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Abstract of the Thesis 
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by 
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in 
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This work investigates the dependence of strength and energy absorbance characteristics 

of cellular solids on inner topological features under high-strain-rate normal and mixed mode 

loading conditions. Topological features investigated in this work include cellular geometry, 

connectivity, in-plane and out-of-plane cellular aspect ratios. Varying the cellular geometry and 

connectivity is achieved by investigating cellular specimens with hexagonal, triangular, and square 

core cell geometries. This work utilizes explicit dynamic finite element simulations to examine the 

relationships among strength, energy absorbance, cellular geometry, and the underlying 

deformation mechanisms. Results over the length scales examined strongly indicate that hexagonal 

geometry has higher specific and overall energy absorption during all modes of loading when 

compared to triangular or square geometry. The controlling mechanism is identified as a 

combination of the number of plastic hinges present in each buckling leg and the distance between 

hinges (wave length). In addition, plastic hinges are found to be accountable for approximately all 

the absorbed energy, while the material between hinges is effectively unloaded. The way found to 

effectively control hinge formation is by controlling out-of-plane aspect ratio H/L. 
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In addition to the topology-energy coupling, this work investigates the potential for 

enhancing the energy absorbance characteristics and capacity of cellular solids by integrating them 

with a polymeric matrix such that the polymer fills all cellular voids.  Results show that a 

composite cellular-polymer system with rate-responsive polymer has the potential to be used to 

create highly customized energy absorbing and force-shielding material. In addition, results show 

that for such composite system to be effective, its constituent materials (cellular and polymer) 

should be of comparable compliance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my Family 

  



vi 

 

Table of Contents 

 

 Motivation _________________________________________________________ 1 

1.1 - Introduction ___________________________________________________________ 1 

1.2 - Literature Review _______________________________________________________ 2 

 Modeling Technique _________________________________________________ 8 

2.1 - Introduction ___________________________________________________________ 8 

2.2 - The Finite Element Method _______________________________________________ 8 

2.3 - Element Selection ______________________________________________________ 11 

2.4 - Benchmark ___________________________________________________________ 16 

 Geometric Comparison ______________________________________________ 21 

3.1 - Introduction __________________________________________________________ 21 

3.2 - External Constraints ____________________________________________________ 21 

3.3 - Boundary Conditions ___________________________________________________ 22 

3.4 - Procedure ____________________________________________________________ 23 

3.5 - Results ______________________________________________________________ 24 

3.6 - Discussion ____________________________________________________________ 30 

 Connectivity and Thickness ___________________________________________ 31 

4.1 - Introduction __________________________________________________________ 31 

4.2 - External Constraints ____________________________________________________ 31 

4.3 - Results ______________________________________________________________ 34 

4.4 - Discussion ____________________________________________________________ 39 

 Aspect Ratio _______________________________________________________ 41 

5.1 - Introduction __________________________________________________________ 41 

5.2 - Unbounded ___________________________________________________________ 41 



vii 

 

5.3 - Bounded _____________________________________________________________ 48 

5.4 - Discussion ____________________________________________________________ 54 

 Mixed Mode Loading _______________________________________________ 55 

6.1 - Introduction __________________________________________________________ 55 

6.2 - External Constraints ____________________________________________________ 55 

6.3 - Results ______________________________________________________________ 57 

6.4 - Discussion ____________________________________________________________ 59 

 Polyurea as a Void Filler _____________________________________________ 60 

7.1 - Introduction __________________________________________________________ 60 

7.2 - Setup ________________________________________________________________ 61 

7.3 - Results ______________________________________________________________ 64 

7.4 - Discussion ____________________________________________________________ 70 

Conclusion _________________________________________________________________ 71 

References __________________________________________________________________ 72 

Appendix A _________________________________________________________________ 75 

 



1 

Motivation 

1.1 - Introduction 

A honeycomb structure is one of three types of cellular 

solids, the other two being three dimensional open or closed 

foams as shown in Figure 1.1.1. Two-dimensional 

honeycombs like the ones used throughout this work, can be 

made by press forming sheets of metal into corrugated sheets 

and gluing them together.  This gives double thickness at the 

bonded portion.  Paper or cardboard honeycombs are similarly 

formed.  Extrusion is another process, using a dye to create 

uniform wall thickness throughout the honeycomb if desired.  

The extrusion forming process is becoming more popular for 

honeycombs so this work assumes uniform wall thickness via 

an extrusion forming method [1].  The extrusion method is also 

advantageous because as with any type of bonding, 

delamination may occur if the bond has shear tolerance less 

than the bulk material or if it has degraded performance under 

varying temperature. Honeycombs are widely used as 

packaging aids, structural components, and energy absorbers. 

Packaging aids come mostly in paper or cardboard 

form because it’s expensive to ship as weight increases. 

Lightweight foam packing peanuts are three-dimensional cellular structures, being a staple of the 

packaging industry because of their lightweight strength properties. Anything built with balsa 

wood is making use of the three-dimensional open cellular structure. Aircrafts use aluminum or 

paper-resin honeycombs as part of a composite sandwich panel system to provide superior bending 

stiffness and strength [1].  Bones also make use of cellular structure for support at reduced weight.  

It would be difficult to find any lightweight high strength structure that isn’t fundamentally rooted 

in cellular solids. 

Figure 1.1.1 – The three types 

of cellular solids; (a) 2D 

honeycomb, (b) 3D open cell 

foam, and (c) 3D closed cell 

foam [1]. 
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Energy absorbance, along 

with force shieldability, are the 

focus of this work.  Proceeding 

chapters will show that force 

shieldability is intrinsically related 

to energy absorbance and peak 

crush strength.  Force shieldability 

can be defined as the mismatch 

between peak forces exerted on top 

and bottom honeycomb surfaces.   

Crush strength is the peak stress or 

force exhibited before progressive 

collapsing and bulk energy absorbance occurs.  Energy absorbance and force shielding are 

important during impact scenarios and more often than not, weight and volume are restrictive 

factors.  Honeycombs are widely used in the automotive and rail industries [2].  Aluminum is 

typically the core of choice because it offers high crush strength to weight ratio, a linear force 

curve with constant load, and absorbs energy over a long stroke [3].  It’s not uncommon for 

honeycombs to be made from other materials, such as stainless-steel or polymers. 

1.2 - Literature Review 

While several things need to be considered during a literature review, the goal is to capture 

the progression of research over time.  Since this thesis aims to identify optimal honeycomb 

geometry for energy absorption under dynamic loading, the literature review must encompass 

fundamental work involving and preceding dynamic absorption—namely dynamic and quasi-

static experiments and simulations.  These works are the focus of review in Section 1.2.1. 

Several parameters, such as specimen height, cell size, and material to name a few, affect 

how cellular structures respond to loading.  This work aims to investigate how geometric 

parameters such as wall thickness t, cell size L, extrusion height H and aspect ratios t/L, H/L, 

influence specific energy absorbed by different topologies. Since these studies involve small 

samples subjected to dynamic displacement, it may be necessary to consider the contribution 

strain-rate.  Section 1.2.2 is used to display relevant materials strain rate sensitivity. 

Figure 1.1.2 – More 2D honeycombs; (a) aluminum, (b) 

paper-phenolic resin, (c) square-cell ceramic, and (d) 

triangular-cell ceramic. 
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1.2.1 - Honeycomb Structures 

 Interest in honeycomb structures has grown ever since T. Wierzbicki published his 

analytical method in 1983.  He used angle elements in a hexagonal cell structure to capture 

progressive collapsing during axial loading [4].  His work provided Eq. (1.2.1), an extremely 

simple function for describing the mean crush strength Pm of honeycombs.  The parameters are 

wall thickness h, flow stress σo, and leg length D. Wierzbicki used this expression for mean crush 

strength to derive Eq. (1.2.2) and compare it to the experimental results of [5].  He found the best 

agreement when flow stress is equal to seventy-percent of ultimate strength.   

 
𝑃𝑚 = 8.61𝜎0ℎ

5
3𝐷

1
3 (1.2.1) 

 
𝜎𝑚 = 16.56𝜎0 (

ℎ

𝑆
)

5
3⁄

 (1.2.2) 

 A comparison to Wierzbicki’s model [6] shows a linear relationship between total number 

of cells and crush strength, proving the theoretical model from [4] vastly underestimates crush 

strength and buckling wavelength.  They also found dynamic crush strength increases of 33% - 

74% depending on impactor velocity.  They attribute this enhancement to increasingly complex 

failure mechanisms, inertial and strain-rate effects, etc.  Aluminum alloys 5052 and 5056 were the 

materials for their experiments.  Ultimately, the recommendation was to use high-strength material 

with small cell size and core height to maximize the energy absorbance of hexagonal honeycombs.  

 A study [7] on how relative density effects the crush strength of stainless steel square 

honeycombs lead to Eq. (1.2.3).  Their approach to relative density variation is to change cell size 

while holding wall thickness constant.  They found Eq. (1.2.3) to fit their experimental results very 

well for square and regular hexagonal honeycombs.  Peak stress is σp while 𝜌̅ is relative density.  

This is the first time the onset of buckling in honeycombs is described by relative density. 

 
𝜎𝑝

𝜎𝑦𝜌̅
= 9.9𝜌̅0.75 (1.2.3) 

 It has been shown that changing hexagonal angle regularity has no effect on mean crush 

strength once normalized by relative density [8].  This finding may imply a relationship between 

branch connectivity and crush strength because connectivity remains constant while angle 

changes. 

 An elastic-plastic linear hardening model was used to simulate response of a single three-

point intersection of a hexagonal honeycomb by varying wall thickness t and branch angle [9].  
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They find that a regular hexagonal honeycomb (branch angle of 120º) has the highest crush 

strength (mean crush value throughout oscillatory collapse) per net cross-sectional honeycomb 

area.  However when crush strength is evaluated per total occupied area, the results indicate lower 

branch angle yields a higher crush tolerance.  The latter gives the inaccurate implication that lower 

branch angle leads to enhancements however this is only true when ignoring the mass contribution 

of the honeycomb.  The former is a better performance exploitation because normalizing by 

material allows for an intrinsic rating. 

 The in-plane orientation of a regular hexagonal honeycomb structure is shown to impact 

failure strength under axial dominant mixed mode quasi-static loading [10].  Inherently, energy 

absorption rate is maximized when orientation angle reaches that for which failure strength is 

maximized.  The experiments show between 10% increase and 28% decrease in energy absorption 

rate depending on shear contribution and in-plane orientation.  This method has been extended to 

exploit any differences between proportional and non-proportional quasi-static combined loading 

[11].  The experimental results indicate that crush strength and non-normality plastic flow behavior 

are independent of loading path sequence and proportionality. 

 The out-of-plane compressive response of square honeycombs having relative density 10% 

with cell heights of 30 mm and 6 mm has been measured with impact velocities ranging from 

quasi-static to 300 m/s [12].  Results indicate strain rate sensitivity and web buckling inertial 

stabilization dominate the 30 mm specimens below 50 m/s, increasing front and back face stresses 

by a factor of two.  This is significant considering the material used (304 stainless steel) has a 

dynamic strength enhancement factor of only 1.5 at the prescribed strain rate.  This implies strain 

rate sensitivity may have an exaggerated effect when exploited in square honeycombs.  Their 

technique for numerical analysis also proves to be in good agreement with experimental results. 

 Experimental results indicate that slightly irregular aluminum honeycombs under quasi-

static axial compression have about sixty times higher mean crush strength than when loaded 

across faces [13].  In-plane loading across a top or bottom face is pure shear, so mean crush strength 

should be severely reduced during shear dominant loading due to the compromise in structural 

support. 

 Numerical and experimental results indicate a strong relationship between the number of 

layers axially in a honeycomb and increased crush strength [14].  Numerical studies show a linear 
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relationship while experimental results indicate nonlinearity.  The numerical study also shows a 

decay relationship between foil thickness and crush strength.  Experiments performed at quasi-

static and approximately 2700 s-1 show stress enhancement due to strain rate sensitivity.  It should 

be noted that single and multiple layer samples did not maintain the same overall height or relative 

density. 

 Expanded polystyrene foam is used to form a series composite system for axial loading in 

[15].  They use quasi-static and 7.5 m/s impact testing on regular hexagonal aluminum 

honeycombs back by EPS, forming a hybrid series setup.  They observe energy absorption 

increased with the amount of honeycomb in the composite.  Only marginal increases were 

observed due to strain rate sensitivity.  Energy was additionally absorbed when honeycomb tore 

into the foam during collapse. 

 Systems composing of thin-walled aluminum tubes filled with hexagonal honeycombs may 

perform better when the honeycomb filler cell size is decreased [16].  An improvement is made in 

[17] to Wierzbicki’s analytical model by considering curvature effects and flow stress.  In doing 

so, mean crushing stress and wavelength calculation errors are each decreased by 15%. 

 A comprehensive study on the dynamic strength enhancement of hexagonal honeycombs 

subjected to combined loading is performed in [18].  The author finds peak and average strengths 

to decrease significantly with loading angle.  Dynamic strength enhancement is found for every 

loading angle but becomes more pronounced as loading angle increases.  They also study the effect 

cell-size and cell-wall thickness have on dynamic enhancement.  Experimental results indicate 

larger cells with thin walls have an improved dynamic enhancement when compared to smaller 

cells with thicker walls.  This is observed to be because larger cells are weaker when thickness is 

held constant, meaning failure loads are lower. As failure load decreases, any dynamic 

enhancement over quasi-static loading becomes more pronounced.  The opposite occurs for 

smaller cells with thicker walls, where their elevated strength forces any dynamic enhancements 

to be less pronounced.  They find the material of the honeycomb has large influence over dynamic 

enhancement. 

1.2.2 - Strain Rate Sensitivity 

 It’s necessary to investigate the strain rate sensitivity of a broad range of materials because 

honeycombs are being used for an increasing range of applications.  These applications may be 
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static/structural, dynamic, or temperature sensitive.  Dynamic applications may require force 

shielding such that plastic or metal materials are required as an absorber.  This section is used to 

investigate the bulk and local strain-rate sensitivity of a broad range of honeycomb material 

candidates. 

The strain rate sensitivity of 304L Stainless Steel has been experimentally investigated [19] 

by means of uniaxial tension and compression tests across 10-4 s-1 to 104 s-1.  They used their 

experimental results to develop Eq. (1.2.4), expressing yield stress dependence on strain rate at 

room temperature.  They find this relationship works well from quasi-static to about 100 s-1 but 

increasingly underestimates sensitivity thereafter.  They attribute this mismatch at higher strain 

rates to an increased sensitivity during structural collapse.  Their results show at least a 60% 

increase in yield stress from quasi-static to 104 s-1. 

 𝜖̇ = 4.4 ∗ 107 ∗ 𝑒𝑥𝑝 {−302 [1 − (
𝜎

751
)

1
2

]

3
2

} (1.2.4) 

The strain rate sensitivity of seventeen different polymers has been investigated [20] using 

uniaxial compression from quasi-static to 3 x 104 s-1.  They find there is generally a log-linear 

relationship between strain rate and stress from quasi-static to 103 s-1.  It’s also found that 

measurements taken consistently at different strains weakly influenced sensitivity.  Five of the 

seventeen—ABS, PET, PP, PVC, PVDF—showed a sudden increase in sensitivity at 103 s-1, 

establishing a new log-linear relationship.  This means a threshold strain-rate exists, beyond which 

sensitivity increases rapidly for certain polymers. 

 The strain rate sensitivity of three common polymeric foams—expanded polystyrene, high-

density polyethylene, and polyurethane—has been measured [21] from quasi-static to 2500 s-1.  

The results confirm the bilinear rate sensitivity relationship witnessed by [20] for rates below and 

beyond 103 s-1. 

 Epoxy-based polymeric structural foams having densities and porosities between 0.83 – 

1.46 g/cm3 and 50.5 – 6.8%, respectively, have been compared [22] from quasi-static to a strain 

rates up to 550 s-1.  Results indicate increased Young’s Modulus and higher ultimate stress and 

strain failure under quasi-static loading as bulk density increases.  High-density foams exhibit 

shear-dominated failure with large strain rates while low-density foams have random macroscopic 

failure.  The foams exhibit increased yield stress and failure strength but decreased strain-to-failure 
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values under high strain-rates.  Lastly, higher initial bulk density resulted in higher increased strain 

rate sensitivity and failure strength. 

 The compressive strain rate sensitivity of Polyurea and Polyurethane have been 

investigated from quasi-static to 104 s-1 [23].  Results indicate both are very rate sensitive, Polyurea 

having up to a five factor increase in flow stress at 105 s-1 and Polyurethane with a true yield stress 

increase factor of seventy. 

 A continuously extruded steel matrix is subjected to quasi-static and dynamic compression 

up to 103 s-1 in [24].  They find damage phenomena such as crack formation becomes significant 

at higher strain rates, dampening dynamic enhancement. 

 The high strain rate viscoplastic response of aluminum alloys 6082-T6 and 7075-T6 has 

been experimentally investigated [25].  Both materials exhibit a sharp enhancement just before 104 

s-1—alloy 6082 more than doubles its true stress when strain rates approach 4E
4 s-1.   

 A unified constitutive model for the dynamic increase factor DIF of brittle and ductile 

materials has been proposed [26].  This model accurately approximates low-high strain-rate 

enhancement for a wide range of materials.  The strain-rate range is quasi-static to 104 s-1 for most 

cases.  Dynamic enhancement seems to plateau beyond this loading rate.  The material constants 

for Eq. (1.2.5) are given in the corresponding article. 

 𝐷𝐼𝐹 = (1 + 𝐴𝜀𝑛) {𝐷𝐼𝐹𝑚𝑎𝑥 −
𝐷𝐼𝐹𝑚𝑎𝑥 − [1 + 𝐵(𝑙𝑜𝑔 𝜀̇ − 𝑙𝑜𝑔 𝜀0̇)]

1 + 𝑒𝑥𝑝[𝐶(𝑙𝑜𝑔 𝜀̇ − 𝑙𝑜𝑔 𝜀0̇)]
} (1.2.5) 
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Modeling Technique 

2.1 - Introduction 

It’s important to have a sound approach when performing these analysis, so this chapter 

focuses of establishing a guideline to follow.  How Abaqus uses the Finite Element Method is first 

described in Section 2.2.  The modeling aspects most relevant to this work are element type, mesh, 

and boundary conditions.  Holding extrusion height H constant for all simulations while 

controlling loading rate allows each topology to be subjected to the same strain-rate.  Finding the 

mesh density where response is independent of element size is also important and is shown in 

Section 2.3.1.  These findings are used during the benchmark in Section 2.4.   

2.2 - The Finite Element Method 

The finite element method (FEM) allows a domain to be discretized into finite and 

measureable quantities called elements.  These elements are subjected to loading just as would be 

in a physical situation and results are obtained based on elemental displacement.  The method is 

rooted with the ability to satisfy stress equilibrium through the principle of virtual work [27].  

Finite element analysis (FEA) exclusively applies FEM to solve problems.  The object of this 

chapter is not to derive FEM but to highlight how Abaqus uses it to solve problems applicable to 

this work. 

FEM can be used to solve all kinds of problems but to cover the bulk of them, one would 

say the method is used to solve either static or dynamic problems.  The equilibrium equations are 

the same, being that static and dynamic problems can ultimately be defined by Eq. (2.2.1).   This 

is the equation of motion for a dynamic system but simplifies to Eq. (2.2.2) when static problems 

are being solved.  M denotes a mass matrix, K a stiffness matrix, u a displacement vector, and F a 

force vector.  Double overbars indicate an n x n matrix whereas a single overbar represents an n x 

1 vector.  All physical quantities are concentrated at element characteristic points called nodes. 

 
𝑀̿

𝑑2𝑢̅

𝑑𝑡2
+ 𝐾̿𝑢̅ = 𝐹̅(𝑡) (2.2.1) 

2.2.1 - Static 

Static problems are those with no time dependence—namely, those where inertial forces 

are neglibeable.  Structural problems and others where acceleration can be ignored fall under into 

the ‘static’ regime.  Ignoring inertial effects means Eq. (2.2.1) simplifies to Eq. (2.2.2).  Static 
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problems are either linear or nonlinear, the latter involving contact, plasticity, or large geometric 

variation.  Linear static problems are solved all at once by simply inverting Eq. (2.2.2).  Non-linear 

static problems lead to a system of nonlinear equations which unfortunately cannot be inverted 

until they’re linearized.  These types of problems have path dependent solutions, meaning the end 

result is a compilation of all preceding steps.  Total loading is normally reached after several 

smaller increments to ensure the solution converges. 

 
𝐹̅ = 𝐾̿𝑢̅ (2.2.2) 

  
𝐹̅(𝑢̅) = 0 (2.2.3) 

As seen in Eq. (2.2.3), the problem is now emphasized as a balance between internal and 

external forces.  Problems involving plasticity are nonlinear but essentially mean stiffness is a 

function of displacement.  It’s important to understand that Ku hasn’t been set to zero in Eq. (2.2.3), 

but is more or less absorbed into the left hand side.  The force vector is nonlinear, composed of 

external and internal parameters that ultimately dictate the movement of each node.  F is, as before, 

a vector of length characteristic to the problem size.  The first step in solving a nonlinear static 

problem is to expand each F component as a Taylor series.  This is done in Eq. (2.2.4) , where f(u0) 

represents one component of the total force vector.  Eq. (2.2.4) is easily rearranged to solve for the 

displacement of the current step.  This is done over and over until F is below a preset tolerance or 

essentially equal to zero. 

 𝑓(𝑢0) + (𝑢 − 𝑢0) (
𝑑𝑓(𝑢)

𝑑𝑢
)

𝑢=𝑢0

= 0 (2.2.4) 

 𝑢 − 𝑢0 = ∆𝑢 = −
𝑓(𝑢0)

(
𝑑𝑓(𝑢)

𝑑𝑢
)

𝑢=𝑢0

 
(2.2.5) 

fu0
’ is derived from f0 and u0, the former being known and the latter is an initial guess.  Eq. 

(2.2.5) is solved for the new value of Δu which is then checked for correctness with Eq. (2.2.3).  If 

not correct, the current u value is used as u0 for the next guess and the process repeats.  This process 

is called Newton’s method or the Newton-Raphson method [27].   

2.2.2 - Dynamic 

Dynamic problems are those for which inertial effects cannot be ignored.  This means the 

acceleration and mass term in Eq. (2.2.1) cannot be ignored as before.  The two types of dynamic 

analysis are generalized as Implicit and Explicit.  The process for solving an implicit dynamic 
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problem is similar to nonlinear static ones, the difference being that the mass and inertia matrices 

are included and inverted over and over for as many time-steps are necessary to solve the time-

dependent problem.  An implicit technique is good for solving problems over large time scales 

where transient response is important and the system size is not prohibitively large.  A large system 

makes inverting the K matrix a lengthy process and doing dozens of inversions dramatically effects 

solve time.  Even so, this makes implicit dynamic the best option for solving large timescale 

problems because explicit may require a prohibitively small time increment. 

The procedure for an explicit problem is quite different than implicit.  The matrices are not 

inverted because values for velocity and acceleration are assumed at the beginning of analysis, so 

the equations of motion can be integrated at very small time increment to find the next position, 

velocity, and acceleration state for each node in the model.  Abaqus uses central-difference time 

integration, which is very inexpensive numerically [28].  A problem can quickly become 

unsolvable if the stable time increment is too small compared to interaction time required in the 

problem. 

Eq. (2.2.6) shows the minimum stable time increment is approximately a function of the 

minimum characteristic length and dilatational wave speed or speed of sound in the material. The 

minimum characteristic length 𝐿𝑚𝑖𝑛 for simulations is the smallest element side length.  Eq. (2.2.7) 

shows dilatational wave speed as a function of density 𝜌 and Lame material constants 𝜆 and 𝜇 [29].  

A progressive estimate of minimum stable time increment ∆𝑡 is given by Eqn. (2.2.8) in terms of 

minimum element length, density, and Young’s Modulus for a linear elastic isotropic material with 

Poisson’s ratio of 1/3.  Eqn. (2.2.8) shows that there is a limitation on how small elements can be 

as well as the density to Young’s modulus ratio. 

 
∆𝑡 ≅

𝐿𝑚𝑖𝑛

𝑐𝑑
 (2.2.6) 

 
𝑐𝑑 = √

𝜆 + 2𝜇

𝜌
 (2.2.7) 

 
∆𝑡 ≅ 𝐿𝑚𝑖𝑛√

2

3

𝜌

𝐸
 (2.2.8) 
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2.3 - Element Selection 

The two applicable element choices are brick and shell elements.  The general rules for 

large displacement shell elements are 1) the shell thickness must be small compared to the next 

smallest characteristic length, 2) plane sections initially normal to the shell mid-surface remain 

normal after deformation, allowing shear deformation to be ignored, and 3) the stress component 

normal to the shell mid-surface is very small compared with other stress components, and can be 

ignored [30].  It makes sense to proceed using shell elements since honeycombs meant for energy 

absorption are typically shell-like structures [31].  Figure 2.3.1 shows how shear along shell 

thickness is very small compared to that along the shell plane.  Abaqus offers several types of shell 

elements however S4R is chosen because it’s formulated using reduced integration and has 

hourglass control.  Reduced integration and hourglass control help prevent shear locking and 

improve convergence rates.   

 

Figure 2.3.1 – Showing (top) in-plane and (bottom) thickness shears for a typical shell. 

 

2.3.1 - Mesh Sensitivity Analysis 

2.3.1.1 - Setup 

It’s necessary to find the element size that has a converged solution for the types of models 

in this work.  A mesh sensitivity analysis is performed on a regular hexagonal cell to accomplish 

this.  The geometry of the hexagon in Figure 2.3.2 is as follows: extruded height H of 15 mm, leg 

length L of 2.5 mm, and thickness t of 0.1 mm.  The material is AISI 304 Stainless-Steel, having 

density ρ of 8060 kg/m3, Young’s Modulus E of 200 GPa, Poisson’s Ratio ν of 0.29.  The material 

follows a linear hardening elastic-plastic scheme with yield data presented in Table 2.3.1.   
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Figure 2.3.2 – Shell (left) and brick (right) hexagonal extrusion for mesh sensitivity analysis. 

Table 2.3.1 – Hexagonal cell yield properties. 

Yield Stress σy [MPa] 210 267 551 

Plastic Strain εy  0 0.01 0.27 

It should be noted that the results are heavily dependent on these properties but it isn’t the 

value of the results that matters in a mesh sensitivity analysis, but their convergence to a singular 

quantitative value.  Rigid frictionless surfaces are placed on the top and bottom of the hexagon to 

represent high yield materials, which are assumed to deform minimally during loading when 

compared to the honeycomb.  The model assembly is shown in Figure 2.3.3.  The bottom and top 

rigid surfaces are encastre and axially free to move, respectively.  The nodes on the top and bottom 

surfaces of the hexagonal cell are pin tied to each respective rigid surface.  These boundary 

conditions ensure the collapse mechanism is consistent across varying mesh densities. 

 It’s important to apply loading such that progressive plastic failure is captured.  For this, 

60% strain is applied by moving the top piece axially at a prescribed velocity.  A velocity of 50 

m/s is chosen to simulate an abrupt impact on the structure.  The velocity of an impactor is assumed 

to be zero at the instant contact is made, then reaches its impact value in a fraction of a second, 

decelerating from there on as the impact proceeds.  This process is applied in Abaqus with an 

‘Amplitude’ such that maximum velocity is reach 15 µs after contact.  A total simulation time of 
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200 µs is required to achieve the desired strain at the prescribed velocity.  Strain-rate sensitivity 

could easily be included with a subroutine but is intentionally left out for this analysis because it 

introduces deformation detail beyond that which is necessary for mesh convergence. 

 

Figure 2.3.3 – Honeycomb assembly with rigid analytical top and bottom plates. 

There are several ways to monitor the convergence progression across different mesh 

densities, the two most primarily applicable to buckling analysis can be defined by physical 

deformation or energy absorption.  An example of monitoring physical deformation would be to 

watch how the failure mode changes with more elements, paying particular attention to the 

amplitude and frequency of buckling waves upon inception and progression of failure.  Monitoring 

energy absorption for convergence is accomplished by either maximizing plastic dissipative or 

minimizing strain energy, respectively.  This is further explained by looking at what happens to 

the hexagonal cell as it’s crushed.  The structure is deformed elastically until strain exceeds the 

yield value at 200 MPa, which is when plastic deformation begins.  Plastic deformation is 

dependent on the level of detail available in the geometry during collapse—detail prescribed solely 

by the mesh.  In short, the amount of plastic deformation allowed to accumulate over the time it 

takes to reach 60% strain will become maximized as mesh density increases.  Conversely, strain 

energy is a result of the structures inability to reach yield stress or is present after yield stress as a 

residual strain energy.  We then expect strain energy to become minimized as the mesh sensitivity 

analysis approaches a converged solution.  Monitoring energy is finite and tabular compared to 
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the subjectivity introduced by visually inspecting buckling modes, therefore energy convergence 

is the chosen method.  Since strain and plastic energies are conversely related for this type of 

analysis, either are sufficient.  Accordingly, strain energy is chosen to be monitored and minimized 

for the proceedings. 

 

2.3.1.2 - Results 

Mesh densities are defined by prescribing elements along in-plane cell wall length L and 

extrusion height H in the format Lelements x Helements.  As an example, a 5x10 mesh would result in 

five elements along each cell wall and ten along the extrusion height.  Figure 2.3.4 shows low and 

high density meshes deforming over 50 µs.  Vastly different failure modes are seen depending on 

mesh density.  Figure 2.3.5 shows the strain energy of the hexagonal honeycomb converging 

towards a minimized value over several density iterations, the last three densities most nearly 

converged.  From Figure 2.3.6, it is clear strain energy is converged at density 60x200.  Using the 

hexagons aforementioned geometry, we find the global element dimensions of insensitive mesh 

are 41.7 µm and 75 µm.  A similar analysis [12] using global mesh size instead of leg length and 

extrusion height found results became insensitive to mesh density at global element size t/2, or 50 

µm for our case—where t is wall thickness.  This mesh density was implemented and the results 

are compared in Figure 2.3.5–Figure 2.3.6.  Very good agreement is found with the t/2 global 

element size approximation.   

 

Figure 2.3.4 – Shell honeycomb failure progression at interval 50 µs for a) 5x5 and b) 5x100 
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Figure 2.3.5 – Strain energy vs. time, showing convergence across multiple mesh densities. 

 

Figure 2.3.6 – Converged strain energy at specified densities. 
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A way to check the accuracy of results in Abaqus is to compare real to artificial energy.  

Artificial energies are introduced to increase the convergence rate of results in Abaqus, speeding 

up overall solve time.  Results are admissible provided artificial energies are consistently below a 

threshold value of about 5% of total energy.  Evaluating artificial contributions can be done by 

pulling resultant strain, plastic dissipation, viscous, and artificial energy terms.  Viscous energy is 

generated due to assigning a bulk viscosity to the material as an aid in drowning out the noise of 

solution fluctuations [28].  Artificial energy also acts to suppress unnecessary noise in the solution.  

Bulk viscosity and hourglass control have a hand in solution convergence for the Explicit solver 

however their default values can be adjusted if an eventual solution has more than marginal error.  

For our primarily plastic dissipative model, error can be quantified by adding viscous and artificial 

energies and dividing their sum by that of strain and plastic dissipative energies.  All four of these 

energies continue to rise with increasing strain due to constant kinetic energy input into the system 

as the top analytical piece crushes the honeycomb.  It’s reasonable then to take the error at the last 

time step, when it should be largest.  Viscous, artificial, strain, and plastic dissipative energies are 

8.48 mJ, 48.2 mJ, 9.86 mJ, and 2.52 J, respectively.  This leads to only 2.1% error in results, which 

is below the 5% threshold value. 

2.4 - Benchmark 

2.4.1 - Setup 

 In order to gauge the accuracy of the current modeling technique, existing experimental 

and numerical results are attempted to be replicated.  The paper chosen is ‘Dynamic Compressive 

Response of Stainless-Steel Square Honeycombs’ by Radford et al.  The properties in the following 

table are used [12].  The rate sensitivity of stainless-steel [12] is also considered by employing a 

yield stress ratio sub-option in Abaqus.  Rigid surfaces are tied to the top and bottom faces of the 

honeycomb such that no rotations occur.  S4R elements with default hourglass and bulk viscosity 

are used.  It’s important to note that these boundary conditions and material models cannot match 

exactly those from the paper due to subjective interpretation.  The paper uses heights of 6 mm and 

30 mm, the taller specimen being chosen to correlate results with.  Cell size L of 6 mm and wall 

thickness b of 0.3 mm match those in the paper and can be found on Table 2.3.1.  Velocities of 20 

ms-1, 50 ms-1, and 240 ms-1 are used to match those in the paper. 
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Table 2.4.1 – AISI type 304 stainless-steel. 

𝜌 [kg/m3] 𝐸 [GPa] 𝜎𝑦 [GPa] 𝜎𝑈 [GPa] ν H [m] b [m] L [m] 

8060 210 0.3 0.7 0.3 0.030 0.0003 0.006 

Table 2.4.2 – Stainless-steel rate sensitivity data. 

𝜎𝑦/𝜎𝑠 Ratio R 1 1.06 1.12 1.17 1.27 1.45 1.63 

Strain Rate 𝜀̇ 0 1E
-2 1 1E

1 1E
2 1E

3 1E
4 

 

 

Figure 2.4.1 – Benchmark geometry [12] 
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Figure 2.4.2 – Meshed 30 mm specimen with top and bottom rigid surfaces. 

 

 

Figure 2.4.3 – Quasi-static plastic stress vs. true strain relation employed during analysis [12]. 
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2.4.2 - Results 

 

Figure 2.4.4 – Stress-strain response for 20 ms-1 loading. 

 

Figure 2.4.5 – Stress-strain response for 50 ms-1 loading. 
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Figure 2.4.6 – Stress-strain response for 240 ms-1 loading. 

 Figure 2.4.4 – Figure 2.4.6 show that the approach presented here, as with that in the 

published paper, has accuracy dependent on loading rate.  Figure 2.4.4 shows the current approach 

matches peak stress very well for the 20 ms-1 case but deviates from the paper results as strain 

increases.  Figure 2.4.5 shows a good match between the combination of experimental and 

computational paper results for the 50 ms-1 case.  Figure 2.4.6 shows a good match with paper 

computational results for the 240 ms-1 case, deviating from experimental results in the same 

manner as the paper computational method. 

 It’s important to note one fundamental difference between the present approach and that of 

the paper; this approach doesn’t introduce imperfections into the model but the paper uses low and 

high-order modes of perturbation to acquire an initial ‘imperfect’ state, then scales these results 

and uses the subsequent shape as the initial impact state.  This approach was intentionally ignored 

because their results indicate the initial imperfections, regardless of mode, had negligible effect on 

the stress-strain response [12].  It can be concluded that the modeling technique outlined by this 

chapter should produce results with the accuracy and consistency necessary for the proposed 

comparative topological analysis. 
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Geometric Comparison 

3.1 - Introduction 

 The intent of this chapter is to provide a baseline for future analysis.  Square and triangular 

cell constructions are chosen to be compared against regular hexagonal.  Each topology is of 4x4 

cell number with no periodic boundary conditions.  This is done to mimic the experimental case, 

where a Split-Hopkinson bar will likely dictate the sample size be smaller than 1 in2.  Accordingly, 

employing periodicity would not give results comparable to current dynamic loading processes.  

The comparison is done at relative density 𝜌̅ of 20%. 

3.2 - External Constraints 

Similar experimental research has been performed using cell heights as little as 6 mm [12] 

and as large as 150 mm [9].  A fixed cell height of 100 mm is chosen because it’s on the larger end 

of the spectrum, allowing for greater overall energy absorption.  It’s important to choose a realistic 

cell size L, to do so means first considering a realistic out-of-plane aspect ratio H/L.  Aspect ratio 

has been shown to effect resultant mean crush strength [7].  Since H has been established as 

constant at 100 mm, L must vary when t is held constant in order to maintain the correct 𝜌̅ value.  

The results of [7] were obtained over a range of 1 ≤ 𝐻/𝐿 ≤ 5.  Inherently, the range chosen for 

this paper is 2.5 ≤ 𝐻/𝐿 ≤ 5.  This forces the cell size to vary within the bounds of 20 mm ≤ L ≤ 

30 mm.  The above procedure aims to minimize experimental results dependence on aspect ratio.  

As such, impactor velocity must be chosen with equal care.   

 Strain rate has been shown to significantly affect the strength of nickel based honeycombs 

[14].  Material sensitivity can be removed from the proceeding comparisons if steps are taken to 

ensure its contribution is negligible.  Metals tend to be relatively insensitive to strain rate when 

applied values are below 103 s-1 [26].  Any loading resulting in strain rates below this value are 

then acceptable.  A realistic impact loading rate can be found by noting the speed limit on the New 

York State thruway, which is 65 mph or 29 m/s.  A value of 30 m/s combined with 100 mm cell 

height gives a strain rate of 3E2 s-1, which is safely beneath the threshold sensitivity value.  The 

loading rate 30 m/s is chosen to represent a scenario where energy absorbance is desired for a 

specific type of impact.  How a 4x4 cell is defined will affect the response of the honeycomb.  

Square and rectangular geometries have their outer boundary with thickness t.  This is chosen to 
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be the case because having continuous linkage on the perimeter will ensure the response is of the 

strongest bonded 4x4 cell.  Any other cut will have multiple free legs, contributing less to overall 

stiffness then when they are bonded on the perimeter.  This is also a realistic depiction of the 

physical system, since trimming the legs outside the boundary would be easy and result in the best 

honeycomb per allowed area.   

   The hexagonal 4x4 cell is made with the same bounding connectivity in mind.  It’s worth 

mentioning that the hexagonal geometry would be more challenging to implement experimentally 

because the top and bottom outermost hexagons have their boundary legs with t/2—which would 

be difficult to make as thicknesses approach 1 mm.  Figure 3.3.1 shows each honeycomb as 

described. 

3.3 - Boundary Conditions 

 Each honeycomb is bonded to rigid top and bottom plates using the tie constraint such that 

in-plane displacement is fixed while axial displacement and rotations are allowed—otherwise 

known as a pin tie.  This represents a physical system initially bonded at the top and bottom but 

not well enough to withstand significant dynamic loading stress, and where friction between the 

honeycomb and top/bottom surfaces restrains displacement but allows rotation.  General contact 

between all surfaces is introduced as hard and frictionless.  Both of these conditions are admissibly 

found in literature [12].  Velocity of the top plate is 30 m/s in the compressive axial direction as 

discussed in the previous section. 

Figure 3.3.1 – Hexagonal, square, and triangular 4x4 honeycombs, 𝜌̅ of 20% at L of 20mm with 

corresponding thickness t. 
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3.4 - Procedure 

Relative density is directly proportional to area when the geometry is extruded.  Such 

proportionality is used to derive Eqn. (3.4.1), which relates relative density, cell length, and wall 

thickness for an n x n square geometry.  𝐴𝐸  is empty cell area while 𝐴𝑇 is the total cross-sectional 

area occupied by the n x n model.  Cell size varies while relative density is constant at 20%.  Three 

L values are chosen to span the range mentioned above—corresponding t values and overall model 

size are found by using 4 for n, relative density of 0.20, and the desired cell size to solve Eq. (3.4.1) 

for thickness.  The results for 20, 25, and 30 cell size are given in Table 3.4.1.  The process 

formulating the geometry for triangular and hexagonal honeycombs is exactly the same as for 

square honeycombs—Equations (3.4.2) and (3.4.3) are for triangular and hexagonal topology, 

respectively.  

 𝜌̅ = 1 −
𝐴𝐸

𝐴𝑇
= 1 − [

𝑛(𝐿 − 𝑡)

𝑛𝐿 + 𝑡
]

2

 (3.4.1) 

 𝜌̅ = 1 −
𝐴𝐸

𝐴𝑇
= 1 − [

𝑛(𝐿 − 𝑡(1 + √2))

(𝑛𝐿 + 𝑡)
]

2

 (3.4.2) 

 𝜌̅ = 1 −
𝐴𝑒

𝐴𝑇
= 1 −

(𝐿√3 − 2𝑡)
2

(3𝑛 + 1)

𝐿(9𝑛𝐿 + 4𝑡√3 + 3𝐿)
 (3.4.3) 

Table 3.4.1 – Fixed cell heights and inherited parameters for square honeycombs. 

L [mm] 20 25 30 

B [mm] 81.73 102.16 122.59 

t [mm] 1.73 2.16 2.59 

Table 3.4.2 – Fixed cell heights and inherited parameters for triangular honeycombs. 

L [mm] 20 25 30 

B [mm] 80.80 101.00 121.20 

t [mm] 0.80 1.00 1.20 

Table 3.4.3 – Fixed cell heights and inherited parameters for hexagonal honeycombs. 

L [mm] 20 25 30 

B1 [mm] 65.98 82.49 98.98 

B2 [mm] 69.28 86.60 103.9 

t [mm] 1.71 2.14 2.57 
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3.5 - Results 

3.5.1 - Mass Normalizing 

The artificial energy is found to be less than 3% of combined plastic and strain energy for 

each respective cell size, ensuring error hasn’t snowballed during the simulation.  Mesh sensitivity 

analysis similar to that performed in the previous section confirmed elements of size t/2 managed 

to give a converged solution. All proceeding results also fall under the threshold artificial 

percentage unless otherwise mentioned.  Figure 3.5.1 shows that energy absorbed increases with 

cell size, Figure 3.5.2 indicating the relationship is very linear.  This is due to the fact that the 

overall amount of honeycomb material increases with cell size if relative density is held constant.  

Imagine two 4x4 honeycombs; one is small enough to sit on top of a desk while the other spans a 

room.  While they both may have equal relative densities if nxn is the same, the overall amount of 

honeycomb material composing each 4x4 is vastly different.  Such differences must be eliminated 

to compare honeycomb geometry, so normalizing all geometries with respect to one is essential.  

This process is shown in Table 3.5.1, where the smallest area A0 is chosen to be the normalizing 

parameter.  This happens to be the area of the smallest square honeycomb.  It’s clear from Figure 

3.5.3 that there is little variation in energy absorption across cell sizes within a close aspect ratio 

range once their relative masses are considered.  This leaves the amount of energy absorbed after 

40% strain as just over 20 KJ.  Results for triangular and hexagonal honeycombs indicate the same 

type of behavior found in Figure 3.5.3.   

Table 3.5.1 – Normalized area of square honeycombs. 

 

 

 

 

Square 

 20 mm 25 mm 30 mm 

A [mm2] 1339.11 2090.02 3007.38 

A/A0 1.00 1.56 2.25 
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Figure 3.5.1 – Energy absorbed by square honeycombs up to 40% strain. 

 

 

Figure 3.5.2 – Total energy absorbed by square honeycombs, indicating a strong linear 

dependence on cell size. 
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Figure 3.5.3 – Normalized energy absorbed by square honeycombs up to 40% strain. 

3.5.2 - Square, Triangular, Hexagonal Honeycombs 

 Table 3.5.2 is used to find the area or mass contribution factors across all geometries with 

respect to the smallest area—which is the 20 mm hexagon.  Figure 3.5.7 shows that all geometries 

have consistent specific energy absorption across similar cell sizes and that hexagonal structure 

absorbs the most energy.     

Table 3.5.2 – Normalized area of honeycombs. 

 Hexagon Square Triangle 
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A 914.3 1429 2057 1339 2090 3007 1305 2039 2936 
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Figure 3.5.4 – Force-displacement plots for honeycombs of 20 mm cell size. 

 

Figure 3.5.5 – Force-displacement plots for honeycombs of 25 mm cell size. 
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Figure 3.5.6 – Force-displacement plots for honeycombs of 30 mm cell size. 

 

 

Figure 3.5.7 – Normalized energy absorbed by honeycombs up to 40% strain. 

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Fo
rc

e 
[N

]

Displacement [m]

square_F-top
square_F-base
triangle_F-base
triangle_F-top
hexagon_F-base
hexagon_F-top

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

0% 5% 10% 15% 20% 25% 30% 35% 40%

En
er

gy
/(

A
/A

0
) 

[J
]

Strain [mm/mm]

L-20mm_hexagon
L-25mm_hexagon
L-30mm_hexagon
L-20mm_square
L-25mm_square
L-30mm_square
L-20mm_triangle
L-25mm_triangle
L-30mm_triangle



29 

 

Figure 3.5.8 – Top view of end state for square 4x4 structure with (left) L = 30mm and (right) L 

= 20mm. 

  

Figure 3.5.9 – Top view of end state for triangular 4x4 structure with (left) L = 30mm and 

(right) L = 20mm. 

  

Figure 3.5.10 – Top view of end state for hexagonal 4x4 structure with (left) L = 30mm and 

(right) L = 20mm. 
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3.6 - Discussion 

Figure 3.5.1 and Figure 3.5.2 shows that energy absorbed by square topology increases 

with cell size but as previously mentioned, this is only because the overall honeycomb size and 

mass are increasing.  Figure 3.5.3 shows that energy absorbed is the same across cell sizes once 

normalized by the extra mass present in the system.   Figure 3.5.7 confirms the same trend for 

triangular and hexagonal honeycombs.  Figure 3.5.4–Figure 3.5.6 show there is a mismatch 

between top and bottom plate forces during most of the loading for all topologies.  Hexagonal 

topology consistently has the least mismatch amplitude and reaches dynamic equilibrium the 

fastest.  The response of 20 mm triangular cell structure was not completed beyond 26 % strain 

because the minimum time-step required became prohibitively small.  Figure 3.5.7 shows the 

topological order of specific energy absorbed from highest to lowest is hexagonal, square, and then 

triangular.  Taking the average specific energy absorbed by each cell structure, hexagonal 

geometry absorbs 28 % and 77 % more energy than square and triangular, respectively.  Figure 

3.5.8–Figure 3.5.10 show no significant difference in overall deformation behavior between 

different cell sizes of the same topology or between different topologies.  This chapter has shown 

that hexagonal cell structure is capable of absorbing more energy per unit mass when compared to 

square or triangular structures of the same relative density.  It’s important to investigate how 

parameters like connectivity and aspect ratio can affect energy absorbance. 
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Connectivity and Thickness 

4.1 - Introduction 

 The previous chapter showed: The same geometry with similar cell size has exactly the 

same energy absorbing capability once normalized by relative mass; and There is a dependence on 

the combination of thickness and connectivity.  This chapter will use the results from the previous 

chapter to investigate the thickness and connectivity dependence. 

4.2 - External Constraints 

 All proceeding geometries will have the same mass (area), which is found under the 

assumption that relative density is 20%.  There will be at least four simulations for each geometry: 

a 4x4, 3x3, 2x2, and 1x1.  Unlike the previous chapter, where the bounding area was inherited 

from cell size, this chapter uses a consistent boundary area as well as occupied area.  Triangular 

geometry is chosen to be the prescriber of this condition and is therefore examined first.  It’s 

important to keep loading consistent throughout cell structure changes so that results are 

comparable.  Accordingly, applied velocity, contact, and tie conditions are the same as in the 

previous chapter.  Extrusion length of the structures is also the same. 

4.2.1 - Procedure, Triangular Honeycomb 

The first simulation is a 4x4 structure, meaning n is 4 in the previous triangle relation.  Selecting 

a thickness of 1.5 mm means the equation can be solved for cell size—which is 37.48 mm.  

Knowing L and t, the base cell length B is found to be 151.42 mm.  Boundary area remains the 

same for all simulations in this chapter, which means dimension B will remain the same for square 

and triangular geometries.  Eqn. (4.2.1) is introduced to solve the previous chapter’s relative 

density equation for two variables.  B is constant and n corresponds to which nxn cell structure is 

being considered.  Inserting this equation into the previous relative density equation for triangular 

honeycombs of 1 ≤ n ≤ 4 outputs the corresponding L and t values seen in Table 4.2.1. 

 𝐵 = 𝑛𝐿 + 𝑡  (4.2.1) 
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Table 4.2.1 – Geometry parameters for triangular honeycombs. 

nxn 4x4 3x3 2x2 1x1 

C 208 120 56 16 

L [mm] 37.48 49.83 74.34 146.73 

t [mm] 1.50 1.94 2.74 4.68 

t/L x103 40.02 38.92 36.89 31.91 

 

Connectivity is introduced as C to 

quantify the connectedness of each 

structure. Figure 4.2.1  shows a 2x2 

triangle, composed of thirteen joints.  

Corner joints J1, J3, J11, J13 have three 

legs, middle boundary joints J2, J6, J8, 

J12 have five legs, first-order cross-joints 

J4, J5, J9, J10 have four legs, and second-

order cross-joint J7 has eight legs.  

Connectivity C is found by multiplying 

each joint by the number of legs tied to it.  

The total connectivity of the structure 

would then be equal to the sum of joint 

connectivities as seen in the equation below.  Ji corresponds to the total number of type i joint and 

Ki is the number of legs in that type of joint.  Finding C for the 2x2 triangle is performed below.  

The first term corresponds to corner joints, the second is middle boundary joints, third being first-

order cross-joints, and fourth being the second-order cross-joint.  Although K and J will vary with 

geometry and n, the process for calculating connectivity is always the same. 

 𝐶 = ∑ 𝐾𝑖𝐽𝑖

𝑛

𝑖=1

 (4.2.2) 

  𝐶 = ∑ 𝐾𝑖𝐽𝑖

𝑛

𝑖=1

= 𝐾1𝐽1 + 𝐾2𝐽2 + 𝐾3𝐽3 + 𝐾4𝐽4 (4.2.3) 

 = 3 ∗ 4 + 5 ∗ 4 + 4 ∗ 4 + 8 ∗ 1 = 56   

Figure 4.2.1 – Joints for connectivity of 2x2 triangle. 
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4.2.2 - Square Honeycomb 

 The same procedure is used for square honeycombs with the exception that the triangular 

relative density equation is used and solved for 1 ≤ n ≤ 6.  A larger range is used to be sure a 

recognizable pattern evolves. 

Table 4.2.2 – Geometry parameters for square honeycombs. 

nxn 6x6 5x5 4x4 3x3 2x2 1x1 

C 168 120 80 48 24 8 

L [mm] 24.86 29.75 37.05 49.14 73.04 143.42 

t [mm] 2.28 2.66 3.20 4.00 5.33 7.99 

t/L x103 91.86 89.55 56.29 81.33 72.95 55.73 

 

4.2.3 - Hexagonal Honeycomb 

 We will use the hexagonal relative density equation from the previous chapter but cannot 

use Eq. (4.2.1) because base and height dimensions must change in response to the nxn structure 

being considered.  As mentioned above, bounding area must remain the same—so Eqn. (4.2.4) is 

developed predicated on consistent area throughout nxn structures.  AT is constant and equal to B2 

of square/triangular geometry.  Since n corresponds to the nxn structure being considered, we can 

solve the two equations to obtain L and t values as seen on Table 4.2.3. 

 
𝐴𝑇 = 𝑛𝐿

√3

24
(9𝑛𝐿 + 4𝑡√3 + 3𝐿) (4.2.4) 

Table 4.2.3 – Geometry parameters for hexagonal honeycombs. 

nxn 6x6 5x5 4x4 3x3 2x2 1x1 

C 244 176 114 70 32 12 

L [mm] 30.32 36.16 44.79 58.84 85.83 159.30 

t [mm] 2.65 3.13 3.83 4.94 6.96 11.93 

t/L x103 87.32 86.60 85.56 83.96 81.13 74.87 

B [mm] 145.53 146.44 147.77 149.96 154.22 166.18 

H [mm] 157.53 156.56 155.15 152.88 148.66 137.96 

 

Figure 4.2.2 shows all the cell structures used for analysis.  It’s easy to confirm visually 

that external boundary area is the same throughout all the triangular and square structures.  The 

hexagonal structures show a boundary aspect ratio change progressing from 6x6 to 1x1 structures, 

which can be verified on Table 4.2.3.  The boundary area is confirmed constant and equal to the 

triangular/square geometries in each nxn case by multiplying B and H. 
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Figure 4.2.2 – nxn cell structures for triangular, square, and hexagonal honeycombs at 𝜌̅ of 

20%. 

4.3 - Results 

 

Figure 4.3.1 – Force displacement curves for triangular honeycombs. 
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Figure 4.3.2 – Energy absorbed by triangular honeycombs of equal mass and boundary area. 

 

Figure 4.3.3 – Force displacement curves for square honeycombs. 
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Figure 4.3.4 – Energy absorbed by square honeycombs of equal mass and boundary area. 

Figure 4.3.5 – Force displacement curves for hexagonal honeycombs. 
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Figure 4.3.6 – Energy absorbed by hexagonal honeycombs of equal mass and boundary area. 

 

Figure 4.3.7 – Energy absorbed with respect to aspect ratio for square, triangular, and 

hexagonal honeycombs.  Mass normalized results from chapter 4 are included for each 

honeycomb type to show repeatability. 
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Figure 4.3.8 – Energy absorbed with respect to connectivity for square, triangular, and 

hexagonal honeycombs. Mass normalized results from chapter 4 are included for each 

honeycomb type to show repeatability. 

 

Figure 4.3.9 – Top view of hexagonal deformation for (left) 6x6, (middle) 3x3, and (right) 1x1 

cell structures. 
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Figure 4.3.10 – Top view of square deformation for (left) 6x6, (middle) 3x3, and (right) 1x1 cell 

structures. 

 

Figure 4.3.11 – Top view of triangular deformation for (left) 4x4, (middle) 3x3, and (right) 1x1 

cell structures. 

4.4 - Discussion 

 It’s important to note that force-displacement curves don’t exactly tabulate energy 

absorbed because of artificial energy contributions, but they are very close because artificial 

energies are kept below 5 % of total energy using the methods discussed in Chapter 2.  Figure 

4.3.2 shows that energy absorbed by triangular honeycombs increases as the number of cells within 

the system decreases, being maximized with only one cell.  This figure also shows that increasing 

the number of cells beyond 3x3 has a negligible effect on energy absorbed.  Figure 4.3.4 shows 

that square honeycombs generally absorb more energy when cell number increases and that having 

1x1 cell structure dramatically reduces absorbed energy.  Figure 4.3.6 shows energy absorption 

increases with n and that absorption is greatly reduced when the structure is a single cell. Figure 

4.3.7 shows several important characteristics about the honeycombs being considered.  It’s 
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important to note from the tables above that t/L increases with n.  Figure 4.3.7 shows square and 

hexagonal structures’ energy absorbance increase with t/L—square being less dramatically 

influenced than hexagonal over the range examined.  The triangular geometry shows the opposite, 

decreasing in absorbance with increasing t/L.  Figure 4.3.8 shows hexagonal and square 

honeycombs have increased energy absorbance with larger connectivity while the triangular 

honeycombs perform best with minimal connectivity.  Figure 4.3.8 also indicates the number of 

cells required by each geometry to approximately represent periodicity, or the number of cells 

required for no boundary effects to be present.  Figure 4.3.9 shows hexagonal topology has all 

walls deforming in a low frequency manner for each nxn structure.  Figure 4.3.10 shows all interior 

square topologies exhibit higher frequency buckling for 6x6 and 3x3 structures while low 

frequency is seen for 1x1 structure.  Figure 4.3.11 shows that triangular topology always buckles 

at low frequency at the external walls vs. high frequency internally. 

 There are a few important characteristics that have emerged from this chapter.  They are 

(1) hexagonal honeycombs again offer the greatest energy absorbance per unit mass when compare 

to square or triangular honeycombs at the same relative density.  A 23% increase and 43% increase 

is seen when comparing maximum absorbance of hexagonal structure to those of square and 

triangular, respectively.  This information is easily pulled from Figure 4.3.7.  (2) Each structure 

has maximized or near maximized absorbance at different t/L values.  Figure 4.3.7 shows the range 

of t/L values inherited by the area and boundary conditions in this chapter allow for hexagonal 

structure to converge to a maximized energy absorption but square and triangular geometries do 

not.  If anything, triangular absorption is found to converge toward a minimum value.  The next 

chapter will use an approach similar to chapter 4 to find the aspect ratios at which square and 

triangular honeycombs are maximized, tabulating hexagonal structure as well. 
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Aspect Ratio 

5.1 - Introduction 

 The previous chapter showed a tendency for each topology to have enhanced energy 

absorption at different t/L values.  The object of this chapter is to isolate the n values for which t/L 

tends not to change, removing the energy absorption dependence on aspect ratio found in the 

previous chapter.  This is done using two approaches—an unbounded one like that used in Chapter 

3 and a bounded one like in Chapter 4.  The unbounded approach allows a large out-of-plane aspect 

ratio range to be looked at while the bounded method focuses on a smaller range.  Bounded means 

the external area or perimeter is fixed, inherently fixing mass provided relative density is constant.  

Unbounded means the area expands naturally as n changes.  To be more precise, the bounded area 

employs a third equation to solve for B as well as t and L, while unbounded uses only two equations 

to solve for t and L.  Mass increases as hexagonal area increases during the unbounded analysis. 

5.2 - Unbounded 

5.2.1 - External Constraints and Boundary Conditions 

 All proceeding geometries will be 

based upon their infinite nxn sheets at 20% 

relative density.  The same equations as 

before can be used to find n values at which 

t/L is constant or within a small tolerance 

of constant. Figure 5.2.1 shows t/L 

approaching constant values for each 

structure.  It’s important to point out that n 

is likely to be a large number when 

honeycombs are used in large sheets as 

energy absorbers.  This relationship holds 

true regardless of which component—area, 

t, or L—is prescribed when solving for n.  

This is important because last chapter revealed an energy absorption dependence on t/L and we 

know t can substantially influence total solve time.   
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 Figure 5.2.1 – In-plane aspect ratio’s dependence 

on n for honeycomb structures. 
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5.2.2 - Procedure 

Chapters 2 shows the solution is converged at global shell element size t/2.  Since t/L is 

not dependent on t, it follows from a computational efficiency standpoint that t values should be 

chosen such that solve time is reasonable.  The approach for this section is to generate models 

spanning the threshold n value of 20 from the left and right, removing energy absorbance 

dependence on t/L.  An overall bounding area of 16 m2 produces a thickness of 8.57 mm for a 

20x20 triangular honeycomb; this thickness yields a reasonably large stable time increment, 

therefore 16 m2 will be bound each geometry.  Table 5.2.1 shows that an n value of 20 produces 

t/L ratios within 5 % of a constant value for each cell structure.  This means using 20x20 structure 

suffices to describe a systems where n  ∞, in terms of in-plane aspect ratio.  Approaching the 

threshold t/L values from left and right means to generate structures with approximately 10 ≤ n ≤ 

30 so that a pattern is recognizable.  Results are then normalized by mass. 

Table 5.2.1 – Aspect ratios of cell structure at n of 20. 

 Triangle Square Hexagon 

t/L 0.04293437 0.10105360 0.09010863 

% max 98.2% 95.7% 98.6% 

Table 5.2.2 – Triangular cell structure for constant area and relative density. 

n 30 22 20 15 10 5 

t [mm] 5.75 7.80 8.57 11.35 16.80 32.31 

L [mm] 133.14 181.46 199.57 265.91 398.32 793.54 

t/L 0.04320 0.04301 0.04293 0.04268 0.04217 0.04071 

H/L 0.75 0.55 0.50 0.38 0.25 0.13 

Table 5.2.3 – Square cell structure for constant area and relative density. 

n 40 30 22 20 15 10 5 

t [mm] 10.30 13.62 18.36 20.11 26.39 38.39 70.38 

L [mm] 99.74 132.88 180.98 198.99 264.91 396.16 785.92 

t/L 0.10326 0.10252 0.10145 0.10105 0.09963 0.09691 0.08955 

H/L 1.00 0.75 0.55 0.50 0.38 0.25 0.13 

Table 5.2.4 – Hexagonal cell structure for constant area and relative density. 

n 30 20 15 10 

t [mm] 14.88 22.14 29.29 43.25 

L [mm] 164.34 245.70 326.53 486.64 

t/L 0.09054 0.09011 0.08969 0.08887 

H/L 0.61 0.41 0.31 0.21 
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5.2.3 - Results 

 

Figure 5.2.2 – Force displacement curves for triangular honeycombs. 

 

 

Figure 5.2.3 – Normalized energy absorbed by triangular honeycombs. 
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Figure 5.2.4 – Force displacement curves for square honeycombs. 

 
Figure 5.2.5 – Normalized energy absorbed by square honeycombs. 
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Figure 5.2.6 – Force displacement curves for hexagonal honeycombs. 

 
Figure 5.2.7 – Normalized energy absorbed by hexagonal honeycombs. 
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Figure 5.2.8 – Normalized energy vs. in-plane aspect ratio for honeycomb structures 

 
Figure 5.2.9 – Normalized energy vs. out-of-plane aspect ratio for Triangular, Square, and 

Hexagonal structures. 
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Figure 5.2.10 – Top view for hexagonal honeycomb corner bending, seen to be (left) substantial 

for n of 30 and (right) marginal for n of 10. 

  

Figure 5.2.11 – Top view for square honeycomb corner bending, seen to be (left) substantial for 

n of 30 and (right) marginal for n of 10. 

  

Figure 5.2.12 – Top view for triangular honeycomb center bending, seen to be (left) substantial 

for n of 30 and (right) marginal for n of 10. 
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 The results of this section can be effectively determined by looking closely at Figure 5.2.8 

and Figure 5.2.9.  Both figures are normalized such that results have the same mass, just as in 

Chapter 3.  The indication is that all cell structures show a sharp decrease in energy absorption 

with increasing t/L.  This is an expected result for triangular structure according to the previous 

chapters’ results.  Square and hexagonal structures however, were supposed to show optimized 

energy absorbance characteristics as t/L approaches respective constant values at or beyond 20x20 

cell types.  The contrasting results are easily seen by observing the mismatch between current and 

Chapter 4 results on Figure 5.2.8 and Figure 5.2.9. 

 This mismatch is partially due to difference in approach between this section and the 

previous chapter—last chapter had the local number of cells being examined decrease as H/L 

decreased oppose to this section having a constant 8x8 locally examined cell.  The most important 

relationship to take away from this section is the energy absorbance dependence on H/L, which is 

very apparent in Figure 5.2.9.  Having H/L ≤ 0.25 yields approximately the same response from 

square and hexagonal structures while triangular honeycombs have reduced absorption. Energy 

absorbance diverges as far as which cell structure is optimal as H/L > 0.25—the order of optimality 

being hexagonal, square, then triangular. 

 Figure 5.2.10 – Figure 5.2.12 show that each honeycomb has greater lateral deformation at 

larger n constructions.  Larger n values correspond to larger t/L and H/L ratios for each topology, 

as seen on Table 5.2.2 – Table 5.2.4.  By comparing Figure 5.2.9 with Figure 5.2.10 – Figure 

5.2.12, we can safely say that smaller lateral deformation is associated with higher specific energy 

absorption.  It is the goal of the next section to focus on small H/L ratios because this section has 

revealed it is more of an energy absorption determinant than t/L. 

5.3 - Bounded 

5.3.1 - External Constraints 

This section uses the bounded approach like Chapter 4, where overall mass and relative 

density are fixed.  It’s best to fix mass along with relative density to avoid inertial contributions 

that may be nonlinear.  Such contributions may have residuals once normalized by mass and may 

be an additional source of error.  The process for this section is essentially the same as with the 

previous one, the difference being that the outer perimeter is fixed.  An external area of 16 m2 

bounds each cell structure, meaning the relative density equations can be solved in the same 
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manner as in Chapter 4.  The previous section revealed t/L isn’t a dominating characteristic but 

allowing for the ratio to approach a constant value as before is a good idea.  n is again chosen to 

approach 20 to accommodate an approximately steady-state t/L ratio, so each cell structure uses n 

of 20, 15, and 10 as seen on Table 5.3.1.   

Table 5.3.1 – Square cell structure. 

n 20 15 10 

t [mm] 20.11 26.39 38.39 

L [mm] 198.99 264.91 396.16 

t/L 0.10105 0.09963 0.09691 

H/L 0.50 0.38 0.25 

Table 5.3.2 – Triangular cell structure. 

n 20 15 10 

t [mm] 8.57 11.35 16.80 

L [mm] 199.57 265.91 398.32 

t/L 0.04293 0.04268 0.04217 

H/L 0.50107 0.37607 0.25105 

Table 5.3.3 – Hexagonal cell structure. 

n 20 15 10 

t [mm] 22.14 29.29 43.25 

L [mm] 245.70 326.53 486.64 

t/L 0.09011 0.08969 0.08887 

H/L 0.40700 0.30625 0.20549 

 



50 

5.3.2 - Results 

 

Figure 5.3.1 – Force displacement curve for square honeycombs. 

 

Figure 5.3.2 – Force displacement curve for triangular honeycombs. 
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Figure 5.3.3 – Force displacement curve for hexagonal honeycombs. 

 

Figure 5.3.4 – Energy absorbed by honeycombs of different in-plane aspect ratio. 
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Figure 5.3.5 – Energy absorbed by honeycombs of different out-of-plane aspect ratio. 

  

Figure 5.3.6 – Top view for hexagonal honeycomb corner bending, seen to be (left) substantial 

for n of 20 and (right) marginal for n of 10. 
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Figure 5.3.7 – Top view for square honeycomb corner bending, seen to be (left) substantial for n 

of 20 and (right) marginal for n of 10. 

  

Figure 5.3.8 – Top view for triangular honeycomb center bending, seen to be (left) substantial 

for n of 20 and (right) marginal for n of 10. 

 Figure 5.3.1 and Figure 5.3.3 show little variation between force-displacement results for 

square and hexagonal topologies, respectively.  Figure 5.3.2 however, shows a definite difference 

in strength characteristics of 10x10, 15x15, and 20x20 triangular topology after about 18 mm 

compression.  This difference can be seen more clearly in the form of energy absorbed by looking 

at Figure 5.3.5, where smaller H/L correspond to smaller n structures.  Figure 5.3.4 shows the same 

pattern as Figure 5.3.5 but unfortunately t/L is less indicative than H/L and the detail is accordingly 

reflected by comparing plots.  Figure 5.3.5 shows that minimizing H/L allows energy absorbance 

to converge for hexagonal and square geometries at H/L of about 0.20 whereas triangular geometry 

requires a smaller H/L value if it is to converge at all.  Figure 5.3.6 – Figure 5.3.8 show the same 
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trend as the previous section; greater energy absorption is observed to coincide with less lateral 

bending displacement. 

5.4 - Discussion 

This chapter has shown that out-of-plane aspect ratio H/L can be a good predictor of energy 

absorption—namely that more energy is absorbed when H/L is small.  It’s important to note that 

the results from Chapter 4 graphed along with the unbounded results from this chapter on Figure 

5.2.9 in the H/L range of 0.5 – 1.5 show divergence, but this is due to boundary effects in the 

previous chapter as n approaches 1.  Otherwise, there appears to be a decay to constant value as 

H/L becomes large for each topology.  Once again, the order from greatest to least specific energy 

absorbed is hexagonal, square, and then triangular. 
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Mixed Mode Loading 

6.1 - Introduction 

 All previous chapters have been an idealization in the sense that failure was induced by 

normal out-of-plane loading.  Mixed mode loading is a critical part of impact because rarely is an 

impact exactly perpendicular to the surface and even if it were, it may be desirable to use energy 

absorbers in conjunction with curved surfaces.  Honeycombs by design are orthotropic, meaning 

axial and transverse loading provoke different bulk material response.  Increasing shear strain ratio 

during mixed mode quasi-static loading has been shown to reduce normal crush strength in regular 

hexagonal aluminum honeycombs [10].  Although it’s expected for each geometry to display 

reduced energy absorption characteristics, it isn’t necessarily true that all degradation will be equal.  

That is to say, triangular construction may be less sensitive to loading angle than square or 

hexagonal honeycombs. 

6.2 - External Constraints 

The geometry chosen are 4x4 structures from Chapter 4 because results across various 

chapters indicate lateral inertial effects may be present where mass normalization is invoked.  All 

contact and interaction conditions remain the same as Chapter 4, the only difference being the 

introduction of loading angle β and orientation ϕ.  Loading angles zero and ninety correspond to 

axial only and shear only loading, respectively—anything between is mixed mode.  Three different 

in-plane orientations are chosen; 0°, 45°, and 90°.  Hexagonal geometry displays orthotropy when 

approached using each ϕ whereas square and triangular construction are asymmetric only at ϕ of 

45°.  The prediction is that energy absorption is predominantly dependent on β and similar where 

symmetry exists.  Loading angles of 0°, 23°, 45°, 68°, and 90° are used at each ϕ to ensure the 

mixed mode impact spectrum is adequately captured.   

Velocity components are controlled such that displacement and velocity magnitudes for 

the top analytic surface is always 40 mm and 30 m/s, respectively.  This ensures the same energy 

is available for absorption across all simulations and that only cell construction changes energy 

absorbed.  It should be noted that only one simulation of β at 0° is performed for each topology 

because the response will be the same regardless of ϕ.  Namely, normal axial loading produces a 
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response independent of in-plane orientation because there is no in-plane loading component.  

Figure 6.2.1 shows how the loading angles β and ϕ are defined. 

 

Figure 6.2.1 – Definition of loading and position angles. 

 

Table 6.2.1 – Velocity components during loading. 

Vx [m/s] 

ϕ / β 0° 45° 90° 

0° 0.00 0.00 0.00 

23° 11.48 8.12 0.00 

45° 21.21 15.00 0.00 

68° 27.72 19.60 0.00 

90° 30.00 21.21 0.00 

Vy [m/s] 

ϕ / β 0° 45° 90° 

0° -30.00 -30.00 -30.00 

23° -27.72 -27.72 -27.72 

45° -21.21 -21.21 -21.21 

68° -11.48 -11.48 -11.48 

90° 0.00 0.00 0.00 

Vz [m/s] 

ϕ / β 0° 45° 90° 

0° 0.00 0.00 0.00 

23° 0.00 8.12 11.48 

45° 0.00 15.00 21.21 

68° 0.00 19.60 27.72 

90° 0.00 21.21 30.00 
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6.3 - Results 

 

Figure 6.3.1 – Triangular force-displacement response across mixed-mode loading spectrum. 

 

Figure 6.3.2 – Square force-displacement response across mixed-mode loading spectrum. 
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Figure 6.3.3 – Hexagonal force-displacement response across mixed-mode loading spectrum. 

 

 

Figure 6.3.4 – Honeycomb energy absorbance across mixed-mode loading spectrum. 
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6.4 - Discussion 

Figure 6.3.4 shows all topologies exhibit progressively reduced energy absorption with 

increasing shear loading.  Hexagonal honeycomb initially absorbs much more energy than square 

and triangular but all topologies have about the same energy absorbed at β of 68º.  Triangular 

geometry exhibits the least reduction in energy absorbed over the loading range while hexagonal 

is the most reduced.  We see energy absorbed is the same if loading is pure shear, indicating porous 

honeycomb structure may need filler to increase mixed mode stability.  Figure 6.3.4 also shows 

the examined topologies are relatively unaffected by in-plane orientation. 
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Polyurea as a Void Filler 

7.1 - Introduction 

Previous chapters proved over and over the performance dominance of the regular 

hexagonal honeycomb compared to square and triangular geometries.  The assumption is then that 

for most applications, specific energy absorbance will be greater for hexagonal geometry and the 

other two need not be further investigated.  The dominating absorbance parameter was also 

identified to be out-of-plane aspect ratio H/L, where absorbance increases with decreasing H/L.  

The intent of this chapter is to investigate a composite honeycomb system where the voids a filled 

with a load responsive polymer.  The hope is that a composite system will increase specific energy 

absorption or force shielding. Polyurea is chosen as the filler because it’s a very strain-rate 

sensitive material—having up to a factor of five increase in flow stress during high loading rates 

[23].Polyurea is also a rubber-like material with hyperelastic and viscoelastic properties.  The 

reason for investigating a composite system is to show that overall energy absorbed as well as 

specific energy absorbed can be enhanced by using a customized polymer composite system. 

7.1.1 - Hyperelasticity 

Hyperelastic materials are generally those with large deformation elastic response.  Such 

materials are normally dependent on temperature and loading rate, following a non-linear stress-

strain relationship [32].  Such behavior also tends to be volume preserving or nearly 

incompressible.  Several material models exist to describe hyperelastic response by defining strain 

energy density as a function of material and displacement parameters—Generalized neo-Hookean, 

Generalized Mooney-Rivlin, Generalized polynomial rubber elasticity potential, Ogden, and 

Arruda-Boyce eight-chain are just a few of the possible models [33].  This chapter uses the Ogden 

model—Eq. (7.1.1) describes strain energy density U using various material and displacement 

characteristics.   

 
𝑈 = ∑

2𝜇𝑖

𝛼𝑖
2

𝑁

𝑖=1

(𝜆̅1
𝛼𝑖 + 𝜆̅2

𝛼𝑖 + 𝜆̅3
𝛼𝑖 − 3) +

𝐾1

2
(𝐽 − 1)2 (7.1.1) 

 
𝜎𝑖𝑗 =

1

𝐽
𝐹𝑖𝑗

𝜕𝑊

𝜕𝐹𝑗𝑘
 (7.1.2) 

 
𝜎𝑖𝑗 =

𝜆1

𝜆1𝜆2𝜆3

𝜕𝑈

𝜕𝜆1
𝑏𝑖

(1)
𝑏𝑗

(1)
+

𝜆2

𝜆1𝜆2𝜆3

𝜕𝑈

𝜕𝜆2
𝑏𝑖

(2)
𝑏𝑗

(2)
+

𝜕𝑈

𝜕𝜆3

𝜆3

𝜆1𝜆2𝜆3
𝑏𝑖

(3)
𝑏𝑗

(3)
 (7.1.3) 



61 

In this equation, 𝜆̅ and 𝐽 represent space or displacement states while the others are material 

properties.  After massaging Eq. (7.1.2), Cauchy stress 𝜎𝑖𝑗 can be described by strain energy 

density and principle stretches in a form compliant with the Ogden model as seen in Eq. (7.1.3) 

[33].  Here, 𝑏𝑖
(𝑛)

 and 𝑏𝑗
(𝑛)

 represent eigenvectors of the Left Cauchy Green deformation tensor.  

See Appendix A for more detail.  Abaqus allows for the specification of the constants for an Ogden 

or other models, or it can find the constants given test data.  The latter is the process used for this 

chapter. 

7.1.2 - Viscoelasticity 

Some materials, polymers in particular, have a time sensitive response when loaded.  This 

is due primarily to the molecular construction of the material but can be exacerbated by dynamic 

loading and environmental parameters such as temperature.  Eq. (7.1.4) shows Shear modulus 𝐺 

as a function of steady-state stiffness and summation of stiffness’s and time constants [33].  This 

is known as a relaxation modulus because it minimizes over time.  This summation process is also 

known as a Prony series.  Supplied with relaxation test data, Abaqus assembles a Prony Series and 

uses it when solving viscoelastic problems.  The Prony Series can be used to describe the stress 

response over time by inserting Eq. (7.1.4) into Eq. (7.1.5), where t, 𝛾, 𝜎, and C are time, shear 

stress, shear strain, and strain-rate [34].  See Appendix A for more detail. 

 
𝐺(𝑡) = 𝐺∞ + ∑ 𝐺𝑖𝑒

−𝑡/𝑡𝑖
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 (7.1.4) 

 
𝜎(𝑡) = ∫ 𝐺(𝑡′ − 𝑡)

𝑑𝛾(𝑡′)

𝑑𝑡′
𝑑𝑡′

𝑡

0

 (7.1.5) 

7.2 - Setup  

The response of AISI 304 Stainless Steel core composite was first investigated, then a 

reduced height polypropylene composite.  This allows for large and small compliance mismatch 

between core and filler materials to be investigated.  The density used for Polyurea filler is 1070 

kgm-3.  Hyperelastic and viscoelastic material model information is given by Figure 7.2.1 [35].  

This test data is input to Abaqus and no further hyperelastic/viscoelastic information is required.  

Ogden and Prony series coefficients can then be output as seen in Table 7.2.1 and Table 7.2.2. 
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Figure 7.2.1 – Hyperelastic stress-strain response (left) and normalized relaxation modulus 

(right) for polyurea. 

Table 7.2.1 – Ogden hyperelasticity model coefficient results from Abaqus. 

i µi αi 

1 4.8483E+08 1.6443 

2 -1.7415E+08 2.2705 

3 -2.9538E+08 1.0209 

Table 7.2.2 – Prony series constants for viscoelastic relaxation modulus via Abaqus. 

i Gi ti 

1 5.0041E-01 4.0766E-09 

2 1.7857E-01 1.8341E-07 

3 1.3058E-01 2.4260E-05 

4 4.8673E-02 1.7878E-02 

5 4.4928E-02 2.4344 

6 1.4124E-02 3.1241E+03 

Table 7.2.3 – Mass makeup of composites. 

 Mass [g] Pieces Total [g] 

Composite 1    

     Steel core 3700 1 3700 

     PU filler 138.1 14 1933 

TOTAL   5633 

    

Composite 2    

     PP core, short 41.68 1 41.68 

     PU filler, short 13.81 14 193.3 

TOTAL   235.0 
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A large displacement stress-strain response curve is used to model polypropylene [36] and 

density 909 kgm-3 is used [37].  The same material model for AISI 304 stainless steel is used as in 

previous chapters.  It’s important for all masses to be tabulated for easily comparing specific 

energy absorption, so each composite component is modeled in SolidWorks to accurately calculate 

mass.  Composites 1 has the same core dimensions as the previous chapter.  Composite 2 has the 

same in-plane dimensioning but is only extruded to 10% percent of the total length.  The reason 

for using a reduced height composite is to decrease stress wave oscillation and overall dynamic 

equilibration time, concerning material response.  Table 7.2.3 shows the mass composition of each 

system.   

It’s important to consider how a hyperelastic viscoplastic material responds to dynamic 

loading.  If the material is long, the shocked volume may exhibit drastically different material 

properties compared to the unshocked end.  By reducing the specimen height, we’re effectively 

forcing the polymer to equilibrate faster and display a bulk response.  A quickly equilibrated bulk 

response is desirable considering our material model for polyurea displays rapid relaxation 

characteristics.  It’s also expected to see enhanced energy absorption during high strain-rate 

loading.  In hopes of provoking such enhanced properties, loading rates of 50 s-1, 300 s-1, 3000 s-1 

are used.   

 

Figure 7.2.2 – Meshed core (left) and filler (right) parts of each composite system. 

Every composite is essentially a sum of its parts however not all parts are created equally 

depending on the response in question.  We hope to obtain better results in the composite form 
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than either part can display independently.  It’s then necessary to load each part of the system 

independently as well the composite.  This leads to three simulations for each system at each 

loading rate, making a total of six simulations.  The composite system is composed of a honeycomb 

core and polyurea, represented as shell and solid elements, respectively.  It’s assumed the polyurea 

is bonded to the core such that no displacements or rotations occur at the core/PU interface.  This 

is a fair assumption considering polyurea is often used as a fast setting spray coating where good 

surface bonding is essential for performance [38].  Tie bonding at the nodes of shell and brick 

elements introduces error in the form of density overlap near the nodal region.  This overlap region 

is equal to half the core thickness due to the shell occupying a mid-surface position.  This error 

becomes neglibeable when considering the compliance of polyurea compared to steel. 

7.3 - Results 

7.3.1 - Composite 1 

 

Figure 7.3.1 – Response of (i) core, (ii) polyurea, and (iii) composite, respectively.  Loading rate 

is a) 50 s-1 b) 300 s-1, and c) 3000 s-1. 
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Table 7.3.1 – Energy absorbed by Composite 1 piecewise and systematically. 

 5 m/s 

 mass [kg] E [J] e [J/kg] 

core 3.696 1.040E+05 2.814E+04 

filler 1.933 1.392E+04 7.199E+03 

comp-tot 5.629 1.227E+05 2.180E+04 

IMPROVEMENT OVER CORE   18.0% -22.5% 

IMPROVEMENT OVER PU   781.7% 202.8% 

 30 m/s 

 mass [kg] E [J] e [J/kg] 

core 3.696 1.069E+05 2.894E+04 

filler 1.933 1.488E+04 7.695E+03 

comp-tot 5.629 1.260E+05 2.238E+04 

IMPROVEMENT OVER CORE   17.8% -22.7% 

IMPROVEMENT OVER PU   746.9% 190.9% 

 300 m/s 

 mass [kg] E [J] e [J/kg] 

core 3.696 1.727E+05 4.673E+04 

filler 1.933 5.143E+04 2.660E+04 

comp-tot 5.629 2.371E+05 4.212E+04 

IMPROVEMENT OVER CORE   37.3% -9.9% 

IMPROVEMENT OVER PU   361.0% 58.3% 

 

Table 7.3.1 shows that energy absorbed by the composite increases at least 17.8% and 

360% when compared to the core and filler, respectively.  The most energy is absorbed during the 

high strain-rate loading case.  Comparing each component and the composite at low and high 

strain-rates, we see the core, polyurea, and system increase their energy absorbed by 66%, 269%, 

and 93%, respectively.  Results for specific energy however, are less impressive.  Table 7.3.1 

shows the composite has increasing specific energy absorbed as strain-rate increases but is always 

less than the specific energy absorbed by the core.  The opposite is true when comparing the 

composite to polyurea, where polyurea always has more specific energy absorbed but has this 

value decrease with higher strain-rate.   

 



66 

 

Figure 7.3.2 – Force-displacement plots for Composite 1 at 50 s-1 strain rate. 

 

Figure 7.3.3 – Force-displacement plots for Composite 1 at 300 s-1 strain rate. 
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Figure 7.3.4 – Force-displacement plots for Composite 1 at 3000 s-1 strain rate. 

 

Figure 7.3.5 – Stress wave propogation over 3000 s-1 loading period. 
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however the latency due to wave oscillation is more pronounced.  A clear peak force mismatch is 

present when observing the response of each component and composite—being especially true for 

polyurea, where a peak force doesn’t occur on the bottom surface for about 12% of the loading 

period.  Figure 7.3.4 shows a very large disagreement between force response on the top and 

bottom surfaces.  Polyurea registers little if any force on its’ bottom surface throughout the duration 

of loading, this is easily confirmed by observing the stress wave propagation in Figure 7.3.5. 

7.3.2 - Composite 2 

Table 7.3.2 – Energy absorbed by Composite 2 piecewise and systematically. 

 0.5 m/s 

 mass [kg] E [J] e [J/kg] 

core 0.0417 5.745E+02 1.378E+04 

filler 0.1933 3.842E+03 1.987E+04 

comp-tot 0.2350 4.550E+03 1.936E+04 

IMPROVEMENT OVER CORE   692.0% 40.5% 

IMPROVEMENT OVER PU   18.4% -2.6% 

 3 m/s 

 mass [kg] E [J] e [J/kg] 

core 0.0417 5.916E+02 1.419E+04 

filler 0.1933 3.890E+03 2.012E+04 

comp-tot 0.2350 4.598E+03 1.956E+04 

IMPROVEMENT OVER CORE  677.1% 37.8% 

IMPROVEMENT OVER PU   18.2% -2.8% 

 30 m/s 

 mass [kg] E [J] e [J/kg] 

core 0.0417 7.099E+02 1.703E+04 

filler 0.1933 4.110E+03 2.126E+04 

comp-tot 0.2350 4.838E+03 2.058E+04 

IMPROVEMENT OVER CORE   581.5% 20.9% 

IMPROVEMENT OVER PU   17.7% -3.2% 

 

Table 7.3.2 shows that energy absorbed by the composite increases at least 580% and 

17.7% when compared to the core and filler, respectively.  As before, the most energy is absorbed 

during high strain-rate loading.  Comparing each component and the composite at low and high 

strain-rates, we see the core, polyurea, and system increased their energy absorbed by 23%, 7%, 

and 6%, respectively.  Oppose to Composite 1, this system shows consistently greater specific 

energy absorption when compared to the core but less when compared to polyurea. 
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Figure 7.3.6 – Force-displacement plots for Composite 2 at 50 s-1 strain rate. 

 

Figure 7.3.7 – Force-displacement plots for Composite 2 at 300 s-1 strain rate. 
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Figure 7.3.8 – Force-displacement plots for Composite 2 at 3000 s-1 strain rate. 

 Figure 7.3.6 and Figure 7.3.7 show that polyurea is the force determinant material since its 

force-displacement response is very nearly that of the composite.  Figure 7.3.7 shows a little 

oscillation during the beginning of loading but pales in comparison to the high strain-rate case seen 

in Figure 7.3.8.  The shock of the impact gives almost step-wise force oscillation at the beginning, 

transitioning to smoother oscillations as loading continues.  As with the previous composite, this 

system does not reach a dynamic equilibrium before the end of high strain-rate loading. 

7.4 - Discussion 

The effect of using a hyper-viscoelastic polymer as the filler in a composite honeycomb 

system has been investigated using two different core materials and heights.  Key points are: Filler 

specimen height can significantly impact dynamic equilibration time and inherently, bulk and 

specific energy absorption for polyurea; and Changing core material is a feasible way to control 

specific energy absorption or force shielding potential.  The enhanced material properties of 

polyurea have also been verified by using 3000 s-1 strain-rate, although it’s important to note such 

enhancement is highly dependent on specimen height. 
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Conclusion 

This work has investigated the dynamic topological strength characteristics and energy 

absorbance of regular hexagonal, triangular, and square honeycombs subjected to normal and 

mixed mode loading.  Results over the length scales examined strongly indicate that hexagonal 

geometry has higher specific and overall energy absorption during all modes of loading when 

compared to triangular or square geometry. The controlling mechanism is identified as a 

combination of plastic hinge wavelength and amplitude present in each buckling leg.  Material 

between hinges has reduced energy absorbed due to the increased compliance of surrounding 

hinges. Accordingly, lateral buckling behavior is responsible for reduced energy absorption.  

Reducing out-of-plane aspect ratio H/L is identified as an efficient way to reduce hinge formation, 

increasing specific energy absorption. 

The topological results were used to create a void filled honeycomb composites, revealing 

further enhancements can be achieved with polymer-composites—this work involved a hyper-

viscoelastic polymer void filler.  Results show the steel core system had reduced specific energy 

absorbed at all loading rates when compared to the steel core alone, while the polypropylene core 

system had improved specific energy absorption at all loading rates when compared to the 

polypropylene core alone.  The difference between absorption abilities of steel and polypropylene 

cored composites is attributed to the large and small compliance mismatch present between core 

and filler—namely, steel and polyurea have a large compliance mismatch while polypropylene 

and polyurea have a much smaller compliance mismatch.  Even so, both composites had more 

overall energy absorbed when compared to the core alone. Most importantly, polymer-composite 

systems with rate-responsive filler display potential as highly customizable energy absorbers. 
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Appendix A 

Deformation gradient tensor 𝐹𝑖𝑗 in terms of undeformed 𝑥𝑖 and deformed 𝑋𝑖 configuration 

 
𝐹𝑖𝑗 = 𝛿𝑖𝑗 +

𝜕𝑥𝑖

𝜕𝑋𝑗
 (7.4.1) 

Kronecker delta function 𝛿𝑖𝑗  

 
𝛿𝑖𝑗 = {

0, 𝑖𝑓 𝑖 ≠ 𝑗
1, 𝑖𝑓 = 𝑗

 (7.4.2) 

Jacobian J  

 
𝐽 = 𝑑𝑒𝑡 (𝐹𝑖𝑗) (7.4.3) 

Left Cauchy-Green deformation tensor 𝐵𝑖𝑗 

 
𝐵𝑖𝑗 = 𝐹𝑖𝑘𝐹𝑗𝑘  (7.4.4) 

Principle stretches 𝜆𝑖 in terms of eigenvalues of 𝐵𝑖𝑗 

 
𝜆𝑖 = √𝑒𝑖 (7.4.5) 

Adjusted principle stretch 𝜆̅𝑖 

 
𝜆̅𝑖 =

𝜆𝑖

𝐽1/3
 (7.4.6) 

Shear strain 𝛾 

 
𝛾 = 𝐶𝑡 (7.4.7) 

Shear modulus G 

 
𝐺(𝑡) =

𝜕𝜎

𝜕𝛾
=

1

𝐶

𝜕𝜎

𝜕𝑡
 (7.4.8) 

 

 

 

 

 

 

 

 

 


	Chapter 1 -  Motivation
	1.1 - Introduction
	1.2 - Literature Review
	1.2.1 - Honeycomb Structures
	1.2.2 - Strain Rate Sensitivity


	Chapter 2 -  Modeling Technique
	2.1 - Introduction
	2.2 - The Finite Element Method
	2.2.1 - Static
	2.2.2 - Dynamic

	2.3 - Element Selection
	2.3.1 - Mesh Sensitivity Analysis
	2.3.1.1 - Setup
	2.3.1.2 - Results


	2.4 - Benchmark
	2.4.1 - Setup
	2.4.2 - Results


	Chapter 3 -  Geometric Comparison
	3.1 - Introduction
	3.2 - External Constraints
	3.3 - Boundary Conditions
	3.4 - Procedure
	3.5 - Results
	3.5.1 - Mass Normalizing
	3.5.2 - Square, Triangular, Hexagonal Honeycombs

	3.6 - Discussion

	Chapter 4 -  Connectivity and Thickness
	4.1 - Introduction
	4.2 - External Constraints
	4.2.1 - Procedure, Triangular Honeycomb
	4.2.2 - Square Honeycomb
	4.2.3 - Hexagonal Honeycomb

	4.3 - Results
	4.4 - Discussion

	Chapter 5 -  Aspect Ratio
	5.1 - Introduction
	5.2 - Unbounded
	5.2.1 - External Constraints and Boundary Conditions
	5.2.2 - Procedure
	5.2.3 - Results

	5.3 - Bounded
	5.3.1 - External Constraints
	5.3.2 - Results

	5.4 - Discussion

	Chapter 6 -  Mixed Mode Loading
	6.1 - Introduction
	6.2 - External Constraints
	6.3 - Results
	6.4 - Discussion

	Chapter 7 -  Polyurea as a Void Filler
	7.1 - Introduction
	7.1.1 - Hyperelasticity
	7.1.2 - Viscoelasticity

	7.2 - Setup
	7.3 - Results
	7.3.1 - Composite 1
	7.3.2 - Composite 2

	7.4 - Discussion

	Conclusion
	References
	Appendix A

