
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

Manipulating Wave Propagation Using Architected Metamaterials 

 

 

A Dissertation Presented 

by 

Yanyu Chen 

to 

The Graduate School 

in Partial Fulfillment of the 

Requirements 

for the Degree of 

Doctor of Philosophy 

in 

Mechanical Engineering 

 

 

 

Stony Brook University 

 

May 2017 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

(include this copyright page only if you are selecting copyright through ProQuest, which is 

optional) 

Copyright by 

Yanyu Chen 

2017 

 



 

ii 
 

Stony Brook University 

The Graduate School 

 

Yanyu Chen 

 

We, the dissertation committee for the above candidate for the 

Doctor of Philosophy degree, hereby recommend 

acceptance of this dissertation. 

 

Lifeng Wang – Dissertation Advisor 

Assistant Professor, Department of Mechanical Engineering 

 

 

Toshio Nakamura – Chairperson of Defense 

Professor, Department of Mechanical Engineering 

 

 

Shikui Chen – Committee Member 

Assistant Professor, Department of Mechanical Engineering 

 

 

Jie Yu – Committee Member (outside) 

Associate Professor, Department of Civil Engineering 

Stony Brook University 

 

 

 

This dissertation is accepted by the Graduate School 

 

 

Charles Taber 

Dean of the Graduate School 



 

iii 
 

 

Abstract of the Dissertation 

Manipulating Wave Propagation Using Architected Metamaterials 

by 

Yanyu Chen 

Doctor of Philosophy 

in 

Mechanical Engineering 

 

Stony Brook University 

2017 

Architected metamaterials with spatially modulated compositions have demonstrated great 

capabilities to manipulate mechanical wave propagation due to the existence of complete wave 

band gaps: frequency ranges where mechanical waves are suppressed. The research objective of 

this thesis is to control undesired vibration using architected metamaterials by integrative design, 

computational modeling, 3D printing, and mechanical testing. 

The conflict between mechanical performance and wave energy dissipation limits the potential 

applications of the passive control technique. The first key objective of this thesis is to resolve this 

conflict using a system of 3D co-continuous architectures. These co-continuous composites exhibit 

enhanced mechanical properties including stiffness, strength, energy absorption, and fracture 

toughness, which are due to the mutual constraints between two phases of the co-continuous 

architectures. In addition, broad phononic band gaps were observed in this co-continuous 

metamaterial system, which is due to the overlapping of the Bragg scattering and local resonances.  
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In the complex noise and vibration environmental conditions, it is necessary to selectively 

control noise and vibration sources over a wide range of frequency. Here, 2D bioinspired 

architected composites were created by taking inspiration from the inherent architecture of 

nacreous materials. Broadband and multiple phononic band gaps were reported due to the 

coexisting of two different physical mechanisms, i.e., Bragg scattering and local resonances. 

Moreover, the geometric features of the bioinspired nacreous composites including structural 

hierarchy and heterogeneity were further exploited to achieve prominent vibration mitigation 

capabilities.  

Besides excellent mechanical performance and vibration mitigation capability, lightweight is 

another criteria that limit the potential deployment of conventional materials. In this regard, lattice 

materials with different coordinate numbers are more efficient. Here, a group of hierarchical 

honeycombs was introduced. The introduction of a structural hierarchy into regular honeycombs 

gives rise to broad and multiple phononic band gaps. Importantly, an inversely proportional 

relation between relative density and band gap size was observed. As a result, lightweight yet stiff 

metamaterials can be designed for vibration mitigation. The rest of this thesis will focus on the 

mechanical tunability of vibration mitigation in a new group of stretchable lattice metamaterials. 

The proposed lattice metamaterials exhibit broadband vibration mitigation capability, which can 

be dynamically tuned by an external mechanical stimulus. Experimental studies were also 

conducted to validate the numerical simulations. 

The findings presented here will open new avenues to control noise and vibration using 

architected metamaterial systems.  
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CHAPTER 1. INTRODUCTION 

 

 

1.1 Overview and objectives 

Noise and vibration are prevalent in our daily life. They could arise from the use of tools and 

machine, construction, transportation, and aircraft (Figure 1.1). The undesired noise and vibration 

often harm human life and animal activities. In addition, the long-term and cycling vibration could 

cause crack and subsidence of surrounding buildings. It is well recognized that noise and vibration 

are not only an annoyance, but also have adverse health, social, and economic impacts. To avoid 

the undesired noise and vibration, a lot of basic technologies have been proposed in the past 

decades. In general, these technologies can be divided into two categories, i.e., active control and 

passive control. [1, 2] For active control, a second wave is specifically designed to interact with 

the vibration source, resulting in destructive interferences between these two waves and wave 

attenuation (Figure 1.2). [3, 4] This technology is particularly useful to control low-frequency 

noise and vibration but is unmanageable for high frequency due to the limitation of free space and 

zone of silence techniques. In this regard, passive control is more effective to control noise and 

vibration without the need for active control. [1, 5, 6] Soft materials based on wave energy 

dissipation or hard materials for wave reflection are often employed for passive control (Figure 

1.3). It has been demonstrated that the both active and passive noise and vibration control methods 

are effective under certain circumstances; however, they still suffer from some drawbacks. For 

example, for active control, the frequency range is very limited, thereby limiting their potential 

applications in complex noise and vibrational environments. For passive control, there is a conflict 

between the wave energy dissipation and mechanical robustness. For example, soft materials 
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coated on the surface of submarines have the capability to control acoustic wave effectively, but 

the mechanical performance is very poor. This conflict is particularly prominent for noise and 

vibration control in mechanically challenging environments.  

 

Figure 1.1 Possible vibration sources. (a) Pile drilling, (b) rail traffic, and (c) aircraft traffic. 

(Images source: https://www.thestar.com/news/world/2013/10/09) 

 

Figure 1.2 Schematic of active vibration control method. 

Overview

• Noise and vibration sources: industrial tools, machine, construction, pile 

drilling, aircraft, and transportation

1

(b) Rail traffic (c) Aircraft traffic

• Consequences 

- Harm human and animal activities

- Cracks and subsidence of buildings

- Operation of high-precision systems

• Significance: adverse health, social, and economic effects 

(a) Pile drilling

https://www.thestar.com/news/world/2013/10/09

Active vibration control 2

• Pros: better noise and vibration mitigation 

• Cons: limited operation frequency

Vibration source

Second wave with a phase shift

Vibration cancellation
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Figure 1.3 Schematic of passive vibration control. 

Recently, architected materials with spatially modulated elastic constants and densities have 

been proposed to control noise and vibration. [7-10] When the wavelength of the propagating 

mechanical wave is comparable to the structural periodicity, destructive interferences arise at the 

interfaces of the compositions. As a result, the incident wave will be totally reflected and redirected 

to elsewhere. Despite remarkable achievement in this area has been obtained, challenges remains. 

For example, most of the previous studies are focused on exploring new physical mechanisms 

while little attention has been devoted to exploring the potential applications. Specifically, in 

engineering practice, broadband and multiband wave filtering capabilities are highly desired. In 

addition, improved mechanical performance including stiffness, strength, and fracture toughness 

are essential in structural components where load-carrying ability and vibration mitigation are 

simultaneously pursued. These pose a great challenge for the coupled architecture-material design 

strategy. 

Passive vibration control 3

Hard material for reflecting

• Pros: broadband vibration control

• Cons: poor mechanical performance, heavy, nonflexible

Soft material for damping
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The research objective of this thesis is to control undesired vibration using architected 

metamaterials by integrative numerical and experimental approaches. Here architected 

metamaterials indicate that the effectiveness of noise and vibration control strongly depends on 

the designed architectures of the metamaterials, rather than their compositions. The objectives and 

approaches are shown in Figure 1.4. Specifically, the optimally architected metamaterials should 

have broadband and multiband wave filtering and waveguiding capabilities. In addition, the 

tunability of vibration mitigation capability using external mechanical stimuli will be explored. 

Importantly, excellent mechanical properties such as stiffness, strength, and fracture toughness 

will be considered in the metamaterial design.  These research objectives will be accomplished by 

integrating metamaterial design, numerical modeling, 3D printing, and mechanical testing.   

 

Figure 1.4 Flow chart of the specific objectives and approaches of this thesis. 
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1.2 Background and motivation 

Historically, the study of wave propagation in architected materials can reach back to Rayleigh’s 

treatment of wave propagations in his book The Theory of Sound. [11] After then, studies on wave 

propagation have evolved into an emerging multidisciplinary that encompasses physical 

mechanisms and applications from both condensed matter physics and acoustical engineering. 

Among these, periodic structures and materials with spatially modulated elastic constants and 

densities have attracted extensive research interests due to their capabilities to manipulate the 

propagation of sound and heat. [12-15] The introduction of structural periodicity leads to 

modification of phonon dispersion relations, providing avenues to tailor group velocities. One of 

the remarkable features in phonon dispersion relations is the existence of complete wave band 

gaps: frequency ranges where the propagation of phonons is suppressed irrespective of incident 

angles. 

The technical word, phonon, coming from the study of vibrations of atomic crystal lattices, 

now has been widely adopted in studies on mechanical wave propagation. After the discovery of 

the first complete phononic band gap by Sigalas and Economou in 1993, [16] a new term, phononic 

crystal, was then coined by Kushwaha and his colleagues, differentiating it from its counterparts 

in electronics and optics, photonic crystals. [10] However, the first observation of noise and 

vibration attenuation using periodically architected materials was not reported until 1995 when a 

research group in Spanish studied the acoustic wave propagation in a sculpture. [17] They found 

that this sculpture enables the attenuation of sound waves in the audio frequency range. 

Intrinsically, the formation of the band gaps in phononic crystals is due to the destructive 

interferences of the propagating wave, which are intrinsically dedicated by the geometric 
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arrangements and material properties of the compositions. [18-21] In this regard, the complete 

band gaps are called Bragg-type band gaps.  

The emergence of complete Bragg-type band gaps requires that the structural periodicity must 

be of the same magnitude as the effective wavelength in the periodic structures. This could pose a 

great challenge to design compact phononic crystals for audio frequency range since the size of 

the desired phononic crystals will be very large for low-frequency waves. In 2000, Liu and his 

colleagues developed a new type of periodic structure where low-frequency band gaps are 

observed. [22] This new structure was termed acoustic metamaterials. [18, 23, 24] Indeed, there is 

no clear boundary between these two types of mechanisms. As it will be shown in Chapter 2, there 

could be overlapping between these two kinds of band gaps. [25] As a result, the overlapping band 

gap is larger than conventional pure locally resonant band gaps. Now, the progress in the field of 

phononic crystals and acoustic metamaterials has since proliferated into a rich subject with 

numerous applications, including wave filtering, [26-28] acoustic cloaking, [29-31] heat 

management, [15, 32, 33] energy harvesting. [34-36] 

Despite the extensive research interests and enticing potential applications, current phononic 

crystals and acoustic metamaterials still, suffer from some drawbacks. These limitations include 

1) conflict between wave energy dissipation and mechanical performance. In mechanically 

challenging environmental conditions, the excellent mechanical performance of structures is a 

basic requirement and often essential. However, the mechanical properties are often conflicting 

with the demand for high dissipation of wave energy induced by vibrations and shocks. For 

example, the soft materials coated on the surface of submarine have excellent wave energy 

dissipation, but the mechanical performance is very poor. As a result, the soft coating materials 

need to be repaired and replaced frequently; 2) limited operation frequency range. Conventional 
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phononic crystals and acoustic metamaterials often operate in limited frequency ranges due to the 

narrow bandwidth of their band gaps. However, in engineering practice, broadband and multiple 

wave filtering and waveguiding are highly desired; 3) poor flexibility in practice. Conventionally, 

band gaps can be tuned by tailoring the inherent architectures and materials properties of 

compositions. However, once the designed structures are fabricated and installed in practice, it is 

impractical or spendy to tune the band gaps. 

The proposed research is motivated by recent advances in architected mechanical 

metamaterials. It is well recognized that changing compositions and microstructures are common 

routines to change the material properties. However, recent studies have shown than tailoring the 

inherent architectures is a powerful tool to explore novel physical properties and functionalities, 

such as mechanical, optical, and phononic properties. A typical example is structural biological 

materials, which have been long served as a source of inspiration for developing high-performance 

composites. Indeed, many structural biological materials such as seashells, bone, and teeth have 

developed sophisticated architectures enabling an unusual combination of high stiffness, high 

strength, fracture toughness, and energy dissipation. [37-43] For example, nacre, the inner layer of 

a seashell, which is composed of 95 vol.% of hard mineral aragonite embedded within a soft 

organic matrix, exhibits a fracture toughness about three orders of magnitude higher than that of 

pure aragonite. [44] In addition, nacreous layer together with a prismatic layer in seashell has 

developed a multilayered protecting system to maintain their structural integrity under dynamic 

attack. [45] Notably, such a heterogeneous architecture enables a combination of enhanced 

stiffness and a surface hardness in the upper layer, with flexural modulus and fracture toughness 

in the inner layer. [46-48] Similar heterogeneous architectures have also been observed in human 

teeth, [49] consisting outer hard and brittle enamel layer and the relatively soft but tough dentin 
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layer, and fish scale armor, [50-53] which possess multiple mineralized layers where each layer is 

composed of a different nanocomposite material with varying structural and mechanical 

anisotropy. These natural design principles not only reveal the mechanisms responsible for the 

outstanding mechanical properties of structural biological composites but also provide us clues to 

design and develop architected mechanical metamaterials with simultaneous mechanical 

performance and vibration mitigation capability. 

In addition to designing architected mechanical metamaterial by learning from nature, a lot of 

approaches have been proposed to achieve other novel physical properties, such as tunable 

phononic/photonic band gaps. Among these, introducing structural hierarchy into regular materials 

is a widely used approach. In fact, the structural hierarchy is prevalent in our daily life. The most 

famous hierarchical structure is Eiffel tower, which features lightweight and excellent mechanical 

performance. Other hierarchical examples range from nacreous biological materials and human 

bones with the multilevel structural hierarchy to synthesized hierarchically architected nano trusses 

with multiple length scales. [54-56] Recent studies show that it is possible to manipulate wave 

propagation by harnessing multiscale characteristic of hierarchical architectures. These rationally 

designed hierarchical architectures can give rise to multiple and broadband phononic band gaps as 

well as low-frequency band gaps. [27, 57, 58] The progress in these areas also motivates us to 

explore noise and vibration mitigation capability by rationally designing the architectures of 

conventional materials. 
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1.3 Outline of this thesis 

In this thesis, it will be numerically and experimentally demonstrated that novel mechanical 

performance and vibration control capability can be simultaneously achieved using architected 

metamaterials.  

In Chapter 2, we will briefly introduce four types of rationally designed architected 

metamaterials. Numerical methods of wave propagation in these architected metamaterials will be 

described. In addition, experimental studies using 3D printing in combination with mechanical 

testing will also be briefly introduced. 

In Chapter 3, 3D co-continuous composites will be proposed to control noise and vibration. 

Complete elastic wave band gaps will be reported in the co-continuous periodic structures. 

Importantly, a new physical mechanism response for the elastic wave band gaps will be identified. 

In Chapter 4, broad and multiple phononic band gaps will be demonstrated in 2D bio-inspired 

architected composites with a nacre-like microstructure. These prominent vibration control 

capabilities derive from the overlapping of local resonance and Bragg scattering. Moreover, we 

will show that the topological arrangement of the mineral platelets and changes of material 

properties can be utilized to tune the evolution of complete band gaps. Effects of structural 

hierarchy and heterogeneity in the bioinspired architected composites will be systematically 

investigated. For hierarchical composites with two levels of structural hierarchy, multiple band 

gaps, and passbands, covering an ultrawide frequency range, will arise. The interplay between the 

multilevel structural hierarchy and the multiband characteristic will be discussed. We will also 

numerically demonstrate that broadband wave attenuation zones can be achieved by tailoring the 
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geometric features of the heterogeneous architecture. Physical mechanisms and geometric features 

accounting for these vibration mitigation capabilities will be identified.  

In Chapter 5, it will be demonstrated that hierarchically architected honeycombs can be 

exploited to achieve prominent wave attenuation and load-carrying capabilities. The hierarchically 

architected honeycombs exhibit broad and multiple phononic band gaps. The mechanisms 

responsible for these band gaps depend on the geometric features of the hierarchical honeycombs 

rather than their compositions. Furthermore, the mechanical performance of the hierarchical 

honeycombs will be numerically evaluated.  

In Chapter 6 and 7, a class of stretchable lattice metamaterials with mechanically tunable 

negative Poisson’s ratios and vibration mitigation capability will be presented. The proposed 

architected lattice materials are built by replacing regular straight beams with sinusoidally shaped 

ones, which are highly stretchable under uniaxial tension. Numerical and experimental results 

indicate that the proposed lattice metamaterials exhibit Poisson’s ratios varying between -0.7 and 

0.5 over large tensile deformations up to 50%. This large variation of Poisson’s ratio values is 

attributed to the deformation pattern switching from bending to stretch within the sinusoidal 

beams. It will also be shown that broadband and multiple band gaps in these lattice metamaterials 

can be dynamically tuned by an external mechanical stimulus.  

Finally, main contributions, broad impacts, and future work will be briefly illustrated in 

Chapter 8. 
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CHAPTER 2. MATERIALS AND METHODS 

 

 

2.1 Periodic structures and wave propagation 

A periodic structure is defined as an assembly of objects that repeat regularly in space. Depending 

on its repeating directions, we have one-dimensional (1D), two-dimensional (2D), and three-

dimensional (3D) periodic structures. To demonstrate the periodic feature of the periodic structure, 

we will use a two-dimensional periodic structure as an example. Figure 2.1 (a) shows a 2D periodic 

structure, which extends infinitely in the 2D plane. The representative repeating object can be 

obtained by drawing two sets of equally spaced parallel lines, as shown in Figure 2.1 (b). The 

divided objects are exactly same in terms of their size and shape. As a result, the 2D periodic 

structure can be considered as the assembly of these objects that are arranged regularly in space. 

To more clearly characterize the feature of the periodic structure, each repeated object can be 

imaged a virtual point (Figure 2.1 (c)). As a result, we will have a corresponding array of periodic 

points, which is called a point lattice of the 2D periodic structure (Figure 2.1 (d)). It is noticeable 

that the point lattice is equivalent to the repeated objects. We can use the two lattice vectors (a1, 

a2) along with a lattice angle () to uniquely define the periodic structure: 

1 2 2n n 
1

R a a                                                                                                                                (2.1) 

where n1 and n2 are arbitrary integer numbers. Depending on the structural periodicity, there are 

five types of two-dimensional point lattices, i.e., oblique, rectangular, square, triangular, and 

rhombus. A similar procedure can be applied to 1D and 3D periodic structures.  
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Figure 2.1 Schematic of a two-dimensional periodic structure. (a)-(c) Two-dimensional periodic 

structure, (d) point lattice, (e) reciprocal lattice, and (f) the first irreducible Brillouin zone. (Images 

are taken from Maldovan, M. and Thomas, E.L. John Wiley & Sons, 2009.) 

 

To study wave propagation in periodic structures, it is necessary to find the relation between 

wave vectors and their corresponding eigenfrequencies, which is called a phononic dispersion 

relation. The most fundamental property of phononic dispersion relation is the existence of 

complete wave band gaps: frequency range where wave propagation is suppressed. To do this, we 

need to find the wave vectors associated with the periodic structure that can completely describe 

the wave propagation. When the plane wave propagating in periodic structures, there are certain 

wave vectors that satisfying the periodicity of the point lattice. [59] As a result, we have 

 iie e
  

k r Rk r
                                                                                                                                           (2.2) 

 

• Phononic dispersion relation and band gaps:

, k completely describes the propagation, called Brillouin zone

Wave propagation in periodic structures

Maldovan, M. and Thomas, E.L. John Wiley & Sons, 2009.

14

(a) (b) (c)

   k

(d) Point lattice

1 1 2 2n n R a a

Brillouin zone(f)(e) Reciprocal lattice

1 1 2 2m m k b b    K M
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By combining Eq. (2.2) with Eq. (2.1), we can calculate the wave vector, k, as shown in Figure 

2.1 (e). By connecting the midpoints of the reciprocal lattices, we have a gray hexagonal area, 

which is called Brillouin zone (Figure 2.1 (f)). In view of the symmetry of this Brillouin zone, only 

1/12 of the gray region needs to be considered. That means, to study wave propagation in the 2D 

periodic structure, we only need to study the wave propagation along the path shown in the first 

irreducible Brillouin zone. Next, we will show how to numerically calculate the phononic 

dispersion relation and wave transmission in periodic structures. 

2.2 Numerical modeling of wave propagation in architected metamaterials 

2.2.1 Bloch wave analysis for infinite periodic structures 

All the proposed architected metamaterials in this thesis are spatially periodic and infinite. To 

evaluate the wave propagation in these periodic metamaterials, only one unit cell need to be 

considered by imposing periodic boundary conditions according to the Bloch theory. Bloch wave 

analysis for infinite periodic structures will be briefly shown as follows. 

2.2.1.1 Construction of the first irreducible Brillouin zone 

To evaluate the vibration mitigation capability of the periodic structures or the existence of 

complete wave band gaps, the phononic dispersion relation, i.e., the relation between wave vector 

and eigenfrequency, needs to be constructed. To this end, we first need to find the set of wave 

vectors that can completely describe the propagation of mechanical waves in periodic structures. 

This set of wave vectors is called the Brillouin zone. For example, the Brillouin zones can be 

defined as shown below for the 3D periodic structures with different lattice symmetries. 
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Consider an arbitrary Bravais lattice that described by the primitive vectors a1, a2, and a3. The 

associated reciprocal lattice wave vectors G is given by 

1 2 3m m m  1 2 3G b b b                                                                                                                                              (2.3) 

where m1, m2, and m3 are arbitrary integer numbers and b1, b2, and b3 are reciprocal lattice wave 

vectors, which can be calculated as 

 
3

1 3

2



 

2
1

2

a a
b

a a a
 

 
3 1

2

1 3

2



 2

a a
b

a a a
                                                                                                                         (2.4) 

 
1 2

3

1 3

2



 2

a a
b

a a a
 

Then the Brillouin zones can be obtained by bounding the planes half was between adjacent 

reciprocal lattice points. The 3D first irreducible Brillouin zones for SC, BCC, and FCC 

metamaterials are shown in Figure 2.2.  

 

 

Figure 2.2 The first irreducible Brillion zones for different co-continuous composites with 

different lattice symmetries. (a) –(c): The irreducible Brillouin zones for the SC, BCC, and FCC 
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Bravais lattices, respectively. For SC lattice, the wave vectors are

       0, 0, 0 , 0,1, 0 , 1,1, 0 , 1,1,1
a a a

  
    X M R ; for BCC lattice, the wave vectors are

       0, 0, 0 , 1,1, 0 , 1,1,1 , 0, 2, 0
a a a

  
    N P H ; for FCC and Octet lattices, the wave 

vectors are

       
1 1 3 3

0, 0, 0 , 0, 2, 0 , , 2, , 1,1,1 , 1, 2, 0 , , , 0
2 2 2 2a a a a a

       
         

   
X U L W K . 

2.2.1.2 Governing equation and numerical implementation 

The governing equation of elastic wave propagating in the 3D periodic structures is given by: [60] 

    
 2 2- =

2 1 2 1 1 2

E E


  
   

  
u u u                                                                                  (2.5)        

In Eq. (2.5) u is the displacement vector and is the angular frequency. E, , and  are Young’s 

modulus, the Poisson’s ratio, and the density of each constituent material, respectively.  

The phononic dispersion relations are constructed by performing eigenfrequency analysis. The 

Bloch’s periodic boundary conditions are applied at the boundaries of the unit cell such that: [61] 

     expi i i  u r a u r k a                                                                                                                    (2.6)                                                                               

where r is the location vector, a is the lattice translation vector, and k is the wave vector.  

In finite element implementation, Eq. (2.6) is decomposed into two parts, i.e., the real part and 

imaginary part, which are given by 

         cos sinre re im

i i i    u r a u r k a u r k a                                                                             (2.7) 

         sin cosim re im

i i i    u r a u r k a u r k a                                                                               (2.8) 
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Now the governing equation Eq. (2.5) combined with the boundary condition Eq. (2.7) and Eq. 

(2.8) leads to the standard eigenvalue problem: 

 2 0 K M U                                                                                                                                              (2.9) 

where U is the assembled displacement vector, and K and M are the global stiffness and mass 

matrices assembled using standard finite element analysis procedure. The unit cell is discretized 

using 10-node tetrahedral elements. In our simulations, we have used a discretization of 40 

elements for the minimum wavelength. Eq. (2.9) is then numerically solved by imposing the two 

components of the wave vectors and hence calculates the corresponding eigenfrequencies. The 

phonon dispersion relations are obtained by scanning the wave vectors in the first irreducible 

Brillouin zones. 

2.2.2 Frequency domain analysis for finite-size structures 

For engineering practice in noise and vibration control, only finite-size structures can be used. 

Therefore, it is necessary to evaluate the vibration mitigation capability in finite-size structures. In 

this case, frequency domain analysis is needed. For example, to model the elastic wave incident 

normally to the surface of co-continuous metamaterials, a harmonic vertical displacement with a 

small amplitude is applied on the left surface (Figure 2.3). Perfectly matched layers (PMLs) are 

applied at the two ends of the homogeneous parts to prevent reflections by the scattering waves 

from the domain boundaries. [24, 62]  
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Figure 2.3 FE model of FCC co-continuous metamaterial for frequency domain analysis. 

 

The size of the elements in each FE model depends on the frequency range of incident wave. 

Here we have used a discretization 40 elements for the minimum wavelength. The transmission 

coefficient is defined as  

   10 0 0 020log u v w u v w                                                                                                  (2.10) 

where u , v  , and w are the amplitudes of averaged displacement components collected on the 

right surface, respectively; 0u , 0v , and 0w  are the amplitudes of the applied displacement 

components, respectively.  

2.3 Design and 3D printing of architected metamaterials 

It is a common practice that tailoring architecture is a powerful routine to achieve new properties 

and functionalities. For example, with the evolution of time, the wheels have been improved from 

initial solid stone to cellular structures with well-defined topologies. With newly architectural 

design, these modern wheels are highly structural efficient. Typical properties including 



 

18 

 

lightweight, more uniform strain energy distribution, and higher specific mechanical properties. 

This motives us to design architected metamaterials to explore novel properties and functionalities.  

Here four types of architected metamaterials will be designed: 1) Co-continuous composites. 

As mentioned before, the mechanical performance of soft materials is very poor for passive 

vibration control method. Here we proposed a system of co-continuous composites, aiming at 

achieving simultaneous improved mechanical performance and vibration control capability 

(Figure 2.4 (a)). 2) 2D bio-inspired architected composites. As will be shown in Chapter 3, co-

continuous composites exhibit a single complete wave band gap. While under certain 

circumstances, broadband and multiband vibration control capabilities are highly desired. Inspired 

by the observation that many structural biological materials exhibit improved mechanical 

performance under both static and dynamic loading conditions, we will focus on a typical 

biological material, nacre, where a brick-and-mortar-like microstructure has been observed (Figure 

2.4 (b)). 3) Hierarchical honeycombs. The first two architected metamaterials are composite 

materials, where the coupled architecture-material design is a great challenge. In addition, in 

applications including aerospace and race shells, lightweight design are highly essential. In this 

regard, lattice materials have great potential applications. Here a group of hierarchical honeycombs 

with different node connectivity will be created (Figure 2.4 (c)). 4) Stretchable lattice 

metamaterials. Wave propagation properties can be tuned by tailoring the geometric features of 

the architected metamaterials. However, it is impractical to change the geometric features in 

practice when a given design is implemented. Here we hope to dynamically tune the wave 

propagation using external stimuli. Aiming at harness buckled mode of regular beams, we 

proposed a system of lattice metamaterials with high stretchability and tunable vibration control 

capability (Figure 2.4 (d)). 
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Figure 2.4 Four types of architected metamaterials for vibration control. (a) 3D co-continuous 

composites, (b) 2D bioinspired architected composites, (c) hierarchical honeycombs, and (d) 

stretchable lattice metamaterials. 

All specimens including dogbone and architected metamaterials used in the study have been 

printed by using an Objet Connex260 multi-material 3D printer (Stratasys) (Figure 2.5). Tango 

plus and verowhite will be used as the constitutive materials for the samples. The chemistry of 

these materials is proprietary to Stratasys. The dimensions of the dogbone specimen comply with 

the ones prescribed by the ASTM D412 standard. Within the limitation of 3D printing technology, 

the layer orientation was found to influence the mechanical properties of the material; therefore, 

all the specimens were printed along the same orientation on the printer build platform. The as-

fabricated specimens were kept at room temperature for 7 days to allow for the saturation of the 

curing. The detailed dimensions and topologies for 3D printed can be found in each chapter.  

Outline 10

3D Compositesa Bioinspired Materials b

Hierarchical Latticesc d    Stretchable Lattices
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Figure 2.5 3D printer and 3D printed architected metamaterials. (a) Objet260 Connex3 3D printer, 

(b) 3D printed co-continuous composite, (c) 3D printed bioinspired composite, and (d) 3D printed 

stretchable lattice metamaterials.  

2.4 Mechanical testing 

To evaluate the mechanical properties of the architected metamaterials, uniaxial tensile testing will 

be performed using a MTS mechanical tester (C43) with a 10 kN load cell. All experiments were 

conducted in a quasi-static regime with a constant strain rate of 0.001 s-1. The load-displacement 

curves measured from the uniaxial tensile tests were then transferred into nominal stress- strain 

behaviors based on the measured dimensions of the specimens. Images of the specimens at various 

loading conditions were taken at a rate of 1 FPS (VicSnap, Correlated Solution). For the dogbone 

specimen, speckles were sprayed on the samples using a spray paint for digital image correlation 

(DIC) measurements. The deformation and local strain contours of the samples were tracked by 

Low amplitude wave transmission test

Objet260 Connex3

24

Bioinspired composite Stretchable lattice metamaterial

1 cm

(a) (b)

(c) (d)

10 mm

Co-continuous composite

2 cm
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using DIC (Vic-2D, Correlated Solution) to calibrate the nominal stress- strain curves and to obtain 

the Poisson’s ratio of the constitutive material. 

Low amplitude wave transmission tests were performed on the 3D-printed samples to validate 

the simulated phononic band gaps. The sample was supported by two specially designed holders 

to avoid the friction damping effect from the testing table (Figure 2.6). An ICP® Impact Hammer 

with a hard tip (Model 086E80) was used to provide impulse forces exerted at the input end of the 

samples. The hammer can generate an impulse force with the frequency range up to 30 kHz that 

is sufficient to cover the frequency range of interest. A piezoelectric accelerometer was attached 

at the receiving end of the sample to capture the response signal transmitted from the input 

excitation. A Coco 80 data collector was adopted to record both the input force and output 

acceleration.  

 

 

Figure 2.6 Experimental setup of low amplitude wave transmission test. 

 

 

 

Sample Sensor
hammer

Data collector
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CHAPTER 3. 3D CO-CONTINUOUS COMPOSITES FOR VIBRATION CONTROL 

 

 

3.1 Introduction 

In recent years, the metamaterial concept has been extended to exploit unusual mechanical 

properties, such as negative Poisson’s ratio, [63, 64] ultra-lightweight and stiffness, [65-68] high 

energy absorption, [69-71] negative bulk modulus, and negative mass density. [72-76] One 

particular class of mechanical metamaterials, locally resonant acoustic metamaterials, has attracted 

much interest because they exhibit lower frequency band gaps as compared to the Bragg band gaps 

in conventional phononic crystals. [22, 77, 78] The band gaps in these acoustic metamaterials stem 

from local resonances associated with substructures, leading to narrow acoustic band gaps. These 

acoustic metamaterials offer promising applications such as wave filtering, [22, 77, 78] acoustic 

cloaking, [79] and energy harvesting. [35, 36] However, the substructures with local resonant units 

may lead to poor mechanical performance. [80, 81]  

Mechanical properties such as high stiffness, high strength are essential in most structural 

components, yet they are often conflicting with the demand for high dissipation of wave energy 

induced by vibrations and shocks. Little attention, however, has been paid to the trade-off between 

the mechanical properties and wave filtering capability of acoustic metamaterials. This, in turn, 

may limit the potential employment of the metamaterials under harsh environments and extreme 

loading conditions. In this Chapter, a group of co-continuous acoustic metamaterials will be 

introduced, where mechanical properties and wave energy dissipation are provided by different 

constituent phases. In a two-phase co-continuous composite, each constituent phase completely 

interpenetrates through the composite microstructure in all three dimensions and contributes its 
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own properties in a quite independent manner to the overall properties of the composite, while 

these two phases are topologically interconnected and mutually reinforced in the three dimensions. 

[71, 82] This synergistic mechanism has been numerically and experimentally demonstrated in a 

group of periodic polymer co-continuous composites, which enable enhanced mechanical 

performance achieving a unique combination of stiffness, strength, and energy absorption 

compared with other conventional composites. [69-71]  

The model system of co-continuous metamaterials investigated here is based on level set 

structures possessing interfaces close to those of triply periodic minimal surfaces, and an octet-

truss lattice structure (see Figure. 3.1). These level set structures have been shown to exhibit 

enhanced elastic properties compared with their rod-connected model counterparts. [83] While the 

octet-truss lattice structure is a typical stretching-dominated structure with a very high strength-

to-weight ratio. It has been shown that the octet-truss lattice material can be considered as a 

promising alternative to metallic foams in lightweight structures. [83, 84] These rationally 

designed periodic structures with proper combinations of constituent materials could help guide 

the creation of mechanically robust acoustic metamaterials. 

In this Chapter, the existence of complete band gaps in four types of metamaterials will be 

demonstrated through numerical simulations. The mechanisms of the band gaps formation in the 

co-continuous metamaterials are discussed. Furthermore, frequency tunability of the band gaps is 

achieved by tailoring the topological arrangements of the co-continuous metamaterials. 

3.2 Model description 

Figure 3.1 displays the triply periodic co-continuous metamaterials with simple cubic (SC), body-

centered cubic (BCC), face-centered cubic (FCC) and octet-truss lattices, where the volume 
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fraction (Vf) of each phase is approximately 50%. The interfaces of SC, BCC, and FCC co-

continuous metamaterials are defined by a function of form F: R3 
 R that satisfies the equation 

f (x, y, z) = t, where t  R is a constant and (x, y, z)R3 are the coordinates of a point on the level 

surface, 

                   

             

                   

SC

BCC

FCC

, , cos cos cos 0.5cos cos 0.5cos cos 0.5cos cos ,

, , cos cos cos cos cos cos ,

, , 4cos cos cos cos 2 cos 2 cos 2 cos 2 cos 2 cos 2 ,

f x y z x y z x y y z z x t

f x y z x y y z z x t

f x y z x y z x y y z z x t

      

   

    

  (3.1) 

where t is a constant that determines the volume fraction of the solid phase. As a result, the 

symmetry and volume distribution in these structures can be precisely controlled. 

 

Figure 3.1 Schematics of the proposed 3D co-continuous composites. (a) Triply periodic co-

continuous acoustic metamaterials consisting of 2×2×2 unit cells with simple cubic lattice, body-

centered cubic lattice, face-centered cubic lattice, and octet-truss lattice. (b) The corresponding 

phase A in these metamaterials. (c) The corresponding phase B in these metamaterials.  

The lattice constants along three directions are all set to 2 mm. The constituent phase A and 

phase B in each metamaterial are chosen to be a ceramic (Boron Carbide, B4C, a hard ceramic 
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material) and a glassy polymer (SU-8, a commonly used epoxy). The material properties are 

characterized by Young’s modulus EA= 460 GPa, Poisson’s ratio A= 0.17 and density A= 2500 

kg/m3 for B4C; the ones for SU-8 are EB= 3.3 GPa, Poisson’s ratio B= 0.33 and density B= 1180 

kg/m3. The mechanical stiffness and strength of these co-continuous metamaterials are well 

retained due to the mutual constraints in the interpenetrating phases. [69-71]  

3.3 Results and discussion 

3.3.1 Phononic dispersion relations 

The simulated phononic dispersion relations of the ceramic/polymer co-continuous metamaterials 

with SC (Vf =59%), BCC (Vf =59%), FCC (Vf =62%), and octet-truss lattices (Vf =49%) are shown 

in Figure 3.2. At the given volume fraction, complete band gaps arise in the dispersion relations 

of the co-continuous metamaterials. To be specific, the widths of complete band gaps in the four 

types of metamaterials are 0.008 MHz, 0.054 MHz, 0.069 MHz, and 0.075 MHz, respectively. At 

the approximate volume fraction of 60%, the metamaterials with BCC and FCC lattices possess 

larger complete band gaps as compared to the metamaterial with SC lattice. Notably, the largest 

width of the complete band gap is achieved in the metamaterial with octet-truss lattice at a lower 

volume fraction, indicating that the metamaterials with octet-truss lattice hold potential in the 

future design of lightweight acoustic metamaterials. It also should be noted that the frequency 

ranges of the complete band gaps reported here are much higher than those of other locally resonant 

metamaterials. [22, 78] This is because the relatively soft phase in the co-continuous metamaterials 

is much stiffer than a silicon rubber that is widely used as the soft phase in locally resonant 

metamaterials. 
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The most remarkable feature in the phononic dispersion relations discussed above is the 

existence of flat bands across the edges of Brillouin zones, which is a strong evidence of local 

resonances arising in these four types of co-continuous metamaterials. [22, 78] To examine the 

origin of these flat bands, we plot the eigenmodes on both the lower and upper edges of the band 

gaps, as shown in Figure 3.2. Clearly, the displacements are almost localized in the relatively soft 

phase, indicating that the complete band gaps in the four types of co-continuous metamaterials are 

caused by local resonances. However, previous studies have shown that complete band gaps 

resulting from local resonances and Bragg scattering can coexist in periodic composites. [85, 86] 

To further reveal the mechanisms of complete band gaps formation, we compare the wavelength 

at the midgap frequency with the lattice constant of the metamaterial with FCC lattice, as an 

example. The wavelength at midgap frequency is given by tc  , where is the wavelength, 

tc is the transverse velocity in the metamaterial, and  is the midgap frequency. The transverse 

velocity in the metamaterial is given by 
* *=tc   , where * and * are the effective shear 

modulus and effective density of the metamaterial, respectively. As a rough estimation, using the 

effective shear modulus (81.6 GPa) of the metamaterial calculated from FEM, we have obtained 

the estimated wavelength 5   mm, half of which is the same magnitude as the lattice constant 

2.0 mm. This comparison indicates that Bragg scattering also contributes to the complete band gap 

formation. In other words, the frequency ranges of Bragg band gaps have the same order of 

magnitude as those of locally resonant band gaps. Therefore, the simulated complete band gaps 

originate from the overlap between locally resonant band gap and Bragg band gap.  

It should be pointed out that the overlapping complete band gaps reported here are different 

from those achieved by manipulating the periodicity of substructures in the composite media. [87] 



 

27 

 

The coupling effects of local resonances and Bragg scattering in this work are intrinsically 

governed by the topological arrangements of the co-continuous structures and the mechanical 

properties of the constituent phases, and hence independent of lattice constants. However, the 

scalability of the periodic structure is still applied and can be used to achieve lower band gap 

frequencies as desired. Relatively soft materials (but keeping high mechanical impedance ratio 

between two phases) can be chosen to further lower the band gap frequency.   

 

Figure 3.2 Phononic dispersion relations and the corresponding eigenmodes of the 

ceramic/polymer co-continuous metamaterials. (a) SC (Vf =59%), (b) BCC (Vf =59%), (c) FCC (Vf 

=62%), and (d) octet-truss (Vf =49%) lattices. 
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3.3.2 Dynamic response of finite-size structure 

Additional insight into the origin of the band gaps can be gained by observing the response of the 

metamaterials under incident waves with different frequencies. To this end, we investigate elastic 

wave propagation along X/H direction in the co-continuous metamaterials with finite unit cells. 

As shown in Figure 3.3 (a)-(d), strong attenuation zone in the transmission spectrum of each co-

continuous metamaterial is observed, which agrees well with the partial band gap in the 

corresponding band structures in Figure 3.2. For simplicity, taking the co-continuous metamaterial 

with FCC lattice as an example, we present the response of this metamaterial under the excitation 

frequencies below, within and above the band gap along X direction, respectively (Figure 3.4 

(a)-(c)). As expected, when the frequency of the incident wave lies below and above the band gaps, 

i.e., 0.85 MHz and 1.36 MHz, the incident elastic wave partially passes through and is partially 

reflected by the co-continuous metamaterial. In contrast, the incident elastic wave with a frequency 

within the band gap (1.28 MHz) is localized at x=7 mm and its amplitude is amplified to 12.9, 

indicating that local resonances arise in the soft phase. The incident wave, however, attenuates 

rapidly after propagating for a distance of 4 mm. This phenomenon is attributed to Bragg scattering 

arising in the co-continuous metamaterial. The responses of the metamaterial experiencing 

different incident waves further support our claim that the complete band gaps result from the 

coupling effects of local resonances and Bragg scattering. Similar behaviors hold for other types 

of co-continuous metamaterials.  
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Figure 3.3 Transmission spectra of the ceramic/polymer co-continuous metamaterials. (a) SC 

(Vf=59%), (b) BCC (Vf=59%), (c) FCC (Vf=62%), and (d) octet-truss lattices (Vf=49%) along 

X/H direction. 
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Figure 3.4 Total displacement fields for different excitation frequencies. (a) Below, 0.85 MHz, 

(b) within, 1.28 MHz and (c) above, 1.36 MHz, the band gap associated with the points A, B, and 

C in Fig. 3 (c), respectively. The incident wave with an amplitude of 1 m is placed at x=2 mm 

along X direction and the displacements are collected at the interface x=22 mm. Periodic 

boundary conditions are applied at the surfaces along y and z directions. The domains within x= 

[0, 2] and [22, 24] mm are defined as Perfectly Matched Layers. [24] 

3.3.3 Tunability of complete wave band gaps 

Acoustic metamaterials operating over narrow bandwidths are not desirable in engineering 

practice. To overcome this limitation, several approaches have been proposed to broaden the width 

of complete band gaps, including optimization of phononic structures, [88] introduction of more 

levels of structural hierarchy, [27] and use of mechanical deformation. [89] Here we examine the 

effect of volume fraction of Phase A on the frequency tunability in the co-continuous 

metamaterials. Figure 3.5 plots the evolution of the complete band gaps, where for the 

metamaterial with SC lattice, the complete band gap opens at Vf ≈57% and closes at Vf ≈60%, 

suggesting that only a small complete band gap can be achieved in a limited frequency range. 
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While the frequency ranges of the complete band gaps in metamaterials with BCC, FCC, and octet-

truss lattices are gradually increased as the volume fraction increases. Notably, the maximum 

widths of the complete band gaps in the metamaterials with BCC, FCC, and octet-truss lattices are 

0.054 MHz, 0.079 MHz, and 0.075 MHz, respectively. These results indicate that we can achieve 

desired complete band gaps by tailoring topological arrangements and volume fraction of the co-

continuous metamaterials.  

 

Figure 3.5 Effect of the volume fraction of Phase A on the evolution of complete band gaps in the 

co-continuous acoustic metamaterials. (a) SC, (b) BCC, (c) FCC, and (d) octet-truss lattices.  

3.4 Conclusions 

In summary, a group of triply periodic co-continuous acoustic metamaterials with a unique 

combination of wave attenuation capability and enhanced mechanical properties have been 

reported. Unlike other pure locally resonant or Bragg band gaps, the complete band gaps reported 

here result from the coupling effects of local resonances and Bragg scattering, which are 

intrinsically governed by the topological arrangements of the co-continuous structures and 

mechanical properties of constituent phases. The complete wave band gaps resulting from this 
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coupling mechanism is typically larger than that induced by pure local resonances. In addition, 

from an engineering perspective, the localized kinetic energy resulting from local resonances could 

be converted into electrical energy by introducing piezoelectric materials, which could be coated 

on the surfaces of one phase or alternatively chosen as the soft phase. Meanwhile, the enhanced 

mechanical properties resulting from the synergistic mechanism of the co-continuous structures 

and constituent phases provides opportunities to design mechanically robust acoustic 

metamaterials for wave absorption under harsh environments, such as for deep water applications 

where high hydrostatic pressure, high dynamic load, and wave coexist. The multifunctionality in 

the proposed co-continuous metamaterials will be of particular interest for aerospace, automotive, 

and defense industries where mechanical robustness, wave filtering, and self-powering capabilities 

are simultaneously pursued.  
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CHAPTER 4. 2D BIO-INSPIRED ARCHITECTED MATERIALS FOR BROADBAND 

WAVE FILTERING AND WAVEGUIDING 

 

 

4.1 Introduction 

It has been shown in Chapter 3 that 3D co-continuous metamaterials can exhibit simultaneous 

mechanical robustness and vibration mitigation capability. The resultant complete wave band gaps 

are relatively large compared with those induced by the pure locally resonant effect. However, as 

shown in phononic dispersion relations, each type of metamaterials only exhibit one complete band 

gap. In complex environmental conditions where noise and vibration sources are random, 

broadband and multiband wave filtering capability are highly desired.  

In this chapter, a new system of 2D bioinspired architected metamaterials will be proposed to 

explore broadband and multiband wave filtering and waveguiding features. The metamaterials 

design concept presented here is inspired by the observation that many biological materials have 

developed the capability to shield from external attacks and maintain their structural integrity. This 

remarkable feature motivates us to investigate the relation between stress wave reduction and the 

inherent architectures of structural biological materials. Here we will focus on elastic wave 

propagation in periodic composites with 2D nacre-like, brick-and-mortar microstructure using 

finite element analysis. First, the existence of complete band gaps and the mechanisms responsible 

for band gap formation will be investigated. Then, we will validate the simulated band gaps 

through analyzing elastic wave propagation in the periodic composites consisting of a finite 

number of unit cells. Finally, the effects of topological arrangement of the mineral platelets and 

the material properties of organic matrix on the frequency tunability of band gaps will be studied.  
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Indeed, besides the brick-and-mortar-like architecture, other geometric characteristics such as 

hierarchy and heterogeneity are prevalent in nacreous composites. For example, many structural 

biological composites have developed multilevel of structural hierarchy to improve their 

mechanical performance and the capability to maintain their structural integrity under external 

attack. [90-92] Multilevel structural hierarchy is observed in a wide range of systems from 

chromosome, protein, cell, tissue to organisms. In addition, heterogeneous architecture is another 

important geometric characteristic of biological composites that enable an unusual combination of 

mechanical performance. [47, 48] For example, in nacreous composites, there is the prismatic layer 

where mineral platelets are orientated vertically on the top of brick-and-mortar architecture. [45] 

This heterogeneous architecture allows for enhanced stiffness and a surface hardness of the upper 

layer and enhanced flexural modulus and fracture toughness in the inner layer.  

The mechanical performances of bio-inspired hierarchical composites and heterogeneous 

composites have been studied extensively. However, the interplay between the hierarchy and 

heterogeneity and the dynamic response of structural biological composites has not been revealed. 

In this chapter, wave propagation in bio-inspired composites with hierarchy and heterogeneity will 

be systematically investigated.  

4.2 Wave filtering capability of the bio-inspired architected materials 

4.2.1 Model description 

The considered periodic composites with nacre-like microstructure consist of multilayered 

staggered mineral platelets embedded in the organic matrix, as schematically illustrated in Figure 

4.1 (a). The periodicity of the 2D microstructure is characterized by a rhombic lattice with vectors 

   1 2, tan 2L d L d     a   
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   2 2, tan 2L d L d      a                                                                                          (4.1) 

where L is the length of the mineral platelet, d is the thickness of the organic matrix along x 

direction and is the lattice angle. (see Figure 4.1(b)). The volume fraction (Vf) of the mineral 

platelets is characterized as 

 
2

2

tan
f

Lh
V

L d 


 
                                                                                                                              (4.2) 

where h is the height of the mineral platelets. Note that the manner of defining volume fraction 

using the lattice angle enables us to distinguish the first irreducible Brillouin zone for the unit cell 

with different lattice angles and hence provides a convenient way to parametrically study the effect 

of geometric features on the evolution of band gaps. 

 

Figure 4.1 Schematic illustration of the 2D bioinspired periodic composite. (a) 2D nacre-like 

periodic composites consisting of mineral platelets and organic matrix. (b) 2D unit cell. L is the 

length of the mineral platelets; d is the thickness of the organic matrix along x direction and is 

the lattice angle. 
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The procedure of constructing Brillouin zones is similar to that of 3D co-continuous 

metamaterials reported in Chapter 2. Here the first irreducible Brillouin zones of the unit cells with 

different ranges of lattice angles are constructed by following the same routine, as shown in Figure 

4.2.  

 

Figure 4.2 The first irreducible Brillouin zones for the composites with different lattice angles. 

(a) <°,  
       
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                      
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   

2 2
0,  0 ,  X ,  0 , Y 0,  

L d L d
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                     

 

The mineral platelets and the organic matrix are assumed to be linearly elastic, homogeneous, 

and isotropic. The length of each mineral platelet is L=10 m and the thickness of the organic 

matrix along x direction is d =L/50=0.2 m, which are similar to the values reported in nacre. [93-

95] The material properties of the mineral platelets and the organic matrix are assigned as follows 

unless otherwise specified: for the mineral platelets, Young's modulus Em =100 GPa, density m 
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=2950 kg/m3, and Poisson's ratio m =0.30; for the organic matrix, Young's modulus Eo =20 MPa, 

density o =1350 kg/m3, and Poisson's ratio o =0.30.  

To investigate the wave attenuation capability of the 2D bio-inspired composites, phononic 

dispersion relations are constructed by performing eigenfrequency analysis within the finite 

element framework using the commercial package COMSOL Multiphysics. Note that we focus on 

the in-plane wave propagation in the 2D composites, thus a plane strain assumption is made 

without loss of generality. To capture the periodic feature of the idealized composites, Bloch’s 

periodic boundary conditions are applied at the boundaries of the unit cell. The unit cell is 

discretized using 6-node triangular elements. We then solve the wave equation by scanning the 

wave vectors in the first irreducible Brillouin zone. More details concerning the modeling of wave 

propagation can be found in Chapter 2. 

4.2.2 Phononic dispersion relation 

The phononic dispersion relations of the unit cells with different lattice angles are constructed to 

examine the existence of complete wave band gaps in the considered composites. The volume 

fraction of the mineral platelets in each unit cell is set as 0.90 for comparison purposes. Phononic 

dispersion relations of the unit cells with lattice angles °~° are shown in Figure 4.3. 

Multiple band gaps arise in the band structures of the unit cells with lattice angles °~°. 

The frequency range of the widest band gap is =162~200 MHz for °, =105~180 MHz 

for °, =38~133 MHz for °. In contrast, only one complete band gap exists in each 

phononic dispersion relation of the unit cell when the lattice angle increases to °~°. These 

results suggest the existence of band gaps in the periodic composites with nacre-like microstructure 
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and also indicate that the geometric feature of the unit cell, i.e., the lattice angle, is significantly 

associated with the evolution of band gaps. 

To reveal the mechanism of band gap formation in the considered composites, phononic 

dispersion relation of the unit cell with lattice angle ° (Figure 4.3 (b)) is further discussed. 

The very flat bands are observed in the band structure and correspond to localized modes. The 

eigenmodes of the unit cells are plotted at given points (Point A and B) on the flat bands, as shown 

in Figure 4.4 (a) and (b). Evidently, the total displacement is almost concentrated in the organic 

matrix, indicating that the local resonances arise in the soft phase. Therefore, the formation of the 

band gap bounded by the flat bands is derived from locally resonant effects. However, the first 

band gap in the band structure is bounded by two normal bands and hence can be termed as a 

Bragg-type band gap, which is further supported by the corresponding eigenmodes at points C and 

D (Figure 4. 4(c) and (d)).  

 

Figure 4.3 Phononic dispersion relations of the unit cells with different lattice angles. (a) =°, 

(b) =°, (c) =°, (d)=°, (e)=° and (f)=°. The volume fraction of the mineral 

platelets is Vf = 0.90. 
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Figure 4.4 Eigenmodes of the composites at the representative points in the band structure. The 

color scale indicates the amplitude of total displacement. 

4.2.3 Wave transmission of bioinspired architected materials 

Now we investigate the behavior of elastic wave propagation in the periodic composites consisting 

of a finite number of unit cells. The goal of this analysis is, on the one hand, to validate the 

simulated complete band gaps by calculating the transmission coefficient of elastic wave 

propagation, and on the other hand, to further reveal the mechanisms of band gap formation by 

observing the deformation behavior of the periodic composites. The periodic composite under 

investigation consists of an assembly of 48 unit cells sandwiched by two homogeneous parts of 

the organic matrix, as illustrated in Figure 4.5 (a). The volume fraction of mineral platelets is Vf 

=0.90 and the lattice angle is =° in the unit cell. To determine the transmission coefficient 

along Y direction, an incident elastic wave along y direction is modeled by applying harmonic 

displacements with an amplitude of u0=0 and v0=100 nm in the x and y-direction, respectively, at 

line S. Perfectly matched layers (PMLs) are applied at the two ends of the homogeneous part to 

prevent reflections by the scattering waves from the domain boundaries.[24] In addition, periodic 

boundary conditions are applied to the left and right edges of the considered composite. The 

transmission coefficient is defined as    0 020log u v u v      , where u and v are 



 

40 

 

horizontal and vertical displacements collected along the interface between PML and 

homogeneous part on the bottom side. 

The frequency domain analysis sweeping from 0 to 350MHz is performed and the simulated 

transmission coefficient as a function of frequency is plotted in Figure 4.5 (c). Strong attenuation 

zones can be observed in the transmission spectrum, which agrees well with the corresponding 

partial band gaps along Y direction in the phononic dispersion relation (Figure 4.5 (b)).  This 

confirms that the simulated band gaps using Bloch theorem is reliable and demonstrates the 

potential application of finite periodic composite as elastic wave filters. 

 

Figure 4.5 Frequency domain analysis for finite-size bioinspired structures. (a) FEA model of the 

finite periodic composite consisting of 48 unit cells sandwiched by two homogeneous parts, 

where =° and Vf = 0.90. (b) The corresponding phononic dispersion relation and (c) the 

transmission coefficient along the Y direction.  

To gain further insight into the mechanism of band gap formation, we present in Fig.6 the 

displacement fields of the composite at excitation frequencies below, within and above the 

complete wave band gaps. Figure 4.6 (a) and (b) show the horizontal and vertical displacement 

fields of the finite periodic composite at the frequency of 30MHz, which is below the first band 
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gap. The incident elastic wave is partly reflected and partly passes through the periodic composite. 

A similar trend holds for the composite with incident wave frequency above the fourth band gap 

(Figure 4.6 (g)-(h)). In contrast, the incident elastic wave is almost totally reflected and confined 

in the top homogeneous part when the frequency of the incident wave (130MHz) lies within the 

first band gap (Figure 4.6(c)-(d)). This phenomenon is consistent with what have been 

experimentally observed in a periodic array of pillars when the frequency of incident surface elastic 

wave lies in a Bragg-type band gap. [18]  When the frequency of the incident wave lies in the third 

band gap, as shown in Figure 4.6 (e) and (f), the vertical displacement is localized in the organic 

matrix of the first mineral layer and the amplitude is amplified to 447 nm, indicating that locally 

resonant effect plays a role in wave absorption. These results provide direct support to our previous 

identification of the Bragg-type and locally resonant band gaps in the same periodic composite. It 

also demonstrates that two mechanisms can be achieved simultaneously to maximize band gaps in 

the same composite.  
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Figure 4.6 Displacement fields for elastic wave propagation in the considered periodic composite 

with different excitation frequencies. (a)-(b) 30 MHz, below the first band gap, (c)-(d) 130 MHz, 

within the first band gap, (e)-(f) 235 MHz, within the third band gap, and (g)-(h) 300 MHz, above 

the fourth band gap. 

4.2.4 Effect of topological arrangement of mineral platelets 

To understand the effect of the topological arrangement of mineral platelets on the evolution of 

complete wave band gaps, two geometric parameters, the volume fraction and the lattice angle, are 

chosen to perform a parametric study. The effect of volume fraction on the evolution of band gaps 

for the unit cells with different lattice angles is shown in Figure 4.7 (a)-(e). For the unit cell with 

a lattice angle °, three complete band gaps are observed and the width of these band gaps 
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increases as the volume fraction increases from 0.50 to 0.80. When the volume fraction continues 

increasing, the width of the first two band gaps tends to shrink and several new band gaps arise. It 

shows that the maximum width of the first two complete band gaps is achieved at an intermediate 

volume fraction and these complete band gaps tend to close when the volume fraction is relatively 

high. This phenomenon is consistent with those have been observed in other 2D and 3D periodic 

composites, in which the band gaps are induced by Bragg scattering. [78, 96] This behavior still 

exists for the first complete band gap of the unit cell with °. However, the width of the rest 

complete band gaps enlarges and shifts towards higher frequency range as the volume fraction 

increases. The maximum widths of these band gaps are observed at the volume fraction of 0.90.  

For the unit cell with lattice angle 30°~60°, the maximum width of band gaps is all achieved 

at the volume fraction of 0.90. The only difference between these band gaps is that the band gaps 

open at larger volume fraction for larger lattice angle. These results indicate that the width of band 

gaps is governed by the volume fraction and hence can be tuned by tailoring the volume fraction 

for the unit cell with a given lattice angle. 

The effect of lattice angle on the evolution of band gaps is presented in Figure 4.7 (f). The 

volume fraction of the mineral platelets is set as 0.90, where the periodic composite exhibits largest 

band gaps when the lattice angle is above °. The band gaps shift towards lower frequency range 

as the lattice angle increases. Two wide band gaps are observed for the unit cell with lattice angle 

15°~35°. Specifically, the maximum width of the first band gap is 95.03 MHz with a lattice 

angle of 30° and the maximum width of the second band gap is 80.06 MHz with a lattice angle of 

20°. Moreover, the relative width of band gaps, which is defined as the ratio between gap width 

and the midgap location, in the unit cell with a lattice angle of 30° is 1.1, which is larger than those 

have been reported in other 2D and 3D periodic composites. [97-99] 
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These results indicate that the volume fraction of the mineral platelets and the lattice angle are 

two important geometric parameters governing the evolution of band gaps and indicate that we 

can achieve desired band gaps in the periodic composites with an optimal design. 

 

Figure 4.7 Evolution of complete band gaps as a function of the volume fraction of the mineral 

platelets with different lattice angles. (a) =° (b) =°, (c) =°, (d) =°, and 

(e)=°. (f) Evolution of complete band gaps as a function of the lattice angle, where Vf = 0.90. 

We have numerically demonstrated the capability to manipulate the elastic wave propagation 

in bio-inspired periodic composites with nacre-like microstructure. Multiple complete band gaps 

are observed in the periodic composites with a wide range of lattice angles and volume fractions. 

The formation of these complete band gaps can be attributed to Bragg scattering or local resonance 

in each unit cell or due to coexisting of them in the same periodic composites. Wide multiple 

complete band gaps can be obtained by utilizing these two formation mechanisms simultaneously. 

In addition, the investigation of elastic wave propagation in a finite periodic composite shows good 
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agreement between transmission coefficient and the simulated complete band gaps and further 

supports the origins of complete band gaps. The frequency tunability of complete band gaps can 

be achieved not only by engineering the length scale of the composites but also by tailoring the 

topological arrangement of the mineral platelets and material properties of each phase. The results 

of this work can help guide the creation of mechanically robust metamaterials while having 

integrated wave filtering capability. 

 Note that here we only consider the first level of the hierarchy of the nacre-like microstructure, 

while it has been observed that many biomaterials, e.g., nacre and bones, have a multi-level 

structural hierarchy with self-similar microstructures. [100] This, in turn, gives rise to the 

formation of band gaps in a broader frequency range on the transmission spectra of elastic wave 

propagation in one-dimensional periodic structure as compared to conventional periodic structures 

with single periodicity. [101] It is expected the hierarchy could also play a role to further improve 

complete band gaps and transmission spectrum of periodic composites with multi-level 

hierarchical nacre-like microstructures. 

4.3 Hierarchical composites for broadband and multiple band wave filtering and 

waveguiding 

This section aims to explore the elastic wave propagation in bio-inspired hierarchical composites 

with nacre-like and biocalcite-like architectures. These two types of architectures consist of hard 

mineral and soft organic phases, which are hierarchically assembled to develop multilevel of a 

structural hierarchy (Figure 4.8). Guided by the finite element modeling, we will show that 

multiple band gaps and passbands, covering an ultrawide frequency range, arise in the hierarchical 

composites with two levels of hierarchy. In particular, low-frequency band gaps, akin to the 

subwavelength characteristic in acoustic metamaterials, exist in the hierarchical composites with 
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two levels of hierarchy. The mechanisms responsible for the multiple band gaps and passbands are 

totally different, depending on the frequency ranges of the band gaps and passbands.  

4.3.1 Characterization of the hierarchically architected composites 

The proposed bio-inspired hierarchical composites have a nacre-like architecture and a biocalcite-

like architecture with two levels (N=2) of a structural hierarchy (Figure 4.8. (a) and (b)). In the 

nacre-like composite, the soft organic phase is continuous, with the hard mineral platelets 

dispersed in the soft organic matrix. In the biocalcite-like composite, however, the soft organic 

platelets are distributed in the continuous hard mineral phase. The two-dimensional periodicity at 

each level of the hierarchical architectures is characterized by a rhombic lattice with vectors  

   1 2, tan 2n n n n n nl t l t     a   

   2 2, tan 2n n n n n nl t l t      a                                                                                      (4.3) 

where ln is the length of the mineral platelet, tn is the thickness of the matrix, n is the lattice angle 

(Figure 4.8. (c) and (d)), and the subscript n denotes the order of structural hierarchy level. In this 

regard, the volume fraction of the mineral phase can be defined as 

 
2

2 tanfn n n n n nv l h l t    
 

                                                                                                   (4.4) 

for level n=1, 2 of nacre-like composite and level n=2 of the biocalcite-like composite; while for 

level n=1 of biocalcite-like composites, the volume fraction of mineral phase is given by 

 
2

1 2 tanfn n n n n nv l h l t     
 

                                                                                              (4.5) 

where hn is the height of the organic platelets at level n. 
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It is assumed that the overall volume fractions of mineral phase in the composites with N=1 

and N=2 levels of the hierarchy are equal to Vfn =0.80.  To ensure the self-similarity in each level 

of the composite with N=2 levels of hierarchy, the volume fraction of mineral phase in each level 

is given by 0.894fn fnv V  . In addition, the lattice angle is taken asnin each level. For 

level n=1 of the nacre-like and biocalcite-like composites, l1=10 m and t1= l1/50=0.2 m. 

Considering the trade-off between accuracy and computational burden, we use four unit cells (nine 

layers of hard minerals) along the vertical direction in each level of the structural hierarchy. Then 

the parameters in level n=2 can be calculated as l2=97.69m and t2= l2/50=1.95 m accordingly.  

  

Figure 4.8 Schematics of the hierarchical composites and the associated supercells. (a)-(b): Nacre-

like and biocalcite-like hierarchical composites with two (N=2) levels of structural hierarchy, 

where N is the total number of structural hierarchy level; (c)-(d) supercells of nacre-like and 

biocalcite-like hierarchical composites. The two-dimensional periodicity at each level is 

characterized by a rhombic lattice with vectors an1 = [(ln+tn)/2, tann∙(ln+tn)/2], and an2 = [(ln+tn)/2, 
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-tann∙(ln+tn)/2], where ln is the length of the platelet, tn is the thickness of the matrix, nis the 

lattice angle, and the subscript n denotes the order of structural hierarchy level. 

4.3.2 Numerical modeling of wave propagation 

Numerical simulation methods for phononic dispersion relations and transmission spectra can be 

found in Chapter 2. Here it is assumed the constituent phases of the hierarchical composites are 

homogeneous, isotropic and linearly elastic. Their properties are characterized by, Young's 

modulus Em =100 GPa, Poisson's ratio m =0.30, and density m =2950 kg/m3 for the mineral phase, 

and Young's modulus Eo =1 GPa, Poisson's ratio o =0.30, and density o =1350 kg/m3 for the 

organic phase. [102-106] 

4.3.3 Results and discussion 

Figure 4.9 shows the transmission spectra of the normally incident elastic wave propagating in the 

nacre-like and biocalcite-like hierarchical composites with N=1 and N=2 levels of structural 

hierarchy. It is observed that in both composites with N=1 level of the hierarchy, about 7 wide 

continuous band gaps arise in the frequency range 0.4~1.5 GHz. These band gaps are attributed to 

Bragg scattering and/or local resonances, as our previous study revealed. [86] However, when the 

total number of the structural hierarchy is increased into N=2, the original wide continuous band 

gaps degenerate into multiple sharp band gaps and passbands. The most remarkable phenomenon 

in the transmission spectra of composites with N=2 levels of structural hierarchy is the emergence 

of 4~5 new band gaps located in low-frequency range 0~0.3 GHz, akin to the subwavelength 

characteristic of acoustic metamaterials. [22] These phenomena are similar to those observed in 

one-dimensional layered composites with multilevel hierarchies and two-dimensional solid-fluid 

system with fractal architectures. [27, 58] The difference is that these new features arising in the 
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proposed composites are obtained by simply assembling the mineral and organic phases in a 

hierarchical manner. Therefore, we believe that the structural hierarchy itself accounts for the low 

frequency and multiband features of the composites with N=2 levels of hierarchy. Specifically, the 

periodic arrangement of mineral and organic phases in hierarchical level n=2 leads to the 

emergence of low-frequency band gaps. At level n=1, however, the structural periodicity is 

interrupted, resulting in multiple shape band gaps and passbands.  

 

Figure 4.9 Transmission spectra of the proposed hierarchical composites with N=1 and N=2 level 

of the hierarchy. (a)-(b): Transmission spectra of nacre-like and biocalcite-like composites with 

N=1 level of the hierarchy; (c)-(d): Transmission spectra of nacre-like and biocalcite-like 

composites with N=2 levels of hierarchy. The overall volume fractions of mineral phase in the 

composites with N=1 and N=2 levels of the hierarchy are equal to Vfn =0.80. 
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To validate the hypothesis of low-frequency band gap formation, we calculate the phonon 

dispersion relations of the two types of hierarchical composites with N=2 levels of hierarchy. To 

this end, a two-dimensional supercell for each composite is considered to calculate the phonon 

dispersion relations (Figure 4.8. (c) and (d)). Note that the normally incident elastic wave 

propagation in the hierarchical composites corresponds to wave propagation along Ydirection 

of their first irreducible Brillouin zones. [86] Figure 4.10 (a) and (c) present the phonon dispersion 

relations of nacre-like and biocalcite-like composites with N=2 levels of hierarchy, respectively. 

For the purpose of comparison, the transmission spectra within 0~0.3 GHz are also displayed 

(Figure 4.10. (b) and (d)). One notices that multiple partial band gaps arise in the dispersion 

relations, which agree well with the attenuation zones in the corresponding transmission spectra. 

This result supports that the low-frequency band gaps stem from the structural periodicity at level 

n=2 of the hierarchical composites. It is important to note that this low-frequency feature enables 

the design of compact and lightweight wave filters, thus providing more flexibility in engineering 

practice. 

To gain a better understanding of the low-frequency band gap formation, we plot in Figure 4 

the total displacement fields of the composites with N=2 levels of hierarchy under incident wave 

frequencies within the low-frequency band gaps, as well as frequencies at passbands. At 

frequencies f=0.079 GHz and f=0.071 GHz, within the band gaps of nacre-like and biocalcite-like 

composites, respectively, the incident wave is mostly reflected by the hierarchical composites, 

which is a strong evidence of Bragg scattering (Figure 4.11. (a) and (c)). By contrast, at frequencies 

of passbands, the normally incident wave can pass through both of the hierarchical composites 

without decay. These phenomena suggest that the low-frequency band gaps are Bragg-type, where 

the wavelengths of the elastic wave have the same order of magnitude as the structural periodicities 
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at level n=2 of the hierarchical composites. It is interesting to note that the widths of these low-

frequency band gaps are much narrower than those of the continuous band gaps in hierarchical 

composites with N=1 level of the hierarchy. We believe that this is mainly because the contrast in 

elastic constants at hierarchical level n=2 is significantly reduced when the structural hierarchy is 

increased from N=1 to N=2. [86] To demonstrate this, we evaluate the stiffness contrasts of the 

hierarchical composite with a nacre-like architecture, as an example. For N=1, the stiffness contrast 

between mineral phase and the organic phase is given by 1 1 100N m oE E    , whereas for N=2, 

this contrast becomes 2 2 30.8N m oE E    , where Eo=1 GPa, Em1= Em=100 GPa, and Em2=30.8 

GPa is estimated by the shear lag model. [107] Intrinsically, the stiffness contrast is solely dictated 

by the geometric features of the nacre-like architecture including the level of the structural 

hierarchy, volume fraction, and lattice angle. This finding not only provides us a better 

understanding of the mechanisms accounting for the low-frequency band gaps but also suggests 

possible avenues design tunable phononic crystals with optimal band gaps. 
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Figure 4.10 Phononic dispersion relations and transmission spectra for hierarchical composites. 

(a) and (c): phonon dispersion relations of nacre-like and biocalcite-like hierarchical composites 

at level n=2 along Ydirection, where Y= (0,
 

cot tan
2 2

n n

n nl t

   
  

  
), and = (0, 0); [86] (b) 

and (d): The corresponding transmission spectra of nacre-like and biocalcite-like composites with 

N=2 levels of hierarchy. 

 

Figure 4.11 Total displacement fields of hierarchical composites with N=2 levels of hierarchy at 

different frequencies. (a) f=0.079 GHz, inside the band gap, and (b) f=0.113 GHz, at passband for 

nacre-like composites; (c) f=0.071 GHz, inside the band gap and (d) f=0.105 GHz, at passband for 

biocalcite-like composite. The positions of the selected frequencies for (a)-(d) are labeled as A, B, 

C and D in Figure 3, respectively. 

Having revealed the mechanisms responsible for the low-frequency band gaps, we next explore 

the origin of a multiband feature of the composites with N=2 levels of hierarchy. Here the band 

gaps and passbands within high-frequency range 0.4~1.5 GHz are particularly interested. A direct 

comparison of transmission spectra between composites with N=1 and N=2 levels of structural 

hierarchy inspire us to postulate that the interrupted periodicity at hierarchical level n=1 is 
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responsible for the multiple sharp band gaps and passbands in the composites with N=2 levels of 

hierarchy. Indeed, the hierarchical composites with N=2 levels of hierarchy can be considered as 

two-dimensional periodic composites with defects. To validate this hypothesis, we calculate the 

transmission spectra of periodic composites without being interrupted, which is equivalent to the 

hierarchical composites with N=1 level of the hierarchy, except that here the volume fraction of 

the hard mineral phase is vfn=0.894 (Figure 4.12.(a) and (b)). As expected, the perfectly periodic 

composites exhibit wide continuous band gaps, as compared to the multiple sharp band gaps and 

passbands of composites with N=2 levels of hierarchy. This phenomenon further supports our 

claim that the structural hierarchy itself is responsible for the multiband feature. In other words, 

the defects, acting as waveguides in the composites with N=2 levels of hierarchy, give rise to 

multiple band gaps and passbands.  

To demonstrate that the waveguide modes are responsible for the multiple band gaps and 

passbands at high-frequency range, we present the total displacement fields of the composites with 

N=2 levels of hierarchy at these high frequencies. Note that for the purpose of comparison, the 

frequencies of selected band gaps and passbands also locate inside the band gaps of the perfectly 

periodic composites. At frequencies f=0.957 GHz and f=0.968 GHz, inside the band gaps, the 

elastic wave is well confined within the waveguides. This is because the wave propagation is 

prohibited by the surrounding perfectly periodic composites (Figure 4.13. (a) and (c)). At 

passbands, as indicated in Figure 4. 13. (b) and (d), the incident elastic wave is concentrated in the 

waveguides and transmits through the waveguides, and then radiates at the exits of the waveguides. 

Although some of the wave energy penetrates into the surrounding supercells, as indicated in 

Figure 4. 13 (d1), we believe this energy only takes a small proportion and most of the concentrated 

wave energy transmits through the waveguide efficiently. This is supported by the high 
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transmission coefficient (0.75) of the elastic wave at f=1.039 GHz, which corresponds to a 

waveguide mode. Apparently, the physical mechanisms of multiple band gaps and passbands at 

high frequencies are totally different from those of low-frequency band gaps. We emphasize that 

the high-frequency band gaps and passbands of the hierarchical composites with N=2 levels of 

hierarchy correspond to waveguide modes, which result from the introduction of defects; whereas 

the continuous band gaps in the perfectly periodic composites and hierarchical composites with 

N=1 level of the hierarchy are attributed to Bragg scattering or local resonances. [86] It should be 

pointed out that the proposed hierarchical architectures with multilevel structural hierarchies also 

endow the composites with enhanced mechanical properties including high strength and high 

fracture toughness. [90, 107, 108] These additionally exceptional features together with the wave 

filtering and waveguiding capabilities imply the possibility to design phononic crystals suitable 

for mechanically challenging environmental conditions.  
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Figure 4.12 Comparison of transmission spectra for regular bioinspired structures and hierarchical 

structures. (a)-(b): Transmission spectra of nacre-like and biocalcite-like perfectly periodic 

composites without being interrupted, the unit cells of which are the same as those at level n=1 of 

composites with N=2 levels of hierarchy, except that here the volume fraction of the hard mineral 

phase is vfn=0.894; (c)-(d): Transmission spectra of nacre-like and biocalcite-like composites with 

N=2 levels of hierarchy. 

 

Figure 4.13 Total displacement fields of hierarchical composites with N=2 levels of hierarchy at 

different frequencies. (a) f=0.957 GHz, inside the band gap, and (b) f=1.010 GHz, at passband for 

nacre-like composites; (c) f=0.968 GHz, inside the band gap and (d) f=1.039 GHz, at passband for 

biocalcite-like composite. The positions of the selected frequencies for (a)-(d) are labelled as A, B, 

C and D in Figure 5, respectively. 
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4.4 Heterogeneous composites for broadband vibration mitigation 

In this section, we will investigate the elastic wave propagation in bio-inspired heterogeneous 

composites, aiming at addressing the bandwidth limitation and the conflict between vibration 

mitigation and mechanical performance of conventional periodic structures. The model system 

under investigation consists of two layers where each layer consists of high volume of platelet-

shape reinforcements embedded in the low-volume soft matrix, which is a typical brick-and-mortar 

microstructure of biological structural composites (see Figure 4.14 (a)). The vibration mitigation 

capability of the proposed heterogeneous composites is demonstrated by studying the transmission 

property of the normally incident elastic wave using the finite element method. Physical 

mechanisms responsible for the vibration mitigation are revealed. Furthermore the effect of local 

characteristics of the heterogeneous architecture on the wave attenuation capability is investigated.  

4.4.1 Model description 

Figure 4.14 (b) shows the schematics of the proposed heterogeneous architecture consists of two 

layers with elastic wave incident normally to the top surface. The periodicity of each layer is 

characterized by a rhombic lattice with vectors a1 = [(l+d)/2, tan∙(l+d)/2] and a2 =[(l+d)/2, -

tan∙(l+d)/2], where l is the length of the mineral platelet, d is the thickness of the organic matrix 

and is half of the lattice angle (see Figure 4.14 (c)). The volume fraction of the mineral platelets 

is defined as Vf =2Lh/[(l+d)2·tan], where h is the height of mineral platelet. Here we assume l=10 

m and d=0.2 m, which are similar to the reported geometric parameters of nacre. [94, 95, 109] 

The lattice angle in each layer is taken as 2°. For these given lattice constants of the unit cell, 

the first Brillouin zone can be constructed accordingly (see Figure 4.14 (d)). The mineral platelets 

and the organic matrix are assumed isotropic and linearly elastic. Their properties are characterized 
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by, Young's modulus Em =100 GPa, Poisson's ratio m =0.30, and density m =2950 kg/m3 for 

mineral platelets; Young's modulus Eo =20 MPa, Poisson's ratio o =0.30, and density o =1350 

kg/m3 for organic matrix. The transmission spectra and phonon dispersion relations are obtained 

by conducting frequency domain analyses and eigenfrequency analyses, respectively. Details 

concerning the numerical simulations can be found in Chapter 2. 

 

Figure 4.14 Schematics of the proposed bio-inspired composites with heterogeneous architecture. 

(a) A scanning electron microscope image of the cross-section of the prismatic layer and nacreous 

layer in a Trochus niloticus shell. (b) Heterogeneous architecture of the proposed composite 

consists of two layers, where the normal of the layers is perpendicular to the x-z plane. The 

minerals in the upper layer are oriented in the y-direction while the mineral platelets in the lower 

layer are oriented in the x-direction. (c) Idealized 2D representative of the proposed heterogeneous 

composite architecture. (d) Unit cell for the calculation of the phononic dispersion relation and (e) 
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the corresponding first Brillouin zone. The lattice constants are given by a1 = [(l+d)/2, 

tan∙(l+d)/2] and a2 =[(l+d)/2, -tan∙(l+d)/2], where l is the length of the mineral platelet, d is the 

thickness of the organic matrix and is one half of the lattice angle. h is the height of mineral 

platelet.  

4.4.2 Broadband vibration mitigation 

Figure 4.15 (a) shows the transmission spectrum of the proposed heterogeneous composite, where 

the volume fractions of the mineral platelets in the lower layer and the upper layer are set to 0.70 

and 0.90, respectively, mimicking those in typical structural biological materials. Multiple 

attenuation zones within 46~285 MHz are observed in the transmission spectrum as compared to 

the transmission spectrum of the bulk mineral. To gain an intuitive understanding of these multiple 

attenuation zone formations, we calculate the transmission spectrum of each constituent layer, as 

shown in Figure 4.15 (b) and (c). The resulting attenuation zones of the lower layer mostly lie 

within 46~179 MHz, while the attenuation zones of the upper layer appear within 104~285 MHz. 

Note that the bandwidths of the attenuation zones in each constituent layer are narrower than those 

of the heterogeneous composite are. By comparing the frequency ranges of the attenuation zones 

in each layer with those of the heterogeneous composite, we believe that the broadband wave 

attenuation capability results from the direct superimposition of attenuation zones in each 

constituent layer. To demonstrate this, we divide the broadband wave attenuation zones in 

transmission spectrum of the heterogeneous composite into three regions, which are regions I 

(f=46~96 MHz), II (f=104~179 MHz), and III (f=207~285 MHz), respectively. By comparing these 

regions with the attenuation zones of each constituent layer, we can conclude that region I and III 

mainly result from the attenuation zones in the lower and upper layer, respectively. However, the 

enhanced attenuation zones in region II are attributed to the direct superimposition of those in both 
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lower and upper layer. If the frequency is normalized by 2 tfa c   where a=10μm is the lattice 

constant and ct =75.5 m/s is the transverse velocity of the matrix phase, the widths of attenuation 

zones in region I, II, and III are 1.05, 1.58, and 1.64, respectively. These findings indicate that 

broadband and enhanced wave attenuation capability can be readily achieved by designing the 

heterogeneous composites with two distinct constituent layers, leading to direct enhancements in 

vibration mitigation.  

 

Figure 4.15 Transmission spectrum of the proposed heterogeneous composites. (a) Transmission 

spectrum of the proposed heterogeneous composite (the blue line), which is divided into three 

regions I, II, and III, and transmission spectrum of the bulk mineral (the red line). (b)-(c) 
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Transmission spectrum of the lower layer and upper layer, respectively. The insets show the 

schematics of the heterogeneous composite and its lower and upper layer. 

To qualitatively show the broadband wave attenuation capability of the proposed 

heterogeneous composite, we plot in Figure 4.16 the total displacement field of the heterogeneous 

composite at incident frequencies below the attenuation zones and within regions I, II and III, 

respectively. At the frequency f=25.8 MHz, below the attenuation zones, the incident wave can 

pass through the heterogeneous composite without decay. Interestingly, when the incident 

frequency, f=79.8 MHz, lie within region I, the incident wave passes through the upper layer 

without decay, whereas it is totally reflected by the lower layer. This observation is consistent with 

our finding that the attenuation zones within region I are attributed to the lower layer. When the 

incident frequencies, f=127.4 MHz and f=236.2 MHz, lie within region II and III, respectively, the 

incident wave is mostly reflected by the upper layer, indicating that the proposed heterogeneous 

composite can mitigate vibration more effectively. 

 

Figure 4.16 Total displacement field of the proposed heterogeneous composite under different 

incident wave frequencies. (a) f=25.8 MHz, below the attenuation zones, (b) f=79.8 MHz, within 
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region I, (c) f=127.4 MHz, within region II and (d) f=236.2 MHz, within region III. The total 

displacement is calculated as the magnitude of overall displacement vector with horizontal and 

vertical components at each material point. 

4.4.3 Physical mechanisms of the attenuation zones 

To gain insight into the physical mechanisms responsible for the broadband attenuation zones of 

the heterogeneous composite, phonon dispersion relations need to be constructed. The proposed 

heterogeneous composite as a whole is not periodic; however, each constituent layer indeed is a 

two-dimensional periodic structure. In this regard, the phonon dispersion relation of each layer can 

be calculated accordingly, as shown in Figure 4.17 (a) and (b). Notice that the elastic wave incident 

normally on the top surface of the heterogeneous composite corresponds to wave propagation 

along Yand X directions for the lower and upper layer, respectively. The partial band gaps 

along Yand X directions in the phonon dispersion relations agree well with the attenuation 

zones in the transmission spectrum of each constituent layer. By superimposing the partial band 

gaps along these two directions, we can obtain broadband attenuation zones, which are consistent 

with those in Figure 4.15 (a). This result further confirms our claim that the broadband wave 

attenuation capability of the heterogeneous composite is achieved by directly superimposing the 

attenuation zones in each constituent layer.  
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Figure 4.17 Phononic dispersion relation for each layer of the heterogeneous composites. (a)-(b): 

The phonon dispersion relation of the lower layer and upper layer, respectively; (c)-(d) typical 

eigenmodes on the edges of band gaps in the lower layer and upper layer. The volume fractions of 

mineral platelets in the lower and upper layer are set to 0.70 and 0.90, respectively. 

Here the band gaps corresponding to attenuation region I, II and III are taken as examples to 

reveal the physical mechanisms of band gap formation. As previously predicted, the first two band 

gaps in each layer are due to Bragg scattering. [86] This is also supported by the typical 

eigenmodes on the lower and upper edges of the band gaps, as shown in Figure 4.17 (c) and (d). 

By contrast, some of the band gaps in the constituent layers, e.g., the ones pinned by point c, d and 
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g, h, are believed to result from local resonances. This observation is supported by the distinctive 

feature that the band gaps are bounded by flat bands, indicating that zero group velocity exists and 

hence the energy flow is prohibited. [18, 22, 78, 110] To give a better understanding of the local 

resonance effect, we plot in Figure 4.17 (c) and (d) the eigenmodes on the flat bands of the band 

gaps in lower and upper layers, respectively. The displacement field of each mode is totally 

localized in the soft organic matrix, preventing the elastic wave propagation. These characteristics 

indicate that the resulting band gaps are attributed to local resonances. Having determined the 

physical mechanisms of band gap formation in each layer, we are able to identify the mechanisms 

of superimposed attenuation region I, II and III in the heterogeneous composite, respectively. In 

short, the resulting broadband wave attenuation capability can be attributed to Bragg scattering 

and/or local resonances, depending on the mechanisms of the band gaps in each constituent layer. 

4.4.4 Effects of mineral platelet orientation and concentration 

Through millions of years’ evolution, biological materials have optimized their shapes to handle 

external multidirectional loading conditions, whereby the biological materials exhibit enhanced 

site-specific mechanical properties. [47, 48, 106, 111-113] Importantly, this naturally widespread 

phenomenon has provided inspiration for researchers to produce heterogeneous composites with 

controlled reinforcement orientation and concentration. [46] We expect the proposed 

heterogeneous composites still exhibit broadband wave attenuation capability when the local 

orientation and concentration of the mineral platelets are rationally tailored to deal with external 

mechanical stimuli. To this end, we examine the effect of mineral platelet orientation and mineral 

platelet concentration on the transmission spectra of the proposed heterogeneous composites. 

Figure 4.18 shows the effect of mineral platelet orientation in the upper layer changing from 0° to 

90° while remaining the same for the lower layer. Notice that the original broadband attenuation 
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zones persist when the angle is rotated from 0° to 15°. When the alignment angle reaches 45°, 

additional attenuation zones arise around 195 MHz. Remarkably, multiple additional attenuation 

zones arise between 180 MHz and 208 MHz when the alignment angle reaches to 75° and 90°. It 

should be noted that the wave attenuation capability is progressively enhanced with the increase 

of the alignment angle from 0° to 90°. These results indicate that the proposed heterogeneous 

composites can maintain the broadband wave attenuation capability when the mineral platelet 

orientation is locally manipulated. 
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Figure 4.18 Effect of mineral platelet orientation in the upper layer on the wave attenuation. 

(a)0°, (b)15°, (c)45°, (d)75°, and (e)90°. The mineral platelets in the upper layered 
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are rotated by in the counterclockwise direction. The volume fractions of mineral platelets in the 

lower layer and upper layer are set to 0.7 and 0.9, respectively. 

Next, the effect of local mineral platelet concentration of the proposed heterogeneous 

composites on the wave attenuation capability will be explored. The mineral platelet concentration 

in the lower layer is varied from 0.50 to 0.90, while that in upper layer remains 0.90. Figure 4.19 

shows the effect of mineral platelet concentration in the lower layer on the wave attenuation 

capability. When the volume fraction is increased from 0.50 to 0.70, the bandwidths of the 

attenuation zones stay the same. However, the attenuation zones below 96 MHz tend to gradually 

disappear when the volume fraction is increased to 0.80 and 0.90. This is because the attenuation 

zones of the lower layer tend to shift towards higher frequency ranges and to mostly overlap with 

those in the upper layer when the mineral platelet concentration in the lower layer is increased to 

that in the upper layer. This finding suggests that a contrast between mineral platelet concentrations 

of the two constituent layers is essential to maintain the broadband wave attenuation capability.  
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Figure 4.19 Effect of mineral platelet concentration in the lower layer (Vfl) on the wave 

attenuation. (a)Vfl0.50, (b)Vfl0.60, (c)Vfl0.70, (d)Vfl0.80, and (e)Vfl0.90. The volume 

fraction of mineral platelets in the upper layer is set to 0.90. 
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4.4.5 Discussion 

The existence and robustness of broadband wave attenuation capability have been demonstrated 

in the bio-inspired heterogeneous composites. It is shown that the broadband attenuation zones in 

the heterogeneous composites are achieved by directly superimposing the attenuation zones in 

each constituent layer. It should be pointed out that the constituent layers of the proposed 

heterogeneous composites in this work are bases on the biological structural composites with high 

mechanical performance. The stiffness and strength contour maps of the constituent layers as a 

function of the aspect ratio and the volume fraction of mineral platelets were plotted in Figure 

4.20. Note that each constituent layer of the proposed heterogeneous architecture has considerable 

stiffness and strength. In addition, the bio-inspired heterogeneous architecture with mineral 

platelets oriented out-of-plane in the upper layer and in-plane in the lower layer enables the unusual 

combination of hardness, flexural modulus, and fracture toughness. [46-48, 50, 52, 111-113] 

However, a systemic investigation into the mechanical properties of the composite architecture is 

beyond the scope of this study. The broadband vibration mitigation capability combining the 

notable mechanical performance of the proposed heterogeneous architecture makes it particularly 

suitable for vibration mitigation and impact resistance in hostile environments, such as for deep 

water applications. 
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Figure 4.20 Mechanical properties of the proposed heterogeneous composite. (a) Stiffness (E) and 

(b) strength (th) contour maps of each constituent layer of the proposed heterogeneous composite.  

The stiffness and strength as a function of aspect ratio and volume fraction of mineral platelets are 

predicted by the shear lag model. [41, 102] The regions surrounded by the red ellipses in (a) and 

(b) indicate the stiffness and strength of the constituent layers of the proposed heterogeneous 

composites, respectively. 

In general, a few approaches have been proposed to improve the wave attenuation capability 

of composite materials, including topological optimization, [88] introduction of fractal 

microstructures, [114] and external mechanical loading. [89, 115]. In this study, however, 

broadband attenuation zones are achieved by simply stacking two layers mimicking the 

heterogeneous architectures of structural biological materials. This flexible approach also endows 

the proposed heterogeneous composites with mechanical performance as compared to those 

achieved by other approaches. It should be pointed out that improved wave attenuation capability 

and enhanced mechanical properties can be simultaneously achieved by introducing multilevel 

structural hierarchies in one-dimensional layered composites. [27] However, the resulting 

broadband attenuation zones are undermined and do not directly result from the superposition of 
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those in each structural level, because the moduli are reduced and the structural periodicities are 

interrupted at higher levels. This phenomenon is more prominent in two-dimensional multilevel 

hierarchical composites. 

It is revealed that the attenuation zones in the proposed heterogeneous composites are 

attributed to Bragg scattering and/or local resonances. Besides dictating the band gaps of the 

heterogeneous composites, these physical mechanisms also contribute to the outstanding 

mechanical properties of structural biological composites. [116] Hypothetically, the multiple 

scattering and localization of elastic wave can control the interaction of elastic energy among 

locally high-stress regions. As a result, more elastic energy will be dissipated by the soft organic 

matrix, and hence enhanced fracture toughness can be achieved. To some extent, this further 

supports our claim that broadband vibration mitigation and enhanced mechanical performance can 

be simultaneously achieved in the proposed heterogeneous composites. It should be noted that the 

material properties of the constituents, such as Young’s modulus and Poisson’s ratio, can have a 

great impact on the size of band gaps. [86] Therefore these parameters can be further utilized to 

tune the band gaps.  

It is also shown that the original broadband attenuation zones will be maintained and additional 

attenuation zones will arise when the mineral platelet orientation in the upper layer is rationally 

manipulated. Importantly, a contrast between mineral platelet concentrations of each constituent 

layer is essential to generate broadband vibration mitigation. Indeed, manipulating local 

characteristics of heterogeneous architectures to handle externally mechanical challenges is 

prevalent in structural biological composites. For example, synthetic composites with locally 

tunable orientation and concentration of reinforcements have been recently reported. By coating 

the reinforcements with a minimal concentration of superparamagnetic nanoparticles, the 
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orientation and concentration of the coated reinforcements can be remotely controlled using an 

ultralow magnetic field. [46, 117, 118] These progress provide a flexible approach to precisely 

tailor the local characteristics of the proposed heterogeneous architecture, suggesting the 

possibility to design optimal multifunctional composites with improved wave attenuation 

capability and mechanical performance simultaneously. 

4.5 Conclusions 

In summary, the effects of hierarchy and heterogeneity of bioinspired architected metamaterials 

on the vibration mitigation have systematically investigated in this Chapter. Multiple band gaps 

and passbands arise in the proposed hierarchical composites with two levels of hierarchy. 

Remarkably, the low-frequency band gaps, akin to the subwavelength characteristic of acoustic 

metamaterials, are attributed to the periodic arrangement of mineral and organic phases at the 

second hierarchical level. By contrast, the band gaps and passbands in high-frequency ranges 

correspond to the waveguide modes, enabling the incident wave can be either well trapped inside 

the waveguides or efficiently transmit through the waveguides. These features enable the design 

of compact and lightweight wave filters and waveguides operating in an ultrawide frequency 

range. Notably, the hierarchical architectures with multilevel structural hierarchies also endow the 

proposed composites with enhanced strength and toughness, which are highly desirable for 

phononic crystals under mechanically challenging environmental conditions. The findings in this 

chapter not only provide us a better understanding of the mechanisms accounting for the multiband 

features of bio-inspired hierarchical composites but also offer new opportunities towards the 

design of compact and mechanically robust phononic crystals with capabilities to effectively 

manipulate wave propagation. 
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It is also reported broadband vibration mitigation capability in the bio-inspired heterogeneous 

composites that are based on the biological structural composites with high mechanical 

performance. Broadband wave attenuation capability is achieved by directly superimposing the 

attenuation zones in each constituent layer. Physical mechanisms, including Bragg scattering and 

local resonances responsible for the attenuation zones, have been identified by studying the phonon 

dispersion relation of each layer. The investigation into the effect of local characteristics of the 

heterogeneous composites on attenuation capability indicates that the broadband wave attenuation 

capability will be maintained, if a contrast between mineral platelet concentrations exists. The 

current study not only provides a better understanding of the dynamic response of bio-inspired 

heterogeneous composites but also opens new avenues to design optimal multifunctional 

composites for broadband vibration mitigation and impact resistance under mechanically 

challenging environmental conditions. 
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CHAPTER 5. LIGHTWEIGHT YET STIFF LATTICE METAMATERIALS FOR 

BROADBAND AND MULTIBAND VIBRATION CONTROL 

 

 

5.1 Introduction 

In previous Chapters, it has been demonstrated that broad and multiple phononic band gaps can be 

achieved 3D and 2D architected composites. Importantly, these architected composites also have 

excellent mechanical performance, including high strength, stiffness, and energy absorption. These 

unusual mechanical performances and vibration mitigation capability make the architected 

composites particularly useful in mechanically challenging environmental conditions. However, 

in aerospace engineering, lightweight is another important criteria that limit the applications of 

conventional materials. In this regard, lattice materials with different coordinate numbers, such as 

hexagonal lattice, kagome lattice, and triangular lattice, have been widely deployed due to their 

lightweight, novel thermomechanical properties, and energy absorption capability. In this Chapter, 

a new type of lattice materials will be proposed, where lightweight, vibration mitigation, and 

excellent mechanical performance can be simultaneously achieved.  

The structural hierarchy has been employed as an important strategy to explore improved 

mechanical properties and other unusual physical properties. Typical examples range from Eiffel 

tower to hierarchically architected nano truss with multiple length scales. [54-56] Recent studies 

show that it is possible to manipulate wave propagation by harnessing multiscale characteristic of 

hierarchical architectures. [27, 57, 58] These rationally designed hierarchical architectures can 

give rise to multiple and broadband phononic band gaps as well as low-frequency band gaps. In 



 

74 

 

addition, these hierarchical architectures also enable the coexisting of multiband wave filtering 

and waveguiding in an ultrawide frequency range. [119] 

Despite these considerable efforts, challenges remain. For example, to achieve the desired 

wave attenuation, soft materials using thermally coupled dissipation mechanism are often 

employed in engineering practice. As a result, the wave attenuation capability strongly depends on 

the thickness of the materials, thus posing a great challenge to design lightweight and stiff materials 

with strong wave attenuation ability. Furthermore, conventional phononic crystals with periodic 

architectures can only provide limited frequency band gaps since the Bragg interference requires 

that the wavelength must be comparable to the given structural periodicity. To overcome the 

bandwidth limitation, numerical approaches such as topology optimization have been developed 

to maximize the band gap size. [120, 121] It is worth noting that the objective function of this 

approach is to maximize a single band gap size, and the resultant architectures are still spatially 

periodic. Lightweight and stiff phononic crystals with broadband and multiband wave attenuation 

ability remain unrealized. 

Recently, inspired by the observation that many biological materials have developed multilevel 

of structural hierarchy enabling the combination of unusual mechanical properties to protect 

against environmental threats, researchers have introduced structural hierarchy into the 

conventional lattice materials. [122-127] For example, by replacing the cell walls of regular 

honeycombs with kagome and triangular lattices, it is theoretically demonstrated that the stiffness 

of the hierarchical honeycombs is increased by about two orders of magnitude as compared to that 

of regular honeycombs. [125]  
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Here, a hierarchical metamaterial design concept will be proposed, aiming at addressing the 

conflicts between lightweight, mechanical performance, and vibration mitigation. The vibration 

mitigation and mechanical response of the hierarchical honeycombs will be investigated using the 

finite element method. The introduction of structural hierarchy in regular honeycombs gives rise 

to multiple and broad phononic band gaps. More important, the proposed hierarchical honeycombs 

also exhibit enhanced mechanical properties, thereby providing opportunities to design architected 

materials with simultaneous improvement in lightweight, vibration mitigation, and load-carrying 

capacity. 

5.2 Characterization of the hierarchical honeycombs 

The proposed hierarchical architectures are constructed by replacing the cell walls of the regular 

honeycombs with hexagonal, kagome, and triangular lattices, respectively (referred to as 

hexagonal, kagome, and triangular hierarchical honeycombs for simplicity in the following, Figure 

5.1 (a)-(e)). For the purpose of fair comparison, kagome, and triangular hierarchical honeycombs 

are subsequently obtained by connecting the midpoints and vertices of the hexagonal lattice, 

respectively. The proposed hexagonal hierarchical honeycombs are characterized by two 

geometric parameters, hierarchical length ratio, 0hl l  , and the number of hexagonal lattices 

away from the central axis, N, where l0 and lh are the lengths of cell walls of regular honeycomb 

and hexagonal lattice, respectively (Figure 5.1). The length and thickness of the hexagonal, 

kagome and triangular lattices are determined by mass equivalence between regular honeycombs 

and hierarchical honeycombs. For hexagonal hierarchical honeycombs, the mass equivalence gives 

2 2
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0 0 3

2 3 2 3

h
h h

t t
t l P t l

 
   

 
                                                                                                      (5.1) 
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where t0 and th are the cell wall thickness of regular honeycomb and hexagonal lattice, respectively; 

P is the number of a hexagonal lattice with one-half thickness and is determined by  and N. 

As a result, the thickness and length of the hexagonal lattice can be calculated as   
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                         (5.2) 

Similarly, the thickness and length of kagome lattice and triangular lattice are given by 
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                      (5.4) 

where tk and lk are the thickness and length of cell walls of kagome lattice; tt and lt are the thickness 

and length of cell walls of a triangular lattice, respectively; Q and R are the numbers of kagome 

and triangular lattices, respectively.  

The composition of the regular honeycombs and hierarchical honeycombs is a glassy polymer, 

SU-8, whose properties are characterized by Young’s modulus Es=3.3 GPa, Poisson’s ratio 

=0.33, a yield stress y =105 MPa, and density s=1200 kg/m3. [71]  
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Figure 5.1 Schematics of the proposed hierarchical honeycombs. (a) Regular honeycomb and 

hierarchical honeycombs. Here a1=( 03 2l , 03 2l ), a2=( 03 2l , 03 2l ) are lattice constants; l0 and 

t0 are the length and thickness of cell walls. The dash lines indicate the supercells; (b) schematics 

of cell walls of regular honeycombs hexagonal, kagome, and triangular hierarchical honeycombs, 

respectively.  

5.3 Numerical modeling 

5.3.1 Bloch wave analysis for infinite periodic structures 

5.3.1.1 Calculation of the Brillouin zone 

The unit cells of the proposed hierarchical architectures can be described by two lattice vectors, 

a1=( 03 2l , 03 2l ), a2=( 03 2l , 03 2l ) (Figure 5.2 (a)). Then the reciprocal lattice primitive 

vectors can be calculated as  
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By connecting the perpendicular bisectors of the reciprocal lattice, the corresponding Brillouin 

zone can be constructed (Figure 5.2 (b)). [59] Due to the presence of the rotation and mirror 

symmetries of the unit cells, the first irreducible Brillouin zone (shaded gray polygon) is 

considered in the phononic dispersion relations simulation. 

 

Figure 5.2 The first irreducible Brillouin zone for hierarchical honeycombs. (a) Regular 

honeycomb. Here a1=( 03 2l , 03 2l ), a2=( 03 2l , 03 2l ) are lattice constants; l0 and t0 are the 

length and thickness of cell walls. (b) The associated first Brillouin zone, where = (0, 0), M= (

02 3l , 0), and K= ( 02 3l , 02 3 9l ).  

5.3.1.2 Calculation of phononic dispersion relations 

Details concerning the modeling of phononic dispersion relations and wave transmission can be 

found in Chapter 2. 

5.3.2 Micromechanical modeling of periodic structures 

5.3.2.1 Material behavior of SU-8 

The material properties of SU-8 were determined from the experimentally obtained uniaxial stress-

strain relation. [128] The measured stress-strain behavior is shown in Figure 5.3. The properties 

of SU-8 are characterized by Young’s modulus Es=3.3 GPa, Poisson’s ratio =0.33, a yield stress 
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y  =105 MPa, and density s=1200 kg/m3. The true stress-true strain relation is implemented as 

the constitutive equation for the mechanical behavior simulations. 

 

Figure 5.3 Measured stress-strain relation of SU-8. The strain rate is 0.01/s. 

5.3.2.2 Implementation of periodic boundary conditions 

To study the mechanical response of periodic structures, as long as no microscopic bifurcation 

happens, modeling on a smallest repeating representative volume element (RVE) together with 

periodic boundary conditions is computationally efficient. When the RVE is subjected to a 

macroscopic deformation gradient, F, periodic boundary conditions are applied on the sides of 

RVE such that [129, 130] 

               B A B A B Au -u = F - I X - X = H X - X ,                    (5.6) 

where A and B are two points periodically located on the two sides of the RVE; u denotes 

displacement, X denotes the position in reference configuration, F is the deformation gradient 

tensor, and H=F-I is the macroscopic displacement gradient tensor (Figure 5.4). Note that for the 

plane strain problem in this work, the displacement gradient is reduced to a 2×2 matrix 
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Figure 5.4 Schematic illustration of periodic boundary conditions on the representative volume 

element of the triangular hierarchical honeycomb. (a) Undeformed and (b) deformed states. Here 

A and B are two points periodically located on the two sides of the RVE. 

To evaluate the macroscopic mechanical response of the hierarchical honeycombs, we use the 

principle of virtual work, 

int extW W  ,                                                                                                                               (5.8) 

The external virtual work, 
extW , can be written as  

       
0 0

ext

0 0 0 0
S S

W dS dS      P X n u X t X u X ,                                                            (5.9) 

where P is the local first Piola-Kirchhoff stress tensor, n0 is the outward unit vector normal to the 

surface area, S0, in the reference configuration. u  and t0 are the virtual displacement and surface 

traction in the reference configuration, respectively. The macroscopic first Piola-Kirchhoff stress, 

P , can be calculated as 

 
0

0

0

1

V
dV

V
 P P X ,                                                                                                                   (5.10) 

where V0 is the volume of the representative volume element in the reference configuration. 
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The internal virtual work, 
intW , is given by 

 
0

int

0 0( )
V

W dV V      P X F X P F ,                                                                                    (5.11) 

Combining equation (5.8), (5.9), and (5.11), we have 

   
0

0 0
S

V dS   P F t X u X ,                                                                                                  (5.12) 

As a result, the macroscopic first Piola-Kirchhoff stress is a function of surface traction. 

In finite element implementation, the components of F assigned to the RVE model by 

introducing two reference nodes with four generalized degrees of freedom, i  , 
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Then the external virtual work can be restated as 

4
ext
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i i
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W 


  ,                                                                                                                        (5.14) 

where i  are the reaction forces associated with the assigned displacement i . By using equation 

(5.11) and (5.14), macroscopic first Piola-Kirchhoff stress can be identified as 
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.                                                                                                      (5.15) 

Note that in all of the mechanical simulations, 4-node bilinear plane strain quadrilateral 

elements are adopted and mesh size effect has been studied to ensure the better convergence. 

5.4 Results and discussion 

5.4.1 Broadband and multiband features 

We start by examining the phononic dispersion relations of hierarchical honeycombs with =1/5, 

N =1, and relative density /s =0.06. For the purpose of comparison, phononic dispersion relation 
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of the associated regular honeycomb is also reported. For the regular honeycomb, we only observe 

one narrow band gap at =0.059-0.061 (Figure 5.5 (a)). By contrast, the introduction of structural 

hierarchy in the regular honeycombs leads to much broader band gaps (Figure 5.5 (b)-(d)). 

Specifically, the maximum band gaps in hexagonal, kagome, and triangular hierarchical 

honeycombs are =0.047-0.079, =0.108-0.133, and =0.064-0.078, respectively. In addition, 

the introduction of structural hierarchy also gives rise to multiple band gaps, as shown in the 

phononic dispersion relations. To gain a deeper understanding, we plot the eigenmodes of the high-

symmetry points , M , and K at the lower band edges of the band gaps (Red lines in Figure 5.5). 

For hexagonal and kagome hierarchical honeycombs, the vibrational modes of the high-symmetry 

points exhibit a global nature, indicating a Bragg-type band gap. Interestingly, localized vibrational 

modes are observed for the triangular hierarchical honeycombs, suggesting that local resonances 

are responsible for the broad band gaps. [22-24, 78] This is also supported by the flat band edge 

of the band gaps. A direct comparison between the geometric features of the regular honeycomb 

and hierarchical honeycombs leads us to believe that different mechanisms of band gaps formation 

are intrinsically dictated by the slenderness ratio and coordination number of the lattice. It should 

be pointed out that damping effect resulting from the viscoelastic feature of the glassy polymer 

may contribute to the wave attenuation. [131] However, recent experimental results indicate that 

the damping effect will not swamp the band gaps in the phononic dispersion relations. [132] 
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Figure 5.5 Phonon dispersion relations of regular and hierarchical honeycombs. (a) Regular 

honeycomb; (b)-(d) hexagonal, kagome, and triangular hierarchical honeycombs, respectively. 

Eigenmodes of the high-symmetry points , M , and K  at the lower band edges of the band gaps 

are also plotted. Here  = (0, 0), M = ( 02 3l , 0), and K = ( 02 3l , 02 3 9l ). The normalized 

frequency is defined as 2 ta c   , where  is frequency, a is the length of lattice constant, ct 

is the transverse wave velocity of the constituent material. The legends indicate the amplitude of 

normalized displacement. Here =1/5, N=1, and relative density /s=0.06 

Having demonstrated that the broadband and multiple band gaps are dictated by the slenderness 

ratio and coordination number, we now examine effects of two geometric parameters,  and N, on 

the evolution of band gaps. Note that for a given relative density and a type of hierarchical 
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honeycomb, the slenderness ratio of the lattice is uniquely controlled by and N. Here we consider 

the case that the relative density /s=0.16 for the hierarchical honeycombs to ensure that the cell 

walls of each lattice have considerable thickness at large N. To quantitatively evaluate the wave 

attenuation capability of the hierarchical honeycombs, we define two indicators to consider the 

broadband and multiband features: maximum relative band gaps,  
max

   and total relative 

band gaps,    , where   is band gap width and 
 is the midgap frequency. As shown 

in Figure 5.6, both the maximum band gaps and total band gaps tend to diminish for 2N  . On 

one hand, for a given relative density, larger N indicates more substructures and larger slenderness 

ratio. While for wave propagation in lattice structures, slenderness ratio is critical to the band gaps 

formation. [133] On the other hand, with the increase of N, the effect of structural hierarchy 

becomes weaker. At the maximum N, all hierarchical structures reduce into regular lattice 

materials, which don’t have or only have small band gaps, depending on the slenderness ratio and 

node connectivity. [133, 134] For a given 2N   , the maximum band gaps and total band gaps tend 

to decrease when the hierarchical length ratio decreases from 1/2 to 1/11. The maximum band gaps 

and total band gaps of regular honeycombs are also plotted in Figure 5.6 for the purpose of 

comparison (=1). We observe that hierarchical honeycombs with =1/2 exhibit comparable or 

larger maximum band gaps, whereas the total band gaps strongly depend on the shape of the lattice 

when compared with that of the regular honeycomb. These quantitative analyses not only support 

our conclusion concerning the mechanisms underlying the band gap formation but also provide 

clues to design phononic crystals with desired wave attenuation capability. 
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Figure 5.6 Effects of hierarchical length ratio and number of lattice on the evolution of maximum 

band gaps and total band gaps. (a)-(c) Maximum band gaps in hexagonal, kagome, and triangular 

hierarchical honeycombs, respectively; (d)-(f) total band gaps in hexagonal, kagome, and 

triangular hierarchical honeycombs, respectively.   is band gap width and   is the midgap 

frequency. Here the relative density is /s =0.16. 

To demonstrate the potential of designing lightweight phononic crystals, a quantitative 

investigation is carried out to examine the effect of relative density on the band gap evolution 

(Figure 5.7). Here we choose =1/5 and N=1, and /s =0.06~0.32. Noticeably, both the maximum 

band gaps and total band gaps are inversely proportional to the relative density. For the maximum 

band gaps, hierarchical honeycombs show much smaller exponents than that of regular 

honeycombs, indicating that hierarchical honeycombs can be potentially designed with light 
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weight. For the total band gaps, we note that hexagonal and triangular hierarchical honeycombs 

exhibit smaller exponents. Although the exponent of kagome hierarchical honeycomb is larger 

than that of regular honeycomb, an inverse relation between total band gaps and relative density 

still can be observed. 

 

Figure 5.7 Effects of relative density on maximum band gaps and total band gaps. (a) Maximum 

band gaps and (b) total band gaps of regular and hierarchical honeycombs. Here and N=1. 

The solid lines represent the numerical data fitting using scaling law. 

5.4.2 Enhanced mechanical properties of hierarchical honeycombs 

It has been demonstrated that hierarchal honeycombs can have improved mechanical properties. 

To further explore the possibility to design phononic crystals with relatively high stiffness, we 

numerically examine the mechanical response of the proposed hierarchical honeycombs under 

uniaxial compression. A constitutive stress-strain behavior of the glassy polymer SU-8 together 

with a periodic representative volume element of each regular and hierarchical honeycomb is 

employed to predict the mechanical response. [71, 128] 
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Figure 5.8 (a) reports the mechanical response of the hierarchical honeycombs with =1/5 and 

N =1, and /s =0.06 under uniaxial compression up to 10% macroscopic strain. For the regular 

honeycomb, we observe a typical stress-strain relation including an initial linearly elastic regime 

and a following non-linear trend induced by plastic deformation. As compared to the regular 

honeycomb, hexagonal hierarchical honeycomb exhibits a very similar response, but a slightly 

lower stress-strain curve, indicating a comparable stiffness. For kagome and triangular hierarchical 

honeycombs, the stress increases rapidly with the strain followed by higher yield/buckling stress, 

indicating much higher stiffness. The highly nonlinear behavior of hierarchical honeycombs is 

dictated by local buckling of the cell walls together with the plastic deformation of SU-8. 

Importantly, these deformation mechanisms will endow hierarchical honeycombs with enhanced 

energy absorption capacity. It should be emphasized that hierarchical honeycombs can be 

constructed by replacing each vertex of regular honeycombs with a smaller self-similar hexagon. 

[135] In this case, broad and multiple band gaps can be retained, the stiffness, however, will be 

significantly sacrificed.  

Figure 5. 8 (b) shows the stiffness of the hierarchical honeycombs at relative density range /s 

=0.06~0.32. For the regular honeycombs, the simulated stiffness agrees well with predictions from 

linear elastic theory, [136] indicating that our numerical framework can accurately predict the 

mechanical response of the regular honeycombs. Hexagonal hierarchical honeycombs have 

comparable yet slightly lower stiffness than that of regular honeycomb. Notably, kagome and 

triangular hierarchical honeycombs show significantly improved stiffness. For example, at a low 

relative density (/s=0.06), kagome and triangular hierarchical honeycombs exhibit an improved 

stiffness by nearly one and two orders of magnitude as compared to the regular honeycomb and 

the hexagonal hierarchical honeycomb, respectively. We fit the stiffness as a function of relative 
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density using a scaling law,  
n

h s sE E C    , where hE and sE are the stiffness of 

hierarchical honeycombs and solid constituent material SU-8, respectively, C is geometry-

dependent proportionality constant, and n is the scaling exponent. As a result, the scaling 

exponents for regular honeycomb, hexagonal, kagome, and triangular hierarchical honeycombs 

are 2.97, 2.69, 1.70, and 1.13, respectively, indicating that regular honeycomb and the hexagonal 

hierarchical honeycomb exhibit a bending-dominated deformation behavior, whereas kagome and 

triangular hierarchical honeycombs have a stretching-dominated deformation behavior. 

Intrinsically, the discrepancy between the bending-dominated and stretching-dominated behavior 

is governed by the geometric features of the lattice, i.e., slenderness ratio and coordinate numbers. 

5.4.3 Design stiff and lightweight phononic crystals 

By combing the simulated stiffness and band gaps of the hierarchical honeycombs with different 

relative densities, we obtain the Ashby-type plots of specific modulus versus maximum band gaps 

and total band gaps, as shown in Figure 5.8 (c) and (d), respectively. Compared with the regular 

honeycombs, hexagonal hierarchical honeycombs retains comparable specific modulus but 

broader and multiple band gaps. Remarkably, kagome and triangular hierarchical honeycombs can 

achieve specific stiffness that are 40~60 times higher while having similar maximum band gaps 

and total band gaps, compared with that of regular honeycombs. From a practical perspective, the 

proposed hierarchical honeycombs have great potential applications in areas where lightweight, 

wave attenuation, and load carrying capacity are simultaneously desired.  
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Figure 5.8 Mechanical response of the hierarchical honeycombs and their applications in 

multifunctional design. (a) Stress-strain relations of regular honeycomb and hierarchical 

honeycombs compressed along y direction; (b) Relations between stiffness and relative density of 

regular honeycomb and hierarchical honeycombs; (c) and (d): Ashby-type plots of specific 

modulus and maximum band gaps and total band gaps. Eh and Es are Young’s modulus of 

hierarchical honeycombs and constituent material SU-8, respectively. Here and N=1. 

5.5 Conclusions 

In summary, the numerical analyses in this work provide insights into the effect of structural 

hierarchy on the wave attenuation and load-carrying capabilities. It has been demonstrated that 
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broad and multiple band gaps can be achieved in the proposed hierarchical honeycombs, providing 

that the geometric parameters are rationally selected. In addition, kagome and triangular 

hierarchical honeycombs exhibit improved specific stiffness compared with regular honeycombs. 

The achieved outstanding wave attenuation capability and enhanced mechanical properties are 

attributed to the introduction of the structural hierarchy. Thus the proposed hierarchical 

honeycombs can be termed a new type of metamaterials. The findings reported here will provide 

new opportunities to design lightweight and stiff phononic crystals for various applications 

including underwater wave mitigation in submarines and other structural vibration mitigation in 

defense, aerospace, and automotive industries. 
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CHAPTER 6. LATTICE METAMATERIALS WITH MECHANICALLY TUNABLE 

POISSON’S RATIO FOR VIBRATION CONTROL 

 

 

 

6.1 Introduction 

We have demonstrated that broadband and multiple band gaps can be achieved in architected 

composites and lattice metamaterials. These vibration control properties can be readily tuned by 

tailoring the geometric features, such as volume fraction, to control the vibration in the desired 

frequency ranges. However, this is impractical in engineering practice once the structures are 

installed and fixed. One of the possible solutions is to use external stimuli to dynamically tune the 

band gaps properties. In this chapter, a stretchable lattice metamaterial will be introduced. Broad 

and mechanically tunable phononic band gaps will be numerically demonstrated. 

The proposed lattice materials are built by replacing at the local scale regular straight beams 

with sinusoidally shaped ones, which are highly stretchable under uniaxial tension. Numerical and 

experimental results indicate that the proposed lattices exhibit Poisson’s ratios varying between -

0.7 and 0.5 over large tensile deformations up to 50%. This large variation of Poisson’s ratio values 

is attributed to the deformation pattern switching from bending to stretch within the sinusoidal 

struts. We also show that the proposed lattice materials exhibit broadband vibration mitigation 

capability, which can be dynamically tuned by an external mechanical stimulus. Because of these 

combined unusual properties, the proposed lattice materials show promise for various applications, 

ranging from tunable particle filters to noise and vibration control. 

Metamaterials are rationally designed multiscale material systems whose unusual equivalent 

physical properties are dictated by their architectures rather than compositions. Metamaterials have 
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recently attracted significant interest within the research community because of the need to develop 

various classes of novel properties and broad ranges of potential applications. [63, 137-141] For 

example, metamaterials with artificially designed architectures can exhibit a negative refractive 

index that is unattainable for conventional materials. [142-144] The metamaterial concept has been 

rapidly extended from photonic systems to acoustic, [25, 31, 76, 145] and mechanical systems. 

[146-151] Among them, mechanical metamaterials having a negative Poisson’s ratio (NPR) are of 

particular interest. [63, 152-157] Most materials (both isotropic and anisotropic) exhibit positive 

Poisson’s ratios, however, the existence of negative Poisson’s ratios is still permitted under the 

tenets of the classic theory of elasticity.  

Materials with a negative Poisson’s ratio that will contract (expand) transversally when they 

are axially compressed (stretched) are also called auxetics. [158-166] Auxetic behavior has been 

observed in a variety of natural systems, including cubic metals, [167] zeolites, [168, 169] natural 

layered ceramics, [170] silicon dioxides, [171] single-layer graphene, [172, 173] and 2D protein 

crystals. [174] Following the seminal work of Lakes, [161] a significant body of research work 

has been established to develop materials with a negative Poisson’s ratio. For example, the auxetic 

behavior of materials provides a wrapping effect around a penetrating object when subjected to 

indentation, a feature that may be useful in protective and blast engineering applications. [41, 141, 

175] Several microstructure architectures and deformation mechanisms have been developed to 

obtain the auxetic behavior. Between the various architectures, it is worth to note dimpled and 

perforated elastic sheets, [176] origami/Kirigami-based metamaterials, [152, 177, 178] 

hierarchical metamaterials with fractal cuts [179] and foams [180-184]. Auxetic materials and 

structures are intrinsically multifunctional because of the coupling originated between their 

unusual deformation mechanisms and their multiphysics behavior. For example, piezoresistive 
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sensors with a NPR substrate demonstrate a 300% improvement in piezoresistive sensitivity, 

making them capable of multimodal sensing. [184]  

Most of the theoretical and experimental investigations related to NPR cellular materials are 

focused on microstructure configurations with straight ligament topologies. Recent numerical and 

experimental studies indicate that thin film materials with serpentine microstructures can have 

improved stretchability, owing to the introduced microstructure and small intrinsic strain in the 

materials. [185-188] A non-straight (corrugated) rib configuration for open cell polyurethane 

foams has also recently been considered as a likely explanation for the existence of an unusual 

blocked shape memory effect in auxetic open cell polyurethane foams. [189] Although it has been 

theoretically shown that the auxetic behavior can also be attained in hierarchically architected 

lattice materials with triangular topology, [186] a convincing experimental evidence of the auxetic 

behavior of these materials has not been reported yet. Moreover, no theoretical and numerical 

evidence exist about the performance of engineered auxetic metamaterial lattices with sinusoidally 

(non-straight) ligaments in their microstructure, especially at hierarchical level. The goal of this 

chapter is to investigate the auxetic behavior and vibration control capability of one of these 

materials. 

6.2 Materials and methods 

6.2.1 Description of geometric model 

The architected lattice metamaterials were created by replacing the regular straight beams with 

beams of sinusoidal shape (Figure 6.1).  The geometry is inspired by the observation of the 

buckling modes of a single beam under compression, where short-wavelength buckling mode is 

never preferred for regular lattice materials under macroscopic compression. Numerical and 
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experimental investigation will be performed to study the macroscopic auxetic response of the 

proposed lattice materials. Our results indicate that the Poisson’s ratios can be effectively tuned 

from negative to positive, which is attributed to the deformation behavior of sinusoidal beams 

transiting from bending-dominated to stretching-dominated behavior. It will be further shown that 

this transition phenomenon can be controlled by tailoring the amplitude and wavelength of the 

sinusoidal beams. The proposed lattice metamaterials exhibit significant broad phononic band gaps 

when compared with regular square lattice materials. In particular, these band gaps can be 

dynamically tuned by applying an external mechanical stimulus, like uniaxial stretching in our 

case.  

A schematic of our 2D lattice microstructure with auxetic behavior is illustrated in Figure 6.1 

(a) – (c). The shape of the sinusoidal beams can be mathematically described as  sinny A n x l

, where nA  is the wave amplitude,  n is the number of half wavelength, and l is the length of 

regular straight beams. The length of the sinusoidal beam is given by: 

 
2

2
'

0 0
1 1 cos

l l
nA n n x

s y dx dx
l l

   
      

  
  ,                                                                 (6.1) 

Under the mass equivalence assumption, the width of the sinusoidal beam can be calculated as 

2

0
1 cos

l
nA n n x

w t l dx
l l

   
     

  
 .                                                                                   (6.2) 

where t is the width of regular beams. Then, for a given nA n l , the width of the sinusoidal beam is 

the same for any n. In this work, we focus on structures with volume fraction smaller than 0.1, 

where l/t > 15 for all cases.  
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The proposed lattice materials are fabricated using a multi-material 3D printer (Objet 

Connex260, Stratasys). To ensure the stretchability of the cellular configuration a rubber-like 

material, Shore 95, is taken as the constitutive (core) material for the sinusoidal beams. Figure 6.1 

(d) shows the center area of the specimen, which consists of an array of 4×5 unit cells with 

1 3nA n l  , n=1, 1 20w l   and a representative sequence of images taken at different tensile 

strains. By simple inspection it is evident that at a small initial strain the lattice material expands 

transversally, indicating, therefore, the presence of an auxetic behavior. However, when the 

macroscopic tensile strain increases to 30%, the lattice material starts to contract along the x 

direction. These phenomena suggest that the fabricated 2D lattice materials exhibit auxetic 

behavior and a strain-dependent Poisson’s ratio.  

                          

Figure 6.1 Schematics and deformation behavior of the sinusoidally architected lattice 

metamaterial. (a) Regular square lattice with 2×2 unit cells. Here t and l are the width and length 
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of regular beams. (b) Buckling modes of a single beam under compression. (c) Proposed 

architected lattice materials with 2×2 unit cells with n=1; (d) Deformation behavior of the center 

area consisting of 2×2 unit cells of the architected lattice material under uniaxial tension.  

6.2.2 Mechanical testing 

6.2.2.1 Specimen fabrication  

Lattice materials were fabricated having overall dimensions of 80 mm×150 mm and being 

composed of 4×5 unit cells. Each beam ligament has a thickness of 405 ± 5 m. Two beams were 

also added to the top and bottom of the lattice structures to improve the connection alignment. 

More details concerning 3D printing can be found in Chapter 2. 

6.2.2.2 Tensile testing of the dogbone and lattice specimens 

The experimental setup of the tensile testing is shown in Figure 6.2 (a). Detailed method can be 

found in Chapter 2. 

 

Figure 6.2 Experimental setup of uniaxial tension test. (a) Lattice specimen under uniaxial tension. 

(b) Calculation of Poisson’s ratio. 
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6.2.2.3 Mechanical properties of constitutive material 

The material properties of the Shore 95 rubber-like material were obtained by measuring the 

mechanical response of the 3D printed dogbone specimens. The experimental setup is shown in 

Figure 6.3 (a). Figure 6.3 (b) shows the measured stress-strain curves (true and engineering strain) 

under uniaxial tension. According to ASTM 412, the basic properties of Shore 95 are characterized 

by Young’s modulus of E=5.5 MPa, Poisson’s ratio =0.37, and density =1157 kg/m3. Here 

Young’s modulus is obtained from the measured stress-strain curve of dogbone specimen. The 

density is obtained by averaging the densities of five dogbone specimens. 

 

Figure 6.3 Material properties of the composition in 3D printing. (a) 3D printed dogbone specimen 

under uniaxial tension, (b) Measured stress-strain relation of the dogbone specimen. 

6.2.2.4 Calculation of Poisson’s ratio 

To quantify the deformation taking place in the lattice materials during the experiments, an image 

processing software (ImageJ 1.49q) was used to determine the intersection points in the specimen. 

The deformation near the four edges of the specimen was affected by boundary conditions. 

Therefore we focused on the behavior of nine unit cells in the central part of the specimens to 
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avoid Saint Venant effects from the edges. The intersection points at the corners of the chosen unit 

cells were determined as  , ,,i j i jX Y  in the undeformed and  , ,,i j i jx y  in the deformed state, 

respectively. The row and the column indices vary between 1 4i   and 1 4j  . For each unit 

cell, the horizontal and vertical distances were calculated from the coordinates  , ,,i j i jx y , i.e., 

, , 1 ,i j i j i jx x x    and 
, 1, ,i j i j i jy y y   . Prior to the application of the tensile loading, we 

assessed the deformations in the undeformed state, i.e., 
, , 1 ,i j i j i jX X X    and 

, 1, ,i j i j i jY Y Y  

. A schematic diagram of the central region of the lattice structure under consideration with the 

definitions of 
,i jx ,

,i jy , 
,i jX  and 

,i jY
 
is shown in Figure 6.2 (b). The local homogenized values 

of the engineering strain for each unit cell were determined as: 

, , , , 1xx i j i j i jx X      and 
, , , , 1yy i j i j i jy Y     ,                                                                  (6.3) 

The local values of the engineering strain were then used to calculate local values of the 

incremental Poisson’s ratio as: 

, ,

,

, ,

xx i j

i j

yy i j

v



  .                                                                                                                             (6.4)                                                                                                                                        

Finally, the ensemble average incremental Poisson’s ratio of the nine central unit cells under 

consideration was computed as ,yx i jv v . 

6.2.3 Numerical modeling 

6.2.3.1 Mechanical response simulation 

The numerical simulations related to the mechanical response of the lattice materials are conducted 

using commercial FE package COMSOL Multiphysics. FE models with a finite number of unit 
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cells are investigated in this study. After trade-off studies between CPU costs and edge effects 

provided by the finite number of unit cells, we have used models with 4×5 unit cells in all the 

simulations (Figure 6.4 (a)). To provide a more uniform tensile displacement distribution we have 

intentionally added a rectangular beam-like section with 5 mm width on the top and bottom of the 

finite-size models. Plane strain condition is assumed during the simulations. The models are 

meshed with 6-node triangular elements and 6 elements are generated along the width of the beam 

after a convergence test. 

During all of the simulations, the mechanical response of the constitutive material is modeled 

as nonlinear elastic. We did not specifically fit the experimentally measured data using 

hyperelastic models and did not discriminate between elastic and plastic behavior. Instead, the true 

stress-strain relation from the dogbone is directly exported to COMSOL Multiphysics and 

implemented as the constitutive equation for the core material. In addition, geometric nonlinearity 

is considered to represent the large deformation of the structure. During the simulations, a uniaxial 

displacement loading is applied on the top of the beam, while the bottom is fixed along both the x 

and y directions (Figure 6.4 (a)). 

The postprocessing of the results was focused on the unit cell in the central region only to avoid 

finite size and boundary conditions effects (Figure 6.4). The Poisson’s ratio can be calculated from 

the ratio of the nominal strain in the horizontal edge and vertical edge of the rectangular unit cell. 

Specifically, we first calculated the average displacement components of the four edges, from 

which the strain along horizontal and vertical directions can be calculated as:  

2

R L

x

u u

l



  and 

2

T B

y

v v

l



 ,                                                                                               (6.5) 
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In equation (3) u  and v  indicate the averaged horizontal and vertical displacement 

components respectively; R, L, T, and B denote the right, left, top, and bottom edges of the unit 

cell, (Figure 6.4 (b)). Finally, the incremental Poisson’s ratio is calculated as:  

x
yx

y

v



  .                                                                                                                                  (6.6) 

 

Figure 6.4 FE model for mechanical response simulation. (a) FE model with 4×5 unit cells and 

(b) Rectangular unit cell in the central area of FE model for the calculation of Poisson’s ratio. 

6.2.3.2 Low amplitude wave propagation simulation 

The analysis of the effect of external mechanical stimuli on the vibration mitigation capability 

consists of the following two steps. First, the global structure is uniaxially stretched to the desired 

level of deformation. Still focusing on the central unit cell of the whole lattice as the representative 

unit cell for the corresponding infinitely periodic structure, we have then isolated the deformed 

geometry of this representative unit cell for the wave propagation analysis. Since our focus is on 

the topology of the metamaterial design, the residual stresses in the deformed structure are 

neglected. Secondly, we have conducted the Bloch wave analysis on the deformed unit cell at each 
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level of stretching strain. The wave propagation analysis procedure is the same as that for the initial 

unit cell, except that the first irreducible Brillouin zone needs to be updated for each deformed unit 

cell.  

6.3 Results and discussion 

6.3.1 Auxetic behavior of lattice materials 

Figure 6.5 (a) shows the macroscopic stress-strain relations of three selected specimens under 

uniaxial tension. The Arruda-Boyce hyperelastic model can accurately capture the mechanical 

behavior of the lattice metamaterials. At high strain level, numerical predictions slightly deviate 

from the experimentally measured data. The discrepancy between numerical and experimental data 

is mainly due to the failure of some beam ligaments. When the applied strain is higher than 0.35, 

some beams starts to break, leading to the drop in the stress-strain curves. Since the specimens are 

fabricated layer-by-layer in the 3D printer, anisotropy, porosity, and imperfections are introduced 

during 3D printing, [190, 191] which also play a role. These specific aspects are not taken into 

consideration in our model.  

We find that these structures exhibit J-shaped stress-strain curves, which are very similar to 

the mechanical response of bioinspired soft network composite materials and other stretchable 

electronics. [185-188] However, the stress-strain behavior is different from that of plates with 

rectangular auxetic perforations, which exhibit a softening phenomenon in the tensile stress- strain 

curve for an increasing magnitude of Poisson’s ratio. [175]  Apparently, at small strains the 

structure has an auxetic behavior, moving from a more anti-rubber behavior (n = 1) to be 

marginally auxetic (n = 3, yx  ~ 0). The lowest stiffness at small and medium strains (up to ~ 0.20) 

belongs to the specimens with the most negative xy. That means that under tensile loading the 
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cross section of the specimen increases, and therefore for a given tensile force the equivalent stress 

is lower. Close to a critical strain (i.e., when yx  ~ 0), the lattice tends to provide an equivalent 

constant cross section for increasing strains. Densification is apparent at strains close to 0.22 – 

0.25, when the Poisson’s ratio tends to change dramatically and decrease its magnitude, coming 

close to be marginally auxetic or even slightly PPR, depending on the sinusoidal order adopted.  

This unique deformation behavior is intrinsically dictated by the sinusoidal architecture of the 

artificially designed ligaments. The pre-set configuration of the sinusoidally shaped ligaments 

enables switching deformation mechanisms between bending and stretching of the ligaments. 

[192] In conventional lattice materials with straight beams, this deformation transformation is not 

envisioned. 

The numerical and experimental results of the Poisson’s ratio of the lattice metamaterials as a 

function of the tensile strain are presented in Figure 6.5 (b). For tensile strains below 0.20, the 

numerical predictions tend to slightly overestimate the experimental results for n=1 and 2. Note 

that since the lattice metamaterials are soft, unavoidable misalignments in the test setup can 

influence the measurement of the Poisson’s ratios. Furthermore, when calculating the Poisson’s 

ratio by means of digital image correlation, minor errors can be introduced in the processing. We 

also note that over this range of strain, the proposed square lattice metamaterials exhibit a nearly 

constant negative Poisson’s ratio. This is because vertical and horizontal beams are both subjected 

to bending at macroscopic strains below 0.2 (Figure 6.5 (c)). At this small strain range, the 

magnitudes of the vertical and horizontal strain increments are changing in a similar manner. As a 

result, the Poisson ratio is nearly constant. With the increase of the stretching, the Poisson’s ratio 

gradually turns from negative to marginally positive. To elucidate the mechanisms responsible for 

the transition of the Poisson’s ratio we present the mechanical response of a representative unit 
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cell taken from the central area of the specimen under different tensile strains (Figure 6.5 (c)). Here 

we only show the mechanical behavior of the lattice metamaterials with n=1 and 3. Again, one can 

notice an excellent agreement between the numerical and the experimental deformations. At strains 

below ~0.20, the deformation response of the vertical beams is clearly bending-dominated due to 

the initial curvature of sinusoidal architecture. With the increase of macroscopic stretching, the 

sinusoidal architecture will be stretched to an approximately straight beam. As a result, the 

deformation behavior will become stretching-dominated and very similar to regular materials, 

which typically exhibit a positive or zero Poisson’s ratio. Here the numerical and experimental 

results demonstrate that a mechanically tunable negative Poisson’s ratio can be achieved by 

introducing curved sinusoidal beams in regular lattice structures. The evolution of the Poisson’ 

ratio strongly depends on the coupled deformation behavior of vertical and horizontal beams. 
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Figure 6.5 Mechanical response of lattice metamaterials under uniaxial stretching. (a) Stress-strain 

relations of the architected lattice metamaterials. (b) Evolution of the Poisson’s ratios as a function 
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of the applied tensile strain. (c) Deformed configuration at different macroscopic strains. The von 

Mises stresses are normalized with respect to the Young’s modulus of the constitutive materials. 

Here 1 3nA n l  . 

6.3.2 Mechanically tunable Poisson’s ratios 

Having demonstrated that the sinusoidally architected lattice metamaterials exhibit auxetic 

behavior under uniaxial tension at specific strain ranges, we now systematically investigate the 

effects of amplitude nA n l  and half wavelength n on the mechanical response and the Poisson’s 

ratios. Figure 6.6 (a) shows the stress-strain relations of the lattice metamaterials with different 

nA n l
 
and n. Each structure exhibits a J-shaped stress-strain curve, which is similar to our previous 

experimental observation. For a given amplitude a short wavelength (i.e., a large n) gives rise to a 

higher stress-strain curve, indicating the presence of a significantly stiffer mechanical response. 

For a given value of n a smaller wave amplitude (i.e., a smaller curvature but with a larger beam 

width) however, leads to a higher stress-strain curve within the small strains range. These 

mechanical responses are intrinsically controlled by the bending stiffness of the sinusoidal curved 

beams, which is defined as 
3

S CE w , where C is the geometric constant, E is the Young’s 

modulus of the beam,  is the curvature, and w is the width of the beam. The effective stiffness of 

the lattice metamaterials as a function of nA n l
 
and n are summarized in Figure 6.7 (a). We further 

note that for a given wave amplitude a significant auxetic behavior can be observed for n=1, 2 

(Figure 6.6 (b)). Interestingly, the transition strain for the in-plane Poisson’s ratio is proportional 

to the wave amplitude because large macroscopic stretching is needed to make straight vertical 

beams with larger wave amplitudes. The minimum Poisson’s ratios as a function of nA n l
 
and n 

are summarized in Figure 6.7 (b). 
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We have numerically demonstrated that the geometric parameters of the sinusoidally curved 

beams have a great impact on the evolution of the Poisson’s ratio. Among these, the number of 

half wavelength n is critical to the existence of the auxetic behavior. For a smaller n, strong 

synergistic deformation behavior exists between horizontal behavior and vertical behavior. As a 

result, the pre-existing deformation can be harnessed to generate an auxetic behavior. However, 

with the increase of n, this synergistic deformation between vertical and horizontal beams becomes 

week. For a given n, the wave amplitude is crucial to the transition between negative Poisson’ ratio 

and positive Poisson’s ratio. 
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Figure 6.6 Effects of geometric features of the ligament on the mechanical response. (a) Effect of 

amplitude,
nA n l  and (b) number of half wavelength, n, on the stress-strain relation and Poisson’ 

ratio. Here 1 20w l   for all of the simulations. 

 

Figure 6.7 Effects of geometric features of the ligament on stiffness and Poisson’s ratio. Effect of 

amplitude, nA n l  and the number of half wavelength, n, on the (a) effective stiffness and (b) 

Poisson’ ratio of the proposed lattice metamaterials. 

Another geometric parameter with a significant impact on the mechanical response and in-

plane Poisson’s ratios is the slenderness ratio w l . To demonstrate this, we examine the 

mechanical response and the auxetic behavior of the lattice material with 1 3nA n l   and n=1, 2. 

Highly nonlinear stress-strain curves arise in those cases for a small strain range (Figure 6.8(a)) 

because the mechanical response of the sinusoidally curved beam is bending-dominated, with the 

bending stiffness being proportional to 
3w . Therefore, large slenderness ratio will give rise to 

higher stiffness. At large strains the mechanical response of sinusoidally curved beam becomes 

stretching-dominated and a nearly linear response can be observed in the stress-strain curves. 

The bending-dominated and stretching-dominated behaviors at different strains have also a 

significant impact on the Poisson’s ratios (Figure 6.8 (b)). At strains below 0.20, the lattice 
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metamaterials with n=1 and 2 have a nearly constant negative Poisson’s ratio of ~ -0.65 and ~ -

0.45, respectively. This phenomenon indicates that the Poisson’s ratio is almost independent of the 

slenderness ratio when the sinusoidally curved beams are highly bending-dominated. By contrast, 

at large stretching strain, the Poisson’s ratio rapidly changes from negative to positive for both 

cases. The transition is much sharper for a smaller slenderness ratio, since the nearly straight beam 

is, in this case, more compliant.   

 

Figure 6.8 Effect of slenderness on the stress-strain relation and Poisson’s ratios of the proposed 

lattice metamaterials. (a) Evolution of stress-strain relation and (b) Poisson’s ratio. Here 

1 3nA n l  . 

6.3.3 Effect of the lattice topology 
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Having shown that the mechanical response and the Poisson’s ratios can be tuned by tailoring the 

geometric features of the sinusoidally curved beams, we now proceed to examine the effect of the 

lattice topology on the auxetic behavior from a numerical and experimental standpoint. Four types 

of sinusoidally architected lattice metamaterials with hexagonal, Kagome, square, and triangular 

topology are fabricated using 3D printing (Figure 6.9 (a)). Here we use as geometry parameters 

1 3nA n l 
 
and n=2. The specific lattice topology has a significant impact on the overall 

mechanical response of the lattice metamaterials under tension (Figure 6.9 (b)). The triangular 

lattice has (as expected) the largest stiffness, while the hexagonal tessellation is the more 

compliant. [136] Experimental and numerical results related to the Poisson’s ratios for the four 

types of topology are presented in Figure 6.9 (c), and they all show a good agreement. In contrast 

to the negative Poisson’s ratio of square lattice metamaterials, both hexagonal and kagome lattice 

configurations exhibit a positive Poisson’s ratio below 0.40 tensile strains. The evolution of the 

Poisson’s ratio of the triangular lattice is however strongly strain-dependent and there is a switch 

between NPR and PPR at a critical strain of 24%.  

This metamaterial design concept can be extended to other lattice topologies, thereby offering 

new deformation behaviors and mechanical responses. For example, it is well known that regular 

beams in hexagonal lattices are bending-dominated, while the introduction of sinusoidally curved 

beams enables the coexisting of bending and stretching behavior. The study of the effect of lattice 

topology not only provides new opportunities to tailor the auxetic behavior but also provides us a 

better understanding of the coupling deformation behavior in new lattice metamaterials. It is 

anticipated that topologies along with sinusoidal architecture can be used to explore new 

mechanical properties and other functionalities. 



 

110 

 

 

Figure 6.9 Effect of the topology on the stress-strain curves and Poisson’s ratio. (a) 3D printed 

specimens with hexagonal, Kagome, square, and triangular topology. (b) Stress-strain relations 

and (c) Evolution of Poisson’s ratio as a function of the strain. The legend is the same as that in 

(b). Here 1 3nA n l  , n=2, and 1 20w l  . Scale bar: 1cm. 

6.3.4 Broad and multiple phononic band gaps 

We have demonstrated that the proposed sinusoidally architected lattice metamaterials exhibit 

tunable Poisson’s ratios over a large tensile strain range. The evolution of Poisson’s ratio strongly 

depends on the geometric features of the sinusoidal architecture as well as the global topology of 

the lattice metamaterials. From a metamaterial design perspective, the interplay between Poisson’s 

ratios and the intrinsic architecture can guide us to explore other functionalities arising from the 

use of these architected materials. In this section, we investigate the elastic wave propagation 
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occurring within these lattice metamaterials and explore their capability in providing a dynamic 

tunability for vibration alleviation using an external mechanical stimulus.  

We start by examining the phononic dispersion relations and the transmission spectra of the 

lattice metamaterials. [24, 59-62, 193] In our case, the normalized frequency is defined as 

1   , where   is the frequency of the elastic wave obtained by solving the Bloch 

eigenvalue problem and 
2 2 4

1
12Et l    is the first pinned-pinned flexural resonance 

frequency of a lattice beam. [133] For the material and structures studied in this work 1 982  . 

Figure 6.10 (a)-(d) show the phononic dispersion relations and the associated transmission 

spectra of a regular lattice material (A=0, n=0) and configurations with 1 3nA n l 
 
and n=1, 3, 5. 

The simulated transmission spectrum for each lattice material agrees extremely well with the 

presence of the partial band gaps along the M-K direction found via the Bloch wave analysis. No 

band gaps exist in the regular lattice material, however, five complete band gaps can be observed 

for the sinusoidally architected lattice material with n=1. Within the observed band gaps, the 

largest one lies within =1.12-1.36. Both multiple and broad phononic band gaps arise for n=3 

and 5. More specifically, five and six complete band gaps emerge for n=3 and 5, and the maximum 

band gaps for n=3 and 5 lies within  =3.25-3.59 and  =0.79-1.26, respectively. A direct 

comparison between the geometric features of the regular and proposed lattice metamaterials 

shows that mechanism associated with the broad and multiple band gaps formation are intrinsically 

dictated by the wave amplitude and wavelength of the sinusoidally curved beams, leading to the 

coupling of axial and bending motion. [194] The formation of complete wave band gaps can be 

due to Bragg scattering and/or local resonances. For our lattice metamaterials, both effects can be 

observed in the phononic dispersion diagram. For example, for n=5, local resonances are 
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responsible for the first two band gaps, as evidenced by the flat bands between these two band 

gaps (Figure 6.10 (d)). Other band gaps are attributed to Bragg scattering at both the 

microstructural level of the sinusoidally curved beam as well as the macroscopic level of lattice 

topology.  

 

Figure 6.10 Phononic dispersion relations and transmission spectra of the architected lattice 

metamaterials. (a) 0A  , 0n   ; (b) 1 3nA n l  , 1n  ; (c) 1 3nA n l  , 3n  ;(d) 1 3nA n l  , 

5n  . Here 1 20w l   for all of the simulations. 

6.3.5 Mechanically tunable phononic band gaps 

We have shown that by introducing a sinusoidal architecture into regular lattice metamaterials 

broad and multiple phononic band gaps can arise. It is obvious that these band gaps can be tuned 
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by tailoring the geometric features of the ligaments (beams) of the lattice metamaterials. Here, we 

explore the dynamic tunability of the phononic band gaps using now an external mechanical 

stimulus, i.e., a uniaxial tensile deformation. Figure 6.11 (a) and (b) show the phononic dispersion 

relations at different stretching strains for n=4 and 6, respectively.  We note that most of the initial 

band gaps will close for n=4, while the band gaps tend to shrink for n=6 with the increase of the 

applied stretching. To better understand the effect provided by the applied tensile strain we plot 

the evolution of the band gaps as a function of yy for n=2, 4, 6 (Figure 6.11 (c)). It is interesting 

to note that for n=2 all of the band gaps are suppressed when stretching the lattice material by 30%. 

For n=4 and 6 the band gaps will partially close, while new band gaps will arise with the increase 

of the applied tensile strain. The sinusoidal architecture of the beams not only gives rise to broad 

and multiple phononic band gaps but also allows to tune dynamically the same band gaps by virtue 

of the beam compliance. From a geometric perspective, this prominent vibration control capability 

of the proposed lattice material is intrinsically associated with the introduced sinusoidally 

corrugated ligaments and its peculiar deformation behavior. These phenomena suggest that the 

application of a uniaxial stretching can be viewed as a new tool to control the vibration mitigation 

and suppression for the proposed lattice metamaterials, which therefore can be used as 

programmable devices for wave filtering and waveguiding.                                                                     
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Figure 6.11 Mechanically tunable band gaps for the architected lattice metamaterials. Phononic 

dispersion relations as a function of stretching strain for (a) 4n   and (b) 6n  ; (c) Evolution of 

band gaps as a function of strain for 2n  , 4n  , and 6n  . Here 1 3nA n l   and 1 20w l   for 

all simulations. The insets show the deformation of the unit cell at each stretching strain.  
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6.4 Conclusions 

A novel class of lattice metamaterials with sinusoidally architected beams has been proposed in 

this chapter. Mechanical response and wave propagation performances were systematically 

investigated. Under uniaxial tension, the proposed sinusoidal architecture in the lattice beams 

provides an intrinsic deformation mechanism to switch from bending-dominated to stretching-

dominated behavior. This transition of deformation mechanisms allows obtaining tunable 

Poisson’s ratios over a large tensile strain range. Our experimental and numerical results show a 

very good agreement in terms of overall stress-strain relations, Poisson’s ratios, and deformation 

patterns exhibited by these lattices. The investigation into the interplay between the multiscale 

(ligament and cell) architecture and wave propagation shows that broad and multiple phononic 

band gaps can be achieved in these lattice materials. Quite importantly, this significant vibration 

mitigation capability can be dynamically tuned by an external mechanical stimulus, i.e., a uniaxial 

stretching. The deformation behavior of the proposed metamaterials, together with their vibration 

mitigation capability makes them particularly suitable for the design of programmable mechanical 

metamaterials. The findings presented here provide new insights into the development of 

architected metamaterials with unusual physical properties and a broad range of potential 

applications, such as tunable particle filters and adjustable acoustic metamaterials for vibration 

control. 
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CHAPTER 7. ENGINEERING LATTICE METAMATERIALS FOR BROADBAND AND 

MULTIBAND VIBRATION MITIGATION 

 

 

7.1 Introduction 

We have numerically demonstrated that architected lattice metamaterials with sinusoidally-shaped 

ligaments exhibit auxetic behavior, which can be further harnessed to tune the phononic band gaps. 

In this Chapter, we will demonstrate from numerical and experimental standpoints that broad and 

multiple phononic band gaps can be achieved these lattice metamaterials. Our metamaterials are 

created by replacing straight ligaments in conventional lattices with sinusoidally-shaped ligaments 

(Figure 7.1). This metamaterial design concept is motivated by the observation that buckled-shape 

structures can be exploited to create tunable phononic band gaps. [195, 196] Note that here we do 

not create the desired buckled lattice metamaterials using an external mechanical loading because 

short-wavelength buckling mode is never preferred for regular lattice metamaterials under 

macroscopic compression. [197, 198] We will first investigate the band gaps properties of the 

proposed lattice metamaterials by performing Bloch wave analysis in an infinitely periodic system. 

Low amplitude wave transmission tests will be conducted on 3D printed samples to validate our 

model predictions. We show that the proposed metamaterial design concept is robust and efficient 

to generate broad and multiple band gaps. The metamaterial can be extended to curved ligaments 

with different amplitudes, wavelengths, aspect ratios, and other topologies.  
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7.2 Characterization of the lattice metamaterials 

We begin by characterizing the proposed lattice metamaterial with a square topology, as 

schematically shown in Figure 7.1 (a)-(c). The sinusoidally-shaped ligament can be 

mathematically described as:  

 sinny A n x l ,                                                                                                                        (7.1) 

where nA  is the wave amplitude, n is the number of half sinusoid and l is the length of a regular 

straight beam. The length of the sinusoidally-shaped ligament is: 

2

0
1 cos

l
nA n n x

s dx
l l

   
    

  
 ,                                                                                                 (7.2) 

Under the mass equivalence assumption, the width of the curved ligament beam can be 

calculated as 

2

0
1 cos

l
nA n n x

w t l dx
l l

   
     

  
 ,                                                                                      (7.3) 

where t is the thickness of a regular ligament. For a given parameter nA n l  the width of the curved 

ligament is the same for any n. We, therefore, define two parameters to describe the curved 

ligament: the normalized wave amplitude nA n l  and normalized wavelength 1 n . The shape of 

the unit cell in the parameters space is illustrated in Figure 7.1(d).  

For the following simulations and tests, the length and thickness of a regular ligament are l

=2.25 cm and t =0.1125 cm ( 20l t  ) respectively unless otherwise specified. The out-of-the-
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plane thickness of each lattice metamaterial is 0t =2.5 cm. The lattice metamaterials are made of 

Verowhite (Stratasys, Ltd) with measured Young’s modulus E =1.6 GPa, Poisson’s ratio  =0.33, 

and density of  =1174 kg m-3. 

 

Figure 7.1 Schematics of the proposed lattice metamaterials with curved ligaments. (a) Schematics 

of the lattice metamaterials. (b) Unit cell. (c) Sinusoidally-shaped ligament, and (d) different unit 

cells in the (1 n , nA n l ) parameter space. 

All specimens including cylinders and lattice specimens used in the study have been printed 

by using an Objet Connex260 multi-material 3D printer (Stratasys, Ltd). Verowhite is the 

constitutive material used during the 3D printing. The chemistry of these materials is proprietary 

to Stratasys. The dimensions of the cylinder comply with the ones prescribed by the ASTM D695 

standard. 

The material properties of the Verowhite were obtained by measuring the mechanical response 

of the 3D printed cylinder specimens. Figure 7.2 shows the measured stress-strain curves (true and 

engineering strain) under uniaxial compression. According to ASTM D695, the basic properties 

of Verowhite are characterized by Young’s modulus E =1.6 ± 0.1 GPa, Poisson’s ratio  =0.33, 
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and density of  =1174 kg m-3. Here Young’s modulus has been obtained from the measured 

stress-strain curve of the cylinder specimen. The density is obtained by averaging the densities of 

five cylinder specimens. 

Lattice metamaterials with different ligament wavelengths have an overall dimension of 229.5 

mm×90 mm×25 mm and are composed of 5×2 unit cells (Figure 7.3). The lattice metamaterials 

with different topologies have an overall dimension of 234 mm×160 mm×25 mm (Figure 7.4). 

Two beams were also added to the top and bottom of the lattice structures to improve the alignment 

of the connection. Within the limitation of 3D printing technology, the layer orientation was found 

to influence the mechanical properties of the material; therefore, all the specimens were printed 

along the same orientation on the printer build platform. The as-fabricated specimens were kept at 

room temperature for 7 days to allow for the saturation of the curing.  

 

Figure 7.2 Measured stress-strain relation for Verowhite. The inset shows the dimensions of the 

3D printed cylinder specimen under uniaxial compression. 
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Figure 7.3 3D printed samples with different same ligament wave amplitude but different 

wavelengths. (a) regular lattice materials, (b) 0.30nA n l  , 1 n =0.2, (c) 0.30nA n l  , 1 n =0.33, 

and (d) 0.30nA n l  , 1 n =1. The out-of-the-plane thickness is 2.5 cm. Scale bar: 2 cm. 
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Figure 7.4 3D printed samples with different topologies. (a) Hexagonal, (b) square, (c) kagome, 

and (d) triangular. Here each ligament has a wave amplitude of 0.30nA n l  and a wavelength of 

1 0.5n  . The out-of-the-plane thickness is 2.5 cm. Scale bar: 2 cm. 

7.3 Results and discussions 

7.3.1 Broadband and multiband features of lattice metamaterials 

We first focus on lattice metamaterials with a square topology and investigate the effect of the 

ligament wavelength on the dispersion relations by using the commercial finite element package 

COMSOL Multiphysics (See Chapter 2 for details about the numerical simulation) [59, 60, 199]. 

Figure 7.5 (a) displays the phononic dispersion relations for a regular lattice material and lattice 

metamaterials with the same ligament amplitude ( 0.3nA n l  ) but different ligament wavelengths 

( 1 n =0.2 and 1). For the regular lattice material, no phononic band gaps can be observed, 

indicating that the elastic wave can freely propagate through the medium. These results agree with 

previous studies on wave propagation in conventional lattice materials. [133] By contrast, five 

complete band gaps emerge in the lattice metamaterial with a wavelength 1 0.2n  . When the 

ligament wavelength increases to 1 1n  , the width of the observed band gaps become smaller, 

or even tend to disappear – but still, three complete wave band gaps exist.  

From a physical point of view, the formation of phononic band gaps can be attributed to Bragg 

scatterings and/or local resonances. [22, 200-202] To gain insight into the fundamental 

mechanisms that govern the formation of the band gaps, we report in Figure 7.5 (b) the Bloch 

mode shapes at the high symmetry points M and K of the band edge (red line). In the case of a 

regular lattice material, the eigenmodes assume a global mode behavior that facilitates the travel 
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of the phonons through the structure. By contrast, the eigenmodes corresponding to the lattice 

metamaterial with 1 n  =0.2 and 1 being invested by wavenumber vectors directed to the M and K 

points show a strong localization behavior around the nodes. As a result, the energy associated 

with the propagating wave is trapped and localized in the lattice metamaterials, suggesting that 

broad omnidirectional band gaps are induced by local resonances. Further evidence of this 

omnidirectional band gap presence is also highlighted by the flatness of the red band edge, which 

indicates a nearly zero group velocity. [78, 203, 204] 

Low-frequency band gaps can be also be observed in the lattice metamaterial with 1 n  =1. To 

quantitatively understand the mechanisms responsible for these band gaps formation, we compare 

the effective wavelength with its structural periodicity. The effective Young’s modulus and 

Poisson’s ratio for the lattice metamaterials with 1 n  =1 can be obtained by following a finite 

element procedure, [205] which are 0.469 MPa and -0.65, respectively. Then, the transverse wave 

velocity for this lattice metamaterial can be calculated as * *

tc    , where *  and * are the 

effective shear modulus and effective density, respectively. As a result, the estimated transverse 

velocities for 1 n  = 1 is 76.2 m s-1. At the middle frequency of the lowest band gap, the effective 

wavelength is 3.75 cm, which is the same magnitude as the structural periodicity 4.5 cm. That 

means Bragg scattering is responsible for the low-frequency band gaps of lattice metamaterial with  

1 n  = 1.  

Our simulations and analyses indicate that the broadband and multiband features are due to the 

coexisting of two different mechanisms, i.e., local resonances and Bragg scattering. Intrinsically, 

the broad and multiple band gaps in the lattice metamaterials are dictated by the rational design of 

the ligament, which favors the coupling of the axial and bending motion. [206] 
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Figure 7.5 Dispersion relations and eigenmodes of regular lattices and the proposed lattice 

metamaterials. (a) Dispersion relations for regular lattice material and lattice metamaterials with 

0.3nA n l  , 1 n  =0.2 and 1. (b) Eigenmodes at high-symmetry points of the first irreducible 

Brillouin zone. The gray-shaded regions indicate the phononic band gaps. 

7.3.2 Low amplitude wave transmission test 

* This experiment was conducted by my collaborator Feng Qian in Prof. Lei Zuo's lab at VT 

To validate the predictions of our models we have fabricated by 3D printing both regular lattices 

and lattice metamaterials with ligament amplitude 0.3nA n l   and wavelength 1 n =0.2, 0.33 and 

1 (Figure 7.3 and Figure 7.6 (a)). Each sample consisted of 2×5 unit cells and was made of 

Verowhite (Stratasys, Ltd). We have then performed low amplitude elastic wave transmission tests 

by exciting the 3D printed samples with an impact hammer (Figure 7.6 (b)-(c)). For details about 

the fabrication and experimental activity, the reader is referred to Chapter 2. The transmission is 
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computed as the ratio of output acceleration amplitude (a) to the input force amplitude (F). For the 

purpose of comparison, similar frequency domain analyses are also performed via numerical 

simulation to represent the wave propagation in finite-size structures (See Chapter 2 for details of 

the numerical simulation). [62, 203] 

 

Figure 7.6 (d)-(g) Transmission spectra of regular lattice material and lattice metamaterials 

with 1 0.2n  , 0.33, and 1, respectively. In the simulated transmission spectrum of the regular 

lattice material, one can observe several transmission dips that correspond to partial band gaps 

along M-K direction (Figure 7.5 (a)). In the transmission spectra of the lattice metamaterials, we 

notice the presence of attenuation zones that agree extremely well with the simulated phononic 

band gaps in the dispersion relations (Figure 7.5 (a)). By comparing the measured transmission 

spectra with the predictions from the model we notice that simulated attenuation zones can be 

identified within the measured transmission spectra. For lattice metamaterials with1 1n  , a 

quantitative agreement for the transmissibility values can be observed for the partial band gaps 

within 1.44 kHz - 2.94 kHz. A predicted partial band gap between 15 kHz and 19 kHz (along M-

K direction, gray-shaded region) can be clearly seen for lattice metamaterials with1 0.2n  . To 

better understand the wave propagation in the lattice metamaterials we plot in Figure 7.7 the 

dynamic response of the metamaterials under harmonic excitation inside and outside the band gaps. 

For both lattice metamaterials, the incident plane waves inside the band gaps decay rapidly, 

whereas incident waves can travel through the metamaterials when the excitation frequency lies 

outside the band gaps.  
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Figure 7.6 Low amplitude wave transmission test of the lattice metamaterials along the M-K 

direction. (a) 3D printed samples with 0.3nA n l  , 1 0.2n  . (b) Experimental setup of the 

transmission test. (c) Measured acceleration time curve for 3D printed samples with 0.3nA n l  , 
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1 0.2n  . (d)-(g) Comparison between measured and simulated transmission spectra for lattice 

metamaterials with different wavelengths. 

 

Figure 7.7 Frequency domain analysis for low amplitude wave transmission. (a) FE model (See 

Chapter 2 for details). (b)-(c) Dynamic response of the lattice metamaterials at a frequency inside 

and outside the band gaps for lattice metamaterials with 0.3nA n l  , 1 0.2n   and 0.3nA n l  , 

1 1n  . 

 

It is noticeable that the simulated partial band gaps over the whole sweeping frequency range 

cannot be perfectly captured using the transmission test. For example, the simulated partial band 

gap for the lattice metamaterial with 1 0.2n   is between 15 kHz and 19 kHz, while transmission 

peaks arise in the measured transmission spectra for the same frequency range (black arrows). This 
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discrepancy could be associated with one, or a combination of the following factors: 1) Boundary 

conditions. In the simulation, we use perfectly matched layers to prevent reflections by the 

scattering waves from the domain boundaries, while this virtual boundary condition cannot be 

realized in a lab environment. 2) Out-of-the-plane vibration. In our simulations, the plane strain 

condition is adopted for the lattice metamaterials. Out-of-the-plane vibration could, however, exist 

in the finite-thickness lattice metamaterials. 3) Damping effect. Most of the polymers for 3D 

printing have a significant damping effect, [207] which could attenuate the response and minimize 

the effect of the phononic band gaps. Our modeling neglects the presence of the viscoelasticity of 

the polymer and the adoption of structural and hysteretic damping. Notwithstanding these 

limitations, the low amplitude wave transmission test of the finite-size lattice metamaterials is able 

to indicate the presence of the broadband and multiband absorption feature. 

7.3.3 Effects of the ligament geometry on the vibration control 

We have numerically and experimentally demonstrated that broad and multiple band gaps can be 

obtained in the proposed lattice metamaterials. This remarkable vibration control capability is 

intrinsically dictated by the artificially architected ligament with a curved shape. We then 

systematically investigate the effects of the geometric features of the curved beam, i.e., nA n l  and 

1 n , over the band gap properties. To this end, we define two indicators to characterize the 

broadband and multiband features: the maximum relative band gaps  
max

   and the total 

relative band gaps    . The two metrics are defined by   (band gap width) and the 

midgap frequency  . [199] Figures 7.8 (a) and (b) show the evolution of the maximum band gap 

and total band gaps as a function of the geometric features. For a given ligament wavelength both 

broad and multiple band gaps increase proportionally to the ligament wave amplitude. For 
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extremely small ligament amplitudes ( 0.05nA n l  ), no complete band gaps can be observed 

(Figure 7.8 (c)). This is expected since no complete band gaps exist in regular lattice materials 

with square topology. It is also noticeable that the broad and multiple band gaps arise in lattice 

metamaterials with the largest wave amplitude and a wavelength range from 0.4 to 0.8 (Figure 7.8 

(d)).  

 

Figure 7.8 Effects of the ligament geometry on the phononic band gaps. (a)-(b) Effects of the 

wavelength and wave amplitude on the evolution of the maximum and full band gaps. (c)-(d) 

Dispersion relations for the lattice metamaterials with two extreme ligament amplitudes, 

0.05nA n l  , 1 0.5n  and 0.5nA n l  , 1 0.25n  . 
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Another geometric parameter of interest is the beam slenderness ratio, which dictates the 

deformation behavior of the ligament. Here for simplicity, we use l t  to examine the effect of 

slenderness ratio on the band gap property. Figure 7.9 (a)-(b) show the evolution of the maximum 

and total band gaps as a function of l t  for lattice metamaterials with 1 0.25n   and1 0.5n  . 

For the purpose of the comparison, the evolution of the band gaps related to regular lattice 

materials with different slenderness ratios is also presented.  As expected, no complete or small 

band gaps can be observed in the regular lattice materials. By contrast, for lattice metamaterials 

with different wavelengths, broad and multiple band gaps can be observed. Specifically, for the 

lattice metamaterial with 1 0.25n  , an optimal maximum band gap is observed for a 10l t  , 

while for lattice metamaterials with 1 0.5n  , the maximum band gap is proportional to l t  

(Figure 7.9 (c) and (d)). It is also interesting to notice that the higher the waviness, the higher is 

the maximum band gap, especially for l/t lower than 30. High waviness (1/n=0.25 in this case) 

allows obtaining maximum band gaps even at relatively low slenderness ratios, for which shear 

deformation of the cross section becomes more important. On the contrary, lower waviness 

metamaterials tend to feature low maximum band gaps for thicker ligaments. In the case of the 

total band gaps, it is evident the direct proportionality with increasing values of l/t, although the 

amount of the total band gap tend to plateau for very high ligaments slenderness. The relative 

density of lattice materials is inversely proportional to the slenderness ratio, [208] and this 

indicates that the proposed lattice metamaterials not only exhibit broad and multiple band gap 

features but are also lightweight. 

 

These systematic investigations reveal that the geometric features of the curved ligaments 

(amplitude, wavelength, and slenderness ratio) are critical to the formation of band gaps. Although 
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we have not built any analytical relation between these geometric features with the band gap 

properties of the lattice metamaterials, it is evident that the geometry uniquely dictates the 

deformation behavior and the vibrational modes of the artificially designed ligament. Quite 

importantly, these parameters can be tailored to design lattice metamaterials with desired or 

optimized vibration control capability. 

 

Figure 7.9 Effect of the slenderness of the ligament on the evolution of the phononic band gaps. 

(a)-(b) Evolution of the maximum and total band gaps with respect to the ligament slenderness l t

. (c)-(d) Dispersion relations for the lattice metamaterials with extreme slenderness, 5l t   and 

50l t  . Here 0.30nA n l  and 1 0.5n  . 
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7.3.4 Metamaterial design concept for other topologies 

While the results reported so far are focused on lattice metamaterials with a square topology, we 

now proceed to demonstrate that the proposed lattice metamaterial design is not restricted to this 

specific topology only, and can be extended to lattice metamaterials with other shapes. Due to the 

geometric constraints in triangular lattice metamaterials and for the purpose of comparison, here 

we focus on lattice metamaterials with even numbers of half sinusoid, i.e., n=2 and 4. We first 

report the simulated dispersion relations for lattice metamaterials with different topologies on the 

left-hand side of Figure 7.10 (a)-(b). As expected, broad and multiple band gaps persist in each 

lattice metamaterials defined by different topologies, giving evidence that this design concept is 

general and robust. We further compare the maximum and total band gaps for lattice metamaterials 

with different topologies and different wavelengths (Figure 7.10 (c)-(d)). It can be seen that both 

maximum and total band gaps for lattice metamaterials are larger than those of regular lattice 

materials.  

To validate the numerical predictions, low amplitude wave transmission tests along the M-K 

direction are performed on 3D printed lattice metamaterials with hexagonal, square, kagome, and 

triangular topologies (Figure 7.11 (a) and Figure 7.4). It is worth noticing the very good agreement 

with the measured transmission spectra, especially at low frequencies. By using the sinusoidally-

shaped ligament microstructure topology one can seize new opportunities to design metamaterial 

systems that can integrate geometric features at different microstructural levels, i.e., the 

architecture of the ligament and the topology of the lattice metamaterials. 
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Figure 7.10 Effect of lattice topology on phononic band gaps. (a) Schematics of lattice 

metamaterials with hexagonal, square, kagome, and triangular topologies, respectively. The area 

surrounded by the dash lines is the representative unit cell for each topology. (b) Dispersion 

relations for lattice metamaterials with hexagonal, square, kagome, and triangular topologies. Here 

each ligament has a wave amplitude of 0.30nA n l 
 
and wavelength of 1 0.5n  . (c)-(d) 

Maximum band gap and total band gaps for lattice metamaterials with hexagonal, square, kagome, 



 

133 

 

and triangular topologies.  Here each ligament has a wave amplitude of 0.30nA n l   but different 

wavelengths.  
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Figure 7.11 Wave transmission test of the lattice metamaterials with different topologies along 

the M-K direction. (a) 3D printed lattice metamaterials with hexagonal, square, kagome, and 

triangular topologies. (b)-(e) Comparison between measured and simulated transmission spectra 

for lattice metamaterials with different topologies. Here each ligament has a wave amplitude of

0.30nA n l 
 
and wavelength of 1 0.5n   The out-of-the-plane thickness of each lattice 

metamaterial is 2.5 cm. 

7.4 Conclusions 

We have proposed and demonstrated the existence of a new class of lattice metamaterials 

consisting of curved ligaments that possess both broad and multiple phononic band gaps. These 

remarkable band gap properties are intrinsically controlled by the unique vibration behavior of the 

artificially designed ligaments. Moreover, our results indicate that the proposed metamaterial 

design concept not only works for a wide range of geometric parameters of the curved ligaments, 

but can also be extended to other topologies. Unlike conventional phononic crystals with multiple 

elastic phases, the broad and multiple band gap properties of the lattice metamaterials proposed in 

this work are material-independent, which indicates that a coupled material-architecture design 

strategy is not essential. Furthermore, the proposed metamaterial design concept is scale-

independent and can be applied to various length scales. Due to the frequency range limitation of 

our vibration transmissibility test, we have fabricated samples with a ligament length of 2.25 cm 

and made of Verowhite polymer as demonstrators. Similar phononic band gap properties within 

different frequency ranges can be however envisioned for lattice metamaterials at various length 

scales. Finally, the pre-registered deformation in the architected ligaments can be harnessed to 

tailor the band gap properties. The curved ligaments have excellent stretchability under tension 

because the local strain is much smaller than the macroscopic one when the lattice metamaterials 
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are subjected to uniaxial stretching. As a result, the external mechanical stimulus of low magnitude 

could be further imposed to dynamically tune the band gaps. The metamaterial design concept 

proposed here provide new insights into the development of architected metamaterials with a broad 

range of potential applications, such as wave filtering, waveguiding, programmable acoustic 

metamaterials, vibration isolation, as well as stretchable electronics. 
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CHAPTER 8. CONCLUSIONS 

 

 

8.1 Main contributions 

The research work presented from Chapter 2 to 7 are focused on designing, modeling, 3D printing, 

and mechanical testing of architected metamaterials. The objective is to achieve broadband and 

multiband wave filtering and waveguiding capabilities by rationally designing the architectures of 

metamaterials. In addition, tunability of the vibration mitigation using external stimuli is also 

investigated. Besides the prominent wave control capability, the proposed architected 

metamaterials also exhibit excellent mechanical performance.  The key scientific contributions are 

summarized as follows: 

(1) Discovered the overlapping of Bragg scattering and local resonance band gaps in 3D co-

continuous metamaterials. Conventionally, the complete wave band gaps formation are 

attributed to Bragg scattering or local resonances. However, in Chapter 3, it is numerically 

demonstrated that these two different mechanisms can overlap with each other. As a result, a 

relative large complete wave band gaps can be achieved, compared with pure locally resonant band 

gaps. This mechanism can be employed to design phononic crystals and acoustic metamaterials 

with improved wave filtering capability. In addition to the novel physical mechanism, the co-

continuous metamaterials reported in Chapter 3 also have excellent mechanical properties, such as 

enhanced strength, stiffness, energy absorption, and fracture toughness. This is due to the mutual 

constrain between two phases in the co-continuous architectures when subjected to external 

loading. The 3D co-continuous metamaterials reported here will be particular useful in 

mechanically challenging environments where vibration mitigation and mechanical robustness are 
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simultaneously pursued. For example, the anechoic tiles of submarine are often damaged after 

years of service in mechanically challenging environments. This causes significant adverse 

economic consequence. With the development of high performance multifunctional metamaterials, 

such as the co-continuous composites proposed in this work, it is anticipated that the simultaneous 

load-carrying capability and vibration control capability can be achieved.  

(2) Developed 2D bioinspired composites for broadband and multiband vibration control. 

Mechanical performance of nacreous composites under static loading conditions has been studied 

extensively. For example, it has been numerically and experimentally demonstrated that nacreous 

composites with brick-and-mortar-like microstructure enable an unusual combination of strength, 

stiffness, and fracture toughness. However, little attention has been paid to their mechanical 

response under dynamic loading conditions. In Chapter 4, the vibration mitigation capability is 

numerically demonstrated in 2D bioinspired composites. The broadband and multiband wave 

filtering capabilities in the proposed architected metamaterials are due to the coexisting of Bragg-

type band gaps and locally resonant band gaps. In addition to the brick-and-mortar-like 

microstructure in nacreous biological composites, other geometric properties such as hierarchy and 

heterogeneity also play a significant role in manipulating wave propagation. Specifically, both 

heterogeneity and hierarchy result in broad and multiple band gaps due to the coexisting of Bragg 

scattering and local resonances. This finding not only provides us clues to design broadband and 

multiband phononic crystals for noise and vibration control, but also shed lights on the shielding 

behavior of many structural biological materials. It can be envisioned that the proposed bioinspired 

architected composites have great potential applications in harsh environments where vibration 

sources are complex and need to be controlled selectively. Importantly, the bioinspired architected 

composites with optimal band gaps also exhibit considerable mechanical properties such as 
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stiffness and strength. As a result, they can also be employed in mechanical challenging 

environments.  

(3) Created a new system of lightweight yet stiff hierarchical honeycomb metamaterials. In 

aerospace engineering, besides the excellent mechanical performance and vibration mitigation 

capability, lightweight is another criterion that limits the potential use of conventional materials. 

In this regard, lattice materials such as honeycombs are more efficient and widely deployed in 

aerospace engineering. Recently, there are growing efforts to use honeycombs to control noise and 

vibration. Unfortunately, no complete band gaps are observed, no matter how the geometric 

features are modified. In Chapter 5, a new system of lightweight yet stiff hierarchical honeycomb 

metamaterials were created. The proposed architected honeycomb metamaterials are inspired by 

the most famous hierarchical architecture, Eiffel tower. It was numerically demonstrated that by 

introducing structural hierarchy into regular honeycombs, broad and multiple band gaps emerge 

in the hierarchical honeycombs. More important, the proposed hierarchical honeycombs exhibit 

improved mechanical performance. For example, kagome and triangular hierarchical honeycombs 

can achieve specific stiffness that is 40~60 times higher while having similar band gaps. Therefore, 

the created hierarchical honeycombs are promising for various applications including underwater 

wave mitigation in submarines and other structural vibration mitigation in defense, aerospace, and 

automotive industries. For example, acoustic liners are often designed and placed around the jet 

engine to absorb the undesired noise and vibration. It is highly possible to employ the proposed 

hierarchical honeycombs to replace these acoustic liners. Moreover, a compact, lightweight, and 

mechanical robust design can be readily achieved. 

(4) Developed a new group of stretchable lattice metamaterials with mechanically tunable 

vibration mitigation capability. Conventionally, complete band gaps can be tuned by tailoring 
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the inherent architectures and materials properties of compositions. However, once the designed 

structures are fabricated and installed in practice, it is impractical or not economic to tune the band 

gaps. In Chapter 6 and 7, a new group of stretchable lattice metamaterials were developed by 

replacing the regular straight beams with beams of sinusoidal shape. Improved stretchability is 

numerically and experimentally demonstrated due to the pre-existing deformed shape. 

Interestingly, the proposed lattice metamaterials also exhibit a negative Poisson’s ratio, indicating 

that the metamaterials will expand under uniaxial stretch. The investigation into the interplay 

between the multiscale (ligament and cell) architecture and wave propagation shows that broad 

and multiple phononic band gaps can be achieved in these lattice materials. Quite importantly, this 

significant vibration mitigation capability can be dynamically tuned by an external mechanical 

stimulus, i.e., a uniaxial stretching. Intrinsically, these novel mechanical behavior and vibration 

mitigation capability are attributed to the deformation pattern switching from bending-dominated 

to stretching-dominated behavior. The findings presented here provide new insights into the 

development of architected metamaterials with unusual physical properties and a broad range of 

potential applications, such as tunable particle filters and adjustable acoustic metamaterials for 

vibration control.  

8.2 Broad impacts 

The outcome of this research will generate crucial insights into the mechanisms governing the 

prominent vibration mitigation capability and mechanical robustness of architected metamaterials, 

thus providing scientific knowledge for the design and control of the multifunctional properties of 

this class of materials. It will provide fundamental knowledge of mechanics and physics to develop 

unified frameworks for integrated modeling, simulation, analytics, design, and validation of 

architected metamaterials for various applications. The seamless integration of finite element 
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analysis and advanced additive manufacturing technology enables systematic design and efficient 

realization of high-quality and high-throughput architected metamaterials. The combination of 

numerical and experimental studies in this work will provide a better scientific understanding of 

the interactions among multi-physics fields. The metamaterial design concepts and techniques for 

accurate modeling and testing reported here will not only be vital to the discovery and innovation 

of next-generation multifunctional metamaterials but also be beneficial to the computational 

science-based design activities that intersect multiple technical disciplines.   

8.3 Future work 

Architected metamaterial design concept is a powerful tool to explore novel and unusual physical 

properties. The designed architected metamaterials therefore have a wide range of promising 

applications, especially when design is combined with the modern manufacturing technologies 

like 3D printing. Some future works could be toward, but are not limited to, the following 

directions. 

(1) Advanced fabricating techniques for hierarchical metamaterials. Conventional composites 

and lattice materials with feature size from centimeters to micrometers can be readily fabricated 

using additive manufacturing, such as 3D printing. However, for hierarchical structures, due to the 

multilevel of structure hierarchy, the overall size will be very large (~ meters) due to the resolution 

limitation at the lowest hierarchical level. Therefore, there is a great need for developing novel 

fabricating techniques that can fabricate prototypes over a wide range of length scale. 

(2) Efficient modeling and optimization of architected metamaterials. The metamaterials 

reported here are designed based on previous experience, which could limit the current material 

design space. It has been shown that topology optimization is a powerful tool to design 
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metamaterials with multifunctionality. For example, recent study has shown that topology 

optimization can be used to optimize photonic/ phononic crystals with broad phononic band gaps. 

However, optimized hierarchical structures with multiple and broad band gaps have not been 

reported yet. In addition, material nonlinearity, geometric nonlinearity, and multifunctionalities 

are also a great challenge. Therefore, developing an integrated computational framework to 

optimize and model the noise and vibration control in hierarchical structures is still an open 

research area. 

(3) Rational design of reconfigurable metamaterials. The architected lattice metamaterials 

studied in Chapter 6 & 7 have shown improved stretchability under uniaxial stretch. However, 

when the stretch reaches up 40%, failure of ligament arise due to highly localized stress. This 

indicates that the overall mechanical response of the architected lattice metamaterials is still 

material-dependent. It will be of great importance if the designed architected metamaterials have 

higher stretchability and can be repeatedly reconfigured without scarifying their load-carrying 

capability. In this regard, Kirigami could be one of the possible solutions. By cutting and folding 

the materials, one can achieve highly stretchable architected metamaterials in both 2D and 3D 

cases. Moreover, novel mechanical properties and functionalities can be explored. 

(4) Multifunctional design of architected metamaterials. Conventional phononic crystals will 

redirect wave energy elsewhere, which could cause other undesired vibration or damage. While 

architected metamaterials exhibiting locally resonant effect will localize the wave energy. This 

energy could be transformed into other forms of energy, which could be stored for useful purposes. 

For example, the polymer materials in the architected composites or architected lattice materials 

can be replaced with a type of piezoelectric polymer, Polyvinylidene fluoride (PVDF). In this case, 

the localized wave energy could be transformed into electricity, and can be harnessed for other 



 

142 

 

use. Therefore, there is a great need for the careful design of electric circuit that can harvest the 

localized wave energy efficiently. 
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