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Abstract of the Dissertation

The Kontsevich Space of Rational Curves on Cyclic Covers of Pn

by

Lloyd Christopher John Smith

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

In this thesis we consider the space of rational curves on a smooth cyclic
cover of Pn. These varieties are the simplest examples of Fano varieties be-
yond the classical examples of complete intersections in homogeneous spaces.
We show that for a general cyclic cover, the Kontsevich moduli stack of sta-
ble curves in X is irreducible and has the expected dimension.

Specifically, let X be a general smooth cyclic cover of Pn of degree r
branched over a divisor of degree rd, and let M0,k(X, e) be the Kontsevich
moduli stack of stable rational curves of degree e on X. We show that if
2d(r − 1) < n then this space is irreducible with dimension

e(n− (r − 1)d+ 1) + n− 3 + k
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1 Introduction

In this thesis, all schemes are over C.

1.1 Background and Statement of Results

Fano Varieties We will be interested in curves on Fano varieties.

Definition 1.1.1. A smooth projective variety X is Fano if the anticanon-
ical divisor class −KX is ample.

For a detailed introduction to Fano varieties, see [Kol2] Chapter V. Some
examples:

• The only Fano curve is P1.

• The Fano surfaces are the Del Pezzo surfaces: either P1 × P1, or the
blowup of P2 at up to 8 points in sufficiently general position.

• A smooth hypersurface of degree d in Pn, with d ≤ n. More generally,
a smooth complete intersection of hypersurfaces of degrees d1, ..., dr in
Pn with

∑
di ≤ n.

• A variety that is homogeneous under the action of a linear algebraic
group. For example, the Grassmannian varieties are Fano.

In any dimension there are only finitely many deformation families of
Fano varieties, but the number grows fast with the dimension. In dimension
3, there is a complete classification of Fano varieties into a total of 105
families (Iskovskih [Is] and Mori and Mukai [MM]), while in dimension 4 or
greater there is currently no complete classification.

We will consider finite cyclic covers of projective space; that is, smooth
varieties admitting an action of Z/rZ such that the quotient is Pn. Their con-
struction is considered more carefully in 1.4. Such a cyclic cover is uniquely
determined by the branch divisor inside of Pn, and is Fano if the degree of
the branch divisor is sufficiently low.

These Fano varieties are among the simplest beyond the basic examples
given above. In particular, we note that a cyclic double cover of Pn branched
over a divisor of degree 2 is just a quadric hypersurface in Pn+1, in which
case our resuts are covered by those of [HRS].

Notation 1.1.2. Let X → Pn be a finite cyclic cover. We will write r for
the degree of the cover. The degree of the branch divisor must be a multiple
of r, so we let d be the integer such that the degree of D is rd.
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Rational Curves on Fano Varieties A result of Mori states that there
are always many rational curves on a Fano variety:

Theorem 1.1.3 (Mori). Let X be a Fano variety and p a point on X. Then
there is a non-constant rational curve f : P1 → X passing through p.

As we define in 1.2.4, the Kontsevich moduli space

M0,m(X,β)

is a compactification of the space of irreducible rational curves on X that
parametrises stable genus zero maps from a curve of genus 0 to X, with m
marked points, such that the image in X has homology class β. The expected
dimension of this space is defined by

〈c1(TX), β〉+ dim(X) +m− 3

In many cases whenX is a Fano variety, it has been shown thatM0,m(X,β)
has the expected dimension, especially when X is a complete intersection in
a homogeneous variety. For example, in [KP] we have the following result:

Theorem 1.1.4. Let X be a projective homogeneous variety. ThenM0,m(X,β)
is irreducible and smooth of the expected dimension.

In [HRS] a new induction argument was developed, which gave the following:

Theorem 1.1.5 (Harris, Roth, Starr). Let X ⊆ Pn be a general hypersurface
of degree d, with n ≥ 3 and d < n+1

2 . Then M0,m(X, e) is irreducible of the
expected dimension.

A smooth hypersurface in Pn is Fano when d ≤ n, and it is conjectured
thatM0,m(X, e) has the expected dimension when X is a general hypersur-
face of degree d ≤ n− 1. Therefore the result of [HRS] applies to half of all
possible degrees. Recent work of Beheshti ([B]) has improved this result to
cover all degrees d < n− 2

√
n.

In [F] the same result is proved for certain low-degree hypersurfaces in
a Grassmannian:

Theorem 1.1.6 (Findley). Let X be a degree-d hypersurface in the Grass-
mannian G(n, k) with

d ≤ n− k(n− k)

2

and (d, k, n) 6= (2, 2, 4). Then M0,m(X,β) is irreducible of the expected
dimension.

For an outline of the technique and the results obtained, see [BK].
In this thesis, we consider Fano cyclic covers of projective space, and

prove the following result using the same general approach:
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Theorem 1.1.7. Let X → Pn be a general smooth r-sheeted cyclic cover of
projective space branched over a divisor D of degree rd, and let M0,0(X, e)
be the Kontsevich moduli space of rational curves of degree e on X. Suppose
that

d ≤ n

2(r − 1)

Then M0,0(X, e) is irreducible of the expected dimension

e(n− (r − 1)d+ 1)− n− 3

We show in 1.4 that a smooth cyclic cover of Pn of degree r branched
over a divisor of degree rd is Fano exactly when

d <
n

r − 1

so our results cover half of the possible values of d for a given n and r.
The author would like to thank his advisor Jason Starr for much patient

help and advice.

1.2 Parameter Spaces of Lines

We begin with some background on the moduli spaces that we will use. The
simplest example of a moduli space of rational curves is the Grassmannian.

Definition 1.2.1. A flat family of lines in Pn over B is a closed subscheme

Z ⊂ B × Pn

such that the projection Z → B is flat and projective, and such that for
each closed point p ∈ B the fibre Zp ⊆ Pn is a line.

The functor sending a variety B to the set of all flat families over B is rep-
resented by a smooth projective variety called the Grassmannian, denoted
G(n, 1). For an explicit contruction showing that G(n, 1) is a projective
variety, see [GH] Chapter 1.5.

Examples The Grassmannian G(2, 1) parametrising lines in P2 is again
P2. The Grassmannian G(3, 1) of lines in P3 is a quadric hypersurface in P5

(the Klein quadric).

The Fano Scheme of Lines on a Hypersurface Let X be a smooth
hypersurface of degree d in Pn. The lines in X are parametrised by a pro-
jective variety, called the Fano scheme of lines on X. The Fano scheme may
be described as a closed subscheme of the Grassmannian G(n, 1), as follows
(cf. [EH] Chapter 8).
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The space PH0(Pn,O(d)) parametrises hypersurfaces of degree d in Pn,
and G(n, 1) parametrises lines in Pn. Define the universal hypersurface Φ ⊆
PH0(Pn,O(d))×G(n, 1) by

Φ = (X,L : X a hypersurface of degree d, and L a line in X)

This is a closed subscheme of Φ ⊆ PH0(Pn,O(d)) × G(n, 1), as can be
checked locally. Let pr1, pr2 be the projections of Φ onto PH0(Pn,O(d)) and
G(n, 1) respectively.

Definition 1.2.2. Let X be a hypersurface of degree d in Pn, represented
by a point pX in PH0(Pn,O(d)). We define the Fano scheme F (X) of lines
in X to be the fibre

F (X) = pr−1
1 (pX) ⊆ G(n, 1)

The Fano scheme represents the functor that sends a variety B to the
set of flat families Z ⊆ B ×X such that the fibre over each closed point of
B is a line in X.

Example When X = Pn, the Fano scheme of lines in X is the Grassman-
nian G(n, 1).

Example Let X be a smooth quadric hypersurface in Pn, which we con-
sider as the projectivisation of some n+ 1 dimensional vector space V . We
consider the equation of the quadric hypersurface as describing a bilinear
form on V . Then X itself is the set of all isotropic vectors through the
origin in V , and the Fano scheme of lines in X is the subscheme of the
Grassmannian G(n + 1, 2) parametrising totally isotropic planes - the or-
thogonal Grassmannian.

When n = 3, the Fano scheme of lines on the surface X is P1×P1; when
n ≥ 4, the Fano scheme is a connected homogeneous projective variety. See
[FH] Chapter 18.

We will see that a smooth cyclic double cover ofPn branched over a
quadric hypersurface is, in fact, isomorphic to a quadric hypersurface in
Pn+1. Therefore our results on cyclic covers reduce in the simplest case to
this example.

The Kontsevich Moduli Space To study rational curves on a variety
X, it is natural to consider the corrresponding moduli space. If X is a
smooth variety then there is a quasiprojective variety whose points corre-
spond to rational curves f : P1 → X such that f is a birational isomorphism
(that is, not a constant map or a multiple cover of its image). There are
several ways to compactify this moduli space; in all cases, the points in the
compactification parametrise curves that are degenerate in some way.
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Definition 1.2.3. Let X be a smooth projective variety. An m-pointed
stable map to X is a map f : C → X from a connected reduced curve C
together with a set of marked points p1, ..., pm on C, satisfying the following
conditions:

• C has at worst nodal singularities.

• Every irreducible component of C of genus 0 contracted by f contains
at least three nodes or marked points.

• Every irreducible component of genus 1 contracted by f contains at
least one node or marked point.

Note that if C is irreducible then an m-pointed stable curve is just a curve
with a free choice of m points.

Definition 1.2.4. For all positive integers m, g and all curve classes β ∈
H2(X,Z) on X, the Kontsevich moduli stack

Mg,m(X,β)

is the stack parametrising families of stable m-pointed curves f : C → X on
X, of genus g, whose image f(C) has class β.

In this thesis we will only be concerned with the case of rational curves,
so we will always take g = 0. Moreover, we will be considering the case
when X is a cyclic cover of projective space. We show in 1.4.2 that in this
case Pic(X) = Z, and so H2(X,Z) is generated by the the curve class of
a line L. In cases such as this when PicX = Z, we define for any positive
integer e

M0,m(X, e) :=M0,m(X, e · L)

For many choices of X, the dimension of the Kontsevich space depends
only on the curve class and the first Chern class of the tangent bundle of X.

Definition 1.2.5. The expected dimension of M0,m(X,β) is

〈c1(TX), β〉+ dim(X) +m− 3

The Kontsevich moduli stack was first defined in [Kon]. For a detailed
proof of the existence and properties of this stack, see [FP]. We summarise
the results here.

Theorem 1.2.6. The space M0,m(X,β) is a Deligne-Mumford stack. If
M0,m(X,β) has the expected dimension is a local complete intersection, and
so is Cohen-Macaulay. In particular, a map from M0,m(X,β) to a smooth
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variety is flat if it has constant fibre dimension equal to the expected fibre
dimension.

Furthermore, let V be the variety parametrising maps f : P1 → X, up to
automorphism of P1, that are birational to their image. Then V is an open
substack of M0,0(X,β).

Example The GrassmannianG(n, 1) is the Kontsevich moduli spaceM0,0(Pn, 1).

Example The simplest non-trivial modui space of stable maps is the space
of completed conics. As motivation, consider the problem of determining how
many conics in P2 are tangent to five lines L1, ..., L5 in general position. The
moduli space of conics in P2 is P5, and tangency to a line Li is a quadratic
condition on the coefficients of a conic. Therefore the conics tangent to five
lines correspond to points in the intersection of five quadric hypersurfaces
λ1, ..., λ5 in P5, and we might assume that for general lines the intersection
λ1 ∩ ... ∩ λ5 consists of 25 = 32 points, by Bezout’s theorem. However, the
correct answer is that there is only one conic tangent to five given lines in
P2.

To explain this discrepancy, notice that the space of conics includes
the space of double lines, parametrised by some closed subscheme D ⊆ P5

isomorphic to P2, and that every double line intersects each of our five
lines with multiplicity two; that is, any double line is “tangent” to any
other line Li. So even if the five lines are in general position, the five
quadric hypersurfaces λ1, ..., λ5 all contain D. Since the hypersurfaces do
not intersect transversely, our calculation is invalid.

We can remedy this by bowing up the subscheme of double lines. Indeed,
the parameter space of conics P5 contains a boundary divisor B parametris-
ing singular conics - those that are the union of two lines. Inside of B, the
space D of doube lines has codimension 2, rather than codimension 1 as
we might expect. This corresponds to the fact that as two transversely-
intersecting lines are rotated to a double line, the information of the inter-
section point is lost.

By blowing up, we restore this information, and the intersection λ1 ∩
... ∩ λ5 becomes a single point. The blowup of P5 along D is the space of
completed conics, and it is easy to see that it is exactly the moduli space
M0,0(P2, 2).

1.3 Outline of Proof

Throughout, we will use the following notation. The map π : X → Pn will
be a smooth cyclic cover of degree r. That is, the space X admits an action
of the cyclic group G = Z/rZ, and π exhibits Pn as the quotient variety of
X by the action of G. The map π will be branched over a smooth divisor
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D ⊆ Pn, and the degree of D will be a multiple of r; let d be the integer
such that the degree of D is rd.

Our proof of the irreducibility of M0,0(X, e) follows an induction ar-
gument first put forward in [HRS], where a similar result was proved for
hypersurfaces in Pn. The new results in this thesis are mostly concerned
with establishing the dimension of M0,0(X, 1), the space of lines (e = 1).
Once this is established, the argument of [HRS] is adapted to deduce the
result for curves of all degree.

The space M0,1(X, e), parametrizing curves on X with a marked point,
comes with an evaluation map to X. The key step in our proof is that
the evaluation map is flat almost everywhere, and fails to be flat in a very
limited manner:

Theorem 1.3.1. Let X be a general smooth cyclic cover of Pn of degree r,
branched over a hypersurface of degree rd. Suppose that d ≤ n

2(r−1) . Then
the evaluation map

ev :M0,1(X, e)→ X

is flat away from a finite set of points, none of which lie on the branch
divisor D. The fibre dimension at every flat point is the expected dimension
e(n− (r − 1)d+ 1)− 2, while the fibre dimension over every non-flat point
is e(n− (r − 1)d+ 1)− 1

In section 2 we prove this theorem for lines, when e = 1. We first relate
lines on X to lines on Pn satisfying a certain tangency condition with the
branch divisor, and we describe the parameter space of such lines as a closed
subscheme of a Grassmannian. Inside this subscheme we have the sublocus
of lines that lie entirely within the branch divisor. The dimension of the
space of lines in a general branch divisor can be computed with an incidence
variety argument; by considering how this sublocus sits within the space of
lines on X, we compute the dimension of the fiber ev−1(p) for any p in the
branch divisor.

Next, we use an indirect argument to limit the fibre dimension of the
evaluation map at non-flat points, for a general cyclic cover. If a family of
cyclic covers contained points at which the fibre dimension increased by more
than one, then some member of the family would exhibit the same behavior
on a point of the branch divisor. We consider the total space of the universal
family of hypersurfaces in Pn, and compute that this bad behavior occurs
in sufficiently high codimension; therefore a general family of cyclic covers
contains no such member.

In section 3 we extend this to the case of degree e curves on X, computing
the dimension of M0,0(X, e). Again, we prove that the evaluation map

eve :M0,1(X, e)→ X
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is flat away from finitely many points. For e ≥ 2, the space M0,1(X, e)
contains a boundary divisor of reducible curves, whose dimension we know
by induction on e. The key result in this step is Mori’s bend-and-break
theorem, which states that a positive-dimensional family of curves through
two fixed points must contain reducible curves in codimension one. This
allows us to relate the dimension of a fibre ev−1

e (p) to the dimension of its
intersection with the boundary divisor.

Bend-and-break results only apply to positive-dimensional families, so
applying this induction argument requires a sufficiently high lower bound
on the dimension of M0,0(X, e) for all e > 1. This is the source of our
restriction 2d(r − 1) ≤ n.

Finally, in sections 4 and 5 we show that these spaces are irreducible. The
boundary divisor of M0,0(X, e) parametrises reducible curves, and admits
a decomposition - the Behrend-Manin decomposition - whose components
correspond to combinatorial arrangements of lower-degree curves. In par-
ticular we have the sublocus parametrising trees - reducible curves that are
a union of lines.

We show that every irreducible component of M0,0(X, e) contains a re-
ducible curve that is a union of lines (a tree). The locus of such trees is
not irreducible: its irreducible components correspond to the isomorphism
classes of the dual graph of the tree. However, we argue that a tree of one
isomorphism class deforms into a tree of another while remaining within a
single irreducible component of M0,0(X, e). From this we deduce the irre-
ducibility of M0,0(X, e).

1.4 Cyclic Covers

In this section we say a little about the structure of cyclic covers, and perform
two computations that will be necessary later. Firstly, we describe the
relationship between lines on X and lines on Pn, characterising those lines
in Pn that lift to reducible curves in X. Secondly, we compute a lower bound
for the dimension of the space of degree e curves on X.

Good descriptions of the structure of cyclic covers can be found in [P]
and [AV]. We recall their construction here. Let π : X → Pn be a finite
morphism that exhibits Pn as the quotient of X by the action of a finite
cyclic group Z/rZ. That is, Pn is covered by open affine neighbourhoods
SpecA whose preimage in X is an affine neighbourhood SpecA[z]/(zr − g),
for some non-zero divisor g. The group Z/rZ acts on z as multiplication by
ζ, an rth root of unity.

Suppose that n ≥ 2 and that X is smooth, so that the branch divisor
D is irreducible. The action of Z/rZ induces a splitting of π∗OX into the
direct sum of eigensheaves

π∗OX = OPn ⊕ L⊕ L2 ⊕ · · · ⊕ Lr−1

8



where L is a positive line bundle. Choose coordinates so that Pn = Proj k[x0, ..., xn];
then this coherent sheaf corresponds to a free graded k[x0, ..., xn]-module of
rank r. If we write ei for the module generator of Li, then the algebra
structure is detemined by the relations

ei1 = ei er1 = g

for some g ∈ OX . If d is the degree of L, then g is a homogeneous polynomial
of degree rd that cuts out the branch divisor of π.

We will write DPn for the branch divisor in Pn and DX for its preimage in
X. As schemes, DPn and DX are isomorphic; the restriction π|DX

: DX →
DPn is an isomorphism.

Picard Group and Canonical Divisor In order to compute the Picard
group of the cyclic cover X, we will use the following theorem.

Theorem 1.4.1 (Grothendieck-Lefschetz Theorem). Let X be a smooth
projective variety and D an ample divisor on X. If the dimension of X is
at least 4 then the induced map

Pic(X)→ Pic(D)

is an isomorphism.

(See [G2] Exposé XII, corollary 3.6). Now we can relate the Picard group
of a cyclic cover to that of the branch divisor.

Theorem 1.4.2. Let X → Pn be a smooth cyclic cover of degree r branched
over a hypersurface DPn ⊆ Pn of degree rd. Then the Picard group of X is
Z, generated by the pullback of OPn(1). The pullback π∗DPn is rDX , so

OX(DX) = π∗OPn(d)

Proof. Locally the map π is induced by a finite map of rings

k[x1, ..., xn]→ k[x1, ..., xn, z]

zr − g
The function g, defining DPn , pulls back to zr, where z defines DX . Thus
π∗DPn is rDX . It follows that DX is ample, since the pullback of an ample
divisor by a finite morphism is ample.

Now by Grothendieck-Lefschetz, Pic(DX) = Pic(X) and Pic(DPn) =
Pic(Pn) = Z. But DX and DPn are isomorphic as schemes, so Pic(X) =
Z.

Corollary 1.4.3. Let X be as above. Then canonical divisor on X is

π∗OPn (−(n+ 1) + (r − 1)d)

and X is Fano whenever (r − 1)d ≤ n.

9



Proof. Consider an affine patch of Pn over which π : X → Pn is induced by
a map of rings

k[x1, ..., xn]→ k[x1, ..., xn, z]

zr − g
for some polynomial g(x1, ..., xn). Since g is smooth, we may (after shrinking
the open set) take dg, dx2, ..., dxn as a local basis for the cotangent bundle
of Pn, and dz, dx2, ..., dxn as a basis for the cotangent bundle of X. Now
consider the non-vanishing differential n-form on Pn

dg ∧ dx2 ∧ ... ∧ dxn
When pulled back to X, this form vanishes to order r − 1 on DX , since
dg = rzr−1dz. Therefore

KX = π∗KPn + (r − 1)DX

From the previous calculation, OX(DX) = π∗OPn(d), so

ωX = π∗OPn(−(n+ 1) + (r − 1)d)

Since the Picard group of X is Z, the canonical divisor is antiample exactly
when −(n+ 1) + (r − 1)d < 0, as required.

Curves on Cyclic Covers By a line in X, we mean a curve that has
degree one with respect to the invertible sheaf π∗OPn(1). A line in X is
mapped under π to a line in Pn; its translations under the action of the
cyclic group map to the same line. In general, a line in Pn lifts to an
irreducible degree r curve in X, but certain lines lift to reducible curves in
X.

Definition 1.4.4. Let L be a line in Pn and D a hypersurface. We say that
L is r-multiply tangent to D either if L is contained in D, or if every point
of the intersection L ∩D has multiplicity divisible by r.

With this definition we can characterise the lines in Pn that lift to lines
in X.

Theorem 1.4.5. Let L be a line in Pn, so that π−1L is a degree r curve
in X. Then π−1L is reducible as the union of r lines if and only if L is r-
multiply tangent to DPn. Specifically, if L is contained in DPn then π−1L is
a single line with multiplicity r; otherwise, π−1(L) is the union of r distinct
curves of degree one.
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Proof. Let p be a point in L∩D, and choose affine coordinates x1, ..., xn on
an open set of Pn so that p is the origin and L is the line x2 = ... = xn = 0.
Let g be the (dehomogenised) equation of degree rd that defines D. Then
the preimage of L in X is the scheme

Spec
k[x1, z]

zr − g(x1, 0, ..., 0)

In the formal local ring at p, g(x1, 0, ..., 0) is of the form xk1u for some
integer k and some unit u. This k, the lowest power of x1 occurring in g, is
also the multiplicity of the intersection point p ∈ L ∩D.

If the preimage of L comprises r distinct lines, then zr − g(x1, 0, ..., 0)
must split into linear factors in the formal local ring. Therefore g(x1, 0, ..., 0)
must be an rth power. In the formal local ring, a unit u is an rth power,
so the lowest power of x1 is a multiple of r as required. Conversely, if every
point in the intersection L ∩ D has intersection multiplicity divisible by r
then zr − g(x1, 0, ..., 0) splits into linear factors, at least formally locally.
But this implies that the normalisation of π∗L is an unbranched cover of
L. Since L is P1, the only irreducible unbranched cover is the identity map,
and therefore π∗L is the union of r irreducible curves.

Note also that if L intersects D with multiplicity r at a point and pulls
back to a reducible curve in X, then each of the r irreducible rational com-
ponents of π∗L will intersect D with multiplicity one.

The Derivative Map Consider the map of cotangent sheaves on X

dπ : π∗ΩPn → ΩX

Away from the branch divisor, this is an isomorphism, so we consider a
point p ∈ D. If D is non-singular, cut out on some neighbourhood of p by a
function g, then we can choose coordinates so that dg, dx2, ..., dxn is a basis
for the cotangent space of Pn. Recall that locally X looks like

Spec k[x1, ..., xn, z]/(z
r − g)

With this notation, we can take dz, dx2, ..., dxn as a basis for the cotangent
space of X at p. Then we have

dg 7→ rzr−1dz dxi 7→ dxi

We take the corresponding dual basis for the tangent space, and we compute
that

∂

∂z
7→ rzr−1 ∂

∂g

11



Therefore we have

0→ TX → π∗TPn → F → 0

where F is a torsion sheaf supported on the branch divisor. We will describe
the cokernel F more carefully. Let I be the ideal sheaf of D in X - in the
notation above, I is the subsheaf of OX generated locally by z. Then there
is a filtration

0 = Ir−1F ⊆ Ir−2F ⊆ ... ⊆ IF ⊆ F

The quotient F/IF is the normal bundle of D in Pn, being the subbundle
of TPn generated locally by ∂

∂g . If r = 2 (a cyclic double cover) this is the

entire filtration. Otherwise, the subquotient IkF/Ik+1F is generated locally
by zk ∂

∂g and annihilated by z. Therefore the multiplication map(
I

I2

)⊗k
⊗
(
F

IF

)
→ IkF

Ik+1F

is an isomorphism, and we have

IkF

Ik+1F
= ND/Pn ⊗

(
N∨D/X

)⊗k
1.5 Dimension of Moduli Spaces

Our main result concerns the dimension of the moduli space of genus 0 stable
curves on a cyclic cover of Pn. As an illustration of the ideas involved, let
us consider the simpler case of rational curves in hypersurfaces.

Let D be a hypersurface in Pn defined by some homogeneous equa-
tion F (x0, ..., xn) of degree d. By straightforward calculation we can try to
determine the dimension of the space Mor(P1, D) that parametrises maps
f : P1 → D, as follows.

A map from P1 to D whose image has degree e is given by a set of
homogeneous equations

g0(s, t), g1(s, t), ..., gn(s, t)

each of degree e, such that F (g0, ..., gn) = 0. This polynomial F (g0, ..., gn)
is a function of the two variables s and t, and has degree de. Each of the
de + 1 monomials sitde−i has a coefficient that is itself a polynomial in the
coefficients of g0, ..., gn. We therefore expect that, in general, the demand
F (g0, ..., gn) = 0 imposes de+ 1 conditions on the coefficients of the gi.

Each gi is a polynomial of degree e in two variables; such polynomials
are parametrised by a space of dimension e + 1. We require n + 1 of these
polynomials, with two (n + 1)-tuples giving the same map if they differ by

12



a scalar; therefore we expect that in general the dimension of the space
Mor(P1, D) should be

(e+ 1)(n+ 1)− (de+ 1)− 1

For specific hypersurfaces D this is incorrect (for example, when D is the
Fermat hypersurface) but it turns out that this is the correct dimension
when D is general. However, we are far from a proof: it is not at all clear
that the de+ 1 conditions on the coefficients of the gi must be independent.

In [HRS] the argument is made precise in the case e = 1. In section 2.2 we
outline this argument, and later extend the result to compute the dimension
of the space of lines on a cyclic cover of Pn, but for higher degrees we need
more sophisticated machinery.

The following theorem gives a lower bound for the dimension of the
spaces M0,0(X, e) in terms of the tangent bundle:

Theorem 1.5.1. Let C be a curve and X a smooth projective variety. Then
there is a space Mor(C,X) parametrising morphisms f : C → X, and the
dimension of this space at the point corresponding to f is at least χ(f∗TX).
Furthermore, if the dimension of Mor(C,X) is exactly χ(f∗TX) at a point
p, then locally Mor(C,X) is a complete intersection.

For a proof of this theorem, see [FP] section 5 lemma 9, or [D1] theorem
2.6.

Theorem 1.5.2. Let f : C → X be a rational curve of degree e on X such
that the domain C is irreducible and such that the image of f in X not
contained in the branch divisor D.The Euler characteristic of f∗TX is

χ(f∗TX) = e(n− (r − 1)d+ 1) + n

Proof. In this case, we can compute the Euler characteristic directly. Recall
from the previous section that we had an exact sequence

0→ TX → π∗TPn → F → 0

From the proof of 1.4.5, C intersects the branch divisor at de points, each
with multiplicity one. Therefore Tor1(F,OC) = 0 and exactness is preserved
when we pull back to C. Then we have

χ(f∗TX) = χ(f∗π∗TPn)− χ(f∗F )

The sheaf F has length r − 1 at each point and C intersects its support
transversely, so the Euler characteristic of f∗F is (r−1)de. We also compute
the Euler characteristic of f∗π∗TPn by pulling the Euler sequence back to C

0→ OC → O(e)⊕n+1 → f∗π∗TPn → 0

13



and find that it is equal to (n+ 1)(e+ 1)− 1. Therefore we have

χ(f∗TX) = e(n− (r − 1)d+ 1) + n

as required.

However, the space M0,0(X, e) also parametrizes stable curves with re-
ducible domain. In particular, one or more components may be mapped
entirely into the branch divisor. Therefore we repeat the calculation via
Chern classes.

Lemma 1.5.3. Let D be a divisor on a smooth projective variety X, and
let F be a coherent sheaf on X that is the pushforward of a line bundle on
D. Then c1(F ) = D.

Proof. First, let X be any smooth variety and let Y ⊆ X be a closed subset
of codimension 2. Let

i : X − Y → X

be the inclusion. Then i∗ is an isomorphism between Pic(X) and Pic(X−Y )
- that is, between the first Chow groups - and for any line bundle L on X we
have c1(i∗L) = i∗c1(L). The same is true when L is any locally free sheaf,
by the splitting principle. Finally the same holds when L is an arbitrary
coherent sheaf, by taking a free resolution. Therefore we can compute the
first Chern class on the complement of a codimension 2 subset.

Now let D be a divisor on X and F the pushforward of a line bundle on
D. Take Y to be a subset of D of codimension 1 such that F |D−Y is trivial.
Then Y has codimension 2 on X, so we can compute the first Chern class
of F on X − Y . But on X − Y , the sheaf F is equal to the structure sheaf
of D, and we can compute its first Chern class with the exact sequence

0→ O(−D)→ OX → OD → 0

Theorem 1.5.4. Let X be a cyclic cover of Pn and let f : C → X be a
rational curve in X of degree e. Then the Euler characteristic of f∗TX is

χ(f∗TX) = e(n− (r − 1)d+ 1) + n

Therefore every irreducible component of M0,0(X, e) has dimension at least
e(n− d+ 1) + n− 3.

Proof. By Riemann-Roch, the Euler characteristic of the vector bundle V
on a curve of genus g is

χ(V ) = c1(V ) + rank(V )(1− g)
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So we can compute the first chern class of TX on X, and pull it back to C.
Recall that the Picard group of X is Z ·H, generated by the pullback of a
hyperplane class from Pn. We have

c1(TX) = c1(π∗TPn)− c1(F )

and from the Euler sequence we compute that

c1(π∗TPn) = (n+ 1)H

The sheaf F has rank r − 1 and the branch divisor is linearly equivalent to
dH, so c1(F ) = (r − 1)dH and

c1(TX) = (n− (r − 1)d+ 1)H

Finally we pull back to the degree e curve C, and note that the space of
automorphisms of P1 has dimension 3.

1.6 Gromov-Witten Invariants

We mention here an important corollary of the irreducibility ofM0,0(X, e).
First, let F be the Fano scheme of lines in Pn. Let Z1, ..., Zr be a collection
of linear subvarieties of codimensions c1, ..., cr respectively.

For each i, we ask which lines in Pn intersect Zi. We expect that the
locus inside of F parametrising such lines has codimension ci−1. Therefore
if we demand that

(c1 − 1) + (c2 − 1) + ...+ (cr − 1) = dimF

then we expect that ony finitely many lines in Pn intersect every linear
subspace Zi, and it is natural to ask how many such lines there are.

In order to compute this number, let σi be the Poincare dual of the
subvariety Zi, and let Fr be the scheme parametrising lines in Pn together
with r fixed points, which comes with r evauation maps

evi : Fr → Pn

We can express the required number as the integral∫
ev∗1σ1 ∪ ... ∪ ev∗rσr

where the integral is taken over the fundamental class of Fr.
Now let X be an arbitrary variety, and replace Fr by the Kontsevich

moduli space M0,r(X,β). Since this moduli space is a stack, we must re-
place the fundamental class with the virtual fundamental class. With this
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generalisation we can compute the value of the above integral; the result is
the Gromov-Witten invariant corresponding to X,β, Z1, ..., Zr.

If the Gromov-Witten invariant is still equal to the number of lines inter-
secting Z1, ..., Zr, then the invariant is said to be enumerative. For a general
X andM0,r(X, e), the invariants may not be enumerative (and they may not
even be integers). WhenM0,0(X, e) has pure expected dimension, however,
this is the case (see, for example, [FP] Lemma 14)

Theorem 1.6.1. Let S be a smooth variety such that M0,0(X,β) is irre-
ducible of the expected dimension. Then the Gromov-Witten invariants are
enumerative.

Therefore a corollary of our results is that the Gromov-Witten invariants
on a general smooth cyclic cover of Pn are enumerative.
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2 Dimension of the Space of Lines

In this chapter we prove that the space of lines on X has dimension equal
to the lower bound that we computed in 1.5.4.

Theorem 2.0.2. Every irreducible component ofM0,0(X, 1) has dimension
2n− (r − 1)d− 2

The space of lines is more easily parametrised than the space of curves
of higher degree. In the next chapter we use this result as the basis for an
induction argument that computes the dimension of M0,0(X, e) for all e.

2.1 The Spaces M and M∗

Recall that in theorem 1.4.5 we showed that a line in Pn lifts to one or
more lines in X exactly when it is r-multiply tangent to the branch divi-
sor. Instead of studying the space of lines in X, we will study the lines
in Pn satisfying this tangency condition, since the latter is much easier to
parametrize. We will also consider the space of lines with a choice of base
point, and the evaluation map to X that comes with it.

Our key technical results relate to the flatness of the evaluation map.
Since flatness implies constant fibre dimension, this will allow us to compute
the dimension from the dimension of a general fibre. However, in order to
prove that the evaluation map is flat away from a finite set of points, we
must consider a blowup of the space of lines.

Therefore we make the following definition:

Definition 2.1.1. Let X be a cyclic r-sheeted cover of Pn branched over a
divisor D of degree rd. We define the space M to be the parameter space of
lines L in Pn together with a divisor Q of degree d on the line L, satisfying
the following two conditions:

• Firstly, either that D ∩L is all of L, or that every point of the divisor
D ∩ L on L has multiplicity divisible by r; that is, L is r-multiply
tangent to D

• Secondly, if L is not contained in D then we require that rQ = D∩L.
If

The first condition, as we have seen, picks out those lines in Pn that
lift to a line or lines in X. The additional information of the d intersection
points in Q gives a blow-up of the space of lines on X. If L does not lie in
D then L ∩D has degree rd, and is r-divisible, so the divisor Q is already
determined. However, if L is contained in D then the space parametrising
degree d divisors on L is Pd. Below we will construct M explicitly as a
subvariety of a Grassmannian.

We also define the pointed version of M .
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Definition 2.1.2. Let M∗ be the space parametrising lines L ⊆ Pn and a
degree d divisor Q on L that satisfy the same conditions as in the definition
of M , together with a choice of base point p on the line L.

Note that the choice of base point is independent of the divisor Q in the
definition of M . The space M∗ is a P1 bundle over M , and comes with an
evaluation map ev : M∗ → Pn that sends each line to the chosen base point.

Definition 2.1.3. Let M(D) (respectively, M∗(D)) be the closed sub-
scheme of M (respectively, M∗) parametrising lines that lie entirely within
the branch divisor D. Let evD : M∗(D)→ Pn be the evaluation map.

We study the space M in place of M0,0(X, 1). Now we can state the
main theorem of this chapter:

Theorem 2.1.4. For a general cyclic cover X, the evaluation map ev :
M∗ → X is flat over the complement of a finite set of points S ⊂ X, and no
point of S is contained in the branch divisor D. The fibre dimension over
the flat locus is n− (r − 1)d− 1. Over the points of S, the fibre dimension
is at most n− (r − 1)d (that is, it increases by at most one)

We prove this result in the next section in theorems 2.3.3 and 2.3.4.
Before we begin the proof, we show that the results about the space

M will imply the results we need concerning M0,0(X, 1). To relate M and
M0,0(X, 1), we make the following temporary definition:

Definition 2.1.5. Let N be the parameter space of lines L in Pn such
that either D ∩ L is all of L, or every point of the divisor D ∩ L on L has
multiplicity divisible by r. Let N∗ be the parameter space of such lines
together with a chosen base point.

There is a map M → N that just forgets the divisor Q; this map is an
isomorphism away from M(D). On the other hand, there is also a finite
mapM0,0(X, 1)→ N ; in fact, N is the quotient ofM0,0(X, 1) by the action
of the cyclic group Z/rZ.

The corresponding maps from M0,1(X, 1) and M∗ to N commute with
the evaluation maps.

M0,1(X, 1) //

ev

��

N∗

ev

��

M∗oo

ev

��

X π
// Pn Pn=oo

Via N , we show that the lower bound of 1.5.4 for the dimension of
M0,0(X, 1) also applies to M .
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Lemma 2.1.6. Every irreducible component of N has dimension at least
2n− (r− 1)d− 2. If every component of N has dimension 2n− (r− 1)d− 2,
then so does every component of M0,1(X, 1).

Furthermore, the equivalent statement holds in fibres of the evaluation
map. Let p be a point in Pn and q a point in π−1(p). Then every irreducible
component of ev−1(p) ⊆ N∗ has dimension at least n− (r − 1)d− 2.

Proof. This follows from the fact that the map M0,1(X, 1) → N∗ is finite
everywhere. We computed a lower bound for the dimension of M0,1(X, 1),
and fibers of the evaluation map, in 1.5.4, and this lower bound transfers to
N .

Lemma 2.1.7. Every irreducible component of M not contained in M(D)
has dimension at least 2n− (r − 1)d− 2.

Proof. This follows from the previous lemma and the fact that M → N is
finite away from M(D).

2.2 Lines on Hypersurfaces

In order to prove theorem 2.1.4 above, we construct M∗ explicitly as a
subvariety of a Grassmannian. Then we will examine the sublocus of lines
that lie entirely within the branch divisor DPn ⊆ Pn. Therefore we begin by
considering lines in hypersurfaces.

Let PH0(Pn,O(k)) be the parameter space of degree-k hypersurfaces in
Pn. For any such hypersurface D, letM0,1(D, 1) be the parameter space of
pointed lines in D. This space comes with an evaluation map

evD :M0,1(D, 1)→ D

and for a point p ∈ D we consider the fibre ev−1
D (p).

Definition 2.2.1. The expected dimension of a fibre ev−1
D (p) is n− k − 1

We consider the pairs of a hypersurface D and a point p ∈ D such that
the evaluation map evD has dimension greater than expected. Consider the
total space of the universal family of hypersurfaces

Z ⊆ PH0(Pn,O(k))× Pn

Definition 2.2.2. For i ≥ 0, let Zi ⊆ Z be the locus of pairs (D, p ∈ D) ∈ Z
such that ev−1

D (p) has dimension greater than or equal to (n − k − 1) + i
(that is, i greater than the expected dimension).

Therefore Z0 contains the points at which the fibre dimension is at least the
expected dimension; Z1 contains the points at which it jumps up by at least
one; and so on. The following results results are proved in [HRS] Section 2
(specifically, Corollary 2.2.4 below is [HRS] Theorem 2.1) so we just give an
outline of the computation here.

19



Theorem 2.2.3. The space Z0 is the entire total space Z. The subspace
Z1 ⊆ Z has codimension at least n, and Z2 ⊆ Z has codimension strictly
greater than n.

Proof. Let p be a fixed point in Pn. Choose affine coordinates x1, ..., xn on
a neighbourhood of p = (0, ..., 0). Then any hypersurface D of degree k is
cut out by an equation

Φ = Φ0 + Φ1(x1, ..., xn) + ...+ Φk(x1, ..., xn)

where each Φi is a homogeneous polynomial of degree i, and the hypersur-
faces through p are those with Φ0 = 0.

We are interested in lines though p that lie in D, so suppose Φ0 = 0 and
let [a1, ..., an] be a point in the boundary Pn−1 of this affine chart, specifiying
a line through p. Then the specified line lies on D exactly when

Φi(a1, ..., an) = 0

for all i. In other words, the lines through p are parametrised by Pn−1, and
for a fixed hypersurface D there is a set of homogeneous polynomials Φi

whose mutual vanishing set in Pn−1 parametrises the lines that lie in D.
If for each i the polynomial Φi is not in the radical of the ideal gen-

erated by Φ1, ...,Φi−1 - that is, if the vanishing set of Φi is not contained
in the mutual vanishing set of the lower-degree polynomials - then by the
Hauptidealsatz the codimension of Z(Φ1) ∩ ... ∩ Z(Φk) is exactly k inside
the boundary Pn−1. In this case the space of lines on D through p has the
expected dimension n− k − 1.

So we need to show that a relation between the polynomials Φi occurs
in codimension n. This implies that Z1 has codimension n in each of the
fibres of the forgetful map Z → Pn, and therefore that Z1 has codimension
n in Z. For this computation, we refer to [HRS] Theorem 2.4.

Corollary 2.2.4. For a general hypersurface D of degree k, the evalua-
tion map evD : M0,1(D, 1) → D has the expected fibre dimension at every
point. Furthermore, if a hypersurface contains a point at which the fibre
dimension increases by two or more over the expected dimension, then that
hypersurface is in a subset of codimension two inside the parameter space of
all hypersurfaces.

Proof. This follows immediately from the theorem. The map from the total
space to the parameter space of degree k hypersurfaces is projective, and has
fibers of dimension n−1. Therefore the image of Z1 is closed of codimension
at least 1, while the image of Z2 has codimension at least 2.
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Now let X be a cyclic cover, branched over a hypersurface of degree
rd. We have seen that the branch locus is an ample divisor. The non-flat
locus of the evaluation map M∗ → X is a closed subset of X, so if it has any
components of dimension greater than zero then it must intersect the branch
locus. Therefore we will show that the evaluation map is flat everywhere on
the branch divisor; this implies that the non-flat locus consists of a finite set
of points disjoint from D.

Our proof will consider the relationship between lines in X and lines in
D. We first consider some simple cases to illustrate the idea.

A Toy Example As a simple analogy, let X = P2 and let D be a line in
X. The space of all lines in X is again P2, with D represented by a single
point. Let M be the space of pairs (L, q) with L a line in X and q a point in
L ∩D. Then M is the blowup of P2 at the point corresponding to D. The
subspace of M corresponding to lines contained in D is a divisor in M : it
is exactly the exceptional divisor of the blowup.

Furthermore, let p be a point in D and consider only those lines in M
that pass through p. This sublocus is reducible, consiting of two copies of
P1 intersecting at a point: one component parametrises lines in P2 through
p, on which the marked point q is p itself, while the other component is
the exceptional divisor representing the line D with a varying choice of q.
Therefore after restricting to the fibre of the evaluation map over p, we find
that the lines contained in D have codimension zero.

The Case d=1 Now let X be a cyclic cover of degree r branched over a
divisor D ⊆ Pn of degree r; that is, the case d = 1. Then M parametrises
lines L in Pn together with a single marked point q ∈ L ∩D such that L is
r-multiply tangent to D. In this case, this means either that L ⊆ D or that
L is tangent to D to order r at the unique intersection point q.

Let p be a point in D. The space of lines L through p is Pn−1, and to
demand that L∩D = r ·p is to impose r−1 additional conditions; therefore
the dimension of such lines is n− r.

Inside of this space, we have the subspace of lines through p contained
completely in D, which for a general branch divisor has dimension n−r−1,
by 2.2.4. If we add an additional free choice of marked point q, the dimension
of the subspace is n− r.

Recall that M∗(D) was the subspace of M∗ parametrising lines in M that
lie completely in D. If X is a cyclic cover of degree r branched over a divisor
D of degree r, then for any point p ∈ D we have the fiber ev−1(p) ⊆ M∗.
We can then summarise this example by saying that the subset

M∗(D) ∩ ev−1(p)

has codimension zero in ev−1(p).
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2.3 Flatness of the Evaluation Map

The following two theorems describe how M(D) sits inside M .

Theorem 2.3.1. Let X → Pn be a cyclic cover ramified over a divisor D
of degree rd, and let M and M(D) be as above. Then M(D) is a locally
principal closed subscheme of M . In particular, its codimension is at most
one. Similarly, M∗(D) is a locally principal subscheme of M∗.

Proof. Our proof relies on the simple observation that, in general, D ∩ L
is a degree rd divisor on L; the lines L contained completely in D can be
identified as the lines on which D vanishes at rd+ 1 points.

To begin, let G be the Grassmannian of lines in Pn, with tautological
vector bundle S. The total space of the projectivisation of S, which we
will denote by PS, comes with a map σ : PS → G. There is also a map
ι : PS → Pn that embeds every fibre of σ1 as a line. The divisor D is cut out
by some global section F ∈ H0(O(rd),Pn). Pulled back to PS, F defines a
divisor of degree rd on a general fibre. On those lines completely contained
in D, the section F vanishes.

The space of lines in Pn together with a choice of degree d divisor is
the projective bundle σ2 : P Symd S → G. We can construct the product
PS ×G P Symd S.

PS ×G PSymd S
σ′2

//

σ′1
��

PS ι
//

σ1

��

Pn

P Symd S σ2
// G

We have two divisors on this product space. The first, which we denote
∆, has a d-to-1 map to P Symd S, cutting out a degree d divisor on each
fibre. The second divisor is that cut out by the pullback of F in the sheaf
σ′2
∗ι∗O(rd).
Consider r∆, the thickened tautological divisor. We restrict σ′2

∗ι∗O(rd)
to r∆, and push forward to P Symd S. The zero set of F in this pushforward
is a subset of P Symd S parametrising lines L and divisors Q of degree d on
L such that the divisor cut out by F on L is rQ. That is, the vanishing
locus of F is exactly the space M .

Now let H be some hyperplane in Pn. Over a general point of G, the
divisor H pulls back to a single point. Over a general point of P Symd S, H
is a single point disjoint from the d points selected. We restrict σ′2

∗ι∗O(rd)
to r∆ +H, and push forward to P Symd S. This time, F cuts out the locus
of lines L and divisors Q; but F must vanish completely on such a line.

We have an exact sequence on PS ×G P Symd S
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0→ K → σ′2
∗
ι∗O(rd)|r∆+H

ρ→ σ′2
∗
ι∗O(rd)|r∆ → 0

Write F |r∆+H and F |r∆ for the section of the last two line bundles induced
by F . If we push forward to PSymd S and restrict to the subset of P Symd S
on which F |r∆ vanishes (that is, to M), then the subset of lines in D (that
is, the space M(D)) is the vanishing set of F |r∆+H .

The pushforward of O(rd)|r∆+H is not rank one. However, it is easy to
compute that the kernel K is O(rd)(−H)|H . The pushforward of this sheaf
is a line bundle, since H is degree one. If we restrict to the vanishing set
of F |r∆ then F |r∆+H is in the kernel of ρ, and so comes from a section of
K. Therefore M(D) is cut out inside of M by a section of a line bundle, as
required.

We can also describe how ev−1
D (p) sits inside ev−1(p).

Theorem 2.3.2. Let M∗ and M∗(D) be as above, with evaluation map
ev : M∗ → Pn. Let p be a point on the branch divisor D. Then ev−1

D (p) =
M∗(D) ∩ ev−1(p) is codimension zero in ev−1(p) ⊆M∗.

Proof. In the above proof, let H be a hyperplane containing p. If L is a line
through p then H ∩L = p, and F vanishes at p. Now we consider the locus
in P Symd S on which F |r∆ vanishes (the lines in X), and the locus of lines
in D is exactly the sublocus on which F |r∆+H vanishes.

Now restrict attention to those lines in X passing through p. It is easy
to see that at every corresponding point of P Symd S, the sublocus of lines
in D is cut out by a zero divisor, as follows. At a point where p is not in
the support of the degree d divisor, then locally the sublocus is the whole
space. If p is in the degree d divisor then F may be a non-zero section of
O(rd)|r∆+H that vanishes on O(rd)|r∆; in this case, F is a zero divisor.

We can use these results to relate the dimension of the space of lines in
D - which we computed in 2.2.4 - to the dimension of the space of lines in
all of X.

Theorem 2.3.3. For a general cyclic cover X, the evaluation map ev :
M∗ → Pn is flat over the complement of a finite set of points S ⊆ Pn, none
of which lie in D. The fibre dimension over the flat locus is n− (r−1)d−1.

Proof. A non-flat locus of positive dimension would intersect the ample
branch divisor D; therefore it is sufficient to show that the evaluation map
is flat over every point of D.

By 2.1.7, the fibre dimension over a point not in D is at least n − (r −
1)d − 1. We show that the fibre dimension over every p ∈ D is exactly
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n− (r−1)d−1. By upper-semicontinuity, this implies that the general fibre
has dimension exactly n− (r − 1)d− 1, and also shows that the evaluation
map is flat over the branch divisor.

Let p be a point in D and let ev−1(p) be the fibre over p in M∗. Let
ev−1
D (p) be the fibre over p in M∗(D). By 2.1.7, the components of ev−1(p)

have dimension at least n−(r−1)d−1. We aim to show that all components
have exactly this dimension.

By 2.2.4, the space of pointed lines in a general branch divisor D (of
degree rd) will have an evaluation map with fibre dimension n− rd− 1 over
all points (cf [HRS] for curves in hypersurfaces more generally). Since the
lines in M∗(D) also come with a choice of d points, the dimension of ev−1

D (p)
will be n− (r − 1)d− 1.

Let Z be an irreducible component of ev−1(p). If Z lies entirely in
M∗(D) (that is, if every line parametrised by a point of Z lies entirely in
the branch divisor) then Z is an irreducible component of ev−1

D (p), and has
dimension n− (r − 1)d− 1 by the previous paragraph. Otherwise, by 2.3.1
the intersection Z ∩ ev−1

D (p) is codimension one in Z.
We know that the dimension of ev−1

D (p) is n− (r− 1)d− 1, so the lower
bound for the dimension of Z implies that dimZ is either n− (r − 1)d− 1
or n − (r − 1)d. In the latter case, we would have Z ∩ ev−1

D (p) = ev−1
D (p).

But there are certainly points in ev−1
D (p) that are not the limit of points in

Z−ev−1
D (p). To see this, note that any line through p that is not contained in

the branch divisor must contain p in the degree d divisor Q. By continuity,
the same is true of any line parametrised by a point of Z ∩ ev−1

D (p). But
there are clearly points in ev−1

D (p) parametrising lines in which p is not in
the support of Q. Therefore Z ∩ ev−1

D (p) is codimension one in ev−1
D (p), and

the dimension of Z is n− (r − 1)d− 1 as required.

Next we prove that the fibers of the evaluation map over the non-flat
locus have dimension at most one greater than over a general point.

Theorem 2.3.4. For a general branch divisor X, the fibre dimension of
ev : M∗ → Pn over the non-flat locus is n − (r − 1)d (that is, one greater
than expected).

Proof. First, consider PH0(Pn,O(rd)), the moduli space of degree d hyper-
surfaces in Pn. The trivial Pn-bundle over this space contains the tauto-
logical divisor (where the intersection of each fibre with the divisor is the
corresponding hypersurface in Pn).

PH0(Pn,O(rd))× Pn //

��

Pn

PH0(Pn,O(rd))
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This divisor is ample in the total space PH0(Pn,O(rd))× Pn: the push-
forward of the corresponding line bundle is O(1) on one factor and O(rd)
on the other.

Now letB be a one-dimensional subscheme of PH0(Pn,O(rd)), parametris-
ing a one-dimensional family of branch divisors. For each branch divisor in
the family, the corresponding cyclic cover has a zero-dimensional non-flat
locus. In the total space of the family, the non-flat locus is one-dimensional,
and therefore it intersects the ample branch divisor. It follows that if there
is a one-dimensional family on which the fibre dimension of the evaluation
map jumps up by some amount k, then the branch divisor of a member of
that family must be a hypersurface on which the evaluation fibre dimension
also jumps up by k.

Now suppose that for a general cyclic cover (that is, for a general choice
of branch divisor) the fibre dimension jumps by two or more at a non-flat
point. Then a general one-dimensional family of cyclic covers would contain
a branch divisor on which the fibre dimension jumps by two or more. Above
we showed that in the fibre over a point of the branch divisor, the sublocus
of lines in the branch divisor was codimension zero in the locus of all lines in
the double cover. Therefore every one-dimensional family of hypersurfaces
would contain a hypersurface on which the fibre dimension jumps by two or
more. That is, the locus of hypersurfaces of degree rd on which the fibre can
jump by two would be codimension one in the space of all hypersurfaces.
But this contradicts 2.2.4.

25



3 Dimension of the Space of Degree e Curves

3.1 Bend and Break

In 1979, Mori introduced the bend-and-break theorem in [Mo], and used it
to prove Hartshorne’s conjecture that in characteristic zero, the only smooth
projective varieties with ample tangent bundle are the projective spaces. He
also proves in [Mo]:

Theorem 3.1.1 (Mori). Every Fano variety contains a rational curve.

The bend-and-break theorem states that reducible curves occur in cer-
tain families in codimension one. For us, this is the key ingredient is calcu-
lating the dimension of the space of curves on X. Since reducible curves of
degree e are constructed from curves of strictly lower degree, we can proceed
by induction: we compute the dimension of the space of reducible curves,
and then use bend-and-break to deduce the dimension of the entire space.

In this section we state the bend and break theorem, and give an outline
of the proof. The first step is the following, which states that a projective
subvariety does not deform to a point.

Theorem 3.1.2 (Rigidity Lemma). Let X,B, Y be varieties with X projec-
tive and B connected. Suppose we have a morphism

f : X ×B → Y

If there is some point b ∈ B such that f(X×{b}) is constant, then F factors
through B (that is, it contracts every fibre)

Proof. Consider an affine open neighborhood U ⊆ Y containing f(X×{b}).
Its preimage f−1(U) is open in X×B. The complement of f−1(U) is closed;
since X is projective, the image of this complement under the projection
X ×B → B is also closed. Furthermore, this image does not contain b.

Therefore the points of X × B that do not map into U all lie over a
proper closed subset of B. We can throw out this proper subset to replace
B by B′, so that X×B′ maps into U . But U is affine and each fibre X×{b}
is projective, so every fibre is mapped to a point.

Finally, to show that this holds over all of B, we choose some point
x ∈ X and define a map X × B → Y by composing projection to {x} × B
with f . This composition agrees with f on X × B′; since all of our spaces
are separated, it is true everywhere.

Theorem 3.1.3. Let X be a variety, C a curve (possibly reducible), and
C×B a family over a curve B. If f : C×B → X is a rational map that does
not extend to an everywhere-defined morphism, then X contains a rational
curve.
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Proof. First we assume that the curves C and B are smooth, by replacing
them with their normalisations if necessary. Rational maps of smooth vari-
eties can be extended over codimension one; since C×B is two-dimensional,
we can extend f to a morphism if we blow up repeatedly at a finite set
of points (see, for example, [Kol] Theorem 2.13). Each blowup generates
an exceptional divisor isomorphic to P1. Once f has been extended to a
morphism, the exceptional divisor of the final blowup cannot be mapped to
a point, or else it can be blown down and would not have been necessary.
Therefore the exceptional divisor of the final blowup is a non-constant map
from P1 to X.

Now we can state the bend-and-break theorem.

Theorem 3.1.4. Let X be a smooth projective variety and let C be a curve
on X. If C deforms with a fixed point p, then there is a rational curve on
X through p.

Proof. Let B be a curve, not necessarily projective, in the base of the defor-
mation. Let B′ be its closure, so we have a rational map f : C×B′ → X. If
f extends to a morphism, then f maps {p} ×B′ to a point. By the rigidity
lemma and the projectivity of B′, this would mean that f is a constant map
C → X.

Therefore f does not extend to a morphism on C ×B′; it is not defined
on some points of C × (B′ −B). Furthermore, we did not use the fact that
C is projective and can remove any point in C other than p; therefore the
points at which f is not defined must include a point in {p} × (B′ − B).
Then when we blow up C×B to extend f , we obtain an exceptional divisor
that is a non-constant rational curve through p.

We will use the theorem in the following form, which can be deduced
from theorem 3.1.4. For a proof, see See [D1] Proposition 3.2

Theorem 3.1.5. Let C be a curve on X, and let M be the moduli space of
deformations of C that fix two points. Then M contains reducible curves in
codimension one.

3.2 Dimension of M0,0(X, e)

Now we can compute the dimension of the space of lines of any degree. Our
argument mimics the one applied in [HRS] and in [CS] to the case of Fano
hypersurfaces.

Let X be a cyclic cover of Pn branched over a divisor D of degree rd.
Then for every positive integer e we can make the following claim:

Claim 3.2.1. The evaluation mapM0,1(X, e)→ X is flat away from a finite
set of points S, and the fibres of this map have dimension e(n−(r−1)d+1)−
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2. Over the points of S, the fibre dimension is at most e(n−(r−1)d+1)−1;
that is, it increases by at most one.

We have already considered the case e = 1 above. Below we show that
the result follows for all e by induction, under certain conditions.

Theorem 3.2.2. Let X be as above. Suppose that 2d(r − 1) ≤ n and that
the claim of 3.2.1 holds for e = 1. Then the claim holds for all e ≥ 1.

To begin, consider the map M0,2(X, e) → X × X induced by the two
evaluation maps. From our lower bound for the dimension of M0,2(X, e),
we see that the fibres of this map have dimension at least

e(n− (r − 1)d+ 1)− n− 1

We are going to apply bend-and-break to these fibres, and for this we need
this dimension to be at least one. This will be the case when e is sufficiently
large; specifically, when

e ≥ n+ 2

n− (r − 1)d+ 1

(cf the threshold degree defined in [HRS] Definition 5.4). We have proved
the case e = 1 in the previous chapter, but we need this induction argument
to apply whenever e ≥ 2. Therefore we require

2d(r − 1) ≤ n

For the remainder of this thesis, we assume that n, d, r satisfy this inequality.
Given the conditions 2d(r−1) ≤ n and e ≥ 2, the dimension of the fibres

is at least one, and bend-and-break applies: the fiber in M0,2(X, e) over
every pair of points (p, q) ∈ X×X contains reducible curves in codimension
one.

Lemma 3.2.3. The fibre inM0,1(X, e) over every point p contains reducible
curves in codimension one.

Proof. Let

ev :M0,2(X, e)→ X

be evaluation onto the first point. It suffices to show that ev−1(p) contains
reducible curves in codimension 1. This fibre has a second map to X, eval-
uating at the second marked point, and by bend-and-break each fiber of
this map contains reducible curves in codimension one. Therefore the entire
fibre ev−1(p) contains reducible curves in codimension one.
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Now we can prove theorem 3.2.2 by induction on e, We assume that the
claim of 3.2.1 holds for curves of degree less than or equal to e−1. Consider
the following commutative diagram, for some fixed a with 1 ≤ a ≤ e− 1:

M0,2(X, a)×XM0,1(X, e− a) �
�

//

ψ **

φ
��

M0,1(X, e)

eve

��

M0,2(X, a) ρ
//M0,1(X, a) eva

// X

The spaceM0,2(X, e) consists of degree-e curves with one marked point.
The product space is the boundary divisor containing those degree-e curves
that are reducible as a degree-a curve and a degree-(e − a) curve (which
may themselves be reducible) in such a way that one marked point lies on
each. The product is taken over the intersection point of the two. We will
compute the fiber dimension of the boundary divisor over a point of X.

Theorem 3.2.4. In the above diagram, the map ψ has constant fibre di-
mension (e− a)(n− (r − 1)d+ 1)− 1 over all points.

Proof. By our induction assumption, we know that the dimension of the
generic fibre of ψ is (e− 1)(n− (r− 1)d+ 1)− 1. Therefore every irreducible
component of a fibre of ψ has dimension at least this large.

The product space consists of degree e curves that are the union of
a degree a curve and a degree e − a curve, with the product taken over
the intersection point. The map φ, which forgets the second irreducible
component, is the base change of a map M0,1(X, e − a) → X. By our
induction assumption, it is flat away from S with fibre dimension (e−a)(n−
d + 1) − 2, and its fibre dimension increases by one over S. The map ρ :
M0,2(X, a)→M0,1(X, a) forgets the interection point.

Let p be a point in M0,1(X, a), corresponding to a curve C of degree a.
Let Z be an irreducible component of ψ−1(p). We aim to show that Z must
have dimension

(e− a)(n− (r − 1)d)− 1

Consider the image φ(Z), which by construction lies in ρ−1(p). This image
contains points of M0,2(X, a) corresponding to the curve C, with an addi-
tional choice of intersection point. The possible intersection points in the
irreducible component Z are either all of C, or a single point.

If the possible intersection points are all of C, then ψ−1(p) = (ρ◦φ)−1(p)
has fibre dimension one greater than the generic fiber of φ. In this case, the
dimension of Z is (e− a)(n− (r − 1)d+ 1)− 1 as required.

29



If all of the intersection points in Z are a single point in S, then ρ−1(p)
is a single point and the dimension of Z is the dimension of a fibre of φ over
a point of S. Again, this is (e− a)(n− (r − 1)d+ 1)− 1.

Finally, the intersection points in Z cannot all be a single point outside
of S. If this were the case then Z would have dimension (e − a)(n − (r −
1)d+ 1)− 2. But this contradicts our lower bound for the dimension of Z.

Theorem 3.2.5. The evaluation map ev1 : M0,1(X, e) → X has constant
fibre dimension

e(n− (r − 1)d+ 1)− 2

away from a finite set of points S. Over the points of S, the fibre dimension
increases by at most one.

Proof. Considering the commutative diagram above, we will show that

eve :M0,2(X, e)→ X

from the space of curves with two marked points to X, evaluating on just
the first marked point, has fibre dimension e(n − (r − 1)d + 1) − 1 away
from S. We know from bend-and-break that every fibre of eve intersects
the image of M0,2(X, a) ×X M0,1(X, e − a) in codimension 1, for some a;
therefore it is enough to show that

eva ◦ ψ :M0,2(X, a)×XM0,1(X, e− a)→ X

has constant fibre dimension e(n− (r − 1)d+ 1)− 3 over X away from S.
But the map eva :M0,1(X, a)→ X has constant fibre dimension

a(n− (r − 1)d+ 1)− 2

away from S, by our induction assumption. We have also shown that ψ has
constant fibre dimension (e− a)(n− (r − 1)d+ 1)− 1, so we are done.

Furthermore, the fibre dimension of eva increases by one over the non-
flat points S. Therefore the same is true of eva ◦ ψ, which will then have
fibre dimension at most e(n− (r − 1)d+ 1)− 1 over a point of S.
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4 Irreducibility of the Space of Lines

In this section, we prove that M0,1(X, 1) is irreducible. As in the previous
section, the map π : X → Pn is a cyclic cover of degree r branched over a
hypersurface D of degree rd, satisfying the inequality 2d(r − 1) ≤ n.

We start with the following simple observation.

Lemma 4.0.6. Let f : Y → Z be a map of projective varieties, with Z
irreducible. If the general fibre of f is irreducible and if every irreducible
component of Y is dominant over Z, then Y is irreducible.

Proof. Suppose Y1, ..., Yn are distinct irreducible components of Y . For each
i, let Ui be the dense open subset of Yi that is not contained in any other
Yj for j 6= i.

By assumption each Ui is dominant over Z; its image f(Ui) is a con-
structible set containing a dense open subset Vi. Then the intersection
V1 ∩ ... ∩ Vn is a dense open subset of Z, and for each p ∈ V1 ∩ ... ∩ Vn the
fibre f−1(p) contains a point from each of the disjoint sets Ui. In particular,
f−1(p) is reducible if n > 1.

Now consider the evaluation map ev :M0,1(X, e)→ X. The space X is
irreducible, and the evaluation map is flat away from a finite set of points S.
If M0,1(X, e) has any irreducible components that are not dominant over
X, then they must lie entirely over some point of S. But this is impossible:
the dimension of the fibres over S is less than than the lower bound for
the dimension of M0,1(X, e) that we computed in theorem 1.5.4. So the
evaluation map is dominant on every irreducible component.

Therefore to prove irreducibility ofM0,1(X, e), it suffices to prove that a
general fibre of the evaluation map is irreducible. We will prove this directly
in the case e = 1 in this chapter, in theorem 4.2.6, by considering lines in
Pn. In the next chapter we will consider the boundary divisor ofM0,1(X, e)
on which the curve is the union of two curves of smaller degree, and prove
the general case by induction on e.

4.1 The Principal Parts Bundle

In this section we prove the following fact, which we use in the next section
to prove irreducibility of the space of lines.

Theorem 4.1.1. Let D be a hypersurface of degree d in Pn. Let p be a point
not contained in D, and consider the space of lines through p. The subspace
of lines intersecting D at a single point (with multiplicity d) is connected.

To prove this, we will need to consider the principal parts bundle. If F is
a locally free sheaf on a smooth variety X, the principal parts bundle P k(F )
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is another locally free sheaf on X that records the behaviour of sections of
F to order k. We describe its construction below.

First, let C be a smooth curve and L a line bundle on C. Let p be a
point on C and m the maximal ideal of OC,p. A section α of L, defined on
a neighborhood of p, can be considered as an element of

Lp/m
kLp

for any k ≥ 0. To say that α “vanishes to order k” at p is to say that it is
zero in this ring.

For any k ≥ 0, the principal parts bundle of order k will be a locally
free sheaf P k(L) on C whose fiber at every point p is exactly the quotient
Lp/m

kLp (as a complex vector space). For any germ α in the stalk of L
at a point p, there is a corresponding section in the stalk of P k(L); this
section is zero exactly when α vanishes to order k at p. We think of P k(L)
as recording the behavior of sections of L to order k.

Given a point p ∈ Pn, consider the family of lines through p. Pull
back the invertible sheaf OPn(d) to the total space of this family. Then the
(relative) bundle of principal parts P k(O(d)) will be a locally free sheaf on
the total space. It records the vanishing of sections of O(d) along each line
in the family, up to order k. Our hypersurface D is given by a particular
global section of O(d), and the points at which the line is tangent to degree
d are exactly those points at which the induced global section of P d(O(d))
vanishes.

Then to prove that this vanishing set is connected, we will define the set
Dk to be the set of points in D at which a line through p is tangent to D
at order k. By considering a filtration of the principal parts bundle, we will
describe each Dk as a closed subscheme of Dk−1, and show that each Dk is
connected.

Construction of Principal Parts Bundle The construction is given in
[G1] Section 16.7. To begin with, let f : C → S be a smooth family of
curves over some base, and let π1, π2 be the projections from C ×S C

C ×S C π2
//

π1
��

C

f
��

C
f

// S

Let ∆ : C → C ×S C be the diagonal, and I the associated sheaf of ideals.

Definition 4.1.2. If F is a locally free sheaf on C, then the principal parts
bundle of F is the coherent sheaf on C defined by
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P k(F ) := π1∗

(
π∗2(F )

Ikπ∗2(F )

)

The principal parts bundle admits an important filtration. For all k > 0
we have a short exact sequence

0→ Ik−1

I2
→ OC×C

Ik
→ OC×C

Ik−1
→ 0

We tensor this exact sequence with the locally free sheaf π∗2F and push
forward by π1, both of which preserve exactness. The resulting short exact
sequence contains the restriction map

ρk : P k(F )→ P k−1(F )

and the kernel of the restriction map is

π1∗

(
π∗2F ⊗

(
I

I2

)⊗(k−1)
)

= F ⊗ π1∗

(
I

I2

)⊗(k−1)

But π1∗
(
I/I2

)
is equal to ∆∗(I/I2), the sheaf of relative differentials ΩC/S .

Therefore for each k we have the short exact sequence

0→ F ⊗ Ω
⊗(k−1)
C/S → P k(F )

ρk→ P k−1(F )→ 0

It is worth considering the affine case more carefully. Let B → A be a
morphism of rings, and let π#

1 and π#
2 be the maps from A to the tensor

product A⊗B A that send a to a⊗ 1 and 1⊗ a respectively.

A⊗B A A
π#
2oo

A

π#
1

OO

B

OO

oo

Then A⊗B A has an A-bimodule structure, via the two different A-module
structures induced by π1 and π2.

We write I ⊆ A⊗B A for the kernel of the multiplication map A⊗A→
A. Now let M be an A-module. The principal parts bundle of the sheaf
associated to M is a coherent sheaf corresponing to the module

A⊗B A
Ik

⊗π2 M

where by ⊗π2 we mean the tensor product of A-modules with respect to the
second projection π2 : A → A ⊗B A. We then consider this tensor product
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as an A-module via the action of A induced by the first projection π1. Note
that if k = 1, the two A-module structures on A ⊗B A are identical, and
therefore P 1(F ) = F .

We can try to define a map

M → A⊗B A
Ik

⊗π2 M

sending m to (1 ⊗ 1) ⊗ m. But this map is not A-linear, because we are
considering the second module with the action of A via π1.

Returning to the global case, there is in general no globally-defined OC-
linear map from a sheaf F on C to its principal parts bundle. However, such
a map exists when F is the pullback of a sheaf from the base S.

Theorem 4.1.3. Let f : C → S be a map of varieties and let G be a
locally free sheaf on S. Then for each k there is a canonical OC-linear map
dk : f∗G→ P k(f∗G) that commutes with the restriction maps

f∗G
dk
//

dk−1 %%

P k(f∗G)

ρk
��

P k−1(f∗G)

Proof. First consider the affine case f : SpecA → SpecB, as above. Let G
be a coherent sheaf corresponding to a B-module N , f∗G corresponds to
the A-module N ⊗B A. Then we can define a map

N ⊗B A→
A⊗B A
Ik

⊗π2 (N ⊗A)

defined by

n⊗ a 7→ (a⊗ 1)⊗ n

This map is well-defined, and is A-linear if we consider A ⊗ A as an A-
module via the left action. Therefore this extends to a global morphism of
A-modules from f∗G to P k(f∗G).

Corollary 4.1.4. Let f : C → S be a family of curves and let F be a locally
free sheaf on C. Then there is a natural C-linear map of vector spaces

H0(C,F )→ H0(C,P k(F ))

which commute with the restriction maps ρk : P k(F )→ P k−1(F ) and which
at every point p ∈ C sends an element of the stalk Fp to its kth order
expansion at p on the fibre over f(p).
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Proof. Let G be the trivial vector bundle on S given by

H0(C,F )⊗S OS
Then f∗G is a trivial vector bundle on C. By 4.1.3 there is a map of sheaves
on C

dk : f∗G→ P k(f∗G)

There is also another map of sheaves on C

δ : f∗G→ F

Since the formation of the principal parts bundle is functorial, this gives a
map

P k(δ) : P k(f∗G)→ P k(F )

Composing these two, we have a map of sheaves

P k(δ) ◦ dk : f∗G→ P k(F )

In particular, there is a map between the spaces of global sections

H0(C, f∗G)→ H0(C,P k(F ))

Since the space of global sections of f∗G is exactly H0(C,F ), this gives the
required map.

We use the principal parts bundle to examine the space of lines through
a point p that are tangent to a hypersurface D to high degree. Let D be a
hypersurface in Pn of degree d, and let p ∈ Pn be a point not in D.

Definition 4.1.5. For all k ≤ d, let Dk ⊆ D be the subset of points q ∈ D
such that the line through p and q intersects D at q with multiplicity k or
greater.

Clearly Dk is empty if k > d, and D1 = D. We show in 4.1.9 that each
Dk is cut out by a global section of an ample line bundle inside of Dk−1, and
so has a natural subcheme structure. For this, we will need some preliminary
lemmas.

Lemma 4.1.6 (Enriques-Severi-Zariski). Let X be an integral projective
variety of dimension n ≥ 2, and let D be an ample divisor. Then D is
connected.
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Proof. ([H] III Corollary 7.9) We may assume that X is normal, by passing
to the normalisation if necessary. For any m > 0 there is an exact sequence

0→ OX(−mD)→ OX → OmD → 0

Therefore, in particular, we have an exact sequence

H0(X,OX)→ H0(X,OmD)→ H1(X,OX(−mD))

By Serre duality and the ampleness ofD, the higher cohomology ofOX(−mD)
vanishes form >> 0. SinceH0(X,OX) is one-dimensional, so isH0(X,OmD).
In particular, this implies that D is connected.

Definitions 4.1.7. Let p be a point in Pn and let S be the parameter space
of lines through p, so S is isomorphic to Pn−1. Let C be the total space of
the universal family of lines through p. Let

f : C → S

be the map from the total space to the parameter space.

The total space C is isomorphic to the blowup of Pn at p, with a bi-
rational map β : C → Pn. The Picard group PicC is generated by the
exceptional divisor E and the pullback of a hyperplane section, which we
denote H.

Lemma 4.1.8. The relative canonical bundle ΩC/S on C is OC(−H − E)

Proof. The Picard group of C is ZH ⊕ ZE. Write

ΩC/S = OC(aH + bE)

for integers a and b.
A fiber of f : C → S over a point s ∈ S is a single line through p, of

divisor class H−E. The relative canonical bundle restricts to the canonical
sheaf on this fibre, so (aH + bE) · (H − E) = −2.

On the other hand, let ι be the inclusion of the exceptional divisor E.
We have a short exact sequence

0→ N∨E/C → ι∗ΩC/S → ΩE/S → 0

The sheaf ΩE/S is zero, since E is a section of the map C → S. Therefore the
pullback of the relative canonical sheaf ΩC/S to E is the conormal bundle
of E in C, which is OE(1). So we have (aH + bE) · E = 1.

Combining these, we have a = −1 and b = −1, and therefore ΩC/S is
equal to OC(−H − E) as claimed.

Now we have enough to prove 4.1.1.
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Theorem 4.1.9. The subvariety Dk ⊆ D is connected for all k ≥ 1, and is
non-empty for k ≤ d.

Proof. The hypersurface D ⊆ Pn is given by a global section g of OPn(d).
Since it does not contain p, this hypersurface is isomorphic to its preim-
age β∗D in C, which is given by the corresponding global section β∗g of
β∗OPn(d). Consider the relative principal parts bundle

P k(β∗OPn(d))

which records the vanishing of sections of β∗OPn(d) on the fibers of the family
C → S; that is, on lines through p. Since β∗OPn(d) is not the pullback of
a sheaf from S, it does not admit a morphism to its principal parts bundle.
However, by theorem 4.1.4 there is a map

H0(C, β∗OPn(d))→ H0(C,P k(β∗OPn(d)))

for each integer k. We let gk be the image of g under this map.
Therefore for each k we have a global section gk of P k(β∗OPn(d)) on C,

and by construction of the degree k principal parts bundle, the vanishing
locus of gk inside Dk−1 is exactly Dk. We prove by induction that each Dk

is connected. The base case k = 1 follows since D1 is the hypersurface D,
so assume that Dk−1 is connected and that k ≥ 2. Recall that for each k we
have an exact sequence of locally free sheaves

0→ β∗OPn(d)⊗ Ω
⊗(k−1)
C/S → P k(β∗OPn(d))

ρk→ P k−1(β∗OPn(d))→ 0

The section gk is a global section of the middle term, and its image in the
last term is gk−1. By 4.1.8 the divisor class of ΩC/S is −H−E on C, so this
sequence becomes

0→ OC ((d− k + 1)H − (k − 1)E)→ P k(β∗OPn(d))
ρk→ P k−1(β∗OPn(d))→ 0

Now if we restrict this exact sequence to Dk−1, then the restriction of
gk is a global section of the middle term that is (by construction) sent
to zero in the last term. Therefore it is the image of a global section of
OC ((d− k + 1)H − (k − 1)E) |Dk−1

. Since Dk−1 does not intersect E, we
have

OC ((d− k + 1)H − (k − 1)E) |Dk−1
= OC ((d− k + 1)H) |Dk−1

which is ample. Therefore Dk is the zero locus of a global section of an
ample line bundle, and is connected by 4.1.6.
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4.2 The case e = 1

Now we show that the general fibre of ev : M0,1(X, 1) → X is irreducible.
Recall that a line L ⊆ Pn is called r-multiply tangent to a hypersurface D
if either L ⊆ D, or all points of L ∩D have multiplicity divisible by r.

Definition 4.2.1. Let Y be the space of tuples (D,L,Q, p) where

• D is a hypersurface in Pn of degree rd,

• L is a line in Pn and Q is an effective divisor of degree d on L with
rQ ⊆ L ∩D, and

• p is a closed point on L.

Lemma 4.2.2. This space Y is smooth and irreducible.

Proof. Note that there is a forgetful map from Y to the space of lines L
with chosen points q1, ..., qd, p. The fibres of this forgetful map consist of
those hypersurfaces of degree rd that vanish to order r at each of the points
q1, ..., qd.

If q is a point in the divisor Q of mutiplicity k, we can consider those
hypersurfaces D such that L∩D contains rk·q. This imposes rk independent
linear conditions on PH0(Pn,O(d)) (with each condition determining a linear
factor of the polynomial Φ that cuts out the hypersurface). Since the degree
of Q is rd, the space of hypersurfaces that are r-multiply tangent to L at Q
will be a linear subspace of PH0(Pn,O(rd)) of codimension rd. Therefore the
forgetful map exhibitss Y as a projective bundle over a smooth irreducible
space.

The space Y also has a forgetful map e : Y → Z to the space Z that
parametrises pairs (D, p). We are interested in the fibres of this map. Specif-
ically, we want to show that a general fibre of this map is irreducible. By
generic smoothness, the general fibre is smooth, so it suffices to show that
a general fibre is connected.

We will show that the general fibre cannot consist of two or more dis-
connected components by picking out a specific component in each fibre in
a well-defined and continuously varying way. Once we have done so, the
union of all of these components, as D and p vary, will form an irreducible
component of Y . Since Y is irreducible, this will show that there is only
one connected component in the general fibre. A formal statement of this
stategy is as follows:

Theorem 4.2.3. Let e : Y → Z be a morphism of smooth irreducible
schemes over an algebraically closed field. Let Y ′ be irreducible and i :
Y ′ → Y a morphism such that e ◦ i : Y ′ → Z is dominant with irreducible
general fibre. Then the general fibre of e is also irreducible.
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See [dJS] Lemma 3.2 for details (see also [G1] Proposition 4.5.9)

Corollary 4.2.4. Let D be a general hypersurface of degree rd in Pn and
let p be a general point not in D. Then the space of lines through p that are
r-multiply tangent to D is irreducible.

Proof. Let Y be as in 4.2.1, and Y ′ the sublocus of Y in which Q consists of
a single point q with mutliplicity d. Then Y ′ parametrizes tuples (D,L, p, q)
such that the line L passes through p and is tangent to D at exactly one
point q, with multiplicity rd. Let W be the space of pairs (p, q). Then the
forgetful map Y ′ → W exhibits Y ′ as a projective bundle over a smooth
irreducible space, so Y ′ itself is smooth.

Now let Z be the space of pairs (D, p). The space Y ′ also has a forgetful
map to Z. By theorem 4.1.9, this forgetful map is surjective and every fibre
is connected. However, since this map is between smooth varieties over C,
a general fibre is also smooth, and therefore a general fibre is irreducible.

Therefore the inclusion Y ′ → Y and the map Y → Z satisfy the condi-
tions of theorem 4.2.3. We conclude that the general fibre of the forgetful
map Y → Z is irreducible.

Corollary 4.2.5. Let M∗ be as defined in section 2.1, with evaluation map
ev : M∗ → Pn, and let p be a general point of Pn not in the branch divisor.
Then the fibre ev−1(p) is irreducible.

Proof. The points in M∗ parametrise lines in Pn that are r-multiply tangent
to the branch divisor D. Therefore ev−1(p) is irreducible by 4.2.4.

Now we can show that for a general X, the fiber of the evaluation map
M0,1(X, 1)→ X is irreducible over a general point.

Theorem 4.2.6. Let π : X → Pn be a general cyclic cover and let p be a gen-
eral point in Pn not in the branch divisor. Let q1, ..., qr ∈ X be the r points
in the preimage π−1(p). Then for each i the fibre ev−1(qi) ⊆ M0,1(X, 1) is
irreducible.

Proof. The spaceM0,1(X, 1) contains a boundary divisor of reducible curves.
For a general point p, the boundary divisor intersects ev−1(p) in codimension
one. We assume that this is the case.

Then it suffices to prove that the space of irreducible curves in v−1(qi)
is irreducible. By 1.4.5, no irreducible curve passes through both qi and qj
for i 6= j. Therefore ev−1π−1(p) in M0,1(X, 1) is the disjoint union of the
fibers ev−1(qi).

The fibre ev−1(p) in M∗ is the quotient of ev−1π−1(p) in M0,1(X, 1) by
the action of Z/rZ, and is therefore isomorphic to any one of these r disjoint
components. Therefore these components are irreducible, as required.
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5 Irreducibility of M0,0(X, e)

5.1 Trees

Recall from 1.2.3 that the space M0,k(X, e) parametrises stable curves on
X of genus zero and degree e. In order to stratify stable curves, we encode
their combinatorial data in its dual graph.

Notation 5.1.1. For our purposes, all graphs will be trees - that is, they
will contain no loops - and will be finite. All graphs also come with the
following data:

• For each vertex v, a positive integer dv which we call the degree of the
vertex.

• A list p1, ..., pk of vertices which we call the marked points of the graph.
The set of marked points may be empty, and the elements of the set
may not be distinct.

We use dual graph to mean a collection of data of this type.

Now for each stable curve C on X we construct the corresponding dual
graph of C by considering the reducible components of the domain curve.

Definition 5.1.2. Let C → X be a stable map of a genus-zero curve to X.
The dual graph of C is a graph (in the above sense) constructed from the
following data:

• a vertex for every irreducible component of C;

• for each such vertex v, an integer dv equal to the degree of the corre-
sponding irreducible component;

• for every intersection point between two components of C, an edge
between the corresponding vertices;

• and for every marked point on C, a marking on the corresponding
vertex.

The curves we consider have genus zero, so the dual graph does indeed
contain no loops, as well as no self-intersections. The total degree is of the
dual graph is defined to be the sum of the integers dv over all vertices, equal
to the degree of the curve itself.

Notation 5.1.3. We use the word tree to mean a stable map from a curve
C (possible reducible) to X. A linear tree is a tree that is the union of
degree 1 curves, so its dual graph has degree 1 at every vertex.
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1 13

Figure 1: A reducible curve and corresponding dual graph

We will be interested in how trees deform in families, and what happens
to the corresponding dual graphs. An irreducible degree e curve deforming
in a family might degenerate, at a specific point in the family, into the
union of two or more irreducible components with total degree e. At that
point, the dual graph changes from a single vertex to a graph with several
vertices. Conversely, a reducible curve might deform into a curve with fewer
components of higher degree, and the dual graph would contract.

In order to formalise these ideas, we begin by defining subgraphs and
contractions of dual graphs in the obvious way.

Definition 5.1.4. Let G be a graph as defined above. A subgraph H of G
is a graph such that: the vertices of H are a subset of the vertices of G;
the edges of H are exactly those edges of G connecting vertices in H; the
degree of each vertex in H is the same as its degree in G; and the marked
vertices of H are exactly those marked vertices of G that are also vertices
in H, including duplicates.

Definition 5.1.5. Let G be a dual graph and H a non-empty subgraph.
We say that G′ is a contraction of G along H if: the vertices of G′ are those
vertices in G that are not in H, together with one additional vertex vH ; the
edges of G′ are those edges of G connecting two vertices that are not in H,
together with one edge from v to vH for every edge connecting a vertex v to
a vertex in H; the degree of vH is the total degree of the subgraph H, and
the degrees of the other vertices are their degrees in G;

Definition 5.1.6. Let G be a dual graph and let G′ be the dual graph
obtained by contracting G along a finite series of subgraphs. Then we say
that G′ is a deformation of G, and that G is a specialisation of G′.

Note that a specialisation increases the number of vertices in the graph,
while a deformation decreases this number. In a family of curves, the num-
ber of irreducible components is upper semicontinuous, so specialisation to a
particular reducible member of the family will increase the number of com-
ponents. The dual graph of the reducible curve will be a specialisation of
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Figure 2: Specialisation and deformation

the dual graph of a general curve. Similarly, if a reducible curve is deformed
in a family, then we often find that a general deformation will result in a
single irreducible curve.

Definition 5.1.7. For a dual graph G, a tree C is said to be of type G if
its dual graph is either G itself or any specialisation of G.

Let G be an isomorphism class of trees, of total degree e and with m
marked points. The space of trees of type G is a subspace of M0,m(X, e),
and we will write M0,m(X,G) for this subspace. If G′ is a specialization of
G then

M0,m(X,G′) ⊆M0,m(X,G)

If G consists of a single vertex (with degree e) thenM0,m(X,G) is the entire
space of degree e curves, since all dual graphs of total degree e deform to G.

5.2 The Case e > 1

In this section we prove by induction that the spaceM0,1(X, e) is irreducible
for all e > 1, having proved the case e = 1 above. We adapt the argument
described in [HRS].

The space X is irreducible. We have already shown that the evaluation
map M0,1(X, e) → X is flat away from a finite set of points S, so every
non-dominant irreducible component must lie entirely over a point of S. We
have shown in the previous chapter that the fibers of the evaluation map
over the points of S have dimension e(n−(r−1)d+1)−1 (that is, one greater
than a general fibre). But we also have a lower bound on the dimension of
the irreducible components of the moduli space:

dimM0,1(X, e) ≥ e(n− (r − 1)d+ 1) + n− 2

Therefore no irreducible component lies entirely over a point of S, and
the evaluation map is dominant on every component. As we observed for
the case e = 1, the irreducibility of M0,1(X, e) will then follow if we can
show that a general fibre of the evaluation map is irreducible.
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In order to show that a general fibre of ev : M0,1(X, e) → X is irre-
ducible, we prove the following facts.

1. If G is a dual graph, then the space M0,0(X,G) of trees of type G is
irreducible. In particular, the space of linear trees of a given isomor-
phism type is irreducible.

2. Every irreducible component of a general fibre of the evaluation map
contains a linear tree. By considering the codimension of linear trees
insideM0,1(X, e), we will show that in a general fibre, each irreducible
component contains an entire irreducible component of the locus of
linear trees.

3. A general linear tree is a smooth point of the space M0,1(X, e).

We give proofs of these facts in the next section. Together, they are
enough to prove the case e = 2.

Theorem 5.2.1. The space M0,1(X, 2) is irreducible.

Proof. (Assuming 1, 2 and 3 above) As with the case e = 1, it is enough to
show that a general fibre of the evaluation map is irreducible. Let Z be an
irreducible component of a general fibre ev−1(p). We know that Z contains
a linear tree, by (2). This tree comprises two lines intersecting at a single
point, and its dual graph contain two vertices joined by a single edge. Since
the locus of such trees is irreducible by (1), Z contains all such trees.

But this is true for any other irreducible component Z ′, so all irreducible
components of the fibre must contain all trees. Since a general tree in
this intersection is a smooth point of M0,1(X, 2) by (3), it cannot lie on
the intersection of two components. Therefore there is only one irreducible
component.

When the degree is greater than two, there are many different isomor-
phism types of linear trees. In order to conclude that the irreducible com-
ponents of the fibre intersect, we need to show the following additional fact:

4. A linear tree in an irreducible component of a general fibre ev−1(p),
of a particular isomorphism type, can be deformed into a linear tree
of any other isomorphism type of the same degree, in such a way that
the deformation does not cross into a different component of the fibre.

As an example, consider the case e = 3 with one marked point. A linear
tree of degree 3 has a dual graph that can take one of two isomorphism types:
in both cases the underlying graph is the unique tree on three vertices, but
they differ depending on whether or not the marked point is on the central
component or one of the others.
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Figure 3: Isomorphism types of linear trees in M0,1(X, 3)

We show that every irreducible component of a fibre over a point contains
an entire irreducible component of the space of linear trees. But this space
of trees has two components which do not intersect. To show that both
types of linear tree lie in the same component of the fibre, we show that one
can be deformed into the other.

Specifically, we perform three steps. First we deform the tree into the
union of a line and an irreducible conic. Next, we slide the marked point
along the conic to a new position. Finally, we specialise back to a linear
tree, this time with the marked point on the other component.

1 11

p

1 11

p

1

p

2

Figure 4: A deformation followed by a specialisation

By choosing the conic carefully, we can ensure that this process does not
cross into a new irreducible component of ev−1(p). Therefore all irreducible
components of the fibre contain all linear trees. Since a general such tree
is a smooth point of the moduli space, there must be only one irreducible
component.

5.3 Proofs

Lemma 5.3.1. If M0,1(X, e) is irreducible, then so is M0,m(X, e) for any
m ≥ 0.

Proof. The forgetful map
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M0,m(X, e)→M0,m−1(X, e)

has one-dimensional fibres over all points, and is a P1 bundle over the dense
open subset of points corresponding to irreducible curves. Therefore one is
irreducible if and only if the other is.

In this section, we prove the facts 1 through 4 above, and conclude that
M0,m(X, e) is irreducible for all e and m. The argument is by induction on
e, and we may assume that we have proved the irreducibility ofM0,m(X, a)
for all m and for all a < e. We have already proved the case e = 1 in section
4.

Theorem 5.3.2. Let G be an isomorphism class of trees of total degree e
and with one marked point . Suppose that G has k vertices with k ≥ 2. Let
M0,1(X,G) be the space of pointed curves of type G. Then M0,1(X,G) is
irreducible.

Furthermore, let

evG :M0,1(X,G)→ X

be the evaluation map. Then evG is flat away from a finite set of points S,
and the general fibre is irreducible. Away from S the fibre dimension is

e(n− (r − 1)d+ 1)− 2− (k − 1)

That is, the curves of type G through a point p have codimension k − 1 in
the space of all degree e curves through p. Over the non-flat points S, the
fiber dimension increases by one.

Proof. Note that we have k ≥ 2 in this theorem; the case k = 1 is the claim
thatM0,1(X, e) itself is irreducible, which is the goal of this section. By our
induction hypothesis, we may assume this theorem for all G of total degree
less than e, for all k including k = 1.

The proof is very similar to the proof of theorem 3.2.4. Since G has at
least two vertices, a curve of type G is reducible and is the union of two
curves of types G1 and G2. Let Gi have ki vertices and total degree ei, with
k1 + k2 = k and e1 + e2 = e. Assume without loss of generality that the
marked point lies in the curve of type G1. Consider the diagram

M0,2(X,G1)×XM0,1(X,G2) �
�

//

ψ **

φ
��

M0,1(X, e)

��

M0,2(X,G1) ρ
//M0,1(X,G1) evG1

// X
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First, the map φ is the base change of the evaluation map M0,1(X,G2)→
X, so by induction its generic fibre dimension is

e2(n− (r − 1)d+ 1)− 3− (k2 − 1)

Therefore the generic fibre of ψ has dimension one greater than this. The
dimension of the generic fibre is a lower bound for the fibre over any point,
so we have

dimψ−1(p) ≥ e2(n− (r − 1)d+ 1)− 2− (k2 − 1)

We argue that ψ has this constant fibre dimension over all points.
Consider a point p in M0,1(X,G1), representing a curve C of type

G1, and take an irreducible component Z of ψ−1(p) inside of the prod-
uct M0,2(X,G1) ×X M0,2(X,G2). The curves in this component are the
union of C with another curve of type G2.

We can consider the evaluation map to X that takes a reducible curve of
this form to the intersection point. The image of the irreducible component
Z - the possible intersection points of curves in Z - consists of either a single
point in C, or all of C.

If the possible intersection points cover all of C, then the dimension of
the irreducible component Z is one greater than the generic fibre of φ.

If the image is a single point in S, then the dimension of Z is equal to
the dimension of φ over this point; by assumption, the fibre dimension over
a non-flat point in S is also one greater than the generic fibre of φ. Either
way, the dimension of Z is

e2(n− (r − 1)d+ 1)− 2− (k2 − 1)

as required. Finally, the possible intersection points cannot just be a single
point of C away from S, since then the dimension of Z would be below the
lower bound. We conclude that ψ has constant fibre dimension.

Now, by our induction assumption, evG1 has constant fibre dimension
equal to

e1(n− (r − 1)d+ 1)− 2− (k1 − 1)

away from S, and this fibre dimension increases by exactly one over S.
Adding this to the computed constant fibre dimension of ψ, we see that
M0,1(X,G)→ X has the claimed fibre dimension.

Next we note that a general fibre of the evaluation map

M0,2(X,G1)×XM0,1(X,G2)→ X

is irreducible, because by assumption a general fibre of both evG1 and ψ is
irreducible.
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Finally, we observe that no irreducible component of the productM0,2(X,G1)×X
M0,2(X,G2) lies over a point of the non-flat locus S, because the fibre di-
mension over these points is only one greater than over the flat locus, and
not large enough to contain an entire component. Therefore every compo-
nent is dominant over X. Since a general fibre is irreducible, we conclude
that M0,1(X,G) is irreducible.

It remains to prove theorem 5.3.2 when k = 1 and G has only one vertex;
that is, for the whole space M0,1(X, e). To show that a general fibre of the
evaluation map is irreducible, we consider the locus of linear trees.

Theorem 5.3.3. Let ev : M0,1(X, e) → X be the evaluation map, and let
p be a general point in X. Let Z be an irreducible component of the fiber
ev−1(p). If Z contains a curve of type G, then it contains all curves of
type G through p. Furthermore, Z contains a linear tree, so in particular
Z contains an entire irreducible component of the locus of linear trees in
ev−1(p).

Proof. A fiber of ev :M0,1(X, e)→ X over a point not in S has dimension
e(n− (r − 1)d+ 1)− 2. By theorem 5.3.2, the fibre contains curves with k
components in codimension k− 1. Since the dimension of Z is greater than
k − 1, it contains a linear tree of some isomorphism type. Theorem 5.3.2
also states that the locus of such trees in the fibre is irreducible, and so lies
entirely in Z.

Theorem 5.3.4. For any dual graph G, a general linear tree of type G is a
smooth point of M0,0(X, e).

This follows from the following theorem:

Theorem 5.3.5 (Kollar-Miyaoka-Mori). Let X be a smooth projective va-
riety. Then there exists a dense open subset U ⊆ X such that any rational
curve of degree e on X that intersects U is free, and in particular is a smooth
point of the moduli space M0,0(X, e).

(see [D1] section 4.2, prop. 4.14). That is, any non-free curves on X are
restricted to a proper closed subset. Of course, this theorem is vacuous if
X contains no rational curves at all. In the case we are considering, the
flatness of the evaluation map and our dimension calculations show that a
general linear tree is free.

To finish, we show that every irreducible component of M0,0(X, e) con-
tains linear trees of all isomorphism types. We will need the some lemmas
relating to the deformation of linear trees.

Definition 5.3.6. Let G be a dual graph with degree 1 at every vertex. A
conic deformation of G is a dual graph K that is obtained by contracting
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a subgraph of total degree 2 inside of G. Two such dual graphs G1, G2 are
said to be connected by a conic deformation if there is some dual graph K
that is a conic deformation of both of them.

Theorem 5.3.7. Let G1, G2 be two dual graphs of linear trees, both of total
degree e (so each has e vertices of degree 1) and both with k marked points.
Then G1 and G2 differ by a finite series of conic deformations.

Proof. Let G′ be the dual graph on e vertices each of degree 1, with a central
vertex v0 to which every other vertex is connected. Let G′ have k marked
points all equal to v0.

It suffices to prove that all linear trees differ from G′ by a series of conic
deformations. Let G be a linear tree and let v0 be a vertex of G with the
most edges. If v0 is not connected to every vertex then there is some vertex
connected to both v0 and some other vertex. Then there is conic deformation
that increases the number of edges connected to v0. We conclude that after a
finite series of conic deformations, v0 will be connected to every other vertex.
Then if any of the marked points are not v0, there is a conic deformation
that increases the number of marked points equal to v0.

This is a purely combinatorial fact about graphs. Next we show that
these transformations of graphs can be realised as the deformation of trees
on X. We start with a lemma.

Lemma 5.3.8. Let f : Y → Z be a flat dominant morphism of projective
varieties. Let B be a curve in Z, and let p be a point on B. Let q be a
point in the fibre f−1(p). Then there is an irreducible curve B′ in Y passing
through q such that B′ is a finite cover of B. That is, we can lift a finite
cover of B to Y .

Proof. Since f is flat and projective, we can embed Y into some projective
space PnZ . Let Pnp be the projective space fibre over p. Then Noether nor-
malization tells us that there is some linear projection from Pnp to Pm that
is both well-defined and finite when restricted to f−1(p) ⊆ Y .

This linear projection is well-defined over some open subset of Z (not
just over p). Furthermore, since fibre dimension is upper semicontinuous,
this projection is finite on some open subset of Y containing f−1(p). By
properness, the closed locus on which the projection is not finite lies over
some closed subset of Z not containing p. We conclude that by removing a
closed subset of Z, we may factor f through a finite morphism to a projective
space over Z.

Then the claim is immediate. We can lift B to PmZ , and then take its
preimage in Y . If this preimage is reducible, take an irreducible component.
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Now we can show that the conic deformations can be realised as defor-
mations. For any integer e and any dual graph G, we write eve and evG for
the evaluation maps

eve : M0,1(X, e)→ X

evG : M0,1(X,G)→ X

Theorem 5.3.9. Let p be a general point in X and let ev−1
e (p) be the fibre of

the evaluation map over p. Let C be a linear tree in X contained in the fibre.
Let G be the dual graph of C, and let the graph K be a conic deformation
of G. Then there is some family of stable curves in X including C and
contained in the fibre, such that the dual graph of a general member of the
family is K.

Proof. The curve C is represented by a point in ev−1
G (p). We have seen in

5.3.2 that this is a divisor in ev−1
K (p). Therefore we can take a curve in

ev−1
K (p) that passes through the point corresponding to C that does not lie

entirely in ev−1
G (p); this gives us the required family.

Theorem 5.3.10. Let p be a general point in X. Let K be a conic defor-
mation of a dual graph G, and let C be a curve passing through p whose dual
graph is K. Then there is some family of stable curves in X including C
such that every member of the family passes through p, and such that one
member of the family has dual graph G.

Proof. Again, by 5.3.2 the fibre ev−1
G (p), containing curves of dual graph G,

is a divisor in the fibre ev−1
K (p). So we can take a curve in ev−1

K (p) passing
through the required points.

Theorem 5.3.11. A general fibre of eve :M0,1(X, e)→ X is irreducible.

Proof. The base of this deformation consists of three irreducible curves.
By construction, their intersection points are smooth points of M0,0(X, e).
Therefore this entire deformation takes place in a single irreducible compo-
nent of M0,0(X, e). But it is also clear that manoeuvres of this sort can
deform a linear tree into a tree of any other isomorphism type. Therefore
all linear trees are in the same irreducible component of M0,0(X, e). Since
a general such tree is a smooth point by 5.3.4, we conclude thatM0,0(X, e)
is irreducible.
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