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Abstract of the Dissertation 

Epigenetic Study with Genome-wide Hypothesis Test and Stepwise Multivariate Adaptive 

Regression Splines (SMARS) 

by 

Yijin Wu 

Doctor of Philosophy 

in 

Department of Applied Mathematics and Statistics 

Stony Brook University 

2014 

 

Epigenetic gene regulations are essential processes for development and differentiation in 

both animals and plants.  With the advent and rapid advance of sequencing techniques, the high-

throughput genome-wide epigenetic modification profiles have been extensively studied in the 

past few years. In this thesis work, we studied the relationship between gene regulation and two 

major epigenetic modifications, i.e., DNA methylation and histone modifications.  

In the DNA methylation analysis, we studied two strains of Arabidopsis grown under 

different levels of carbon dioxide concentrations (430ppm vs. 810ppm) to simulate the impact of 

global climate change. The differentially methylated regions were identified by genome-wide 

hypothesis tests and the potentially impacted genes were located on the genome. We successfully 

detected the differentially expressed genes that function in plants development. This study 

illustrated how plants adapted to the environmental stress through epigenetic mechanism. 

In histone modification analysis, we proposed a data-driven model developed from 

Multivariate Adaptive Regression Splines (MARS). This step-wise MARS model is able to 

capture interactions among different chromatin features as well as among genomic loci. Not only 

can our method outperform existing methods in terms of prediction accuracy, it can also identify 

potential interactions that could shed light on further study of histone code hypothesis. 
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Chapter I: Introduction 

1 Epigenetic regulation 

 

Epigenetic regulation of gene process is essential for development and differentiation in 

both animals and plants. It refers to functionally relevant modifications to genomes that do not 

involve any changes in nucleotide sequences. The epigenetic status of one whole genome is 

termed as epigenome. The epigenome is usually very dynamic, and can establish and maintain 

cell type-specific gene expression profile that features cellular identity and function. Studies 

have indicated epigenetic modifications of chromatin and its response to distinct environmental 

factors may directly contribute to developmental processes (Schones et al., 2008). Typically 

there are two major epigenetics mechanisms: one is DNA methylation and the other is histone 

modification (Figure 1).  
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Figure 1.  An illustration of epigenetic mechanisms (Reynolds et al., 2012). Two main 

components of epigenetic modification are DNA methylation and histone modification. Both are 

functional in gene regulation. DNA methylation is the addition of methyl group to the cytosine or 

ardenine DNA nucleotides.  A large number of histone modifications are histone methylation or 

acetylation, which are the addition of methyl group or acetyl group to the N-tail of the histones. 

 

The history of epigenetics study is linked to the study of evolution and development. It 

can be traced back to the earlier studies in the 19th century when scientists began to present the 

understanding between genes and development. The initial definition of epigenetics was very 

vague. It encompassed almost all regulated processes that shape the final product with genetic 

materials. 
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There was a long debate on how a single fertilized egg can rise to a complex organism 

with cells of varied phenotypes. Another case was how different types of blood cells can be 

generated from the common bone marrow stem cells. There clearly existed switches in the gene 

activity related to cell differentiations. The chromosome X was an example of such switch 

mechanism. At the early stage of development, one X chromosome was randomly inactivated in 

every cell while the other was activated. As the two X chromosomes contain almost identical 

DNA sequences, it seemed that the inactivity and activity of chromosome was intrinsic to 

themselves. This not only suggested a switch mechanism in the early development but its 

subsequent heritability. Later, many studies provided strong evidence that the developmental 

program did reside in the chromosomes. The important role of DNA methylation proposed in 

1969 provided the basic outline of the switch for gene activities during development. Riggs and 

collegues (Riggs 1975) addressed the methylation mechanism of chromosome X inactivation. 

Studies also indicated that such pattern of methylation could be heritable if a specific enzyme 

existed. 

With the cloning and sequencing of DNA, methods were developed to screen DNA 

methylation in specific DNA sequences. It was soon discovered that many genes with 

methylation at the promoters are inactive. Originally, it was thought that the variability of gene 

expression was due to mutations, but now it has become apparent that the aberrant changes in the 

distribution of 5-methyl cytosine could also result in changes in gene expression. Ultimately, the 

term “epigenetics” was redefined so as to distinguish heritable changes that arose from sequence 

changes in DNA from those that did not. 

In the past years, there has also been a great interest in examining the association between 

histone modification and gene expression. Well before most of the work on DNA methylation, 
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Stedman (Stedman et al., 1950)  claimed that the histones could act as general repressors of gene 

expression. Followed by studies addressing the capacity of chromatin to serve as a template for 

transcriptional activities and the discovery that DNA was packaged into the nucleosome, it is 

much easier to study how histone modification may affect gene expression. Nucleosome is the 

fundamental histone-containing chromatin subunit.  The chromatin structure and gene expression 

has become a very active area of study.  

Studies in animal models have demonstrated that epigenomic variability leads to 

phenotypic variability, such as disease susceptibility that is not recognized at the DNA sequence 

level. Epigenetic processes may respond to various external factors including environment, diet, 

and even behavior. This plasticity is thought to allow the organism to respond and adapt quickly 

to external stress, yet also confer the organism, and even in some cases its offspring, with the 

ability to “memorize” contacts with such stress into adulthood (Dolinoy et al., 2008; Morgan et 

al., 2008). Although many studies have been conducted on how epigenomic variability may 

contribute to disease susceptibility in humans, this is still a largely unexplored area. Among 

those studies relevant to human diseases, in particular in cancer, substantial alternations of DNA 

methylation and histone modifications have been described. Global hypomethylation and site-

specific gene hypermethylation of DNA are so widespread that they are now considered 

hallmarks of cancer (Feinberg et al., 2004). Environmental exposure to carcinogens has also been 

linked to these alternations (Sutherland et al., 2003; Egger et al., 2004). More importantly, some 

of such epigenetic alternations have been shown to be inheritable through the germline (Suter et 

al., 2004; Chan et al., 2006). 
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Although today we have some ideas of the establishment and maintenance of the 

epigenetic modifications, the true relationship between gene regulation and its mechanism is still 

largely unknown.    

 

2 DNA methylation 

 

DNA methylation refers to the addition of a methyl group to the 5th position of the 

cytosine pyrimidine ring (Figure 2).  

 

Figure 2. The chemistry modification of DNA methylation.  DNA methylation occurs when 

cytosine bases are converted to 5-methylcytosine by DNA methyltransferase (DNMT) enzymes. 

(http://www.hgu.mrc.ac.uk/people/r.meehan_researchb.html) 

 

Prior to 1980, there had been a number of clues suggesting that methylation might play a 

role in the regulation of gene expression. Shortly after McGhee and Ginder published their 

discovering that DNA methylation may be involved in gene expression (McGhee et al., 1979), 

direct experiments were performed to examine the inhibiting effect of methylation on gene 

expression (Jones et al., 1980). By comparing the cells before and after 5-azacytidine (one of 

chemical analogs for the nucleoside cytidine) treatment, the straightforward experiments 

http://www.hgu.mrc.ac.uk/people/r.meehan_researchb.html
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demonstrated that the analogs that impact methylation were responsible for the cellular 

differentiation.  

It is known today that the DNA methylation happens when cytosine bases are converted 

to 5-methylcytosine by DNA methyltransferase (DNMT) enzymes. Different enzymes in DNMT 

family either act as de novo DNMTs by adding the initial pattern of methyl groups on DNA 

sequence, or as maintenance by copying the methylation from an existing DNA strand after 

replication. In mammals, DNA methylation patterns are established by the DNA 

methyltransferase 3 (DNMR3) (Goll et al., 2005; Cheng et al., 2008; Kim et al., 2009). While in 

plants, the de novo DNA methylation is catalyzed by Domain Rearraned Methytransferase 2 

(DRM2), a homologue of the DNMT3. The plants’ methylation is maintained by three different 

pathways: CG methylation is maintained by DNA methyltransferase 1 (MET1); CHG 

methylation by chromomrhylase 3 (CMT3, plant-specific DNA methyltransferase); and 

symmetric CHH methylation by DRM2 through persistent de novo methylation.  

Besides the establishment and maintenance, the targets and patterns of DNA methylation 

have also drawn a lot of attention. Mammals tend to have sparsely but globally distributed CpG 

methylation throughout the entire genome, except for CpG islands or sequences with high 

contents of CpG. The heavily methylated regions are found interspersed with un-methylated 

regions (Figure 3c). This “mosaic” global pattern of DNA methylation in mammals makes it 

difficult to determine genomic targets of methylation. In plants, up to 50% of their cytosine 

residues exhibiting methylation due to large number of transposons (Figure 3e). DNA 

methylation could occur on cytosine in more flexible sequence contexts, including the 

symmetrical CpG, CHG sequences and asymmetric CHH sequences (H = A,T or C) . While in 

fungi, only the repetitive DNA sequences are found methylated (Figure 3a). Although plants like 
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Arabidopsis show similar mosaic methylation patterns to those of animals (Figure 3b), it has 

been indicated that DNA methylation are different between animals and plants. One significant 

difference is that in some plants, methylation is absent or occurs altogether on transposable 

elements, and this mechanism has been revealed to involve small interfering RNA (siRNA) 

(Mette et al., 2000; Chan et al., 2004; Chan et al., 2005).  

 

 

Figure 3. DNA methylation landscapes in fungi, animals and plants (Suzuki et al., 2008). The 

grey box and yellow box denote the stable methylated and unmethylated domains, respectively. 

The red box indicates the transposable elements. (a) DNA methylation in fungi is interspersed by 

methylated and unmethylated domains. In certain fungi the efficient targeted methylation was 
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observed at transposable elements. (b) The plant Arabidopsis thaliana illustrates a mosaic 

methylation pattern that is due to gene-body methylation. Unlike animals, transposons and 

repetitive elements are subject to targeted RNA-mediated methylation. (c) Mosaic methylation is 

also characteristic of most invertebrates, but has only been mapped in detail in the sea squirt 

Ciona intestinalis. Gene-body methylation affects over half of all genes, but the remainder is 

embedded within unmethylated DNA. Transposable elements are frequently unmethylated. (d) 

Vertebrate genomes are globally methylated, with only CpG islands being unmethylated. 

Transposable elements are methylated, as are gene bodies and intergenic regions. (e) The DNA 

methylation landscape of plants with large genomes, such as maize, has not been mapped in 

detail, but it is evident that genes are separated by long tracts of DNA that contain transposable 

elements. Genes tend to be unmethylated, but the existence of gene-body targeted methylation 

has not yet been discussed. 

 

Much research has suggested that, cytosines can silence or activate the gene expression 

by gaining or losing methylation at particular sites. DNA methylation of promoter regions 

usually inhibits transcription by blocking the binding of transcription factors with the promoters, 

while in coding regions, it generally does not affect gene expression (Wolffe et al., 1999; Urnov 

et al., 2001).  

Functionally, DNA methylation has been linked to many important biological processes. 

Its link to cancer was first reported in 1983, where it was shown that genomes of cancer cells 

were hypomethylated due to the loss of methylation from repetitive genome regions. (Feinberg et 

al., 2004). The hypomethylation caused genomic instability which was a hallmark of tumor cells. 

In the studies of plants, decreased methylation also led to a number of phenotypic and 

developmental abnormalities (Finnegan et al., 1996).  

The distribution of methylation marks could convey the enormous volume of epigenetic 

information of transcriptional repression or activation. Therefore, the broader DNA methylation 

profiles are important implications for understanding why certain genes can be expressed under 

specific contexts and how epigenetic changes might be related to abnormality or disease. 
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Although evidence indicates the role of DNA methylation in repressing gene expression 

especially in promoters, the exact function of methylation is largely uncovered. However, the 

overall similarity and differences of DNA methylation levels within and between eukaryotic 

groups suggested that they might share a common underlying mechanism. In order to show this, 

a thorough understanding of genome distribution of the cytosine methylation of a variety of 

species is needed.  

So far, various high-throughput approaches have been developed and applied to the 

genome-wide analysis. Novel techniques such as the Next Generation Sequencing (NGS) can 

provide single base pair resolution, quantifying DNA methylation with genome wide coverage. 

There are three major approaches distinguishing the methylated and un-methylated cytosines, 

including methylation sensitive restriction enzyme digestion, affinity purification and bisulfite 

conversion of DNA. Any of these methods can be combined with either hybridization to DNA 

microarrays or direct sequencing to study DNA methylation on a genomic scale. 

Restriction enzyme DNA methylation method can identify methylated sites using 

restriction enzymes that differentially recognize methylated and unmethylated cytosine bases. 

The enzymes (and recognition sites) include AciI (CCGC and GCGG), BstUI (CGCG), HhaI 

(GCGC) and TaiI (ACGT). For the affinity purification methods, DNA is first sonicated and a 

methyl-cytosines specific antibody is used to pull down methylated regions. Besides these two 

approaches, the bisulfite treated DNA methylation sequencing is also widely used. 

Bisulfite conversion method is based on the selective deamination of cytosine, but not of 

5-methylcytosine, with the treatment of sodium bisulfite (Figure 4). If the genomic DNA were 

treated with sodium bisulfite, all the un-methylated cytosine would be converted to uracil, which 
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is subsequently amplified as thymine during polymerase chain reaction (PCR). On the other hand, 

the methylated cytosines would not be affected and remain cytosines during PCR.  Hence, in the 

final sequencing, the 5-methycytosine will be still “read” as cytosine, but unmethylated cytosine 

becomes thymine. By comparing sequencing data before and after the sodium bisulfite treatment, 

the methylated cytosine sites can then be identified. The sequencing from bisulfite converted 

DNA usually provides very reliable and detailed information on the methylation pattern for 

every single cytosine, and has been regarded as the “gold” standard of DNA methylation analysis 

(Laird 2010, Zhang and Jeltsch 2010). 

 

Figure 4.  Bisulfite conversion and PCR amplification. Bisulfite conversion of genomic DNA 

and subsequent PCR amplification gives rise to two PCR products and up to four potentially 

different DNA fragments for any given locus(Krueger et al., 2012). Methylated cytosine residues 

are resistant to bisulfite conversion and are used to detect the DNA methylation state. mC, 5-

methylcytosine; OT, original top strand; CTOT, strand complementary to the original top strand; 

OB, original bottom strand; and CTOB, strand complementary to the original bottom strand. 
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3 Histone modifications 

 

Histone modification is another important epigenetic mechanism in gene regulation. 

There are five major families of histones: H1/H5, H2A, H2B, H3 and H4. Histones H2A, H2B, 

H3, and H4 are four core histones in higher organisms, while H1 and H5 are known as the linker 

histones. Two copies each of the core histones consist of a histone octamer, around which ~146 

base pairs of DNA can be wrapped to form a nucleosome. The nucleosome is the fundamental 

subunit of chromatin. As histones act cooperatively to prepare the chromatin for transcriptional 

activations, it is another important mechanism for the epigenetic regulation. 

Identification of the enzymes for histone modifications has been the focus of intense 

research in the past decade, including histone acetylation (Sterner et al., 2000), 

methylation(Zhang et al., 2001), phosphorylation(Nowak et al., 2004), ubiquitination(Shilatifard 

2006), sumoylation(Nathan et al., 2006), ADP-ribosylation(Hassa et al., 2006), 

deamination(Cuthbert et al., 2004; Wang et al., 2004), and proline isomerization(Nelson et al., 

2006). Among all the enzymes, the methyltransferases and kinases are more specific 

characterized ones so far. 

In addition, histone methylation and acetylation of specific lysine residues on the N-

terminal histone tails are fundamental for the formation of chromatin domains. Histone 

methyltransferases are enzymes which transfer methyl groups from S-Adenosyl methionine onto 

the lysine or arginine residues of the histones. The well-known lysine methylations include 

mono-, di-, or tri-methylation (Figure 5a). Different degrees of residue methylation can 
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havedifferent functions. For example, mono-methylated H4k20 (H4k20me1) is involved in 

transcriptional repression while tri-methylated H4k20 (H4k20me3) serves in chromatin 

repression. Histone acetylation (Figure 5b) refers to the acetylation of histone tails induced by 

histone acetyltransferase enzyme family (HATs). Currently histone acetylation is thought to be 

associated with transcription activation. The terminology of histone modifications denotes the 

type of modification and the position of it taking place. For example, the H2k20me1 means the 

mono-methylation happens at the 20th Lysine amino acid at the histone H2 tail.  

(a) 

 

(b) 

 

Figure 5. Biochemistry modifications on Lysine of histone tails (Wikipedia).  (a) Histone 

methylation is addition of one, two, or three methyl groups to the N-terminals. Three different 

degree of methylation refer to mono-methylation (methylation), di-methylation and tri-

methylation. (b) Histone acetylation is addition of acetyl group to the N-terminals. 



 

13 
 

 

Three models have been proposed to explain the function of histone modifications in 

gene regulation: the charge-neutralization model, the histone-code model and the signaling-

pathway model (Schones et al., 2008). The function of histone acetylation was involved in the 

charge-neutralization model. It has been indicated that the histone acetylation can lead to a de-

condensation of the chromatin structure(Wolffe et al., 1999; Turner 2000).  With the relaxed 

structure, the specific regions of DNA are transcriptionally active. In this model, the histone 

modifications are responsible to the assortment of the genome into the transcriptionally active 

and transcriptionally slilent domains.  The conept “histone code” was initially introduced to 

explain how a set of histone modificatios at the same genome region would control the gene 

regulation. The histone code hypothesis states that i) distinct histone modifications may induce 

interaction affinities for chromatin related proteins, ii)  mofidications on the same or different 

histon tails may be inter-related and function combinationally, and iii) distinct qualities of higher 

order chromatin are highly dependent on the local concentration and combination of 

differentially modified nucleosomes (Jenuwein et al., 2001). The signalling pathway model is 

more general than the histone code model. It suggests that histone modifications could serve as 

signalling platforms to facilitate the binding of enzymes on the chromatin.  

In the past few years, several technologies have been developed to explore the genome-

wide histone modifications. Accommodated by development and improvement of the “ChIP-chip” 

technique, i.e., chromatin immunoprecipitation (ChIP) followed by the DNA-microarray analysis 

(chip), histone modification patterns have been extensively studied. The first studies with ChIP-

chip suggested that histone modifications are associated with distinct genome regions and 

transcription states (Bernstein et al., 2002; Robyr et al., 2002; Schübeler et al., 2004). This 
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technique was also used to profile histone modifications in mammalian genomes. However, 

ChIP-chip has several limitations, like large sets of arrays needed to cover the mammalian 

genome and it can only detect targets included on the array.  

ChIP can also be combined with the serial analysis of gene expression (SAGE) in a 

method termed genome-wide mapping technique (GMAT) to map several H3 modifications in 

human T cells. But this technology was still limited by a relatively low resolution and 

considerably high cost (Chiang et al., 2001). To overcome these problems, a method termed 

“ChIP-Seq” has been developed to employ the NGS technologies, such as Illumina Genome 

Analyzer, to directly sequence ChIP DNA fragments and infer the histone modifications along 

the genome.  

The ChIP-Seq sequencing workflow includes two steps (Figure 6). At the ChIP step, the 

specific cross-linked DNA was processed by antibody against the protein of interest. Then the 

oligonucleotide adaptors are added to the small stretches of DNA. Short read sequences  for the 

DNA templates are then sequenced simultaneously using a genome sequencer. The number of 

sequenced reads that are aligned to the reference genome is directly proportional to its 

modification level. Compared to the ChIP-chip, ChIP-seq is more quantitative and easier to be 

compared in terms of the modification levels.  
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Figure 6. Workflow of ChIP-Sequencing for histone modification. The ChIP process enriches 

crosslinked DNA-protein using a protein specific antibody. After purify the DNA fragments, the 

oligonucleotide adapters are added to the fragments.  Followed by a PCR cluster generation, the 

amplified clusters are directly sequenced. Then after alignment to the reference genome the 

mapped information could be used in the downstream data analysis.  (Schones et al., 2008) 

 

High-resolution profiles of the genome-wide distribution of histone lysine and arginine 

methylations, as well as their combinational patterns, have been reported (Chiang, Liu et al. 

2001). It revealed that histone methylation patterns at promoters, enhancers and transcribed 

regions might be linked to gene activation or repression. Based on these, the positioning of 
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histone modification became another important area of epigenetic study. Several large-scale 

studies have shown that generally, high levels of histone acetylation and H3K4 methylation in 

the promoter regions of lead to the activation of gene expression (Bernstein, Kamal et al. 2005, 

Roh, Cuddapah et al. 2005, Roh, Cuddapah et al. 2006), whereas elevated levels of H3K27 

methylation at promoters correlates with gene repression (Boyer, Plath et al. 2006, Lee, Jenner et 

al. 2006, Roh, Cuddapah et al. 2006).  

With the genome-wide profiles of epigenetic modifications, we are gaining massive 

information of the DNA methylation and histone modifications. However, there are still a lot of 

unsolved problems regarding the functions of these two mechanisms.  

In this thesis, I will study the association between epigenetic mechanisms with the gene 

regulation.   In the second chapter, the impact of DNA methylation variation on adjacent gene 

expression which involved in plants development will be described. In the third chapter, the 

comprehensive correlation between histone modification signals will be approximated by a 

quantitative model. 

Chapter II: Genome-wide DNA methylation variation study of 

Arabidopsis thaliana 

 

In this chapter I will study the impact of  DNA methylation variation on plant 

development. Specifically this is to identify the functional genes that may differentially express 

through the underlying stress-induced epigenetic modification.   
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1 Previous studies of DNA methylation variations 

 

DNA methylation sites do not occur randomly, i.e., the clusters that distributed in specific 

regions are noteworthy.  In the model plant Arabidopsis thaliana, there are about 24%, 6.7%, and 

1.7% of cytosine methylation at CG, CHG, and CHH nucleotides, respectively (Cokus et al., 

2008; Lister et al., 2008). In DNA methylation studies for A. thaliana, the genome-wide map of 

DNA methylation has been reported, including the genebody-specific methylation. It was found 

that about 18.9 % of the whole genome were signifiacnly methylated. (Zhang et al., 2006; 

Zilberman et al., 2007), particularly, high-frequency DNA methylations were found in 

pericentromeric heterochromatin, repetitive sequences and regions producing siRNAs. CHG 

methylation appeared mostly in the pericentromeric regions, due to its preference for methylation 

of transposon-related sequences (Tompa et al., 2002; Kato et al., 2003). In contrast to CHG, 

methylation of CG and CHH contexts, although mostly enriched in the pericentromeric regions, 

is commonly spread throughout the euchromatic chromosome arms. 

 Since the first study proposing that the cytosine methylation may influence gene 

expression (Holliday et al., 1975; Riggs 1975), it has been shown that frequency and patterns of 

methylation may be inherited, that DNA methylation can repress trancription, and that changes 

in DNA methylation are correlated with differences in gene expression in a tissue-specific 

manner. However, it is still unclear how DNA methylation may function as an essential role in 

regulating gene expression during development. In the past few years, DNA methylation studies 

aimed to profile the genome-wide distribution of the DNA methylation sites. Accompanied with 

high-throughput sequencing, the DNA methylation patterns of plant, as well as in mouse and 

human genomes, were studied. In higher eukaryotes, DNA methylation were found to be 



 

18 
 

involved in genomic imprinting and tumorigenesis in mammals, and in transposon silencing and 

gene regulation in plants (Li et al., 1992; Bestor 2000; Rhee et al., 2002; Lippman et al., 2004; 

Zhang et al., 2006).  

Lots of evidence has shown that plant genes are both transcriptionally inactive and 

methylated within the promoters or coding regions.  However, it is not clear that if the DNA 

methylation is the cause of gene inactivation or simply a consequence induced by other 

transcription factors. Although it is hard to conclude whether the DNA methylation is the cause 

or effect, studying the genome-wide distribution of DNA methylation and its correlation to 

functional genes would still help us explore the underlying epigenetic mechanism. 

The methylation changes during development are very important. For plants, the loss of 

DNA methylation would induce abnormalities such as loss of apical dominance, reduced stature, 

altered leaf size and shape, reduced root length, homeotic transformation of floral organs, and 

reduced fertility (Kakutani et al., 1995; Finnegan et al., 1996; Ronemus et al., 1996). A recent 

stress-induced DNA methylation study found that specific stresses can trigger specific 

methylation alternations and therefore leading to epigenetic divergence(Verhoeven et al., 2010).  

Recent studies indicated the potential inheritability of epigenetic change across 

generations. In study comparing ancestor and its 31th generation under natural conditions, it was 

shown that, at the whole genome level, DNA methylation was very stable and heritable. 

Especially, the methylation of transposable elements was the most stable and consistent across 

the generations. (Becker et al., 2011; Schmitz et al., 2011). Some region that was found de-

methylated in the 31th generation was re-methylated in the following generation. This suggested 

that the DNA methylation may fluctuate within a short time and indicated existence of recurrent 
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cycles of forward and reverse mutations over long term. With the potential inheritability, the 

adaption of gene regulation to environmental impacts through the epigenetic regulation becomes 

extensively crucial in plants and mammals development. It was discussed that altered DNA 

methylation patterns were transmitted to the non-stressed progeny and may play a distinct role in 

stress-induced epigenetic inheritance in species evolution (Verhoeven et al., 2010). 

Through the underlying epigenetic mechanism, enviromental factors may have influence 

on functional genes. Abnormallity in DNA methylation were found to related to development of 

disease in mammal such as cancer. As a major approach to study the plant reaction to the 

external factors, changes in DNA methylation induced by stress have drawn a lot of attention. It 

was indicated that DNA methylation may regulate plant development through the molecular 

basis of vernalization (Burn et al., 1993; Finnegan et al., 1998). This was the first indication that 

DNA methylation may regulate plant development. The author proposed that the vernalization is 

mediated by demethylation in the promoters of genes whose expression is functional for 

initiation of flowering. Decreased methylation was observed with a cold treatment. This might be 

the reason for early flowering with exposure to low temperature.   

It was believd that the epigenomic alternations are the key to to adaption to climate 

changes. Study has already showed that the increasing temperatures affected the sexual plant 

reproductive phase (Hedhly et al., 2009). Other than temperature, stresses like drought, salt and 

pathogens were discussed in plants epigenetics study as well. These studies provided the insight 

of the plants  spontaneous epimutation under regional conditions. However, as a major 

component in the photosynthetic reaction, the effect from different concentrations of carbon 

dioxide ( CO2) has not been discovered yet.  
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2 Main goal and significance of the study 

 

Since the beginning of the Industrial Revolution, humans began burning coal in large 

quantities. With increased use of fossil fuels, carbon dioxide emission increased dramatically in 

the past century. The phenomenon of the so-called “global warming” is a direct consequence of 

increasing in carbon dioxide (CO2) in the Earth’s atmosphere. Prior to industrialization, the 

concentration of carbon dioxide in the atmosphere was 280 parts per million (ppm). The 

concentration is now approaching 500 ppm and the growth rate is still accelerating. According to 

the Intergovernmental Panel on Climate Change (IPCC), it is predicted that atmospheric CO2 

levels could reach 500 ppm by 2050 and 800 ppm or more (Figure 7).  
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Figure 7. Global mean surface temperature increase as a function of cumulative total global CO2 

emissions from various lines of evidence. In year 2050, we are likely to have double CO2 

emission than we have now. RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5  are four possible 

climate futures depending on how much greenhouse gases are emitted in the years to come 

(IPCC Fifth Assessment Report, 2013) 

 

The increasing of greenhouse gas in the atmosphere is changing the global environment 

greatly for mammals and plants, particularly for those economically important crops. With the 

explosion of population, the potentially reduced production of crops and fruits poses a serious 

threat to meet the increasing demand. Unlike the mammals which can migrant, plants have to 

adapt to the climate changes by self-regulating mechanism. Then what and how adaptions take 

place to the plants to react to the environmental alternations are the first questions we want to 
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address. By understanding such self-regulating mechanism, we might be able to find a way to 

artificially interference the gene expression to satisfy our need in the future. Based on these, 

Studies for DNA-methylation induced by elevated CO2 with genome-wide single-base resolution 

is in great need. 

In our experiments, it has been observed that under different concentrations of CO2, the 

A.thaliana showed differences in leaf development and flowering time. It indicates that, in 

Arabidopsis, elevated CO2could enhance photosynthetic rate and reduce the stomatal density and 

conductance. Therefore it would result in a higher amount of plant mass and seeds(Teng et al., 

2009). Evidence has also shown that elevated CO2can affect root hair development through auxin 

signaling (Niu et al., 2011).We believe that higher concentration of carbon dioxide will impact 

on the plants development through the reaction of epigenetic mechanisms.  

We aim to answer the following questions in our study: What DNA methylation 

alternations would take place in plants in responding to higher carbon dioxide concentration? 

How are differentially methylated sites distributed along the genome?  Do such epigenetic 

alternations impact any gene expression?  

We study the model plant Arabidopsis thaliana that has five chromosomes, totally around 

157 mega base pairs. In order to detect the methylation pattern and significantly differentially 

methylated sites, we compared the DNA methylation status of strains grew with two different 

concentration levels of carbon dioxide (430ppm vs 810ppm). Furthermore, we plan to search for 

the functional genes that are located adjacent to the clusters of methylation variations. Since 

higher temperature and humidity may increase the ratio of photorespiratory loss of carbon to 
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photosynthetic gain (Long 1991), to isolate the effect of increased CO2, conditions such as 

temperature and humidity have been controlled. 

 

3 Experiment design and material 

 

Seeds of Arabidopsis thaliana (ecotype Col-0) were imbibed at 4 °C with distilled water 

for 4 days to facilitate uniform germination. The seeds were planted in 1m3 mesocosms in 

greenhouse with low (430±50 μmol mol−1 or ppm) and high (810±50 μmol mol−1 or 

ppm) CO2 concentrations. After five self-seeding generations, the sixth-generation plants were 

grown for study. For the plants grown under 810 ppm CO2, the first inflorescence stems grew on 

the 70th day after plant germination, and one week later for those under 430 ppm concentration. 

The onset of flowering in these plants occurred within 5–6 weeks. A sample of 100 uppermost 

fully expanded rosette leaves were randomly collected from plants at the 10 leaves stage. 

Samples from the 810 and 430 ppm CO2 conditions were collected at the same time, about 1 or 2 

weeks before first inflorescence stems were observed, respectively. Leaves were stored in liquid 

nitrogen at −80 °C for further analyses. The means based on all CO2 concentrations recorded 

during plant growth indicate that the actual concentrations are indeed 430 and 810 ppm (May et 

al., 2013). Illumina gene sequence analyzer combined with bisulfite-treated conversion was used 

to obtain the single-end sequencing reads.  

The reference sequence (version TAIR10) was obtained from the Arabidopsis 

Information Resource (TAIR), a database of genetic and molecular biology data for Arabidopsis 

thaliana.  TAIR includes the complete genome sequence along with gene structure, gene product 
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information, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, 

publications, and information about the Arabidopsis research community (Rhee et al., 2003). 

For differentially expressed gene analysis in RNA-seq, total RNAs were extracted from 

frozen leaves. RNA-seq libraries were prepared using TruSeq RNA Sample Preparation v2 kit 

(Illumina Inc.). The sequencing was processed by Illumina Hi-seq2000 Sequencer. Sequencing 

data was deposit in Gene Expression Omnibus (GEO, GSE36934). 

 

4 Method 

 

The pipeline of our DNA methylation analysis is straightforward. The major steps are 

data processing, statistical significance test and Biological inference (Figure 8).  

 

Figure 8 DNA methylation analysis pipeline. There are three major procedures in the analysis 

pipeline. In data processing step the raw sequencing data was preprocessed and mapped to the 

reference genome. Then the information for downstream analysis was extracted. The 

significance test was applied to the processed data to get the differentially methylated positions 

Data 
processing

• Raw data processing (adapter trimming, sequencing 
qualitycontrol)

• Short reads alignment and information extracting

Significance 
test

• Identification of differential methylated positions(DMPs)

• Identification of differential methylated regions(DMRs)

Biological 
inference

• Match with gene , gene upstream and gene downstream

• Match with differnetialy expressed genes (RNA-seq 
experiment)
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(DMPs) and regions (DMRs). At last, the conclusion was drawn by locate the adjacent genes to 

DMRs.  

 

4.1 Short read mapping and data pre-processing 

 

Raw reads from Illumina genome analyzer were in fastq format, with sequencing ID, the 

read sequence and the quality scores for each nucleotide. After quality filtering and mapping to 

reference genome, the mapped data in BED format would contain the information of the mapped 

regions’ coordinates on genome. The cytosine base calls were processed by Perl scripts to extract 

the “C” reads and the coverage information at each single cytosine position. Three types of 

cytosine contexts (CG, CHG and CHH) were defined in the base calls data.   

A well-developed package FASTX_Toolkit (Gordon et al., 2010) was used to process the 

raw reads under quality control threshold.  The reads with length less and equal to 10bp were 

filtered out. The adapters and low quality sequences were trimmed from both 5-prime end and 3-

prime end.  We used RMAPBS (Smith et al., 2008; Smith et al., 2009), which was built for 

bisulfite treated sequences alignment. By default, RMAPBS allows at most 4 mismatch for first 

32bp of the reads. Some reads could be mapped to multiple regions on the genome, due to 

repeated sequences, or the short read length. In the following analysis, we only used the uniquely 

mapped reads.  

At each cytosine position, we counted the number of methylated reads and unmethylated 

reads. Considering that the read coverage might impact the statistical power, we excluded 

positions with read depths less than 3.  
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4.2 Genome-wide multiple test  

 

Pair-wise hypothesis tests were applied to identify significant differences between two 

samples. In genome wide studies, thousands of features, such as genes, specific regions or 

nucleotides, are involved in the significance test simultaneously. The false positives may occur 

under this circumstance.  

False-positive occurs when features that show statistical significance (e.g. with p-value 

<=0.05) are truly from the null hypothesis.  When we apply multiple tests independently, the 

incidence of false positives is proportional to the number of tests and the significance level. The 

traditional inference with individual p-value cutoff is no longer suitable. There are several 

approaches to control the portion of the false positives, such as Bonferroni, Bonferroni Step-

down, Westfall and Young Permutation and Benjamini and Hochberg False Discovery Rate 

(FDR). Usually, the more stringent a method is, the less false positives will be called; however, 

the stringent method has the risk of inducing more false negatives (truly significances that are 

concluded as no significances).  

In our study, two procedures need the adjustment for the multiple tests: defining the 

methylated cytosine and identifying the differentially methylated positions (DMPs).  Defining 

the methylated sites was to further extract the cytosines we were interested in the following 

differentially analysis. Such that, we applied Bonferroni Step-down correction to retain a 

moderate amount of positives. While for identifying the DMPs, more significant features would 

benefit us to further study the differentially methylated regions. Therefore the Benjamini-

Hochberg FDR correction was applied in this step. Details about the application are described in 

the following sections. 
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4.2.1 Define the methylated sites with Bonferroni Step-down correction 

 

In this study, we wanted to test differences in the DNA methylation levels between two 

samples at every testable cytosine position. For a particular position, there may exist two types of 

differences: one strain was methylated while the other strain was not; the methylation level in 

one methylated strain was higher than the methylated strain.  

Since both the bisulfite treated sequencing and the short reads alignment allow errors, 

some methylated reads may be due to un-conversion during the sequencing or mismatches in 

alignment. Therefore, when determining the cytosine is methylated or not, we have to tell if a 

methylated read is truly methylated first, which is determined by a Binomial probability. 

In mammal study, as the methylation rarely happen on CHG and CHH sites, we can 

count the reads of cytosine as methylations. The genomewide false positive methylation rate is 

roughly calculated as the number of methylated reads at CHG and CHH divided by the total read 

counts that cover the cytosine. However, methylation could happen to all kinds of context in 

plants. Fortunately, in the chloroplast, DNA methylation would not occur. Therefore, the false 

positive methylation rate can be estimated by counting the methylated reads in sequences 

mapped to chloroplast genome. The error rate for each sample was calculated in this study. 

At a given cytosine position, with the specific total number of covered reads and error 

rate, an probability of observing the methylated reads cover that position can be obtained by 

binomial distribution (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘, where 𝑛 is the read depth, 𝑘  is the methylated read 

count and 𝑝 denotes the error rate. We treat this probability as the individual p-value: if this 

probability is less than a threshold we can call it a methylated cytosine.   
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Bonferroni Step-down correction is applied in this step, as we want an intermediate 

control for potentially methylated positions.  Bonferroni Step-down correction is similar to the 

Bonferroni procedure. However, instead of multiplying the p-value with the total number of tests 

and teat each test with same weight, Step-down correction treat the p-value with different 

correction according to the rank of the p-value. The scheme of the Step-down correction is as 

below: 

1) Sort the individual p-values in an ascending order. 

2) Corrected p-value = original p-value *(n-rank+1), where n is the total number of tests. 

 Compare the corrected p-values with the significance level (eg. 0.05) , features with 

corrected p-values less than the threshold are considered to be significant. Both Bonferroni and 

Bonferroni Step-down correction aim to control the Family-wise error rate (FWER). FWER 

allow very few occurrences of false positives. For example, if FWER equals to 0.05, it is 

expected that 0.05 of features would be significant by chance.  

Another potential algorithm of defining methylation cytosines was described in Lister,R,. 

et al (Lister et al., 2009). They adjusted the p-value according to observations at every position. 

To ensure the false discovery rate (FDR) of 0.05, the FDR controlled threshold for p-value at 

each position was calculated as 0.05*𝑘/(𝑛 − 𝑘), where 𝑛 is the read depth, 𝑘  is the methylated 

read count.  Using this algorithm, it is expected that out of all methylated cytosines called, no 

more than 5% would be due to the un-conversion and sequencing error. At each cytosine position, 

the observed binomial probability was calculated by a null 

distribution: 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒). Then a cytosine site with binomial probability less than 

FDR corrected P-value was called as methylated position. 
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We have applied both methods to our data and they showed no differences. So we 

retained the result from Bonferroni Step-down correction for following analysis. 

 

4.2.2 Define the differentially methylated positions (DMP) with Benjamini-

Hochberg FDR correction  

 

To test the equality of methylation levels in two samples, the two-tailed Fisher’s exact 

test was applied to 2 × 2  contingency tables derived at each cytosine position (Table 1).  Let 

𝜋1and 𝜋2 denote the proportions of the methylated cytosines (mC) to the total reads (total read) 

covered at the tested position in two strains. The null hypothesis was 𝐻0: 𝜋1  =  𝜋2.   

 

 

mC read non-mC read total read 

Sample1 k1 n1-k1 n1 

Sample2 k2 n2-k2 n2 

Table 1. 2x2 table for differential test at each cytosine position. n1 and n2 denote the total 

coverage of the single cytosine position in sample1 and sample2; k1 and k2 indicate the 

methylated C read counts in two samples. 

 

In testing the significance of association between methylation status and treatments, the 

Benjamini-Hochberg FDR correction was applied in this procedure.  
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1) At testable positions on genome (m positions in total), individual p-values 

(P1, P2, … , Pm) were obtained by statistical test. The p-values then were sorted in ascending order 

(P(1), P(2), … , P(m)).   

2) For a given false discovery rate α, find the largest k such that P(k) ≤
k

m
α. 

3) Reject the null hypothesis for the test 1 to k. 

The retained positive results were then claimed to be genome-wide significant. 

Benjamini-Hochberg FDR is the least stringent method compared to the other three options.  

FDR allows a percentage of called significance to be false positives. If a FDR equals 0.05, we 

can expect 5% of significance features are identified by chance only.  

A window sliding procedure was used to find the clusters of DMPs that identified by 

Fisher’s exact test.  The 50bp windows were initially obtained by satisfying the threshold that at 

least 3 DMPs in the 50bp windows. Then the windows were merged if the 50bp windows were 

overlapped. Regions with high frequency of DNA methylation variations may potentially impact 

their adjacent genes. 

 

4.3 Biological inference 

 

4.3.1 Differentially expressed gene analysis with RNA-seq data 

 

In order to identify potential targets whose expression were influenced by DNA 

methylations. We matched the DNA methylation analysis with the RNA-seq analysis. We ran the 
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differentially expression analyses on three pairs of samples (430ppm vs 810 ppm CO2 

concentration), and a classic RNA-seq analysis pipeline (Figure 9) was applied to determine 

differentially expressed genes. 

After adapters were trimmed, the paired-end raw RNA-seq reads were uniquely mapped 

to Tair10 reference genome using the TopHat package(Trapnell et al., 2009). Then, Cufflinks 

was used to assemble transcripts and estimated the relative abundances of possible isoforms. In 

essence, Cufflinks implements a constructive proof of Dilworth's Theorem by constructing a 

covering relation on the read alignments, and finding a minimum path cover on the directed 

acyclic graph for the relation. Cufflinks tries to find the correct and parsimonious set of 

transcripts by performing a minimum cost maximum matching. With normalized RNA-seq 

fragment counts, the Cufflinks measures the abundances in Fragments Per Kilobase of exon per 

Million fragments mapped (FPKM) (Mortazavi et al., 2008; Trapnell et al., 2009; Trapnell et al., 

2012). 

The assembly files are merged with reference transcriptome annotation into a unified 

annotation and fed into Cuffdiff for differentially expression tests. Cuffdiff calculates expression 

in two or more samples and tests the statistical significance of each observed change in 

expression.(Trapnell et al., 2010). It tests the observed log-fold-change in its expression against 

the null hypothesis of no change. Upper-quantile normalization was applied to two samples 

within each replicate to make two samples comparable in both Cufflinks and Cuffdiff option 

setting.  

http://en.wikipedia.org/wiki/Dilworth%27s_theorem
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Figure 9. RNA-seq analysis pipeline (Galaxy tools). In a two conditions experiment, reads are 

first mapped to the genome with TopHat. These mapped reads are provided as input to Cufflinks, 

which produces one file of assembled transfrags for each sample. The Cuffmerge then merges 

the assembly files with the reference transcriptome annotation into a unified annotation for 

further analysis. This merged annotation is quantified in each condition by Cuffdiff, which 

produces expression data in a set of tabular files. These files can be indexed and visualized with 

CummeRbund to facilitate exploration of genes identified by Cuffdiff as differentially expressed, 

spliced, or transcriptionally regulated genes.  
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4.3.2 Map the DMRs with gene elements and differentially expressed genes  

 

To explore the correlation between DNA methylation and gene expression, the 

distribution of DMRs along the gene body, five-prime UTR, three-prime UTR and promoters 

was studied. The DMR that has longer than 20% of its length overlapped with the element is 

considered as overlapped with the element. The .gff files with annotation information was 

obtained from TAIR10 (Rhee et al., 2003). Promoter regions that were defined as 1kb upstream 

of the start of five-prime UTR and overlapped with DMRs were also identified. There was no 

threshold for the overlapping length in match the DMRs with promoters.   

We matched the gene list derived from above with the differentially expressed genes 

from RNA-seq analysis, and derived a group of overlapping genes. These genes are potentially 

impacted by the high DNA methylation level in reacting to the elevation of CO2 concentration. 

 

5 Results 

5.1 Bisulfite treated sequencing short reads alignment 

 

We had ~150,000,000 short reads range from 4bp to 101bp long for each sample (Table 

2). After quality control, adapter removal and uniquely mapping, around 70 million short reads 

were left for the downstream analysis. The mapped reads covered over 90% of the whole 

genome. The average read depth at each covered genome position was around 30 which indicate 

the sequencing result could satisfy the hypothesis testing (Table 2). 
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Rep1 Rep2 

  400ppm 800ppm 400ppm 800ppm 

Raw reads 182,456,168 150,138,348 152,093,025 129,331,514 

Total reads after trimming 132,654,863 121,999,534 150,992,516 128,253,172 

Uniquely mapped total reads 86,238,563 67,336,234 73,925,270 56,808,855 

Genome average read depth 

(number of reads/base) 32.78 28.66 32.75 24.41 

Table 2. Number of reads in data processing step and average genome coverage for four strains. 

 

 Over 90% of the cytosines on the reference genome were covered by sequencing data 

(Figure 10). In our hypothesis analysis for DMPs, we only kept the cytosines that were covered 

by at least three reads for the downstream analysis. As the result, ~85% of the genome cytosines 

were taken into analysis (Figure 10).   
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Figure 10. Distribution of genomic cytosines coverage. The figure was obtained by count the 

percentage of cytosines that were covered by at least one read to at least 30 reads. Four samples 

showed similar pattern of cytosine coverage. The percentages were averaged across five 

chromosomes in each sample. 

 

5.2 Methylcytosine profiles  

 

 Our preliminary High Performance Liquid Chromatography (HPLC) experiments 

indicated that, genome-widely the cytosine would gain methylation with increased CO2 

concentration.  Although we observed slightly decreased number of methylated cytosines from 

400ppm strains to the 800ppm strains (Table 3), we expected large portion of cytosines with low 

methylation levels at 430ppm would turn to be highly methylated under 810ppm.   
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Rep1 430ppm Rep1 810ppm Rep2 430ppm Rep2 810ppm 

Error  rate 0.006417 0.008713 0.009667 0.010758 

 

Binomial Tests 

(read depth ≥ 3) 

  

  

  

  

Chr1 1,313,978 1,302,153 1,283,488 1,247,185 

Chr2 1,306,470 1,294,369 1,285,641 1,257,128 

Chr3 1,363,903 1,355,220 1,336,494 1,310,199 

Chr4 1,108,888 1,104,089 1,087,900 1,068,024 

Chr5 1,351,164 1,339,882 1,322,229 1,292,137 

Total  6,444,403 6,395,713 6,315,752 6,174,673 

Table 3. Methycytosine profiles. The methylcytosine was determined by Binomial test with error 

rate specific for each sample.  

 

 Within each context, the portion of methylated CG sites was higher than the other two 

methylation forms (Table 4). Among the contexts of methylated cytosines, the mCHH sites were 

highly represented (Figure 11b), because the representation of CHH sites is much higher than the 

other two cytosine contexts in Arabidopsis genome. We did not observe big difference between 

the enrichment patterns of the methylated sites between two environmental conditions. The 

chromosome distribution of methylated cytosines shows that the methylation has much higher 

densities in the pericentromeric regions of chromosomes (Figure 11a). CHG methylation 

enriched in the pericentromeric regions, likely due to its preference for methylation of 

transposon-related sequences (Tompa et al., 2002; Kato et al., 2003). In contrast, CG and CHH 

methylation, although most occupied in the pericentromeric regions, showed relatively higher 

enrichment throughout the euchromatic chromosome arms (Figure 11a).  
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Rep1 

430ppm 

Rep1 

810ppm 

Rep2 

430ppm 

Rep2 

810ppm 

CG 31.2% 31.5% 30.2% 30.4% 

CHG 18.7% 18.9% 18.2% 18.3% 

CHH 11.4% 11.2% 11.3% 10.8% 

Table 4. Methylcytosine percentage within each cytosine context.  Among three contexts, the 

proportion of methylated CG is the highest. Two strains at different 𝐂𝐎𝟐 concentration levels 

show similar patterns. 
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(a) 
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(b) 

 

Figure 11. Methylated cytosines distributions of three cytosine contexts. (a) The distributions of 

three cytosine contexts have similar patterns along chromosome 1 to chromosome 5. The 

enrichment of methylcytosines elevated at the pericentromeric regions of chromosomes. The 

figure was obtained by split the chromosome into non-overlapped 500m bp windows and the 

average density of methylated cytosines was calculated within each window. (b) The methylated 

CHH was mostly representative among three contexts. The percentages were averaged across all 

samples. 

 

5.3 Functional genes impacted by differentially methylated regions (DMRs)  

 

 We derived 921 DMRs from the differentially methylation analysis. Among these DMRs, 

879 DMRs showed higher level of methylation in 810ppm strain. We found 45 genes that located 

overlapped with DMRs and 69 genes located within the 1kb downstream of the DMRs (Table S 

1).  Some of these genes were identified by the RNA-seq analysis as differentially expressed 

genes (FDR <=0.05) (Table 5).  The genes overlapped with DMRs at the 5’UTR or 3’UTR did 

not show significance in differential expression. Three replicates did not show exactly same 

results but had common genes (eg. AT2G22300, AT2G03980). Theoretically, the DNA 

methylation level is positive related with gene expression at the genebody and negative related at 

mCG, 27%

mCHG, 

18%

mCHH, 

55%
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the promoter region. In our results, seems the association at the genebody shows consistently 

positive but the negative association at the promoter regions is not always true.  This suggests 

that gaining methylation do not always repress the downstream gene expression. Some listed 

genes are found functional in the plant development. 

 

RNA_seq replicate Alignment Gene locus Sample 

FPKM 

(430ppm) 

FPKM 

(810ppm) q_value 

1 

Genebody 

AT2G01008 810ppm 2.22 9.22 2.71E-09 

AT3G41761 810ppm 0.00 71.45 9.36E-04 

Promoter 

AT2G03980 810ppm 28.98 60.52 2.02E-04 

AT2G22300 810ppm 39.88 27.35 5.68E-03 

2 

Genebody AT3G17185 430ppm 4.93 18.77 5.62E-03 

Promoter 

AT2G03980 810ppm 19.27 55.86 3.03E-02 

AT2G22300 810ppm 32.24 14.28 5.00E-03 

AT4G08290 810ppm 22.66 7.28 8.11E-03 

3 

Genebody AT5G24270 430ppm 2.35 5.41 3.43E-03 

Promoter 

AT3G23790 810ppm 14.89 27.27 7.67E-03 

AT5G35732 810ppm 5.49 15.59 2.65E-03 

Table 5. The genes that may impact by high frequency of DNA methylation variations. The 

overlap and promoter denote the gene is overlapped with DMRs and located at the 1kb 

downstream of the DMRs respectively. Most of the identified genes were found overlapped with 

the DMRs. Sample column represents that the methylation levels increased under the specific 

𝐂𝐎𝟐 concentration. Fragments Per Kilobase of exon per Million fragments mapped (FPKM) 

values for transcripts and the q_value for differntial test values were generated by Galaxy tools 

described in the method session.   
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Elevated 𝐂𝐎𝟐 may affect the lipid metabolic process 

 Metabolism is the set of life-sustaining chemical transformations within the cells of living 

organisms. These reactions allow organisms to grow and reproduce, maintain their structures, 

and respond to their environments. The gene AT2G03980 was a GDSL-like 

Lipase/Acylhydrolase superfamily protein which is related to the hydrolase activity. As it is 

involved in the lipid metabolic process, regulation of this type of genes played very important 

roles in the plant development, especially under certain environmental stresses.  We found this 

particular gene showed around two-fold change in expression at 800ppm CO2 concentration, 

compared to the 400ppm CO2 concentration (Table 5). This change may be correlated with the 

cluster of increased methylation at the 1kb promoter region. 

 Besides, we observed a significant higher expression of AT3G23790 with increasing 

methylation level under elevated CO2 (Table 5). The AT3G23790 is a gene that could produce 

acyl activating enzyme 16 (AAE16) which is also involved in the metabolic process (Koo et al., 

2005). The Arabidopsis genome contains a superfamily (63 members) of genes encoding 

proteins annotated as acyl-activating enzymes. These enzymes catalyze the activation of many 

carboxylic acid substrates through the formation of thioester bonds. Along with another member 

AAE15(At4g14070), AAE16 was grouped into a long-chain acyl-CoA synthetase subfamily 

(LACS gene).  

 

Elevated 𝐂𝐎𝟐 may affect the defense responses  

 The differentially expressed gene AT2G22300 is one of the calmodulin-binding 

transcription activators (CAMTAs) family. The CAMTAs comprise a conserved family of 
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transcription factors in a wide range of multicellular eukaryotes, which possibly respond to 

calcium signaling by direct binding of calmodulin. Arabidopsis thaliana contains six CAMTA 

genes (At5g09410, At5g64220, At2g22300, AT1G67310, At4g16150 and At3g16940). 

 Loss-of-function mutations show enhanced resistance to fungal and bacterial pathogens 

suggesting that CAMTA functions to suppress defense responses (Rhee et al., 2003). Calmodulin 

(CaM) is a small (148-residue), highly conserved, ubiquitous, calcium binding protein. A number 

of CaM-binding proteins have been identified through classical methods, and many proteins have 

been predicted to bind CaMs based on their structural homology with known targets. CaM binds 

to proteins involved in the regulation of an array of cellular processes, including gene 

transcription, muscle contraction, cell survival, and neurotransmitter disease (Klee et al., 1980; 

Chin et al., 2000; Yamniuk et al., 2004). Earlier reports suggested that CaM activity could be 

regulated via methylation because the methylation state of CaM was observed to vary in a tissue-

specific and developmentally specific pattern in Pisum sativum (pea) roots (Oh et al., 1990). A 

recent study further identified new methylation-dependent CaM binding proteins (Banerjee et al., 

2013).  

Elevated 𝐂𝐎𝟐 may affect the auxin-regulated organ development 

 The gene AT3G17185 which overlapped with DMR showed higher expression with loss 

of methylation in responding to the higher level of  CO2 concentration. This gene encodes a 

trans-acting siRNA (tasi-RNA) that regulates the expression of auxin response factor genes 

(ARF2, ARF4, ETT) and it is one of 3 genomic loci that encode the TAS3 siRNA (Rhee et al., 

2003). As it may be involved in the leaf development, it is definitely related to the adaption of 

the plants to the environmental impact like CO2 concentration.   
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Elevated CO2 may affect the nutrition, K+/Na+ selectivity, and salt tolerance 

 Another gene, AT5G24270, is similar to calcineurin B. Lines carrying recessive 

mutations are hypersensitive to Na+ and Li+ stresses and is unable to grow in low K+. It encodes 

a calcium sensor that is essential for K+ nutrition, K+/Na+ selectivity, and salt tolerance. (Rhee 

et al., 2003).  It has been demonstrated that chromatin modification is involved in the resistance 

responses of plants to salt stress in the same generation as the stress occurs. A study reported that 

failure of cytosine methylation at a putative small RNA target site of AtHKT1.1 promoter led to 

lower gene expression, resulting hypersensitivity to salt stress(Shkolnik‐Inbar et al., 2013). 

Furthermore, another study has been shown that salt stress induced demethylation of NtGPDL 

gene could lead to higher tolerance to stress (Pavet et al., 2006). In our study the demethyaltion 

at the AT5G24270 gene region was likely to impact the salt tolerance of Arabidopsis in higher 

concentration of  CO2. 

 

6 Conclusion 

 

In this study Arabidopsis were treated with two levels of CO2 concentrations to determine 

how CO2 might affect their DNA methylation status, using the high-throughput sequencing data 

generated by the NGS techniques. Genome-wide multiple tests were applied to get the significant 

methylation variance. A group of functional genes were found to be potentially impacted by high 

frequency of gaining or losing methylation at the nearby cytosine sites.  

Our study indicated that the epigenetic modification, especially the DNA methylation, do 

contribute to the plant’s adaption to the higher CO2 stress. It suggested that, DNA methylation 
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variances may impact the crucial pathways of metabolic process, defense responses, nutrition 

selectivity and salt tolerance. This was consistent to the observed phenotype differences in 

flowering, leave development and seed production under two different levels of CO2.  

 Together with other existing studies of stress-induced epigenetic modifications, our study 

supports further exploration of how increasing greenhouse gas may influence plants. This is 

important in future agriculture research and will ultimately facilitate us to meet the challenges 

brought by the global climate change.   
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Chapter III: Genome-wide association study between gene 

regulation and histone modification  

1 Previous studies to detect the correlation between epigenetic alternations 

and gene expression 

 

Histone modifications add another layer of epigenetic regulatory option.  As more and 

more evidence shows that histone modifications are directly related with human disease like 

cancer, understanding how histone modifications are related to gene regulation is very important 

and meaningful, and would facilitate us to explore effective treatment. With the remarkable 

progress in this area, we begin to scratch the “code” of the histones but many problems remain to 

be solved.  

Studies may explore qualitative and quantitative correlations between histone 

modifications and gene expression. Qualitative studies mainly describe the distribution of histone 

modifications tags around the gene regions, but quantitative studies aim to build predictive 

models for gene expressions based on histone modifications, for example, from the ChIP-seq 

enrichments. We will briefly introduce both types of analyses below. 

 

1.1 Qualitative correlation studies 

 

The link between histone modifications and transcription has been intensively studied. 

Most of them were focused on locating the density or frequencies of histone tags with the 
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corresponding active or repressed genes (Schones et al., 2008; Maunakea et al., 2010). 

Association can then be defined if the densities or signal distributions of chromatin features 

coincided with the various expressions of adjacent transcripts. It has been shown that histone 

acetylation is clearly associated with transcriptional activation (Maunakea et al., 2010), and the 

reverse reaction catalyzed by histone deacetylases (HDACs) results in transcriptionally 

repression and lowers the transcription potential of the underlying DNA (Braunstein et al., 1993). 

Different from acetylation, histone methylation could be associated with transcriptional 

activation or repression depending on the specific targeted residue and degree of methylation 

(Jenuwein et al., 2001; Kouzarides 2007).  

It was suggested that histone modifications may delineate functional features of genes, 

including their structure and intrinsic regulatory elements. Histone modifications across actively 

expressed genes can be classified into at least 4 categories. Based on their general patterns,  

Histone modifications may correspond to different functions in transcription (Figure 12a). 

Inactive genes may be related to two types of patterns of “silent” histone marks (Figure 12b). It 

was shown that, “active” histone modification marks, which are highly enriched within gene 

promoters, may be involved in transcription initiation, whereas those at intragenic regions may 

be involved in elongation, termination or pre-mRNA splicing (Barski et al., 2007; Wang et al., 

2008; Kolasinska-Zwierz et al., 2009; Wang et al., 2009; Luco et al., 2010). Similarly, other 

histone modifications across silent genes adopt distinct patterns to possibly impair/prevent 

transcription initiation when enriched at promoters, or to disrupt elongation when enriched 

throughout gene bodies (Maunakea et al., 2010).  
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Figure 12. Distinct histone modification patterns delineate gene structure and associate with gene 

expression states. (Maunakea et al., 2010)  Green color denotes the “active” histone modification 

marks, and red color denotes the “silent” histone modification marks. (a) Four categories of 

active histone modifications pattern relate to active genes. (1)Active mark highly enriches at 

gene promoters but depleted in gene bodies; (2) Active mark gradually decreases along gene 

bodies; (3) Active mark gradually increases throughout the gene bodies but peaks toward the 3’-

end.(4) Both active mark and silent mark do not cover the gene region. (b) Two categories of 

silent histone modifications pattern relate to inactive genes. (1) Repression mark enriches over 

the gene even with an active mark surrounding the promoters; (2) Silent mark modestly enriches 

at promoters and declining signals throughout the gene region. 
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1.2 Quantitative correlation studies 

 

Recent researches started to study the quantitative relationship between histone 

modifications and gene expression levels (Karlic et al., 2010; Xu et al., 2010; Cheng et al., 2011; 

Dong et al., 2012). In order to build quantitative models of gene expression on chromatin 

modifications, two important issues need to be considered. Firstly, how to define a proper 

variable from histone modification tags from ChIP-Seq enrichment data? Like other chromatin 

features, histone modification marks do not have consistent density distributions along the whole 

gene regions. How to quantify these patterns into variables for modeling is a difficult and yet 

critical question. Secondly, what model could be used to fit the data?  

One study illustrated a quantitative model for predicting gene expression by histone 

modification using linear regression model (Karlic et al., 2010). The independent variables were 

log transformed sums of histone tags in 4001 base pairs surrounding the transcription start sites 

(TSS). Linear regression models were fitted with all possible combination of predictors (Figure 

13). It was suggested that three histone modifications at the promoter are enough to faithfully 

model the expression of the associated gene. The Pearson’s correlation coefficient 𝑟 (Pearson’s 𝑟) 

between predicted and observed expression level was computed to evaluate the model 

performance. The full model with all histone modifications yielded 𝑟=0.77. It reported that, 

combinations of only two (𝑟𝑚𝑎𝑥 = 0.74, H3K27ac + H4K20me1) to three modifications (𝑟𝑚𝑎𝑥 = 

0.75, H3K27ac + H3K4me1 + H4K20me1) could account for 95% of the prediction accuracy of 

full model. According to the highest scoring models, some combinations of specific histone 

modifications were found to be always present in the model.  
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One –modification model (41 models) 

𝑓(𝑋𝑖) = 𝑎 + 𝑏𝑖𝑋𝑖 

Two-modifications model (820 models) 

𝑓(𝑋𝑖, 𝑋𝑗) = 𝑎 + 𝑏𝑖𝑋𝑖 + 𝑏𝑗𝑋𝑗 

Three-modifications model (10660 models) 

𝑓(𝑋𝑖, 𝑋𝑗, 𝑋𝑘) = 𝑎 + 𝑏𝑖𝑋𝑖 + 𝑏𝑗𝑋𝑗 + 𝑏𝑘𝑋𝑘 

Full model (1 model) 

𝑓(𝑋1, … , 𝑋41) = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏41𝑋41 

Figure 13. Linear model frameworks of gene expression on total tags of histone modification in a 

4001bp window around TTS. (Karlic, Chung et al. 2010). Xi is log transformed total histone 

modification tags. All possible models from one predictor models to full model were considered.  

The Pearson’s r was calculated for each model to access the prediction accuracy. 

 

The ChIP-seq enrichment data show that histone modifications dynamically vary along 

the gene regions. Some studies pointed out that summarizing all histone modification tags in a 

specific gene region will underestimate the association with the gene regulation. To address this 

issue, the binning methods were developed in more recent studies (Cheng et al., 2011; Dong et 

al., 2012). 
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1.2.1 Initial binning method 

 

Cheng et al. (2011) developed the initial binning method to take the dynamic density 

distribution of chromatin features into consideration. They split the ±4kb window around the 

transcription start sites (TSS) and the transcription termination sites (TTS) into 100bp long bins 

(Figure 14), so there were a total of 160 bins for each gene. The mean density of histone 

modification tags was calculated for each bin.  

 

Figure 14. Initial binning method for quantifying the ChIP-Seq tags of histone modifications. 

±4kb region around TSS and TTS were split into 100-bp bins (Cheng et al., 2011). Mean density 

was calculated in each bin to predict the gene expression.  

 

Gene expressions were categorized into high and low expression groups based on RNA-

seq data. Average signal of twelve histone modifications and other chromatin variants (such as 

Poly II) were calculated and used as predictors in the Support Vector Machine (SVM) to classify 

genes into the two expression groups. The binary classification was fitted in each of the 160 bins. 

Models were evaluated in terms of prediction performance by the area under the curves (AUC) 

in their receiver operating characteristic (ROC) curves. It has been reported that all bins were 

useful to classify gene expression but they were not equally informative. Among the 160 bins, 

those close to the TSS or TTS were more informative than those far away (Figure 15). It was 
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found that the regions around TSS (-300 to 500bp) or upstream of TTS (-200 to 0bp) had the 

highest classification accuracy. 

 

Figure 15. The prediction accuracy (AUC values) of SVM classification models for all the 160 

bins along TSS and TTS regions (Cheng et al., 2011). It indicated that the bins close to the TSS 

and TTS are more predictive.  

 

By investigating the individual or a subset of features, it was claimed that the model with 

9 features could achieve almost the same prediction accuracy as the one with all 16 features. 

Furthermore, the authors trained the SVM model on subset features of methylation on histone H3 

(K4, K9, K36 and K79). Among all individual predictors, methylation on H3K79 was found to 

be the most informative. 

Linear regression models were also fitted for each bin to predict the continuous gene 

expression levels directly in a C.elegans dataset. For the most predictive Bin #1 (the closest bin 

at the TSS upstream), the Pearson’s 𝑟 reached 0.75. The method has also been applied to other 

organisms, such as yeast, fruit fly, mouse and human. Specifically, the Pearson’s 𝑟 reached 0.73 

for applications to the human K562 cell line dataset. 

In order to identify interaction effects, the authors modeled the expression level with a 

linear combination of all individual features and their two-way products.  Among all 66 possible 
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interactions, some interactions were statistically significant. However by comparing the 

interaction model with the model with only main effects, the interaction terms did not 

substantially contribute to the prediction accuracy.  

 

1.2.2 Best-bin method 

 

To get better estimation with the representative signals for each chromatin features, 

Greven et al. improved the binning method by searching for the “bestbin” for each histone 

modification (Dong et al., 2012). The binning method in this study was similar with the initial 

binning method, except that only one bin was chosen as the representative signal for each feature. 

This study narrowed the region of study to ±2kb window around the TSS and TTS.  The specific 

gene region was divided into 81bins (Figure 16). The “bestbin” was defined as the bin with the 

strongest correlation with the expression level.  

 

Figure 16. The Best-bin method split the genetic region into 81 bins(i.e. 40 bins for [-2k, +2k] of 

TSS, 40 bins for [-2k, +2k] of TTS, and 1 bin for the rest of gene body) (Dong et al., 2012). The 

mean density was calculated in each bin. The best bin was pick out by comparing the correlation 

coefficient between the histone modification signal and the gene expression across all 81 bins. 

 

This paper proposed a two-step model. They first used classification models to identify 

the expressed genes (genes with non-zero expression level) versus un-expressed genes (genes 

with zero expression level). Then they fitted a simple linear regression model on the expressed 
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genes stratified by classification model to predict the continuous expression levels. Although it 

was claimed that the two-step model improved the prediction performance, there were two major 

drawbacks. Firstly, there were 40% of the expression values equal to zero, which were excluded 

in the linear model step. That is, the linear model was built only on the non-zero expression 

values.  In this case, the prediction error tended to be under-estimated.  Moreover, as mentioned 

in the study, the important features for classification model may differ from the linear regression 

model, so it was difficult to draw a clear biological interpretation. 

The author also considered about the nonlinear effect in prediction. It was claimed that 

with the single feature effect, simple linear regression could obtain similar prediction 

performance as the other non-linear models, such like MARS (multivariate adaptive regression 

splines).  However, the interaction effects were not considered in this study.  

The generalized applications in other cell lines were compared. They applied the two-step 

procedure on different cell lines and three expression profile platforms (CAGE, RNA-PET and 

RNA-seq). Among different expression profile platforms, the model involved the CAGE TSS-

based expression levels were most predictive with the chromatin features. There were 78 

expression experiments in total. The median of 78 Pearson’s 𝑟 in two-step model was 0.83. With 

the two-step model, the largest Pearson’s 𝑟 value (0.895) was using PolyA+ cytosolic CAGE 

RNA expression profiles of K562 cells. With the same dataset, the simple linear model got 𝑟 = 

0.871.  

In order to evaluate the contribution of different types of chromatin features, they applied 

two-step modeling to several subsets of chromatin features. The chromatin features were 

grouped in to following categories based on their known functions (Raisner et al., 2005; Barski 



 

54 
 

et al., 2007; Benevolenskaya 2007; Koch et al., 2007; Steger et al., 2008; Kolasinska-Zwierz et 

al., 2009): promoter marks (H3K4me2, H3K4me3,H2A.Z, H3K9ac and H3K27ac), structural 

marks (H3K36me3 and H3K79me2), repressive marks (H3K27me3 and H3K9me3) and 

distal/other marks (H3K4me1, H4K20me1 and H3K9m). The prediction accuracy was 

determined on each predictor subset and combination of predictor subsets. They concluded that 

for CAGE TSS-based gene expression, promoter marks and promoter combined with other 

categories gave similarly high Pearson’s r values. On the other hand, non-promoter marks had 

relatively low prediction accuracy especially with the repressive marks only. They also 

compared the “all histone modifications” model with and without Dnase I hypersensitivity. 

Although for CAGE expression with the Dnase I the prediction was slightly more accurate, they 

noticed that the Dnase I itself did not effect a lot in gene expression.  

Besides the binning method, Xu Hoang and colleagues (Xu et al., 2010; Hoang et al., 

2011) proposed another enrichment data quantification which weighted the chromatin features 

according to the genome coordinates and gene length. They claimed that by assigning different 

weight to the modification enrichment levels, the model could adopt the spatial deposition 

patterns. Therefore, the rescaled predictors could improve the prediction accuracy.  

Both binning method and refinement of enrichment estimation have pointed out the 

importance of the genome coordinate dependent association between modification enrichment 

predictors and the gene expressions. However, these scenarios focused on the data 

quantifications. Although the binning methods achieved high prediction accuracy for gene 

expression, by taking total or average histone modification tags in specific window or one bin as 

the predictor still lost the information from other positions that may impact gene expressions 
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cooperatively. Additionally, either modeling in every bin (initial binning method) or a 

representative bin (Bestbin method) brought difficulty in interpretation. 

Previous methods indicated that the spatial correlation patterns may potentially exist 

between histone modifications and gene expression levels. However, the synergic effect, which 

makes up the “histone code”, was largely unexplored. The mechanism of interaction among the 

histone modifications and other chromatin variants remains unclear. 

 

2 Main goal and significance of the study 

 

The quantitative modeling revealed the association between modification and gene 

expressions. It opened a door for exploring the epigenetic gene regulation. Due to the complexity 

of dynamic densities distribution of modification marks, models based on summation or average 

of tags along gene regions may be biased. Therefore, binning method is a good way to capture 

the varying patterns of the enrichment. To well utilize the spatial information which are the 

genomic loci the bins located is a necessary extension.  

In our association study, we want to address the following questions: What is the 

quantitative relationship between the dynamic histone modification patterns and the gene 

expression? Do interactions among different chromatin features contribute to the gene expression? 

Many previous studies showed that the enrichments of the histone modifications were 

related to the gene expression. We hypothesize that some positions are more informative to 

predict the gene expression than others. Based on the histone code hypothesis, the combination 

of histone modifications happens at the specific gene regions would contribute cooperatively to 



 

56 
 

the gene expression. Therefore, we believe that different genome locus also have systematic 

effects in the epigenetic gene regulation. 

The existing methods seem to have already achieved a good performance based on the 

accuracy. However, they usually provide poor model interpretation. If we are interested in 

understanding the underlying mechanisms about how data were generated, new method with 

better interpretability has to be developed. 

Our goal is to explore the correlation between histone modification and gene expression 

in a comprehensive and spatial way. The spatial component effect will be considered in both the 

individual and interactive histone modifications. A model that can adequately describe the 

quantitative relationship would benefit the further epigenetic study, and provide crucial 

evidences for the epigenetic regulatory system to the gene expression.  

 

3 Materials and method 

3.1 Data description 

 

Datasets used in this study were referred to the Bestbin study (Dong et al., 2012). The 

ChIP-Seq data for fourteen chromatin features were available from the Gene Expression 

Omnibus (GEO; accession number GSE29611); DNsase I hypersensitivity data was accessible 

via GEO accession number GSE32970.  Gene expression raw data profiled by CAGE can be 

downloaded with GEO accession number GSE34448.  
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3.1.1 Gene expression data 

 

The cell line or cell culture refers to different culture conditions. In our study, data were 

generated from the K562 cells. Gene expressions protocols from different cell compartments 

(whole cell, cytosol and nucleus) and RNA extractions (Long  PolyA (PolyA+) and Long Non 

PolyA (PolyA-) were compared in Greven et al. study. Overall, PolyA+ RNA was more 

predictive than PolyA- RNA.  

The cap analysis gene expression (CAGE) is a promoter-based expression profiling 

technique. It was designed to locate the exact transcription start sites in the genome. Thus it 

benefited researchers who aimed to investigate the promoter activities. As discussed in this 

Greven et al. study, the choice of gene expression profile platform did matter in the gene 

regulatory study.  The promoter marks were more predictive to CAGE-based expression levels 

while the structural marks were more predictive for RNA-Seq expression 

The RNA  gene expression values of a given TSS is defined as the sum of the CAGE tags 

whose 5’ end falls within the 101bp window centers on the TSS.  The response values were 𝑙𝑜𝑔2 

transformed. To avoid log2(0), a small number 0.03 was added to the expression followed the 

Greven et al.  (Figure 17).   
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Figure 17. Histogram of gene expression values. The logarithm transformation of transcripts 

expression was applied to reduce the skewness.  

 

3.1.2 Chromatin features data 

 

Among all 14 chromatin features, 11 of them were histone modifications (H3k27ac, 

H3k27me3, H3k36me3, H3k4me1, H3k4me2, H3k4me3, H3k79me2, H3k9ac, H3k9me1, 

H3k9me3, H4k20me1). The rest two features were histone variant H2az and the Dnase I 

hypersensitivity. A control ChIP-Seq data corresponding to this cell line was also included as an 

individual feature. The number of accumulated mapped reads varied position by position and 

formed the dynamic patterns of the tag intensities.  

Our analysis focused on the TSS sites of genes as the alternations in promoter regions 

were more likely to correlate with the gene regulations. Following the binning method, for each 

gene, the genomic regions that are ±2k bp from the TSS was split into small bins of 100bp (40 

bins in total). The region from the the 2kb downstream of the TSS to the 2kb upstream of the 
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TTS is treated as the 41st bin (Figure 18). Note that, the lengths of bin#41 may vary because of 

the different lengths of transcripts.   

 

 

Figure 18. Quantification of the chromatin features. The 2kb region around TSS was split to 40 

100bp bins. The Bin#41 is included as the gene body bin. Mean density of the ChIP-Seq tags 

was calculated in each bin to construct the predictor. 

 

The number of ChIP-seq reads that covered the bin was counted and mean density was 

calculated in each bin with the bigWigSummary command-line utility(Kent et al., 2010). For the 

𝑖th gene, 𝑗th histone chromatin and bin p, the original average density in that bin is denoted by 

𝑋∗𝑗𝑝. 𝑖(Error! Reference source not found.). As we have 41 bins in total, for the ith gene and 

jth histone modification, we had a vector (𝑋∗𝑗1. 𝑖 … 𝑋∗𝑗41. 𝑖) to represent the dynamic pattern of 

tags densities (Table 6).  

The chromatin feature tags were also 𝑙𝑜𝑔2 transformed. A pseudocount was added to the 

original counts to avoid log2(0). Following the data processing of Greven et al. study, one third 

of the dataset was taken to an optimization procedure in order to determine the pseudocount. 

Searching from 0 to 20% of the maximal value of  𝑋∗𝑗𝑏 in the 𝑏𝑡ℎ bin , the optimized 

pseudocount 𝑎𝑗_𝑏 was determined by a maximal correlation between log2(𝑋∗𝑗𝑏. 𝑖 + 𝑎𝑗_𝑏) and 

expressions values.  



 

60 
 

 After optimizing the chromatin features, we had 13,731 transcripts for modeling. The 

predictors were 14 chromatin features (CF), each having 41 bins for each transcript. The 

processed data has following structure (Table 6)
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 Expression CF1 CF2 … CF14 

Gene 1 𝑌1 𝑋11. 1, 𝑋12. 1 , … , 𝑋141. 1 𝑋21. 1, 𝑋22. 1 , … , 𝑋241. 1 … 𝑋141. 1, 𝑋142. 1 , … , 𝑋1441. 1 

Gene 2 𝑌2 𝑋11. 2, 𝑋12. 2 , … , 𝑋141. 2 𝑋21. 2, 𝑋22. 2 , … , 𝑋241. 2 … 𝑋141. 2, 𝑋142. 2 , … , 𝑋1441. 2 

… … … … … … … … … … … … 

Gene n 𝑌𝑛 𝑋11. 𝑛, 𝑋12. 𝑛 , … , 𝑋141. 𝑛 𝑋21. 𝑛, 𝑋22. 𝑛 , … , 𝑋241. 𝑛 … 𝑋141. 𝑛, 𝑋142. 𝑛 , … , 𝑋1441. 𝑛 

Table 6. Finalized data structure. The expression 𝑌 is 𝑙𝑜𝑔2 transformed expression values. 𝑋𝑗𝑝. 𝑖 denotes the 𝑙𝑜𝑔2 mean density of 

𝑗𝑡ℎchromatin feature at 𝑝𝑡ℎbin in 𝑖𝑡ℎ transcript region. There are 41 observations for each of 14 chromatin features responding to each 

transcript.
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3.2 Multivariate adaptive regression splines (MARS) and Step-wise 

multivariate adaptive regression splines (SMARS) 

 

Multivariate adaptive regression splines (MARS) is a nonparametric nonlinear algorithm 

developed from adaptive computation strategies. These strategies are mainly used to approximate 

general functions in high dimensions. With the development of statistical methodology in this 

area, two major adaptive algorithms have been intensively studied. One is projection pursuit 

(Friedman et al., 1981; Friedman et al., 1983),  and the other one is recursive partitioning 

(Breiman et al., 1984).  

Projection pursuit is an approximation of M additive functions of linear combinations of 

variables  

𝑓(𝑥) = ∑ 𝑓𝑚(∑ 𝑎𝑖𝑚𝑥𝑖

𝑛

𝑖=1

)

𝑀

𝑚=1

 . 

The coefficients are estimated by joint optimization to reduce the square error loss. 

Projection pursuit regression could be viewed as a low dimensional expansion, which is adjusted 

to best fit the data. It was shown that, even with small size of M it could achieve enough 

approximation to many types of functions (Donoho et al., 1989). However, there exist some 

simple functions that need a large M for good approximation, and it also bring difficulties for 

interpretation. Moreover, in this case it is computationally intensive. 

The recursive partitioning regression model is generally viewed as a geometrical 

procedure. It’s also been viewed as a stepwise regression procedure. The approximation takes the 

form 
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𝑓(𝑥) = ∑ 𝑎𝑚𝐵𝑚(𝑥) .

𝑀

𝑚=1

 

The basis functions 𝐵𝑚 take the form  

𝐵𝑚(𝑥) = 𝐼[𝑥 ∈ 𝑅𝑚],  

which is an indication function having value one if point x belong to the disjoint subregion 𝑅𝑚 

and zero otherwise. Given one observation x, only one function among all M basis functions 

would yield a nonzero value. The coefficients {𝑎𝑚}1
𝑀 are jointly adjusted to get the best fit to the 

observed data. 

The goal of recursive partitioning is to estimate a good set of subregions and parameters 

associated with the separate functions in each subregion.   Starting with the entire domain D, the 

partitioning is accomplished by recursive splitting of previous subregions. The variables that 

locally have more influence on the response are more likely to be chosen as the optimal knot in 

splitting procedures.  Globally, the response depends on a large number of variables but in each 

split subregion, it may only strongly depend on a subset of variables. Moreover, these subsets 

may vary a lot across the subregions. However even this is true, the recursive partitioning does 

not incorporate the subset selection feature in the algorithm. This limits the power and the 

interpretability of models. The other limitation is caused by the discontinuous functions at the 

subregion boundaries. When the true underlying function is continuous, this approximation 

would be bias. This problem is caused by using step function 𝐼[𝑥 ∈ 𝑅𝑚]. 

In addition to that, it is not represented in the model whether the underlying function is a 

simple linear or additive model. It also has difficulty when interaction effects exist within a small 

fraction of variables. The recursive algorithm is to delete the existing basis function and replace 
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it with the product of basis functions. By doing so, the average interaction order increases after 

every loop of proceeding. Thus the model could not achieve good approximation when the 

function is composed of low order interactions. The additive model is a common case. 

The feature selection of recursive partitioning is to remove the basis functions that do not 

contribute to the accuracy of approximation. The traditional way of deleting one basis at a time 

could not be used in the case of recursive partitioning. The corresponding regions are disjoint 

and removing a basis function will produce a “hole” in the predictor space. To trim the over-

fitted model to a proper size, the backward strategy of recursive partitioning is designed to delete 

regions in adjacent pairs by merging them into a single region. One optimal algorithm is 

complexity tree pruning (Breiman et al., 1984). 

 

3.2.1 Multivariate adaptive splines (MARS) 

 

The MARS algorithm aims to adopt the adaptability of recursive partitioning while 

modifying it to overcome its two major limitations: inability to capture simple associations and 

discontinuity (Friedman 1991). The modifications include that: 

1) Replace the step basis function by a truncated spline basis function [±(𝑥 − 𝑡)]+ 

2) Not remove the existing “parent” basis function when new splits are included. 

Therefore, all basis functions could be involved for further splitting. Then the 

procedure is able to produce a model with high- or low-order of interactions. A 

simple function like linear or additive could be properly approximated.   
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MARS can be viewed as a generalization of stepwise linear regression or a modification 

of the CART method. The recursive partitioning regression procedure is well suited for high-

dimensional problems. In addition of that, it is flexible enough to model non-linearity and 

variable interactions yet keep the interpretability. These advantages align well with the goals of 

our study. 

The idea of MARS is to build an expansion form in a set of basis functions to cast the 

approximation. A good set of basis functions based on the data is derived from minimizing the 

lack of fit function (LOF). The piecewise basis functions are in form (𝑥 − 𝑡)+ and (𝑡 − 𝑥)+, 

where 

 (𝑥 − 𝑡)+ = {
𝑥 − 𝑡, 𝑖𝑓 𝑥 > 𝑡
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and (𝑡 − 𝑥)+ = {
𝑡 − 𝑥, 𝑖𝑓 𝑥 < 𝑡
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Suppose we have features 𝑋𝑗’s, 𝑗 = 1,2, … , 𝑞. The knot value t is any possible value in observed 

values of feature  𝑋𝑗. Therefore, the collection of basis functions 𝐶is 

𝐶 = {(𝑋𝑗 − 𝑡)+, (𝑡 − 𝑋𝑗)+}  , 𝑡 ∈ {𝑥𝑗. 1, 𝑥𝑗. 2, … , 𝑥𝑗. 𝑛} , 𝑗 = 1,2, … , 𝑞 

Note that although each pair of basis functions seems only to be based on one covariate  𝑋𝑗, the 

choice of basis function is considered over thte entire input space ℝ𝑞. The model then has the 

form 

𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑚ℎ𝑚(𝑋)𝑀
𝑚=1  , 

where each ℎ𝑚(𝑋) is a function in collection  𝐶, or a product of two or more such functions. 

Given a choice of basis function  ℎ𝑚 , the coefficients 𝛽𝑚 are estimated by minimizing 

the residual sum of squares. To choose an optimized set of basis functions is the core model 



 

66 
 

building procedure of MARS. Start with a constant function  ℎ0(𝑋) = 1 , a new pair of basis 

function is selected from collection of candidate functions 𝐶 at each step. 

Using example given by (Hastie et al., 2009), suppose that after the first step we have 

model  

𝑓(𝑋) = �̂�0 + �̂�1(𝑋2 − 𝑥2.7)+ + �̂�2(𝑥2.7 − 𝑋2)+ , 

when we add the new basis function pair, we have three options 

𝑓(𝑋) = �̂�0 + �̂�1(𝑋2 − 𝑥2.7)+ + �̂�2(𝑥2.7 − 𝑋2)+ + �̂�3(𝑋𝑗 − 𝑡)
+

+ �̂�4(𝑡 − 𝑋𝑗)
+

 , 

𝑓(𝑋) = �̂�0 + �̂�1(𝑋2 − 𝑥2.7)+ + �̂�2(𝑥2.7 − 𝑋2)+ + �̂�3(𝑋2 − 𝑥2.7)+(𝑋𝑗 − 𝑡)
+

+ �̂�4(𝑋2 −

𝑥2.7)+(𝑡 − 𝑋𝑗)
+

 , or 

𝑓(𝑋) = �̂�0 + �̂�1(𝑋2 − 𝑥2.7)+ + �̂�2(𝑥2.7 − 𝑋2)+ + �̂�3(𝑥2.7 − 𝑋2)+ ∙ (𝑋𝑗 − 𝑡)
+

+ �̂�4(𝑥2.7 −

𝑋2)+ ∙ (𝑡 − 𝑋𝑗)
+

 . 

Generally, with a model set 𝑀 we already have from previous steps, the new pair of basis 

functions to be added in the next stage is in the form 

�̂�𝑀+1ℎ𝑙(𝑋) ∙ (𝑋𝑗 − 𝑡)
+

+ �̂�𝑀+2ℎ𝑙(𝑋) ∙ (𝑡 − 𝑋𝑗)
+

, ℎ𝑙 ∈ 𝑀 . 

Here, �̂�𝑀+1 and �̂�𝑀+2 are the least-squares estimators. The ℎ𝑙 could be 1 and the model is still 

additive. The basis function pair that gives the smallest SSE is chosen. In practice, with large 

features dimension, we can predefine the model size before fitting process for computational 

efficiency. This process is continued until the model set 𝑀 gets the preset maximum number of 

terms. 
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 The LOF is involved in both forward stepwise and backward stepwise procedures. In 

measuring the distances between the predictions and observations, the squared-error loss was 

used to obtain the data based estimations. As MARS procedure highly depends on the data, the 

flexibility of model could usually achieve low bias of estimates. However, with additional 

parameters, the variance of model is still very high. In minimizing the loss function  

Δ[𝑓(𝑋), 𝑓(𝑋)] = [𝑓(𝑋) − 𝑓(𝑋)]2 , 

the model selection criterion is modified by adding penalty to the number of terms (basis 

functions). As the subregions corresponding to basis function are overlapped, the traditional way 

of removing one at a time strategy could be used. The term whose removal improves the fit the 

most or degrades it the least will be deleted. The optimal number of terms 𝜆 in the model could 

be chosen by minimizing generalized cross-validation in favor of computational saving 

(Friedman 1991).The number of terms in model therefore is determined by this generalized 

cross-validation criterion proposed by Craven and Wahba (Craven et al., 1978), 

𝐺𝐶𝑉( 𝜆 ) =
1

𝑁
∑

[𝑦𝑖 − 𝑓𝜆(𝑥𝑖)]
2

[1 −
𝐶( 𝜆 )

𝑁 ]
2

𝑁

𝑖=1

 . 

Notice that this criterion is the average-squared residual of the fit to the data with the penalty to 

trade-off the increased variance due to the increasing model complexity.  

The effective value 𝐶(𝜆 ) counts for both the number of terms in the models and the 

number of parameters in choosing the optimal knots locations. If there are r basis functions and 

K knots are selected in the forward stepwise process, the value ( 𝜆 ) = 𝑟 + 𝑐𝐾 . The value of c 

could be estimated with bootstrap or cross-validation.  Over all situations of studies, the best 



 

68 
 

value of c is between 2 to 4. Particularly, in the R package {earth}, if the model was preset as 

additive model then c equals to 2 otherwise it equals to 3. 

 Due to the splitting by knots, the piecewise linear basis functions are able to operate 

locally. The regression surface is built up parsimoniously only where they are needed. This is 

particularly important when a high-dimensional data is involved. The forward step-wise 

modeling strategy is also a key advantage of MARS. Higher-order multiway products are always 

based on the existence of lower-order components. When doing the MARS in practice, we need 

to set the limit of order of the interaction. With an order equals 1, a model is just an additive 

model. With the backward feature selection step, MARS could automatically yield a good bias 

and variance trade-off.  

In summary, there are advantages of MARS algorithm that can fit our goal of study. 

Firstly, MARS is much flexible than linear regression with less assumption for the distribution of 

data. Secondly, the piecewise linear basis function can operate the interaction term locally 

without introduce too may parameters in the model fitting. Thirdly, with the backward feature 

selection step, it can yield a good balance between model complexity and prediction accuracy. 

 

3.2.2 Stepwise MARS (SMARS) 

 

As described in the goal of our study, we aim to identify the chromatin modifications’ 

effect from different genome locus. Moreover, we also want to explore the potential existence of 

the interactions between the modifications. In order to detect the combinational and spatial effect 

from chromatin features, we proposed the stepwise multivariate adaptive regression splines to 
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incorporate the potential interactions among different chromatin features and among different 

genomic loci. One can include the whole data set with all the features at all bins at one time then 

use model selection to find the final model. However, this would be computationally ineffective. 

More importantly, the model may have histone modifications from too many bins and it will 

bring difficulties for interpretation. 

The Stepwise MARS (SMARS) is a data driven idea.  By adding features at one bin as a new 

set of predictors at one time, the step-wise strategy will significantly reduce the computation 

burden. Moreover, by choosing the best bin set, we are able to control the model complexity yet 

keep prediction accuracy. Each scanning step will indicate us the best bin set, and the MARS 

model with this bin set is the model we are interested in. As we only consider the possible two-

way interactions, we set the highest order of interaction to be two. Here we illustrate the model 

fitting procedure step by step. 

 First scanning step 

Suppose we have 𝐾 bins. At each bin, fit a MARS model and calculate the Pearson’s 

correlation coefficient 𝑟 between observed and predicted expressions (Table 7). Therefore, we 

have 𝐾 models. For the 𝑏th bin MARS model is fitted with following data matrix (𝑏 =

1,2, … , 𝐾 ). 
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 Response 

 

Covariates for the First step 

CF1 CF2 … CFq 

Gene 1 𝑌1  𝑋1𝑏 . 1  𝑋2𝑏 . 1 …  𝑋𝑞𝑏 . 1 

Gene 2 𝑌2  𝑋1𝑏 . 2  𝑋2𝑏 . 2 …  𝑋𝑞𝑏 . 2 

… … … … … … 

Gene n 𝑌𝑛  𝑋1𝑏 . 𝑛  𝑋2𝑏 . 𝑛 …  𝑋𝑞𝑏 . 𝑛 

Table 7. Data for the first scan. At the first scanning step, the MARS model is fit to one features 

at one bin. 

 

We mark the bin with largest Pearson’s  𝑟 value as the first best bin. The interaction term 

selected in this step would indicate the interaction between predictors within one position. The 

covariates in best model are marked as  𝑋.1𝑠𝑡 and brought into the second scan. 

 Second scanning step 

In this step, the model is fitted with features from two bins. One is the  𝑋.1𝑠𝑡  from the first 

scan, the other is one of the rest bins (Table 8). We fit (𝐾 − 1) models in this step. The new 

added bin with best prediction performance is marked as the second best bin. The data involved 

in this step would be: 
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 Response 

 

First best bin Covariates for the Second step 

CF1 CF2 … CFq CF1 CF2 … CFq 

Gene 1 𝑌1  𝑋11𝑠𝑡 . 1  𝑋21𝑠𝑡 . 1 …  𝑋𝑞1𝑠𝑡. 1  𝑋1𝑏 . 1  𝑋2𝑏 . 1 …  𝑋𝑞𝑏 . 1 

Gene 2 𝑌2  𝑋11𝑠𝑡 . 2  𝑋21𝑠𝑡 . 2 …  𝑋𝑞1𝑠𝑡. 2  𝑋1𝑏 . 2  𝑋2𝑏 . 2 …  𝑋𝑞𝑏 . 2 

… … … … … … … … … … 

Gene n 

𝑌𝑛 

 

𝑋11𝑠𝑡 . 𝑛  𝑋21𝑠𝑡 . 𝑛 

… 

 

𝑋𝑞1𝑠𝑡. 𝑛  𝑋1𝑏 . 𝑛  𝑋2𝑏 . 𝑛 

… 

 𝑋𝑞𝑏 . 𝑛 

Table 8. Data for the Second scan. At the second scanning step, the MARS model is fit to two 

bins. One of the two bins is the selected best bin from the first step and the other one is one of 

the rest bins. 

 

The two-way interaction in this step may indicate the interaction between different 

covariates within same position, the interaction between different positions within the same 

covariate, and the interaction between different covariates at different positions. For example, the 

interaction terms of basis functions may have three forms: 

(𝑋1𝑏 − 𝑡𝑋1𝑏
)

+
(𝑋4𝑏 − 𝑡𝑋4𝑏

)
+

 indicates the interaction between first feature and the forth feature 

at same position, the 𝑏th bin; 

(𝑋11𝑠𝑡 − 𝑡𝑋11𝑠𝑡
)

+
(𝑋1𝑏 − 𝑡𝑋1𝑏

)
+

 indicates the interaction between first best bin and the 𝑏th bin 

within the first covariate (𝑏 ≠ 1𝑠𝑡); 

and (𝑋11𝑠𝑡 − 𝑡𝑋11𝑠𝑡
)

+
(𝑋4𝑏 − 𝑡𝑋4𝑏

)
+

 indicates the interaction between first covariate in first best 

bin and the forth covariate in the 𝑏th bin. 
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The best model is chosen by Pearson’s r value and the newly added bin in the best model 

is marked as the Second Best bin (𝑋.2𝑛𝑑). In the third step features from one of the rest K-2 bins 

will be modeled together with 𝑋.1𝑠𝑡 and 𝑋.2𝑛𝑑. We repeat this process until get the satisfied 

model. 

 By doing so, our model is able to capture the comprehensive and spatial interactive 

effects among chromatin features. Although biologically it is still not clear that how this works 

through the epigenetic system, the contribution from interaction terms does suggest such 

potential interactive effects. 

 

4 Real data analysis 

4.1 Prediction performance and model complexity 

 

For the real data, 1,373 genes (~10% of the total samples) were randomly sampled from 

the whole dataset as a test set, and the remaining genes were used in training models. This 

section shows the details of the model fitting at every scanning step and also the feature selection 

of the final model. 

As the scanning went on, the prediction accuracy increased. We noticed that in each of 

the first five steps, only one bin would give the largest increment on the prediction accuracy 

(Table 9). At the sixth scanning, the Pearson’s r reached a plateau and more than one bins 

achieved the same prediction performance. There was no unique best set of features could help 

improve the model fitting. At this point, the final model would stop at the fifth scanning step. 
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There were 14 chromatin features from bin 21st , 28th , 41st  ,24th  and 13th , in total 70 features, 

involved in the feature selection for final model.    

 

Steps of scanning 1 2 3 4 5 6 

Pearson’s r of the best model 0.9147 0.9287 0.9311 0.9339 0.9354 0.9354 

Chosen bin ID at each step 21st  28th  41st  24th  13th  

33rd  34th  35th  36th  

37th  38th  39th  40th  

Table 9. Prediction performance and bins selected in each scanning step. 

 

To avoid bias from the subsampling, we fitted the model with ten-fold cross validation. 

The whole data set was randomly split into ten equal size non-overlapping subsets. The model 

was trained by nine folds of the total sample and the rest one fold was used to validate the 

prediction performance (Table 10). After each step, the best models' Pearson's correlation 

coefficients (Pearson's r) were averaged across ten-fold cross-validation. Notice that, the model 

selection was specific to each of the ten folds. 

Although the model complexity increased with adding new bins, the MARS backward 

model selection automatically kept good balance between prediction accuracy and model 

simplicity. With around 30 terms (included individual effect and two-way interactions), the 

model can obtain high correlation between fitted expressions and true expressions (Table 10). 

With linear regression analysis, The Bestbin method in Greven et al. had Pearson’s 

r=0.871 by only considering about the individual chromatin feature effect(Dong et al., 2012). In 
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our first scan, some interaction terms were selected. The average Pearson’s r was 0.8912, which 

was better than the value computed from the Bestbin method.  The selected model in first step 

actually showed significance on the interaction terms.  

 

Steps of scanning 1 2 3 4 5 6 

Average Pearson’s r of the best 

model 

0.8912 0.906 0.9125 0.9164 0.9184 0.9196 

Average number of terms 24.1 24.4 24.3 27.5 28.8 28.9 

Table 10. Average prediction performance of and model size by ten-fold cross-validation. 

 

4.2 Chromatin features selection  

 

The importance of each variable was calculated by evimp function in {earth} R package. 

It counted the number of model subsets that include a specific variable. Among the important 

features in the final model, five of them were selected from the first scanning step which was 21st 

bin. The most important feature was H3k79me2 in 28th bin (Figure 19). Lysine 79 of histone H3 

(H3k79) can be mono-, di- or trimethylated by Dot1 methylase. The methylation at this residue 

acts as a marker of inactive chromatin regions that is critical for transcriptional silencing(Onder 

et al., 2012). The final model also indicated that the methylation of H3k4 was very important in 

gene regulation. According to the calculation, by adding H3k4me1 and H3k4me2, the 

generalized cross validation score showed a dramatic decrease (Figure 19). H3k4 methylation 

always associates with active transcription. Specifically, H3k4 di-methylation appears to be 
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related with the activation and potential activation of genes(Bernstein et al., 2002; Krogan et al., 

2002; Ng et al., 2003).   

 

Figure 19. The plot for relative importance of chromatin features in final model. The importance 

of variables were judged by the number of sub-models (subsets) which include the specific 

predictor and the improvement of the model fit (decrease of GCV or RSS) by adding the 

predictor. The importance was ranked and plot in a descending order. 

 

We collected the most important features shared by at least five of the ten models from 

ten-fold cross validation (Table 11). The subset of selected terms might vary by using different 

training data, but some common features did exist, for example, the promoter markers H3k4me2, 

H2A.Z, and H3k9ac. The di-methylation of histone H3 on lysine 4 (H3k4me2) was always 

associated with transcriptional activation. H3K9ac was also found in actively transcribed 

promoters (Koch et al., 2007). Histone H2A variant H2A.Z was associated with the promoters of 
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actively transcribed genes and also involves in the prevention of the spread of 

silent heterochromatin (Guillemette et al., 2005). Furthermore, H2A.Z had roles in chromatin for 

genome stability (Billon et al., 2012).  These findings agree with the top important features from 

Bestbin model results. Our model indicated that, with information from more than one genomic 

locus, not all the chromatin features had to be used as the predictors.  

  Important features  

First scan H3k4me1;H3k4me2;H3k79me2;H3k9ac;DnaseI;H3k27ac;H3k9me3;H3k4me3;H4k20me1;H2az;H3k9me1 

Second 

scan H3k4me2;H3k79me2;DnaseI;H2az;H3k4me1;H3k9ac;H3k9me3;H3k4me3;H4k20me1;H3k36me3 

Third scan H3k79me2;H3k4me2;DnaseI;H2az;H3k4me1;H3k9ac;H3k9me3;H3k36me3 

Forth scan H3k4me2;H3k79me2;DnaseI;H3k4me1;H2az;H3k9ac;H3k36me3;H3k9me3 

Fifth scan H3k79me2;H3k4me2;DnaseI;H2az;H3k4me1;H3k9ac;H3k9me3;H3k36me3 

Table 11. Overlapped important features by ten-fold cross-validation. The listed chromatins were 

most common selected in the ten-fold cross-validation at each scanning step. 

 

In order to check if different subgroups of chromatin features may act similarly as 

previous studies (Dong et al., 2012), we also fitted our model to different categories of chromatin 

features. The promoter marks, structural marks, repressive marks and distal/other marks together 

with the combination of groups.  

The average Pearson’s r values, obtained by average across ten-fold cross-validation, 

show that repressive and distal markers are least informative in predicting gene expressions 
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(Figure 20, Table S 2). The most predictive marks were promoter marks and all combinations of 

subset marks that include promoter marks perform equally well in prediction.  This was partially 

because of the CAGE TSS-based expression profiles were more sensitive to capture the 

transcription initiation events. Although this was in agreement with the result from Bestbin 

method (Dong et al., 2012), by repressive makers alone, the prediction performance of our 

method (Pearson’s  r = 0.632) was much better (maximum Pearson’s  r = ~0.5). Overall, the 

prediction accuracy was improved by our stepwise molding and incorporation of interaction 

terms.  

 

 

Figure 20. Average Pearson’s r values for prediction with different subset of chromatin features. 

Promoter marks: H3K4me2, H3K4me3,H2A.Z, H3K9ac and H3K27ac ; structural marks: 

H3K36me3 and H3K79me2; repressive marks: H3K27me3 and H3K9me3and distal/other marks: 

H3K4me1, H4K20me1 and H3K9m (Raisner et al., 2005; Barski et al., 2007; Benevolenskaya 

2007; Koch et al., 2007; Steger et al., 2008; Kolasinska-Zwierz et al., 2009).  
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4.3 Spatial component of chromatin features 

 

From the figure showing the Pearson’s r on every scan (Figure 21), we noticed that the 

prediction accuracy of model has an obvious peak at the center (the TSS site) in first scan. In 

selection of the bin by model fitting, the closer a bin was to the TSS (20th bin) the more it would 

contribute to the gene expression. In our one-run model, the first scan chose the 21st bin (the bin 

located at the TSS) as the first best bin (Figure 21). This is consistent with the previous study, 

which indicated the bin close to the TSS would be more informative in prediction (Cheng, Yan et 

al. 2011). Secondly, although the Pearson’s 𝑟 values were relatively higher at the center (TSS), 

after the first scan the Pearson’s 𝑟 values increased to around 0.92 and when adding new bin the 

values across all bins were almost similar.  
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Figure 21. Pearson’s r values for each scanning step. The vertical dotted lines denote the largest 

values for each scanning step which indicate the selected bins. The obvious peak at the TSS (21st 

bin) disappeared by adding the second best bin in the model. The Pearson’s r increased with the 

step-wise scanning but the pace improvement decreased.   

 

Interestingly, the genebody bin (41st bin) was chosen in the third scan and retained in the 

final model (Table S 3). We found some interaction terms for modifications at the TSS with that 

in the gene body (Table S 3). Histone modification marks positioned in the gene bodies may 

have role in determining the splicing patterns.  Recent studies have noted that the abundance of 

nucleosomes might count for the observed exonic gene body histone modification marks. It was 

claimed that the positioned nucleosomes at exons might enhance splicing by increasing RNAPII 

occupancy time (Kornblihtt et al., 2009). In our model, it suggested the effect from gene body 
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marks contributed combinationally with the marks at the TSS region. Such interactions between 

different genome loci may globally exist given the complexity of the transcriptional regulation 

mechanism. The detail of the interaction terms will be discussed in section 4.4. 

Our ten-fold cross-validation showed the bin chosen results are not sampling dependent 

(Table 12). The 21st  was always picked as the crucial position and there was a strong indication 

of the systematically contribution from genebody (41st bin) (Table 12).  

 

Fold ID 1 2 3 4 5 6 7 8 9 10 

First scan 21st  21st  21st  21st  23rd  21st  26th  21st  21st  21ts  

Second scan 41st  26th  28th  30th  20th  30th  20th  31st   20th  27th  

Third scan 22nd  20th  16th  20th  21st  22nd  22nd   22nd  27th  22nd  

Forth scan 19th  19th  41st  24th  29th  34th  41st  41st  41ts  41st   

Fifth scan 28th  34th  22nd  41st  17th  17th  18th  17th  19th  11th  

Table 12. The bin selected in each step by each fold of the ten-fold cross-validation. Nine out of 

ten folds chose the 21st bin and seven folds chose the genebody bin (41st  bin). This indicated the 

genebody effect was not bias to subsampling. It also suggested the interactions between 

chromatin features in genebody and that in the TSS region. 
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4.4 Interactions between chromatin features 

 

Since the evidence firstly presented that the functional significance of histone 

modifications, it has been established the reasonable doubt that specific modifications and 

combinations would mediate protein-protein interactions crucial for the translational regulation. 

Some of the interactions involved how particular histone tail modifications can interact. In the 

past few years, a lot of studies attempted to find the support to the existence of the histone code. 

This is especially meaningful when a histone code could be heritable and involve in a long-term 

maintenance of a transcriptional state.  

 

4.4.1 Interactions between chromatin variants and histone modifications 

 

There were 14 features chosen from 70 (14 features from 5 bins) in the final fitted model 

(Table S 3). The model included 37 terms after forward stepwise fitting and the final model 

maintained 34 of them. Among the 33 basis functions (excluding the intercept term), 13 were 

main effects and 20 were interaction terms. Among all the selected interaction terms, it indicated 

that the histone variants Dnase I and H2A.Z were found interacted with other histone 

modifications (Table 13). It suggested that some histone modification may impact the gene 

expressions differently under various densities of histone variants signals. 

The DNase I hypersensitive sites are regions that are sensitive to cleavage by enzyme 

Dnase I. Such regions tend to lose the condense structure and therefore exposing the DNA. 

These accessible genome regions are functionally related to transcriptional activity. (Thurman et 
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al., 2012). A recent quantitative study demonstrated that the genome-wide combinational effects 

of chromatin features to differential Dnase I hypersensitivity. It was observed that the 

methylation H3k4 and acetylation of both H3k9 and H3k27 were sharply elevated in different 

types of DNaseI hypersensitivity (DNaseI HS) sites in K562 cell type (Shu et al., 2011). In the 

set of interactions of our final model, Dnase I signal in bin#21 interacted with the H3k9ac signal 

in both bin#21 and bin#24 (Table 13). It also showed the potential interactions between Dnase I 

and H3k4me2. In addition to the simply positive or negative correlation between DNaseI HS and 

histone modification, our study uncovered the different quantitative effect of histone 

modification on gene expression under varieties of DNaseI enrichment. For example, the critical 

effect that H3k9ac has for transcriptional elongation may vary according to the different levels of 

DNaseI HS.  

It was revealed that the combinational presence of H2A.Z at active gene promoters with 

at least three specific H3 acetylation sites at k9, k18 and k27 associated with the gene activation 

(Raisner et al., 2005; Wang et al., 2008). ChIP-seq studies in humans have indicated that H2A.Z 

is localized to gene enhancers and promoters with a positive correlation between occupancy and 

transcriptional activity at promoters. It was also suggested that H2A.Z might function to increase 

nucleosome mobility by destabilizing nucleosome structure. It was reported that H2A.Z ad 

H3k27me3 are colocalized at low-expressed genes in embryonic stem cells (Creyghton et al., 

2008).Another study also indicated that the colocalization of H2A.Z with H3k9ac and H3k4me3 

suggested that these histone marks were perfectly deposited on H2A.Z enriched 

nucleosomes(Bártfai et al., 2010). Such interactions may support the model in which the H2A.Z 

enriched nucleosomes serve to demarcate regulatory regions in the genome and promote 

transcription initiation by guiding chromatin modifying and transcription initiating.  
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Basis functions Parameter estimations 

h(Dnase.1-4.93013) * h(H3k4me2.1-5.04162) 0.703 

h(Dnase.1-4.93013) * h(5.04162-H3k4me2.1) -0.788 

h(4.93013-Dnase.1) * h(H3k9ac.1-4.16879) -0.415 

h(Dnase.1-0.23396) * h(3.86846-H3k79me2.2) -0.069 

h(0.23396-Dnase.1) * h(3.86846-H3k79me2.2) 0.153 

h(4.93013-Dnase.1) * h(Dnase.4-2.0571) -0.230 

h(Dnase.1-2.83178) * h(H3k9ac.4-1.51068) -0.141 

h(2.83178-Dnase.1) * h(H3k9ac.4-1.51068) -0.053 

h(H2az.1-4.85662) * h(H3k9ac.4-1.51068) -0.197 

h(4.85662-H2az.1) * h(H3k9ac.4-1.51068) -0.095 

Table 13. Interaction terms between histone variants Dnase I /H2A.Z  with histone modifications 

in final model. The number “.1”, “.2” and “.4” indicate the 21st bin, 28th  bin and 24th bin selected 

by scanning step respectively. 

 

4.4.2 Interactions between histone modifications  

 

A few recent studies discussed about the “bivalent domains” of the histone modifications 

(Bernstein et al., 2006; Wang et al., 2008). It has been proposed that such colocalization of 

multiple epigenetic modifications plays an important role in the gene regulation. 

The genome wide study of human CD4+ T cells detected the “backbone” modification 

module consisting of 17 (H2A.Z, H2BK5ac, H2BK12ac, H2BK20ac, H2BK120ac,H3K4ac, 

H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K18ac, H3K27ac, H3K36ac, H4K5ac, 

H4K8ac and H4K91ac) modifications at 3286 promoters (Wang et al., 2008). The study 
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suggested that these modifications tend to colocalize at gene promoters and most of them were 

found correlated with each other at an individual nucleosome level.  This suggested the 

functional complexity of interplay between modifications. Another high-resolution profiling 

histone methylation study revealed the bivalent domains with both H3k4me3 and H3k27me3 

signals exist next to each other. The H3k4me3 signals were elevated at the promoter while 

H3k27me3 signals were distributed over broader regions. Such dynamic pattern was suggested to 

play regulatory roles for the differentiation of embryonic stem cells (Bernstein et al., 2006; 

Barski et al., 2007). The existing studies proposed the occupancy of combination of histone 

modifications were functional in gene regulation, while they always focused on the peaks of the 

signals. The quantitative association of such epigenetic complexity with the gene regulation was 

largely unknown.  

Our study clearly indicated the existence of such interactions. In the same bin at TSS (21st 

bin) we observed interactions between H3k4me1 and H3k4me2 as well as between H3k4me1 

and H3k9ac (Table 14). The H3k4 methylation were always found elevated at the TSS regions. 

Both H3k4me1 and H3k4me2 are positively related to the transcriptional levels. In the 

interaction between H3k4me1 and H3k4me2 at the same bin (21st bin), we find that under a 

threshold value of H3k4me1 the marginal effect from H3k4me2 is slightly varying (Table 14). 

Similar combinational effect was found for the H3k9ac, which is the essential activation mark 

near the TSS.  

  As discussed in section 4.3, we identified a set of interactions between modifications 

located in genebody and that located in TSS regions. For example, the interaction between gene 

body mark H3k36me3 and the activation mark H3k9ac at TSS (Table 14). The H3k36me3 

always is found highly occupied after TSS in active regions. However, the interaction suggested 
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that this effect may differ if H3k9ac signals at the TSS reached at some specific threshold value. 

The interactions between H3k9me3 and H3k9ac were also worth noticing. The signals of 

H3k9me3 were known to be higher in TTS regions of silent genes. Recent study also proposed 

that the genes with H3k9me3 in gene body are associated with low levels of transcription (Hahn 

et al., 2011). The interactive relationship between repression mark at gene body and the 

activation mark at the TSS is an evidence to support the hypothesis of histone code. 

 

Basis functions Parameter estimations 

h(3.67525-H3k4me1.1) * h(H3k4me2.1-1.80456) 0.456 

h(3.67525-H3k4me1.1) * h(1.80456-H3k4me2.1) -0.368 

h(3.67525-H3k4me1.1) * h(H3k9ac.4-2.85807) -0.200 

h(3.67525-H3k4me1.1) * h(2.85807-H3k9ac.4) -1.092 

h(H3k36me3.3-1.17832) * h(H3k9ac.4-1.51068) 0.165 

h(1.17832-H3k36me3.3) * h(H3k9ac.4-1.51068) -0.767 

h(H3k9me3.3-0.800334) * h(H3k9ac.4-1.51068) -0.319 

h(0.800334-H3k9me3.3) * h(H3k9ac.4-1.51068) 0.106 

Table 14.  Interaction terms between histone modifications in final model.  The activation mark 

H3k9ac at TSS was find interacted with the activation mark H3k36me3 and  repression mark 

H3k9me3 at genebody bin. The number “.1”, “.3” and “.4” indicate the 21st  bin, 41st  bin and 

24th  bin selected by scanning step respectively.                   
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5 Simulation study 

 

To compare the prediction performance of our SMARS with Bestbin method, we did 

three sets of simulation studies with different generation functions. We chose five real chromatin 

features as covariates and three bins from each. So for covariates we had 

(𝑋11, 𝑋12, 𝑋13, … … , 𝑋51, 𝑋52, 𝑋53). The error term was a random variable generated from 

normal distribution with mean 0 and variance 1. For all model evaluation, 10,000 samples were 

randomly chosen as the training set, 3,731 samples were for testing the prediction performance.  

 

5.1 Linear function with one bin per covariate 

 

In the first simulation setting, response values were generated by a simple linear function 

and only one bin from each variable was included. 

𝑦 = 5 + 10𝑥11 + 𝑥22 + 4𝑥33 + 2𝑥42 + 𝑒𝑟𝑟𝑜𝑟 

Bestbin method chose the right bin through correlation except X2. The parameters 

estimations were quite satisfied with high significance. The Bestbin final model was 

𝑓(𝑥) = 4.18 + 9.97𝑥11 + 0.88𝑥21 + 3.98𝑥33 + 2.11𝑥42 

The SMARS method chose the bin1, bin3 and bin2 at three scan steps respectively. We 

found the difference of models at the second step and the third step showed no significant 

improvement. This is due to the major variance of the response could be explained with the 
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information from bin1 and bin3. This is consistent with the best bin model which indicates the 

least significance of term 𝑥42.  The final SMARS model was 

  𝑓(𝑥) = 26.37 + 9.92(𝑥11 − 1.54)+ − 10(1.54 − 𝑥11)+ + 3.49(𝑥42 − 3.2)+ − 2.14(3.2 −

𝑥42)+ + 3.95(x33 − 0.7)+ − 4.3(0.7 − 𝑥33)+ 

Two models had quite similar prediction accuracy, as the Pearson’s r was 0.9984 vs. 

0.9983 (Figure 22). This indicates that when underlying true model is a regular simple linear 

model, both feature pre-selection of best bin and the stepwise feature selection of SMARS can 

work equally well in both prediction and identifying true model.  

 

Figure 22. Scatter plot of predicted response values versus observed values with linear 

generation function. Both Bestbin method and SMARS achieved similar good prediction 

accuracy. 
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5.2 Linear function with multiple bins per covariate in additive way 

 

The second linear generation function incorporated at least two bins from each feature.  

𝑦 = 5 + 3𝑥11 + 4𝑥13 + 10𝑥22 + 10𝑥23 + 6𝑥31 + 20𝑥32 + 15𝑥33 + 8𝑥41 + 7𝑥42 + 𝑥51

+ 15𝑥52 + error 

The fitted function from Bestbin model identified the represented bin for each feature. 

The prediction was good as the bin selection chose the variable which had larger impact on the 

response values.  

𝑓(𝑥) = −8.84 + 13.56𝑥13 + 16.07𝑥22 + 29.02𝑥32 + 12𝑥42 + 18.8𝑥52 

The SMARS chose bin2, bin3 and bin1 to add into the model at each scan. Ten out of 

fifteen predictors were selected. Although involved more parameters than Bestbin method, the 

SMARS model did not lose the adaption to the test data set and get a slightly better prediction 

(Figure 23).   

𝑓(𝑥) = 148.5 + 3.2(𝑥11 − 3.58)+ − 3.04(3.58 − 𝑥11)+ + 4(𝑥13 − 1.17)+

− 4.06(1.17 − 𝑥13)+ + 10.02(𝑥22 − 1.62)+ − 10.24(1.62 − 𝑥22)+

+ 10.62(4.01 − 𝑥23)+ − 10.03(𝑥23 − 4.01)+ + 6.04(𝑥31 + 1.49)+

− 6.04(−1.49 − 𝑥31)+  + 19.98(𝑥32 − 1.18)+ − 20.01(1.18 − 𝑥32)+

+ 15(𝑥33 + 0.7)+ − 15(−0.7 − 𝑥33)+ + 8.42(𝑥41 − 2.27)+

− 8.05(2.27 − 𝑥41)+ + 7.03(𝑥42 − 0.94)+ − 7.02(0.94 − 𝑥42)+

+ 15.25(𝑥52 − .71)+ − 15.07(2.71 − 𝑥52)+ 
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Under this generation function, as the Bestbin can catch the major part of variance, it was 

able to yield satisfied prediction accuracy. While in the favor of identifying the true model, the 

SMARS gave us more information for the underlying generation function. 

 

Figure 23. Scatter plot of predicted response values versus observed values with linear 

generation function included multiple measurements per feature. Although Bestbin method can 

get similar prediction performance to SMARS, it is not as powerful as SMARS in detecting the 

true function. 

 

5.3 Interacting functions with multiple bins per covariate in productive way 

(including nonlinear terms) 

In this setting, we included the interaction term by multiplying the features and we also 

created the nonlinear terms.  
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𝑦 = 5 + 3𝑋11 + 20sin(𝑋11𝑋31 ∙ 𝜋) + 3𝑋22 + 8𝑋31 + 15𝑋22𝑋33 + 2𝑋33 − 15𝑋23𝑋41

+ 7𝑋41 + 8𝑋42
2 + 𝑒𝑟𝑟𝑜𝑟 

The representative best bin feature selected by Bestbin method was no longer adequate to 

approximate the true function. 

𝑓(𝑥) = 3.3 + 2.12𝑥13 + 11.52𝑥22 + 33.29𝑥33 − 3.32𝑥43 − 2.87𝑥53 

In the final model with SMARS, the interactions 𝑥22𝑥33  and 𝑥23𝑥41 were selected. 

Three terms for 𝑥42 formed the quadratic effect. Moreover, the nonlinear interaction term 

20sin(𝑥11𝑥31 ∙ 𝜋) was fitted by four productions of basis functions of 𝑥11 and 𝑥31. Obviously, 

under generation setting, the SMARS was more appropriate for both prediction and 

interpretation (Figure 24). 

𝑓(𝑥) = −85.84 + 8.52(𝑥31 + 1.49)+ − 18.15(−1.49 − 𝑥31)+ − 28(𝑥41 − 2.07)+

+ 21.33(2.07 − 𝑥41)+ − 19.02(𝑥22 − 3.23)+ + 10.16(3.23 − 𝑥22)+

+ 17.57(𝑥42 + 0.087)+ + 9.1(𝑥42 − 0.96)+ + 10.89(0.96 − 𝑥42)+

− 31.88(𝑥23 − 1.7)+ + 61.76(𝑥33 + 0.7)+

− 28.52(−0.7 − 𝑥33)+5.26(𝑥11 + 1.29)+(−1.49 −  𝑥31)+

− 86.88(−1.29 − 𝑥11)+(−1.49 − 𝑥31)+ + 0.38(𝑥11 −  0.31)+(𝑥31 + 1.49)+

− 1.99(0.31 − 𝑥11)+(𝑥31 + 1.49)+ + 15.35(2.07 − 𝑥41)+(𝑥23 − 1.9)+

− 15.2(2.07 − 𝑥41)+(1.9 − 𝑥23)+ + 25.22(𝑥22 − 3.81)+(𝑥33 + 0.7)+

− 16.17(3.81 − 𝑥22)+(𝑥33 + 0.7)+  
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Figure 24. Scatter plot of predicted response values versus observed values with interacting 

generation function. The prediction accuracy of Bestbin method was not as good as SMARS. 

 

Our simulation studies indicated that, if a simpler linear function truly existed, both 

methods can be similarly satisfied. While with a potential complexity of the underlying true 

function include interactions and non-linearity, SMARS is a better approach to approximate the 

association.   
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6 Conclusions 

 

 In this study, we proposed a modified MARS (S-MARS) model which could be adapted 

to the data that has multiple measurements for each feature. By step-wise fitting procedure, our 

method could incorporate the two-way interactions among the features as well as across different 

measurement points.   

We applied SMARS model for predicting TSS-based gene expressions with the 

chromatin feature enrichment. Compared to the up-to-date existed method (Pearson’s r = 0.87), 

we successfully improved the prediction accuracy (average Pearson’s r =0.92). Our model also 

improved the model interpretation which helped to further explore the complexity of epigenetic 

gene regulation mechanism as well as to support the hypothesis of histone code. Our finding 

indicated that, the combinational effect of histone modifications may exist in the epigenetic gene 

regulation.  In addition to that, the epigenetic modifications at different genome coordinates may 

contribute corporately in gene activation or repression. Interestingly, we identified the interaction 

between the modification signals at the gene body and that at the TSS. This has not been 

uncovered by the past quantitative correlation studies.     

With the three sets of simulation studies, we generalized the application of SMARS to 

different scenarios of generation functions from simple linear function to the complicated 

interactive and nonlinear function. It was shown that, comparing to the Bestbin method which 

would lose the information from multiple measurements, our SMARS model could have broader 

adaption to approximate both the simple and complicated functions. More importantly, in the 

sense of identifying the true generation function, SMARS is more likely to yield an informative 

model with advantage in interpretability.   
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Chapter IV: Discussion and future work 

 

Both DNA methylation and histone modification have their own roles in establishing 

patterns of gene repression during development. Although DNA methylation and histone 

modification are carried out by different chemical reactions and require different enzymes, it is 

believed that there exists a bona fide connection between them.  For example, the presence of 

DNA methyl groups can effect histone modification in a process that might be mediated by 

methyl binding proteins(Cedar et al., 2009). Recently, genetic links between histone methylation, 

notably H3k9me3, and DNA methylation have appeared in organisms as diverse as fungi, plants, 

and mice (Hashimshony et al., 2003; Lehnertz et al., 2003). Thus, histone modifications and 

DNA methylation are directly and indirectly connected to each other, contributing to the readout 

of higher-order chromatin structures.  

There are still many mechanistic details of these inter-connections that need to be 

clarified. For example, it is known that the presence of methyl groups in DNA may affect 

chromatin packaging, but it is still unknown how the DNA methylation pattern is translated to 

produce the corresponding histone modification profile. Furthermore, it is barely understood 

about how the formation of histone methylation patterns may affect the de novo DNA 

methylation. Understanding the relationship between DNA methylation and certain histone 

modifications will provide insights into the abnormal gene expression patterns observed in 

diseases especially cancer. Studies have shown that the cancer cells are subject to aberrant de 

novo DNA methylation, and there is evidence suggests that this process may be related to certain 

histone modifications.  



 

94 
 

Besides the DNA methylation and histone modifications, there exist other factor that 

influence the epigenome, such as the three-dimensional chromatin architecture, noncoding RNA 

and protein binding in relation to chromatin modifications. Current studies support that these 

factors are not independent elements of functional epigenomes. With the DNA microarray based 

techniques and high-throughput sequencing techniques, there is greater potential to unveil the 

epigenetic regulation. 
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Appendix 

5'UTR           

Chromosome Start End Gene loci Strand Sample 

chr2 2538965 2539093 Parent=AT2G06420.1 + 810ppm 

chr4 9560768 9560889 Parent=AT4G16990.5 + 810ppm 

            

genebody           

Chromosome Start End Gene loci Strand Sample 

chr1 12809077 12809177 AT1G35030 + 430ppm 

chr2 600636 600791 AT2G02280 - 430ppm 

chr2 6759537 6759587 AT2G15480 + 430ppm 

chr3 5862285 5862364 AT3G17185 + 430ppm 

chr5 8241535 8241632 AT5G24270 - 430ppm 

chr1 15433951 15434118 AT1G40390 - 810ppm 

chr1 19741876 19741971 AT1G52990 - 810ppm 

chr1 23510087 23510137 AT1G63410 - 810ppm 

chr1 9903542 9903749 AT1G28304 + 810ppm 

chr1 9903967 9904090 AT1G28304 + 810ppm 

chr1 15083848 15083949 AT1G40104 + 810ppm 

chr1 15085201 15085305 AT1G40104 + 810ppm 

chr1 16239109 16239209 AT1G43145 + 810ppm 

chr1 16565906 16566032 AT1G43780 + 810ppm 

chr1 18192411 18192618 AT1G49190 + 810ppm 

chr1 20311956 20312106 AT1G54420 + 810ppm 

chr2 2909423 2909484 AT2G07020 - 810ppm 

chr2 5289866 5289977 AT2G12875 - 810ppm 

chr2 6555333 6555469 AT2G15110 - 810ppm 

chr2 8076354 8076428 AT2G18610 - 810ppm 

chr2 14062842 14062976 AT2G33175 - 810ppm 

chr2 2020 2089 AT2G01008 + 810ppm 

chr2 3616012 3616108 AT2G07981 + 810ppm 

chr2 3622575 3622625 AT2G08986 + 810ppm 

chr2 6843620 6843722 AT2G15710 + 810ppm 

chr3 10255052 10255154 AT3G27680 - 810ppm 

chr3 11083082 11083238 AT3G29110 - 810ppm 

chr3 15784471 15784604 AT3G43990 - 810ppm 

chr3 5867382 5867475 AT3G17190 + 810ppm 

chr3 11474161 11474211 AT3G29638 + 810ppm 

chr3 11931382 11931489 AT3G30320 + 810ppm 

chr3 14195934 14196037 AT3G41761 + 810ppm 
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chr3 18758146 18758318 AT3G50540 + 810ppm 

chr4 10653055 10653123 AT4G19530 + 810ppm 

chr5 2129124 2129174 AT5G06850 - 810ppm 

chr5 10208372 10208481 AT5G28237 - 810ppm 

chr5 15873632 15873690 AT5G39645 - 810ppm 

chr5 17231899 17232178 AT5G42955 - 810ppm 

chr5 18475670 18475781 AT5G45573 - 810ppm 

chr5 3253037 3253167 AT5G10340 + 810ppm 

            

3'UTR           

Chromosome Start End Gene loci Strand Sample 

chr2 1167442 1167653 Parent=AT2G03821.1 - 810ppm 

chr2 9048081 9048220 Parent=AT2G21100.1 - 810ppm 

chr2 2503 2591 Parent=AT2G01008.1 + 810ppm 

            

1kb 
promoter         

  

Chromosome Start End Gene loci Strand Sample 

chr2 6483093 6483200 Parent=AT2G15000.5 - 430ppm 

chr1 10949903 10950013 Parent=AT1G30820.1 - 810ppm 

chr1 17171783 17171851 Parent=AT1G45230.2 - 810ppm 

chr1 17171783 17171851 Parent=AT1G45230.1 - 810ppm 

chr1 10814321 10814487 Parent=AT1G30530.1 + 810ppm 

chr1 11930635 11930807 Parent=AT1G32928.1 + 810ppm 

chr1 15890721 15890881 Parent=AT1G42430.2 + 810ppm 

chr1 15890721 15890881 Parent=AT1G42430.1 + 810ppm 

chr1 20412422 20412615 Parent=AT1G54680.3 + 810ppm 

chr1 20412422 20412615 Parent=AT1G54680.2 + 810ppm 

chr1 22563481 22563591 Parent=AT1G61210.2 + 810ppm 

chr2 184025 184294 Parent=AT2G01420.2 - 810ppm 

chr2 455680 455778 Parent=AT2G01970.1 - 810ppm 

chr2 1167442 1167653 Parent=AT2G03820.1 - 810ppm 

chr2 4661488 4661646 Parent=AT2G11623.2 - 810ppm 

chr2 9048081 9048220 Parent=AT2G21090.1 - 810ppm 

chr2 10317854 10318001 Parent=AT2G24255.1 - 810ppm 

chr2 11076089 11076173 Parent=AT2G25970.1 - 810ppm 

chr2 17418019 17418119 Parent=AT2G41740.1 - 810ppm 

chr2 1258469 1258533 Parent=AT2G03980.1 + 810ppm 

chr2 7295013 7295151 Parent=AT2G16835.1 + 810ppm 

chr2 9262804 9262854 Parent=AT2G21655.1 + 810ppm 

chr2 9470659 9470822 Parent=AT2G22300.2 + 810ppm 
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chr2 9470659 9470822 Parent=AT2G22300.1 + 810ppm 

chr2 9791207 9791257 Parent=AT2G23000.1 + 810ppm 

chr2 18498534 18498652 Parent=AT2G44850.2 + 810ppm 

chr3 48457 48507 Parent=AT3G01140.1 - 810ppm 

chr3 10262338 10262461 Parent=AT3G27700.2 - 810ppm 

chr3 11010199 11010386 Parent=AT3G29020.2 - 810ppm 

chr3 13494376 13494508 Parent=AT3G32940.1 - 810ppm 

chr3 15245856 15245996 Parent=AT3G43300.2 - 810ppm 

chr3 20127277 20127391 Parent=AT3G54350.3 - 810ppm 

chr3 20127277 20127391 Parent=AT3G54350.2 - 810ppm 

chr3 20353431 20353613 Parent=AT3G54930.1 - 810ppm 

chr3 8574593 8574688 Parent=AT3G23790.1 + 810ppm 

chr3 10464455 10464554 Parent=AT3G28130.2 + 810ppm 

chr3 10827178 10827309 Parent=AT3G28820.1 + 810ppm 

chr3 11727201 11727330 Parent=AT3G29810.1 + 810ppm 

chr3 18172647 18172697 Parent=AT3G49030.2 + 810ppm 

chr4 5844726 5844809 Parent=AT4G09170.1 - 810ppm 

chr4 7100460 7100589 Parent=AT4G11800.1 - 810ppm 

chr4 7322664 7322847 Parent=AT4G12340.1 - 810ppm 

chr4 1091636 1091748 Parent=AT4G02485.1 + 810ppm 

chr4 1373198 1373305 Parent=AT4G03100.1 + 810ppm 

chr4 2445133 2445222 Parent=AT4G04830.2 + 810ppm 

chr4 2445133 2445222 Parent=AT4G04830.1 + 810ppm 

chr4 5238035 5238177 Parent=AT4G08290.1 + 810ppm 

chr4 5238035 5238177 Parent=AT4G08290.2 + 810ppm 

chr4 6288354 6288446 Parent=AT4G10060.1 + 810ppm 

chr4 6617736 6617857 Parent=AT4G10750.1 + 810ppm 

chr4 9560768 9560889 Parent=AT4G16990.5 + 810ppm 

chr5 12566170 12566280 Parent=AT5G33300.1 - 810ppm 

chr5 16030542 16030627 Parent=AT5G40040.1 - 810ppm 

chr5 21422220 21422311 Parent=AT5G52860.1 - 810ppm 

chr5 22186885 22186989 Parent=AT5G54610.1 - 810ppm 

chr5 24002102 24002241 Parent=AT5G59560.1 - 810ppm 

chr5 24002102 24002241 Parent=AT5G59560.2 - 810ppm 

chr5 24002872 24003017 Parent=AT5G59560.1 - 810ppm 

chr5 24002872 24003017 Parent=AT5G59560.2 - 810ppm 

chr5 1518869 1518944 Parent=AT5G05140.1 + 810ppm 

chr5 5352266 5352318 Parent=AT5G16350.1 + 810ppm 

chr5 6789369 6789472 Parent=AT5G20100.1 + 810ppm 

chr5 8272817 8272908 Parent=AT5G24310.1 + 810ppm 

chr5 8272817 8272908 Parent=AT5G24310.2 + 810ppm 
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chr5 11379476 11379583 Parent=AT5G30495.2 + 810ppm 

chr5 11379476 11379583 Parent=AT5G30495.1 + 810ppm 

chr5 13897210 13897307 Parent=AT5G35732.1 + 810ppm 

chr5 17190860 17191088 Parent=AT5G42880.1 + 810ppm 

chr5 20640243 20640300 Parent=AT5G50750.1 + 810ppm 

Table S 1 The gene elements (5’UTR, genebody, 3’UTR  and 1kb promoter) overlapped with 

DMRs. Start and end are the geneome coordinates of DMRs.  Sample indicate the strain which 

has higher DNA methylation level.  

 

 

Marks subgroup 
First 

scan 

Second 

scan 

Third 

scan 

Forth 

scan 

Fifth 

scan 

Promoter 0.873 0.887 0.894 0.899 0.902 

Structural 0.862 0.875 0.883 0.886 0.888 

Repressive 0.507 0.573 0.609 0.624 0.632 

Distal/other 0.675 0.727 0.762 0.779 0.79 

Promoter + 

Structural 
0.879 0.894 0.9 0.904 0.907 

Promoter + 

Repressive 
0.874 0.887 0.894 0.9 0.903 

Promoter + Distal 0.878 0.892 0.897 0.902 0.906 

All HM  0.883 0.896 0.902 0.907 0.91 

All HM + DNaseI 0.891 0.906 0.913 0.917 0.918 

 Table S 2 Pearson’s r for different combinations of chromatin features in each scanning step. 

The Pearson’s r values were averaged by 10-fold cross-validation. Promoter marks: 

H3K4me2, H3K4me3,H2A.Z, H3K9ac and H3K27ac ; structural marks: H3K36me3 

and H3K79me2; repressive marks: H3K27me3 and H3K9me3and distal/other marks: 

H3K4me1, H4K20me1 and H3K9m (Raisner et al., 2005; Barski et al., 2007; 

Benevolenskaya 2007; Koch et al., 2007; Steger et al., 2008; Kolasinska-Zwierz et al., 

2009).  
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Coefficients 

(Intercept) -0.806 

h(4.93013-Dnase.1) -0.658 

h(H3k4me1.1-3.67525) -0.627 

h(3.67525-H3k4me1.1) 1.829 

h(H3k4me2.2-3.86258) -0.213 

h(3.86258-H3k4me2.2) -0.375 

h(H3k79me2.2-3.86846) 0.515 

h(3.86846-H3k79me2.2) -0.261 

h(H3k9ac.4-1.51068) 0.859 

h(1.51068-H3k9ac.4) 0.894 

h(H3k4me1.5-0.524592) 0.158 

h(0.524592-H3k4me1.5) -0.077 

h(H3k79me2.5-2.81558) -0.186 

h(2.81558-H3k79me2.5) 0.048 

h(Dnase.1-4.93013) * h(H3k4me2.1-5.04162) 0.703 

h(Dnase.1-4.93013) * h(5.04162-H3k4me2.1) -0.788 

h(4.93013-Dnase.1) * h(H3k9ac.1-4.16879) -0.415 

h(Dnase.1-0.23396) * h(3.86846-H3k79me2.2) -0.069 

h(0.23396-Dnase.1) * h(3.86846-H3k79me2.2) 0.153 

h(4.93013-Dnase.1) * h(Dnase.4-2.0571) -0.230 

h(Dnase.1-2.83178) * h(H3k9ac.4-1.51068) -0.141 

h(2.83178-Dnase.1) * h(H3k9ac.4-1.51068) -0.053 

h(H2az.1-4.85662) * h(H3k9ac.4-1.51068) -0.197 

h(4.85662-H2az.1) * h(H3k9ac.4-1.51068) -0.095 
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h(3.67525-H3k4me1.1) * h(H3k4me2.1-1.80456) 0.456 

h(3.67525-H3k4me1.1) * h(1.80456-H3k4me2.1) -0.368 

h(3.67525-H3k4me1.1) * h(H2az.4-3.41056) -0.574 

h(3.67525-H3k4me1.1) * h(3.41056-H2az.4) 0.233 

h(3.67525-H3k4me1.1) * h(H3k9ac.4-2.85807) -0.200 

h(3.67525-H3k4me1.1) * h(2.85807-H3k9ac.4) -1.092 

h(H3k36me3.3-1.17832) * h(H3k9ac.4-1.51068) 0.165 

h(1.17832-H3k36me3.3) * h(H3k9ac.4-1.51068) -0.767 

h(H3k9me3.3-0.800334) * h(H3k9ac.4-1.51068) -0.319 

h(0.800334-H3k9me3.3) * h(H3k9ac.4-1.51068) 0.106 

Table S 3 Features selected in the final model. The number “.1” to “.5” indicate the bin#21, 

bin#28, bin#41, bin#24 and bin#13 selected by scanning step respectively.  

 


