
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Convergence of Manifolds and Metric Spaces with Boundary

A Dissertation presented

by

Raquel del Carmen Perales Aguilar

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Mathematics

Stony Brook University

May 2015



Stony Brook University

The Graduate School

Raquel del Carmen Perales Aguilar

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

H. Blaine Lawson, Jr. - Dissertation Advisor
Professor of Mathematics

Michael Anderson - Chairperson of Defense
Professor of Mathematics

Kenji Fukaya
Professor of Mathematics

Christina Sormani
Professor of Mathematics at CUNY

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Convergence of Manifolds and Metric Spaces with Boundary

by

Raquel del Carmen Perales Aguilar

Doctor of Philosophy

in

Mathematics

Stony Brook University

2015

We study sequences of oriented Riemannian manifolds with boundary and,
more generally, integral current spaces and metric spaces with boundary. We
prove theorems demonstrating when the Gromov-Hausdorff [GH] and Sormani-
Wenger Intrinsic Flat [SWIF] limits of sequences of such metric spaces agree.
Thus in particular the limit spaces are countablyHn rectifiable spaces. From these
theorems we derive compactness theorems for sequences of Riemannian mani-
folds with boundary where both the GH and SWIF limits agree. For sequences
of Riemannian manifolds with boundary we only require nonnegative Ricci cur-
vature, upper bounds on volume, noncollapsing conditions on the interior of the
manifold and diameter controls on the level sets near the boundary. In addition
we survey prior results of the author concerning the SWIF limits of manifolds
with boundary, prior work of the author with Sormani concerning glued limits
of metric spaces with boundary, prior work of the author with Li concerning GH
and SWIF limits agreeing for Alexandrov spaces without boundary and work of
Kodani, Anderson-Katsuda-Kurylev-Lassas-Taylor, Wong, and Knox concerning
limits of Riemannian manifolds with boundary.
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Chapter 1

Introduction

In the past few decades many important compactness theorems have been proven
for families of compact Riemannian manifolds without boundary. Gromov intro-
duced the notion of Gromov-Hausdorff (GH) convergence of Riemannian mani-
folds to metric spaces, (X,d). He proved that the family of manifolds with non-
negative Ricci curvature and uniformly bounded diameter are precompact in GH
sense [14]. Cheeger-Colding have proven many properties of the GH limits of
these manifolds including rectifiability [6]. The Sormani-Wenger Intrinsic Flat
(SWIF) convergence of oriented Riemannian manifolds to countably Hn rectifi-
able metric spaces called integral current spaces, (X, d,T ), was introduced in [31].
They proved that when the sequence of manifolds is noncollapsing and has non-
negative Ricci curvature the SWIF and GH limits agree [30]. In general GH and
SWIF limits need not agree and GH limits need not be countably Hn rectifiable
metric spaces (cf. the appendix of [30] by Schul and Wenger).

Here we prove GH and SWIF compactness theorems for oriented Riemannian
manifolds with boundary. Note that there are sequences of flat manifolds with
boundary of bounded diameter with volume bounded below which have no GH
limit, see Example 5.1.2. Nevertheless, Wenger proved that a sequence of n-
dimensional oriented Riemannian manifolds M j with boundary that satisfy

Diam(M j) ≤ D, Vol(M j) ≤ V, Vol(∂M j) ≤ A (1.1)

has a SWIF convergent subsequence [33] (cf. [31]). Knox proved weak L1,p and
C1,α convergence of Riemannian manifolds with two sided bounds on the sectional
curvature of the manifolds and of their boundaries, a lower bound on the volume
of the boundaries and two sided bounds on the mean curvature of the boundary
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[16]. Wong proved GH convergence of Riemannian manifolds with Ricci cur-
vature bounded below and two sided bounds on the second fundamental form
of the boundaries [34]. Under stronger conditions Anderson-Katsuda-Kurylev-
Lassas-Taylor [2] and Kodani [17] have respectively proven C1,α and Lipschitz
compactness theorems.

We first prove compactness theorems for sequences of metric spaces and from
them we derive compactness theorems for sequences of Riemannian manifolds
with boundary where both the GH and SWIF limits agree. Thus we produce
countably Hn rectifiable GH limit spaces. For sequences of Riemannian man-
ifolds we only require Ricci curvature bounds, noncollapsing conditions on the
interior of the manifold and additional controls on the boundary.

To precisely state our theorems we recall a few notions. Let (M, g) be a Rie-
mannian manifold with boundary, ∂M. We denote by d the metric on M induced
by g. For δ > 0 we define the δ-inner region of M by

Mδ = { x ∈ M : d(x, ∂M) > δ}. (1.2)

There are two metrics on Mδ. The restricted metric d|M (that we denote by d to
simplify notation) and the length metric dMδ induced by g. The diameter of Mδ

with respect to this metric is given by

Diam(Mδ, dMδ) = sup
{
dMδ(x, y) : x, y ∈ Mδ

}
. (1.3)

In [25], the author and Sormani proved a GH compactness theorem for se-
quences of inner regions (Mδ

j , d j) that have nonnegative Ricci curvature, upper
bounds on volume and diameter as in (1.4) and a noncollapsing condition as in
(1.5) (cf. Theorem 2.2.1 within). Now we add one additional condition on the
boundary (1.6) to obtain GH convergence of the sequence of manifolds them-
selves:

1.0.1 Theorem. Let n ∈ N, δ,Di,V, θ > 0 and {δi} ⊂ R be a decreasing sequence
that converges to zero. Let (M j, g j) be a sequence of compact oriented manifolds
with boundary such that

Ric(M j) ≥ 0, Vol(M j) ≤ V, Diam(Mδi
j , dMδi

j
) ≤ Di, (1.4)

∃q ∈ Mδ
j such that Vol(B(q, δ)) ≥ θδn, (1.5)

where B(q, δ) is the ball in M j with center q and radius δ, and suppose that there
is a compact metric space (X∂, d∂) such that

(∂M j, d j)
GH
−→ (X∂, d∂). (1.6)
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Then a subsequence of {(M j, d j)}∞j=1 converges in GH sense.

In Example 5.3.2 we define a sequence (M j, d j) with no GH converging sub-
sequence that satisfies all the conditions of Theorem 1.0.1 except the Ricci lower
bound. Note that, by Gromov’s Embedding Theorem, if (M j, d j) converges in GH
sense then a subsequence of (∂M j, d j) converges in GH sense. In Example 5.1.2
we define a sequence (M j, d j) with no GH converging subsequence that satisfies
all the conditions of Theorem 1.0.1 except that (∂M j, d j) does not have any GH
convergent subsequence. In Theorem 7.0.5 we obtain convergence of the bound-
ary as in (1.6) by requiring uniform bounds on the second fundamental form of
∂M j and its derivative in the normal direction.

Suppose that {(M j, g j)} satisfies the hypotheses of Theorem 1.0.1 so that we

have a subsequence such that (M j, d j)
GH
−→ (X, dX). Sormani-Wenger proved that

for such a sequence, if for all j

Vol(M j) ≤ V and Vol(∂M j) ≤ A (1.7)

then there exists a subsequence and an integral current space (Y, dY ,T ) such that

(M jk , d jk)
GH
−→ (X, dX) and (M jk , d jk ,T jk)

F
−→ (Y, dY ,T ), (1.8)

where either Y ⊂ X or (Y, dY ,T ) is the zero integral current space [31] (cf. Theo-
rem 3.2.3). In [30] , they proved that for a sequence (M j, g j) of oriented compact
n-dimensional Riemannian manifolds with no boundary, with nonnegative Ricci
curvature and with

0 < v ≤ Vol(M j) ≤ V, (1.9)

the GH and SWIF limits agree, Y = X (cf. Theorem 3.3.1). They proved this by
showing that the GH limit, X, is contained in a nonzero SWIF limit, Y , using work
of Cheeger-Colding [6], Colding [7] and Perelman [26].

In this paper we prove the corresponding theorem for manifolds with bound-
ary. We assume the same hypothesis as in Theorem 1.0.1 (1.10)-(1.12) and one
additional area bound on the boundary (1.13):

1.0.2 Theorem. Let n ∈ N, δ,Di,V, θ > 0 and {δi} ⊂ R with δi decreasing to 0. Let
(M j, g j) be a sequence of compact oriented manifolds with boundary such that

Ric(M j) ≥ 0, Vol(M j) ≤ V, Diam(Mδi
j , dMδi

j
) ≤ Di, (1.10)

∃q ∈ Mδ
j such that Vol(B(q, δ)) ≥ θδn, (1.11)

3



and suppose that there is a compact metric space (X∂, d∂) such that

(∂M j, d j)
GH
−→ (X∂, d∂). (1.12)

In addition, if for all j we have

Vol(∂M j) ≤ A. (1.13)

Then there is a subsequence that converges in SWIF sense to a non zero integral
current space:

(M jk , d jk ,T jk)
F
−→ (Y ⊂ X, dX,T ). (1.14)

such that
X \ X∂ ⊂ Y. (1.15)

If the GH limit of the boundaries is contained in the SWIF limit of the manifolds
(or in the completion),

∂M j
GH
−→ X∂ ⊂ Y, (1.16)

then X = Y (X = Ȳ). Thus, X is countably Hn rectifiable, where Hn denotes
n-Hausdorff measure.

In Example 5.3.3 we construct a sequence of manifolds which have GH and
SWIF limits that do not agree and that satisfies all the conditions of Theorem 1.0.2,
except X∂ ⊂ Y . In Example 5.3.2 we construct a sequence of manifolds which
have GH and SWIF limits that do not agree and that satisfies all the conditions of
Theorem 1.0.2, except the Ricci bound.

In [2], Anderson-Katsuda-Kurylev-Lassas-Taylor prove that a sequence of
manifolds with bounds on various injectivity radii and on diameter as well as
two sided Ricci curvature bounds on the manifolds and their boundaries, one has
a subsequence converging in the C1,α sense (cf. Theorem 4.2.1 within). Removing
half of these hypothesis we can prove GH and SWIF convergence of the manifolds
[Theorem 1.0.3]. Recall that the boundary injectivity radius of p ∈ ∂M is defined
by

i∂(p) = inf{t | γp stops minimizing at t}, (1.17)

where γp is the geodesic in M such that γ′p(0) is the inward unitary normal tangent
vector at p. The boundary injectivity radius of M is defined by

i∂(M) = inf{i∂(p) | p ∈ ∂M}. (1.18)
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Inside we prove that a uniform bound on the boundary injectivity radius of the
manifolds implies that the diameter bounds in (1.4) can be reduced to a single
diameter bound. In addition, we prove GH convergence of the boundaries, (1.6),
and X∂ ⊂ Ȳ . Combining this with our theorems above we obtain:

1.0.3 Theorem. Let n ∈ N and δ,D,V, θ, ι > 0, ι > δ. Suppose that (M j, g j) is a
sequence of n-dimensional compact oriented manifolds with boundary that satisfy

Ric(M j) ≥ 0, Vol(M j) ≤ V, Diam(Mδ
j , dMδ

j
) ≤ D, (1.19)

∃q ∈ Mδ
j such that Vol(B(q, δ)) ≥ θδn, (1.20)

where B(q, δ) is the ball in M j with center q and radius δ and

i∂(M j) ≥ ι. (1.21)

Then there is a subsequence such that

(M jk , d jk)
GH
−→ (X, dX) and (∂M jk , d jk)

GH
−→ (X∂, dX). (1.22)

If in addition Vol(∂M j) ≤ A, then there is a subsequence and a non zero
integral current space such that:

(M jk , d jk ,T jk)
F
−→ (Y ⊂ X, dX,T ), (1.23)

X \ X∂ ⊂ Y and X = Ȳ . (1.24)

In Example 5.3.3 we construct a sequence of manifolds which has a GH limit
X and a SWIF limit Y such that X , Ȳ . The sequence satisfies all the conditions
of Theorem 1.0.3, except that the boundary injectivity radii do not have a positive
uniform lower bound. In Example 6.3.4 we construct a sequence of manifolds that
satisfies all the conditions of the Theorem 1.0.3.

Our results concerning sequences of Riemannian manifolds with boundary are
consequences of the next two theorems concerning sequences of metric spaces
and integral current spaces. Let (X, d) be a metric space. In [25], the author and
Sormani defined the boundary of a metric space to be

∂X = X̄ \ X, (1.25)

where X̄ is the metric completion of X. This agrees with the notion of the boundary
of a manifold with boundary if one takes X to be interior of the manifold.
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For δ > 0 let
Xδ := { x ∈ X | d(x, ∂X) > δ} (1.26)

be the δ-inner region of X.
In prior work of the author with Sormani [25], applying Gromov’s Embedding

Theorem [11], it was proven that given a sequence {δi} decreasing to zero and a
sequence of compact metric spaces with boundary that converge in GH sense,

(X j, d j)
GH
−→ (X, dX), there is a subsequence { jk} and compact subspaces

X(δi) ⊂ X and X∂ ⊂ X (1.27)

such that
(Xδi

jk
, d jk)

GH
−→ (X(δi), dX) (1.28)

for all i and
(∂X jk , d jk)

GH
−→ (X∂, dX). (1.29)

In Theorem 1.0.4 we prove the converse:

1.0.4 Theorem. Let (X j, d j) be a sequence of precompact length metric spaces
with precompact boundary. Suppose that there is a decreasing sequence {δi}

∞
i=1 ⊂

R that converges to zero such that Xδi
j , ∅ and {(Xδi

j , d j)}∞j=1 converges in GH sense
for all i to some compact metric space (X(δi), dX(δi)),

(Xδi
j , d j)

GH
−→ (X(δi), dX(δi)). (1.30)

Suppose that there is a compact metric space (X∂, d∂) such that

(∂X j, d j)
GH
−→ (X∂, d∂). (1.31)

Then a subsequence of {(X̄ j, d j)}∞j=1 converges in GH sense.

The next theorem is the key ingredient to prove our theorems in which both
GH and SWIF limits agree. In particular it is applied to prove Theorem 1.0.2,
Theorem and 1.0.3.

1.0.5 Theorem. Let (X j, d j,T j) be precompact integral current spaces. Suppose
that there exist a compact metric space (X, d) and a non zero integral current
space (Y ⊂ X, d,T ) such that

(X̄ j, d j)
GH
−→ (X, d) and (X j, d j,T j)

F
−→ (Y, d,T ). (1.32)
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and there is a subsequence such that

(∂X jk , d jk)
GH
−→ (X∂, d) (1.33)

where ∂X jk is defined as in (1.25). Suppose in addition that

X∂ ⊂ Ȳ , (1.34)

and there is a decreasing sequence δi → 0 such that the inner regions converge

(Xδi
jk
, d jk)

GH
−→ X(δi) (1.35)

with
X(δi) ⊂ Y ∀i ∈ N. (1.36)

Then X = Ȳ.

In Example 5.3.2 we construct a sequence of manifolds which have GH and
SWIF limits that do not agree that satisfies all the conditions of Theorem 1.0.5,
except that Xδ ⊂ Y . In Example 5.3.3 we describe a sequence of regions in Eu-
clidean space with GH and SWIF limits that do not agree. This sequence satisfies
all the conditions of Theorem 1.0.5, except X∂ ⊂ Y .

We now provide an outline for the paper. We begin with two chapters re-
viewing key theorems needed to prove the results in this paper. In Chapter 2 we
review GH convergence as defined in Gromov’s book [14]. We state prior GH
convergence results for manifolds with boundary proven by Sormani and the au-
thor [25]. Then we state Colding’s volume estimate for balls GH close to balls in
Euclidean space [7], and some of Cheeger-Colding’s results about GH limits of
non collapsed sequences of Riemannian manifolds with Ricci curvature bounded
below [6].

In Chapter 3 we go over Ambrosio-Kirchheim’s results concerning integral
currents [1]. We then review Sormani-Wenger’s integral current spaces, SWIF
distance and some of their theorems. We present a simplified proof of Sormani-
Wenger’s GH=SWIF theorem for manifolds with no boundary [30] (cf. Theorem
3.3.1). This simplified proof will be adapted later to prove Theorem 1.0.2. We end
the Chapter discussing another GH=IF theorem for Alexandrov Spaces proven by
Li with the author [19]. This proof uses results by Burago-Gromov-Perelman
([5][4]) for Alexandrov spaces rather than Colding and Perelman results for man-
ifolds with boundary [7][26] which are used in Sormani-Wenger’s proof.
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In Chapter 4 we review prior convergence theorems concerning Riemannian
manifolds with smooth boundary by Kodani [17], Wong [34], Knox [16] and
Anderson-Katsuda-Kurylev-Lassas-Taylor [2]. A survey of this material by the
author has been published before in [23].

In Section 4.5, we review prior work of the author with Sormani published in
[25] in which the notion of a glued limit space is introduced. This limit is built
from the GH limits of inner regions and it may exist even when there is no GH
limit (cf. Example 5.1.2 and Example 5.1.3 within). If the GH limit exists then
the glued limit space can be a proper subset of the GH limit. See Example 5.3.3.
In that paper we also prove that for certain noncollapsing sequences of manifolds
with boundary that have nonnegative Ricci, the glued limit space has Hausdorff
dimension equal to n and positiveHn lower density (cf. Theorem 4.5.2).

In Section 4.6, we review prior work of the author alone concerning SWIF con-
vergence of oriented Riemannian manifolds with boundary [24]. In Theorem 4.6.4
SWIF precompactness is proven for sequences of manifolds with nonnegative
Ricci curvature, mean curvature bounded above and volume of the boundary
bounded above and diameter bounded above. In Theorem 4.6.5, SWIF precom-
pactness is obtained by replacing the volume and diameter on the manifolds with
such bounds on the boundary alone but requiring the mean curvature is strictly
negative. These theorems follow from volume and area estimates proven by the
author (cf. Theorem 4.6.3) using a Laplace Comparison Theorem for manifolds
with boundary (cf. Theorem 4.6.2). Once the volume estimates are obtained the
result follows from Wenger’s Compactness Theorem [33] (cf. Theorem 4.6.1).

In Chapter 5, we prove the new convergence theorems for metric spaces stated
above: Theorem 1.0.4 and Theorem 1.0.5. We also present some important ex-
amples. There we see that the sequence of metric spaces described in Example
5.1.2 satisfies all the conditions of Theorem1.0.4, except the GH convergence of
the boundaries. Meanwhile, the sequence of metric spaces described in Example
5.1.3 satisfies all the conditions of Theorem1.0.4, except that there is no GH con-
vergent subsequence of inner regions (Mδ

j , d j) for any δ small. In both examples
the conclusion of Theorem1.0.4 does not hold. To prove the importance of our
conditions in Theorem1.0.5, we present two examples. In Example 5.3.2 we de-
scribe a sequence for which the GH limit of the sequences of inner regions is not
contained in the SWIF limit and in Example 5.3.2 we show a sequence for which
the GH and SWIF limit do not agree since the GH limit of the boundaries is not
contained in the SWIF limit.

In Chapter 5 we also prove Theorem 5.2.1 which deals with the case when the
GH limit of (X j, d j) agrees with the GH limit of (∂X j, d j). In Example 5.2.3 we
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describe a sequence of 3-dimensional cylinders X j ⊂ R
3 such that {X j} and {∂X j}

GH converge to a segment. Notice that if the Hausdorff dimension of the GH limit
drops then the GH limit cannot agree with the SWIF limit. In Lemma 5.3.4 we
characterize the points of X \ X∂.

In Chapter 6 we prove our new theorems about limits of Riemannian manifolds
with boundary (Theorem 1.0.1, Theorem 1.0.2 and Theorem 1.0.3) and present
key examples related to these theorems. In Section 6.1 we prove Theorem 1.0.1
by applying Theorem 1.0.4. We note that Example 5.3.3 satisfies all the conditions
of Theorem 1.0.1, hence it has a GH limit.

In Section 6.2 we prove Theorem 1.0.2 by adapting the simplified proof of
Sormani-Wenger’s GH=IF Theorem for manifolds with no boundary [31]. See
Chapter 3.3 for details of their proof. We also see that the sequence described
in Example 5.3.3 satisfies all the conditions of Theorem 1.0.2, except Equation
(1.34) and so the GH limit does not coincide with the SWIF limit. Then we
provide two examples, Example 6.2.1 and Example 6.2.2, in which the sequences
satisfy all the conditions of Theorem 1.0.2. Additionaly, in these two examples
the GH limit of the sequences of boundaries, X∂, do not agree with the SWIF limit
of the boundaries, (Y∂, d,T∂), showing that we cannot replace Equation (1.34) by
X∂ = Y∂.

In Section 6.3 we prove Theorem 1.0.3. To prove it we will apply Theorem
1.0.2. To do so, we first prove uniform diameter bounds for sequences of inner
regions, Lemma 6.3.1, and the GH convergence of the sequence of boundaries,
Lemma 7.0.5. Then we show that X∂ ⊂ Ȳ . From Example 5.3.3 we notice that
a positive lower bound on the injectivity radii is not necessary for the GH con-
vergence. In Example 6.3.4 we present a sequence that satisfies all the conditions
of Theorem 1.0.3, except the posivite boundary injectivity radii bound. In this
example the GH limit and the SWIF limit agree showing that the hypothesis in the
boundary injectivity radii is stronger than necessary.

In Chapter 7 we prove GH convergence of sequences of boundaries, Theorem
7.0.5. In order to prove this theorem, in Proposition 7.0.6 we show that the GH
convergence of (∂M j, d∂M j) implies the convergence of (∂M j, d j) and in Proposi-
tion 7.0.7 we obtain a uniform Ricci curvature bound on the boundaries. Notice
that in Theorem 1.0.1 and Theorem 1.0.2 one of the hypothesis is the convergence
in GH sense of the sequence (∂M j, d j), Equation (1.6) and Equation (1.12). So
Theorem 7.0.5 can be used in these cases.
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Chapter 2

A Review of GH Limits

In this chapter we list GH convergence results that will be used in the next chap-
ters including prior published results of the author with Sormani as well as work of
Gromov and Cheeger-Colding. In Section 2.1 we define Gromov-Hausdorff dis-
tance and state Gromov’s compactness theorem and its converse; Theorem 2.1.2
and 2.1.4. In Section 2.2 we review the GH compactness theorems for δ-inner
regions of manifolds with boundary proven by the author and Sormani in [25],
Theorem 2.2.1 and 2.2.3. In Section 2.3 we state Colding’s theorem about the
volume of balls being close to the volume of balls in Rn, provided the balls are
GH close and the Ricci curvature is bounded below [7], cf. Theorem 2.3.1. We
also state Cheeger-Colding’s theorem [6] cf. 2.3.7 about the singular set of the
GH limit of a noncollapsing sequences of Riemannian manifolds with curvature
bounded below having zero Hausdorff measure and the regular points having all
tangent cones of the maximal dimension. These results will be aplied to prove
that the GH limit agrees with the SWIF limit in Theorem 1.0.2.

2.1 Gromov-Hausdoff Convergence
Here we introduce Gromov-Hausdorff convergence. A detailed exposition see
Burago-Burago-Ivanov [4] and Gromov [14].

The Hausdorff distance in a complete metric space Z, dZ
H, between two subsets

A, B ⊂ Z is defined as

dZ
H (A, B) = inf{ε > 0 : A ⊂ Tε (B) and B ⊂ Tε (A)}. (2.1)

Here, Tε(A) denotes the ε neigborhood of A.
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2.1.1 Definition (Gromov). Let
(
Xi, dXi

)
, i = 1, 2, be two metric spaces. The

Gromov-Hausdorff distance between them is defined as

dGH (X1, X2) = inf dZ
H (ϕ1 (X1) , ϕ2 (X2)) (2.2)

where Z is a complete metric space and ϕi : Xi → Z are distance preserving maps.

The above function is symmetric and satisfies the triangle inequality. It is a
distance when considering compact metric spaces.

2.1.2 Theorem (Gromov). Let
(
X j, d j

)
be a sequence of compact metric spaces.

If there exist D and N : (0,∞)→ N such that for all j

Diam(X j) ≤ D (2.3)

and for all ε there are N(ε) ε-balls that cover X j, then there exist a compact metric
space (X, dX) and a subsequence such that(

X jk , d jk

) GH
−→ (X, dX) . (2.4)

2.1.3 Definition. We say that a family, F , of compact metric spaces is equi-
bounded if there exists a function N : (0,∞) → N as in theorem 2.1.2. For
the purpose of clarity we will denote N by N( · ,F ) when working with different
families.

2.1.4 Theorem (Gromov). Let {(X j, d j)} be a sequence of compact metric spaces
that converges in GH sense. Then {(X j, d j)} is equibounded and there is D > 0
such that Diam(X j) ≤ D for all j.

2.1.5 Theorem (Gromov in [12]). Let {(X j, d j)} be a sequence of compact metric
spaces that converges in GH sense to (X∞, d∞). Then there is a compact metric
space (Z, d) and isometric embeddings ϕ j : X j → Z such that a subsequence
{(ϕ jk(X jk), d)} converges in Hausdorff sense to (ϕ∞(X∞), d).

Whenever we have a GH converging sequence, we choose embeddings ϕ j that
satisfy the result of the previous theorem. Then we consider {(X jk , d jk)} to be our
original sequence, {(X j, d j)}. We say that a sequence x j ∈ X j converges to x∞ ∈ X∞
if

ϕ j(x j)→ ϕ∞(x∞). (2.5)

Moreover, using the following theorem we can say that a sequence A j ⊂ X j

GH converges to a set A∞ ⊂ X∞.
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2.1.6 Theorem. [Blaschke] Let (Z, d) be a compact metric space and A j be a
sequence of closed subsets of Z. Then, there is a subsequence A jk that converges
in Hausdorff sense.

For Riemannian manifolds with no boundary the following compactness the-
orem holds.

2.1.7 Theorem (Gromov). Every sequence of n-dimensional compact Rieman-
nian manifolds with diameter ≤ D and Ric ≥ (n − 1)k has a GH convergent
subsequence.

2.2 Prior GH Convergence Results of the Author
with Sormani

In this section we review results published in [25].
Recall that for a Riemannian manifold with boundary (M, g) the δ-inner region

of M is given by
Mδ = { x ∈ M : d(x, ∂M) > δ}. (2.6)

The inner regions may be endowed with the induced length metric dMδ

dMδ(x, y) := inf
{
Lg(C) : C : [0, 1]→ Mδ, C(0) = x, C(1) = y

}
(2.7)

(which is possibly infinite) or the restricted metric d

d(x, y) := inf
{
Lg(C) : C : [0, 1]→ M, C(0) = x, C(1) = y

}
(2.8)

where

Lg(C) =

∫ 1

0
g(C′(t),C′(t)) dt. (2.9)

In the first theorem presented here, we proved GH subconvergence of the se-
quence Mδ

j with respect to the restricted metric since this provides more infor-
mation about the original sequence of manifolds M j. But note that the diameter
bound we required is with respect to the induced length metric. In particular the
inner regions were assumed to be path connected:

2.2.1 Theorem (P–Sormani). Given n ∈ N and δ,D,V, θ > 0 suppose that (M j, g j)
is a sequence of compact oriented manifolds with boundary such that

Ric(M j) ≥ 0, Vol(M j) ≤ V, Diam(Mδ
j , dMδ

j
) ≤ D, (2.10)
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∃q ∈ Mδ
j such that Vol(B(q, δ)) ≥ θδn, (2.11)

where B(q, δ) is the ball in M j with center q and radius δ. Then there is a subse-
quence { jk} and a compact metric space (Xδ, dXδ) such that

(Mδ
jk
, dM jk

)
GH
−→ (X(δ), dX(δ)). (2.12)

2.2.2 Remark. In the proof of Theorem 2.2.1 it was shown that for all p ∈ Mδ

and ε < δ/2
Vol(B(p, ε)) ≥ 2−nD/εθεn. (2.13)

This estimate also works for ε = δ/2. Choosing ε = δ/2 and applying Bishop-
Gromov Volume Comparison we get:

Vol(B(p, r)) ≥ 2−nD/(δ/2)θrn. (2.14)

for all r ≤ δ/2.

For a decreasing sequence of real numbers, δi → 0, we obtained simultaneous
convergence of sequences of inner regions.

2.2.3 Theorem (P–Sormani). Take n ∈ N, a decreasing sequence, δi → 0, Di > 0,
i = 0, 1, 2..., V > 0 and θ > 0. Suppose that (M j, g j) is a sequence of compact
n-dimensional Riemannian manifolds with boundary such that

Ric(M j) ≥ 0, Vol(M j) ≤ V, Diam(Mδi
j , dMδi

j
) ≤ Di ∀i (2.15)

and
∃q ∈ Mδ

j such that Vol(B(q, δ)) ≥ θδn, (2.16)

where B(q, δ) is the ball in M j with center q and radius δ. Then there is a sub-

sequence { jk} such that (Mδi
jk
, dM jk

) converges in Gromov-Hausdorff sense for all
i.

In [25], the author and Sormani applied these theorems to construct "glued
limit spaces" which are created by gluing together the GH limits of the inner
regions in a canonical way. See Theorem 6.1 and Theorem 6.3 of [25] for an in-
troduction to this notion of a glued limit space. These glued limit spaces may exist
even when the sequence of manifolds with boundary has no GH limit. In fact they
need not be compact. In Theorem 7.1 and Theorem 7.4 of [25] we constructed
glued limit spaces under various curvature conditions. In Theorem 8.8 of [25] we
proved nice properties for the glued limit spaces of noncollapsing sequences of
manifolds with boundary that have nonnegative Ricci curvature. Numerous ex-
amples were constructed to demonstrate the importance of the various hypothesis.
We do not review all these results here because they are not applied in this paper.
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2.3 Cheeger-Colding Theorems
Here we review a result by Colding [7] and few of the many important theorems
of Cheeger-Colding proven in [6] that we need to prove that the GH limit is inside
the SWIF limit, see proof of Theorem 1.0.2.

The next theorem tells us that the volume of balls of manifolds are close to the
volume of balls in Euclidean space when these balls are close in GH sense. This
result is used in Sormani-Wenger [30] to prove that the GH limit of manifolds
with no boundary coincides with the SWIF limit (cf Theorem 3.3.1 within). We
will use this theorem as well to prove our new Theorem 1.0.2.

2.3.1 Theorem. [Colding, Corollary 2.19 in [7]] For all ε > 0 and n ∈ N there
exist k(ε, n) > 0 and δ(ε, n) > 0 such that for any complete n-dimensional Rie-
mannian manifold M that satisfies

Ric(M) ≥ −(n − 1)k and dGH(B(p, 1), B(0, 1)) < δ, (2.17)

the following holds:

|Vol(B(p, 1)) − Vol(B(0, 1))| < ε, (2.18)

where B(0, 1) denotes the open ball of radius 1 and center 0 in the Euclidean
space Rn.

In the noncollapsing case the volume of the manifolds converge to the Haus-
dorff measure of the limit space.

2.3.2 Theorem (Cheeger-Colding [6]). Let k ∈ R, v > 0 and {Mn
j } be a sequence

of n-dimensional compact Riemannian manifolds such that

Ric(M j) ≥ (n − 1)k, M j
GH
−→ X and Vol(M j) ≥ v. (2.19)

Then for all r > 0 and x ∈ X

lim
j→∞

Vol(B(x j, r)) = Hn(B(x, r)), (2.20)

where x j ∈ M j such that x j → x andHn denotes n-Hausdorff measure. In partic-
ular,

lim
j→∞

Vol(M j) = Hn(X). (2.21)
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2.3.3 Remark. Since the theorem is proven locally, if M j is a sequence of n-
dimensional manifolds with boundary that satisfy

Ric(M j) ≥ (n − 1)k, M j
GH
−→ X (2.22)

and for each x ∈ Mδ
j

Vol(B(x, r)) ≥ v(δ) > 0 (2.23)

for r ≤ δ/2. Then
lim
j→∞

Vol(B(x j, r)) = Hn(B(x, r)), (2.24)

where x ∈ X, x j ∈ Mδ
j such that x j → x and r ≤ δ/2.

2.3.4 Definition. A sequence {(X j, d j, p j)}, p j ∈ X j, converges in the pointed
Gromov-Hausdorff sense to a metric space (X, d, p) if the following holds. For
all r > 0 and ε > 0 there exists N ∈ N and maps

f j : B(p j, r)→ X (2.25)

such that
f (p j) = p, dGH(B(p j, r), f j(B(p j, r))) < 2δ (2.26)

and
B(p, r − ε) ⊂ Tε f j(B(p j, r)), (2.27)

where Tε f j(B(p j, r)) is the ε neighborhood of f j(B(p j, r)).

2.3.5 Definition. Let (X, d) be a metric space. A tangent cone at x ∈ X is a
complete pointed GH limit (X, d∞, x) of a sequence of the form {(X, r−1

j d, x)}, where
lim j→∞ r j = 0.

2.3.6 Definition. A point x ∈ X is called regular if for some k every tangent cone
of x is isometric to Rk. A point is called non regular if it is not regular.

2.3.7 Theorem (Cheeger-Colding, Theorem 2.1 and Theorem 5.9 [6]). Let k ∈ R,
v > 0 and {Mn

j } be a sequence of n-dimensional compact Riemannian manifolds
such that

Ric(M j) ≥ (n − 1)k, M j
GH
−→ X and Vol(M j) ≥ v. (2.28)

Then the set of nonregular points of X has zero n-Hausdorff measure and all the
tangent cones of the regular points of X are isometric to Rn.
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2.3.8 Remark. Since the theorem is proven locally, if M j is a sequence of n di-
mensional manifolds with boundary that satisfy

Ric(M j) ≥ (n − 1)k, M j
GH
−→ X (2.29)

and for each x ∈ Mδ
j

Vol(B(x, r)) ≥ v(δ) > 0 (2.30)

for r < δ/2, then the set of nonregular points of X contained in

X(δ) = {x ∈ X | ∃ x j ∈ Mδ
j → x} (2.31)

has zero n-Hausdorff measure and all the tangent cones of the regular points of X
contained in X(δ) are isometric to Rn.
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Chapter 3

A Review of Integral Current Spaces
and SWIF Convergence

In Section 3.1 we review the notion and properties of integral currents that appear
on Ambrosio-Kirchheim’s paper “Currents in Metric Spaces" [1]. Here we see
that an integral current, T , in a metric space is a current acting on a tuple of
functions (rather than a differential form) that has integer valued Borel weight
functions whose boundaries are also integer rectifiable currents. The set of the
current, denoted set(T), is an oriented countablyHn rectifiable subset of the given
metric space.

In Section 3.2 we see that Sormani-Wenger [31] defined integral rectifiable
current spaces, (Y, d,T ), where T is an integral current in Ȳ and set(T) = Y.
We also define the Sormani-Wenger intrinsic flat distance (SWIF distance) which
was defined in imitation of Gromov’s intrinsic Hausdorff distance (GH distance),
except that the Hausdorff distance, dH, in Definition 2.1.1 is replaced by Federer-
Fleming’s flat distance dF [31]. We end Section 3.2 with Sormani-Wenger’s Theo-
rem that shows that under certain conditions the GH limit contains the SWIF limit
from [31].

In Section 3.3 we explain Sormani-Wenger’s GH=IF Theorem for manifolds
with no boundary, [30] (cf. Theorem 3.3.1 within).

In Section 3.4 we review joint work of the author with Li appearing in a
preprint entitled "On the Sormani-Wenger Intrinsic Flat Convergence of Alexan-
drov Spaces" [19].
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3.1 Integral Currents
The aim of this section is to review Ambrosio-Kirchheim’s notion of an integral
current on a metric space (which extends the notion of Federer-Flemming) [1]
[9]. To accomplish this we define currents, Definition 3.1.1, and integer currents,
Definition 3.1.5. Then we mention two important properties of integer currents
proven by Ambrosio-Kirchheim [1]. The characterization of the mass measure,
Lemma 3.1.8, which is amply used in SWIF convergence and that the set is a
countably rectifiable metric space, Lemma 3.1.9. The section finishes with the
definition of an integral current, Definition 3.1.10.

For a metric space Z, denote by Dm(Z) the collection of (m + 1)-tuples of
Lipschitz functions where the first entry is a bounded function:

Dm(Z) =
{
( f , π) = ( f , π1..., πm) | f , πi : Z → R Lipschitz and f is bounded

}
.

(3.1)

3.1.1 Definition (Ambrosio-Kirchheim). Let Z be a complete metric space. A
multilinear functional T : Dm(Z) → R is called an m dimensional current if it
satisfies:

i) If there is an i such that πi is constant on a neighborhood of { f , 0} then
T ( f , π) = 0.

ii) T is continuous with respect to the pointwise convergence of the πi for
Lip(πi) ≤ 1.

iii) There exists a finite Borel measure µ on Z such that for all ( f , π) ∈ Dm(Z)

|T ( f , π)| ≤
m∏

i=1

Lip(πi)
∫

Z
| f | dµ. (3.2)

The collection of all m dimensional currents of Z is denoted by Mm(Z).

To each current we associate a measure and a mass:

3.1.2 Definition (Ambrosio-Kirchheim). Let T : Dm(Z)→ R be an m-dimensional
current. The mass measure of T is the smallest Borel measure ‖T‖ such that (3.2)
holds for all ( f , π) ∈ Dm(Z).

The mass of T is defined as

M (T ) = ||T || (Z) =

∫
Z

d‖T‖. (3.3)
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To give the definition of integer current, we first see how to get a current by
pushing forward another one, Definition 3.1.3, and in Example 3.1.4 we define a
current in Euclidean space, Rn, that only requires an integer valued L1 function.

3.1.3 Definition (Ambrosio-Kirchheim Defn 2.4). Let T ∈Mm(Z) and ϕ : Z → Z′

be a Lipschitz map. The pushforward of T to a current ϕ#T ∈Mm(Z′) is given by

ϕ#T ( f , π) = T ( f ◦ ϕ, π1 ◦ ϕ, ..., πm ◦ ϕ). (3.4)

3.1.4 Example (Ambrosio-Kirchheim). Let h : A ⊂ Rm → Z be an L1 function.
Then [h] : Dm(Rm)→ R given by

[h] ( f , π) =

∫
A⊂Rm

h f det (∇πi) dLm (3.5)

in an m dimensional current, where∇πi are defined almost everywhere by Rademacher’s
Theorem.

Now we proceed to define integer currents:

3.1.5 Definition (Defn 4.2, Thm 4.5 in Ambrosio-Kirchheim [1]). Let T ∈Mm(Z).
T is an integer rectifiable current if it has a parametrization of the form ({ϕi}, {θi}),
where

i) ϕi : Ai ⊂ R
m → Z is a countable collection of bilipschitz maps such that Ai

are precompact Borel measurable with pairwise disjoint images,
ii) θi ∈ L1 (Ai,N) such that

T =

∞∑
i=1

ϕi#[θi] and M (T ) =

∞∑
i=1

M
(
ϕi#[θi]

)
. (3.6)

The mass measure is

||T || =
∞∑

i=1

||ϕi#[θi]||. (3.7)

The space of m dimensional integer rectifiable currents on Z is denoted by Im (Z).

In the next lemma we see that the mass measure of an integral current is con-
centrated in its set.

3.1.6 Definition (Ambrosio-Kirchheim). Let T ∈ Mm(Z), the canonical set of T ,
denoted set(T), is

set(T) = {p ∈ Z : Θ∗m
(
‖T‖, p

)
> 0} (3.8)
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where
Θ∗m (‖T‖, p) := lim inf

r→0

‖T‖(B(p, r))
ωmrm . (3.9)

The function Θ∗m (‖T‖, p) is called the ‖T‖ lower density of x and ωm denotes the
volume of the unit ball in Rm.

3.1.7 Definition. Given T ∈ Mm(Z) and A ⊂ Z a Borel set, the restriction of T to
A is a current, T A ∈Mm(Z), given by

(T A) ( f , π) = T (χA f , π). (3.10)

where χA is the indicator funcion of A.

We note that the mass measure of T A, ||T A||, equals ||T |||A. Hence,
||T A||(A) = | T A‖(Z) = ||T ||(A). So

Θ∗m (‖T‖, p) := lim inf
r→0

‖T B(p, r)‖(Z)
ωmrm . (3.11)

3.1.8 Lemma (Ambrosio-Kirchheim). Let T ∈ Im (Z) with parametrization ({ϕi}, θi).
Then there is a function

λ : set(T)→ [m−m/2, 2m/ωm] (3.12)

such that
Θ∗m(||T ||, x) = θT (x)λ(x) (3.13)

forHm almost every x ∈ set(T) and

||T || = θTλH
m set(T), (3.14)

where ωm denotes the volume of an unitary ball in Rm and θT : Z → N ∪ {0} is an
L1 function called weight given by

θT =

∞∑
i=1

θi ◦ ϕ
−1
i 1ϕi(Ai). (3.15)

3.1.9 Lemma. [Ambrosio-Kirchheim] If T ∈ Im (Z), then set(T) is a countably
Hm rectifiable metric space, ie. there exist a countable collection of biLipschitz
charts

ψi : Ai ⊂ R
n → Ui ⊂ Z (3.16)

where Ai are Borel measurable sets and

Hn( set(T) \ ∪∞i=1Ui ) = 0. (3.17)
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Finally, we define integral currents.

3.1.10 Definition (Ambrosio-Kirchheim). An integral current is an integer recti-
fiable current, T ∈ Im(Z), such that ∂T is also a current of finite mass where ∂T
is defined by:

∂T ( f , π1, ..., πm−1) = T (1, f , π1, ..., πm−1) (3.18)

We denote the space of m dimensional integral currents on Z: Im (Z) .

3.2 Integral Current Spaces and SWIF Distance
In this section we define integral current spaces, Definition 3.2.1, the Sormani-
Wenger intrinsic flat distance between these spaces, Definition 3.2.2 and state a
theorem that shows that the SWIF limit is contained in the GH limit, Theorem
3.2.3.

3.2.1 Definition (Sormani-Wenger). Let (Y, d) be a metric space and T ∈ Im(Ȳ).
If set (T) = Y then (Y, d,T ) is called an m dimensional integral current space. T
is called the integral current structure. X is called the canonical set.

For technical reasons the zero integral current space is defined. It is denoted
by 0 and has current T = 0.

We denote byMm the space of m dimensional integral current spaces and by
Mm

0 the space of m dimensional integral current spaces whose canonical set is
precompact.

Note that we can obtain an integral current space (M, d,T ) from a compact
oriented Riemannian manifold (Mn, g) (with or without boundary). In this case, d
represents the metric induced by g and T is integration over M:

T ( f , π1, ..., πn) =

∫
M

f dπ1 ∧ · · · ∧ dπn. (3.19)

3.2.2 Definition (Sormani-Wenger). Let (Yi, di,Ti) ∈ Mm. Then the intrinsic flat
distance between these two integral current spaces is defined by

dF ((Y1, d1,T1), (Y2, d2,T2)) = inf{dZ
F(ϕ1#T1, ϕ2#T2)} (3.20)

= inf{M (U) + M (V)}, (3.21)
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where the infimum is taken over all complete metric spaces, (Z, d), and all integral
currents, U ∈ Im (Z) ,V ∈ Im+1 (Z), for which there exist isometric embeddings
ϕi :

(
Ȳi, di

)
→ (Z, d) with

ϕ1#T1 − ϕ2#T2 = U + ∂V. (3.22)

The 0 m-dimensional integral current isometrically embeds into any Z with ϕ#0 =

0 ∈ Im (Z).

It was proven in Theorem 3.27 of [31] that dF is a distance on the class of
precompact integral current spaces,Mm

0 .
We apply the following compactness theorem in all of our SWIF theorems. It

is proven by Sormani-Wenger applying a combination of Gromov’s Compactness
Theorem and Ambrosio-Kirchheim’s Compactness Theorem.

3.2.3 Theorem (Sormani-Wenger). Let
(
X j, d j,T j

)
be a sequence of m dimen-

sional integral current spaces. If there exist D, M and N : (0,∞) → N such that
for all j

Diam(X j) ≤ D, M(T j) + M(∂T j) ≤ M (3.23)

and, for all ε there are N(ε) ε-balls that cover X j, then(
X jk , d jk

) GH
−→ (X, dX) and

(
X jk , d jk ,T jk

) F
−→ (Y, d,T ) , (3.24)

where either (Y, d,T ) is an m dimensional integral current space with Y ⊂ X or it
is the 0 current space.

3.2.4 Remark. In a later theorem, Sormani-Wenger constructed a common com-
pact metric space Z and isometric embeddings ϕ j : X j → Z and ϕ : X → Z such
that

ϕ j(X jk)
H
−→ ϕ(X) and ϕ jk#(T jk)

F
−→ ϕ#(T ), (3.25)

where set(ϕ#(T)) ⊂ X. Here, set(ϕ#(T)) can be the empty set. Note that this is
not proven using the common compact metric space constructed by Gromov in
his work. In fact the Z constructed in [31] is a countably Hn+1 rectifiable metric
space.
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3.3 Sormani-Wenger: GH=SWIF when there is no
boundary

For a sequence of compact oriented Riemannian manifolds, (M j, g j), with nonneg-
ative Ricci curvature, ∂M j = ∅ and two sided uniform volume bounds, Sormani-
Wenger proved that the GH limit, X, of these type of sequences agree with the
SWIF limit, Y, [30] (cf. Theorem 3.3.1 below). In [30], Sormani-Wenger prove
a far more general theorem about a larger class of integral current spaces without
boundary, and thus the proof is quite technically complicated. In this section we
present an adapted and simplified version of their proof specialized to oriented
Riemannian manifolds without boundary based upon Sormani’s Geometry Festi-
val presentation of the result. We refer to a review in a recent paper of Portegies-
Sormani [27] that provides detailed proofs of some ideas presented there.

3.3.1 Theorem. [Sormani-Wenger, Theorem 7.1 in [30]] Let (M j, g j) be a se-
quence of n dimensional oriented compact Riemannian manifolds with no bound-
ary that satisfy the following

Ric(M j) ≥ 0, Diam(M j) ≤ D and Vol(M j) ≥ v (3.26)

for some constants v,D > 0. Then there exist subsequence and an n-integral
current space (X, d,T ) such that

(M jk , d jk)
GH
−→ (X, d) (3.27)

and
(M jk , d jk ,T jk)

F
−→ (X, d,T ), (3.28)

where T j is integration of top forms over M j.

From (3.26) by Gromov’s Compactness theorem [14], Sormani-Wenger obtain
a subsequence converging to a metric space (X, d) in GH sense, (3.27). Then ap-
plying Sormani-Wenger’s theorem [31] (cf. Theorem 3.2.3 above), they get a fur-
ther subsequence converging in SWIF sense to an integral current space (Y, dY ,T ).
Note that by Remark 3.2.4 we can suppose that (M jk , d jk), (X, d), (M jk , d jk , d jk),
(Y, dY ,T ) lie in a common metric space.

Recall that by the definition of an integral current space x ∈ Y if and only if

lim inf
r→0

||T ||(B(x, r))
ωnrn > 0. (3.29)
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Then, to prove that the GH limit coincides with the SWIF limit they estimate
||T ||(B(x, r)) for all x ∈ X.

Sormani-Wenger show that for each x ∈ R(X), where R(X) denotes the regular
points in Cheeger-Colding sense of X (see Definition 2.3.6) there is C(x) > 0 and
r0(x) > 0 such that

||T ||(B(x, r)) > C(x)rn ∀r ≤ r0 (3.30)

We now review how they prove this. Since the mass measure is only lower semi-
continuous with respect to SWIF convergence [1], they use the notion of filling
volume of a current [30]. The filling volume by definition is smaller than the mass
and is continuous with respect to SWIF convergence:

3.3.2 Definition. (c.f. [27]) Given an n-integral current space N = (Y, d,T ),
n ≥ 1, define the filling volume of ∂N by

FillVol(∂N) = inf{M(S ) |S is an n + 1 integral current space such that ∂S = ∂N}.
(3.31)

That is, there is a current preserving isometry ϕ : ∂S → ∂N such that ϕ]∂S = ∂N.

Thus, from the definition of filling volume and mass it follows that

||T ||(N) = M(N) ≥ FillVol(∂N). (3.32)

The continuity of the filling volume with respect to SWIF convergence theo-
rem follows from the following theorem. This fact was first observed by Sormani-
Wenger [30] building upon work by Wenger on flat convergence of integral cur-
rents in metric spaces [32]. The precise statement given here is Theorem 2.48 in
work of Portegies-Sormani [27]:

3.3.3 Theorem (cf. Portegies-Sormani [27]). For any pair of integral current
spaces, Mi, we have

FillVol(∂M1) ≤ FillVol(∂M2) + dF (M1,M2). (3.33)

We note that the notion of filling volume given in Definition 3.3.2 is not ex-
actly the same notion as the Gromov Filling Volume [13], however many similar
properties hold. Gromov’s Filling volume is defined using chains rather than in-
tegral current spaces and the notion of volume used by Gromov is not the same as
Ambrosio-Kirchheim’s mass.

Now, in order to use the notion of filling volume and its continuity under SWIF
convergence to estimate ||T ||(B(x, r)) for x ∈ R(X), we state Portegies-Sormani
[27], Lemma 3.3.4 which allows us to view a ball as an integral current space and
Sormani [29], Theorem 3.3.5, which allows us to take the limits of balls.
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3.3.4 Lemma (cf. Lemma 3.1 in [27]). Let M be a Riemannian manifold, p ∈ M.
For almost every r > 0, the ball B(p, r) with the current restricted from the current
structure of the Riemannian manifold, T ,

(set(T B(p, r)), d,T B(p, r)), (3.34)

is an integral current space itself.

3.3.5 Theorem (Sormani [29]). Let
(
X j, d j,T j

)
be a sequence of integral current

spaces such that (
X j, d j,T j

) F
−→ (X∞, d∞,T∞) (3.35)

and x j ∈ X j a Cauchy sequence. Then there is a subsequence such that for almost
all r > 0

(B(x j, r), d j,T j B(x j, r)) (3.36)

are integral current spaces and

(B(x j, r), d j,T j B(x j, r))
F
−→ (B(x∞, r), d∞,T∞ B(x∞, r)). (3.37)

From Lemma 3.3.4 and Theorem 3.3.6 and applying Theorem thm-fillvolCont
to a sequence of converging balls we see that for x ∈ R(X) we have

||T ||(B(x, r)) ≥ FillVol(∂(B(x, r), d,T B(x, r))) (3.38)
= lim

j→∞
FillVol(∂(B(x j, r), d j,T j B(x j, r))). (3.39)

Thus to get a lower estimate of FillVol(∂(B(x, r), d,T B(x, r))) it is enough to
estimate

FillVol(∂(B(x j, r), d j,T j B(x j, r))) ≥ Crn for x j → x. (3.40)

Sormani-Wenger proved the following filling volume estimate in [30]. It
holds in a more general setting and was proven using work of Gromov [13] and
Ambrosio-Kirchheim [1]. In the case of Riemannian manifolds the proof is quite
similar to Greene-Petersen’s proof of the existence of lower bounds on volume of
balls of manifolds with a local geometric contractibility function [10].

3.3.6 Theorem (Sormani-Wenger [30], cf. Theorem 3.19 in [27]). Let (M, g) be
a compact n-dimensional Riemannian manifold (with or without boundary) and
p ∈ M. If there exist r0 > 0 and k ≥ 1 such that B(p, kr0)∩ set(∂M) = ∅, and every
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B(z, r) ⊂ B(p, r0) is contractible within B(z, kr) for all r ≤ 2−(n+6)k−(n+1)r. Then
there is Ck > 0 such that

FillVol(∂(B(p, r), d,T B(p, r))) ≥ Ckrn (3.41)

for all r ≤ 2−(n+6)k−(n+1)r.

With the hypotheses of Theorem 3.3.1, Sormani-Wenger obtain r0 and k that
only depend on x for x j where j is large. They use the fact that if x is a regular
point of X then all its tangent cones are isometric to Rn as in Cheeger-Colding
[6] ( cf. Theorem 2.3.7). They then apply Colding’s Volume Estimate [8] (cf.
2.3.1) and the GH convergence of the balls to show that the volume of small balls
contained in B(x j, r0) satisfy inequality (3.42) of Perelman’s Main Lemma in [26]:

3.3.7 Theorem (Perelman, Main Lemma and remark [26]). For any c2 > c1 > 1
and integer k > 0 there is δ(k, c1, c2) > 0 with the following property:

Let M be an n-dimensional Riemannian manifold with Ric(M) ≥ 0. Suppose
that p ∈ M and that

Vol(B(q, ρ)) ≥ (1 − δ)ωnρ
n (3.42)

for every ball B(q, ρ) ⊂ B(p, c2R). Then,

• any continuous function f : S k → B(p,R) can be continuously extended to
a function

f̄ : Bk+1 → B(p, c1R). (3.43)

• any continuous function f : S k → M \ B(p, c1R) can be continuously de-
formed to a function

f̄ : S k → M \ B(p, c2R). (3.44)

This theorem allows them to obtain the contractibility of balls so that they can
apply Theorem 3.3.6 to obtain (3.40) which implies (3.38). Thus every x ∈ R(X)
is in the SWIF limit Y = set(T).

To prove that the non regular points of X are contained in the SWIF limit,
Sormani-Wenger use the fact that the singular set of the GH limit has zero measure
[6] (cf. Theorem 2.3.7) and Ambrosio-Kircheim’s characterization of the mass
measure [1] (cf. Lemma 3.1.8).
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3.4 Li-Perales: GH=SWIF for Alexandrov Spaces
In recent work of the the author with Nan Li appearing on the arxiv [19], an
approach different to using Colding [7] and Perelman [26] is used to prove that
GH and SWIF limits of sequences of Alexandrov spaces agree. There they prove:

3.4.1 Theorem. [Li-] Let (Y j, d j,T j) be n-dimensional integral current spaces
with weight equal to 1 (cf. Lemma 3.1.8) and no boundary. Suppose that (Y j, d j)
are Alexandrov spaces with nonnegative curvature and Diam(Y j) ≤ D. Then
either

(Y j, d j,T j)
F
−→ 0 (3.45)

or a subsequence converges in GH and SWIF sense to the same space:

(Y jk , d jk)
GH
−→ (X, d), (3.46)

(Y jk , d jk ,T jk)
F
−→ (Y, d,T ) (3.47)

and X = Y.

Now we describe the proof and state the theorems applied. Notice that the
proof follows very closely the proof of Sormani-Wenger [30] (cf Theorem 3.3.1
within) except that we apply Alexandrov space theorems of Burago-Gromov-
Perelman in [5] and Otsu-Shioya [? ] to prove the regular points of the GH
limit are contained in the SWIF limit.

3.4.2 Theorem (Burago-Gromov-Perelman 8.5 in [5], Corollary 10.10.11 in [4]).
Let Y j be a sequence of n-dimensional Alexandrov spaces that satisfy

sec(Y j) ≥ κ and Diam(Y j). (3.48)

Then there is a subsequence Y jk and an Alexandrov space X with sec(X) ≥ κ,
Diam(X) ≤ D and Hausdorff dimension ≤ n such that

Y jk
GH
−→ X. (3.49)

Moreover, limk→∞H
n(Y jk) = 0 if and only if the Hausdorff dimension of X is less

than n.
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This compactness theorem for Alexandrov spaces gives us a GH convergent
subsequence. To get a SWIF limit we find an upper bound of ||T j||(Y j). In the
case of Riemannian manifolds no calculation of this type is needed since there
||T j||(M j) = Vol(M j) which is bounded by hypotheses. To find the bound we use
Ambrosio-Kirhheim characterization of the mass measure [1], cf. Lemma 3.1.8,
the Hausdorff measure bound obtained from the Bishop volume comparison for
Alexandrov spaces and the uniform diameter bound that we have by hypotheses.

3.4.3 Theorem (Theorem 10.6.6 in [4]). Let Y be an n-dimensional Alexandrov
space with sec(Y) ≥ κ. Let Vκ

n(r) denote the volume of a ball of radius r in the
simply connected space with constant sectional curvature equal to κ. Then for all
y ∈ Y the function:

r 7−→
Hn(B(y, r))

Vκ
n(r)

(3.50)

is non-increasing.

Once we have bounded ||T j||(Y j), by Sormani-Wenger [30], cf. Theorem 3.2.3,
we obtain a SWIF limit space, (Y, d,T ) that is either zero integral current space or
it is contained in X. In the first case we get (3.45). In the second case, we have to
prove that X ⊂ Y . To do that we divide the proof in two parts. First we show that
the regular points of X are contained in Y . Secondly, we show that the non regular
points of X are contained in Y .

If x ∈ X is regular point then we consider a sequence converging to that point,
y j → x. By fixing δ and ε, from Burago-Gromov-Perelman’s result below we
obtain a sequence of bi-Lipschitz maps f j : B(y j, δr) → W j ⊂ R

n with Lipschitz
constants as close to one as we choose ε.

3.4.4 Theorem (See Theorem 9.4 [5], Theorem 10.8.4 [4]). For any ε > 0 there
is δ = δ(n, κ, ε) > 0 such that for any n-dimensional Alexandrov space Y with
sec(Y) ≥ κ and Diam(Y) ≤ D, y ∈ Y and r > 0 if

dGH(B(y, r), B(0, r)) < δr, (3.51)

where B(0, r) denotes the ball of radius r contained in Rn centered at 0. Then
there exists a bi-Lipschitz map

f : B(y, δr)→ W ⊂ Rn (3.52)

with Lip( f ), Lip( f −1) ≤ 1 + ε. In particular,

B( f (y), (1 − ε)r) ⊂ f (B(y, r)) ⊂ B( f (y), (1 + ε)r). (3.53)
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The existence of these maps provide an estimate on the intrinsic flat distance
between the currents defined on B(y j, δr) and W j:

3.4.5 Lemma (Sormani-Wenger [31]). Let (Yi, di) be complete metric spaces and
ϕ : Y1 → Y2 be a λ > 1 biLipschitz map. If T ∈ In(Y1), then

dF (M1,M2) ≤ kλ,n max{Diam(spt T ),Diam(ϕ(spt T ))}M(T ) (3.54)

where M1 = (set(T), d1,T), M2 = (set(ϕ#T), d2, ϕ#T) and kλ,n = 1
2 (n+1)λn−1(λ−1).

By applying the triangle inequality and noticing that W j has the standard cur-
rent structure given of Rn for ε < 1 we obtain

dF ((B(y j, δr), d j,T j B(y j, δr)), 0) ≥ C(n, r)(δr)n (3.55)

such that for r sufficiently small C(n, r) is positive and limr→0 C(n, r) > 0. Now
we just combine this estimate with the inequiality

||T ||(B(x, δr)) ≥ dF ((B(x, δr), d,T B(x, δr)), 0) (3.56)

and Sormani’s convergence theorem [29], cf. Theorem 3.3.5, to show that ||T ||(B(x, δr)) ≥
C(n, r)(δr)n. This shows that x ∈ Y . Hence, the regular points of X are contained
in Y .

To prove that the nonregular points are contained in Y we apply Otsu-Shioya’s
result about the density of the regular set and the Hausdorff dimension of the
singular set of X, Ambrosio-Kirchheim’s characterization of the mass measure,
the Bishop-Gromov Volume Comparison Theorem for Alexandrov spaces and the
fact that the Hausdorff dimension of X is n, see Theorem 3.4.2, otherwise we
would be in the first case of Theorem 3.4.1, to show that

||T ||(B(x, r)) ≥ n−n/2Hn(X)/Dn rn

Thus, lim infr→0 ||T ||(B(x, r))/rn > 0. This shows that X \ R(X) ⊂ Y .

3.4.6 Theorem (Otsu-Shioya, Theorem A in [22]). Let Y be an n-dimensional
Alexandrov space. Then Y \ R(Y) has Hausdorff dimension less or equal than
n − 1. In particular, R(Y) is dense in Y.
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Chapter 4

A Survey on Convergence of
Manifolds

with Boundary

In this chapter, we review precompactness theorems for sequences of manifolds
and metric spaces with boundary. We begin with a survey of the work of Kodani
[17], Anderson-Katsuda-Kurylev-Lassas-Taylor [2], Wong [34], and Knox [16]
on the limits of Riemannian manifolds with boundary. We then present published
joint work of the author with Sormani concerning glued limit spaces of metric
spaces with boundary [25]. Finally we present SWIF precompactness theorems
of the author building upon Wenger’s Compactness Theorem that have appeared
on the arxiv in [24].

This chapter is based in part on "A survey on the Convergence of Manifolds
with Boundary" written by the author [23]. It was a survey article solicited by
Taller de Vinculación Matemáticos Mexicanos Jóvenes en el Mundo as part of the
proceedings volume of a conference at CIMAT in Guanajuato. It will appear in
the collection Contemporary Mathematics of the American Mathematical Society
in cooperation with the Mexican Mathematical Society.

4.1 Kodani’s GH Precompactness Theorem
In this section we state the convergence theorems that Kodani proved in [17]. First
we recall the definition of Lipschitz distance between metric spaces and interior
injectivity radius of a manifold.
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4.1.1 Definition. The Lipschitz distance between two metric spaces (X, dX) and
(Y, dY) is defined by

dL(X,Y) = inf
f :X→Y

log(max{dil( f ), dil( f −1)})

where the infimum is taken over all bi-Lipschitz homeomorphisms f : X → Y.

4.1.2 Definition. If M is a Riemannian manifold with boundary, for p ∈ M \ ∂M
define the interior injectivity radius of p, iint(p), to be the supremum over all r >
0 such that all unitary geodesics γ : [0, tγ] → M that start at γ(0) = p are
minimizing from 0 to min{tγ, r}, where tγ is the first time γ intersects ∂M. The
interior injectivity radius of M is defined as

iint(M) = inf{iint(p)|p ∈ M \ ∂M}. (4.1)

Kodani proved that in the class defined below GH convergence implies Lips-
chitz convergence.

4.1.3 Theorem (Kodani). LetM(n,K, λ, i) be the class of connected n-dimensional
Riemannian manifolds, M, with boundary that satisfy

|sec(M)| ≤ K, |II∂M| ≤ λ, iint(M) ≥ i, and i∂(M) ≥ i, (4.2)

where II∂M is the second fundamental form of ∂M, iint the interior injectivity radius
and i∂ the boundary injectivity radius. Then for all ε > 0, there exists δ > 0
such that M,N ∈ M(n,K, λ, i) and dGH(M,N) < δ implies dL(M,N) < ε. Thus
sequences in M(n,K, λ, i) that converge in GH sense also converge in Lipschitz
sense.

Hence, by proving GH convergence of a subclass of M(n,K, λ, i), Kodani
manages to prove Lipschitz convergence as well.

4.1.4 Theorem (Kodani). Let n ∈ N, K, λ, v > 0. Denote by M(n,K, λ, v) the
class of connected n-dimensional Riemannian manifolds with boundary that sat-
isfy

|sec(M)| ≤ K, 0 ≤ II∂M ≤ λ, and Vol(M) ≥ v. (4.3)

Then
M(n,K, λ, v) ⊂ M(n,K, λ, i). (4.4)

Also, every sequence of manifolds in M(n,K, λ, v) has a GH convergent subse-
quence. Hence, a Lipschitz convergent subsequence.
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To prove that M(n,K, λ, v) ⊂ M(n,K, λ, i) Kodani estimates i∂ and iint by
studying appropiate geodesics. To prove GH convergence he obtains uniform
upper volume bounds for the manifolds and uniform lower bounds for their balls.
Then it is possible to apply Gromov’s Compactness Theorem (cf. Theorem 2.1.2)..

4.2 Anderson-Katsuda-Kurylev-Lassas-Taylor’s
Precompactness Theorem

Here we present Anderson-Katsuda-Kurylev-Lassas-Taylor’s C1,α precompactness
theorem (cf. Theorem 4.2.1). This theorem appears in [2] and extends the tech-
niques used to prove Theorem 1.1 of [3] of Anderson to manifolds with boundary.

4.2.1 Theorem (Anderson-Katsuda-Kurylev-Lassas-Taylor). LetM(n,R, i,H0,D)
be the class of compact, connected Riemannian n-manifolds with boundary M sat-
isfying

|Ric(M)| ≤ R, |Ric(∂M)| ≤ R
injrad(M) ≥ i, iint(M) ≥ i, i∂(M) ≥ 2i

Diam(M) ≤ D, |H∂M |Lip(∂M) ≤ H0

where i∂(M) denotes the boundary injectivity radius of M, and H∂M is the mean
curvature of ∂M in M. ThenM(n,R, i,H0,D) is precompact in the C1,α topology.

4.3 Wong’s GH Precompactness Theorems
Here we review the two GH compactness theorems proved by Wong in [34]. The
first theorem that we present only requires a lower bound on sectional curvature
and allows the second fundamental form to be negative unlike Kodani’s com-
pactness theorem (cf. Theorem 4.1.4). Moreover, sequences of manifolds in
M(n,K−, λ±,D) can collapse. Nonetheless, for the noncollapsing case Kodani
obtains finitely many diffeomorphism types while Wong obtaines finetely many
homeomorphism types.

4.3.1 Theorem (Wong [34]). The class M(n,K−, λ±,D) of n-dimensional Rie-
mannian manifolds with boundary with

sec(M) ≥ K−, λ− ≤ II∂M ≤ λ
+, and Diam(M) ≤ D, (4.5)
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where II∂M denotes the second fundamental form of ∂M, is precompact in the GH
topology. IfM(n, r−, λ±,D) is restricted to manifolds with Vol(M) ≥ v, then it has
finitely many homeomorphism classes.

Wong shows that each M ∈ M(n,K−, λ±,D) has an isometric extension M̃
that is an Alexandrov space with uniform sectional and diameter bounds. Thus,
using the theory for Alexandrov spaces he can show that M ∈ M(n,K−, λ±,D) is
equibounded.

In the following theorem, Wong requires a uniform lower bound on the Ricci
curvature of the manifolds. Recall that in order to show C1,α convergence [2] (cf.
Theorem 4.2.1), Anderson et. al. assumed several injectivity radii bounds and a
bound on the Ricci curvature of the boundary.

4.3.2 Theorem (Wong [34]). The classM(n, r−, λ±,D) of n-dimensional Rieman-
nian manifolds with boundary with

Ric(M) ≥ r−, λ− ≤ II∂M ≤ λ
+, and Diam(M) ≤ D, (4.6)

where II∂M denotes the second fundamental form of ∂M, is precompact in the GH
topology.

The proof of Theorem 4.3.2 is very similar to the proof of Theorem 4.3.1.
Here, Wong extends each M ∈ M(n, r−, λ±,D) to a C2 manifold with boundary
that has a diameter bound and a Ricci curvature lower bound that only depends on
the class.

4.4 Knox’s Cα and L1,p Precompactness Theorem
In this section we go over Knox’s Cα and weak L1,p precompactness Theorem
[16], cf. Theorem 4.4.1. The proof of this theorem builds upon work of Anderson
in [3] and [2].

4.4.1 Theorem (Knox). LetM(n,K,H0,D, v∂) be the class of compact connected
Riemannian n-manifolds with connected boundary satisfying

| sec(M)| ≤ K, | sec(∂M)| ≤ K
0 < 1/H0 < H∂M < H0

Diam(M) ≤ D, Vol(∂M) ≥ v∂,

where H∂M is the mean curvature of the boundary. Then M(n,K,H0,D, v∂) is
precompact in the Cα, 0 < α < 1, and weak L1,p, p < ∞, topologies.
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From the bounds on the sectional curvature of the boundaries and their mean
curvature we see that the class defined by knox,M(n,K,H0,D, v∂), is contained in
one of Wong’s classes,M(n,K−, λ±,D). Hence, Knox’s class is GH precompact
by Wong.

Knox’s proof relies on calculating the harmonic radius, rh of the Riemannian
manifolds within the class he defined. For points in the interior by looking at the
volume of cylinders whose base is in ∂M, he concludes that there is a c > 0 that
only depends on the class such that

rh(x) ≥ cd(x, ∂M) (4.7)

for all x ∈ M \∂M, where (M, g) ∈ M(n,K,H0,D, v∂). For points in the boundary,
he shows that there is r that only depends onM(n,K,H0,D, v∂) for which

rh(x) ≥ r (4.8)

for all x ∈ ∂M.

4.5 Glued Limits of Sormani and the Author
In this section we go over the definition of glued limit space of a sequence of open
Riemannian manifolds (M j, d j) as defined by Sormani and the author in[25]. This
glued limit space may exist even when (M j, d j) has no GH limit. See Example
5.1.2 and Example 5.1.3. If (M j, d j) has a GH limit then the glued limit space can
be a proper subset of the GH limit. See Example 5.3.3.

We recall that in [25] the authors consider open Riemannian manifolds (Mn, g)
and define ∂M as in (1.25). There they prove GH compactness theorems for se-
quences of inner regions, cf. Theorem 2.2.1 and Theorem 2.2.3. Moreover, they
define glued limit space, cf.Theorem 4.5.1 and prove that under the conditions of
Theorem 2.2.3 the glued limit space has positive lower density, cf. Theorem 4.5.2.

4.5.1 Theorem (P–Sormani). Let (M j, g j) be a sequence of open manifolds with
boundary and δi → 0 a decreasing sequence. If

(M̄δi
j , d j)

GH
−→ (Y(δi), dY(δi)) (4.9)

for all i. Then there exists a metric space (Y, dY) with the following properties. For
each δ ∈ (0, δ0] there is a subsequence and an isometric embedding:

(M̄δ
jk , d jk)

GH
−→ (Y(δ), dY(δ)) and Fδ : Y(δ)→ Y (4.10)
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such that
Fδi(Y(δi)) ⊂ Fδi+1(Y(δi+1)) ∀i, (4.11)

Y =

∞⋃
i=1

Fβ j(Y(β j)) for any decreasing β j → 0. (4.12)

The theorem was proven by constructing isometric embeddings between the
limit spaces, ϕδi+1,δi : Y(δi)→ Y(δi+1), and defining

Y := Y(δ0) t
(
t∞i=1

(
Y(δi+1) \ ϕδi+1,δi (Y(δi))

))
, (4.13)

where t denotes disjoint union. This set was then endowed with the metric dY

given by
dY(x, y) = dY(δk)(x, y), (4.14)

where for k large x and y are seen as elements in Y(δk) via compositions of the
form

ϕδi+ j,δi = ϕδi+ j,δi+ j−1 ◦ · · · ◦ ϕδi+1,δi . (4.15)

Applying the results of Cheeger-Colding [6] reviewed in Section 2.3, Sormani
and the author proved the following.

4.5.2 Theorem (P–Sormani). Let n ∈ N, δi → 0 be a decreasing sequence, Di > 0,
i = 0, 1, 2..., V > 0 and θ > 0. Suppose that (M j, g j) is a sequence of open
Riemannian manifolds with boundary that satisfy

Ric(M j) ≥ 0, Vol(M j) ≤ V, Diam(Mδi
j , dMδi

j
) ≤ Di (4.16)

and
∃q ∈ Mδ

j such that Vol(B(q, δ)) ≥ θδn, (4.17)

where B(q, δ) is the ball in M j with center q and radius δ. Then there is a subse-
quence (Mδi

jk
, d jk) that has a glued limit space Y such that Y has Hausdorff dimen-

sion n,Hn(Y) ≤ V and every point in Y has positive lower density.

4.6 Prior SWIF Precompactness Theorems of the
Author

In this section we review SWIF compactness theorems for sequences of mani-
folds with boundary proven by the author and posted in the arxiv in [24]: Theo-
rem 4.6.4, Theorem 4.6.5 and Theorem 4.6.6. Since these theorems build upon
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Wenger’s Compactness Theorem [33], we begin by stating his theorem. Although
his theorem is proven for sequences of integral current spaces, we state it here
for oriented compact manifolds with boundary (cf. [30]). Recall that an oriented
manifold with boundary M can be viewed as an integral current space, (M, d,T ),
taking d to be the induced length metric and T ( f , π1, ..., πm) =

∫
M

f dπ1∧· · ·∧dπm.

4.6.1 Theorem. [Wenger [33]] Let n,V,D > 0 and (M j, g j) be a sequence of
oriented compact n-dimensional Riemannian manifolds (possibly with boundary)
that satisfy the following:

Vol(M j) ≤ V, Vol(∂M j) ≤ A (4.18)

and
Diam(M j) ≤ D. (4.19)

Then there exists a subsequence that converges in SWIF sense.

To apply Wenger’s Compactness Theorem the author first obtained a Laplacian
comparison theorem and then calculated volume and area bounds.

4.6.2 Theorem ( [24]). Let n ≥ 2 and Mn be an n-dimensional connected Rie-
mannian manifold with boundary with Ric(M) ≥ 0 and (M, d) complete. Let
r : M → R be the function

r = d( · , ∂M). (4.20)

Then for all p ∈ M

∆r(p) ≤
(n − 1)H∂M(q)

H∂M(q)r(p) + n − 1
(4.21)

holds in the barrier sense, where q ∈ ∂M such that r(p) = d(p, q), ∆r is the
Laplacian and H∂M : ∂M → R the mean curvature of ∂M with respect to the the
normal inward pointing direction.

4.6.3 Theorem ([24]). Let n ≥ 2 and Mn be an n-dimensional and connected Rie-
mannian manifold with smooth boundary such that (M, d) is complete, Ric(M) ≥ 0
and H∂M ≤ H. Furthermore, let An,H : [0,∞) → R be the function An,H(t) =

max{(1 + Ht/(n − 1))n−1, 0}.
If δ1 ≥ δ2 ≥ 0 then

Vol(Mδ2 \ Mδ1) ≤ Vol(∂M)
∫ δ1

δ2

An,H(t)dt (4.22)
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and the area of the boundary of Mδ (as a metric subspace of M) satisfies L1-
almost everywhere

Vol(∂Mδ) ≤ Vol(∂M)An,H(δ). (4.23)

Notice that in the above theorems if H∂M = 0 then we get ∆r(p) ≤ 0. For
H∂M = (n−1)/H we get ∆r(p) ≤ (n−1)/(r(p)+ H). Also that the equality of both,
volume and area, estimates is achieved by standard balls in Rn. We mention that
Sakurai proved a Laplacian comparison theorem for the function r that works only
where it is smooth [28] and that different volume estimates have been obtained
using a different approach by Heintz and Karcher in [15].

4.6.4 Theorem. Let D, A > 0, H ∈ R and (Mn
j , g j) be a sequence of n-dimensional

oriented connected Riemannian manifolds with smooth boundary. Suppose that
for all j the spaces (M j, d j) are complete as metric spaces,

Ric(M j) ≥ 0, H∂M j ≤ H, Vol(∂M j) ≤ A (4.24)

and
Diam(M j) ≤ D. (4.25)

Then there is an n-integral current space (W, d,T ) and a subsequence that con-
verges in SWIF sense:

(M jk , d jk ,T jk)
F
−→ (W, d,T ). (4.26)

If (Mn, g) is a complete connected Riemannian manifold with smooth bound-
ary such that Ric(M) ≥ 0 and H∂M ≤ H < 0 then r ≤ −(n − 1)/H [18] [20]. Thus,
Diam(M) ≤ Diam(∂M) − 2(n − 1)/H.

4.6.5 Theorem. Let D′, A > 0 and (Mn
j , g j) be a sequence of n-dimensional ori-

ented connected Riemannian manifolds with smooth boundary. Suppose that for
all j the spaces (M j, d j) are complete as metric spaces,

Ric(M j) ≥ 0, H∂M j ≤ H < 0, Vol(∂M j) ≤ A (4.27)

Diam(∂M j) ≤ D′. (4.28)

Then there is a subsequence and an n-integral current space (W, d,T ) such that

(M jk , d jk ,T jk)
F
−→ (W, d,T ). (4.29)
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In the theorem below we see that if a sequence converges in SWIF sense to
a current space (X, d,T ) then the SWIF limits of its sequences of inner regions
converge to (X, d,T ). This does not happen for GH limits. See Example 5.3.3 and
Example 4.10 of [25].

4.6.6 Theorem. Let D, A > 0, H ∈ R and (Mn
j , g j) be a sequence of n-dimensional

complete oriented connected Riemannian manifolds with smooth boundary. Sup-
pose that for all j the spaces (M j, d j) are complete metric spaces that satisfy

Ric(M j) ≥ 0, H∂M j ≤ H, Vol(∂M j) ≤ A (4.30)

and
Diam(M j) ≤ D. (4.31)

Suppose that there exist an integral current space (W, d,T ), a non increasing se-
quence δi → 0 and integral current spaces (Wδi , dWδi

,Tδi) such that

(M j, d j,T j)
F
−→ (W, d,T ) (4.32)

and for all i

(Mδi
jk
, d jk ,T

δi
jk

)
F
−→ (Wδi , dWδi

,Tδi). (4.33)

Then we have
(Wδi , dWδi

,Tδi)
F
−→ (W, d,T ). (4.34)
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Chapter 5

Convergence of Metric Spaces with
Boundary

In this chapter we prove our new GH compactness theorems for sequences of met-
ric spaces (X j, d j): Theorem 1.0.4, Theorem 5.2.1 and Theorem 1.0.5. Theorem
1.0.4 is applied in all our GH convergence theorems, except Theorem 5.2.1, stated
in this paper. The theorem relies on the GH convergence of inner regions (Xδ

j , d j)
and the boundaries, (∂X j, d j). Theorem 5.2.1 deals with the collapsed case when
the GH limit of (X j, d j) agrees with the GH limit of (∂X j, d j). If the Hausdorff
dimension of the GH limit drops then the GH limit cannot agree with the SWIF
limit. Under the conditions of Theorem 1.0.5 we prove that GH and SWIF limits
agree. We provide examples showing the necessity of our hypotheses.

5.1 GH convergence: Theorem 1.0.4
We first prove the following useful lemma and then prove Theorem 1.0.4. Recall
that if (X, d) is a metric space with non empty boundary, where the boundary is
defined as ∂X = X̄ \ X, then Xδ = {x ∈ X | d(x, ∂M) > δ}.

5.1.1 Lemma. Let (X, d) be a precompact metric space with boundary ∂X defined
as in 1.25. If {B(xk, δ)}Nk=1 is a cover of (∂X, d), then {B(xk, 2δ)}Nk=1 is a cover of
(X̄ \ Xδ, d).

Proof. We have to show that for all x ∈ X̄ \ Xδ there is k such that x ∈ B(xk, 2δ).
Let x ∈ X̄ \ Xδ, then d(x, ∂X) ≤ δ. Since ∂X is precompact there is x′ ∈ ∂X such
that

d(x, x′) = d(x, ∂X) ≤ δ. (5.1)
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If {B(xk, δ)} is a cover of (∂X, d), then it is a cover of (∂X, d) and x′ ∈ ∂X then
there is k such that

d(x′, xk) < δ. (5.2)

Hence,
d(x, xk) < 2δ. (5.3)

This proves that x ∈ B(xk, 2δ). The result follows. �

We now apply this lemma to prove our GH convergence theorem for metric
spaces.

Proof of Theorem 1.0.4. In order to prove that (X̄ j, d j) converges in GH sense we
will construct a function

N : (0,∞)→ N (5.4)

for {(X̄ j, d j)} as in Definition 2.1.3 and then apply Gromov’s Compactness Theo-
rem (cf. Theorem 2.1.2).

Since Xδi
j and ∂X j converge in GH sense, by the converse of Gromov Compact-

ness Theorem, cf. Theorem 2.1.4, there exist functions N( · , {Xδi
j }) and N( · , {∂X j}),

respectively, that uniformly bound the number of balls needed to cover each ele-
ment of the sequences. Using these functions we first define N : {2δi} → N. A
bound on the number of 2δi-balls needed to cover X̄ j can be obtained by adding

the number of 2δi-balls needed to cover Xδi
j to the number of 2δi-balls needed to

cover X̄ j \ Xδi
j . With the notation of Definition 2.1.3 and applyng Lemma 5.1.1,

define
N(2δi) = N(δi,

{
Xδi

j

}
) + N(δi,

{
∂X j

}
). (5.5)

The domain of N is extended to (0,∞) by defining

N(ε) = N(2δi) where 2δi+1 ≤ ε < 2δi (5.6)

and N(ε) = N(2δ1) for ε > 2δ1.
Since X j is a length metric space and can be covered with N(δ1) balls with

radius δ1 then
Diam(X̄ j) ≤ 2δ1N(δ1). (5.7)

The result follows from Gromov’s Compactness Theorem (cf. Theorem 2.1.2).
�
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Figure 5.1: X̄1, X̄2, X̄3...

We now present an example demonstrating that the conclusion of Theorem 1.0.4
does not hold if the sequence of boundaries does not converge.

5.1.2 Example. Let X j be contained in Rn, n ≥ 2, endowed with the length metric
that comes from the standard metric defined on Rn. See Figure 5.1 above. Each
X j consists of an open ball of radius r with j increasingly thin splines of constant
length, L and width w j → 0.

Observe that each X j is precompact and that its boundary, ∂X j, is compact.
For each δ > 0, there is N such that Xδ

j does not contain any spline for j ≥ N.

Actually, the sequence (Xδ
j , d j) converges in GH sense to a closed ball,

(Xδ
j , d j)

GH
−→ B(0, r − δ). (5.8)

Due to the increasing number of splines of constant length, the sequence
{(∂X j, d j)}∞j=1 is not equibounded. Thus, by the converse of Gromov Compactness
Theorem, (cf. Theorem 2.1.4), {(∂X j, d j)}∞j=1 does not have any GH convergent
subsequences. Note that {(X j, d j)}∞j=1 does not have GH convergent subsequences
for the same reason.

The next example is modeled after the pictures depicted in Frank Morgan’s
book [21]. It shows that in Theorem 1.0.4 the GH convergence of sequences of
δi-inner regions is necessary.

Figure 5.2: X1, X2, X3...
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5.1.3 Example. Let 0 < c < C < 1 be constant numbers. Consider the sequence
(X j, d j) of precompact surfaces in 3-dimensional Euclidean space, E3 as depicted
in Figure 5.2 above. More precisely,

X j = {(x, y, 0) ∈ R3|x2 + y2 ≤ c} ∪ A j ∪ {(x, y, 0) ∈ R3|C ≤ x2 + y2 < 1}, (5.9)

where A j (depicted in light blue in Figure 5.2) has j increasingly thin splines of
constant height located in such a way that for all (x, y, 0) ∈ ∂X j:

d j((x, y, 0), (0, 0, 0)) ≤ 1 − c + α j, (5.10)

where α j → 0 and the d j’s are length metrics induced by the Euclidean metric
dE3 .

By the condition on the metrics, Equation (5.10), it follows that

(∂X j, d j)
GH
−→ ({(x, y, 0) ∈ R3|x2 + y2 = 1}, dE3). (5.11)

For δ ∈ [0, 1−c), the sequence {(Xδ
j , d j)}∞j=1 is not equibounded due to the splines in

A j. Then, by the converse of Gromov’s compactness theorem (cf. Theorem 2.1.4),
{(Xδ

j , d j)}∞j=1 does not have any GH convergent subsequence, nor the sequence {X̄ j}.

5.2 Collapsing to the Boundary or Not
In this section we prove the following collapsing theorem, Theorem 5.2.1. Then
we describe a sequence of cylinders that collapses to a segment, Example 5.2.3.

5.2.1 Theorem. Let (X j, d j) be a sequence of precompact length metric spaces
with compact boundary. Suppose that there is a compact metric space (X∂, d∂)
such that

(∂X j, d j)
GH
−→ (X∂, d∂). (5.12)

Then either:

1. there is δ > 0 such that Xδ
j , ∅ for infinitely many j or

2. (X̄ j, d j)
GH
−→ (X∂, d∂).

5.2.2 Remark. When the sequence of boundaries converge and (1) in Theorem
5.2.1 is satisfied we cannot conclude anything. Example 5.1.3 shows a sequence
that satisfies these two conditions but (X j, d j) does not have GH convergent sub-
sequence. Meanwhile, the sequence from Example 5.3.3 satisfies both conditions
and GH converges.
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In the next example we describe a sequence of length metric spaces that illus-
trates the case in which the GH limit of X j equals the GH limit of ∂X j.

5.2.3 Example. Let X j be a sequence of increasingly thin cylinders in Rn,

X j = {(x1, ..., xn) ∈ Rn | x2
1 + · · · + x2

n−1 < r j, −1 < xn < 1}, (5.13)

r j = 1/ j, with the restricted standard metric of Rn. With this metric each X j is
a precompact length metric space and it is clear that each ∂X j is non empty and
precompact. Let

X∞ = {0} × {0} × · · · × {0} × [−1, 1] ⊂ Rn (5.14)

Then,
dR

n

H (X̄ j, X∞) < 2/ j. (5.15)

Also,
dR

n

H (∂X j, X∞) < 2/ j. (5.16)

Thus,
∂X j

GH
−→ X∞ and X̄ j

GH
−→ X∞. (5.17)

Proof of Theorem 5.2.1. Suppose that there is no δ > 0 such that Xδ
j , ∅ for

infinitely many j. Fix δ > 0, then Xδ
j = ∅ for finitely many j. Thus, for except a

finite number of j’s, X̄ j = X̄ j \ Xδ
j . Hence, we define a function N that counts the

number of ε-balls needed to cover X̄ j by

N(2δ) := N(δ, {∂X j}), (5.18)

where we are using the notation of Definition 2.1.3 and applying Lemma 5.1.1
Since each X̄ j is a length space and can be covered by N(ε0) ε0-balls we get

Diam(X̄ j) ≤ 2ε0N(ε0). The result follows from Gromov’s compactness theorem,
Theorem 2.1.2. �

5.3 GH=SWIF: Theorem 1.0.5
In this section we prove Theorem 1.0.4. Theorem 1.0.4 assures that a the GH
and SWIF limits agree for sequences of integral currents that converge in GH and
SWIF sense that satisfy condition (1.36) and (1.34), namely:

X(δi) ⊂ Y and X \ X∂ ⊂ Y. (5.19)
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In Example 5.3.2 we present a sequence that has GH and SWIF limits, that
satisfies (1.34) but does not satisfy (1.36). Then, in Example 5.3.3 we describe
a sequence that has GH and SWIF limits, that satisfy (1.36) but does not satisfy
(1.34). In both cases, the conclusion of the theorem does not hold. At the end of
the section we prove Lemma 5.3.4 that characterizes the points in X\X∂. With this
lemma Theorem 1.0.5 can be rewritten as Corollary ??. We also use this lemma
to prove Theorem 1.0.2.

Proof of Theorem 1.0.5. By hypothesis we know that the SWIF limit is contained
in the GH limit, Y ⊂ X. We only have to show that X ⊂ Ȳ .

Since the sequence {X̄ j} converges in GH sense, there is a sequence x j ∈ X̄ j

that converges to x. If there is i > 0 such that x j ∈ Xδi
j for infinite many j, then by

the GH convergence of the sequence {Xδi
j }, x ∈ X(δi). Thus, by hypothesis (1.36),

x ∈ Y .
Otherwise, for each i there is jk such that x jk < Xδi

jk
. Thus, d(x jk , ∂X jk) ≤ δi.

Since each boundary, ∂X j, is precompact we can choose y jk ∈ ∂X jk such that

d jk(x jk , y jk) = d(x jk , ∂X jk) ≤ δi. (5.20)

Then by the triangle inequality,

d jk(y jk , x)→ 0 as k → ∞. (5.21)

Thus, x ∈ X∂. From hypothesis (1.34) follows that x ∈ Ȳ . Hence, X ⊂ Ȳ . This
together with Y ⊂ X implies that X = Ȳ . �

5.3.1 Remark. From Example 5.1.3 it follows that in Theorem 1.0.4 the conver-
gence of the sequences of inner regions is necessary.

In the next example we describe a sequence that satisfies all the conditions of
Theorem 1.0.4, except condition (1.36). The conclusion of the theorem does not
hold.

5.3.2 Example. Just as in Example 5.1.3, let 0 < c < C < 1 be constant numbers.
Consider the sequence (X j, d j) of 2-dimensional precompact length metric spaces
in 3-dimensional Euclidean space as depicted in the figure above given by:

X j = {(x, y, 0) ∈ R3|x2 + y2 ≤ c} ∪ A j ∪ {(x, y, 0) ∈ R3|C ≤ x2 + y2 ≤ 1}, (5.22)

where A j has only one increasingly thin spline of constant height located in such
a way that

d j((x, y, 0), (0, 0, 0)) ≤ 1 − c + α j (5.23)
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Figure 5.3: X1, X2, X3...

for all (x, y, 0) ∈ ∂X j and α j → 0.
The spline in A j converges to a segment. Thus, the GH limit of (X̄ j, d j) is a

disc with the segment attached to it and its SWIF limit, Y, equals the disc.
The sequences (Xδ

j , d j) GH converge for all δ < 1:

(Xδ
j , d j)

GH
−→ (X(δ), dδ). (5.24)

But (X(δ), dδ) 1 Ȳ for δ ∈ [0, 1 − c) since each X(δ) contains a segment that Y
does not. Hence, this sequence does not satisfy condition 1.36. It satisfies X∂ ⊂ Y
since from Equation (5.10) follows that

(∂X j, d j)
GH
−→ ({(x, y, 0) ∈ R3|x2 + y2 = 1}, dE3). (5.25)

In the next example we show a sequence that satisfies all the conditions of
Theorem 1.0.5, except X∂ ⊂ Y , for which the conclusion of the theorem does not
hold.

Figure 5.4: X1, X2, X3...

5.3.3 Example. Let M j be a sequence of n-dimensional manifolds diffeomorphic
to a closed ball in Rn, n ≥ 2, consisting of a ball with a single increasingly thin
spline as depicted in Figure 5.4 for n = 2. Let X j = M j \ ∂X j. Then, each X j is a
precompact length metric space with compact boundary.
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The GH limit, X, of the sequence is a closed ball of radius r, B(0, r), with a
segment attached. The SWIF limit of the manifolds is Y = B(0, r).

For each δ > 0, there is N such that Xδ
j does not contain any spline for j ≥ N.

Actually, the sequence (Xδ
j , d j) converges in GH sense to a closed ball,

(Xδ
j , d j)

GH
−→ B(0, r − δ). (5.26)

Hence, B(0, r − δ) ⊂ Y
The GH limit of the boundaries is a sphere with a segment attached. Thus,

X∂ 1 Y.

Now we characterize the points in X \X∂. This characterization will help us to
prove GH=SWIF in Chapter 6.

5.3.4 Lemma. Let {(X j, d j)}∞j=1 be a sequence of precompact metric spaces with
compact boundary that converge in GH sense to a compact metric space (X, d):

(X̄ j, d j)
GH
−→ (X, d). (5.27)

Denote by X∂ the GH limit of the boundaries:

(∂X j, d j)
GH
−→ (X∂, d). (5.28)

Let x ∈ X. Then x ∈ X \ X∂ if and only if there is δ > 0 and a sequence x j ∈ Xδ
j

such that
lim
j→∞

x j = x. (5.29)

Proof. Suppose that there is a sequence x j ∈ Xδ
j that converges to x and that x

is contained in X∂. Then, by the GH convergence of the boundaries, there is a
sequence y j ∈ ∂X j that converges to x as well. By the triangle inequality:

d j(x j, y j) ≤ d j(x j, x) + d j(x, y j). (5.30)

Since d j(x j, x), d j(x, y j)→ 0 as j→ ∞, for j big enough, we have

d j(x j, y j) < δ, (5.31)

which is a contradiction since x j ∈ Xδ
j .
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Now, suppose that there is no δ and no sequence as in the statement of the
lemma. Since x ∈ X, there is x j ∈ M j that converges to x. By our supposition, for
each k it is possible to choose k ∈ N such that

d(x jk , ∂X jk) ≤ 1/k. (5.32)

Since ∂X jk is compact there exists y jk ∈ ∂X jk such that d(x jk , ∂X jk) = d(x jk , y jk).
Hence, there is a subsequence {y jk} ⊂ ∂X jk that converges to x. Hence, x ∈ X∂. �
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Chapter 6

Convergence of Riemannian
Manifolds with Boundary

In this chapter we prove the compactness theorems for manifolds stated in the
introduction: Theorem 1.0.1, Theorem 1.0.2 and Theorem 1.0.3. These theorems
are consequence of the general cases that hold for metric spaces: Theorem 1.0.4
and Theorem 1.0.5. Theorem 1.0.1 about GH convergence is proven in Section
6.1. Then in Section 6.2 we show that the GH limit is contained in the SWIF limit,
Theorem 1.0.2. This is done adapting Sormani-Wenger’s GH=SWIF theorem for
manifolds with no boundary [30]. In Section 6.3 we prove that the GH limit agrees
with the completion of the SWIF limit when having a uniform lower bound on
the boundary injectivity radii, Theorem 1.0.3. To do so we first obtain diameter
bounds of δ-inner regions, Lemma 6.3.1, and then prove that the sequence of
boundaries converges in GH sense, Lemma 6.3.2.

6.1 GH Convergence: Theorem 1.0.1
In this section we prove a GH convergence theorem for manifolds with boundary,
Theorem 1.0.1.

Proof of Theorem 1.0.1. By hypotheses, we have a sequence of manifolds with
nonnegative Ricci curvature, M j, satisfying (1.4)-(1.5). These hypotheses are
the same as the ones in prior work of the author with Sormani [25] (cf. Theo-
rem 2.2.3). Thus, applying that theorem we obtain a subsequence { jk} such that

48



the sequence of inner regions converges for all i:

(M̄δi
jk
, dMδi

jk

)
GH
−→ (X(δi), dX(δi)). (6.1)

By hypothesis (∂M j, dM j) also converges in GH sense. Thus the hypotheses of
our GH convergence theorem for metric spaces, Theorem 1.0.4, proven in Chap-
ter 5 above, are satisfied. By applying Theorem 1.0.4 we obtain a further sub-
sequence, also denoted jk, such that the sequence {(M jk , dM jk

)} converges in the
Gromov-Hausdorff sense. �

The following remark shows a sequence that satisfies all the conditions of
Theorem 1.0.1. So the sequence has a GH convergent subsequence.

6.1.1 Remark. In Example 5.3.3 we describe a sequence Mn
j of n-dimensional

compact Riemannian manifolds with boundary that satisfy all the conditions of
Theorem 1.0.1:

Ric(M j) = 0, Vol(M j) ≤ ωn(r + L)n, Diam(Mδ
j ) ≤ 2(r + L) (6.2)

and the center q j of the closed ball to which the spline is atacched in each M j

satisfies
Vol(B(q j, δ)) = ωnδ

n, (6.3)

where ωn is the volume of a ball in Rn of radius 1. Finally, the sequence of bound-
aries, ∂M j, also converges in GH sense.

Recall first the notion of a "glued limit" as defined by the author and Sor-
mani [25] [Theorem 7.4] ( cf. Theorem 4.5.1). Theorem 1.0.1 can be restated as
follows.

6.1.2 Theorem. If (M j, d j) has a glued limit and (∂M j, d j) converges in GH sense,
then there is a subsequence of (M j, d j) that converges in GH sense.

Notice that the completion of the glued limit might not equal the GH limit.
Cannot say GH=Completed Glued Limit here. In Example 5.3.3 the completion
of the glued limit is a disc while the GH limit of the sequence is a disc with a
segment attached.

Proof. The hypotheses for a sequence (M j, d j) to have a glued limit space coincide
with the hypotheses of Theorem 1.0.1, except for the convergence of the sequence
of boundaries (∂M j, d j). Hence, by adding this last condition all the hypotheses
of Theorem 1.0.1 are satisfied. Thus, the theorem follows. �
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6.1.3 Remark. In Theorem 7.0.5 we will prove that the assumption on the GH
convergence of the boundaries can be replaced by an assumption on Diam(∂M j, d∂M j)
and the second fundamental form of the boundaries, ∂M j, and their derivatives,
(7.1).

6.2 Proving GH=SWIF Theorem 1.0.2 and
Examples

In this section we prove Theorem 1.0.2. The key step is to show that X \ X∂ ⊂

Y . A sequence of compact, oriented, n-dimensional Riemannian manifolds with
nonnegative Ricci curvature and positive uniform upper and lower bounds on the
diameter and volume, respectively, have subsequences that converge in GH and
SWIF sense, cf. Theorem 2.1.7 and Theorem 4.6.1. Sormani-Wenger proved
that when the manifolds have no boundary a single subsequence can be chosen
in such a way that both limits coincide [30], cf. Theorem 3.3.1. By avoiding
the boundaries of the manifolds and provided with uniform lower bounds on the
volume of the balls, Equation ( 2.14), Sormani-Wenger’s proof can be adapted to
show that X \ X∂ ⊂ Y .

In Example 6.2.1 and Example we describe sequences of manifolds that satisfy
all the conditions stated in Theorem 1.0.2. What is interesting to see is that the
GH limit and SWIF limit of {∂M j} do not need to coincide in order to get that the
GH and the SWIF limits of {M j} agree.

Proof of Theorem 1.0.2. By Theorem 1.0.1 there exist a compact metric space
(X, dX) such that

(M jk , d jk)
GH
−→ (X, dX). (6.4)

By Sormani-Wenger [31], cf. Theorem 3.2.3 , there exist an n-integral current
space (Y, dY ,T ) and a further subsequence that we denote in the same way such
that

(M jk , d jk ,T jk)
F
−→ (Y, dY ,T ) (6.5)

where either (Y, dY ,T ) is the zero integral current space or Y ⊂ X and dY = dX |Y .
With no loss of generality our convergent subsequences will be indexed by { j}.

Cheeger and Colding classified the points of a GH limit space into regular and
nonregular according to their tangent cones [6], cf. Definition 2.3.6. Based on
this, we divide the proof of the theorem in the following three claims.
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Recall that from the definition of integral current space, Definition 3.2.1, x ∈ Y
if and only if

lim inf
r→0

‖T‖(B(x, r))
rn > 0 (6.6)

holds.
Claim 1: Let x ∈ R(X(δi)) and x j ∈ Mδi

j such that x j → x. Then there is
r0(x) > 0 and k(x) ≥ 1 such that B(x j, r0) ∩ set(∂Tj) = ∅ and every B(z, r) ⊂
B(x j, r0(x)) is contractible within B(z, kr).

Proof of Claim 1: Since x is a regular point contained in X(δi) by Cheeger-
Colding [6] ( cf. Theorem 2.3.7 and Remark 2.3.8), every tangent cone of x is
isometric to Rn. Thus, for any α > 0 there is r(α) ≤ δi such that

dGH(B(x, r), B(0, r)) < αr/2, (6.7)

where B(0, r) ⊂ Rn denotes the Euclidean ball in Rn with radius r and center 0.
Now x j → x and M j

GH
−→ X imply that for large j

dGH(B(x j, r), B(x, r)) < αr/2. (6.8)

Using the triangle inequality we obtain that

dGH(B(x j, r), B(0, r)) < αr (6.9)

for large j.
For ε > 0, by Colding’s Volume Convergence Theorem [7] (cf. Theorem

2.3.1) there is α(ε, n) > 0 such that

Vol(B(x j, r)) ≥ (1 − ε)ωnrn (6.10)

holds if (6.9) is satisfied. By what we proved in the previous paragraph (6.10)
holds for large j taking α = α(ε, n) and r(α) < δi.

Now, for any k, by Perelman’s Contractibility Theorem [26] ( cf. Theorem
3.3.7 within), there is ε such that if (6.10) holds then each B(z, r) ⊂ B(x j, r0(x)) is
contractible within B(z, kr). This finishes the proof of Claim 1.

Claim 2: R(X(δi)) ⊂ Y. That is, (6.6) holds for all the regular points of X(δi).
Proof of Claim 2: Since the result of Claim 1 holds then by Sormani-Wenger

Filling Volume Theorem [30] which uses work by Gromov [13] and was also
proven in [10], cf. Theorem 3.3.6, there exists Ck(x) > 0 such that

FillVol(∂(B(x j, r), d j,T j B(x j, r))) ≥ Ck(x)rn (6.11)
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for sufficiently large j and all r ≤ 2−(n+6)k−(n+1)r0(x).
Thus, by the continuity of the filling volume under SWIF convergence [27],

cf. Theorem 3.3.3, we have

FillVol(∂(B(x, r), d,T B(x, r))) ≥ Ck(x)rn (6.12)

for all r ≤ 2−(n+6)k−(n+1)r0(x). Since

||T ||(S ) ≥ FillVol(∂S ) (6.13)

holds for all integral current spaces S . Then,

||T ||(B(x, r)) ≥ Ck(x)rn. (6.14)

Thus, (6.6) holds which proves that x ∈ Y . Hence, R(X(δi)) ⊂ Y and (Y, d,T ) is
not the zero integral current space.

Claim 3: If R(X(δi)) ⊂ Y for all δi ≤ δ, then S(X(δi)) ⊂ Y, ie. (6.6) holds for all
the nonregular points of X(δi).

Proof of Claim 3: Let x ∈ S(X(δi)). From the characterization of the mass
measure given by Ambrosio-Kirchheim [1] (cf. Lemma 3.1.8), for r > 0

||T ||(B(x, r)) ≥ λnH
n(B(x, r) ∩ Y), (6.15)

where λn > 0 only depends on n.
Now we boundHn(B(x, r) ∩ Y). First we note that

Hn(B(x, r) ∩ Y) ≥ Hn(B(x, r) ∩ X(δk)) (6.16)

since in Claim 2 we proved that R(X(δk)) ⊂ Y for all k and by Cheeger-Colding
[6] (cf. Theorem 2.3.7 and Remark 2.3.8)Hn(R(X(δk)) = Hn(X(δk)).

Now we estimateHn(B(x, r) ∩ X(δk)). Actually, if r ≤ δi − δi+1 we have

B(x, r) ⊂ X(δi+1). (6.17)

Thus, we only need to estimate Hn(B(x, r)). By the volume estimate calculated
by the author and Sormani [25], cf. Remark 2.2.2,

Vol(B(x j, r)) ≥ v(δi)rn, (6.18)

where x j ∈ Mδi
j → x and r ≤ δi/2. Applying Colding’s Volume Convergence [7]

(cf. Therem 2.3.1) we have

Hn(B(x, r)) ≥ v(δi)rn (6.19)
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for r ≤ δi/2.
Thus, for r < min{δi/2, δi − δi+1} from (6.15), (6.16) and (6.19), we see that

||T ||(B(x, r)) ≥ λnH
n(B(x, r) ∩ Y) ≥ λnv(δi)rn. (6.20)

From this, Equation (6.6) holds. Thus, x ∈ Y . This proves S (X(δi)) ⊂ Y .
From Claim 2 and Claim 3 we conclude that X(δi) ⊂ Y for all i. By hypotheses

we know that X∂ ⊂ Y . Then we get by Theorem 1.0.4 that X = Y and by Lemma
5.3.4 that X \ X∂ ⊂ Y . �

In Example 5.3.3 we described a sequence that satisfies all the conditions of
Theorem 1.0.2, except X∂ ⊂ Y . See Remark 6.1.1. There the conclusion of the
theorem does not hold.

From Gromov’s compactness theorem, cf. Theorem 2.1.2, we know that if
(M j, d j) converges in GH sense then a further subsequence of (∂M j, d j) also con-
verge in GH sense. As in Federer-Fleming, if (M j, d j,T j) converges in SWIF
sense then (∂M j, d j, ∂T j) converges in SWIF sense [9] [1] [31].

In the following two examples we present sequences {M j} of manifolds that
satisfy all the conditions of Theorem 1.0.2. But for which the GH limit and SWIF
limits of {∂M j} do not agree. Hence, the hypothesis X∂ ⊂ Y in Theorem 1.0.2
cannot be replaced to requiring that both limits of {∂M j} coincide.

6.2.1 Example. Let M j = S n \ B(p, 1/ j), n ≥ 2, be the standard n-dimensional
unit sphere minus a ball of radius 1/ j with center the north pole, p. Each Mn

j is a
compact oriented Riemannian manifold with boundary that satisfy

Ric(M j) = n − 1,Vol(M j) ≤ Vol(S n),Diam(Mδ
j ) ≤ Diam(S n−1) (6.21)

and the south pole q ∈ S n satisfies

Vol(B(q, δ)) =
Vol(S n)
πn δn (6.22)

for small δ.
The SWIF limit of M j is S n and the north pole is the GH limit of ∂M j. Thus,

{p} ⊂ Y. These shows that this example satisfies all the hypotheses of Theorem
1.0.2. Hence, the GH limit of M j is S n. But the SWIF limit of ∂M j is the zero
current. This example shows that both limits of M j can agree even though the
limits of ∂M j do not.
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6.2.2 Example. Let

I3 = [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3. (6.23)

For j ≥ 2, let
M j = I3 \ (−1/ j, 1/ j) × (−1/ j, 1/ j) × (0, 1] (6.24)

with the induced flat metric. Notice that the elements of this sequence are not
manifolds but they can be smoothened. This sequence converges in both GH and
SWIF sense to the cube

X = Y = I3. (6.25)

The boundaries, however, have different limits.

∂M j
GH
−→ ∂I3 ∪ {0} × {0} × [0, 1] (6.26)

However the SWIF limit of boundaries is the boundary of the limits:

∂M j
F
−→ ∂I3. (6.27)

This shows that both limits of M j can agree even though the limits of ∂M j do not
agree.

6.3 GH=SWIF when i∂(M j) is bounded above:
Theorem 1.0.3

In this section we prove Theorem 1.0.3 that the closure of the SWIF limit co-
incides with the GH limit when having a uniform positive lower bound on the
boundary injectivity radii. To prove GH convergence we first prove Lemma 6.3.1
that gives a uniform bound on the diameters of sequences of inner regions. Then
we prove Lemma 6.3.2 that shows that the sequence of boundaries, {(∂M j, dM j)},
converges in GH sense. Then we apply these lemmas combined with our GH
convergence theorem for manifolds with boundary, Theorem 1.0.4. To show that
X = Ȳ we give an argument that shows that X∂ ⊂ Ȳ and then we apply our
GH=SWIF theorem for manifolds with boundary, Theorem 1.0.2.

First we set some notation. Let (M, g) be a Riemannian manifold with bound-
ary such that the boundary injectivity radius of M satisfies i∂(M) ≥ ι, then let

γ : ∂M × [0, ι]→ M (6.28)
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denote the function that assigns to each (p, t) ∈ ∂M×[0, ι] the point at time t of the
unitary normal geodesic that starts at p. Note that γ is well defined and a bijection
onto its image by the definition of boundary injectivity radius. Finally, let

π : M → ∂M (6.29)

the function that assigns to each p ∈ M a point π(p) ∈ ∂M that satisfies d(p, π(p)) =

d(p, ∂M). Notice that by the boundary injectivity radius bound this point is unique
for all p ∈ γ(∂M × [0, ι]).

6.3.1 Lemma. Let (M j, g j) be a sequence of Riemannian manifolds with boundary
such that

i∂(M j) ≥ ι > δ0 (6.30)

and
Diam(Mδ0

j , dM
δ0
j

) ≤ D0 (6.31)

for all j. Then for all δ ∈ [0, δ0] and all j the following holds

Diam(Mδ
j , dMδ

j
) < D(δ), (6.32)

where D(δ) = D0 + 2(δ0 − δ).

Proof. Let δ < δ0. Let’s estimate Diam(Mδ
j , dMδ

j
). Let p1, p2 ∈ Mδ

j . Since δ < δ0

and from the definion of inner region we know that Mδ0
j ⊂ Mδ

j . If pi < Mδ0
j , define

p′i := γ(π(pi), δ0) ∈ Mδ0
j . (6.33)

where γ is defined in (6.28). This point is well defined since i∂(M j) > δ0 > δ.
Notice that

dM j(pi, p′i) = δ0 − δ. (6.34)

If pi ∈ Mδ0
j , set p′i = pi. To end the proof we apply the triangle inequality:

dMδ
j
(p1, p2) ≤ dMδ0 (p′1, p′2) + 2(δ0 − δ) ≤ D0 + 2(δ0 − δ). (6.35)

�

6.3.2 Lemma. Let (Mn
j , g j) be a sequence of Riemannian manifolds with boundary

such that
i∂(M j) ≥ ι > 0. (6.36)

Suppose that there is a decreasing sequence {δi} ⊂ R that converges to zero and
the inner regions, (Mδi

j , dM j), converge in GH sense for all i.
Then a subsequence of {(∂M j, dM j)} converges in GH sense.
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Proof. By Gromov’s compactness theorem, cf. Theorem 2.1.2, it is enough to
show that {(∂M jk , d jk)} is equibounded and has a uniform diameter bound.

Let δ < ι. We claim that if {B(xl, δ)} is a δ cover of (∂Mδ
j , d j) then {B(π(xl), 3δ)}

is a 3δ cover of (∂M j, d j). Let x ∈ ∂M j. Since γ(x, δ) ∈ ∂Mδ
j and {B(xl, δ)} is a

cover of ∂Mδ
j , there is l such that

d j(γ(x, δ), xl) < δ. (6.37)

Then, by the triangle inequality we get

d j(x, π(xl)) ≤ d j(x, γ(x, δ)) + d j(γ(x, δ), xl) + d j(xl, π(xl)) < 3δ. (6.38)

This proves the claim.
Now, since (M̄δi

j , d j) converges in GH sense, it follows from Gromov’s com-
pactness theorem and its converse (cf. Theorem 2.1.2 and Theorem 2.1.4), that
there is a GH convergent subsequence, (∂Mδi

jk
, d jk) and there exists a function

N( · , {∂Mδi
jk
}) as in Definition 2.1.3.

Without any loss of generality suppose that δi < ι for all i. We define

N(3δi) := N(δi, {∂Mδi
jk
}) (6.39)

and extend the domain of N by defining N(ε) = N(3δi), where 3δi ≤ ε < 3δi−1.
Thus {(∂M jk , dM jk

)} is equibounded.
Finally, by Lemma 6.3.1

Diam(∂M jk , d∂M jk
) ≤ Diam(M jk) ≤ D(0). (6.40)

Thus, by Gromov’s Compactness Theorem (cf. Theorem 2.1.2), there is a subse-
quence of {(∂M jk , dM jk

)} that converges in GH sense. �

Proof of Theorem 1.0.3. To prove this theorem we only need to show that the hy-
potheses of Theorem 1.0.2 are satisfied. Namely, we first have to prove the exis-
tence of diameter bounds, GH convergence of a subsequence of (∂M j, d j).

Choose a decreasing sequence {δi} ⊂ R that converges to zero such that ι > δi

for all i. Using Lemma 6.3.1 we obtain the diameter bounds required in The-
orem 1.0.2. Now we need to show that there is a GH convergent subsequence
of (∂M j, d j). By the hypotheses and the diameter bounds that we obtained in
Lemma 6.3.1 we can apply a result by the author and Sormani [25], cf. Theo-
rem 2.2.3, to obtain GH convergent subsequences of inner regions:

(M̄δi
jk
, d jk)

GH
−→ (X(δi), dX(δi)) ∀i. (6.41)
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By Lemma 6.3.2, there is a further subsequence and a metric space (X∂, dX∂) such
that

{(∂M jk , dM jk
)}

GH
−→ (X∂, d∂). (6.42)

Then, by Theorem 1.0.2 we have a further GH and SWIF convergent subsequence:

(M jk , d jk)
GH
−→ (X, dX) (6.43)

and
(M jk , d jk ,T jk)

GH
−→ (Y ⊂ X, dX,T ) (6.44)

such that X \ X∂ ⊂ Y .
To prove that X = Ȳ it remains to prove that X∂ ⊂ Ȳ . With no loss of generality

we suppose that (M j, d j) converges in GH sense. Let x ∈ X∂ and x j ∈ ∂M j be a
sequence that converges to x. For all i, by the GH convergence of (M j, d j), there
is a subsequence jk such that

γ jk(x jk , δi)→ y(δi) as k → 0, (6.45)

where γ jk denotes the normal exponential function defined on ∂M jk × [0, ι], see
6.28. From (6.45) and the GH conververgence of (Mδi

j , d j) we know that y(δi) ⊂
X(δi) ⊂ Y .

Using the triangle inequality we get dX(y(δi), x) = δi. Hence,

y(δi) ∈ Y → x as i→ 0. (6.46)

This proves that x ∈ Ȳ . Thus, X∂ ⊂ Ȳ . This finishes the proof. �

6.3.3 Remark. If all the hypotheses of Theorem 1.0.3 hold except the uniform
positive lower bound on the boundary injectivity radii then the conclusion of the
theorem might not hold. See Example 5.3.3 where lim j→∞ i∂(M j) = 0 due to the
increasingly thin splines.

Questions: 1. Is it possible to get an example that satisfies the hypotheses of
Theorem 1.0.3, except the area bound?. Does the volume remain bounded?. Par-
tial Answer: Innami proved that it is not possible for flat manifolds in Euclidean
space. 2. Is the completion of the glued limit equal to the GH limit when having
the hypotheses of Theorem 1.0.3.

The next example shows that although the injectivity radius of the boundary is
a popular assumption in theorems about convergence of manifolds with boundary,
it is not a necessary condition.
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6.3.4 Example. Let M j = B(0, r) ∪ A j be the sequence in Euclidean space that
consists of a closed ball of radius r with an increasingly thin and short spline A j

attached to the ball such that M j converges in GH and SWIF sense to B(0, r). See
Example 5.3.3 and Figure 5.4. There the splines have constant length.
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Chapter 7

GH Convergence of (∂M j, dM j)

Let (M, g) be a Riemannian manifold with smooth boundary. We denote by dM

the metric given by g. Since M has smooth boundary, ∂M can be endowed with
two different metrics, dM which is the restriction of dM to ∂M and d∂M which is
the metric given by the Riemannian metric of ∂M.

Some of our GH compactness theorems require GH convergence of the se-
quence (∂M j, dM j). Observe that GH convergence of (∂M j, d∂M j) implies GH con-
vergence of (∂M j, dM j) provided each (∂M j, d∂M j) is connected or have a bounded
number of connected components (cf. Proposition 7.0.6). Thus, by uniformly
bounding the Ricci curvature of ∂M j we will prove a GH compactness theorem,
Theorem 7.0.5, for (∂M j, d∂M j) and (∂M j, d∂M j).

7.0.5 Theorem. Let {(Mn
j , g j)} be a sequence of Riemannian manifolds with smooth

boundary such that Ric(M j) ≥ 0,

Diam(∂M j, d∂M j) ≤ D∂, (R(en, X)X, en) ≤ γ and α ≤ B(X, X) ≤ β, (7.1)

where en denotes the normal unitary vector field, B is the second fundamental
form of ∂M and X is a vector field in T∂M such that ∇en X = 0. Then, there is
a subsequence { jk} such that both (∂M jk , d∂M jk

) and (∂M jk , d jk) converge in GH
sense.

We now prove two propositions which we will apply to prove this theorem.

7.0.6 Proposition. Let (M, g) be a Riemannian manifold with boundary. If {Bd∂M (xi, ε)}
is a cover of (∂M j, d∂M j) then {BdM (xi, ε)} is a cover of (∂M j, dM j).
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Proof. It is enough to show that for all x ∈ ∂M the following holds

Bd∂M (x, ε) ⊂ BdM (x, ε). (7.2)

By the definition of dM and d∂M we know that

dM(x, x′) ≤ d∂M(x, x′) for all x, x′ ∈ ∂M. (7.3)

Thus,
d∂M(x, x′) < ε implies dM(x, x′) < ε. (7.4)

Hence,
Bd∂M (x, ε) ⊂ BdM (x, ε). (7.5)

�

7.0.7 Proposition. Let (M, g) be a Riemannian manifold with boundary. If

Ric(M) ≥ 0, (R(en, X)X, en) ≤ γ and α ≤ B(X, X) ≤ β. (7.6)

Then,
Ric∂(X, X) ≥ c(n, γ, α, β) = −γ + (n − 1)(α2 − β2). (7.7)

Proof. Let p ∈ ∂M. Choose an orthonormal basis ei of TpM such that en is
perpendicular to Tp∂M and ∇enei = 0 for 1 ≤ i ≤ n − 1. Using Gauss formula we
get

(R∂(ei, e j)e j, ei) = (R(ei, e j)e j, ei) + B(e j, e j)B(ei, ei) − B2(e j, ei), (7.8)

for 1 ≤ i, j ≤ n− 1. Adding over i and adding and substracting (R(en, e j)e j, en) we
obtain

Ric∂(e j, e j) = Ric(e j, e j) − (R(en, e j)e j, en) (7.9)

+ B(e j, e j)
n−1∑
i=1

B(ei, ei) −
n−1∑
i=1

B2(ei, e j). (7.10)

�

Proof of Theorem 7.0.5. We know that

Diam(∂M j, d∂M j) ≤ D∂. (7.11)
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From Proposition 7.0.7 we get

Ric∂(X, X) ≥ −γ + (n − 1)(α2 − β2). (7.12)

Thus, by Gromov’s Ricci Compactness Theorem (cf. Theorem 2.1.7) there is a
GH convergent subsequence (∂M jk , d∂M jk

) and this subsequence is equibounded
(cf. Theorem 2.1.4). Then (∂M jk , d jk) is equibounded by Proposition 7.0.6. More-
over, by the definition of the restricted metric and the induced length metric,

Diam(∂M jk , d jk) ≤ Diam(∂M jk , d∂M jk
) ≤ D∂. (7.13)

Then by Gromov’s Compactness theorem there is a subsequence of (∂M jk , d jk)
that converges. in GH sense. �
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