗∇(X, Y ), φ] + π∗∇XP (Y )− π∗∇Y P (X).

Proof. Consider

P∇([X, Y ]) = π∗∇[X,Y ]φ

= −R(π∗∇,π∗EndE)(X, Y )φ+ π∗∇Xπ
∗∇Y φ− π∗∇Y π

∗∇Xφ,
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where R(π∗∇,π∗EndE) is the curvature of π∗∇, which is considered as a connection on π∗EndE.
The lemma then follows from the identity: R(π∗∇,π∗EndE)(X, Y )φ = [Rπ∗∇(X, Y ), φ].

Proof of Proposition 2.3.5, Part 2). Let X, Y ∈ Γ(TC) and consider PNJ (X, Y ) =
P ([JX,J Y ] − J [JX, Y ] − J [X,J Y ] − [X, Y ]). By using the previous lemma as well as
the fact that PJ = φP , we can express PNJ (X, Y ) as the sum of two sets of terms. The
first set involves the curvature of π∗∇:

[Rπ∗∇(X, Y )−Rπ∗∇(JX,J Y ), φ] + φ[Rπ∗∇(JX, Y ) +Rπ∗∇(X,J Y ), φ].

When restricted to J ∈ C this gives the expression for PNJ (X, Y ) that is contained in Part
2 of the proposition.

The second set of terms is

π∗∇JXP (J Y )− φπ∗∇JXP (Y )− φπ∗∇XP (J Y )− π∗∇XP (Y )− (X ↔ Y ).

Using PJ = φP , it easily follows that the first four terms and the last four, which are
represented by (X ↔ Y ), separately add to zero.

2.3.2 Integrability Conditions

We are now prepared to explore the integrability conditions of J (∇,I) on C ′, where, as
above, C ′ is any almost complex submanifold of (C(E),J (∇,I)) such that πC′ : C ′ −→ M
is a surjective submersion. As is well known, J (∇,I) on C ′ will be integrable if and only if
π∗N

J (X, Y ) and PNJ (X, Y ) are both zero ∀X, Y ∈ TJC ′ and ∀J ∈ C ′. By Proposition
2.3.5, the first condition is equivalent to the vanishing of the Nijenhuis tensor of I, while the
second is equivalent to

[R∇(v, w)−R∇(Iv, Iw), J ] + J [R∇(Iv, w) +R∇(v, Iw), J ] = 0

∀v, w ∈ Tπ(J)M and ∀J ∈ C ′. To analyze this condition, we will express it in terms of R0,2,
the (0,2)-form part of the curvature R∇:

Lemma 2.3.7. The condition

[R∇(v, w)−R∇(Iv, Iw), J ] + J [R∇(Iv, w) +R∇(v, Iw), J ] = 0

∀v, w ∈ Tπ(J)M holds true if and only if

[R0,2, J ]E0,1
J = 0.

We thus have:

Theorem 2.3.8. (C ′,J (∇,I)) is a complex manifold if and only if

1)I is integrable

2)[R0,2, J ]E0,1
J = 0, ∀J ∈ C ′.
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Note that the second condition in the above theorem is equivalent to R0,2 : E0,1
J −→

E0,1
J ,∀J ∈ C ′.

2.4 (1,1) Curvature

Assuming henceforth that I is integrable, an important case of Part 2 of the above
theorem that guarantees that (C ′,J (∇,I)) is a complex manifold is when R(0,2) = 0, or
equivalently, when R∇ is (1,1) with respect to I. In particular, we have:

Theorem 2.4.1. Let E −→ (M, I) be fibered over a complex manifold and let ∇ be a
connection on E that has (1,1) curvature. Then J (∇,I) is an integrable complex structure on
C(E). In addition, if g is a metric on E and ∇g = 0 then T (E, g) is a complex submanifold
of (C(E),J (∇,I)).

If we C-linearly extend ∇ to a complex connection on EC := E ⊗R C then the condition
that R∇ is (1,1) can also be expressed as (∇0,1)2 = 0. We thus have:

Lemma 2.4.2. Let ∇ be a connection on E −→ (M, I). Then R∇ is (1,1) if and only if
∇0,1 is a ∂−operator on EC.

In Section 4.2 we will use the fact that ∇0,1 is a ∂−operator to holomorphically embed
(C ′,J (∇,I)) into a more familiar complex manifold that is associated to the holomorphic
bundle EC– the Grassmannian bundle, Grn(EC).

Example 2.4.3 (Pseudoholomorphic Curves). Let E −→ (M, I) be an even dimensional
vector bundle fibered over a complex curve. If ∇ is any connection on E then R0,2 is
automatically zero and hence (C(E),J (∇,I)) is a complex manifold. Moreover if g is a metric
on E and ∇ is a metric connection then T (E, g) is a complex submanifold of (C(E),J (∇,I)).

As an application, let E −→ (N, J) be an even dimensional vector bundle that is fibered
over an almost complex manifold and let ∇ be any connection on E. The goal is to show
that although (C(E),J (∇,J)) is only an almost complex manifold, it always contains many
pseudoholomorphic submanifolds that are in fact complex manifolds. The idea is to use the
well known existence of a plethora of pseudoholomorphic curves in N . Indeed, if we let
i : (S, I) −→ (N, J) be a pseudoholomorphic embedding of a complex curve into N then
the curvature of i∗∇ on i∗E is (1,1) and thus (C(i∗E),J (i∗∇,I)) is a complex manifold. As
it is straightforward to show that i induces a pseudoholomorphic embedding of C(i∗E) into
C(E), C(i∗E) is one of many examples of pseudoholomorphic submanifolds of C(E) that are
themselves complex manifolds.

Further connections between twistors and pseudoholomorphic curves will be explored in
the near future.

Another example of a vector bundle that naturally admits connections with (1,1) cur-
vature is a holomorphic Hermitian bundle. We will describe this case in detail in Sections
3.1-3.3, but in the following we present examples where the base manifold M is a twistor
space itself as well as an anti-selfdual four manifold.
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Example 2.4.4. (Twistors) Let V be an even dimensional real vector space and, as in
Section 2.1, let C(V ) be its twistor space with complex structure IC. The bundle E that
we will consider is the trivial bundle C(V ) × V −→ C(V ). We could then choose the trivial
connection d on E to define a complex structure on C(E) but let us modify it by using a
certain section φ of EndE −→ C(V ) that is defined by φ|J = J . (φ has appeared before in
Sections 2.1.1 and 2.2 where we were discussing the twistor spaces associated to bundles and
not just vector spaces.) The connection that we will then choose is ∇ := d + 1

2
(dφ)φ since

its curvature has the desired property:

Proposition 2.4.5. ∇ is a connection on E with (1,1) curvature.

To prove this, we need the following lemma, which is a special case of Proposition 2.2.6.

Lemma 2.4.6. Let A ∈ TJC = {B ∈ EndV | {B, J} = 0}. Then dAφ = A.

Proof of Proposition 2.4.5. The curvature R∇ is given by −1
4
(dφ ∧ dφ). To show that it is

(1,1) first note that if A ∈ TJC ⊂ EndV then ICA = JA and by the above lemma, dAφ = A.
It then follows that for A and B ∈ TJC, R∇(JA, JB) = −1

4
[JA, JB] and since A and B

anticommute with J , this equals −1
4
[A,B] = R∇(A,B). Thus R∇ is (1,1).

It then follows from the above proposition as well as Theorem 2.4.1 that (C(E),J (∇,IC))
is a complex manifold.

Of course, we could have replaced 1
2
(dφ)φ in the definition of ∇ with, for example, just

dφ. The reason that we chose this specific term is that ∇ will then satisfy ∇φ = 0, which
will especially be used in the forthcoming chapters.

In Section 3.4 we will show how this example can be understood as part of a general
procedure that produces new connections with (1,1) curvature from holomorphic sections of
twistor space.

Example 2.4.7 (Anti-selfdual Curvatures). Consider an even dimensional vector bundle
E −→ (M, g) that is fibered over a four dimensional oriented Riemannian manifold. Since
the manifold is oriented, the bundle of 2-forms, ∧2T ∗, splits into a direct sum of ∧+ and
∧−, the +1 and -1 eigenbundles of the Hodge star operator. To obtain a complex structure
on C(E), suppose ∇ is a connection on E with anti-selfdual curvature, i.e. R∇ ∈ Γ(∧− ⊗
EndE). Moreover, suppose I is a complex structure on M that is compatible with g and
that also induces the same orientation as that of the given one. The claim then is that
R∇ is automatically (1,1) with respect to I. The reason is that it is well known that
∧+ =< w > ⊕(∧2,0 ⊕∧0,2) and ∧− = ∧1,1

0 , where w(·, ·) = g(I·, ·) and ∧1,1
0 is the orthogonal

complement to < w > in ∧1,1. We thus have:

Corollary 2.4.8. (C(E),J (∇,I)) is a complex manifold.

Let us now consider the following special case, which is more familiar in the literature.
Let E = TM and let (M, g, I) be an anti-selfdual Hermitian four manifold whose orientation
is determined by I. As the curvature of the Levi Civita connection, R∇, lies in Γ(∧− ⊗
o(TM, g)), there are at least two integrable complex structures on T +, which is the subbundle
of T whose elements induce the same orientation as that of I. The first of these complex
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structures is J (∇,I), as it is integrable on all of T , and the second is the tautological complex
structure J ∇taut as defined in Section 2.3 [3].

Given that T + admits these two complex structures, it is natural to explore some bundles
over this twistor space that admit connections with (1,1) curvature, for they in turn can be
used to define complex structures on other associated twistor spaces. Letting π : T + −→M
be the projection map, the first bundle that we will consider is π∗TM . The claim then is
that there are at least two connections on this bundle that have (1,1) curvatures with respect
to both J (∇,I) and J ∇taut. The first of these connections is simply π∗∇– its curvature is (1,1)
because R∇ ∈ Γ(∧− ⊗ o(TM, g))– while the other connection is π∗∇′ = π∗∇ + 1

2
(π∗∇φ)φ,

where φ ∈ Γ(π∗EndTM) is defined by φ|J = J . One way to prove that this latter connection
has the desired (1,1) curvature property is to generalize the proof of Proposition 2.4.5.
Although this is straightforward to carry out, we will prove it instead in Section 3.4 by
first showing that φ is a holomorphic section of (C(π∗TM),J (π∗∇,I)) −→ (T +, I) for I ∈
{J (∇,I),J ∇taut}. Note that, similar to the discussion in the previous example, the connection
π∗∇′ satisfies π∗∇′φ = 0, which will have several applications later on.

Now we can use these connections on π∗TM to produce connections on the tangent bundle
of T +, TT +, that also have (1,1) curvatures with respect to both J (∇,I) and J ∇taut. For this,
split TT + = V T +⊕H∇T +, which is a special case of Lemma 2.2.5, and identify V T + with
[π∗(o(TM, g)), φ] and H∇T + with π∗TM . As one may check, π∗∇+ 1

2
[(π∗∇φ)φ, ·]⊕D, where

D is either π∗∇ or π∗∇′, defines a connection on TT + with (1,1) curvature and thus defines
different complex structures on C(TT +).

We will consider more properties of J (∇,I) and J ∇taut as well as their interaction in Section
3.4.2.

In Chapter 3, we will give more examples of bundles that admit connections with (1,1)
curvature and show, in particular, that SKT, bihermitian as well as Calabi-Yau manifolds
naturally admit complex structures on their twistor spaces.

2.5 Other Curvature Conditions

Although, by Theorem 2.3.8, the condition R(0,2) = 0 guarantees the integrability of
J (∇,I) on C ′ ⊂ C(E), it is not the most general one. The present goal is to demonstrate some
of these more general conditions for certain C ′.

As a first example, consider a C ′ that satisfies the following condition: given any J ∈ C ′,
−J is also in C ′.

Proposition 2.5.1. If C ′ satisfies the above condition then (C ′,J (∇,I)) is a complex manifold
if and only if [R0,2, J ] = 0 for all J ∈ C ′.

Proof. If (C ′,J (∇,I)) is a complex manifold then given J ∈ C ′, it follows from Theorem 2.3.8
that [R0,2, J ]E0,1

J and [R0,2, J ]E0,1
−J are both zero. Hence [R0,2, J ] = 0 for all J ∈ C ′. As I is

already assumed to be integrable, the converse also follows from Theorem 2.3.8.

In the case when C ′ = C, it is straightforward to show that the condition [R0,2, J ] = 0 for
all J ∈ C is equivalent to the endomorphism part of R0,2 being pointwise constant. We thus
have:
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Proposition 2.5.2. (C,J (∇,I)) is a complex manifold if and only if R(0,2) = λ⊗ 1, where λ
is a (0,2) form on M and 1 is the identity endomorphism on EC.

Example 2.5.3. To take a simple example, let ∇′ be a connection on E −→ (M, I) that
has (1,1) curvature and let ∇ = ∇′+ (w⊗ 1) for some 1-form w. Then (R∇)0,2 = (∇0,1)2 on
EC equals ∂w0,1 ⊗ 1 and hence J (∇,I) is a complex structure on C. This complex structure,
however, is not new since J (∇,I) is actually equal to J (∇′,I). The reason is that although the
connections ∇ and ∇′ are not equal on E they are in fact the same on EndE.

More interesting examples will be the subject of future work.

For another example of a C ′ of the above type, let g be a metric on E −→ (M, I) and let
∇ be a metric connection. As in the case for C, it follows from Proposition 2.5.1 that J (∇,I)

is integrable on C ′ = T (g) if and only if the endomorphism part of R0,2 is pointwise constant.
However, in this case R0,2 is a (0,2) form that takes values in the skew endomorphism bundle
o(EC, g), so that its trace is zero. We thus have:

Proposition 2.5.4. (T ,J (∇,I)) is a complex manifold if and only if R(0,2) = 0.

Example 2.5.5. In Chapter 6 we will be considering other types of C ′. For example, let
E −→ (M, I) be equipped with a metric g and a metric connection ∇. If J ∈ Γ(T ) satisfies
∇J = 0 then we will show, in particular, that the following are almost complex submanifolds
of (T ,J (∇,I)):

1)T (m1,∗)(J) = {K ∈ T | dimKer(K + J) = 2m1}
2)T (∗,m−1)(J) = {K ∈ T | dimKer(K − J) = 2m−1}.

In addition, if R∇ is (1,1) then the above are complex submanifolds that form the strata of
some of the stratifications of T that were mentioned in the introduction.
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Chapter 3

More Examples

The goal of this chapter is to describe various connections with (1,1) curvature on holo-
morphic Hermitian bundles and the resulting complex structures on the twistor spaces C
and T . In particular, we will demonstrate that the twistor spaces of SKT, bihermitian and
Calabi-Yau manifolds naturally admit complex structures. In Section 3.4, we will explore
the holomorphic sections of these twistor spaces and show how they can be used to construct
other connections that have (1,1) curvature.

We will now begin by considering the Chern connections of Hermitian bundles.

3.1 Chern Connections

Let E −→ (M, I) be a holomorphic bundle fibered over a complex manifold. Here, we
will view it as a real bundle equipped with a fiberwise complex structure, J . If g is any
fiberwise metric on E that is compatible with J then, as is well known, the associated Chern
connection ∇Ch (considered as a real connection on E) has (1,1) curvature. We thus have

Corollary 3.1.1. (C,J (∇Ch,I)) is a complex manifold and T is a complex submanifold.

Example 3.1.2. As a simple example, let (M, I) be any complex manifold that admits a
Kahler metric g. Then the Chern connection, ∇Ch, on TM equals the Levi Civita connection,
∇Levi. Thus J (∇Levi,I) is an integrable complex structure on C and T .

If we now C-linearly extend ∇Ch to EC then, as a particular case of Lemma 2.4.2, ∇Ch(0,1)

is a ∂-operator for this bundle. To describe this ∂̄-operator in more familiar terms, let us
consider the holomorphic bundle E1,0 ⊕ E∗1,0, where E1,0 is the +i eigenbundle of J . The
claim then is that the map

1⊕ g : EC = E1,0 ⊕ E0,1 −→ E1,0 ⊕ E∗1,0

is an isomorphism of holomorphic vector bundles. If we denote the Chern connection on E1,0

by ∇̃Ch then this follows from the following proposition, whose proof is straightforward.

Proposition 3.1.3. ∇Ch = ∇̃Ch ⊕ g−1∇̃Chg, as complex connections on EC = E1,0 ⊕ E0,1.
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Thus in particular if {ei} is a local holomorphic trivialization of E1,0 then {ei, g−1(ei)} is
a holomorphic trivialization of EC.

Now if g′ is another metric on E that is compatible with J then in Chapter 4 we will

address the question of whether (T (g′),J (∇Ch′ ,I)) is biholomorphic to (T (g),J (∇Ch,I)) by
holomorphically embedding twistor spaces into Grassmannian bundles.

3.2 ∂̄-operators

In the previous section, we found it useful to describe ∇Ch(0,1) on EC by considering the
natural ∂̄-operator ∂̄ on E1,0 ⊕ E∗1,0 and the isomorphism

1⊕ g : EC = E1,0 ⊕ E0,1 −→ E1,0 ⊕ E∗1,0.

In this section, we will give more examples of ∂̄−operators on E1,0⊕E∗1,0 and use this same
isomorphism to transfer them to ones on EC. These in turn will give metric connections on
E with (1,1) curvature that can be used to define complex structures on T .

To begin, let (E, g, J) −→ (M, I) be, as above, a holomorphic Hermitian vector bundle
and consider the following natural symmetric bilinear form <,> on E1,0 ⊕ E∗1,0: < X +
µ, Y + ν >= 1

2
(µ(Y ) + ν(X)). A general ∂̄-operator that preserves this metric is of the

form ∂̄ +D′0,1, where D′0,1 ∈ Γ(T ∗0,1 ⊗ so(E1,0 ⊕ E∗1,0)). If we now consider the splitting of
so(E1,0 ⊕ E∗1,0) = EndE1,0 ⊕ ∧2E∗1,0 ⊕ ∧2E1,0 then we may decompose

D′0,1 =

(
A α
D −At

)
,

where A,D and α are (0,1) forms with values in EndE1,0,∧2E∗1,0 and ∧2E1,0, respectively.
Since ∂̄ + D′0,1 squares to zero, there are differential conditions on these sections. If we

take, for example, the case when D′0,1 = D then these conditions are equivalent to ∂D = 0;
a similar statement holds for the case when D′0,1 = α.

To obtain ∂-operators on EC, consider, as above, the isomorphism,

1⊕ g : (EC = E1,0 ⊕ E0,1,
g

2
) −→ (E1,0 ⊕ E∗1,0, <,>).

∂ +D′0,1 on E1,0 ⊕ E∗1,0 then corresponds to ∇Ch(0,1) +D0,1
g on EC, where

D0,1
g =

(
A αg

g−1D −g−1Atg

)
.

As we are interested in real connections on E, note that ∇Ch(0,1) +D0,1
g is the (0,1) part

of the real connection ∇Ch +Dg := ∇Ch +D0,1
g +D0,1

g , whose curvature is (1,1).

Corollary 3.2.1. J (∇Ch+Dg ,I) is a complex structure on C and T .

For convenience, we summarize the ∂̄-operators and connections that we have discussed
so far in the following table.
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E EC E1,0 ⊕ E∗1,0
∇Ch +Dg ∇Ch(0,1) +D0,1

g ∂̄ +D′0,1

If we now take the case whenD′0,1 = D then in Section 4.4 we will explore how J (∇Ch+Dg ,I)

on T depends on the Dolbeault cohomology class of D in H0,1(∧2E∗1,0), i.e. if B ∈ Γ(∧2E∗1,0)
then we will determine whether ∂ +D and ∂ +D + ∂B give isomorphic complex structures
on T .

Moreover we will also address a question that is a generalization of the one raised in
the previous section: if g′ were another metric on E that is compatible with J then given

D′0,1 ∈ Γ(T ∗0,1 ⊗ so(E1,0 ⊕ E∗1,0)), is it true that (T (g′),J (∇Ch′+Dg′ ,I)) is biholomorphic to
(T (g),J (∇Ch+Dg ,I))?

3.3 Three Forms

An important case of the above discussion is when E = TM is fibered over a Hermitian
manifold (M, g, I) that is equipped with a real three form H = H2,1 + H2,1 of type (1,2) +
(2,1), such that ∂H2,1 = 0. In this case, we will let D′0,1 = H2,1, which is defined to be a
section of T ∗0,1⊗ so(T 1,0⊕ T ∗1,0) by setting H2,1

v w = H2,1(v, w, ·), for v ∈ T 0,1 and w ∈ T 1,0.
It then follows that ∇Ch(0,1) + g−1H2,1, where here g−1H2,1 = g−1H2,1

1
2
(1+iI)

, is a ∂-operator

on TMC = T 1,0 ⊕ T 0,1. As the corresponding Dg in the above table is 1
2
I[g−1H, I], we have

Proposition 3.3.1. ∇Ch + 1
2
I[g−1H, I] is a metric connection on TM with (1,1) curvature.

Hence J (∇Ch+ 1
2
I[g−1H,I],I) is a complex structure on C and T .

As we will now show, natural examples of the above three form H can be found on SKT
manifolds, bihermitian manifolds and Calabi-Yau threefolds.

3.3.1 SKT Manifolds

A natural example of a real three form on any Hermitian manifold, (M, g, I), is H =
−dcw = i(∂ − ∂)w, where w(·, ·) = g(I·, ·). If we take its (2,1) part, H2,1, then it is
straightforward to check that it is ∂ closed if and only if dH = 0. Manifolds whose H satisfy
this condition are known in the literature as strong Kahler with torsion (SKT) manifolds and
have recently become very popular in the mathematics and physics communities [7, 6]. One
of the associated ∂-operators on TMC = T 1,0 ⊕ T 0,1 is ∇Ch(0,1) − g−1H2,1 and was actually
introduced in a paper of Bismut in his study of Dirac operators [5]. The main point that we
would like to stress here is that, as a corollary of the above discussion, this ∂-operator leads
to complex structures on the twistor spaces C and T that can be described as follows. First
note that ∇Ch(0,1)− g−1H2,1 is the (0,1) part of the real connection ∇Ch− 1

2
I[g−1H, I] which

can be shown to be equal to∇− := ∇Levi− 1
2
g−1H, where∇Levi is the Levi Civita connection.

The connection ∇− is closely related to the Bismut connection, ∇+ := ∇Levi + 1
2
g−1H (see

below for a general definition as well as [5, 10]).

Corollary 3.3.2. If (M, g, I) is SKT then (C,J (∇−,I)) is a complex manifold and T is a
complex submanifold.
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The Bismut connection that was mentioned above is actually defined for any almost
Hermitian manifold, (M, g, I):

Definition 3.3.3. The Bismut connection is the unique connection, ∇+, that satisfies

1. ∇+ = ∇Levi +
1

2
g−1H, where H is a 3-form

2. ∇+I = 0.

It can be shown that H is (1,2) +(2,1) if and only if I is integrable and in this case it
equals −dcw [10, 13].

3.3.2 Bihermitian Manifolds

A source of SKT manifolds is bihermitian manifolds [9, 1, 13, 16]. A bihermitian manifold
is by definition a Riemannian manifold (M, g) that is equipped with two metric compatible
complex structures J+ and J− that satisfy the following conditions

∇+J+ = 0 and ∇−J− = 0,

where ∇± = ∇Levi ± 1
2
g−1H, for a closed three form H.

It then follows from Definition 3.3.3 that ∇+ and ∇− are the respective Bismut connec-
tions for J+ and J−. Thus an equivalent way to express the above bihermitian conditions
is

H = −dc+w+ = dc−w− and dH = 0.

Since dH is assumed to be zero, (g, J+) and (g, J−) are two SKT structures for M and
hence by Corollary 3.3.2 the associated twistor space T admits the following two complex
structures that depend on the three form H:

Corollary 3.3.4. J (∇−,J+) and J (∇+,J−) are two complex structures for C and T .

We will derive more results about bihermitian manifolds in Sections 3.4.2 and 8. As
for some examples, Kahler and hyperkahler manifolds are bihermitian. Other examples of
bihermitian structures have been found, in particular, on compact even dimensional Lie
groups, Del Pezzo surfaces and more generally on Fano manifolds [13, 17, 15].

3.3.3 Calabi-Yau Threefolds

Another class of Hermitian manifolds that admit ∂ closed (2,1) forms, which by Propo-
sition 3.3.1 can be used to define complex structures on C and T , are Calabi-Yau threefolds.
Indeed, H2,1

Dolbeault parametrizes the deformations of the complex structure on the threefold.
It is interesting to note that at the same time there is a well defined map from H2,1

Dolbeault

to the space of complex structures on the twistor space (modulo biholomorphisms) as will
be described for a more general setup in Section 4.4.1. We are currently investigating the
connection between deformations of complex structures on Calabi-Yau threefolds (as well as
on general complex manifolds) and the complex geometries of twistor space.
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3.4 Holomorphic Sections of Twistor space

In the previous sections we gave a number of examples of the general setup of a bundle
E −→ (M, I) that is equipped with a connection, ∇, that has (1,1) curvature. Given the
associated complex manifold (C,J (∇,I)), which holomorphically fibers over M , it is natural to
consider its holomorphic sections. While we will use these sections in Chapter 5 to produce
holomorphic subvarieties in M and in particular stratifications of C, as was mentioned in
the introduction, our focus here is to use them to construct more connections with (1,1)
curvature– and thus more complex structures on twistor spaces. To begin, let us characterize
the holomorphic sections of C.

3.4.1 Holomorphic Sections and (1,1) Curvature

As above, let E −→ (M, I) be equipped with a connection ∇ that has (1,1) curvature.

Proposition 3.4.1. J : M −→ (C,J (∇,I)) is a holomorphic section if and only if J∇vJ =
∇IvJ , for all v ∈ TM .

Proof. Letting P∇ : TC −→ V C, as in Section 2.2, be the projection operator that is based
on the splitting of TC into V C ⊕ H∇C, let us consider the holomorphicity condition of J :
J (∇,I)J∗ = J∗I. If v ∈ TxM , we then have:

1) J (∇,I)J∗v = J (∇,I)(P∇(J∗v)+v∇), where v∇ ∈ H∇J(x)C is the horizontal lift of v ∈ TxM .

This then equals JP∇(J∗v) + (Iv)∇.
2) J∗(Iv) = P∇(J∗Iv) + (Iv)∇.
Hence J is holomorphic if and only if

JP∇(J∗v) = P∇(J∗Iv). (3.4.1)

Using the formula P∇ = π∗∇φ, as given in Proposition 2.2.6, it is straightforward to show
that P∇(J∗v) = ∇vJ . Plugging this into Equation 3.4.1 proves Proposition 3.4.1.

If we consider the ∂−operator ∇0,1 on EC then the above holomorphicity condition is
equivalent to (∇0,1J)E0,1

J = 0. This in turn is equivalent to J∇0,1e = −i∇0,1e, for all e ∈
Γ(E0,1

J ). We thus have:

Proposition 3.4.2. J : M −→ (C,J (∇,I)) is a holomorphic section if and only if E0,1
J is a

holomorphic subbundle of (EC,∇0,1).

Having described the holomorphic sections of C, let us now use them to build other
connections on E with (1,1) curvature.

Proposition 3.4.3. Let J : M −→ (C,J (∇,I)) be a holomorphic section. Then ∇+∇J(a+
bJ), where a, b ∈ R, is a connection with (1,1) curvature.

Proof. We will show that ∇0,1 +∇0,1J(a+ bJ) is a ∂-operator on EC. By using Proposition
3.4.2, it is straightforward to show that this (0,1) connection is of the form ∇0,1 +A, where
A ∈ Γ(T ∗0,1⊗EndEC) satisfies ∇0,1A = 0, AE1,0

J ⊂ E0,1
J and AE0,1

J = 0. It then follows that
∇0,1 + A squares to zero.
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These new connections then lead to other complex structures on the twistor space:

Corollary 3.4.4. If J is a holomorphic section of (C,J (∇,I)) then J (∇+∇J(a+bJ),I) is a com-
plex structure on C. In addition, if (E, g, J) is a Hermitian bundle and ∇ is a metric
connection then this complex structure restricts to T .

Among the above connections, there is a particular one that we wish to focus on:

Proposition 3.4.5. ∇′ := ∇ + 1
2
(∇J)J is a connection with (1,1) curvature that satisfies

∇′J = 0.

Thus J , originally chosen to be a holomorphic section of (C,J (∇,I)), is also, by definition,
a parallel section of (C,J (∇′,I)). Moreover, if we consider the holomorphic bundle (EC,∇′0,1),
then the fact that ∇′J = 0 implies that E1,0

J and E0,1
J are holomorphic subbundles. We will

explore the consequences of this in Chapter 5.

3.4.2 Examples of Holomorphic Sections

In searching for examples of holomorphic sections of (C,J (∇,I)), it should first be noted
that since π : C −→ (M, I) is a holomorphic submersion, there are plenty of local ones. As
for global holomorphic sections, in the case when C = C(TM) −→ (M, I), there is a natural
candidate– namely I itself. While we will describe other examples of holomorphic sections
later on, our first goal is to describe a certain class of twistor spaces, which include those
associated to SKT and bihermitian manifolds, where I is holomorphic. Yet in fact we will
find it natural to begin with a more general situation where I is not necessarily integrable
and explore the condition that guarantees that I is pseudoholomorphic. We will use this, in
particular, to show that the (pseudo)holomorphicity condition on sections of twistor space
is a generalization of the integrability condition.

To begin, let (M, g, I) be an almost Hermitian manifold that is equipped with a real
three form H. Using the natural Chern connection, ∇Ch, on TM (see for example [10]) we
will consider ∇ = ∇Ch + 1

2
I[g−1H, I] and the corresponding twistor space (T ,J (∇,I)), which

is only an almost complex manifold. We will now explore the conditions on H so that I and
−I are pseudoholomorphic sections:

Proposition 3.4.6.

1)I : M −→ T is pseudoholomorphic if and only if H is (1, 2) + (2, 1).

2)− I : M −→ T is pseudoholomorphic if and only if H is (3, 0) + (0, 3).

Proof. As Proposition 3.4.1 is true regardless of whether I is integrable, it follows that I
is pseudoholomorphic if and only if I[g−1H, I] = [g−1HI , I], which is equivalent to H being
(1,2) + (2,1). The proof of 2) is similar.

If we now choose H to be the three form that is contained in the Bismut connection
∇+ = ∇Levi + 1

2
g−1H, which was defined in Definition 3.3.3, then the pseudoholomorphicity

of I is equivalent to its integrability:
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Proposition 3.4.7. I : M −→ (T ,J (∇,I)) is pseudoholomorphic if and only if I is inte-
grable.

Proof. This follows from Proposition 3.4.6 and the fact that for the three form H in the
Bismut connection, I is integrable if and only if H is (1,2)+(2,1).

It is in this sense, as we remarked above, that the pseudoholomorphic condition on
sections of twistor space generalizes the integrability condition on almost complex structures.

Using Proposition 3.4.6, we can now describe a class of holomorphic twistor spaces that
always admit I as a holomorphic section. Indeed, let (M, g, I) be a Hermitian manifold that
is equipped with a ∂ closed (2,1) form, H2,1, and let H = H2,1 +H2,1. By Proposition 3.3.1,
the connection ∇ = ∇Ch + 1

2
I[g−1H, I] on TM has (1,1) curvature and thus (T ,J (∇,I)) is a

complex manifold. Since H is (1,2)+(2,1), we have:

Corollary 3.4.8. I : M −→ (T ,J (∇,I)) is holomorphic.

As was described in the previous section, whenever we have a holomorphic section of a
twistor space we automatically obtain other connections with (1,1) curvature. For the above
case, one such connection is ∇′ = ∇ + 1

2
(∇I)I, which satisfies ∇′I = 0. This particular

connection is in fact a familiar one:

Proposition 3.4.9. ∇′ = ∇Ch

Proof. Since ∇I = [g−1H, I], ∇′ = ∇Ch + 1
2
I[g−1H, I] + 1

2
([g−1H, I])I = ∇Ch.

To take an example of the above setup, let (M, g, I) be an SKT manifold, as defined in
Section 3.3.1, so that H = −dcw = i(∂ − ∂)w satisfies dH = 0. Since this latter condition
is equivalent to ∂H2,1 = 0, the connection ∇Ch − 1

2
I[g−1H, I], which equals ∇− = ∇Levi −

1
2
g−1H, has (1,1) curvature. Taking Proposition 3.4.6 into account, we have:

Proposition 3.4.10. Let (M, g, I) be an SKT manifold.

1)I : M −→ (T ,J (∇−,I)) is holomorphic.

2)− I : M −→ (T ,J (∇−,I)) is holomorphic if and only if (M, g, I) is Kahler.

Proof. To prove 2), note that by Proposition 3.4.6, −I is holomorphic if and only if H is
(3,0)+(0,3). As H is already (1,2)+(2,1), this is true if and only if H = 0, or equivalently,
(M, g, I) is Kahler.

Since a bihermitian manifold admits the two SKT structures (g, J+) and (g, J−) as ex-
plained in Section 3.3.2, we have

Proposition 3.4.11. Let (M, g, J+, J−) be a bihermitian manifold. The following are holo-
morphic sections:

1)J+ : (M,J+) −→ (T ,J (∇−,J+))

2)J− : (M,J−) −→ (T ,J (∇+,J−)).
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Since ∇±J± = 0, J+ and J− are also, by definition, parallel sections of (T ,J (∇+,J−))
and (T ,J (∇−,J+)) respectively. In Chapter 8 we will use these parallel and holomorphic
sections of T to produce holomorphic subvarieties in (M,J+) and (M,J−) that are new to
the literature.

Having given some examples where the section I : (M, g, I) −→ (T ,J (∇,I)) is holo-
morphic, we will now consider other examples of holomorphic sections of twistor space. The
following demonstrates that there are twistor spaces that are fibered over other twistor spaces
that naturally admit holomorphic sections.

Example 3.4.12. Let E −→ (M, I) be equipped with a connection ∇ that has (1,1) curva-
ture. Denoting the projection map from C(E) to M by π, in this example we will be focusing
on the complex manifold (C(E), I), where I = J (∇,I), along with its pullback bundle π∗E.
Since π is holomorphic, the connection π∗∇ on π∗E has (1,1) curvature so that the total
space of (C(π∗E),J (π∗∇,I)) −→ C(E) is a complex manifold.

As we discussed before, φ is a natural section of C(π∗E), defined by φ|J = J , and the
claim is that it is holomorphic:

Proposition 3.4.13. φ is a holomorphic section of (C(π∗E),J (π∗∇,I)) −→ C(E).

Proof. It follows from Proposition 3.4.1 that φ is holomorphic if and only if φ(π∗∇)Xφ
= π∗∇IXφ, for all X ∈ TC(E). By Proposition 2.2.6, this is equivalent to φP∇(X) =
P∇(IX), where P∇ : TC −→ V C is the vertical projection operator that is induced by ∇.
This last expression follows directly from the definition of I = J (∇,I).

Since φ is holomorphic, by Proposition 3.4.5, the connection π∗∇′ = π∗∇+ 1
2
(π∗∇φ)φ on

π∗E −→ (C(E), I) also has (1,1) curvature and satisfies π∗∇′φ = 0. We thus have:

Corollary 3.4.14. J (π∗∇′,I) is another complex structure on C(π∗E).

The fact that Rπ∗∇′ is (1,1) implies that (π∗EC, π
∗∇′0,1) is a holomorphic bundle over

(C(E), I) and since π∗∇′φ = 0, π∗E1,0
φ and π∗E0,1

φ are holomorphic subbundles. We will use
this result in Chapter 6 to produce complex submanifolds that form the strata of several
stratifications of (C(E), I).

If we now restrict (π∗E, π∗∇) to a particular fiber of π : C(E) −→M then we obtain the
setup of Example 2.4.4: an even dimensional real vector space, V , and the trivial bundle
E ′ = C(V ) × V −→ C(V ) that is equipped with its trivial connection d. It follows from
Proposition 3.4.13 that φ ∈ Γ(EndE ′), defined by φ|J = J , is a holomorphic section of
(C(E ′),J (d,IC)) −→ C(V ), where IC is the standard complex structure on C(V ). Another
way to show the holomorphicity of φ is to first note that the map

(C(E ′),J (d,IC)) −→ C(V )× C(V )

J −→ (K, J),

where J ∈ C(E ′)|K , is a biholomorphism. The section φ of C(E ′) then corresponds to the
diagonal map from C(V ) into C(V )× C(V ), which is holomorphic.

We can now rederive the results of Example 2.4.4. (Note in that example E ′ was denoted
by E.)
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Corollary 3.4.15.

1)∇′ = d+
1

2
(dφ)φ has (1,1) curvature.

2)(C(E ′),J (∇′,IC)) is a complex manifold.

As an application of the above discussion, let TM −→ (M, I) be equipped with a connec-
tion ∇ of (1,1) curvature and let π : C = C(TM) −→M be the projection map. The goal is
to prove a result that was stated in Section 2.3: that the almost complex structure J ∇taut on
C, as defined in Definition 2.3.4, is a holomorphic section of (C(TC),J ) −→ (C,J (∇,I)), for
some appropriately chosen J . To define J , use ∇ to split TC = V C ⊕H∇C and identify V C
with [End(π∗TM), φ] and H∇C with π∗TM . It then follows from the above discussion that
∇̃ = π∗∇+ 1

2
[(π∗∇φ)φ, ·]⊕ π∗∇ is a connection on TC that has (1,1) curvature with respect

to I = J (∇,I). Hence J = J (∇̃,I) is a complex structure on C(TC). Using Proposition 3.4.13,
it is then straightforward to show:

Proposition 3.4.16. J ∇taut is a holomorphic section of (C(TC),J (∇̃,I)) −→ (C, I).

As another application, consider the setup in Example 2.4.7: a Hermitian anti-selfdual
four manifold (M, g, I) whose orientation is determined by I, and π : T + −→M , the subbun-
dle of T (TM) whose elements induce the same orientation as the given one. If we let ∇ be
the Levi Civita connection then as discussed in that example, π∗∇ is a connection on π∗TM
that has (1,1) curvature with respect to both of the integrable complex structures J (∇,I) and
J ∇taut on T +. Based on the discussion surrounding Proposition 3.4.13, it is straightforward
to show that φ : (T +, I) −→ (C(π∗TM),J (π∗∇,I)) is not only holomorphic for I = J (∇,I)

but for I = J ∇taut as well. Hence π∗∇′ = π∗∇+ 1
2
(π∗∇φ)φ is a connection on π∗TM that has

(1,1) curvature with respect to both J (∇,I) and J ∇taut, as was claimed in Example 2.4.7. As
π∗∇′φ = 0, we obtain several holomorphic structures on the bundles π∗TM1,0

φ and π∗TM0,1
φ

that are fibered over (T +, I).
More examples and applications of holomorphic sections of twistor spaces will be given

in the upcoming chapters.
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Chapter 4

Twistors and Grassmannians

In the previous chapter, we have not only given examples of a bundle E −→ (M, I)
with a connection ∇ that has (1,1) curvature but have also raised various questions about
the complex manifold structure of (C,J (∇,I)), especially in Section 3.2. In this chapter we
will address these questions by holomorphically embedding C into a more familiar complex
manifold– a certain Grassmannian bundle. Indeed, as we noted previously, the condition
that R∇ is (1,1) is equivalent to ∇0,1 being a ∂-operator on EC, and if we let dimRE = 2n
then the Grassmannian bundle that we will take will be the holomorphic bundle Grn(EC).

To define the embedding, we will first show how to holomorphically embed the fibers of
C into those of Grn(EC).

4.1 Embedding the Fibers

Let V be a 2n dimensional real vector space and let Grn(VC) be the Grassmannians of
complex n planes. The map that we will consider is

ψ : C(V ) −→ Grn(VC)

J −→ V 0,1
J ;

it has the following properties:

Proposition 4.1.1.

1. The map ψ : C(V ) −→ Grn(VC) is a holomorphic embedding.

2. The image of this embedding is {P ∈ Grn(VC)|P ⊕ P = VC},
which is an open submanifold of the Grassmannians.

Proof. Consider ψ∗ : TJC(V ) −→ TV 0,1
J
Grn(VC) and choose the holomorphic chart

End(V 0,1
J ,V 1,0

J ) −→ Grn(VC)

B −→ Graph(B),

24



where Graph(B) = {v0,1 +Bv0,1|v0,1 ∈ V 0,1
J }. If we let A be a general element in TJC(V ) ∼=

{D ∈ EndV |{D, J} = 0} then we need to show that ψ∗(JA) = Iψ∗(A), where I is the
complex structure on the Grassmannians.

First consider,

ψ∗(JA) =
d

dt
|t=0ψ(exp(

−tA
2

)Jexp(
tA

2
))

=
d

dt
|t=0exp(

−tA
2

)(V 0,1
J ).

Using the above chart, ψ∗(JA) then corresponds to −A
2
, as an element of

End(V 0,1
J , V 1,0

J ).
Similarly we have ψ∗(A) = d

dt
|t=0exp(− tAJ

2
)(V 0,1

J ), so that under the above chart, Iψ∗(A)

corresponds to − iAJ
2

, which as an element of End(V 0,1
J , V 1,0

J ) equals −A
2
.

The proof of the other parts of the proposition are straightforward.

If we now choose a positive definite metric, g, on V then by restriction, the above map, ψ,
gives a holomorphic embedding of T (V ) into Grn(VC). Since the metric is positive definite,
the image of this map is precisely MI(VC) = {P ∈ Grn(VC)|g(v, w) = 0,∀v, w ∈ P}, the
space of maximal isotropics of VC defined by using the C-bilinearly extended metric. For
convenience we state this as a proposition.

Proposition 4.1.2.

T (V ) −→ Grn(VC)

J −→ V 0,1
J

is a holomorphic embedding with image MI(VC).

4.2 The Holomorphic Embedding

Let us now consider a 2n dimensional real vector bundle E −→ (M, I) that is fibered over
a complex manifold. As discussed above, a connection ∇ on E with (1,1) curvature gives rise
to two complex analytic manifolds: the twistor space (C,J (∇,I)) and the holomorphic fiber
bundle πGr : Grn(EC) −→M . To holomorphically embed C into Grn(EC), we will generalize
the map ψ that was defined in the previous section:

Theorem 4.2.1. The map

ψ : (C,J (∇,I)) −→ Grn(EC)

J −→ E0,1
J

is a holomorphic embedding.

In the case when E is equipped with a metric g and ∇ is a metric connection, we will
define MI(EC) to be the space of maximal isotropics in Grn(EC); we then have:
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Proposition 4.2.2.

(T ,J (∇,I)) −→ Grn(EC)

J −→ E0,1
J

is a holomorphic embedding with image MI(EC).

To prove Theorem 4.2.1, we will need to describe the complex structure on the Grass-
mannians similarly to how we defined J (∇,I) on C. The first step will be to define the
horizontal distribution H∇Grn on Grn(EC). But before giving the definition, let us first
recall that if P ∈ Grn(EC) and γ : R −→ M satisfies γ(0) = πGr(P ) then we can use ∇,
considered as a complex connection on EC, to parallel transport P along γ as follows. If we
set P =< e1, ..., en >C, so that {ei} is a basis for P , then define P (t) =< e1(t), ..., en(t) >C,
where γ∗∇ei(t) = 0 and ei(0) = ei. Since ∇ is a complex connection on EC, P (t) does not
depend on the basis {ei} for P that was chosen.

With this, let us define the desired horizontal distribution on Grn(EC).

Definition 4.2.3. Let H∇P Grn = {dP (t)
dt
|t=0|P (t) is the parallel translate of P along γ, γ(0)

= πGr(P )}.

Along with H∇Grn, there is also the natural vertical distribution V Grn; as it is defined
by the fibers of Grn(EC), it is a complex vector bundle and satisfies πGr∗(VPGrn) = 0, for all
P ∈ Grn(EC). It is straightforward to prove that these two distributions are complements
to each other:

Lemma 4.2.4. TPGrn = VPGrn ⊕H∇P Grn.

We may now use the above lemma to define an almost complex structure on Grn(EC),
which we will show in Proposition 4.2.6 to be the complex structure that is induced by ∇0,1

and which we will use to prove Theorem 4.2.1. As the definition of this almost complex
structure is similar to that of J (∇,I) on C, we will denote it by the same symbol:

Definition 4.2.5. Let J (∇,I) on Grn(EC) be defined as follows. First split

TGrn = V Grn ⊕H∇Grn

and then let
J (∇,I) = J V ⊕ π∗GrI,

where J V is the standard fiberwise complex structure on V Grn and where we have used the
natural identification of H∇Grn with π∗GrTM .

If we consider the complex manifold structure of Grn(EC) that is induced by the ∂-
operator ∇0,1 on EC, we then have:

Proposition 4.2.6. The complex structure on Grn(EC) is J (∇,I).

We will prove the above proposition for a more general setup in the next section; here
we will use it to prove Theorem 4.2.1 by showing that the map ψ : (C,J (∇,I)) −→
(Grn(EC),J (∇,I)), which is given by ψ(J) = E0,1

J , is holomorphic. Recalling the splitting of
TC = V C ⊕H∇C, as given in Lemma 2.2.4, let us first consider the following:
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Lemma 4.2.7. The map ψ∗ preserves horizontals: ψ∗ : H∇J C −→ H∇
E0,1
J

Grn. In fact,

ψ∗(v
∇) = v(∇,Gr), where v∇ and v(∇,Gr) are the appropriate horizontal lifts of v ∈ TxM .

Proof. Let γ(t) be a curve in M such that γ(0) = x and γ′(0) = v. Also let J(t) be the
parallel translate of J ∈ C(Ex) along γ (by using ∇), so that

ψ∗(v
∇) =

d

dt
|t=0ψ(J(t)).

The claim then is that ψ(J(t)), which is by definition E0,1
J(t), equals E0,1

J (t), the parallel

translate of E0,1
J along γ. To show this just note that if e(t) is the parallel translate of

e ∈ E0,1
J then J(t)e(t) is also parallel and since Je = −ie, it follows that J(t)e(t) = −ie(t)

for all relevant t ∈ R. Hence d
dt
|t=0ψ(J(t)) = d

dt
|t=0E

0,1
J (t) = v(∇,Gr).

Assuming Proposition 4.2.6, we can now prove that ψ is holomorphic:

Proof of Theorem 4.2.1. Consider ψ∗ : TJC −→ TE0,1
J
Grn. By Proposition 4.2.6, we need to

show that ψ∗J (∇,I) = J (∇,I)ψ∗.
A) If A ∈ VJC, the vertical tangent space to J , then it follows from Proposition 4.1.1

that
ψ∗(JA) = J (∇,I)ψ∗(A),

so that ψ∗ is holomorphic in the vertical directions.
B) As for the horizontal directions, let v∇ ∈ H∇J C be the horizontal lift of v ∈ TxM .

Then ψ∗(J (∇,I)v∇) = ψ∗((Iv)∇), which by Lemma 4.2.7 equals (Iv)(∇,Gr). This in turn
equals J (∇,I)v(∇,Gr) = J (∇,I)ψ∗(v

∇).

4.3 Proof of Proposition 4.2.6

In this section, we will prove a slightly more general version of Proposition 4.2.6; this
will then complete the proof of Theorem 4.2.1. To begin, we will find it useful to describe
the complex structures on holomorphic vector bundles:

Let πF : F −→ (M, I) be a complex vector bundle that is equipped with a ∂-operator, ∂,
and let ∇ be a complex connection on F such that ∇0,1 = ∂. Below we will let J (∇,I) be the
almost complex structure on either F or Grk(F ) that is defined in a by now familiar way:
use ∇ to split the appropriate tangent bundle into vertical and horizontal distributions, and
define J (∇,I) to be the direct sum of the given fiberwise complex structure on the verticals
and the lift of I on the horizontals.

Proposition 4.3.1. Let ∇ be a complex connection on F such that ∇0,1 = ∂. Then the
associated complex structure on F is J (∇,I).

Proof. Let {fi} (1 ≤ i ≤ dimCF ) be a holomorphic frame for F over U ⊂ M and let W be
the complex vector space that is generated by {wi} over C. To prove the proposition, we
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need to show that the map

σ : (F |U ,J (∇,I)) −→ U ×W
aifi|x −→ (x, aiwi)

is holomorphic. For this, consider σ∗ : TfF −→ Tσ(f)(U ×W ), where πF (f) = x.
1) Since σ|x is a complex linear isomorphism from F |x to W , σ is holomorphic in the

vertical directions, i.e., σ∗(if
′) = iσ∗(f

′), where f ′ ∈ VfF = F |x.
2) As for the horizontal directions, we need to show that σ∗(J (∇,I)v∇) = Iσ∗(v∇), where

v∇ is the horizontal lift of v ∈ TxM to H∇f F ⊂ TfF and I is the complex structure on
U ×W . Let us first consider,

σ∗(J (∇,I)v∇) = σ∗((Iv)∇)

=
d

dt
|t=0σ(f(t)),

where f(t) is the parallel translate of f along the curve γ : R −→M that satisfies γ(0) = x
and γ′(0) = Iv. If we let f(t) = aj(t)fj|γ(t) then the above equals

(Iv,
daj(t)

dt
|t=0wj).

Similarly, σ∗(v
∇) = (v,

dãj(t)

dt
|t=0wj), where f̃(t) = ãj(t)fj| ˜γ(t) is the parallel translate of f

along the curve γ̃ : R −→ M that satisfies γ̃(0) = x, γ̃′(0) = v. Now since Iσ∗(v∇) =

(Iv, i
dãj(t)

dt
|t=0wj), σ is holomorphic if and only if

daj(t)

dt
|t=0 = i

dãj(t)

dt
|t=0.

To show this equality, note that the condition γ̃∗∇ ˜f(t) = 0 together with aj := ãj(0) =

aj(0) imply that i
dãj(t)

dt
|t=0fj = −iaj∇vfj. This then equals −aj∇Ivfj because ∇0,1fj = 0,

which in turn equals
daj(t)

dt
|t=0fj since γ∗∇f(t) = 0. Hence σ is holomorphic.

As for the Grassmannians, we have:

Proposition 4.3.2. The complex structure on Grk(F ) that is induced from (F, ∂) is J (∇,I).

The proof of the above proposition and hence of Proposition 4.2.6 is just a straightforward
generalization of the previous proof. This then completes the proof of Theorem 4.2.1 as well.

4.4 Corollaries of the Embedding

We will now demonstrate some of the corollaries of the holomorphic embedding ψ :
(C,J (∇,I)) −→ Grn(EC), as given in Theorem 4.2.1. In particular, we will address certain
issues regarding the holomorphic structure of twistor spaces that were raised in Section 3.2.

Let E and E ′ be two real vector bundles of even dimension that are fibered over (M, I)
and that are respectively equipped with connections ∇ and ∇′ of (1,1) curvature.

Proposition 4.4.1. Let A : E −→ E ′ be a bundle map such that its C-extension, A :
(EC,∇0,1) −→ (E ′C,∇′0,1) is an isomorphism of holomorphic vector bundles. Then this map
induces a fiber preserving biholomorphism between (C(E),J (∇,I)) and (C(E ′),J (∇′,I)).
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Proof. The isomorphism A : (EC,∇0,1) −→ (E ′C,∇′0,1) induces the biholomorphism Ã :
Grn(EC) −→ Grn(E ′C) that is defined by Ã(< e1, ..., en >C) =< Ae1, ..., Aen >C. Since
A is a real map, Ã restricts to a biholomorphism between the set {P ∈ Grn(EC)|P ⊕
P = EC|πGr(P )

} in Grn(EC) and the corresponding one in Grn(E ′C). The proposition then
follows from Theorem 4.2.1 and Proposition 4.1.1, which show that these sets are respectively
biholomorphic to (C(E),J (∇,I)) and (C(E ′),J (∇′,I)).

Now suppose that E and E ′ are also equipped with respective metrics g and g′ and that
the above connections preserve the appropriate metrics. If we C-bilinearly extend g and g′

to EC and E ′C, we then have

Proposition 4.4.2. Let A : (EC,∇0,1) −→ (E ′C,∇′0,1) be an isomorphism of holomorphic
vector bundles that is orthogonal with respect to g and g′. Then A induces a fiber preserving
biholomorphism between (T (E, g),J (∇,I)) and (T (E ′, g′),J (∇′,I)).

Proof. Similar to the proof of Proposition 4.4.1, the isomorphism A : (EC,∇0,1) −→
(E ′C,∇′0,1) induces a biholomorphism Ã : Grn(EC) −→ Grn(E ′C). Since A is an orthogonal
map, Ã maps the space of maximal isotropics, MI(EC), in Grn(EC) to the one in Grn(E ′C).
The proposition then follows from Proposition 4.2.2, which shows that (T (E, g),J (∇,I)) and
(T (E ′, g′),J (∇′,I)) are respectively biholomorphic to MI(EC) and MI(E ′C).

In the following two sections we consider some applications of the above propositions.

4.4.1 Cohomology Independence

Let (E, g, J) −→ (M, I) be a holomorphic Hermitian bundle fibered over a complex man-
ifold and let ∂ be the standard ∂-operator on E1,0 ⊕E∗1,0, where E1,0 is the +i eigenbundle
of J . If we choose D ∈ Γ(T ∗0,1 ⊗ ∧2E∗1,0) to satisfy ∂D = 0 then, as described in Section
3.2, ∇Ch(0,1) + g−1D is a ∂-operator on EC = E1,0 ⊕E0,1 and, for ∇ = ∇Ch + g−1D+ g−1D,
the twistor space (T (E),J (∇,I)) is a complex manifold. If we now let B ∈ Γ(∧2E∗1,0) then
∇Ch(0,1) + g−1(D + ∂B) is another ∂-operator on EC and it is natural to wonder, as in Sec-
tion 3.2, whether the associated twistor space is biholomorphic to the previous one. In other
words, does the above give a well defined mapping from the Dolbeault cohomology group
H0,1(∧2E∗1,0) to the isomorphism classes of complex structures on T ?

By using Proposition 4.4.2, we will show here that such a mapping does indeed exist. As
a first step, let us consider the section of O(EC, g) exp(g−1B), which equals (1 + g−1B) since
(g−1B)2 = 0. We then have

Proposition 4.4.3. The map exp(−g−1B) : (EC,∇Ch(0,1) + g−1D) −→ (EC,∇Ch(0,1) +
g−1(D + ∂B)) is an isomorphism of holomorphic vector bundles.

Proof. Let (∇Ch(0,1) + g−1D)v = 0 and consider

(∇Ch(0,1) + g−1(D + ∂B))(1− g−1B)v

= −∇Ch(0,1)(g−1Bv) + (g−1∂B)v

= −(∇Ch(0,1)g−1B)v − g−1B∇Ch(0,1)v + (g−1∂B)v.
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Since the first and last terms cancel, we are left with

−g−1B∇Ch(0,1)v = −g−1B(−g−1Dv) = 0.

This then proves the proposition.

By Proposition 4.4.2, we can now conclude that the twistor spaces mentioned above are
biholomorphic:

Proposition 4.4.4. exp(−g−1B) induces a fiber preserving biholomorphism between
(T ,J (∇,I)) and (T ,J (∇′,I)), where ∇0,1 = ∇Ch(0,1)+g−1D and ∇′0,1 = ∇Ch(0,1)+g−1(D+∂B).

As a corollary, we have

Proposition 4.4.5. The map [D] −→ [J (∇,I)], where ∇0,1 = ∇Ch(0,1) + g−1D, from the
Dolbeault cohomology group H0,1(∧2E∗1,0) to the isomorphism classes of complex structures
on T (E, g) is well defined.

4.4.2 Changing the Metric

In the previous example we worked with a fixed metric g; but what if we were to choose
another metric g′ on E that is compatible with J–then is it true that (T (g),J (∇Ch,I)) and

(T (g′),J (∇Ch′ ,I)) are biholomorphic? This is part of a more general question that was posed
in Section 3.2: in that section we used a fixed metric, g, to define ∂-operators on EC and
thus complex structures on T (g) –but if we were to choose another metric g′ then do we
obtain new complex manifolds by considering T (g′)?

To address these questions, let us first recall some of the details of that section. Let
(E, J) −→ (M, I) be a holomorphic vector bundle, considered as a real bundle with fiberwise
complex structure J , that is fibered over a complex manifold. Defining <,> and ∂ to be
the standard inner product and ∂-operator on E1,0 ⊕ E∗1,0, let us consider the ∂-operator
∂̄ +D′0,1, where D′0,1 ∈ Γ(T ∗0,1 ⊗ so(E1,0 ⊕ E∗1,0)). If g is a metric on E that is compatible
with J then, as in Section 3.2, we can use the orthogonal isomorphism

1⊕ g : (EC = E1,0 ⊕ E0,1,
g

2
) −→ (E1,0 ⊕ E∗1,0, <,>)

to obtain the ∂-operator ∇Ch(0,1) +D0,1
g on EC as well as the complex structure J (∇Ch+Dg ,I)

on T (g). (Here, Dg = D0,1
g +D0,1

g .)
Similarly, if g′ is another metric that is compatible with J then we have the complex

structure J (∇Ch′+Dg′ ,I) on T (g′). The goal then is to use Proposition 4.4.2 to show that the
complex manifolds T (g) and T (g′) are equivalent under a fiberwise biholomorphism.

First note, that if we compose the map (1⊕g) with (1⊕g′)−1 then we obtain the following
isomorphism of holomorphic vector bundles:

(EC,∇Ch(0,1) +D0,1
g ) −→ (EC,∇Ch′(0,1) +D0,1

g′ )

v1,0 + v0,1 −→ (v1,0 + g′−1gv0,1),
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where we have used the decomposition, EC = E1,0⊕E0,1. As this is an orthogonal map from
(EC, g) to (EC, g

′), by Proposition 4.4.2 we have

Proposition 4.4.6. There exists a fiber preserving biholomorphism between

(T (g),J (∇Ch+Dg ,I)) and (T (g′),J (∇Ch′+Dg′ ,I)).

In particular, if we set D′(0,1) to zero, we have:

Proposition 4.4.7. Let (E, J) −→ (M, I) be a holomorphic vector bundle that is equipped

with two Hermitian metrics g and g′. Then (T (g),J (∇Ch,I)) and (T (g′),J (∇Ch′ ,I)) are bi-
holomorphic.
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Part II

Applications
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Chapter 5

Holomorphic Subvarieties

Having given examples and explored various properties of holomorphic twistor spaces,
we will now present our first application. We will use holomorphic sections of (C(E),J (∇,I))
to decompose (M, I) into different types of holomorphic subvarieties. We will then develop
tools from twistor spaces in order to study different properties of these subvarieties. The
importance of our results will especially be demonstrated when we consider bihermitian
manifolds in Chapter 8.

5.1 The M≤s and M(≤r,±)

To begin, let E −→ (M, I) be a real rank 2n vector bundle fibered over a complex
manifold and equipped with a connection ∇ that has (1,1) curvature. Further, suppose
that J and K are respectively parallel and holomorphic sections of (C(E),J (∇,I))—so that
∇J = 0 and K∇K = ∇IK (see Section 3.4). Our main theorem of this section is that the
degeneracy loci of the real bundle maps [J,K], J+K and J−K are holomorphic subvarieties
of M :

Theorem 5.1.1. Let J and K respectively be parallel and holomorphic sections of (C,J (∇,I))
−→ (M, I). The following are holomorphic subvarieties of M :

1) M≤s = {x ∈M | Rank[J,K]|x ≤ 2s}
2) M(≤r,±) = {x ∈M | Rank(J ±K)|x ≤ 2r}.

Notation 5.1.2. We will similarly define Ms and M(r,±) as above but with the appropriate
≤ signs replaced with =.

The reason that the above real bundle maps yield holomorphic subvarieties is that they
are in fact holomorphic when restricted to the appropriate holomorphic bundles, which we
now describe.

First consider the holomorphic bundle EC that is equipped with the ∂-operator ∇0,1 (see
Lemma 2.4.2). Since J is parallel, E1,0

J and E0,1
J are two holomorphic subbundles of EC, and

since K is holomorphic, by Proposition 3.4.2, E0,1
K is a third. Now the holomorphicity of K,

as explained in Section 3.4.1, can also be used to show that the connection∇′ = ∇+ 1
2
(∇K)K
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has (1,1) curvature, so that ∇′0,1 is another ∂-operator on EC. As ∇′K = 0, E1,0
K and E0,1

K

are holomorphic subbundles. (Note that since (∇0,1K)E0,1
K = 0, ∇0,1 = ∇′0,1 when acting on

E0,1
K .)

Given these bundles, we have

Proposition 5.1.3. The following are holomorphic

1) J +K : E0,1
K −→ E0,1

J 2) J −K : E0,1
K −→ E1,0

J

3) J +K : E1,0
J −→ E1,0

K 4) J −K : E0,1
J −→ E1,0

K

5) [J,K] : E0,1
K −→ E1,0

K .

Proof. The proofs of 1) and 2) are straightforward. To prove 3), let e ∈ Γ(E1,0
J ) satisfy

∇0,1e = 0 and consider

∇′0,1(J +K)e = (i+K)∇′0,1e =
1

2
(i+K)(∇0,1K)Ke.

Since (i+K)∇0,1K = 0, the map given in 3) is holomorphic.
The proof of 4) is similar, and that of 5) follows by composing the maps in 1) and 4) or

the maps in 2) and 3).

Note that Theorem 5.1.1 immediately follows from the above proposition.
Although we proved the holomorphicity of [J,K] by composing, say, the maps given in

1) and 4), we should stress that it does not depend on the (1,1) condition on the curvature
of ∇, R∇—but only depends on the (1,1) condition on R∇

′
:

Proposition 5.1.4. Let ∇ be a connection on E −→ (M, I) and let J and K be sections of C
such that ∇J = 0 and K∇K = ∇IK. Moreover, assume that R∇

′
, where ∇′ = ∇+ 1

2
(∇K)K,

is (1,1). Then
[J,K] : E0,1

K −→ E1,0
K

is holomorphic, where each of the bundles is equipped with the ∂-operator ∇′0,1.

Proof. Let e ∈ Γ(E0,1
K ) satisfy ∇′0,1e = 0 and consider

∇′0,1[J,K]e = −(i+K)(∇′0,1J)e.

Since ∇J = 0, this equals

−1

2
(i+K)[(∇0,1K)K, J ]e,

which is zero since
(i+K)∇0,1K = ∇0,1K(i−K) = 0.

Hence [J,K] is holomorphic.

As an example, if (M, g, I) is not an SKT manifold then the curvature of ∇− (Section
3.3.1) is not (1,1) but the curvature of (∇−)′ = ∇− + 1

2
(∇−I)I = ∇Ch is always so. (Note

that I∇−I still equals ∇−I I.)
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5.1.1 Metric Case

Let us now further suppose that E is equipped with a fiberwise metric g, ∇ is a metric
connection and J and K are sections of T (E, g). Then note:

• The holomorphicity of map 3) in Proposition 5.1.3 can be derived from that of 1). The
reason is that map 3) equals −g−1(J + K)tg, where J + K : E0,1

K −→ E0,1
J . Similarly,

the holomorphicity of map 4) can be derived from that of 2).

• The maps

· [J,K]g−1 : E∗1,0K −→ E1,0
K

· g[J,K] : E0,1
K −→ E∗0,1K

respectively define holomorphic sections of ∧2E1,0
K and ∧2E∗0,1K .

5.2 The M# and M δ

Consider the setup of Theorem 5.1.1 of a real rank 2n bundle E −→ (M, I) and the
respective parallel and holomorphic sections J and K of (C(E),J (∇,I)) −→ (M, I). We
will now introduce a slightly finer decomposition of the holomorphic subvarieties M≤s and
M(≤r,±).

Definition 5.2.1. Let M# stand for any of the following:

1) M (m1,∗) = {x ∈M | dimKer(J +K)|x = 2m1}
2) M (∗,m−1) = {x ∈M | dimKer(J −K)|x = 2m−1}
3) M (m1,m−1) = M (m1,∗) ∩M (∗,m−1).

Notation 5.2.2. So far we have introduced the M≤s, M(≤r,±) and M#. We will let M δ

stand for any of these holomorphic subvarieties.

To relate the M# to the other subvarieties, first note that we can decompose Ms = {x ∈
M | Rank[J,K]|x = 2s} as follows:

Ms =
⋃

m1+m−1=n−s

M (m1,m−1). (5.2.1)

This is immediate from

Lemma 5.2.3. Let V be an even dimensional real vector space and let J and K be elements
of C(V ). The ker[J,K] = ker(J +K)⊕ ker(J −K).

Proof. If we restrict JK to ker[J,K] then it squares to 1. Hence

ker[J,K] = W1 ⊕W−1,

where JK|W1 = 1 and JK|W−1 = −1. The lemma then follows from the fact that W1 =
ker(J +K) and W−1 = ker(J −K).
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Also note:

1) Locally, Ms = M (m1,m−1), for some (m1,m−1) that satisfy m1 + m−1 = n − s. The
reason is that the dimensions of ker(J +K) and ker(J −K) cannot locally increase.

2) M(r,+) = M (n−r,∗) and M(r,−) = M (∗,n−r).

5.2.1 Metric Case

Let us now further suppose that E is equipped with a fiberwise metric g, ∇ is a met-
ric connection and J and K are sections of T (E, g). The following gives some additional
properties of the M#.

Proposition 5.2.4.

1) Given x ∈M , the following is an orthogonal and J,K−invariant splitting of Ex:

Im[J,K]⊕ ker(J +K)⊕ ker(J −K).

Moreover the rank[J,K] = 4k.

2) M is a disjoint union of the following open subsets:⋃
m1=even

M (m1,∗) and
⋃

m1=odd

M (m1,∗).

3)
⋃
m1=evenM

(m1,∗) = {x ∈M | Jx and Kx induce the same orientations}.

4)
⋃
m1=oddM

(m1,∗) = {x ∈M | Jx and Kx induce opposite orientations}.
Parts 2)− 4) are also true if we were to replace M (m1,∗) with M (∗,m−1) and Jx with −Jx.

Example 5.2.5. Suppose that rankE = 4 and J and K induce the same orientations on
E. Then by the above proposition, M = M (0,0) ∪M (0,2) ∪M (2,0).

Proposition 5.2.4 follows immediately from the following brief background on the alge-
braic interaction of two complex structures.

Some Background: Let (V, g) be an even dimensional real vector space equipped
with a positive definite metric and let J and K ∈ T (V, g). Consider the orthogonal and
J,K−invariant splitting:

V = Im[J,K]⊕ ker(J +K)⊕ ker(J −K). (5.2.2)

We then have:

Proposition 5.2.6.

1) Im[J,K] is an H-module and is 4k real dimensional.

2) J and K induce the same orientation on V if and only if
dimKer(J +K)

2
is even.
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Remark 5.2.7. The above proposition would not necessarily be true if we were to assume
that J and K are two general elements of C(V ). For instance, take V =< v1, v2 >R and
define J and K via the equations

• Jv1 = v2, Jv2 = −v1

• Kv1 = −rv2, Kv2 = r−1v1, where r ∈ R>0 − {1}.

Then J and K are elements of C(V ) that induce opposite orientations on V and yet the
ker(J + K) = 0. Moreover, the rank[J,K] = 2 and not a multiple of four. Note that
J,K /∈ T (V, g) for any metric g because the eigenvalues of JK do not have norm 1.

Proof of Proposition 5.2.6. Let us begin by diagonalizing JK:

V ⊗ C = (Vc1 ⊕ Vc1)⊕ ...⊕ (Vcl ⊕ Vcl)⊕ (V1 ⊗ C)⊕ (V−1 ⊗ C),

where c ∈ C− {±1} satisfies cc = 1, V±1 ⊂ V and JKvλ = λvλ for vλ ∈ Vλ.
Now set 2e = c + c and Vc ⊕ Vc = Ve ⊗ C for Ve ⊂ V . We then obtain the following

orthogonal and J,K−invariant decomposition:

V = Ve1 ⊕ ...⊕ Vel ⊕ V1 ⊕ V−1.

Note:

• {J,K}v = 2εv, for v ∈ Vε

• Im[J,K] = Ve1 ⊕ ...⊕ Vel , ker(J +K) = V1 and ker(J −K) = V−1.

The claim then is that Ve—and thus Im[J,K]—is an H-module. The reason is that if we
let J ′ = JK−e

f
|Ve , where e2 + f 2 = 1, then (J ′)2 = −1 and {J ′, K} = 0 when acting on Ve.

({J ′, J} = 0 as well.)
Although the rest of the proof of the proposition follows from this claim, we will now

give a more direct proof of the fact that rank[J,K] = 4k. To see this just note that
g[J,K] : VC −→ V ∗C (where VC := V ⊗ C) is skew and sends V 1,0

J to V ∗1,0J and V 0,1
J to

V ∗0,1J .

Remark 5.2.8. If we consider the algebra iD∞, generated by two complex structures J0 and
K0 over R, then one may use the above proof to derive its orthogonal representations. (These
representations are by definition the ones where J0 and K0 act by orthogonal transformations
with respect to some metric.)

Corollary 5.2.9. The irreducible, orthogonal representations of iD∞ are:

R[t]/(p)⊕K0R[t]/(p),

where J0K0 acts by t and

1) p = t± 1

2) p = (t− c)(t− c), for c ∈ C− {±1}, cc = 1.
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In [11], we not only derive the orthogonal representations of iD∞ but the indecomposable
ones as well.

Having given some basic properties of the M δ in the above propositions, we will present
our major results about them in Chapter 7. There, we determine lower bounds on the
dimensions of the M δ as well as necessary conditions for there to exist curves in M that
lie in certain M#. We will give the applications of these results, for the case when M is a
bihermitian manifold, in Chapter 8. Our present focus is to derive them by first considering in
the next chapter an example of the general setup of Theorem 5.1.1 where the base manifold
is itself the total space of (C(E),J (∇,I)) −→ (M, I). We will then use this example in
Section 7.1 to establish a twistor point of view of the general M δ—by realizing them as the
intersection of K(M) with the corresponding Cδ in C. Some of these Cδ will be shown to be
complex submanifolds of C and by determining their dimensions and describing their tangent
bundles, we will derive the results mentioned above. (We will also describe a metric version
of this setup where C is replaced with T .)

In the next chapter, we will first consider the twistor spaces C(V ) and T (V, g) which are
associated to vector spaces and then those associated to vector bundles and will be focusing
on studying the above properties of the Cδ and T δ.
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Chapter 6

Stratifications of Twistor Spaces

6.1 Twistor Spaces of Vector Spaces

6.1.1 C(V )-case

Let V be a 2n dimensional real vector space and let C := C(V ) be its twistor space with
complex structure IC. To obtain an example of the setup of Theorem 5.1.1, consider the
trivial bundle E = C × V −→ C along with its trivial connection d. By Proposition 3.4.13,
φ, defined by φ|K = K, is a natural holomorphic section of (C(E),J (d,IC)). As for a parallel
section, we will choose the constant section J , a fixed element of C, so that dJ = 0. By
Theorem 5.1.1, we then have

Proposition 6.1.1. Given J ∈ C, the following are holomorphic subvarieties of C:

1) C≤s(J) = {K ∈ C| Rank[J,K] ≤ 2s}
2) C(≤r,±)(J) = {K ∈ C| Rank(J ±K) ≤ 2r}.

We also have the subvarieties C#(J) that correspond to the M# of Definition 5.2.1. More
explicitly, C#(J) will stand for any of the following:

1) C(m1,∗)(J) = {K ∈ C| dimKer(J +K) = 2m1}
2) C(∗,m−1)(J) = {K ∈ C| dimKer(J −K) = 2m−1}
3) C(m1,m−1)(J) = C(m1,∗) ∩ C(∗,m−1).

Notation 6.1.2. When referring to the above subvarieties, we will usually drop the “(J)”
factors and will denote all of them by Cδ.

We will now be studying different properties of the Cδ. In particular, we will show that
the C# are complex submanifolds that form several stratifications of C and will determine
their dimensions and describe their tangent bundles.

To accomplish this, we will be using the following holomorphic embedding of C into the
Grassmannians of n-planes in VC = V ⊗ C:
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Lemma 6.1.3. The map

ψ : C −→ Grn(VC)

K −→ V 0,1
K ,

where V 0,1
K is the −i eigenspace of K, is a holomorphic embedding whose image is open in

Grn(VC).

Proof. See Proposition 4.1.1.

We then have

Proposition 6.1.4.

1) ψ(C(≤r,+)) = {W ∈ Imψ| dimC(V 1,0
J ∩W ) ≥ n− r}

2) ψ(C(m1,∗)) = {W ∈ Imψ| dimC(V 1,0
J ∩W ) = m1}

3) ψ(C(∗,m−1)) = {W ∈ Imψ| dimC(V 0,1
J ∩W ) = m−1}.

Analogous formulas hold for C(≤r,−) and C(m1,m−1).

We thus find that ψ maps C(m1,∗), C(∗,m−1) and C(≤r,±) to open subsets of either Gr(s)

or Gr(≥s) in Grn(VC), where Gr(s) = {W ∈ Grn(VC)| dimC(V 0 ∩W ) = s} for some V 0 ∈
Grn(VC). Gr(s) is a type of Schubert cell in Grn(VC) and we will now review some of its
properties.

Gr(s) : Let V be a real vector space of dimension 2n and let V 0 ∈ Grn(VC). As above,
define Gr(s) = {W ∈ Grn(VC)| dimC(V 0 ∩W ) = s}. We will now introduce certain holo-
morphic charts for Grn(VC) that will, in particular, be used to show that Gr(s) is a complex
submanifold.

To begin, let W ∈ Gr(s) and split

VC = W ⊕W ′ = (W1 ⊕W2)⊕ (W ′
1 ⊕W ′

2),

where W1 = V 0 ∩W , W1 ⊕W ′
2 = V 0 and W2 and W ′

1 are appropriate complements.
Now consider the corresponding holomorphic chart for Grn(VC) about W :

ρ : End(W,W ′) −→ Grn(VC)

A −→ Graph(A) = {w + Aw ∈ VC| w ∈ W}.

We then have

Proposition 6.1.5. Let A =

(W1 W2

W ′
1 a1 a2

W ′
2 a3 a4

)
∈ End(W,W ′). Then Graph(A) ∩ V 0 =

{w + Aw ∈ VC| w ∈ kera1} and its dimension equals that of kera1.

Proof. Let w+Aw ∈ Graph(A) and set w = w1 +w2 ∈ W1⊕W2. Then w+Aw ∈ V 0 if and
only if w2 + a1w1 + a2w2 = 0, which in turn is equivalent to w = w1 ∈ kera1.
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If we define

Endt(W,W
′) = {

(W1 W2

W ′
1 a1 a2

W ′
2 a3 a4

)
∈ End(W,W ′)| dimKera1 = t}

we then have

Corollary 6.1.6. The map

Endt(W,W
′) −→ Gr(t) ∩ Imρ

A −→ Graph(A)

is well defined and bijective (here, t ∈ {0, 1, ..., s}). Moreover, when t = s this map gives a
holomorphic chart for Gr(s) about W .

Using the above corollary, it is straightforward to show:

Corollary 6.1.7.

1) Gr(s) is a complex submanifold of Grn(VC) of dimension n2 − s2.

2) Gr(s) equals Gr(≥s) and is a holomorphic subvariety of dimension n2 − s2.

Properties of the Cδ: By then combining Proposition 6.1.4 and Corollary 6.1.7, we
obtain

Proposition 6.1.8.

1) C(m1,∗) is a complex submanifold of C of dimension n2 −m2
1.

2) C(≤r,±) is a holomorphic subvariety of dimension n2 − (n− r)2.

An analogous result holds for C(∗,m−1).

Let us now consider some properties of C(m1,m−1) = C(m1,∗) ∩ C(∗,m−1).

Proposition 6.1.9. C(m1,m−1) is nonempty if and only if m1 +m−1 ≤ n.

Proof. If K ∈ C(m1,m−1) then by Lemma 5.2.3, dimKer[J,K] = 2(m1 +m−1) ≤ 2n.
Conversely, given m1,m−1 ∈ Z≥0 such that m1 +m−1 ≤ n, we will define a K ∈ C(m1,m−1)

as follows. First consider the J-invariant splitting:

V =
⊕

i∈{1,2,...,l}

< vi, Jvi > ⊕V1 ⊕ V−1,

where dimV1 = 2m1 and dimV−1 = 2m−1.
Now define K ∈ C by setting

• Kvi = −rJvi and KJvi = r−1vi, where r ∈ R− {0,±1}
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• Kw1 = −Jw1 and Kw−1 = Jw−1, ∀ w1 ∈ V1 and w−1 ∈ V−1.

So defined, one may check that K is indeed an element of C(m1,m−1).

Supposing that m1 + m−1 ≤ n, we will now show that C(m1,∗) and C(∗,m−1) intersect
transversally, thus proving, in particular, that C(m1,m−1) is a complex manifold. To show this,
we will first describe TKC(m1,∗) and TKC(∗,m−1) in TKC = gl{K} := {A ∈ gl(V )| {A,K} = 0}.

Proposition 6.1.10.

1) TKC(m1,∗) = {A ∈ gl{K}| A : Ker(J +K)→ Im(J +K)}
2) TKC(∗,m−1) = {A ∈ gl{K}| A : Ker(J −K)→ Im(J −K)}
3) If m1 +m−1 ≤ n then C(m1,∗) and C(∗,m−1) intersect transversally.

Proof. To prove Part 1) of the proposition, let K ∈ C(m1,∗) and v ∈ ker(J +K) and suppose
K(t) is a curve in C(m1,∗) that satisfies K(0) = K.

As the rank of J + K(t) is independent of t, one may extend v to a curve v(t) in V so
that

(J +K(t))v(t) = 0.

Taking d
dt
|t=0 of the above expression gives

K ′v = −(J +K)v′(0),

which shows that

TKC(m1,∗) ⊂ {A ∈ gl{K}| A : Ker(J +K)→ Im(J +K)}.

That these subspaces are indeed equal then follows from the fact that they have the same
dimensions.

The proof of Part 2) of the proposition is similar and that of Part 3) is straightforward.

Corollary 6.1.11. For m1 + m−1 ≤ n, C(m1,m−1) is a complex submanifold of dimension
n2 −m2

1 −m2
−1.

Since by Equation 5.2.1

Cs =
⋃

m1+m−1=n−s

C(m1,m−1),

it follows that Cs is a disjoint union of complex submanifolds of varied dimensions.
Lastly note that by then using the different C# we can stratify C in several ways, i.e.,

they can be used to decompose C into disjoint unions of complex submanifolds.

6.1.2 T -case

Let (V, g) be a 2n dimensional real vector space with a positive definite metric and let
T := T (V, g) be the associated twistor space. Similar to the C−case of the previous section,
we have
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Proposition 6.1.12. Given J ∈ T , the following are holomorphic subvarieties of T :

1) T≤s(J) = {K ∈ T | Rank[J,K] ≤ 2s}
2) T(≤r,±)(J) = {K ∈ T | Rank(J ±K) ≤ 2r}.

We also have the subvarieties T #(J) that correspond to the M# of Definition 5.2.1 and
which will stand for T (m1,∗)(J), T (∗,m−1)(J) and T (m1,m−1)(J).

Notation 6.1.13. When referring to the above subvarieties, we will usually drop the “(J)”
factors and will denote all of them by T δ.

We will now study the T δ in two ways. The first will be to embed them into a certain
space of maximal isotropics associated to VC := V ⊗C and the second will be to study them
directly inside of T by using special charts.

Maximal Isotropics:
To begin, let

MI(VC) = {W ∈ Grn(VC)| g(w1, w2) = 0, ∀ w1, w2 ∈ W}

be the space of maximal isotropics in VC. Considering it as a complex submanifold of
Grn(VC), we have

Lemma 6.1.14. The map

ψ : T −→MI(VC)

K −→ V 0,1
K ,

where V 0,1
K is the −i eigenspace of K, is a biholomorphism.

Proof. See Proposition 4.1.2.

Proposition 6.1.15.

1) ψ(T(≤r,+)) = {W ∈MI(VC)| dimC(V 1,0
J ∩W ) ≥ n− r}

2) ψ(T (m1,∗)) = {W ∈MI(VC)| dimC(V 1,0
J ∩W ) = m1}

3) ψ(T (∗,m−1)) = {W ∈MI(VC)| dimC(V 0,1
J ∩W ) = m−1}.

Analogous formulas hold for T(≤r,−) and T (m1,m−1).

It follows that ψ maps T (m1,∗), T (∗,m−1) and T(≤r,±) to either MI(s) or MI(≥s) in MI(VC),
where MI(s) = {W ∈MI(VC)| dimC(V 0 ∩W ) = s} for some V 0 ∈MI(VC). MI(s) is a type
of Schubert cell in MI(VC) and we will now review some of its properties.

MI(s) : As above let (V, g) be a real vector space of dimension 2n with a positive definite
metric and for V 0 ∈MI(VC), define MI(s) = {W ∈MI(VC)| dimC(V 0 ∩W ) = s}.

To study the MI(s), we will begin by defining certain holomorphic charts for MI(VC)
that will be used, in particular, to show that the MI(s) are complex submanifolds.

If we let W ∈MI(s) we then have:
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Proposition 6.1.16. One may split

VC = W ⊕W ′ = (W1 ⊕W2)⊕ (W1 ⊕W ′
2),

where

• W ′ is a maximal isotropic

• W1 = V 0 ∩W and W1 ⊕W ′
2 = V 0

• g(w1, w2) = 0, ∀ w1 ∈ W1 and w2 ∈ W2.

Proof. Using Lemma 6.1.14, let V 0 = V 0,1
J andW = V 0,1

K , where J,K ∈ T satisfy dimKer(J−
K) = 2s.

Consider then the following orthogonal and J,K-invariant splitting:

V = Ṽ ⊕ ker(J −K),

where Ṽ = Im(J −K).
If we complexify, we may further split

Ṽ ⊗ C = (Ṽ )0,1
J ⊕ (Ṽ )0,1

K

and

ker(J −K)⊗ C = V 0,1
J ∩ V 0,1

K ⊕ V 1,0
J ∩ V 1,0

K .

Thus
VC = (V 0,1

J ∩ V 0,1
K ⊕ (Ṽ )0,1

K )⊕ (V 1,0
J ∩ V 1,0

K ⊕ (Ṽ )0,1
J ),

which satisfies the conditions listed in the proposition.

Given the above splitting for VC, consider the corresponding holomorphic chart for
MI(VC) about W :

ρ : Endg(W,W ′) −→MI(VC)

A −→ Graph(A) = {w + Aw ∈ VC| w ∈ W},

where Endg(W,W ′) = {A ∈ End(W,W ′)| g(Aw, w̃) = −g(w,Aw̃) ∀w, w̃ ∈ W}.
We will now describe how each Graph(A) intersects V 0:

Proposition 6.1.17. Given A =

(W1 W2

W1 a1 a2

W ′
2 a3 a4

)
∈ Endg(W,W ′), the Graph(A) ∩ V 0 =

{w + Aw ∈ VC| w ∈ kera1} and its dimension equals that of kera1.

Proof. This follows from Proposition 6.1.5.
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If we define

Endgt (W,W
′) = {

(W1 W2

W1 a1 a2

W ′
2 a3 a4

)
∈ Endg(W,W ′)| dimKera1 = t}

then by the above proposition we have:

Corollary 6.1.18. The map

Endgt (W,W
′) −→MI(t) ∩ Imρ

A −→ Graph(A)

is well defined and bijective. Moreover, when t = s this map gives a holomorphic chart for
MI(s) about W .

Note that in appropriately chosen bases, A =

(W1 W2

W1 a1 a2

W ′
2 a3 a4

)
∈ Endg(W,W ′) is a skew

matrix. Hence

Endg(W,W ′) =

{ ⋃
t∈{0,2,4,...,s}End

g
t (W,W

′) if s is even⋃
t∈{1,3,5,...,s}End

g
t (W,W

′) if s is odd.

It is then straightforward to prove the following proposition:

Proposition 6.1.19.

1) MI(VC) is a disjoint union of the following two open subsets:⋃
t=even

MI(t) and
⋃
t=odd

MI(t).

2) MI(s) is a complex submanifold of dimension
n(n− 1)− s(s− 1)

2
.

3) MI(s) equals
⋃

k∈Z≥0

MI(s+2k) and is a holomorphic subvariety of

dimension
n(n− 1)− s(s− 1)

2
.

4) MI(≥s) = MI(s) ∪MI(s+1) and is a holomorphic subvariety of MI(VC).

Properties of the T δ: If we return to the setup of (V, g) with a fixed element J ∈ T
then by Proposition 6.1.15 we have a result analogous to Proposition 6.1.19 but for T instead
of MI(VC). For future reference we provide the details:
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Proposition 6.1.20.

1) T is a disjoint union of the following two open subsets:⋃
m1=even

T (m1,∗) and
⋃

m1=odd

T (m1,∗).

2) T (m1,∗) is a complex submanifold of dimension
n(n− 1)−m1(m1 − 1)

2
.

3) T (m1,∗) equals
⋃

k∈Z≥0

T (m1+2k,∗) and is a holomorphic subvariety of

dimension
n(n− 1)−m1(m1 − 1)

2
.

4) T(≤r,+) = T (n−r,∗) ∪ T (n−r+1,∗) and is a holomorphic subvariety of T .

Analogous results hold for T(≤r,−) and T (∗,m−1).

Another way to prove Part 1) of the above proposition is to use the following:

Proposition 6.1.21.

1)
⋃
m1=even T (m1,∗) = {K ∈ T | J and K induce the same orientations}.

2)
⋃
m1=odd T (m1,∗) = {K ∈ T | J and K induce opposite orientations}.

The above holds true if we were to replace T (m1,∗) with T (∗,m−1) and J with −J .

Proof. The proof follows from Proposition 5.2.4.

Remark 6.1.22. Below, we will present an alternative derivation of (the entire) Proposition
6.1.20 without using maximal isotropics.

Let us now consider some properties of T (m1,m−1) = T (m1,∗) ∩ T (∗,m−1).

Proposition 6.1.23. T (m1,m−1) is nonempty if and only if n−m1 −m−1 = 2k (k ∈ Z≥0).

Proof. If K ∈ T (m1,m−1) then by Lemma 5.2.3, dimKer[J,K] = 2(m1 +m−1) and by Propo-
sition 5.2.6, rank[J,K] = 4k. Hence 2n = 4k + 2(m1 + m−1). The proof of the rest of the
proposition is straightforward.

Supposing that n−m1−m−1 = 2k, we will now show that T (m1,∗) and T (∗,m−1) intersect
transversally. To do so, we will first describe TKT (m1,∗) and TKT (∗,m−1) in TKT = o{K} :=
{A ∈ o(V, g)| {A,K} = 0}. If we split V = Im[J,K] ⊕ ker(J + K) ⊕ ker(J −K) and let
P0, P1 and P−1 be the corresponding projection operators, we then have

Proposition 6.1.24.

1) TKT (m1,∗) = {A ∈ o{K}| P1AP1 = 0}
2) TKT (∗,m−1) = {A ∈ o{K}| P−1AP−1 = 0}
3) If n−m1 −m−1 = 2k, for k ∈ Z≥0, then T (m1,∗) and T (∗,m−1)

intersect transversally.
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Proof. The proof is similar to that of Proposition 6.1.10.

Corollary 6.1.25. For n−m1 −m−1 = 2k (k ∈ Z≥0), T (m1,m−1) is a complex submanifold
of dimension 1

2
(n(n− 1)−m1(m1 − 1)−m−1(m−1 − 1)).

Since
Ts =

⋃
m1+m−1=n−s

T (m1,m−1),

we find that Ts is a disjoint union of complex submanifolds of varied dimensions.
Other Charts for T (V, g): We will now describe a C∞ chart for T about K ∈

T (m1,m−1)(J) that can be used to derive Proposition 6.1.20 without using maximal isotropics.
There is of course the standard chart that is induced from the map

o{K} −→ T
A −→ exp(A)Kexp(−A),

where o{K} = {A ∈ o(V, g)| {A,K} = 0}. However, this chart has the disadvantage that

it does not allow us to immediately determine in which T (m′1,m
′
−1) exp(A)Kexp(−A) lies.

Instead, let us use J and K to decompose o(V, g) into

uJ + uK ⊕ o{J} ∩ o{K},

where uK = {A ∈ o(V, g)| [A,K] = 0}. (Note that this is an orthogonal splitting of o(V, g),
where the metric used is −tr.) Letting DJ be a complement to uJ ∩ uK in uJ , consider then
the map

µ : DJ ⊕ o{J} ∩ o{K} −→ T
(A,B) −→ exp(A) · exp(B) ·K,

where exp(B) ·K := exp(B)Kexp(−B). This map is a local diffeomorphism from a neigh-
borhood about the origin in the domain to one about the point K in the range. We will use
it to define C∞ charts for the T #(J) about K as follows: First consider the orthogonal and
J,K-invariant splitting of V = V0⊕V1⊕V−1, where V±1 = ker(J±K), and the corresponding
splitting of o{J} ∩ o{K} = o{J} ∩ o{K}|V0 ⊕ o{J}|V1 ⊕ o{J}|V−1 . We then have:

Proposition 6.1.26. Suppose K ∈ T (m1,m−1)(J) and let A ∈ DJ and B = B0 +B1 +B−1 ∈
o{J} ∩ o{K}|V0 ⊕ o{J}|V1 ⊕ o{J}|V−1. There exists a neighborhood N in o{J} ∩ o{K} about the
origin such that if B ∈ N then

1) µ(A,B) ∈ T (m1,∗)(J) if and only if B1 = 0

2) µ(A,B) ∈ T (∗,m−1)(J) if and only if B−1 = 0

3) µ(A,B) ∈ T (m1,m−1)(J) if and only if B1 = 0 and B−1 = 0.

Proof. First note that since A ∈ uJ , the dimKer(J ± exp(A) · exp(B) ·K) = dimKer(J ±
exp(B) ·K). Focusing on the proof of Part 1) of the proposition, let us split J = J0⊕J1⊕J−1

according to the decomposition of V = V0 ⊕ V1 ⊕ V−1. It then follows that for small enough
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B ∈ o{J} ∩ o{K}, the ker(J + exp(B) ·K) = ker(J1 + exp(B1) ·K1). Hence the dimKer(J +
exp(B) ·K) = 2m1 if and only if J1 = −exp(B1) ·K1. As K1 = −J1 and B1 ∈ o{J}|V1 , this
is equivalent to exp(2B1) = 1 (as endomorphisms of V1). For small enough B, this in turn
holds if and only if B1 = 0. The other parts of the proposition are proved similarly.

This then defines charts for the T #(J) that together with Proposition 6.1.12 can be used
to derive Proposition 6.1.20 without using maximal isotropics.

6.2 Twistors of Bundles

We will now introduce the holomorphic subvarieties Cδ and T δ for the case when the
twistor spaces are associated to bundles. Their properties will be used in Chapter 7 to
derive our main results about the general M δ.

6.2.1 C-case

Let E −→ (M, I) be a real rank 2n bundle fibered over a complex manifold and equipped
with

• a connection ∇ that has (1,1) curvature

• a section J of π : C(E) −→M satisfying ∇J = 0.

We will use J to decompose (C(E),J (∇,I)) into complex submanifolds and holomorphic
subvarieties as follows. First consider the bundle π∗E with the connection π∗∇ that has
(1,1) curvature with respect to J (∇,I). By Proposition 3.4.13, φ, defined by φ|K = K, is a
natural holomorphic section of (C(π∗E),J (π∗∇,I)) −→ C(E), where I = J (∇,I). Since π∗J
is a parallel section, by Theorem 5.1.1 we obtain the following holomorphic subvarieties in
C := C(E).

Proposition 6.2.1. Let J ∈ Γ(C) satisfy ∇J = 0. The following are holomorphic subvari-
eties of (C,J (∇,I)):

1) C≤s(J) = {K ∈ C| Rank[J,K] ≤ 2s}
2) C(≤r,±)(J) = {K ∈ C| Rank(J ±K) ≤ 2r}.

We also have the subvarieties C#(J) that correspond to the M# of Definition 5.2.1 and
which will stand for C(m1,∗)(J), C(∗,m−1)(J) and C(m1,m−1)(J).

Notation 6.2.2. When referring to the above subvarieties, we will usually drop the “(J)”
factors and will denote all of them by Cδ.

Using the fact that the C# are C∞ fiber bundles together with the results of Propositions
6.1.8 and 6.2.1, we arrive at the following:

Proposition 6.2.3.

1) The C# are complex submanifolds of C and have the following codimensions:
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a) codimCC(m1,∗) = m2
1

b) codimCC(∗,m−1) = m2
−1

c) codimCC(m1,m−1) = m2
1 +m2

−1.

2) C(≤r,±) is a holomorphic subvariety of C of codimension (n− r)2.

We can also describe TKC#(J) as follows. First recall that ∇ induces a splitting of TC
into V C ⊕H∇C, where VKC = TKC(Eπ(K)) and H∇C is a certain horizontal distribution (see
Lemma 2.2.4). Since ∇J = 0, we have

Proposition 6.2.4. TKC#(J) = VKC#(J)⊕H∇KC.

Note that VKC#(J) = TKC(Eπ(K))
#(J) was already described in Proposition 6.1.10.

Proof of Proposition 6.2.4. By Section 2.2, a general element of H∇KC is given by dK(t)
dt
|t=0,

where K(t) is the parallel translate of K = K(0) (using ∇) along some curve in M . The
proof of the proposition then follows from the fact that since ∇J = 0, K(t) ∈ C(m1,m−1)(J)
for some (m1,m−1).

6.2.2 T -case

Let (E, g) −→ (M, I) be a real rank 2n bundle fibered over a complex manifold and
equipped with a fiberwise metric. Also let

• ∇ be a metric connection on E that has (1,1) curvature and

• J be a section of π : T (E, g) −→M that satisfies ∇J = 0.

If we consider T := T (E, g) with its complex structure J (∇,I) then, similar to the C−case
of the previous section, we have

Proposition 6.2.5. Let J ∈ Γ(T ) satisfy ∇J = 0. The following are holomorphic subvari-
eties of (T ,J (∇,I)):

1) T≤s(J) = {K ∈ T | Rank[J,K] ≤ 2s}
2) T(≤r,±)(J) = {K ∈ T | Rank(J ±K) ≤ 2r}.

We also have the subvarieties T #(J) that correspond to the M# of Definition 5.2.1 and
which will stand for T (m1,∗)(J), T (∗,m−1)(J) and T (m1,m−1)(J).

Notation 6.2.6. When referring to the above subvarieties, we will usually drop the “(J)”
factors and will denote all of them by T δ.

Note it is straightforward to show that the T # are in fact C∞ fiber bundles. Using this
together with the results of Propositions 6.1.20 and 6.2.5, we arrive at
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Proposition 6.2.7.

1) The T # are complex submanifolds of T and have the following codimensions:

a) codimCT (m1,∗) = m1(m1−1)
2

b) codimCT (∗,m−1) = m−1(m−1−1)
2

c) codimCT (m1,m−1) = m1(m1−1)+m−1(m−1−1)
2

.

2) T (m1,∗) =
⋃
k∈Z≥0

T (m1+2k,∗) and is a holomorphic subvariety of codimension m1(m1−1)
2

.

3) T(≤r,+) = T (≥n−r,∗) = T (n−r,∗) ∪ T (n−r+1,∗).

Parts 2) and 3) are also true if we were to replace T(≤r,+) with T(≤r,−) and T (m1,∗) with
T (∗,m−1).

Let us now describe TKT #(J). First recall that ∇ induces a splitting of TT into V T ⊕
H∇T , where VKT = TKT (Eπ(K)) and H∇T is a certain horizontal distribution (see Lemma
2.2.5). We then have

Proposition 6.2.8. TKT #(J) = VKT #(J)⊕H∇KT .

Note that VKT #(J) = TKT (Eπ(K))
#(J) was already described in Proposition 6.1.24.

Proof of Proposition 6.2.8. The proof is similar to that of Proposition 6.2.4.
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Chapter 7

General Theorems about the Mδ

7.1 A Twistor Point of View

Let us return to the general setup of Chapter 5 and consider the respective parallel and
holomorphic sections J and K of (C(E),J (∇,I)) −→ (M, I). We are now prepared to carry
out the set of ideas that were laid out at the end of that chapter—to realize the M δ :=
{M≤s,M(≤r,±),M

#} as the intersection of certain complex submanifolds and subvarieties in
C and to use this point of view to derive a number of corollaries about the M δ.

To begin, we will realize the M# as the intersection of complex submanifolds in C: First
note that since ∇J = 0, by the previous section the C#(J) are complex submanifolds of C.
Secondly, since K : M −→ C is holomorphic, we can use it to holomorphically embed M
into C. We then have:

K(M#) = K(M) ∩ C#(J)

or alternatively
M# = K−1(C#(J)). (7.1.1)

To realize the other M δ inside of C, note that in the above equations we can respectively
replace M# with M≤s or M(≤r,±) and C#(J) with C≤s(J) or C(≤r,±)(J).

If we now equip E with a fiberwise metric g and choose ∇ to be a metric connection and
J,K ∈ Γ(T ) then it is clear that Equation 7.1.1 and its surrounding discussion would still be
true if we were to replace C with T . This then allows us to view the M δ as the intersection
of complex submanifolds and subvarieties inside the twistor space T .

By using the properties of the subvarieties Cδ and T δ which were derived in the previous
section, we will now demonstrate two of our main corollaries of this twistorial point of view
of the M δ.

7.2 Bounds on the M δ

As a first corollary, we will bound the dimensions of the M δ. We will find that the bounds
depend on whether J and K are sections of C or of T .
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7.2.1 C−case

Let us consider the setup of Theorem 5.1.1 where J and K are respectively parallel and
holomorphic sections of (C(E),J (∇,I)) −→ (M, I). Since K : M −→ C is a holomorphic map
and, by the above discussion, M(≤r,±) = K−1(C(≤r,±)(J)), it follows from general theory that
if M(≤r,±) is nonempty in M then the codimM(≤r,±) ≤ codimC(≤r,±)(J). As we have already
determined the codimensions of the C(≤r,±)(J) in Proposition 6.2.3, we have

Proposition 7.2.1. Let dimCM = m. If M(≤r,±) is nonempty then the complex dimension
of each of its components is ≥ m− (n− r)2.

Remark 7.2.2. The above proposition can also be proved in another way by applying the
following lemma (see [8]) to the first two holomorphic bundle maps given in Proposition
5.1.3.

Lemma 7.2.3. Let E and F be two rank n holomorphic vector bundles fibered over a complex
manifold N and let A : E −→ F be a holomorphic bundle map. The complex codimension of

N≤k = {x ∈ N | RankA|x ≤ k}

is ≤ (n− k)2.

Either by using an analysis that is similar to the one first used to derive Proposition 7.2.1
or by deriving it directly from that proposition, we have:

Proposition 7.2.4. Let dimCM = m. If M# is nonempty then the complex dimension of
each of its components is bounded as follows:

1) dimM (m1,∗) > m−m2
1

2) dimM (∗,m−1) > m−m2
−1

3) dimM (m1,m−1) > m−m2
1 −m2

−1.

7.2.2 T -case

Let us now consider the setup of Section 5.2.1 so that J and K are respectively parallel
and holomorphic sections of (T (E, g),J (∇,I)) −→ (M, I). We will first focus on the M(≤r,+).
By using Proposition 5.2.4, we may split it into two disjoint open subsets:

M(≤r,+) = M (≥n−r,∗)
even ∪M (≥n−r+1,∗)

even ,

where
M (≥m1,∗)

even :=
⋃

k∈Z≥0

M (m1+2k,∗).

To bound the dimensions of M
(≥m1,∗)
even , we will express this subvariety as K−1(T (≥m1,∗)

even (J)),

where T (≥m1,∗)
even (J) is analogously defined and is, by Proposition 6.2.7, a holomorphic subva-

riety of T . As in the previous section, it then follows that the codimM
(≥m1,∗)
even ≤

codimT (≥m1,∗)
even (J) and since we have already determined the codimensions of the T (≥m1,∗)

even (J)
in Proposition 6.2.7, we obtain:
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Theorem 7.2.5. Let dimCM = m. If M
(≥m1,∗)
even is nonempty then the complex dimension of

each of its components is ≥ m− m1(m1−1)
2

.

An analogous statement is true for M
(∗,≥m−1)
even .

Either by using a similar analysis or by deriving it directly from the above theorem, we
obtain:

Theorem 7.2.6. If M# is nonempty then the complex dimension of each of its components
is bounded as follows:

1) dimM (m1,∗) > m− m1(m1 − 1)

2

2) dimM (∗,m−1) > m− m−1(m−1 − 1)

2

3) dimM (m1,m−1) > m− m1(m1 − 1) +m−1(m−1 − 1)

2
.

We will now list some cases that we will focus on in Chapter 8.

Corollary 7.2.7. The following are bounds on the complex dimensions of some of the M#:

1) dimM (1,2), dimM (2,1) > m− 1

2) dimM (2,2) > m− 2

3) dimM (2,3), dimM (3,2) > m− 4

4) dimM (∗,2), dimM (2,∗) > m− 1.

Remark 7.2.8. Note that the bounds given in 1) follow from those in 4) since if M (1,2) is
nonempty then it is open in M (∗,2).

7.3 The M# along Curves

We will now apply the twistor point of view of Section 7.1 to derive another corollary
about the M#. Unlike the previous one, this corollary will not use the holomorphicity of
the twistor space C, rather it will just use the descriptions of TKC#(J) and TKT #(J) that
were given in Propositions 6.2.4 and 6.2.8. To describe it, consider the setup of a rank 2n
real vector bundle E −→M equipped with a connection ∇. Also let J and K be sections of
π : C(E) −→M such that ∇J = 0. Note that we do not impose any conditions on K or on
the curvature of ∇; nor do we require M to be even dimensional.

Given x in M# and v ∈ TxM , the goal that we are currently working on is to derive
necessary and sufficient conditions for there to exist a curve γ in M such that γ′(0) = v
and γ(t) ∈ M# for at least small t ∈ R. We are interested in these conditions because they
can be used to derive both upper and lower bounds on the dimensions of the M# (see the
discussion below and [12]).

As a first step, we will now show how to use twistor spaces to give a natural geometrical
derivation of certain necessary conditions on ∇vK.
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Proposition 7.3.1. Let x ∈ M# and suppose that there is a curve γ in M such that
γ(0) = x, γ(t) lies in M# for small t ∈ R and γ′(0) = v. Then

1) for M# = M (m1,∗),∇vK : Ker(J +K) −→ Im(J +K)

2) for M# = M (∗,m−1),∇vK : Ker(J −K) −→ Im(J −K)

3) for M# = M (m1,m−1),∇vK : Ker(J +K) −→ Im(J +K) and

∇vK : Ker(J −K) −→ Im(J −K).

Proof. As γ(t) ∈M#, K(γ(t)) ∈ C#(J), so that K∗v ∈ TKC#(J). Since by Proposition 6.2.4

TKC#(J) = VKC#(J)⊕H∇KC,

the vertical projection P∇ of K∗v lies in VKC#(J) = TKC(Ex)#(J). Now by Proposition
2.2.6, P∇ = π∗∇φ, where φ ∈ Γ(π∗EndE) is defined by φ|j = j, and since

π∗∇K∗vφ = π∗∇K∗v(π
∗K) = ∇vK,

we find that ∇vK ∈ TKC(Ex)#(J). The proof of the proposition then follows from Proposi-
tion 6.1.10.

Remark 7.3.2. Although Proposition 7.3.1 can certainly be proved by more direct methods
that do not involve twistor spaces, we are currently using the twistor point of view of the M#

to derive stronger results (at least in the case when there are certain differential conditions
imposed on K).

Let us now further suppose that E is equipped with a fiberwise metric g and J and K are
sections of π : T (E, g) −→M . In this case we have derived a result analogous to Proposition
7.3.1. To state it, let us first orthogonally split E = Im[J,K] ⊕ ker(J + K) ⊕ ker(J −K)
at the point x ∈M and define P0, P1 and P−1 to be the corresponding projection operators.
We then have:

Proposition 7.3.3. Let x ∈ M# and suppose that there is a curve γ in M such that
γ(0) = x, γ(t) lies in M# for small t ∈ R and γ′(0) = v. Then

1) for M# = M (m1,∗), P1(∇vK)P1 = 0

2) for M# = M (∗,m−1), P−1(∇vK)P−1 = 0

3) for M# = M (m1,m−1), P1(∇vK)P1 = 0 and P−1(∇vK)P−1 = 0.

Proof. The proof follows directly from Proposition 7.3.1 and the fact that Im(J + K) =
Im[J,K]⊕ ker(J −K). Note that if we also assume that ∇g = 0 then one can alternatively
derive the above proposition by replacing C in the proof of Proposition 7.3.1 with T and by
using the description of TKT (Ex)

#(J) given in Proposition 6.1.24.

It follows that if there exists a v ∈ TxM such that P1(∇vK)P1 6= 0 then M cannot equal
M (m1,∗) along any curve γ that satisfies γ′(0) = v, i.e., the dimension of ker(J + K) along
any such γ must always change. Hence Propositions 7.3.1 and 7.3.3 can be used to derive
upper bounds on the dimensions of the M#; see [12] for explicit examples.
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We will now consider the holomorphic twistor spaces of bihermitian manifolds and will
apply Theorem 7.2.6 and Proposition 7.3.3 to study certain Poisson structures on the man-
ifold.
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Chapter 8

Bihermitian Manifolds

8.1 Subvarieties and Bundle Maps

Let (M, g, J+, J−) be a bihermitian manifold, as described in Section 3.3.2, so that

∇+J+ = 0 and ∇−J− = 0,

where ∇± = ∇Levi ± 1
2
g−1H for a closed three form H. To build holomorphic subvarieties

inside of (M,J+), first note that by Corollary 3.3.4, the total space of (T (TM),J (∇−,J+)) −→
(M,J+) is a complex manifold. Also, since ∇−J− = 0, J− is a parallel section of T and, by
Proposition 3.4.11, J+ is a holomorphic section. (Note that the holomorphicity condition on
J+ is equivalent to J+∇−J+ = ∇−J+

J+, which in turn can be shown to be equivalent to the
integrability condition on J+.) As these results are also true if we were to interchange +
with −, by Theorem 5.1.1 we have

Proposition 8.1.1. Let (M, g, J+, J−) be a bihermitian manifold. The following are holo-
morphic subvarieties of M with respect to both J+ and J−:

1) M≤s = {x ∈M | Rank[J+, J−]|x ≤ 2s}
2) M(≤r,±) = {x ∈M | Rank(J+ ± J−)|x ≤ 2r}.

Let us now fix the complex structure J+ on M . As in the general case of Section 5.1,
to derive the holomorphicity of the above subvarieties in (M,J+), we will first consider
the following holomorphic bundles: T 1,0

− and T 0,1
− , equipped with the ∂-operator ∇−(0,1), as

well as T 1,0
+ and T 0,1

+ , equipped with the ∂-operator (∇−)
′(0,1) := ∇−(0,1) + 1

2
(∇−(0,1)J+)J+.

By Proposition 3.4.9, this latter (0,1) connection equals ∇Ch(0,1), where ∇Ch is the Chern
connection on TM that is associated to (g, J+). (Note that ∇Ch(0,1) = ∇−(0,1) on T 0,1

+ .)
By Proposition 5.1.3, we then have:

Proposition 8.1.2. Let (M, g, J+, J−) be a bihermitian manifold. The following are holo-
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morphic maps between the specified bundles that are fibered over (M,J+):

1) J+ + J− : T 0,1
+ −→ T 0,1

− 2) J+ − J− : T 0,1
+ −→ T 1,0

−

3) J+ + J− : T 1,0
− −→ T 1,0

+ 4) J+ − J− : T 0,1
− −→ T 1,0

+

5) [J+, J−] : T 0,1
+ −→ T 1,0

+ .

With the appropriate holomorphic structures on the bundles, the above statement is also true
if we were to interchange + with −.

Corollary 8.1.3. [J+, J−]g−1 ∈ Γ(∧2TM) induces a holomorphic section of ∧2T 1,0
+ −→

(M,J+) and of ∧2T 1,0
− −→ (M,J−).

Remark 8.1.4. Note that Corollary 8.1.3 was first derived in [19] by using other methods
and thus the holomorphicity of M≤s is already known in the literature. However, the holo-
morphicity of the other maps in Proposition 8.1.2 as well as the holomorphicity of M(≤r,±)

are new to the literature. 1

Remark 8.1.5. By Proposition 5.1.4, the holomorphicity of [J+, J−], as given in Part 5) of
Proposition 8.1.2, is independent of the bihermitian condition dH = 0.

8.2 Bounds and Poisson Geometry

Let us consider the M# in a bihermitian manifold that correspond to those of Definition
5.2.1. It immediately follows that their dimensions are bounded by the ones given in Theorem
7.2.6. The present goal is to use known Poisson structures on M to derive additional bounds
on the dimensions of the M# that are stronger than some of the bounds given in that
theorem. At the same time, we will use these latter bounds in Section 8.3 to derive an
existence result about certain M# in CP3 that cannot be derived by using the bounds from
Poisson geometry.

8.2.1 Motivation for Bounds

Before we specify the additional bounds for the M#, we would like to use Proposition
7.3.1 to motivate the reason that one should search for other bounds in the first place.
Indeed, one way to obtain lower bounds on the dimensions of an M# about a smooth point
x is to find curves such as γ in M that satisfy γ(0) = x and γ(t) ∈ M# (for at least small
t ∈ R). Although Proposition 7.3.1 does not give sufficient conditions for the existence of
such curves, it does give ones that are necessary. To specify them, first consider the following
orthogonal and J+, J− invariant splitting:

TxM = T0 ⊕ T1 ⊕ T−1 := Im[J+, J−]⊕ ker(J+ + J−)⊕ ker(J+ − J−).

Letting P0, P1 and P−1 be the corresponding projection operators, we then have

1We note here that Marco Gualtieri has derived the holomorphicity of the M(≤r,±) by using the generalized
geometry description of bihermitian geometry.
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Proposition 8.2.1. If there exists a curve γ of the above type and if γ′(0) = v then

1) for M# = M (m1,∗), P1[g
−1Hv, J+]P1 = 0

2) for M# = M (∗,m−1), P−1[g
−1Hv, J+]P−1 = 0

3) for M# = M (m1,m−1), P1[g
−1Hv, J+]P1 = 0 and P−1[g

−1Hv, J+]P−1 = 0.

Proof. The proof follows from Proposition 7.3.3 and the fact that ∇−J+ = −[g−1H, J+].

Remark 8.2.2. Note that if we found a w ∈ TxM such that P1[g
−1Hw, J+]P1 6= 0 then there

are no curves in M that satisfy γ′(0) = w and that lie in M (m1,∗) for at least small t ∈ R.
We will apply this result in [12] to derive upper bounds on the dimensions of the M# in
specific examples.

Now our main point is that we have proved

Proposition 8.2.3. The following holds true:

1) P1[g
−1Hv, J+]P1 = 0 ∀v ∈ T⊥1

2) P−1[g
−1Hv, J+]P−1 = 0 ∀v ∈ T⊥−1

3) P1[g
−1Hv, J+]P1 = 0 and P−1[g

−1Hv, J+]P−1 = 0 ∀v ∈ T0.

Proof. First note that by Section 3.3.2, the three form H in the connections ∇± = ∇Levi ±
1
2
g−1H is (1,2) + (2,1) with respect to both J+ and J−. This is equivalent to the conditions:
J+[g−1H, J+] = [g−1HJ+ , J+] and J−[g−1H, J−] = [g−1HJ− , J−].

Now consider

P1[g
−1Hv, J+]P1 = J−J+P1[g

−1Hv, J+]P1

= J−P1[g
−1HJ+v, J+]P1.

As P1J+ = −P1J−, this equals

−J−P1[g
−1HJ+v, J−]P1 = P1[g

−1HJ−J+v, J+]P1.

Hence
P1[g

−1H(J−J+−1)v, J+]P1 = 0,

which proves Part 1) of the proposition; the other parts are proved similarly.

Given v ∈ T0, for instance, it is then natural to ask whether there exists a curve γ in M
such that γ′(0) = v and γ(t) ∈ M (m1,m−1) for at least small t ∈ R. The present goal is to
show that such curves do indeed exist by using real Poisson geometry.

8.2.2 Background

Before we describe its connection to bihermitian geometry, let us first give some brief
background on Poisson geometry. Let (N, λ) be a real manifold that is equipped with a
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section of ∧2T . λ is then a real Poisson structure if {f, g} = λ(df, dg) defines a Lie bracket
on C∞(N). Given a complex structure on N , one can similarly define a holomorphic Poisson
structure.

The fact about the real Poisson manifold (N, λ) that we will need in order to obtain
the desired curves in a bihermitian manifold is the following. If we let v ∈ Imλx, where
λx : T ∗xN −→ TxN , and extend it to a vector field λ(df) then, as λ is Poisson, the flow of this
vector field will preserve λ. Hence there exists a curve γ in N such that γ′(0) = v and γ(t) lies
in a constant rank locus of λ for at least small t ∈ R. If we define Nk = {x ∈ N | Rankλx = k}
to be such a locus, we then have

Proposition 8.2.4. Let (N, λ) be a real Poisson manifold. If Nk is nonempty then dimNk ≥
k.

Remark 8.2.5. Another, though closely related, way to derive the proposition is to first note
that the Imλ is an integrable generalized distribution for N . It can then be shown that the
leaves of the corresponding foliation lie in the constant rank loci of λ, yielding the bounds
given above.

8.2.3 Poisson Bounds for the M#

With this background on Poisson geometry, let us return to the bihermitian setup
(M, g, J+, J−). In this case, the following Poisson structures were found by Lyakhovich
and Zabzine [20] as well as Nigel Hitchin [19] (see also [1]).

Proposition 8.2.6. The following are real Poisson structures on M :

σ = [J+, J−]g−1 and λ± = (J+ ± J−)g−1.

Moreover, if we let σ+ be the (2,0) component of σ with respect to J+ then it is a holomorphic
Poisson structure on (M,J+). The same statement is true if we interchange + with −.

Consequently, the M≤s and M(≤r,±) of Proposition 8.1.1 are the degeneracy loci of the
above Poisson structures and the M# refine the structure of the constant rank loci.

If we reconsider the vector v ∈ T0 from the end of Section 8.2.1 then we can now un-
derstand the reason that there exists a curve γ in M such that γ′(0) = v and γ(t) lies in
M (m1,m−1), for at least small t ∈ R. The reason is that since σ is Poisson, there exists such
a curve that lies in Ms, a constant rank locus of [J+, J−], and by Section 5.2, Ms is locally
M (m1,m−1) for some (m1,m−1).

By also considering the other real Poisson structures given in the above proposition
together with Proposition 8.2.4, we have derived the following bounds on the M#.

Proposition 8.2.7. Let dimCM = m. If M# is nonempty then the complex dimension of
each of its components is bounded as follows:

1) dimM (m1,∗) > m−m1

2) dimM (∗,m−1) > m−m−1

3) dimM (m1,m−1) > m− (m1 +m−1).

59



Remark 8.2.8. Note that the bounds in 1) and 2) modify some of those in 3). For example,
if M (m1,1) is nonempty then its complex dimension is really > m−m1 and not just m−m1−1.
The reason is that by Proposition 5.2.4, M (m1,1) is open in M (m1,∗). Also note that if M (1,∗)

is nonempty then its complex dimension is m.

To compare the above bounds to the ones derived from twistor space, note that only a
few of the twistor bounds of Theorem 7.2.6, which we list in Corollary 7.2.7, are stronger
than the Poisson bounds given in Proposition 8.2.7. Though, in the next section we will give
a corollary of the twistor bounds that cannot be derived by using the Poisson bounds alone.

Remark 8.2.9. It can be shown that the fact that σ and λ± are Poisson structures, as
stated in Proposition 8.2.6, does not depend on the bihermitian condition dH = 0. Hence
the bounds of Proposition 8.2.7 are true regardless of this condition. This is to be compared
to the bounds derived from holomorphic twistor spaces (Theorem 7.2.6), where the condition
dH = 0 was certainly used.

8.3 Existence of the M# and the Bounds from T
In the following, we will use the twistor bounds of Theorem 7.2.6 to derive information

about the constant rank loci of holomorphic Poisson structures on CP3 and about the exis-
tence of certain M# in the manifold. If we let M = CP3 and let I be its standard complex
structure, then first note that there exists a holomorphic Poisson structure, σ̃, on M that
vanishes only on points and complex curves [23]. Now it is possible to show, as described
below, that there are bihermitian structures (g, J+, J−) on CP3 such that J+ = I and the
constant rank loci of [J+, J−] are the same as those for Reσ̃. Given such a structure, our
claim is that the associated subvarieties M (2,1) and M (1,2), as defined in Definition 5.2.1,
must be empty in M . In particular, M0, the zero rank locus of [J+, J−] and of σ̃, must be
either M (0,3) or M (3,0) but can never (even locally) be M (2,1) or M (1,2). The reason is that
if M (2,1) were to exist then its complex dimension, by Theorem 7.2.6, must be greater than
or equal to two. However, the dimension of M0 is less than or equal to one, and as M (2,1)

is contained inside of M0, it follows that M (2,1) cannot exist. (The same argument is true if
we replace M (2,1) with M (1,2).)

Note that the bound for the complex dimension of M (2,1) given in Proposition 8.2.7 is
only greater than or equal to one (see Remark 8.2.8); thus we really needed the twistor
bounds from Theorem 7.2.6 to come to our conclusion. Lastly, there are methods given, for
instance, in [15] that can be used to produce bihermitian structures on CP3 with the above
properties; it can be checked that in these examples, M0 is indeed equal to M (0,3).
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