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Abstract of the Dissertation

A Data Driven Design Methodology for SS Dyads and its Application to
Unified Synthesis of Planar, Spherical and Spatial Linkages

by

Xin Ge

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2016

This research deals with a general kinematic synthesis problem of how to

generate the motion of a spatial platform subject to one or more spherical con-

straints. Each spherical constraint can be modeled by a SS dyad, which is a

spatial two-link kinematic chain connected by two spherical (S) joints. It defines

a five-degree-of-freedom motion of the end link such that a point stays on the

surface of a sphere. A spherical constraint degenerates into a plane constraint

when the radius of the sphere becomes infinite. In this way, a plane constraint is

considered as a special case of a spherical constraint and a one-degree-of-freedom

motion of a moving platform defined by a combination of five spherical and/or

plane constraints can be modeled by a 5-SS platform linkage.

In addition to a SS dyad, a spherical constraint can also be realized alterna-

tively with a TS dyad, where T denotes a universal joint, or a three-link Revolute-
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Revolute-Spherical chain, or RRS chain, where R denotes a revolute joint. The

plane constraint can be realized by RRS, RPS and PRS kinematic chains, where

P denotes a prismatic joint. In this way, a SS dyad based formulation could lead

to a unified synthesis of platform linkages formed by all these kinematic chains.

Traditionally, the problem of mechanism synthesis separates into type syn-

thesis and dimensional synthesis. Type synthesis deals with the selection of a

mechanism type based on given task; dimensional synthesis deals with the deter-

mination of link dimensions. While dimensional synthesis is highly amendable

to mathematical treatment, type synthesis remains elusive and highly depen-

dent on designer’s prior experience, despite of recent theoretical advancement in

graph theory or topology. Furthermore, recent research indicates that there are

mechanism synthesis problems that one can not separate type and dimensional

synthesis, i.e., slight variation of input data might lead to different mechanism

types. This calls for a data driven simultaneous type and dimensional synthesis

approach. The central idea to this approach is to synthesize geometric constraints

for a given task. This includes the location of the moving point as well as the

location and radius associated with the spherical constraint. Once the geometric

constraints are determined from the given task, the next step is to figure out

kinematic chains such as TS and RRS that can be used to generate the geometric

constraints.

In this dissertation, we first consider a simpler version of the problem, which

is to design a planar mechanism such that its moving link is constrained by

one or more circular constraints. Instead of separating type and dimensional

synthesis by selecting joint types, either revolute (R) or prismatic (P) joint before

dimensional synthesis, we present a unified design equation such that the selection
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of joint types and determining link lengths can be carried out simultaneously. In

the process, we developed a linear representation of the design equations that can

be extended to the synthesis of spherical four-bar linkages.

The spherical constraints in 5-SS linkage synthesis problem are extensions of

circular constraints from two to three dimensions. This leads to linear form of

design equations for SS dyads that are similar to that of planar and spherical RR

dyads but with additional variables and bilinear constraints. In contrast to the

existing approach that leads to a system of polynomial design equations, which

can be solved using homotopy method, this linear formulation leads to a gener-

alized eigenvalue problem that can be more readily solved than the homotopy

method.

It turns out the SS dyad formulation can be applied to the synthesis of spatial

RR dyads whose moving and fixed axes in general neither intersect nor are in

parallel. Planar and spherical dyads can be viewed as special cases of a spatial

RR dyad when the two axes either intersect or are in parallel. In all RR dyads,

a point on the moving axis traces out a circle. Furthermore, as a circle can

be obtained as intersection of two spheres or a plane and a sphere, the circular

constraints of spatial RR dyads can be obtained as intersection of spherical and

plane constraints. Thus, planar, spherical and Bennett 4R linkages, which are

composed of different types of RR dyads, may be treated as special cases of spatial

5-SS linkages. This leads to a new and unified methodology for synthesizing

planar, spherical, and spatial RR dyads without a priori knowledge whether the

given input positions are planar, spherical or spatial in nature.
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Chapter 1

Introduction and Background

This paper focuses on the rigid body guidance problem which is to determine the

geometric parameters of mechanisms, parallel manipulators and platform robotic

systems to guide the end point through a number of specified positions. This

problem has been studied extensively for planar, spherical, as well as spatial

mechanisms known as the dimensional synthesis or geometric design [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11]. The process to solve the problem of kinematic synthesis for rigid

body guidance is to formulate the design equations for a given type of mechanism

and find a set of design parameters associated with the dimensions of links and

joints such that the end-effector is guided through a set of prescribed positions.

Such equations is formulated by the constraints information of movement of the

end-effector. The synthesis problems can be transferred to that of the study of

the end-effector motion under a single or multiple geometric constraints, such as

the motion for which a point on the moving body stays on a circle or a line in

plane kinematics or for which a moving point stays on a sphere or a plane in

spatial kinematics, or the moving point is constrained by combination of sphere

and plane in some other spatial configurations.

For a simple case as example, the Burmester problem, is to find the geometric

1



dimensions of a planar 4R linkages (where R denotes a revolute joint) for a set

of five positions of the coupler link [12]. Innocenti [5] presented a polynomial

solution to the spatial counterpart of this classical Burmester problem, which is

to find the center and radius of each of the five spheres that constrain the legs of

a spatial platform while it guides a spatial body through seven task positions.

In this paper, we restrict our attention to such kinds of geometric constraints

that the design parameters may be divided into two groups, one is associated

with the coordinates of the moving points and the other is associated with the

coordinates of the geometric constraint. The inner relationship of these design

parameters are bilinear. We found the bilinear relationship representing the re-

lation of design parameters of the constraint equations of each linkage discussed

and developed a general and simple as while as reliable method to solve for these

design parameters.

Generally, in the field of kinematic synthesis, solving a system of bilinear equa-

tions is typically using traditional methods or procedures developed for systems of

polynomial equations. These methods could be symbolic, numeric or geometric.

Dialytic elimination [13] and Grobner bases [14] are symbolic methods with roots

in algebraic geometry. They can be used for eliminating variables from a poly-

nomial system and thereby transform the problem into that of finding roots of

univariate polynomials [15]. They are most effective for systems with small num-

ber of polynomials and with low degree. In addition, the resulting high-degree

univariate polynomial could have its numerical problems such as ill-conditioning

that reduces its practical effectiveness [16, 17]. The numeric methods include

local search and iterative techniques such as the Newton’s method as well as ho-

motopy continuation method. Local methods require good initial guess and are
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often difficulty to obtain all solutions. Homotopy based methods have shown to

be most effective in finding all the roots of a polynomial system and have made

major progress in the past decade [18, 19, 20], however, it still requires an initial

guess. The advantage is that with enough iterations and consumption of time,

one can always find full set of solutions. The backside is clear that the whole

process could be time or memory consuming.

We formulate our design equations by concept of dyad synthesis. The term

“dyad synthesis” is often used to describe the synthesis process resulting from

a bilinear systems of equations of constraint, although for the spatial case a

single constraint may be realized by a series of more than two links and joints

[11, 21, 1, 22] which can be referred to the term “triad”.

There are many research on the algorithm for solving such bilinear systems.

Angeles and Bai [23] have developed a bilinear formulation on the study of the

spherical four-bar linkage synthesis. They provided a two-step synthesis method,

which sequentially deals with equation-solving by a semigraphical approach and

branching detection. M.Plecnik and J. M. McCarthy introduced a bilinear struc-

ture of certain six-bar linkages [24]. The result is then solved using the polynomial

numerical homotopy software BERTINI. For bennett 4R mechanism synthesis,

Alba Perez and J. M. McCarthy [25] use the cylindroid[26] associated with the

Bennett’s linkage to simplify the design equation.

We present a unified methodology both on formulation and the way to solve

for such problems with circular, linear, planar and spherical constraints. Our

formulation of constraint equation is not used for a single, but a category of

linkages. This means that our algorithm is data driven based. In other words, it

determines types and dimensions simultaneously based on the given data instead
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of intuition. Traditionally, people separate the two problems by picking a type of

linkage based on experience first and then finding the dimensions of that specific

linkage. If the chosen linkage is not correct, one has to pick another one and

repeat the process. We obtained our design equation by substituting the original

design parameters by a set of new intermediate parameters and formulate new

matrix equations based on the inner relations of new parameters. This not only

can unify the algorithm itself but also indicates the type of input data. Thus it

makes this algorithm capable of dealing with more special cases, such as planar

and spherical, in a unified way. It has potential to be applied to other linkages

as well.

The construction of the paper is as following. We first present the different

types of planar, spherical and spatial dyads as well as develop the geometric

constraint design equations for each type. Then we start to talk about the link-

ages constructed by these dyads separately, the unified method for five positions

synthesis of planar and spherical four bar linkages, seven position synthesis of

spatial five SS platform linkage, application of seven position synthesis of 5-SS

linkage to planar, spherical and bennett four bar linkage. Next we develop the six

and five position synthesis with one or more additional constrains of spatial 5-SS

platform linkage. Finally a unified algorithm is developed for five position syn-

thesis of general planar, spherical and spatial positions. This algorithm combines

the linkage synthesis problems mentioned in the first part and the 5-SS linkage

together. The corresponding algorithm is described in each part and numeric

examples are given at the end of each chapter.
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Chapter 2

Types of Planar, Spherical and
Spatial Dyads

2.1 Introduction

In this chapter, we extend the idea of dyad synthesis and formulate the geometric

constraints of planar RR, PR, RP dyad, spherical RR dyad and spatial SS dyad.

Furthermore, we combine the geometric constraints of planar and spherical dyads

into one general homogeneous equation in order to unify the synthesis method of

both categories of dyads.

2.2 Planar RR, PR and RP Dyads

Planar dyads are links with both revolute (R) or prismatic (P) end joints as well

as the combination of both. The constraints can be found from the illustrations.

Fig.2.1 to 2.3 illustrate the planar RR, PR and RP dyads separately. Solid small

circles represent revolute joints (R joints) while blocks represent prismatic joints

(P joints). Specifically, the end link of a RR dyad moves along a circle of which

the center point is its fixed joint, because the distance of end link and fixed
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link is constant. The prismatic block of PR dyad moves along a straight line,

thus geometric constraint for PR dyad is a line. For RP dyad, the end link, the

prismatic joint, although goes along a moving line, the line is always tangent to

a fixed circle with fixed joint its center.

Figure 2.1: Planar RR Dyad: one joint moves along a circle; another joint stays
on the center of the circle.

The design equation related to each of the dyads is discussed as following.

Let X = (X1, X2, X3) (where X3 6= 0) be a vector of homogeneous coordinates

of the moving pivot in the fixed plane F , and let a = (a1, a2, a3, a0) be another set

of homogeneous coordinates associated with a circle that constrains the movement

of the point X, where the center of the circle is given by (a1/a0, a2/a0). Then a

planar RR dyad is defined by the following equation of a circle:
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Figure 2.2: Planar PR Dyad: prismatic joint moves on a line.

a1X1 + a2X2 + a3X3 = a0(
X2

1 +X2
2

2X3

), (2.1)

with the radius r being given by

r2 = (2a0a3 − a21 − a22)/a20. (2.2)

As for a PR dyad, the constraint equation is a line equation. This is the case

when a0 = 0 in Equation 2.1.

a1X1 + a2X2 + a3X3 = 0. (2.3)

A RP dyad can be represented by an infinity of lines tangent to concentric
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Figure 2.3: Planar RP Dyad: prismatic joint moves on a line tangent to a circle.

circles of different radii, thus one could use a line passing through the center of

those circles as the line constraint without losing generality. In this case, due to

the duality of point and line geometry in the plane [27], a linear constraint of the

same form as 2.3 can be used if we replace the point coordinates X = (X1, X2, X3)

with homogeneous line coordinates L = (L1, L2, L3).

2.3 Spherical RR Dyad

A spherical RR dyad is shown in Figure 2.4. The constraint requires the moving

joint b to be staying on a circle with axis AO. Since the angle between fixed pivot

axis AO and the moving pivot axis BO is constant, we can utilize this feature to

constrain a spherical RR dyad.
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Figure 2.4: Spherical RR Dyad: origin O of fixed frame X-Y-Z is located at
the center of sphere; rotational axis AO of fixed joint a; moving frame x-y-z;
rotational axis BO of moving joint b; angle α between fixed and moving axes.

Define a = (a1, a2, a3) as a unit vector representing the location of the fixed

pivot A and X = (X1, X2, X3) is another unit vector defining the location of the

moving pivot B of the end link. The origin of the global coordinate is located at

center point O. α is the angle between AO and BO. Thus we have the relationship,

a ·X = cosα (2.4)

This leads to a linear equation.

a1X1 + a2X2 + a3X3 + d = 0 (2.5)

where d = − cosα with α being the constant angle between a and X.
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2.4 Spatial RR Dyad

A spatial RR dyad is a dyad composed of two revolute joints. There are three

cases based on the relationships of the two rotational axes of revolute joints. They

define three kinds of ruled surfaces, hyperboloid, cylinder and conical surface. A

ruled surface is defined if through every point on the surface there is a straight

line that lies on. In the case where the two axes of the revolute joints are neither

parallel or intersecting, it can be categorized into a general spatial RR dyad, as

shown in Figure 2.5.

Figure 2.5: A General Spatial RR Dyad from a Circular Hyperboloid Surface of
One Sheet: Two points move along two parallel circles with same rotational axis
at the same speed. The line defined by these two points at different positions.
The equivalent RR dyad of hyperboloid, where A and B represent the axes of
fixed and moving joints.
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The figure shows two points move along two parallel circles with same rota-

tional axis at the same speed. The line defined by these two points moves on the

surface of a circular hyperboloid of one sheet. The figure shows different posi-

tions of this line. The lower figure is the equivalent RR dyad of this hyperboloid,

where A and B represent the axes of fixed joint and moving joint defined by axis

of circles and direction of moving line separately.

When axes of fixed and moving joints are parallel, it becomes a planar RR

dyad shown in Figure 2.6. Two points move along two parallel circles with same

rotational axis at the same speed. The line defined by these two points are parallel

to the axis of the two circles and moves on the surface of a circular cylinder. The

figure shows different positions of this line. The lower figure is the equivalent RR

dyad of this cylinder, where A and B represent the axes of fixed joint and moving

joint defined by axis of hyperboloid and direction of moving line separately.

Another special case is when the two axes are intersecting into one point.

This becomes a spherical RR dyad in Figure 2.7. Spherical RR dyad can be

generated by a circular conical surface. Conical surface is formed by the union

of all the straight lines that pass through a fixed point, the apex or vertex. The

lower figure shows the equivalent spherical RR dyad, where A is the rotational

axis of fixed joint defined by axis of two circles and B is the axis of moving joint

defined by any one of straight line on the conical surface.

One more to be mentioned is that our 5-SS linkage synthesis algorithm is

derived from spherical and planar constraints. Thus we can represent a circle by

the intersection of a plane and a sphere or two spheres, Figure 2.8.
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Figure 2.6: A Planar Spatial RR Dyad from a Circular Cylinder Surface: Two
points move along two parallel circles with same rotational axis at the same speed.
The line defined by these two points are parallel to the axis at different positions.
The equivalent planar RR dyad, where A and B represent the axes of fixed and
moving joints.

2.5 Spherical and Planar Constraints of Spatial

Dyads

In this section, we will review the leg types (leg in this paper refers to a spatial

dyad or triad) by spherical or planar constraints as cited in [28]. Both constraints

can be represented by the same homogeneous equation, leading to a unified rep-

resentation of all six types of legs for a platform linkage.

Figure 2.9 shows that a spatial SS leg is associated with a spherical constraint.
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Figure 2.7: A Spherical Spatial RR Dyad from a Circular Conical Surface: Two
points move along two parallel circles with same rotational axis at the same
speed. Different positions of the line defined by two moving points intersect into
one point. The equivalent spherical RR dyad, where A and B represent the axes
of fixed and moving joints.

One of the spherical joint in SS leg is fixed and defines the center of the sphere

while another moves on the surface of the sphere. Furthermore, a spherical joint

can be substituted or decomposed by one or more other joints, e.g. a T (universal)

joint or two R (revolute) joints. The former becomes a TS leg, Figure 2.10, and

the latter is a RRS chain, Figure 2.11. They all constrain a point on the moving

platform to the surface of a sphere. For a RRS leg, the axes of two revolute joints

intersect and form a spherical RR dyad. The point on the platform, coincident

with S joint here, always stays on the surface of a sphere defined by the spherical
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Figure 2.8: Circle Defined by the Intersection of a Plane and a Sphere or the
Intersection of Two Spheres.

RR dyad.

While the length of the SS leg which is the radius of the constraint sphere

becomes infinite, the sphere can be treated as a plane. This relationship can be

seen algebraically from the design equation.

There are many leg types associated with a plane constraint, e.g. RRS, RPS

and PRS legs. A RRS leg is shown in Figure 2.12. The axes of two revolute joints

are parallel to each other (intersect at infinity). A point on the end effector,

coincident with S joint, stays on a plane in the fixed frame. RPS and PRS legs

are shown in Figure 2.13 and Figure 2.14 separately. The axes of R and P joints

are perpendicular to each other.

When a point of a moving platform is found to be constrained on a sphere,

we can apply SS, TS or RRS (with two intersecting R-axes) leg, to trace the

task motion. For RRS leg, the design parameters can vary as long as it satisfies

the same spherical constraint. For SS and TS legs, their design parameters are

determined once the sphere constraints are found.
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Figure 2.9: SS Leg: fixed spherical joint defines center of sphere; moving spherical
joint moves on the surface of the sphere; fixed frame F; moving frame M.

Likewise, when the resulting constraint becomes a plane constraint, we can use

RRS (with two parallel R-axes), RPS and PRS legs to generate such constraint.

This establishes the basis for formulating the platform linkage synthesis problem

that unifies the choice of the six legs.

The design equation is similar to that of the planar and spherical dyads. Let

X = (X1, X2, X3, X4) (where X4 6= 0) denote the homogeneous coordinates of a

point in the fixed frame. Then the sphere equation in homogeneous form can be

written as,

2a1X1 + 2a2X2 + 2a3X3 + a4X4 = a0(
X2

1 +X2
2 +X2

3

X4

). (2.6)

When a0 6= 0, the center of the sphere is given by,

a = (a1/a0, a2/a0, a3/a0) (2.7)
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Figure 2.10: TS Leg: fixed universal joint defines center of sphere; moving spher-
ical joint moves on the surface of the sphere; fixed frame F; moving frame M.

and the square of the radius r of the sphere is

r2 = (a21 + a22 + a23 + a0a4)/a
2
0. (2.8)

When a0 = 0, the sphere equation reduces to the equation of a plane:

2a1X1 + 2a2X2 + 2a3X3 + a4X4 = 0 (2.9)

In this case, (a1, a2, a3) becomes the directional vector of the plane.

Hence, Equation 2.6 is a unified representation for both a sphere and a plane

in homogeneous form.

Planar and spherical dyads are special cases of spatial legs, in other words,

one can always use the spatial legs to substitute either planar or spherical dyads

and obtain an equivalent planar or spherical linkages. Thus Equation 2.6 can
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Figure 2.11: Spherical RRS Chain: axes of two revolute joints intersect into
center of sphere; the spherical joint moves on the surface of the sphere; fixed
frame F; moving frame M.

be treated as the unified design equation planar, spherical and spatial legs. The

numerical verification and examples will be given in later chapters.

2.6 Summary

This chapter discusses the summary of the geometric constraints imposed by

different types of dyads as well as the resulting design equations drawn from these

constraints. We present circle, line, sphere and plane constraints while they can

further be simplified to the intersections of spheres and planes. These dyads are

the fundamentals in formulating any mechanical linkages in later chapters. One

may note that in spatial situations, a sphere or a plane may extend to represent a

triad instead of dyad, thus this method is potential to apply to more mechanisms.
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Figure 2.12: Planar RRS Chain: axes of two revolute joints are perpendicular
to a plane; the spherical joint moves on the surface of the plane; fixed frame F;
moving frame M.

Figure 2.13: Planar RPS Chain: axis of revolute joint is perpendicular to a plane;
moving direction of cylindrical joint is parallel to the plane; spherical joint moves
on the plane fixed frame F; moving frame M.
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Figure 2.14: Planar PRS Chain: moving direction of cylindrical joint is parallel
to a plane; axis of revolute joint is perpendicular to the plane; spherical joint
moves on the plane; fixed frame F; moving frame M.
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Chapter 3

Task Driven Type and
Dimensional Synthesis of Planar
and Spherical Linkages

3.1 Introduction

This section introduces and develops the task driven planar and spherical linkage

synthesis method. This method acts as the fundamental for synthesis of the

other complex linkages in future chapters. There are some initial development

and previous work in this problem ([29], [30], [31], [32], [33]), however, it cannot

be extended onto other linkages such as spatial 4R or 5-SS linkages. Thus we

utilize the basic formulation of the equations and develop an extendable bilinear

form for the algorithm throughout this paper.

3.2 Planar Quaternions

In mathematics and mechanics, planar quaternions are well used to represent

planar rigid body displacement ([34], [22], [35]). We use planar quaternions

to represent the displacement because it allows us to visualize the results as
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different ruled surfaces, thus provides a more intuitive method in synthesizing

this problem.

Figure 3.1: Transformation of Coordinate: fixed coordinate F ; moving coordinate
M ; x is the coordinate of point P in moving frame; X is the coordinate of point
P in fixed frame; d1, d2 are the translations of moving frame; α is the rotation of
moving frame.

Consider a planar displacement with d = (d1, d2) being the vector of trans-

lation and α the angle of rotation. Let x = (x1, x2, x3) and X = (X1, X2, X3)

denote the homogeneous coordinates of a point in the moving frame M and fixed

frame F, respectively. See Figure 3.2. The relationship between x and X for a

planar displacement parameterized by (d1, d2, α) is given as follows:


X1

X2

X3

 =


cosα − sinα d1

sinα cosα d2

0 0 1




x1

x2

x3

 . (3.1)

Introducing a planar quaternion, z = (z1, z2, z3, z4), formulated as such that
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(see, for example, [22, 36, 37]):

z1 = (d1/2) cos(α/2)− (d2/2) sin(α/2),

z2 = (d1/2) sin(α/2) + (d2/2) cos(α/2),

z3 = sin(α/2), (3.2)

z4 = cos(α/2),

Then one can rewrite Equation 3.1 in quaternion form as


X1

X2

X3

 =


z24 − z23 −2z3z4 2(z1z3 + z2z4)

2z3z4 z24 − z23 2(z2z3 − z1z4)

0 0 z23 + z24




x1

x2

x3

 . (3.3)

3.3 A Unified Representation for Planar Dyads

Substituting Equation 3.3 into Equation 2.1, we obtain, after some algebra:

A0P0 + A1P1 + A2P2 + A3P3 + · · ·+ A9P9 = 0, (3.4)

where

A0 = z23 + z24 , A1 = z1z3 − z2z4,

A2 = A6 = (z23 − z24)/2, A3 = −A5 = z3z4,

A4 = z2z3 + z1z4, A7 = −(z21 + z22),

A8 = z1z3 + z2z4, A9 = z2z3 − z1z4,

(3.5)
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and

P0 = 2a3x3 − a0(x21 + x22)/x3,

P1 = a0x1, P2 = a1x1, P3 = a2x1,

P4 = a0x2, P5 = a1x2, P6 = a2x2,

P7 = a0x3, P8 = a1x3, P9 = a2x3.

(3.6)

It has been well established that Equations 3.4, 3.5, 3.6 define a circular

hyperboloid of one sheet in the projective three-space (z1, z2, z3, z4) when a0 6= 0

and that they define a hyperbolic paraboloid when a0 = 0 (see [22]).

Note that these coefficients are homogeneous and that the nine coefficients Pi

(i = 1, 2, . . . , 9) are bilinear in the original design parameters (a0, a1, a2, x1, x2, x3).

Furthermore, they satisfy the relations:

P1

P7

=
P2

P8

=
P3

P9

=
x1
x3

= λ1,

P4

P7

=
P5

P8

=
P6

P9

=
x2
x3

= λ2. (3.7)

and (when a0 6= 0)

P2

P1

=
P5

P4

=
P8

P7

=
a1
a0

= µ1,

P3

P1

=
P6

P4

=
P9

P7

=
a2
a0

= µ2. (3.8)

These two relationships indicate we can choose whether to solve moving coor-

dinate xi or fixed coordinate ai first depending on the additional design require-

ments. They also indicate that P0, P7, P8, P9, λ1, λ2 can be treated as intermediate

design parameters.

It has been shown in [29, 38] that for a RP dyad, one can obtain a linear
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equation of the same form as 3.4 where the coefficients Pi are bilinear in terms

of (a0, a1, a2), which defines a fixed point, and (l1, l2, l3), which defines a line in

the end link:

P0 = a0l3

P1 = 0, P2 = 0, P3 = 0,

P4 = a0l1, P5 = a1l1, P6 = a2l1,

P7 = a0l2, P8 = a1l2, P9 = a2l2.

(3.9)

In summary, any planar dyad, RR, PR, and RP, can be represented by a spe-

cial bilinear equation of the form 3.4 with two relations 3.7 or 3.8. Furthermore,

when P1 = P4 = P7 = 0, we obtain a PR dyad; when P1 = P2 = P3 = 0, we

obtain a RP dyad.

It is also worth noting that there have been other attempts to solve the design

equations for planar dyads [39, 40, 41, 42, 43]. In [29], we have presented a

different formulation using only 8 homogeneous coordinates, i.e., (P0, P1, P2 +

P6, P3−P5, P7, P8, P9). This can be clearly seen from 3.5 that the terms associated

with P2 and P6 can be combined, so are those for P3 and P5. This formulation

reduces the solution of the design equation into that of finding the roots of two

quadratic equations. Unfortunately, this formulation can not be extended to

spherical dyads. Therefore we present this bilinear formulation which covers

synthesis method of planar, spherical and spatial linkages in this paper.
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3.4 Design Equation Extended to Spherical RR

Dyad

Our goal is to formulate the design equation of spherical RR dyad and find out

whether the same algorithm of planar dyad synthesis can be applied in this case.

Fortunately, the design equation of spherical RR dyad is very similar to that of

planar dyads in its formulation.

Referring to Figure 2.4, let s = (sx, sy, sz) denotes a unit vector in the direction

of the rotation axis of fixed joint and θ denotes its rotation angle. One can

represent the rotation with Euler−Rodrigues parameters ([1, 22]) by quaternion

formulation:

q1 = sx sin(θ/2), q2 = sy sin(θ/2),

q3 = sz sin(θ/2), q4 = cos(θ/2). (3.10)

Let x = (x1, x2, x3) denotes a unit vector representing the moving joint B in

the moving coordinate frame attached to the end effector. Then we have

X1 = [(q24 + q21 − q22 − q23)x1 + 2(q1q2 − q4q3)x2

+2(q1q3 + q4q2)x3]/S
2,

X2 = [2(q1q2 + q4q3)x1 + (q24 − q21 + q22 − q23)x2

+2(q2q3 − q4q1)x3]/S2,

X3 = [2(q1q3 − q4q2)x1 + 2(q2q3 + q4q1)x2

+(q24 − q21 − q22 + q23)x3]/S
2 (3.11)
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where S2 = q21 +q22 +q23 +q24. To simplify the equation, we use unit quaternions

to make S2 = 1.

Substituting 3.11 into 2.5, we can obtain a linear equation in the same form

as 3.4, where,

A0 = q21 + q22 + q23 + q24, A1 = q24 + q21 − q22 − q23,

A2 = 2(q1q2 + q4q3), A3 = 2(q1q3 − q4q2),

A4 = 2(q1q2 − q4q3), A5 = q24 − q21 + q22 − q23,

A6 = 2(q2q3 + q4q1), A7 = 2(q1q3 + q4q2),

A8 = 2(q2q3 − q4q1), A9 = q24 − q21 − q22 + q23),

(3.12)

and the coefficients Pi (i = 1, 2, . . . , 9) are bilinear in (a1, a2, a3) and (x1, x2, x3):

P0 = d,

P1 = a1x1, P2 = a2x1, P3 = a3x1,

P4 = a1x2, P5 = a2x2, P6 = a3x2,

P7 = a1x3, P8 = a2x3, P9 = a3x3.

(3.13)

It can be easily verified that the coefficients Pi (i = 1, 2, . . . , 9) satisfy the

same relations as 3.7 and 3.8. Thus Equation 3.4 together with the relations 3.7

or 3.8 provide a unified representation of the design equation for both planar and

spherical dyads [44].

3.5 Solving the Unified Design Equation

There are five design parameters in the design equations of planar and spherical

linkages, therefore the maximum number of positions for exact synthesis problem
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is five. We are going to develop the algorithm for five position synthesis to find

the type and dimensions of dyads of which the end effectors pass all the positions.

Consider a set of five displacements of the end-effector. If they are planar

displacements, we use 3.5 to obtain the coefficients Aij (i = 1, 2, . . . , N , j =

0, 1, 2, . . . , 9) and if they are spherical displacements, we use 3.12 instead.

The system of five linear equations of the form 3.4 can be written in matrix

form as

[A]P = 0, (3.14)

where [A] is a 5 × 10 matrix and PT = [P0 P1 P2 . . . P9]. In view of 3.7

and 3.8, the goal is to solve the intermediate design parameters pi first and then

use 3.6 and 3.13 to obtain the original design parameters for planar and spherical

dyads, respectively. In the case of planar dyads, one may use 3.9 instead of 3.6

if P1 = P2 = P3 = 0.

In order to find the intermediate design parameters (P0, P7, P8, P9, λ1, λ2), we

propose a Gaussian elimination based method that is different from the one pre-

sented in [31]. The formulation of design equations in [31] works only for planar

dyads. In the previous section, we have shown that both planar dyads and spher-

ical dyads can be represented by the same design equations using intermediate

parameters. Thus the advantage of our new method is unifying the synthesis

problem for both planr and spherical dyads. This unified method is presented

in [44] using null-space analysis to find the eigenvectors corresponding to zero

eigenvalues which can then construct the basis vectors of intermediate design pa-

rameters. Based on the bilinear formulation of the equation and combined with

3.7 or 3.8, the design parameters are solved. The null-space analysis has been
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used in our previous papers, but this method is not capable to differentiate input

positions, for example, whether the position are on a plane or from one sphere,

where the general algorithm is not as efficient. Therefore we use Gaussian elimi-

nation instead of null-space analysis and prove it to be effective to tell the types

of input positions without preprocessing in the following chapters.

In linear algebra, Gaussian elimination (also known as row reduction) is an

algorithm for solving systems of linear equations by elementary row operations

[45]. For each row in a matrix, if the row does not consist of only zeros, then

the left-most non-zero entry is called the leading coefficient (or pivot) of that

row. One can always order the rows so that for every non-zero row, the leading

coefficient is to the right of the leading coefficient of the row above. If this is

the case, then matrix is said to be in row echelon form [46]. Furthermore, a row

echelon form can become reduced row echelon form (also called row canonical

form) if every leading coefficient is 1 and is the only nonzero entry in its column.

For five general arbitrary positions, to simplify the calculation, first we sub-

tract each equation from position 2 of 3.4 by position 1. This will result 4 new

linear equations in the form

9∑
i=1

(Ak,i − A1,i)pi = 0 (3.15)

where Ak,i denote the coefficients associated with the kth(k = 2, 3, 4, 5) posi-

tion in 3.4. This subtraction also delete the first term p0 because the coefficient

of p0 in each equation is the same. After substituting hk,i for Ak,i − A1,i and

rewrite 3.15,

[H]P = 0 (3.16)
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where [H] is the matrix with only hk,i as its elements.

Next step is to obtain the reduced row echelon form (RREF) of Matrix [H]

by Gaussian elimination.

RREF ([H]) =



1 0 0 0 k1,5 k1,6 · · · k1,9

0 1 0 0 k2,5 k2,6 · · · k2,9

0 0 1 0 k3,5 k3,6 · · · k3,9

0 0 0 1 k4,5 k4,6 · · · r4,9


(3.17)

Thus p1, p2, p3, p4 can be represented by the rest of p5, p6, p7, p8, p9,

p1 = −k1,5p5 − k1,6p6 − . . .− k1,9p9,

p2 = −k2,5p5 − k2,6p6 − . . .− k2,9p9,

p3 = −k3,5p5 − k3,6p6 − . . .− k3,9p9, (3.18)

p4 = −k4,5p5 − k4,6p6 − . . .− k4,9p9.

Consider 3.7 and 3.8 after some algebra manipulation, we can have the new

form of the relationships,

p1 − λ1p7 = 0, p2 − λ1p8 = 0, p3 − λ1p9 = 0,

p4 − λ2p7 = 0, p5 − λ2p8 = 0, p6 − λ2p9 = 0 (3.19)

and

p2 − µ1p1 = 0, p5 − µ1p4 = 0, p8 − µ1p7 = 0,

p3 − µ2p1 = 0, p6 − µ2p4 = 0, p9 − µ2p7 = 0 (3.20)
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Then substitute 3.18 into 3.19 and 3.20,

[B1]F = 0 (3.21)

and

[B2]F = 0 (3.22)

[B1], [B2] and F are of the following form,

[B1] =



−k1,5 −k1,6 · · · −k1,8 −k1,9

−k2,5 −k2,6 · · · −k2,8 − λ1 −k2,9

−k3,5 −k3,6 · · · −k3,8 −k2,9 − λ1

1 0 · · · 0 0

0 1 · · · −λ2 0

0 0 · · · 0 −λ2



[B2] =



µ1k1,5 − k2,5 µ1k1,6 − k2,6 · · · µ1k1,8 − k2,8 µ1k1,9 − k2,9

µ1k4,5 + 1 µ1k4,6 · · · µ1k4,8 µ1k4,9

0 0 · · · 1 0

µ2k1,5 − k3,5 µ2k1,6 − k3,6 · · · µ2k1,8 − k3,8 µ2k1,9 − k3,9

µ2k4,6 µ2k4,6 + 1 · · · 0 0

0 0 · · · 0 1



F = [p5, p6, p7, p8, p9]
T (3.23)

Both B1 and B2 are 6 × 5 matrices, thus 3.21and 3.22 are over-determined
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systems. For F to have finite, non-trivial solutions, there should be only four in-

dependent rows in either matrix, because there are five variables in homogeneous

form in F, and thus the left matrix must be rank-deficient ([47], [48], [49]). In

order for the matrix to be rank-deficient, one can find two of the biggest square

sub-matrices (by dropping off one row at each time) to obtain two 5 × 5 matrices

and calculate their determinants. When the determinants equal to zero simulta-

neously, λ1 and λ2 are the solutions of moving joint or µ1 and µ2 the are solutions

of fixed joint. There are also other research on solving such a over-determined

general eigenvalue problem ([50], [51], [52]).

Once λi or µi are found, we can determine F by null-space of the Bi using var-

ious methods such as Singular Value Decomposition ([53], [54]). The eigenvectors

corresponding to the zero eigenvalues are the solutions of F. The resulting F can

be substituted back into 3.18 to obtain all the intermediate parameters pi that

satisfy 3.15, while P0 is to be obtained by arithmetic average after substituting

P1...P9 to 3.4. One can then obtain the original design parameters by inverting

3.6 or 3.13.

3.6 Numerical Examples of Planar and Spheri-

cal Linkages

3.6.1 Example 1: Planar Dyads Synthesis

Now consider five planar task positions given in Table 3.1. The substitution

of the data in the table into relationship 3.2 yields five planar quaternions zi

(i = 1, 2, 3, 4, 5) in Table 3.2, which are then substituted into 3.5 to obtain the
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Table 3.1: Example 1: Five Planar Task Positions

Position d1 d2 α

1 3.6700 0.6457 −77.5362◦

2 2.7965 1.5640 −56.6879◦

3 2.5562 1.7066 −35.2713◦

4 3.7451 1.1415 −38.6715◦

5 4.5797 0.5694 −63.1693◦

Table 3.2: Example 1: Planar Quaternions Representation

Position z1 z2 z3 z4

1 -1.4007 1.2285 -0.6261 0.7796
2 -1.3520 0.8593 -0.4747 0.8801
3 -1.2004 0.9595 -0.3029 0.9530
4 -1.1585 1.5779 -0.3311 0.9435
5 -1.4418 1.8015 -0.5237 0.8518

matrix [A].

They define three planar 4R linkages as well as three slider-crank mechanisms.

The solutions of moving joints and intermediate parameters are listed in Table 3.4

and 3.5. Three constraint circles and one constraint line as well as their respective

circle points are computed using 3.6 and are shown in Table 3.6. Figure 3.2 shows

one resulting four bar linkage in this example.

3.6.2 Example 2: Spherical Dyads Synthesis

There are five spherical displacements given in Table 3.3. After constructing the

matrix [A] using 3.12 and 3.14, the first step is to use Gaussian elimination t find

the linear relationship of pi. We then construct the matrices [B1], [B2], [B3] and

solve the resulting generalized eigenvalue problem, the moving joint coordinates
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Figure 3.2: A resulting four bar linkage and five planar positions.

and corresponding intermediate design parameters are shown in Table 3.7 and

3.8. We can then invert 3.13 to obtain the original design parameters shown

in Table 3.9. Figure 3.3 shows one of spherical 4R linkages generated from this

example.

3.7 Summary

In this chapter, we derived the design equations of planar and spherical four bar

linkage synthesis problem from the geometric constraints of planar and spherical

dyads. Later we have shown that the design equations of both cases have the same

bilinear formulation with different coefficients. Based on the design equations

and the bilinear relationship of design parameters, we have developed an unified

method to solve the synthesis problems of both categories of linkages.
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Figure 3.3: A resulting spherical four bar linkage and five spherical positions.

Table 3.3: Example 2: Five spherical displacements in quaternion form.

Position q1 q2 q3 q4

1 0.2456 0.4356 0.7485 0.4356
2 0.1027 0.3194 0.7237 0.6030
3 0.1167 0.2550 0.5669 0.7746
4 0.1759 0.3038 0.4195 0.8371
5 0.2456 0.5060 0.2456 0.7895

Table 3.4: Example 1: Solutions of Moving Joints

(λ1, λ2)

PR (0.9997,−2.9994)
RR (0.3812,−1.8718)
RR (2.2086,−1.0049)
RR (−1.9998,−2.9999)
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Table 3.5: Example 1: Solutions of Intermediate Parameters

p1 . . . p9 p0

PR (0.0000, 0.1346, 0.2690,−0.0001,−0.4038,−0.8071, 0.0000, 0.1346, 0.2691) 0.0671
RR (−0.0314,−0.1277,−0.1052, 0.1544, 0.6273, 0.5168,−0.0825,−0.3351,−0.2761) 0.3179
RR (−0.1757,−0.6968, 0.2257, 0.0799, 0.3170,−0.1027,−0.0796,−0.3155, 0.1022) 0.4983
RR (0.3221, 0.0001, 0.3221, 0.4831, 0.0001, 0.4831,−0.1610,−0.0000,−0.1610) 0.6142

Table 3.6: Example 1: Homogeneous Coordinates of the Constraint Circle (or
Line) and the Circle Point

a0, a1, a2, a3 x1, x2, x3

PR 0.0000, 0.1346, 0.2690, 0.1343 0.9997,−2.9994, 1.0000
RR 1.0000, 4.0668, 3.3503,−5.5287 0.3812,−1.8718, 1.0000
RR 1.0000, 3.9659,−1.2846,−8.2698 2.2086,−1.0049, 1.0000
RR 1.0000, 0.0000, 1.0000, 0.0000 −1.9998,−2.9999, 1.0000
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Table 3.7: Example 2: Solutions of Moving Joints

(λ1, λ2)

(−0.0030, 0.5771)
(−0.3877, 0.4882)
(0.8812,−0.6568)

(−0.0028,−0.5639)

Table 3.8: Example 2: Solutions of Intermediate Design Parameters

p1 . . . p9 p0

(0.0000,−0.0017, 0.0000,−0.0003, 0.4842,−0.0000,−0.0005, 0.8388,−0.0001) −0.2562
(−0.0611, 0.2977,−0.0751, 0.0769,−0.3751, 0.0947, 0.1576,−0.7683, 0.1939) −0.3224

(−0.3420,−0.2499, 0.1826, 0.2531, 0.1850,−0.1351,−0.3876,−0.2833, 0.2069) −0.8120
(−0.0007,−0.0000, 0.0000,−0.3761,−0.0001,−0.0015, 0.6555, 0.0001, 0.0026) 0.8679

Table 3.9: Example 2: The Dimensions of the Four Resulting Spherical RR Dyads

a1, a2, a3, d x1, x2, x3

0.0009,−1.000, 0.0001,−0.2562 −0.0030, 0.5771, 1.0000
0.1953,−0.9507, 0.2408,−0.3224 −0.3877, 0.4882, 1.0000
−0.7423,−0.5398, 0.3970,−0.8121 0.8812,−0.6568, 1.0000

0.9999, 0.0013, 0.0142, 0.8679 −0.0028,−0.5639, 1.0000
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Chapter 4

Task Driven Type and
Dimensional Synthesis of 5-SS
Platform Linkage

4.1 Introduction

A 5-SS platform linkage is a mechanism with five legs of which the moving joints

are linked onto one rigid platform and fixed joints are located on the ground as

shown in Figure 4.1. It is a single degree of freedom mechanism. We use geometric

constraints to formulate the design equation of legs which can be constructed to

5-SS platform linkage. We will show the similarity in synthesis algorithm of this

spatial mechanism with that of planar and spherical linkages. Therefore it is an

extension of our method from two to three dimensions.

4.2 Dual Quaternion Formulation

Dual quaternions are used to represent spatial rigid body displacements ([55],

[56]). A spatial displacement of a rigid body is represented by the transformation

of a moving frame M attached to the moving body with respect to a fixed frame
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Figure 4.1: A 5-SS Platform Linkage: A, C, E, G, I are moving joints and B, D,
F, H, J are fixed joints.

F :



X1

X2

X3

X4


=

 rx ry rz d

0 0 0 1





x1

x2

x3

x4


, (4.1)

where the vectors X = (X1, X2, X3, X4) and x = (x1, x2, x3, x4) represent

homogeneous coordinates of a point in F and M, respectively and unit vectors

rx, ry, rz represent the axes of M with respect to F and thus define the rotation

matrix [R]. The vector d represents the translation of the origin of M relative to

F . This transformation and notations are shown in Figure 4.2.

In this chapter, we follow [57] and use a dual quaternion formulation for the

homogeneous transform 4.1. A dual quaternion Q̂ = (q,g) involves a real part
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Figure 4.2: Spatial Displacement Definition: x and X are the coordinates of a
point P relative to moving and fixed frame; d is the distance between origin of
moving and fixed frame; s defines a rotational axis and θ defines the rotational
angle.

q = (q1, q2, q3, q4) and a dual part g = (g1, g2, g3, g4) (see also [1] and [22]). The

real part Q can be constructed with rotation axis s = (sx, sy, sz) and rotation

angle θ, from the ration matrix [R] using Cayley’s formula [22]:

Q = (sx sin
θ

2
, sy sin

θ

2
, sz sin

θ

2
, cos

θ

2
) (4.2)

The dual part Q̃ is given by the formula:



g1

g2

g3

g4


=

1

2



0 −d3 d2 d1

d3 0 −d1 d2

−d2 d1 0 d3

−d1 −d2 −d3 0





q1

q2

q3

q4


. (4.3)
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Thus the rotation matrix [R] in 4.1 can be parameterized with the unit quater-

nion q = (q1, q2, q3, q4) as:

[R] =


q24 + q21 − q22 − q23 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) q24 − q21 + q22 − q23 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) q24 − q21 − q22 + q23

 (4.4)

where q21 + q22 + q23 + q24 = 1.

The translation vector d = (d1, d2, d3) can be expressed as

d = −2


g4q1 − g1q4 + g2q3 − g3q2

g4q2 − g2q4 + g3q1 − g1q3

g4q3 − g3q4 + g1q2 − g2q1

 . (4.5)

where the real and dual components satisfy the relation q1g1+q2g2+q3g3+q4g4 =

0.

4.3 The Unified Design Equation for Spherical

and Planar Constraints

It has been shown in chapter 2 that both sphere and plane can be formulated by

a unified homogeneous equation. In the following steps, we substitute given data

in dual quaternion representation into this unified equation and obtain the design

equation of such constraints. Let x = (x1, x2, x3, x4) denotes the homogeneous

coordinate of a point on the moving platform that stays on a sphere (or a plane)

defined by 2.6 and let the movement of the platform be defined by dual quaternion
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components (q1, q2, q3, q4) and (g1, g2, g3, g4). It follows from [57] that the following

linear equation in pi (i = 0, 1, 2, . . . , 16) is the design equation for the spherical

(or plane) constraint:

p0 +
16∑
i=1

Aipi = 0, (4.6)

where

A1 = 2(−g2q1 − g3q2 + g2q3 + g1q4),

A2 = −q21 + q22 + q23 − q24,

A3 = 2(−q1q2 − q3q4),

A4 = 2(−q1q3 + q2q4),

A5 = 2(g3q1 − g4q2 − g1q3 + g2q4),

A6 = 2(−q1q2 + q3q4),

A7 = q21 − q22 + q23 − q24,

A8 = 2(−q2q3 − q1q4),

A9 = 2(−g2q1 + g1q2 − g4q3 + g3q4),

A10 = 2(−q1q3 − q2q4),

A11 = 2(−q2q3 + q1q4),

A12 = q21 + q22 − q23 − q24,

A13 = 4g21 + 4g22 + 4g23 + 4g24,

A14 = 4g4q1 − 4g3q2 + 4g2q3 − 4g1q4,

A15 = 4g3q1 + 4g4q2 − 4g1q3 − 4g2q4,

A16 = −4g2q1 + 4g1q2 + 4g4q3 − 4g3q4,

(4.7)

and each of the pi (i = 0, 1, 2, . . . , 16) are defined by the choice of the moving
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joint x = (x1, x2, x3, x4) as well as the spherical constraint (a0, a1, a2, a3, a4) as

follows:

p1 = a0x1x4, p2 = a1x1x4, p3 = a2x1x4, p4 = a3x1x4

p5 = a0x2x4, p6 = a1x2x4, p7 = a2x2x4, p8 = a3x2x4

p9 = a0x3x4, p10 = a1x3x4, p11 = a2x3x4, p12 = a3x3x4

p13 = a0x
2
4, p14 = a1x

2
4, p15 = a2x

2
4, p16 = a3x

2
4 (4.8)

p0 = a0x
2
1 + a0x

2
2 + a0x

2
3 − a4x24.

As both xi, ai are homogeneous, there are only 7 independent design param-

eters. This allows a maximum of seven positions to be used for exact type and

dimensional synthesis. Typically, one tries to solve xi and ai directly from the

design equation by using algebraic methods and homotopy for solving a set of

polynomial equations, see for example, McCarthy and Soh [11]. Homotopy is

basically an iteration method. The advantage is that if choosing a suitable initial

value and after enough iteration, one can always find the full solution set. Thus it

is easy to conclude that homotopy is a time-consuming method. Although there

are many software helping users to decide and narrow down the initial values, it

is still not the best choice of solving polynomial system directly. Our method is

to first reformulate the polynomial system and then allows us to solve it with any

general package solvers for higher order equations. The advantage is fast, simple,

extendable and unified.

In [57], an initial development of our approach is taken that it treats the

design equation as a combination of the linear equation in 17 unknowns as given
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by 4.6 and the following 9 bilinear constraints:

p2p5 − p1p6 = 0, p1p7 − p3p5 = 0, p1p8 − p4p5 = 0,

p2p9 − p1p10 = 0, p1p11 − p3p9 = 0, p1p12 − p4p9 = 0,

p2p13 − p1p14 = 0. p1p15 − p3p13 = 0, p1p16 − p4p13 = 0.

(4.9)

For a set of seven positions, we obtain a set of seven linear equations in the

form 4.6. One can eliminate p0 by subtracting equation 2 to 7 by equation 1 and

obtain six linear equations in the form:

16∑
i=1

(Ak,i − A1,i)pi = 0 (4.10)

where Ak,i denote the coefficients associated with the kth position of ith equa-

tion in 4.6.

Let P = [p1, . . . , p16]
T and hki = Ak,i − A1,i, then we can assemble 6 linear

equations in matrix form as

[H]P = 0, (4.11)

Thus the problem reduces to the solution of the system of linear equation 4.11

subject to the same group of bilinear constraints 4.9. In [57], a homotopy based

algorithm was then developed for the problem.

We can rewrite 4.6 as a bilinear matrix equation,
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[a0 . . . a3]


h1 . . . h13
...

. . .
...

h4 . . . h16




x1
...

x4

 = 0 (4.12)

This indicates that, from the formulation, we can either solve for ai or xi first

depending on whether there are more constraints on the moving or fixed joints.

This will be presented in the chapter of six or five position synthesis that one can

choose to formulate based on either x or a first for different problems.

The nine constraint equations in 4.9 are equivalent to the following relations

among the sixteen parameters pi:

p1
p13

=
p2
p14

=
p3
p15

=
p4
p16

=
x1
x4

= λ1,

p5
p13

=
p6
p14

=
p7
p15

=
p8
p16

=
x2
x4

= λ2, (4.13)

p9
p13

=
p10
p14

=
p11
p15

=
p12
p16

=
x3
x4

= λ3.

We can also obtain another relationship in terms of a0, a1, a2, a3 by assuming

a0 6= 0.

p2
p1

=
p6
p5

=
p10
p9

=
p14
p13

=
a1
a0
,

p5
p1

=
p7
p5

=
p11
p9

=
p15
p13

=
a2
a0
, (4.14)

p4
p1

=
p8
p5

=
p12
p9

=
p16
p13

=
a3
a0
.
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4.4 Solving the Design Equation of Spherical

and Planar Constraints

This section is to solve the problem of determining the type and dimensions of a

spatial platform linkage such that an fixed end effector located on the platform

guides through a set of seven given spatial positions. This kind of linkage is

composed of legs whose moving joints are constrained onto the surface of either

spheres or planes.

We obtain the reduced row echelon form (RREF) using Gaussian elimination

to solve spherical and planar design equations which is similar to that in planar

and spherical algorithm. For seven position synthesis, matrix [H] of 4.11 can be

factored into:

RREF ([H]) =



1 0 0 0 0 0 k1,7 · · · k1,15 k1,16

0 1 0 0 0 0 k2,7 · · · k2,15 k2,16

0 0 1 0 0 0 k3,7 · · · k3,15 k3,16

0 0 0 1 0 0 k4,7 · · · k4,15 k4,16

0 0 0 0 1 0 k5,7 · · · k5,15 k5,16

0 0 0 0 0 1 k6,7 · · · k6,15 k6,16



(4.15)

Therefore the first six intermediate design parameters pi(i = 1, 2, . . . , 6) can

be represented by the rest of pi(i = 7, 8, . . . , 16) as the following,

p1 = −k1,7p7 − k1,8p8 − . . .− k1,16p16,
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p2 = −k2,7p7 − k2,8p8 − . . .− k2,16p16,
... (4.16)

p6 = −k6,7p7 − k6,8p8 − . . .− k6,16p16.

Reformulating 4.13 and 4.14,

p1 − λ1p13 = 0, p2 − λ1p14 = 0, p3 − λ1p15 = 0, p4 − λ1p16 = 0,

p5 − λ2p13 = 0, p6 − λ2p14 = 0, p7 − λ2p15 = 0, p8 − λ2p16 = 0, (4.17)

p9 − λ3p13 = 0, p10 − λ3p14 = 0, p11 − λ3p15 = 0, p12 − λ3p16 = 0

and

p2 − µ1p1 = 0, p6 − µ1p5 = 0, p10 − µ1p9 = 0, p14 − µ1p13 = 0,

p5 − µ2p1 = 0, p7 − µ2p5 = 0, p11 − µ2p9 = 0, p15 − µ2p13 = 0, (4.18)

p4 − µ3p1 = 0, p8 − µ3p5 = 0, p12 − µ3p9 = 0, p16 − µ3p13 = 0

Substituting 4.16 into 4.17 or 4.18 to obtain new homogeneous matrix equa-

tions,

[B1]F = 0 (4.19)

and

[B2]F = 0 (4.20)

where [B1], [B2] and F are of the following form,
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[B1] =



−k1,7 −k1,8 · · · −k1,14 −k1,15 −k1,16

−k2,7 −k2,8 · · · −k2,14 − λ1 −k2,15 −k2,16

−k3,7 −k3,8 · · · −k3,14 −k3,15 + λ1 −k3,16

−k4,7 −k4,8 · · · −k4,14 −k4,15 −k4,16 + λ1

−k5,7 −k5,8 · · · −k5,14 −k5,15 −k5,16

−k6,7 −k6,8 · · · −k6,14 − λ2 −k6,15 −k6,16

1 0 · · · 0 λ2 0

0 1 · · · 0 0 λ2

0 0 · · · 0 0 0

0 0 · · · λ3 0 0

0 0 · · · 0 λ3 0

0 0 · · · 0 0 λ3


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[B2] =



−k2,5 + µ1k1,5 · · · −k2,15 + µ1k1,15 −k2,16 + µ1k1,16

−k6,5 + µ1k5,5 · · · −k6,15 + µ1k5,15 −k6,16 + µ1k5,16

0 · · · 0 0

0 · · · 0 0

−k5,5 + µ2k1,5 · · · −k5,15 + µ2k1,15 −k5,16 + µ2k1,16

1 + µ2k5,5 · · · µ2k5,15 µ2k5,16

0 · · · 0 0

0 · · · 1 0

−k4,5 + µ3k1,5 · · · −k4,15 + µ3k1,15 −k4,16 + µ3k1,16

µ3k5,5 · · · µ3k5,15 µ3k5,16

0 · · · 0 0

0 · · · 0 1



F = [p7, p8, · · · , p16]T (4.21)

λi and µi are the unknowns to be found and they are the coordinates of

moving joints x1/x4, x2/x4, x3/x4 and fixed joints a1/a0, a2/a0, a3/a0.

Both B1 and B2 are 10× 12 matrices, thus 4.19 and 4.20 are over-determined

systems, in other words the number of rows is more than the number of columns.

For F to have finite, non-trivial solutions, there should be only nine independent

rows in either matrix, because there are ten variables in homogeneous form in

F, requiring the left matrix to be rank-deficient. In order for the matrix to be

rank-deficient, one can find three of the biggest square sub-matrices (by drop-

ping off two of any three rows at each time) to obtain two 10 × 10 matrices and
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calculate their determinants. When the determinants equal to zero simultane-

ously, λ1, λ2, λ3 are the solutions of moving joints or µ1, µ2, µ3 the are solutions

of fixed joints. The solution to three equations can be obtained using NSolve in

Mathematica in seconds for a seven-position synthesis problem.

Once λi or µi are found, we can determine F by null-space of the Bi using

various methods such as Singular Value Decomposition. The eigenvectors cor-

responding to the zero eigenvalues are the solutions of F. The resulting F can

be substituted back into 4.16 to obtain all the intermediate parameters pi that

satisfy 4.10, while P0 is to be obtained by arithmetic average after substituting

P1...P16 to 4.6. One can then obtain the original design parameters by inverting

4.8.

4.5 Numerical Example for Seven General Po-

sition Synthesis

Take the example in [58] as shown in table 4.1 for seven general given task po-

sitions synthesis, which are in the form of rotation axis vector s=(sx, sy, sz),

rotation angle θ and translation vector d=(d1, d2, d3).

We obtain 20 real solutions of pi. ai and xi can be computed by inverting 4.8

and are listed in Table 7.3. The final types of mechanism can be determined by

constructing any five of these legs together. Figure 4.3 shows a resulting 5-SS

linkage passing each of the seven positions.
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Table 4.1: Seven General Task Positions: given as rotaional axis (sx, sy, sz),
rotational angle θ and translation vector (d1, d2, d3).

sx sy sz θ d1 d2 d3
1 0.0000, 0.0000, 0.0000, 0.0000 0.0000, 0.0000, 0.0000
2 -0.0863, 0.0096, -0.9962, 1.7088 1.0000, -0.7423, -0.1337
3 -0.3509, -0.7019, 0.6197, 2.0294 0.3182, -0.5085, -0.7922
4 -0.3775, 0.8612, 0.3402, 2.9993 -0.1788, -1.7842, -1.0429
5 -0.5828, -0.3469, 0.7347, 3.1035 -1.2580, 0.8362, -1.4992
6 0.0075, -0.1487, -0.9888, 1.2080 -3.5939, 2.7283, -2.0334
7 0.8987, 0.1616, 0.4075, 2.3064 -0.0497, 0.5700, -1.4858

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.

4.6 Summary

In this chapter, we extended the synthesis methodology of planar and spherical

linkages to spatial 5-SS linkage. We presented a design equation with bilinear

relationship of its design parameters. We formulated the bilinear relationship

into matrix equations and solved the design parameters. This algorithm can

further be found that it combines the planar and spherical linkages with spatial

5-SS linkages together and thus can be derived into an unified algorithm for

designing all the linkages.
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Table 4.2: General Example: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000, -7.9666, 2.5182, -4.8173, 7306.7500 51.3313, 26.9291, -62.1552
2 1.0000, 0.0730, -0.5605, 0.2412, 660.5880 -5.3925, 3.2024, 25.0794
3 1.0000, 0.8993, -0.9070, 0.1314, 118.9910 3.4589,3.3524,-9.6636
4 1.0000, -3.2436, -34.9680, -7.2182, 164.5690 5.4835,-5.0920,14.7184
5 1.0000, -4.0713, -2.5601, -3.6966, 69.1985 -1.3251,-7.2066,5.0705
6 1.0000, -48.9526, -37.5513, -43.9814, 29.3375 -0.0679,5.1452,-4.5168
7 1.0000, 75.5422, 37.6131, -87.4322, 22719.7000 -43.3100,-113.5570,-109.9560
8 1.0000, -0.4049, -0.8840, -1.2398, 9.3185 1.6293,1.8374,-1.7462
9 1.0000, -0.1483, 2.6789, -0.4008, 12.0059 0.1609,-0.6353,2.4775
10 1.0000, -7.7352, -9.6332, -10.4381, -11.4725 -0.4713,1.5841,-1.9811
11 1.0000, -1.4532, -0.4130, -1.1780, 4.5181 1.3606,0.0850,-1.0281
12 1.0000, 0.8104, -0.9742, -2.7162, 4.8647 2.3574,0.6639,0.2455
13 1.0000, 1.2795, 0.7159, -1.2141, 16.3161 -0.6459,4.1420,0.9058
14 1.0000, -0.3764, -0.2693, -2.2550, 6.1162 2.1435,-0.9265,-0.1024
15 1.0000, -3.4210, -0.2940, 1.4624, 7.5653 0.7026,-0.3222,-0.6562
16 1.0000, -2.5613, -4.1576, -8.7596, -15.0158 -0.3029,0.2047,-0.9218
17 1.0000, -7.8391, -0.0888, 9.6491, 25.0373 0.3670,-0.5877,-0.9344
18 1.0000, 0.2611, 2.4585, -3.4241, 0.5437 -1.5558,1.1520,0.2327
19 1.0000, -3.8199, -3.7258, 4.3851, 15.4123 0.8757,2.4774,2.7771
20 1.0000, 0.9735, 2.9069, -3.0423, 0.6578 -0.9779,1.0618,0.4360
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Figure 4.3: An Example of 5-SS Linkage and Seven Positions
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Chapter 5

From Spatial 5-SS Platform
Linkage to Planar and Spherical
4R Linkage

5.1 Introduction

In this chapter, we are going to develop and present the relationship among spatial

legs and planar and spherical dyads [28]. The basis indicating a relationship

existing is that planar and spherical dyds are special cases of spatial dyads. There

are multiple constructions of the spatial leg types equivalent to planar links,

spherical RR link or spatial RR link. The combinations of these links will form

various types of linkages. There are several benefits to build this relation from

the spatial 5-SS platform linkage to planar and spherical linkages synthesis, in

addition to simplifying the algorithm, it also extends the original circle and unit

sphere constraints into the more general cases, spatial plane and sphere. This

allows the input positions to be given without considering preproessing to fit

different design equations which greatly simplifies the design process. There will

be one unified design equation and algorithm for all the linkages mentioned in

our previous papers.

53



5.2 Degree of Freedom and Over-constraint Link-

ages

The degrees of freedom (DOF) of a rigid body is defined as the number of in-

dependent movements it has. A spatial rigid body has six DOF, the movement

of x, y, z directions and the rotations around them. Grubler gives a formula to

calculate DOF of a system of rigid bodies and links connected by different joints

([59] - [60]), known as Grubler-Kutzbach criterion (or mobility formula). For the

planar and spherical cases, the formula is given by,

DOF = 3(n− j − 1) +
j∑

i=1

wi. (5.1)

and the spatial case is,

DOF = 6(n− j − 1) +
j∑

i=1

wi. (5.2)

where n is the number of the total members of the bodies and links, j is the

number of the total joints, wi is the DOF of the ith joint.

Take 5-SS linkage for example, n = 7, j = 10, wi = 3, thus DOF = 6(7− 10−

1) + 3 × 10 = 6. Note that the rotation of the SS leg around its axial direction

does not influence the input and output motion of the linkage, called passive or

redundant degree of freedom, thus they are not considered. TheDOF = 6−5 = 1.

The degree of freedom of a planar four bar or spherical 4R linkage by 5.1 is

DOF = 3(4 − 4 − 1) + 4 = 1. It means they are actually one DOF linkages.

But if they are considered as a spatial linkage, using 5.2, one will have DOF =

6(4 − 4 − 1) + 1 × 4 = −2. It indicates that they are actually over-constraint

54



linkages in spatial case. This means they cannot move which is clearly incorrect.

If a over-constraint linkage is supposed to move, the links and joints should meet

certain criteria until the degree of freedom becomes one or more.

The summary is that a general over-constraint linkage is nothing but a rigid

body, only when its links and joints meet certain criteria, it becomes movable. A

planar 4R linkage has one DOF because it’s a over-constraint spatial 4R linkage

of which all four of the rotational axes are parallel. A spherical 4R linkage has all

rotational axes intersect into one point. A Bennett’s linkage has its own special

criteria for the dimensions of the links so that it can move.

5.3 Planar and Spherical Linkages in terms of

Spatial 5-SS Platform Linkage

We present the planar and spherical RR link by combinations of the spatial leg

types using planar and spherical constraints. Specifically, for instance, when a

linkage is fully constructed, the joint formed by a couple of SS dyads is constrained

to move on a circle which behave as a revolute joint. Thus, planar four bar and

spherical 4R linkages are able to be constructed by spatial legs and the same

algorithm can be applied for linkage synthesis. Furthermore, this method has the

potential to extend to more linkages.
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5.3.1 Representation of Planar RR Dyad by Spherical and

Planar Constraints

A planar RR dyad can be represented by the combination of a plane and a sphere

constraints as illustrated in Figure 5.1, where the S joint can be replaced by a

T joint. In the figure, OB is the spatial SS dyad, A’B is the equivalent planar

RR dyad while A’ is the fixed joint, B is the moving joint and line AO is the

rotational axis of its fixed pivot. The joint B is moving on a circle defined by

sphere O and a plane. SS dyad can also be substituted by other spatial legs

whose moving joints move on the surface of a sphere.

For example, in the case of planar position synthesis, one can find multiple

spheres and parallel planes. Since the constraint manifold of planar linkage is a

spatial plane, we can find infinite planes as long as they have the same normal

direction, in other words, they are parallel planes. They define linkages with

different translation on the direction of rotational axes, but they all pass through

the same given positions. The intersection of spheres and planes are circles defin-

ing the planar RR dyads. Although there are multiple solutions, the intersection

circles all define a finite set of RR dyads.

When any two of the RR links construct a 4R linkage, if all of the rotational

axes are parallel to each other(both fixed and moving pivots), it becomes a planar

4R linkage, otherwise, it may be a spherical 4R linkage or a bennett 4R linkage

which we will show later. The design parameters of RR links can further be

calculated from their geometry properties.
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Figure 5.1: Planar RR Leg Constrained by a Sphere and a Plane: spatial SS dyad
OB; equivalent planar RR dyad A’B; rotational axis AO of fixed joints; moving
frame M; fixed frame F.

5.3.2 Representation of Spherical RR Dyad by Spherical

and Planar Constraints

The spherical RR dyad shares some similarity with the planar RR dyad. The

difference is the fixed and moving rotational axes are not parallel, they intersect

into one point O as shown in Figure 5.2. The illustration is the case where the

spherical dyad is constrained by a plane and a sphere. AO is the fixed axis

defined by the center of the sphere and the directional vector of the plane, OB

is the SS leg (S can be replaced by a T joint) as well as the moving pivot axis of

the spherical dyad. Joint B is located on the intersection circle of the plane and

sphere.

In spherical position synthesis, the solutions can be multiple groups of spheres

of which the centers in each group lie on a same line passing a common center or
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Figure 5.2: Spherical RR Leg Constrained by a Sphere and a Plane: Spatial SS
dyad OB; equivalent spherical RR dyad AB; rotational center O.

finite set of parallel planes. It is straightforward to obtain the fixed pivot axis,

one can find a circle by intersection of sphere and plane or two sphereshowever

to obtain the moving pivot axis requires more information. One method is to

treat coupler link and end effector as a rigid body and translate all seven possible

positions for end effector onto one position, thus the origin of moving frame will

be found on a plane of which the normal direction is OB. This method is going

to be discussed in detail in the next chapter for spatial RR dyad synthesis in

Bennett’s linkage. The simplest method is to verify the locations for the given

positions being on a surface of sphere. Once we know the given positions are

spherical movements, we can use OB as the axis for the moving pivot because

O is the rotational center of the linkage. The verification of input positions of

different cases are developed in the last chapter.

To obtain a 4R spherical linkage, one can pick two spherical RR dyads while
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the fixed axes and moving axis of two spherical RR dyads intersect into one point,

i.e. rotational center.

5.4 Seven Planar and Spherical Position Syn-

thesis Examples

5.4.1 Seven Planar Position Synthesis

Table 5.1: Seven Planar Task Positions: given as rotaional axis (sx, sy, sz), rota-
tional angle θ and translation vector (d1, d2, d3).

sx sy sz θ d1 d2 d3

1 -0.6515,-0.7232,0.2286,2.5453 3.1016,0.9856,-0.5777
2 -0.7617,-0.5857,0.2768,2.6375 2.6772,-0.1732,-0.2852
3 -0.8465,-0.4285,0.3157,2.7486 2.5387,-0.3868,-0.1754
4 -0.8350,-0.4543,0.3103,2.7300 3.2552,0.5430,-0.7586
5 -0.7303,-0.6304,0.2628,2.6070 3.7249,1.3641,-1.1224
6 -0.7005,-0.6684,0.2497,2.5814 2.8605,0.3533,-0.4092
7 -0.7884,-0.5430,0.2888,2.6672 3.6032,1.0066,-1.0408

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.

We call it “general” to make the difference from the traditional planar syn-

thesis because our method will find planar linkage lying on spatial planes. This

algorithm not only gives the original design parameters for a planar linkage, but

also provides the orientation of the plane where the linkage is located. Thus this

is a general linkage synthesis algorithm for spatial planar four bar linkage.

Table 5.1 gives seven planar task positions. There are 11 solutions as shown

in Table 7.2, two of them represent planar dyads while others can construct
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Table 5.2: Planar Position Example: design parameters ai and xi

a0 a1 a2 a3 a4
x1

x4

x2

x4

x3

x4

1 0.0000, -0.2002, 0.0188, -0.2160, -0.9554 -1.1528, -510.5240, 0.0000
2 0.0000, 0.2002, -0.0188, 0.2160, 0.9554 -23.6118, 54.6819, 0.0000
3 0.0000, -0.2002,0.0188,-0.2160,-0.9554 8.9950, -41.5867, 0.0000
4 0.0000, -0.2002, 0.0188, -0.2160, -0.9554 2.35318, -22.8586, 0.0000
5 0.0000, 0.2002, -0.0188, 0.2160, 0.9554 -6.8741, 3.0252, 0.0000
6 0.0000, -0.2002,0.0188,-0.2160,-0.9554 1.0357, -3.0201, 0.0000
7 0.0000, 0.2002,-0.0188,0.2160,0.9554 0.6000, -2.5640, 0.0000
8 0.0000, 0.2002,-0.0188,0.2160,0.9554 2.75513, -0.6102, 0.0000
9 0.0000, 0.2002,-0.0188,0.2160,0.9554 -1.1509, -3.0936, 0.0000
10 0.0000, -0.2002,0.0188,-0.2160,-0.9554 0.3867, -1.8745, 0.0000
11 0.0000, -0.2002, 0.0188, -0.2160, -0.9554 -1.3097, -0.5883, 0.0000

multi DOF mechanism or one DOF mechanism by adding other constraints. We

pick the set so that all the task positions are lying on the solution planes. One

may observe that the 11 solutions are on a same plane with the different moving

pivots. Noted that there actually exist infinite solutions, the result of 11 solutions

is only a sub-set of the infinite solutions. It is caused by the numerical issues and

the solving algorithm of the polynomial equations which can be improved in the

future.

Figure 5.3 illustrates the resulting four bar linkage generated from this exam-

ple. This synthesis method verified the effectiveness of our algorithm. A unified

and more efficient process is developed in five position synthesis.

5.4.2 Seven Spherical Position Synthesis

Seven spherical task positions are given in Table 5.3 of the same format. Four

solutions are obtained as shown in Table 5.4.
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Figure 5.3: The resulting planar four bar linkage.

The solutions define two spherical RR dyads, specifically two rotational axes

for the fixed joint. The moving joint axes are obtained by linking moving joint to

the center of spheres. Link length can be found further. The numerical results of

two equivalent spherical dyads are shown in Table 5.5 (a is the direction vector

of fixed pivot axis, x is the direction vector of moving pivot axis). Figure 5.4

shows the resulting spherical 4R linkage.

5.5 Summary

In this chapter, we applied seven position from planar and spherical linkages

into our algorithm of 5-SS linkage synthesis. From the solution point of view,

we were able to obtain the planar or spherical linkages that meet the design
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Table 5.3: Seven Spherical Task Positions: given as rotaional axis (sx, sy, sz),
rotational angle θ and translation vector (d1, d2, d3).

sx sy sz θ d1 d2 d3

1 -0.2728, 0.4839, 0.8315, 4.0429 -0.0069, 0.6097, 2.7820
2 -0.1287, 0.4004, 0.9072, 4.4361 0.4390, 0.5358, 3.0623
3 -0.1845, 0.4032, 0.8963, 4.9137 0.5778, 0.4099, 3.1069
4 -0.3216, 0.5554, 0.7669, 5.1255 0.4107, 0.3629, 3.0574
5 -0.4002, 0.8245, 0.4002, 4.9615 -0.0844, 0.3541, 2.7224
6 -0.2512, 0.4701, 0.8461, 5.0522 0.5144, 0.3867, 3.0912
7 -0.4008, 0.7642, 0.5052, 5.0846 0.0823, 0.3515, 2.8761

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.

Table 5.4: Spherical Example: design parameters ai and xi.

a0 a1 a2 a3 a4
x1

x4

x2

x4

x3

x4

1 1.0000,0.0000,0.4149,1.8909,387.5581 -0.2479,-10.1364,15.8819
2 1.0000,0.0000,1.0289,1.4390,13.6207 1.5863,1.0138,-3.2643
3 1.0000,0.0000,-1.0730,0.0122,5.3682 -0.2652,-0.3564,-1.1654
4 1.0000,0.0000,-1.9914,0.1773,6.8826 -0.2698,-0.3598,-1.1602

requirements. This indicated that the planar and spherical are the special cases

of spatial linkages and thus helped us to develop a more general method for

synthesizing these linkages.
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Table 5.5: The Dimensions of the Two Resulting Spherical RR Dyads: fixed
joints axes a and one pair of moving joints axes x.

a x

(0.8400, 0.4140, 1.8870)T + µ(0.9999,−0.0002,−0.0040) (0.8400, 0.4140, 1.8870)T + λ(−0.8660, 0.4990, 0.0020)
(0.8400, 0.4140, 1.8870)T + µ(−0.7414, 0.5418,−0.3957) (0.8400, 0.4140, 1.8870)T + λ(0.3988,−0.9156, 0.0511)

Figure 5.4: The Resulting Spherical 4R Linkage.
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Chapter 6

From Spatial 5-SS Platform
Linkage to Bennett 4R Linkage
Synthesis

6.1 Introduction

In this chapter, we focus on a special spatial linkage, Bennett 4R linkage. It is

composed of two spatial RR dyads. The core in this chapter is to demonstrate

how to obtain a spatial RR dyad with our method to verify its effectiveness.

6.2 Condition for Bennett 4R Linkage

According to [61], bennett 4R linkage is the only movable spatial 4R-chain. It

is constructed by two spatial RR dyads, while the resulting linkage is a over-

constraint system, however it is movable when it meets certain criteria following

the notation in Figure 6.1:

l1 = l3, l2 = l4,

α1 = α3, α2 = α4, (6.1)
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l1
sin(α1)

=
l2

sin(α2)
.

while for i = 1, 2, 3, 4, li are the link length, αi are the angles between joint

axis AiAi+1(A4 = A1).

Figure 6.1: Bennett 4R Linkage Notation: link length l1, l2, l3, l4; rotational axes
of joints A1, A2, A3, A4; angle between rotational axes α1, α2, α3, α4.

6.3 Rotation About Arbitrary Axis in 3D

Our method to obtain the moving axis of spatial RR link involves basic knowledge

of spatial transformation. Let’s review the rotation matrix of an arbitrary axis
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in 3D space [62].

Define a point D = (d1, d2, d3) in space, then the transformation matrix to

move the point to the origin is,

[Td] =



1 0 0 −d1

0 1 0 −d2

0 0 1 −d3

0 0 0 1


.

Then define Txz the matrix to rotate a unit vector v = (v1, v2, v3) about the

z axis to the xz plane. Tz is the matrix to rotate the unit vector in the xz plane

to the z axis and Rz(θ) is rotational matrix by θ around z axis,

[Txz] =



v1√
v21+v22

v2√
v21+v22

0 0

− v2√
v21+v22

v1√
v21+v22

0 0

0 0 1 0

0 0 0 1


.

[Tz] =



v3 0 −
√
v21 + v22 0

0 1 0 0√
v21 + v22 0 v3 0

0 0 0 1


.
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[Rz(θ)] =



cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1


.

Thus we can define the line by a point P = (p1, p2, p3) and a unit vector

S = (s1, s2, s3), then the matrix for rotation about an arbitrary line in 3D is

given by Tl = T−1d T−1xz T
−1
z Rz(θ)TzTxzTd,

[Tl] =



T1,1 T1,2 T1,3 T1,4

T2,1 T2,2 T2,3 T2,4

T3,1 T3,2 T3,3 T3,4

0 0 0 1


. (6.2)

where

T1,1 = s21 + (s22 + s23)cosθ

T1,2 = s1s2(1− cosθ)− s3sinθ

T1,3 = s1s3(1− cosθ) + s2sinθ

T1,4 = (p1(s
2
2 + s23)− s1(p2s2 + p3s3))(1− cosθ) + (p2s3 − p3s2)sinθ

T2,1 = s1s2(1− cosθ) + s3sinθ

T2,2 = s22 + (s21 + s23)cosθ

T2,3 = s2s3(1− cosθ)− s1sinθ
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T2,4 = (p2(s
2
1 + s23)− s2(p1s1 + p3s3))(1− cosθ) + (p3s1 − p1s3)sinθ

T3,1 = s1s3(1− cosθ)− s2sinθ

T3,2 = s2s3(1− cosθ) + s1sinθ

T3,3 = s23 + (s21 + s22)cosθ

T3,4 = (p3(s
2
1 + s22)− s3(p1s1 + p2s2))(1− cosθ) + (p1s2 − p2s1)sinθ

Figure 6.2: Equivalent Spatial RR Links for First Three Positions: fixed joint O;
moving joints A1, A2, A3; point B1, B2, B3 on end link.

6.4 Synthesis of Spatial RR Dyad

In this section, we focus on how to find the rotational axis of moving pivot. The

fixed pivot axis is obtained by the same method in previous chapters.

Figure 6.2 presents the solutions for first three positions after the spatial dyads

synthesis. Note that the fixed joint O has been determined during the solution
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solving. A1, A2, A3 are moving pivots for each position. B1, B2, B3 are origin of

moving frame for which we will show they rotate around a moving axis. There

are four more positions not shown in the figure but the methods are the same.

First step is to rotate A3, A2 to A1 about axis of fixed pivot O and find the ma-

trix Tl, formulated in 6.2. Define A1 = (a1,1, a1,2, a1,3) and A2 = (a2,1, a2,2, a2,3),

the rotation of joint A2 around axis O to joint A1 is,

A1 = TlA2 (6.3)

There are three possible equations for 6.3 while there is only one unknown

parameter, θ. One can pick any one of the equations to obtain θ and it should

be verified to meet the other two.

Next step is to rotate all the moving joints onto one joint, i.e. A1, using 6.3.

Note that we treat links OAi and AiBi as a single rigid body as rotating. In

other words, the rotational axis of Bi is also the axis of joint O.

Fig.6.3 shows the poses of dyads of first three positions after rotation around

fixed axis. A′2 and A′3 are new positions of A2 and A3, B
′
2 and B′3 are new

positions of B2 and B3. Again we actually have the points relative to seven

dyads, A1, A
′
2, A

′
3, ..., A

′
7 and B1, B

′
2, B

′
3, ..., B

′
7.

We will find a plane and a sphere of which the points B1, B
′
2, B

′
3, ..., B

′
7 are on

their surface. Thus the normal direction of the plane and the center of the sphere

will define the axis of moving joint of the dyad relative to the first position.
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Figure 6.3: Spatial RR Dyad after Rotation about Axis of Fixed Joint O.

6.5 Bennett 4R Linkage Synthesis

A 4R Bennett linkage is very similar to a 4R planar linkage, the only difference

is the revolute axes of each joint are not parallel to each other, the length and

the angles of the legs should meet certain criteria. We explain our method by

numerical example.

Table 6.1 shows 7 positions of a Bennett mechanism.

There are two solution sets of λ1, λ2, λ3, as shown in Table 6.2, each leads to

one solution. Therefore there are only two solutions which had been verified in

[25].

Again these solutions behave very interesting. The points on each sphere lie

on a same plane. Thus there exist two separate circles, each defines a revolute

joint for the fixed pivot of a spatial RR dyad. The moving pivot can then be
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Table 6.1: Seven Bennett Linkage Task Positions: given as rotaional axis
(sx, sy, sz), rotational angle θ and translation vector (d1, d2, d3).

sx sy sz θ d1 d2 d3

1 0.0000, 0.4579, -0.8889, 2.7464 -0.0243, 0.1258, -0.1170
2 0.0000, 0.9701, -0.2425, 2.8485 -0.0084, 0.2084, -0.0233
3 0.0000, 0.2609, 0.9653, 2.7135 0.0119, 0.0661, 0.1442
4 0.0000, 0.9954, 0.0962, 2.8525 0.0025, 0.2104, 0.0116
5 0.0000, 0.9996, -0.0282, 2.8533 -0.0014, 0.2111, -0.0011
6 0.0000, 0.6672, -0.7448, 2.7910 -0.0240, 0.1675, -0.0883
7 0.0000, 0.9137, 0.4062, 2.8380 0.0124, 0.2004, 0.0455

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.

obtained by translating the moving frames onto the first position. One can find

that the moving frames have a common rotational axis.

The two result RR dyads are shown in Table 6.4 (a is the direction vector of

fixed pivot axis, x is the direction vector of moving pivot axis). The correctness

can be verified by the definition of Bennett 4R mechanism criteria. The final

linkage and seven positions are shown in Figure 6.4.

Table 6.2: Bennett 4R Linkage Synthesis Example: real solutions of λ1, λ2, λ3

λ1 λ2 λ3

1 3.0668 0.1000 −3.1654
2 3.0703 −0.1180 3.4346
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Table 6.3: Bennett 4R Linkage Synthesis Example: original design parameters ai
and xi

a0 a1 a2 a3 a4
x1

x4

x2

x4

x3

x4

1 1.0000,5.4984,0.0583,-6.1470,-39.8236 3.0668,0.1000,-3.1654
2 1.0000,-1.6892,-0.2938,-1.7364,39.4918 3.0703,-0.1180,3.4346

Table 6.4: The dimensions of the revolute axes of bennett mechanism

a x

(5.498, 0.058,−6.147)T + µ(−0.666, 0.016, 0.744) (−0.162, 0.300,−0.149)T + λ(0.741, 0.504,−0.442)
(−1.689,−0.293,−1.736)T + µ(0.696, 0.028, 0.717) (0.096,−0.023,−0.089)T + λ(0.216, 0.343, 0.913)

6.6 Summary

The geometric constraint of spatial RR dyads can be found by the intersection

of two spheres or a sphere and a plane. Therefore we developed the synthesis

algorithm for linkages constructed by spatial RR dyads, Bennett 4R linkage,

from the method of 5-SS linkage. From solution point of view, we were able to

obtain the RR dyads and find the Bennett linkage directly using our 5-SS linkage

synthesis algorithm.
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Figure 6.4: The Result Bennett Linkage and Seven Positions
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Chapter 7

Finite Position Synthesis of
Spatial 5-SS Platform Linkage

7.1 Introduction

This chapter focuses on six and five finite position synthesis. The design equation

is started as 4.10. For six position synthesis, we add one additional equation

where all moving or fixed pivots of the 5-SS linkage legs are located on and a

plane on which all moving pivots of legs are tended to be. In the development of

five position synthesis, we use two additional equations to constrain the positions

of moving or fixed pivots. In our formulation, the additional equations are given

at the final step, thus the algorithm itself remains intact. This means the form

of the additional constraints are very flexible. Numerical example for each case

is given at the end of this chapter.
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7.2 The Reordered Design Equation for a SS

Chain

In this problem, we reordered the terms in 4.6 and obtained the new order of

coefficients Ai,

p0 +
16∑
i=1

Aipi = 0, (7.1)

where

A1 = 4g4q1 − 4g3q2 + 4g2q3 − 4g1q4,

A2 = 4g3q1 + 4g4q2 − 4g1q3 − 4g2q4,

A3 = −4g2q1 + 4g1q2 + 4g4q3 − 4g3q4,

A4 = 4g21 + 4g22 + 4g23 + 4g24,

A5 = −q21 + q22 + q23 − q24,

A6 = 2(−q1q2 − q3q4),

A7 = 2(−q1q3 + q2q4),

A8 = 2(−g2q1 − g3q2 + g2q3 + g1q4),

A9 = 2(−q1q2 + q3q4),

A10 = q21 − q22 + q23 − q24,

A11 = 2(−q2q3 − q1q4),

A12 = 2(g3q1 − g4q2 − g1q3 + g2q4),

A13 = 2(−q1q3 − q2q4),

A14 = 2(−q2q3 + q1q4),

A15 = q21 + q22 − q23 − q24,

A16 = 2(−g2q1 + g1q2 − g4q3 + g3q4),

(7.2)

and each of the pi (i = 0, 1, 2, . . . , 16) are defined by the choice of the moving

point x = (x1, x2, x3, x4) as well as the spherical constraint (a0, a1, a2, a3, a4) as
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follows:

p1 = a1x
2
4, p2 = a2x

2
4, p3 = a3x

2
4, p4 = a0x

2
4 (7.3)

p5 = a1x1x4, p6 = a2x1x4, p7 = a3x1x4, p8 = a0x1x4

p9 = a1x2x4, p10 = a2x2x4, p11 = a3x2x4, p12 = a0x2x4

p13 = a1x3x4, p14 = a2x3x4, p15 = a3x3x4, p16 = a0x3x4

p0 = a0x
2
1 + a0x

2
2 + a0x

2
3 − a4x24.

As both xi, ai are homogeneous, there are only 7 independent design parameters.

The reason to reorder the coefficients Ai is to prepare for the unified algorithm

for planar, spherical and spatial five position synthesis in the next chapter.

For N position synthesis, we have N linear equations each in the form 7.1.

One can subtract the jth equation (j = 2, 3, . . . , N) from the first equation to

obtain four equations in the form:

(Aj1 − A11)p1 + (Aj2 − A12)p2 + (Aj3 − A13)p3 +

· · ·+ (Aj16 − A116)p16 = 0. (7.4)

The reordered 7.1 is in bilinear form of xi and ai, by observing 7.3 one can

obtain two new similar relations among the sixteen parameters pi. One of them

is based on xi, another one is based on ai, as following:

p5
p1

=
p6
p2

=
p7
p3

=
p8
p4

=
x1
x4

= λ1,

p9
p1

=
p10
p2

=
p11
p3

=
p12
p4

=
x2
x4

= λ2, (7.5)
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p13
p1

=
p14
p2

=
p15
p3

=
p16
p4

=
x3
x4

= λ3.

and (assuming a0 6= 0)

p1
p4

=
p5
p8

=
p9
p12

=
p13
p16

=
a1
a0

= µ1,

p2
p4

=
p6
p8

=
p10
p12

=
p14
p16

=
a2
a0

= µ2, (7.6)

p3
p4

=
p7
p8

=
p11
p12

=
p15
p16

=
a3
a0

= µ3.

Let hi denote 16 components in 7.4 represented in terms of Aji − A1i (j =

2, 3, . . . , N, i = 1, 2, . . . , 16) and we can rewrite 7.4 into

hPT = 0, (7.7)

where h = (h1, h2, . . . , h16) and P = (p1, . . . , p16).

For a set of N given positions, we obtain a set of N − 1 vectors hj (j =

2, 3, . . . , N). TheseN−1 linear equations can be assembled into a matrix equation

as:

[H]PT = 0, (7.8)

where [H] is the (N − 1) × 16 matrix consisting hj. Thus the problem reduces

to the solution of the system of linear equation 7.8 subject to the same group of

bilinear constraints 7.5 or 7.6.

In order to solve 7.8, we first use Gaussian elimination to obtain the reduced

row echelon form of [H]. This final form is unique [63]. A matrix is in reduced

row echelon form when it satisfies: (1) The matrix is in row echelon form (2) The
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leading coefficient in each row is 1 and is the only non-zero entry in its column.

7.3 Six Position Synthesis for Spatial 5-SS Link-

ages with One Additional Constraint

This section will talk about six position synthesis of 5-SS platform linkage. Be-

cause there are seven original independent design variables, two additional con-

straint equations are needed in order to obtain finite solutions. In our formu-

lation, the additional equations are given at the final step, thus the algorithm

itself remains intact. This means the form of the additional constraints are very

flexible.

In general six position synthesis, the reduced row echelon form of [H] is a 5

by 16 matrix in the form,

RREF ([H]) =



1 0 0 0 0 k1,6 · · · k1,16

0 1 0 0 0 k2,6 · · · k2,16

0 0 1 0 0 k3,6 · · · k3,16

0 0 0 1 0 k4,6 · · · r4,16

0 0 0 0 1 k5,6 · · · r5,16


(7.9)

Thus p1, p2, · · · , p5 can be represented by the linear combination of other 11

variables p6, p7, · · · , p16.

p1 = −k1,6p6 − k1,7p7 − . . .− k1,16p16,

p2 = −k2,6p6 − k2,7p7 − . . .− k2,16p16,
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p3 = −k3,6p6 − k3,7p7 − . . .− k3,16p16, (7.10)

p4 = −k4,6p6 − k4,7p7 − . . .− k4,16p16,

p5 = −k5,6p6 − k5,7p7 − . . .− k5,16p16.

Considering 7.5 and 7.6 after algebraic manipulation, we have

p5 − λ1p1 = 0, p6 − λ1p2 = 0, p7 − λ1p3 = 0, p8 − λ1p4 = 0,

p9 − λ2p1 = 0, p10 − λ2p2 = 0, p11 − λ2p3 = 0, p12 − λ2p4 = 0, (7.11)

p13 − λ3p1 = 0, p14 − λ3p2 = 0, p15 − λ3p3 = 0, p16 − λ3p4 = 0

and

p1 − µ1p4 = 0, p5 − µ1p8 = 0, p9 − µ1p12 = 0, p13 − µ1p16 = 0,

p2 − µ2p4 = 0, p6 − µ2p8 = 0, p10 − µ2p12 = 0, p14 − µ2p16 = 0, (7.12)

p3 − µ3p4 = 0, p7 − µ3p8 = 0, p11 − µ3p12 = 0, p15 − µ3p16 = 0

We can substitute 7.10 into 7.11 and 7.12 to formulate the homogeneous

matrix equations,

[B1]F = 0 (7.13)

and

[B2]F = 0 (7.14)
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where [B1], [B2] and F are of the following form,

[B1] =



−k5,6 + λ1k1,6 · · · −k5,15 + λ1k1,15 −k5,16 + λ1k1,16

1− λ1k2,6 · · · λ1k2,15 λ1k2,16
...

...
...

...

λ3k3,6 · · · 1− λ3k3,15 λ3k4,16

λ3k4,6 · · · λ3k4,15 1− λ3k4,16



[B2] =



−k1,6 + µ1k4,6 · · · −k1,15 + µ1k4,15 −k1,16 + µ1k4,16

−k5,6 · · · −k5,15 −k5,16
...

...
...

...

0 · · · 0 0

0 · · · 1 −µ3



F = [p6, p7, · · · , p16]T (7.15)

[B1] and [B2] are 12× 11 rectangular matrices. One can drop any one row of

the 12 by 11 matrix to obtain two 11 by 11 square matrix. Again if F has non-

trivial solutions, the determinants of the square matrices should be zero. Then

we can add an additional equation of either xi (for formulation of [B1]) or ai (for

formulation of [B2]) to obtain finite solutions.

The non-trivial solution of F can then be found using null space analysis

method. p1, p2, p3, p4, p5 are obtained by substituting F back into 7.10. Since p0

is independent, it can be found by the arithmetic average. The original design
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parameters are obtained by inner relationship of pi.

7.4 Five Position Synthesis for Spatial 5-SS link-

ages, Planar and Spherical 4R Linkages with

Two Additional Constraints

This section develops the general spatial, planar and spherical five position syn-

thesis based on our seven position algorithm. Any equation of either fixed joints

xi or ai or the combination of two can be given to obtain a finite set of solutions.

In this problem, because we want to obtain the exact types and dimensions

of linkages corresponding to the different categories of input displacements, the

additional constraints are not totally arbitrary. Although it is true that any two

arbitrary additional constraint equations are allowed in our algorithm to narrow

the solution number, one may not obtain a planar or spherical linkage. It is

necessary to give the correct constraint equations to find the planar or spherical

linkages. The rule for choosing the correct constraints relies on determining the

type of input displacements.

Gaussian elimination shows its advantage because the result of reduced row

echelon form of [H] can indicate the types of input positions from its formulation.

If the input is general five positions, [H] is reduced to a 4 by 16 matrix in the
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form,

RREF ([H]) =



1 0 0 0 k1,5 k1,6 · · · k1,16

0 1 0 0 k2,5 k2,6 · · · k2,16

0 0 1 0 k3,5 k3,6 · · · k3,16

0 0 0 1 k4,5 k4,6 · · · k4,16


(7.16)

When the input positions are pure planar displacements, then [H] is reduced

to the following,

RREF ([H]) =



1 0 k1,3 0 0 k1,6 · · · k1,16

0 1 k2,3 0 0 k2,6 · · · k2,16

0 0 0 1 0 k3,6 · · · k3,16

0 0 0 0 1 k4,6 · · · k4,16


(7.17)

For pure spherical displacements, reduced row echelon form of [H] is,

RREF ([H]) =



1 0 0 k1,4 0 k1,6 · · · k1,16

0 1 0 k2,4 0 k2,6 · · · k2,16

0 0 1 k3,4 0 k3,6 · · · k3,16

0 0 0 0 1 k4,6 · · · k4,16


(7.18)

Therefore reduced row echelon form will tell by its form the type of input

displacements. Furthermore, (−k1,3,−k2,3, 1) in 7.17 is the directional vector of

the plane where five planar displacements are located, (−k1,4,−k2,4,−k3,4) in 7.18

is the rotational center of five spherical displacements. The algebraic proof can

be referred to Appendix A. The advantages are that it has the same effect as
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doing preprocessing and being a part of our unified algorithm as well.

Next we are going to add the constraints and find the corresponding linkages

based on different types of displacements.

7.4.1 Five General Displacements

In this case, p1, p2, p3, p4 are represented by the linear combination of other 12

variables p5, p6, · · · , p16,

p1 = −k1,5p5 − k1,6p6 − . . .− k1,16p16,

p2 = −k2,5p5 − k2,6p6 − . . .− k2,16p16,

p3 = −k3,5p5 − k3,6p6 − . . .− k3,16p16, (7.19)

p4 = −k4,5p5 − k4,6p6 − . . .− k4,16p16.

The same relations of 7.11 or 7.12 formulate the homogeneous matrix equa-

tions in the form of 7.13 or 7.14, where [B1], [B2] and F are of the new form,

[B1] =



1− λ1k1,5 λ1k1,6 λ1k1,7 · · · λ1k1,15 λ1k1,16

λ1k2,5 1− λ1k2,6 λ1k2,7 · · · λ1k2,15 λ1k2,16

λ1k3,5 λ1k3,6 1− λ1k3,7 · · · λ1k3,15 λ1k3,16

λ1k4,5 λ1k4,6 λ1k4,7 · · · λ1k3,15 λ1k3,16
...

...
...

...
...

λ3k2,5 λ3k2,6 · · · 1− λ3k2,14 λ3k2,15 λ3k2,16

λ3k3,5 λ3k3,6 · · · λ3k3,14 1− λ3k3,15 λ3k4,16

λ3k4,5 λ3k4,6 · · · λ3k4,14 λ3k4,15 1− λ3k4,16


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[B2] =



−k1,5 + µ1k4,5 · · · −k1,15 + µ1k4,15 −k1,16 + µ1k4,16

1 · · · 0 0

...
...

...
...

0 · · · 0 0

0 · · · 1 −µ3



F = [p5, p6, · · · , p16]T (7.20)

Both [B1] and [B2] are 12 × 12 square matrices. If F has non-trivial solu-

tions, the square matrices should be rank-deficient, i.e. determinants to be zero.

One can then add any two constraint equations of either moving joints xi com-

bined with determinant of [B1] equals zero or fixed joints ai with determinant of

[B2] equals zero in order to obtain finite solutions. The original parameters are

obtained by the same method in six position synthesis. One can also add one

constraint of moving joints and another of fixed joints combined with [B1] or [B2]

as in the case of planar displacements.

One can prove algebraically that the polynomial equation, obtained by cal-

culating determinant of either [B1] or [B2], has an order of four. Therefore if we

add two additional linear equations, such as two planes, there can be no more

than four solutions. If one wants to obtain more solutions, we can add additional

constraint equations of higher order such as spheres or more complex surfaces.

This is shown in the examples that two solutions are obtained by adding two

plane constraints while six solutions are obtained when adding a plane and a

sphere constraints.
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Previously, the two additional equations we added are either constraining

moving joints xi or fixed joints ai. Now we have developed the case where one

linear equation of xi and one linear equation of ai are added as following,

t1x1 + t2x2 + t3x3 + t4 = 0,

t′1a1 + t′2a2 + t′3a3 + t′4 = 0. (7.21)

In this case, we have to convert one of the two equations. Let’s develop the

process separately in the following.

First let’s convert the equation of xi by substituting x3 using (when t3 6= 0),

x3 = −t1
t3
x1 −

t2
t3
x2 −

t4
t3

(7.22)

Noted that the vector P in 7.8 is,

PT = [a1, a2, a3, a0, a1x1, a2x1, a3x1, a0x1, a1x2, a2x2, a3x2, a0x2,

a1x3, a2x3, a3x3, a0x3]
T (7.23)
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After substituting 7.22 into 7.23, we can rewrite P as,

PT =



a1

a2

a3

a0

a1x1

a2x1

a3x1

a0x1

a1x2

a2x2

a3x2

a0x2

− t1
t3
a1x1 − t2

t3
a1x2 − t4

t3
a1

− t1
t3
a2x1 − t2

t3
a2x2 − t4

t3
a2

− t1
t3
a2x1 − t2

t3
a2x2 − t4

t3
a2

− t1
t3
a2x1 − t2

t3
a2x2 − t4

t3
a2



(7.24)

It can be further rewritten as a matrix form,

PT = [W ′]P′T (7.25)

where [W ′] and P′ are,
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[W ′] =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

− t4
t3

0 0 0 − t1
t3

0 0 0 − t2
t3

0 0 0

0 − t4
t3

0 0 0 − t1
t3

0 0 0 − t2
t3

0 0

0 0 − t4
t3

0 0 0 − t1
t3

0 0 0 − t2
t3

0

0 0 0 − t4
t3

0 0 0 − t1
t3

0 0 0 − t2
t3



(7.26)

P′T = [a1, a2, a3, a0, a1x1, a2x1, a3x1, a0x1, a1x2, a2x2, a3x2, a0x2]
T

= [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12]
T (7.27)
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We can substitute P′ into 7.8 to obtain the new matrix equation,

[H]PT = [H][W ′]P′T = 0 (7.28)

Now we can use our method to solve the intermediate parameters pi by Gaus-

sian Elimination and the bilinear relationship. Noted that because there are only

12 elements in P′, we only need 9 of the bilinear relationships excluding the 3

relationships relating to x3. One can construct a similar matrix equation as in

7.14 while [B2] is a 9× 8 matrix. We can find two 8× 8 submatrix and calculate

the determinant polynomials. Combined with the additional constraint equa-

tion of ai in 7.21, we can obtain the fixed joint coordinates ai. The rest design

parameters can be solved using our previous method.

In some situations, one may want to sole for moving joints xi first. Therefore,

we will convert the additional equation of ai in 7.21. a0 can be written as the

combination of a1, a2, a3(when t′4 6= 0),

a0 = −t
′
1

t′4
a1 −

t′2
t′4
a2 −

t′3
t′4
a3 (7.29)

88



After substituting a0 into 7.23, P is,

PT =



a1

a2

a3

− t′1
t′4
a1 − t′2

t′4
a2 − t′3

t′4
a3

a1x1

a2x1

a3x1

− t′1
t′4
a1x1 − t′2

t′4
a2x1 − t′3

t′4
a3x1

a1x2

a2x2

a3x2

− t′1
t′4
a1x2 − t′2

t′4
a2x2 − t′3

t′4
a3x2

a1x3

a2x3

a3x3

− t′1
t′4
a1x3 − t′2

t′4
a2x3 − t′3

t′4
a3x3



(7.30)

Rewrite P in matrix form,

PT = [W ′′]P′′T (7.31)

where [W ′′] and P′′ are,
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[W ′′] =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

− t′1
t′4
− t′2

t′4
− t′3

t′4
0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 − t′1
t′4
− t′2

t′4
− t′3

t′4
0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 − t′1
t′4
− t′2

t′4
− t′3

t′4
0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 − t′1
t′4
− t′2

t′4
− t′3

t′4



(7.32)

P′′T = [a1, a2, a3, a1x1, a2x1, a3x1, a1x2, a2x2, a3x2, a1x3, a2x3, a3x3]
T

= [p1, p2, p3, p5, p6, p7, p9, p10, p11, p13, p14, p15]
T (7.33)
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We can substitute P′′ into 7.8 to obtain the new matrix equation,

[H]PT = [H][W ′′]P′′T = 0 (7.34)

Then we use our method to solve the intermediate parameters pi by Gaussian

Elimination and the bilinear relationship. Noted that because there are only

12 elements in P′′, we only need 9 of the bilinear relationships excluding the 3

relationships relating to a0. One can construct a similar matrix equation as in

7.13 while [B1] is a 9× 8 matrix. We can find two 8× 8 submatrix and calculate

the determinant polynomials. Combined with the additional constraint equation

of xi in 7.21, we can obtain the moving joint coordinates xi. The rest design

parameters can be solved using our previous method.

7.4.2 Five Planar Displacements

After Gaussian Elimination, we can obtain the directional vector (−k1,3,−k2,3, 1)

of the plane where the planar linkage should be located on. Therefore the ad-

ditional constraints should be two parallel planes with this normal direction to

constrain the moving and fixed joints. There are no other directions of constraint

planes if three or more planar displacements are given (see Appendix B).

In order to obtain a planar four bar linkage, the additional constraints should

be given such that the moving joints and fixed joints are located on parallel

planes, as the following (k4 and k5 can be any value),

−k1,3X1 − k2,3X2 +X3 + k4 = 0
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−k1,3a1 − k2,3a2 + a3 + k5 = 0 (7.35)

Note that the first equation in 7.35 is using (X1, X2, X3) as moving joints

measured in the fixed frame. Before next step, we will need to convert it into

(x1, x2, x3) by substituting any one of 4.1 into the equation and then it becomes,

K1x1 −K2x2 +K3x3 +K4 = 0 (7.36)

whereK1, K2, K3, K4 are new coefficients consist of k1,3, k2,3, k4 and the quater-

nion elements in 4.1.

Now this problem turns into the first situation in general five position problem

where we need to convert one of the additional equations. In this problem, moving

joints coordinate xi can be any value. If we want to solve xi first, there will be

infinite solutions. Therefore we have to convert the equation of xi in order to

solve ai first.

We apply the same method and steps from 7.22 to 7.28 and use our method

to solve the intermediate parameters pi by Gaussian Elimination and the bilinear

relationship. One can construct a similar matrix equation as in 7.14 while [B2] is

a 9× 8 matrix. We can find two 8× 8 submatrix and calculate the determinant

polynomials. Combined with the additional constraint equation of ai in 7.35,

we can obtain the fixed joint coordinates ai. The rest design parameters can be

solved using our previous method.
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7.4.3 Five Spherical Displacements

One of the characteristics of spherical 4R linkage is that its links can be mov-

ing on the surfaces of concentric spheres whose center is the rotational center of

the given spherical displacements. There can be no other rotational center of

four or more spherical displacements (see Appendix B). We have known that the

reduced row echelon form will find the rotational center of the five spherical dis-

placements. Thus one can always find a set of concentric spheres with the center

of (−k1,4,−k2,4,−k3,4) while the radius can be any size. Any one of these spheres

defines a surface where the spherical 4R linkages can be found and these spherical

linkages are equivalent in each surface. The additional spherical constraint added

for moving joints is,

(X1 + k1,4)
2 + (X2 + k2,4)

2 + (X3 + k3,4)
2 + t3 = 0 (7.37)

where t3 can be any value related to the radius of the sphere. Note that the

constraint is using (X1, X2, X3) as moving joints measured in the fixed frame.

Same as the planar displacements synthesis, we can convert it by substituting

any one of 4.1 into the equation to obtain the additional constraint of xi.

Next step is to find the planes by imposing the constraint a0 = 0. These

planes intersect with the sphere into circles defining the rotational links. In this

case, the additional constraint is used to constrain the moving joints xi, so that

they are on a surface of a sphere. We apply 7.29 to 7.34 and use our method to

solve the intermediate parameters pi by Gaussian Elimination and the bilinear

relationship. One can construct a similar matrix equation as in 7.13 while [B1] is

a 9× 8 matrix. We can find two 8× 8 submatrix and calculate the determinant
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polynomials.

One can then combine the constraint equation of 7.37 with the two deter-

minants. Similarly, the non-trivial solution of F′ can be found using null space

analysis method.

7.5 Numerical Examples

In this section, we offer the examples to demonstrate the effectiveness of this

bilinear equation synthesis algorithm for one general case and three special cases

to prove the effectiveness of our algorithm.

7.5.1 Example 1: Six Position with One Additional Plane
where Moving Joints are Located

Table 7.1 gives six arbitrary spatial task positions. We pick an additional plane

in moving frame coordinate 0.4326x + 0.6587y − 0.5746z + 2.9487 = 0.0000 so

that all moving joints are located on this plane.

We obtain six solutions shown in Table 7.2. Solution 1-5 represent spatial

leg types of spherical constraints while solution 6 represents a spatial leg type of

planar constraint. Figure 7.1 illustrates one resulting 5-SS linkage and six input

positions.
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Table 7.1: Six Arbitrary Spatial Task Positions

sx sy sz θ d1 d2 d3

1 0.0000, 0.0000, 0.0000, 0.0000 0.0000, 0.0000, 0.0000
2 -0.0863, 0.0096, -0.9962, 1.7088 1.6535, -0.7423, -0.1337
3 -0.3656, -0.7019, 0.6197, 2.0276 0.3182, -0.5085, -0.7922
4 -0.3705, 0.8766, 0.3402, 2.9993 -0.1768, -1.8879, -1.8768
5 -0.5828, -0.3469, 0.7347, 3.1035 -1.2585, 0.8366, -1.4992
6 0.0075, -0.1487, -0.9888, 1.2080 -3.5963, 2.7283, -2.0334

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.

Table 7.2: Example 1: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1

x4

x2

x4

x3

x4

1 1.0000, 0.6564, -0.7823, -0.0740, 85.2721 -0.9032, 3.2331, 8.1578
2 1.0000, -0.6445, 1.8969, -0.3072, 20.8373 -0.5463, -0.6268, 4.0016
3 1.0000, 2.4787, 7.1532, -0.9771, 50.0279 1.4110, -1.9391, 3.9710
4 1.0000, -3.6114, -2.6387, -2.6076, 5.3054 0.0235, -2.9864, 1.7255
5 1.0000, 0.3800, 0.6772, -2.4766, 91.4318 5.7093, -5.9361, 2.6254
6 0.0000, 0.0344, 0.0160, -0.0394, 0.2628 -4.2652, -12.1239, -11.9787

7.5.2 Example 2: Six Position with One Additional Plane
where Fixed Joints are Located

We use the same six arbitrary task positions as given in Table 7.1and add a plane

−0.6475x− 0.6491y+ 0.3276z+ 1.0504 = 0.0000 in fixed frame coordinate where

the fixed joints are located on. There are six solutions as shown in Table 7.3. All

of them are spherical constraints. Figure ?? illustrates one of the resulting 5-SS

linkage and six positions.
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Figure 7.1: Example 1: 5-SS linkage and six positions.

7.5.3 Example 3: Five Position with Two Additional Planes
where Moving Joints are Located

We use the first five positions of example 1 for this example and add two planes to

constrain the moving coordinates 0.2809x− 0.8677y+ 0.6489z− 2.6758 = 0.0000

and 0.3509x−0.1654y−0.2584z+1.0849 = 0.0000. The intersection of these two

planes defines a line where the moving joints are located.

There are four solutions as in Table7.4. All of them are spherical constraints.
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Table 7.3: Example 2: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000,-0.9091,-1.9522,-8.8714,-12.2000 -0.4507,-0.2628,-0.6206
2 1.0000,1.2033,-1.0005,-2.8103,6.7844 2.4451,0.8821,0.6602
3 1.0000,-0.6135,2.1429,-0.1728,11.7035 -0.0634,-0.5663,2.8368
4 1.0000,1.0849,0.1172,-0.8296,15.8050 0.1255,3.7098,1.1342
5 1.0000,2.7137,-0.0968,1.9653,55.3359 2.0813,4.6345,-4.6517
6 1.0000,0.0163,0.4739,-2.2351,43.7082 4.1068,-4.2104,0.9668

Figure 7.2: Example 2: 5-SS linkage and six positions.

7.5.4 Example 4: Five Position with Two Additional Planes
where Fixed Joints are Located

We take the same five positions of example 3 adding two planes in fixed frame co-

ordinate 0.0239x+0.8953y+0.1673z−3.7979 = 0.0000 and −0.3385x+0.6210y−

0.0238z− 3.2052 = 0.0000 where the fixed joints are located. The intersection of

these two planes defines a line where the moving joints are located.

There are two solutions shown in Table7.5. All of them are spherical con-

straints.

97



Table 7.4: Example 3: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000,1.5327,-0.9765,-1.7139,168.6620 6.0527,5.5186,8.8825
2 1.0000,-0.5064,1.4661,-0.3797,17.8212 -0.6946,-0.5918,3.63282
3 1.0000,-0.8105,-0.4466,-1.5723,17.4204 -2.7275,-2.43289,2.05111
4 1.0000,0.3147,-1.0656,-0.4104,236.1020 -11.3330,-10.2260,-4.6441

Table 7.5: Example 4: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000,-1.7402,4.2255,0.3352,39.6111 -0.1987,-0.7651,6.1079
2 1.0000,0.8717,5.3952,-6.2968,-4.4397 -1.2593,0.9287,0.0740

7.5.5 Example 5: Five Position with One Plane and One

Sphere Constraining Fixed Joints

In this example, we use the same five positions and add a plane and a sphere

equation to show the flexibility of our algorithm. Thus the fixed joints are located

on the intersecting circle of two surfaces. The equations of the plane and the

sphere are,

a12 + a22 + a32 − 8.2446a1− 7.9071a2− 1.0815a3− 15.1953 = 0,

0.5516a1 + 0.6781a2 + 0.4378a3− 4.8977 = 0.0000

There are six solutions shown in Table 7.6. Figure 7.3 shows the 5-SS linkage

composed of the first five solutions. The fixed joints are located on a circle as

expected.
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Table 7.6: Example 5: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000,7.1434,5.0327,-5.6090,6.6718 0.5350,-0.8933,0.3660
2 1.0000,-1.4949,8.0213,0.6449,42.8956 0.6251,-0.9559,5.6250
3 1.0000,6.0007,6.0785,-5.7891,5.4698 0.3944,0.0255,0.8345
4 1.0000,4.4929,7.1764,-5.5900,2.6903 -0.0466,0.5445,0.8159
5 1.0000,1.9297,1.3896,6.6014,18.9326 -0.4390,0.3989,-1.2454
6 1.0000,6.3240,-1.0376,4.8247,898.9550 13.9298,16.9887,-19.2690

7.5.6 Example 6: Five Planar Position Synthesis

Figure 7.7 shows five planar displacements. After Gaussian elimination, we can

obtain the directional vector (0.6633,−0.0871, 1.0000). Therefore we give the

following two additional constraints,

0.6633X1 − 0.0871X2 +X3 = 0.0000,

0.6633a1 − 0.0871a2 + a3 = 0.0000

We can obtain two solutions as shown in 7.8. The revolute axes of equivalent

4R linkage are shown in 7.9. Figure 7.4 shows the resulting equivalent four bar

linkage and five spatial planar positions in this example.

7.5.7 Example 7: Five Spherical Position Synthesis

Figure 7.10 shows five spherical displacements. After Gaussian elimination, we

can obtain the rotaional center of the five displacements (0.8402, 0.4147, 1.8875).
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Figure 7.3: Example 5: 5-SS linkage composed of first five solutions.

Therefore we give the following additional constraint,

(X1 − 0.8402)2 + (X2 − 0.4147)2 + (X3 − 1.8875)2 − 4 = 0.0000

(7.38)

We can obtain four solutions as shown in 7.11 while they define two spherical

dyads as shown in 7.12. Figure 7.5 illustrates the resulting equivalent spherical

4R linkage and five spherical positions.
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Table 7.7: Five Planar Task Positions

sx sy sz θ d1 d2 d3

1 -0.4979,-0.5562,-0.6653,4.0458 2.3145,0.2803,2.0023
2 -0.5393,-0.5746,-0.6154,4.1930 3.4349,-0.2631,1.2117
3 -0.6155,-0.6039,-0.5062,4.4450 3.3433,-0.4117,1.2595
4 -0.6496,-0.6145,-0.4475,4.5503 4.2406,0.4564,0.7399
5 -0.7096,-0.6269,-0.3214,4.7266 4.8847,1.2343,0.3805

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.

Table 7.8: Five Planar Displacement Example: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000,2.9664,-1.4592,-2.0948,-14.3887 -1.2800,-3.8532,-0.0204
2 1.0000,5.5082,-3.1621,-3.9292,-49.4149 -3.1281,-6.8070,3.5207

7.6 Summary

In this chapter, we started from the synthesis algorithm of 5-SS linkage and

developed an unified method for solving five planar, spherical or spatial position

synthesis problems. The reduced row echlon form after Gaussian elimination was

able to identify the sypes of input data. This indication would decide how to

choose the additional constraints in order to obtain the corresponding planar,

spherial or spatial linkages.
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Table 7.9: The dimensions of the revolute axes of planar 4R linkage

a x

(2.9664,−1.4592,−2.0948)T + µ(0.6633,−0.0871, 1.0000) (2.8602,−0.5136,−1.9420)T + λ(0.6633,−0.0871, 1.0000)
(5.5082,−3.1621,−3.9292)T + µ(0.6633,−0.0871, 1.0000) (6.9286,−1.2260,−4.7027)T + λ(0.6633,−0.0871, 1.0000)

Figure 7.4: 5-SS linkage and five spatial planar positions.

Table 7.10: Five Spherical Task Positions

sx sy sz θ d1 d2 d3

1 0.5260,-0.8401,-0.1320,1.5788 -0.2603,0.0296,2.3303
2 0.7861,-0.2435,-0.5679,0.3275 1.0426,0.4159,3.1183
3 -0.6938,0.6956,0.1861,2.1183 1.0414,1.2588,0.9916
4 -0.1678,0.9704,0.1730,4.4286 -0.3686,0.7080,1.9773
5 -0.5734,0.1397,0.8072,4.7938 0.5445,-0.3281,2.8448

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is radian.
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Table 7.11: Five Spherical Displacement Example: Design Parameters ai and xi

a0 a1 a2 a3 a4
x1
x4

x2
x4

x3
x4

1 1.0000,-33.7529,-6.8529,53.8351 1.2275,-1.6328,-1.5425
2 1.0000,-1.0498,-0.4042,2.9065 0.6704,-0.7008,-2.8991
3 1.0000,-33.7529,-6.8529,-158.2160 -1.7580,0.9199,-0.7882
4 1.0000,-1.0498,-0.4042,-4.3395 -1.2009,-0.0120,0.5682

Table 7.12: The dimensions of the revolute axes of spherical 4R linkage

a x

(0.8402, 0.4147, 1.8875)T + µ(1.0000,−33.7529,−6.8529) (0.8402, 0.4147, 1.8875)T + λ(1.0000,−1.3974, 0.2891)
(0.8402, 0.4147, 1.8875)T + µ(1.0000,−1.0498,−0.4042) (0.8402, 0.4147, 1.8875)T + λ(1.0000,−0.0791,−1.6528)

Figure 7.5: Equivalent spherical 4R linkage and five spherical positions.
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Chapter 8

Conclusion and Future Work

The purpose of this dissertation is to unify the dimensional and type synthesis in

planar, spherical and spatial linkages of which the design parameters of constraint

equations have bilinear relationship and thus to provide a simple and efficient

method to solve the problem. Such bilinear relationship proves the possibility

of our task driven design methodology to be extended from planar to spatial

linkages. By developing a constraint based kinematic geometry that leads to our

task driven design of linkages and robotic systems, we are able to simultaneously

solve the dimensional and type synthesis for a set or finite numbers of given poses

in space.

We first presented a unified synthesis method of both planar four bar and

spherical 4R linkages for five given task positions. It built on the previous works

of Ge and Ping ([31], [64], [29]) and modified the design equation formulation

into biliner form so as to prepare the extension to spatial linkages. We obtained

the same results in five arbitrary positions for exact synthesis which proves the

reliability and effectiveness of our new approach. This method can also be applied

to finite positions, e.g. four or three, with additional constraints.

Based on the new approach, we were able to extend it into spatial linkages.
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We took spatial 5-SS platform linkage as our start. It met the requirement of our

task driven design method with seven arbitrary poses and proved its correctness

and efficiency in the numerical example. One of the benefit of this new approach

is that the bilinear formulation allows us to find the connection and unify planar,

spherical and spatial linkages.

Therefore, in the third part of this dissertation, we looked for a synthesis

method of spatial 5-SS linkage to obtain the same results of planar and spherical

linkages and that of Bennett’s linkage. We sought for the direct relationship from

spatial to other linkages, thus we started by seven position synthesis.

Finally we developed the finite position synthesis of 5-SS linkage, e.g. six

or five positions, with one or two additional constraints. This shows the full

extension of our approach from planar and spherical linkages to spatial linkages.

Then a unified methodology was proposed for five planar, spherical and spatial

position synthesis. Our data driven method is able to tell the types of input

positions and apply the algorithm based on different cases to obtain corresponding

linkages without any preprocessing steps.

This methodology proves by itself the effectiveness and efficiency in synthesiz-

ing planar four bar, spherical four bar and spatial 5-SS linkages. It is meaningful

to extend this method to other linkages in the future. We have developed circular,

linear, spherical and planar constraints in this dissertation, but there are more

constraints that can be formulated. Therefore, developing a unified algorithm for

a larger category of linkages is possible.

Another work is to research on the robustness of this algorithm. It is valuable

to find the relationship of input data to the linkage dimensions. One example is

to find out how a small change of input data will interfere the solution. Another
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valuable research can be finding if there are any patterns in changing the input

data that can cause less changes to the solutions.

It is hoped that the results of these research will lead to more possibilities in

the linkage design as well as other fields connected to kinematics.
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Appendix A

Proof for Directional Vector and
Rotational Center in Reduced
Row Echelon Form

Figure A.1 illustrates one planar displacement M and fixed frame F . d =

(di,1, di,2, di,3)(i = 1, 2, 3, · · · , N) is the distance vector from fixed frame origin

to moving frame origin. v = (v1, v2, v3) is the directional vector of plane of planar

displacement. For five position synthesis, the relationship of each d and v are,

v1d1,1 + v2d1,2 + v3d1,3 + v4 = 0

v1d2,1 + v2d2,2 + v3d2,3 + v4 = 0

v1d3,1 + v2d3,2 + v3d3,3 + v4 = 0 (A.1)

v1d4,1 + v2d4,2 + v3d4,3 + v4 = 0

v1d5,1 + v2d5,2 + v3d5,3 + v4 = 0

where v4 relates to the translation of the plane.
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Figure A.1: Planar Displacement: fixed frame F ; moving frame M ; distance
vector d from fixed frame origin to moving frame origin; directional vector of
plane v.

The first four coefficients in 7.2 by Euler angles and distances are,

Ai,1 = −2di,1, Ai,2 = −2di,2, Ai,3 = −2di,3,

Ai,4 = d2i,1 + d2i,2 + d2i,3 (i = 1, 2, 3, 4, 5) (A.2)

Subtracting A.1 and A.2 into 7.4 to eliminate di,3 by assuming v3 6= 0 (v1 or

v2 can also be assumed to be zero),

Ai,1 − A1,1 = −2(di,1 − d1,1),

Ai,2 − A1,2 = −2(di,2 − d1,2),

Ai,3 − A1,3 = 2(
v1
v2

(d2,1 − d1,1) +
v2
v3

(d2,2 − d1,2)), (A.3)

Ai,4 − A1,4 = (d2i,1 + d2i,2 + (−v4
v3
− v1
v3
di,1 −

v2
v3
di,2)

2)
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−(d21,1 + d21,2 + (−v4
v3
− v1
v3
d1,1 −

v2
v3
d1,2)

2)

(i = 2, 3, 4, 5)

Finally we use 7.8 to formulate new [H] and do the Gaussian elimination to

obtain the reduced row echelon form,

RREF ([H]) =



1 0 −v1
v3

0 · · ·

0 1 −v2
v3

0 · · ·

0 0 0 1 · · ·

0 0 0 0 · · ·


(A.4)

It proves the first two row elements in the third column is the directional

vector of the plane defining the translation of given planar displacements.

Another case is that the inputs are spherical displacements as in figure A.2.

F and M represent fixed frame and moving frame. d is the distance vector from

fixed frame origin pointing to moving frame origin. O is the rotational center

of spherical displacement. s is the distance vector from origin of fixed frame to

rotational center. Vector r is pointing from rotational center to origin of moving

frame and its length is the radius of the sphere where displacement is moving on.

For five displacements, the relations of three vectors are,

d = s+ r (i = 1, 2, 3, 4, 5) (A.5)

Subtracting A.5 and A.2 into 7.4 to eliminate d and simplify,

Ai,1 − A1,1 = −2(ri,1 − r1,1),
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Figure A.2: Spherical Displacement: fixed frame F ; moving frame M ; distance
vector d = (di,1, di,2, di,3) from fixed frame origin to moving frame origin; distance
vector s = (s1, s2, s3) from origin of fixed frame to rotational center O of spherical
displacement; vector r = (ri,1, ri,2, ri,3) from rotational center to origin of moving
frame.

Ai,2 − A1,2 = −2(ri,2 − r1,2),

Ai,3 − A1,3 = −2(ri,3 − r1,3), (A.6)

Ai,4 − A1,4 = −2(ri,1 − r1,1)s1 − 2(ri,2 − r1,2)s2

−2(ri,3 − r1,3)s3 (i = 2, 3, 4, 5) (A.7)

Finally we use 7.8 to formulate new [H] and do the Gaussian elimination to
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obtain the reduced row echelon form,

RREF ([H]) =



1 0 0 −s1 · · ·

0 1 0 −s2 · · ·

0 0 1 −s3 · · ·

0 0 0 0 · · ·


(A.8)

It proves that the first three row elements in the forth column can represent

the rotational center of given spherical displacements.
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Appendix B

Proof for Uniqueness of
Directional Vector and
Rotational Center

Figure B.1 illustrates five planar displacements Mi(i = 1, 2, 3, 4, 5) and points

Ai(i = 1, 2, 3, 4, 5) attached to each of the moving frame. The coordinate of each

point relative to attached moving frame is the same.

It is known that three spatial points can define a plane. If there is a plane

constraint, all five points should be on that plane at the same time. Let’s assume

A1, A2, A3 are on a same plane and A3, A4, A5 are on another plane. If the direc-

tion of two planes are not the same, it means that five displacements can move on

different directions of planes. It conflicts with the fact that all five displacements

are planar displacements which means they translate on a single plane. Thus

there should be only one direction of plane in five planar displacements synthesis

problem. That’s the reason, in our algorithm, we can find infinite parallel plan

constraints.

Furthermore, as long as there are three or more planar displacements, the

direction of plane constraints to be found is always unique.
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Figure B.1: Five Planar Displacements: moving frame Mi(i = 1, 2, 3, 4, 5); point
Ai(i = 1, 2, 3, 4, 5) attached to the moving frame.

There are five spherical displacements Mi(i = 1, 2, 3, 4, 5) in Figure B.2.

Ai(i = 1, 2, 3, 4, 5) are the points attached to each of the moving frame. The

coordinate of each point relative to attached moving frame is the same.

The proof of this problem is similar to the planar displacements. It is known

that four spatial points can define a sphere. If there is a sphere constraint to be

found, all five points should be on that sphere at the same time. Let’s assume

A1, A2, A3, A4 are on a sphere of one center and A2, A3, A4, A5 are on another

sphere of another center. If the centers of two spheres are not the same, it means

that five displacements can rotate around different rotational centers. It conflicts

with the fact that all five displacements are spherical displacements which means

they rotate around the same rotational center. Thus there should be only one

rotational center in five spherical displacements synthesis problem. This explains
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the reason that one can choose any radius of the sphere constraint of the same

center.

Furthermore, as long as there are four or more planar displacements, the

rotational center to be found is always unique.

Figure B.2: Five Spherical Displacements: moving frame Mi(i = 1, 2, 3, 4, 5);
point Ai(i = 1, 2, 3, 4, 5) attached to the moving frame.
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